* tree-cfg.c (make_goto_expr_edges): Don't use error_mark_node.
[official-gcc.git] / gcc / real.c
blob5d1a79f57af2f3369821a3f2220f28b1002c33ef
1 /* real.c - software floating point emulation.
2 Copyright (C) 1993, 1994, 1995, 1996, 1997, 1998, 1999,
3 2000, 2002, 2003, 2004, 2005 Free Software Foundation, Inc.
4 Contributed by Stephen L. Moshier (moshier@world.std.com).
5 Re-written by Richard Henderson <rth@redhat.com>
7 This file is part of GCC.
9 GCC is free software; you can redistribute it and/or modify it under
10 the terms of the GNU General Public License as published by the Free
11 Software Foundation; either version 2, or (at your option) any later
12 version.
14 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
15 WARRANTY; without even the implied warranty of MERCHANTABILITY or
16 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
17 for more details.
19 You should have received a copy of the GNU General Public License
20 along with GCC; see the file COPYING. If not, write to the Free
21 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
22 02111-1307, USA. */
24 #include "config.h"
25 #include "system.h"
26 #include "coretypes.h"
27 #include "tm.h"
28 #include "tree.h"
29 #include "toplev.h"
30 #include "real.h"
31 #include "tm_p.h"
33 /* The floating point model used internally is not exactly IEEE 754
34 compliant, and close to the description in the ISO C99 standard,
35 section 5.2.4.2.2 Characteristics of floating types.
37 Specifically
39 x = s * b^e * \sum_{k=1}^p f_k * b^{-k}
41 where
42 s = sign (+- 1)
43 b = base or radix, here always 2
44 e = exponent
45 p = precision (the number of base-b digits in the significand)
46 f_k = the digits of the significand.
48 We differ from typical IEEE 754 encodings in that the entire
49 significand is fractional. Normalized significands are in the
50 range [0.5, 1.0).
52 A requirement of the model is that P be larger than the largest
53 supported target floating-point type by at least 2 bits. This gives
54 us proper rounding when we truncate to the target type. In addition,
55 E must be large enough to hold the smallest supported denormal number
56 in a normalized form.
58 Both of these requirements are easily satisfied. The largest target
59 significand is 113 bits; we store at least 160. The smallest
60 denormal number fits in 17 exponent bits; we store 27.
62 Note that the decimal string conversion routines are sensitive to
63 rounding errors. Since the raw arithmetic routines do not themselves
64 have guard digits or rounding, the computation of 10**exp can
65 accumulate more than a few digits of error. The previous incarnation
66 of real.c successfully used a 144-bit fraction; given the current
67 layout of REAL_VALUE_TYPE we're forced to expand to at least 160 bits.
69 Target floating point models that use base 16 instead of base 2
70 (i.e. IBM 370), are handled during round_for_format, in which we
71 canonicalize the exponent to be a multiple of 4 (log2(16)), and
72 adjust the significand to match. */
75 /* Used to classify two numbers simultaneously. */
76 #define CLASS2(A, B) ((A) << 2 | (B))
78 #if HOST_BITS_PER_LONG != 64 && HOST_BITS_PER_LONG != 32
79 #error "Some constant folding done by hand to avoid shift count warnings"
80 #endif
82 static void get_zero (REAL_VALUE_TYPE *, int);
83 static void get_canonical_qnan (REAL_VALUE_TYPE *, int);
84 static void get_canonical_snan (REAL_VALUE_TYPE *, int);
85 static void get_inf (REAL_VALUE_TYPE *, int);
86 static bool sticky_rshift_significand (REAL_VALUE_TYPE *,
87 const REAL_VALUE_TYPE *, unsigned int);
88 static void rshift_significand (REAL_VALUE_TYPE *, const REAL_VALUE_TYPE *,
89 unsigned int);
90 static void lshift_significand (REAL_VALUE_TYPE *, const REAL_VALUE_TYPE *,
91 unsigned int);
92 static void lshift_significand_1 (REAL_VALUE_TYPE *, const REAL_VALUE_TYPE *);
93 static bool add_significands (REAL_VALUE_TYPE *r, const REAL_VALUE_TYPE *,
94 const REAL_VALUE_TYPE *);
95 static bool sub_significands (REAL_VALUE_TYPE *, const REAL_VALUE_TYPE *,
96 const REAL_VALUE_TYPE *, int);
97 static void neg_significand (REAL_VALUE_TYPE *, const REAL_VALUE_TYPE *);
98 static int cmp_significands (const REAL_VALUE_TYPE *, const REAL_VALUE_TYPE *);
99 static int cmp_significand_0 (const REAL_VALUE_TYPE *);
100 static void set_significand_bit (REAL_VALUE_TYPE *, unsigned int);
101 static void clear_significand_bit (REAL_VALUE_TYPE *, unsigned int);
102 static bool test_significand_bit (REAL_VALUE_TYPE *, unsigned int);
103 static void clear_significand_below (REAL_VALUE_TYPE *, unsigned int);
104 static bool div_significands (REAL_VALUE_TYPE *, const REAL_VALUE_TYPE *,
105 const REAL_VALUE_TYPE *);
106 static void normalize (REAL_VALUE_TYPE *);
108 static bool do_add (REAL_VALUE_TYPE *, const REAL_VALUE_TYPE *,
109 const REAL_VALUE_TYPE *, int);
110 static bool do_multiply (REAL_VALUE_TYPE *, const REAL_VALUE_TYPE *,
111 const REAL_VALUE_TYPE *);
112 static bool do_divide (REAL_VALUE_TYPE *, const REAL_VALUE_TYPE *,
113 const REAL_VALUE_TYPE *);
114 static int do_compare (const REAL_VALUE_TYPE *, const REAL_VALUE_TYPE *, int);
115 static void do_fix_trunc (REAL_VALUE_TYPE *, const REAL_VALUE_TYPE *);
117 static unsigned long rtd_divmod (REAL_VALUE_TYPE *, REAL_VALUE_TYPE *);
119 static const REAL_VALUE_TYPE * ten_to_ptwo (int);
120 static const REAL_VALUE_TYPE * ten_to_mptwo (int);
121 static const REAL_VALUE_TYPE * real_digit (int);
122 static void times_pten (REAL_VALUE_TYPE *, int);
124 static void round_for_format (const struct real_format *, REAL_VALUE_TYPE *);
126 /* Initialize R with a positive zero. */
128 static inline void
129 get_zero (REAL_VALUE_TYPE *r, int sign)
131 memset (r, 0, sizeof (*r));
132 r->sign = sign;
135 /* Initialize R with the canonical quiet NaN. */
137 static inline void
138 get_canonical_qnan (REAL_VALUE_TYPE *r, int sign)
140 memset (r, 0, sizeof (*r));
141 r->cl = rvc_nan;
142 r->sign = sign;
143 r->canonical = 1;
146 static inline void
147 get_canonical_snan (REAL_VALUE_TYPE *r, int sign)
149 memset (r, 0, sizeof (*r));
150 r->cl = rvc_nan;
151 r->sign = sign;
152 r->signalling = 1;
153 r->canonical = 1;
156 static inline void
157 get_inf (REAL_VALUE_TYPE *r, int sign)
159 memset (r, 0, sizeof (*r));
160 r->cl = rvc_inf;
161 r->sign = sign;
165 /* Right-shift the significand of A by N bits; put the result in the
166 significand of R. If any one bits are shifted out, return true. */
168 static bool
169 sticky_rshift_significand (REAL_VALUE_TYPE *r, const REAL_VALUE_TYPE *a,
170 unsigned int n)
172 unsigned long sticky = 0;
173 unsigned int i, ofs = 0;
175 if (n >= HOST_BITS_PER_LONG)
177 for (i = 0, ofs = n / HOST_BITS_PER_LONG; i < ofs; ++i)
178 sticky |= a->sig[i];
179 n &= HOST_BITS_PER_LONG - 1;
182 if (n != 0)
184 sticky |= a->sig[ofs] & (((unsigned long)1 << n) - 1);
185 for (i = 0; i < SIGSZ; ++i)
187 r->sig[i]
188 = (((ofs + i >= SIGSZ ? 0 : a->sig[ofs + i]) >> n)
189 | ((ofs + i + 1 >= SIGSZ ? 0 : a->sig[ofs + i + 1])
190 << (HOST_BITS_PER_LONG - n)));
193 else
195 for (i = 0; ofs + i < SIGSZ; ++i)
196 r->sig[i] = a->sig[ofs + i];
197 for (; i < SIGSZ; ++i)
198 r->sig[i] = 0;
201 return sticky != 0;
204 /* Right-shift the significand of A by N bits; put the result in the
205 significand of R. */
207 static void
208 rshift_significand (REAL_VALUE_TYPE *r, const REAL_VALUE_TYPE *a,
209 unsigned int n)
211 unsigned int i, ofs = n / HOST_BITS_PER_LONG;
213 n &= HOST_BITS_PER_LONG - 1;
214 if (n != 0)
216 for (i = 0; i < SIGSZ; ++i)
218 r->sig[i]
219 = (((ofs + i >= SIGSZ ? 0 : a->sig[ofs + i]) >> n)
220 | ((ofs + i + 1 >= SIGSZ ? 0 : a->sig[ofs + i + 1])
221 << (HOST_BITS_PER_LONG - n)));
224 else
226 for (i = 0; ofs + i < SIGSZ; ++i)
227 r->sig[i] = a->sig[ofs + i];
228 for (; i < SIGSZ; ++i)
229 r->sig[i] = 0;
233 /* Left-shift the significand of A by N bits; put the result in the
234 significand of R. */
236 static void
237 lshift_significand (REAL_VALUE_TYPE *r, const REAL_VALUE_TYPE *a,
238 unsigned int n)
240 unsigned int i, ofs = n / HOST_BITS_PER_LONG;
242 n &= HOST_BITS_PER_LONG - 1;
243 if (n == 0)
245 for (i = 0; ofs + i < SIGSZ; ++i)
246 r->sig[SIGSZ-1-i] = a->sig[SIGSZ-1-i-ofs];
247 for (; i < SIGSZ; ++i)
248 r->sig[SIGSZ-1-i] = 0;
250 else
251 for (i = 0; i < SIGSZ; ++i)
253 r->sig[SIGSZ-1-i]
254 = (((ofs + i >= SIGSZ ? 0 : a->sig[SIGSZ-1-i-ofs]) << n)
255 | ((ofs + i + 1 >= SIGSZ ? 0 : a->sig[SIGSZ-1-i-ofs-1])
256 >> (HOST_BITS_PER_LONG - n)));
260 /* Likewise, but N is specialized to 1. */
262 static inline void
263 lshift_significand_1 (REAL_VALUE_TYPE *r, const REAL_VALUE_TYPE *a)
265 unsigned int i;
267 for (i = SIGSZ - 1; i > 0; --i)
268 r->sig[i] = (a->sig[i] << 1) | (a->sig[i-1] >> (HOST_BITS_PER_LONG - 1));
269 r->sig[0] = a->sig[0] << 1;
272 /* Add the significands of A and B, placing the result in R. Return
273 true if there was carry out of the most significant word. */
275 static inline bool
276 add_significands (REAL_VALUE_TYPE *r, const REAL_VALUE_TYPE *a,
277 const REAL_VALUE_TYPE *b)
279 bool carry = false;
280 int i;
282 for (i = 0; i < SIGSZ; ++i)
284 unsigned long ai = a->sig[i];
285 unsigned long ri = ai + b->sig[i];
287 if (carry)
289 carry = ri < ai;
290 carry |= ++ri == 0;
292 else
293 carry = ri < ai;
295 r->sig[i] = ri;
298 return carry;
301 /* Subtract the significands of A and B, placing the result in R. CARRY is
302 true if there's a borrow incoming to the least significant word.
303 Return true if there was borrow out of the most significant word. */
305 static inline bool
306 sub_significands (REAL_VALUE_TYPE *r, const REAL_VALUE_TYPE *a,
307 const REAL_VALUE_TYPE *b, int carry)
309 int i;
311 for (i = 0; i < SIGSZ; ++i)
313 unsigned long ai = a->sig[i];
314 unsigned long ri = ai - b->sig[i];
316 if (carry)
318 carry = ri > ai;
319 carry |= ~--ri == 0;
321 else
322 carry = ri > ai;
324 r->sig[i] = ri;
327 return carry;
330 /* Negate the significand A, placing the result in R. */
332 static inline void
333 neg_significand (REAL_VALUE_TYPE *r, const REAL_VALUE_TYPE *a)
335 bool carry = true;
336 int i;
338 for (i = 0; i < SIGSZ; ++i)
340 unsigned long ri, ai = a->sig[i];
342 if (carry)
344 if (ai)
346 ri = -ai;
347 carry = false;
349 else
350 ri = ai;
352 else
353 ri = ~ai;
355 r->sig[i] = ri;
359 /* Compare significands. Return tri-state vs zero. */
361 static inline int
362 cmp_significands (const REAL_VALUE_TYPE *a, const REAL_VALUE_TYPE *b)
364 int i;
366 for (i = SIGSZ - 1; i >= 0; --i)
368 unsigned long ai = a->sig[i];
369 unsigned long bi = b->sig[i];
371 if (ai > bi)
372 return 1;
373 if (ai < bi)
374 return -1;
377 return 0;
380 /* Return true if A is nonzero. */
382 static inline int
383 cmp_significand_0 (const REAL_VALUE_TYPE *a)
385 int i;
387 for (i = SIGSZ - 1; i >= 0; --i)
388 if (a->sig[i])
389 return 1;
391 return 0;
394 /* Set bit N of the significand of R. */
396 static inline void
397 set_significand_bit (REAL_VALUE_TYPE *r, unsigned int n)
399 r->sig[n / HOST_BITS_PER_LONG]
400 |= (unsigned long)1 << (n % HOST_BITS_PER_LONG);
403 /* Clear bit N of the significand of R. */
405 static inline void
406 clear_significand_bit (REAL_VALUE_TYPE *r, unsigned int n)
408 r->sig[n / HOST_BITS_PER_LONG]
409 &= ~((unsigned long)1 << (n % HOST_BITS_PER_LONG));
412 /* Test bit N of the significand of R. */
414 static inline bool
415 test_significand_bit (REAL_VALUE_TYPE *r, unsigned int n)
417 /* ??? Compiler bug here if we return this expression directly.
