1 /* real.c - software floating point emulation.
2 Copyright (C) 1993, 1994, 1995, 1996, 1997, 1998, 1999,
3 2000, 2002, 2003, 2004, 2005 Free Software Foundation, Inc.
4 Contributed by Stephen L. Moshier (moshier@world.std.com).
5 Re-written by Richard Henderson <rth@redhat.com>
7 This file is part of GCC.
9 GCC is free software; you can redistribute it and/or modify it under
10 the terms of the GNU General Public License as published by the Free
11 Software Foundation; either version 2, or (at your option) any later
14 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
15 WARRANTY; without even the implied warranty of MERCHANTABILITY or
16 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
19 You should have received a copy of the GNU General Public License
20 along with GCC; see the file COPYING. If not, write to the Free
21 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
26 #include "coretypes.h"
33 /* The floating point model used internally is not exactly IEEE 754
34 compliant, and close to the description in the ISO C99 standard,
35 section 5.2.4.2.2 Characteristics of floating types.
39 x = s * b^e * \sum_{k=1}^p f_k * b^{-k}
43 b = base or radix, here always 2
45 p = precision (the number of base-b digits in the significand)
46 f_k = the digits of the significand.
48 We differ from typical IEEE 754 encodings in that the entire
49 significand is fractional. Normalized significands are in the
52 A requirement of the model is that P be larger than the largest
53 supported target floating-point type by at least 2 bits. This gives
54 us proper rounding when we truncate to the target type. In addition,
55 E must be large enough to hold the smallest supported denormal number
58 Both of these requirements are easily satisfied. The largest target
59 significand is 113 bits; we store at least 160. The smallest
60 denormal number fits in 17 exponent bits; we store 27.
62 Note that the decimal string conversion routines are sensitive to
63 rounding errors. Since the raw arithmetic routines do not themselves
64 have guard digits or rounding, the computation of 10**exp can
65 accumulate more than a few digits of error. The previous incarnation
66 of real.c successfully used a 144-bit fraction; given the current
67 layout of REAL_VALUE_TYPE we're forced to expand to at least 160 bits.
69 Target floating point models that use base 16 instead of base 2
70 (i.e. IBM 370), are handled during round_for_format, in which we
71 canonicalize the exponent to be a multiple of 4 (log2(16)), and
72 adjust the significand to match. */
75 /* Used to classify two numbers simultaneously. */
76 #define CLASS2(A, B) ((A) << 2 | (B))
78 #if HOST_BITS_PER_LONG != 64 && HOST_BITS_PER_LONG != 32
79 #error "Some constant folding done by hand to avoid shift count warnings"
82 static void get_zero (REAL_VALUE_TYPE
*, int);
83 static void get_canonical_qnan (REAL_VALUE_TYPE
*, int);
84 static void get_canonical_snan (REAL_VALUE_TYPE
*, int);
85 static void get_inf (REAL_VALUE_TYPE
*, int);
86 static bool sticky_rshift_significand (REAL_VALUE_TYPE
*,
87 const REAL_VALUE_TYPE
*, unsigned int);
88 static void rshift_significand (REAL_VALUE_TYPE
*, const REAL_VALUE_TYPE
*,
90 static void lshift_significand (REAL_VALUE_TYPE
*, const REAL_VALUE_TYPE
*,
92 static void lshift_significand_1 (REAL_VALUE_TYPE
*, const REAL_VALUE_TYPE
*);
93 static bool add_significands (REAL_VALUE_TYPE
*r
, const REAL_VALUE_TYPE
*,
94 const REAL_VALUE_TYPE
*);
95 static bool sub_significands (REAL_VALUE_TYPE
*, const REAL_VALUE_TYPE
*,
96 const REAL_VALUE_TYPE
*, int);
97 static void neg_significand (REAL_VALUE_TYPE
*, const REAL_VALUE_TYPE
*);
98 static int cmp_significands (const REAL_VALUE_TYPE
*, const REAL_VALUE_TYPE
*);
99 static int cmp_significand_0 (const REAL_VALUE_TYPE
*);
100 static void set_significand_bit (REAL_VALUE_TYPE
*, unsigned int);
101 static void clear_significand_bit (REAL_VALUE_TYPE
*, unsigned int);
102 static bool test_significand_bit (REAL_VALUE_TYPE
*, unsigned int);
103 static void clear_significand_below (REAL_VALUE_TYPE
*, unsigned int);
104 static bool div_significands (REAL_VALUE_TYPE
*, const REAL_VALUE_TYPE
*,
105 const REAL_VALUE_TYPE
*);
106 static void normalize (REAL_VALUE_TYPE
*);
108 static bool do_add (REAL_VALUE_TYPE
*, const REAL_VALUE_TYPE
*,
109 const REAL_VALUE_TYPE
*, int);
110 static bool do_multiply (REAL_VALUE_TYPE
*, const REAL_VALUE_TYPE
*,
111 const REAL_VALUE_TYPE
*);
112 static bool do_divide (REAL_VALUE_TYPE
*, const REAL_VALUE_TYPE
*,
113 const REAL_VALUE_TYPE
*);
114 static int do_compare (const REAL_VALUE_TYPE
*, const REAL_VALUE_TYPE
*, int);
115 static void do_fix_trunc (REAL_VALUE_TYPE
*, const REAL_VALUE_TYPE
*);
117 static unsigned long rtd_divmod (REAL_VALUE_TYPE
*, REAL_VALUE_TYPE
*);
119 static const REAL_VALUE_TYPE
* ten_to_ptwo (int);
120 static const REAL_VALUE_TYPE
* ten_to_mptwo (int);
121 static const REAL_VALUE_TYPE
* real_digit (int);
122 static void times_pten (REAL_VALUE_TYPE
*, int);
124 static void round_for_format (const struct real_format
*, REAL_VALUE_TYPE
*);
126 /* Initialize R with a positive zero. */
129 get_zero (REAL_VALUE_TYPE
*r
, int sign
)
131 memset (r
, 0, sizeof (*r
));
135 /* Initialize R with the canonical quiet NaN. */
138 get_canonical_qnan (REAL_VALUE_TYPE
*r
, int sign
)
140 memset (r
, 0, sizeof (*r
));
147 get_canonical_snan (REAL_VALUE_TYPE
*r
, int sign
)
149 memset (r
, 0, sizeof (*r
));
157 get_inf (REAL_VALUE_TYPE
*r
, int sign
)
159 memset (r
, 0, sizeof (*r
));
165 /* Right-shift the significand of A by N bits; put the result in the
166 significand of R. If any one bits are shifted out, return true. */
169 sticky_rshift_significand (REAL_VALUE_TYPE
*r
, const REAL_VALUE_TYPE
*a
,
172 unsigned long sticky
= 0;
173 unsigned int i
, ofs
= 0;
175 if (n
>= HOST_BITS_PER_LONG
)
177 for (i
= 0, ofs
= n
/ HOST_BITS_PER_LONG
; i
< ofs
; ++i
)
179 n
&= HOST_BITS_PER_LONG
- 1;
184 sticky
|= a
->sig
[ofs
] & (((unsigned long)1 << n
) - 1);
185 for (i
= 0; i
< SIGSZ
; ++i
)
188 = (((ofs
+ i
>= SIGSZ
? 0 : a
->sig
[ofs
+ i
]) >> n
)
189 | ((ofs
+ i
+ 1 >= SIGSZ
? 0 : a
->sig
[ofs
+ i
+ 1])
190 << (HOST_BITS_PER_LONG
- n
)));
195 for (i
= 0; ofs
+ i
< SIGSZ
; ++i
)
196 r
->sig
[i
] = a
->sig
[ofs
+ i
];
197 for (; i
< SIGSZ
; ++i
)
204 /* Right-shift the significand of A by N bits; put the result in the
208 rshift_significand (REAL_VALUE_TYPE
*r
, const REAL_VALUE_TYPE
*a
,
211 unsigned int i
, ofs
= n
/ HOST_BITS_PER_LONG
;
213 n
&= HOST_BITS_PER_LONG
- 1;
216 for (i
= 0; i
< SIGSZ
; ++i
)
219 = (((ofs
+ i
>= SIGSZ
? 0 : a
->sig
[ofs
+ i
]) >> n
)
220 | ((ofs
+ i
+ 1 >= SIGSZ
? 0 : a
->sig
[ofs
+ i
+ 1])
221 << (HOST_BITS_PER_LONG
- n
)));
226 for (i
= 0; ofs
+ i
< SIGSZ
; ++i
)
227 r
->sig
[i
] = a
->sig
[ofs
+ i
];
228 for (; i
< SIGSZ
; ++i
)
233 /* Left-shift the significand of A by N bits; put the result in the
237 lshift_significand (REAL_VALUE_TYPE
*r
, const REAL_VALUE_TYPE
*a
,
240 unsigned int i
, ofs
= n
/ HOST_BITS_PER_LONG
;
242 n
&= HOST_BITS_PER_LONG
- 1;
245 for (i
= 0; ofs
+ i
< SIGSZ
; ++i
)
246 r
->sig
[SIGSZ
-1-i
] = a
->sig
[SIGSZ
-1-i
-ofs
];
247 for (; i
< SIGSZ
; ++i
)
248 r
->sig
[SIGSZ
-1-i
] = 0;
251 for (i
= 0; i
< SIGSZ
; ++i
)
254 = (((ofs
+ i
>= SIGSZ
? 0 : a
->sig
[SIGSZ
-1-i
-ofs
]) << n
)
255 | ((ofs
+ i
+ 1 >= SIGSZ
? 0 : a
->sig
[SIGSZ
-1-i
-ofs
-1])
256 >> (HOST_BITS_PER_LONG
- n
)));
260 /* Likewise, but N is specialized to 1. */
263 lshift_significand_1 (REAL_VALUE_TYPE
*r
, const REAL_VALUE_TYPE
*a
)
267 for (i
= SIGSZ
- 1; i
> 0; --i
)
268 r
->sig
[i
] = (a
->sig
[i
] << 1) | (a
->sig
[i
-1] >> (HOST_BITS_PER_LONG
- 1));
269 r
->sig
[0] = a
->sig
[0] << 1;
272 /* Add the significands of A and B, placing the result in R. Return
273 true if there was carry out of the most significant word. */
276 add_significands (REAL_VALUE_TYPE
*r
, const REAL_VALUE_TYPE
*a
,
277 const REAL_VALUE_TYPE
*b
)
282 for (i
= 0; i
< SIGSZ
; ++i
)
284 unsigned long ai
= a
->sig
[i
];
285 unsigned long ri
= ai
+ b
->sig
[i
];
301 /* Subtract the significands of A and B, placing the result in R. CARRY is
302 true if there's a borrow incoming to the least significant word.
303 Return true if there was borrow out of the most significant word. */
306 sub_significands (REAL_VALUE_TYPE
*r
, const REAL_VALUE_TYPE
*a
,
307 const REAL_VALUE_TYPE
*b
, int carry
)
311 for (i
= 0; i
< SIGSZ
; ++i
)
313 unsigned long ai
= a
->sig
[i
];
314 unsigned long ri
= ai
- b
->sig
[i
];
330 /* Negate the significand A, placing the result in R. */
333 neg_significand (REAL_VALUE_TYPE
*r
, const REAL_VALUE_TYPE
*a
)
338 for (i
= 0; i
< SIGSZ
; ++i
)
340 unsigned long ri
, ai
= a
->sig
[i
];
359 /* Compare significands. Return tri-state vs zero. */
362 cmp_significands (const REAL_VALUE_TYPE
*a
, const REAL_VALUE_TYPE
*b
)
366 for (i
= SIGSZ
- 1; i
>= 0; --i
)
368 unsigned long ai
= a
->sig
[i
];
369 unsigned long bi
= b
->sig
[i
];
380 /* Return true if A is nonzero. */
383 cmp_significand_0 (const REAL_VALUE_TYPE
*a
)
387 for (i
= SIGSZ
- 1; i
>= 0; --i
)
394 /* Set bit N of the significand of R. */
397 set_significand_bit (REAL_VALUE_TYPE
*r
, unsigned int n
)
399 r
->sig
[n
/ HOST_BITS_PER_LONG
]
400 |= (unsigned long)1 << (n
% HOST_BITS_PER_LONG
);
403 /* Clear bit N of the significand of R. */
406 clear_significand_bit (REAL_VALUE_TYPE
*r
, unsigned int n
)
408 r
->sig
[n
/ HOST_BITS_PER_LONG
]
409 &= ~((unsigned long)1 << (n
% HOST_BITS_PER_LONG
));
412 /* Test bit N of the significand of R. */
415 test_significand_bit (REAL_VALUE_TYPE
*r
, unsigned int n
)
417 /* ??? Compiler bug here if we return this expression directly.
