PR rtl-optimization/43520
[official-gcc.git] / gcc / fortran / interface.c
blob9dd797be8cd95cc529bcf5fdd238bff5d0ab12f9
1 /* Deal with interfaces.
2 Copyright (C) 2000, 2001, 2002, 2004, 2005, 2006, 2007, 2008, 2009,
3 2010
4 Free Software Foundation, Inc.
5 Contributed by Andy Vaught
7 This file is part of GCC.
9 GCC is free software; you can redistribute it and/or modify it under
10 the terms of the GNU General Public License as published by the Free
11 Software Foundation; either version 3, or (at your option) any later
12 version.
14 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
15 WARRANTY; without even the implied warranty of MERCHANTABILITY or
16 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
17 for more details.
19 You should have received a copy of the GNU General Public License
20 along with GCC; see the file COPYING3. If not see
21 <http://www.gnu.org/licenses/>. */
24 /* Deal with interfaces. An explicit interface is represented as a
25 singly linked list of formal argument structures attached to the
26 relevant symbols. For an implicit interface, the arguments don't
27 point to symbols. Explicit interfaces point to namespaces that
28 contain the symbols within that interface.
30 Implicit interfaces are linked together in a singly linked list
31 along the next_if member of symbol nodes. Since a particular
32 symbol can only have a single explicit interface, the symbol cannot
33 be part of multiple lists and a single next-member suffices.
35 This is not the case for general classes, though. An operator
36 definition is independent of just about all other uses and has it's
37 own head pointer.
39 Nameless interfaces:
40 Nameless interfaces create symbols with explicit interfaces within
41 the current namespace. They are otherwise unlinked.
43 Generic interfaces:
44 The generic name points to a linked list of symbols. Each symbol
45 has an explicit interface. Each explicit interface has its own
46 namespace containing the arguments. Module procedures are symbols in
47 which the interface is added later when the module procedure is parsed.
49 User operators:
50 User-defined operators are stored in a their own set of symtrees
51 separate from regular symbols. The symtrees point to gfc_user_op
52 structures which in turn head up a list of relevant interfaces.
54 Extended intrinsics and assignment:
55 The head of these interface lists are stored in the containing namespace.
57 Implicit interfaces:
58 An implicit interface is represented as a singly linked list of
59 formal argument list structures that don't point to any symbol
60 nodes -- they just contain types.
63 When a subprogram is defined, the program unit's name points to an
64 interface as usual, but the link to the namespace is NULL and the
65 formal argument list points to symbols within the same namespace as
66 the program unit name. */
68 #include "config.h"
69 #include "system.h"
70 #include "gfortran.h"
71 #include "match.h"
73 /* The current_interface structure holds information about the
74 interface currently being parsed. This structure is saved and
75 restored during recursive interfaces. */
77 gfc_interface_info current_interface;
80 /* Free a singly linked list of gfc_interface structures. */
82 void
83 gfc_free_interface (gfc_interface *intr)
85 gfc_interface *next;
87 for (; intr; intr = next)
89 next = intr->next;
90 gfc_free (intr);
95 /* Change the operators unary plus and minus into binary plus and
96 minus respectively, leaving the rest unchanged. */
98 static gfc_intrinsic_op
99 fold_unary_intrinsic (gfc_intrinsic_op op)
101 switch (op)
103 case INTRINSIC_UPLUS:
104 op = INTRINSIC_PLUS;
105 break;
106 case INTRINSIC_UMINUS:
107 op = INTRINSIC_MINUS;
108 break;
109 default:
110 break;
113 return op;
117 /* Match a generic specification. Depending on which type of
118 interface is found, the 'name' or 'op' pointers may be set.
119 This subroutine doesn't return MATCH_NO. */
121 match
122 gfc_match_generic_spec (interface_type *type,
123 char *name,
124 gfc_intrinsic_op *op)
126 char buffer[GFC_MAX_SYMBOL_LEN + 1];
127 match m;
128 gfc_intrinsic_op i;
130 if (gfc_match (" assignment ( = )") == MATCH_YES)
132 *type = INTERFACE_INTRINSIC_OP;
133 *op = INTRINSIC_ASSIGN;
134 return MATCH_YES;
137 if (gfc_match (" operator ( %o )", &i) == MATCH_YES)
138 { /* Operator i/f */
139 *type = INTERFACE_INTRINSIC_OP;
140 *op = fold_unary_intrinsic (i);
141 return MATCH_YES;
144 *op = INTRINSIC_NONE;
145 if (gfc_match (" operator ( ") == MATCH_YES)
147 m = gfc_match_defined_op_name (buffer, 1);
148 if (m == MATCH_NO)
149 goto syntax;
150 if (m != MATCH_YES)
151 return MATCH_ERROR;
153 m = gfc_match_char (')');
154 if (m == MATCH_NO)
155 goto syntax;
156 if (m != MATCH_YES)
157 return MATCH_ERROR;
159 strcpy (name, buffer);
160 *type = INTERFACE_USER_OP;
161 return MATCH_YES;
164 if (gfc_match_name (buffer) == MATCH_YES)
166 strcpy (name, buffer);
167 *type = INTERFACE_GENERIC;
168 return MATCH_YES;
171 *type = INTERFACE_NAMELESS;
172 return MATCH_YES;
174 syntax:
175 gfc_error ("Syntax error in generic specification at %C");
176 return MATCH_ERROR;
180 /* Match one of the five F95 forms of an interface statement. The
181 matcher for the abstract interface follows. */
183 match
184 gfc_match_interface (void)
186 char name[GFC_MAX_SYMBOL_LEN + 1];
187 interface_type type;
188 gfc_symbol *sym;
189 gfc_intrinsic_op op;
190 match m;
192 m = gfc_match_space ();
194 if (gfc_match_generic_spec (&type, name, &op) == MATCH_ERROR)
195 return MATCH_ERROR;
197 /* If we're not looking at the end of the statement now, or if this
198 is not a nameless interface but we did not see a space, punt. */
199 if (gfc_match_eos () != MATCH_YES
200 || (type != INTERFACE_NAMELESS && m != MATCH_YES))
202 gfc_error ("Syntax error: Trailing garbage in INTERFACE statement "
203 "at %C");
204 return MATCH_ERROR;
207 current_interface.type = type;
209 switch (type)
211 case INTERFACE_GENERIC:
212 if (gfc_get_symbol (name, NULL, &sym))
213 return MATCH_ERROR;
215 if (!sym->attr.generic
216 && gfc_add_generic (&sym->attr, sym->name, NULL) == FAILURE)
217 return MATCH_ERROR;
219 if (sym->attr.dummy)
221 gfc_error ("Dummy procedure '%s' at %C cannot have a "
222 "generic interface", sym->name);
223 return MATCH_ERROR;
226 current_interface.sym = gfc_new_block = sym;
227 break;
229 case INTERFACE_USER_OP:
230 current_interface.uop = gfc_get_uop (name);
231 break;
233 case INTERFACE_INTRINSIC_OP:
234 current_interface.op = op;
235 break;
237 case INTERFACE_NAMELESS:
238 case INTERFACE_ABSTRACT:
239 break;
242 return MATCH_YES;
247 /* Match a F2003 abstract interface. */
249 match
250 gfc_match_abstract_interface (void)
252 match m;
254 if (gfc_notify_std (GFC_STD_F2003, "Fortran 2003: ABSTRACT INTERFACE at %C")
255 == FAILURE)
256 return MATCH_ERROR;
258 m = gfc_match_eos ();
260 if (m != MATCH_YES)
262 gfc_error ("Syntax error in ABSTRACT INTERFACE statement at %C");
263 return MATCH_ERROR;
266 current_interface.type = INTERFACE_ABSTRACT;
268 return m;
272 /* Match the different sort of generic-specs that can be present after
273 the END INTERFACE itself. */
275 match
276 gfc_match_end_interface (void)
278 char name[GFC_MAX_SYMBOL_LEN + 1];
279 interface_type type;
280 gfc_intrinsic_op op;
281 match m;
283 m = gfc_match_space ();
285 if (gfc_match_generic_spec (&type, name, &op) == MATCH_ERROR)
286 return MATCH_ERROR;
288 /* If we're not looking at the end of the statement now, or if this
289 is not a nameless interface but we did not see a space, punt. */
290 if (gfc_match_eos () != MATCH_YES
291 || (type != INTERFACE_NAMELESS && m != MATCH_YES))
293 gfc_error ("Syntax error: Trailing garbage in END INTERFACE "
294 "statement at %C");
295 return MATCH_ERROR;
298 m = MATCH_YES;
300 switch (current_interface.type)
302 case INTERFACE_NAMELESS:
303 case INTERFACE_ABSTRACT:
304 if (type != INTERFACE_NAMELESS)
306 gfc_error ("Expected a nameless interface at %C");
307 m = MATCH_ERROR;
310 break;
312 case INTERFACE_INTRINSIC_OP:
313 if (type != current_interface.type || op != current_interface.op)
316 if (current_interface.op == INTRINSIC_ASSIGN)
317 gfc_error ("Expected 'END INTERFACE ASSIGNMENT (=)' at %C");
318 else
319 gfc_error ("Expecting 'END INTERFACE OPERATOR (%s)' at %C",
320 gfc_op2string (current_interface.op));
322 m = MATCH_ERROR;
325 break;
327 case INTERFACE_USER_OP:
328 /* Comparing the symbol node names is OK because only use-associated
329 symbols can be renamed. */
330 if (type != current_interface.type
331 || strcmp (current_interface.uop->name, name) != 0)
333 gfc_error ("Expecting 'END INTERFACE OPERATOR (.%s.)' at %C",
334 current_interface.uop->name);
335 m = MATCH_ERROR;
338 break;
340 case INTERFACE_GENERIC:
341 if (type != current_interface.type
342 || strcmp (current_interface.sym->name, name) != 0)
344 gfc_error ("Expecting 'END INTERFACE %s' at %C",
345 current_interface.sym->name);
346 m = MATCH_ERROR;
349 break;
352 return m;
356 /* Compare two derived types using the criteria in 4.4.2 of the standard,
357 recursing through gfc_compare_types for the components. */
360 gfc_compare_derived_types (gfc_symbol *derived1, gfc_symbol *derived2)
362 gfc_component *dt1, *dt2;
364 if (derived1 == derived2)
365 return 1;
367 /* Special case for comparing derived types across namespaces. If the
368 true names and module names are the same and the module name is
369 nonnull, then they are equal. */
370 if (derived1 != NULL && derived2 != NULL
371 && strcmp (derived1->name, derived2->name) == 0
372 && derived1->module != NULL && derived2->module != NULL
373 && strcmp (derived1->module, derived2->module) == 0)
374 return 1;
376 /* Compare type via the rules of the standard. Both types must have
377 the SEQUENCE attribute to be equal. */
379 if (strcmp (derived1->name, derived2->name))
380 return 0;
382 if (derived1->component_access == ACCESS_PRIVATE
383 || derived2->component_access == ACCESS_PRIVATE)
384 return 0;
386 if (derived1->attr.sequence == 0 || derived2->attr.sequence == 0)
387 return 0;
389 dt1 = derived1->components;
390 dt2 = derived2->components;
392 /* Since subtypes of SEQUENCE types must be SEQUENCE types as well, a
393 simple test can speed things up. Otherwise, lots of things have to
394 match. */
395 for (;;)
397 if (strcmp (dt1->name, dt2->name) != 0)
398 return 0;
400 if (dt1->attr.access != dt2->attr.access)
401 return 0;
403 if (dt1->attr.pointer != dt2->attr.pointer)
404 return 0;
406 if (dt1->attr.dimension != dt2->attr.dimension)
407 return 0;
409 if (dt1->attr.allocatable != dt2->attr.allocatable)
410 return 0;
412 if (dt1->attr.dimension && gfc_compare_array_spec (dt1->as, dt2->as) == 0)
413 return 0;
415 /* Make sure that link lists do not put this function into an
416 endless recursive loop! */
417 if (!(dt1->ts.type == BT_DERIVED && derived1 == dt1->ts.u.derived)
418 && !(dt1->ts.type == BT_DERIVED && derived1 == dt1->ts.u.derived)
419 && gfc_compare_types (&dt1->ts, &dt2->ts) == 0)
420 return 0;
422 else if ((dt1->ts.type == BT_DERIVED && derived1 == dt1->ts.u.derived)
423 && !(dt1->ts.type == BT_DERIVED && derived1 == dt1->ts.u.derived))
424 return 0;
426 else if (!(dt1->ts.type == BT_DERIVED && derived1 == dt1->ts.u.derived)
427 && (dt1->ts.type == BT_DERIVED && derived1 == dt1->ts.u.derived))
428 return 0;
430 dt1 = dt1->next;
431 dt2 = dt2->next;
433 if (dt1 == NULL && dt2 == NULL)
434 break;
435 if (dt1 == NULL || dt2 == NULL)
436 return 0;
439 return 1;
443 /* Compare two typespecs, recursively if necessary. */
446 gfc_compare_types (gfc_typespec *ts1, gfc_typespec *ts2)
448 /* See if one of the typespecs is a BT_VOID, which is what is being used
449 to allow the funcs like c_f_pointer to accept any pointer type.