418 The conversion to bool strips the "&1" and we wind up testing
419 e.g. 2 != 0 -> true. Seen in gcc version 3.2 20020520. */
420 int t = (r->sig[n / HOST_BITS_PER_LONG] >> (n % HOST_BITS_PER_LONG)) & 1;
421 return t;
424 /* Clear bits 0..N-1 of the significand of R. */
426 static void
427 clear_significand_below (REAL_VALUE_TYPE *r, unsigned int n)
429 int i, w = n / HOST_BITS_PER_LONG;
431 for (i = 0; i < w; ++i)
432 r->sig[i] = 0;
434 r->sig[w] &= ~(((unsigned long)1 << (n % HOST_BITS_PER_LONG)) - 1);
437 /* Divide the significands of A and B, placing the result in R. Return
438 true if the division was inexact. */
440 static inline bool
441 div_significands (REAL_VALUE_TYPE *r, const REAL_VALUE_TYPE *a,
442 const REAL_VALUE_TYPE *b)
444 REAL_VALUE_TYPE u;
445 int i, bit = SIGNIFICAND_BITS - 1;
446 unsigned long msb, inexact;
448 u = *a;
449 memset (r->sig, 0, sizeof (r->sig));
451 msb = 0;
452 goto start;
455 msb = u.sig[SIGSZ-1] & SIG_MSB;
456 lshift_significand_1 (&u, &u);
457 start:
458 if (msb || cmp_significands (&u, b) >= 0)
460 sub_significands (&u, &u, b, 0);
461 set_significand_bit (r, bit);
464 while (--bit >= 0);
466 for (i = 0, inexact = 0; i < SIGSZ; i++)
467 inexact |= u.sig[i];
469 return inexact != 0;
472 /* Adjust the exponent and significand of R such that the most
473 significant bit is set. We underflow to zero and overflow to
474 infinity here, without denormals. (The intermediate representation
475 exponent is large enough to handle target denormals normalized.) */
477 static void
478 normalize (REAL_VALUE_TYPE *r)
480 int shift = 0, exp;
481 int i, j;
483 /* Find the first word that is nonzero. */
484 for (i = SIGSZ - 1; i >= 0; i--)
485 if (r->sig[i] == 0)
486 shift += HOST_BITS_PER_LONG;
487 else
488 break;
490 /* Zero significand flushes to zero. */
491 if (i < 0)
493 r->cl = rvc_zero;
494 SET_REAL_EXP (r, 0);
495 return;
498 /* Find the first bit that is nonzero. */
499 for (j = 0; ; j++)
500 if (r->sig[i] & ((unsigned long)1 << (HOST_BITS_PER_LONG - 1 - j)))
501 break;
502 shift += j;
504 if (shift > 0)
506 exp = REAL_EXP (r) - shift;
507 if (exp > MAX_EXP)
508 get_inf (r, r->sign);
509 else if (exp < -MAX_EXP)
510 get_zero (r, r->sign);
511 else
513 SET_REAL_EXP (r, exp);
514 lshift_significand (r, r, shift);
519 /* Calculate R = A + (SUBTRACT_P ? -B : B). Return true if the
520 result may be inexact due to a loss of precision. */
522 static bool
523 do_add (REAL_VALUE_TYPE *r, const REAL_VALUE_TYPE *a,
524 const REAL_VALUE_TYPE *b, int subtract_p)
526 int dexp, sign, exp;
527 REAL_VALUE_TYPE t;
528 bool inexact = false;
530 /* Determine if we need to add or subtract. */
531 sign = a->sign;
532 subtract_p = (sign ^ b->sign) ^ subtract_p;
534 switch (CLASS2 (a->cl, b->cl))
536 case CLASS2 (rvc_zero, rvc_zero):
537 /* -0 + -0 = -0, -0 - +0 = -0; all other cases yield +0. */
538 get_zero (r, sign & !subtract_p);
539 return false;
541 case CLASS2 (rvc_zero, rvc_normal):
542 case CLASS2 (rvc_zero, rvc_inf):
543 case CLASS2 (rvc_zero, rvc_nan):
544 /* 0 + ANY = ANY. */
545 case CLASS2 (rvc_normal, rvc_nan):
546 case CLASS2 (rvc_inf, rvc_nan):
547 case CLASS2 (rvc_nan, rvc_nan):
548 /* ANY + NaN = NaN. */
549 case CLASS2 (rvc_normal, rvc_inf):
550 /* R + Inf = Inf. */
551 *r = *b;
552 r->sign = sign ^ subtract_p;
553 return false;
555 case CLASS2 (rvc_normal, rvc_zero):
556 case CLASS2 (rvc_inf, rvc_zero):
557 case CLASS2 (rvc_nan, rvc_zero):
558 /* ANY + 0 = ANY. */
559 case CLASS2 (rvc_nan, rvc_normal):
560 case CLASS2 (rvc_nan, rvc_inf):
561 /* NaN + ANY = NaN. */
562 case CLASS2 (rvc_inf, rvc_normal):
563 /* Inf + R = Inf. */
564 *r = *a;
565 return false;
567 case CLASS2 (rvc_inf, rvc_inf):
568 if (subtract_p)
569 /* Inf - Inf = NaN. */
570 get_canonical_qnan (r, 0);
571 else
572 /* Inf + Inf = Inf. */
573 *r = *a;
574 return false;
576 case CLASS2 (rvc_normal, rvc_normal):
577 break;
579 default:
580 gcc_unreachable ();
583 /* Swap the arguments such that A has the larger exponent. */
584 dexp = REAL_EXP (a) - REAL_EXP (b);
585 if (dexp < 0)
587 const REAL_VALUE_TYPE *t;
588 t = a, a = b, b = t;
589 dexp = -dexp;
590 sign ^= subtract_p;
592 exp = REAL_EXP (a);
594 /* If the exponents are not identical, we need to shift the
595 significand of B down. */
596 if (dexp > 0)
598 /* If the exponents are too far apart, the significands
599 do not overlap, which makes the subtraction a noop. */
600 if (dexp >= SIGNIFICAND_BITS)
602 *r = *a;
603 r->sign = sign;
604 return true;
607 inexact |= sticky_rshift_significand (&t, b, dexp);
608 b = &t;
611 if (subtract_p)
613 if (sub_significands (r, a, b, inexact))
615 /* We got a borrow out of the subtraction. That means that
616 A and B had the same exponent, and B had the larger
617 significand. We need to swap the sign and negate the
618 significand. */
619 sign ^= 1;
620 neg_significand (r, r);
623 else
625 if (add_significands (r, a, b))
627 /* We got carry out of the addition. This means we need to
628 shift the significand back down one bit and increase the
629 exponent. */
630 inexact |= sticky_rshift_significand (r, r, 1);
631 r->sig[SIGSZ-1] |= SIG_MSB;
632 if (++exp > MAX_EXP)
634 get_inf (r, sign);
635 return true;
640 r->cl = rvc_normal;
641 r->sign = sign;
642 SET_REAL_EXP (r, exp);
643 /* Zero out the remaining fields. */
644 r->signalling = 0;
645 r->canonical = 0;
647 /* Re-normalize the result. */
648 normalize (r);
650 /* Special case: if the subtraction results in zero, the result
651 is positive. */
652 if (r->cl == rvc_zero)
653 r->sign = 0;
654 else
655 r->sig[0] |= inexact;
657 return inexact;
660 /* Calculate R = A * B. Return true if the result may be inexact. */
662 static bool
663 do_multiply (REAL_VALUE_TYPE *r, const REAL_VALUE_TYPE *a,
664 const REAL_VALUE_TYPE *b)
666 REAL_VALUE_TYPE u, t, *rr;
667 unsigned int i, j, k;
668 int sign = a->sign ^ b->sign;
669 bool inexact = false;
671 switch (CLASS2 (a->cl, b->cl))
673 case CLASS2 (rvc_zero, rvc_zero):
674 case CLASS2 (rvc_zero, rvc_normal):
675 case CLASS2 (rvc_normal, rvc_zero):
676 /* +-0 * ANY = 0 with appropriate sign. */
677 get_zero (r, sign);
678 return false;
680 case CLASS2 (rvc_zero, rvc_nan):
681 case CLASS2 (rvc_normal, rvc_nan):
682 case CLASS2 (rvc_inf, rvc_nan):
683 case CLASS2 (rvc_nan, rvc_nan):
684 /* ANY * NaN = NaN. */
685 *r = *b;
686 r->sign = sign;
687 return false;
689 case CLASS2 (rvc_nan, rvc_zero):
690 case CLASS2 (rvc_nan, rvc_normal):
691 case CLASS2 (rvc_nan, rvc_inf):
692 /* NaN * ANY = NaN. */
693 *r = *a;
694 r->sign = sign;
695 return false;
697 case CLASS2 (rvc_zero, rvc_inf):
698 case CLASS2 (rvc_inf, rvc_zero):
699 /* 0 * Inf = NaN */
700 get_canonical_qnan (r, sign);
701 return false;
703 case CLASS2 (rvc_inf, rvc_inf):
704 case CLASS2 (rvc_normal, rvc_inf):
705 case CLASS2 (rvc_inf, rvc_normal):
706 /* Inf * Inf = Inf, R * Inf = Inf */
707 get_inf (r, sign);
708 return false;
710 case CLASS2 (rvc_normal, rvc_normal):
711 break;
713 default:
714 gcc_unreachable ();
717 if (r == a || r == b)
718 rr = &t;
719 else
720 rr = r;
721 get_zero (rr, 0);
723 /* Collect all the partial products. Since we don't have sure access
724 to a widening multiply, we split each long into two half-words.
726 Consider the long-hand form of a four half-word multiplication:
728 A B C D
729 * E F G H
730 --------------
731 DE DF DG DH
732 CE CF CG CH
733 BE BF BG BH
734 AE AF AG AH
736 We construct partial products of the widened half-word products
737 that are known to not overlap, e.g. DF+DH. Each such partial
738 product is given its proper exponent, which allows us to sum them
739 and obtain the finished product. */
741 for (i = 0; i < SIGSZ * 2; ++i)
743 unsigned long ai = a->sig[i / 2];
744 if (i & 1)
745 ai >>= HOST_BITS_PER_LONG / 2;
746 else
747 ai &= ((unsigned long)1 << (HOST_BITS_PER_LONG / 2)) - 1;
749 if (ai == 0)
750 continue;
752 for (j = 0; j < 2; ++j)
754 int exp = (REAL_EXP (a) - (2*SIGSZ-1-i)*(HOST_BITS_PER_LONG/2)
755 + (REAL_EXP (b) - (1-j)*(HOST_BITS_PER_LONG/2)));
757 if (exp > MAX_EXP)
759 get_inf (r, sign);
760 return true;
762 if (exp < -MAX_EXP)
764 /* Would underflow to zero, which we shouldn't bother adding. */
765 inexact = true;
766 continue;
769 memset (&u, 0, sizeof (u));
770 u.cl = rvc_normal;
771 SET_REAL_EXP (&u, exp);
773 for (k = j; k < SIGSZ * 2; k += 2)
775 unsigned long bi = b->sig[k / 2];
776 if (k & 1)
777 bi >>= HOST_BITS_PER_LONG / 2;
778 else
779 bi &= ((unsigned long)1 << (HOST_BITS_PER_LONG / 2)) - 1;
781 u.sig[k / 2] = ai * bi;
784 normalize (&u);
785 inexact |= do_add (rr, rr, &u, 0);
789 rr->sign = sign;
790 if (rr != r)
791 *r = t;
793 return inexact;
796 /* Calculate R = A / B. Return true if the result may be inexact. */
798 static bool
799 do_divide (REAL_VALUE_TYPE *r, const REAL_VALUE_TYPE *a,
800 const REAL_VALUE_TYPE *b)
802 int exp, sign = a->sign ^ b->sign;
803 REAL_VALUE_TYPE t, *rr;
804 bool inexact;
806 switch (CLASS2 (a->cl, b->cl))
808 case CLASS2 (rvc_zero, rvc_zero):
809 /* 0 / 0 = NaN. */
810 case CLASS2 (rvc_inf, rvc_inf):
811 /* Inf / Inf = NaN. */
812 get_canonical_qnan (r, sign);
813 return false;
815 case CLASS2 (rvc_zero, rvc_normal):
816 case CLASS2 (rvc_zero, rvc_inf):
817 /* 0 / ANY = 0. */
818 case CLASS2 (rvc_normal, rvc_inf):
819 /* R / Inf = 0. */
820 get_zero (r, sign);
821 return false;
823 case CLASS2 (rvc_normal, rvc_zero):
824 /* R / 0 = Inf. */
825 case CLASS2 (rvc_inf, rvc_zero):
826 /* Inf / 0 = Inf. */
827 get_inf (r, sign);
828 return false;
830 case CLASS2 (rvc_zero, rvc_nan):
831 case CLASS2 (rvc_normal, rvc_nan):
832 case CLASS2 (rvc_inf, rvc_nan):
833 case CLASS2 (rvc_nan, rvc_nan):
834 /* ANY / NaN = NaN. */
835 *r = *b;
836 r->sign = sign;
837 return false;
839 case CLASS2 (rvc_nan, rvc_zero):
840 case CLASS2 (rvc_nan, rvc_normal):
841 case CLASS2 (rvc_nan, rvc_inf):
842 /* NaN / ANY = NaN. */
843 *r = *a;
844 r->sign = sign;
845 return false;
847 case CLASS2 (rvc_inf, rvc_normal):
848 /* Inf / R = Inf. */
849 get_inf (r, sign);
850 return false;
852 case CLASS2 (rvc_normal, rvc_normal):
853 break;
855 default:
856 gcc_unreachable ();
859 if (r == a || r == b)
860 rr = &t;
861 else
862 rr = r;
864 /* Make sure all fields in the result are initialized. */
865 get_zero (rr, 0);
866 rr->cl = rvc_normal;
867 rr->sign = sign;
869 exp = REAL_EXP (a) - REAL_EXP (b) + 1;
870 if (exp > MAX_EXP)
872 get_inf (r, sign);
873 return true;
875 if (exp < -MAX_EXP)
877 get_zero (r, sign);
878 return true;
880 SET_REAL_EXP (rr, exp);
882 inexact = div_significands (rr, a, b);
884 /* Re-normalize the result. */
885 normalize (rr);
886 rr->sig[0] |= inexact;
888 if (rr != r)
889 *r = t;
891 return inexact;
894 /* Return a tri-state comparison of A vs B. Return NAN_RESULT if
895 one of the two operands is a NaN. */
897 static int
898 do_compare (const REAL_VALUE_TYPE *a, const REAL_VALUE_TYPE *b,
899 int nan_result)
901 int ret;
903 switch (CLASS2 (a->cl, b->cl))
905 case CLASS2 (rvc_zero, rvc_zero):
906 /* Sign of zero doesn't matter for compares. */
907 return 0;
909 case CLASS2 (rvc_inf, rvc_zero):
910 case CLASS2 (rvc_inf, rvc_normal):
911 case CLASS2 (rvc_normal, rvc_zero):
912 return (a->sign ? -1 : 1);
914 case CLASS2 (rvc_inf, rvc_inf):
915 return -a->sign - -b->sign;
917 case CLASS2 (rvc_zero, rvc_normal):
918 case CLASS2 (rvc_zero, rvc_inf):
919 case CLASS2 (rvc_normal, rvc_inf):
920 return (b->sign ? 1 : -1);
922 case CLASS2 (rvc_zero, rvc_nan):
923 case CLASS2 (rvc_normal, rvc_nan):
924 case CLASS2 (rvc_inf, rvc_nan):
925 case CLASS2 (rvc_nan, rvc_nan):
926 case CLASS2 (rvc_nan, rvc_zero):
927 case CLASS2 (rvc_nan, rvc_normal):
928 case CLASS2 (rvc_nan, rvc_inf):
929 return nan_result;
931 case CLASS2 (rvc_normal, rvc_normal):
932 break;
934 default:
935 gcc_unreachable ();
938 if (a->sign != b->sign)
939 return -a->sign - -b->sign;
941 if (REAL_EXP (a) > REAL_EXP (b))
942 ret = 1;
943 else if (REAL_EXP (a) < REAL_EXP (b))
944 ret = -1;
945 else
946 ret = cmp_significands (a, b);
948 return (a->sign ? -ret : ret);
951 /* Return A truncated to an integral value toward zero. */
953 static void
954 do_fix_trunc (REAL_VALUE_TYPE *r, const REAL_VALUE_TYPE *a)
956 *r = *a;
958 switch (r->cl)
960 case rvc_zero:
961 case rvc_inf:
962 case rvc_nan:
963 break;
965 case rvc_normal:
966 if (REAL_EXP (r) <= 0)
967 get_zero (r, r->sign);
968 else if (REAL_EXP (r) < SIGNIFICAND_BITS)
969 clear_significand_below (r, SIGNIFICAND_BITS - REAL_EXP (r));
970 break;
972 default:
973 gcc_unreachable ();
977 /* Perform the binary or unary operation described by CODE.
