2008-11-18 Kai Tietz <kai.tietz@onevision.com>
[official-gcc.git] / libgfortran / io / write.c
blob32c58471bb8c1b92ca8d4b38a739d3c9a7f30420
1 /* Copyright (C) 2002, 2003, 2004, 2005, 2006, 2007, 2008
2 Free Software Foundation, Inc.
3 Contributed by Andy Vaught
4 Namelist output contributed by Paul Thomas
5 F2003 I/O support contributed by Jerry DeLisle
7 This file is part of the GNU Fortran 95 runtime library (libgfortran).
9 Libgfortran is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 2, or (at your option)
12 any later version.
14 In addition to the permissions in the GNU General Public License, the
15 Free Software Foundation gives you unlimited permission to link the
16 compiled version of this file into combinations with other programs,
17 and to distribute those combinations without any restriction coming
18 from the use of this file. (The General Public License restrictions
19 do apply in other respects; for example, they cover modification of
20 the file, and distribution when not linked into a combine
21 executable.)
23 Libgfortran is distributed in the hope that it will be useful,
24 but WITHOUT ANY WARRANTY; without even the implied warranty of
25 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
26 GNU General Public License for more details.
28 You should have received a copy of the GNU General Public License
29 along with Libgfortran; see the file COPYING. If not, write to
30 the Free Software Foundation, 51 Franklin Street, Fifth Floor,
31 Boston, MA 02110-1301, USA. */
33 #include "io.h"
34 #include <assert.h>
35 #include <string.h>
36 #include <ctype.h>
37 #include <stdlib.h>
38 #include <stdbool.h>
39 #include <errno.h>
40 #define star_fill(p, n) memset(p, '*', n)
42 #include "write_float.def"
44 typedef unsigned char uchar;
46 /* Write out default char4. */
48 static void
49 write_default_char4 (st_parameter_dt *dtp, gfc_char4_t *source,
50 int src_len, int w_len)
52 char *p;
53 int j, k = 0;
54 gfc_char4_t c;
55 uchar d;
57 /* Take care of preceding blanks. */
58 if (w_len > src_len)
60 k = w_len - src_len;
61 p = write_block (dtp, k);
62 if (p == NULL)
63 return;
64 memset (p, ' ', k);
67 /* Get ready to handle delimiters if needed. */
68 switch (dtp->u.p.current_unit->delim_status)
70 case DELIM_APOSTROPHE:
71 d = '\'';
72 break;
73 case DELIM_QUOTE:
74 d = '"';
75 break;
76 default:
77 d = ' ';
78 break;
81 /* Now process the remaining characters, one at a time. */
82 for (j = k; j < src_len; j++)
84 c = source[j];
86 /* Handle delimiters if any. */
87 if (c == d && d != ' ')
89 p = write_block (dtp, 2);
90 if (p == NULL)
91 return;
92 *p++ = (uchar) c;
94 else
96 p = write_block (dtp, 1);
97 if (p == NULL)
98 return;
100 *p = c > 255 ? '?' : (uchar) c;
105 /* Write out UTF-8 converted from char4. */
107 static void
108 write_utf8_char4 (st_parameter_dt *dtp, gfc_char4_t *source,
109 int src_len, int w_len)
111 char *p;
112 int j, k = 0;
113 gfc_char4_t c;
114 static const uchar masks[6] = { 0x00, 0xC0, 0xE0, 0xF0, 0xF8, 0xFC };
115 static const uchar limits[6] = { 0x80, 0xE0, 0xF0, 0xF8, 0xFC, 0xFE };
116 size_t nbytes;
117 uchar buf[6], d, *q;
119 /* Take care of preceding blanks. */
120 if (w_len > src_len)
122 k = w_len - src_len;
123 p = write_block (dtp, k);
124 if (p == NULL)
125 return;
126 memset (p, ' ', k);
129 /* Get ready to handle delimiters if needed. */
130 switch (dtp->u.p.current_unit->delim_status)
132 case DELIM_APOSTROPHE:
133 d = '\'';
134 break;
135 case DELIM_QUOTE:
136 d = '"';
137 break;
138 default:
139 d = ' ';
140 break;
143 /* Now process the remaining characters, one at a time. */
144 for (j = k; j < src_len; j++)
146 c = source[j];
147 if (c < 0x80)
149 /* Handle the delimiters if any. */
150 if (c == d && d != ' ')
152 p = write_block (dtp, 2);
153 if (p == NULL)
154 return;
155 *p++ = (uchar) c;
157 else
159 p = write_block (dtp, 1);
160 if (p == NULL)
161 return;
163 *p = (uchar) c;
165 else
167 /* Convert to UTF-8 sequence. */
