* tree-cfg.c (make_goto_expr_edges): Don't use error_mark_node.
[official-gcc.git] / gcc / cse.c
blobd7f3027e2bb48129eb776669609d7cef31fdbd8c
1 /* Common subexpression elimination for GNU compiler.
2 Copyright (C) 1987, 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998
3 1999, 2000, 2001, 2002, 2003, 2004, 2005 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
22 #include "config.h"
23 /* stdio.h must precede rtl.h for FFS. */
24 #include "system.h"
25 #include "coretypes.h"
26 #include "tm.h"
27 #include "rtl.h"
28 #include "tm_p.h"
29 #include "hard-reg-set.h"
30 #include "regs.h"
31 #include "basic-block.h"
32 #include "flags.h"
33 #include "real.h"
34 #include "insn-config.h"
35 #include "recog.h"
36 #include "function.h"
37 #include "expr.h"
38 #include "toplev.h"
39 #include "output.h"
40 #include "ggc.h"
41 #include "timevar.h"
42 #include "except.h"
43 #include "target.h"
44 #include "params.h"
45 #include "rtlhooks-def.h"
47 /* The basic idea of common subexpression elimination is to go
48 through the code, keeping a record of expressions that would
49 have the same value at the current scan point, and replacing
50 expressions encountered with the cheapest equivalent expression.
52 It is too complicated to keep track of the different possibilities
53 when control paths merge in this code; so, at each label, we forget all
54 that is known and start fresh. This can be described as processing each
55 extended basic block separately. We have a separate pass to perform
56 global CSE.
58 Note CSE can turn a conditional or computed jump into a nop or
59 an unconditional jump. When this occurs we arrange to run the jump
60 optimizer after CSE to delete the unreachable code.
62 We use two data structures to record the equivalent expressions:
63 a hash table for most expressions, and a vector of "quantity
64 numbers" to record equivalent (pseudo) registers.
66 The use of the special data structure for registers is desirable
67 because it is faster. It is possible because registers references
68 contain a fairly small number, the register number, taken from
69 a contiguously allocated series, and two register references are
70 identical if they have the same number. General expressions
71 do not have any such thing, so the only way to retrieve the
72 information recorded on an expression other than a register
73 is to keep it in a hash table.
75 Registers and "quantity numbers":
77 At the start of each basic block, all of the (hardware and pseudo)
78 registers used in the function are given distinct quantity
79 numbers to indicate their contents. During scan, when the code
80 copies one register into another, we copy the quantity number.
81 When a register is loaded in any other way, we allocate a new
82 quantity number to describe the value generated by this operation.
83 `REG_QTY (N)' records what quantity register N is currently thought
84 of as containing.
86 All real quantity numbers are greater than or equal to zero.
87 If register N has not been assigned a quantity, `REG_QTY (N)' will
88 equal -N - 1, which is always negative.
90 Quantity numbers below zero do not exist and none of the `qty_table'
91 entries should be referenced with a negative index.
93 We also maintain a bidirectional chain of registers for each
94 quantity number. The `qty_table` members `first_reg' and `last_reg',
95 and `reg_eqv_table' members `next' and `prev' hold these chains.
97 The first register in a chain is the one whose lifespan is least local.
98 Among equals, it is the one that was seen first.
99 We replace any equivalent register with that one.
101 If two registers have the same quantity number, it must be true that
102 REG expressions with qty_table `mode' must be in the hash table for both
103 registers and must be in the same class.
105 The converse is not true. Since hard registers may be referenced in
106 any mode, two REG expressions might be equivalent in the hash table
107 but not have the same quantity number if the quantity number of one
108 of the registers is not the same mode as those expressions.
110 Constants and quantity numbers
112 When a quantity has a known constant value, that value is stored
113 in the appropriate qty_table `const_rtx'. This is in addition to
114 putting the constant in the hash table as is usual for non-regs.
116 Whether a reg or a constant is preferred is determined by the configuration
117 macro CONST_COSTS and will often depend on the constant value. In any
118 event, expressions containing constants can be simplified, by fold_rtx.
120 When a quantity has a known nearly constant value (such as an address
121 of a stack slot), that value is stored in the appropriate qty_table
122 `const_rtx'.
124 Integer constants don't have a machine mode. However, cse
125 determines the intended machine mode from the destination
126 of the instruction that moves the constant. The machine mode
127 is recorded in the hash table along with the actual RTL
128 constant expression so that different modes are kept separate.
130 Other expressions:
132 To record known equivalences among expressions in general
133 we use a hash table called `table'. It has a fixed number of buckets
134 that contain chains of `struct table_elt' elements for expressions.
135 These chains connect the elements whose expressions have the same
136 hash codes.
138 Other chains through the same elements connect the elements which
139 currently have equivalent values.
141 Register references in an expression are canonicalized before hashing
142 the expression. This is done using `reg_qty' and qty_table `first_reg'.
143 The hash code of a register reference is computed using the quantity
144 number, not the register number.
146 When the value of an expression changes, it is necessary to remove from the
147 hash table not just that expression but all expressions whose values
148 could be different as a result.
150 1. If the value changing is in memory, except in special cases
151 ANYTHING referring to memory could be changed. That is because
152 nobody knows where a pointer does not point.
153 The function `invalidate_memory' removes what is necessary.
155 The special cases are when the address is constant or is
156 a constant plus a fixed register such as the frame pointer
157 or a static chain pointer. When such addresses are stored in,
158 we can tell exactly which other such addresses must be invalidated
159 due to overlap. `invalidate' does this.
160 All expressions that refer to non-constant
161 memory addresses are also invalidated. `invalidate_memory' does this.
163 2. If the value changing is a register, all expressions
164 containing references to that register, and only those,
165 must be removed.
167 Because searching the entire hash table for expressions that contain
168 a register is very slow, we try to figure out when it isn't necessary.
169 Precisely, this is necessary only when expressions have been
170 entered in the hash table using this register, and then the value has
171 changed, and then another expression wants to be added to refer to
172 the register's new value. This sequence of circumstances is rare
173 within any one basic block.
175 `REG_TICK' and `REG_IN_TABLE', accessors for members of
176 cse_reg_info, are used to detect this case. REG_TICK (i) is
177 incremented whenever a value is stored in register i.
178 REG_IN_TABLE (i) holds -1 if no references to register i have been
179 entered in the table; otherwise, it contains the value REG_TICK (i)
180 had when the references were entered. If we want to enter a
181 reference and REG_IN_TABLE (i) != REG_TICK (i), we must scan and
182 remove old references. Until we want to enter a new entry, the
183 mere fact that the two vectors don't match makes the entries be
184 ignored if anyone tries to match them.
186 Registers themselves are entered in the hash table as well as in
187 the equivalent-register chains. However, `REG_TICK' and
188 `REG_IN_TABLE' do not apply to expressions which are simple
189 register references. These expressions are removed from the table
190 immediately when they become invalid, and this can be done even if
191 we do not immediately search for all the expressions that refer to
192 the register.
194 A CLOBBER rtx in an instruction invalidates its operand for further
195 reuse. A CLOBBER or SET rtx whose operand is a MEM:BLK
196 invalidates everything that resides in memory.
198 Related expressions:
200 Constant expressions that differ only by an additive integer
201 are called related. When a constant expression is put in
202 the table, the related expression with no constant term
203 is also entered. These are made to point at each other
204 so that it is possible to find out if there exists any
205 register equivalent to an expression related to a given expression. */
207 /* Length of qty_table vector. We know in advance we will not need
208 a quantity number this big. */
210 static int max_qty;
212 /* Next quantity number to be allocated.
213 This is 1 + the largest number needed so far. */
215 static int next_qty;
217 /* Per-qty information tracking.
219 `first_reg' and `last_reg' track the head and tail of the
220 chain of registers which currently contain this quantity.
222 `mode' contains the machine mode of this quantity.
224 `const_rtx' holds the rtx of the constant value of this
225 quantity, if known. A summations of the frame/arg pointer
226 and a constant can also be entered here. When this holds
227 a known value, `const_insn' is the insn which stored the
228 constant value.
230 `comparison_{code,const,qty}' are used to track when a
231 comparison between a quantity and some constant or register has
232 been passed. In such a case, we know the results of the comparison
233 in case we see it again. These members record a comparison that
234 is known to be true. `comparison_code' holds the rtx code of such
235 a comparison, else it is set to UNKNOWN and the other two
236 comparison members are undefined. `comparison_const' holds
237 the constant being compared against, or zero if the comparison
238 is not against a constant. `comparison_qty' holds the quantity
239 being compared against when the result is known. If the comparison
240 is not with a register, `comparison_qty' is -1. */
242 struct qty_table_elem
244 rtx const_rtx;
245 rtx const_insn;
246 rtx comparison_const;
247 int comparison_qty;
248 unsigned int first_reg, last_reg;
249 /* The sizes of these fields should match the sizes of the
250 code and mode fields of struct rtx_def (see rtl.h). */
251 ENUM_BITFIELD(rtx_code) comparison_code : 16;
252 ENUM_BITFIELD(machine_mode) mode : 8;
255 /* The table of all qtys, indexed by qty number. */
256 static struct qty_table_elem *qty_table;
258 /* Structure used to pass arguments via for_each_rtx to function
259 cse_change_cc_mode. */
260 struct change_cc_mode_args
262 rtx insn;
263 rtx newreg;
266 #ifdef HAVE_cc0
267 /* For machines that have a CC0, we do not record its value in the hash
268 table since its use is guaranteed to be the insn immediately following
269 its definition and any other insn is presumed to invalidate it.
271 Instead, we store below the value last assigned to CC0. If it should
272 happen to be a constant, it is stored in preference to the actual
273 assigned value. In case it is a constant, we store the mode in which
274 the constant should be interpreted. */
276 static rtx prev_insn_cc0;
277 static enum machine_mode prev_insn_cc0_mode;
279 /* Previous actual insn. 0 if at first insn of basic block. */
281 static rtx prev_insn;
282 #endif
284 /* Insn being scanned. */
286 static rtx this_insn;
288 /* Index by register number, gives the number of the next (or
289 previous) register in the chain of registers sharing the same
290 value.
292 Or -1 if this register is at the end of the chain.
294 If REG_QTY (N) == -N - 1, reg_eqv_table[N].next is undefined. */
296 /* Per-register equivalence chain. */
297 struct reg_eqv_elem
299 int next, prev;
302 /* The table of all register equivalence chains. */
303 static struct reg_eqv_elem *reg_eqv_table;
305 struct cse_reg_info
307 /* The timestamp at which this register is initialized. */
308 unsigned int timestamp;
310 /* The quantity number of the register's current contents. */
311 int reg_qty;
313 /* The number of times the register has been altered in the current
314 basic block. */
315 int reg_tick;
317 /* The REG_TICK value at which rtx's containing this register are
318 valid in the hash table. If this does not equal the current
319 reg_tick value, such expressions existing in the hash table are
320 invalid. */
321 int reg_in_table;
323 /* The SUBREG that was set when REG_TICK was last incremented. Set
324 to -1 if the last store was to the whole register, not a subreg. */
325 unsigned int subreg_ticked;
328 /* A table of cse_reg_info indexed by register numbers. */
329 static struct cse_reg_info *cse_reg_info_table;
331 /* The size of the above table. */
332 static unsigned int cse_reg_info_table_size;
334 /* The index of the first entry that has not been initialized. */
335 static unsigned int cse_reg_info_table_first_uninitialized;
337 /* The timestamp at the beginning of the current run of
338 cse_basic_block. We increment this variable at the beginning of
339 the current run of cse_basic_block. The timestamp field of a
340 cse_reg_info entry matches the value of this variable if and only
341 if the entry has been initialized during the current run of
342 cse_basic_block. */
343 static unsigned int cse_reg_info_timestamp;
345 /* A HARD_REG_SET containing all the hard registers for which there is
346 currently a REG expression in the hash table. Note the difference
347 from the above variables, which indicate if the REG is mentioned in some
348 expression in the table. */
350 static HARD_REG_SET hard_regs_in_table;
352 /* CUID of insn that starts the basic block currently being cse-processed. */
354 static int cse_basic_block_start;
356 /* CUID of insn that ends the basic block currently being cse-processed. */
358 static int cse_basic_block_end;
360 /* Vector mapping INSN_UIDs to cuids.
361 The cuids are like uids but increase monotonically always.
362 We use them to see whether a reg is used outside a given basic block. */
364 static int *uid_cuid;
366 /* Highest UID in UID_CUID. */
367 static int max_uid;
369 /* Get the cuid of an insn. */
371 #define INSN_CUID(INSN) (uid_cuid[INSN_UID (INSN)])
373 /* Nonzero if this pass has made changes, and therefore it's
374 worthwhile to run the garbage collector. */
376 static int cse_altered;
378 /* Nonzero if cse has altered conditional jump insns
379 in such a way that jump optimization should be redone. */
381 static int cse_jumps_altered;
383 /* Nonzero if we put a LABEL_REF into the hash table for an INSN without a
384 REG_LABEL, we have to rerun jump after CSE to put in the note. */
385 static int recorded_label_ref;
387 /* canon_hash stores 1 in do_not_record
388 if it notices a reference to CC0, PC, or some other volatile
389 subexpression. */
391 static int do_not_record;
393 /* canon_hash stores 1 in hash_arg_in_memory
394 if it notices a reference to memory within the expression being hashed. */
396 static int hash_arg_in_memory;
398 /* The hash table contains buckets which are chains of `struct table_elt's,
399 each recording one expression's information.
400 That expression is in the `exp' field.
402 The canon_exp field contains a canonical (from the point of view of
403 alias analysis) version of the `exp' field.
405 Those elements with the same hash code are chained in both directions
406 through the `next_same_hash' and `prev_same_hash' fields.
408 Each set of expressions with equivalent values
409 are on a two-way chain through the `next_same_value'
410 and `prev_same_value' fields, and all point with
411 the `first_same_value' field at the first element in
412 that chain. The chain is in order of increasing cost.
413 Each element's cost value is in its `cost' field.
415 The `in_memory' field is nonzero for elements that
416 involve any reference to memory. These elements are removed
417 whenever a write is done to an unidentified location in memory.
418 To be safe, we assume that a memory address is unidentified unless
419 the address is either a symbol constant or a constant plus
420 the frame pointer or argument pointer.
422 The `related_value' field is used to connect related expressions
423 (that differ by adding an integer).
424 The related expressions are chained in a circular fashion.
425 `related_value' is zero for expressions for which this
426 chain is not useful.
428 The `cost' field stores the cost of this element's expression.
429 The `regcost' field stores the value returned by approx_reg_cost for
430 this element's expression.
432 The `is_const' flag is set if the element is a constant (including
433 a fixed address).
435 The `flag' field is used as a temporary during some search routines.
437 The `mode' field is usually the same as GET_MODE (`exp'), but
438 if `exp' is a CONST_INT and has no machine mode then the `mode'
439 field is the mode it was being used as. Each constant is
440 recorded separately for each mode it is used with. */
442 struct table_elt
444 rtx exp;
445 rtx canon_exp;
446 struct table_elt *next_same_hash;
447 struct table_elt *prev_same_hash;
448 struct table_elt *next_same_value;
449 struct table_elt *prev_same_value;
450 struct table_elt *first_same_value;
451 struct table_elt *related_value;
452 int cost;
453 int regcost;
454 /* The size of this field should match the size
455 of the mode field of struct rtx_def (see rtl.h). */
456 ENUM_BITFIELD(machine_mode) mode : 8;
457 char in_memory;
458 char is_const;
459 char flag;
462 /* We don't want a lot of buckets, because we rarely have very many
463 things stored in the hash table, and a lot of buckets slows
464 down a lot of loops that happen frequently. */
465 #define HASH_SHIFT 5
466 #define HASH_SIZE (1 << HASH_SHIFT)
467 #define HASH_MASK (HASH_SIZE - 1)
469 /* Compute hash code of X in mode M. Special-case case where X is a pseudo
470 register (hard registers may require `do_not_record' to be set). */
472 #define HASH(X, M) \
473 ((REG_P (X) && REGNO (X) >= FIRST_PSEUDO_REGISTER \
474 ? (((unsigned) REG << 7) + (unsigned) REG_QTY (REGNO (X))) \
475 : canon_hash (X, M)) & HASH_MASK)
477 /* Like HASH, but without side-effects. */
478 #define SAFE_HASH(X, M) \
479 ((REG_P (X) && REGNO (X) >= FIRST_PSEUDO_REGISTER \
480 ? (((unsigned) REG << 7) + (unsigned) REG_QTY (REGNO (X))) \
481 : safe_hash (X, M)) & HASH_MASK)
483 /* Determine whether register number N is considered a fixed register for the
484 purpose of approximating register costs.
485 It is desirable to replace other regs with fixed regs, to reduce need for
486 non-fixed hard regs.
487 A reg wins if it is either the frame pointer or designated as fixed. */
488 #define FIXED_REGNO_P(N) \
489 ((N) == FRAME_POINTER_REGNUM || (N) == HARD_FRAME_POINTER_REGNUM \
490 || fixed_regs[N] || global_regs[N])
492 /* Compute cost of X, as stored in the `cost' field of a table_elt. Fixed
493 hard registers and pointers into the frame are the cheapest with a cost
494 of 0. Next come pseudos with a cost of one and other hard registers with
495 a cost of 2. Aside from these special cases, call `rtx_cost'. */
497 #define CHEAP_REGNO(N) \
498 (REGNO_PTR_FRAME_P(N) \
499 || (HARD_REGISTER_NUM_P (N) \
500 && FIXED_REGNO_P (N) && REGNO_REG_CLASS (N) != NO_REGS))
502 #define COST(X) (REG_P (X) ? 0 : notreg_cost (X, SET))
503 #define COST_IN(X,OUTER) (REG_P (X) ? 0 : notreg_cost (X, OUTER))
505 /* Get the number of times this register has been updated in this
506 basic block. */
508 #define REG_TICK(N) (get_cse_reg_info (N)->reg_tick)
510 /* Get the point at which REG was recorded in the table. */
512 #define REG_IN_TABLE(N) (get_cse_reg_info (N)->reg_in_table)
514 /* Get the SUBREG set at the last increment to REG_TICK (-1 if not a
515 SUBREG). */
517 #define SUBREG_TICKED(N) (get_cse_reg_info (N)->subreg_ticked)
519 /* Get the quantity number for REG. */
521 #define REG_QTY(N) (get_cse_reg_info (N)->reg_qty)
523 /* Determine if the quantity number for register X represents a valid index
524 into the qty_table. */
526 #define REGNO_QTY_VALID_P(N) (REG_QTY (N) >= 0)
528 static struct table_elt *table[HASH_SIZE];
530 /* Chain of `struct table_elt's made so far for this function
531 but currently removed from the table. */
533 static struct table_elt *free_element_chain;
535 /* Set to the cost of a constant pool reference if one was found for a
536 symbolic constant. If this was found, it means we should try to
537 convert constants into constant pool entries if they don't fit in
538 the insn. */
540 static int constant_pool_entries_cost;
541 static int constant_pool_entries_regcost;
543 /* This data describes a block that will be processed by cse_basic_block. */
545 struct cse_basic_block_data
547 /* Lowest CUID value of insns in block. */
548 int low_cuid;
549 /* Highest CUID value of insns in block. */
550 int high_cuid;
551 /* Total number of SETs in block. */
552 int nsets;
553 /* Last insn in the block. */
554 rtx last;
555 /* Size of current branch path, if any. */
556 int path_size;
557 /* Current branch path, indicating which branches will be taken. */
558 struct branch_path
560 /* The branch insn. */
561 rtx branch;
562 /* Whether it should be taken or not. AROUND is the same as taken
563 except that it is used when the destination label is not preceded
564 by a BARRIER. */
565 enum taken {PATH_TAKEN, PATH_NOT_TAKEN, PATH_AROUND} status;
566 } *path;
569 static bool fixed_base_plus_p (rtx x);
570 static int notreg_cost (rtx, enum rtx_code);
571 static int approx_reg_cost_1 (rtx *, void *);
572 static int approx_reg_cost (rtx);
573 static int preferable (int, int, int, int);
574 static void new_basic_block (void);
575 static void make_new_qty (unsigned int, enum machine_mode);
576 static void make_regs_eqv (unsigned int, unsigned int);
577 static void delete_reg_equiv (unsigned int);
578 static int mention_regs (rtx);
579 static int insert_regs (rtx, struct table_elt *, int);
580 static void remove_from_table (struct table_elt *, unsigned);
581 static struct table_elt *lookup (rtx, unsigned, enum machine_mode);
582 static struct table_elt *lookup_for_remove (rtx, unsigned, enum machine_mode);
583 static rtx lookup_as_function (rtx, enum rtx_code);
584 static struct table_elt *insert (rtx, struct table_elt *, unsigned,
585 enum machine_mode);
586 static void merge_equiv_classes (struct table_elt *, struct table_elt *);
587 static void invalidate (rtx, enum machine_mode);
588 static int cse_rtx_varies_p (rtx, int);
589 static void remove_invalid_refs (unsigned int);
590 static void remove_invalid_subreg_refs (unsigned int, unsigned int,
591 enum machine_mode);
592 static void rehash_using_reg (rtx);
593 static void invalidate_memory (void);
594 static void invalidate_for_call (void);
595 static rtx use_related_value (rtx, struct table_elt *);
597 static inline unsigned canon_hash (rtx, enum machine_mode);
598 static inline unsigned safe_hash (rtx, enum machine_mode);
599 static unsigned hash_rtx_string (const char *);
601 static rtx canon_reg (rtx, rtx);
602 static void find_best_addr (rtx, rtx *, enum machine_mode);
603 static enum rtx_code find_comparison_args (enum rtx_code, rtx *, rtx *,
604 enum machine_mode *,
605 enum machine_mode *);
606 static rtx fold_rtx (rtx, rtx);
607 static rtx equiv_constant (rtx);
608 static void record_jump_equiv (rtx, int);
609 static void record_jump_cond (enum rtx_code, enum machine_mode, rtx, rtx,
610 int);
611 static void cse_insn (rtx, rtx);
612 static void cse_end_of_basic_block (rtx, struct cse_basic_block_data *,
613 int, int);
614 static int addr_affects_sp_p (rtx);
615 static void invalidate_from_clobbers (rtx);
616 static rtx cse_process_notes (rtx, rtx);
617 static void invalidate_skipped_set (rtx, rtx, void *);
618 static void invalidate_skipped_block (rtx);
619 static rtx cse_basic_block (rtx, rtx, struct branch_path *);
620 static void count_reg_usage (rtx, int *, int);
621 static int check_for_label_ref (rtx *, void *);
622 extern void dump_class (struct table_elt*);
623 static void get_cse_reg_info_1 (unsigned int regno);
624 static struct cse_reg_info * get_cse_reg_info (unsigned int regno);
625 static int check_dependence (rtx *, void *);
627 static void flush_hash_table (void);
628 static bool insn_live_p (rtx, int *);
629 static bool set_live_p (rtx, rtx, int *);
630 static bool dead_libcall_p (rtx, int *);
631 static int cse_change_cc_mode (rtx *, void *);
632 static void cse_change_cc_mode_insn (rtx, rtx);
633 static void cse_change_cc_mode_insns (rtx, rtx, rtx);
634 static enum machine_mode cse_cc_succs (basic_block, rtx, rtx, bool);
637 #undef RTL_HOOKS_GEN_LOWPART
638 #define RTL_HOOKS_GEN_LOWPART gen_lowpart_if_possible
640 static const struct rtl_hooks cse_rtl_hooks = RTL_HOOKS_INITIALIZER;
642 /* Nonzero if X has the form (PLUS frame-pointer integer). We check for
643 virtual regs here because the simplify_*_operation routines are called
644 by integrate.c, which is called before virtual register instantiation. */
646 static bool
647 fixed_base_plus_p (rtx x)
649 switch (GET_CODE (x))
651 case REG:
652 if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx)
653 return true;
654 if (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM])
655 return true;
656 if (REGNO (x) >= FIRST_VIRTUAL_REGISTER
657 && REGNO (x) <= LAST_VIRTUAL_REGISTER)
658 return true;
659 return false;
661 case PLUS:
662 if (GET_CODE (XEXP (x, 1)) != CONST_INT)
663 return false;
664 return fixed_base_plus_p (XEXP (x, 0));
666 default:
667 return false;
671 /* Dump the expressions in the equivalence class indicated by CLASSP.
672 This function is used only for debugging. */
673 void
674 dump_class (struct table_elt *classp)
676 struct table_elt *elt;
678 fprintf (stderr, "Equivalence chain for ");
679 print_rtl (stderr, classp->exp);
680 fprintf (stderr, ": \n");
682 for (elt = classp->first_same_value; elt; elt = elt->next_same_value)
684 print_rtl (stderr, elt->exp);
685 fprintf (stderr, "\n");
689 /* Subroutine of approx_reg_cost; called through for_each_rtx. */
691 static int
692 approx_reg_cost_1 (rtx *xp, void *data)
694 rtx x = *xp;
695 int *cost_p = data;
697 if (x && REG_P (x))
699 unsigned int regno = REGNO (x);
701 if (! CHEAP_REGNO (regno))
703 if (regno < FIRST_PSEUDO_REGISTER)
705 if (SMALL_REGISTER_CLASSES)
706 return 1;
707 *cost_p += 2;
709 else
710 *cost_p += 1;
714 return 0;
717 /* Return an estimate of the cost of the registers used in an rtx.
718 This is mostly the number of different REG expressions in the rtx;
719 however for some exceptions like fixed registers we use a cost of
720 0. If any other hard register reference occurs, return MAX_COST. */
722 static int
723 approx_reg_cost (rtx x)
725 int cost = 0;
727 if (for_each_rtx (&x, approx_reg_cost_1, (void *) &cost))
728 return MAX_COST;
730 return cost;
733 /* Returns a canonical version of X for the address, from the point of view,
734 that all multiplications are represented as MULT instead of the multiply
735 by a power of 2 being represented as ASHIFT. */
737 static rtx
738 canon_for_address (rtx x)
740 enum rtx_code code;
741 enum machine_mode mode;
742 rtx new = 0;
743 int i;
744 const char *fmt;
746 if (!x)
747 return x;
749 code = GET_CODE (x);
750 mode = GET_MODE (x);
752 switch (code)
754 case ASHIFT:
755 if (GET_CODE (XEXP (x, 1)) == CONST_INT
756 && INTVAL (XEXP (x, 1)) < GET_MODE_BITSIZE (mode)
757 && INTVAL (XEXP (x, 1)) >= 0)
759 new = canon_for_address (XEXP (x, 0));
760 new = gen_rtx_MULT (mode, new,
761 gen_int_mode ((HOST_WIDE_INT) 1
762 << INTVAL (XEXP (x, 1)),
763 mode));
765 break;
766 default:
767 break;
770 if (new)
771 return new;
773 /* Now recursively process each operand of this operation. */
774 fmt = GET_RTX_FORMAT (code);
775 for (i = 0; i < GET_RTX_LENGTH (code); i++)
776 if (fmt[i] == 'e')
778 new = canon_for_address (XEXP (x, i));
779 XEXP (x, i) = new;
781 return x;
784 /* Return a negative value if an rtx A, whose costs are given by COST_A
785 and REGCOST_A, is more desirable than an rtx B.
786 Return a positive value if A is less desirable, or 0 if the two are
787 equally good. */
788 static int
789 preferable (int cost_a, int regcost_a, int cost_b, int regcost_b)
791 /* First, get rid of cases involving expressions that are entirely
792 unwanted. */
793 if (cost_a != cost_b)
795 if (cost_a == MAX_COST)
796 return 1;
797 if (cost_b == MAX_COST)
798 return -1;
801 /* Avoid extending lifetimes of hardregs. */
802 if (regcost_a != regcost_b)
804 if (regcost_a == MAX_COST)
805 return 1;
806 if (regcost_b == MAX_COST)
807 return -1;
810 /* Normal operation costs take precedence. */
811 if (cost_a != cost_b)
812 return cost_a - cost_b;
813 /* Only if these are identical consider effects on register pressure. */
814 if (regcost_a != regcost_b)
815 return regcost_a - regcost_b;
816 return 0;
819 /* Internal function, to compute cost when X is not a register; called
820 from COST macro to keep it simple. */
822 static int
823 notreg_cost (rtx x, enum rtx_code outer)
825 return ((GET_CODE (x) == SUBREG
826 && REG_P (SUBREG_REG (x))
827 && GET_MODE_CLASS (GET_MODE (x)) == MODE_INT
828 && GET_MODE_CLASS (GET_MODE (SUBREG_REG (x))) == MODE_INT
829 && (GET_MODE_SIZE (GET_MODE (x))
830 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
831 && subreg_lowpart_p (x)
832 && TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (GET_MODE (x)),
833 GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x)))))
835 : rtx_cost (x, outer) * 2);
839 /* Initialize CSE_REG_INFO_TABLE. */
841 static void
842 init_cse_reg_info (unsigned int nregs)
844 /* Do we need to grow the table? */
845 if (nregs > cse_reg_info_table_size)
847 unsigned int new_size;
849 if (cse_reg_info_table_size < 2048)
851 /* Compute a new size that is a power of 2 and no smaller
852 than the large of NREGS and 64. */
853 new_size = (cse_reg_info_table_size
854 ? cse_reg_info_table_size : 64);
856 while (new_size < nregs)
857 new_size *= 2;
859 else
861 /* If we need a big table, allocate just enough to hold
862 NREGS registers. */
863 new_size = nregs;
866 /* Reallocate the table with NEW_SIZE entries. */
867 if (cse_reg_info_table)
868 free (cse_reg_info_table);
869 cse_reg_info_table = xmalloc (sizeof (struct cse_reg_info)
870 * new_size);
871 cse_reg_info_table_size = new_size;
872 cse_reg_info_table_first_uninitialized = 0;
875 /* Do we have all of the first NREGS entries initialized? */
876 if (cse_reg_info_table_first_uninitialized < nregs)
878 unsigned int old_timestamp = cse_reg_info_timestamp - 1;
879 unsigned int i;
881 /* Put the old timestamp on newly allocated entries so that they
882 will all be considered out of date. We do not touch those
883 entries beyond the first NREGS entries to be nice to the
884 virtual memory. */
885 for (i = cse_reg_info_table_first_uninitialized; i < nregs; i++)
886 cse_reg_info_table[i].timestamp = old_timestamp;
888 cse_reg_info_table_first_uninitialized = nregs;
892 /* Given REGNO, initialize the cse_reg_info entry for REGNO. */
894 static void
895 get_cse_reg_info_1 (unsigned int regno)
897 /* Set TIMESTAMP field to CSE_REG_INFO_TIMESTAMP so that this
898 entry will be considered to have been initialized. */
899 cse_reg_info_table[regno].timestamp = cse_reg_info_timestamp;
901 /* Initialize the rest of the entry. */
902 cse_reg_info_table[regno].reg_tick = 1;
903 cse_reg_info_table[regno].reg_in_table = -1;
904 cse_reg_info_table[regno].subreg_ticked = -1;
905 cse_reg_info_table[regno].reg_qty = -regno - 1;
908 /* Find a cse_reg_info entry for REGNO. */
910 static inline struct cse_reg_info *
911 get_cse_reg_info (unsigned int regno)
913 struct cse_reg_info *p = &cse_reg_info_table[regno];
915 /* If this entry has not been initialized, go ahead and initialize
916 it. */
917 if (p->timestamp != cse_reg_info_timestamp)
918 get_cse_reg_info_1 (regno);
920 return p;
923 /* Clear the hash table and initialize each register with its own quantity,
924 for a new basic block. */
926 static void
927 new_basic_block (void)
929 int i;
931 next_qty = 0;
933 /* Invalidate cse_reg_info_table. */
934 cse_reg_info_timestamp++;
936 /* Clear out hash table state for this pass. */
937 CLEAR_HARD_REG_SET (hard_regs_in_table);
939 /* The per-quantity values used to be initialized here, but it is
940 much faster to initialize each as it is made in `make_new_qty'. */
942 for (i = 0; i < HASH_SIZE; i++)
944 struct table_elt *first;
946 first = table[i];
947 if (first != NULL)
949 struct table_elt *last = first;
951 table[i] = NULL;
953 while (last->next_same_hash != NULL)
954 last = last->next_same_hash;
956 /* Now relink this hash entire chain into
957 the free element list. */
959 last->next_same_hash = free_element_chain;
960 free_element_chain = first;
964 #ifdef HAVE_cc0
965 prev_insn = 0;
966 prev_insn_cc0 = 0;
967 #endif
970 /* Say that register REG contains a quantity in mode MODE not in any
971 register before and initialize that quantity. */
973 static void
974 make_new_qty (unsigned int reg, enum machine_mode mode)
976 int q;
977 struct qty_table_elem *ent;
978 struct reg_eqv_elem *eqv;
980 gcc_assert (next_qty < max_qty);
982 q = REG_QTY (reg) = next_qty++;
983 ent = &qty_table[q];
984 ent->first_reg = reg;
985 ent->last_reg = reg;
986 ent->mode = mode;
987 ent->const_rtx = ent->const_insn = NULL_RTX;
988 ent->comparison_code = UNKNOWN;
990 eqv = &reg_eqv_table[reg];
991 eqv->next = eqv->prev = -1;
994 /* Make reg NEW equivalent to reg OLD.