450 TODO: Possibly should narrow this to just the one typespec coming in
451 that is for the formal arg, but oh well. */
452 if (ts1->type == BT_VOID || ts2->type == BT_VOID)
453 return 1;
455 if (ts1->type != ts2->type
456 && ((ts1->type != BT_DERIVED && ts1->type != BT_CLASS)
457 || (ts2->type != BT_DERIVED && ts2->type != BT_CLASS)))
458 return 0;
459 if (ts1->type != BT_DERIVED && ts1->type != BT_CLASS)
460 return (ts1->kind == ts2->kind);
462 /* Compare derived types. */
463 if (gfc_type_compatible (ts1, ts2))
464 return 1;
466 return gfc_compare_derived_types (ts1->u.derived ,ts2->u.derived);
470 /* Given two symbols that are formal arguments, compare their ranks
471 and types. Returns nonzero if they have the same rank and type,
472 zero otherwise. */
474 static int
475 compare_type_rank (gfc_symbol *s1, gfc_symbol *s2)
477 int r1, r2;
479 r1 = (s1->as != NULL) ? s1->as->rank : 0;
480 r2 = (s2->as != NULL) ? s2->as->rank : 0;
482 if (r1 != r2)
483 return 0; /* Ranks differ. */
485 return gfc_compare_types (&s1->ts, &s2->ts);
489 /* Given two symbols that are formal arguments, compare their types
490 and rank and their formal interfaces if they are both dummy
491 procedures. Returns nonzero if the same, zero if different. */
493 static int
494 compare_type_rank_if (gfc_symbol *s1, gfc_symbol *s2)
496 if (s1 == NULL || s2 == NULL)
497 return s1 == s2 ? 1 : 0;
499 if (s1 == s2)
500 return 1;
502 if (s1->attr.flavor != FL_PROCEDURE && s2->attr.flavor != FL_PROCEDURE)
503 return compare_type_rank (s1, s2);
505 if (s1->attr.flavor != FL_PROCEDURE || s2->attr.flavor != FL_PROCEDURE)
506 return 0;
508 /* At this point, both symbols are procedures. It can happen that
509 external procedures are compared, where one is identified by usage
510 to be a function or subroutine but the other is not. Check TKR
511 nonetheless for these cases. */
512 if (s1->attr.function == 0 && s1->attr.subroutine == 0)
513 return s1->attr.external == 1 ? compare_type_rank (s1, s2) : 0;
515 if (s2->attr.function == 0 && s2->attr.subroutine == 0)
516 return s2->attr.external == 1 ? compare_type_rank (s1, s2) : 0;
518 /* Now the type of procedure has been identified. */
519 if (s1->attr.function != s2->attr.function
520 || s1->attr.subroutine != s2->attr.subroutine)
521 return 0;
523 if (s1->attr.function && compare_type_rank (s1, s2) == 0)
524 return 0;
526 /* Originally, gfortran recursed here to check the interfaces of passed
527 procedures. This is explicitly not required by the standard. */
528 return 1;
532 /* Given a formal argument list and a keyword name, search the list
533 for that keyword. Returns the correct symbol node if found, NULL
534 if not found. */
536 static gfc_symbol *
537 find_keyword_arg (const char *name, gfc_formal_arglist *f)
539 for (; f; f = f->next)
540 if (strcmp (f->sym->name, name) == 0)
541 return f->sym;
543 return NULL;
547 /******** Interface checking subroutines **********/
550 /* Given an operator interface and the operator, make sure that all
551 interfaces for that operator are legal. */
553 bool
554 gfc_check_operator_interface (gfc_symbol *sym, gfc_intrinsic_op op,
555 locus opwhere)
557 gfc_formal_arglist *formal;
558 sym_intent i1, i2;
559 bt t1, t2;
560 int args, r1, r2, k1, k2;
562 gcc_assert (sym);
564 args = 0;
565 t1 = t2 = BT_UNKNOWN;
566 i1 = i2 = INTENT_UNKNOWN;
567 r1 = r2 = -1;
568 k1 = k2 = -1;
570 for (formal = sym->formal; formal; formal = formal->next)
572 gfc_symbol *fsym = formal->sym;
573 if (fsym == NULL)
575 gfc_error ("Alternate return cannot appear in operator "
576 "interface at %L", &sym->declared_at);
577 return false;
579 if (args == 0)
581 t1 = fsym->ts.type;
582 i1 = fsym->attr.intent;
583 r1 = (fsym->as != NULL) ? fsym->as->rank : 0;
584 k1 = fsym->ts.kind;
586 if (args == 1)
588 t2 = fsym->ts.type;
589 i2 = fsym->attr.intent;
590 r2 = (fsym->as != NULL) ? fsym->as->rank : 0;
591 k2 = fsym->ts.kind;
593 args++;
596 /* Only +, - and .not. can be unary operators.
597 .not. cannot be a binary operator. */
598 if (args == 0 || args > 2 || (args == 1 && op != INTRINSIC_PLUS
599 && op != INTRINSIC_MINUS
600 && op != INTRINSIC_NOT)
601 || (args == 2 && op == INTRINSIC_NOT))
603 gfc_error ("Operator interface at %L has the wrong number of arguments",
604 &sym->declared_at);
605 return false;
608 /* Check that intrinsics are mapped to functions, except
609 INTRINSIC_ASSIGN which should map to a subroutine. */
610 if (op == INTRINSIC_ASSIGN)
612 if (!sym->attr.subroutine)
614 gfc_error ("Assignment operator interface at %L must be "
615 "a SUBROUTINE", &sym->declared_at);
616 return false;
618 if (args != 2)
620 gfc_error ("Assignment operator interface at %L must have "
621 "two arguments", &sym->declared_at);
622 return false;
625 /* Allowed are (per F2003, 12.3.2.1.2 Defined assignments):
626 - First argument an array with different rank than second,
627 - Types and kinds do not conform, and
628 - First argument is of derived type. */
629 if (sym->formal->sym->ts.type != BT_DERIVED
630 && sym->formal->sym->ts.type != BT_CLASS
631 && (r1 == 0 || r1 == r2)
632 && (sym->formal->sym->ts.type == sym->formal->next->sym->ts.type
633 || (gfc_numeric_ts (&sym->formal->sym->ts)
634 && gfc_numeric_ts (&sym->formal->next->sym->ts))))
636 gfc_error ("Assignment operator interface at %L must not redefine "
637 "an INTRINSIC type assignment", &sym->declared_at);
638 return false;
641 else
643 if (!sym->attr.function)
645 gfc_error ("Intrinsic operator interface at %L must be a FUNCTION",
646 &sym->declared_at);
647 return false;
651 /* Check intents on operator interfaces. */
652 if (op == INTRINSIC_ASSIGN)
654 if (i1 != INTENT_OUT && i1 != INTENT_INOUT)
656 gfc_error ("First argument of defined assignment at %L must be "
657 "INTENT(OUT) or INTENT(INOUT)", &sym->declared_at);
658 return false;
661 if (i2 != INTENT_IN)
663 gfc_error ("Second argument of defined assignment at %L must be "
664 "INTENT(IN)", &sym->declared_at);
665 return false;
668 else
670 if (i1 != INTENT_IN)
672 gfc_error ("First argument of operator interface at %L must be "
673 "INTENT(IN)", &sym->declared_at);
674 return false;
677 if (args == 2 && i2 != INTENT_IN)
679 gfc_error ("Second argument of operator interface at %L must be "
680 "INTENT(IN)", &sym->declared_at);
681 return false;
685 /* From now on, all we have to do is check that the operator definition
686 doesn't conflict with an intrinsic operator. The rules for this
687 game are defined in 7.1.2 and 7.1.3 of both F95 and F2003 standards,
688 as well as 12.3.2.1.1 of Fortran 2003:
690 "If the operator is an intrinsic-operator (R310), the number of
691 function arguments shall be consistent with the intrinsic uses of
692 that operator, and the types, kind type parameters, or ranks of the
693 dummy arguments shall differ from those required for the intrinsic
694 operation (7.1.2)." */
696 #define IS_NUMERIC_TYPE(t) \
697 ((t) == BT_INTEGER || (t) == BT_REAL || (t) == BT_COMPLEX)
699 /* Unary ops are easy, do them first. */
700 if (op == INTRINSIC_NOT)
702 if (t1 == BT_LOGICAL)
703 goto bad_repl;
704 else
705 return true;
708 if (args == 1 && (op == INTRINSIC_PLUS || op == INTRINSIC_MINUS))
710 if (IS_NUMERIC_TYPE (t1))
711 goto bad_repl;
712 else
713 return true;
716 /* Character intrinsic operators have same character kind, thus
717 operator definitions with operands of different character kinds
718 are always safe. */
719 if (t1 == BT_CHARACTER && t2 == BT_CHARACTER && k1 != k2)
720 return true;
722 /* Intrinsic operators always perform on arguments of same rank,
723 so different ranks is also always safe. (rank == 0) is an exception
724 to that, because all intrinsic operators are elemental. */
725 if (r1 != r2 && r1 != 0 && r2 != 0)
726 return true;
728 switch (op)
730 case INTRINSIC_EQ:
731 case INTRINSIC_EQ_OS:
732 case INTRINSIC_NE:
733 case INTRINSIC_NE_OS:
734 if (t1 == BT_CHARACTER && t2 == BT_CHARACTER)
735 goto bad_repl;
736 /* Fall through. */
738 case INTRINSIC_PLUS:
739 case INTRINSIC_MINUS:
740 case INTRINSIC_TIMES:
741 case INTRINSIC_DIVIDE:
742 case INTRINSIC_POWER:
743 if (IS_NUMERIC_TYPE (t1) && IS_NUMERIC_TYPE (t2))
744 goto bad_repl;
745 break;
747 case INTRINSIC_GT:
748 case INTRINSIC_GT_OS:
749 case INTRINSIC_GE:
750 case INTRINSIC_GE_OS:
751 case INTRINSIC_LT:
752 case INTRINSIC_LT_OS:
753 case INTRINSIC_LE:
754 case INTRINSIC_LE_OS:
755 if (t1 == BT_CHARACTER && t2 == BT_CHARACTER)
756 goto bad_repl;
757 if ((t1 == BT_INTEGER || t1 == BT_REAL)
758 && (t2 == BT_INTEGER || t2 == BT_REAL))
759 goto bad_repl;
760 break;
762 case INTRINSIC_CONCAT:
763 if (t1 == BT_CHARACTER && t2 == BT_CHARACTER)
764 goto bad_repl;
765 break;
767 case INTRINSIC_AND:
768 case INTRINSIC_OR:
769 case INTRINSIC_EQV:
770 case INTRINSIC_NEQV:
771 if (t1 == BT_LOGICAL && t2 == BT_LOGICAL)
772 goto bad_repl;
773 break;
775 default:
776 break;
779 return true;
781 #undef IS_NUMERIC_TYPE
783 bad_repl:
784 gfc_error ("Operator interface at %L conflicts with intrinsic interface",
785 &opwhere);
786 return false;
790 /* Given a pair of formal argument lists, we see if the two lists can
791 be distinguished by counting the number of nonoptional arguments of
792 a given type/rank in f1 and seeing if there are less then that
793 number of those arguments in f2 (including optional arguments).
794 Since this test is asymmetric, it has to be called twice to make it
795 symmetric. Returns nonzero if the argument lists are incompatible
796 by this test. This subroutine implements rule 1 of section
797 14.1.2.3 in the Fortran 95 standard. */
799 static int
800 count_types_test (gfc_formal_arglist *f1, gfc_formal_arglist *f2)
802 int rc, ac1, ac2, i, j, k, n1;
803 gfc_formal_arglist *f;
805 typedef struct
807 int flag;
808 gfc_symbol *sym;
810 arginfo;
812 arginfo *arg;
814 n1 = 0;
816 for (f = f1; f; f = f->next)
817 n1++;
819 /* Build an array of integers that gives the same integer to
820 arguments of the same type/rank. */
821 arg = XCNEWVEC (arginfo, n1);
823 f = f1;
824 for (i = 0; i < n1; i++, f = f->next)
826 arg[i].flag = -1;
827 arg[i].sym = f->sym;
830 k = 0;
832 for (i = 0; i < n1; i++)
834 if (arg[i].flag != -1)
835 continue;
837 if (arg[i].sym && arg[i].sym->attr.optional)
838 continue; /* Skip optional arguments. */
840 arg[i].flag = k;
842 /* Find other nonoptional arguments of the same type/rank. */
843 for (j = i + 1; j < n1; j++)
844 if ((arg[j].sym == NULL || !arg[j].sym->attr.optional)
845 && compare_type_rank_if (arg[i].sym, arg[j].sym))
846 arg[j].flag = k;
848 k++;
851 /* Now loop over each distinct type found in f1. */
852 k = 0;
853 rc = 0;
855 for (i = 0; i < n1; i++)
857 if (arg[i].flag != k)
858 continue;
860 ac1 = 1;
861 for (j = i + 1; j < n1; j++)
862 if (arg[j].flag == k)
863 ac1++;
865 /* Count the number of arguments in f2 with that type, including
866 those that are optional. */
867 ac2 = 0;
869 for (f = f2; f; f = f->next)
870 if (compare_type_rank_if (arg[i].sym, f->sym))
871 ac2++;
873 if (ac1 > ac2)
875 rc = 1;
876 break;
879 k++;
882 gfc_free (arg);
884 return rc;
888 /* Perform the correspondence test in rule 2 of section 14.1.2.3.