418 The conversion to bool strips the "&1" and we wind up testing
419 e.g. 2 != 0 -> true. Seen in gcc version 3.2 20020520. */
420 int t
= (r
->sig
[n
/ HOST_BITS_PER_LONG
] >> (n
% HOST_BITS_PER_LONG
)) & 1;
424 /* Clear bits 0..N-1 of the significand of R. */
427 clear_significand_below (REAL_VALUE_TYPE
*r
, unsigned int n
)
429 int i
, w
= n
/ HOST_BITS_PER_LONG
;
431 for (i
= 0; i
< w
; ++i
)
434 r
->sig
[w
] &= ~(((unsigned long)1 << (n
% HOST_BITS_PER_LONG
)) - 1);
437 /* Divide the significands of A and B, placing the result in R. Return
438 true if the division was inexact. */
441 div_significands (REAL_VALUE_TYPE
*r
, const REAL_VALUE_TYPE
*a
,
442 const REAL_VALUE_TYPE
*b
)
445 int i
, bit
= SIGNIFICAND_BITS
- 1;
446 unsigned long msb
, inexact
;
449 memset (r
->sig
, 0, sizeof (r
->sig
));
455 msb
= u
.sig
[SIGSZ
-1] & SIG_MSB
;
456 lshift_significand_1 (&u
, &u
);
458 if (msb
|| cmp_significands (&u
, b
) >= 0)
460 sub_significands (&u
, &u
, b
, 0);
461 set_significand_bit (r
, bit
);
466 for (i
= 0, inexact
= 0; i
< SIGSZ
; i
++)
472 /* Adjust the exponent and significand of R such that the most
473 significant bit is set. We underflow to zero and overflow to
474 infinity here, without denormals. (The intermediate representation
475 exponent is large enough to handle target denormals normalized.) */
478 normalize (REAL_VALUE_TYPE
*r
)
483 /* Find the first word that is nonzero. */
484 for (i
= SIGSZ
- 1; i
>= 0; i
--)
486 shift
+= HOST_BITS_PER_LONG
;
490 /* Zero significand flushes to zero. */
498 /* Find the first bit that is nonzero. */
500 if (r
->sig
[i
] & ((unsigned long)1 << (HOST_BITS_PER_LONG
- 1 - j
)))
506 exp
= REAL_EXP (r
) - shift
;
508 get_inf (r
, r
->sign
);
509 else if (exp
< -MAX_EXP
)
510 get_zero (r
, r
->sign
);
513 SET_REAL_EXP (r
, exp
);
514 lshift_significand (r
, r
, shift
);
519 /* Calculate R = A + (SUBTRACT_P ? -B : B). Return true if the
520 result may be inexact due to a loss of precision. */
523 do_add (REAL_VALUE_TYPE
*r
, const REAL_VALUE_TYPE
*a
,
524 const REAL_VALUE_TYPE
*b
, int subtract_p
)
528 bool inexact
= false;
530 /* Determine if we need to add or subtract. */
532 subtract_p
= (sign
^ b
->sign
) ^ subtract_p
;
534 switch (CLASS2 (a
->cl
, b
->cl
))
536 case CLASS2 (rvc_zero
, rvc_zero
):
537 /* -0 + -0 = -0, -0 - +0 = -0; all other cases yield +0. */
538 get_zero (r
, sign
& !subtract_p
);
541 case CLASS2 (rvc_zero
, rvc_normal
):
542 case CLASS2 (rvc_zero
, rvc_inf
):
543 case CLASS2 (rvc_zero
, rvc_nan
):
545 case CLASS2 (rvc_normal
, rvc_nan
):
546 case CLASS2 (rvc_inf
, rvc_nan
):
547 case CLASS2 (rvc_nan
, rvc_nan
):
548 /* ANY + NaN = NaN. */
549 case CLASS2 (rvc_normal
, rvc_inf
):
552 r
->sign
= sign
^ subtract_p
;
555 case CLASS2 (rvc_normal
, rvc_zero
):
556 case CLASS2 (rvc_inf
, rvc_zero
):
557 case CLASS2 (rvc_nan
, rvc_zero
):
559 case CLASS2 (rvc_nan
, rvc_normal
):
560 case CLASS2 (rvc_nan
, rvc_inf
):
561 /* NaN + ANY = NaN. */
562 case CLASS2 (rvc_inf
, rvc_normal
):
567 case CLASS2 (rvc_inf
, rvc_inf
):
569 /* Inf - Inf = NaN. */
570 get_canonical_qnan (r
, 0);
572 /* Inf + Inf = Inf. */
576 case CLASS2 (rvc_normal
, rvc_normal
):
583 /* Swap the arguments such that A has the larger exponent. */
584 dexp
= REAL_EXP (a
) - REAL_EXP (b
);
587 const REAL_VALUE_TYPE
*t
;
594 /* If the exponents are not identical, we need to shift the
595 significand of B down. */
598 /* If the exponents are too far apart, the significands
599 do not overlap, which makes the subtraction a noop. */
600 if (dexp
>= SIGNIFICAND_BITS
)
607 inexact
|= sticky_rshift_significand (&t
, b
, dexp
);
613 if (sub_significands (r
, a
, b
, inexact
))
615 /* We got a borrow out of the subtraction. That means that
616 A and B had the same exponent, and B had the larger
617 significand. We need to swap the sign and negate the
620 neg_significand (r
, r
);
625 if (add_significands (r
, a
, b
))
627 /* We got carry out of the addition. This means we need to
628 shift the significand back down one bit and increase the
630 inexact
|= sticky_rshift_significand (r
, r
, 1);
631 r
->sig
[SIGSZ
-1] |= SIG_MSB
;
642 SET_REAL_EXP (r
, exp
);
643 /* Zero out the remaining fields. */
647 /* Re-normalize the result. */
650 /* Special case: if the subtraction results in zero, the result
652 if (r
->cl
== rvc_zero
)
655 r
->sig
[0] |= inexact
;
660 /* Calculate R = A * B. Return true if the result may be inexact. */
663 do_multiply (REAL_VALUE_TYPE
*r
, const REAL_VALUE_TYPE
*a
,
664 const REAL_VALUE_TYPE
*b
)
666 REAL_VALUE_TYPE u
, t
, *rr
;
667 unsigned int i
, j
, k
;
668 int sign
= a
->sign
^ b
->sign
;
669 bool inexact
= false;
671 switch (CLASS2 (a
->cl
, b
->cl
))
673 case CLASS2 (rvc_zero
, rvc_zero
):
674 case CLASS2 (rvc_zero
, rvc_normal
):
675 case CLASS2 (rvc_normal
, rvc_zero
):
676 /* +-0 * ANY = 0 with appropriate sign. */
680 case CLASS2 (rvc_zero
, rvc_nan
):
681 case CLASS2 (rvc_normal
, rvc_nan
):
682 case CLASS2 (rvc_inf
, rvc_nan
):
683 case CLASS2 (rvc_nan
, rvc_nan
):
684 /* ANY * NaN = NaN. */
689 case CLASS2 (rvc_nan
, rvc_zero
):
690 case CLASS2 (rvc_nan
, rvc_normal
):
691 case CLASS2 (rvc_nan
, rvc_inf
):
692 /* NaN * ANY = NaN. */
697 case CLASS2 (rvc_zero
, rvc_inf
):
698 case CLASS2 (rvc_inf
, rvc_zero
):
700 get_canonical_qnan (r
, sign
);
703 case CLASS2 (rvc_inf
, rvc_inf
):
704 case CLASS2 (rvc_normal
, rvc_inf
):
705 case CLASS2 (rvc_inf
, rvc_normal
):
706 /* Inf * Inf = Inf, R * Inf = Inf */
710 case CLASS2 (rvc_normal
, rvc_normal
):
717 if (r
== a
|| r
== b
)
723 /* Collect all the partial products. Since we don't have sure access
724 to a widening multiply, we split each long into two half-words.
726 Consider the long-hand form of a four half-word multiplication:
736 We construct partial products of the widened half-word products
737 that are known to not overlap, e.g. DF+DH. Each such partial
738 product is given its proper exponent, which allows us to sum them
739 and obtain the finished product. */
741 for (i
= 0; i
< SIGSZ
* 2; ++i
)
743 unsigned long ai
= a
->sig
[i
/ 2];
745 ai
>>= HOST_BITS_PER_LONG
/ 2;
747 ai
&= ((unsigned long)1 << (HOST_BITS_PER_LONG
/ 2)) - 1;
752 for (j
= 0; j
< 2; ++j
)
754 int exp
= (REAL_EXP (a
) - (2*SIGSZ
-1-i
)*(HOST_BITS_PER_LONG
/2)
755 + (REAL_EXP (b
) - (1-j
)*(HOST_BITS_PER_LONG
/2)));
764 /* Would underflow to zero, which we shouldn't bother adding. */
769 memset (&u
, 0, sizeof (u
));
771 SET_REAL_EXP (&u
, exp
);
773 for (k
= j
; k
< SIGSZ
* 2; k
+= 2)
775 unsigned long bi
= b
->sig
[k
/ 2];
777 bi
>>= HOST_BITS_PER_LONG
/ 2;
779 bi
&= ((unsigned long)1 << (HOST_BITS_PER_LONG
/ 2)) - 1;
781 u
.sig
[k
/ 2] = ai
* bi
;
785 inexact
|= do_add (rr
, rr
, &u
, 0);
796 /* Calculate R = A / B. Return true if the result may be inexact. */
799 do_divide (REAL_VALUE_TYPE
*r
, const REAL_VALUE_TYPE
*a
,
800 const REAL_VALUE_TYPE
*b
)
802 int exp
, sign
= a
->sign
^ b
->sign
;
803 REAL_VALUE_TYPE t
, *rr
;
806 switch (CLASS2 (a
->cl
, b
->cl
))
808 case CLASS2 (rvc_zero
, rvc_zero
):
810 case CLASS2 (rvc_inf
, rvc_inf
):
811 /* Inf / Inf = NaN. */
812 get_canonical_qnan (r
, sign
);
815 case CLASS2 (rvc_zero
, rvc_normal
):
816 case CLASS2 (rvc_zero
, rvc_inf
):
818 case CLASS2 (rvc_normal
, rvc_inf
):
823 case CLASS2 (rvc_normal
, rvc_zero
):
825 case CLASS2 (rvc_inf
, rvc_zero
):
830 case CLASS2 (rvc_zero
, rvc_nan
):
831 case CLASS2 (rvc_normal
, rvc_nan
):
832 case CLASS2 (rvc_inf
, rvc_nan
):
833 case CLASS2 (rvc_nan
, rvc_nan
):
834 /* ANY / NaN = NaN. */
839 case CLASS2 (rvc_nan
, rvc_zero
):
840 case CLASS2 (rvc_nan
, rvc_normal
):
841 case CLASS2 (rvc_nan
, rvc_inf
):
842 /* NaN / ANY = NaN. */
847 case CLASS2 (rvc_inf
, rvc_normal
):
852 case CLASS2 (rvc_normal
, rvc_normal
):
859 if (r
== a
|| r
== b
)
864 /* Make sure all fields in the result are initialized. */
869 exp
= REAL_EXP (a
) - REAL_EXP (b
) + 1;
880 SET_REAL_EXP (rr
, exp
);
882 inexact
= div_significands (rr
, a
, b
);
884 /* Re-normalize the result. */
886 rr
->sig
[0] |= inexact
;
894 /* Return a tri-state comparison of A vs B. Return NAN_RESULT if
895 one of the two operands is a NaN. */
898 do_compare (const REAL_VALUE_TYPE
*a
, const REAL_VALUE_TYPE
*b
,
903 switch (CLASS2 (a
->cl
, b
->cl
))
905 case CLASS2 (rvc_zero
, rvc_zero
):
906 /* Sign of zero doesn't matter for compares. */
909 case CLASS2 (rvc_inf
, rvc_zero
):
910 case CLASS2 (rvc_inf
, rvc_normal
):
911 case CLASS2 (rvc_normal
, rvc_zero
):
912 return (a
->sign
? -1 : 1);
914 case CLASS2 (rvc_inf
, rvc_inf
):
915 return -a
->sign
- -b
->sign
;
917 case CLASS2 (rvc_zero
, rvc_normal
):
918 case CLASS2 (rvc_zero
, rvc_inf
):
919 case CLASS2 (rvc_normal
, rvc_inf
):
920 return (b
->sign
? 1 : -1);
922 case CLASS2 (rvc_zero
, rvc_nan
):
923 case CLASS2 (rvc_normal
, rvc_nan
):
924 case CLASS2 (rvc_inf
, rvc_nan
):
925 case CLASS2 (rvc_nan
, rvc_nan
):
926 case CLASS2 (rvc_nan
, rvc_zero
):
927 case CLASS2 (rvc_nan
, rvc_normal
):
928 case CLASS2 (rvc_nan
, rvc_inf
):
931 case CLASS2 (rvc_normal
, rvc_normal
):
938 if (a
->sign
!= b
->sign
)
939 return -a
->sign
- -b
->sign
;
941 if (REAL_EXP (a
) > REAL_EXP (b
))
943 else if (REAL_EXP (a
) < REAL_EXP (b
))
946 ret
= cmp_significands (a
, b
);
948 return (a
->sign
? -ret
: ret
);
951 /* Return A truncated to an integral value toward zero. */
954 do_fix_trunc (REAL_VALUE_TYPE
*r
, const REAL_VALUE_TYPE
*a
)
966 if (REAL_EXP (r
) <= 0)
967 get_zero (r
, r
->sign
);
968 else if (REAL_EXP (r
) < SIGNIFICAND_BITS
)
969 clear_significand_below (r
, SIGNIFICAND_BITS
- REAL_EXP (r
));
977 /* Perform the binary or unary operation described by CODE.