995 OLD is not changing; NEW is. */
997 static void
998 make_regs_eqv (unsigned int new, unsigned int old)
1000 unsigned int lastr, firstr;
1001 int q = REG_QTY (old);
1002 struct qty_table_elem *ent;
1004 ent = &qty_table[q];
1006 /* Nothing should become eqv until it has a "non-invalid" qty number. */
1007 gcc_assert (REGNO_QTY_VALID_P (old));
1009 REG_QTY (new) = q;
1010 firstr = ent->first_reg;
1011 lastr = ent->last_reg;
1013 /* Prefer fixed hard registers to anything. Prefer pseudo regs to other
1014 hard regs. Among pseudos, if NEW will live longer than any other reg
1015 of the same qty, and that is beyond the current basic block,
1016 make it the new canonical replacement for this qty. */
1017 if (! (firstr < FIRST_PSEUDO_REGISTER && FIXED_REGNO_P (firstr))
1018 /* Certain fixed registers might be of the class NO_REGS. This means
1019 that not only can they not be allocated by the compiler, but
1020 they cannot be used in substitutions or canonicalizations
1021 either. */
1022 && (new >= FIRST_PSEUDO_REGISTER || REGNO_REG_CLASS (new) != NO_REGS)
1023 && ((new < FIRST_PSEUDO_REGISTER && FIXED_REGNO_P (new))
1024 || (new >= FIRST_PSEUDO_REGISTER
1025 && (firstr < FIRST_PSEUDO_REGISTER
1026 || ((uid_cuid[REGNO_LAST_UID (new)] > cse_basic_block_end
1027 || (uid_cuid[REGNO_FIRST_UID (new)]
1028 < cse_basic_block_start))
1029 && (uid_cuid[REGNO_LAST_UID (new)]
1030 > uid_cuid[REGNO_LAST_UID (firstr)]))))))
1032 reg_eqv_table[firstr].prev = new;
1033 reg_eqv_table[new].next = firstr;
1034 reg_eqv_table[new].prev = -1;
1035 ent->first_reg = new;
1037 else
1039 /* If NEW is a hard reg (known to be non-fixed), insert at end.
1040 Otherwise, insert before any non-fixed hard regs that are at the
1041 end. Registers of class NO_REGS cannot be used as an
1042 equivalent for anything. */
1043 while (lastr < FIRST_PSEUDO_REGISTER && reg_eqv_table[lastr].prev >= 0
1044 && (REGNO_REG_CLASS (lastr) == NO_REGS || ! FIXED_REGNO_P (lastr))
1045 && new >= FIRST_PSEUDO_REGISTER)
1046 lastr = reg_eqv_table[lastr].prev;
1047 reg_eqv_table[new].next = reg_eqv_table[lastr].next;
1048 if (reg_eqv_table[lastr].next >= 0)
1049 reg_eqv_table[reg_eqv_table[lastr].next].prev = new;
1050 else
1051 qty_table[q].last_reg = new;
1052 reg_eqv_table[lastr].next = new;
1053 reg_eqv_table[new].prev = lastr;
1057 /* Remove REG from its equivalence class. */
1059 static void
1060 delete_reg_equiv (unsigned int reg)
1062 struct qty_table_elem *ent;
1063 int q = REG_QTY (reg);
1064 int p, n;
1066 /* If invalid, do nothing. */
1067 if (! REGNO_QTY_VALID_P (reg))
1068 return;
1070 ent = &qty_table[q];
1072 p = reg_eqv_table[reg].prev;
1073 n = reg_eqv_table[reg].next;
1075 if (n != -1)
1076 reg_eqv_table[n].prev = p;
1077 else
1078 ent->last_reg = p;
1079 if (p != -1)
1080 reg_eqv_table[p].next = n;
1081 else
1082 ent->first_reg = n;
1084 REG_QTY (reg) = -reg - 1;
1087 /* Remove any invalid expressions from the hash table
1088 that refer to any of the registers contained in expression X.
1090 Make sure that newly inserted references to those registers
1091 as subexpressions will be considered valid.
1093 mention_regs is not called when a register itself
1094 is being stored in the table.
1096 Return 1 if we have done something that may have changed the hash code
1097 of X. */
1099 static int
1100 mention_regs (rtx x)
1102 enum rtx_code code;
1103 int i, j;
1104 const char *fmt;
1105 int changed = 0;
1107 if (x == 0)
1108 return 0;
1110 code = GET_CODE (x);
1111 if (code == REG)
1113 unsigned int regno = REGNO (x);
1114 unsigned int endregno
1115 = regno + (regno >= FIRST_PSEUDO_REGISTER ? 1
1116 : hard_regno_nregs[regno][GET_MODE (x)]);
1117 unsigned int i;
1119 for (i = regno; i < endregno; i++)
1121 if (REG_IN_TABLE (i) >= 0 && REG_IN_TABLE (i) != REG_TICK (i))
1122 remove_invalid_refs (i);
1124 REG_IN_TABLE (i) = REG_TICK (i);
1125 SUBREG_TICKED (i) = -1;
1128 return 0;
1131 /* If this is a SUBREG, we don't want to discard other SUBREGs of the same
1132 pseudo if they don't use overlapping words. We handle only pseudos
1133 here for simplicity. */
1134 if (code == SUBREG && REG_P (SUBREG_REG (x))
1135 && REGNO (SUBREG_REG (x)) >= FIRST_PSEUDO_REGISTER)
1137 unsigned int i = REGNO (SUBREG_REG (x));
1139 if (REG_IN_TABLE (i) >= 0 && REG_IN_TABLE (i) != REG_TICK (i))
1141 /* If REG_IN_TABLE (i) differs from REG_TICK (i) by one, and
1142 the last store to this register really stored into this
1143 subreg, then remove the memory of this subreg.
1144 Otherwise, remove any memory of the entire register and
1145 all its subregs from the table. */
1146 if (REG_TICK (i) - REG_IN_TABLE (i) > 1
1147 || SUBREG_TICKED (i) != REGNO (SUBREG_REG (x)))
1148 remove_invalid_refs (i);
1149 else
1150 remove_invalid_subreg_refs (i, SUBREG_BYTE (x), GET_MODE (x));
1153 REG_IN_TABLE (i) = REG_TICK (i);
1154 SUBREG_TICKED (i) = REGNO (SUBREG_REG (x));
1155 return 0;
1158 /* If X is a comparison or a COMPARE and either operand is a register
1159 that does not have a quantity, give it one. This is so that a later
1160 call to record_jump_equiv won't cause X to be assigned a different
1161 hash code and not found in the table after that call.
1163 It is not necessary to do this here, since rehash_using_reg can
1164 fix up the table later, but doing this here eliminates the need to
1165 call that expensive function in the most common case where the only
1166 use of the register is in the comparison. */
1168 if (code == COMPARE || COMPARISON_P (x))
1170 if (REG_P (XEXP (x, 0))
1171 && ! REGNO_QTY_VALID_P (REGNO (XEXP (x, 0))))
1172 if (insert_regs (XEXP (x, 0), NULL, 0))
1174 rehash_using_reg (XEXP (x, 0));
1175 changed = 1;
1178 if (REG_P (XEXP (x, 1))
1179 && ! REGNO_QTY_VALID_P (REGNO (XEXP (x, 1))))
1180 if (insert_regs (XEXP (x, 1), NULL, 0))
1182 rehash_using_reg (XEXP (x, 1));
1183 changed = 1;
1187 fmt = GET_RTX_FORMAT (code);
1188 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1189 if (fmt[i] == 'e')
1190 changed |= mention_regs (XEXP (x, i));
1191 else if (fmt[i] == 'E')
1192 for (j = 0; j < XVECLEN (x, i); j++)
1193 changed |= mention_regs (XVECEXP (x, i, j));
1195 return changed;
1198 /* Update the register quantities for inserting X into the hash table
1199 with a value equivalent to CLASSP.
1200 (If the class does not contain a REG, it is irrelevant.)
1201 If MODIFIED is nonzero, X is a destination; it is being modified.
1202 Note that delete_reg_equiv should be called on a register
1203 before insert_regs is done on that register with MODIFIED != 0.
1205 Nonzero value means that elements of reg_qty have changed
1206 so X's hash code may be different. */
1208 static int
1209 insert_regs (rtx x, struct table_elt *classp, int modified)
1211 if (REG_P (x))
1213 unsigned int regno = REGNO (x);
1214 int qty_valid;
1216 /* If REGNO is in the equivalence table already but is of the
1217 wrong mode for that equivalence, don't do anything here. */
1219 qty_valid = REGNO_QTY_VALID_P (regno);
1220 if (qty_valid)
1222 struct qty_table_elem *ent = &qty_table[REG_QTY (regno)];
1224 if (ent->mode != GET_MODE (x))
1225 return 0;
1228 if (modified || ! qty_valid)
1230 if (classp)
1231 for (classp = classp->first_same_value;
1232 classp != 0;
1233 classp = classp->next_same_value)
1234 if (REG_P (classp->exp)
1235 && GET_MODE (classp->exp) == GET_MODE (x))
1237 make_regs_eqv (regno, REGNO (classp->exp));
1238 return 1;
1241 /* Mention_regs for a SUBREG checks if REG_TICK is exactly one larger
1242 than REG_IN_TABLE to find out if there was only a single preceding
1243 invalidation - for the SUBREG - or another one, which would be
1244 for the full register. However, if we find here that REG_TICK
1245 indicates that the register is invalid, it means that it has
1246 been invalidated in a separate operation. The SUBREG might be used
1247 now (then this is a recursive call), or we might use the full REG
1248 now and a SUBREG of it later. So bump up REG_TICK so that
1249 mention_regs will do the right thing. */
1250 if (! modified
1251 && REG_IN_TABLE (regno) >= 0
1252 && REG_TICK (regno) == REG_IN_TABLE (regno) + 1)
1253 REG_TICK (regno)++;
1254 make_new_qty (regno, GET_MODE (x));
1255 return 1;
1258 return 0;
1261 /* If X is a SUBREG, we will likely be inserting the inner register in the
1262 table. If that register doesn't have an assigned quantity number at
1263 this point but does later, the insertion that we will be doing now will
1264 not be accessible because its hash code will have changed. So assign
1265 a quantity number now. */
1267 else if (GET_CODE (x) == SUBREG && REG_P (SUBREG_REG (x))
1268 && ! REGNO_QTY_VALID_P (REGNO (SUBREG_REG (x))))
1270 insert_regs (SUBREG_REG (x), NULL, 0);
1271 mention_regs (x);
1272 return 1;
1274 else
1275 return mention_regs (x);
1278 /* Look in or update the hash table. */
1280 /* Remove table element ELT from use in the table.
1281 HASH is its hash code, made using the HASH macro.
1282 It's an argument because often that is known in advance
1283 and we save much time not recomputing it. */
1285 static void
1286 remove_from_table (struct table_elt *elt, unsigned int hash)
1288 if (elt == 0)
1289 return;
1291 /* Mark this element as removed. See cse_insn. */
1292 elt->first_same_value = 0;
1294 /* Remove the table element from its equivalence class. */
1297 struct table_elt *prev = elt->prev_same_value;
1298 struct table_elt *next = elt->next_same_value;
1300 if (next)
1301 next->prev_same_value = prev;
1303 if (prev)
1304 prev->next_same_value = next;
1305 else
1307 struct table_elt *newfirst = next;
1308 while (next)
1310 next->first_same_value = newfirst;
1311 next = next->next_same_value;
1316 /* Remove the table element from its hash bucket. */
1319 struct table_elt *prev = elt->prev_same_hash;
1320 struct table_elt *next = elt->next_same_hash;
1322 if (next)
1323 next->prev_same_hash = prev;
1325 if (prev)
1326 prev->next_same_hash = next;
1327 else if (table[hash] == elt)
1328 table[hash] = next;
1329 else
1331 /* This entry is not in the proper hash bucket. This can happen
1332 when two classes were merged by `merge_equiv_classes'. Search
1333 for the hash bucket that it heads. This happens only very
1334 rarely, so the cost is acceptable. */
1335 for (hash = 0; hash < HASH_SIZE; hash++)
1336 if (table[hash] == elt)
1337 table[hash] = next;
1341 /* Remove the table element from its related-value circular chain. */
1343 if (elt->related_value != 0 && elt->related_value != elt)
1345 struct table_elt *p = elt->related_value;
1347 while (p->related_value != elt)
1348 p = p->related_value;
1349 p->related_value = elt->related_value;
1350 if (p->related_value == p)
1351 p->related_value = 0;
1354 /* Now add it to the free element chain. */
1355 elt->next_same_hash = free_element_chain;
1356 free_element_chain = elt;
1359 /* Look up X in the hash table and return its table element,
1360 or 0 if X is not in the table.
1362 MODE is the machine-mode of X, or if X is an integer constant
1363 with VOIDmode then MODE is the mode with which X will be used.
1365 Here we are satisfied to find an expression whose tree structure
1366 looks like X. */
1368 static struct table_elt *
1369 lookup (rtx x, unsigned int hash, enum machine_mode mode)
1371 struct table_elt *p;
1373 for (p = table[hash]; p; p = p->next_same_hash)
1374 if (mode == p->mode && ((x == p->exp && REG_P (x))
1375 || exp_equiv_p (x, p->exp, !REG_P (x), false)))
1376 return p;
1378 return 0;
1381 /* Like `lookup' but don't care whether the table element uses invalid regs.
1382 Also ignore discrepancies in the machine mode of a register. */
1384 static struct table_elt *
1385 lookup_for_remove (rtx x, unsigned int hash, enum machine_mode mode)
1387 struct table_elt *p;
1389 if (REG_P (x))
1391 unsigned int regno = REGNO (x);
1393 /* Don't check the machine mode when comparing registers;
1394 invalidating (REG:SI 0) also invalidates (REG:DF 0). */
1395 for (p = table[hash]; p; p = p->next_same_hash)
1396 if (REG_P (p->exp)
1397 && REGNO (p->exp) == regno)
1398 return p;
1400 else
1402 for (p = table[hash]; p; p = p->next_same_hash)
1403 if (mode == p->mode
1404 && (x == p->exp || exp_equiv_p (x, p->exp, 0, false)))
1405 return p;
1408 return 0;
1411 /* Look for an expression equivalent to X and with code CODE.
1412 If one is found, return that expression. */
1414 static rtx
1415 lookup_as_function (rtx x, enum rtx_code code)
1417 struct table_elt *p
1418 = lookup (x, SAFE_HASH (x, VOIDmode), GET_MODE (x));
1420 /* If we are looking for a CONST_INT, the mode doesn't really matter, as
1421 long as we are narrowing. So if we looked in vain for a mode narrower
1422 than word_mode before, look for word_mode now. */
1423 if (p == 0 && code == CONST_INT
1424 && GET_MODE_SIZE (GET_MODE (x)) < GET_MODE_SIZE (word_mode))
1426 x = copy_rtx (x);
1427 PUT_MODE (x, word_mode);
1428 p = lookup (x, SAFE_HASH (x, VOIDmode), word_mode);
1431 if (p == 0)
1432 return 0;
1434 for (p = p->first_same_value; p; p = p->next_same_value)
1435 if (GET_CODE (p->exp) == code
1436 /* Make sure this is a valid entry in the table. */
1437 && exp_equiv_p (p->exp, p->exp, 1, false))
1438 return p->exp;
1440 return 0;
1443 /* Insert X in the hash table, assuming HASH is its hash code
1444 and CLASSP is an element of the class it should go in
1445 (or 0 if a new class should be made).
1446 It is inserted at the proper position to keep the class in
1447 the order cheapest first.
1449 MODE is the machine-mode of X, or if X is an integer constant
1450 with VOIDmode then MODE is the mode with which X will be used.
1452 For elements of equal cheapness, the most recent one
1453 goes in front, except that the first element in the list
1454 remains first unless a cheaper element is added. The order of
1455 pseudo-registers does not matter, as canon_reg will be called to
1456 find the cheapest when a register is retrieved from the table.
1458 The in_memory field in the hash table element is set to 0.
1459 The caller must set it nonzero if appropriate.
1461 You should call insert_regs (X, CLASSP, MODIFY) before calling here,
1462 and if insert_regs returns a nonzero value
1463 you must then recompute its hash code before calling here.
1465 If necessary, update table showing constant values of quantities. */
1467 #define CHEAPER(X, Y) \
1468 (preferable ((X)->cost, (X)->regcost, (Y)->cost, (Y)->regcost) < 0)
1470 static struct table_elt *
1471 insert (rtx x, struct table_elt *classp, unsigned int hash, enum machine_mode mode)
1473 struct table_elt *elt;
1475 /* If X is a register and we haven't made a quantity for it,
1476 something is wrong. */
1477 gcc_assert (!REG_P (x) || REGNO_QTY_VALID_P (REGNO (x)));
1479 /* If X is a hard register, show it is being put in the table. */
1480 if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
1482 unsigned int regno = REGNO (x);
1483 unsigned int endregno = regno + hard_regno_nregs[regno][GET_MODE (x)];
1484 unsigned int i;
1486 for (i = regno; i < endregno; i++)
1487 SET_HARD_REG_BIT (hard_regs_in_table, i);
1490 /* Put an element for X into the right hash bucket. */
1492 elt = free_element_chain;
1493 if (elt)
1494 free_element_chain = elt->next_same_hash;
1495 else
1496 elt = xmalloc (sizeof (struct table_elt));
1498 elt->exp = x;
1499 elt->canon_exp = NULL_RTX;
1500 elt->cost = COST (x);
1501 elt->regcost = approx_reg_cost (x);
1502 elt->next_same_value = 0;
1503 elt->prev_same_value = 0;
1504 elt->next_same_hash = table[hash];
1505 elt->prev_same_hash = 0;
1506 elt->related_value = 0;
1507 elt->in_memory = 0;
1508 elt->mode = mode;
1509 elt->is_const = (CONSTANT_P (x) || fixed_base_plus_p (x));
1511 if (table[hash])
1512 table[hash]->prev_same_hash = elt;
1513 table[hash] = elt;
1515 /* Put it into the proper value-class. */
1516 if (classp)
1518 classp = classp->first_same_value;
1519 if (CHEAPER (elt, classp))
1520 /* Insert at the head of the class. */
1522 struct table_elt *p;
1523 elt->next_same_value = classp;
1524 classp->prev_same_value = elt;
1525 elt->first_same_value = elt;
1527 for (p = classp; p; p = p->next_same_value)
1528 p->first_same_value = elt;
1530 else
1532 /* Insert not at head of the class. */
1533 /* Put it after the last element cheaper than X. */
1534 struct table_elt *p, *next;
1536 for (p = classp; (next = p->next_same_value) && CHEAPER (next, elt);
1537 p = next);
1539 /* Put it after P and before NEXT. */
1540 elt->next_same_value = next;
1541 if (next)
1542 next->prev_same_value = elt;
1544 elt->prev_same_value = p;
1545 p->next_same_value = elt;
1546 elt->first_same_value = classp;
1549 else
1550 elt->first_same_value = elt;
1552 /* If this is a constant being set equivalent to a register or a register
1553 being set equivalent to a constant, note the constant equivalence.
1555 If this is a constant, it cannot be equivalent to a different constant,
1556 and a constant is the only thing that can be cheaper than a register. So
1557 we know the register is the head of the class (before the constant was
1558 inserted).
1560 If this is a register that is not already known equivalent to a
1561 constant, we must check the entire class.
1563 If this is a register that is already known equivalent to an insn,
1564 update the qtys `const_insn' to show that `this_insn' is the latest
1565 insn making that quantity equivalent to the constant. */
1567 if (elt->is_const && classp && REG_P (classp->exp)
1568 && !REG_P (x))
1570 int exp_q = REG_QTY (REGNO (classp->exp));
1571 struct qty_table_elem *exp_ent = &qty_table[exp_q];
1573 exp_ent->const_rtx = gen_lowpart (exp_ent->mode, x);
1574 exp_ent->const_insn = this_insn;
1577 else if (REG_P (x)
1578 && classp
1579 && ! qty_table[REG_QTY (REGNO (x))].const_rtx
1580 && ! elt->is_const)
1582 struct table_elt *p;
1584 for (p = classp; p != 0; p = p->next_same_value)
1586 if (p->is_const && !REG_P (p->exp))
1588 int x_q = REG_QTY (REGNO (x));
1589 struct qty_table_elem *x_ent = &qty_table[x_q];
1591 x_ent->const_rtx
1592 = gen_lowpart (GET_MODE (x), p->exp);
1593 x_ent->const_insn = this_insn;
1594 break;
1599 else if (REG_P (x)
1600 && qty_table[REG_QTY (REGNO (x))].const_rtx
1601 && GET_MODE (x) == qty_table[REG_QTY (REGNO (x))].mode)
1602 qty_table[REG_QTY (REGNO (x))].const_insn = this_insn;
1604 /* If this is a constant with symbolic value,
1605 and it has a term with an explicit integer value,
1606 link it up with related expressions. */
1607 if (GET_CODE (x) == CONST)
1609 rtx subexp = get_related_value (x);
1610 unsigned subhash;
1611 struct table_elt *subelt, *subelt_prev;
1613 if (subexp != 0)
1615 /* Get the integer-free subexpression in the hash table. */
1616 subhash = SAFE_HASH (subexp, mode);
1617 subelt = lookup (subexp, subhash, mode);
1618 if (subelt == 0)
1619 subelt = insert (subexp, NULL, subhash, mode);
1620 /* Initialize SUBELT's circular chain if it has none. */
1621 if (subelt->related_value == 0)
1622 subelt->related_value = subelt;
1623 /* Find the element in the circular chain that precedes SUBELT. */
1624 subelt_prev = subelt;
1625 while (subelt_prev->related_value != subelt)
1626 subelt_prev = subelt_prev->related_value;
1627 /* Put new ELT into SUBELT's circular chain just before SUBELT.
1628 This way the element that follows SUBELT is the oldest one. */
1629 elt->related_value = subelt_prev->related_value;
1630 subelt_prev->related_value = elt;
1634 return elt;
1637 /* Given two equivalence classes, CLASS1 and CLASS2, put all the entries from
1638 CLASS2 into CLASS1. This is done when we have reached an insn which makes
1639 the two classes equivalent.
1641 CLASS1 will be the surviving class; CLASS2 should not be used after this
1642 call.
1644 Any invalid entries in CLASS2 will not be copied. */
1646 static void
1647 merge_equiv_classes (struct table_elt *class1, struct table_elt *class2)
1649 struct table_elt *elt, *next, *new;
1651 /* Ensure we start with the head of the classes. */
1652 class1 = class1->first_same_value;
1653 class2 = class2->first_same_value;
1655 /* If they were already equal, forget it. */
1656 if (class1 == class2)
1657 return;
1659 for (elt = class2; elt; elt = next)
1661 unsigned int hash;
1662 rtx exp = elt->exp;
1663 enum machine_mode mode = elt->mode;
1665 next = elt->next_same_value;
1667 /* Remove old entry, make a new one in CLASS1's class.
1668 Don't do this for invalid entries as we cannot find their
1669 hash code (it also isn't necessary). */
1670 if (REG_P (exp) || exp_equiv_p (exp, exp, 1, false))
1672 bool need_rehash = false;
1674 hash_arg_in_memory = 0;
1675 hash = HASH (exp, mode);
1677 if (REG_P (exp))
1679 need_rehash = REGNO_QTY_VALID_P (REGNO (exp));
1680 delete_reg_equiv (REGNO (exp));
1683 remove_from_table (elt, hash);
1685 if (insert_regs (exp, class1, 0) || need_rehash)
1687 rehash_using_reg (exp);
1688 hash = HASH (exp, mode);
1690 new = insert (exp, class1, hash, mode);
1691 new->in_memory = hash_arg_in_memory;
1696 /* Flush the entire hash table. */
1698 static void
1699 flush_hash_table (void)
1701 int i;
1702 struct table_elt *p;
1704 for (i = 0; i < HASH_SIZE; i++)
1705 for (p = table[i]; p; p = table[i])
1707 /* Note that invalidate can remove elements
1708 after P in the current hash chain. */
1709 if (REG_P (p->exp))
1710 invalidate (p->exp, p->mode);
1711 else
1712 remove_from_table (p, i);
1716 /* Function called for each rtx to check whether true dependence exist. */
1717 struct check_dependence_data
1719 enum machine_mode mode;
1720 rtx exp;
1721 rtx addr;
1724 static int
1725 check_dependence (rtx *x, void *data)
1727 struct check_dependence_data *d = (struct check_dependence_data *) data;
1728 if (*x && MEM_P (*x))
1729 return canon_true_dependence (d->exp, d->mode, d->addr, *x,
1730 cse_rtx_varies_p);
1731 else
1732 return 0;
1735 /* Remove from the hash table, or mark as invalid, all expressions whose
1736 values could be altered by storing in X. X is a register, a subreg, or
1737 a memory reference with nonvarying address (because, when a memory
1738 reference with a varying address is stored in, all memory references are
1739 removed by invalidate_memory so specific invalidation is superfluous).
1740 FULL_MODE, if not VOIDmode, indicates that this much should be
1741 invalidated instead of just the amount indicated by the mode of X. This
1742 is only used for bitfield stores into memory.
1744 A nonvarying address may be just a register or just a symbol reference,
1745 or it may be either of those plus a numeric offset. */
1747 static void
1748 invalidate (rtx x, enum machine_mode full_mode)
1750 int i;
1751 struct table_elt *p;
1752 rtx addr;
1754 switch (GET_CODE (x))
1756 case REG:
1758 /* If X is a register, dependencies on its contents are recorded
1759 through the qty number mechanism. Just change the qty number of
1760 the register, mark it as invalid for expressions that refer to it,
1761 and remove it itself. */
1762 unsigned int regno = REGNO (x);
1763 unsigned int hash = HASH (x, GET_MODE (x));
1765 /* Remove REGNO from any quantity list it might be on and indicate
1766 that its value might have changed. If it is a pseudo, remove its
1767 entry from the hash table.
1769 For a hard register, we do the first two actions above for any
1770 additional hard registers corresponding to X. Then, if any of these
1771 registers are in the table, we must remove any REG entries that
1772 overlap these registers. */
1774 delete_reg_equiv (regno);
1775 REG_TICK (regno)++;
1776 SUBREG_TICKED (regno) = -1;
1778 if (regno >= FIRST_PSEUDO_REGISTER)
1780 /* Because a register can be referenced in more than one mode,
1781 we might have to remove more than one table entry. */
1782 struct table_elt *elt;
1784 while ((elt = lookup_for_remove (x, hash, GET_MODE (x))))
1785 remove_from_table (elt, hash);
1787 else
1789 HOST_WIDE_INT in_table
1790 = TEST_HARD_REG_BIT (hard_regs_in_table, regno);
1791 unsigned int endregno
1792 = regno + hard_regno_nregs[regno][GET_MODE (x)];
1793 unsigned int tregno, tendregno, rn;
1794 struct table_elt *p, *next;
1796 CLEAR_HARD_REG_BIT (hard_regs_in_table, regno);
1798 for (rn = regno + 1; rn < endregno; rn++)
1800 in_table |= TEST_HARD_REG_BIT (hard_regs_in_table, rn);
1801 CLEAR_HARD_REG_BIT (hard_regs_in_table, rn);
1802 delete_reg_equiv (rn);
1803 REG_TICK (rn)++;
1804 SUBREG_TICKED (rn) = -1;
1807 if (in_table)
1808 for (hash = 0; hash < HASH_SIZE; hash++)
1809 for (p = table[hash]; p; p = next)
1811 next = p->next_same_hash;
1813 if (!REG_P (p->exp)
1814 || REGNO (p->exp) >= FIRST_PSEUDO_REGISTER)
1815 continue;
1817 tregno = REGNO (p->exp);
1818 tendregno
1819 = tregno + hard_regno_nregs[tregno][GET_MODE (p->exp)];
1820 if (tendregno > regno && tregno < endregno)
1821 remove_from_table (p, hash);
1825 return;
1827 case SUBREG:
1828 invalidate (SUBREG_REG (x), VOIDmode);
1829 return;
1831 case PARALLEL:
1832 for (i = XVECLEN (x, 0) - 1; i >= 0; --i)
1833 invalidate (XVECEXP (x, 0, i), VOIDmode);
1834 return;
1836 case EXPR_LIST:
1837 /* This is part of a disjoint return value; extract the location in
1838 question ignoring the offset. */
1839 invalidate (XEXP (x, 0), VOIDmode);
1840 return;
1842 case MEM:
1843 addr = canon_rtx (get_addr (XEXP (x, 0)));
1844 /* Calculate the canonical version of X here so that
1845 true_dependence doesn't generate new RTL for X on each call. */
1846 x = canon_rtx (x);
1848 /* Remove all hash table elements that refer to overlapping pieces of
1849 memory. */
1850 if (full_mode == VOIDmode)
1851 full_mode = GET_MODE (x);
1853 for (i = 0; i < HASH_SIZE; i++)
1855 struct table_elt *next;
1857 for (p = table[i]; p; p = next)
1859 next = p->next_same_hash;
1860 if (p->in_memory)
1862 struct check_dependence_data d;
1864 /* Just canonicalize the expression once;
1865 otherwise each time we call invalidate
1866 true_dependence will canonicalize the
1867 expression again. */
1868 if (!p->canon_exp)
1869 p->canon_exp = canon_rtx (p->exp);
1870 d.exp = x;
1871 d.addr = addr;
1872 d.mode = full_mode;
1873 if (for_each_rtx (&p->canon_exp, check_dependence, &d))
1874 remove_from_table (p, i);
1878 return;
1880 default:
1881 gcc_unreachable ();
1885 /* Remove all expressions that refer to register REGNO,
1886 since they are already invalid, and we are about to
1887 mark that register valid again and don't want the old
1888 expressions to reappear as valid. */
1890 static void
1891 remove_invalid_refs (unsigned int regno)
1893 unsigned int i;
1894 struct table_elt *p, *next;
1896 for (i = 0; i < HASH_SIZE; i++)
1897 for (p = table[i]; p; p = next)
1899 next = p->next_same_hash;
1900 if (!REG_P (p->exp)
1901 && refers_to_regno_p (regno, regno + 1, p->exp, (rtx *) 0))
1902 remove_from_table (p, i);
1906 /* Likewise for a subreg with subreg_reg REGNO, subreg_byte OFFSET,
1907 and mode MODE. */
1908 static void
1909 remove_invalid_subreg_refs (unsigned int regno, unsigned int offset,
1910 enum machine_mode mode)
1912 unsigned int i;
1913 struct table_elt *p, *next;
1914 unsigned int end = offset + (GET_MODE_SIZE (mode) - 1);
1916 for (i = 0; i < HASH_SIZE; i++)
1917 for (p = table[i]; p; p = next)
1919 rtx exp = p->exp;
1920 next = p->next_same_hash;
1922 if (!REG_P (exp)
1923 && (GET_CODE (exp) != SUBREG
1924 || !REG_P (SUBREG_REG (exp))
1925 || REGNO (SUBREG_REG (exp)) != regno
1926 || (((SUBREG_BYTE (exp)
1927 + (GET_MODE_SIZE (GET_MODE (exp)) - 1)) >= offset)
1928 && SUBREG_BYTE (exp) <= end))
1929 && refers_to_regno_p (regno, regno + 1, p->exp, (rtx *) 0))
1930 remove_from_table (p, i);
1934 /* Recompute the hash codes of any valid entries in the hash table that
1935 reference X, if X is a register, or SUBREG_REG (X) if X is a SUBREG.
1937 This is called when we make a jump equivalence. */
1939 static void
1940 rehash_using_reg (rtx x)
1942 unsigned int i;
1943 struct table_elt *p, *next;
1944 unsigned hash;
1946 if (GET_CODE (x) == SUBREG)
1947 x = SUBREG_REG (x);
1949 /* If X is not a register or if the register is known not to be in any
1950 valid entries in the table, we have no work to do. */
1952 if (!REG_P (x)
1953 || REG_IN_TABLE (REGNO (x)) < 0
1954 || REG_IN_TABLE (REGNO (x)) != REG_TICK (REGNO (x)))
1955 return;
1957 /* Scan all hash chains looking for valid entries that mention X.
1958 If we find one and it is in the wrong hash chain, move it. */
1960 for (i = 0; i < HASH_SIZE; i++)
1961 for (p = table[i]; p; p = next)
1963 next = p->next_same_hash;
1964 if (reg_mentioned_p (x, p->exp)
1965 && exp_equiv_p (p->exp, p->exp, 1, false)
1966 && i != (hash = SAFE_HASH (p->exp, p->mode)))
1968 if (p->next_same_hash)
1969 p->next_same_hash->prev_same_hash = p->prev_same_hash;
1971 if (p->prev_same_hash)
1972 p->prev_same_hash->next_same_hash = p->next_same_hash;
1973 else
1974 table[i] = p->next_same_hash;
1976 p->next_same_hash = table[hash];
1977 p->prev_same_hash = 0;
1978 if (table[hash])
1979 table[hash]->prev_same_hash = p;
1980 table[hash] = p;
1985 /* Remove from the hash table any expression that is a call-clobbered
1986 register. Also update their TICK values. */
1988 static void
1989 invalidate_for_call (void)
1991 unsigned int regno, endregno;
1992 unsigned int i;
1993 unsigned hash;
1994 struct table_elt *p, *next;
1995 int in_table = 0;
1997 /* Go through all the hard registers. For each that is clobbered in
1998 a CALL_INSN, remove the register from quantity chains and update
1999 reg_tick if defined. Also see if any of these registers is currently
2000 in the table. */
2002 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
2003 if (TEST_HARD_REG_BIT (regs_invalidated_by_call, regno))
2005 delete_reg_equiv (regno);
2006 if (REG_TICK (regno) >= 0)
2008 REG_TICK (regno)++;
2009 SUBREG_TICKED (regno) = -1;
2012 in_table |= (TEST_HARD_REG_BIT (hard_regs_in_table, regno) != 0);
2015 /* In the case where we have no call-clobbered hard registers in the
2016 table, we are done. Otherwise, scan the table and remove any
2017 entry that overlaps a call-clobbered register. */
2019 if (in_table)
2020 for (hash = 0; hash < HASH_SIZE; hash++)
2021 for (p = table[hash]; p; p = next)
2023 next = p->next_same_hash;
2025 if (!REG_P (p->exp)
2026 || REGNO (p->exp) >= FIRST_PSEUDO_REGISTER)
2027 continue;
2029 regno = REGNO (p->exp);
2030 endregno = regno + hard_regno_nregs[regno][GET_MODE (p->exp)];
2032 for (i = regno; i < endregno; i++)
2033 if (TEST_HARD_REG_BIT (regs_invalidated_by_call, i))
2035 remove_from_table (p, hash);
2036 break;
2041 /* Given an expression X of type CONST,
2042 and ELT which is its table entry (or 0 if it
2043 is not in the hash table),
2044 return an alternate expression for X as a register plus integer.