978 For a unary operation, leave OP1 NULL. This function returns
979 true if the result may be inexact due to loss of precision. */
981 bool
982 real_arithmetic (REAL_VALUE_TYPE *r, int icode, const REAL_VALUE_TYPE *op0,
983 const REAL_VALUE_TYPE *op1)
985 enum tree_code code = icode;
987 switch (code)
989 case PLUS_EXPR:
990 return do_add (r, op0, op1, 0);
992 case MINUS_EXPR:
993 return do_add (r, op0, op1, 1);
995 case MULT_EXPR:
996 return do_multiply (r, op0, op1);
998 case RDIV_EXPR:
999 return do_divide (r, op0, op1);
1001 case MIN_EXPR:
1002 if (op1->cl == rvc_nan)
1003 *r = *op1;
1004 else if (do_compare (op0, op1, -1) < 0)
1005 *r = *op0;
1006 else
1007 *r = *op1;
1008 break;
1010 case MAX_EXPR:
1011 if (op1->cl == rvc_nan)
1012 *r = *op1;
1013 else if (do_compare (op0, op1, 1) < 0)
1014 *r = *op1;
1015 else
1016 *r = *op0;
1017 break;
1019 case NEGATE_EXPR:
1020 *r = *op0;
1021 r->sign ^= 1;
1022 break;
1024 case ABS_EXPR:
1025 *r = *op0;
1026 r->sign = 0;
1027 break;
1029 case FIX_TRUNC_EXPR:
1030 do_fix_trunc (r, op0);
1031 break;
1033 default:
1034 gcc_unreachable ();
1036 return false;
1039 /* Legacy. Similar, but return the result directly. */
1041 REAL_VALUE_TYPE
1042 real_arithmetic2 (int icode, const REAL_VALUE_TYPE *op0,
1043 const REAL_VALUE_TYPE *op1)
1045 REAL_VALUE_TYPE r;
1046 real_arithmetic (&r, icode, op0, op1);
1047 return r;
1050 bool
1051 real_compare (int icode, const REAL_VALUE_TYPE *op0,
1052 const REAL_VALUE_TYPE *op1)
1054 enum tree_code code = icode;
1056 switch (code)
1058 case LT_EXPR:
1059 return do_compare (op0, op1, 1) < 0;
1060 case LE_EXPR:
1061 return do_compare (op0, op1, 1) <= 0;
1062 case GT_EXPR:
1063 return do_compare (op0, op1, -1) > 0;
1064 case GE_EXPR:
1065 return do_compare (op0, op1, -1) >= 0;
1066 case EQ_EXPR:
1067 return do_compare (op0, op1, -1) == 0;
1068 case NE_EXPR:
1069 return do_compare (op0, op1, -1) != 0;
1070 case UNORDERED_EXPR:
1071 return op0->cl == rvc_nan || op1->cl == rvc_nan;
1072 case ORDERED_EXPR:
1073 return op0->cl != rvc_nan && op1->cl != rvc_nan;
1074 case UNLT_EXPR:
1075 return do_compare (op0, op1, -1) < 0;
1076 case UNLE_EXPR:
1077 return do_compare (op0, op1, -1) <= 0;
1078 case UNGT_EXPR:
1079 return do_compare (op0, op1, 1) > 0;
1080 case UNGE_EXPR:
1081 return do_compare (op0, op1, 1) >= 0;
1082 case UNEQ_EXPR:
1083 return do_compare (op0, op1, 0) == 0;
1084 case LTGT_EXPR:
1085 return do_compare (op0, op1, 0) != 0;
1087 default:
1088 gcc_unreachable ();
1092 /* Return floor log2(R). */
1095 real_exponent (const REAL_VALUE_TYPE *r)
1097 switch (r->cl)
1099 case rvc_zero:
1100 return 0;
1101 case rvc_inf:
1102 case rvc_nan:
1103 return (unsigned int)-1 >> 1;
1104 case rvc_normal:
1105 return REAL_EXP (r);
1106 default:
1107 gcc_unreachable ();
1111 /* R = OP0 * 2**EXP. */
1113 void
1114 real_ldexp (REAL_VALUE_TYPE *r, const REAL_VALUE_TYPE *op0, int exp)
1116 *r = *op0;
1117 switch (r->cl)
1119 case rvc_zero:
1120 case rvc_inf:
1121 case rvc_nan:
1122 break;
1124 case rvc_normal:
1125 exp += REAL_EXP (op0);
1126 if (exp > MAX_EXP)
1127 get_inf (r, r->sign);
1128 else if (exp < -MAX_EXP)
1129 get_zero (r, r->sign);
1130 else
1131 SET_REAL_EXP (r, exp);
1132 break;
1134 default:
1135 gcc_unreachable ();
1139 /* Determine whether a floating-point value X is infinite. */
1141 bool
1142 real_isinf (const REAL_VALUE_TYPE *r)
1144 return (r->cl == rvc_inf);
1147 /* Determine whether a floating-point value X is a NaN. */
1149 bool
1150 real_isnan (const REAL_VALUE_TYPE *r)
1152 return (r->cl == rvc_nan);
1155 /* Determine whether a floating-point value X is negative. */
1157 bool
1158 real_isneg (const REAL_VALUE_TYPE *r)
1160 return r->sign;
1163 /* Determine whether a floating-point value X is minus zero. */
1165 bool
1166 real_isnegzero (const REAL_VALUE_TYPE *r)
1168 return r->sign && r->cl == rvc_zero;
1171 /* Compare two floating-point objects for bitwise identity. */
1173 bool
1174 real_identical (const REAL_VALUE_TYPE *a, const REAL_VALUE_TYPE *b)
1176 int i;
1178 if (a->cl != b->cl)
1179 return false;
1180 if (a->sign != b->sign)
1181 return false;
1183 switch (a->cl)
1185 case rvc_zero:
1186 case rvc_inf:
1187 return true;
1189 case rvc_normal:
1190 if (REAL_EXP (a) != REAL_EXP (b))
1191 return false;
1192 break;
1194 case rvc_nan:
1195 if (a->signalling != b->signalling)
1196 return false;
1197 /* The significand is ignored for canonical NaNs. */
1198 if (a->canonical || b->canonical)
1199 return a->canonical == b->canonical;
1200 break;
1202 default:
1203 gcc_unreachable ();
1206 for (i = 0; i < SIGSZ; ++i)
1207 if (a->sig[i] != b->sig[i])
1208 return false;
1210 return true;
1213 /* Try to change R into its exact multiplicative inverse in machine
1214 mode MODE. Return true if successful. */
1216 bool
1217 exact_real_inverse (enum machine_mode mode, REAL_VALUE_TYPE *r)
1219 const REAL_VALUE_TYPE *one = real_digit (1);
1220 REAL_VALUE_TYPE u;
1221 int i;
1223 if (r->cl != rvc_normal)
1224 return false;
1226 /* Check for a power of two: all significand bits zero except the MSB. */
1227 for (i = 0; i < SIGSZ-1; ++i)
1228 if (r->sig[i] != 0)
1229 return false;
1230 if (r->sig[SIGSZ-1] != SIG_MSB)
1231 return false;
1233 /* Find the inverse and truncate to the required mode. */
1234 do_divide (&u, one, r);
1235 real_convert (&u, mode, &u);
1237 /* The rounding may have overflowed. */
1238 if (u.cl != rvc_normal)
1239 return false;
1240 for (i = 0; i < SIGSZ-1; ++i)
1241 if (u.sig[i] != 0)
1242 return false;
1243 if (u.sig[SIGSZ-1] != SIG_MSB)
1244 return false;
1246 *r = u;
1247 return true;
1250 /* Render R as an integer. */
1252 HOST_WIDE_INT
1253 real_to_integer (const REAL_VALUE_TYPE *r)
1255 unsigned HOST_WIDE_INT i;
1257 switch (r->cl)
1259 case rvc_zero:
1260 underflow:
1261 return 0;
1263 case rvc_inf:
1264 case rvc_nan:
1265 overflow:
1266 i = (unsigned HOST_WIDE_INT) 1 << (HOST_BITS_PER_WIDE_INT - 1);
1267 if (!r->sign)
1268 i--;
1269 return i;
1271 case rvc_normal:
1272 if (REAL_EXP (r) <= 0)
1273 goto underflow;
1274 /* Only force overflow for unsigned overflow. Signed overflow is
1275 undefined, so it doesn't matter what we return, and some callers
1276 expect to be able to use this routine for both signed and
1277 unsigned conversions. */
1278 if (REAL_EXP (r) > HOST_BITS_PER_WIDE_INT)
1279 goto overflow;
1281 if (HOST_BITS_PER_WIDE_INT == HOST_BITS_PER_LONG)
1282 i = r->sig[SIGSZ-1];
1283 else
1285 gcc_assert (HOST_BITS_PER_WIDE_INT == 2 * HOST_BITS_PER_LONG);
1286 i = r->sig[SIGSZ-1];
1287 i = i << (HOST_BITS_PER_LONG - 1) << 1;
1288 i |= r->sig[SIGSZ-2];
1291 i >>= HOST_BITS_PER_WIDE_INT - REAL_EXP (r);
1293 if (r->sign)
1294 i = -i;
1295 return i;
1297 default:
1298 gcc_unreachable ();
1302 /* Likewise, but to an integer pair, HI+LOW. */
1304 void
1305 real_to_integer2 (HOST_WIDE_INT *plow, HOST_WIDE_INT *phigh,
1306 const REAL_VALUE_TYPE *r)
1308 REAL_VALUE_TYPE t;
1309 HOST_WIDE_INT low, high;
1310 int exp;
1312 switch (r->cl)
1314 case rvc_zero:
1315 underflow:
1316 low = high = 0;
1317 break;
1319 case rvc_inf:
1320 case rvc_nan:
1321 overflow:
1322 high = (unsigned HOST_WIDE_INT) 1 << (HOST_BITS_PER_WIDE_INT - 1);
1323 if (r->sign)
1324 low = 0;
1325 else
1327 high--;
1328 low = -1;
1330 break;
1332 case rvc_normal:
1333 exp = REAL_EXP (r);
1334 if (exp <= 0)
1335 goto underflow;
1336 /* Only force overflow for unsigned overflow. Signed overflow is
1337 undefined, so it doesn't matter what we return, and some callers
1338 expect to be able to use this routine for both signed and
1339 unsigned conversions. */
1340 if (exp > 2*HOST_BITS_PER_WIDE_INT)
1341 goto overflow;
1343 rshift_significand (&t, r, 2*HOST_BITS_PER_WIDE_INT - exp);
1344 if (HOST_BITS_PER_WIDE_INT == HOST_BITS_PER_LONG)
1346 high = t.sig[SIGSZ-1];
1347 low = t.sig[SIGSZ-2];
1349 else
1351 gcc_assert (HOST_BITS_PER_WIDE_INT == 2*HOST_BITS_PER_LONG);
1352 high = t.sig[SIGSZ-1];
1353 high = high << (HOST_BITS_PER_LONG - 1) << 1;
1354 high |= t.sig[SIGSZ-2];
1356 low = t.sig[SIGSZ-3];
1357 low = low << (HOST_BITS_PER_LONG - 1) << 1;
1358 low |= t.sig[SIGSZ-4];
1361 if (r->sign)
1363 if (low == 0)
1364 high = -high;
1365 else
1366 low = -low, high = ~high;
1368 break;
1370 default:
1371 gcc_unreachable ();
1374 *plow = low;
1375 *phigh = high;
1378 /* A subroutine of real_to_decimal. Compute the quotient and remainder
1379 of NUM / DEN. Return the quotient and place the remainder in NUM.
1380 It is expected that NUM / DEN are close enough that the quotient is
1381 small. */
1383 static unsigned long
1384 rtd_divmod (REAL_VALUE_TYPE *num, REAL_VALUE_TYPE *den)
1386 unsigned long q, msb;
1387 int expn = REAL_EXP (num), expd = REAL_EXP (den);
1389 if (expn < expd)
1390 return 0;
1392 q = msb = 0;
1393 goto start;
1396 msb = num->sig[SIGSZ-1] & SIG_MSB;
1397 q <<= 1;
1398 lshift_significand_1 (num, num);
1399 start:
1400 if (msb || cmp_significands (num, den) >= 0)
1402 sub_significands (num, num, den, 0);
1403 q |= 1;
1406 while (--expn >= expd);
1408 SET_REAL_EXP (num, expd);
1409 normalize (num);
1411 return q;
1414 /* Render R as a decimal floating point constant. Emit DIGITS significant
1415 digits in the result, bounded by BUF_SIZE. If DIGITS is 0, choose the
1416 maximum for the representation. If CROP_TRAILING_ZEROS, strip trailing
1417 zeros. */
1419 #define M_LOG10_2 0.30102999566398119521
1421 void
1422 real_to_decimal (char *str, const REAL_VALUE_TYPE *r_orig, size_t buf_size,
1423 size_t digits, int crop_trailing_zeros)
1425 const REAL_VALUE_TYPE *one, *ten;
1426 REAL_VALUE_TYPE r, pten, u, v;
1427 int dec_exp, cmp_one, digit;
1428 size_t max_digits;
1429 char *p, *first, *last;
1430 bool sign;
1432 r = *r_orig;
1433 switch (r.cl)
1435 case rvc_zero:
1436 strcpy (str, (r.sign ? "-0.0" : "0.0"));
1437 return;
1438 case rvc_normal:
1439 break;
1440 case rvc_inf:
1441 strcpy (str, (r.sign ? "-Inf" : "+Inf"));
1442 return;
1443 case rvc_nan:
1444 /* ??? Print the significand as well, if not canonical? */
1445 strcpy (str, (r.sign ? "-NaN" : "+NaN"));
1446 return;
1447 default:
1448 gcc_unreachable ();
1451 /* Bound the number of digits printed by the size of the representation. */
1452 max_digits = SIGNIFICAND_BITS * M_LOG10_2;
1453 if (digits == 0 || digits > max_digits)
1454 digits = max_digits;
1456 /* Estimate the decimal exponent, and compute the length of the string it
1457 will print as. Be conservative and add one to account for possible
1458 overflow or rounding error. */
1459 dec_exp = REAL_EXP (&r) * M_LOG10_2;
1460 for (max_digits = 1; dec_exp ; max_digits++)
1461 dec_exp /= 10;
1463 /* Bound the number of digits printed by the size of the output buffer. */
1464 max_digits = buf_size - 1 - 1 - 2 - max_digits - 1;
1465 gcc_assert (max_digits <= buf_size);
1466 if (digits > max_digits)
1467 digits = max_digits;
1469 one = real_digit (1);
1470 ten = ten_to_ptwo (0);
1472 sign = r.sign;
1473 r.sign = 0;
1475 dec_exp = 0;
1476 pten = *one;
1478 cmp_one = do_compare (&r, one, 0);
1479 if (cmp_one > 0)
1481 int m;
1483 /* Number is greater than one. Convert significand to an integer
1484 and strip trailing decimal zeros. */
1486 u = r;
1487 SET_REAL_EXP (&u, SIGNIFICAND_BITS - 1);
1489 /* Largest M, such that 10**2**M fits within SIGNIFICAND_BITS. */
1490 m = floor_log2 (max_digits);
1492 /* Iterate over the bits of the possible powers of 10 that might
1493 be present in U and eliminate them. That is, if we find that
1494 10**2**M divides U evenly, keep the division and increase
1495 DEC_EXP by 2**M. */
1498 REAL_VALUE_TYPE t;
1500 do_divide (&t, &u, ten_to_ptwo (m));
1501 do_fix_trunc (&v, &t);
1502 if (cmp_significands (&v, &t) == 0)
1504 u = t;
1505 dec_exp += 1 << m;
1508 while (--m >= 0);
1510 /* Revert the scaling to integer that we performed earlier. */
1511 SET_REAL_EXP (&u, REAL_EXP (&u) + REAL_EXP (&r)
1512 - (SIGNIFICAND_BITS - 1));
1513 r = u;
1515 /* Find power of 10. Do this by dividing out 10**2**M when
1516 this is larger than the current remainder. Fill PTEN with
1517 the power of 10 that we compute. */
1518 if (REAL_EXP (&r) > 0)
1520 m = floor_log2 ((int)(REAL_EXP (&r) * M_LOG10_2)) + 1;
1523 const REAL_VALUE_TYPE *ptentwo = ten_to_ptwo (m);
1524 if (do_compare (&u, ptentwo, 0) >= 0)
1526 do_divide (&u, &u, ptentwo);
1527 do_multiply (&pten, &pten, ptentwo);
1528 dec_exp += 1 << m;
1531 while (--m >= 0);
1533 else
1534 /* We managed to divide off enough tens in the above reduction
1535 loop that we've now got a negative exponent. Fall into the
1536 less-than-one code to compute the proper value for PTEN. */
1537 cmp_one = -1;
1539 if (cmp_one < 0)
1541 int m;
1543 /* Number is less than one. Pad significand with leading
1544 decimal zeros. */
1546 v = r;
1547 while (1)
1549 /* Stop if we'd shift bits off the bottom. */
1550 if (v.sig[0] & 7)
1551 break;
1553 do_multiply (&u, &v, ten);
1555 /* Stop if we're now >= 1. */
1556 if (REAL_EXP (&u) > 0)
1557 break;
1559 v = u;
1560 dec_exp -= 1;
1562 r = v;
1564 /* Find power of 10. Do this by multiplying in P=10**2**M when
1565 the current remainder is smaller than 1/P. Fill PTEN with the
1566 power of 10 that we compute. */
1567 m = floor_log2 ((int)(-REAL_EXP (&r) * M_LOG10_2)) + 1;
1570 const REAL_VALUE_TYPE *ptentwo = ten_to_ptwo (m);
1571 const REAL_VALUE_TYPE *ptenmtwo = ten_to_mptwo (m);
1573 if (do_compare (&v, ptenmtwo, 0) <= 0)
1575 do_multiply (&v, &v, ptentwo);
1576 do_multiply (&pten, &pten, ptentwo);
1577 dec_exp -= 1 << m;
1580 while (--m >= 0);
1582 /* Invert the positive power of 10 that we've collected so far. */
1583 do_divide (&pten, one, &pten);
1586 p = str;
1587 if (sign)
1588 *p++ = '-';
1589 first = p++;
1591 /* At this point, PTEN should contain the nearest power of 10 smaller
1592 than R, such that this division produces the first digit.