978 For a unary operation, leave OP1 NULL. This function returns
979 true if the result may be inexact due to loss of precision. */
982 real_arithmetic (REAL_VALUE_TYPE
*r
, int icode
, const REAL_VALUE_TYPE
*op0
,
983 const REAL_VALUE_TYPE
*op1
)
985 enum tree_code code
= icode
;
990 return do_add (r
, op0
, op1
, 0);
993 return do_add (r
, op0
, op1
, 1);
996 return do_multiply (r
, op0
, op1
);
999 return do_divide (r
, op0
, op1
);
1002 if (op1
->cl
== rvc_nan
)
1004 else if (do_compare (op0
, op1
, -1) < 0)
1011 if (op1
->cl
== rvc_nan
)
1013 else if (do_compare (op0
, op1
, 1) < 0)
1029 case FIX_TRUNC_EXPR
:
1030 do_fix_trunc (r
, op0
);
1039 /* Legacy. Similar, but return the result directly. */
1042 real_arithmetic2 (int icode
, const REAL_VALUE_TYPE
*op0
,
1043 const REAL_VALUE_TYPE
*op1
)
1046 real_arithmetic (&r
, icode
, op0
, op1
);
1051 real_compare (int icode
, const REAL_VALUE_TYPE
*op0
,
1052 const REAL_VALUE_TYPE
*op1
)
1054 enum tree_code code
= icode
;
1059 return do_compare (op0
, op1
, 1) < 0;
1061 return do_compare (op0
, op1
, 1) <= 0;
1063 return do_compare (op0
, op1
, -1) > 0;
1065 return do_compare (op0
, op1
, -1) >= 0;
1067 return do_compare (op0
, op1
, -1) == 0;
1069 return do_compare (op0
, op1
, -1) != 0;
1070 case UNORDERED_EXPR
:
1071 return op0
->cl
== rvc_nan
|| op1
->cl
== rvc_nan
;
1073 return op0
->cl
!= rvc_nan
&& op1
->cl
!= rvc_nan
;
1075 return do_compare (op0
, op1
, -1) < 0;
1077 return do_compare (op0
, op1
, -1) <= 0;
1079 return do_compare (op0
, op1
, 1) > 0;
1081 return do_compare (op0
, op1
, 1) >= 0;
1083 return do_compare (op0
, op1
, 0) == 0;
1085 return do_compare (op0
, op1
, 0) != 0;
1092 /* Return floor log2(R). */
1095 real_exponent (const REAL_VALUE_TYPE
*r
)
1103 return (unsigned int)-1 >> 1;
1105 return REAL_EXP (r
);
1111 /* R = OP0 * 2**EXP. */
1114 real_ldexp (REAL_VALUE_TYPE
*r
, const REAL_VALUE_TYPE
*op0
, int exp
)
1125 exp
+= REAL_EXP (op0
);
1127 get_inf (r
, r
->sign
);
1128 else if (exp
< -MAX_EXP
)
1129 get_zero (r
, r
->sign
);
1131 SET_REAL_EXP (r
, exp
);
1139 /* Determine whether a floating-point value X is infinite. */
1142 real_isinf (const REAL_VALUE_TYPE
*r
)
1144 return (r
->cl
== rvc_inf
);
1147 /* Determine whether a floating-point value X is a NaN. */
1150 real_isnan (const REAL_VALUE_TYPE
*r
)
1152 return (r
->cl
== rvc_nan
);
1155 /* Determine whether a floating-point value X is negative. */
1158 real_isneg (const REAL_VALUE_TYPE
*r
)
1163 /* Determine whether a floating-point value X is minus zero. */
1166 real_isnegzero (const REAL_VALUE_TYPE
*r
)
1168 return r
->sign
&& r
->cl
== rvc_zero
;
1171 /* Compare two floating-point objects for bitwise identity. */
1174 real_identical (const REAL_VALUE_TYPE
*a
, const REAL_VALUE_TYPE
*b
)
1180 if (a
->sign
!= b
->sign
)
1190 if (REAL_EXP (a
) != REAL_EXP (b
))
1195 if (a
->signalling
!= b
->signalling
)
1197 /* The significand is ignored for canonical NaNs. */
1198 if (a
->canonical
|| b
->canonical
)
1199 return a
->canonical
== b
->canonical
;
1206 for (i
= 0; i
< SIGSZ
; ++i
)
1207 if (a
->sig
[i
] != b
->sig
[i
])
1213 /* Try to change R into its exact multiplicative inverse in machine
1214 mode MODE. Return true if successful. */
1217 exact_real_inverse (enum machine_mode mode
, REAL_VALUE_TYPE
*r
)
1219 const REAL_VALUE_TYPE
*one
= real_digit (1);
1223 if (r
->cl
!= rvc_normal
)
1226 /* Check for a power of two: all significand bits zero except the MSB. */
1227 for (i
= 0; i
< SIGSZ
-1; ++i
)
1230 if (r
->sig
[SIGSZ
-1] != SIG_MSB
)
1233 /* Find the inverse and truncate to the required mode. */
1234 do_divide (&u
, one
, r
);
1235 real_convert (&u
, mode
, &u
);
1237 /* The rounding may have overflowed. */
1238 if (u
.cl
!= rvc_normal
)
1240 for (i
= 0; i
< SIGSZ
-1; ++i
)
1243 if (u
.sig
[SIGSZ
-1] != SIG_MSB
)
1250 /* Render R as an integer. */
1253 real_to_integer (const REAL_VALUE_TYPE
*r
)
1255 unsigned HOST_WIDE_INT i
;
1266 i
= (unsigned HOST_WIDE_INT
) 1 << (HOST_BITS_PER_WIDE_INT
- 1);
1272 if (REAL_EXP (r
) <= 0)
1274 /* Only force overflow for unsigned overflow. Signed overflow is
1275 undefined, so it doesn't matter what we return, and some callers
1276 expect to be able to use this routine for both signed and
1277 unsigned conversions. */
1278 if (REAL_EXP (r
) > HOST_BITS_PER_WIDE_INT
)
1281 if (HOST_BITS_PER_WIDE_INT
== HOST_BITS_PER_LONG
)
1282 i
= r
->sig
[SIGSZ
-1];
1285 gcc_assert (HOST_BITS_PER_WIDE_INT
== 2 * HOST_BITS_PER_LONG
);
1286 i
= r
->sig
[SIGSZ
-1];
1287 i
= i
<< (HOST_BITS_PER_LONG
- 1) << 1;
1288 i
|= r
->sig
[SIGSZ
-2];
1291 i
>>= HOST_BITS_PER_WIDE_INT
- REAL_EXP (r
);
1302 /* Likewise, but to an integer pair, HI+LOW. */
1305 real_to_integer2 (HOST_WIDE_INT
*plow
, HOST_WIDE_INT
*phigh
,
1306 const REAL_VALUE_TYPE
*r
)
1309 HOST_WIDE_INT low
, high
;
1322 high
= (unsigned HOST_WIDE_INT
) 1 << (HOST_BITS_PER_WIDE_INT
- 1);
1336 /* Only force overflow for unsigned overflow. Signed overflow is
1337 undefined, so it doesn't matter what we return, and some callers
1338 expect to be able to use this routine for both signed and
1339 unsigned conversions. */
1340 if (exp
> 2*HOST_BITS_PER_WIDE_INT
)
1343 rshift_significand (&t
, r
, 2*HOST_BITS_PER_WIDE_INT
- exp
);
1344 if (HOST_BITS_PER_WIDE_INT
== HOST_BITS_PER_LONG
)
1346 high
= t
.sig
[SIGSZ
-1];
1347 low
= t
.sig
[SIGSZ
-2];
1351 gcc_assert (HOST_BITS_PER_WIDE_INT
== 2*HOST_BITS_PER_LONG
);
1352 high
= t
.sig
[SIGSZ
-1];
1353 high
= high
<< (HOST_BITS_PER_LONG
- 1) << 1;
1354 high
|= t
.sig
[SIGSZ
-2];
1356 low
= t
.sig
[SIGSZ
-3];
1357 low
= low
<< (HOST_BITS_PER_LONG
- 1) << 1;
1358 low
|= t
.sig
[SIGSZ
-4];
1366 low
= -low
, high
= ~high
;
1378 /* A subroutine of real_to_decimal. Compute the quotient and remainder
1379 of NUM / DEN. Return the quotient and place the remainder in NUM.
1380 It is expected that NUM / DEN are close enough that the quotient is
1383 static unsigned long
1384 rtd_divmod (REAL_VALUE_TYPE
*num
, REAL_VALUE_TYPE
*den
)
1386 unsigned long q
, msb
;
1387 int expn
= REAL_EXP (num
), expd
= REAL_EXP (den
);
1396 msb
= num
->sig
[SIGSZ
-1] & SIG_MSB
;
1398 lshift_significand_1 (num
, num
);
1400 if (msb
|| cmp_significands (num
, den
) >= 0)
1402 sub_significands (num
, num
, den
, 0);
1406 while (--expn
>= expd
);
1408 SET_REAL_EXP (num
, expd
);
1414 /* Render R as a decimal floating point constant. Emit DIGITS significant
1415 digits in the result, bounded by BUF_SIZE. If DIGITS is 0, choose the
1416 maximum for the representation. If CROP_TRAILING_ZEROS, strip trailing
1419 #define M_LOG10_2 0.30102999566398119521
1422 real_to_decimal (char *str
, const REAL_VALUE_TYPE
*r_orig
, size_t buf_size
,
1423 size_t digits
, int crop_trailing_zeros
)
1425 const REAL_VALUE_TYPE
*one
, *ten
;
1426 REAL_VALUE_TYPE r
, pten
, u
, v
;
1427 int dec_exp
, cmp_one
, digit
;
1429 char *p
, *first
, *last
;
1436 strcpy (str
, (r
.sign
? "-0.0" : "0.0"));
1441 strcpy (str
, (r
.sign
? "-Inf" : "+Inf"));
1444 /* ??? Print the significand as well, if not canonical? */
1445 strcpy (str
, (r
.sign
? "-NaN" : "+NaN"));
1451 /* Bound the number of digits printed by the size of the representation. */
1452 max_digits
= SIGNIFICAND_BITS
* M_LOG10_2
;
1453 if (digits
== 0 || digits
> max_digits
)
1454 digits
= max_digits
;
1456 /* Estimate the decimal exponent, and compute the length of the string it
1457 will print as. Be conservative and add one to account for possible
1458 overflow or rounding error. */
1459 dec_exp
= REAL_EXP (&r
) * M_LOG10_2
;
1460 for (max_digits
= 1; dec_exp
; max_digits
++)
1463 /* Bound the number of digits printed by the size of the output buffer. */
1464 max_digits
= buf_size
- 1 - 1 - 2 - max_digits
- 1;
1465 gcc_assert (max_digits
<= buf_size
);
1466 if (digits
> max_digits
)
1467 digits
= max_digits
;
1469 one
= real_digit (1);
1470 ten
= ten_to_ptwo (0);
1478 cmp_one
= do_compare (&r
, one
, 0);
1483 /* Number is greater than one. Convert significand to an integer
1484 and strip trailing decimal zeros. */
1487 SET_REAL_EXP (&u
, SIGNIFICAND_BITS
- 1);
1489 /* Largest M, such that 10**2**M fits within SIGNIFICAND_BITS. */
1490 m
= floor_log2 (max_digits
);
1492 /* Iterate over the bits of the possible powers of 10 that might
1493 be present in U and eliminate them. That is, if we find that
1494 10**2**M divides U evenly, keep the division and increase
1500 do_divide (&t
, &u
, ten_to_ptwo (m
));
1501 do_fix_trunc (&v
, &t
);
1502 if (cmp_significands (&v
, &t
) == 0)
1510 /* Revert the scaling to integer that we performed earlier. */
1511 SET_REAL_EXP (&u
, REAL_EXP (&u
) + REAL_EXP (&r
)
1512 - (SIGNIFICAND_BITS
- 1));
1515 /* Find power of 10. Do this by dividing out 10**2**M when
1516 this is larger than the current remainder. Fill PTEN with
1517 the power of 10 that we compute. */
1518 if (REAL_EXP (&r
) > 0)
1520 m
= floor_log2 ((int)(REAL_EXP (&r
) * M_LOG10_2
)) + 1;
1523 const REAL_VALUE_TYPE
*ptentwo
= ten_to_ptwo (m
);
1524 if (do_compare (&u
, ptentwo
, 0) >= 0)
1526 do_divide (&u
, &u
, ptentwo
);
1527 do_multiply (&pten
, &pten
, ptentwo
);
1534 /* We managed to divide off enough tens in the above reduction
1535 loop that we've now got a negative exponent. Fall into the
1536 less-than-one code to compute the proper value for PTEN. */
1543 /* Number is less than one. Pad significand with leading
1549 /* Stop if we'd shift bits off the bottom. */
1553 do_multiply (&u
, &v
, ten
);
1555 /* Stop if we're now >= 1. */
1556 if (REAL_EXP (&u
) > 0)
1564 /* Find power of 10. Do this by multiplying in P=10**2**M when
1565 the current remainder is smaller than 1/P. Fill PTEN with the
1566 power of 10 that we compute. */
1567 m
= floor_log2 ((int)(-REAL_EXP (&r
) * M_LOG10_2
)) + 1;
1570 const REAL_VALUE_TYPE
*ptentwo
= ten_to_ptwo (m
);
1571 const REAL_VALUE_TYPE
*ptenmtwo
= ten_to_mptwo (m
);
1573 if (do_compare (&v
, ptenmtwo
, 0) <= 0)
1575 do_multiply (&v
, &v
, ptentwo
);
1576 do_multiply (&pten
, &pten
, ptentwo
);
1582 /* Invert the positive power of 10 that we've collected so far. */
1583 do_divide (&pten
, one
, &pten
);
1591 /* At this point, PTEN should contain the nearest power of 10 smaller
1592 than R, such that this division produces the first digit.