2045 If none can be found, return 0. */
2047 static rtx
2048 use_related_value (rtx x, struct table_elt *elt)
2050 struct table_elt *relt = 0;
2051 struct table_elt *p, *q;
2052 HOST_WIDE_INT offset;
2054 /* First, is there anything related known?
2055 If we have a table element, we can tell from that.
2056 Otherwise, must look it up. */
2058 if (elt != 0 && elt->related_value != 0)
2059 relt = elt;
2060 else if (elt == 0 && GET_CODE (x) == CONST)
2062 rtx subexp = get_related_value (x);
2063 if (subexp != 0)
2064 relt = lookup (subexp,
2065 SAFE_HASH (subexp, GET_MODE (subexp)),
2066 GET_MODE (subexp));
2069 if (relt == 0)
2070 return 0;
2072 /* Search all related table entries for one that has an
2073 equivalent register. */
2075 p = relt;
2076 while (1)
2078 /* This loop is strange in that it is executed in two different cases.
2079 The first is when X is already in the table. Then it is searching
2080 the RELATED_VALUE list of X's class (RELT). The second case is when
2081 X is not in the table. Then RELT points to a class for the related
2082 value.
2084 Ensure that, whatever case we are in, that we ignore classes that have
2085 the same value as X. */
2087 if (rtx_equal_p (x, p->exp))
2088 q = 0;
2089 else
2090 for (q = p->first_same_value; q; q = q->next_same_value)
2091 if (REG_P (q->exp))
2092 break;
2094 if (q)
2095 break;
2097 p = p->related_value;
2099 /* We went all the way around, so there is nothing to be found.
2100 Alternatively, perhaps RELT was in the table for some other reason
2101 and it has no related values recorded. */
2102 if (p == relt || p == 0)
2103 break;
2106 if (q == 0)
2107 return 0;
2109 offset = (get_integer_term (x) - get_integer_term (p->exp));
2110 /* Note: OFFSET may be 0 if P->xexp and X are related by commutativity. */
2111 return plus_constant (q->exp, offset);
2114 /* Hash a string. Just add its bytes up. */
2115 static inline unsigned
2116 hash_rtx_string (const char *ps)
2118 unsigned hash = 0;
2119 const unsigned char *p = (const unsigned char *) ps;
2121 if (p)
2122 while (*p)
2123 hash += *p++;
2125 return hash;
2128 /* Hash an rtx. We are careful to make sure the value is never negative.
2129 Equivalent registers hash identically.
2130 MODE is used in hashing for CONST_INTs only;
2131 otherwise the mode of X is used.
2133 Store 1 in DO_NOT_RECORD_P if any subexpression is volatile.
2135 If HASH_ARG_IN_MEMORY_P is not NULL, store 1 in it if X contains
2136 a MEM rtx which does not have the RTX_UNCHANGING_P bit set.
2138 Note that cse_insn knows that the hash code of a MEM expression
2139 is just (int) MEM plus the hash code of the address. */
2141 unsigned
2142 hash_rtx (rtx x, enum machine_mode mode, int *do_not_record_p,
2143 int *hash_arg_in_memory_p, bool have_reg_qty)
2145 int i, j;
2146 unsigned hash = 0;
2147 enum rtx_code code;
2148 const char *fmt;
2150 /* Used to turn recursion into iteration. We can't rely on GCC's
2151 tail-recursion elimination since we need to keep accumulating values
2152 in HASH. */
2153 repeat:
2154 if (x == 0)
2155 return hash;
2157 code = GET_CODE (x);
2158 switch (code)
2160 case REG:
2162 unsigned int regno = REGNO (x);
2164 if (!reload_completed)
2166 /* On some machines, we can't record any non-fixed hard register,
2167 because extending its life will cause reload problems. We
2168 consider ap, fp, sp, gp to be fixed for this purpose.
2170 We also consider CCmode registers to be fixed for this purpose;
2171 failure to do so leads to failure to simplify 0<100 type of
2172 conditionals.
2174 On all machines, we can't record any global registers.
2175 Nor should we record any register that is in a small
2176 class, as defined by CLASS_LIKELY_SPILLED_P. */
2177 bool record;
2179 if (regno >= FIRST_PSEUDO_REGISTER)
2180 record = true;
2181 else if (x == frame_pointer_rtx
2182 || x == hard_frame_pointer_rtx
2183 || x == arg_pointer_rtx
2184 || x == stack_pointer_rtx
2185 || x == pic_offset_table_rtx)
2186 record = true;
2187 else if (global_regs[regno])
2188 record = false;
2189 else if (fixed_regs[regno])
2190 record = true;
2191 else if (GET_MODE_CLASS (GET_MODE (x)) == MODE_CC)
2192 record = true;
2193 else if (SMALL_REGISTER_CLASSES)
2194 record = false;
2195 else if (CLASS_LIKELY_SPILLED_P (REGNO_REG_CLASS (regno)))
2196 record = false;
2197 else
2198 record = true;
2200 if (!record)
2202 *do_not_record_p = 1;
2203 return 0;
2207 hash += ((unsigned int) REG << 7);
2208 hash += (have_reg_qty ? (unsigned) REG_QTY (regno) : regno);
2209 return hash;
2212 /* We handle SUBREG of a REG specially because the underlying
2213 reg changes its hash value with every value change; we don't
2214 want to have to forget unrelated subregs when one subreg changes. */
2215 case SUBREG:
2217 if (REG_P (SUBREG_REG (x)))
2219 hash += (((unsigned int) SUBREG << 7)
2220 + REGNO (SUBREG_REG (x))
2221 + (SUBREG_BYTE (x) / UNITS_PER_WORD));
2222 return hash;
2224 break;
2227 case CONST_INT:
2228 hash += (((unsigned int) CONST_INT << 7) + (unsigned int) mode
2229 + (unsigned int) INTVAL (x));
2230 return hash;
2232 case CONST_DOUBLE:
2233 /* This is like the general case, except that it only counts
2234 the integers representing the constant. */
2235 hash += (unsigned int) code + (unsigned int) GET_MODE (x);
2236 if (GET_MODE (x) != VOIDmode)
2237 hash += real_hash (CONST_DOUBLE_REAL_VALUE (x));
2238 else
2239 hash += ((unsigned int) CONST_DOUBLE_LOW (x)
2240 + (unsigned int) CONST_DOUBLE_HIGH (x));
2241 return hash;
2243 case CONST_VECTOR:
2245 int units;
2246 rtx elt;
2248 units = CONST_VECTOR_NUNITS (x);
2250 for (i = 0; i < units; ++i)
2252 elt = CONST_VECTOR_ELT (x, i);
2253 hash += hash_rtx (elt, GET_MODE (elt), do_not_record_p,
2254 hash_arg_in_memory_p, have_reg_qty);
2257 return hash;
2260 /* Assume there is only one rtx object for any given label. */
2261 case LABEL_REF:
2262 /* We don't hash on the address of the CODE_LABEL to avoid bootstrap
2263 differences and differences between each stage's debugging dumps. */
2264 hash += (((unsigned int) LABEL_REF << 7)
2265 + CODE_LABEL_NUMBER (XEXP (x, 0)));
2266 return hash;
2268 case SYMBOL_REF:
2270 /* Don't hash on the symbol's address to avoid bootstrap differences.
2271 Different hash values may cause expressions to be recorded in
2272 different orders and thus different registers to be used in the
2273 final assembler. This also avoids differences in the dump files
2274 between various stages. */
2275 unsigned int h = 0;
2276 const unsigned char *p = (const unsigned char *) XSTR (x, 0);
2278 while (*p)
2279 h += (h << 7) + *p++; /* ??? revisit */
2281 hash += ((unsigned int) SYMBOL_REF << 7) + h;
2282 return hash;
2285 case MEM:
2286 /* We don't record if marked volatile or if BLKmode since we don't
2287 know the size of the move. */
2288 if (MEM_VOLATILE_P (x) || GET_MODE (x) == BLKmode)
2290 *do_not_record_p = 1;
2291 return 0;
2293 if (hash_arg_in_memory_p && !MEM_READONLY_P (x))
2294 *hash_arg_in_memory_p = 1;
2296 /* Now that we have already found this special case,
2297 might as well speed it up as much as possible. */
2298 hash += (unsigned) MEM;
2299 x = XEXP (x, 0);
2300 goto repeat;
2302 case USE:
2303 /* A USE that mentions non-volatile memory needs special
2304 handling since the MEM may be BLKmode which normally
2305 prevents an entry from being made. Pure calls are
2306 marked by a USE which mentions BLKmode memory.
2307 See calls.c:emit_call_1. */
2308 if (MEM_P (XEXP (x, 0))
2309 && ! MEM_VOLATILE_P (XEXP (x, 0)))
2311 hash += (unsigned) USE;
2312 x = XEXP (x, 0);
2314 if (hash_arg_in_memory_p && !MEM_READONLY_P (x))
2315 *hash_arg_in_memory_p = 1;
2317 /* Now that we have already found this special case,
2318 might as well speed it up as much as possible. */
2319 hash += (unsigned) MEM;
2320 x = XEXP (x, 0);
2321 goto repeat;
2323 break;
2325 case PRE_DEC:
2326 case PRE_INC:
2327 case POST_DEC:
2328 case POST_INC:
2329 case PRE_MODIFY:
2330 case POST_MODIFY:
2331 case PC:
2332 case CC0:
2333 case CALL:
2334 case UNSPEC_VOLATILE:
2335 *do_not_record_p = 1;
2336 return 0;
2338 case ASM_OPERANDS:
2339 if (MEM_VOLATILE_P (x))
2341 *do_not_record_p = 1;
2342 return 0;
2344 else
2346 /* We don't want to take the filename and line into account. */
2347 hash += (unsigned) code + (unsigned) GET_MODE (x)
2348 + hash_rtx_string (ASM_OPERANDS_TEMPLATE (x))
2349 + hash_rtx_string (ASM_OPERANDS_OUTPUT_CONSTRAINT (x))
2350 + (unsigned) ASM_OPERANDS_OUTPUT_IDX (x);
2352 if (ASM_OPERANDS_INPUT_LENGTH (x))
2354 for (i = 1; i < ASM_OPERANDS_INPUT_LENGTH (x); i++)
2356 hash += (hash_rtx (ASM_OPERANDS_INPUT (x, i),
2357 GET_MODE (ASM_OPERANDS_INPUT (x, i)),
2358 do_not_record_p, hash_arg_in_memory_p,
2359 have_reg_qty)
2360 + hash_rtx_string
2361 (ASM_OPERANDS_INPUT_CONSTRAINT (x, i)));
2364 hash += hash_rtx_string (ASM_OPERANDS_INPUT_CONSTRAINT (x, 0));
2365 x = ASM_OPERANDS_INPUT (x, 0);
2366 mode = GET_MODE (x);
2367 goto repeat;
2370 return hash;
2372 break;
2374 default:
2375 break;
2378 i = GET_RTX_LENGTH (code) - 1;
2379 hash += (unsigned) code + (unsigned) GET_MODE (x);
2380 fmt = GET_RTX_FORMAT (code);
2381 for (; i >= 0; i--)
2383 switch (fmt[i])
2385 case 'e':
2386 /* If we are about to do the last recursive call
2387 needed at this level, change it into iteration.
2388 This function is called enough to be worth it. */
2389 if (i == 0)
2391 x = XEXP (x, i);
2392 goto repeat;
2395 hash += hash_rtx (XEXP (x, i), 0, do_not_record_p,
2396 hash_arg_in_memory_p, have_reg_qty);
2397 break;
2399 case 'E':
2400 for (j = 0; j < XVECLEN (x, i); j++)
2401 hash += hash_rtx (XVECEXP (x, i, j), 0, do_not_record_p,
2402 hash_arg_in_memory_p, have_reg_qty);
2403 break;
2405 case 's':
2406 hash += hash_rtx_string (XSTR (x, i));
2407 break;
2409 case 'i':
2410 hash += (unsigned int) XINT (x, i);
2411 break;
2413 case '0': case 't':
2414 /* Unused. */
2415 break;
2417 default:
2418 gcc_unreachable ();
2422 return hash;
2425 /* Hash an rtx X for cse via hash_rtx.
2426 Stores 1 in do_not_record if any subexpression is volatile.
2427 Stores 1 in hash_arg_in_memory if X contains a mem rtx which
2428 does not have the RTX_UNCHANGING_P bit set. */
2430 static inline unsigned
2431 canon_hash (rtx x, enum machine_mode mode)
2433 return hash_rtx (x, mode, &do_not_record, &hash_arg_in_memory, true);
2436 /* Like canon_hash but with no side effects, i.e. do_not_record
2437 and hash_arg_in_memory are not changed. */
2439 static inline unsigned
2440 safe_hash (rtx x, enum machine_mode mode)
2442 int dummy_do_not_record;
2443 return hash_rtx (x, mode, &dummy_do_not_record, NULL, true);
2446 /* Return 1 iff X and Y would canonicalize into the same thing,
2447 without actually constructing the canonicalization of either one.
2448 If VALIDATE is nonzero,
2449 we assume X is an expression being processed from the rtl
2450 and Y was found in the hash table. We check register refs
2451 in Y for being marked as valid.
2453 If FOR_GCSE is true, we compare X and Y for equivalence for GCSE. */
2456 exp_equiv_p (rtx x, rtx y, int validate, bool for_gcse)
2458 int i, j;
2459 enum rtx_code code;
2460 const char *fmt;
2462 /* Note: it is incorrect to assume an expression is equivalent to itself
2463 if VALIDATE is nonzero. */
2464 if (x == y && !validate)
2465 return 1;
2467 if (x == 0 || y == 0)
2468 return x == y;
2470 code = GET_CODE (x);
2471 if (code != GET_CODE (y))
2472 return 0;
2474 /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent. */
2475 if (GET_MODE (x) != GET_MODE (y))
2476 return 0;
2478 switch (code)
2480 case PC:
2481 case CC0:
2482 case CONST_INT:
2483 return x == y;
2485 case LABEL_REF:
2486 return XEXP (x, 0) == XEXP (y, 0);
2488 case SYMBOL_REF:
2489 return XSTR (x, 0) == XSTR (y, 0);
2491 case REG:
2492 if (for_gcse)
2493 return REGNO (x) == REGNO (y);
2494 else
2496 unsigned int regno = REGNO (y);
2497 unsigned int i;
2498 unsigned int endregno
2499 = regno + (regno >= FIRST_PSEUDO_REGISTER ? 1
2500 : hard_regno_nregs[regno][GET_MODE (y)]);
2502 /* If the quantities are not the same, the expressions are not
2503 equivalent. If there are and we are not to validate, they
2504 are equivalent. Otherwise, ensure all regs are up-to-date. */
2506 if (REG_QTY (REGNO (x)) != REG_QTY (regno))
2507 return 0;
2509 if (! validate)
2510 return 1;
2512 for (i = regno; i < endregno; i++)
2513 if (REG_IN_TABLE (i) != REG_TICK (i))
2514 return 0;
2516 return 1;
2519 case MEM:
2520 if (for_gcse)
2522 /* Can't merge two expressions in different alias sets, since we
2523 can decide that the expression is transparent in a block when
2524 it isn't, due to it being set with the different alias set. */
2525 if (MEM_ALIAS_SET (x) != MEM_ALIAS_SET (y))
2526 return 0;
2528 /* A volatile mem should not be considered equivalent to any
2529 other. */
2530 if (MEM_VOLATILE_P (x) || MEM_VOLATILE_P (y))
2531 return 0;
2533 break;
2535 /* For commutative operations, check both orders. */
2536 case PLUS:
2537 case MULT:
2538 case AND:
2539 case IOR:
2540 case XOR:
2541 case NE:
2542 case EQ:
2543 return ((exp_equiv_p (XEXP (x, 0), XEXP (y, 0),
2544 validate, for_gcse)
2545 && exp_equiv_p (XEXP (x, 1), XEXP (y, 1),
2546 validate, for_gcse))
2547 || (exp_equiv_p (XEXP (x, 0), XEXP (y, 1),
2548 validate, for_gcse)
2549 && exp_equiv_p (XEXP (x, 1), XEXP (y, 0),
2550 validate, for_gcse)));
2552 case ASM_OPERANDS:
2553 /* We don't use the generic code below because we want to
2554 disregard filename and line numbers. */
2556 /* A volatile asm isn't equivalent to any other. */
2557 if (MEM_VOLATILE_P (x) || MEM_VOLATILE_P (y))
2558 return 0;
2560 if (GET_MODE (x) != GET_MODE (y)
2561 || strcmp (ASM_OPERANDS_TEMPLATE (x), ASM_OPERANDS_TEMPLATE (y))
2562 || strcmp (ASM_OPERANDS_OUTPUT_CONSTRAINT (x),
2563 ASM_OPERANDS_OUTPUT_CONSTRAINT (y))
2564 || ASM_OPERANDS_OUTPUT_IDX (x) != ASM_OPERANDS_OUTPUT_IDX (y)
2565 || ASM_OPERANDS_INPUT_LENGTH (x) != ASM_OPERANDS_INPUT_LENGTH (y))
2566 return 0;
2568 if (ASM_OPERANDS_INPUT_LENGTH (x))
2570 for (i = ASM_OPERANDS_INPUT_LENGTH (x) - 1; i >= 0; i--)
2571 if (! exp_equiv_p (ASM_OPERANDS_INPUT (x, i),
2572 ASM_OPERANDS_INPUT (y, i),
2573 validate, for_gcse)
2574 || strcmp (ASM_OPERANDS_INPUT_CONSTRAINT (x, i),
2575 ASM_OPERANDS_INPUT_CONSTRAINT (y, i)))
2576 return 0;
2579 return 1;
2581 default:
2582 break;
2585 /* Compare the elements. If any pair of corresponding elements
2586 fail to match, return 0 for the whole thing. */
2588 fmt = GET_RTX_FORMAT (code);
2589 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2591 switch (fmt[i])
2593 case 'e':
2594 if (! exp_equiv_p (XEXP (x, i), XEXP (y, i),
2595 validate, for_gcse))
2596 return 0;
2597 break;
2599 case 'E':
2600 if (XVECLEN (x, i) != XVECLEN (y, i))
2601 return 0;
2602 for (j = 0; j < XVECLEN (x, i); j++)
2603 if (! exp_equiv_p (XVECEXP (x, i, j), XVECEXP (y, i, j),
2604 validate, for_gcse))
2605 return 0;
2606 break;
2608 case 's':
2609 if (strcmp (XSTR (x, i), XSTR (y, i)))
2610 return 0;
2611 break;
2613 case 'i':
2614 if (XINT (x, i) != XINT (y, i))
2615 return 0;
2616 break;
2618 case 'w':
2619 if (XWINT (x, i) != XWINT (y, i))
2620 return 0;
2621 break;
2623 case '0':
2624 case 't':
2625 break;
2627 default:
2628 gcc_unreachable ();
2632 return 1;
2635 /* Return 1 if X has a value that can vary even between two
2636 executions of the program. 0 means X can be compared reliably
2637 against certain constants or near-constants. */
2639 static int
2640 cse_rtx_varies_p (rtx x, int from_alias)
2642 /* We need not check for X and the equivalence class being of the same
2643 mode because if X is equivalent to a constant in some mode, it
2644 doesn't vary in any mode. */
2646 if (REG_P (x)
2647 && REGNO_QTY_VALID_P (REGNO (x)))
2649 int x_q = REG_QTY (REGNO (x));
2650 struct qty_table_elem *x_ent = &qty_table[x_q];
2652 if (GET_MODE (x) == x_ent->mode
2653 && x_ent->const_rtx != NULL_RTX)
2654 return 0;
2657 if (GET_CODE (x) == PLUS
2658 && GET_CODE (XEXP (x, 1)) == CONST_INT
2659 && REG_P (XEXP (x, 0))
2660 && REGNO_QTY_VALID_P (REGNO (XEXP (x, 0))))
2662 int x0_q = REG_QTY (REGNO (XEXP (x, 0)));
2663 struct qty_table_elem *x0_ent = &qty_table[x0_q];
2665 if ((GET_MODE (XEXP (x, 0)) == x0_ent->mode)
2666 && x0_ent->const_rtx != NULL_RTX)
2667 return 0;
2670 /* This can happen as the result of virtual register instantiation, if
2671 the initial constant is too large to be a valid address. This gives
2672 us a three instruction sequence, load large offset into a register,
2673 load fp minus a constant into a register, then a MEM which is the
2674 sum of the two `constant' registers. */
2675 if (GET_CODE (x) == PLUS
2676 && REG_P (XEXP (x, 0))
2677 && REG_P (XEXP (x, 1))
2678 && REGNO_QTY_VALID_P (REGNO (XEXP (x, 0)))
2679 && REGNO_QTY_VALID_P (REGNO (XEXP (x, 1))))
2681 int x0_q = REG_QTY (REGNO (XEXP (x, 0)));
2682 int x1_q = REG_QTY (REGNO (XEXP (x, 1)));
2683 struct qty_table_elem *x0_ent = &qty_table[x0_q];
2684 struct qty_table_elem *x1_ent = &qty_table[x1_q];
2686 if ((GET_MODE (XEXP (x, 0)) == x0_ent->mode)
2687 && x0_ent->const_rtx != NULL_RTX
2688 && (GET_MODE (XEXP (x, 1)) == x1_ent->mode)
2689 && x1_ent->const_rtx != NULL_RTX)
2690 return 0;
2693 return rtx_varies_p (x, from_alias);
2696 /* Subroutine of canon_reg. Pass *XLOC through canon_reg, and validate
2697 the result if necessary. INSN is as for canon_reg. */
2699 static void
2700 validate_canon_reg (rtx *xloc, rtx insn)
2702 rtx new = canon_reg (*xloc, insn);
2703 int insn_code;
2705 /* If replacing pseudo with hard reg or vice versa, ensure the
2706 insn remains valid. Likewise if the insn has MATCH_DUPs. */
2707 if (insn != 0 && new != 0
2708 && REG_P (new) && REG_P (*xloc)
2709 && (((REGNO (new) < FIRST_PSEUDO_REGISTER)
2710 != (REGNO (*xloc) < FIRST_PSEUDO_REGISTER))
2711 || GET_MODE (new) != GET_MODE (*xloc)
2712 || (insn_code = recog_memoized (insn)) < 0
2713 || insn_data[insn_code].n_dups > 0))
2714 validate_change (insn, xloc, new, 1);
2715 else
2716 *xloc = new;
2719 /* Canonicalize an expression:
2720 replace each register reference inside it
2721 with the "oldest" equivalent register.
2723 If INSN is nonzero and we are replacing a pseudo with a hard register
2724 or vice versa, validate_change is used to ensure that INSN remains valid
2725 after we make our substitution. The calls are made with IN_GROUP nonzero
2726 so apply_change_group must be called upon the outermost return from this
2727 function (unless INSN is zero). The result of apply_change_group can
2728 generally be discarded since the changes we are making are optional. */
2730 static rtx
2731 canon_reg (rtx x, rtx insn)
2733 int i;
2734 enum rtx_code code;
2735 const char *fmt;
2737 if (x == 0)
2738 return x;
2740 code = GET_CODE (x);
2741 switch (code)
2743 case PC:
2744 case CC0:
2745 case CONST:
2746 case CONST_INT:
2747 case CONST_DOUBLE:
2748 case CONST_VECTOR:
2749 case SYMBOL_REF:
2750 case LABEL_REF:
2751 case ADDR_VEC:
2752 case ADDR_DIFF_VEC:
2753 return x;
2755 case REG:
2757 int first;
2758 int q;
2759 struct qty_table_elem *ent;
2761 /* Never replace a hard reg, because hard regs can appear
2762 in more than one machine mode, and we must preserve the mode
2763 of each occurrence. Also, some hard regs appear in
2764 MEMs that are shared and mustn't be altered. Don't try to
2765 replace any reg that maps to a reg of class NO_REGS. */
2766 if (REGNO (x) < FIRST_PSEUDO_REGISTER
2767 || ! REGNO_QTY_VALID_P (REGNO (x)))
2768 return x;
2770 q = REG_QTY (REGNO (x));
2771 ent = &qty_table[q];
2772 first = ent->first_reg;
2773 return (first >= FIRST_PSEUDO_REGISTER ? regno_reg_rtx[first]
2774 : REGNO_REG_CLASS (first) == NO_REGS ? x
2775 : gen_rtx_REG (ent->mode, first));
2778 default:
2779 break;
2782 fmt = GET_RTX_FORMAT (code);
2783 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2785 int j;
2787 if (fmt[i] == 'e')
2788 validate_canon_reg (&XEXP (x, i), insn);
2789 else if (fmt[i] == 'E')
2790 for (j = 0; j < XVECLEN (x, i); j++)
2791 validate_canon_reg (&XVECEXP (x, i, j), insn);
2794 return x;
2797 /* LOC is a location within INSN that is an operand address (the contents of
2798 a MEM). Find the best equivalent address to use that is valid for this
2799 insn.
2801 On most CISC machines, complicated address modes are costly, and rtx_cost
2802 is a good approximation for that cost. However, most RISC machines have
2803 only a few (usually only one) memory reference formats. If an address is
2804 valid at all, it is often just as cheap as any other address. Hence, for
2805 RISC machines, we use `address_cost' to compare the costs of various
2806 addresses. For two addresses of equal cost, choose the one with the
2807 highest `rtx_cost' value as that has the potential of eliminating the
2808 most insns. For equal costs, we choose the first in the equivalence
2809 class. Note that we ignore the fact that pseudo registers are cheaper than
2810 hard registers here because we would also prefer the pseudo registers. */
2812 static void
2813 find_best_addr (rtx insn, rtx *loc, enum machine_mode mode)
2815 struct table_elt *elt;
2816 rtx addr = *loc;
2817 struct table_elt *p;
2818 int found_better = 1;
2819 int save_do_not_record = do_not_record;
2820 int save_hash_arg_in_memory = hash_arg_in_memory;
2821 int addr_volatile;
2822 int regno;
2823 unsigned hash;
2825 /* Do not try to replace constant addresses or addresses of local and
2826 argument slots. These MEM expressions are made only once and inserted
2827 in many instructions, as well as being used to control symbol table
2828 output. It is not safe to clobber them.
2830 There are some uncommon cases where the address is already in a register
2831 for some reason, but we cannot take advantage of that because we have
2832 no easy way to unshare the MEM. In addition, looking up all stack
2833 addresses is costly. */
2834 if ((GET_CODE (addr) == PLUS
2835 && REG_P (XEXP (addr, 0))
2836 && GET_CODE (XEXP (addr, 1)) == CONST_INT
2837 && (regno = REGNO (XEXP (addr, 0)),
2838 regno == FRAME_POINTER_REGNUM || regno == HARD_FRAME_POINTER_REGNUM
2839 || regno == ARG_POINTER_REGNUM))
2840 || (REG_P (addr)
2841 && (regno = REGNO (addr), regno == FRAME_POINTER_REGNUM
2842 || regno == HARD_FRAME_POINTER_REGNUM
2843 || regno == ARG_POINTER_REGNUM))
2844 || CONSTANT_ADDRESS_P (addr))
2845 return;
2847 /* If this address is not simply a register, try to fold it. This will
2848 sometimes simplify the expression. Many simplifications
2849 will not be valid, but some, usually applying the associative rule, will
2850 be valid and produce better code. */
2851 if (!REG_P (addr))
2853 rtx folded = canon_for_address (fold_rtx (addr, NULL_RTX));
2855 if (folded != addr)
2857 int addr_folded_cost = address_cost (folded, mode);
2858 int addr_cost = address_cost (addr, mode);
2860 if ((addr_folded_cost < addr_cost
2861 || (addr_folded_cost == addr_cost
2862 /* ??? The rtx_cost comparison is left over from an older
2863 version of this code. It is probably no longer helpful.*/
2864 && (rtx_cost (folded, MEM) > rtx_cost (addr, MEM)
2865 || approx_reg_cost (folded) < approx_reg_cost (addr))))
2866 && validate_change (insn, loc, folded, 0))
2867 addr = folded;
2871 /* If this address is not in the hash table, we can't look for equivalences
2872 of the whole address. Also, ignore if volatile. */
2874 do_not_record = 0;
2875 hash = HASH (addr, Pmode);
2876 addr_volatile = do_not_record;
2877 do_not_record = save_do_not_record;
2878 hash_arg_in_memory = save_hash_arg_in_memory;
2880 if (addr_volatile)
2881 return;
2883 elt = lookup (addr, hash, Pmode);
2885 if (elt)
2887 /* We need to find the best (under the criteria documented above) entry
2888 in the class that is valid. We use the `flag' field to indicate
2889 choices that were invalid and iterate until we can't find a better
2890 one that hasn't already been tried. */
2892 for (p = elt->first_same_value; p; p = p->next_same_value)
2893 p->flag = 0;
2895 while (found_better)
2897 int best_addr_cost = address_cost (*loc, mode);
2898 int best_rtx_cost = (elt->cost + 1) >> 1;
2899 int exp_cost;
2900 struct table_elt *best_elt = elt;
2902 found_better = 0;
2903 for (p = elt->first_same_value; p; p = p->next_same_value)
2904 if (! p->flag)
2906 if ((REG_P (p->exp)
2907 || exp_equiv_p (p->exp, p->exp, 1, false))
2908 && ((exp_cost = address_cost (p->exp, mode)) < best_addr_cost
2909 || (exp_cost == best_addr_cost
2910 && ((p->cost + 1) >> 1) > best_rtx_cost)))
2912 found_better = 1;
2913 best_addr_cost = exp_cost;
2914 best_rtx_cost = (p->cost + 1) >> 1;
2915 best_elt = p;
2919 if (found_better)
2921 if (validate_change (insn, loc,
2922 canon_reg (copy_rtx (best_elt->exp),
2923 NULL_RTX), 0))
2924 return;
2925 else
2926 best_elt->flag = 1;
2931 /* If the address is a binary operation with the first operand a register
2932 and the second a constant, do the same as above, but looking for
2933 equivalences of the register. Then try to simplify before checking for
2934 the best address to use. This catches a few cases: First is when we
2935 have REG+const and the register is another REG+const. We can often merge
2936 the constants and eliminate one insn and one register. It may also be
2937 that a machine has a cheap REG+REG+const. Finally, this improves the
2938 code on the Alpha for unaligned byte stores. */
2940 if (flag_expensive_optimizations
2941 && ARITHMETIC_P (*loc)
2942 && REG_P (XEXP (*loc, 0)))
2944 rtx op1 = XEXP (*loc, 1);
2946 do_not_record = 0;
2947 hash = HASH (XEXP (*loc, 0), Pmode);
2948 do_not_record = save_do_not_record;
2949 hash_arg_in_memory = save_hash_arg_in_memory;
2951 elt = lookup (XEXP (*loc, 0), hash, Pmode);
2952 if (elt == 0)
2953 return;
2955 /* We need to find the best (under the criteria documented above) entry
2956 in the class that is valid. We use the `flag' field to indicate
2957 choices that were invalid and iterate until we can't find a better
2958 one that hasn't already been tried. */
2960 for (p = elt->first_same_value; p; p = p->next_same_value)
2961 p->flag = 0;
2963 while (found_better)
2965 int best_addr_cost = address_cost (*loc, mode);
2966 int best_rtx_cost = (COST (*loc) + 1) >> 1;
2967 struct table_elt *best_elt = elt;
2968 rtx best_rtx = *loc;
2969 int count;
2971 /* This is at worst case an O(n^2) algorithm, so limit our search
2972 to the first 32 elements on the list. This avoids trouble
2973 compiling code with very long basic blocks that can easily
2974 call simplify_gen_binary so many times that we run out of
2975 memory. */
2977 found_better = 0;
2978 for (p = elt->first_same_value, count = 0;
2979 p && count < 32;
2980 p = p->next_same_value, count++)
2981 if (! p->flag
2982 && (REG_P (p->exp)
2983 || exp_equiv_p (p->exp, p->exp, 1, false)))
2985 rtx new = simplify_gen_binary (GET_CODE (*loc), Pmode,
2986 p->exp, op1);
2987 int new_cost;
2989 /* Get the canonical version of the address so we can accept
2990 more. */
2991 new = canon_for_address (new);
2993 new_cost = address_cost (new, mode);
2995 if (new_cost < best_addr_cost
2996 || (new_cost == best_addr_cost
2997 && (COST (new) + 1) >> 1 > best_rtx_cost))
2999 found_better = 1;
3000 best_addr_cost = new_cost;
3001 best_rtx_cost = (COST (new) + 1) >> 1;
3002 best_elt = p;
3003 best_rtx = new;
3007 if (found_better)
3009 if (validate_change (insn, loc,
3010 canon_reg (copy_rtx (best_rtx),
3011 NULL_RTX), 0))
3012 return;
3013 else
3014 best_elt->flag = 1;
3020 /* Given an operation (CODE, *PARG1, *PARG2), where code is a comparison
3021 operation (EQ, NE, GT, etc.), follow it back through the hash table and
3022 what values are being compared.
3024 *PARG1 and *PARG2 are updated to contain the rtx representing the values
3025 actually being compared. For example, if *PARG1 was (cc0) and *PARG2
3026 was (const_int 0), *PARG1 and *PARG2 will be set to the objects that were
3027 compared to produce cc0.