168 nbytes = 1;
169 q = &buf[6];
173 *--q = ((c & 0x3F) | 0x80);
174 c >>= 6;
175 nbytes++;
177 while (c >= 0x3F || (c & limits[nbytes-1]));
179 *--q = (c | masks[nbytes-1]);
181 p = write_block (dtp, nbytes);
182 if (p == NULL)
183 return;
185 while (q < &buf[6])
186 *p++ = *q++;
192 void
193 write_a (st_parameter_dt *dtp, const fnode *f, const char *source, int len)
195 int wlen;
196 char *p;
198 wlen = f->u.string.length < 0
199 || (f->format == FMT_G && f->u.string.length == 0)
200 ? len : f->u.string.length;
202 #ifdef HAVE_CRLF
203 /* If this is formatted STREAM IO convert any embedded line feed characters
204 to CR_LF on systems that use that sequence for newlines. See F2003
205 Standard sections 10.6.3 and 9.9 for further information. */
206 if (is_stream_io (dtp))
208 const char crlf[] = "\r\n";
209 int i, q, bytes;
210 q = bytes = 0;
212 /* Write out any padding if needed. */
213 if (len < wlen)
215 p = write_block (dtp, wlen - len);
216 if (p == NULL)
217 return;
218 memset (p, ' ', wlen - len);
221 /* Scan the source string looking for '\n' and convert it if found. */
222 for (i = 0; i < wlen; i++)
224 if (source[i] == '\n')
226 /* Write out the previously scanned characters in the string. */
227 if (bytes > 0)
229 p = write_block (dtp, bytes);
230 if (p == NULL)
231 return;
232 memcpy (p, &source[q], bytes);
233 q += bytes;
234 bytes = 0;
237 /* Write out the CR_LF sequence. */
238 q++;
239 p = write_block (dtp, 2);
240 if (p == NULL)
241 return;
242 memcpy (p, crlf, 2);
244 else
245 bytes++;
248 /* Write out any remaining bytes if no LF was found. */
249 if (bytes > 0)
251 p = write_block (dtp, bytes);
252 if (p == NULL)
253 return;
254 memcpy (p, &source[q], bytes);
257 else
259 #endif
260 p = write_block (dtp, wlen);
261 if (p == NULL)
262 return;
264 if (wlen < len)
265 memcpy (p, source, wlen);
266 else
268 memset (p, ' ', wlen - len);
269 memcpy (p + wlen - len, source, len);
271 #ifdef HAVE_CRLF
273 #endif
277 /* The primary difference between write_a_char4 and write_a is that we have to
278 deal with writing from the first byte of the 4-byte character and pay
279 attention to the most significant bytes. For ENCODING="default" write the
280 lowest significant byte. If the 3 most significant bytes contain
281 non-zero values, emit a '?'. For ENCODING="utf-8", convert the UCS-32 value
282 to the UTF-8 encoded string before writing out. */
284 void
285 write_a_char4 (st_parameter_dt *dtp, const fnode *f, const char *source, int len)
287 int wlen;
288 gfc_char4_t *q;
290 wlen = f->u.string.length < 0
291 || (f->format == FMT_G && f->u.string.length == 0)
292 ? len : f->u.string.length;
294 q = (gfc_char4_t *) source;
295 #ifdef HAVE_CRLF
296 /* If this is formatted STREAM IO convert any embedded line feed characters
297 to CR_LF on systems that use that sequence for newlines. See F2003
298 Standard sections 10.6.3 and 9.9 for further information. */
299 if (is_stream_io (dtp))
301 const char crlf[] = "\r\n";
302 int i, bytes;
303 gfc_char4_t *qq;
304 bytes = 0;
306 /* Write out any padding if needed. */
307 if (len < wlen)
309 char *p;
310 p = write_block (dtp, wlen - len);
311 if (p == NULL)
312 return;
313 memset (p, ' ', wlen - len);
316 /* Scan the source string looking for '\n' and convert it if found. */
317 qq = (gfc_char4_t *) source;
318 for (i = 0; i < wlen; i++)
320 if (qq[i] == '\n')
322 /* Write out the previously scanned characters in the string. */
323 if (bytes > 0)
325 if (dtp->u.p.current_unit->flags.encoding == ENCODING_UTF8)
326 write_utf8_char4 (dtp, q, bytes, 0);
327 else
328 write_default_char4 (dtp, q, bytes, 0);
329 bytes = 0;
332 /* Write out the CR_LF sequence. */
333 write_default_char4 (dtp, crlf, 2, 0);
335 else
336 bytes++;
339 /* Write out any remaining bytes if no LF was found. */
340 if (bytes > 0)
342 if (dtp->u.p.current_unit->flags.encoding == ENCODING_UTF8)
343 write_utf8_char4 (dtp, q, bytes, 0);
344 else
345 write_default_char4 (dtp, q, bytes, 0);