1594 Using a divide-step primitive that returns the complete integral
1595 remainder avoids the rounding error that would be produced if
1596 we were to use do_divide here and then simply multiply by 10 for
1597 each subsequent digit. */
1599 digit
= rtd_divmod (&r
, &pten
);
1601 /* Be prepared for error in that division via underflow ... */
1602 if (digit
== 0 && cmp_significand_0 (&r
))
1604 /* Multiply by 10 and try again. */
1605 do_multiply (&r
, &r
, ten
);
1606 digit
= rtd_divmod (&r
, &pten
);
1608 gcc_assert (digit
!= 0);
1611 /* ... or overflow. */
1621 gcc_assert (digit
<= 10);
1625 /* Generate subsequent digits. */
1626 while (--digits
> 0)
1628 do_multiply (&r
, &r
, ten
);
1629 digit
= rtd_divmod (&r
, &pten
);
1634 /* Generate one more digit with which to do rounding. */
1635 do_multiply (&r
, &r
, ten
);
1636 digit
= rtd_divmod (&r
, &pten
);
1638 /* Round the result. */
1641 /* Round to nearest. If R is nonzero there are additional
1642 nonzero digits to be extracted. */
1643 if (cmp_significand_0 (&r
))
1645 /* Round to even. */
1646 else if ((p
[-1] - '0') & 1)
1663 /* Carry out of the first digit. This means we had all 9's and
1664 now have all 0's. "Prepend" a 1 by overwriting the first 0. */
1672 /* Insert the decimal point. */
1673 first
[0] = first
[1];
1676 /* If requested, drop trailing zeros. Never crop past "1.0". */
1677 if (crop_trailing_zeros
)
1678 while (last
> first
+ 3 && last
[-1] == '0')
1681 /* Append the exponent. */
1682 sprintf (last
, "e%+d", dec_exp
);
1685 /* Render R as a hexadecimal floating point constant. Emit DIGITS
1686 significant digits in the result, bounded by BUF_SIZE. If DIGITS is 0,
1687 choose the maximum for the representation. If CROP_TRAILING_ZEROS,
1688 strip trailing zeros. */
1691 real_to_hexadecimal (char *str
, const REAL_VALUE_TYPE
*r
, size_t buf_size
,
1692 size_t digits
, int crop_trailing_zeros
)
1694 int i
, j
, exp
= REAL_EXP (r
);
1707 strcpy (str
, (r
->sign
? "-Inf" : "+Inf"));
1710 /* ??? Print the significand as well, if not canonical? */
1711 strcpy (str
, (r
->sign
? "-NaN" : "+NaN"));
1718 digits
= SIGNIFICAND_BITS
/ 4;
1720 /* Bound the number of digits printed by the size of the output buffer. */
1722 sprintf (exp_buf
, "p%+d", exp
);
1723 max_digits
= buf_size
- strlen (exp_buf
) - r
->sign
- 4 - 1;
1724 gcc_assert (max_digits
<= buf_size
);
1725 if (digits
> max_digits
)
1726 digits
= max_digits
;
1737 for (i
= SIGSZ
- 1; i
>= 0; --i
)
1738 for (j
= HOST_BITS_PER_LONG
- 4; j
>= 0; j
-= 4)
1740 *p
++ = "0123456789abcdef"[(r
->sig
[i
] >> j
) & 15];
1746 if (crop_trailing_zeros
)
1747 while (p
> first
+ 1 && p
[-1] == '0')
1750 sprintf (p
, "p%+d", exp
);
1753 /* Initialize R from a decimal or hexadecimal string. The string is
1754 assumed to have been syntax checked already. */
1757 real_from_string (REAL_VALUE_TYPE
*r
, const char *str
)
1769 else if (*str
== '+')
1772 if (str
[0] == '0' && (str
[1] == 'x' || str
[1] == 'X'))
1774 /* Hexadecimal floating point. */
1775 int pos
= SIGNIFICAND_BITS
- 4, d
;
1783 d
= hex_value (*str
);
1788 r
->sig
[pos
/ HOST_BITS_PER_LONG
]
1789 |= (unsigned long) d
<< (pos
% HOST_BITS_PER_LONG
);
1798 if (pos
== SIGNIFICAND_BITS
- 4)
1805 d
= hex_value (*str
);
1810 r
->sig
[pos
/ HOST_BITS_PER_LONG
]
1811 |= (unsigned long) d
<< (pos
% HOST_BITS_PER_LONG
);
1817 if (*str
== 'p' || *str
== 'P')
1819 bool exp_neg
= false;
1827 else if (*str
== '+')
1831 while (ISDIGIT (*str
))
1837 /* Overflowed the exponent. */
1852 SET_REAL_EXP (r
, exp
);
1858 /* Decimal floating point. */
1859 const REAL_VALUE_TYPE
*ten
= ten_to_ptwo (0);
1864 while (ISDIGIT (*str
))
1867 do_multiply (r
, r
, ten
);
1869 do_add (r
, r
, real_digit (d
), 0);
1874 if (r
->cl
== rvc_zero
)
1879 while (ISDIGIT (*str
))
1882 do_multiply (r
, r
, ten
);
1884 do_add (r
, r
, real_digit (d
), 0);
1889 if (*str
== 'e' || *str
== 'E')
1891 bool exp_neg
= false;
1899 else if (*str
== '+')
1903 while (ISDIGIT (*str
))
1909 /* Overflowed the exponent. */
1923 times_pten (r
, exp
);
1938 /* Legacy. Similar, but return the result directly. */
1941 real_from_string2 (const char *s
, enum machine_mode mode
)
1945 real_from_string (&r
, s
);
1946 if (mode
!= VOIDmode
)
1947 real_convert (&r
, mode
, &r
);
1952 /* Initialize R from the integer pair HIGH+LOW. */
1955 real_from_integer (REAL_VALUE_TYPE
*r
, enum machine_mode mode
,
1956 unsigned HOST_WIDE_INT low
, HOST_WIDE_INT high
,
1959 if (low
== 0 && high
== 0)
1963 memset (r
, 0, sizeof (*r
));
1965 r
->sign
= high
< 0 && !unsigned_p
;
1966 SET_REAL_EXP (r
, 2 * HOST_BITS_PER_WIDE_INT
);
1977 if (HOST_BITS_PER_LONG
== HOST_BITS_PER_WIDE_INT
)
1979 r
->sig
[SIGSZ
-1] = high
;
1980 r
->sig
[SIGSZ
-2] = low
;
1984 gcc_assert (HOST_BITS_PER_LONG
*2 == HOST_BITS_PER_WIDE_INT
);
1985 r
->sig
[SIGSZ
-1] = high
>> (HOST_BITS_PER_LONG
- 1) >> 1;
1986 r
->sig
[SIGSZ
-2] = high
;
1987 r
->sig
[SIGSZ
-3] = low
>> (HOST_BITS_PER_LONG
- 1) >> 1;
1988 r
->sig
[SIGSZ
-4] = low
;
1994 if (mode
!= VOIDmode
)
1995 real_convert (r
, mode
, r
);
1998 /* Returns 10**2**N. */
2000 static const REAL_VALUE_TYPE
*
2003 static REAL_VALUE_TYPE tens
[EXP_BITS
];
2005 gcc_assert (n
>= 0);
2006 gcc_assert (n
< EXP_BITS
);
2008 if (tens
[n
].cl
== rvc_zero
)
2010 if (n
< (HOST_BITS_PER_WIDE_INT
== 64 ? 5 : 4))
2012 HOST_WIDE_INT t
= 10;
2015 for (i
= 0; i
< n
; ++i
)
2018 real_from_integer (&tens
[n
], VOIDmode
, t
, 0, 1);
2022 const REAL_VALUE_TYPE
*t
= ten_to_ptwo (n
- 1);
2023 do_multiply (&tens
[n
], t
, t
);
2030 /* Returns 10**(-2**N). */
2032 static const REAL_VALUE_TYPE
*
2033 ten_to_mptwo (int n
)
2035 static REAL_VALUE_TYPE tens
[EXP_BITS
];
2037 gcc_assert (n
>= 0);
2038 gcc_assert (n
< EXP_BITS
);
2040 if (tens
[n
].cl
== rvc_zero
)
2041 do_divide (&tens
[n
], real_digit (1), ten_to_ptwo (n
));
2048 static const REAL_VALUE_TYPE
*
2051 static REAL_VALUE_TYPE num
[10];
2053 gcc_assert (n
>= 0);
2054 gcc_assert (n
<= 9);
2056 if (n
> 0 && num
[n
].cl
== rvc_zero
)
2057 real_from_integer (&num
[n
], VOIDmode
, n
, 0, 1);
2062 /* Multiply R by 10**EXP. */
2065 times_pten (REAL_VALUE_TYPE
*r
, int exp
)
2067 REAL_VALUE_TYPE pten
, *rr
;
2068 bool negative
= (exp
< 0);
2074 pten
= *real_digit (1);
2080 for (i
= 0; exp
> 0; ++i
, exp
>>= 1)
2082 do_multiply (rr
, rr
, ten_to_ptwo (i
));
2085 do_divide (r
, r
, &pten
);
2088 /* Fills R with +Inf. */
2091 real_inf (REAL_VALUE_TYPE
*r
)
2096 /* Fills R with a NaN whose significand is described by STR. If QUIET,
2097 we force a QNaN, else we force an SNaN. The string, if not empty,
2098 is parsed as a number and placed in the significand. Return true
2099 if the string was successfully parsed. */
2102 real_nan (REAL_VALUE_TYPE
*r
, const char *str
, int quiet
,
2103 enum machine_mode mode
)
2105 const struct real_format
*fmt
;
2107 fmt
= REAL_MODE_FORMAT (mode
);
2113 get_canonical_qnan (r
, 0);
2115 get_canonical_snan (r
, 0);
2121 memset (r
, 0, sizeof (*r
));
2124 /* Parse akin to strtol into the significand of R. */
2126 while (ISSPACE (*str
))
2130 else if (*str
== '+')
2140 while ((d
= hex_value (*str
)) < base
)
2147 lshift_significand (r
, r
, 3);
2150 lshift_significand (r
, r
, 4);
2153 lshift_significand_1 (&u
, r
);
2154 lshift_significand (r
, r
, 3);
2155 add_significands (r
, r
, &u
);
2163 add_significands (r
, r
, &u
);
2168 /* Must have consumed the entire string for success. */
2172 /* Shift the significand into place such that the bits
2173 are in the most significant bits for the format. */
2174 lshift_significand (r
, r
, SIGNIFICAND_BITS
- fmt
->pnan
);
2176 /* Our MSB is always unset for NaNs. */
2177 r
->sig
[SIGSZ
-1] &= ~SIG_MSB
;
2179 /* Force quiet or signalling NaN. */
2180 r
->signalling
= !quiet
;
2186 /* Fills R with the largest finite value representable in mode MODE.
2187 If SIGN is nonzero, R is set to the most negative finite value. */
2190 real_maxval (REAL_VALUE_TYPE
*r
, int sign
, enum machine_mode mode
)
2192 const struct real_format
*fmt
;
2195 fmt
= REAL_MODE_FORMAT (mode
);
2202 SET_REAL_EXP (r
, fmt
->emax
* fmt
->log2_b
);
2204 np2
= SIGNIFICAND_BITS
- fmt
->p
* fmt
->log2_b
;
2205 memset (r
->sig
, -1, SIGSZ
* sizeof (unsigned long));
2206 clear_significand_below (r
, np2
);
2209 /* Fills R with 2**N. */
2212 real_2expN (REAL_VALUE_TYPE
*r
, int n
)
2214 memset (r
, 0, sizeof (*r
));
2219 else if (n
< -MAX_EXP
)
2224 SET_REAL_EXP (r
, n
);
2225 r
->sig
[SIGSZ
-1] = SIG_MSB
;
2231 round_for_format (const struct real_format
*fmt
, REAL_VALUE_TYPE
*r
)
2234 unsigned long sticky
;
2238 p2
= fmt
->p
* fmt
->log2_b
;
2239 emin2m1
= (fmt
->emin
- 1) * fmt
->log2_b
;
2240 emax2
= fmt
->emax
* fmt
->log2_b
;
2242 np2
= SIGNIFICAND_BITS
- p2
;
2246 get_zero (r
, r
->sign
);
2248 if (!fmt
->has_signed_zero
)
2253 get_inf (r
, r
->sign
);
2258 clear_significand_below (r
, np2
);
2268 /* If we're not base2, normalize the exponent to a multiple of
2270 if (fmt
->log2_b
!= 1)
2272 int shift
= REAL_EXP (r
) & (fmt
->log2_b
- 1);
2275 shift
= fmt
->log2_b
- shift
;
2276 r
->sig
[0] |= sticky_rshift_significand (r
, r
, shift
);
2277 SET_REAL_EXP (r
, REAL_EXP (r
) + shift
);
2281 /* Check the range of the exponent. If we're out of range,
2282 either underflow or overflow. */
2283 if (REAL_EXP (r
) > emax2
)
2285 else if (REAL_EXP (r
) <= emin2m1
)
2289 if (!fmt
->has_denorm
)
2291 /* Don't underflow completely until we've had a chance to round. */
2292 if (REAL_EXP (r
) < emin2m1
)
2297 diff
= emin2m1
- REAL_EXP (r
) + 1;
2301 /* De-normalize the significand. */
2302 r
->sig
[0] |= sticky_rshift_significand (r
, r
, diff
);
2303 SET_REAL_EXP (r
, REAL_EXP (r
) + diff
);
2307 /* There are P2 true significand bits, followed by one guard bit,
2308 followed by one sticky bit, followed by stuff. Fold nonzero
2309 stuff into the sticky bit. */
2312 for (i
= 0, w
= (np2
- 1) / HOST_BITS_PER_LONG
; i
< w
; ++i
)
2313 sticky
|= r
->sig
[i
];
2315 r
->sig
[w
] & (((unsigned long)1 << ((np2
- 1) % HOST_BITS_PER_LONG
)) - 1);
2317 guard
= test_significand_bit (r
, np2
- 1);
2318 lsb
= test_significand_bit (r
, np2
);
2320 /* Round to even. */
2321 if (guard
&& (sticky
|| lsb
))
2325 set_significand_bit (&u
, np2
);
2327 if (add_significands (r
, r
, &u
))
2329 /* Overflow. Means the significand had been all ones, and
2330 is now all zeros. Need to increase the exponent, and
2331 possibly re-normalize it. */
2332 SET_REAL_EXP (r
, REAL_EXP (r
) + 1);
2333 if (REAL_EXP (r
) > emax2
)
2335 r
->sig
[SIGSZ
-1] = SIG_MSB
;
2337 if (fmt
->log2_b
!= 1)
2339 int shift
= REAL_EXP (r
) & (fmt
->log2_b
- 1);
2342 shift
= fmt
->log2_b
- shift
;
2343 rshift_significand (r
, r
, shift
);
2344 SET_REAL_EXP (r
, REAL_EXP (r
) + shift
);
2345 if (REAL_EXP (r
) > emax2
)
2352 /* Catch underflow that we deferred until after rounding. */
2353 if (REAL_EXP (r
) <= emin2m1
)
2356 /* Clear out trailing garbage. */
2357 clear_significand_below (r
, np2
);
2360 /* Extend or truncate to a new mode. */
2363 real_convert (REAL_VALUE_TYPE
*r
, enum machine_mode mode
,
2364 const REAL_VALUE_TYPE
*a
)
2366 const struct real_format
*fmt
;
2368 fmt
= REAL_MODE_FORMAT (mode
);
2372 round_for_format (fmt
, r
);
2374 /* round_for_format de-normalizes denormals. Undo just that part. */
2375 if (r
->cl
== rvc_normal
)
2379 /* Legacy. Likewise, except return the struct directly. */
2382 real_value_truncate (enum machine_mode mode
, REAL_VALUE_TYPE a
)
2385 real_convert (&r
, mode
, &a
);
2389 /* Return true if truncating to MODE is exact. */
2392 exact_real_truncate (enum machine_mode mode
, const REAL_VALUE_TYPE
*a
)
2395 real_convert (&t
, mode
, a
);
2396 return real_identical (&t
, a
);
2399 /* Write R to the given target format. Place the words of the result
2400 in target word order in BUF. There are always 32 bits in each
2401 long, no matter the size of the host long.