3029 The return value is the comparison operator and is either the code of
3030 A or the code corresponding to the inverse of the comparison. */
3032 static enum rtx_code
3033 find_comparison_args (enum rtx_code code, rtx *parg1, rtx *parg2,
3034 enum machine_mode *pmode1, enum machine_mode *pmode2)
3036 rtx arg1, arg2;
3038 arg1 = *parg1, arg2 = *parg2;
3040 /* If ARG2 is const0_rtx, see what ARG1 is equivalent to. */
3042 while (arg2 == CONST0_RTX (GET_MODE (arg1)))
3044 /* Set nonzero when we find something of interest. */
3045 rtx x = 0;
3046 int reverse_code = 0;
3047 struct table_elt *p = 0;
3049 /* If arg1 is a COMPARE, extract the comparison arguments from it.
3050 On machines with CC0, this is the only case that can occur, since
3051 fold_rtx will return the COMPARE or item being compared with zero
3052 when given CC0. */
3054 if (GET_CODE (arg1) == COMPARE && arg2 == const0_rtx)
3055 x = arg1;
3057 /* If ARG1 is a comparison operator and CODE is testing for
3058 STORE_FLAG_VALUE, get the inner arguments. */
3060 else if (COMPARISON_P (arg1))
3062 #ifdef FLOAT_STORE_FLAG_VALUE
3063 REAL_VALUE_TYPE fsfv;
3064 #endif
3066 if (code == NE
3067 || (GET_MODE_CLASS (GET_MODE (arg1)) == MODE_INT
3068 && code == LT && STORE_FLAG_VALUE == -1)
3069 #ifdef FLOAT_STORE_FLAG_VALUE
3070 || (GET_MODE_CLASS (GET_MODE (arg1)) == MODE_FLOAT
3071 && (fsfv = FLOAT_STORE_FLAG_VALUE (GET_MODE (arg1)),
3072 REAL_VALUE_NEGATIVE (fsfv)))
3073 #endif
3075 x = arg1;
3076 else if (code == EQ
3077 || (GET_MODE_CLASS (GET_MODE (arg1)) == MODE_INT
3078 && code == GE && STORE_FLAG_VALUE == -1)
3079 #ifdef FLOAT_STORE_FLAG_VALUE
3080 || (GET_MODE_CLASS (GET_MODE (arg1)) == MODE_FLOAT
3081 && (fsfv = FLOAT_STORE_FLAG_VALUE (GET_MODE (arg1)),
3082 REAL_VALUE_NEGATIVE (fsfv)))
3083 #endif
3085 x = arg1, reverse_code = 1;
3088 /* ??? We could also check for
3090 (ne (and (eq (...) (const_int 1))) (const_int 0))
3092 and related forms, but let's wait until we see them occurring. */
3094 if (x == 0)
3095 /* Look up ARG1 in the hash table and see if it has an equivalence
3096 that lets us see what is being compared. */
3097 p = lookup (arg1, SAFE_HASH (arg1, GET_MODE (arg1)), GET_MODE (arg1));
3098 if (p)
3100 p = p->first_same_value;
3102 /* If what we compare is already known to be constant, that is as
3103 good as it gets.
3104 We need to break the loop in this case, because otherwise we
3105 can have an infinite loop when looking at a reg that is known
3106 to be a constant which is the same as a comparison of a reg
3107 against zero which appears later in the insn stream, which in
3108 turn is constant and the same as the comparison of the first reg
3109 against zero... */
3110 if (p->is_const)
3111 break;
3114 for (; p; p = p->next_same_value)
3116 enum machine_mode inner_mode = GET_MODE (p->exp);
3117 #ifdef FLOAT_STORE_FLAG_VALUE
3118 REAL_VALUE_TYPE fsfv;
3119 #endif
3121 /* If the entry isn't valid, skip it. */
3122 if (! exp_equiv_p (p->exp, p->exp, 1, false))
3123 continue;
3125 if (GET_CODE (p->exp) == COMPARE
3126 /* Another possibility is that this machine has a compare insn
3127 that includes the comparison code. In that case, ARG1 would
3128 be equivalent to a comparison operation that would set ARG1 to
3129 either STORE_FLAG_VALUE or zero. If this is an NE operation,
3130 ORIG_CODE is the actual comparison being done; if it is an EQ,
3131 we must reverse ORIG_CODE. On machine with a negative value
3132 for STORE_FLAG_VALUE, also look at LT and GE operations. */
3133 || ((code == NE
3134 || (code == LT
3135 && GET_MODE_CLASS (inner_mode) == MODE_INT
3136 && (GET_MODE_BITSIZE (inner_mode)
3137 <= HOST_BITS_PER_WIDE_INT)
3138 && (STORE_FLAG_VALUE
3139 & ((HOST_WIDE_INT) 1
3140 << (GET_MODE_BITSIZE (inner_mode) - 1))))
3141 #ifdef FLOAT_STORE_FLAG_VALUE
3142 || (code == LT
3143 && GET_MODE_CLASS (inner_mode) == MODE_FLOAT
3144 && (fsfv = FLOAT_STORE_FLAG_VALUE (GET_MODE (arg1)),
3145 REAL_VALUE_NEGATIVE (fsfv)))
3146 #endif
3148 && COMPARISON_P (p->exp)))
3150 x = p->exp;
3151 break;
3153 else if ((code == EQ
3154 || (code == GE
3155 && GET_MODE_CLASS (inner_mode) == MODE_INT
3156 && (GET_MODE_BITSIZE (inner_mode)
3157 <= HOST_BITS_PER_WIDE_INT)
3158 && (STORE_FLAG_VALUE
3159 & ((HOST_WIDE_INT) 1
3160 << (GET_MODE_BITSIZE (inner_mode) - 1))))
3161 #ifdef FLOAT_STORE_FLAG_VALUE
3162 || (code == GE
3163 && GET_MODE_CLASS (inner_mode) == MODE_FLOAT
3164 && (fsfv = FLOAT_STORE_FLAG_VALUE (GET_MODE (arg1)),
3165 REAL_VALUE_NEGATIVE (fsfv)))
3166 #endif
3168 && COMPARISON_P (p->exp))
3170 reverse_code = 1;
3171 x = p->exp;
3172 break;
3175 /* If this non-trapping address, e.g. fp + constant, the
3176 equivalent is a better operand since it may let us predict
3177 the value of the comparison. */
3178 else if (!rtx_addr_can_trap_p (p->exp))
3180 arg1 = p->exp;
3181 continue;
3185 /* If we didn't find a useful equivalence for ARG1, we are done.
3186 Otherwise, set up for the next iteration. */
3187 if (x == 0)
3188 break;
3190 /* If we need to reverse the comparison, make sure that that is
3191 possible -- we can't necessarily infer the value of GE from LT
3192 with floating-point operands. */
3193 if (reverse_code)
3195 enum rtx_code reversed = reversed_comparison_code (x, NULL_RTX);
3196 if (reversed == UNKNOWN)
3197 break;
3198 else
3199 code = reversed;
3201 else if (COMPARISON_P (x))
3202 code = GET_CODE (x);
3203 arg1 = XEXP (x, 0), arg2 = XEXP (x, 1);
3206 /* Return our results. Return the modes from before fold_rtx
3207 because fold_rtx might produce const_int, and then it's too late. */
3208 *pmode1 = GET_MODE (arg1), *pmode2 = GET_MODE (arg2);
3209 *parg1 = fold_rtx (arg1, 0), *parg2 = fold_rtx (arg2, 0);
3211 return code;
3214 /* Fold SUBREG. */
3216 static rtx
3217 fold_rtx_subreg (rtx x, rtx insn)
3219 enum machine_mode mode = GET_MODE (x);
3220 rtx folded_arg0;
3221 rtx const_arg0;
3222 rtx new;
3224 /* See if we previously assigned a constant value to this SUBREG. */
3225 if ((new = lookup_as_function (x, CONST_INT)) != 0
3226 || (new = lookup_as_function (x, CONST_DOUBLE)) != 0)
3227 return new;
3229 /* If this is a paradoxical SUBREG, we have no idea what value the
3230 extra bits would have. However, if the operand is equivalent to
3231 a SUBREG whose operand is the same as our mode, and all the modes
3232 are within a word, we can just use the inner operand because
3233 these SUBREGs just say how to treat the register.
3235 Similarly if we find an integer constant. */
3237 if (GET_MODE_SIZE (mode) > GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
3239 enum machine_mode imode = GET_MODE (SUBREG_REG (x));
3240 struct table_elt *elt;
3242 if (GET_MODE_SIZE (mode) <= UNITS_PER_WORD
3243 && GET_MODE_SIZE (imode) <= UNITS_PER_WORD
3244 && (elt = lookup (SUBREG_REG (x), HASH (SUBREG_REG (x), imode),
3245 imode)) != 0)
3246 for (elt = elt->first_same_value; elt; elt = elt->next_same_value)
3248 if (CONSTANT_P (elt->exp)
3249 && GET_MODE (elt->exp) == VOIDmode)
3250 return elt->exp;
3252 if (GET_CODE (elt->exp) == SUBREG
3253 && GET_MODE (SUBREG_REG (elt->exp)) == mode
3254 && exp_equiv_p (elt->exp, elt->exp, 1, false))
3255 return copy_rtx (SUBREG_REG (elt->exp));
3258 return x;
3261 /* Fold SUBREG_REG. If it changed, see if we can simplify the
3262 SUBREG. We might be able to if the SUBREG is extracting a single
3263 word in an integral mode or extracting the low part. */
3265 folded_arg0 = fold_rtx (SUBREG_REG (x), insn);
3266 const_arg0 = equiv_constant (folded_arg0);
3267 if (const_arg0)
3268 folded_arg0 = const_arg0;
3270 if (folded_arg0 != SUBREG_REG (x))
3272 new = simplify_subreg (mode, folded_arg0,
3273 GET_MODE (SUBREG_REG (x)), SUBREG_BYTE (x));
3274 if (new)
3275 return new;
3278 if (REG_P (folded_arg0)
3279 && GET_MODE_SIZE (mode) < GET_MODE_SIZE (GET_MODE (folded_arg0)))
3281 struct table_elt *elt;
3283 elt = lookup (folded_arg0,
3284 HASH (folded_arg0, GET_MODE (folded_arg0)),
3285 GET_MODE (folded_arg0));
3287 if (elt)
3288 elt = elt->first_same_value;
3290 if (subreg_lowpart_p (x))
3291 /* If this is a narrowing SUBREG and our operand is a REG, see
3292 if we can find an equivalence for REG that is an arithmetic
3293 operation in a wider mode where both operands are
3294 paradoxical SUBREGs from objects of our result mode. In
3295 that case, we couldn-t report an equivalent value for that
3296 operation, since we don't know what the extra bits will be.
3297 But we can find an equivalence for this SUBREG by folding
3298 that operation in the narrow mode. This allows us to fold
3299 arithmetic in narrow modes when the machine only supports
3300 word-sized arithmetic.
3302 Also look for a case where we have a SUBREG whose operand
3303 is the same as our result. If both modes are smaller than
3304 a word, we are simply interpreting a register in different
3305 modes and we can use the inner value. */
3307 for (; elt; elt = elt->next_same_value)
3309 enum rtx_code eltcode = GET_CODE (elt->exp);
3311 /* Just check for unary and binary operations. */
3312 if (UNARY_P (elt->exp)
3313 && eltcode != SIGN_EXTEND
3314 && eltcode != ZERO_EXTEND
3315 && GET_CODE (XEXP (elt->exp, 0)) == SUBREG
3316 && GET_MODE (SUBREG_REG (XEXP (elt->exp, 0))) == mode
3317 && (GET_MODE_CLASS (mode)
3318 == GET_MODE_CLASS (GET_MODE (XEXP (elt->exp, 0)))))
3320 rtx op0 = SUBREG_REG (XEXP (elt->exp, 0));
3322 if (!REG_P (op0) && ! CONSTANT_P (op0))
3323 op0 = fold_rtx (op0, NULL_RTX);
3325 op0 = equiv_constant (op0);
3326 if (op0)
3327 new = simplify_unary_operation (GET_CODE (elt->exp), mode,
3328 op0, mode);
3330 else if (ARITHMETIC_P (elt->exp)
3331 && eltcode != DIV && eltcode != MOD
3332 && eltcode != UDIV && eltcode != UMOD
3333 && eltcode != ASHIFTRT && eltcode != LSHIFTRT
3334 && eltcode != ROTATE && eltcode != ROTATERT
3335 && ((GET_CODE (XEXP (elt->exp, 0)) == SUBREG
3336 && (GET_MODE (SUBREG_REG (XEXP (elt->exp, 0)))
3337 == mode))
3338 || CONSTANT_P (XEXP (elt->exp, 0)))
3339 && ((GET_CODE (XEXP (elt->exp, 1)) == SUBREG
3340 && (GET_MODE (SUBREG_REG (XEXP (elt->exp, 1)))
3341 == mode))
3342 || CONSTANT_P (XEXP (elt->exp, 1))))
3344 rtx op0 = gen_lowpart_common (mode, XEXP (elt->exp, 0));
3345 rtx op1 = gen_lowpart_common (mode, XEXP (elt->exp, 1));
3347 if (op0 && !REG_P (op0) && ! CONSTANT_P (op0))
3348 op0 = fold_rtx (op0, NULL_RTX);
3350 if (op0)
3351 op0 = equiv_constant (op0);
3353 if (op1 && !REG_P (op1) && ! CONSTANT_P (op1))
3354 op1 = fold_rtx (op1, NULL_RTX);
3356 if (op1)
3357 op1 = equiv_constant (op1);
3359 /* If we are looking for the low SImode part of
3360 (ashift:DI c (const_int 32)), it doesn't work to
3361 compute that in SImode, because a 32-bit shift in
3362 SImode is unpredictable. We know the value is
3363 0. */
3364 if (op0 && op1
3365 && GET_CODE (elt->exp) == ASHIFT
3366 && GET_CODE (op1) == CONST_INT
3367 && INTVAL (op1) >= GET_MODE_BITSIZE (mode))
3369 if (INTVAL (op1)
3370 < GET_MODE_BITSIZE (GET_MODE (elt->exp)))
3371 /* If the count fits in the inner mode's width,
3372 but exceeds the outer mode's width, the value
3373 will get truncated to 0 by the subreg. */
3374 new = CONST0_RTX (mode);
3375 else
3376 /* If the count exceeds even the inner mode's width,
3377 don't fold this expression. */
3378 new = 0;
3380 else if (op0 && op1)
3381 new = simplify_binary_operation (GET_CODE (elt->exp),
3382 mode, op0, op1);
3385 else if (GET_CODE (elt->exp) == SUBREG
3386 && GET_MODE (SUBREG_REG (elt->exp)) == mode
3387 && (GET_MODE_SIZE (GET_MODE (folded_arg0))
3388 <= UNITS_PER_WORD)
3389 && exp_equiv_p (elt->exp, elt->exp, 1, false))
3390 new = copy_rtx (SUBREG_REG (elt->exp));
3392 if (new)
3393 return new;
3395 else
3396 /* A SUBREG resulting from a zero extension may fold to zero
3397 if it extracts higher bits than the ZERO_EXTEND's source
3398 bits. FIXME: if combine tried to, er, combine these
3399 instructions, this transformation may be moved to
3400 simplify_subreg. */
3401 for (; elt; elt = elt->next_same_value)
3403 if (GET_CODE (elt->exp) == ZERO_EXTEND
3404 && subreg_lsb (x)
3405 >= GET_MODE_BITSIZE (GET_MODE (XEXP (elt->exp, 0))))
3406 return CONST0_RTX (mode);
3410 return x;
3413 /* Fold MEM. */
3415 static rtx
3416 fold_rtx_mem (rtx x, rtx insn)
3418 enum machine_mode mode = GET_MODE (x);
3419 rtx new;
3421 /* If we are not actually processing an insn, don't try to find the
3422 best address. Not only don't we care, but we could modify the
3423 MEM in an invalid way since we have no insn to validate
3424 against. */
3425 if (insn != 0)
3426 find_best_addr (insn, &XEXP (x, 0), mode);
3429 /* Even if we don't fold in the insn itself, we can safely do so
3430 here, in hopes of getting a constant. */
3431 rtx addr = fold_rtx (XEXP (x, 0), NULL_RTX);
3432 rtx base = 0;
3433 HOST_WIDE_INT offset = 0;
3435 if (REG_P (addr)
3436 && REGNO_QTY_VALID_P (REGNO (addr)))
3438 int addr_q = REG_QTY (REGNO (addr));
3439 struct qty_table_elem *addr_ent = &qty_table[addr_q];
3441 if (GET_MODE (addr) == addr_ent->mode
3442 && addr_ent->const_rtx != NULL_RTX)
3443 addr = addr_ent->const_rtx;
3446 /* If address is constant, split it into a base and integer
3447 offset. */
3448 if (GET_CODE (addr) == SYMBOL_REF || GET_CODE (addr) == LABEL_REF)
3449 base = addr;
3450 else if (GET_CODE (addr) == CONST && GET_CODE (XEXP (addr, 0)) == PLUS
3451 && GET_CODE (XEXP (XEXP (addr, 0), 1)) == CONST_INT)
3453 base = XEXP (XEXP (addr, 0), 0);
3454 offset = INTVAL (XEXP (XEXP (addr, 0), 1));
3456 else if (GET_CODE (addr) == LO_SUM
3457 && GET_CODE (XEXP (addr, 1)) == SYMBOL_REF)
3458 base = XEXP (addr, 1);
3460 /* If this is a constant pool reference, we can fold it into its
3461 constant to allow better value tracking. */
3462 if (base && GET_CODE (base) == SYMBOL_REF
3463 && CONSTANT_POOL_ADDRESS_P (base))
3465 rtx constant = get_pool_constant (base);
3466 enum machine_mode const_mode = get_pool_mode (base);
3467 rtx new;
3469 if (CONSTANT_P (constant) && GET_CODE (constant) != CONST_INT)
3471 constant_pool_entries_cost = COST (constant);
3472 constant_pool_entries_regcost = approx_reg_cost (constant);
3475 /* If we are loading the full constant, we have an
3476 equivalence. */
3477 if (offset == 0 && mode == const_mode)
3478 return constant;
3480 /* If this actually isn't a constant (weird!), we can't do
3481 anything. Otherwise, handle the two most common cases:
3482 extracting a word from a multi-word constant, and
3483 extracting the low-order bits. Other cases don't seem
3484 common enough to worry about. */
3485 if (! CONSTANT_P (constant))
3486 return x;
3488 if (GET_MODE_CLASS (mode) == MODE_INT
3489 && GET_MODE_SIZE (mode) == UNITS_PER_WORD
3490 && offset % UNITS_PER_WORD == 0
3491 && (new = operand_subword (constant,
3492 offset / UNITS_PER_WORD,
3493 0, const_mode)) != 0)
3494 return new;
3496 if (((BYTES_BIG_ENDIAN
3497 && offset == GET_MODE_SIZE (GET_MODE (constant)) - 1)
3498 || (! BYTES_BIG_ENDIAN && offset == 0))
3499 && (new = gen_lowpart (mode, constant)) != 0)
3500 return new;
3503 /* If this is a reference to a label at a known position in a jump
3504 table, we also know its value. */
3505 if (base && GET_CODE (base) == LABEL_REF)
3507 rtx label = XEXP (base, 0);
3508 rtx table_insn = NEXT_INSN (label);
3510 if (table_insn && JUMP_P (table_insn)
3511 && GET_CODE (PATTERN (table_insn)) == ADDR_VEC)
3513 rtx table = PATTERN (table_insn);
3515 if (offset >= 0
3516 && (offset / GET_MODE_SIZE (GET_MODE (table))
3517 < XVECLEN (table, 0)))
3518 return XVECEXP (table, 0,
3519 offset / GET_MODE_SIZE (GET_MODE (table)));
3521 if (table_insn && JUMP_P (table_insn)
3522 && GET_CODE (PATTERN (table_insn)) == ADDR_DIFF_VEC)
3524 rtx table = PATTERN (table_insn);
3526 if (offset >= 0
3527 && (offset / GET_MODE_SIZE (GET_MODE (table))
3528 < XVECLEN (table, 1)))
3530 offset /= GET_MODE_SIZE (GET_MODE (table));
3531 new = gen_rtx_MINUS (Pmode, XVECEXP (table, 1, offset),
3532 XEXP (table, 0));
3534 if (GET_MODE (table) != Pmode)
3535 new = gen_rtx_TRUNCATE (GET_MODE (table), new);
3537 /* Indicate this is a constant. This isn't a valid
3538 form of CONST, but it will only be used to fold the
3539 next insns and then discarded, so it should be
3540 safe.
3542 Note this expression must be explicitly discarded,
3543 by cse_insn, else it may end up in a REG_EQUAL note
3544 and "escape" to cause problems elsewhere. */
3545 return gen_rtx_CONST (GET_MODE (new), new);
3550 return x;
3554 /* If X is a nontrivial arithmetic operation on an argument
3555 for which a constant value can be determined, return
3556 the result of operating on that value, as a constant.
3557 Otherwise, return X, possibly with one or more operands
3558 modified by recursive calls to this function.
3560 If X is a register whose contents are known, we do NOT
3561 return those contents here. equiv_constant is called to
3562 perform that task.
3564 INSN is the insn that we may be modifying. If it is 0, make a copy
3565 of X before modifying it. */
3567 static rtx
3568 fold_rtx (rtx x, rtx insn)
3570 enum rtx_code code;
3571 enum machine_mode mode;
3572 const char *fmt;
3573 int i;
3574 rtx new = 0;
3575 int copied = 0;
3576 int must_swap = 0;
3578 /* Folded equivalents of first two operands of X. */
3579 rtx folded_arg0;
3580 rtx folded_arg1;
3582 /* Constant equivalents of first three operands of X;
3583 0 when no such equivalent is known. */
3584 rtx const_arg0;
3585 rtx const_arg1;
3586 rtx const_arg2;
3588 /* The mode of the first operand of X. We need this for sign and zero
3589 extends. */
3590 enum machine_mode mode_arg0;
3592 if (x == 0)
3593 return x;
3595 mode = GET_MODE (x);
3596 code = GET_CODE (x);
3597 switch (code)
3599 case CONST:
3600 case CONST_INT:
3601 case CONST_DOUBLE:
3602 case CONST_VECTOR:
3603 case SYMBOL_REF:
3604 case LABEL_REF:
3605 case REG:
3606 case PC:
3607 /* No use simplifying an EXPR_LIST
3608 since they are used only for lists of args
3609 in a function call's REG_EQUAL note. */
3610 case EXPR_LIST:
3611 return x;
3613 #ifdef HAVE_cc0
3614 case CC0:
3615 return prev_insn_cc0;
3616 #endif
3618 case SUBREG:
3619 return fold_rtx_subreg (x, insn);
3621 case NOT:
3622 case NEG:
3623 /* If we have (NOT Y), see if Y is known to be (NOT Z).
3624 If so, (NOT Y) simplifies to Z. Similarly for NEG. */
3625 new = lookup_as_function (XEXP (x, 0), code);
3626 if (new)
3627 return fold_rtx (copy_rtx (XEXP (new, 0)), insn);
3628 break;
3630 case MEM:
3631 return fold_rtx_mem (x, insn);
3633 #ifdef NO_FUNCTION_CSE
3634 case CALL:
3635 if (CONSTANT_P (XEXP (XEXP (x, 0), 0)))
3636 return x;
3637 break;
3638 #endif
3640 case ASM_OPERANDS:
3641 if (insn)
3643 for (i = ASM_OPERANDS_INPUT_LENGTH (x) - 1; i >= 0; i--)
3644 validate_change (insn, &ASM_OPERANDS_INPUT (x, i),
3645 fold_rtx (ASM_OPERANDS_INPUT (x, i), insn), 0);
3647 break;
3649 default:
3650 break;
3653 const_arg0 = 0;
3654 const_arg1 = 0;
3655 const_arg2 = 0;
3656 mode_arg0 = VOIDmode;
3658 /* Try folding our operands.
3659 Then see which ones have constant values known. */
3661 fmt = GET_RTX_FORMAT (code);
3662 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3663 if (fmt[i] == 'e')
3665 rtx arg = XEXP (x, i);
3666 rtx folded_arg = arg, const_arg = 0;
3667 enum machine_mode mode_arg = GET_MODE (arg);
3668 rtx cheap_arg, expensive_arg;
3669 rtx replacements[2];
3670 int j;
3671 int old_cost = COST_IN (XEXP (x, i), code);
3673 /* Most arguments are cheap, so handle them specially. */
3674 switch (GET_CODE (arg))
3676 case REG:
3677 /* This is the same as calling equiv_constant; it is duplicated
3678 here for speed. */
3679 if (REGNO_QTY_VALID_P (REGNO (arg)))
3681 int arg_q = REG_QTY (REGNO (arg));
3682 struct qty_table_elem *arg_ent = &qty_table[arg_q];
3684 if (arg_ent->const_rtx != NULL_RTX
3685 && !REG_P (arg_ent->const_rtx)
3686 && GET_CODE (arg_ent->const_rtx) != PLUS)
3687 const_arg
3688 = gen_lowpart (GET_MODE (arg),
3689 arg_ent->const_rtx);
3691 break;
3693 case CONST:
3694 case CONST_INT:
3695 case SYMBOL_REF:
3696 case LABEL_REF:
3697 case CONST_DOUBLE:
3698 case CONST_VECTOR:
3699 const_arg = arg;
3700 break;
3702 #ifdef HAVE_cc0
3703 case CC0:
3704 folded_arg = prev_insn_cc0;
3705 mode_arg = prev_insn_cc0_mode;
3706 const_arg = equiv_constant (folded_arg);
3707 break;
3708 #endif
3710 default:
3711 folded_arg = fold_rtx (arg, insn);
3712 const_arg = equiv_constant (folded_arg);
3715 /* For the first three operands, see if the operand
3716 is constant or equivalent to a constant. */
3717 switch (i)
3719 case 0:
3720 folded_arg0 = folded_arg;
3721 const_arg0 = const_arg;
3722 mode_arg0 = mode_arg;
3723 break;
3724 case 1:
3725 folded_arg1 = folded_arg;
3726 const_arg1 = const_arg;
3727 break;
3728 case 2:
3729 const_arg2 = const_arg;
3730 break;
3733 /* Pick the least expensive of the folded argument and an
3734 equivalent constant argument. */
3735 if (const_arg == 0 || const_arg == folded_arg
3736 || COST_IN (const_arg, code) > COST_IN (folded_arg, code))
3737 cheap_arg = folded_arg, expensive_arg = const_arg;
3738 else
3739 cheap_arg = const_arg, expensive_arg = folded_arg;
3741 /* Try to replace the operand with the cheapest of the two
3742 possibilities. If it doesn't work and this is either of the first
3743 two operands of a commutative operation, try swapping them.
3744 If THAT fails, try the more expensive, provided it is cheaper
3745 than what is already there. */
3747 if (cheap_arg == XEXP (x, i))
3748 continue;
3750 if (insn == 0 && ! copied)
3752 x = copy_rtx (x);
3753 copied = 1;
3756 /* Order the replacements from cheapest to most expensive. */
3757 replacements[0] = cheap_arg;
3758 replacements[1] = expensive_arg;
3760 for (j = 0; j < 2 && replacements[j]; j++)
3762 int new_cost = COST_IN (replacements[j], code);
3764 /* Stop if what existed before was cheaper. Prefer constants
3765 in the case of a tie. */
3766 if (new_cost > old_cost
3767 || (new_cost == old_cost && CONSTANT_P (XEXP (x, i))))
3768 break;
3770 /* It's not safe to substitute the operand of a conversion
3771 operator with a constant, as the conversion's identity
3772 depends upon the mode of it's operand. This optimization
3773 is handled by the call to simplify_unary_operation. */
3774 if (GET_RTX_CLASS (code) == RTX_UNARY
3775 && GET_MODE (replacements[j]) != mode_arg0
3776 && (code == ZERO_EXTEND
3777 || code == SIGN_EXTEND
3778 || code == TRUNCATE
3779 || code == FLOAT_TRUNCATE
3780 || code == FLOAT_EXTEND
3781 || code == FLOAT
3782 || code == FIX
3783 || code == UNSIGNED_FLOAT
3784 || code == UNSIGNED_FIX))
3785 continue;
3787 if (validate_change (insn, &XEXP (x, i), replacements[j], 0))
3788 break;
3790 if (GET_RTX_CLASS (code) == RTX_COMM_COMPARE
3791 || GET_RTX_CLASS (code) == RTX_COMM_ARITH)
3793 validate_change (insn, &XEXP (x, i), XEXP (x, 1 - i), 1);
3794 validate_change (insn, &XEXP (x, 1 - i), replacements[j], 1);
3796 if (apply_change_group ())
3798 /* Swap them back to be invalid so that this loop can
3799 continue and flag them to be swapped back later. */
3800 rtx tem;
3802 tem = XEXP (x, 0); XEXP (x, 0) = XEXP (x, 1);
3803 XEXP (x, 1) = tem;
3804 must_swap = 1;
3805 break;
3811 else
3813 if (fmt[i] == 'E')
3814 /* Don't try to fold inside of a vector of expressions.
3815 Doing nothing is harmless. */
3819 /* If a commutative operation, place a constant integer as the second
3820 operand unless the first operand is also a constant integer. Otherwise,
3821 place any constant second unless the first operand is also a constant. */
3823 if (COMMUTATIVE_P (x))
3825 if (must_swap
3826 || swap_commutative_operands_p (const_arg0 ? const_arg0
3827 : XEXP (x, 0),
3828 const_arg1 ? const_arg1
3829 : XEXP (x, 1)))
3831 rtx tem = XEXP (x, 0);
3833 if (insn == 0 && ! copied)
3835 x = copy_rtx (x);
3836 copied = 1;
3839 validate_change (insn, &XEXP (x, 0), XEXP (x, 1), 1);
3840 validate_change (insn, &XEXP (x, 1), tem, 1);
3841 if (apply_change_group ())
3843 tem = const_arg0, const_arg0 = const_arg1, const_arg1 = tem;
3844 tem = folded_arg0, folded_arg0 = folded_arg1, folded_arg1 = tem;
3849 /* If X is an arithmetic operation, see if we can simplify it. */
3851 switch (GET_RTX_CLASS (code))
3853 case RTX_UNARY:
3855 int is_const = 0;
3857 /* We can't simplify extension ops unless we know the
3858 original mode. */
3859 if ((code == ZERO_EXTEND || code == SIGN_EXTEND)
3860 && mode_arg0 == VOIDmode)
3861 break;
3863 /* If we had a CONST, strip it off and put it back later if we
3864 fold. */
3865 if (const_arg0 != 0 && GET_CODE (const_arg0) == CONST)
3866 is_const = 1, const_arg0 = XEXP (const_arg0, 0);
3868 new = simplify_unary_operation (code, mode,
3869 const_arg0 ? const_arg0 : folded_arg0,
3870 mode_arg0);
3871 /* NEG of PLUS could be converted into MINUS, but that causes
3872 expressions of the form
3873 (CONST (MINUS (CONST_INT) (SYMBOL_REF)))
3874 which many ports mistakenly treat as LEGITIMATE_CONSTANT_P.