889 Returns zero if no argument is found that satisfies rule 2, nonzero
890 otherwise.
892 This test is also not symmetric in f1 and f2 and must be called
893 twice. This test finds problems caused by sorting the actual
894 argument list with keywords. For example:
896 INTERFACE FOO
897 SUBROUTINE F1(A, B)
898 INTEGER :: A ; REAL :: B
899 END SUBROUTINE F1
901 SUBROUTINE F2(B, A)
902 INTEGER :: A ; REAL :: B
903 END SUBROUTINE F1
904 END INTERFACE FOO
906 At this point, 'CALL FOO(A=1, B=1.0)' is ambiguous. */
908 static int
909 generic_correspondence (gfc_formal_arglist *f1, gfc_formal_arglist *f2)
911 gfc_formal_arglist *f2_save, *g;
912 gfc_symbol *sym;
914 f2_save = f2;
916 while (f1)
918 if (f1->sym->attr.optional)
919 goto next;
921 if (f2 != NULL && compare_type_rank (f1->sym, f2->sym))
922 goto next;
924 /* Now search for a disambiguating keyword argument starting at
925 the current non-match. */
926 for (g = f1; g; g = g->next)
928 if (g->sym->attr.optional)
929 continue;
931 sym = find_keyword_arg (g->sym->name, f2_save);
932 if (sym == NULL || !compare_type_rank (g->sym, sym))
933 return 1;
936 next:
937 f1 = f1->next;
938 if (f2 != NULL)
939 f2 = f2->next;
942 return 0;
946 /* 'Compare' two formal interfaces associated with a pair of symbols.
947 We return nonzero if there exists an actual argument list that
948 would be ambiguous between the two interfaces, zero otherwise.
949 'intent_flag' specifies whether INTENT and OPTIONAL of the arguments are
950 required to match, which is not the case for ambiguity checks.*/
953 gfc_compare_interfaces (gfc_symbol *s1, gfc_symbol *s2, const char *name2,
954 int generic_flag, int intent_flag,
955 char *errmsg, int err_len)
957 gfc_formal_arglist *f1, *f2;
959 gcc_assert (name2 != NULL);
961 if (s1->attr.function && (s2->attr.subroutine
962 || (!s2->attr.function && s2->ts.type == BT_UNKNOWN
963 && gfc_get_default_type (name2, s2->ns)->type == BT_UNKNOWN)))
965 if (errmsg != NULL)
966 snprintf (errmsg, err_len, "'%s' is not a function", name2);
967 return 0;
970 if (s1->attr.subroutine && s2->attr.function)
972 if (errmsg != NULL)
973 snprintf (errmsg, err_len, "'%s' is not a subroutine", name2);
974 return 0;
977 /* If the arguments are functions, check type and kind
978 (only for dummy procedures and procedure pointer assignments). */
979 if (!generic_flag && intent_flag && s1->attr.function && s2->attr.function)
981 if (s1->ts.type == BT_UNKNOWN)
982 return 1;
983 if ((s1->ts.type != s2->ts.type) || (s1->ts.kind != s2->ts.kind))
985 if (errmsg != NULL)
986 snprintf (errmsg, err_len, "Type/kind mismatch in return value "
987 "of '%s'", name2);
988 return 0;
992 if (s1->attr.if_source == IFSRC_UNKNOWN
993 || s2->attr.if_source == IFSRC_UNKNOWN)
994 return 1;
996 f1 = s1->formal;
997 f2 = s2->formal;
999 if (f1 == NULL && f2 == NULL)
1000 return 1; /* Special case: No arguments. */
1002 if (generic_flag)
1004 if (count_types_test (f1, f2) || count_types_test (f2, f1))
1005 return 0;
1006 if (generic_correspondence (f1, f2) || generic_correspondence (f2, f1))
1007 return 0;
1009 else
1010 /* Perform the abbreviated correspondence test for operators (the
1011 arguments cannot be optional and are always ordered correctly).
1012 This is also done when comparing interfaces for dummy procedures and in
1013 procedure pointer assignments. */
1015 for (;;)
1017 /* Check existence. */
1018 if (f1 == NULL && f2 == NULL)
1019 break;
1020 if (f1 == NULL || f2 == NULL)
1022 if (errmsg != NULL)
1023 snprintf (errmsg, err_len, "'%s' has the wrong number of "
1024 "arguments", name2);
1025 return 0;
1028 /* Check type and rank. */
1029 if (!compare_type_rank (f1->sym, f2->sym))
1031 if (errmsg != NULL)
1032 snprintf (errmsg, err_len, "Type/rank mismatch in argument '%s'",
1033 f1->sym->name);
1034 return 0;
1037 /* Check INTENT. */
1038 if (intent_flag && (f1->sym->attr.intent != f2->sym->attr.intent))
1040 snprintf (errmsg, err_len, "INTENT mismatch in argument '%s'",
1041 f1->sym->name);
1042 return 0;
1045 /* Check OPTIONAL. */
1046 if (intent_flag && (f1->sym->attr.optional != f2->sym->attr.optional))
1048 snprintf (errmsg, err_len, "OPTIONAL mismatch in argument '%s'",
1049 f1->sym->name);
1050 return 0;
1053 f1 = f1->next;
1054 f2 = f2->next;
1057 return 1;
1061 /* Given a pointer to an interface pointer, remove duplicate
1062 interfaces and make sure that all symbols are either functions or
1063 subroutines. Returns nonzero if something goes wrong. */
1065 static int
1066 check_interface0 (gfc_interface *p, const char *interface_name)
1068 gfc_interface *psave, *q, *qlast;
1070 psave = p;
1071 /* Make sure all symbols in the interface have been defined as
1072 functions or subroutines. */
1073 for (; p; p = p->next)
1074 if ((!p->sym->attr.function && !p->sym->attr.subroutine)
1075 || !p->sym->attr.if_source)
1077 if (p->sym->attr.external)
1078 gfc_error ("Procedure '%s' in %s at %L has no explicit interface",
1079 p->sym->name, interface_name, &p->sym->declared_at);
1080 else
1081 gfc_error ("Procedure '%s' in %s at %L is neither function nor "
1082 "subroutine", p->sym->name, interface_name,
1083 &p->sym->declared_at);
1084 return 1;
1086 p = psave;
1088 /* Remove duplicate interfaces in this interface list. */
1089 for (; p; p = p->next)
1091 qlast = p;
1093 for (q = p->next; q;)
1095 if (p->sym != q->sym)
1097 qlast = q;
1098 q = q->next;
1100 else
1102 /* Duplicate interface. */
1103 qlast->next = q->next;
1104 gfc_free (q);
1105 q = qlast->next;
1110 return 0;
1114 /* Check lists of interfaces to make sure that no two interfaces are
1115 ambiguous. Duplicate interfaces (from the same symbol) are OK here. */
1117 static int
1118 check_interface1 (gfc_interface *p, gfc_interface *q0,
1119 int generic_flag, const char *interface_name,
1120 bool referenced)
1122 gfc_interface *q;
1123 for (; p; p = p->next)
1124 for (q = q0; q; q = q->next)
1126 if (p->sym == q->sym)
1127 continue; /* Duplicates OK here. */
1129 if (p->sym->name == q->sym->name && p->sym->module == q->sym->module)
1130 continue;
1132 if (gfc_compare_interfaces (p->sym, q->sym, q->sym->name, generic_flag, 0,
1133 NULL, 0))
1135 if (referenced)
1136 gfc_error ("Ambiguous interfaces '%s' and '%s' in %s at %L",
1137 p->sym->name, q->sym->name, interface_name,
1138 &p->where);
1139 else if (!p->sym->attr.use_assoc && q->sym->attr.use_assoc)
1140 gfc_warning ("Ambiguous interfaces '%s' and '%s' in %s at %L",
1141 p->sym->name, q->sym->name, interface_name,
1142 &p->where);
1143 else
1144 gfc_warning ("Although not referenced, '%s' has ambiguous "
1145 "interfaces at %L", interface_name, &p->where);
1146 return 1;
1149 return 0;
1153 /* Check the generic and operator interfaces of symbols to make sure
1154 that none of the interfaces conflict. The check has to be done
1155 after all of the symbols are actually loaded. */
1157 static void
1158 check_sym_interfaces (gfc_symbol *sym)
1160 char interface_name[100];
1161 gfc_interface *p;
1163 if (sym->ns != gfc_current_ns)
1164 return;
1166 if (sym->generic != NULL)
1168 sprintf (interface_name, "generic interface '%s'", sym->name);
1169 if (check_interface0 (sym->generic, interface_name))
1170 return;
1172 for (p = sym->generic; p; p = p->next)
1174 if (p->sym->attr.mod_proc
1175 && (p->sym->attr.if_source != IFSRC_DECL
1176 || p->sym->attr.procedure))
1178 gfc_error ("'%s' at %L is not a module procedure",
1179 p->sym->name, &p->where);
1180 return;
1184 /* Originally, this test was applied to host interfaces too;
1185 this is incorrect since host associated symbols, from any
1186 source, cannot be ambiguous with local symbols. */
1187 check_interface1 (sym->generic, sym->generic, 1, interface_name,
1188 sym->attr.referenced || !sym->attr.use_assoc);
1193 static void
1194 check_uop_interfaces (gfc_user_op *uop)
1196 char interface_name[100];
1197 gfc_user_op *uop2;
1198 gfc_namespace *ns;
1200 sprintf (interface_name, "operator interface '%s'", uop->name);
1201 if (check_interface0 (uop->op, interface_name))
1202 return;
1204 for (ns = gfc_current_ns; ns; ns = ns->parent)
1206 uop2 = gfc_find_uop (uop->name, ns);
1207 if (uop2 == NULL)
1208 continue;
1210 check_interface1 (uop->op, uop2->op, 0,
1211 interface_name, true);
1216 /* For the namespace, check generic, user operator and intrinsic
1217 operator interfaces for consistency and to remove duplicate
1218 interfaces. We traverse the whole namespace, counting on the fact
1219 that most symbols will not have generic or operator interfaces. */
1221 void
1222 gfc_check_interfaces (gfc_namespace *ns)
1224 gfc_namespace *old_ns, *ns2;
1225 char interface_name[100];
1226 int i;
1228 old_ns = gfc_current_ns;
1229 gfc_current_ns = ns;
1231 gfc_traverse_ns (ns, check_sym_interfaces);
1233 gfc_traverse_user_op (ns, check_uop_interfaces);
1235 for (i = GFC_INTRINSIC_BEGIN; i != GFC_INTRINSIC_END; i++)
1237 if (i == INTRINSIC_USER)
1238 continue;
1240 if (i == INTRINSIC_ASSIGN)
1241 strcpy (interface_name, "intrinsic assignment operator");
1242 else
1243 sprintf (interface_name, "intrinsic '%s' operator",
1244 gfc_op2string ((gfc_intrinsic_op) i));
1246 if (check_interface0 (ns->op[i], interface_name))
1247 continue;
1249 if (ns->op[i])
1250 gfc_check_operator_interface (ns->op[i]->sym, (gfc_intrinsic_op) i,
1251 ns->op[i]->where);
1253 for (ns2 = ns; ns2; ns2 = ns2->parent)
1255 if (check_interface1 (ns->op[i], ns2->op[i], 0,
1256 interface_name, true))
1257 goto done;
1259 switch (i)
1261 case INTRINSIC_EQ:
1262 if (check_interface1 (ns->op[i], ns2->op[INTRINSIC_EQ_OS],
1263 0, interface_name, true)) goto done;
1264 break;
1266 case INTRINSIC_EQ_OS:
1267 if (check_interface1 (ns->op[i], ns2->op[INTRINSIC_EQ],
1268 0, interface_name, true)) goto done;
1269 break;
1271 case INTRINSIC_NE:
1272 if (check_interface1 (ns->op[i], ns2->op[INTRINSIC_NE_OS],
1273 0, interface_name, true)) goto done;
1274 break;
1276 case INTRINSIC_NE_OS:
1277 if (check_interface1 (ns->op[i], ns2->op[INTRINSIC_NE],
1278 0, interface_name, true)) goto done;
1279 break;
1281 case INTRINSIC_GT:
1282 if (check_interface1 (ns->op[i], ns2->op[INTRINSIC_GT_OS],
1283 0, interface_name, true)) goto done;
1284 break;
1286 case INTRINSIC_GT_OS:
1287 if (check_interface1 (ns->op[i], ns2->op[INTRINSIC_GT],
1288 0, interface_name, true)) goto done;
1289 break;
1291 case INTRINSIC_GE:
1292 if (check_interface1 (ns->op[i], ns2->op[INTRINSIC_GE_OS],
1293 0, interface_name, true)) goto done;
1294 break;
1296 case INTRINSIC_GE_OS:
1297 if (check_interface1 (ns->op[i], ns2->op[INTRINSIC_GE],
1298 0, interface_name, true)) goto done;
1299 break;
1301 case INTRINSIC_LT:
1302 if (check_interface1 (ns->op[i], ns2->op[INTRINSIC_LT_OS],
1303 0, interface_name, true)) goto done;
1304 break;
1306 case INTRINSIC_LT_OS:
1307 if (check_interface1 (ns->op[i], ns2->op[INTRINSIC_LT],
1308 0, interface_name, true)) goto done;
1309 break;
1311 case INTRINSIC_LE:
1312 if (check_interface1 (ns->op[i], ns2->op[INTRINSIC_LE_OS],
1313 0, interface_name, true)) goto done;
1314 break;
1316 case INTRINSIC_LE_OS:
1317 if (check_interface1 (ns->op[i], ns2->op[INTRINSIC_LE],
1318 0, interface_name, true)) goto done;
1319 break;
1321 default:
1322 break;
1327 done:
1328 gfc_current_ns = old_ns;
1332 static int
1333 symbol_rank (gfc_symbol *sym)
1335 return (sym->as == NULL) ? 0 : sym->as->rank;
1339 /* Given a symbol of a formal argument list and an expression, if the
1340 formal argument is allocatable, check that the actual argument is
1341 allocatable. Returns nonzero if compatible, zero if not compatible. */
1343 static int
1344 compare_allocatable (gfc_symbol *formal, gfc_expr *actual)
1346 symbol_attribute attr;
1348 if (formal->attr.allocatable)
1350 attr = gfc_expr_attr (actual);
1351 if (!attr.allocatable)
1352 return 0;
1355 return 1;
1359 /* Given a symbol of a formal argument list and an expression, if the
1360 formal argument is a pointer, see if the actual argument is a
1361 pointer. Returns nonzero if compatible, zero if not compatible. */
1363 static int
1364 compare_pointer (gfc_symbol *formal, gfc_expr *actual)
1366 symbol_attribute attr;
1368 if (formal->attr.pointer)
1370 attr = gfc_expr_attr (actual);
1371 if (!attr.pointer)
1372 return 0;
1375 return 1;
1379 /* Given a symbol of a formal argument list and an expression, see if
1380 the two are compatible as arguments. Returns nonzero if
1381 compatible, zero if not compatible. */
1383 static int
1384 compare_parameter (gfc_symbol *formal, gfc_expr *actual,
1385 int ranks_must_agree, int is_elemental, locus *where)
1387 gfc_ref *ref;
1388 bool rank_check;
1390 /* If the formal arg has type BT_VOID, it's to one of the iso_c_binding
1391 procs c_f_pointer or c_f_procpointer, and we need to accept most
1392 pointers the user could give us. This should allow that. */
1393 if (formal->ts.type == BT_VOID)
1394 return 1;
1396 if (formal->ts.type == BT_DERIVED
1397 && formal->ts.u.derived && formal->ts.u.derived->ts.is_iso_c
1398 && actual->ts.type == BT_DERIVED
1399 && actual->ts.u.derived && actual->ts.u.derived->ts.is_iso_c)
1400 return 1;
1402 if (actual->ts.type == BT_PROCEDURE)
1404 char err[200];
1405 gfc_symbol *act_sym = actual->symtree->n.sym;
1407 if (formal->attr.flavor != FL_PROCEDURE)
1409 if (where)
1410 gfc_error ("Invalid procedure argument at %L", &actual->where);
1411 return 0;
1414 if (!gfc_compare_interfaces (formal, act_sym, act_sym->name, 0, 1, err,
1415 sizeof(err)))
1417 if (where)
1418 gfc_error ("Interface mismatch in dummy procedure '%s' at %L: %s",
1419 formal->name, &actual->where, err);
1420 return 0;
1423 if (formal->attr.function && !act_sym->attr.function)
1425 gfc_add_function (&act_sym->attr, act_sym->name,
1426 &act_sym->declared_at);
1427 if (act_sym->ts.type == BT_UNKNOWN
1428 && gfc_set_default_type (act_sym, 1, act_sym->ns) == FAILURE)
1429 return 0;
1431 else if (formal->attr.subroutine && !act_sym->attr.subroutine)
1432 gfc_add_subroutine (&act_sym->attr, act_sym->name,
1433 &act_sym->declared_at);
1435 return 1;
1438 if ((actual->expr_type != EXPR_NULL || actual->ts.type != BT_UNKNOWN)
1439 && !gfc_compare_types (&formal->ts, &actual->ts))
1441 if (where)
1442 gfc_error ("Type mismatch in argument '%s' at %L; passed %s to %s",
1443 formal->name, &actual->where, gfc_typename (&actual->ts),
1444 gfc_typename (&formal->ts));
1445 return 0;
1448 if (formal->attr.codimension)
1450 gfc_ref *last = NULL;
1452 if (actual->expr_type != EXPR_VARIABLE
1453 || (actual->ref == NULL
1454 && !actual->symtree->n.sym->attr.codimension))
1456 if (where)
1457 gfc_error ("Actual argument to '%s' at %L must be a coarray",
1458 formal->name, &actual->where);
1459 return 0;
1462 for (ref = actual->ref; ref; ref = ref->next)
1464 if (ref->type == REF_ARRAY && ref->u.ar.codimen != 0)
1466 if (where)
1467 gfc_error ("Actual argument to '%s' at %L must be a coarray "
1468 "and not coindexed", formal->name, &ref->u.ar.where);
1469 return 0;
1471 if (ref->type == REF_ARRAY && ref->u.ar.as->corank
1472 && ref->u.ar.type != AR_FULL && ref->u.ar.dimen != 0)
1474 if (where)
1475 gfc_error ("Actual argument to '%s' at %L must be a coarray "
1476 "and thus shall not have an array designator",
1477 formal->name, &ref->u.ar.where);
1478 return 0;
1480 if (ref->type == REF_COMPONENT)
1481 last = ref;
1484 if (last && !last->u.c.component->attr.codimension)
1486 if (where)
1487 gfc_error ("Actual argument to '%s' at %L must be a coarray",
1488 formal->name, &actual->where);
1489 return 0;
1492 /* F2008, 12.5.2.6. */
1493 if (formal->attr.allocatable &&
1494 ((last && last->u.c.component->as->corank != formal->as->corank)
1495 || (!last
1496 && actual->symtree->n.sym->as->corank != formal->as->corank)))
1498 if (where)
1499 gfc_error ("Corank mismatch in argument '%s' at %L (%d and %d)",
1500 formal->name, &actual->where, formal->as->corank,
1501 last ? last->u.c.component->as->corank
1502 : actual->symtree->n.sym->as->corank);
1503 return 0;
1507 if (symbol_rank (formal) == actual->rank)
1508 return 1;
1510 rank_check = where != NULL && !is_elemental && formal->as
1511 && (formal->as->type == AS_ASSUMED_SHAPE
1512 || formal->as->type == AS_DEFERRED)
1513 && actual->expr_type != EXPR_NULL;
1515 /* Scalar & coindexed, see: F2008, Section 12.5.2.4. */
1516 if (rank_check || ranks_must_agree
1517 || (formal->attr.pointer && actual->expr_type != EXPR_NULL)
1518 || (actual->rank != 0 && !(is_elemental || formal->attr.dimension))
1519 || (actual->rank == 0 && formal->as->type == AS_ASSUMED_SHAPE)
1520 || (actual->rank == 0 && formal->attr.dimension
1521 && gfc_is_coindexed (actual)))
1523 if (where)
1524 gfc_error ("Rank mismatch in argument '%s' at %L (%d and %d)",
1525 formal->name, &actual->where, symbol_rank (formal),
1526 actual->rank);
1527 return 0;
1529 else if (actual->rank != 0 && (is_elemental || formal->attr.dimension))
1530 return 1;
1532 /* At this point, we are considering a scalar passed to an array. This
1533 is valid (cf. F95 12.4.1.1; F2003 12.4.1.2),
1534 - if the actual argument is (a substring of) an element of a
1535 non-assumed-shape/non-pointer array;
1536 - (F2003) if the actual argument is of type character. */
1538 for (ref = actual->ref; ref; ref = ref->next)
1539 if (ref->type == REF_ARRAY && ref->u.ar.type == AR_ELEMENT
1540 && ref->u.ar.dimen > 0)
1541 break;
1543 /* Not an array element. */
1544 if (formal->ts.type == BT_CHARACTER
1545 && (ref == NULL
1546 || (actual->expr_type == EXPR_VARIABLE
1547 && (actual->symtree->n.sym->as->type == AS_ASSUMED_SHAPE
1548 || actual->symtree->n.sym->attr.pointer))))
1550 if (where && (gfc_option.allow_std & GFC_STD_F2003) == 0)
1552 gfc_error ("Fortran 2003: Scalar CHARACTER actual argument with "
1553 "array dummy argument '%s' at %L",
1554 formal->name, &actual->where);
1555 return 0;
1557 else if ((gfc_option.allow_std & GFC_STD_F2003) == 0)
1558 return 0;
1559 else
1560 return 1;
1562 else if (ref == NULL && actual->expr_type != EXPR_NULL)
1564 if (where)
1565 gfc_error ("Rank mismatch in argument '%s' at %L (%d and %d)",
1566 formal->name, &actual->where, symbol_rank (formal),
1567 actual->rank);
1568 return 0;
1571 if (actual->expr_type == EXPR_VARIABLE
1572 && actual->symtree->n.sym->as
1573 && (actual->symtree->n.sym->as->type == AS_ASSUMED_SHAPE
1574 || actual->symtree->n.sym->attr.pointer))
1576 if (where)
1577 gfc_error ("Element of assumed-shaped array passed to dummy "
1578 "argument '%s' at %L", formal->name, &actual->where);
1579 return 0;
1582 return 1;
1586 /* Given a symbol of a formal argument list and an expression, see if
1587 the two are compatible as arguments. Returns nonzero if
1588 compatible, zero if not compatible. */
1590 static int
1591 compare_parameter_protected (gfc_symbol *formal, gfc_expr *actual)
1593 if (actual->expr_type != EXPR_VARIABLE)
1594 return 1;
1596 if (!actual->symtree->n.sym->attr.is_protected)
1597 return 1;
1599 if (!actual->symtree->n.sym->attr.use_assoc)
1600 return 1;
1602 if (formal->attr.intent == INTENT_IN
1603 || formal->attr.intent == INTENT_UNKNOWN)
1604 return 1;
1606 if (!actual->symtree->n.sym->attr.pointer)
1607 return 0;
1609 if (actual->symtree->n.sym->attr.pointer && formal->attr.pointer)
1610 return 0;
1612 return 1;
1616 /* Returns the storage size of a symbol (formal argument) or
1617 zero if it cannot be determined. */
1619 static unsigned long
1620 get_sym_storage_size (gfc_symbol *sym)
1622 int i;
1623 unsigned long strlen, elements;
1625 if (sym->ts.type == BT_CHARACTER)
1627 if (sym->ts.u.cl && sym->ts.u.cl->length
1628 && sym->ts.u.cl->length->expr_type == EXPR_CONSTANT)
1629 strlen = mpz_get_ui (sym->ts.u.cl->length->value.integer);
1630 else
1631 return 0;
1633 else
1634 strlen = 1;
1636 if (symbol_rank (sym) == 0)
1637 return strlen;
1639 elements = 1;
1640 if (sym->as->type != AS_EXPLICIT)
1641 return 0;
1642 for (i = 0; i < sym->as->rank; i++)
1644 if (!sym->as || sym->as->upper[i]->expr_type != EXPR_CONSTANT
1645 || sym->as->lower[i]->expr_type != EXPR_CONSTANT)
1646 return 0;
1648 elements *= mpz_get_ui (sym->as->upper[i]->value.integer)
1649 - mpz_get_ui (sym->as->lower[i]->value.integer) + 1L;
1652 return strlen*elements;
1656 /* Returns the storage size of an expression (actual argument) or
1657 zero if it cannot be determined. For an array element, it returns
1658 the remaining size as the element sequence consists of all storage
1659 units of the actual argument up to the end of the array. */
1661 static unsigned long
1662 get_expr_storage_size (gfc_expr *e)
1664 int i;
1665 long int strlen, elements;
1666 long int substrlen = 0;
1667 bool is_str_storage = false;
1668 gfc_ref *ref;
1670 if (e == NULL)
1671 return 0;
1673 if (e->ts.type == BT_CHARACTER)
1675 if (e->ts.u.cl && e->ts.u.cl->length
1676 && e->ts.u.cl->length->expr_type == EXPR_CONSTANT)
1677 strlen = mpz_get_si (e->ts.u.cl->length->value.integer);
1678 else if (e->expr_type == EXPR_CONSTANT
1679 && (e->ts.u.cl == NULL || e->ts.u.cl->length == NULL))
1680 strlen = e->value.character.length;
1681 else
1682 return 0;
1684 else
1685 strlen = 1; /* Length per element. */
1687 if (e->rank == 0 && !e->ref)
1688 return strlen;
1690 elements = 1;
1691 if (!e->ref)
1693 if (!e->shape)
1694 return 0;
1695 for (i = 0; i < e->rank; i++)
1696 elements *= mpz_get_si (e->shape[i]);
1697 return elements*strlen;
1700 for (ref = e->ref; ref; ref = ref->next)
1702 if (ref->type == REF_SUBSTRING && ref->u.ss.start
1703 && ref->u.ss.start->expr_type == EXPR_CONSTANT)
1705 if (is_str_storage)
1707 /* The string length is the substring length.