348 else
350 #endif
351 if (dtp->u.p.current_unit->flags.encoding == ENCODING_UTF8)
352 write_utf8_char4 (dtp, q, len, wlen);
353 else
354 write_default_char4 (dtp, q, len, wlen);
355 #ifdef HAVE_CRLF
357 #endif
361 static GFC_INTEGER_LARGEST
362 extract_int (const void *p, int len)
364 GFC_INTEGER_LARGEST i = 0;
366 if (p == NULL)
367 return i;
369 switch (len)
371 case 1:
373 GFC_INTEGER_1 tmp;
374 memcpy ((void *) &tmp, p, len);
375 i = tmp;
377 break;
378 case 2:
380 GFC_INTEGER_2 tmp;
381 memcpy ((void *) &tmp, p, len);
382 i = tmp;
384 break;
385 case 4:
387 GFC_INTEGER_4 tmp;
388 memcpy ((void *) &tmp, p, len);
389 i = tmp;
391 break;
392 case 8:
394 GFC_INTEGER_8 tmp;
395 memcpy ((void *) &tmp, p, len);
396 i = tmp;
398 break;
399 #ifdef HAVE_GFC_INTEGER_16
400 case 16:
402 GFC_INTEGER_16 tmp;
403 memcpy ((void *) &tmp, p, len);
404 i = tmp;
406 break;
407 #endif
408 default:
409 internal_error (NULL, "bad integer kind");
412 return i;
415 static GFC_UINTEGER_LARGEST
416 extract_uint (const void *p, int len)
418 GFC_UINTEGER_LARGEST i = 0;
420 if (p == NULL)
421 return i;
423 switch (len)
425 case 1:
427 GFC_INTEGER_1 tmp;
428 memcpy ((void *) &tmp, p, len);
429 i = (GFC_UINTEGER_1) tmp;
431 break;
432 case 2:
434 GFC_INTEGER_2 tmp;
435 memcpy ((void *) &tmp, p, len);
436 i = (GFC_UINTEGER_2) tmp;
438 break;
439 case 4:
441 GFC_INTEGER_4 tmp;
442 memcpy ((void *) &tmp, p, len);
443 i = (GFC_UINTEGER_4) tmp;
445 break;
446 case 8:
448 GFC_INTEGER_8 tmp;
449 memcpy ((void *) &tmp, p, len);
450 i = (GFC_UINTEGER_8) tmp;
452 break;
453 #ifdef HAVE_GFC_INTEGER_16
454 case 16:
456 GFC_INTEGER_16 tmp;
457 memcpy ((void *) &tmp, p, len);
458 i = (GFC_UINTEGER_16) tmp;
460 break;
461 #endif
462 default:
463 internal_error (NULL, "bad integer kind");
466 return i;
470 void
471 write_l (st_parameter_dt *dtp, const fnode *f, char *source, int len)
473 char *p;
474 int wlen;
475 GFC_INTEGER_LARGEST n;
477 wlen = (f->format == FMT_G && f->u.w == 0) ? 1 : f->u.w;
479 p = write_block (dtp, wlen);
480 if (p == NULL)
481 return;
483 memset (p, ' ', wlen - 1);
484 n = extract_int (source, len);
485 p[wlen - 1] = (n) ? 'T' : 'F';
489 static void
490 write_int (st_parameter_dt *dtp, const fnode *f, const char *source, int len,
491 const char *(*conv) (GFC_UINTEGER_LARGEST, char *, size_t))
493 GFC_UINTEGER_LARGEST n = 0;
494 int w, m, digits, nzero, nblank;
495 char *p;
496 const char *q;
497 char itoa_buf[GFC_BTOA_BUF_SIZE];
499 w = f->u.integer.w;
500 m = f->u.integer.m;
502 n = extract_uint (source, len);
504 /* Special case: */
506 if (m == 0 && n == 0)
508 if (w == 0)
509 w = 1;
511 p = write_block (dtp, w);
512 if (p == NULL)
513 return;
515 memset (p, ' ', w);
516 goto done;
519 q = conv (n, itoa_buf, sizeof (itoa_buf));
520 digits = strlen (q);
522 /* Select a width if none was specified. The idea here is to always
523 print something. */
525 if (w == 0)
526 w = ((digits < m) ? m : digits);
528 p = write_block (dtp, w);
529 if (p == NULL)
530 return;
532 nzero = 0;
533 if (digits < m)
534 nzero = m - digits;
536 /* See if things will work. */
538 nblank = w - (nzero + digits);
540 if (nblank < 0)
542 star_fill (p, w);
543 goto done;
547 if (!dtp->u.p.no_leading_blank)
549 memset (p, ' ', nblank);
550 p += nblank;
551 memset (p, '0', nzero);
552 p += nzero;
553 memcpy (p, q, digits);
555 else
557 memset (p, '0', nzero);
558 p += nzero;
559 memcpy (p, q, digits);
560 p += digits;
561 memset (p, ' ', nblank);
562 dtp->u.p.no_leading_blank = 0;
565 done:
566 return;
569 static void
570 write_decimal (st_parameter_dt *dtp, const fnode *f, const char *source,
571 int len,
572 const char *(*conv) (GFC_INTEGER_LARGEST, char *, size_t))
574 GFC_INTEGER_LARGEST n = 0;
575 int w, m, digits, nsign, nzero, nblank;
576 char *p;
577 const char *q;
578 sign_t sign;
579 char itoa_buf[GFC_BTOA_BUF_SIZE];
581 w = f->u.integer.w;
582 m = f->format == FMT_G ? -1 : f->u.integer.m;
584 n = extract_int (source, len);