3875 FIXME: those ports should be fixed. */
3876 if (new != 0 && is_const
3877 && GET_CODE (new) == PLUS
3878 && (GET_CODE (XEXP (new, 0)) == SYMBOL_REF
3879 || GET_CODE (XEXP (new, 0)) == LABEL_REF)
3880 && GET_CODE (XEXP (new, 1)) == CONST_INT)
3881 new = gen_rtx_CONST (mode, new);
3883 break;
3885 case RTX_COMPARE:
3886 case RTX_COMM_COMPARE:
3887 /* See what items are actually being compared and set FOLDED_ARG[01]
3888 to those values and CODE to the actual comparison code. If any are
3889 constant, set CONST_ARG0 and CONST_ARG1 appropriately. We needn't
3890 do anything if both operands are already known to be constant. */
3892 /* ??? Vector mode comparisons are not supported yet. */
3893 if (VECTOR_MODE_P (mode))
3894 break;
3896 if (const_arg0 == 0 || const_arg1 == 0)
3898 struct table_elt *p0, *p1;
3899 rtx true_rtx = const_true_rtx, false_rtx = const0_rtx;
3900 enum machine_mode mode_arg1;
3902 #ifdef FLOAT_STORE_FLAG_VALUE
3903 if (GET_MODE_CLASS (mode) == MODE_FLOAT)
3905 true_rtx = (CONST_DOUBLE_FROM_REAL_VALUE
3906 (FLOAT_STORE_FLAG_VALUE (mode), mode));
3907 false_rtx = CONST0_RTX (mode);
3909 #endif
3911 code = find_comparison_args (code, &folded_arg0, &folded_arg1,
3912 &mode_arg0, &mode_arg1);
3914 /* If the mode is VOIDmode or a MODE_CC mode, we don't know
3915 what kinds of things are being compared, so we can't do
3916 anything with this comparison. */
3918 if (mode_arg0 == VOIDmode || GET_MODE_CLASS (mode_arg0) == MODE_CC)
3919 break;
3921 const_arg0 = equiv_constant (folded_arg0);
3922 const_arg1 = equiv_constant (folded_arg1);
3924 /* If we do not now have two constants being compared, see
3925 if we can nevertheless deduce some things about the
3926 comparison. */
3927 if (const_arg0 == 0 || const_arg1 == 0)
3929 /* Some addresses are known to be nonzero. We don't know
3930 their sign, but equality comparisons are known. */
3931 if (const_arg1 == const0_rtx
3932 && nonzero_address_p (folded_arg0))
3934 if (code == EQ)
3935 return false_rtx;
3936 else if (code == NE)
3937 return true_rtx;
3940 /* See if the two operands are the same. */
3942 if (folded_arg0 == folded_arg1
3943 || (REG_P (folded_arg0)
3944 && REG_P (folded_arg1)
3945 && (REG_QTY (REGNO (folded_arg0))
3946 == REG_QTY (REGNO (folded_arg1))))
3947 || ((p0 = lookup (folded_arg0,
3948 SAFE_HASH (folded_arg0, mode_arg0),
3949 mode_arg0))
3950 && (p1 = lookup (folded_arg1,
3951 SAFE_HASH (folded_arg1, mode_arg0),
3952 mode_arg0))
3953 && p0->first_same_value == p1->first_same_value))
3955 /* Sadly two equal NaNs are not equivalent. */
3956 if (!HONOR_NANS (mode_arg0))
3957 return ((code == EQ || code == LE || code == GE
3958 || code == LEU || code == GEU || code == UNEQ
3959 || code == UNLE || code == UNGE
3960 || code == ORDERED)
3961 ? true_rtx : false_rtx);
3962 /* Take care for the FP compares we can resolve. */
3963 if (code == UNEQ || code == UNLE || code == UNGE)
3964 return true_rtx;
3965 if (code == LTGT || code == LT || code == GT)
3966 return false_rtx;
3969 /* If FOLDED_ARG0 is a register, see if the comparison we are
3970 doing now is either the same as we did before or the reverse
3971 (we only check the reverse if not floating-point). */
3972 else if (REG_P (folded_arg0))
3974 int qty = REG_QTY (REGNO (folded_arg0));
3976 if (REGNO_QTY_VALID_P (REGNO (folded_arg0)))
3978 struct qty_table_elem *ent = &qty_table[qty];
3980 if ((comparison_dominates_p (ent->comparison_code, code)
3981 || (! FLOAT_MODE_P (mode_arg0)
3982 && comparison_dominates_p (ent->comparison_code,
3983 reverse_condition (code))))
3984 && (rtx_equal_p (ent->comparison_const, folded_arg1)
3985 || (const_arg1
3986 && rtx_equal_p (ent->comparison_const,
3987 const_arg1))
3988 || (REG_P (folded_arg1)
3989 && (REG_QTY (REGNO (folded_arg1)) == ent->comparison_qty))))
3990 return (comparison_dominates_p (ent->comparison_code, code)
3991 ? true_rtx : false_rtx);
3997 /* If we are comparing against zero, see if the first operand is
3998 equivalent to an IOR with a constant. If so, we may be able to
3999 determine the result of this comparison. */
4001 if (const_arg1 == const0_rtx)
4003 rtx y = lookup_as_function (folded_arg0, IOR);
4004 rtx inner_const;
4006 if (y != 0
4007 && (inner_const = equiv_constant (XEXP (y, 1))) != 0
4008 && GET_CODE (inner_const) == CONST_INT
4009 && INTVAL (inner_const) != 0)
4011 int sign_bitnum = GET_MODE_BITSIZE (mode_arg0) - 1;
4012 int has_sign = (HOST_BITS_PER_WIDE_INT >= sign_bitnum
4013 && (INTVAL (inner_const)
4014 & ((HOST_WIDE_INT) 1 << sign_bitnum)));
4015 rtx true_rtx = const_true_rtx, false_rtx = const0_rtx;
4017 #ifdef FLOAT_STORE_FLAG_VALUE
4018 if (GET_MODE_CLASS (mode) == MODE_FLOAT)
4020 true_rtx = (CONST_DOUBLE_FROM_REAL_VALUE
4021 (FLOAT_STORE_FLAG_VALUE (mode), mode));
4022 false_rtx = CONST0_RTX (mode);
4024 #endif
4026 switch (code)
4028 case EQ:
4029 return false_rtx;
4030 case NE:
4031 return true_rtx;
4032 case LT: case LE:
4033 if (has_sign)
4034 return true_rtx;
4035 break;
4036 case GT: case GE:
4037 if (has_sign)
4038 return false_rtx;
4039 break;
4040 default:
4041 break;
4047 rtx op0 = const_arg0 ? const_arg0 : folded_arg0;
4048 rtx op1 = const_arg1 ? const_arg1 : folded_arg1;
4049 new = simplify_relational_operation (code, mode, mode_arg0, op0, op1);
4051 break;
4053 case RTX_BIN_ARITH:
4054 case RTX_COMM_ARITH:
4055 switch (code)
4057 case PLUS:
4058 /* If the second operand is a LABEL_REF, see if the first is a MINUS
4059 with that LABEL_REF as its second operand. If so, the result is
4060 the first operand of that MINUS. This handles switches with an
4061 ADDR_DIFF_VEC table. */
4062 if (const_arg1 && GET_CODE (const_arg1) == LABEL_REF)
4064 rtx y
4065 = GET_CODE (folded_arg0) == MINUS ? folded_arg0
4066 : lookup_as_function (folded_arg0, MINUS);
4068 if (y != 0 && GET_CODE (XEXP (y, 1)) == LABEL_REF
4069 && XEXP (XEXP (y, 1), 0) == XEXP (const_arg1, 0))
4070 return XEXP (y, 0);
4072 /* Now try for a CONST of a MINUS like the above. */
4073 if ((y = (GET_CODE (folded_arg0) == CONST ? folded_arg0
4074 : lookup_as_function (folded_arg0, CONST))) != 0
4075 && GET_CODE (XEXP (y, 0)) == MINUS
4076 && GET_CODE (XEXP (XEXP (y, 0), 1)) == LABEL_REF
4077 && XEXP (XEXP (XEXP (y, 0), 1), 0) == XEXP (const_arg1, 0))
4078 return XEXP (XEXP (y, 0), 0);
4081 /* Likewise if the operands are in the other order. */
4082 if (const_arg0 && GET_CODE (const_arg0) == LABEL_REF)
4084 rtx y
4085 = GET_CODE (folded_arg1) == MINUS ? folded_arg1
4086 : lookup_as_function (folded_arg1, MINUS);
4088 if (y != 0 && GET_CODE (XEXP (y, 1)) == LABEL_REF
4089 && XEXP (XEXP (y, 1), 0) == XEXP (const_arg0, 0))
4090 return XEXP (y, 0);
4092 /* Now try for a CONST of a MINUS like the above. */
4093 if ((y = (GET_CODE (folded_arg1) == CONST ? folded_arg1
4094 : lookup_as_function (folded_arg1, CONST))) != 0
4095 && GET_CODE (XEXP (y, 0)) == MINUS
4096 && GET_CODE (XEXP (XEXP (y, 0), 1)) == LABEL_REF
4097 && XEXP (XEXP (XEXP (y, 0), 1), 0) == XEXP (const_arg0, 0))
4098 return XEXP (XEXP (y, 0), 0);
4101 /* If second operand is a register equivalent to a negative
4102 CONST_INT, see if we can find a register equivalent to the
4103 positive constant. Make a MINUS if so. Don't do this for
4104 a non-negative constant since we might then alternate between
4105 choosing positive and negative constants. Having the positive
4106 constant previously-used is the more common case. Be sure
4107 the resulting constant is non-negative; if const_arg1 were
4108 the smallest negative number this would overflow: depending
4109 on the mode, this would either just be the same value (and
4110 hence not save anything) or be incorrect. */
4111 if (const_arg1 != 0 && GET_CODE (const_arg1) == CONST_INT
4112 && INTVAL (const_arg1) < 0
4113 /* This used to test
4115 -INTVAL (const_arg1) >= 0
4117 But The Sun V5.0 compilers mis-compiled that test. So
4118 instead we test for the problematic value in a more direct
4119 manner and hope the Sun compilers get it correct. */
4120 && INTVAL (const_arg1) !=
4121 ((HOST_WIDE_INT) 1 << (HOST_BITS_PER_WIDE_INT - 1))
4122 && REG_P (folded_arg1))
4124 rtx new_const = GEN_INT (-INTVAL (const_arg1));
4125 struct table_elt *p
4126 = lookup (new_const, SAFE_HASH (new_const, mode), mode);
4128 if (p)
4129 for (p = p->first_same_value; p; p = p->next_same_value)
4130 if (REG_P (p->exp))
4131 return simplify_gen_binary (MINUS, mode, folded_arg0,
4132 canon_reg (p->exp, NULL_RTX));
4134 goto from_plus;
4136 case MINUS:
4137 /* If we have (MINUS Y C), see if Y is known to be (PLUS Z C2).
4138 If so, produce (PLUS Z C2-C). */
4139 if (const_arg1 != 0 && GET_CODE (const_arg1) == CONST_INT)
4141 rtx y = lookup_as_function (XEXP (x, 0), PLUS);
4142 if (y && GET_CODE (XEXP (y, 1)) == CONST_INT)
4143 return fold_rtx (plus_constant (copy_rtx (y),
4144 -INTVAL (const_arg1)),
4145 NULL_RTX);
4148 /* Fall through. */
4150 from_plus:
4151 case SMIN: case SMAX: case UMIN: case UMAX:
4152 case IOR: case AND: case XOR:
4153 case MULT:
4154 case ASHIFT: case LSHIFTRT: case ASHIFTRT:
4155 /* If we have (<op> <reg> <const_int>) for an associative OP and REG
4156 is known to be of similar form, we may be able to replace the
4157 operation with a combined operation. This may eliminate the
4158 intermediate operation if every use is simplified in this way.
4159 Note that the similar optimization done by combine.c only works
4160 if the intermediate operation's result has only one reference. */
4162 if (REG_P (folded_arg0)
4163 && const_arg1 && GET_CODE (const_arg1) == CONST_INT)
4165 int is_shift
4166 = (code == ASHIFT || code == ASHIFTRT || code == LSHIFTRT);
4167 rtx y = lookup_as_function (folded_arg0, code);
4168 rtx inner_const;
4169 enum rtx_code associate_code;
4170 rtx new_const;
4172 if (y == 0
4173 || 0 == (inner_const
4174 = equiv_constant (fold_rtx (XEXP (y, 1), 0)))
4175 || GET_CODE (inner_const) != CONST_INT
4176 /* If we have compiled a statement like
4177 "if (x == (x & mask1))", and now are looking at
4178 "x & mask2", we will have a case where the first operand
4179 of Y is the same as our first operand. Unless we detect
4180 this case, an infinite loop will result. */
4181 || XEXP (y, 0) == folded_arg0)
4182 break;
4184 /* Don't associate these operations if they are a PLUS with the
4185 same constant and it is a power of two. These might be doable
4186 with a pre- or post-increment. Similarly for two subtracts of
4187 identical powers of two with post decrement. */
4189 if (code == PLUS && const_arg1 == inner_const
4190 && ((HAVE_PRE_INCREMENT
4191 && exact_log2 (INTVAL (const_arg1)) >= 0)
4192 || (HAVE_POST_INCREMENT
4193 && exact_log2 (INTVAL (const_arg1)) >= 0)
4194 || (HAVE_PRE_DECREMENT
4195 && exact_log2 (- INTVAL (const_arg1)) >= 0)
4196 || (HAVE_POST_DECREMENT
4197 && exact_log2 (- INTVAL (const_arg1)) >= 0)))
4198 break;
4200 /* Compute the code used to compose the constants. For example,
4201 A-C1-C2 is A-(C1 + C2), so if CODE == MINUS, we want PLUS. */
4203 associate_code = (is_shift || code == MINUS ? PLUS : code);
4205 new_const = simplify_binary_operation (associate_code, mode,
4206 const_arg1, inner_const);
4208 if (new_const == 0)
4209 break;
4211 /* If we are associating shift operations, don't let this
4212 produce a shift of the size of the object or larger.
4213 This could occur when we follow a sign-extend by a right
4214 shift on a machine that does a sign-extend as a pair
4215 of shifts. */
4217 if (is_shift && GET_CODE (new_const) == CONST_INT
4218 && INTVAL (new_const) >= GET_MODE_BITSIZE (mode))
4220 /* As an exception, we can turn an ASHIFTRT of this
4221 form into a shift of the number of bits - 1. */
4222 if (code == ASHIFTRT)
4223 new_const = GEN_INT (GET_MODE_BITSIZE (mode) - 1);
4224 else
4225 break;
4228 y = copy_rtx (XEXP (y, 0));
4230 /* If Y contains our first operand (the most common way this
4231 can happen is if Y is a MEM), we would do into an infinite
4232 loop if we tried to fold it. So don't in that case. */
4234 if (! reg_mentioned_p (folded_arg0, y))
4235 y = fold_rtx (y, insn);
4237 return simplify_gen_binary (code, mode, y, new_const);
4239 break;
4241 case DIV: case UDIV:
4242 /* ??? The associative optimization performed immediately above is
4243 also possible for DIV and UDIV using associate_code of MULT.
4244 However, we would need extra code to verify that the
4245 multiplication does not overflow, that is, there is no overflow
4246 in the calculation of new_const. */
4247 break;
4249 default:
4250 break;
4253 new = simplify_binary_operation (code, mode,
4254 const_arg0 ? const_arg0 : folded_arg0,
4255 const_arg1 ? const_arg1 : folded_arg1);
4256 break;
4258 case RTX_OBJ:
4259 /* (lo_sum (high X) X) is simply X. */
4260 if (code == LO_SUM && const_arg0 != 0
4261 && GET_CODE (const_arg0) == HIGH
4262 && rtx_equal_p (XEXP (const_arg0, 0), const_arg1))
4263 return const_arg1;
4264 break;
4266 case RTX_TERNARY:
4267 case RTX_BITFIELD_OPS:
4268 new = simplify_ternary_operation (code, mode, mode_arg0,
4269 const_arg0 ? const_arg0 : folded_arg0,
4270 const_arg1 ? const_arg1 : folded_arg1,
4271 const_arg2 ? const_arg2 : XEXP (x, 2));
4272 break;
4274 default:
4275 break;
4278 return new ? new : x;
4281 /* Return a constant value currently equivalent to X.
4282 Return 0 if we don't know one. */
4284 static rtx
4285 equiv_constant (rtx x)
4287 if (REG_P (x)
4288 && REGNO_QTY_VALID_P (REGNO (x)))
4290 int x_q = REG_QTY (REGNO (x));
4291 struct qty_table_elem *x_ent = &qty_table[x_q];
4293 if (x_ent->const_rtx)
4294 x = gen_lowpart (GET_MODE (x), x_ent->const_rtx);
4297 if (x == 0 || CONSTANT_P (x))
4298 return x;
4300 /* If X is a MEM, try to fold it outside the context of any insn to see if
4301 it might be equivalent to a constant. That handles the case where it
4302 is a constant-pool reference. Then try to look it up in the hash table
4303 in case it is something whose value we have seen before. */
4305 if (MEM_P (x))
4307 struct table_elt *elt;
4309 x = fold_rtx (x, NULL_RTX);
4310 if (CONSTANT_P (x))
4311 return x;
4313 elt = lookup (x, SAFE_HASH (x, GET_MODE (x)), GET_MODE (x));
4314 if (elt == 0)
4315 return 0;
4317 for (elt = elt->first_same_value; elt; elt = elt->next_same_value)
4318 if (elt->is_const && CONSTANT_P (elt->exp))
4319 return elt->exp;
4322 return 0;
4325 /* Assuming that X is an rtx (e.g., MEM, REG or SUBREG) for a fixed-point
4326 number, return an rtx (MEM, SUBREG, or CONST_INT) that refers to the
4327 least-significant part of X.
4328 MODE specifies how big a part of X to return.
4330 If the requested operation cannot be done, 0 is returned.
4332 This is similar to gen_lowpart_general in emit-rtl.c. */
4335 gen_lowpart_if_possible (enum machine_mode mode, rtx x)
4337 rtx result = gen_lowpart_common (mode, x);
4339 if (result)
4340 return result;
4341 else if (MEM_P (x))
4343 /* This is the only other case we handle. */
4344 int offset = 0;
4345 rtx new;
4347 if (WORDS_BIG_ENDIAN)
4348 offset = (MAX (GET_MODE_SIZE (GET_MODE (x)), UNITS_PER_WORD)
4349 - MAX (GET_MODE_SIZE (mode), UNITS_PER_WORD));
4350 if (BYTES_BIG_ENDIAN)
4351 /* Adjust the address so that the address-after-the-data is
4352 unchanged. */
4353 offset -= (MIN (UNITS_PER_WORD, GET_MODE_SIZE (mode))
4354 - MIN (UNITS_PER_WORD, GET_MODE_SIZE (GET_MODE (x))));
4356 new = adjust_address_nv (x, mode, offset);
4357 if (! memory_address_p (mode, XEXP (new, 0)))
4358 return 0;
4360 return new;
4362 else
4363 return 0;
4366 /* Given INSN, a jump insn, PATH_TAKEN indicates if we are following the "taken"
4367 branch. It will be zero if not.
4369 In certain cases, this can cause us to add an equivalence. For example,
4370 if we are following the taken case of
4371 if (i == 2)
4372 we can add the fact that `i' and '2' are now equivalent.
4374 In any case, we can record that this comparison was passed. If the same
4375 comparison is seen later, we will know its value. */
4377 static void
4378 record_jump_equiv (rtx insn, int taken)
4380 int cond_known_true;
4381 rtx op0, op1;
4382 rtx set;
4383 enum machine_mode mode, mode0, mode1;
4384 int reversed_nonequality = 0;
4385 enum rtx_code code;
4387 /* Ensure this is the right kind of insn. */
4388 if (! any_condjump_p (insn))
4389 return;
4390 set = pc_set (insn);
4392 /* See if this jump condition is known true or false. */
4393 if (taken)
4394 cond_known_true = (XEXP (SET_SRC (set), 2) == pc_rtx);
4395 else
4396 cond_known_true = (XEXP (SET_SRC (set), 1) == pc_rtx);
4398 /* Get the type of comparison being done and the operands being compared.
4399 If we had to reverse a non-equality condition, record that fact so we
4400 know that it isn't valid for floating-point. */
4401 code = GET_CODE (XEXP (SET_SRC (set), 0));
4402 op0 = fold_rtx (XEXP (XEXP (SET_SRC (set), 0), 0), insn);
4403 op1 = fold_rtx (XEXP (XEXP (SET_SRC (set), 0), 1), insn);
4405 code = find_comparison_args (code, &op0, &op1, &mode0, &mode1);
4406 if (! cond_known_true)
4408 code = reversed_comparison_code_parts (code, op0, op1, insn);
4410 /* Don't remember if we can't find the inverse. */
4411 if (code == UNKNOWN)
4412 return;
4415 /* The mode is the mode of the non-constant. */
4416 mode = mode0;
4417 if (mode1 != VOIDmode)
4418 mode = mode1;
4420 record_jump_cond (code, mode, op0, op1, reversed_nonequality);
4423 /* Yet another form of subreg creation. In this case, we want something in
4424 MODE, and we should assume OP has MODE iff it is naturally modeless. */
4426 static rtx
4427 record_jump_cond_subreg (enum machine_mode mode, rtx op)
4429 enum machine_mode op_mode = GET_MODE (op);
4430 if (op_mode == mode || op_mode == VOIDmode)
4431 return op;
4432 return lowpart_subreg (mode, op, op_mode);
4435 /* We know that comparison CODE applied to OP0 and OP1 in MODE is true.
4436 REVERSED_NONEQUALITY is nonzero if CODE had to be swapped.
4437 Make any useful entries we can with that information. Called from
4438 above function and called recursively. */
4440 static void
4441 record_jump_cond (enum rtx_code code, enum machine_mode mode, rtx op0,
4442 rtx op1, int reversed_nonequality)
4444 unsigned op0_hash, op1_hash;
4445 int op0_in_memory, op1_in_memory;
4446 struct table_elt *op0_elt, *op1_elt;
4448 /* If OP0 and OP1 are known equal, and either is a paradoxical SUBREG,
4449 we know that they are also equal in the smaller mode (this is also
4450 true for all smaller modes whether or not there is a SUBREG, but
4451 is not worth testing for with no SUBREG). */
4453 /* Note that GET_MODE (op0) may not equal MODE. */
4454 if (code == EQ && GET_CODE (op0) == SUBREG
4455 && (GET_MODE_SIZE (GET_MODE (op0))
4456 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (op0)))))
4458 enum machine_mode inner_mode = GET_MODE (SUBREG_REG (op0));
4459 rtx tem = record_jump_cond_subreg (inner_mode, op1);
4460 if (tem)
4461 record_jump_cond (code, mode, SUBREG_REG (op0), tem,
4462 reversed_nonequality);
4465 if (code == EQ && GET_CODE (op1) == SUBREG
4466 && (GET_MODE_SIZE (GET_MODE (op1))
4467 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (op1)))))
4469 enum machine_mode inner_mode = GET_MODE (SUBREG_REG (op1));
4470 rtx tem = record_jump_cond_subreg (inner_mode, op0);
4471 if (tem)
4472 record_jump_cond (code, mode, SUBREG_REG (op1), tem,
4473 reversed_nonequality);
4476 /* Similarly, if this is an NE comparison, and either is a SUBREG
4477 making a smaller mode, we know the whole thing is also NE. */
4479 /* Note that GET_MODE (op0) may not equal MODE;
4480 if we test MODE instead, we can get an infinite recursion
4481 alternating between two modes each wider than MODE. */
4483 if (code == NE && GET_CODE (op0) == SUBREG
4484 && subreg_lowpart_p (op0)
4485 && (GET_MODE_SIZE (GET_MODE (op0))
4486 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (op0)))))
4488 enum machine_mode inner_mode = GET_MODE (SUBREG_REG (op0));
4489 rtx tem = record_jump_cond_subreg (inner_mode, op1);
4490 if (tem)
4491 record_jump_cond (code, mode, SUBREG_REG (op0), tem,
4492 reversed_nonequality);
4495 if (code == NE && GET_CODE (op1) == SUBREG
4496 && subreg_lowpart_p (op1)
4497 && (GET_MODE_SIZE (GET_MODE (op1))
4498 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (op1)))))
4500 enum machine_mode inner_mode = GET_MODE (SUBREG_REG (op1));
4501 rtx tem = record_jump_cond_subreg (inner_mode, op0);
4502 if (tem)
4503 record_jump_cond (code, mode, SUBREG_REG (op1), tem,
4504 reversed_nonequality);
4507 /* Hash both operands. */
4509 do_not_record = 0;
4510 hash_arg_in_memory = 0;
4511 op0_hash = HASH (op0, mode);
4512 op0_in_memory = hash_arg_in_memory;
4514 if (do_not_record)
4515 return;
4517 do_not_record = 0;
4518 hash_arg_in_memory = 0;
4519 op1_hash = HASH (op1, mode);
4520 op1_in_memory = hash_arg_in_memory;
4522 if (do_not_record)
4523 return;
4525 /* Look up both operands. */
4526 op0_elt = lookup (op0, op0_hash, mode);
4527 op1_elt = lookup (op1, op1_hash, mode);
4529 /* If both operands are already equivalent or if they are not in the
4530 table but are identical, do nothing. */
4531 if ((op0_elt != 0 && op1_elt != 0
4532 && op0_elt->first_same_value == op1_elt->first_same_value)
4533 || op0 == op1 || rtx_equal_p (op0, op1))
4534 return;
4536 /* If we aren't setting two things equal all we can do is save this
4537 comparison. Similarly if this is floating-point. In the latter
4538 case, OP1 might be zero and both -0.0 and 0.0 are equal to it.
4539 If we record the equality, we might inadvertently delete code
4540 whose intent was to change -0 to +0. */
4542 if (code != EQ || FLOAT_MODE_P (GET_MODE (op0)))
4544 struct qty_table_elem *ent;
4545 int qty;
4547 /* If we reversed a floating-point comparison, if OP0 is not a
4548 register, or if OP1 is neither a register or constant, we can't
4549 do anything. */
4551 if (!REG_P (op1))
4552 op1 = equiv_constant (op1);
4554 if ((reversed_nonequality && FLOAT_MODE_P (mode))
4555 || !REG_P (op0) || op1 == 0)
4556 return;
4558 /* Put OP0 in the hash table if it isn't already. This gives it a
4559 new quantity number. */
4560 if (op0_elt == 0)
4562 if (insert_regs (op0, NULL, 0))
4564 rehash_using_reg (op0);
4565 op0_hash = HASH (op0, mode);
4567 /* If OP0 is contained in OP1, this changes its hash code
4568 as well. Faster to rehash than to check, except
4569 for the simple case of a constant. */
4570 if (! CONSTANT_P (op1))
4571 op1_hash = HASH (op1,mode);
4574 op0_elt = insert (op0, NULL, op0_hash, mode);
4575 op0_elt->in_memory = op0_in_memory;
4578 qty = REG_QTY (REGNO (op0));
4579 ent = &qty_table[qty];
4581 ent->comparison_code = code;
4582 if (REG_P (op1))
4584 /* Look it up again--in case op0 and op1 are the same. */
4585 op1_elt = lookup (op1, op1_hash, mode);
4587 /* Put OP1 in the hash table so it gets a new quantity number. */
4588 if (op1_elt == 0)
4590 if (insert_regs (op1, NULL, 0))
4592 rehash_using_reg (op1);
4593 op1_hash = HASH (op1, mode);
4596 op1_elt = insert (op1, NULL, op1_hash, mode);
4597 op1_elt->in_memory = op1_in_memory;
4600 ent->comparison_const = NULL_RTX;
4601 ent->comparison_qty = REG_QTY (REGNO (op1));
4603 else
4605 ent->comparison_const = op1;
4606 ent->comparison_qty = -1;
4609 return;
4612 /* If either side is still missing an equivalence, make it now,
4613 then merge the equivalences. */
4615 if (op0_elt == 0)
4617 if (insert_regs (op0, NULL, 0))
4619 rehash_using_reg (op0);
4620 op0_hash = HASH (op0, mode);
4623 op0_elt = insert (op0, NULL, op0_hash, mode);
4624 op0_elt->in_memory = op0_in_memory;
4627 if (op1_elt == 0)
4629 if (insert_regs (op1, NULL, 0))
4631 rehash_using_reg (op1);
4632 op1_hash = HASH (op1, mode);
4635 op1_elt = insert (op1, NULL, op1_hash, mode);
4636 op1_elt->in_memory = op1_in_memory;
4639 merge_equiv_classes (op0_elt, op1_elt);
4642 /* CSE processing for one instruction.
4643 First simplify sources and addresses of all assignments
4644 in the instruction, using previously-computed equivalents values.
4645 Then install the new sources and destinations in the table
4646 of available values.
4648 If LIBCALL_INSN is nonzero, don't record any equivalence made in
4649 the insn. It means that INSN is inside libcall block. In this
4650 case LIBCALL_INSN is the corresponding insn with REG_LIBCALL. */
4652 /* Data on one SET contained in the instruction. */
4654 struct set
4656 /* The SET rtx itself. */
4657 rtx rtl;
4658 /* The SET_SRC of the rtx (the original value, if it is changing). */
4659 rtx src;
4660 /* The hash-table element for the SET_SRC of the SET. */
4661 struct table_elt *src_elt;
4662 /* Hash value for the SET_SRC. */
4663 unsigned src_hash;
4664 /* Hash value for the SET_DEST. */
4665 unsigned dest_hash;
4666 /* The SET_DEST, with SUBREG, etc., stripped. */
4667 rtx inner_dest;
4668 /* Nonzero if the SET_SRC is in memory. */
4669 char src_in_memory;
4670 /* Nonzero if the SET_SRC contains something
4671 whose value cannot be predicted and understood. */
4672 char src_volatile;
4673 /* Original machine mode, in case it becomes a CONST_INT.
4674 The size of this field should match the size of the mode
4675 field of struct rtx_def (see rtl.h). */
4676 ENUM_BITFIELD(machine_mode) mode : 8;
4677 /* A constant equivalent for SET_SRC, if any. */
4678 rtx src_const;
4679 /* Original SET_SRC value used for libcall notes. */
4680 rtx orig_src;
4681 /* Hash value of constant equivalent for SET_SRC. */
4682 unsigned src_const_hash;
4683 /* Table entry for constant equivalent for SET_SRC, if any. */
4684 struct table_elt *src_const_elt;
4687 static void
4688 cse_insn (rtx insn, rtx libcall_insn)
4690 rtx x = PATTERN (insn);
4691 int i;
4692 rtx tem;
4693 int n_sets = 0;
4695 #ifdef HAVE_cc0
4696 /* Records what this insn does to set CC0. */
4697 rtx this_insn_cc0 = 0;
4698 enum machine_mode this_insn_cc0_mode = VOIDmode;
4699 #endif
4701 rtx src_eqv = 0;
4702 struct table_elt *src_eqv_elt = 0;
4703 int src_eqv_volatile = 0;
4704 int src_eqv_in_memory = 0;
4705 unsigned src_eqv_hash = 0;
4707 struct set *sets = (struct set *) 0;
4709 this_insn = insn;
4711 /* Find all the SETs and CLOBBERs in this instruction.
4712 Record all the SETs in the array `set' and count them.
4713 Also determine whether there is a CLOBBER that invalidates
4714 all memory references, or all references at varying addresses. */
4716 if (CALL_P (insn))
4718 for (tem = CALL_INSN_FUNCTION_USAGE (insn); tem; tem = XEXP (tem, 1))
4720 if (GET_CODE (XEXP (tem, 0)) == CLOBBER)
4721 invalidate (SET_DEST (XEXP (tem, 0)), VOIDmode);
4722 XEXP (tem, 0) = canon_reg (XEXP (tem, 0), insn);
4726 if (GET_CODE (x) == SET)
4728 sets = alloca (sizeof (struct set));
4729 sets[0].rtl = x;
4731 /* Ignore SETs that are unconditional jumps.
4732 They never need cse processing, so this does not hurt.
4733 The reason is not efficiency but rather
4734 so that we can test at the end for instructions
4735 that have been simplified to unconditional jumps
4736 and not be misled by unchanged instructions
4737 that were unconditional jumps to begin with. */
4738 if (SET_DEST (x) == pc_rtx
4739 && GET_CODE (SET_SRC (x)) == LABEL_REF)
4742 /* Don't count call-insns, (set (reg 0) (call ...)), as a set.
4743 The hard function value register is used only once, to copy to
4744 someplace else, so it isn't worth cse'ing (and on 80386 is unsafe)!
4745 Ensure we invalidate the destination register. On the 80386 no
4746 other code would invalidate it since it is a fixed_reg.
4747 We need not check the return of apply_change_group; see canon_reg. */
4749 else if (GET_CODE (SET_SRC (x)) == CALL)
4751 canon_reg (SET_SRC (x), insn);
4752 apply_change_group ();
4753 fold_rtx (SET_SRC (x), insn);
4754 invalidate (SET_DEST (x), VOIDmode);
4756 else
4757 n_sets = 1;
4759 else if (GET_CODE (x) == PARALLEL)
4761 int lim = XVECLEN (x, 0);
4763 sets = alloca (lim * sizeof (struct set));
4765 /* Find all regs explicitly clobbered in this insn,
4766 and ensure they are not replaced with any other regs
4767 elsewhere in this insn.
4768 When a reg that is clobbered is also used for input,
4769 we should presume that that is for a reason,
4770 and we should not substitute some other register
4771 which is not supposed to be clobbered.
4772 Therefore, this loop cannot be merged into the one below
4773 because a CALL may precede a CLOBBER and refer to the
4774 value clobbered. We must not let a canonicalization do
4775 anything in that case. */
4776 for (i = 0; i < lim; i++)
4778 rtx y = XVECEXP (x, 0, i);
4779 if (GET_CODE (y) == CLOBBER)
4781 rtx clobbered = XEXP (y, 0);
4783 if (REG_P (clobbered)
4784 || GET_CODE (clobbered) == SUBREG)
4785 invalidate (clobbered, VOIDmode);
4786 else if (GET_CODE (clobbered) == STRICT_LOW_PART
4787 || GET_CODE (clobbered) == ZERO_EXTRACT)
4788 invalidate (XEXP (clobbered, 0), GET_MODE (clobbered));
4792 for (i = 0; i < lim; i++)
4794 rtx y = XVECEXP (x, 0, i);
4795 if (GET_CODE (y) == SET)
4797 /* As above, we ignore unconditional jumps and call-insns and
4798 ignore the result of apply_change_group. */
4799 if (GET_CODE (SET_SRC (y)) == CALL)
4801 canon_reg (SET_SRC (y), insn);
4802 apply_change_group ();
4803 fold_rtx (SET_SRC (y), insn);
4804 invalidate (SET_DEST (y), VOIDmode);
4806 else if (SET_DEST (y) == pc_rtx
4807 && GET_CODE (SET_SRC (y)) == LABEL_REF)
4809 else
4810 sets[n_sets++].rtl = y;
4812 else if (GET_CODE (y) == CLOBBER)
4814 /* If we clobber memory, canon the address.
4815 This does nothing when a register is clobbered
4816 because we have already invalidated the reg. */
4817 if (MEM_P (XEXP (y, 0)))
4818 canon_reg (XEXP (y, 0), NULL_RTX);
4820 else if (GET_CODE (y) == USE
4821 && ! (REG_P (XEXP (y, 0))
4822 && REGNO (XEXP (y, 0)) < FIRST_PSEUDO_REGISTER))
4823 canon_reg (y, NULL_RTX);
4824 else if (GET_CODE (y) == CALL)
4826 /* The result of apply_change_group can be ignored; see
4827 canon_reg. */
4828 canon_reg (y, insn);
4829 apply_change_group ();
4830 fold_rtx (y, insn);
4834 else if (GET_CODE (x) == CLOBBER)
4836 if (MEM_P (XEXP (x, 0)))
4837 canon_reg (XEXP (x, 0), NULL_RTX);
4840 /* Canonicalize a USE of a pseudo register or memory location. */
4841 else if (GET_CODE (x) == USE
4842 && ! (REG_P (XEXP (x, 0))
4843 && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER))
4844 canon_reg (XEXP (x, 0), NULL_RTX);
4845 else if (GET_CODE (x) == CALL)
4847 /* The result of apply_change_group can be ignored; see canon_reg. */
4848 canon_reg (x, insn);
4849 apply_change_group ();
4850 fold_rtx (x, insn);
4853 /* Store the equivalent value in SRC_EQV, if different, or if the DEST
4854 is a STRICT_LOW_PART. The latter condition is necessary because SRC_EQV
4855 is handled specially for this case, and if it isn't set, then there will
4856 be no equivalence for the destination. */
4857 if (n_sets == 1 && REG_NOTES (insn) != 0
4858 && (tem = find_reg_note (insn, REG_EQUAL, NULL_RTX)) != 0
4859 && (! rtx_equal_p (XEXP (tem, 0), SET_SRC (sets[0].rtl))
4860 || GET_CODE (SET_DEST (sets[0].rtl)) == STRICT_LOW_PART))
4862 src_eqv = fold_rtx (canon_reg (XEXP (tem, 0), NULL_RTX), insn);
4863 XEXP (tem, 0) = src_eqv;
4866 /* Canonicalize sources and addresses of destinations.