1594 Using a divide-step primitive that returns the complete integral
1595 remainder avoids the rounding error that would be produced if
1596 we were to use do_divide here and then simply multiply by 10 for
1597 each subsequent digit. */
1599 digit = rtd_divmod (&r, &pten);
1601 /* Be prepared for error in that division via underflow ... */
1602 if (digit == 0 && cmp_significand_0 (&r))
1604 /* Multiply by 10 and try again. */
1605 do_multiply (&r, &r, ten);
1606 digit = rtd_divmod (&r, &pten);
1607 dec_exp -= 1;
1608 gcc_assert (digit != 0);
1611 /* ... or overflow. */
1612 if (digit == 10)
1614 *p++ = '1';
1615 if (--digits > 0)
1616 *p++ = '0';
1617 dec_exp += 1;
1619 else
1621 gcc_assert (digit <= 10);
1622 *p++ = digit + '0';
1625 /* Generate subsequent digits. */
1626 while (--digits > 0)
1628 do_multiply (&r, &r, ten);
1629 digit = rtd_divmod (&r, &pten);
1630 *p++ = digit + '0';
1632 last = p;
1634 /* Generate one more digit with which to do rounding. */
1635 do_multiply (&r, &r, ten);
1636 digit = rtd_divmod (&r, &pten);
1638 /* Round the result. */
1639 if (digit == 5)
1641 /* Round to nearest. If R is nonzero there are additional
1642 nonzero digits to be extracted. */
1643 if (cmp_significand_0 (&r))
1644 digit++;
1645 /* Round to even. */
1646 else if ((p[-1] - '0') & 1)
1647 digit++;
1649 if (digit > 5)
1651 while (p > first)
1653 digit = *--p;
1654 if (digit == '9')
1655 *p = '0';
1656 else
1658 *p = digit + 1;
1659 break;
1663 /* Carry out of the first digit. This means we had all 9's and
1664 now have all 0's. "Prepend" a 1 by overwriting the first 0. */
1665 if (p == first)
1667 first[1] = '1';
1668 dec_exp++;
1672 /* Insert the decimal point. */
1673 first[0] = first[1];
1674 first[1] = '.';
1676 /* If requested, drop trailing zeros. Never crop past "1.0". */
1677 if (crop_trailing_zeros)
1678 while (last > first + 3 && last[-1] == '0')
1679 last--;
1681 /* Append the exponent. */
1682 sprintf (last, "e%+d", dec_exp);
1685 /* Render R as a hexadecimal floating point constant. Emit DIGITS
1686 significant digits in the result, bounded by BUF_SIZE. If DIGITS is 0,
1687 choose the maximum for the representation. If CROP_TRAILING_ZEROS,
1688 strip trailing zeros. */
1690 void
1691 real_to_hexadecimal (char *str, const REAL_VALUE_TYPE *r, size_t buf_size,
1692 size_t digits, int crop_trailing_zeros)
1694 int i, j, exp = REAL_EXP (r);
1695 char *p, *first;
1696 char exp_buf[16];
1697 size_t max_digits;
1699 switch (r->cl)
1701 case rvc_zero:
1702 exp = 0;
1703 break;
1704 case rvc_normal:
1705 break;
1706 case rvc_inf:
1707 strcpy (str, (r->sign ? "-Inf" : "+Inf"));
1708 return;
1709 case rvc_nan:
1710 /* ??? Print the significand as well, if not canonical? */
1711 strcpy (str, (r->sign ? "-NaN" : "+NaN"));
1712 return;
1713 default:
1714 gcc_unreachable ();
1717 if (digits == 0)
1718 digits = SIGNIFICAND_BITS / 4;
1720 /* Bound the number of digits printed by the size of the output buffer. */
1722 sprintf (exp_buf, "p%+d", exp);
1723 max_digits = buf_size - strlen (exp_buf) - r->sign - 4 - 1;
1724 gcc_assert (max_digits <= buf_size);
1725 if (digits > max_digits)
1726 digits = max_digits;
1728 p = str;
1729 if (r->sign)
1730 *p++ = '-';
1731 *p++ = '0';
1732 *p++ = 'x';
1733 *p++ = '0';
1734 *p++ = '.';
1735 first = p;
1737 for (i = SIGSZ - 1; i >= 0; --i)
1738 for (j = HOST_BITS_PER_LONG - 4; j >= 0; j -= 4)
1740 *p++ = "0123456789abcdef"[(r->sig[i] >> j) & 15];
1741 if (--digits == 0)
1742 goto out;
1745 out:
1746 if (crop_trailing_zeros)
1747 while (p > first + 1 && p[-1] == '0')
1748 p--;
1750 sprintf (p, "p%+d", exp);
1753 /* Initialize R from a decimal or hexadecimal string. The string is
1754 assumed to have been syntax checked already. */
1756 void
1757 real_from_string (REAL_VALUE_TYPE *r, const char *str)
1759 int exp = 0;
1760 bool sign = false;
1762 get_zero (r, 0);
1764 if (*str == '-')
1766 sign = true;
1767 str++;
1769 else if (*str == '+')
1770 str++;
1772 if (str[0] == '0' && (str[1] == 'x' || str[1] == 'X'))
1774 /* Hexadecimal floating point. */
1775 int pos = SIGNIFICAND_BITS - 4, d;
1777 str += 2;
1779 while (*str == '0')
1780 str++;
1781 while (1)
1783 d = hex_value (*str);
1784 if (d == _hex_bad)
1785 break;
1786 if (pos >= 0)
1788 r->sig[pos / HOST_BITS_PER_LONG]
1789 |= (unsigned long) d << (pos % HOST_BITS_PER_LONG);
1790 pos -= 4;
1792 exp += 4;
1793 str++;
1795 if (*str == '.')
1797 str++;
1798 if (pos == SIGNIFICAND_BITS - 4)
1800 while (*str == '0')
1801 str++, exp -= 4;
1803 while (1)
1805 d = hex_value (*str);
1806 if (d == _hex_bad)
1807 break;
1808 if (pos >= 0)
1810 r->sig[pos / HOST_BITS_PER_LONG]
1811 |= (unsigned long) d << (pos % HOST_BITS_PER_LONG);
1812 pos -= 4;
1814 str++;
1817 if (*str == 'p' || *str == 'P')
1819 bool exp_neg = false;
1821 str++;
1822 if (*str == '-')
1824 exp_neg = true;
1825 str++;
1827 else if (*str == '+')
1828 str++;
1830 d = 0;
1831 while (ISDIGIT (*str))
1833 d *= 10;
1834 d += *str - '0';
1835 if (d > MAX_EXP)
1837 /* Overflowed the exponent. */
1838 if (exp_neg)
1839 goto underflow;
1840 else
1841 goto overflow;
1843 str++;
1845 if (exp_neg)
1846 d = -d;
1848 exp += d;
1851 r->cl = rvc_normal;
1852 SET_REAL_EXP (r, exp);
1854 normalize (r);
1856 else
1858 /* Decimal floating point. */
1859 const REAL_VALUE_TYPE *ten = ten_to_ptwo (0);
1860 int d;
1862 while (*str == '0')
1863 str++;
1864 while (ISDIGIT (*str))
1866 d = *str++ - '0';
1867 do_multiply (r, r, ten);
1868 if (d)
1869 do_add (r, r, real_digit (d), 0);
1871 if (*str == '.')
1873 str++;
1874 if (r->cl == rvc_zero)
1876 while (*str == '0')
1877 str++, exp--;
1879 while (ISDIGIT (*str))
1881 d = *str++ - '0';
1882 do_multiply (r, r, ten);
1883 if (d)
1884 do_add (r, r, real_digit (d), 0);
1885 exp--;
1889 if (*str == 'e' || *str == 'E')
1891 bool exp_neg = false;
1893 str++;
1894 if (*str == '-')
1896 exp_neg = true;
1897 str++;
1899 else if (*str == '+')
1900 str++;
1902 d = 0;
1903 while (ISDIGIT (*str))
1905 d *= 10;
1906 d += *str - '0';
1907 if (d > MAX_EXP)
1909 /* Overflowed the exponent. */
1910 if (exp_neg)
1911 goto underflow;
1912 else
1913 goto overflow;
1915 str++;
1917 if (exp_neg)
1918 d = -d;
1919 exp += d;
1922 if (exp)
1923 times_pten (r, exp);
1926 r->sign = sign;
1927 return;
1929 underflow:
1930 get_zero (r, sign);
1931 return;
1933 overflow:
1934 get_inf (r, sign);
1935 return;
1938 /* Legacy. Similar, but return the result directly. */
1940 REAL_VALUE_TYPE
1941 real_from_string2 (const char *s, enum machine_mode mode)
1943 REAL_VALUE_TYPE r;
1945 real_from_string (&r, s);
1946 if (mode != VOIDmode)
1947 real_convert (&r, mode, &r);
1949 return r;
1952 /* Initialize R from the integer pair HIGH+LOW. */
1954 void
1955 real_from_integer (REAL_VALUE_TYPE *r, enum machine_mode mode,
1956 unsigned HOST_WIDE_INT low, HOST_WIDE_INT high,
1957 int unsigned_p)
1959 if (low == 0 && high == 0)
1960 get_zero (r, 0);
1961 else
1963 memset (r, 0, sizeof (*r));
1964 r->cl = rvc_normal;
1965 r->sign = high < 0 && !unsigned_p;
1966 SET_REAL_EXP (r, 2 * HOST_BITS_PER_WIDE_INT);
1968 if (r->sign)
1970 high = ~high;
1971 if (low == 0)
1972 high += 1;
1973 else
1974 low = -low;
1977 if (HOST_BITS_PER_LONG == HOST_BITS_PER_WIDE_INT)
1979 r->sig[SIGSZ-1] = high;
1980 r->sig[SIGSZ-2] = low;
1982 else
1984 gcc_assert (HOST_BITS_PER_LONG*2 == HOST_BITS_PER_WIDE_INT);
1985 r->sig[SIGSZ-1] = high >> (HOST_BITS_PER_LONG - 1) >> 1;
1986 r->sig[SIGSZ-2] = high;
1987 r->sig[SIGSZ-3] = low >> (HOST_BITS_PER_LONG - 1) >> 1;
1988 r->sig[SIGSZ-4] = low;
1991 normalize (r);
1994 if (mode != VOIDmode)
1995 real_convert (r, mode, r);
1998 /* Returns 10**2**N. */
2000 static const REAL_VALUE_TYPE *
2001 ten_to_ptwo (int n)
2003 static REAL_VALUE_TYPE tens[EXP_BITS];
2005 gcc_assert (n >= 0);
2006 gcc_assert (n < EXP_BITS);
2008 if (tens[n].cl == rvc_zero)
2010 if (n < (HOST_BITS_PER_WIDE_INT == 64 ? 5 : 4))
2012 HOST_WIDE_INT t = 10;
2013 int i;
2015 for (i = 0; i < n; ++i)
2016 t *= t;
2018 real_from_integer (&tens[n], VOIDmode, t, 0, 1);
2020 else
2022 const REAL_VALUE_TYPE *t = ten_to_ptwo (n - 1);
2023 do_multiply (&tens[n], t, t);
2027 return &tens[n];
2030 /* Returns 10**(-2**N). */
2032 static const REAL_VALUE_TYPE *
2033 ten_to_mptwo (int n)
2035 static REAL_VALUE_TYPE tens[EXP_BITS];
2037 gcc_assert (n >= 0);
2038 gcc_assert (n < EXP_BITS);
2040 if (tens[n].cl == rvc_zero)
2041 do_divide (&tens[n], real_digit (1), ten_to_ptwo (n));
2043 return &tens[n];
2046 /* Returns N. */
2048 static const REAL_VALUE_TYPE *
2049 real_digit (int n)
2051 static REAL_VALUE_TYPE num[10];
2053 gcc_assert (n >= 0);
2054 gcc_assert (n <= 9);
2056 if (n > 0 && num[n].cl == rvc_zero)
2057 real_from_integer (&num[n], VOIDmode, n, 0, 1);
2059 return &num[n];
2062 /* Multiply R by 10**EXP. */
2064 static void
2065 times_pten (REAL_VALUE_TYPE *r, int exp)
2067 REAL_VALUE_TYPE pten, *rr;
2068 bool negative = (exp < 0);
2069 int i;
2071 if (negative)
2073 exp = -exp;
2074 pten = *real_digit (1);
2075 rr = &pten;
2077 else
2078 rr = r;
2080 for (i = 0; exp > 0; ++i, exp >>= 1)
2081 if (exp & 1)
2082 do_multiply (rr, rr, ten_to_ptwo (i));
2084 if (negative)
2085 do_divide (r, r, &pten);
2088 /* Fills R with +Inf. */
2090 void
2091 real_inf (REAL_VALUE_TYPE *r)
2093 get_inf (r, 0);
2096 /* Fills R with a NaN whose significand is described by STR. If QUIET,
2097 we force a QNaN, else we force an SNaN. The string, if not empty,
2098 is parsed as a number and placed in the significand. Return true
2099 if the string was successfully parsed. */
2101 bool
2102 real_nan (REAL_VALUE_TYPE *r, const char *str, int quiet,
2103 enum machine_mode mode)
2105 const struct real_format *fmt;
2107 fmt = REAL_MODE_FORMAT (mode);
2108 gcc_assert (fmt);
2110 if (*str == 0)
2112 if (quiet)
2113 get_canonical_qnan (r, 0);
2114 else
2115 get_canonical_snan (r, 0);
2117 else
2119 int base = 10, d;
2121 memset (r, 0, sizeof (*r));
2122 r->cl = rvc_nan;
2124 /* Parse akin to strtol into the significand of R. */
2126 while (ISSPACE (*str))
2127 str++;
2128 if (*str == '-')
2129 str++;
2130 else if (*str == '+')
2131 str++;
2132 if (*str == '0')
2134 if (*++str == 'x')
2135 str++, base = 16;
2136 else
2137 base = 8;
2140 while ((d = hex_value (*str)) < base)
2142 REAL_VALUE_TYPE u;
2144 switch (base)
2146 case 8:
2147 lshift_significand (r, r, 3);
2148 break;
2149 case 16:
2150 lshift_significand (r, r, 4);
2151 break;
2152 case 10:
2153 lshift_significand_1 (&u, r);
2154 lshift_significand (r, r, 3);
2155 add_significands (r, r, &u);
2156 break;
2157 default:
2158 gcc_unreachable ();
2161 get_zero (&u, 0);
2162 u.sig[0] = d;
2163 add_significands (r, r, &u);
2165 str++;
2168 /* Must have consumed the entire string for success. */
2169 if (*str != 0)
2170 return false;
2172 /* Shift the significand into place such that the bits
2173 are in the most significant bits for the format. */
2174 lshift_significand (r, r, SIGNIFICAND_BITS - fmt->pnan);
2176 /* Our MSB is always unset for NaNs. */
2177 r->sig[SIGSZ-1] &= ~SIG_MSB;
2179 /* Force quiet or signalling NaN. */
2180 r->signalling = !quiet;
2183 return true;
2186 /* Fills R with the largest finite value representable in mode MODE.
2187 If SIGN is nonzero, R is set to the most negative finite value. */
2189 void
2190 real_maxval (REAL_VALUE_TYPE *r, int sign, enum machine_mode mode)
2192 const struct real_format *fmt;
2193 int np2;
2195 fmt = REAL_MODE_FORMAT (mode);
2196 gcc_assert (fmt);
2198 r->cl = rvc_normal;
2199 r->sign = sign;
2200 r->signalling = 0;
2201 r->canonical = 0;
2202 SET_REAL_EXP (r, fmt->emax * fmt->log2_b);
2204 np2 = SIGNIFICAND_BITS - fmt->p * fmt->log2_b;
2205 memset (r->sig, -1, SIGSZ * sizeof (unsigned long));
2206 clear_significand_below (r, np2);
2209 /* Fills R with 2**N. */
2211 void
2212 real_2expN (REAL_VALUE_TYPE *r, int n)
2214 memset (r, 0, sizeof (*r));
2216 n++;
2217 if (n > MAX_EXP)
2218 r->cl = rvc_inf;
2219 else if (n < -MAX_EXP)
2221 else
2223 r->cl = rvc_normal;
2224 SET_REAL_EXP (r, n);
2225 r->sig[SIGSZ-1] = SIG_MSB;
2230 static void
2231 round_for_format (const struct real_format *fmt, REAL_VALUE_TYPE *r)
2233 int p2, np2, i, w;
2234 unsigned long sticky;
2235 bool guard, lsb;
2236 int emin2m1, emax2;
2238 p2 = fmt->p * fmt->log2_b;
2239 emin2m1 = (fmt->emin - 1) * fmt->log2_b;
2240 emax2 = fmt->emax * fmt->log2_b;
2242 np2 = SIGNIFICAND_BITS - p2;
2243 switch (r->cl)
2245 underflow:
2246 get_zero (r, r->sign);
2247 case rvc_zero:
2248 if (!fmt->has_signed_zero)
2249 r->sign = 0;
2250 return;
2252 overflow:
2253 get_inf (r, r->sign);
2254 case rvc_inf:
2255 return;
2257 case rvc_nan:
2258 clear_significand_below (r, np2);
2259 return;
2261 case rvc_normal:
2262 break;
2264 default:
2265 gcc_unreachable ();
2268 /* If we're not base2, normalize the exponent to a multiple of
2269 the true base. */
2270 if (fmt->log2_b != 1)
2272 int shift = REAL_EXP (r) & (fmt->log2_b - 1);
2273 if (shift)
2275 shift = fmt->log2_b - shift;
2276 r->sig[0] |= sticky_rshift_significand (r, r, shift);
2277 SET_REAL_EXP (r, REAL_EXP (r) + shift);
2281 /* Check the range of the exponent. If we're out of range,
2282 either underflow or overflow. */
2283 if (REAL_EXP (r) > emax2)
2284 goto overflow;
2285 else if (REAL_EXP (r) <= emin2m1)
2287 int diff;
2289 if (!fmt->has_denorm)
2291 /* Don't underflow completely until we've had a chance to round. */
2292 if (REAL_EXP (r) < emin2m1)
2293 goto underflow;
2295 else
2297 diff = emin2m1 - REAL_EXP (r) + 1;
2298 if (diff > p2)
2299 goto underflow;
2301 /* De-normalize the significand. */
2302 r->sig[0] |= sticky_rshift_significand (r, r, diff);
2303 SET_REAL_EXP (r, REAL_EXP (r) + diff);
2307 /* There are P2 true significand bits, followed by one guard bit,
2308 followed by one sticky bit, followed by stuff. Fold nonzero
2309 stuff into the sticky bit. */
2311 sticky = 0;
2312 for (i = 0, w = (np2 - 1) / HOST_BITS_PER_LONG; i < w; ++i)
2313 sticky |= r->sig[i];
2314 sticky |=
2315 r->sig[w] & (((unsigned long)1 << ((np2 - 1) % HOST_BITS_PER_LONG)) - 1);
2317 guard = test_significand_bit (r, np2 - 1);
2318 lsb = test_significand_bit (r, np2);
2320 /* Round to even. */
2321 if (guard && (sticky || lsb))
2323 REAL_VALUE_TYPE u;
2324 get_zero (&u, 0);
2325 set_significand_bit (&u, np2);
2327 if (add_significands (r, r, &u))
2329 /* Overflow. Means the significand had been all ones, and
2330 is now all zeros. Need to increase the exponent, and
2331 possibly re-normalize it. */
2332 SET_REAL_EXP (r, REAL_EXP (r) + 1);
2333 if (REAL_EXP (r) > emax2)
2334 goto overflow;
2335 r->sig[SIGSZ-1] = SIG_MSB;
2337 if (fmt->log2_b != 1)
2339 int shift = REAL_EXP (r) & (fmt->log2_b - 1);
2340 if (shift)
2342 shift = fmt->log2_b - shift;
2343 rshift_significand (r, r, shift);
2344 SET_REAL_EXP (r, REAL_EXP (r) + shift);
2345 if (REAL_EXP (r) > emax2)
2346 goto overflow;
2352 /* Catch underflow that we deferred until after rounding. */
2353 if (REAL_EXP (r) <= emin2m1)
2354 goto underflow;
2356 /* Clear out trailing garbage. */
2357 clear_significand_below (r, np2);
2360 /* Extend or truncate to a new mode. */
2362 void
2363 real_convert (REAL_VALUE_TYPE *r, enum machine_mode mode,
2364 const REAL_VALUE_TYPE *a)
2366 const struct real_format *fmt;
2368 fmt = REAL_MODE_FORMAT (mode);
2369 gcc_assert (fmt);
2371 *r = *a;
2372 round_for_format (fmt, r);
2374 /* round_for_format de-normalizes denormals. Undo just that part. */
2375 if (r->cl == rvc_normal)
2376 normalize (r);
2379 /* Legacy. Likewise, except return the struct directly. */
2381 REAL_VALUE_TYPE
2382 real_value_truncate (enum machine_mode mode, REAL_VALUE_TYPE a)
2384 REAL_VALUE_TYPE r;
2385 real_convert (&r, mode, &a);
2386 return r;
2389 /* Return true if truncating to MODE is exact. */
2391 bool
2392 exact_real_truncate (enum machine_mode mode, const REAL_VALUE_TYPE *a)
2394 REAL_VALUE_TYPE t;
2395 real_convert (&t, mode, a);
2396 return real_identical (&t, a);
2399 /* Write R to the given target format. Place the words of the result
2400 in target word order in BUF. There are always 32 bits in each
2401 long, no matter the size of the host long.