2403 Legacy: return word 0 for implementing REAL_VALUE_TO_TARGET_SINGLE. */
2406 real_to_target_fmt (long *buf
, const REAL_VALUE_TYPE
*r_orig
,
2407 const struct real_format
*fmt
)
2413 round_for_format (fmt
, &r
);
2417 (*fmt
->encode
) (fmt
, buf
, &r
);
2422 /* Similar, but look up the format from MODE. */
2425 real_to_target (long *buf
, const REAL_VALUE_TYPE
*r
, enum machine_mode mode
)
2427 const struct real_format
*fmt
;
2429 fmt
= REAL_MODE_FORMAT (mode
);
2432 return real_to_target_fmt (buf
, r
, fmt
);
2435 /* Read R from the given target format. Read the words of the result
2436 in target word order in BUF. There are always 32 bits in each
2437 long, no matter the size of the host long. */
2440 real_from_target_fmt (REAL_VALUE_TYPE
*r
, const long *buf
,
2441 const struct real_format
*fmt
)
2443 (*fmt
->decode
) (fmt
, r
, buf
);
2446 /* Similar, but look up the format from MODE. */
2449 real_from_target (REAL_VALUE_TYPE
*r
, const long *buf
, enum machine_mode mode
)
2451 const struct real_format
*fmt
;
2453 fmt
= REAL_MODE_FORMAT (mode
);
2456 (*fmt
->decode
) (fmt
, r
, buf
);
2459 /* Return the number of bits in the significand for MODE. */
2460 /* ??? Legacy. Should get access to real_format directly. */
2463 significand_size (enum machine_mode mode
)
2465 const struct real_format
*fmt
;
2467 fmt
= REAL_MODE_FORMAT (mode
);
2471 return fmt
->p
* fmt
->log2_b
;
2474 /* Return a hash value for the given real value. */
2475 /* ??? The "unsigned int" return value is intended to be hashval_t,
2476 but I didn't want to pull hashtab.h into real.h. */
2479 real_hash (const REAL_VALUE_TYPE
*r
)
2484 h
= r
->cl
| (r
->sign
<< 2);
2492 h
|= REAL_EXP (r
) << 3;
2497 h
^= (unsigned int)-1;
2506 if (sizeof(unsigned long) > sizeof(unsigned int))
2507 for (i
= 0; i
< SIGSZ
; ++i
)
2509 unsigned long s
= r
->sig
[i
];
2510 h
^= s
^ (s
>> (HOST_BITS_PER_LONG
/ 2));
2513 for (i
= 0; i
< SIGSZ
; ++i
)
2519 /* IEEE single-precision format. */
2521 static void encode_ieee_single (const struct real_format
*fmt
,
2522 long *, const REAL_VALUE_TYPE
*);
2523 static void decode_ieee_single (const struct real_format
*,
2524 REAL_VALUE_TYPE
*, const long *);
2527 encode_ieee_single (const struct real_format
*fmt
, long *buf
,
2528 const REAL_VALUE_TYPE
*r
)
2530 unsigned long image
, sig
, exp
;
2531 unsigned long sign
= r
->sign
;
2532 bool denormal
= (r
->sig
[SIGSZ
-1] & SIG_MSB
) == 0;
2535 sig
= (r
->sig
[SIGSZ
-1] >> (HOST_BITS_PER_LONG
- 24)) & 0x7fffff;
2546 image
|= 0x7fffffff;
2554 if (r
->signalling
== fmt
->qnan_msb_set
)
2558 /* We overload qnan_msb_set here: it's only clear for
2559 mips_ieee_single, which wants all mantissa bits but the
2560 quiet/signalling one set in canonical NaNs (at least
2562 if (r
->canonical
&& !fmt
->qnan_msb_set
)
2563 sig
|= (1 << 22) - 1;
2571 image
|= 0x7fffffff;
2575 /* Recall that IEEE numbers are interpreted as 1.F x 2**exp,
2576 whereas the intermediate representation is 0.F x 2**exp.
2577 Which means we're off by one. */
2581 exp
= REAL_EXP (r
) + 127 - 1;
2594 decode_ieee_single (const struct real_format
*fmt
, REAL_VALUE_TYPE
*r
,
2597 unsigned long image
= buf
[0] & 0xffffffff;
2598 bool sign
= (image
>> 31) & 1;
2599 int exp
= (image
>> 23) & 0xff;
2601 memset (r
, 0, sizeof (*r
));
2602 image
<<= HOST_BITS_PER_LONG
- 24;
2607 if (image
&& fmt
->has_denorm
)
2611 SET_REAL_EXP (r
, -126);
2612 r
->sig
[SIGSZ
-1] = image
<< 1;
2615 else if (fmt
->has_signed_zero
)
2618 else if (exp
== 255 && (fmt
->has_nans
|| fmt
->has_inf
))
2624 r
->signalling
= (((image
>> (HOST_BITS_PER_LONG
- 2)) & 1)
2625 ^ fmt
->qnan_msb_set
);
2626 r
->sig
[SIGSZ
-1] = image
;
2638 SET_REAL_EXP (r
, exp
- 127 + 1);
2639 r
->sig
[SIGSZ
-1] = image
| SIG_MSB
;
2643 const struct real_format ieee_single_format
=
2661 const struct real_format mips_single_format
=
2680 /* IEEE double-precision format. */
2682 static void encode_ieee_double (const struct real_format
*fmt
,
2683 long *, const REAL_VALUE_TYPE
*);
2684 static void decode_ieee_double (const struct real_format
*,
2685 REAL_VALUE_TYPE
*, const long *);
2688 encode_ieee_double (const struct real_format
*fmt
, long *buf
,
2689 const REAL_VALUE_TYPE
*r
)
2691 unsigned long image_lo
, image_hi
, sig_lo
, sig_hi
, exp
;
2692 bool denormal
= (r
->sig
[SIGSZ
-1] & SIG_MSB
) == 0;
2694 image_hi
= r
->sign
<< 31;
2697 if (HOST_BITS_PER_LONG
== 64)
2699 sig_hi
= r
->sig
[SIGSZ
-1];
2700 sig_lo
= (sig_hi
>> (64 - 53)) & 0xffffffff;
2701 sig_hi
= (sig_hi
>> (64 - 53 + 1) >> 31) & 0xfffff;
2705 sig_hi
= r
->sig
[SIGSZ
-1];
2706 sig_lo
= r
->sig
[SIGSZ
-2];
2707 sig_lo
= (sig_hi
<< 21) | (sig_lo
>> 11);
2708 sig_hi
= (sig_hi
>> 11) & 0xfffff;
2718 image_hi
|= 2047 << 20;
2721 image_hi
|= 0x7fffffff;
2722 image_lo
= 0xffffffff;
2730 sig_hi
= sig_lo
= 0;
2731 if (r
->signalling
== fmt
->qnan_msb_set
)
2732 sig_hi
&= ~(1 << 19);
2735 /* We overload qnan_msb_set here: it's only clear for
2736 mips_ieee_single, which wants all mantissa bits but the
2737 quiet/signalling one set in canonical NaNs (at least
2739 if (r
->canonical
&& !fmt
->qnan_msb_set
)
2741 sig_hi
|= (1 << 19) - 1;
2742 sig_lo
= 0xffffffff;
2744 else if (sig_hi
== 0 && sig_lo
== 0)
2747 image_hi
|= 2047 << 20;
2753 image_hi
|= 0x7fffffff;
2754 image_lo
= 0xffffffff;
2759 /* Recall that IEEE numbers are interpreted as 1.F x 2**exp,
2760 whereas the intermediate representation is 0.F x 2**exp.
2761 Which means we're off by one. */
2765 exp
= REAL_EXP (r
) + 1023 - 1;
2766 image_hi
|= exp
<< 20;
2775 if (FLOAT_WORDS_BIG_ENDIAN
)
2776 buf
[0] = image_hi
, buf
[1] = image_lo
;
2778 buf
[0] = image_lo
, buf
[1] = image_hi
;
2782 decode_ieee_double (const struct real_format
*fmt
, REAL_VALUE_TYPE
*r
,
2785 unsigned long image_hi
, image_lo
;
2789 if (FLOAT_WORDS_BIG_ENDIAN
)
2790 image_hi
= buf
[0], image_lo
= buf
[1];
2792 image_lo
= buf
[0], image_hi
= buf
[1];
2793 image_lo
&= 0xffffffff;
2794 image_hi
&= 0xffffffff;
2796 sign
= (image_hi
>> 31) & 1;
2797 exp
= (image_hi
>> 20) & 0x7ff;
2799 memset (r
, 0, sizeof (*r
));
2801 image_hi
<<= 32 - 21;
2802 image_hi
|= image_lo
>> 21;
2803 image_hi
&= 0x7fffffff;
2804 image_lo
<<= 32 - 21;
2808 if ((image_hi
|| image_lo
) && fmt
->has_denorm
)
2812 SET_REAL_EXP (r
, -1022);
2813 if (HOST_BITS_PER_LONG
== 32)
2815 image_hi
= (image_hi
<< 1) | (image_lo
>> 31);
2817 r
->sig
[SIGSZ
-1] = image_hi
;
2818 r
->sig
[SIGSZ
-2] = image_lo
;
2822 image_hi
= (image_hi
<< 31 << 2) | (image_lo
<< 1);
2823 r
->sig
[SIGSZ
-1] = image_hi
;
2827 else if (fmt
->has_signed_zero
)
2830 else if (exp
== 2047 && (fmt
->has_nans
|| fmt
->has_inf
))
2832 if (image_hi
|| image_lo
)
2836 r
->signalling
= ((image_hi
>> 30) & 1) ^ fmt
->qnan_msb_set
;
2837 if (HOST_BITS_PER_LONG
== 32)
2839 r
->sig
[SIGSZ
-1] = image_hi
;
2840 r
->sig
[SIGSZ
-2] = image_lo
;
2843 r
->sig
[SIGSZ
-1] = (image_hi
<< 31 << 1) | image_lo
;
2855 SET_REAL_EXP (r
, exp
- 1023 + 1);
2856 if (HOST_BITS_PER_LONG
== 32)
2858 r
->sig
[SIGSZ
-1] = image_hi
| SIG_MSB
;
2859 r
->sig
[SIGSZ
-2] = image_lo
;
2862 r
->sig
[SIGSZ
-1] = (image_hi
<< 31 << 1) | image_lo
| SIG_MSB
;
2866 const struct real_format ieee_double_format
=
2884 const struct real_format mips_double_format
=
2903 /* IEEE extended real format. This comes in three flavors: Intel's as
2904 a 12 byte image, Intel's as a 16 byte image, and Motorola's. Intel
2905 12- and 16-byte images may be big- or little endian; Motorola's is
2906 always big endian. */
2908 /* Helper subroutine which converts from the internal format to the
2909 12-byte little-endian Intel format. Functions below adjust this
2910 for the other possible formats. */
2912 encode_ieee_extended (const struct real_format
*fmt
, long *buf
,
2913 const REAL_VALUE_TYPE
*r
)
2915 unsigned long image_hi
, sig_hi
, sig_lo
;
2916 bool denormal
= (r
->sig
[SIGSZ
-1] & SIG_MSB
) == 0;
2918 image_hi
= r
->sign
<< 15;
2919 sig_hi
= sig_lo
= 0;
2931 /* Intel requires the explicit integer bit to be set, otherwise
2932 it considers the value a "pseudo-infinity". Motorola docs
2933 say it doesn't care. */
2934 sig_hi
= 0x80000000;
2939 sig_lo
= sig_hi
= 0xffffffff;
2947 if (HOST_BITS_PER_LONG
== 32)
2949 sig_hi
= r
->sig
[SIGSZ
-1];
2950 sig_lo
= r
->sig
[SIGSZ
-2];
2954 sig_lo
= r
->sig
[SIGSZ
-1];
2955 sig_hi
= sig_lo
>> 31 >> 1;
2956 sig_lo
&= 0xffffffff;
2958 if (r
->signalling
== fmt
->qnan_msb_set
)
2959 sig_hi
&= ~(1 << 30);
2962 if ((sig_hi
& 0x7fffffff) == 0 && sig_lo
== 0)
2965 /* Intel requires the explicit integer bit to be set, otherwise
2966 it considers the value a "pseudo-nan". Motorola docs say it
2968 sig_hi
|= 0x80000000;
2973 sig_lo
= sig_hi
= 0xffffffff;
2979 int exp
= REAL_EXP (r
);
2981 /* Recall that IEEE numbers are interpreted as 1.F x 2**exp,
2982 whereas the intermediate representation is 0.F x 2**exp.