4867 We do this in a separate pass to avoid problems when a MATCH_DUP is
4868 present in the insn pattern. In that case, we want to ensure that
4869 we don't break the duplicate nature of the pattern. So we will replace
4870 both operands at the same time. Otherwise, we would fail to find an
4871 equivalent substitution in the loop calling validate_change below.
4873 We used to suppress canonicalization of DEST if it appears in SRC,
4874 but we don't do this any more. */
4876 for (i = 0; i < n_sets; i++)
4878 rtx dest = SET_DEST (sets[i].rtl);
4879 rtx src = SET_SRC (sets[i].rtl);
4880 rtx new = canon_reg (src, insn);
4881 int insn_code;
4883 sets[i].orig_src = src;
4884 if ((REG_P (new) && REG_P (src)
4885 && ((REGNO (new) < FIRST_PSEUDO_REGISTER)
4886 != (REGNO (src) < FIRST_PSEUDO_REGISTER)))
4887 || (insn_code = recog_memoized (insn)) < 0
4888 || insn_data[insn_code].n_dups > 0)
4889 validate_change (insn, &SET_SRC (sets[i].rtl), new, 1);
4890 else
4891 SET_SRC (sets[i].rtl) = new;
4893 if (GET_CODE (dest) == ZERO_EXTRACT)
4895 validate_change (insn, &XEXP (dest, 1),
4896 canon_reg (XEXP (dest, 1), insn), 1);
4897 validate_change (insn, &XEXP (dest, 2),
4898 canon_reg (XEXP (dest, 2), insn), 1);
4901 while (GET_CODE (dest) == SUBREG
4902 || GET_CODE (dest) == ZERO_EXTRACT
4903 || GET_CODE (dest) == STRICT_LOW_PART)
4904 dest = XEXP (dest, 0);
4906 if (MEM_P (dest))
4907 canon_reg (dest, insn);
4910 /* Now that we have done all the replacements, we can apply the change
4911 group and see if they all work. Note that this will cause some
4912 canonicalizations that would have worked individually not to be applied
4913 because some other canonicalization didn't work, but this should not
4914 occur often.
4916 The result of apply_change_group can be ignored; see canon_reg. */
4918 apply_change_group ();
4920 /* Set sets[i].src_elt to the class each source belongs to.
4921 Detect assignments from or to volatile things
4922 and set set[i] to zero so they will be ignored
4923 in the rest of this function.
4925 Nothing in this loop changes the hash table or the register chains. */
4927 for (i = 0; i < n_sets; i++)
4929 rtx src, dest;
4930 rtx src_folded;
4931 struct table_elt *elt = 0, *p;
4932 enum machine_mode mode;
4933 rtx src_eqv_here;
4934 rtx src_const = 0;
4935 rtx src_related = 0;
4936 struct table_elt *src_const_elt = 0;
4937 int src_cost = MAX_COST;
4938 int src_eqv_cost = MAX_COST;
4939 int src_folded_cost = MAX_COST;
4940 int src_related_cost = MAX_COST;
4941 int src_elt_cost = MAX_COST;
4942 int src_regcost = MAX_COST;
4943 int src_eqv_regcost = MAX_COST;
4944 int src_folded_regcost = MAX_COST;
4945 int src_related_regcost = MAX_COST;
4946 int src_elt_regcost = MAX_COST;
4947 /* Set nonzero if we need to call force_const_mem on with the
4948 contents of src_folded before using it. */
4949 int src_folded_force_flag = 0;
4951 dest = SET_DEST (sets[i].rtl);
4952 src = SET_SRC (sets[i].rtl);
4954 /* If SRC is a constant that has no machine mode,
4955 hash it with the destination's machine mode.
4956 This way we can keep different modes separate. */
4958 mode = GET_MODE (src) == VOIDmode ? GET_MODE (dest) : GET_MODE (src);
4959 sets[i].mode = mode;
4961 if (src_eqv)
4963 enum machine_mode eqvmode = mode;
4964 if (GET_CODE (dest) == STRICT_LOW_PART)
4965 eqvmode = GET_MODE (SUBREG_REG (XEXP (dest, 0)));
4966 do_not_record = 0;
4967 hash_arg_in_memory = 0;
4968 src_eqv_hash = HASH (src_eqv, eqvmode);
4970 /* Find the equivalence class for the equivalent expression. */
4972 if (!do_not_record)
4973 src_eqv_elt = lookup (src_eqv, src_eqv_hash, eqvmode);
4975 src_eqv_volatile = do_not_record;
4976 src_eqv_in_memory = hash_arg_in_memory;
4979 /* If this is a STRICT_LOW_PART assignment, src_eqv corresponds to the
4980 value of the INNER register, not the destination. So it is not
4981 a valid substitution for the source. But save it for later. */
4982 if (GET_CODE (dest) == STRICT_LOW_PART)
4983 src_eqv_here = 0;
4984 else
4985 src_eqv_here = src_eqv;
4987 /* Simplify and foldable subexpressions in SRC. Then get the fully-
4988 simplified result, which may not necessarily be valid. */
4989 src_folded = fold_rtx (src, insn);
4991 #if 0
4992 /* ??? This caused bad code to be generated for the m68k port with -O2.
4993 Suppose src is (CONST_INT -1), and that after truncation src_folded
4994 is (CONST_INT 3). Suppose src_folded is then used for src_const.
4995 At the end we will add src and src_const to the same equivalence
4996 class. We now have 3 and -1 on the same equivalence class. This
4997 causes later instructions to be mis-optimized. */
4998 /* If storing a constant in a bitfield, pre-truncate the constant
4999 so we will be able to record it later. */
5000 if (GET_CODE (SET_DEST (sets[i].rtl)) == ZERO_EXTRACT)
5002 rtx width = XEXP (SET_DEST (sets[i].rtl), 1);
5004 if (GET_CODE (src) == CONST_INT
5005 && GET_CODE (width) == CONST_INT
5006 && INTVAL (width) < HOST_BITS_PER_WIDE_INT
5007 && (INTVAL (src) & ((HOST_WIDE_INT) (-1) << INTVAL (width))))
5008 src_folded
5009 = GEN_INT (INTVAL (src) & (((HOST_WIDE_INT) 1
5010 << INTVAL (width)) - 1));
5012 #endif
5014 /* Compute SRC's hash code, and also notice if it
5015 should not be recorded at all. In that case,
5016 prevent any further processing of this assignment. */
5017 do_not_record = 0;
5018 hash_arg_in_memory = 0;
5020 sets[i].src = src;
5021 sets[i].src_hash = HASH (src, mode);
5022 sets[i].src_volatile = do_not_record;
5023 sets[i].src_in_memory = hash_arg_in_memory;
5025 /* If SRC is a MEM, there is a REG_EQUIV note for SRC, and DEST is
5026 a pseudo, do not record SRC. Using SRC as a replacement for
5027 anything else will be incorrect in that situation. Note that
5028 this usually occurs only for stack slots, in which case all the
5029 RTL would be referring to SRC, so we don't lose any optimization
5030 opportunities by not having SRC in the hash table. */
5032 if (MEM_P (src)
5033 && find_reg_note (insn, REG_EQUIV, NULL_RTX) != 0
5034 && REG_P (dest)
5035 && REGNO (dest) >= FIRST_PSEUDO_REGISTER)
5036 sets[i].src_volatile = 1;
5038 #if 0
5039 /* It is no longer clear why we used to do this, but it doesn't
5040 appear to still be needed. So let's try without it since this
5041 code hurts cse'ing widened ops. */
5042 /* If source is a paradoxical subreg (such as QI treated as an SI),
5043 treat it as volatile. It may do the work of an SI in one context
5044 where the extra bits are not being used, but cannot replace an SI
5045 in general. */
5046 if (GET_CODE (src) == SUBREG
5047 && (GET_MODE_SIZE (GET_MODE (src))
5048 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (src)))))
5049 sets[i].src_volatile = 1;
5050 #endif
5052 /* Locate all possible equivalent forms for SRC. Try to replace
5053 SRC in the insn with each cheaper equivalent.
5055 We have the following types of equivalents: SRC itself, a folded
5056 version, a value given in a REG_EQUAL note, or a value related
5057 to a constant.
5059 Each of these equivalents may be part of an additional class
5060 of equivalents (if more than one is in the table, they must be in
5061 the same class; we check for this).
5063 If the source is volatile, we don't do any table lookups.
5065 We note any constant equivalent for possible later use in a
5066 REG_NOTE. */
5068 if (!sets[i].src_volatile)
5069 elt = lookup (src, sets[i].src_hash, mode);
5071 sets[i].src_elt = elt;
5073 if (elt && src_eqv_here && src_eqv_elt)
5075 if (elt->first_same_value != src_eqv_elt->first_same_value)
5077 /* The REG_EQUAL is indicating that two formerly distinct
5078 classes are now equivalent. So merge them. */
5079 merge_equiv_classes (elt, src_eqv_elt);
5080 src_eqv_hash = HASH (src_eqv, elt->mode);
5081 src_eqv_elt = lookup (src_eqv, src_eqv_hash, elt->mode);
5084 src_eqv_here = 0;
5087 else if (src_eqv_elt)
5088 elt = src_eqv_elt;
5090 /* Try to find a constant somewhere and record it in `src_const'.
5091 Record its table element, if any, in `src_const_elt'. Look in
5092 any known equivalences first. (If the constant is not in the
5093 table, also set `sets[i].src_const_hash'). */
5094 if (elt)
5095 for (p = elt->first_same_value; p; p = p->next_same_value)
5096 if (p->is_const)
5098 src_const = p->exp;
5099 src_const_elt = elt;
5100 break;
5103 if (src_const == 0
5104 && (CONSTANT_P (src_folded)
5105 /* Consider (minus (label_ref L1) (label_ref L2)) as
5106 "constant" here so we will record it. This allows us
5107 to fold switch statements when an ADDR_DIFF_VEC is used. */
5108 || (GET_CODE (src_folded) == MINUS
5109 && GET_CODE (XEXP (src_folded, 0)) == LABEL_REF
5110 && GET_CODE (XEXP (src_folded, 1)) == LABEL_REF)))
5111 src_const = src_folded, src_const_elt = elt;
5112 else if (src_const == 0 && src_eqv_here && CONSTANT_P (src_eqv_here))
5113 src_const = src_eqv_here, src_const_elt = src_eqv_elt;
5115 /* If we don't know if the constant is in the table, get its
5116 hash code and look it up. */
5117 if (src_const && src_const_elt == 0)
5119 sets[i].src_const_hash = HASH (src_const, mode);
5120 src_const_elt = lookup (src_const, sets[i].src_const_hash, mode);
5123 sets[i].src_const = src_const;
5124 sets[i].src_const_elt = src_const_elt;
5126 /* If the constant and our source are both in the table, mark them as
5127 equivalent. Otherwise, if a constant is in the table but the source
5128 isn't, set ELT to it. */
5129 if (src_const_elt && elt
5130 && src_const_elt->first_same_value != elt->first_same_value)
5131 merge_equiv_classes (elt, src_const_elt);
5132 else if (src_const_elt && elt == 0)
5133 elt = src_const_elt;
5135 /* See if there is a register linearly related to a constant
5136 equivalent of SRC. */
5137 if (src_const
5138 && (GET_CODE (src_const) == CONST
5139 || (src_const_elt && src_const_elt->related_value != 0)))
5141 src_related = use_related_value (src_const, src_const_elt);
5142 if (src_related)
5144 struct table_elt *src_related_elt
5145 = lookup (src_related, HASH (src_related, mode), mode);
5146 if (src_related_elt && elt)
5148 if (elt->first_same_value
5149 != src_related_elt->first_same_value)
5150 /* This can occur when we previously saw a CONST
5151 involving a SYMBOL_REF and then see the SYMBOL_REF
5152 twice. Merge the involved classes. */
5153 merge_equiv_classes (elt, src_related_elt);
5155 src_related = 0;
5156 src_related_elt = 0;
5158 else if (src_related_elt && elt == 0)
5159 elt = src_related_elt;
5163 /* See if we have a CONST_INT that is already in a register in a
5164 wider mode. */
5166 if (src_const && src_related == 0 && GET_CODE (src_const) == CONST_INT
5167 && GET_MODE_CLASS (mode) == MODE_INT
5168 && GET_MODE_BITSIZE (mode) < BITS_PER_WORD)
5170 enum machine_mode wider_mode;
5172 for (wider_mode = GET_MODE_WIDER_MODE (mode);
5173 GET_MODE_BITSIZE (wider_mode) <= BITS_PER_WORD
5174 && src_related == 0;
5175 wider_mode = GET_MODE_WIDER_MODE (wider_mode))
5177 struct table_elt *const_elt
5178 = lookup (src_const, HASH (src_const, wider_mode), wider_mode);
5180 if (const_elt == 0)
5181 continue;
5183 for (const_elt = const_elt->first_same_value;
5184 const_elt; const_elt = const_elt->next_same_value)
5185 if (REG_P (const_elt->exp))
5187 src_related = gen_lowpart (mode,
5188 const_elt->exp);
5189 break;
5194 /* Another possibility is that we have an AND with a constant in
5195 a mode narrower than a word. If so, it might have been generated
5196 as part of an "if" which would narrow the AND. If we already
5197 have done the AND in a wider mode, we can use a SUBREG of that
5198 value. */
5200 if (flag_expensive_optimizations && ! src_related
5201 && GET_CODE (src) == AND && GET_CODE (XEXP (src, 1)) == CONST_INT
5202 && GET_MODE_SIZE (mode) < UNITS_PER_WORD)
5204 enum machine_mode tmode;
5205 rtx new_and = gen_rtx_AND (VOIDmode, NULL_RTX, XEXP (src, 1));
5207 for (tmode = GET_MODE_WIDER_MODE (mode);
5208 GET_MODE_SIZE (tmode) <= UNITS_PER_WORD;
5209 tmode = GET_MODE_WIDER_MODE (tmode))
5211 rtx inner = gen_lowpart (tmode, XEXP (src, 0));
5212 struct table_elt *larger_elt;
5214 if (inner)
5216 PUT_MODE (new_and, tmode);
5217 XEXP (new_and, 0) = inner;
5218 larger_elt = lookup (new_and, HASH (new_and, tmode), tmode);
5219 if (larger_elt == 0)
5220 continue;
5222 for (larger_elt = larger_elt->first_same_value;
5223 larger_elt; larger_elt = larger_elt->next_same_value)
5224 if (REG_P (larger_elt->exp))
5226 src_related
5227 = gen_lowpart (mode, larger_elt->exp);
5228 break;
5231 if (src_related)
5232 break;
5237 #ifdef LOAD_EXTEND_OP
5238 /* See if a MEM has already been loaded with a widening operation;
5239 if it has, we can use a subreg of that. Many CISC machines
5240 also have such operations, but this is only likely to be
5241 beneficial on these machines. */
5243 if (flag_expensive_optimizations && src_related == 0
5244 && (GET_MODE_SIZE (mode) < UNITS_PER_WORD)
5245 && GET_MODE_CLASS (mode) == MODE_INT
5246 && MEM_P (src) && ! do_not_record
5247 && LOAD_EXTEND_OP (mode) != UNKNOWN)
5249 struct rtx_def memory_extend_buf;
5250 rtx memory_extend_rtx = &memory_extend_buf;
5251 enum machine_mode tmode;
5253 /* Set what we are trying to extend and the operation it might
5254 have been extended with. */
5255 memset (memory_extend_rtx, 0, sizeof(*memory_extend_rtx));
5256 PUT_CODE (memory_extend_rtx, LOAD_EXTEND_OP (mode));
5257 XEXP (memory_extend_rtx, 0) = src;
5259 for (tmode = GET_MODE_WIDER_MODE (mode);
5260 GET_MODE_SIZE (tmode) <= UNITS_PER_WORD;
5261 tmode = GET_MODE_WIDER_MODE (tmode))
5263 struct table_elt *larger_elt;
5265 PUT_MODE (memory_extend_rtx, tmode);
5266 larger_elt = lookup (memory_extend_rtx,
5267 HASH (memory_extend_rtx, tmode), tmode);
5268 if (larger_elt == 0)
5269 continue;
5271 for (larger_elt = larger_elt->first_same_value;
5272 larger_elt; larger_elt = larger_elt->next_same_value)
5273 if (REG_P (larger_elt->exp))
5275 src_related = gen_lowpart (mode,
5276 larger_elt->exp);
5277 break;
5280 if (src_related)
5281 break;
5284 #endif /* LOAD_EXTEND_OP */
5286 if (src == src_folded)
5287 src_folded = 0;
5289 /* At this point, ELT, if nonzero, points to a class of expressions
5290 equivalent to the source of this SET and SRC, SRC_EQV, SRC_FOLDED,
5291 and SRC_RELATED, if nonzero, each contain additional equivalent
5292 expressions. Prune these latter expressions by deleting expressions
5293 already in the equivalence class.
5295 Check for an equivalent identical to the destination. If found,
5296 this is the preferred equivalent since it will likely lead to
5297 elimination of the insn. Indicate this by placing it in
5298 `src_related'. */
5300 if (elt)
5301 elt = elt->first_same_value;
5302 for (p = elt; p; p = p->next_same_value)
5304 enum rtx_code code = GET_CODE (p->exp);
5306 /* If the expression is not valid, ignore it. Then we do not
5307 have to check for validity below. In most cases, we can use
5308 `rtx_equal_p', since canonicalization has already been done. */
5309 if (code != REG && ! exp_equiv_p (p->exp, p->exp, 1, false))
5310 continue;
5312 /* Also skip paradoxical subregs, unless that's what we're
5313 looking for. */
5314 if (code == SUBREG
5315 && (GET_MODE_SIZE (GET_MODE (p->exp))
5316 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (p->exp))))
5317 && ! (src != 0
5318 && GET_CODE (src) == SUBREG
5319 && GET_MODE (src) == GET_MODE (p->exp)
5320 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (src)))
5321 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (p->exp))))))
5322 continue;
5324 if (src && GET_CODE (src) == code && rtx_equal_p (src, p->exp))
5325 src = 0;
5326 else if (src_folded && GET_CODE (src_folded) == code
5327 && rtx_equal_p (src_folded, p->exp))
5328 src_folded = 0;
5329 else if (src_eqv_here && GET_CODE (src_eqv_here) == code
5330 && rtx_equal_p (src_eqv_here, p->exp))
5331 src_eqv_here = 0;
5332 else if (src_related && GET_CODE (src_related) == code
5333 && rtx_equal_p (src_related, p->exp))
5334 src_related = 0;
5336 /* This is the same as the destination of the insns, we want
5337 to prefer it. Copy it to src_related. The code below will
5338 then give it a negative cost. */
5339 if (GET_CODE (dest) == code && rtx_equal_p (p->exp, dest))
5340 src_related = dest;
5343 /* Find the cheapest valid equivalent, trying all the available
5344 possibilities. Prefer items not in the hash table to ones
5345 that are when they are equal cost. Note that we can never
5346 worsen an insn as the current contents will also succeed.
5347 If we find an equivalent identical to the destination, use it as best,
5348 since this insn will probably be eliminated in that case. */
5349 if (src)
5351 if (rtx_equal_p (src, dest))
5352 src_cost = src_regcost = -1;
5353 else
5355 src_cost = COST (src);
5356 src_regcost = approx_reg_cost (src);
5360 if (src_eqv_here)
5362 if (rtx_equal_p (src_eqv_here, dest))
5363 src_eqv_cost = src_eqv_regcost = -1;
5364 else
5366 src_eqv_cost = COST (src_eqv_here);
5367 src_eqv_regcost = approx_reg_cost (src_eqv_here);
5371 if (src_folded)
5373 if (rtx_equal_p (src_folded, dest))
5374 src_folded_cost = src_folded_regcost = -1;
5375 else
5377 src_folded_cost = COST (src_folded);
5378 src_folded_regcost = approx_reg_cost (src_folded);
5382 if (src_related)
5384 if (rtx_equal_p (src_related, dest))
5385 src_related_cost = src_related_regcost = -1;
5386 else
5388 src_related_cost = COST (src_related);
5389 src_related_regcost = approx_reg_cost (src_related);
5393 /* If this was an indirect jump insn, a known label will really be
5394 cheaper even though it looks more expensive. */
5395 if (dest == pc_rtx && src_const && GET_CODE (src_const) == LABEL_REF)
5396 src_folded = src_const, src_folded_cost = src_folded_regcost = -1;
5398 /* Terminate loop when replacement made. This must terminate since
5399 the current contents will be tested and will always be valid. */
5400 while (1)
5402 rtx trial;
5404 /* Skip invalid entries. */
5405 while (elt && !REG_P (elt->exp)
5406 && ! exp_equiv_p (elt->exp, elt->exp, 1, false))
5407 elt = elt->next_same_value;
5409 /* A paradoxical subreg would be bad here: it'll be the right
5410 size, but later may be adjusted so that the upper bits aren't
5411 what we want. So reject it. */
5412 if (elt != 0
5413 && GET_CODE (elt->exp) == SUBREG
5414 && (GET_MODE_SIZE (GET_MODE (elt->exp))
5415 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (elt->exp))))
5416 /* It is okay, though, if the rtx we're trying to match
5417 will ignore any of the bits we can't predict. */
5418 && ! (src != 0
5419 && GET_CODE (src) == SUBREG
5420 && GET_MODE (src) == GET_MODE (elt->exp)
5421 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (src)))
5422 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (elt->exp))))))
5424 elt = elt->next_same_value;
5425 continue;
5428 if (elt)
5430 src_elt_cost = elt->cost;
5431 src_elt_regcost = elt->regcost;
5434 /* Find cheapest and skip it for the next time. For items
5435 of equal cost, use this order:
5436 src_folded, src, src_eqv, src_related and hash table entry. */
5437 if (src_folded
5438 && preferable (src_folded_cost, src_folded_regcost,
5439 src_cost, src_regcost) <= 0
5440 && preferable (src_folded_cost, src_folded_regcost,
5441 src_eqv_cost, src_eqv_regcost) <= 0
5442 && preferable (src_folded_cost, src_folded_regcost,
5443 src_related_cost, src_related_regcost) <= 0
5444 && preferable (src_folded_cost, src_folded_regcost,
5445 src_elt_cost, src_elt_regcost) <= 0)
5447 trial = src_folded, src_folded_cost = MAX_COST;
5448 if (src_folded_force_flag)
5450 rtx forced = force_const_mem (mode, trial);
5451 if (forced)
5452 trial = forced;
5455 else if (src
5456 && preferable (src_cost, src_regcost,
5457 src_eqv_cost, src_eqv_regcost) <= 0
5458 && preferable (src_cost, src_regcost,
5459 src_related_cost, src_related_regcost) <= 0
5460 && preferable (src_cost, src_regcost,
5461 src_elt_cost, src_elt_regcost) <= 0)
5462 trial = src, src_cost = MAX_COST;
5463 else if (src_eqv_here
5464 && preferable (src_eqv_cost, src_eqv_regcost,
5465 src_related_cost, src_related_regcost) <= 0
5466 && preferable (src_eqv_cost, src_eqv_regcost,
5467 src_elt_cost, src_elt_regcost) <= 0)
5468 trial = copy_rtx (src_eqv_here), src_eqv_cost = MAX_COST;
5469 else if (src_related
5470 && preferable (src_related_cost, src_related_regcost,
5471 src_elt_cost, src_elt_regcost) <= 0)
5472 trial = copy_rtx (src_related), src_related_cost = MAX_COST;
5473 else
5475 trial = copy_rtx (elt->exp);
5476 elt = elt->next_same_value;
5477 src_elt_cost = MAX_COST;
5480 /* We don't normally have an insn matching (set (pc) (pc)), so
5481 check for this separately here. We will delete such an
5482 insn below.
5484 For other cases such as a table jump or conditional jump
5485 where we know the ultimate target, go ahead and replace the
5486 operand. While that may not make a valid insn, we will
5487 reemit the jump below (and also insert any necessary
5488 barriers). */
5489 if (n_sets == 1 && dest == pc_rtx
5490 && (trial == pc_rtx
5491 || (GET_CODE (trial) == LABEL_REF
5492 && ! condjump_p (insn))))
5494 /* Don't substitute non-local labels, this confuses CFG. */
5495 if (GET_CODE (trial) == LABEL_REF
5496 && LABEL_REF_NONLOCAL_P (trial))
5497 continue;
5499 SET_SRC (sets[i].rtl) = trial;
5500 cse_jumps_altered = 1;
5501 break;
5504 /* Look for a substitution that makes a valid insn. */
5505 else if (validate_change (insn, &SET_SRC (sets[i].rtl), trial, 0))
5507 rtx new = canon_reg (SET_SRC (sets[i].rtl), insn);
5509 /* If we just made a substitution inside a libcall, then we
5510 need to make the same substitution in any notes attached
5511 to the RETVAL insn. */
5512 if (libcall_insn
5513 && (REG_P (sets[i].orig_src)
5514 || GET_CODE (sets[i].orig_src) == SUBREG
5515 || MEM_P (sets[i].orig_src)))
5517 rtx note = find_reg_equal_equiv_note (libcall_insn);
5518 if (note != 0)
5519 XEXP (note, 0) = simplify_replace_rtx (XEXP (note, 0),
5520 sets[i].orig_src,
5521 copy_rtx (new));
5524 /* The result of apply_change_group can be ignored; see
5525 canon_reg. */
5527 validate_change (insn, &SET_SRC (sets[i].rtl), new, 1);
5528 apply_change_group ();
5529 break;
5532 /* If we previously found constant pool entries for
5533 constants and this is a constant, try making a
5534 pool entry. Put it in src_folded unless we already have done
5535 this since that is where it likely came from. */
5537 else if (constant_pool_entries_cost
5538 && CONSTANT_P (trial)
5539 /* Reject cases that will abort in decode_rtx_const.
5540 On the alpha when simplifying a switch, we get
5541 (const (truncate (minus (label_ref) (label_ref)))). */
5542 && ! (GET_CODE (trial) == CONST
5543 && GET_CODE (XEXP (trial, 0)) == TRUNCATE)
5544 /* Likewise on IA-64, except without the truncate. */
5545 && ! (GET_CODE (trial) == CONST
5546 && GET_CODE (XEXP (trial, 0)) == MINUS
5547 && GET_CODE (XEXP (XEXP (trial, 0), 0)) == LABEL_REF
5548 && GET_CODE (XEXP (XEXP (trial, 0), 1)) == LABEL_REF)
5549 && (src_folded == 0
5550 || (!MEM_P (src_folded)
5551 && ! src_folded_force_flag))
5552 && GET_MODE_CLASS (mode) != MODE_CC
5553 && mode != VOIDmode)
5555 src_folded_force_flag = 1;
5556 src_folded = trial;
5557 src_folded_cost = constant_pool_entries_cost;
5558 src_folded_regcost = constant_pool_entries_regcost;
5562 src = SET_SRC (sets[i].rtl);
5564 /* In general, it is good to have a SET with SET_SRC == SET_DEST.
5565 However, there is an important exception: If both are registers
5566 that are not the head of their equivalence class, replace SET_SRC
5567 with the head of the class. If we do not do this, we will have
5568 both registers live over a portion of the basic block. This way,
5569 their lifetimes will likely abut instead of overlapping. */
5570 if (REG_P (dest)
5571 && REGNO_QTY_VALID_P (REGNO (dest)))
5573 int dest_q = REG_QTY (REGNO (dest));
5574 struct qty_table_elem *dest_ent = &qty_table[dest_q];
5576 if (dest_ent->mode == GET_MODE (dest)
5577 && dest_ent->first_reg != REGNO (dest)
5578 && REG_P (src) && REGNO (src) == REGNO (dest)
5579 /* Don't do this if the original insn had a hard reg as
5580 SET_SRC or SET_DEST. */
5581 && (!REG_P (sets[i].src)
5582 || REGNO (sets[i].src) >= FIRST_PSEUDO_REGISTER)
5583 && (!REG_P (dest) || REGNO (dest) >= FIRST_PSEUDO_REGISTER))
5584 /* We can't call canon_reg here because it won't do anything if
5585 SRC is a hard register. */
5587 int src_q = REG_QTY (REGNO (src));
5588 struct qty_table_elem *src_ent = &qty_table[src_q];
5589 int first = src_ent->first_reg;
5590 rtx new_src
5591 = (first >= FIRST_PSEUDO_REGISTER
5592 ? regno_reg_rtx[first] : gen_rtx_REG (GET_MODE (src), first));
5594 /* We must use validate-change even for this, because this
5595 might be a special no-op instruction, suitable only to
5596 tag notes onto. */
5597 if (validate_change (insn, &SET_SRC (sets[i].rtl), new_src, 0))
5599 src = new_src;
5600 /* If we had a constant that is cheaper than what we are now
5601 setting SRC to, use that constant. We ignored it when we
5602 thought we could make this into a no-op. */
5603 if (src_const && COST (src_const) < COST (src)
5604 && validate_change (insn, &SET_SRC (sets[i].rtl),
5605 src_const, 0))
5606 src = src_const;
5611 /* If we made a change, recompute SRC values. */
5612 if (src != sets[i].src)
5614 cse_altered = 1;
5615 do_not_record = 0;
5616 hash_arg_in_memory = 0;
5617 sets[i].src = src;
5618 sets[i].src_hash = HASH (src, mode);
5619 sets[i].src_volatile = do_not_record;
5620 sets[i].src_in_memory = hash_arg_in_memory;
5621 sets[i].src_elt = lookup (src, sets[i].src_hash, mode);
5624 /* If this is a single SET, we are setting a register, and we have an
5625 equivalent constant, we want to add a REG_NOTE. We don't want
5626 to write a REG_EQUAL note for a constant pseudo since verifying that
5627 that pseudo hasn't been eliminated is a pain. Such a note also
5628 won't help anything.
5630 Avoid a REG_EQUAL note for (CONST (MINUS (LABEL_REF) (LABEL_REF)))
5631 which can be created for a reference to a compile time computable
5632 entry in a jump table. */
5634 if (n_sets == 1 && src_const && REG_P (dest)
5635 && !REG_P (src_const)
5636 && ! (GET_CODE (src_const) == CONST
5637 && GET_CODE (XEXP (src_const, 0)) == MINUS
5638 && GET_CODE (XEXP (XEXP (src_const, 0), 0)) == LABEL_REF
5639 && GET_CODE (XEXP (XEXP (src_const, 0), 1)) == LABEL_REF))
5641 /* We only want a REG_EQUAL note if src_const != src. */
5642 if (! rtx_equal_p (src, src_const))
5644 /* Make sure that the rtx is not shared. */
5645 src_const = copy_rtx (src_const);
5647 /* Record the actual constant value in a REG_EQUAL note,
5648 making a new one if one does not already exist. */
5649 set_unique_reg_note (insn, REG_EQUAL, src_const);
5653 /* Now deal with the destination. */
5654 do_not_record = 0;
5656 /* Look within any ZERO_EXTRACT to the MEM or REG within it. */
5657 while (GET_CODE (dest) == SUBREG
5658 || GET_CODE (dest) == ZERO_EXTRACT
5659 || GET_CODE (dest) == STRICT_LOW_PART)
5660 dest = XEXP (dest, 0);
5662 sets[i].inner_dest = dest;
5664 if (MEM_P (dest))
5666 #ifdef PUSH_ROUNDING
5667 /* Stack pushes invalidate the stack pointer. */
5668 rtx addr = XEXP (dest, 0);
5669 if (GET_RTX_CLASS (GET_CODE (addr)) == RTX_AUTOINC
5670 && XEXP (addr, 0) == stack_pointer_rtx)
5671 invalidate (stack_pointer_rtx, Pmode);
5672 #endif
5673 dest = fold_rtx (dest, insn);
5676 /* Compute the hash code of the destination now,
5677 before the effects of this instruction are recorded,
5678 since the register values used in the address computation
5679 are those before this instruction. */
5680 sets[i].dest_hash = HASH (dest, mode);
5682 /* Don't enter a bit-field in the hash table
5683 because the value in it after the store
5684 may not equal what was stored, due to truncation. */
5686 if (GET_CODE (SET_DEST (sets[i].rtl)) == ZERO_EXTRACT)
5688 rtx width = XEXP (SET_DEST (sets[i].rtl), 1);
5690 if (src_const != 0 && GET_CODE (src_const) == CONST_INT
5691 && GET_CODE (width) == CONST_INT
5692 && INTVAL (width) < HOST_BITS_PER_WIDE_INT
5693 && ! (INTVAL (src_const)
5694 & ((HOST_WIDE_INT) (-1) << INTVAL (width))))
5695 /* Exception: if the value is constant,
5696 and it won't be truncated, record it. */
5698 else
5700 /* This is chosen so that the destination will be invalidated
5701 but no new value will be recorded.