1708 Set now to full string length. */
1709 if (ref->u.ss.length == NULL
1710 || ref->u.ss.length->length->expr_type != EXPR_CONSTANT)
1711 return 0;
1713 strlen = mpz_get_ui (ref->u.ss.length->length->value.integer);
1715 substrlen = strlen - mpz_get_ui (ref->u.ss.start->value.integer) + 1;
1716 continue;
1719 if (ref->type == REF_ARRAY && ref->u.ar.type == AR_SECTION
1720 && ref->u.ar.start && ref->u.ar.end && ref->u.ar.stride
1721 && ref->u.ar.as->upper)
1722 for (i = 0; i < ref->u.ar.dimen; i++)
1724 long int start, end, stride;
1725 stride = 1;
1727 if (ref->u.ar.stride[i])
1729 if (ref->u.ar.stride[i]->expr_type == EXPR_CONSTANT)
1730 stride = mpz_get_si (ref->u.ar.stride[i]->value.integer);
1731 else
1732 return 0;
1735 if (ref->u.ar.start[i])
1737 if (ref->u.ar.start[i]->expr_type == EXPR_CONSTANT)
1738 start = mpz_get_si (ref->u.ar.start[i]->value.integer);
1739 else
1740 return 0;
1742 else if (ref->u.ar.as->lower[i]
1743 && ref->u.ar.as->lower[i]->expr_type == EXPR_CONSTANT)
1744 start = mpz_get_si (ref->u.ar.as->lower[i]->value.integer);
1745 else
1746 return 0;
1748 if (ref->u.ar.end[i])
1750 if (ref->u.ar.end[i]->expr_type == EXPR_CONSTANT)
1751 end = mpz_get_si (ref->u.ar.end[i]->value.integer);
1752 else
1753 return 0;
1755 else if (ref->u.ar.as->upper[i]
1756 && ref->u.ar.as->upper[i]->expr_type == EXPR_CONSTANT)
1757 end = mpz_get_si (ref->u.ar.as->upper[i]->value.integer);
1758 else
1759 return 0;
1761 elements *= (end - start)/stride + 1L;
1763 else if (ref->type == REF_ARRAY && ref->u.ar.type == AR_FULL
1764 && ref->u.ar.as->lower && ref->u.ar.as->upper)
1765 for (i = 0; i < ref->u.ar.as->rank; i++)
1767 if (ref->u.ar.as->lower[i] && ref->u.ar.as->upper[i]
1768 && ref->u.ar.as->lower[i]->expr_type == EXPR_CONSTANT
1769 && ref->u.ar.as->upper[i]->expr_type == EXPR_CONSTANT)
1770 elements *= mpz_get_si (ref->u.ar.as->upper[i]->value.integer)
1771 - mpz_get_si (ref->u.ar.as->lower[i]->value.integer)
1772 + 1L;
1773 else
1774 return 0;
1776 else if (ref->type == REF_ARRAY && ref->u.ar.type == AR_ELEMENT
1777 && e->expr_type == EXPR_VARIABLE)
1779 if (e->symtree->n.sym->as->type == AS_ASSUMED_SHAPE
1780 || e->symtree->n.sym->attr.pointer)
1782 elements = 1;
1783 continue;
1786 /* Determine the number of remaining elements in the element
1787 sequence for array element designators. */
1788 is_str_storage = true;
1789 for (i = ref->u.ar.dimen - 1; i >= 0; i--)
1791 if (ref->u.ar.start[i] == NULL
1792 || ref->u.ar.start[i]->expr_type != EXPR_CONSTANT
1793 || ref->u.ar.as->upper[i] == NULL
1794 || ref->u.ar.as->lower[i] == NULL
1795 || ref->u.ar.as->upper[i]->expr_type != EXPR_CONSTANT
1796 || ref->u.ar.as->lower[i]->expr_type != EXPR_CONSTANT)
1797 return 0;
1799 elements
1800 = elements
1801 * (mpz_get_si (ref->u.ar.as->upper[i]->value.integer)
1802 - mpz_get_si (ref->u.ar.as->lower[i]->value.integer)
1803 + 1L)
1804 - (mpz_get_si (ref->u.ar.start[i]->value.integer)
1805 - mpz_get_si (ref->u.ar.as->lower[i]->value.integer));
1808 else
1809 return 0;
1812 if (substrlen)
1813 return (is_str_storage) ? substrlen + (elements-1)*strlen
1814 : elements*strlen;
1815 else
1816 return elements*strlen;
1820 /* Given an expression, check whether it is an array section
1821 which has a vector subscript. If it has, one is returned,
1822 otherwise zero. */
1824 static int
1825 has_vector_subscript (gfc_expr *e)
1827 int i;
1828 gfc_ref *ref;
1830 if (e == NULL || e->rank == 0 || e->expr_type != EXPR_VARIABLE)
1831 return 0;
1833 for (ref = e->ref; ref; ref = ref->next)
1834 if (ref->type == REF_ARRAY && ref->u.ar.type == AR_SECTION)
1835 for (i = 0; i < ref->u.ar.dimen; i++)
1836 if (ref->u.ar.dimen_type[i] == DIMEN_VECTOR)
1837 return 1;
1839 return 0;
1843 /* Given formal and actual argument lists, see if they are compatible.
1844 If they are compatible, the actual argument list is sorted to
1845 correspond with the formal list, and elements for missing optional
1846 arguments are inserted. If WHERE pointer is nonnull, then we issue
1847 errors when things don't match instead of just returning the status
1848 code. */
1850 static int
1851 compare_actual_formal (gfc_actual_arglist **ap, gfc_formal_arglist *formal,
1852 int ranks_must_agree, int is_elemental, locus *where)
1854 gfc_actual_arglist **new_arg, *a, *actual, temp;
1855 gfc_formal_arglist *f;
1856 int i, n, na;
1857 unsigned long actual_size, formal_size;
1859 actual = *ap;
1861 if (actual == NULL && formal == NULL)
1862 return 1;
1864 n = 0;
1865 for (f = formal; f; f = f->next)
1866 n++;
1868 new_arg = (gfc_actual_arglist **) alloca (n * sizeof (gfc_actual_arglist *));
1870 for (i = 0; i < n; i++)
1871 new_arg[i] = NULL;
1873 na = 0;
1874 f = formal;
1875 i = 0;
1877 for (a = actual; a; a = a->next, f = f->next)
1879 /* Look for keywords but ignore g77 extensions like %VAL. */
1880 if (a->name != NULL && a->name[0] != '%')
1882 i = 0;
1883 for (f = formal; f; f = f->next, i++)
1885 if (f->sym == NULL)
1886 continue;
1887 if (strcmp (f->sym->name, a->name) == 0)
1888 break;
1891 if (f == NULL)
1893 if (where)
1894 gfc_error ("Keyword argument '%s' at %L is not in "
1895 "the procedure", a->name, &a->expr->where);
1896 return 0;
1899 if (new_arg[i] != NULL)
1901 if (where)
1902 gfc_error ("Keyword argument '%s' at %L is already associated "
1903 "with another actual argument", a->name,
1904 &a->expr->where);
1905 return 0;
1909 if (f == NULL)
1911 if (where)
1912 gfc_error ("More actual than formal arguments in procedure "
1913 "call at %L", where);
1915 return 0;
1918 if (f->sym == NULL && a->expr == NULL)
1919 goto match;
1921 if (f->sym == NULL)
1923 if (where)
1924 gfc_error ("Missing alternate return spec in subroutine call "
1925 "at %L", where);
1926 return 0;
1929 if (a->expr == NULL)
1931 if (where)
1932 gfc_error ("Unexpected alternate return spec in subroutine "
1933 "call at %L", where);
1934 return 0;
1937 if (!compare_parameter (f->sym, a->expr, ranks_must_agree,
1938 is_elemental, where))
1939 return 0;
1941 /* Special case for character arguments. For allocatable, pointer
1942 and assumed-shape dummies, the string length needs to match
1943 exactly. */
1944 if (a->expr->ts.type == BT_CHARACTER
1945 && a->expr->ts.u.cl && a->expr->ts.u.cl->length
1946 && a->expr->ts.u.cl->length->expr_type == EXPR_CONSTANT
1947 && f->sym->ts.u.cl && f->sym->ts.u.cl && f->sym->ts.u.cl->length
1948 && f->sym->ts.u.cl->length->expr_type == EXPR_CONSTANT
1949 && (f->sym->attr.pointer || f->sym->attr.allocatable
1950 || (f->sym->as && f->sym->as->type == AS_ASSUMED_SHAPE))
1951 && (mpz_cmp (a->expr->ts.u.cl->length->value.integer,
1952 f->sym->ts.u.cl->length->value.integer) != 0))
1954 if (where && (f->sym->attr.pointer || f->sym->attr.allocatable))
1955 gfc_warning ("Character length mismatch (%ld/%ld) between actual "
1956 "argument and pointer or allocatable dummy argument "
1957 "'%s' at %L",
1958 mpz_get_si (a->expr->ts.u.cl->length->value.integer),
1959 mpz_get_si (f->sym->ts.u.cl->length->value.integer),
1960 f->sym->name, &a->expr->where);
1961 else if (where)
1962 gfc_warning ("Character length mismatch (%ld/%ld) between actual "
1963 "argument and assumed-shape dummy argument '%s' "
1964 "at %L",
1965 mpz_get_si (a->expr->ts.u.cl->length->value.integer),
1966 mpz_get_si (f->sym->ts.u.cl->length->value.integer),
1967 f->sym->name, &a->expr->where);
1968 return 0;
1971 actual_size = get_expr_storage_size (a->expr);
1972 formal_size = get_sym_storage_size (f->sym);
1973 if (actual_size != 0
1974 && actual_size < formal_size
1975 && a->expr->ts.type != BT_PROCEDURE)
1977 if (a->expr->ts.type == BT_CHARACTER && !f->sym->as && where)
1978 gfc_warning ("Character length of actual argument shorter "
1979 "than of dummy argument '%s' (%lu/%lu) at %L",
1980 f->sym->name, actual_size, formal_size,
1981 &a->expr->where);
1982 else if (where)
1983 gfc_warning ("Actual argument contains too few "
1984 "elements for dummy argument '%s' (%lu/%lu) at %L",
1985 f->sym->name, actual_size, formal_size,
1986 &a->expr->where);
1987 return 0;
1990 /* Satisfy 12.4.1.3 by ensuring that a procedure pointer actual argument
1991 is provided for a procedure pointer formal argument. */
1992 if (f->sym->attr.proc_pointer
1993 && !((a->expr->expr_type == EXPR_VARIABLE
1994 && a->expr->symtree->n.sym->attr.proc_pointer)
1995 || (a->expr->expr_type == EXPR_FUNCTION
1996 && a->expr->symtree->n.sym->result->attr.proc_pointer)
1997 || gfc_is_proc_ptr_comp (a->expr, NULL)))
1999 if (where)
2000 gfc_error ("Expected a procedure pointer for argument '%s' at %L",