2403 Legacy: return word 0 for implementing REAL_VALUE_TO_TARGET_SINGLE. */
2405 long
2406 real_to_target_fmt (long *buf, const REAL_VALUE_TYPE *r_orig,
2407 const struct real_format *fmt)
2409 REAL_VALUE_TYPE r;
2410 long buf1;
2412 r = *r_orig;
2413 round_for_format (fmt, &r);
2415 if (!buf)
2416 buf = &buf1;
2417 (*fmt->encode) (fmt, buf, &r);
2419 return *buf;
2422 /* Similar, but look up the format from MODE. */
2424 long
2425 real_to_target (long *buf, const REAL_VALUE_TYPE *r, enum machine_mode mode)
2427 const struct real_format *fmt;
2429 fmt = REAL_MODE_FORMAT (mode);
2430 gcc_assert (fmt);
2432 return real_to_target_fmt (buf, r, fmt);
2435 /* Read R from the given target format. Read the words of the result
2436 in target word order in BUF. There are always 32 bits in each
2437 long, no matter the size of the host long. */
2439 void
2440 real_from_target_fmt (REAL_VALUE_TYPE *r, const long *buf,
2441 const struct real_format *fmt)
2443 (*fmt->decode) (fmt, r, buf);
2446 /* Similar, but look up the format from MODE. */
2448 void
2449 real_from_target (REAL_VALUE_TYPE *r, const long *buf, enum machine_mode mode)
2451 const struct real_format *fmt;
2453 fmt = REAL_MODE_FORMAT (mode);
2454 gcc_assert (fmt);
2456 (*fmt->decode) (fmt, r, buf);
2459 /* Return the number of bits in the significand for MODE. */
2460 /* ??? Legacy. Should get access to real_format directly. */
2463 significand_size (enum machine_mode mode)
2465 const struct real_format *fmt;
2467 fmt = REAL_MODE_FORMAT (mode);
2468 if (fmt == NULL)
2469 return 0;
2471 return fmt->p * fmt->log2_b;
2474 /* Return a hash value for the given real value. */
2475 /* ??? The "unsigned int" return value is intended to be hashval_t,
2476 but I didn't want to pull hashtab.h into real.h. */
2478 unsigned int
2479 real_hash (const REAL_VALUE_TYPE *r)
2481 unsigned int h;
2482 size_t i;
2484 h = r->cl | (r->sign << 2);
2485 switch (r->cl)
2487 case rvc_zero:
2488 case rvc_inf:
2489 return h;
2491 case rvc_normal:
2492 h |= REAL_EXP (r) << 3;
2493 break;
2495 case rvc_nan:
2496 if (r->signalling)
2497 h ^= (unsigned int)-1;
2498 if (r->canonical)
2499 return h;
2500 break;
2502 default:
2503 gcc_unreachable ();
2506 if (sizeof(unsigned long) > sizeof(unsigned int))
2507 for (i = 0; i < SIGSZ; ++i)
2509 unsigned long s = r->sig[i];
2510 h ^= s ^ (s >> (HOST_BITS_PER_LONG / 2));
2512 else
2513 for (i = 0; i < SIGSZ; ++i)
2514 h ^= r->sig[i];
2516 return h;
2519 /* IEEE single-precision format. */
2521 static void encode_ieee_single (const struct real_format *fmt,
2522 long *, const REAL_VALUE_TYPE *);
2523 static void decode_ieee_single (const struct real_format *,
2524 REAL_VALUE_TYPE *, const long *);
2526 static void
2527 encode_ieee_single (const struct real_format *fmt, long *buf,
2528 const REAL_VALUE_TYPE *r)
2530 unsigned long image, sig, exp;
2531 unsigned long sign = r->sign;
2532 bool denormal = (r->sig[SIGSZ-1] & SIG_MSB) == 0;
2534 image = sign << 31;
2535 sig = (r->sig[SIGSZ-1] >> (HOST_BITS_PER_LONG - 24)) & 0x7fffff;
2537 switch (r->cl)
2539 case rvc_zero:
2540 break;
2542 case rvc_inf:
2543 if (fmt->has_inf)
2544 image |= 255 << 23;
2545 else
2546 image |= 0x7fffffff;
2547 break;
2549 case rvc_nan:
2550 if (fmt->has_nans)
2552 if (r->canonical)
2553 sig = 0;
2554 if (r->signalling == fmt->qnan_msb_set)
2555 sig &= ~(1 << 22);
2556 else
2557 sig |= 1 << 22;
2558 /* We overload qnan_msb_set here: it's only clear for
2559 mips_ieee_single, which wants all mantissa bits but the
2560 quiet/signalling one set in canonical NaNs (at least
2561 Quiet ones). */
2562 if (r->canonical && !fmt->qnan_msb_set)
2563 sig |= (1 << 22) - 1;
2564 else if (sig == 0)
2565 sig = 1 << 21;
2567 image |= 255 << 23;
2568 image |= sig;
2570 else
2571 image |= 0x7fffffff;
2572 break;
2574 case rvc_normal:
2575 /* Recall that IEEE numbers are interpreted as 1.F x 2**exp,
2576 whereas the intermediate representation is 0.F x 2**exp.
2577 Which means we're off by one. */
2578 if (denormal)
2579 exp = 0;
2580 else
2581 exp = REAL_EXP (r) + 127 - 1;
2582 image |= exp << 23;
2583 image |= sig;
2584 break;
2586 default:
2587 gcc_unreachable ();
2590 buf[0] = image;
2593 static void
2594 decode_ieee_single (const struct real_format *fmt, REAL_VALUE_TYPE *r,
2595 const long *buf)
2597 unsigned long image = buf[0] & 0xffffffff;
2598 bool sign = (image >> 31) & 1;
2599 int exp = (image >> 23) & 0xff;
2601 memset (r, 0, sizeof (*r));
2602 image <<= HOST_BITS_PER_LONG - 24;
2603 image &= ~SIG_MSB;
2605 if (exp == 0)
2607 if (image && fmt->has_denorm)
2609 r->cl = rvc_normal;
2610 r->sign = sign;
2611 SET_REAL_EXP (r, -126);
2612 r->sig[SIGSZ-1] = image << 1;
2613 normalize (r);
2615 else if (fmt->has_signed_zero)
2616 r->sign = sign;
2618 else if (exp == 255 && (fmt->has_nans || fmt->has_inf))
2620 if (image)
2622 r->cl = rvc_nan;
2623 r->sign = sign;
2624 r->signalling = (((image >> (HOST_BITS_PER_LONG - 2)) & 1)
2625 ^ fmt->qnan_msb_set);
2626 r->sig[SIGSZ-1] = image;
2628 else
2630 r->cl = rvc_inf;
2631 r->sign = sign;
2634 else
2636 r->cl = rvc_normal;
2637 r->sign = sign;
2638 SET_REAL_EXP (r, exp - 127 + 1);
2639 r->sig[SIGSZ-1] = image | SIG_MSB;
2643 const struct real_format ieee_single_format =
2645 encode_ieee_single,
2646 decode_ieee_single,
2651 -125,
2652 128,
2654 true,
2655 true,
2656 true,
2657 true,
2658 true
2661 const struct real_format mips_single_format =
2663 encode_ieee_single,
2664 decode_ieee_single,
2669 -125,
2670 128,
2672 true,
2673 true,
2674 true,
2675 true,
2676 false
2680 /* IEEE double-precision format. */
2682 static void encode_ieee_double (const struct real_format *fmt,
2683 long *, const REAL_VALUE_TYPE *);
2684 static void decode_ieee_double (const struct real_format *,
2685 REAL_VALUE_TYPE *, const long *);
2687 static void
2688 encode_ieee_double (const struct real_format *fmt, long *buf,
2689 const REAL_VALUE_TYPE *r)
2691 unsigned long image_lo, image_hi, sig_lo, sig_hi, exp;
2692 bool denormal = (r->sig[SIGSZ-1] & SIG_MSB) == 0;
2694 image_hi = r->sign << 31;
2695 image_lo = 0;
2697 if (HOST_BITS_PER_LONG == 64)
2699 sig_hi = r->sig[SIGSZ-1];
2700 sig_lo = (sig_hi >> (64 - 53)) & 0xffffffff;
2701 sig_hi = (sig_hi >> (64 - 53 + 1) >> 31) & 0xfffff;
2703 else
2705 sig_hi = r->sig[SIGSZ-1];
2706 sig_lo = r->sig[SIGSZ-2];
2707 sig_lo = (sig_hi << 21) | (sig_lo >> 11);
2708 sig_hi = (sig_hi >> 11) & 0xfffff;
2711 switch (r->cl)
2713 case rvc_zero:
2714 break;
2716 case rvc_inf:
2717 if (fmt->has_inf)
2718 image_hi |= 2047 << 20;
2719 else
2721 image_hi |= 0x7fffffff;
2722 image_lo = 0xffffffff;
2724 break;
2726 case rvc_nan:
2727 if (fmt->has_nans)
2729 if (r->canonical)
2730 sig_hi = sig_lo = 0;
2731 if (r->signalling == fmt->qnan_msb_set)
2732 sig_hi &= ~(1 << 19);
2733 else
2734 sig_hi |= 1 << 19;
2735 /* We overload qnan_msb_set here: it's only clear for
2736 mips_ieee_single, which wants all mantissa bits but the
2737 quiet/signalling one set in canonical NaNs (at least
2738 Quiet ones). */
2739 if (r->canonical && !fmt->qnan_msb_set)
2741 sig_hi |= (1 << 19) - 1;
2742 sig_lo = 0xffffffff;
2744 else if (sig_hi == 0 && sig_lo == 0)
2745 sig_hi = 1 << 18;
2747 image_hi |= 2047 << 20;
2748 image_hi |= sig_hi;
2749 image_lo = sig_lo;
2751 else
2753 image_hi |= 0x7fffffff;
2754 image_lo = 0xffffffff;
2756 break;
2758 case rvc_normal:
2759 /* Recall that IEEE numbers are interpreted as 1.F x 2**exp,
2760 whereas the intermediate representation is 0.F x 2**exp.
2761 Which means we're off by one. */
2762 if (denormal)
2763 exp = 0;
2764 else
2765 exp = REAL_EXP (r) + 1023 - 1;
2766 image_hi |= exp << 20;
2767 image_hi |= sig_hi;
2768 image_lo = sig_lo;
2769 break;
2771 default:
2772 gcc_unreachable ();
2775 if (FLOAT_WORDS_BIG_ENDIAN)
2776 buf[0] = image_hi, buf[1] = image_lo;
2777 else
2778 buf[0] = image_lo, buf[1] = image_hi;
2781 static void
2782 decode_ieee_double (const struct real_format *fmt, REAL_VALUE_TYPE *r,
2783 const long *buf)
2785 unsigned long image_hi, image_lo;
2786 bool sign;
2787 int exp;
2789 if (FLOAT_WORDS_BIG_ENDIAN)
2790 image_hi = buf[0], image_lo = buf[1];
2791 else
2792 image_lo = buf[0], image_hi = buf[1];
2793 image_lo &= 0xffffffff;
2794 image_hi &= 0xffffffff;
2796 sign = (image_hi >> 31) & 1;
2797 exp = (image_hi >> 20) & 0x7ff;
2799 memset (r, 0, sizeof (*r));
2801 image_hi <<= 32 - 21;
2802 image_hi |= image_lo >> 21;
2803 image_hi &= 0x7fffffff;
2804 image_lo <<= 32 - 21;
2806 if (exp == 0)
2808 if ((image_hi || image_lo) && fmt->has_denorm)
2810 r->cl = rvc_normal;
2811 r->sign = sign;
2812 SET_REAL_EXP (r, -1022);
2813 if (HOST_BITS_PER_LONG == 32)
2815 image_hi = (image_hi << 1) | (image_lo >> 31);
2816 image_lo <<= 1;
2817 r->sig[SIGSZ-1] = image_hi;
2818 r->sig[SIGSZ-2] = image_lo;
2820 else
2822 image_hi = (image_hi << 31 << 2) | (image_lo << 1);
2823 r->sig[SIGSZ-1] = image_hi;
2825 normalize (r);
2827 else if (fmt->has_signed_zero)
2828 r->sign = sign;
2830 else if (exp == 2047 && (fmt->has_nans || fmt->has_inf))
2832 if (image_hi || image_lo)
2834 r->cl = rvc_nan;
2835 r->sign = sign;
2836 r->signalling = ((image_hi >> 30) & 1) ^ fmt->qnan_msb_set;
2837 if (HOST_BITS_PER_LONG == 32)
2839 r->sig[SIGSZ-1] = image_hi;
2840 r->sig[SIGSZ-2] = image_lo;
2842 else
2843 r->sig[SIGSZ-1] = (image_hi << 31 << 1) | image_lo;
2845 else
2847 r->cl = rvc_inf;
2848 r->sign = sign;
2851 else
2853 r->cl = rvc_normal;
2854 r->sign = sign;
2855 SET_REAL_EXP (r, exp - 1023 + 1);
2856 if (HOST_BITS_PER_LONG == 32)
2858 r->sig[SIGSZ-1] = image_hi | SIG_MSB;
2859 r->sig[SIGSZ-2] = image_lo;
2861 else
2862 r->sig[SIGSZ-1] = (image_hi << 31 << 1) | image_lo | SIG_MSB;
2866 const struct real_format ieee_double_format =
2868 encode_ieee_double,
2869 decode_ieee_double,
2874 -1021,
2875 1024,
2877 true,
2878 true,
2879 true,
2880 true,
2881 true
2884 const struct real_format mips_double_format =
2886 encode_ieee_double,
2887 decode_ieee_double,
2892 -1021,
2893 1024,
2895 true,
2896 true,
2897 true,
2898 true,
2899 false
2903 /* IEEE extended real format. This comes in three flavors: Intel's as
2904 a 12 byte image, Intel's as a 16 byte image, and Motorola's. Intel
2905 12- and 16-byte images may be big- or little endian; Motorola's is
2906 always big endian. */
2908 /* Helper subroutine which converts from the internal format to the
2909 12-byte little-endian Intel format. Functions below adjust this
2910 for the other possible formats. */
2911 static void
2912 encode_ieee_extended (const struct real_format *fmt, long *buf,
2913 const REAL_VALUE_TYPE *r)
2915 unsigned long image_hi, sig_hi, sig_lo;
2916 bool denormal = (r->sig[SIGSZ-1] & SIG_MSB) == 0;
2918 image_hi = r->sign << 15;
2919 sig_hi = sig_lo = 0;
2921 switch (r->cl)
2923 case rvc_zero:
2924 break;
2926 case rvc_inf:
2927 if (fmt->has_inf)
2929 image_hi |= 32767;
2931 /* Intel requires the explicit integer bit to be set, otherwise
2932 it considers the value a "pseudo-infinity". Motorola docs
2933 say it doesn't care. */
2934 sig_hi = 0x80000000;
2936 else
2938 image_hi |= 32767;
2939 sig_lo = sig_hi = 0xffffffff;
2941 break;
2943 case rvc_nan:
2944 if (fmt->has_nans)
2946 image_hi |= 32767;
2947 if (HOST_BITS_PER_LONG == 32)
2949 sig_hi = r->sig[SIGSZ-1];
2950 sig_lo = r->sig[SIGSZ-2];
2952 else
2954 sig_lo = r->sig[SIGSZ-1];
2955 sig_hi = sig_lo >> 31 >> 1;
2956 sig_lo &= 0xffffffff;
2958 if (r->signalling == fmt->qnan_msb_set)
2959 sig_hi &= ~(1 << 30);
2960 else
2961 sig_hi |= 1 << 30;
2962 if ((sig_hi & 0x7fffffff) == 0 && sig_lo == 0)
2963 sig_hi = 1 << 29;
2965 /* Intel requires the explicit integer bit to be set, otherwise
2966 it considers the value a "pseudo-nan". Motorola docs say it
2967 doesn't care. */
2968 sig_hi |= 0x80000000;
2970 else
2972 image_hi |= 32767;
2973 sig_lo = sig_hi = 0xffffffff;
2975 break;
2977 case rvc_normal:
2979 int exp = REAL_EXP (r);
2981 /* Recall that IEEE numbers are interpreted as 1.F x 2**exp,
2982 whereas the intermediate representation is 0.F x 2**exp.