5702 We must invalidate because sometimes constant
5703 values can be recorded for bitfields. */
5704 sets[i].src_elt = 0;
5705 sets[i].src_volatile = 1;
5706 src_eqv = 0;
5707 src_eqv_elt = 0;
5711 /* If only one set in a JUMP_INSN and it is now a no-op, we can delete
5712 the insn. */
5713 else if (n_sets == 1 && dest == pc_rtx && src == pc_rtx)
5715 /* One less use of the label this insn used to jump to. */
5716 delete_insn (insn);
5717 cse_jumps_altered = 1;
5718 /* No more processing for this set. */
5719 sets[i].rtl = 0;
5722 /* If this SET is now setting PC to a label, we know it used to
5723 be a conditional or computed branch. */
5724 else if (dest == pc_rtx && GET_CODE (src) == LABEL_REF
5725 && !LABEL_REF_NONLOCAL_P (src))
5727 /* Now emit a BARRIER after the unconditional jump. */
5728 if (NEXT_INSN (insn) == 0
5729 || !BARRIER_P (NEXT_INSN (insn)))
5730 emit_barrier_after (insn);
5732 /* We reemit the jump in as many cases as possible just in
5733 case the form of an unconditional jump is significantly
5734 different than a computed jump or conditional jump.
5736 If this insn has multiple sets, then reemitting the
5737 jump is nontrivial. So instead we just force rerecognition
5738 and hope for the best. */
5739 if (n_sets == 1)
5741 rtx new, note;
5743 new = emit_jump_insn_after (gen_jump (XEXP (src, 0)), insn);
5744 JUMP_LABEL (new) = XEXP (src, 0);
5745 LABEL_NUSES (XEXP (src, 0))++;
5747 /* Make sure to copy over REG_NON_LOCAL_GOTO. */
5748 note = find_reg_note (insn, REG_NON_LOCAL_GOTO, 0);
5749 if (note)
5751 XEXP (note, 1) = NULL_RTX;
5752 REG_NOTES (new) = note;
5755 delete_insn (insn);
5756 insn = new;
5758 /* Now emit a BARRIER after the unconditional jump. */
5759 if (NEXT_INSN (insn) == 0
5760 || !BARRIER_P (NEXT_INSN (insn)))
5761 emit_barrier_after (insn);
5763 else
5764 INSN_CODE (insn) = -1;
5766 /* Do not bother deleting any unreachable code,
5767 let jump/flow do that. */
5769 cse_jumps_altered = 1;
5770 sets[i].rtl = 0;
5773 /* If destination is volatile, invalidate it and then do no further
5774 processing for this assignment. */
5776 else if (do_not_record)
5778 if (REG_P (dest) || GET_CODE (dest) == SUBREG)
5779 invalidate (dest, VOIDmode);
5780 else if (MEM_P (dest))
5781 invalidate (dest, VOIDmode);
5782 else if (GET_CODE (dest) == STRICT_LOW_PART
5783 || GET_CODE (dest) == ZERO_EXTRACT)
5784 invalidate (XEXP (dest, 0), GET_MODE (dest));
5785 sets[i].rtl = 0;
5788 if (sets[i].rtl != 0 && dest != SET_DEST (sets[i].rtl))
5789 sets[i].dest_hash = HASH (SET_DEST (sets[i].rtl), mode);
5791 #ifdef HAVE_cc0
5792 /* If setting CC0, record what it was set to, or a constant, if it
5793 is equivalent to a constant. If it is being set to a floating-point
5794 value, make a COMPARE with the appropriate constant of 0. If we
5795 don't do this, later code can interpret this as a test against
5796 const0_rtx, which can cause problems if we try to put it into an
5797 insn as a floating-point operand. */
5798 if (dest == cc0_rtx)
5800 this_insn_cc0 = src_const && mode != VOIDmode ? src_const : src;
5801 this_insn_cc0_mode = mode;
5802 if (FLOAT_MODE_P (mode))
5803 this_insn_cc0 = gen_rtx_COMPARE (VOIDmode, this_insn_cc0,
5804 CONST0_RTX (mode));
5806 #endif
5809 /* Now enter all non-volatile source expressions in the hash table
5810 if they are not already present.
5811 Record their equivalence classes in src_elt.
5812 This way we can insert the corresponding destinations into
5813 the same classes even if the actual sources are no longer in them
5814 (having been invalidated). */
5816 if (src_eqv && src_eqv_elt == 0 && sets[0].rtl != 0 && ! src_eqv_volatile
5817 && ! rtx_equal_p (src_eqv, SET_DEST (sets[0].rtl)))
5819 struct table_elt *elt;
5820 struct table_elt *classp = sets[0].src_elt;
5821 rtx dest = SET_DEST (sets[0].rtl);
5822 enum machine_mode eqvmode = GET_MODE (dest);
5824 if (GET_CODE (dest) == STRICT_LOW_PART)
5826 eqvmode = GET_MODE (SUBREG_REG (XEXP (dest, 0)));
5827 classp = 0;
5829 if (insert_regs (src_eqv, classp, 0))
5831 rehash_using_reg (src_eqv);
5832 src_eqv_hash = HASH (src_eqv, eqvmode);
5834 elt = insert (src_eqv, classp, src_eqv_hash, eqvmode);
5835 elt->in_memory = src_eqv_in_memory;
5836 src_eqv_elt = elt;
5838 /* Check to see if src_eqv_elt is the same as a set source which
5839 does not yet have an elt, and if so set the elt of the set source
5840 to src_eqv_elt. */
5841 for (i = 0; i < n_sets; i++)
5842 if (sets[i].rtl && sets[i].src_elt == 0
5843 && rtx_equal_p (SET_SRC (sets[i].rtl), src_eqv))
5844 sets[i].src_elt = src_eqv_elt;
5847 for (i = 0; i < n_sets; i++)
5848 if (sets[i].rtl && ! sets[i].src_volatile
5849 && ! rtx_equal_p (SET_SRC (sets[i].rtl), SET_DEST (sets[i].rtl)))
5851 if (GET_CODE (SET_DEST (sets[i].rtl)) == STRICT_LOW_PART)
5853 /* REG_EQUAL in setting a STRICT_LOW_PART
5854 gives an equivalent for the entire destination register,
5855 not just for the subreg being stored in now.
5856 This is a more interesting equivalence, so we arrange later
5857 to treat the entire reg as the destination. */
5858 sets[i].src_elt = src_eqv_elt;
5859 sets[i].src_hash = src_eqv_hash;
5861 else
5863 /* Insert source and constant equivalent into hash table, if not
5864 already present. */
5865 struct table_elt *classp = src_eqv_elt;
5866 rtx src = sets[i].src;
5867 rtx dest = SET_DEST (sets[i].rtl);
5868 enum machine_mode mode
5869 = GET_MODE (src) == VOIDmode ? GET_MODE (dest) : GET_MODE (src);
5871 /* It's possible that we have a source value known to be
5872 constant but don't have a REG_EQUAL note on the insn.
5873 Lack of a note will mean src_eqv_elt will be NULL. This
5874 can happen where we've generated a SUBREG to access a
5875 CONST_INT that is already in a register in a wider mode.
5876 Ensure that the source expression is put in the proper
5877 constant class. */
5878 if (!classp)
5879 classp = sets[i].src_const_elt;
5881 if (sets[i].src_elt == 0)
5883 /* Don't put a hard register source into the table if this is
5884 the last insn of a libcall. In this case, we only need
5885 to put src_eqv_elt in src_elt. */
5886 if (! find_reg_note (insn, REG_RETVAL, NULL_RTX))
5888 struct table_elt *elt;
5890 /* Note that these insert_regs calls cannot remove
5891 any of the src_elt's, because they would have failed to
5892 match if not still valid. */
5893 if (insert_regs (src, classp, 0))
5895 rehash_using_reg (src);
5896 sets[i].src_hash = HASH (src, mode);
5898 elt = insert (src, classp, sets[i].src_hash, mode);
5899 elt->in_memory = sets[i].src_in_memory;
5900 sets[i].src_elt = classp = elt;
5902 else
5903 sets[i].src_elt = classp;
5905 if (sets[i].src_const && sets[i].src_const_elt == 0
5906 && src != sets[i].src_const
5907 && ! rtx_equal_p (sets[i].src_const, src))
5908 sets[i].src_elt = insert (sets[i].src_const, classp,
5909 sets[i].src_const_hash, mode);
5912 else if (sets[i].src_elt == 0)
5913 /* If we did not insert the source into the hash table (e.g., it was
5914 volatile), note the equivalence class for the REG_EQUAL value, if any,
5915 so that the destination goes into that class. */
5916 sets[i].src_elt = src_eqv_elt;
5918 invalidate_from_clobbers (x);
5920 /* Some registers are invalidated by subroutine calls. Memory is
5921 invalidated by non-constant calls. */
5923 if (CALL_P (insn))
5925 if (! CONST_OR_PURE_CALL_P (insn))
5926 invalidate_memory ();
5927 invalidate_for_call ();
5930 /* Now invalidate everything set by this instruction.
5931 If a SUBREG or other funny destination is being set,
5932 sets[i].rtl is still nonzero, so here we invalidate the reg
5933 a part of which is being set. */
5935 for (i = 0; i < n_sets; i++)
5936 if (sets[i].rtl)
5938 /* We can't use the inner dest, because the mode associated with
5939 a ZERO_EXTRACT is significant. */
5940 rtx dest = SET_DEST (sets[i].rtl);
5942 /* Needed for registers to remove the register from its
5943 previous quantity's chain.
5944 Needed for memory if this is a nonvarying address, unless
5945 we have just done an invalidate_memory that covers even those. */
5946 if (REG_P (dest) || GET_CODE (dest) == SUBREG)
5947 invalidate (dest, VOIDmode);
5948 else if (MEM_P (dest))
5949 invalidate (dest, VOIDmode);
5950 else if (GET_CODE (dest) == STRICT_LOW_PART
5951 || GET_CODE (dest) == ZERO_EXTRACT)
5952 invalidate (XEXP (dest, 0), GET_MODE (dest));
5955 /* A volatile ASM invalidates everything. */
5956 if (NONJUMP_INSN_P (insn)
5957 && GET_CODE (PATTERN (insn)) == ASM_OPERANDS
5958 && MEM_VOLATILE_P (PATTERN (insn)))
5959 flush_hash_table ();
5961 /* Make sure registers mentioned in destinations
5962 are safe for use in an expression to be inserted.
5963 This removes from the hash table
5964 any invalid entry that refers to one of these registers.
5966 We don't care about the return value from mention_regs because
5967 we are going to hash the SET_DEST values unconditionally. */
5969 for (i = 0; i < n_sets; i++)
5971 if (sets[i].rtl)
5973 rtx x = SET_DEST (sets[i].rtl);
5975 if (!REG_P (x))
5976 mention_regs (x);
5977 else
5979 /* We used to rely on all references to a register becoming
5980 inaccessible when a register changes to a new quantity,
5981 since that changes the hash code. However, that is not
5982 safe, since after HASH_SIZE new quantities we get a
5983 hash 'collision' of a register with its own invalid
5984 entries. And since SUBREGs have been changed not to
5985 change their hash code with the hash code of the register,
5986 it wouldn't work any longer at all. So we have to check
5987 for any invalid references lying around now.
5988 This code is similar to the REG case in mention_regs,
5989 but it knows that reg_tick has been incremented, and
5990 it leaves reg_in_table as -1 . */
5991 unsigned int regno = REGNO (x);
5992 unsigned int endregno
5993 = regno + (regno >= FIRST_PSEUDO_REGISTER ? 1
5994 : hard_regno_nregs[regno][GET_MODE (x)]);
5995 unsigned int i;
5997 for (i = regno; i < endregno; i++)
5999 if (REG_IN_TABLE (i) >= 0)
6001 remove_invalid_refs (i);
6002 REG_IN_TABLE (i) = -1;
6009 /* We may have just removed some of the src_elt's from the hash table.
6010 So replace each one with the current head of the same class. */
6012 for (i = 0; i < n_sets; i++)
6013 if (sets[i].rtl)
6015 if (sets[i].src_elt && sets[i].src_elt->first_same_value == 0)
6016 /* If elt was removed, find current head of same class,
6017 or 0 if nothing remains of that class. */
6019 struct table_elt *elt = sets[i].src_elt;
6021 while (elt && elt->prev_same_value)
6022 elt = elt->prev_same_value;
6024 while (elt && elt->first_same_value == 0)
6025 elt = elt->next_same_value;
6026 sets[i].src_elt = elt ? elt->first_same_value : 0;
6030 /* Now insert the destinations into their equivalence classes. */
6032 for (i = 0; i < n_sets; i++)
6033 if (sets[i].rtl)
6035 rtx dest = SET_DEST (sets[i].rtl);
6036 struct table_elt *elt;
6038 /* Don't record value if we are not supposed to risk allocating
6039 floating-point values in registers that might be wider than
6040 memory. */
6041 if ((flag_float_store
6042 && MEM_P (dest)
6043 && FLOAT_MODE_P (GET_MODE (dest)))
6044 /* Don't record BLKmode values, because we don't know the
6045 size of it, and can't be sure that other BLKmode values
6046 have the same or smaller size. */
6047 || GET_MODE (dest) == BLKmode
6048 /* Don't record values of destinations set inside a libcall block
6049 since we might delete the libcall. Things should have been set
6050 up so we won't want to reuse such a value, but we play it safe
6051 here. */
6052 || libcall_insn
6053 /* If we didn't put a REG_EQUAL value or a source into the hash
6054 table, there is no point is recording DEST. */
6055 || sets[i].src_elt == 0
6056 /* If DEST is a paradoxical SUBREG and SRC is a ZERO_EXTEND
6057 or SIGN_EXTEND, don't record DEST since it can cause
6058 some tracking to be wrong.
6060 ??? Think about this more later. */
6061 || (GET_CODE (dest) == SUBREG
6062 && (GET_MODE_SIZE (GET_MODE (dest))
6063 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest))))
6064 && (GET_CODE (sets[i].src) == SIGN_EXTEND
6065 || GET_CODE (sets[i].src) == ZERO_EXTEND)))
6066 continue;
6068 /* STRICT_LOW_PART isn't part of the value BEING set,
6069 and neither is the SUBREG inside it.
6070 Note that in this case SETS[I].SRC_ELT is really SRC_EQV_ELT. */
6071 if (GET_CODE (dest) == STRICT_LOW_PART)
6072 dest = SUBREG_REG (XEXP (dest, 0));
6074 if (REG_P (dest) || GET_CODE (dest) == SUBREG)
6075 /* Registers must also be inserted into chains for quantities. */
6076 if (insert_regs (dest, sets[i].src_elt, 1))
6078 /* If `insert_regs' changes something, the hash code must be
6079 recalculated. */
6080 rehash_using_reg (dest);
6081 sets[i].dest_hash = HASH (dest, GET_MODE (dest));
6084 elt = insert (dest, sets[i].src_elt,
6085 sets[i].dest_hash, GET_MODE (dest));
6087 elt->in_memory = (MEM_P (sets[i].inner_dest)
6088 && !MEM_READONLY_P (sets[i].inner_dest));
6090 /* If we have (set (subreg:m1 (reg:m2 foo) 0) (bar:m1)), M1 is no
6091 narrower than M2, and both M1 and M2 are the same number of words,
6092 we are also doing (set (reg:m2 foo) (subreg:m2 (bar:m1) 0)) so
6093 make that equivalence as well.
6095 However, BAR may have equivalences for which gen_lowpart
6096 will produce a simpler value than gen_lowpart applied to
6097 BAR (e.g., if BAR was ZERO_EXTENDed from M2), so we will scan all
6098 BAR's equivalences. If we don't get a simplified form, make
6099 the SUBREG. It will not be used in an equivalence, but will
6100 cause two similar assignments to be detected.
6102 Note the loop below will find SUBREG_REG (DEST) since we have
6103 already entered SRC and DEST of the SET in the table. */
6105 if (GET_CODE (dest) == SUBREG
6106 && (((GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest))) - 1)
6107 / UNITS_PER_WORD)
6108 == (GET_MODE_SIZE (GET_MODE (dest)) - 1) / UNITS_PER_WORD)
6109 && (GET_MODE_SIZE (GET_MODE (dest))
6110 >= GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest))))
6111 && sets[i].src_elt != 0)
6113 enum machine_mode new_mode = GET_MODE (SUBREG_REG (dest));
6114 struct table_elt *elt, *classp = 0;
6116 for (elt = sets[i].src_elt->first_same_value; elt;
6117 elt = elt->next_same_value)
6119 rtx new_src = 0;
6120 unsigned src_hash;
6121 struct table_elt *src_elt;
6122 int byte = 0;
6124 /* Ignore invalid entries. */
6125 if (!REG_P (elt->exp)
6126 && ! exp_equiv_p (elt->exp, elt->exp, 1, false))
6127 continue;
6129 /* We may have already been playing subreg games. If the
6130 mode is already correct for the destination, use it. */
6131 if (GET_MODE (elt->exp) == new_mode)
6132 new_src = elt->exp;
6133 else
6135 /* Calculate big endian correction for the SUBREG_BYTE.
6136 We have already checked that M1 (GET_MODE (dest))
6137 is not narrower than M2 (new_mode). */
6138 if (BYTES_BIG_ENDIAN)
6139 byte = (GET_MODE_SIZE (GET_MODE (dest))
6140 - GET_MODE_SIZE (new_mode));
6142 new_src = simplify_gen_subreg (new_mode, elt->exp,
6143 GET_MODE (dest), byte);
6146 /* The call to simplify_gen_subreg fails if the value
6147 is VOIDmode, yet we can't do any simplification, e.g.
6148 for EXPR_LISTs denoting function call results.
6149 It is invalid to construct a SUBREG with a VOIDmode
6150 SUBREG_REG, hence a zero new_src means we can't do
6151 this substitution. */
6152 if (! new_src)
6153 continue;
6155 src_hash = HASH (new_src, new_mode);
6156 src_elt = lookup (new_src, src_hash, new_mode);
6158 /* Put the new source in the hash table is if isn't
6159 already. */
6160 if (src_elt == 0)
6162 if (insert_regs (new_src, classp, 0))
6164 rehash_using_reg (new_src);
6165 src_hash = HASH (new_src, new_mode);
6167 src_elt = insert (new_src, classp, src_hash, new_mode);
6168 src_elt->in_memory = elt->in_memory;
6170 else if (classp && classp != src_elt->first_same_value)
6171 /* Show that two things that we've seen before are
6172 actually the same. */
6173 merge_equiv_classes (src_elt, classp);
6175 classp = src_elt->first_same_value;
6176 /* Ignore invalid entries. */
6177 while (classp
6178 && !REG_P (classp->exp)
6179 && ! exp_equiv_p (classp->exp, classp->exp, 1, false))
6180 classp = classp->next_same_value;
6185 /* Special handling for (set REG0 REG1) where REG0 is the
6186 "cheapest", cheaper than REG1. After cse, REG1 will probably not
6187 be used in the sequel, so (if easily done) change this insn to
6188 (set REG1 REG0) and replace REG1 with REG0 in the previous insn
6189 that computed their value. Then REG1 will become a dead store
6190 and won't cloud the situation for later optimizations.
6192 Do not make this change if REG1 is a hard register, because it will
6193 then be used in the sequel and we may be changing a two-operand insn
6194 into a three-operand insn.
6196 Also do not do this if we are operating on a copy of INSN.
6198 Also don't do this if INSN ends a libcall; this would cause an unrelated
6199 register to be set in the middle of a libcall, and we then get bad code
6200 if the libcall is deleted. */
6202 if (n_sets == 1 && sets[0].rtl && REG_P (SET_DEST (sets[0].rtl))
6203 && NEXT_INSN (PREV_INSN (insn)) == insn
6204 && REG_P (SET_SRC (sets[0].rtl))
6205 && REGNO (SET_SRC (sets[0].rtl)) >= FIRST_PSEUDO_REGISTER
6206 && REGNO_QTY_VALID_P (REGNO (SET_SRC (sets[0].rtl))))
6208 int src_q = REG_QTY (REGNO (SET_SRC (sets[0].rtl)));
6209 struct qty_table_elem *src_ent = &qty_table[src_q];
6211 if ((src_ent->first_reg == REGNO (SET_DEST (sets[0].rtl)))
6212 && ! find_reg_note (insn, REG_RETVAL, NULL_RTX))
6214 rtx prev = insn;
6215 /* Scan for the previous nonnote insn, but stop at a basic
6216 block boundary. */
6219 prev = PREV_INSN (prev);
6221 while (prev && NOTE_P (prev)
6222 && NOTE_LINE_NUMBER (prev) != NOTE_INSN_BASIC_BLOCK);
6224 /* Do not swap the registers around if the previous instruction
6225 attaches a REG_EQUIV note to REG1.
6227 ??? It's not entirely clear whether we can transfer a REG_EQUIV
6228 from the pseudo that originally shadowed an incoming argument
6229 to another register. Some uses of REG_EQUIV might rely on it
6230 being attached to REG1 rather than REG2.
6232 This section previously turned the REG_EQUIV into a REG_EQUAL
6233 note. We cannot do that because REG_EQUIV may provide an
6234 uninitialized stack slot when REG_PARM_STACK_SPACE is used. */
6236 if (prev != 0 && NONJUMP_INSN_P (prev)
6237 && GET_CODE (PATTERN (prev)) == SET
6238 && SET_DEST (PATTERN (prev)) == SET_SRC (sets[0].rtl)
6239 && ! find_reg_note (prev, REG_EQUIV, NULL_RTX))
6241 rtx dest = SET_DEST (sets[0].rtl);
6242 rtx src = SET_SRC (sets[0].rtl);
6243 rtx note;
6245 validate_change (prev, &SET_DEST (PATTERN (prev)), dest, 1);
6246 validate_change (insn, &SET_DEST (sets[0].rtl), src, 1);
6247 validate_change (insn, &SET_SRC (sets[0].rtl), dest, 1);
6248 apply_change_group ();
6250 /* If INSN has a REG_EQUAL note, and this note mentions
6251 REG0, then we must delete it, because the value in
6252 REG0 has changed. If the note's value is REG1, we must
6253 also delete it because that is now this insn's dest. */
6254 note = find_reg_note (insn, REG_EQUAL, NULL_RTX);
6255 if (note != 0
6256 && (reg_mentioned_p (dest, XEXP (note, 0))
6257 || rtx_equal_p (src, XEXP (note, 0))))
6258 remove_note (insn, note);
6263 /* If this is a conditional jump insn, record any known equivalences due to
6264 the condition being tested. */
6266 if (JUMP_P (insn)
6267 && n_sets == 1 && GET_CODE (x) == SET
6268 && GET_CODE (SET_SRC (x)) == IF_THEN_ELSE)
6269 record_jump_equiv (insn, 0);
6271 #ifdef HAVE_cc0
6272 /* If the previous insn set CC0 and this insn no longer references CC0,
6273 delete the previous insn. Here we use the fact that nothing expects CC0
6274 to be valid over an insn, which is true until the final pass. */
6275 if (prev_insn && NONJUMP_INSN_P (prev_insn)
6276 && (tem = single_set (prev_insn)) != 0
6277 && SET_DEST (tem) == cc0_rtx
6278 && ! reg_mentioned_p (cc0_rtx, x))
6279 delete_insn (prev_insn);
6281 prev_insn_cc0 = this_insn_cc0;
6282 prev_insn_cc0_mode = this_insn_cc0_mode;
6283 prev_insn = insn;
6284 #endif
6287 /* Remove from the hash table all expressions that reference memory. */
6289 static void
6290 invalidate_memory (void)
6292 int i;
6293 struct table_elt *p, *next;
6295 for (i = 0; i < HASH_SIZE; i++)
6296 for (p = table[i]; p; p = next)
6298 next = p->next_same_hash;
6299 if (p->in_memory)
6300 remove_from_table (p, i);
6304 /* If ADDR is an address that implicitly affects the stack pointer, return
6305 1 and update the register tables to show the effect. Else, return 0. */
6307 static int
6308 addr_affects_sp_p (rtx addr)
6310 if (GET_RTX_CLASS (GET_CODE (addr)) == RTX_AUTOINC
6311 && REG_P (XEXP (addr, 0))
6312 && REGNO (XEXP (addr, 0)) == STACK_POINTER_REGNUM)
6314 if (REG_TICK (STACK_POINTER_REGNUM) >= 0)
6316 REG_TICK (STACK_POINTER_REGNUM)++;
6317 /* Is it possible to use a subreg of SP? */
6318 SUBREG_TICKED (STACK_POINTER_REGNUM) = -1;
6321 /* This should be *very* rare. */
6322 if (TEST_HARD_REG_BIT (hard_regs_in_table, STACK_POINTER_REGNUM))
6323 invalidate (stack_pointer_rtx, VOIDmode);
6325 return 1;
6328 return 0;
6331 /* Perform invalidation on the basis of everything about an insn
6332 except for invalidating the actual places that are SET in it.
6333 This includes the places CLOBBERed, and anything that might
6334 alias with something that is SET or CLOBBERed.
6336 X is the pattern of the insn. */
6338 static void
6339 invalidate_from_clobbers (rtx x)
6341 if (GET_CODE (x) == CLOBBER)
6343 rtx ref = XEXP (x, 0);
6344 if (ref)
6346 if (REG_P (ref) || GET_CODE (ref) == SUBREG
6347 || MEM_P (ref))
6348 invalidate (ref, VOIDmode);
6349 else if (GET_CODE (ref) == STRICT_LOW_PART
6350 || GET_CODE (ref) == ZERO_EXTRACT)
6351 invalidate (XEXP (ref, 0), GET_MODE (ref));
6354 else if (GET_CODE (x) == PARALLEL)
6356 int i;
6357 for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
6359 rtx y = XVECEXP (x, 0, i);
6360 if (GET_CODE (y) == CLOBBER)
6362 rtx ref = XEXP (y, 0);
6363 if (REG_P (ref) || GET_CODE (ref) == SUBREG
6364 || MEM_P (ref))
6365 invalidate (ref, VOIDmode);
6366 else if (GET_CODE (ref) == STRICT_LOW_PART
6367 || GET_CODE (ref) == ZERO_EXTRACT)
6368 invalidate (XEXP (ref, 0), GET_MODE (ref));
6374 /* Process X, part of the REG_NOTES of an insn. Look at any REG_EQUAL notes
6375 and replace any registers in them with either an equivalent constant
6376 or the canonical form of the register. If we are inside an address,
6377 only do this if the address remains valid.
6379 OBJECT is 0 except when within a MEM in which case it is the MEM.
6381 Return the replacement for X. */
6383 static rtx
6384 cse_process_notes (rtx x, rtx object)
6386 enum rtx_code code = GET_CODE (x);
6387 const char *fmt = GET_RTX_FORMAT (code);
6388 int i;
6390 switch (code)
6392 case CONST_INT:
6393 case CONST:
6394 case SYMBOL_REF:
6395 case LABEL_REF:
6396 case CONST_DOUBLE:
6397 case CONST_VECTOR:
6398 case PC:
6399 case CC0:
6400 case LO_SUM:
6401 return x;
6403 case MEM:
6404 validate_change (x, &XEXP (x, 0),
6405 cse_process_notes (XEXP (x, 0), x), 0);
6406 return x;
6408 case EXPR_LIST:
6409 case INSN_LIST:
6410 if (REG_NOTE_KIND (x) == REG_EQUAL)
6411 XEXP (x, 0) = cse_process_notes (XEXP (x, 0), NULL_RTX);
6412 if (XEXP (x, 1))
6413 XEXP (x, 1) = cse_process_notes (XEXP (x, 1), NULL_RTX);
6414 return x;
6416 case SIGN_EXTEND:
6417 case ZERO_EXTEND:
6418 case SUBREG:
6420 rtx new = cse_process_notes (XEXP (x, 0), object);
6421 /* We don't substitute VOIDmode constants into these rtx,
6422 since they would impede folding. */
6423 if (GET_MODE (new) != VOIDmode)
6424 validate_change (object, &XEXP (x, 0), new, 0);
6425 return x;
6428 case REG:
6429 i = REG_QTY (REGNO (x));
6431 /* Return a constant or a constant register. */
6432 if (REGNO_QTY_VALID_P (REGNO (x)))
6434 struct qty_table_elem *ent = &qty_table[i];
6436 if (ent->const_rtx != NULL_RTX
6437 && (CONSTANT_P (ent->const_rtx)
6438 || REG_P (ent->const_rtx)))
6440 rtx new = gen_lowpart (GET_MODE (x), ent->const_rtx);
6441 if (new)
6442 return new;
6446 /* Otherwise, canonicalize this register. */
6447 return canon_reg (x, NULL_RTX);
6449 default:
6450 break;
6453 for (i = 0; i < GET_RTX_LENGTH (code); i++)
6454 if (fmt[i] == 'e')
6455 validate_change (object, &XEXP (x, i),
6456 cse_process_notes (XEXP (x, i), object), 0);
6458 return x;
6461 /* Process one SET of an insn that was skipped. We ignore CLOBBERs
6462 since they are done elsewhere. This function is called via note_stores. */
6464 static void
6465 invalidate_skipped_set (rtx dest, rtx set, void *data ATTRIBUTE_UNUSED)
6467 enum rtx_code code = GET_CODE (dest);
6469 if (code == MEM
6470 && ! addr_affects_sp_p (dest) /* If this is not a stack push ... */
6471 /* There are times when an address can appear varying and be a PLUS
6472 during this scan when it would be a fixed address were we to know
6473 the proper equivalences. So invalidate all memory if there is
6474 a BLKmode or nonscalar memory reference or a reference to a
6475 variable address. */
6476 && (MEM_IN_STRUCT_P (dest) || GET_MODE (dest) == BLKmode
6477 || cse_rtx_varies_p (XEXP (dest, 0), 0)))
6479 invalidate_memory ();
6480 return;
6483 if (GET_CODE (set) == CLOBBER
6484 || CC0_P (dest)
6485 || dest == pc_rtx)
6486 return;
6488 if (code == STRICT_LOW_PART || code == ZERO_EXTRACT)
6489 invalidate (XEXP (dest, 0), GET_MODE (dest));
6490 else if (code == REG || code == SUBREG || code == MEM)
6491 invalidate (dest, VOIDmode);
6494 /* Invalidate all insns from START up to the end of the function or the
6495 next label. This called when we wish to CSE around a block that is
6496 conditionally executed. */
6498 static void
6499 invalidate_skipped_block (rtx start)
6501 rtx insn;
6503 for (insn = start; insn && !LABEL_P (insn);
6504 insn = NEXT_INSN (insn))
6506 if (! INSN_P (insn))
6507 continue;
6509 if (CALL_P (insn))
6511 if (! CONST_OR_PURE_CALL_P (insn))
6512 invalidate_memory ();
6513 invalidate_for_call ();
6516 invalidate_from_clobbers (PATTERN (insn));
6517 note_stores (PATTERN (insn), invalidate_skipped_set, NULL);
6521 /* Find the end of INSN's basic block and return its range,
6522 the total number of SETs in all the insns of the block, the last insn of the
6523 block, and the branch path.
6525 The branch path indicates which branches should be followed. If a nonzero
6526 path size is specified, the block should be rescanned and a different set
6527 of branches will be taken. The branch path is only used if
6528 FLAG_CSE_FOLLOW_JUMPS or FLAG_CSE_SKIP_BLOCKS is nonzero.
6530 DATA is a pointer to a struct cse_basic_block_data, defined below, that is
6531 used to describe the block. It is filled in with the information about
6532 the current block. The incoming structure's branch path, if any, is used
6533 to construct the output branch path. */
6535 static void
6536 cse_end_of_basic_block (rtx insn, struct cse_basic_block_data *data,
6537 int follow_jumps, int skip_blocks)
6539 rtx p = insn, q;
6540 int nsets = 0;
6541 int low_cuid = INSN_CUID (insn), high_cuid = INSN_CUID (insn);
6542 rtx next = INSN_P (insn) ? insn : next_real_insn (insn);
6543 int path_size = data->path_size;
6544 int path_entry = 0;
6545 int i;
6547 /* Update the previous branch path, if any. If the last branch was
6548 previously PATH_TAKEN, mark it PATH_NOT_TAKEN.
6549 If it was previously PATH_NOT_TAKEN,
6550 shorten the path by one and look at the previous branch. We know that
6551 at least one branch must have been taken if PATH_SIZE is nonzero. */
6552 while (path_size > 0)
6554 if (data->path[path_size - 1].status != PATH_NOT_TAKEN)
6556 data->path[path_size - 1].status = PATH_NOT_TAKEN;
6557 break;
6559 else
6560 path_size--;
6563 /* If the first instruction is marked with QImode, that means we've
6564 already processed this block. Our caller will look at DATA->LAST
6565 to figure out where to go next. We want to return the next block
6566 in the instruction stream, not some branched-to block somewhere
6567 else. We accomplish this by pretending our called forbid us to
6568 follow jumps, or skip blocks. */
6569 if (GET_MODE (insn) == QImode)
6570 follow_jumps = skip_blocks = 0;
6572 /* Scan to end of this basic block. */
6573 while (p && !LABEL_P (p))
6575 /* Don't cse over a call to setjmp; on some machines (eg VAX)
6576 the regs restored by the longjmp come from
6577 a later time than the setjmp. */
6578 if (PREV_INSN (p) && CALL_P (PREV_INSN (p))
6579 && find_reg_note (PREV_INSN (p), REG_SETJMP, NULL))
6580 break;
6582 /* A PARALLEL can have lots of SETs in it,
6583 especially if it is really an ASM_OPERANDS. */
6584 if (INSN_P (p) && GET_CODE (PATTERN (p)) == PARALLEL)
6585 nsets += XVECLEN (PATTERN (p), 0);
6586 else if (!NOTE_P (p))
6587 nsets += 1;
6589 /* Ignore insns made by CSE; they cannot affect the boundaries of
6590 the basic block. */
6592 if (INSN_UID (p) <= max_uid && INSN_CUID (p) > high_cuid)
6593 high_cuid = INSN_CUID (p);
6594 if (INSN_UID (p) <= max_uid && INSN_CUID (p) < low_cuid)
6595 low_cuid = INSN_CUID (p);
6597 /* See if this insn is in our branch path. If it is and we are to
6598 take it, do so. */
6599 if (path_entry < path_size && data->path[path_entry].branch == p)
6601 if (data->path[path_entry].status != PATH_NOT_TAKEN)
6602 p = JUMP_LABEL (p);
6604 /* Point to next entry in path, if any. */
6605 path_entry++;
6608 /* If this is a conditional jump, we can follow it if -fcse-follow-jumps
6609 was specified, we haven't reached our maximum path length, there are
6610 insns following the target of the jump, this is the only use of the
6611 jump label, and the target label is preceded by a BARRIER.