2001 f->sym->name, &a->expr->where);
2002 return 0;
2005 /* Satisfy 12.4.1.2 by ensuring that a procedure actual argument is
2006 provided for a procedure formal argument. */
2007 if (a->expr->ts.type != BT_PROCEDURE && !gfc_is_proc_ptr_comp (a->expr, NULL)
2008 && a->expr->expr_type == EXPR_VARIABLE
2009 && f->sym->attr.flavor == FL_PROCEDURE)
2011 if (where)
2012 gfc_error ("Expected a procedure for argument '%s' at %L",
2013 f->sym->name, &a->expr->where);
2014 return 0;
2017 if (f->sym->attr.flavor == FL_PROCEDURE && f->sym->attr.pure
2018 && a->expr->ts.type == BT_PROCEDURE
2019 && !a->expr->symtree->n.sym->attr.pure)
2021 if (where)
2022 gfc_error ("Expected a PURE procedure for argument '%s' at %L",
2023 f->sym->name, &a->expr->where);
2024 return 0;
2027 if (f->sym->as && f->sym->as->type == AS_ASSUMED_SHAPE
2028 && a->expr->expr_type == EXPR_VARIABLE
2029 && a->expr->symtree->n.sym->as
2030 && a->expr->symtree->n.sym->as->type == AS_ASSUMED_SIZE
2031 && (a->expr->ref == NULL
2032 || (a->expr->ref->type == REF_ARRAY
2033 && a->expr->ref->u.ar.type == AR_FULL)))
2035 if (where)
2036 gfc_error ("Actual argument for '%s' cannot be an assumed-size"
2037 " array at %L", f->sym->name, where);
2038 return 0;
2041 if (a->expr->expr_type != EXPR_NULL
2042 && compare_pointer (f->sym, a->expr) == 0)
2044 if (where)
2045 gfc_error ("Actual argument for '%s' must be a pointer at %L",
2046 f->sym->name, &a->expr->where);
2047 return 0;
2050 /* Fortran 2008, C1242. */
2051 if (f->sym->attr.pointer && gfc_is_coindexed (a->expr))
2053 if (where)
2054 gfc_error ("Coindexed actual argument at %L to pointer "
2055 "dummy '%s'",
2056 &a->expr->where, f->sym->name);
2057 return 0;
2060 /* Fortran 2008, 12.5.2.5 (no constraint). */
2061 if (a->expr->expr_type == EXPR_VARIABLE
2062 && f->sym->attr.intent != INTENT_IN
2063 && f->sym->attr.allocatable
2064 && gfc_is_coindexed (a->expr))
2066 if (where)
2067 gfc_error ("Coindexed actual argument at %L to allocatable "
2068 "dummy '%s' requires INTENT(IN)",
2069 &a->expr->where, f->sym->name);
2070 return 0;
2073 /* Fortran 2008, C1237. */
2074 if (a->expr->expr_type == EXPR_VARIABLE
2075 && (f->sym->attr.asynchronous || f->sym->attr.volatile_)
2076 && gfc_is_coindexed (a->expr)
2077 && (a->expr->symtree->n.sym->attr.volatile_
2078 || a->expr->symtree->n.sym->attr.asynchronous))
2080 if (where)
2081 gfc_error ("Coindexed ASYNCHRONOUS or VOLATILE actual argument at "
2082 "at %L requires that dummy %s' has neither "
2083 "ASYNCHRONOUS nor VOLATILE", &a->expr->where,
2084 f->sym->name);
2085 return 0;
2088 /* Fortran 2008, 12.5.2.4 (no constraint). */
2089 if (a->expr->expr_type == EXPR_VARIABLE
2090 && f->sym->attr.intent != INTENT_IN && !f->sym->attr.value
2091 && gfc_is_coindexed (a->expr)
2092 && gfc_has_ultimate_allocatable (a->expr))
2094 if (where)
2095 gfc_error ("Coindexed actual argument at %L with allocatable "
2096 "ultimate component to dummy '%s' requires either VALUE "
2097 "or INTENT(IN)", &a->expr->where, f->sym->name);
2098 return 0;
2101 if (a->expr->expr_type != EXPR_NULL
2102 && compare_allocatable (f->sym, a->expr) == 0)
2104 if (where)
2105 gfc_error ("Actual argument for '%s' must be ALLOCATABLE at %L",
2106 f->sym->name, &a->expr->where);
2107 return 0;
2110 /* Check intent = OUT/INOUT for definable actual argument. */
2111 if ((a->expr->expr_type != EXPR_VARIABLE
2112 || (a->expr->symtree->n.sym->attr.flavor != FL_VARIABLE
2113 && a->expr->symtree->n.sym->attr.flavor != FL_PROCEDURE))
2114 && (f->sym->attr.intent == INTENT_OUT
2115 || f->sym->attr.intent == INTENT_INOUT))
2117 if (where)
2118 gfc_error ("Actual argument at %L must be definable as "
2119 "the dummy argument '%s' is INTENT = OUT/INOUT",
2120 &a->expr->where, f->sym->name);
2121 return 0;
2124 if (!compare_parameter_protected(f->sym, a->expr))
2126 if (where)
2127 gfc_error ("Actual argument at %L is use-associated with "
2128 "PROTECTED attribute and dummy argument '%s' is "
2129 "INTENT = OUT/INOUT",
2130 &a->expr->where,f->sym->name);
2131 return 0;
2134 if ((f->sym->attr.intent == INTENT_OUT
2135 || f->sym->attr.intent == INTENT_INOUT
2136 || f->sym->attr.volatile_)
2137 && has_vector_subscript (a->expr))
2139 if (where)
2140 gfc_error ("Array-section actual argument with vector subscripts "
2141 "at %L is incompatible with INTENT(OUT), INTENT(INOUT) "
2142 "or VOLATILE attribute of the dummy argument '%s'",
2143 &a->expr->where, f->sym->name);
2144 return 0;
2147 /* C1232 (R1221) For an actual argument which is an array section or
2148 an assumed-shape array, the dummy argument shall be an assumed-
2149 shape array, if the dummy argument has the VOLATILE attribute. */
2151 if (f->sym->attr.volatile_
2152 && a->expr->symtree->n.sym->as
2153 && a->expr->symtree->n.sym->as->type == AS_ASSUMED_SHAPE
2154 && !(f->sym->as && f->sym->as->type == AS_ASSUMED_SHAPE))
2156 if (where)
2157 gfc_error ("Assumed-shape actual argument at %L is "
2158 "incompatible with the non-assumed-shape "
2159 "dummy argument '%s' due to VOLATILE attribute",
2160 &a->expr->where,f->sym->name);
2161 return 0;
2164 if (f->sym->attr.volatile_
2165 && a->expr->ref && a->expr->ref->u.ar.type == AR_SECTION
2166 && !(f->sym->as && f->sym->as->type == AS_ASSUMED_SHAPE))
2168 if (where)
2169 gfc_error ("Array-section actual argument at %L is "
2170 "incompatible with the non-assumed-shape "
2171 "dummy argument '%s' due to VOLATILE attribute",
2172 &a->expr->where,f->sym->name);
2173 return 0;
2176 /* C1233 (R1221) For an actual argument which is a pointer array, the
2177 dummy argument shall be an assumed-shape or pointer array, if the
2178 dummy argument has the VOLATILE attribute. */
2180 if (f->sym->attr.volatile_
2181 && a->expr->symtree->n.sym->attr.pointer
2182 && a->expr->symtree->n.sym->as
2183 && !(f->sym->as
2184 && (f->sym->as->type == AS_ASSUMED_SHAPE
2185 || f->sym->attr.pointer)))
2187 if (where)
2188 gfc_error ("Pointer-array actual argument at %L requires "
2189 "an assumed-shape or pointer-array dummy "
2190 "argument '%s' due to VOLATILE attribute",
2191 &a->expr->where,f->sym->name);
2192 return 0;
2195 match:
2196 if (a == actual)
2197 na = i;
2199 new_arg[i++] = a;
2202 /* Make sure missing actual arguments are optional. */
2203 i = 0;
2204 for (f = formal; f; f = f->next, i++)
2206 if (new_arg[i] != NULL)
2207 continue;
2208 if (f->sym == NULL)
2210 if (where)
2211 gfc_error ("Missing alternate return spec in subroutine call "
2212 "at %L", where);
2213 return 0;
2215 if (!f->sym->attr.optional)
2217 if (where)
2218 gfc_error ("Missing actual argument for argument '%s' at %L",
2219 f->sym->name, where);
2220 return 0;
2224 /* The argument lists are compatible. We now relink a new actual
2225 argument list with null arguments in the right places. The head
2226 of the list remains the head. */
2227 for (i = 0; i < n; i++)
2228 if (new_arg[i] == NULL)
2229 new_arg[i] = gfc_get_actual_arglist ();
2231 if (na != 0)
2233 temp = *new_arg[0];
2234 *new_arg[0] = *actual;
2235 *actual = temp;
2237 a = new_arg[0];
2238 new_arg[0] = new_arg[na];
2239 new_arg[na] = a;
2242 for (i = 0; i < n - 1; i++)
2243 new_arg[i]->next = new_arg[i + 1];
2245 new_arg[i]->next = NULL;
2247 if (*ap == NULL && n > 0)
2248 *ap = new_arg[0];
2250 /* Note the types of omitted optional arguments. */
2251 for (a = *ap, f = formal; a; a = a->next, f = f->next)
2252 if (a->expr == NULL && a->label == NULL)
2253 a->missing_arg_type = f->sym->ts.type;
2255 return 1;
2259 typedef struct
2261 gfc_formal_arglist *f;
2262 gfc_actual_arglist *a;
2264 argpair;
2266 /* qsort comparison function for argument pairs, with the following
2267 order:
2268 - p->a->expr == NULL
2269 - p->a->expr->expr_type != EXPR_VARIABLE
2270 - growing p->a->expr->symbol. */
2272 static int
2273 pair_cmp (const void *p1, const void *p2)
2275 const gfc_actual_arglist *a1, *a2;
2277 /* *p1 and *p2 are elements of the to-be-sorted array. */
2278 a1 = ((const argpair *) p1)->a;
2279 a2 = ((const argpair *) p2)->a;
2280 if (!a1->expr)
2282 if (!a2->expr)
2283 return 0;
2284 return -1;
2286 if (!a2->expr)
2287 return 1;
2288 if (a1->expr->expr_type != EXPR_VARIABLE)
2290 if (a2->expr->expr_type != EXPR_VARIABLE)
2291 return 0;
2292 return -1;
2294 if (a2->expr->expr_type != EXPR_VARIABLE)
2295 return 1;
2296 return a1->expr->symtree->n.sym < a2->expr->symtree->n.sym;
2300 /* Given two expressions from some actual arguments, test whether they
2301 refer to the same expression. The analysis is conservative.