2983 Which means we're off by one.
2985 Except for Motorola, which consider exp=0 and explicit
2986 integer bit set to continue to be normalized. In theory
2987 this discrepancy has been taken care of by the difference
2988 in fmt->emin in round_for_format. */
2995 gcc_assert (exp
>= 0);
2999 if (HOST_BITS_PER_LONG
== 32)
3001 sig_hi
= r
->sig
[SIGSZ
-1];
3002 sig_lo
= r
->sig
[SIGSZ
-2];
3006 sig_lo
= r
->sig
[SIGSZ
-1];
3007 sig_hi
= sig_lo
>> 31 >> 1;
3008 sig_lo
&= 0xffffffff;
3017 buf
[0] = sig_lo
, buf
[1] = sig_hi
, buf
[2] = image_hi
;
3020 /* Convert from the internal format to the 12-byte Motorola format
3021 for an IEEE extended real. */
3023 encode_ieee_extended_motorola (const struct real_format
*fmt
, long *buf
,
3024 const REAL_VALUE_TYPE
*r
)
3027 encode_ieee_extended (fmt
, intermed
, r
);
3029 /* Motorola chips are assumed always to be big-endian. Also, the
3030 padding in a Motorola extended real goes between the exponent and
3031 the mantissa. At this point the mantissa is entirely within
3032 elements 0 and 1 of intermed, and the exponent entirely within
3033 element 2, so all we have to do is swap the order around, and
3034 shift element 2 left 16 bits. */
3035 buf
[0] = intermed
[2] << 16;
3036 buf
[1] = intermed
[1];
3037 buf
[2] = intermed
[0];
3040 /* Convert from the internal format to the 12-byte Intel format for
3041 an IEEE extended real. */
3043 encode_ieee_extended_intel_96 (const struct real_format
*fmt
, long *buf
,
3044 const REAL_VALUE_TYPE
*r
)
3046 if (FLOAT_WORDS_BIG_ENDIAN
)
3048 /* All the padding in an Intel-format extended real goes at the high
3049 end, which in this case is after the mantissa, not the exponent.
3050 Therefore we must shift everything down 16 bits. */
3052 encode_ieee_extended (fmt
, intermed
, r
);
3053 buf
[0] = ((intermed
[2] << 16) | ((unsigned long)(intermed
[1] & 0xFFFF0000) >> 16));
3054 buf
[1] = ((intermed
[1] << 16) | ((unsigned long)(intermed
[0] & 0xFFFF0000) >> 16));
3055 buf
[2] = (intermed
[0] << 16);
3058 /* encode_ieee_extended produces what we want directly. */
3059 encode_ieee_extended (fmt
, buf
, r
);
3062 /* Convert from the internal format to the 16-byte Intel format for
3063 an IEEE extended real. */
3065 encode_ieee_extended_intel_128 (const struct real_format
*fmt
, long *buf
,
3066 const REAL_VALUE_TYPE
*r
)
3068 /* All the padding in an Intel-format extended real goes at the high end. */
3069 encode_ieee_extended_intel_96 (fmt
, buf
, r
);
3073 /* As above, we have a helper function which converts from 12-byte
3074 little-endian Intel format to internal format. Functions below
3075 adjust for the other possible formats. */
3077 decode_ieee_extended (const struct real_format
*fmt
, REAL_VALUE_TYPE
*r
,
3080 unsigned long image_hi
, sig_hi
, sig_lo
;
3084 sig_lo
= buf
[0], sig_hi
= buf
[1], image_hi
= buf
[2];
3085 sig_lo
&= 0xffffffff;
3086 sig_hi
&= 0xffffffff;
3087 image_hi
&= 0xffffffff;
3089 sign
= (image_hi
>> 15) & 1;
3090 exp
= image_hi
& 0x7fff;
3092 memset (r
, 0, sizeof (*r
));
3096 if ((sig_hi
|| sig_lo
) && fmt
->has_denorm
)
3101 /* When the IEEE format contains a hidden bit, we know that
3102 it's zero at this point, and so shift up the significand
3103 and decrease the exponent to match. In this case, Motorola
3104 defines the explicit integer bit to be valid, so we don't
3105 know whether the msb is set or not. */
3106 SET_REAL_EXP (r
, fmt
->emin
);
3107 if (HOST_BITS_PER_LONG
== 32)
3109 r
->sig
[SIGSZ
-1] = sig_hi
;
3110 r
->sig
[SIGSZ
-2] = sig_lo
;
3113 r
->sig
[SIGSZ
-1] = (sig_hi
<< 31 << 1) | sig_lo
;
3117 else if (fmt
->has_signed_zero
)
3120 else if (exp
== 32767 && (fmt
->has_nans
|| fmt
->has_inf
))
3122 /* See above re "pseudo-infinities" and "pseudo-nans".
3123 Short summary is that the MSB will likely always be
3124 set, and that we don't care about it. */
3125 sig_hi
&= 0x7fffffff;
3127 if (sig_hi
|| sig_lo
)
3131 r
->signalling
= ((sig_hi
>> 30) & 1) ^ fmt
->qnan_msb_set
;
3132 if (HOST_BITS_PER_LONG
== 32)
3134 r
->sig
[SIGSZ
-1] = sig_hi
;
3135 r
->sig
[SIGSZ
-2] = sig_lo
;
3138 r
->sig
[SIGSZ
-1] = (sig_hi
<< 31 << 1) | sig_lo
;
3150 SET_REAL_EXP (r
, exp
- 16383 + 1);
3151 if (HOST_BITS_PER_LONG
== 32)
3153 r
->sig
[SIGSZ
-1] = sig_hi
;
3154 r
->sig
[SIGSZ
-2] = sig_lo
;
3157 r
->sig
[SIGSZ
-1] = (sig_hi
<< 31 << 1) | sig_lo
;
3161 /* Convert from the internal format to the 12-byte Motorola format
3162 for an IEEE extended real. */
3164 decode_ieee_extended_motorola (const struct real_format
*fmt
, REAL_VALUE_TYPE
*r
,
3169 /* Motorola chips are assumed always to be big-endian. Also, the
3170 padding in a Motorola extended real goes between the exponent and
3171 the mantissa; remove it. */
3172 intermed
[0] = buf
[2];
3173 intermed
[1] = buf
[1];
3174 intermed
[2] = (unsigned long)buf
[0] >> 16;
3176 decode_ieee_extended (fmt
, r
, intermed
);
3179 /* Convert from the internal format to the 12-byte Intel format for
3180 an IEEE extended real. */
3182 decode_ieee_extended_intel_96 (const struct real_format
*fmt
, REAL_VALUE_TYPE
*r
,
3185 if (FLOAT_WORDS_BIG_ENDIAN
)
3187 /* All the padding in an Intel-format extended real goes at the high
3188 end, which in this case is after the mantissa, not the exponent.
3189 Therefore we must shift everything up 16 bits. */
3192 intermed
[0] = (((unsigned long)buf
[2] >> 16) | (buf
[1] << 16));
3193 intermed
[1] = (((unsigned long)buf
[1] >> 16) | (buf
[0] << 16));
3194 intermed
[2] = ((unsigned long)buf
[0] >> 16);
3196 decode_ieee_extended (fmt
, r
, intermed
);
3199 /* decode_ieee_extended produces what we want directly. */
3200 decode_ieee_extended (fmt
, r
, buf
);
3203 /* Convert from the internal format to the 16-byte Intel format for
3204 an IEEE extended real. */
3206 decode_ieee_extended_intel_128 (const struct real_format
*fmt
, REAL_VALUE_TYPE
*r
,
3209 /* All the padding in an Intel-format extended real goes at the high end. */
3210 decode_ieee_extended_intel_96 (fmt
, r
, buf
);
3213 const struct real_format ieee_extended_motorola_format
=
3215 encode_ieee_extended_motorola
,
3216 decode_ieee_extended_motorola
,
3231 const struct real_format ieee_extended_intel_96_format
=
3233 encode_ieee_extended_intel_96
,
3234 decode_ieee_extended_intel_96
,
3249 const struct real_format ieee_extended_intel_128_format
=
3251 encode_ieee_extended_intel_128
,
3252 decode_ieee_extended_intel_128
,
3267 /* The following caters to i386 systems that set the rounding precision
3268 to 53 bits instead of 64, e.g. FreeBSD. */
3269 const struct real_format ieee_extended_intel_96_round_53_format
=
3271 encode_ieee_extended_intel_96
,
3272 decode_ieee_extended_intel_96
,
3287 /* IBM 128-bit extended precision format: a pair of IEEE double precision
3288 numbers whose sum is equal to the extended precision value. The number
3289 with greater magnitude is first. This format has the same magnitude
3290 range as an IEEE double precision value, but effectively 106 bits of
3291 significand precision. Infinity and NaN are represented by their IEEE
3292 double precision value stored in the first number, the second number is
3293 +0.0 or -0.0 for Infinity and don't-care for NaN. */
3295 static void encode_ibm_extended (const struct real_format
*fmt
,
3296 long *, const REAL_VALUE_TYPE
*);
3297 static void decode_ibm_extended (const struct real_format
*,
3298 REAL_VALUE_TYPE
*, const long *);
3301 encode_ibm_extended (const struct real_format
*fmt
, long *buf
,
3302 const REAL_VALUE_TYPE
*r
)
3304 REAL_VALUE_TYPE u
, normr
, v
;
3305 const struct real_format
*base_fmt
;
3307 base_fmt
= fmt
->qnan_msb_set
? &ieee_double_format
: &mips_double_format
;
3309 /* Renormlize R before doing any arithmetic on it. */
3311 if (normr
.cl
== rvc_normal
)
3314 /* u = IEEE double precision portion of significand. */
3316 round_for_format (base_fmt
, &u
);
3317 encode_ieee_double (base_fmt
, &buf
[0], &u
);
3319 if (u
.cl
== rvc_normal
)
3321 do_add (&v
, &normr
, &u
, 1);
3322 /* Call round_for_format since we might need to denormalize. */
3323 round_for_format (base_fmt
, &v
);
3324 encode_ieee_double (base_fmt
, &buf
[2], &v
);
3328 /* Inf, NaN, 0 are all representable as doubles, so the
3329 least-significant part can be 0.0. */
3336 decode_ibm_extended (const struct real_format
*fmt ATTRIBUTE_UNUSED
, REAL_VALUE_TYPE
*r
,
3339 REAL_VALUE_TYPE u
, v
;
3340 const struct real_format
*base_fmt
;
3342 base_fmt
= fmt
->qnan_msb_set
? &ieee_double_format
: &mips_double_format
;
3343 decode_ieee_double (base_fmt
, &u
, &buf
[0]);
3345 if (u
.cl
!= rvc_zero
&& u
.cl
!= rvc_inf
&& u
.cl
!= rvc_nan
)
3347 decode_ieee_double (base_fmt
, &v
, &buf
[2]);
3348 do_add (r
, &u
, &v
, 0);
3354 const struct real_format ibm_extended_format
=
3356 encode_ibm_extended
,
3357 decode_ibm_extended
,
3372 const struct real_format mips_extended_format
=
3374 encode_ibm_extended
,
3375 decode_ibm_extended
,
3391 /* IEEE quad precision format. */
3393 static void encode_ieee_quad (const struct real_format
*fmt
,
3394 long *, const REAL_VALUE_TYPE
*);
3395 static void decode_ieee_quad (const struct real_format
*,
3396 REAL_VALUE_TYPE
*, const long *);
3399 encode_ieee_quad (const struct real_format
*fmt
, long *buf
,
3400 const REAL_VALUE_TYPE
*r
)
3402 unsigned long image3
, image2
, image1
, image0
, exp
;
3403 bool denormal
= (r
->sig
[SIGSZ
-1] & SIG_MSB
) == 0;
3406 image3
= r
->sign
<< 31;
3411 rshift_significand (&u
, r
, SIGNIFICAND_BITS
- 113);
3420 image3
|= 32767 << 16;
3423 image3
|= 0x7fffffff;
3424 image2
= 0xffffffff;
3425 image1
= 0xffffffff;
3426 image0
= 0xffffffff;
3433 image3
|= 32767 << 16;
3437 /* Don't use bits from the significand. The
3438 initialization above is right. */
3440 else if (HOST_BITS_PER_LONG
== 32)
3445 image3
|= u
.sig
[3] & 0xffff;
3450 image1
= image0
>> 31 >> 1;
3452 image3
|= (image2
>> 31 >> 1) & 0xffff;
3453 image0
&= 0xffffffff;
3454 image2
&= 0xffffffff;
3456 if (r
->signalling
== fmt
->qnan_msb_set
)
3460 /* We overload qnan_msb_set here: it's only clear for
3461 mips_ieee_single, which wants all mantissa bits but the
3462 quiet/signalling one set in canonical NaNs (at least
3464 if (r
->canonical
&& !fmt
->qnan_msb_set
)
3467 image2
= image1
= image0
= 0xffffffff;
3469 else if (((image3
& 0xffff) | image2
| image1
| image0
) == 0)
3474 image3
|= 0x7fffffff;
3475 image2
= 0xffffffff;
3476 image1
= 0xffffffff;
3477 image0
= 0xffffffff;
3482 /* Recall that IEEE numbers are interpreted as 1.F x 2**exp,
3483 whereas the intermediate representation is 0.F x 2**exp.