586 /* Special case: */
587 if (m == 0 && n == 0)
589 if (w == 0)
590 w = 1;
592 p = write_block (dtp, w);
593 if (p == NULL)
594 return;
596 memset (p, ' ', w);
597 goto done;
600 sign = calculate_sign (dtp, n < 0);
601 if (n < 0)
602 n = -n;
604 nsign = sign == S_NONE ? 0 : 1;
605 q = conv (n, itoa_buf, sizeof (itoa_buf));
607 digits = strlen (q);
609 /* Select a width if none was specified. The idea here is to always
610 print something. */
612 if (w == 0)
613 w = ((digits < m) ? m : digits) + nsign;
615 p = write_block (dtp, w);
616 if (p == NULL)
617 return;
619 nzero = 0;
620 if (digits < m)
621 nzero = m - digits;
623 /* See if things will work. */
625 nblank = w - (nsign + nzero + digits);
627 if (nblank < 0)
629 star_fill (p, w);
630 goto done;
633 memset (p, ' ', nblank);
634 p += nblank;
636 switch (sign)
638 case S_PLUS:
639 *p++ = '+';
640 break;
641 case S_MINUS:
642 *p++ = '-';
643 break;
644 case S_NONE:
645 break;
648 memset (p, '0', nzero);
649 p += nzero;
651 memcpy (p, q, digits);
653 done:
654 return;
658 /* Convert unsigned octal to ascii. */
660 static const char *
661 otoa (GFC_UINTEGER_LARGEST n, char *buffer, size_t len)
663 char *p;
665 assert (len >= GFC_OTOA_BUF_SIZE);
667 if (n == 0)
668 return "0";
670 p = buffer + GFC_OTOA_BUF_SIZE - 1;
671 *p = '\0';
673 while (n != 0)
675 *--p = '0' + (n & 7);
676 n >>= 3;
679 return p;
683 /* Convert unsigned binary to ascii. */
685 static const char *
686 btoa (GFC_UINTEGER_LARGEST n, char *buffer, size_t len)
688 char *p;
690 assert (len >= GFC_BTOA_BUF_SIZE);
692 if (n == 0)
693 return "0";
695 p = buffer + GFC_BTOA_BUF_SIZE - 1;
696 *p = '\0';
698 while (n != 0)
700 *--p = '0' + (n & 1);
701 n >>= 1;
704 return p;
708 void
709 write_i (st_parameter_dt *dtp, const fnode *f, const char *p, int len)
711 write_decimal (dtp, f, p, len, (void *) gfc_itoa);
715 void
716 write_b (st_parameter_dt *dtp, const fnode *f, const char *p, int len)
718 write_int (dtp, f, p, len, btoa);
722 void
723 write_o (st_parameter_dt *dtp, const fnode *f, const char *p, int len)
725 write_int (dtp, f, p, len, otoa);
728 void
729 write_z (st_parameter_dt *dtp, const fnode *f, const char *p, int len)
731 write_int (dtp, f, p, len, xtoa);
735 void
736 write_d (st_parameter_dt *dtp, const fnode *f, const char *p, int len)
738 write_float (dtp, f, p, len);
742 void
743 write_e (st_parameter_dt *dtp, const fnode *f, const char *p, int len)
745 write_float (dtp, f, p, len);
749 void
750 write_f (st_parameter_dt *dtp, const fnode *f, const char *p, int len)
752 write_float (dtp, f, p, len);
756 void
757 write_en (st_parameter_dt *dtp, const fnode *f, const char *p, int len)
759 write_float (dtp, f, p, len);
763 void
764 write_es (st_parameter_dt *dtp, const fnode *f, const char *p, int len)
766 write_float (dtp, f, p, len);
770 /* Take care of the X/TR descriptor. */
772 void
773 write_x (st_parameter_dt *dtp, int len, int nspaces)
775 char *p;
777 p = write_block (dtp, len);
778 if (p == NULL)
779 return;
781 if (nspaces > 0)
782 memset (&p[len - nspaces], ' ', nspaces);
786 /* List-directed writing. */
789 /* Write a single character to the output. Returns nonzero if
790 something goes wrong. */
792 static int
793 write_char (st_parameter_dt *dtp, char c)
795 char *p;
797 p = write_block (dtp, 1);
798 if (p == NULL)
799 return 1;
801 *p = c;
803 return 0;
807 /* Write a list-directed logical value. */
809 static void
810 write_logical (st_parameter_dt *dtp, const char *source, int length)
812 write_char (dtp, extract_int (source, length) ? 'T' : 'F');
816 /* Write a list-directed integer value. */
818 static void
819 write_integer (st_parameter_dt *dtp, const char *source, int length)
821 char *p;
822 const char *q;
823 int digits;
824 int width;
825 char itoa_buf[GFC_ITOA_BUF_SIZE];
827 q = gfc_itoa (extract_int (source, length), itoa_buf, sizeof (itoa_buf));
829 switch (length)
831 case 1:
832 width = 4;
833 break;
835 case 2:
836 width = 6;