2983 Which means we're off by one.
2985 Except for Motorola, which consider exp=0 and explicit
2986 integer bit set to continue to be normalized. In theory
2987 this discrepancy has been taken care of by the difference
2988 in fmt->emin in round_for_format. */
2990 if (denormal)
2991 exp = 0;
2992 else
2994 exp += 16383 - 1;
2995 gcc_assert (exp >= 0);
2997 image_hi |= exp;
2999 if (HOST_BITS_PER_LONG == 32)
3001 sig_hi = r->sig[SIGSZ-1];
3002 sig_lo = r->sig[SIGSZ-2];
3004 else
3006 sig_lo = r->sig[SIGSZ-1];
3007 sig_hi = sig_lo >> 31 >> 1;
3008 sig_lo &= 0xffffffff;
3011 break;
3013 default:
3014 gcc_unreachable ();
3017 buf[0] = sig_lo, buf[1] = sig_hi, buf[2] = image_hi;
3020 /* Convert from the internal format to the 12-byte Motorola format
3021 for an IEEE extended real. */
3022 static void
3023 encode_ieee_extended_motorola (const struct real_format *fmt, long *buf,
3024 const REAL_VALUE_TYPE *r)
3026 long intermed[3];
3027 encode_ieee_extended (fmt, intermed, r);
3029 /* Motorola chips are assumed always to be big-endian. Also, the
3030 padding in a Motorola extended real goes between the exponent and
3031 the mantissa. At this point the mantissa is entirely within
3032 elements 0 and 1 of intermed, and the exponent entirely within
3033 element 2, so all we have to do is swap the order around, and
3034 shift element 2 left 16 bits. */
3035 buf[0] = intermed[2] << 16;
3036 buf[1] = intermed[1];
3037 buf[2] = intermed[0];
3040 /* Convert from the internal format to the 12-byte Intel format for
3041 an IEEE extended real. */
3042 static void
3043 encode_ieee_extended_intel_96 (const struct real_format *fmt, long *buf,
3044 const REAL_VALUE_TYPE *r)
3046 if (FLOAT_WORDS_BIG_ENDIAN)
3048 /* All the padding in an Intel-format extended real goes at the high
3049 end, which in this case is after the mantissa, not the exponent.
3050 Therefore we must shift everything down 16 bits. */
3051 long intermed[3];
3052 encode_ieee_extended (fmt, intermed, r);
3053 buf[0] = ((intermed[2] << 16) | ((unsigned long)(intermed[1] & 0xFFFF0000) >> 16));
3054 buf[1] = ((intermed[1] << 16) | ((unsigned long)(intermed[0] & 0xFFFF0000) >> 16));
3055 buf[2] = (intermed[0] << 16);
3057 else
3058 /* encode_ieee_extended produces what we want directly. */
3059 encode_ieee_extended (fmt, buf, r);
3062 /* Convert from the internal format to the 16-byte Intel format for
3063 an IEEE extended real. */
3064 static void
3065 encode_ieee_extended_intel_128 (const struct real_format *fmt, long *buf,
3066 const REAL_VALUE_TYPE *r)
3068 /* All the padding in an Intel-format extended real goes at the high end. */
3069 encode_ieee_extended_intel_96 (fmt, buf, r);
3070 buf[3] = 0;
3073 /* As above, we have a helper function which converts from 12-byte
3074 little-endian Intel format to internal format. Functions below
3075 adjust for the other possible formats. */
3076 static void
3077 decode_ieee_extended (const struct real_format *fmt, REAL_VALUE_TYPE *r,
3078 const long *buf)
3080 unsigned long image_hi, sig_hi, sig_lo;
3081 bool sign;
3082 int exp;
3084 sig_lo = buf[0], sig_hi = buf[1], image_hi = buf[2];
3085 sig_lo &= 0xffffffff;
3086 sig_hi &= 0xffffffff;
3087 image_hi &= 0xffffffff;
3089 sign = (image_hi >> 15) & 1;
3090 exp = image_hi & 0x7fff;
3092 memset (r, 0, sizeof (*r));
3094 if (exp == 0)
3096 if ((sig_hi || sig_lo) && fmt->has_denorm)
3098 r->cl = rvc_normal;
3099 r->sign = sign;
3101 /* When the IEEE format contains a hidden bit, we know that
3102 it's zero at this point, and so shift up the significand
3103 and decrease the exponent to match. In this case, Motorola
3104 defines the explicit integer bit to be valid, so we don't
3105 know whether the msb is set or not. */
3106 SET_REAL_EXP (r, fmt->emin);
3107 if (HOST_BITS_PER_LONG == 32)
3109 r->sig[SIGSZ-1] = sig_hi;
3110 r->sig[SIGSZ-2] = sig_lo;
3112 else
3113 r->sig[SIGSZ-1] = (sig_hi << 31 << 1) | sig_lo;
3115 normalize (r);
3117 else if (fmt->has_signed_zero)
3118 r->sign = sign;
3120 else if (exp == 32767 && (fmt->has_nans || fmt->has_inf))
3122 /* See above re "pseudo-infinities" and "pseudo-nans".
3123 Short summary is that the MSB will likely always be
3124 set, and that we don't care about it. */
3125 sig_hi &= 0x7fffffff;
3127 if (sig_hi || sig_lo)
3129 r->cl = rvc_nan;
3130 r->sign = sign;
3131 r->signalling = ((sig_hi >> 30) & 1) ^ fmt->qnan_msb_set;
3132 if (HOST_BITS_PER_LONG == 32)
3134 r->sig[SIGSZ-1] = sig_hi;
3135 r->sig[SIGSZ-2] = sig_lo;
3137 else
3138 r->sig[SIGSZ-1] = (sig_hi << 31 << 1) | sig_lo;
3140 else
3142 r->cl = rvc_inf;
3143 r->sign = sign;
3146 else
3148 r->cl = rvc_normal;
3149 r->sign = sign;
3150 SET_REAL_EXP (r, exp - 16383 + 1);
3151 if (HOST_BITS_PER_LONG == 32)
3153 r->sig[SIGSZ-1] = sig_hi;
3154 r->sig[SIGSZ-2] = sig_lo;
3156 else
3157 r->sig[SIGSZ-1] = (sig_hi << 31 << 1) | sig_lo;
3161 /* Convert from the internal format to the 12-byte Motorola format
3162 for an IEEE extended real. */
3163 static void
3164 decode_ieee_extended_motorola (const struct real_format *fmt, REAL_VALUE_TYPE *r,
3165 const long *buf)
3167 long intermed[3];
3169 /* Motorola chips are assumed always to be big-endian. Also, the
3170 padding in a Motorola extended real goes between the exponent and
3171 the mantissa; remove it. */
3172 intermed[0] = buf[2];
3173 intermed[1] = buf[1];
3174 intermed[2] = (unsigned long)buf[0] >> 16;
3176 decode_ieee_extended (fmt, r, intermed);
3179 /* Convert from the internal format to the 12-byte Intel format for
3180 an IEEE extended real. */
3181 static void
3182 decode_ieee_extended_intel_96 (const struct real_format *fmt, REAL_VALUE_TYPE *r,
3183 const long *buf)
3185 if (FLOAT_WORDS_BIG_ENDIAN)
3187 /* All the padding in an Intel-format extended real goes at the high
3188 end, which in this case is after the mantissa, not the exponent.
3189 Therefore we must shift everything up 16 bits. */
3190 long intermed[3];
3192 intermed[0] = (((unsigned long)buf[2] >> 16) | (buf[1] << 16));
3193 intermed[1] = (((unsigned long)buf[1] >> 16) | (buf[0] << 16));
3194 intermed[2] = ((unsigned long)buf[0] >> 16);
3196 decode_ieee_extended (fmt, r, intermed);
3198 else
3199 /* decode_ieee_extended produces what we want directly. */
3200 decode_ieee_extended (fmt, r, buf);
3203 /* Convert from the internal format to the 16-byte Intel format for
3204 an IEEE extended real. */
3205 static void
3206 decode_ieee_extended_intel_128 (const struct real_format *fmt, REAL_VALUE_TYPE *r,
3207 const long *buf)
3209 /* All the padding in an Intel-format extended real goes at the high end. */
3210 decode_ieee_extended_intel_96 (fmt, r, buf);
3213 const struct real_format ieee_extended_motorola_format =
3215 encode_ieee_extended_motorola,
3216 decode_ieee_extended_motorola,
3221 -16382,
3222 16384,
3224 true,
3225 true,
3226 true,
3227 true,
3228 true
3231 const struct real_format ieee_extended_intel_96_format =
3233 encode_ieee_extended_intel_96,
3234 decode_ieee_extended_intel_96,
3239 -16381,
3240 16384,
3242 true,
3243 true,
3244 true,
3245 true,
3246 true
3249 const struct real_format ieee_extended_intel_128_format =
3251 encode_ieee_extended_intel_128,
3252 decode_ieee_extended_intel_128,
3257 -16381,
3258 16384,
3260 true,
3261 true,
3262 true,
3263 true,
3264 true
3267 /* The following caters to i386 systems that set the rounding precision
3268 to 53 bits instead of 64, e.g. FreeBSD. */
3269 const struct real_format ieee_extended_intel_96_round_53_format =
3271 encode_ieee_extended_intel_96,
3272 decode_ieee_extended_intel_96,
3277 -16381,
3278 16384,
3280 true,
3281 true,
3282 true,
3283 true,
3284 true
3287 /* IBM 128-bit extended precision format: a pair of IEEE double precision
3288 numbers whose sum is equal to the extended precision value. The number
3289 with greater magnitude is first. This format has the same magnitude
3290 range as an IEEE double precision value, but effectively 106 bits of
3291 significand precision. Infinity and NaN are represented by their IEEE
3292 double precision value stored in the first number, the second number is
3293 +0.0 or -0.0 for Infinity and don't-care for NaN. */
3295 static void encode_ibm_extended (const struct real_format *fmt,
3296 long *, const REAL_VALUE_TYPE *);
3297 static void decode_ibm_extended (const struct real_format *,
3298 REAL_VALUE_TYPE *, const long *);
3300 static void
3301 encode_ibm_extended (const struct real_format *fmt, long *buf,
3302 const REAL_VALUE_TYPE *r)
3304 REAL_VALUE_TYPE u, normr, v;
3305 const struct real_format *base_fmt;
3307 base_fmt = fmt->qnan_msb_set ? &ieee_double_format : &mips_double_format;
3309 /* Renormlize R before doing any arithmetic on it. */
3310 normr = *r;
3311 if (normr.cl == rvc_normal)
3312 normalize (&normr);
3314 /* u = IEEE double precision portion of significand. */
3315 u = normr;
3316 round_for_format (base_fmt, &u);
3317 encode_ieee_double (base_fmt, &buf[0], &u);
3319 if (u.cl == rvc_normal)
3321 do_add (&v, &normr, &u, 1);
3322 /* Call round_for_format since we might need to denormalize. */
3323 round_for_format (base_fmt, &v);
3324 encode_ieee_double (base_fmt, &buf[2], &v);
3326 else
3328 /* Inf, NaN, 0 are all representable as doubles, so the
3329 least-significant part can be 0.0. */
3330 buf[2] = 0;
3331 buf[3] = 0;
3335 static void
3336 decode_ibm_extended (const struct real_format *fmt ATTRIBUTE_UNUSED, REAL_VALUE_TYPE *r,
3337 const long *buf)
3339 REAL_VALUE_TYPE u, v;
3340 const struct real_format *base_fmt;
3342 base_fmt = fmt->qnan_msb_set ? &ieee_double_format : &mips_double_format;
3343 decode_ieee_double (base_fmt, &u, &buf[0]);
3345 if (u.cl != rvc_zero && u.cl != rvc_inf && u.cl != rvc_nan)
3347 decode_ieee_double (base_fmt, &v, &buf[2]);
3348 do_add (r, &u, &v, 0);
3350 else
3351 *r = u;
3354 const struct real_format ibm_extended_format =
3356 encode_ibm_extended,
3357 decode_ibm_extended,
3360 53 + 53,
3362 -1021 + 53,
3363 1024,
3365 true,
3366 true,
3367 true,
3368 true,
3369 true
3372 const struct real_format mips_extended_format =
3374 encode_ibm_extended,
3375 decode_ibm_extended,
3378 53 + 53,
3380 -1021 + 53,
3381 1024,
3383 true,
3384 true,
3385 true,
3386 true,
3387 false
3391 /* IEEE quad precision format. */
3393 static void encode_ieee_quad (const struct real_format *fmt,
3394 long *, const REAL_VALUE_TYPE *);
3395 static void decode_ieee_quad (const struct real_format *,
3396 REAL_VALUE_TYPE *, const long *);
3398 static void
3399 encode_ieee_quad (const struct real_format *fmt, long *buf,
3400 const REAL_VALUE_TYPE *r)
3402 unsigned long image3, image2, image1, image0, exp;
3403 bool denormal = (r->sig[SIGSZ-1] & SIG_MSB) == 0;
3404 REAL_VALUE_TYPE u;
3406 image3 = r->sign << 31;
3407 image2 = 0;
3408 image1 = 0;
3409 image0 = 0;
3411 rshift_significand (&u, r, SIGNIFICAND_BITS - 113);
3413 switch (r->cl)
3415 case rvc_zero:
3416 break;
3418 case rvc_inf:
3419 if (fmt->has_inf)
3420 image3 |= 32767 << 16;
3421 else
3423 image3 |= 0x7fffffff;
3424 image2 = 0xffffffff;
3425 image1 = 0xffffffff;
3426 image0 = 0xffffffff;
3428 break;
3430 case rvc_nan:
3431 if (fmt->has_nans)
3433 image3 |= 32767 << 16;
3435 if (r->canonical)
3437 /* Don't use bits from the significand. The
3438 initialization above is right. */
3440 else if (HOST_BITS_PER_LONG == 32)
3442 image0 = u.sig[0];
3443 image1 = u.sig[1];
3444 image2 = u.sig[2];
3445 image3 |= u.sig[3] & 0xffff;
3447 else
3449 image0 = u.sig[0];
3450 image1 = image0 >> 31 >> 1;
3451 image2 = u.sig[1];
3452 image3 |= (image2 >> 31 >> 1) & 0xffff;
3453 image0 &= 0xffffffff;
3454 image2 &= 0xffffffff;
3456 if (r->signalling == fmt->qnan_msb_set)
3457 image3 &= ~0x8000;
3458 else
3459 image3 |= 0x8000;
3460 /* We overload qnan_msb_set here: it's only clear for
3461 mips_ieee_single, which wants all mantissa bits but the
3462 quiet/signalling one set in canonical NaNs (at least
3463 Quiet ones). */
3464 if (r->canonical && !fmt->qnan_msb_set)
3466 image3 |= 0x7fff;
3467 image2 = image1 = image0 = 0xffffffff;
3469 else if (((image3 & 0xffff) | image2 | image1 | image0) == 0)
3470 image3 |= 0x4000;
3472 else
3474 image3 |= 0x7fffffff;
3475 image2 = 0xffffffff;
3476 image1 = 0xffffffff;
3477 image0 = 0xffffffff;
3479 break;
3481 case rvc_normal:
3482 /* Recall that IEEE numbers are interpreted as 1.F x 2**exp,
3483 whereas the intermediate representation is 0.F x 2**exp.