3484 Which means we're off by one. */
3488 exp
= REAL_EXP (r
) + 16383 - 1;
3489 image3
|= exp
<< 16;
3491 if (HOST_BITS_PER_LONG
== 32)
3496 image3
|= u
.sig
[3] & 0xffff;
3501 image1
= image0
>> 31 >> 1;
3503 image3
|= (image2
>> 31 >> 1) & 0xffff;
3504 image0
&= 0xffffffff;
3505 image2
&= 0xffffffff;
3513 if (FLOAT_WORDS_BIG_ENDIAN
)
3530 decode_ieee_quad (const struct real_format
*fmt
, REAL_VALUE_TYPE
*r
,
3533 unsigned long image3
, image2
, image1
, image0
;
3537 if (FLOAT_WORDS_BIG_ENDIAN
)
3551 image0
&= 0xffffffff;
3552 image1
&= 0xffffffff;
3553 image2
&= 0xffffffff;
3555 sign
= (image3
>> 31) & 1;
3556 exp
= (image3
>> 16) & 0x7fff;
3559 memset (r
, 0, sizeof (*r
));
3563 if ((image3
| image2
| image1
| image0
) && fmt
->has_denorm
)
3568 SET_REAL_EXP (r
, -16382 + (SIGNIFICAND_BITS
- 112));
3569 if (HOST_BITS_PER_LONG
== 32)
3578 r
->sig
[0] = (image1
<< 31 << 1) | image0
;
3579 r
->sig
[1] = (image3
<< 31 << 1) | image2
;
3584 else if (fmt
->has_signed_zero
)
3587 else if (exp
== 32767 && (fmt
->has_nans
|| fmt
->has_inf
))
3589 if (image3
| image2
| image1
| image0
)
3593 r
->signalling
= ((image3
>> 15) & 1) ^ fmt
->qnan_msb_set
;
3595 if (HOST_BITS_PER_LONG
== 32)
3604 r
->sig
[0] = (image1
<< 31 << 1) | image0
;
3605 r
->sig
[1] = (image3
<< 31 << 1) | image2
;
3607 lshift_significand (r
, r
, SIGNIFICAND_BITS
- 113);
3619 SET_REAL_EXP (r
, exp
- 16383 + 1);
3621 if (HOST_BITS_PER_LONG
== 32)
3630 r
->sig
[0] = (image1
<< 31 << 1) | image0
;
3631 r
->sig
[1] = (image3
<< 31 << 1) | image2
;
3633 lshift_significand (r
, r
, SIGNIFICAND_BITS
- 113);
3634 r
->sig
[SIGSZ
-1] |= SIG_MSB
;
3638 const struct real_format ieee_quad_format
=
3656 const struct real_format mips_quad_format
=
3674 /* Descriptions of VAX floating point formats can be found beginning at
3676 http://h71000.www7.hp.com/doc/73FINAL/4515/4515pro_013.html#f_floating_point_format
3678 The thing to remember is that they're almost IEEE, except for word
3679 order, exponent bias, and the lack of infinities, nans, and denormals.
3681 We don't implement the H_floating format here, simply because neither
3682 the VAX or Alpha ports use it. */
3684 static void encode_vax_f (const struct real_format
*fmt
,
3685 long *, const REAL_VALUE_TYPE
*);
3686 static void decode_vax_f (const struct real_format
*,
3687 REAL_VALUE_TYPE
*, const long *);
3688 static void encode_vax_d (const struct real_format
*fmt
,
3689 long *, const REAL_VALUE_TYPE
*);
3690 static void decode_vax_d (const struct real_format
*,
3691 REAL_VALUE_TYPE
*, const long *);
3692 static void encode_vax_g (const struct real_format
*fmt
,
3693 long *, const REAL_VALUE_TYPE
*);
3694 static void decode_vax_g (const struct real_format
*,
3695 REAL_VALUE_TYPE
*, const long *);
3698 encode_vax_f (const struct real_format
*fmt ATTRIBUTE_UNUSED
, long *buf
,
3699 const REAL_VALUE_TYPE
*r
)
3701 unsigned long sign
, exp
, sig
, image
;
3703 sign
= r
->sign
<< 15;
3713 image
= 0xffff7fff | sign
;
3717 sig
= (r
->sig
[SIGSZ
-1] >> (HOST_BITS_PER_LONG
- 24)) & 0x7fffff;
3718 exp
= REAL_EXP (r
) + 128;
3720 image
= (sig
<< 16) & 0xffff0000;
3734 decode_vax_f (const struct real_format
*fmt ATTRIBUTE_UNUSED
,
3735 REAL_VALUE_TYPE
*r
, const long *buf
)
3737 unsigned long image
= buf
[0] & 0xffffffff;
3738 int exp
= (image
>> 7) & 0xff;
3740 memset (r
, 0, sizeof (*r
));
3745 r
->sign
= (image
>> 15) & 1;
3746 SET_REAL_EXP (r
, exp
- 128);
3748 image
= ((image
& 0x7f) << 16) | ((image
>> 16) & 0xffff);
3749 r
->sig
[SIGSZ
-1] = (image
<< (HOST_BITS_PER_LONG
- 24)) | SIG_MSB
;
3754 encode_vax_d (const struct real_format
*fmt ATTRIBUTE_UNUSED
, long *buf
,
3755 const REAL_VALUE_TYPE
*r
)
3757 unsigned long image0
, image1
, sign
= r
->sign
<< 15;
3762 image0
= image1
= 0;
3767 image0
= 0xffff7fff | sign
;
3768 image1
= 0xffffffff;
3772 /* Extract the significand into straight hi:lo. */
3773 if (HOST_BITS_PER_LONG
== 64)
3775 image0
= r
->sig
[SIGSZ
-1];
3776 image1
= (image0
>> (64 - 56)) & 0xffffffff;
3777 image0
= (image0
>> (64 - 56 + 1) >> 31) & 0x7fffff;
3781 image0
= r
->sig
[SIGSZ
-1];
3782 image1
= r
->sig
[SIGSZ
-2];
3783 image1
= (image0
<< 24) | (image1
>> 8);
3784 image0
= (image0
>> 8) & 0xffffff;
3787 /* Rearrange the half-words of the significand to match the
3789 image0
= ((image0
<< 16) | (image0
>> 16)) & 0xffff007f;
3790 image1
= ((image1
<< 16) | (image1
>> 16)) & 0xffffffff;
3792 /* Add the sign and exponent. */
3794 image0
|= (REAL_EXP (r
) + 128) << 7;
3801 if (FLOAT_WORDS_BIG_ENDIAN
)
3802 buf
[0] = image1
, buf
[1] = image0
;
3804 buf
[0] = image0
, buf
[1] = image1
;
3808 decode_vax_d (const struct real_format
*fmt ATTRIBUTE_UNUSED
,
3809 REAL_VALUE_TYPE
*r
, const long *buf
)
3811 unsigned long image0
, image1
;
3814 if (FLOAT_WORDS_BIG_ENDIAN
)
3815 image1
= buf
[0], image0
= buf
[1];
3817 image0
= buf
[0], image1
= buf
[1];
3818 image0
&= 0xffffffff;
3819 image1
&= 0xffffffff;
3821 exp
= (image0
>> 7) & 0xff;
3823 memset (r
, 0, sizeof (*r
));
3828 r
->sign
= (image0
>> 15) & 1;
3829 SET_REAL_EXP (r
, exp
- 128);
3831 /* Rearrange the half-words of the external format into
3832 proper ascending order. */
3833 image0
= ((image0
& 0x7f) << 16) | ((image0
>> 16) & 0xffff);
3834 image1
= ((image1
& 0xffff) << 16) | ((image1
>> 16) & 0xffff);
3836 if (HOST_BITS_PER_LONG
== 64)
3838 image0
= (image0
<< 31 << 1) | image1
;
3841 r
->sig
[SIGSZ
-1] = image0
;
3845 r
->sig
[SIGSZ
-1] = image0
;
3846 r
->sig
[SIGSZ
-2] = image1
;
3847 lshift_significand (r
, r
, 2*HOST_BITS_PER_LONG
- 56);
3848 r
->sig
[SIGSZ
-1] |= SIG_MSB
;
3854 encode_vax_g (const struct real_format
*fmt ATTRIBUTE_UNUSED
, long *buf
,
3855 const REAL_VALUE_TYPE
*r
)
3857 unsigned long image0
, image1
, sign
= r
->sign
<< 15;
3862 image0
= image1
= 0;
3867 image0
= 0xffff7fff | sign
;
3868 image1
= 0xffffffff;
3872 /* Extract the significand into straight hi:lo. */
3873 if (HOST_BITS_PER_LONG
== 64)
3875 image0
= r
->sig
[SIGSZ
-1];
3876 image1
= (image0
>> (64 - 53)) & 0xffffffff;
3877 image0
= (image0
>> (64 - 53 + 1) >> 31) & 0xfffff;
3881 image0
= r
->sig
[SIGSZ
-1];
3882 image1
= r
->sig
[SIGSZ
-2];
3883 image1
= (image0
<< 21) | (image1
>> 11);
3884 image0
= (image0
>> 11) & 0xfffff;
3887 /* Rearrange the half-words of the significand to match the
3889 image0
= ((image0
<< 16) | (image0
>> 16)) & 0xffff000f;
3890 image1
= ((image1
<< 16) | (image1
>> 16)) & 0xffffffff;
3892 /* Add the sign and exponent. */
3894 image0
|= (REAL_EXP (r
) + 1024) << 4;
3901 if (FLOAT_WORDS_BIG_ENDIAN
)
3902 buf
[0] = image1
, buf
[1] = image0
;
3904 buf
[0] = image0
, buf
[1] = image1
;
3908 decode_vax_g (const struct real_format
*fmt ATTRIBUTE_UNUSED
,
3909 REAL_VALUE_TYPE
*r
, const long *buf
)
3911 unsigned long image0
, image1
;
3914 if (FLOAT_WORDS_BIG_ENDIAN
)
3915 image1
= buf
[0], image0
= buf
[1];
3917 image0
= buf
[0], image1
= buf
[1];
3918 image0
&= 0xffffffff;
3919 image1
&= 0xffffffff;
3921 exp
= (image0
>> 4) & 0x7ff;
3923 memset (r
, 0, sizeof (*r
));
3928 r
->sign
= (image0
>> 15) & 1;
3929 SET_REAL_EXP (r
, exp
- 1024);
3931 /* Rearrange the half-words of the external format into
3932 proper ascending order. */
3933 image0
= ((image0
& 0xf) << 16) | ((image0
>> 16) & 0xffff);
3934 image1
= ((image1
& 0xffff) << 16) | ((image1
>> 16) & 0xffff);
3936 if (HOST_BITS_PER_LONG
== 64)
3938 image0
= (image0
<< 31 << 1) | image1
;
3941 r
->sig
[SIGSZ
-1] = image0
;
3945 r
->sig
[SIGSZ
-1] = image0
;
3946 r
->sig
[SIGSZ
-2] = image1
;
3947 lshift_significand (r
, r
, 64 - 53);
3948 r
->sig
[SIGSZ
-1] |= SIG_MSB
;
3953 const struct real_format vax_f_format
=
3971 const struct real_format vax_d_format
=
3989 const struct real_format vax_g_format
=
4007 /* A good reference for these can be found in chapter 9 of
4008 "ESA/390 Principles of Operation", IBM document number SA22-7201-01.