2302 Returning FAILURE will produce no warning. */
2304 static gfc_try
2305 compare_actual_expr (gfc_expr *e1, gfc_expr *e2)
2307 const gfc_ref *r1, *r2;
2309 if (!e1 || !e2
2310 || e1->expr_type != EXPR_VARIABLE
2311 || e2->expr_type != EXPR_VARIABLE
2312 || e1->symtree->n.sym != e2->symtree->n.sym)
2313 return FAILURE;
2315 /* TODO: improve comparison, see expr.c:show_ref(). */
2316 for (r1 = e1->ref, r2 = e2->ref; r1 && r2; r1 = r1->next, r2 = r2->next)
2318 if (r1->type != r2->type)
2319 return FAILURE;
2320 switch (r1->type)
2322 case REF_ARRAY:
2323 if (r1->u.ar.type != r2->u.ar.type)
2324 return FAILURE;
2325 /* TODO: At the moment, consider only full arrays;
2326 we could do better. */
2327 if (r1->u.ar.type != AR_FULL || r2->u.ar.type != AR_FULL)
2328 return FAILURE;
2329 break;
2331 case REF_COMPONENT:
2332 if (r1->u.c.component != r2->u.c.component)
2333 return FAILURE;
2334 break;
2336 case REF_SUBSTRING:
2337 return FAILURE;
2339 default:
2340 gfc_internal_error ("compare_actual_expr(): Bad component code");
2343 if (!r1 && !r2)
2344 return SUCCESS;
2345 return FAILURE;
2349 /* Given formal and actual argument lists that correspond to one
2350 another, check that identical actual arguments aren't not
2351 associated with some incompatible INTENTs. */
2353 static gfc_try
2354 check_some_aliasing (gfc_formal_arglist *f, gfc_actual_arglist *a)
2356 sym_intent f1_intent, f2_intent;
2357 gfc_formal_arglist *f1;
2358 gfc_actual_arglist *a1;
2359 size_t n, i, j;
2360 argpair *p;
2361 gfc_try t = SUCCESS;
2363 n = 0;
2364 for (f1 = f, a1 = a;; f1 = f1->next, a1 = a1->next)
2366 if (f1 == NULL && a1 == NULL)
2367 break;
2368 if (f1 == NULL || a1 == NULL)
2369 gfc_internal_error ("check_some_aliasing(): List mismatch");
2370 n++;
2372 if (n == 0)
2373 return t;
2374 p = (argpair *) alloca (n * sizeof (argpair));
2376 for (i = 0, f1 = f, a1 = a; i < n; i++, f1 = f1->next, a1 = a1->next)
2378 p[i].f = f1;
2379 p[i].a = a1;
2382 qsort (p, n, sizeof (argpair), pair_cmp);
2384 for (i = 0; i < n; i++)
2386 if (!p[i].a->expr
2387 || p[i].a->expr->expr_type != EXPR_VARIABLE
2388 || p[i].a->expr->ts.type == BT_PROCEDURE)
2389 continue;
2390 f1_intent = p[i].f->sym->attr.intent;
2391 for (j = i + 1; j < n; j++)
2393 /* Expected order after the sort. */
2394 if (!p[j].a->expr || p[j].a->expr->expr_type != EXPR_VARIABLE)
2395 gfc_internal_error ("check_some_aliasing(): corrupted data");
2397 /* Are the expression the same? */
2398 if (compare_actual_expr (p[i].a->expr, p[j].a->expr) == FAILURE)
2399 break;
2400 f2_intent = p[j].f->sym->attr.intent;
2401 if ((f1_intent == INTENT_IN && f2_intent == INTENT_OUT)
2402 || (f1_intent == INTENT_OUT && f2_intent == INTENT_IN))
2404 gfc_warning ("Same actual argument associated with INTENT(%s) "
2405 "argument '%s' and INTENT(%s) argument '%s' at %L",
2406 gfc_intent_string (f1_intent), p[i].f->sym->name,
2407 gfc_intent_string (f2_intent), p[j].f->sym->name,
2408 &p[i].a->expr->where);
2409 t = FAILURE;
2414 return t;
2418 /* Given a symbol of a formal argument list and an expression,
2419 return nonzero if their intents are compatible, zero otherwise. */
2421 static int
2422 compare_parameter_intent (gfc_symbol *formal, gfc_expr *actual)
2424 if (actual->symtree->n.sym->attr.pointer && !formal->attr.pointer)
2425 return 1;
2427 if (actual->symtree->n.sym->attr.intent != INTENT_IN)
2428 return 1;
2430 if (formal->attr.intent == INTENT_INOUT || formal->attr.intent == INTENT_OUT)
2431 return 0;
2433 return 1;
2437 /* Given formal and actual argument lists that correspond to one
2438 another, check that they are compatible in the sense that intents
2439 are not mismatched. */
2441 static gfc_try
2442 check_intents (gfc_formal_arglist *f, gfc_actual_arglist *a)
2444 sym_intent f_intent;
2446 for (;; f = f->next, a = a->next)
2448 if (f == NULL && a == NULL)
2449 break;
2450 if (f == NULL || a == NULL)
2451 gfc_internal_error ("check_intents(): List mismatch");
2453 if (a->expr == NULL || a->expr->expr_type != EXPR_VARIABLE)
2454 continue;
2456 f_intent = f->sym->attr.intent;
2458 if (!compare_parameter_intent(f->sym, a->expr))
2460 gfc_error ("Procedure argument at %L is INTENT(IN) while interface "
2461 "specifies INTENT(%s)", &a->expr->where,
2462 gfc_intent_string (f_intent));
2463 return FAILURE;
2466 if (gfc_pure (NULL) && gfc_impure_variable (a->expr->symtree->n.sym))
2468 if (f_intent == INTENT_INOUT || f_intent == INTENT_OUT)
2470 gfc_error ("Procedure argument at %L is local to a PURE "
2471 "procedure and is passed to an INTENT(%s) argument",
2472 &a->expr->where, gfc_intent_string (f_intent));
2473 return FAILURE;
2476 if (f->sym->attr.pointer)
2478 gfc_error ("Procedure argument at %L is local to a PURE "
2479 "procedure and has the POINTER attribute",
2480 &a->expr->where);
2481 return FAILURE;
2485 /* Fortran 2008, C1283. */
2486 if (gfc_pure (NULL) && gfc_is_coindexed (a->expr))
2488 if (f_intent == INTENT_INOUT || f_intent == INTENT_OUT)
2490 gfc_error ("Coindexed actual argument at %L in PURE procedure "
2491 "is passed to an INTENT(%s) argument",
2492 &a->expr->where, gfc_intent_string (f_intent));
2493 return FAILURE;
2496 if (f->sym->attr.pointer)
2498 gfc_error ("Coindexed actual argument at %L in PURE procedure "
2499 "is passed to a POINTER dummy argument",
2500 &a->expr->where);
2501 return FAILURE;
2505 /* F2008, Section 12.5.2.4. */
2506 if (a->expr->ts.type == BT_CLASS && f->sym->ts.type == BT_CLASS
2507 && gfc_is_coindexed (a->expr))
2509 gfc_error ("Coindexed polymorphic actual argument at %L is passed "
2510 "polymorphic dummy argument '%s'",
2511 &a->expr->where, f->sym->name);
2512 return FAILURE;
2516 return SUCCESS;
2520 /* Check how a procedure is used against its interface. If all goes
2521 well, the actual argument list will also end up being properly
2522 sorted. */
2524 void
2525 gfc_procedure_use (gfc_symbol *sym, gfc_actual_arglist **ap, locus *where)
2528 /* Warn about calls with an implicit interface. Special case
2529 for calling a ISO_C_BINDING becase c_loc and c_funloc
2530 are pseudo-unknown. Additionally, warn about procedures not
2531 explicitly declared at all if requested. */
2532 if (sym->attr.if_source == IFSRC_UNKNOWN && ! sym->attr.is_iso_c)
2534 if (gfc_option.warn_implicit_interface)
2535 gfc_warning ("Procedure '%s' called with an implicit interface at %L",
2536 sym->name, where);
2537 else if (gfc_option.warn_implicit_procedure
2538 && sym->attr.proc == PROC_UNKNOWN)
2539 gfc_warning ("Procedure '%s' called at %L is not explicitly declared",
2540 sym->name, where);
2543 if (sym->attr.if_source == IFSRC_UNKNOWN)
2545 gfc_actual_arglist *a;
2546 for (a = *ap; a; a = a->next)
2548 /* Skip g77 keyword extensions like %VAL, %REF, %LOC. */
2549 if (a->name != NULL && a->name[0] != '%')
2551 gfc_error("Keyword argument requires explicit interface "
2552 "for procedure '%s' at %L", sym->name, &a->expr->where);
2553 break;
2557 return;
2560 if (!compare_actual_formal (ap, sym->formal, 0, sym->attr.elemental, where))
2561 return;
2563 check_intents (sym->formal, *ap);
2564 if (gfc_option.warn_aliasing)
2565 check_some_aliasing (sym->formal, *ap);
2569 /* Check how a procedure pointer component is used against its interface.
2570 If all goes well, the actual argument list will also end up being properly
2571 sorted. Completely analogous to gfc_procedure_use. */
2573 void
2574 gfc_ppc_use (gfc_component *comp, gfc_actual_arglist **ap, locus *where)
2577 /* Warn about calls with an implicit interface. Special case
2578 for calling a ISO_C_BINDING becase c_loc and c_funloc
2579 are pseudo-unknown. */
2580 if (gfc_option.warn_implicit_interface
2581 && comp->attr.if_source == IFSRC_UNKNOWN
2582 && !comp->attr.is_iso_c)
2583 gfc_warning ("Procedure pointer component '%s' called with an implicit "
2584 "interface at %L", comp->name, where);
2586 if (comp->attr.if_source == IFSRC_UNKNOWN)
2588 gfc_actual_arglist *a;
2589 for (a = *ap; a; a = a->next)
2591 /* Skip g77 keyword extensions like %VAL, %REF, %LOC. */
2592 if (a->name != NULL && a->name[0] != '%')
2594 gfc_error("Keyword argument requires explicit interface "
2595 "for procedure pointer component '%s' at %L",
2596 comp->name, &a->expr->where);
2597 break;
2601 return;
2604 if (!compare_actual_formal (ap, comp->formal, 0, comp->attr.elemental, where))
2605 return;
2607 check_intents (comp->formal, *ap);
2608 if (gfc_option.warn_aliasing)
2609 check_some_aliasing (comp->formal, *ap);
2613 /* Try if an actual argument list matches the formal list of a symbol,
2614 respecting the symbol's attributes like ELEMENTAL. This is used for
2615 GENERIC resolution. */
2617 bool
2618 gfc_arglist_matches_symbol (gfc_actual_arglist** args, gfc_symbol* sym)
2620 bool r;
2622 gcc_assert (sym->attr.flavor == FL_PROCEDURE);
2624 r = !sym->attr.elemental;
2625 if (compare_actual_formal (args, sym->formal, r, !r, NULL))
2627 check_intents (sym->formal, *args);
2628 if (gfc_option.warn_aliasing)
2629 check_some_aliasing (sym->formal, *args);
2630 return true;
2633 return false;
2637 /* Given an interface pointer and an actual argument list, search for
2638 a formal argument list that matches the actual. If found, returns
2639 a pointer to the symbol of the correct interface. Returns NULL if
2640 not found. */
2642 gfc_symbol *
2643 gfc_search_interface (gfc_interface *intr, int sub_flag,
2644 gfc_actual_arglist **ap)
2646 gfc_symbol *elem_sym = NULL;
2647 for (; intr; intr = intr->next)
2649 if (sub_flag && intr->sym->attr.function)
2650 continue;
2651 if (!sub_flag && intr->sym->attr.subroutine)
2652 continue;
2654 if (gfc_arglist_matches_symbol (ap, intr->sym))
2656 /* Satisfy 12.4.4.1 such that an elemental match has lower
2657 weight than a non-elemental match. */
2658 if (intr->sym->attr.elemental)
2660 elem_sym = intr->sym;
2661 continue;
2663 return intr->sym;
2667 return elem_sym ? elem_sym : NULL;
2671 /* Do a brute force recursive search for a symbol. */
2673 static gfc_symtree *
2674 find_symtree0 (gfc_symtree *root, gfc_symbol *sym)
2676 gfc_symtree * st;
2678 if (root->n.sym == sym)
2679 return root;
2681 st = NULL;
2682 if (root->left)
2683 st = find_symtree0 (root->left, sym);
2684 if (root->right && ! st)
2685 st = find_symtree0 (root->right, sym);
2686 return st;
2690 /* Find a symtree for a symbol. */
2692 gfc_symtree *
2693 gfc_find_sym_in_symtree (gfc_symbol *sym)
2695 gfc_symtree *st;
2696 gfc_namespace *ns;
2698 /* First try to find it by name. */
2699 gfc_find_sym_tree (sym->name, gfc_current_ns, 1, &st);
2700 if (st && st->n.sym == sym)
2701 return st;
2703 /* If it's been renamed, resort to a brute-force search. */
2704 /* TODO: avoid having to do this search. If the symbol doesn't exist
2705 in the symtree for the current namespace, it should probably be added. */
2706 for (ns = gfc_current_ns; ns; ns = ns->parent)
2708 st = find_symtree0 (ns->sym_root, sym);
2709 if (st)
2710 return st;
2712 gfc_internal_error ("Unable to find symbol %s", sym->name);
2713 /* Not reached. */
2717 /* See if the arglist to an operator-call contains a derived-type argument
2718 with a matching type-bound operator. If so, return the matching specific
2719 procedure defined as operator-target as well as the base-object to use
2720 (which is the found derived-type argument with operator). */
2722 static gfc_typebound_proc*
2723 matching_typebound_op (gfc_expr** tb_base,
2724 gfc_actual_arglist* args,
2725 gfc_intrinsic_op op, const char* uop)
2727 gfc_actual_arglist* base;
2729 for (base = args; base; base = base->next)
2730 if (base->expr->ts.type == BT_DERIVED || base->expr->ts.type == BT_CLASS)
2732 gfc_typebound_proc* tb;
2733 gfc_symbol* derived;
2734 gfc_try result;
2736 if (base->expr->ts.type == BT_CLASS)
2737 derived = base->expr->ts.u.derived->components->ts.u.derived;
2738 else
2739 derived = base->expr->ts.u.derived;
2741 if (op == INTRINSIC_USER)
2743 gfc_symtree* tb_uop;
2745 gcc_assert (uop);
2746 tb_uop = gfc_find_typebound_user_op (derived, &result, uop,
2747 false, NULL);
2749 if (tb_uop)
2750 tb = tb_uop->n.tb;
2751 else
2752 tb = NULL;
2754 else
2755 tb = gfc_find_typebound_intrinsic_op (derived, &result, op,
2756 false, NULL);
2758 /* This means we hit a PRIVATE operator which is use-associated and
2759 should thus not be seen. */
2760 if (result == FAILURE)
2761 tb = NULL;
2763 /* Look through the super-type hierarchy for a matching specific
2764 binding. */
2765 for (; tb; tb = tb->overridden)
2767 gfc_tbp_generic* g;
2769 gcc_assert (tb->is_generic);
2770 for (g = tb->u.generic; g; g = g->next)
2772 gfc_symbol* target;
2773 gfc_actual_arglist* argcopy;
2774 bool matches;
2776 gcc_assert (g->specific);
2777 if (g->specific->error)
2778 continue;
2780 target = g->specific->u.specific->n.sym;
2782 /* Check if this arglist matches the formal. */
2783 argcopy = gfc_copy_actual_arglist (args);
2784 matches = gfc_arglist_matches_symbol (&argcopy, target);
2785 gfc_free_actual_arglist (argcopy);
2787 /* Return if we found a match. */
2788 if (matches)
2790 *tb_base = base->expr;
2791 return g->specific;
2797 return NULL;
2801 /* For the 'actual arglist' of an operator call and a specific typebound
2802 procedure that has been found the target of a type-bound operator, build the
2803 appropriate EXPR_COMPCALL and resolve it. We take this indirection over
2804 type-bound procedures rather than resolving type-bound operators 'directly'
2805 so that we can reuse the existing logic. */
2807 static void
2808 build_compcall_for_operator (gfc_expr* e, gfc_actual_arglist* actual,
2809 gfc_expr* base, gfc_typebound_proc* target)
2811 e->expr_type = EXPR_COMPCALL;
2812 e->value.compcall.tbp = target;
2813 e->value.compcall.name = "operator"; /* Should not matter. */
2814 e->value.compcall.actual = actual;
2815 e->value.compcall.base_object = base;
2816 e->value.compcall.ignore_pass = 1;
2817 e->value.compcall.assign = 0;
2821 /* This subroutine is called when an expression is being resolved.
2822 The expression node in question is either a user defined operator
2823 or an intrinsic operator with arguments that aren't compatible
2824 with the operator. This subroutine builds an actual argument list
2825 corresponding to the operands, then searches for a compatible
2826 interface. If one is found, the expression node is replaced with
2827 the appropriate function call.