837 break;
839 case 4:
840 width = 11;
841 break;
843 case 8:
844 width = 20;
845 break;
847 default:
848 width = 0;
849 break;
852 digits = strlen (q);
854 if (width < digits)
855 width = digits;
856 p = write_block (dtp, width);
857 if (p == NULL)
858 return;
859 if (dtp->u.p.no_leading_blank)
861 memcpy (p, q, digits);
862 memset (p + digits, ' ', width - digits);
864 else
866 memset (p, ' ', width - digits);
867 memcpy (p + width - digits, q, digits);
872 /* Write a list-directed string. We have to worry about delimiting
873 the strings if the file has been opened in that mode. */
875 static void
876 write_character (st_parameter_dt *dtp, const char *source, int kind, int length)
878 int i, extra;
879 char *p, d;
881 switch (dtp->u.p.current_unit->delim_status)
883 case DELIM_APOSTROPHE:
884 d = '\'';
885 break;
886 case DELIM_QUOTE:
887 d = '"';
888 break;
889 default:
890 d = ' ';
891 break;
894 if (kind == 1)
896 if (d == ' ')
897 extra = 0;
898 else
900 extra = 2;
902 for (i = 0; i < length; i++)
903 if (source[i] == d)
904 extra++;
907 p = write_block (dtp, length + extra);
908 if (p == NULL)
909 return;
911 if (d == ' ')
912 memcpy (p, source, length);
913 else
915 *p++ = d;
917 for (i = 0; i < length; i++)
919 *p++ = source[i];
920 if (source[i] == d)
921 *p++ = d;
924 *p = d;
927 else
929 if (d == ' ')
931 if (dtp->u.p.current_unit->flags.encoding == ENCODING_UTF8)
932 write_utf8_char4 (dtp, (gfc_char4_t *) source, length, 0);
933 else
934 write_default_char4 (dtp, (gfc_char4_t *) source, length, 0);
936 else
938 p = write_block (dtp, 1);
939 *p = d;
941 if (dtp->u.p.current_unit->flags.encoding == ENCODING_UTF8)
942 write_utf8_char4 (dtp, (gfc_char4_t *) source, length, 0);
943 else
944 write_default_char4 (dtp, (gfc_char4_t *) source, length, 0);
946 p = write_block (dtp, 1);
947 *p = d;
953 /* Set an fnode to default format. */
955 static void
956 set_fnode_default (st_parameter_dt *dtp, fnode *f, int length)
958 f->format = FMT_G;
959 switch (length)
961 case 4:
962 f->u.real.w = 15;
963 f->u.real.d = 8;
964 f->u.real.e = 2;
965 break;
966 case 8:
967 f->u.real.w = 25;
968 f->u.real.d = 17;
969 f->u.real.e = 3;
970 break;
971 case 10:
972 f->u.real.w = 29;
973 f->u.real.d = 20;
974 f->u.real.e = 4;
975 break;
976 case 16:
977 f->u.real.w = 44;
978 f->u.real.d = 35;
979 f->u.real.e = 4;
980 break;
981 default:
982 internal_error (&dtp->common, "bad real kind");
983 break;
986 /* Output a real number with default format.
987 This is 1PG14.7E2 for REAL(4), 1PG23.15E3 for REAL(8),
988 1PG28.19E4 for REAL(10) and 1PG43.34E4 for REAL(16). */
990 void
991 write_real (st_parameter_dt *dtp, const char *source, int length)
993 fnode f ;
994 int org_scale = dtp->u.p.scale_factor;
995 dtp->u.p.scale_factor = 1;
996 set_fnode_default (dtp, &f, length);
997 write_float (dtp, &f, source , length);
998 dtp->u.p.scale_factor = org_scale;
1002 void
1003 write_real_g0 (st_parameter_dt *dtp, const char *source, int length, int d)
1005 fnode f ;
1006 int org_scale = dtp->u.p.scale_factor;
1007 dtp->u.p.scale_factor = 1;
1008 set_fnode_default (dtp, &f, length);
1009 f.format = FMT_ES;
1010 f.u.real.d = d;
1011 write_float (dtp, &f, source , length);
1012 dtp->u.p.scale_factor = org_scale;
1016 static void
1017 write_complex (st_parameter_dt *dtp, const char *source, int kind, size_t size)
1019 char semi_comma =
1020 dtp->u.p.current_unit->decimal_status == DECIMAL_POINT ? ',' : ';';
1022 if (write_char (dtp, '('))
1023 return;
1024 write_real (dtp, source, kind);
1026 if (write_char (dtp, semi_comma))
1027 return;
1028 write_real (dtp, source + size / 2, kind);
1030 write_char (dtp, ')');
1034 /* Write the separator between items. */
1036 static void
1037 write_separator (st_parameter_dt *dtp)
1039 char *p;
1041 p = write_block (dtp, options.separator_len);
1042 if (p == NULL)
1043 return;
1045 memcpy (p, options.separator, options.separator_len);
1049 /* Write an item with list formatting.