4009 An on-line version can be found here:
4011 http://publibz.boulder.ibm.com/cgi-bin/bookmgr_OS390/BOOKS/DZ9AR001/9.1?DT=19930923083613
4014 static void encode_i370_single (const struct real_format
*fmt
,
4015 long *, const REAL_VALUE_TYPE
*);
4016 static void decode_i370_single (const struct real_format
*,
4017 REAL_VALUE_TYPE
*, const long *);
4018 static void encode_i370_double (const struct real_format
*fmt
,
4019 long *, const REAL_VALUE_TYPE
*);
4020 static void decode_i370_double (const struct real_format
*,
4021 REAL_VALUE_TYPE
*, const long *);
4024 encode_i370_single (const struct real_format
*fmt ATTRIBUTE_UNUSED
,
4025 long *buf
, const REAL_VALUE_TYPE
*r
)
4027 unsigned long sign
, exp
, sig
, image
;
4029 sign
= r
->sign
<< 31;
4039 image
= 0x7fffffff | sign
;
4043 sig
= (r
->sig
[SIGSZ
-1] >> (HOST_BITS_PER_LONG
- 24)) & 0xffffff;
4044 exp
= ((REAL_EXP (r
) / 4) + 64) << 24;
4045 image
= sign
| exp
| sig
;
4056 decode_i370_single (const struct real_format
*fmt ATTRIBUTE_UNUSED
,
4057 REAL_VALUE_TYPE
*r
, const long *buf
)
4059 unsigned long sign
, sig
, image
= buf
[0];
4062 sign
= (image
>> 31) & 1;
4063 exp
= (image
>> 24) & 0x7f;
4064 sig
= image
& 0xffffff;
4066 memset (r
, 0, sizeof (*r
));
4072 SET_REAL_EXP (r
, (exp
- 64) * 4);
4073 r
->sig
[SIGSZ
-1] = sig
<< (HOST_BITS_PER_LONG
- 24);
4079 encode_i370_double (const struct real_format
*fmt ATTRIBUTE_UNUSED
,
4080 long *buf
, const REAL_VALUE_TYPE
*r
)
4082 unsigned long sign
, exp
, image_hi
, image_lo
;
4084 sign
= r
->sign
<< 31;
4089 image_hi
= image_lo
= 0;
4094 image_hi
= 0x7fffffff | sign
;
4095 image_lo
= 0xffffffff;
4099 if (HOST_BITS_PER_LONG
== 64)
4101 image_hi
= r
->sig
[SIGSZ
-1];
4102 image_lo
= (image_hi
>> (64 - 56)) & 0xffffffff;
4103 image_hi
= (image_hi
>> (64 - 56 + 1) >> 31) & 0xffffff;
4107 image_hi
= r
->sig
[SIGSZ
-1];
4108 image_lo
= r
->sig
[SIGSZ
-2];
4109 image_lo
= (image_lo
>> 8) | (image_hi
<< 24);
4113 exp
= ((REAL_EXP (r
) / 4) + 64) << 24;
4114 image_hi
|= sign
| exp
;
4121 if (FLOAT_WORDS_BIG_ENDIAN
)
4122 buf
[0] = image_hi
, buf
[1] = image_lo
;
4124 buf
[0] = image_lo
, buf
[1] = image_hi
;
4128 decode_i370_double (const struct real_format
*fmt ATTRIBUTE_UNUSED
,
4129 REAL_VALUE_TYPE
*r
, const long *buf
)
4131 unsigned long sign
, image_hi
, image_lo
;
4134 if (FLOAT_WORDS_BIG_ENDIAN
)
4135 image_hi
= buf
[0], image_lo
= buf
[1];
4137 image_lo
= buf
[0], image_hi
= buf
[1];
4139 sign
= (image_hi
>> 31) & 1;
4140 exp
= (image_hi
>> 24) & 0x7f;
4141 image_hi
&= 0xffffff;
4142 image_lo
&= 0xffffffff;
4144 memset (r
, 0, sizeof (*r
));
4146 if (exp
|| image_hi
|| image_lo
)
4150 SET_REAL_EXP (r
, (exp
- 64) * 4 + (SIGNIFICAND_BITS
- 56));
4152 if (HOST_BITS_PER_LONG
== 32)
4154 r
->sig
[0] = image_lo
;
4155 r
->sig
[1] = image_hi
;
4158 r
->sig
[0] = image_lo
| (image_hi
<< 31 << 1);
4164 const struct real_format i370_single_format
=
4177 false, /* ??? The encoding does allow for "unnormals". */
4178 false, /* ??? The encoding does allow for "unnormals". */
4182 const struct real_format i370_double_format
=
4195 false, /* ??? The encoding does allow for "unnormals". */
4196 false, /* ??? The encoding does allow for "unnormals". */
4200 /* The "twos-complement" c4x format is officially defined as
4204 This is rather misleading. One must remember that F is signed.
4205 A better description would be
4207 x = -1**s * ((s + 1 + .f) * 2**e
4209 So if we have a (4 bit) fraction of .1000 with a sign bit of 1,
4210 that's -1 * (1+1+(-.5)) == -1.5. I think.
4212 The constructions here are taken from Tables 5-1 and 5-2 of the
4213 TMS320C4x User's Guide wherein step-by-step instructions for
4214 conversion from IEEE are presented. That's close enough to our
4215 internal representation so as to make things easy.
4217 See http://www-s.ti.com/sc/psheets/spru063c/spru063c.pdf */
4219 static void encode_c4x_single (const struct real_format
*fmt
,
4220 long *, const REAL_VALUE_TYPE
*);
4221 static void decode_c4x_single (const struct real_format
*,
4222 REAL_VALUE_TYPE
*, const long *);
4223 static void encode_c4x_extended (const struct real_format
*fmt
,
4224 long *, const REAL_VALUE_TYPE
*);
4225 static void decode_c4x_extended (const struct real_format
*,
4226 REAL_VALUE_TYPE
*, const long *);
4229 encode_c4x_single (const struct real_format
*fmt ATTRIBUTE_UNUSED
,
4230 long *buf
, const REAL_VALUE_TYPE
*r
)
4232 unsigned long image
, exp
, sig
;
4244 sig
= 0x800000 - r
->sign
;
4248 exp
= REAL_EXP (r
) - 1;
4249 sig
= (r
->sig
[SIGSZ
-1] >> (HOST_BITS_PER_LONG
- 24)) & 0x7fffff;
4264 image
= ((exp
& 0xff) << 24) | (sig
& 0xffffff);
4269 decode_c4x_single (const struct real_format
*fmt ATTRIBUTE_UNUSED
,
4270 REAL_VALUE_TYPE
*r
, const long *buf
)
4272 unsigned long image
= buf
[0];
4276 exp
= (((image
>> 24) & 0xff) ^ 0x80) - 0x80;
4277 sf
= ((image
& 0xffffff) ^ 0x800000) - 0x800000;
4279 memset (r
, 0, sizeof (*r
));
4285 sig
= sf
& 0x7fffff;
4294 sig
= (sig
<< (HOST_BITS_PER_LONG
- 24)) | SIG_MSB
;
4296 SET_REAL_EXP (r
, exp
+ 1);
4297 r
->sig
[SIGSZ
-1] = sig
;
4302 encode_c4x_extended (const struct real_format
*fmt ATTRIBUTE_UNUSED
,
4303 long *buf
, const REAL_VALUE_TYPE
*r
)
4305 unsigned long exp
, sig
;
4317 sig
= 0x80000000 - r
->sign
;
4321 exp
= REAL_EXP (r
) - 1;
4323 sig
= r
->sig
[SIGSZ
-1];
4324 if (HOST_BITS_PER_LONG
== 64)
4325 sig
= sig
>> 1 >> 31;
4342 exp
= (exp
& 0xff) << 24;
4345 if (FLOAT_WORDS_BIG_ENDIAN
)
4346 buf
[0] = exp
, buf
[1] = sig
;
4348 buf
[0] = sig
, buf
[0] = exp
;
4352 decode_c4x_extended (const struct real_format
*fmt ATTRIBUTE_UNUSED
,
4353 REAL_VALUE_TYPE
*r
, const long *buf
)
4358 if (FLOAT_WORDS_BIG_ENDIAN
)
4359 exp
= buf
[0], sf
= buf
[1];
4361 sf
= buf
[0], exp
= buf
[1];
4363 exp
= (((exp
>> 24) & 0xff) & 0x80) - 0x80;
4364 sf
= ((sf
& 0xffffffff) ^ 0x80000000) - 0x80000000;
4366 memset (r
, 0, sizeof (*r
));
4372 sig
= sf
& 0x7fffffff;
4381 if (HOST_BITS_PER_LONG
== 64)
4382 sig
= sig
<< 1 << 31;
4385 SET_REAL_EXP (r
, exp
+ 1);
4386 r
->sig
[SIGSZ
-1] = sig
;
4390 const struct real_format c4x_single_format
=
4408 const struct real_format c4x_extended_format
=
4410 encode_c4x_extended
,
4411 decode_c4x_extended
,
4427 /* A synthetic "format" for internal arithmetic. It's the size of the
4428 internal significand minus the two bits needed for proper rounding.
4429 The encode and decode routines exist only to satisfy our paranoia
4432 static void encode_internal (const struct real_format
*fmt
,
4433 long *, const REAL_VALUE_TYPE
*);
4434 static void decode_internal (const struct real_format
*,
4435 REAL_VALUE_TYPE
*, const long *);
4438 encode_internal (const struct real_format
*fmt ATTRIBUTE_UNUSED
, long *buf
,
4439 const REAL_VALUE_TYPE
*r
)
4441 memcpy (buf
, r
, sizeof (*r
));
4445 decode_internal (const struct real_format
*fmt ATTRIBUTE_UNUSED
,
4446 REAL_VALUE_TYPE
*r
, const long *buf
)
4448 memcpy (r
, buf
, sizeof (*r
));
4451 const struct real_format real_internal_format
=
4457 SIGNIFICAND_BITS
- 2,
4458 SIGNIFICAND_BITS
- 2,
4469 /* Calculate the square root of X in mode MODE, and store the result
4470 in R. Return TRUE if the operation does not raise an exception.
4471 For details see "High Precision Division and Square Root",
4472 Alan H. Karp and Peter Markstein, HP Lab Report 93-93-42, June
4473 1993. http://www.hpl.hp.com/techreports/93/HPL-93-42.pdf. */
4476 real_sqrt (REAL_VALUE_TYPE
*r
, enum machine_mode mode
,
4477 const REAL_VALUE_TYPE
*x
)
4479 static REAL_VALUE_TYPE halfthree
;
4480 static bool init
= false;
4481 REAL_VALUE_TYPE h
, t
, i
;
4484 /* sqrt(-0.0) is -0.0. */
4485 if (real_isnegzero (x
))
4491 /* Negative arguments return NaN. */
4494 get_canonical_qnan (r
, 0);
4498 /* Infinity and NaN return themselves. */
4499 if (real_isinf (x
) || real_isnan (x
))
4507 do_add (&halfthree
, &dconst1
, &dconsthalf
, 0);
4511 /* Initial guess for reciprocal sqrt, i. */
4512 exp
= real_exponent (x
);
4513 real_ldexp (&i
, &dconst1
, -exp
/2);
4515 /* Newton's iteration for reciprocal sqrt, i. */
4516 for (iter
= 0; iter
< 16; iter
++)
4518 /* i(n+1) = i(n) * (1.5 - 0.5*i(n)*i(n)*x). */
4519 do_multiply (&t
, x
, &i
);
4520 do_multiply (&h
, &t
, &i
);
4521 do_multiply (&t
, &h
, &dconsthalf
);
4522 do_add (&h
, &halfthree
, &t
, 1);
4523 do_multiply (&t
, &i
, &h
);
4525 /* Check for early convergence. */
4526 if (iter
>= 6 && real_identical (&i
, &t
))
4529 /* ??? Unroll loop to avoid copying. */
4533 /* Final iteration: r = i*x + 0.5*i*x*(1.0 - i*(i*x)). */
4534 do_multiply (&t
, x
, &i
);
4535 do_multiply (&h
, &t
, &i
);
4536 do_add (&i
, &dconst1
, &h
, 1);
4537 do_multiply (&h
, &t
, &i
);
4538 do_multiply (&i
, &dconsthalf
, &h
);
4539 do_add (&h
, &t
, &i
, 0);
4541 /* ??? We need a Tuckerman test to get the last bit. */
4543 real_convert (r
, mode
, &h
);
4547 /* Calculate X raised to the integer exponent N in mode MODE and store
4548 the result in R. Return true if the result may be inexact due to
4549 loss of precision. The algorithm is the classic "left-to-right binary
4550 method" described in section 4.6.3 of Donald Knuth's "Seminumerical
4551 Algorithms", "The Art of Computer Programming", Volume 2. */
4554 real_powi (REAL_VALUE_TYPE
*r
, enum machine_mode mode
,
4555 const REAL_VALUE_TYPE
*x
, HOST_WIDE_INT n
)
4557 unsigned HOST_WIDE_INT bit
;
4559 bool inexact
= false;
4571 /* Don't worry about overflow, from now on n is unsigned. */
4579 bit
= (unsigned HOST_WIDE_INT
) 1 << (HOST_BITS_PER_WIDE_INT
- 1);
4580 for (i
= 0; i
< HOST_BITS_PER_WIDE_INT
; i
++)
4584 inexact
|= do_multiply (&t
, &t
, &t
);
4586 inexact
|= do_multiply (&t
, &t
, x
);
4594 inexact
|= do_divide (&t
, &dconst1
, &t
);
4596 real_convert (r
, mode
, &t
);
4600 /* Round X to the nearest integer not larger in absolute value, i.e.
4601 towards zero, placing the result in R in mode MODE. */
4604 real_trunc (REAL_VALUE_TYPE
*r
, enum machine_mode mode
,
4605 const REAL_VALUE_TYPE
*x
)
4607 do_fix_trunc (r
, x
);
4608 if (mode
!= VOIDmode
)
4609 real_convert (r
, mode
, r
);
4612 /* Round X to the largest integer not greater in value, i.e. round
4613 down, placing the result in R in mode MODE. */
4616 real_floor (REAL_VALUE_TYPE
*r
, enum machine_mode mode
,
4617 const REAL_VALUE_TYPE
*x
)
4621 do_fix_trunc (&t
, x
);
4622 if (! real_identical (&t
, x
) && x
->sign
)
4623 do_add (&t
, &t
, &dconstm1
, 0);
4624 if (mode
!= VOIDmode
)
4625 real_convert (r
, mode
, &t
);
4630 /* Round X to the smallest integer not less then argument, i.e. round
4631 up, placing the result in R in mode MODE. */
4634 real_ceil (REAL_VALUE_TYPE
*r
, enum machine_mode mode
,
4635 const REAL_VALUE_TYPE
*x
)
4639 do_fix_trunc (&t
, x
);
4640 if (! real_identical (&t
, x
) && ! x
->sign
)
4641 do_add (&t
, &t
, &dconst1
, 0);
4642 if (mode
!= VOIDmode
)
4643 real_convert (r
, mode
, &t
);
4648 /* Round X to the nearest integer, but round halfway cases away from
4652 real_round (REAL_VALUE_TYPE
*r
, enum machine_mode mode
,
4653 const REAL_VALUE_TYPE
*x
)
4655 do_add (r
, x
, &dconsthalf
, x
->sign
);
4656 do_fix_trunc (r
, r
);
4657 if (mode
!= VOIDmode
)
4658 real_convert (r
, mode
, r
);
4661 /* Set the sign of R to the sign of X. */
4664 real_copysign (REAL_VALUE_TYPE
*r
, const REAL_VALUE_TYPE
*x
)