2828 real_error is an additional output argument that specifies if FAILURE
2829 is because of some real error and not because no match was found. */
2831 gfc_try
2832 gfc_extend_expr (gfc_expr *e, bool *real_error)
2834 gfc_actual_arglist *actual;
2835 gfc_symbol *sym;
2836 gfc_namespace *ns;
2837 gfc_user_op *uop;
2838 gfc_intrinsic_op i;
2840 sym = NULL;
2842 actual = gfc_get_actual_arglist ();
2843 actual->expr = e->value.op.op1;
2845 *real_error = false;
2847 if (e->value.op.op2 != NULL)
2849 actual->next = gfc_get_actual_arglist ();
2850 actual->next->expr = e->value.op.op2;
2853 i = fold_unary_intrinsic (e->value.op.op);
2855 if (i == INTRINSIC_USER)
2857 for (ns = gfc_current_ns; ns; ns = ns->parent)
2859 uop = gfc_find_uop (e->value.op.uop->name, ns);
2860 if (uop == NULL)
2861 continue;
2863 sym = gfc_search_interface (uop->op, 0, &actual);
2864 if (sym != NULL)
2865 break;
2868 else
2870 for (ns = gfc_current_ns; ns; ns = ns->parent)
2872 /* Due to the distinction between '==' and '.eq.' and friends, one has
2873 to check if either is defined. */
2874 switch (i)
2876 #define CHECK_OS_COMPARISON(comp) \
2877 case INTRINSIC_##comp: \
2878 case INTRINSIC_##comp##_OS: \
2879 sym = gfc_search_interface (ns->op[INTRINSIC_##comp], 0, &actual); \
2880 if (!sym) \
2881 sym = gfc_search_interface (ns->op[INTRINSIC_##comp##_OS], 0, &actual); \
2882 break;
2883 CHECK_OS_COMPARISON(EQ)
2884 CHECK_OS_COMPARISON(NE)
2885 CHECK_OS_COMPARISON(GT)
2886 CHECK_OS_COMPARISON(GE)
2887 CHECK_OS_COMPARISON(LT)
2888 CHECK_OS_COMPARISON(LE)
2889 #undef CHECK_OS_COMPARISON
2891 default:
2892 sym = gfc_search_interface (ns->op[i], 0, &actual);
2895 if (sym != NULL)
2896 break;
2900 /* TODO: Do an ambiguity-check and error if multiple matching interfaces are
2901 found rather than just taking the first one and not checking further. */
2903 if (sym == NULL)
2905 gfc_typebound_proc* tbo;
2906 gfc_expr* tb_base;
2908 /* See if we find a matching type-bound operator. */
2909 if (i == INTRINSIC_USER)
2910 tbo = matching_typebound_op (&tb_base, actual,
2911 i, e->value.op.uop->name);
2912 else
2913 switch (i)
2915 #define CHECK_OS_COMPARISON(comp) \
2916 case INTRINSIC_##comp: \
2917 case INTRINSIC_##comp##_OS: \
2918 tbo = matching_typebound_op (&tb_base, actual, \
2919 INTRINSIC_##comp, NULL); \
2920 if (!tbo) \
2921 tbo = matching_typebound_op (&tb_base, actual, \
2922 INTRINSIC_##comp##_OS, NULL); \
2923 break;
2924 CHECK_OS_COMPARISON(EQ)
2925 CHECK_OS_COMPARISON(NE)
2926 CHECK_OS_COMPARISON(GT)
2927 CHECK_OS_COMPARISON(GE)
2928 CHECK_OS_COMPARISON(LT)
2929 CHECK_OS_COMPARISON(LE)
2930 #undef CHECK_OS_COMPARISON
2932 default:
2933 tbo = matching_typebound_op (&tb_base, actual, i, NULL);
2934 break;
2937 /* If there is a matching typebound-operator, replace the expression with
2938 a call to it and succeed. */
2939 if (tbo)
2941 gfc_try result;
2943 gcc_assert (tb_base);
2944 build_compcall_for_operator (e, actual, tb_base, tbo);
2946 result = gfc_resolve_expr (e);
2947 if (result == FAILURE)
2948 *real_error = true;
2950 return result;
2953 /* Don't use gfc_free_actual_arglist(). */
2954 if (actual->next != NULL)
2955 gfc_free (actual->next);
2956 gfc_free (actual);
2958 return FAILURE;
2961 /* Change the expression node to a function call. */
2962 e->expr_type = EXPR_FUNCTION;
2963 e->symtree = gfc_find_sym_in_symtree (sym);
2964 e->value.function.actual = actual;
2965 e->value.function.esym = NULL;
2966 e->value.function.isym = NULL;
2967 e->value.function.name = NULL;
2968 e->user_operator = 1;
2970 if (gfc_resolve_expr (e) == FAILURE)
2972 *real_error = true;
2973 return FAILURE;
2976 return SUCCESS;
2980 /* Tries to replace an assignment code node with a subroutine call to
2981 the subroutine associated with the assignment operator. Return
2982 SUCCESS if the node was replaced. On FAILURE, no error is
2983 generated. */
2985 gfc_try
2986 gfc_extend_assign (gfc_code *c, gfc_namespace *ns)
2988 gfc_actual_arglist *actual;
2989 gfc_expr *lhs, *rhs;
2990 gfc_symbol *sym;
2992 lhs = c->expr1;
2993 rhs = c->expr2;
2995 /* Don't allow an intrinsic assignment to be replaced. */
2996 if (lhs->ts.type != BT_DERIVED && lhs->ts.type != BT_CLASS
2997 && (rhs->rank == 0 || rhs->rank == lhs->rank)
2998 && (lhs->ts.type == rhs->ts.type
2999 || (gfc_numeric_ts (&lhs->ts) && gfc_numeric_ts (&rhs->ts))))
3000 return FAILURE;
3002 actual = gfc_get_actual_arglist ();
3003 actual->expr = lhs;
3005 actual->next = gfc_get_actual_arglist ();
3006 actual->next->expr = rhs;
3008 sym = NULL;
3010 for (; ns; ns = ns->parent)
3012 sym = gfc_search_interface (ns->op[INTRINSIC_ASSIGN], 1, &actual);
3013 if (sym != NULL)
3014 break;
3017 /* TODO: Ambiguity-check, see above for gfc_extend_expr. */
3019 if (sym == NULL)
3021 gfc_typebound_proc* tbo;
3022 gfc_expr* tb_base;
3024 /* See if we find a matching type-bound assignment. */
3025 tbo = matching_typebound_op (&tb_base, actual,
3026 INTRINSIC_ASSIGN, NULL);
3028 /* If there is one, replace the expression with a call to it and
3029 succeed. */
3030 if (tbo)
3032 gcc_assert (tb_base);
3033 c->expr1 = gfc_get_expr ();
3034 build_compcall_for_operator (c->expr1, actual, tb_base, tbo);
3035 c->expr1->value.compcall.assign = 1;
3036 c->expr2 = NULL;
3037 c->op = EXEC_COMPCALL;
3039 /* c is resolved from the caller, so no need to do it here. */
3041 return SUCCESS;
3044 gfc_free (actual->next);
3045 gfc_free (actual);
3046 return FAILURE;
3049 /* Replace the assignment with the call. */
3050 c->op = EXEC_ASSIGN_CALL;
3051 c->symtree = gfc_find_sym_in_symtree (sym);
3052 c->expr1 = NULL;
3053 c->expr2 = NULL;
3054 c->ext.actual = actual;
3056 return SUCCESS;
3060 /* Make sure that the interface just parsed is not already present in
3061 the given interface list. Ambiguity isn't checked yet since module
3062 procedures can be present without interfaces. */
3064 static gfc_try
3065 check_new_interface (gfc_interface *base, gfc_symbol *new_sym)
3067 gfc_interface *ip;
3069 for (ip = base; ip; ip = ip->next)
3071 if (ip->sym == new_sym)
3073 gfc_error ("Entity '%s' at %C is already present in the interface",
3074 new_sym->name);
3075 return FAILURE;
3079 return SUCCESS;
3083 /* Add a symbol to the current interface. */
3085 gfc_try
3086 gfc_add_interface (gfc_symbol *new_sym)
3088 gfc_interface **head, *intr;
3089 gfc_namespace *ns;
3090 gfc_symbol *sym;
3092 switch (current_interface.type)
3094 case INTERFACE_NAMELESS:
3095 case INTERFACE_ABSTRACT:
3096 return SUCCESS;
3098 case INTERFACE_INTRINSIC_OP:
3099 for (ns = current_interface.ns; ns; ns = ns->parent)
3100 switch (current_interface.op)
3102 case INTRINSIC_EQ:
3103 case INTRINSIC_EQ_OS:
3104 if (check_new_interface (ns->op[INTRINSIC_EQ], new_sym) == FAILURE ||
3105 check_new_interface (ns->op[INTRINSIC_EQ_OS], new_sym) == FAILURE)
3106 return FAILURE;
3107 break;
3109 case INTRINSIC_NE:
3110 case INTRINSIC_NE_OS:
3111 if (check_new_interface (ns->op[INTRINSIC_NE], new_sym) == FAILURE ||
3112 check_new_interface (ns->op[INTRINSIC_NE_OS], new_sym) == FAILURE)
3113 return FAILURE;
3114 break;
3116 case INTRINSIC_GT:
3117 case INTRINSIC_GT_OS:
3118 if (check_new_interface (ns->op[INTRINSIC_GT], new_sym) == FAILURE ||
3119 check_new_interface (ns->op[INTRINSIC_GT_OS], new_sym) == FAILURE)
3120 return FAILURE;
3121 break;
3123 case INTRINSIC_GE:
3124 case INTRINSIC_GE_OS:
3125 if (check_new_interface (ns->op[INTRINSIC_GE], new_sym) == FAILURE ||
3126 check_new_interface (ns->op[INTRINSIC_GE_OS], new_sym) == FAILURE)
3127 return FAILURE;
3128 break;
3130 case INTRINSIC_LT:
3131 case INTRINSIC_LT_OS:
3132 if (check_new_interface (ns->op[INTRINSIC_LT], new_sym) == FAILURE ||
3133 check_new_interface (ns->op[INTRINSIC_LT_OS], new_sym) == FAILURE)
3134 return FAILURE;
3135 break;
3137 case INTRINSIC_LE:
3138 case INTRINSIC_LE_OS:
3139 if (check_new_interface (ns->op[INTRINSIC_LE], new_sym) == FAILURE ||
3140 check_new_interface (ns->op[INTRINSIC_LE_OS], new_sym) == FAILURE)
3141 return FAILURE;
3142 break;
3144 default:
3145 if (check_new_interface (ns->op[current_interface.op], new_sym) == FAILURE)
3146 return FAILURE;
3149 head = &current_interface.ns->op[current_interface.op];
3150 break;
3152 case INTERFACE_GENERIC:
3153 for (ns = current_interface.ns; ns; ns = ns->parent)
3155 gfc_find_symbol (current_interface.sym->name, ns, 0, &sym);
3156 if (sym == NULL)
3157 continue;
3159 if (check_new_interface (sym->generic, new_sym) == FAILURE)
3160 return FAILURE;
3163 head = &current_interface.sym->generic;
3164 break;
3166 case INTERFACE_USER_OP:
3167 if (check_new_interface (current_interface.uop->op, new_sym)
3168 == FAILURE)
3169 return FAILURE;
3171 head = &current_interface.uop->op;
3172 break;
3174 default:
3175 gfc_internal_error ("gfc_add_interface(): Bad interface type");
3178 intr = gfc_get_interface ();
3179 intr->sym = new_sym;
3180 intr->where = gfc_current_locus;
3182 intr->next = *head;
3183 *head = intr;
3185 return SUCCESS;
3189 gfc_interface *
3190 gfc_current_interface_head (void)
3192 switch (current_interface.type)
3194 case INTERFACE_INTRINSIC_OP:
3195 return current_interface.ns->op[current_interface.op];
3196 break;
3198 case INTERFACE_GENERIC:
3199 return current_interface.sym->generic;
3200 break;
3202 case INTERFACE_USER_OP:
3203 return current_interface.uop->op;
3204 break;
3206 default:
3207 gcc_unreachable ();
3212 void
3213 gfc_set_current_interface_head (gfc_interface *i)
3215 switch (current_interface.type)
3217 case INTERFACE_INTRINSIC_OP:
3218 current_interface.ns->op[current_interface.op] = i;
3219 break;
3221 case INTERFACE_GENERIC:
3222 current_interface.sym->generic = i;
3223 break;
3225 case INTERFACE_USER_OP:
3226 current_interface.uop->op = i;
3227 break;
3229 default:
3230 gcc_unreachable ();
3235 /* Gets rid of a formal argument list. We do not free symbols.
3236 Symbols are freed when a namespace is freed. */
3238 void
3239 gfc_free_formal_arglist (gfc_formal_arglist *p)
3241 gfc_formal_arglist *q;
3243 for (; p; p = q)
3245 q = p->next;
3246 gfc_free (p);