1050 TODO: handle skipping to the next record correctly, particularly
1051 with strings. */
1053 static void
1054 list_formatted_write_scalar (st_parameter_dt *dtp, bt type, void *p, int kind,
1055 size_t size)
1057 if (dtp->u.p.current_unit == NULL)
1058 return;
1060 if (dtp->u.p.first_item)
1062 dtp->u.p.first_item = 0;
1063 write_char (dtp, ' ');
1065 else
1067 if (type != BT_CHARACTER || !dtp->u.p.char_flag ||
1068 dtp->u.p.current_unit->delim_status != DELIM_NONE)
1069 write_separator (dtp);
1072 switch (type)
1074 case BT_INTEGER:
1075 write_integer (dtp, p, kind);
1076 break;
1077 case BT_LOGICAL:
1078 write_logical (dtp, p, kind);
1079 break;
1080 case BT_CHARACTER:
1081 write_character (dtp, p, kind, size);
1082 break;
1083 case BT_REAL:
1084 write_real (dtp, p, kind);
1085 break;
1086 case BT_COMPLEX:
1087 write_complex (dtp, p, kind, size);
1088 break;
1089 default:
1090 internal_error (&dtp->common, "list_formatted_write(): Bad type");
1093 dtp->u.p.char_flag = (type == BT_CHARACTER);
1097 void
1098 list_formatted_write (st_parameter_dt *dtp, bt type, void *p, int kind,
1099 size_t size, size_t nelems)
1101 size_t elem;
1102 char *tmp;
1103 size_t stride = type == BT_CHARACTER ?
1104 size * GFC_SIZE_OF_CHAR_KIND(kind) : size;
1106 tmp = (char *) p;
1108 /* Big loop over all the elements. */
1109 for (elem = 0; elem < nelems; elem++)
1111 dtp->u.p.item_count++;
1112 list_formatted_write_scalar (dtp, type, tmp + elem * stride, kind, size);
1116 /* NAMELIST OUTPUT
1118 nml_write_obj writes a namelist object to the output stream. It is called
1119 recursively for derived type components:
1120 obj = is the namelist_info for the current object.
1121 offset = the offset relative to the address held by the object for
1122 derived type arrays.
1123 base = is the namelist_info of the derived type, when obj is a
1124 component.
1125 base_name = the full name for a derived type, including qualifiers
1126 if any.
1127 The returned value is a pointer to the object beyond the last one
1128 accessed, including nested derived types. Notice that the namelist is
1129 a linear linked list of objects, including derived types and their
1130 components. A tree, of sorts, is implied by the compound names of
1131 the derived type components and this is how this function recurses through
1132 the list. */
1134 /* A generous estimate of the number of characters needed to print
1135 repeat counts and indices, including commas, asterices and brackets. */
1137 #define NML_DIGITS 20
1139 static void
1140 namelist_write_newline (st_parameter_dt *dtp)
1142 if (!is_internal_unit (dtp))
1144 #ifdef HAVE_CRLF
1145 write_character (dtp, "\r\n", 1, 2);
1146 #else
1147 write_character (dtp, "\n", 1, 1);
1148 #endif
1149 return;
1152 if (is_array_io (dtp))
1154 gfc_offset record;
1155 int finished, length;
1157 length = (int) dtp->u.p.current_unit->bytes_left;
1159 /* Now that the current record has been padded out,
1160 determine where the next record in the array is. */
1161 record = next_array_record (dtp, dtp->u.p.current_unit->ls,
1162 &finished);
1163 if (finished)
1164 dtp->u.p.current_unit->endfile = AT_ENDFILE;
1165 else
1167 /* Now seek to this record */
1168 record = record * dtp->u.p.current_unit->recl;
1170 if (sseek (dtp->u.p.current_unit->s, record) == FAILURE)
1172 generate_error (&dtp->common, LIBERROR_INTERNAL_UNIT, NULL);
1173 return;
1176 dtp->u.p.current_unit->bytes_left = dtp->u.p.current_unit->recl;
1179 else
1180 write_character (dtp, " ", 1, 1);
1184 static namelist_info *
1185 nml_write_obj (st_parameter_dt *dtp, namelist_info * obj, index_type offset,
1186 namelist_info * base, char * base_name)
1188 int rep_ctr;
1189 int num;
1190 int nml_carry;
1191 index_type len;
1192 index_type obj_size;
1193 index_type nelem;
1194 index_type dim_i;
1195 index_type clen;
1196 index_type elem_ctr;