3484 Which means we're off by one. */
3485 if (denormal)
3486 exp = 0;
3487 else
3488 exp = REAL_EXP (r) + 16383 - 1;
3489 image3 |= exp << 16;
3491 if (HOST_BITS_PER_LONG == 32)
3493 image0 = u.sig[0];
3494 image1 = u.sig[1];
3495 image2 = u.sig[2];
3496 image3 |= u.sig[3] & 0xffff;
3498 else
3500 image0 = u.sig[0];
3501 image1 = image0 >> 31 >> 1;
3502 image2 = u.sig[1];
3503 image3 |= (image2 >> 31 >> 1) & 0xffff;
3504 image0 &= 0xffffffff;
3505 image2 &= 0xffffffff;
3507 break;
3509 default:
3510 gcc_unreachable ();
3513 if (FLOAT_WORDS_BIG_ENDIAN)
3515 buf[0] = image3;
3516 buf[1] = image2;
3517 buf[2] = image1;
3518 buf[3] = image0;
3520 else
3522 buf[0] = image0;
3523 buf[1] = image1;
3524 buf[2] = image2;
3525 buf[3] = image3;
3529 static void
3530 decode_ieee_quad (const struct real_format *fmt, REAL_VALUE_TYPE *r,
3531 const long *buf)
3533 unsigned long image3, image2, image1, image0;
3534 bool sign;
3535 int exp;
3537 if (FLOAT_WORDS_BIG_ENDIAN)
3539 image3 = buf[0];
3540 image2 = buf[1];
3541 image1 = buf[2];
3542 image0 = buf[3];
3544 else
3546 image0 = buf[0];
3547 image1 = buf[1];
3548 image2 = buf[2];
3549 image3 = buf[3];
3551 image0 &= 0xffffffff;
3552 image1 &= 0xffffffff;
3553 image2 &= 0xffffffff;
3555 sign = (image3 >> 31) & 1;
3556 exp = (image3 >> 16) & 0x7fff;
3557 image3 &= 0xffff;
3559 memset (r, 0, sizeof (*r));
3561 if (exp == 0)
3563 if ((image3 | image2 | image1 | image0) && fmt->has_denorm)
3565 r->cl = rvc_normal;
3566 r->sign = sign;
3568 SET_REAL_EXP (r, -16382 + (SIGNIFICAND_BITS - 112));
3569 if (HOST_BITS_PER_LONG == 32)
3571 r->sig[0] = image0;
3572 r->sig[1] = image1;
3573 r->sig[2] = image2;
3574 r->sig[3] = image3;
3576 else
3578 r->sig[0] = (image1 << 31 << 1) | image0;
3579 r->sig[1] = (image3 << 31 << 1) | image2;
3582 normalize (r);
3584 else if (fmt->has_signed_zero)
3585 r->sign = sign;
3587 else if (exp == 32767 && (fmt->has_nans || fmt->has_inf))
3589 if (image3 | image2 | image1 | image0)
3591 r->cl = rvc_nan;
3592 r->sign = sign;
3593 r->signalling = ((image3 >> 15) & 1) ^ fmt->qnan_msb_set;
3595 if (HOST_BITS_PER_LONG == 32)
3597 r->sig[0] = image0;
3598 r->sig[1] = image1;
3599 r->sig[2] = image2;
3600 r->sig[3] = image3;
3602 else
3604 r->sig[0] = (image1 << 31 << 1) | image0;
3605 r->sig[1] = (image3 << 31 << 1) | image2;
3607 lshift_significand (r, r, SIGNIFICAND_BITS - 113);
3609 else
3611 r->cl = rvc_inf;
3612 r->sign = sign;
3615 else
3617 r->cl = rvc_normal;
3618 r->sign = sign;
3619 SET_REAL_EXP (r, exp - 16383 + 1);
3621 if (HOST_BITS_PER_LONG == 32)
3623 r->sig[0] = image0;
3624 r->sig[1] = image1;
3625 r->sig[2] = image2;
3626 r->sig[3] = image3;
3628 else
3630 r->sig[0] = (image1 << 31 << 1) | image0;
3631 r->sig[1] = (image3 << 31 << 1) | image2;
3633 lshift_significand (r, r, SIGNIFICAND_BITS - 113);
3634 r->sig[SIGSZ-1] |= SIG_MSB;
3638 const struct real_format ieee_quad_format =
3640 encode_ieee_quad,
3641 decode_ieee_quad,
3644 113,
3645 113,
3646 -16381,
3647 16384,
3648 127,
3649 true,
3650 true,
3651 true,
3652 true,
3653 true
3656 const struct real_format mips_quad_format =
3658 encode_ieee_quad,
3659 decode_ieee_quad,
3662 113,
3663 113,
3664 -16381,
3665 16384,
3666 127,
3667 true,
3668 true,
3669 true,
3670 true,
3671 false
3674 /* Descriptions of VAX floating point formats can be found beginning at
3676 http://h71000.www7.hp.com/doc/73FINAL/4515/4515pro_013.html#f_floating_point_format
3678 The thing to remember is that they're almost IEEE, except for word
3679 order, exponent bias, and the lack of infinities, nans, and denormals.
3681 We don't implement the H_floating format here, simply because neither
3682 the VAX or Alpha ports use it. */
3684 static void encode_vax_f (const struct real_format *fmt,
3685 long *, const REAL_VALUE_TYPE *);
3686 static void decode_vax_f (const struct real_format *,
3687 REAL_VALUE_TYPE *, const long *);
3688 static void encode_vax_d (const struct real_format *fmt,
3689 long *, const REAL_VALUE_TYPE *);
3690 static void decode_vax_d (const struct real_format *,
3691 REAL_VALUE_TYPE *, const long *);
3692 static void encode_vax_g (const struct real_format *fmt,
3693 long *, const REAL_VALUE_TYPE *);
3694 static void decode_vax_g (const struct real_format *,
3695 REAL_VALUE_TYPE *, const long *);
3697 static void
3698 encode_vax_f (const struct real_format *fmt ATTRIBUTE_UNUSED, long *buf,
3699 const REAL_VALUE_TYPE *r)
3701 unsigned long sign, exp, sig, image;
3703 sign = r->sign << 15;
3705 switch (r->cl)
3707 case rvc_zero:
3708 image = 0;
3709 break;
3711 case rvc_inf:
3712 case rvc_nan:
3713 image = 0xffff7fff | sign;
3714 break;
3716 case rvc_normal:
3717 sig = (r->sig[SIGSZ-1] >> (HOST_BITS_PER_LONG - 24)) & 0x7fffff;
3718 exp = REAL_EXP (r) + 128;
3720 image = (sig << 16) & 0xffff0000;
3721 image |= sign;
3722 image |= exp << 7;
3723 image |= sig >> 16;
3724 break;
3726 default:
3727 gcc_unreachable ();
3730 buf[0] = image;
3733 static void
3734 decode_vax_f (const struct real_format *fmt ATTRIBUTE_UNUSED,
3735 REAL_VALUE_TYPE *r, const long *buf)
3737 unsigned long image = buf[0] & 0xffffffff;
3738 int exp = (image >> 7) & 0xff;
3740 memset (r, 0, sizeof (*r));
3742 if (exp != 0)
3744 r->cl = rvc_normal;
3745 r->sign = (image >> 15) & 1;
3746 SET_REAL_EXP (r, exp - 128);
3748 image = ((image & 0x7f) << 16) | ((image >> 16) & 0xffff);
3749 r->sig[SIGSZ-1] = (image << (HOST_BITS_PER_LONG - 24)) | SIG_MSB;
3753 static void
3754 encode_vax_d (const struct real_format *fmt ATTRIBUTE_UNUSED, long *buf,
3755 const REAL_VALUE_TYPE *r)
3757 unsigned long image0, image1, sign = r->sign << 15;
3759 switch (r->cl)
3761 case rvc_zero:
3762 image0 = image1 = 0;
3763 break;
3765 case rvc_inf:
3766 case rvc_nan:
3767 image0 = 0xffff7fff | sign;
3768 image1 = 0xffffffff;
3769 break;
3771 case rvc_normal:
3772 /* Extract the significand into straight hi:lo. */
3773 if (HOST_BITS_PER_LONG == 64)
3775 image0 = r->sig[SIGSZ-1];
3776 image1 = (image0 >> (64 - 56)) & 0xffffffff;
3777 image0 = (image0 >> (64 - 56 + 1) >> 31) & 0x7fffff;
3779 else
3781 image0 = r->sig[SIGSZ-1];
3782 image1 = r->sig[SIGSZ-2];
3783 image1 = (image0 << 24) | (image1 >> 8);
3784 image0 = (image0 >> 8) & 0xffffff;
3787 /* Rearrange the half-words of the significand to match the
3788 external format. */
3789 image0 = ((image0 << 16) | (image0 >> 16)) & 0xffff007f;
3790 image1 = ((image1 << 16) | (image1 >> 16)) & 0xffffffff;
3792 /* Add the sign and exponent. */
3793 image0 |= sign;
3794 image0 |= (REAL_EXP (r) + 128) << 7;
3795 break;
3797 default:
3798 gcc_unreachable ();
3801 if (FLOAT_WORDS_BIG_ENDIAN)
3802 buf[0] = image1, buf[1] = image0;
3803 else
3804 buf[0] = image0, buf[1] = image1;
3807 static void
3808 decode_vax_d (const struct real_format *fmt ATTRIBUTE_UNUSED,
3809 REAL_VALUE_TYPE *r, const long *buf)
3811 unsigned long image0, image1;
3812 int exp;
3814 if (FLOAT_WORDS_BIG_ENDIAN)
3815 image1 = buf[0], image0 = buf[1];
3816 else
3817 image0 = buf[0], image1 = buf[1];
3818 image0 &= 0xffffffff;
3819 image1 &= 0xffffffff;
3821 exp = (image0 >> 7) & 0xff;
3823 memset (r, 0, sizeof (*r));
3825 if (exp != 0)
3827 r->cl = rvc_normal;
3828 r->sign = (image0 >> 15) & 1;
3829 SET_REAL_EXP (r, exp - 128);
3831 /* Rearrange the half-words of the external format into
3832 proper ascending order. */
3833 image0 = ((image0 & 0x7f) << 16) | ((image0 >> 16) & 0xffff);
3834 image1 = ((image1 & 0xffff) << 16) | ((image1 >> 16) & 0xffff);
3836 if (HOST_BITS_PER_LONG == 64)
3838 image0 = (image0 << 31 << 1) | image1;
3839 image0 <<= 64 - 56;
3840 image0 |= SIG_MSB;
3841 r->sig[SIGSZ-1] = image0;
3843 else
3845 r->sig[SIGSZ-1] = image0;
3846 r->sig[SIGSZ-2] = image1;
3847 lshift_significand (r, r, 2*HOST_BITS_PER_LONG - 56);
3848 r->sig[SIGSZ-1] |= SIG_MSB;
3853 static void
3854 encode_vax_g (const struct real_format *fmt ATTRIBUTE_UNUSED, long *buf,
3855 const REAL_VALUE_TYPE *r)
3857 unsigned long image0, image1, sign = r->sign << 15;
3859 switch (r->cl)
3861 case rvc_zero:
3862 image0 = image1 = 0;
3863 break;
3865 case rvc_inf:
3866 case rvc_nan:
3867 image0 = 0xffff7fff | sign;
3868 image1 = 0xffffffff;
3869 break;
3871 case rvc_normal:
3872 /* Extract the significand into straight hi:lo. */
3873 if (HOST_BITS_PER_LONG == 64)
3875 image0 = r->sig[SIGSZ-1];
3876 image1 = (image0 >> (64 - 53)) & 0xffffffff;
3877 image0 = (image0 >> (64 - 53 + 1) >> 31) & 0xfffff;
3879 else
3881 image0 = r->sig[SIGSZ-1];
3882 image1 = r->sig[SIGSZ-2];
3883 image1 = (image0 << 21) | (image1 >> 11);
3884 image0 = (image0 >> 11) & 0xfffff;
3887 /* Rearrange the half-words of the significand to match the
3888 external format. */
3889 image0 = ((image0 << 16) | (image0 >> 16)) & 0xffff000f;
3890 image1 = ((image1 << 16) | (image1 >> 16)) & 0xffffffff;
3892 /* Add the sign and exponent. */
3893 image0 |= sign;
3894 image0 |= (REAL_EXP (r) + 1024) << 4;
3895 break;
3897 default:
3898 gcc_unreachable ();
3901 if (FLOAT_WORDS_BIG_ENDIAN)
3902 buf[0] = image1, buf[1] = image0;
3903 else
3904 buf[0] = image0, buf[1] = image1;
3907 static void
3908 decode_vax_g (const struct real_format *fmt ATTRIBUTE_UNUSED,
3909 REAL_VALUE_TYPE *r, const long *buf)
3911 unsigned long image0, image1;
3912 int exp;
3914 if (FLOAT_WORDS_BIG_ENDIAN)
3915 image1 = buf[0], image0 = buf[1];
3916 else
3917 image0 = buf[0], image1 = buf[1];
3918 image0 &= 0xffffffff;
3919 image1 &= 0xffffffff;
3921 exp = (image0 >> 4) & 0x7ff;
3923 memset (r, 0, sizeof (*r));
3925 if (exp != 0)
3927 r->cl = rvc_normal;
3928 r->sign = (image0 >> 15) & 1;
3929 SET_REAL_EXP (r, exp - 1024);
3931 /* Rearrange the half-words of the external format into
3932 proper ascending order. */
3933 image0 = ((image0 & 0xf) << 16) | ((image0 >> 16) & 0xffff);
3934 image1 = ((image1 & 0xffff) << 16) | ((image1 >> 16) & 0xffff);
3936 if (HOST_BITS_PER_LONG == 64)
3938 image0 = (image0 << 31 << 1) | image1;
3939 image0 <<= 64 - 53;
3940 image0 |= SIG_MSB;
3941 r->sig[SIGSZ-1] = image0;
3943 else
3945 r->sig[SIGSZ-1] = image0;
3946 r->sig[SIGSZ-2] = image1;
3947 lshift_significand (r, r, 64 - 53);
3948 r->sig[SIGSZ-1] |= SIG_MSB;
3953 const struct real_format vax_f_format =
3955 encode_vax_f,
3956 decode_vax_f,
3961 -127,
3962 127,
3964 false,
3965 false,
3966 false,
3967 false,
3968 false
3971 const struct real_format vax_d_format =
3973 encode_vax_d,
3974 decode_vax_d,
3979 -127,
3980 127,
3982 false,
3983 false,
3984 false,
3985 false,
3986 false
3989 const struct real_format vax_g_format =
3991 encode_vax_g,
3992 decode_vax_g,
3997 -1023,
3998 1023,
4000 false,
4001 false,
4002 false,
4003 false,
4004 false
4007 /* A good reference for these can be found in chapter 9 of
4008 "ESA/390 Principles of Operation", IBM document number SA22-7201-01.