1197 index_type obj_name_len;
1198 void * p ;
1199 char cup;
1200 char * obj_name;
1201 char * ext_name;
1202 char rep_buff[NML_DIGITS];
1203 namelist_info * cmp;
1204 namelist_info * retval = obj->next;
1205 size_t base_name_len;
1206 size_t base_var_name_len;
1207 size_t tot_len;
1208 unit_delim tmp_delim;
1210 /* Set the character to be used to separate values
1211 to a comma or semi-colon. */
1213 char semi_comma =
1214 dtp->u.p.current_unit->decimal_status == DECIMAL_POINT ? ',' : ';';
1216 /* Write namelist variable names in upper case. If a derived type,
1217 nothing is output. If a component, base and base_name are set. */
1219 if (obj->type != GFC_DTYPE_DERIVED)
1221 namelist_write_newline (dtp);
1222 write_character (dtp, " ", 1, 1);
1224 len = 0;
1225 if (base)
1227 len =strlen (base->var_name);
1228 for (dim_i = 0; dim_i < (index_type) strlen (base_name); dim_i++)
1230 cup = toupper (base_name[dim_i]);
1231 write_character (dtp, &cup, 1, 1);
1234 for (dim_i =len; dim_i < (index_type) strlen (obj->var_name); dim_i++)
1236 cup = toupper (obj->var_name[dim_i]);
1237 write_character (dtp, &cup, 1, 1);
1239 write_character (dtp, "=", 1, 1);
1242 /* Counts the number of data output on a line, including names. */
1244 num = 1;
1246 len = obj->len;
1248 switch (obj->type)
1251 case GFC_DTYPE_REAL:
1252 obj_size = size_from_real_kind (len);
1253 break;
1255 case GFC_DTYPE_COMPLEX:
1256 obj_size = size_from_complex_kind (len);
1257 break;
1259 case GFC_DTYPE_CHARACTER:
1260 obj_size = obj->string_length;
1261 break;
1263 default:
1264 obj_size = len;
1267 if (obj->var_rank)
1268 obj_size = obj->size;
1270 /* Set the index vector and count the number of elements. */
1272 nelem = 1;
1273 for (dim_i=0; dim_i < obj->var_rank; dim_i++)
1275 obj->ls[dim_i].idx = obj->dim[dim_i].lbound;
1276 nelem = nelem * (obj->dim[dim_i].ubound + 1 - obj->dim[dim_i].lbound);
1279 /* Main loop to output the data held in the object. */
1281 rep_ctr = 1;
1282 for (elem_ctr = 0; elem_ctr < nelem; elem_ctr++)
1285 /* Build the pointer to the data value. The offset is passed by
1286 recursive calls to this function for arrays of derived types.
1287 Is NULL otherwise. */
1289 p = (void *)(obj->mem_pos + elem_ctr * obj_size);
1290 p += offset;
1292 /* Check for repeat counts of intrinsic types. */
1294 if ((elem_ctr < (nelem - 1)) &&
1295 (obj->type != GFC_DTYPE_DERIVED) &&
1296 !memcmp (p, (void*)(p + obj_size ), obj_size ))
1298 rep_ctr++;
1301 /* Execute a repeated output. Note the flag no_leading_blank that
1302 is used in the functions used to output the intrinsic types. */
1304 else
1306 if (rep_ctr > 1)
1308 sprintf(rep_buff, " %d*", rep_ctr);
1309 write_character (dtp, rep_buff, 1, strlen (rep_buff));
1310 dtp->u.p.no_leading_blank = 1;
1312 num++;
1314 /* Output the data, if an intrinsic type, or recurse into this
1315 routine to treat derived types. */
1317 switch (obj->type)
1320 case GFC_DTYPE_INTEGER:
1321 write_integer (dtp, p, len);
1322 break;
1324 case GFC_DTYPE_LOGICAL:
1325 write_logical (dtp, p, len);
1326 break;
1328 case GFC_DTYPE_CHARACTER:
1329 tmp_delim = dtp->u.p.current_unit->delim_status;
1330 if (dtp->u.p.nml_delim == '"')
1331 dtp->u.p.current_unit->delim_status = DELIM_QUOTE;
1332 if (dtp->u.p.nml_delim == '\'')
1333 dtp->u.p.current_unit->delim_status = DELIM_APOSTROPHE;
1334 write_character (dtp, p, 1, obj->string_length);
1335 dtp->u.p.current_unit->delim_status = tmp_delim;
1336 break;
1338 case GFC_DTYPE_REAL:
1339 write_real (dtp, p, len);
1340 break;
1342 case GFC_DTYPE_COMPLEX:
1343 dtp->u.p.no_leading_blank = 0;
1344 num++;
1345 write_complex (dtp, p, len, obj_size);
1346 break;
1348 case GFC_DTYPE_DERIVED:
1350 /* To treat a derived type, we need to build two strings:
1351 ext_name = the name, including qualifiers that prepends
1352 component names in the output - passed to
1353 nml_write_obj.
1354 obj_name = the derived type name with no qualifiers but %
1355 appended. This is used to identify the
1356 components. */
1358 /* First ext_name => get length of all possible components */
1360 base_name_len = base_name ? strlen (base_name) : 0;
1361 base_var_name_len = base ? strlen (base->var_name) : 0;
1362 ext_name = (char*)get_mem ( base_name_len
1363 + base_var_name_len
1364 + strlen (obj->var_name)
1365 + obj->var_rank * NML_DIGITS
1366 + 1);
1368 memcpy (ext_name, base_name, base_name_len);
1369 clen = strlen (obj->var_name + base_var_name_len);
1370 memcpy (ext_name + base_name_len,
1371 obj->var_name + base_var_name_len, clen);
1373 /* Append the qualifier. */
1375 tot_len = base_name_len + clen;
1376 for (dim_i = 0; dim_i < obj->var_rank; dim_i++)
1378 if (!dim_i)
1380 ext_name[tot_len] = '(';
1381 tot_len++;
1383 sprintf (ext_name + tot_len, "%d", (int) obj->ls[dim_i].idx);
1384 tot_len += strlen (ext_name + tot_len);
1385 ext_name[tot_len] = (dim_i == obj->var_rank - 1) ? ')' : ',';
1386 tot_len++;
1389 ext_name[tot_len] = '\0';
1391 /* Now obj_name. */
1393 obj_name_len = strlen (obj->var_name) + 1;
1394 obj_name = get_mem (obj_name_len+1);
1395 memcpy (obj_name, obj->var_name, obj_name_len-1);
1396 memcpy (obj_name + obj_name_len-1, "%", 2);
1398 /* Now loop over the components. Update the component pointer
1399 with the return value from nml_write_obj => this loop jumps
1400 past nested derived types. */
1402 for (cmp = obj->next;
1403 cmp && !strncmp (cmp->var_name, obj_name, obj_name_len);
1404 cmp = retval)
1406 retval = nml_write_obj (dtp, cmp,
1407 (index_type)(p - obj->mem_pos),
1408 obj, ext_name);
1411 free_mem (obj_name);
1412 free_mem (ext_name);
1413 goto obj_loop;
1415 default:
1416 internal_error (&dtp->common, "Bad type for namelist write");
1419 /* Reset the leading blank suppression, write a comma (or semi-colon)
1420 and, if 5 values have been output, write a newline and advance
1421 to column 2. Reset the repeat counter. */
1423 dtp->u.p.no_leading_blank = 0;
1424 write_character (dtp, &semi_comma, 1, 1);
1425 if (num > 5)
1427 num = 0;
1428 namelist_write_newline (dtp);
1429 write_character (dtp, " ", 1, 1);
1431 rep_ctr = 1;
1434 /* Cycle through and increment the index vector. */
1436 obj_loop:
1438 nml_carry = 1;
1439 for (dim_i = 0; nml_carry && (dim_i < obj->var_rank); dim_i++)
1441 obj->ls[dim_i].idx += nml_carry ;
1442 nml_carry = 0;
1443 if (obj->ls[dim_i].idx > (ssize_t)obj->dim[dim_i].ubound)
1445 obj->ls[dim_i].idx = obj->dim[dim_i].lbound;
1446 nml_carry = 1;
1451 /* Return a pointer beyond the furthest object accessed. */
1453 return retval;
1457 /* This is the entry function for namelist writes. It outputs the name
1458 of the namelist and iterates through the namelist by calls to
1459 nml_write_obj. The call below has dummys in the arguments used in
1460 the treatment of derived types. */
1462 void
1463 namelist_write (st_parameter_dt *dtp)
1465 namelist_info * t1, *t2, *dummy = NULL;
1466 index_type i;
1467 index_type dummy_offset = 0;
1468 char c;
1469 char * dummy_name = NULL;
1470 unit_delim tmp_delim = DELIM_UNSPECIFIED;
1472 /* Set the delimiter for namelist output. */
1473 tmp_delim = dtp->u.p.current_unit->delim_status;
1475 dtp->u.p.nml_delim = tmp_delim == DELIM_APOSTROPHE ? '\'' : '"';
1477 /* Temporarily disable namelist delimters. */
1478 dtp->u.p.current_unit->delim_status = DELIM_NONE;
1480 write_character (dtp, "&", 1, 1);
1482 /* Write namelist name in upper case - f95 std. */
1483 for (i = 0 ;i < dtp->namelist_name_len ;i++ )
1485 c = toupper (dtp->namelist_name[i]);
1486 write_character (dtp, &c, 1 ,1);
1489 if (dtp->u.p.ionml != NULL)
1491 t1 = dtp->u.p.ionml;
1492 while (t1 != NULL)
1494 t2 = t1;
1495 t1 = nml_write_obj (dtp, t2, dummy_offset, dummy, dummy_name);
1499 namelist_write_newline (dtp);
1500 write_character (dtp, " /", 1, 2);
1501 /* Restore the original delimiter. */
1502 dtp->u.p.current_unit->delim_status = tmp_delim;
1505 #undef NML_DIGITS