4009 An on-line version can be found here:
4011 http://publibz.boulder.ibm.com/cgi-bin/bookmgr_OS390/BOOKS/DZ9AR001/9.1?DT=19930923083613
4014 static void encode_i370_single (const struct real_format *fmt,
4015 long *, const REAL_VALUE_TYPE *);
4016 static void decode_i370_single (const struct real_format *,
4017 REAL_VALUE_TYPE *, const long *);
4018 static void encode_i370_double (const struct real_format *fmt,
4019 long *, const REAL_VALUE_TYPE *);
4020 static void decode_i370_double (const struct real_format *,
4021 REAL_VALUE_TYPE *, const long *);
4023 static void
4024 encode_i370_single (const struct real_format *fmt ATTRIBUTE_UNUSED,
4025 long *buf, const REAL_VALUE_TYPE *r)
4027 unsigned long sign, exp, sig, image;
4029 sign = r->sign << 31;
4031 switch (r->cl)
4033 case rvc_zero:
4034 image = 0;
4035 break;
4037 case rvc_inf:
4038 case rvc_nan:
4039 image = 0x7fffffff | sign;
4040 break;
4042 case rvc_normal:
4043 sig = (r->sig[SIGSZ-1] >> (HOST_BITS_PER_LONG - 24)) & 0xffffff;
4044 exp = ((REAL_EXP (r) / 4) + 64) << 24;
4045 image = sign | exp | sig;
4046 break;
4048 default:
4049 gcc_unreachable ();
4052 buf[0] = image;
4055 static void
4056 decode_i370_single (const struct real_format *fmt ATTRIBUTE_UNUSED,
4057 REAL_VALUE_TYPE *r, const long *buf)
4059 unsigned long sign, sig, image = buf[0];
4060 int exp;
4062 sign = (image >> 31) & 1;
4063 exp = (image >> 24) & 0x7f;
4064 sig = image & 0xffffff;
4066 memset (r, 0, sizeof (*r));
4068 if (exp || sig)
4070 r->cl = rvc_normal;
4071 r->sign = sign;
4072 SET_REAL_EXP (r, (exp - 64) * 4);
4073 r->sig[SIGSZ-1] = sig << (HOST_BITS_PER_LONG - 24);
4074 normalize (r);
4078 static void
4079 encode_i370_double (const struct real_format *fmt ATTRIBUTE_UNUSED,
4080 long *buf, const REAL_VALUE_TYPE *r)
4082 unsigned long sign, exp, image_hi, image_lo;
4084 sign = r->sign << 31;
4086 switch (r->cl)
4088 case rvc_zero:
4089 image_hi = image_lo = 0;
4090 break;
4092 case rvc_inf:
4093 case rvc_nan:
4094 image_hi = 0x7fffffff | sign;
4095 image_lo = 0xffffffff;
4096 break;
4098 case rvc_normal:
4099 if (HOST_BITS_PER_LONG == 64)
4101 image_hi = r->sig[SIGSZ-1];
4102 image_lo = (image_hi >> (64 - 56)) & 0xffffffff;
4103 image_hi = (image_hi >> (64 - 56 + 1) >> 31) & 0xffffff;
4105 else
4107 image_hi = r->sig[SIGSZ-1];
4108 image_lo = r->sig[SIGSZ-2];
4109 image_lo = (image_lo >> 8) | (image_hi << 24);
4110 image_hi >>= 8;
4113 exp = ((REAL_EXP (r) / 4) + 64) << 24;
4114 image_hi |= sign | exp;
4115 break;
4117 default:
4118 gcc_unreachable ();
4121 if (FLOAT_WORDS_BIG_ENDIAN)
4122 buf[0] = image_hi, buf[1] = image_lo;
4123 else
4124 buf[0] = image_lo, buf[1] = image_hi;
4127 static void
4128 decode_i370_double (const struct real_format *fmt ATTRIBUTE_UNUSED,
4129 REAL_VALUE_TYPE *r, const long *buf)
4131 unsigned long sign, image_hi, image_lo;
4132 int exp;
4134 if (FLOAT_WORDS_BIG_ENDIAN)
4135 image_hi = buf[0], image_lo = buf[1];
4136 else
4137 image_lo = buf[0], image_hi = buf[1];
4139 sign = (image_hi >> 31) & 1;
4140 exp = (image_hi >> 24) & 0x7f;
4141 image_hi &= 0xffffff;
4142 image_lo &= 0xffffffff;
4144 memset (r, 0, sizeof (*r));
4146 if (exp || image_hi || image_lo)
4148 r->cl = rvc_normal;
4149 r->sign = sign;
4150 SET_REAL_EXP (r, (exp - 64) * 4 + (SIGNIFICAND_BITS - 56));
4152 if (HOST_BITS_PER_LONG == 32)
4154 r->sig[0] = image_lo;
4155 r->sig[1] = image_hi;
4157 else
4158 r->sig[0] = image_lo | (image_hi << 31 << 1);
4160 normalize (r);
4164 const struct real_format i370_single_format =
4166 encode_i370_single,
4167 decode_i370_single,
4172 -64,
4175 false,
4176 false,
4177 false, /* ??? The encoding does allow for "unnormals". */
4178 false, /* ??? The encoding does allow for "unnormals". */
4179 false
4182 const struct real_format i370_double_format =
4184 encode_i370_double,
4185 decode_i370_double,
4190 -64,
4193 false,
4194 false,
4195 false, /* ??? The encoding does allow for "unnormals". */
4196 false, /* ??? The encoding does allow for "unnormals". */
4197 false
4200 /* The "twos-complement" c4x format is officially defined as
4202 x = s(~s).f * 2**e
4204 This is rather misleading. One must remember that F is signed.
4205 A better description would be
4207 x = -1**s * ((s + 1 + .f) * 2**e
4209 So if we have a (4 bit) fraction of .1000 with a sign bit of 1,
4210 that's -1 * (1+1+(-.5)) == -1.5. I think.
4212 The constructions here are taken from Tables 5-1 and 5-2 of the
4213 TMS320C4x User's Guide wherein step-by-step instructions for
4214 conversion from IEEE are presented. That's close enough to our
4215 internal representation so as to make things easy.
4217 See http://www-s.ti.com/sc/psheets/spru063c/spru063c.pdf */
4219 static void encode_c4x_single (const struct real_format *fmt,
4220 long *, const REAL_VALUE_TYPE *);
4221 static void decode_c4x_single (const struct real_format *,
4222 REAL_VALUE_TYPE *, const long *);
4223 static void encode_c4x_extended (const struct real_format *fmt,
4224 long *, const REAL_VALUE_TYPE *);
4225 static void decode_c4x_extended (const struct real_format *,
4226 REAL_VALUE_TYPE *, const long *);
4228 static void
4229 encode_c4x_single (const struct real_format *fmt ATTRIBUTE_UNUSED,
4230 long *buf, const REAL_VALUE_TYPE *r)
4232 unsigned long image, exp, sig;
4234 switch (r->cl)
4236 case rvc_zero:
4237 exp = -128;
4238 sig = 0;
4239 break;
4241 case rvc_inf:
4242 case rvc_nan:
4243 exp = 127;
4244 sig = 0x800000 - r->sign;
4245 break;
4247 case rvc_normal:
4248 exp = REAL_EXP (r) - 1;
4249 sig = (r->sig[SIGSZ-1] >> (HOST_BITS_PER_LONG - 24)) & 0x7fffff;
4250 if (r->sign)
4252 if (sig)
4253 sig = -sig;
4254 else
4255 exp--;
4256 sig |= 0x800000;
4258 break;
4260 default:
4261 gcc_unreachable ();
4264 image = ((exp & 0xff) << 24) | (sig & 0xffffff);
4265 buf[0] = image;
4268 static void
4269 decode_c4x_single (const struct real_format *fmt ATTRIBUTE_UNUSED,
4270 REAL_VALUE_TYPE *r, const long *buf)
4272 unsigned long image = buf[0];
4273 unsigned long sig;
4274 int exp, sf;
4276 exp = (((image >> 24) & 0xff) ^ 0x80) - 0x80;
4277 sf = ((image & 0xffffff) ^ 0x800000) - 0x800000;
4279 memset (r, 0, sizeof (*r));
4281 if (exp != -128)
4283 r->cl = rvc_normal;
4285 sig = sf & 0x7fffff;
4286 if (sf < 0)
4288 r->sign = 1;
4289 if (sig)
4290 sig = -sig;
4291 else
4292 exp++;
4294 sig = (sig << (HOST_BITS_PER_LONG - 24)) | SIG_MSB;
4296 SET_REAL_EXP (r, exp + 1);
4297 r->sig[SIGSZ-1] = sig;
4301 static void
4302 encode_c4x_extended (const struct real_format *fmt ATTRIBUTE_UNUSED,
4303 long *buf, const REAL_VALUE_TYPE *r)
4305 unsigned long exp, sig;
4307 switch (r->cl)
4309 case rvc_zero:
4310 exp = -128;
4311 sig = 0;
4312 break;
4314 case rvc_inf:
4315 case rvc_nan:
4316 exp = 127;
4317 sig = 0x80000000 - r->sign;
4318 break;
4320 case rvc_normal:
4321 exp = REAL_EXP (r) - 1;
4323 sig = r->sig[SIGSZ-1];
4324 if (HOST_BITS_PER_LONG == 64)
4325 sig = sig >> 1 >> 31;
4326 sig &= 0x7fffffff;
4328 if (r->sign)
4330 if (sig)
4331 sig = -sig;
4332 else
4333 exp--;
4334 sig |= 0x80000000;
4336 break;
4338 default:
4339 gcc_unreachable ();
4342 exp = (exp & 0xff) << 24;
4343 sig &= 0xffffffff;
4345 if (FLOAT_WORDS_BIG_ENDIAN)
4346 buf[0] = exp, buf[1] = sig;
4347 else
4348 buf[0] = sig, buf[0] = exp;
4351 static void
4352 decode_c4x_extended (const struct real_format *fmt ATTRIBUTE_UNUSED,
4353 REAL_VALUE_TYPE *r, const long *buf)
4355 unsigned long sig;
4356 int exp, sf;
4358 if (FLOAT_WORDS_BIG_ENDIAN)
4359 exp = buf[0], sf = buf[1];
4360 else
4361 sf = buf[0], exp = buf[1];
4363 exp = (((exp >> 24) & 0xff) & 0x80) - 0x80;
4364 sf = ((sf & 0xffffffff) ^ 0x80000000) - 0x80000000;
4366 memset (r, 0, sizeof (*r));
4368 if (exp != -128)
4370 r->cl = rvc_normal;
4372 sig = sf & 0x7fffffff;
4373 if (sf < 0)
4375 r->sign = 1;
4376 if (sig)
4377 sig = -sig;
4378 else
4379 exp++;
4381 if (HOST_BITS_PER_LONG == 64)
4382 sig = sig << 1 << 31;
4383 sig |= SIG_MSB;
4385 SET_REAL_EXP (r, exp + 1);
4386 r->sig[SIGSZ-1] = sig;
4390 const struct real_format c4x_single_format =
4392 encode_c4x_single,
4393 decode_c4x_single,
4398 -126,
4399 128,
4401 false,
4402 false,
4403 false,
4404 false,
4405 false
4408 const struct real_format c4x_extended_format =
4410 encode_c4x_extended,
4411 decode_c4x_extended,
4416 -126,
4417 128,
4419 false,
4420 false,
4421 false,
4422 false,
4423 false
4427 /* A synthetic "format" for internal arithmetic. It's the size of the
4428 internal significand minus the two bits needed for proper rounding.
4429 The encode and decode routines exist only to satisfy our paranoia
4430 harness. */
4432 static void encode_internal (const struct real_format *fmt,
4433 long *, const REAL_VALUE_TYPE *);
4434 static void decode_internal (const struct real_format *,
4435 REAL_VALUE_TYPE *, const long *);
4437 static void
4438 encode_internal (const struct real_format *fmt ATTRIBUTE_UNUSED, long *buf,
4439 const REAL_VALUE_TYPE *r)
4441 memcpy (buf, r, sizeof (*r));
4444 static void
4445 decode_internal (const struct real_format *fmt ATTRIBUTE_UNUSED,
4446 REAL_VALUE_TYPE *r, const long *buf)
4448 memcpy (r, buf, sizeof (*r));
4451 const struct real_format real_internal_format =
4453 encode_internal,
4454 decode_internal,
4457 SIGNIFICAND_BITS - 2,
4458 SIGNIFICAND_BITS - 2,
4459 -MAX_EXP,
4460 MAX_EXP,
4462 true,
4463 true,
4464 false,
4465 true,
4466 true
4469 /* Calculate the square root of X in mode MODE, and store the result
4470 in R. Return TRUE if the operation does not raise an exception.
4471 For details see "High Precision Division and Square Root",
4472 Alan H. Karp and Peter Markstein, HP Lab Report 93-93-42, June
4473 1993. http://www.hpl.hp.com/techreports/93/HPL-93-42.pdf. */
4475 bool
4476 real_sqrt (REAL_VALUE_TYPE *r, enum machine_mode mode,
4477 const REAL_VALUE_TYPE *x)
4479 static REAL_VALUE_TYPE halfthree;
4480 static bool init = false;
4481 REAL_VALUE_TYPE h, t, i;
4482 int iter, exp;
4484 /* sqrt(-0.0) is -0.0. */
4485 if (real_isnegzero (x))
4487 *r = *x;
4488 return false;
4491 /* Negative arguments return NaN. */
4492 if (real_isneg (x))
4494 get_canonical_qnan (r, 0);
4495 return false;
4498 /* Infinity and NaN return themselves. */
4499 if (real_isinf (x) || real_isnan (x))
4501 *r = *x;
4502 return false;
4505 if (!init)
4507 do_add (&halfthree, &dconst1, &dconsthalf, 0);
4508 init = true;
4511 /* Initial guess for reciprocal sqrt, i. */
4512 exp = real_exponent (x);
4513 real_ldexp (&i, &dconst1, -exp/2);
4515 /* Newton's iteration for reciprocal sqrt, i. */
4516 for (iter = 0; iter < 16; iter++)
4518 /* i(n+1) = i(n) * (1.5 - 0.5*i(n)*i(n)*x). */
4519 do_multiply (&t, x, &i);
4520 do_multiply (&h, &t, &i);
4521 do_multiply (&t, &h, &dconsthalf);
4522 do_add (&h, &halfthree, &t, 1);
4523 do_multiply (&t, &i, &h);
4525 /* Check for early convergence. */
4526 if (iter >= 6 && real_identical (&i, &t))
4527 break;
4529 /* ??? Unroll loop to avoid copying. */
4530 i = t;
4533 /* Final iteration: r = i*x + 0.5*i*x*(1.0 - i*(i*x)). */
4534 do_multiply (&t, x, &i);
4535 do_multiply (&h, &t, &i);
4536 do_add (&i, &dconst1, &h, 1);
4537 do_multiply (&h, &t, &i);
4538 do_multiply (&i, &dconsthalf, &h);
4539 do_add (&h, &t, &i, 0);
4541 /* ??? We need a Tuckerman test to get the last bit. */
4543 real_convert (r, mode, &h);
4544 return true;
4547 /* Calculate X raised to the integer exponent N in mode MODE and store
4548 the result in R. Return true if the result may be inexact due to
4549 loss of precision. The algorithm is the classic "left-to-right binary
4550 method" described in section 4.6.3 of Donald Knuth's "Seminumerical
4551 Algorithms", "The Art of Computer Programming", Volume 2. */
4553 bool
4554 real_powi (REAL_VALUE_TYPE *r, enum machine_mode mode,
4555 const REAL_VALUE_TYPE *x, HOST_WIDE_INT n)
4557 unsigned HOST_WIDE_INT bit;
4558 REAL_VALUE_TYPE t;
4559 bool inexact = false;
4560 bool init = false;
4561 bool neg;
4562 int i;
4564 if (n == 0)
4566 *r = dconst1;
4567 return false;
4569 else if (n < 0)
4571 /* Don't worry about overflow, from now on n is unsigned. */
4572 neg = true;
4573 n = -n;
4575 else
4576 neg = false;
4578 t = *x;
4579 bit = (unsigned HOST_WIDE_INT) 1 << (HOST_BITS_PER_WIDE_INT - 1);
4580 for (i = 0; i < HOST_BITS_PER_WIDE_INT; i++)
4582 if (init)
4584 inexact |= do_multiply (&t, &t, &t);
4585 if (n & bit)
4586 inexact |= do_multiply (&t, &t, x);
4588 else if (n & bit)
4589 init = true;
4590 bit >>= 1;
4593 if (neg)
4594 inexact |= do_divide (&t, &dconst1, &t);
4596 real_convert (r, mode, &t);
4597 return inexact;
4600 /* Round X to the nearest integer not larger in absolute value, i.e.
4601 towards zero, placing the result in R in mode MODE. */
4603 void
4604 real_trunc (REAL_VALUE_TYPE *r, enum machine_mode mode,
4605 const REAL_VALUE_TYPE *x)
4607 do_fix_trunc (r, x);
4608 if (mode != VOIDmode)
4609 real_convert (r, mode, r);
4612 /* Round X to the largest integer not greater in value, i.e. round
4613 down, placing the result in R in mode MODE. */
4615 void
4616 real_floor (REAL_VALUE_TYPE *r, enum machine_mode mode,
4617 const REAL_VALUE_TYPE *x)
4619 REAL_VALUE_TYPE t;
4621 do_fix_trunc (&t, x);
4622 if (! real_identical (&t, x) && x->sign)
4623 do_add (&t, &t, &dconstm1, 0);
4624 if (mode != VOIDmode)
4625 real_convert (r, mode, &t);
4626 else
4627 *r = t;
4630 /* Round X to the smallest integer not less then argument, i.e. round
4631 up, placing the result in R in mode MODE. */
4633 void
4634 real_ceil (REAL_VALUE_TYPE *r, enum machine_mode mode,
4635 const REAL_VALUE_TYPE *x)
4637 REAL_VALUE_TYPE t;
4639 do_fix_trunc (&t, x);
4640 if (! real_identical (&t, x) && ! x->sign)
4641 do_add (&t, &t, &dconst1, 0);
4642 if (mode != VOIDmode)
4643 real_convert (r, mode, &t);
4644 else
4645 *r = t;
4648 /* Round X to the nearest integer, but round halfway cases away from
4649 zero. */
4651 void
4652 real_round (REAL_VALUE_TYPE *r, enum machine_mode mode,
4653 const REAL_VALUE_TYPE *x)
4655 do_add (r, x, &dconsthalf, x->sign);
4656 do_fix_trunc (r, r);
4657 if (mode != VOIDmode)
4658 real_convert (r, mode, r);
4661 /* Set the sign of R to the sign of X. */
4663 void
4664 real_copysign (REAL_VALUE_TYPE *r, const REAL_VALUE_TYPE *x)
4666 r->sign = x->sign;