6613 Alternatively, we can follow the jump if it branches around a
6614 block of code and there are no other branches into the block.
6615 In this case invalidate_skipped_block will be called to invalidate any
6616 registers set in the block when following the jump. */
6618 else if ((follow_jumps || skip_blocks) && path_size < PARAM_VALUE (PARAM_MAX_CSE_PATH_LENGTH) - 1
6619 && JUMP_P (p)
6620 && GET_CODE (PATTERN (p)) == SET
6621 && GET_CODE (SET_SRC (PATTERN (p))) == IF_THEN_ELSE
6622 && JUMP_LABEL (p) != 0
6623 && LABEL_NUSES (JUMP_LABEL (p)) == 1
6624 && NEXT_INSN (JUMP_LABEL (p)) != 0)
6626 for (q = PREV_INSN (JUMP_LABEL (p)); q; q = PREV_INSN (q))
6627 if ((!NOTE_P (q)
6628 || NOTE_LINE_NUMBER (q) == NOTE_INSN_LOOP_END
6629 || (PREV_INSN (q) && CALL_P (PREV_INSN (q))
6630 && find_reg_note (PREV_INSN (q), REG_SETJMP, NULL)))
6631 && (!LABEL_P (q) || LABEL_NUSES (q) != 0))
6632 break;
6634 /* If we ran into a BARRIER, this code is an extension of the
6635 basic block when the branch is taken. */
6636 if (follow_jumps && q != 0 && BARRIER_P (q))
6638 /* Don't allow ourself to keep walking around an
6639 always-executed loop. */
6640 if (next_real_insn (q) == next)
6642 p = NEXT_INSN (p);
6643 continue;
6646 /* Similarly, don't put a branch in our path more than once. */
6647 for (i = 0; i < path_entry; i++)
6648 if (data->path[i].branch == p)
6649 break;
6651 if (i != path_entry)
6652 break;
6654 data->path[path_entry].branch = p;
6655 data->path[path_entry++].status = PATH_TAKEN;
6657 /* This branch now ends our path. It was possible that we
6658 didn't see this branch the last time around (when the
6659 insn in front of the target was a JUMP_INSN that was
6660 turned into a no-op). */
6661 path_size = path_entry;
6663 p = JUMP_LABEL (p);
6664 /* Mark block so we won't scan it again later. */
6665 PUT_MODE (NEXT_INSN (p), QImode);
6667 /* Detect a branch around a block of code. */
6668 else if (skip_blocks && q != 0 && !LABEL_P (q))
6670 rtx tmp;
6672 if (next_real_insn (q) == next)
6674 p = NEXT_INSN (p);
6675 continue;
6678 for (i = 0; i < path_entry; i++)
6679 if (data->path[i].branch == p)
6680 break;
6682 if (i != path_entry)
6683 break;
6685 /* This is no_labels_between_p (p, q) with an added check for
6686 reaching the end of a function (in case Q precedes P). */
6687 for (tmp = NEXT_INSN (p); tmp && tmp != q; tmp = NEXT_INSN (tmp))
6688 if (LABEL_P (tmp))
6689 break;
6691 if (tmp == q)
6693 data->path[path_entry].branch = p;
6694 data->path[path_entry++].status = PATH_AROUND;
6696 path_size = path_entry;
6698 p = JUMP_LABEL (p);
6699 /* Mark block so we won't scan it again later. */
6700 PUT_MODE (NEXT_INSN (p), QImode);
6704 p = NEXT_INSN (p);
6707 data->low_cuid = low_cuid;
6708 data->high_cuid = high_cuid;
6709 data->nsets = nsets;
6710 data->last = p;
6712 /* If all jumps in the path are not taken, set our path length to zero
6713 so a rescan won't be done. */
6714 for (i = path_size - 1; i >= 0; i--)
6715 if (data->path[i].status != PATH_NOT_TAKEN)
6716 break;
6718 if (i == -1)
6719 data->path_size = 0;
6720 else
6721 data->path_size = path_size;
6723 /* End the current branch path. */
6724 data->path[path_size].branch = 0;
6727 /* Perform cse on the instructions of a function.
6728 F is the first instruction.
6729 NREGS is one plus the highest pseudo-reg number used in the instruction.
6731 Returns 1 if jump_optimize should be redone due to simplifications
6732 in conditional jump instructions. */
6735 cse_main (rtx f, int nregs, FILE *file)
6737 struct cse_basic_block_data val;
6738 rtx insn = f;
6739 int i;
6741 init_cse_reg_info (nregs);
6743 val.path = xmalloc (sizeof (struct branch_path)
6744 * PARAM_VALUE (PARAM_MAX_CSE_PATH_LENGTH));
6746 cse_jumps_altered = 0;
6747 recorded_label_ref = 0;
6748 constant_pool_entries_cost = 0;
6749 constant_pool_entries_regcost = 0;
6750 val.path_size = 0;
6751 rtl_hooks = cse_rtl_hooks;
6753 init_recog ();
6754 init_alias_analysis ();
6756 reg_eqv_table = xmalloc (nregs * sizeof (struct reg_eqv_elem));
6758 /* Find the largest uid. */
6760 max_uid = get_max_uid ();
6761 uid_cuid = xcalloc (max_uid + 1, sizeof (int));
6763 /* Compute the mapping from uids to cuids.
6764 CUIDs are numbers assigned to insns, like uids,
6765 except that cuids increase monotonically through the code.
6766 Don't assign cuids to line-number NOTEs, so that the distance in cuids
6767 between two insns is not affected by -g. */
6769 for (insn = f, i = 0; insn; insn = NEXT_INSN (insn))
6771 if (!NOTE_P (insn)
6772 || NOTE_LINE_NUMBER (insn) < 0)
6773 INSN_CUID (insn) = ++i;
6774 else
6775 /* Give a line number note the same cuid as preceding insn. */
6776 INSN_CUID (insn) = i;
6779 /* Loop over basic blocks.
6780 Compute the maximum number of qty's needed for each basic block
6781 (which is 2 for each SET). */
6782 insn = f;
6783 while (insn)
6785 cse_altered = 0;
6786 cse_end_of_basic_block (insn, &val, flag_cse_follow_jumps,
6787 flag_cse_skip_blocks);
6789 /* If this basic block was already processed or has no sets, skip it. */
6790 if (val.nsets == 0 || GET_MODE (insn) == QImode)
6792 PUT_MODE (insn, VOIDmode);
6793 insn = (val.last ? NEXT_INSN (val.last) : 0);
6794 val.path_size = 0;
6795 continue;
6798 cse_basic_block_start = val.low_cuid;
6799 cse_basic_block_end = val.high_cuid;
6800 max_qty = val.nsets * 2;
6802 if (file)
6803 fnotice (file, ";; Processing block from %d to %d, %d sets.\n",
6804 INSN_UID (insn), val.last ? INSN_UID (val.last) : 0,
6805 val.nsets);
6807 /* Make MAX_QTY bigger to give us room to optimize
6808 past the end of this basic block, if that should prove useful. */
6809 if (max_qty < 500)
6810 max_qty = 500;
6812 /* If this basic block is being extended by following certain jumps,
6813 (see `cse_end_of_basic_block'), we reprocess the code from the start.
6814 Otherwise, we start after this basic block. */
6815 if (val.path_size > 0)
6816 cse_basic_block (insn, val.last, val.path);
6817 else
6819 int old_cse_jumps_altered = cse_jumps_altered;
6820 rtx temp;
6822 /* When cse changes a conditional jump to an unconditional
6823 jump, we want to reprocess the block, since it will give
6824 us a new branch path to investigate. */
6825 cse_jumps_altered = 0;
6826 temp = cse_basic_block (insn, val.last, val.path);
6827 if (cse_jumps_altered == 0
6828 || (flag_cse_follow_jumps == 0 && flag_cse_skip_blocks == 0))
6829 insn = temp;
6831 cse_jumps_altered |= old_cse_jumps_altered;
6834 if (cse_altered)
6835 ggc_collect ();
6837 #ifdef USE_C_ALLOCA
6838 alloca (0);
6839 #endif
6842 /* Clean up. */
6843 end_alias_analysis ();
6844 free (uid_cuid);
6845 free (reg_eqv_table);
6846 free (val.path);
6847 rtl_hooks = general_rtl_hooks;
6849 return cse_jumps_altered || recorded_label_ref;
6852 /* Process a single basic block. FROM and TO and the limits of the basic
6853 block. NEXT_BRANCH points to the branch path when following jumps or
6854 a null path when not following jumps. */
6856 static rtx
6857 cse_basic_block (rtx from, rtx to, struct branch_path *next_branch)
6859 rtx insn;
6860 int to_usage = 0;
6861 rtx libcall_insn = NULL_RTX;
6862 int num_insns = 0;
6863 int no_conflict = 0;
6865 /* Allocate the space needed by qty_table. */
6866 qty_table = xmalloc (max_qty * sizeof (struct qty_table_elem));
6868 new_basic_block ();
6870 /* TO might be a label. If so, protect it from being deleted. */
6871 if (to != 0 && LABEL_P (to))
6872 ++LABEL_NUSES (to);
6874 for (insn = from; insn != to; insn = NEXT_INSN (insn))
6876 enum rtx_code code = GET_CODE (insn);
6878 /* If we have processed 1,000 insns, flush the hash table to
6879 avoid extreme quadratic behavior. We must not include NOTEs
6880 in the count since there may be more of them when generating
6881 debugging information. If we clear the table at different
6882 times, code generated with -g -O might be different than code
6883 generated with -O but not -g.
6885 ??? This is a real kludge and needs to be done some other way.
6886 Perhaps for 2.9. */
6887 if (code != NOTE && num_insns++ > 1000)
6889 flush_hash_table ();
6890 num_insns = 0;
6893 /* See if this is a branch that is part of the path. If so, and it is
6894 to be taken, do so. */
6895 if (next_branch->branch == insn)
6897 enum taken status = next_branch++->status;
6898 if (status != PATH_NOT_TAKEN)
6900 if (status == PATH_TAKEN)
6901 record_jump_equiv (insn, 1);
6902 else
6903 invalidate_skipped_block (NEXT_INSN (insn));
6905 /* Set the last insn as the jump insn; it doesn't affect cc0.
6906 Then follow this branch. */
6907 #ifdef HAVE_cc0
6908 prev_insn_cc0 = 0;
6909 prev_insn = insn;
6910 #endif
6911 insn = JUMP_LABEL (insn);
6912 continue;
6916 if (GET_MODE (insn) == QImode)
6917 PUT_MODE (insn, VOIDmode);
6919 if (GET_RTX_CLASS (code) == RTX_INSN)
6921 rtx p;
6923 /* Process notes first so we have all notes in canonical forms when
6924 looking for duplicate operations. */
6926 if (REG_NOTES (insn))
6927 REG_NOTES (insn) = cse_process_notes (REG_NOTES (insn), NULL_RTX);
6929 /* Track when we are inside in LIBCALL block. Inside such a block,
6930 we do not want to record destinations. The last insn of a
6931 LIBCALL block is not considered to be part of the block, since
6932 its destination is the result of the block and hence should be
6933 recorded. */
6935 if (REG_NOTES (insn) != 0)
6937 if ((p = find_reg_note (insn, REG_LIBCALL, NULL_RTX)))
6938 libcall_insn = XEXP (p, 0);
6939 else if (find_reg_note (insn, REG_RETVAL, NULL_RTX))
6941 /* Keep libcall_insn for the last SET insn of a no-conflict
6942 block to prevent changing the destination. */
6943 if (! no_conflict)
6944 libcall_insn = 0;
6945 else
6946 no_conflict = -1;
6948 else if (find_reg_note (insn, REG_NO_CONFLICT, NULL_RTX))
6949 no_conflict = 1;
6952 cse_insn (insn, libcall_insn);
6954 if (no_conflict == -1)
6956 libcall_insn = 0;
6957 no_conflict = 0;
6960 /* If we haven't already found an insn where we added a LABEL_REF,
6961 check this one. */
6962 if (NONJUMP_INSN_P (insn) && ! recorded_label_ref
6963 && for_each_rtx (&PATTERN (insn), check_for_label_ref,
6964 (void *) insn))
6965 recorded_label_ref = 1;
6968 /* If INSN is now an unconditional jump, skip to the end of our
6969 basic block by pretending that we just did the last insn in the
6970 basic block. If we are jumping to the end of our block, show
6971 that we can have one usage of TO. */
6973 if (any_uncondjump_p (insn))
6975 if (to == 0)
6977 free (qty_table);
6978 return 0;
6981 if (JUMP_LABEL (insn) == to)
6982 to_usage = 1;
6984 /* Maybe TO was deleted because the jump is unconditional.
6985 If so, there is nothing left in this basic block. */
6986 /* ??? Perhaps it would be smarter to set TO
6987 to whatever follows this insn,
6988 and pretend the basic block had always ended here. */
6989 if (INSN_DELETED_P (to))
6990 break;
6992 insn = PREV_INSN (to);
6995 /* See if it is ok to keep on going past the label
6996 which used to end our basic block. Remember that we incremented
6997 the count of that label, so we decrement it here. If we made
6998 a jump unconditional, TO_USAGE will be one; in that case, we don't
6999 want to count the use in that jump. */
7001 if (to != 0 && NEXT_INSN (insn) == to
7002 && LABEL_P (to) && --LABEL_NUSES (to) == to_usage)
7004 struct cse_basic_block_data val;
7005 rtx prev;
7007 insn = NEXT_INSN (to);
7009 /* If TO was the last insn in the function, we are done. */
7010 if (insn == 0)
7012 free (qty_table);
7013 return 0;
7016 /* If TO was preceded by a BARRIER we are done with this block
7017 because it has no continuation. */
7018 prev = prev_nonnote_insn (to);
7019 if (prev && BARRIER_P (prev))
7021 free (qty_table);
7022 return insn;
7025 /* Find the end of the following block. Note that we won't be
7026 following branches in this case. */
7027 to_usage = 0;
7028 val.path_size = 0;
7029 val.path = xmalloc (sizeof (struct branch_path)
7030 * PARAM_VALUE (PARAM_MAX_CSE_PATH_LENGTH));
7031 cse_end_of_basic_block (insn, &val, 0, 0);
7032 free (val.path);
7034 /* If the tables we allocated have enough space left
7035 to handle all the SETs in the next basic block,
7036 continue through it. Otherwise, return,
7037 and that block will be scanned individually. */
7038 if (val.nsets * 2 + next_qty > max_qty)
7039 break;
7041 cse_basic_block_start = val.low_cuid;
7042 cse_basic_block_end = val.high_cuid;
7043 to = val.last;
7045 /* Prevent TO from being deleted if it is a label. */
7046 if (to != 0 && LABEL_P (to))
7047 ++LABEL_NUSES (to);
7049 /* Back up so we process the first insn in the extension. */
7050 insn = PREV_INSN (insn);
7054 gcc_assert (next_qty <= max_qty);
7056 free (qty_table);
7058 return to ? NEXT_INSN (to) : 0;
7061 /* Called via for_each_rtx to see if an insn is using a LABEL_REF for which
7062 there isn't a REG_LABEL note. Return one if so. DATA is the insn. */
7064 static int
7065 check_for_label_ref (rtx *rtl, void *data)
7067 rtx insn = (rtx) data;
7069 /* If this insn uses a LABEL_REF and there isn't a REG_LABEL note for it,
7070 we must rerun jump since it needs to place the note. If this is a
7071 LABEL_REF for a CODE_LABEL that isn't in the insn chain, don't do this
7072 since no REG_LABEL will be added. */
7073 return (GET_CODE (*rtl) == LABEL_REF
7074 && ! LABEL_REF_NONLOCAL_P (*rtl)
7075 && LABEL_P (XEXP (*rtl, 0))
7076 && INSN_UID (XEXP (*rtl, 0)) != 0
7077 && ! find_reg_note (insn, REG_LABEL, XEXP (*rtl, 0)));
7080 /* Count the number of times registers are used (not set) in X.
7081 COUNTS is an array in which we accumulate the count, INCR is how much
7082 we count each register usage. */
7084 static void
7085 count_reg_usage (rtx x, int *counts, int incr)
7087 enum rtx_code code;
7088 rtx note;
7089 const char *fmt;
7090 int i, j;
7092 if (x == 0)
7093 return;
7095 switch (code = GET_CODE (x))
7097 case REG:
7098 counts[REGNO (x)] += incr;
7099 return;
7101 case PC:
7102 case CC0:
7103 case CONST:
7104 case CONST_INT:
7105 case CONST_DOUBLE:
7106 case CONST_VECTOR:
7107 case SYMBOL_REF:
7108 case LABEL_REF:
7109 return;
7111 case CLOBBER:
7112 /* If we are clobbering a MEM, mark any registers inside the address
7113 as being used. */
7114 if (MEM_P (XEXP (x, 0)))
7115 count_reg_usage (XEXP (XEXP (x, 0), 0), counts, incr);
7116 return;
7118 case SET:
7119 /* Unless we are setting a REG, count everything in SET_DEST. */
7120 if (!REG_P (SET_DEST (x)))
7121 count_reg_usage (SET_DEST (x), counts, incr);
7122 count_reg_usage (SET_SRC (x), counts, incr);
7123 return;
7125 case CALL_INSN:
7126 count_reg_usage (CALL_INSN_FUNCTION_USAGE (x), counts, incr);
7127 /* Fall through. */
7129 case INSN:
7130 case JUMP_INSN:
7131 count_reg_usage (PATTERN (x), counts, incr);
7133 /* Things used in a REG_EQUAL note aren't dead since loop may try to
7134 use them. */
7136 note = find_reg_equal_equiv_note (x);
7137 if (note)
7139 rtx eqv = XEXP (note, 0);
7141 if (GET_CODE (eqv) == EXPR_LIST)
7142 /* This REG_EQUAL note describes the result of a function call.
7143 Process all the arguments. */
7146 count_reg_usage (XEXP (eqv, 0), counts, incr);
7147 eqv = XEXP (eqv, 1);
7149 while (eqv && GET_CODE (eqv) == EXPR_LIST);
7150 else
7151 count_reg_usage (eqv, counts, incr);
7153 return;
7155 case EXPR_LIST:
7156 if (REG_NOTE_KIND (x) == REG_EQUAL
7157 || (REG_NOTE_KIND (x) != REG_NONNEG && GET_CODE (XEXP (x,0)) == USE)
7158 /* FUNCTION_USAGE expression lists may include (CLOBBER (mem /u)),
7159 involving registers in the address. */
7160 || GET_CODE (XEXP (x, 0)) == CLOBBER)
7161 count_reg_usage (XEXP (x, 0), counts, incr);
7163 count_reg_usage (XEXP (x, 1), counts, incr);
7164 return;
7166 case ASM_OPERANDS:
7167 /* Iterate over just the inputs, not the constraints as well. */
7168 for (i = ASM_OPERANDS_INPUT_LENGTH (x) - 1; i >= 0; i--)
7169 count_reg_usage (ASM_OPERANDS_INPUT (x, i), counts, incr);
7170 return;
7172 case INSN_LIST:
7173 gcc_unreachable ();
7175 default:
7176 break;
7179 fmt = GET_RTX_FORMAT (code);
7180 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
7182 if (fmt[i] == 'e')
7183 count_reg_usage (XEXP (x, i), counts, incr);
7184 else if (fmt[i] == 'E')
7185 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
7186 count_reg_usage (XVECEXP (x, i, j), counts, incr);
7190 /* Return true if set is live. */
7191 static bool
7192 set_live_p (rtx set, rtx insn ATTRIBUTE_UNUSED, /* Only used with HAVE_cc0. */
7193 int *counts)
7195 #ifdef HAVE_cc0
7196 rtx tem;
7197 #endif
7199 if (set_noop_p (set))
7202 #ifdef HAVE_cc0
7203 else if (GET_CODE (SET_DEST (set)) == CC0
7204 && !side_effects_p (SET_SRC (set))
7205 && ((tem = next_nonnote_insn (insn)) == 0
7206 || !INSN_P (tem)
7207 || !reg_referenced_p (cc0_rtx, PATTERN (tem))))
7208 return false;
7209 #endif
7210 else if (!REG_P (SET_DEST (set))
7211 || REGNO (SET_DEST (set)) < FIRST_PSEUDO_REGISTER
7212 || counts[REGNO (SET_DEST (set))] != 0
7213 || side_effects_p (SET_SRC (set)))
7214 return true;
7215 return false;
7218 /* Return true if insn is live. */
7220 static bool
7221 insn_live_p (rtx insn, int *counts)
7223 int i;
7224 if (flag_non_call_exceptions && may_trap_p (PATTERN (insn)))
7225 return true;
7226 else if (GET_CODE (PATTERN (insn)) == SET)
7227 return set_live_p (PATTERN (insn), insn, counts);
7228 else if (GET_CODE (PATTERN (insn)) == PARALLEL)
7230 for (i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
7232 rtx elt = XVECEXP (PATTERN (insn), 0, i);
7234 if (GET_CODE (elt) == SET)
7236 if (set_live_p (elt, insn, counts))
7237 return true;
7239 else if (GET_CODE (elt) != CLOBBER && GET_CODE (elt) != USE)
7240 return true;
7242 return false;
7244 else
7245 return true;
7248 /* Return true if libcall is dead as a whole. */
7250 static bool
7251 dead_libcall_p (rtx insn, int *counts)
7253 rtx note, set, new;
7255 /* See if there's a REG_EQUAL note on this insn and try to
7256 replace the source with the REG_EQUAL expression.
7258 We assume that insns with REG_RETVALs can only be reg->reg
7259 copies at this point. */
7260 note = find_reg_note (insn, REG_EQUAL, NULL_RTX);
7261 if (!note)
7262 return false;
7264 set = single_set (insn);
7265 if (!set)
7266 return false;
7268 new = simplify_rtx (XEXP (note, 0));
7269 if (!new)
7270 new = XEXP (note, 0);
7272 /* While changing insn, we must update the counts accordingly. */
7273 count_reg_usage (insn, counts, -1);
7275 if (validate_change (insn, &SET_SRC (set), new, 0))
7277 count_reg_usage (insn, counts, 1);
7278 remove_note (insn, find_reg_note (insn, REG_RETVAL, NULL_RTX));
7279 remove_note (insn, note);
7280 return true;
7283 if (CONSTANT_P (new))
7285 new = force_const_mem (GET_MODE (SET_DEST (set)), new);
7286 if (new && validate_change (insn, &SET_SRC (set), new, 0))
7288 count_reg_usage (insn, counts, 1);
7289 remove_note (insn, find_reg_note (insn, REG_RETVAL, NULL_RTX));
7290 remove_note (insn, note);
7291 return true;
7295 count_reg_usage (insn, counts, 1);
7296 return false;
7299 /* Scan all the insns and delete any that are dead; i.e., they store a register
7300 that is never used or they copy a register to itself.
7302 This is used to remove insns made obviously dead by cse, loop or other
7303 optimizations. It improves the heuristics in loop since it won't try to
7304 move dead invariants out of loops or make givs for dead quantities. The
7305 remaining passes of the compilation are also sped up. */
7308 delete_trivially_dead_insns (rtx insns, int nreg)
7310 int *counts;
7311 rtx insn, prev;
7312 int in_libcall = 0, dead_libcall = 0;
7313 int ndead = 0;
7315 timevar_push (TV_DELETE_TRIVIALLY_DEAD);
7316 /* First count the number of times each register is used. */
7317 counts = xcalloc (nreg, sizeof (int));
7318 for (insn = insns; insn; insn = NEXT_INSN (insn))
7319 if (INSN_P (insn))
7320 count_reg_usage (insn, counts, 1);
7322 /* Go from the last insn to the first and delete insns that only set unused
7323 registers or copy a register to itself. As we delete an insn, remove
7324 usage counts for registers it uses.
7326 The first jump optimization pass may leave a real insn as the last
7327 insn in the function. We must not skip that insn or we may end
7328 up deleting code that is not really dead. */
7329 for (insn = get_last_insn (); insn; insn = prev)
7331 int live_insn = 0;
7333 prev = PREV_INSN (insn);
7334 if (!INSN_P (insn))
7335 continue;
7337 /* Don't delete any insns that are part of a libcall block unless
7338 we can delete the whole libcall block.
7340 Flow or loop might get confused if we did that. Remember
7341 that we are scanning backwards. */
7342 if (find_reg_note (insn, REG_RETVAL, NULL_RTX))
7344 in_libcall = 1;
7345 live_insn = 1;
7346 dead_libcall = dead_libcall_p (insn, counts);
7348 else if (in_libcall)
7349 live_insn = ! dead_libcall;
7350 else
7351 live_insn = insn_live_p (insn, counts);
7353 /* If this is a dead insn, delete it and show registers in it aren't
7354 being used. */
7356 if (! live_insn)
7358 count_reg_usage (insn, counts, -1);
7359 delete_insn_and_edges (insn);
7360 ndead++;
7363 if (in_libcall && find_reg_note (insn, REG_LIBCALL, NULL_RTX))
7365 in_libcall = 0;
7366 dead_libcall = 0;
7370 if (dump_file && ndead)
7371 fprintf (dump_file, "Deleted %i trivially dead insns\n",
7372 ndead);
7373 /* Clean up. */
7374 free (counts);
7375 timevar_pop (TV_DELETE_TRIVIALLY_DEAD);
7376 return ndead;
7379 /* This function is called via for_each_rtx. The argument, NEWREG, is
7380 a condition code register with the desired mode. If we are looking
7381 at the same register in a different mode, replace it with
7382 NEWREG. */
7384 static int
7385 cse_change_cc_mode (rtx *loc, void *data)
7387 struct change_cc_mode_args* args = (struct change_cc_mode_args*)data;
7389 if (*loc
7390 && REG_P (*loc)
7391 && REGNO (*loc) == REGNO (args->newreg)
7392 && GET_MODE (*loc) != GET_MODE (args->newreg))
7394 validate_change (args->insn, loc, args->newreg, 1);
7396 return -1;
7398 return 0;
7401 /* Change the mode of any reference to the register REGNO (NEWREG) to
7402 GET_MODE (NEWREG) in INSN. */
7404 static void
7405 cse_change_cc_mode_insn (rtx insn, rtx newreg)
7407 struct change_cc_mode_args args;
7408 int success;
7410 if (!INSN_P (insn))
7411 return;
7413 args.insn = insn;
7414 args.newreg = newreg;
7416 for_each_rtx (&PATTERN (insn), cse_change_cc_mode, &args);
7417 for_each_rtx (&REG_NOTES (insn), cse_change_cc_mode, &args);
7419 /* If the following assertion was triggered, there is most probably
7420 something wrong with the cc_modes_compatible back end function.
7421 CC modes only can be considered compatible if the insn - with the mode
7422 replaced by any of the compatible modes - can still be recognized. */
7423 success = apply_change_group ();
7424 gcc_assert (success);
7427 /* Change the mode of any reference to the register REGNO (NEWREG) to
7428 GET_MODE (NEWREG), starting at START. Stop before END. Stop at
7429 any instruction which modifies NEWREG. */
7431 static void
7432 cse_change_cc_mode_insns (rtx start, rtx end, rtx newreg)
7434 rtx insn;
7436 for (insn = start; insn != end; insn = NEXT_INSN (insn))
7438 if (! INSN_P (insn))
7439 continue;
7441 if (reg_set_p (newreg, insn))
7442 return;
7444 cse_change_cc_mode_insn (insn, newreg);
7448 /* BB is a basic block which finishes with CC_REG as a condition code
7449 register which is set to CC_SRC. Look through the successors of BB
7450 to find blocks which have a single predecessor (i.e., this one),
7451 and look through those blocks for an assignment to CC_REG which is
7452 equivalent to CC_SRC. CAN_CHANGE_MODE indicates whether we are
7453 permitted to change the mode of CC_SRC to a compatible mode. This
7454 returns VOIDmode if no equivalent assignments were found.
7455 Otherwise it returns the mode which CC_SRC should wind up with.
7457 The main complexity in this function is handling the mode issues.
7458 We may have more than one duplicate which we can eliminate, and we
7459 try to find a mode which will work for multiple duplicates. */
7461 static enum machine_mode
7462 cse_cc_succs (basic_block bb, rtx cc_reg, rtx cc_src, bool can_change_mode)
7464 bool found_equiv;
7465 enum machine_mode mode;
7466 unsigned int insn_count;
7467 edge e;
7468 rtx insns[2];
7469 enum machine_mode modes[2];
7470 rtx last_insns[2];
7471 unsigned int i;
7472 rtx newreg;
7473 edge_iterator ei;
7475 /* We expect to have two successors. Look at both before picking
7476 the final mode for the comparison. If we have more successors
7477 (i.e., some sort of table jump, although that seems unlikely),
7478 then we require all beyond the first two to use the same
7479 mode. */
7481 found_equiv = false;
7482 mode = GET_MODE (cc_src);
7483 insn_count = 0;
7484 FOR_EACH_EDGE (e, ei, bb->succs)
7486 rtx insn;
7487 rtx end;
7489 if (e->flags & EDGE_COMPLEX)
7490 continue;
7492 if (EDGE_COUNT (e->dest->preds) != 1
7493 || e->dest == EXIT_BLOCK_PTR)
7494 continue;
7496 end = NEXT_INSN (BB_END (e->dest));
7497 for (insn = BB_HEAD (e->dest); insn != end; insn = NEXT_INSN (insn))
7499 rtx set;
7501 if (! INSN_P (insn))
7502 continue;
7504 /* If CC_SRC is modified, we have to stop looking for
7505 something which uses it. */
7506 if (modified_in_p (cc_src, insn))
7507 break;
7509 /* Check whether INSN sets CC_REG to CC_SRC. */
7510 set = single_set (insn);
7511 if (set
7512 && REG_P (SET_DEST (set))
7513 && REGNO (SET_DEST (set)) == REGNO (cc_reg))
7515 bool found;
7516 enum machine_mode set_mode;
7517 enum machine_mode comp_mode;
7519 found = false;
7520 set_mode = GET_MODE (SET_SRC (set));
7521 comp_mode = set_mode;
7522 if (rtx_equal_p (cc_src, SET_SRC (set)))
7523 found = true;
7524 else if (GET_CODE (cc_src) == COMPARE
7525 && GET_CODE (SET_SRC (set)) == COMPARE
7526 && mode != set_mode
7527 && rtx_equal_p (XEXP (cc_src, 0),
7528 XEXP (SET_SRC (set), 0))
7529 && rtx_equal_p (XEXP (cc_src, 1),
7530 XEXP (SET_SRC (set), 1)))
7533 comp_mode = targetm.cc_modes_compatible (mode, set_mode);
7534 if (comp_mode != VOIDmode
7535 && (can_change_mode || comp_mode == mode))
7536 found = true;
7539 if (found)
7541 found_equiv = true;
7542 if (insn_count < ARRAY_SIZE (insns))
7544 insns[insn_count] = insn;
7545 modes[insn_count] = set_mode;
7546 last_insns[insn_count] = end;
7547 ++insn_count;
7549 if (mode != comp_mode)
7551 gcc_assert (can_change_mode);
7552 mode = comp_mode;
7554 /* The modified insn will be re-recognized later. */
7555 PUT_MODE (cc_src, mode);
7558 else
7560 if (set_mode != mode)
7562 /* We found a matching expression in the
7563 wrong mode, but we don't have room to
7564 store it in the array. Punt. This case
7565 should be rare. */
7566 break;
7568 /* INSN sets CC_REG to a value equal to CC_SRC
7569 with the right mode. We can simply delete
7570 it. */
7571 delete_insn (insn);
7574 /* We found an instruction to delete. Keep looking,
7575 in the hopes of finding a three-way jump. */
7576 continue;
7579 /* We found an instruction which sets the condition
7580 code, so don't look any farther. */
7581 break;
7584 /* If INSN sets CC_REG in some other way, don't look any
7585 farther. */
7586 if (reg_set_p (cc_reg, insn))
7587 break;
7590 /* If we fell off the bottom of the block, we can keep looking
7591 through successors. We pass CAN_CHANGE_MODE as false because
7592 we aren't prepared to handle compatibility between the
7593 further blocks and this block. */
7594 if (insn == end)
7596 enum machine_mode submode;
7598 submode = cse_cc_succs (e->dest, cc_reg, cc_src, false);
7599 if (submode != VOIDmode)
7601 gcc_assert (submode == mode);
7602 found_equiv = true;
7603 can_change_mode = false;
7608 if (! found_equiv)
7609 return VOIDmode;
7611 /* Now INSN_COUNT is the number of instructions we found which set
7612 CC_REG to a value equivalent to CC_SRC. The instructions are in
7613 INSNS. The modes used by those instructions are in MODES. */
7615 newreg = NULL_RTX;
7616 for (i = 0; i < insn_count; ++i)
7618 if (modes[i] != mode)
7620 /* We need to change the mode of CC_REG in INSNS[i] and
7621 subsequent instructions. */
7622 if (! newreg)
7624 if (GET_MODE (cc_reg) == mode)
7625 newreg = cc_reg;
7626 else
7627 newreg = gen_rtx_REG (mode, REGNO (cc_reg));
7629 cse_change_cc_mode_insns (NEXT_INSN (insns[i]), last_insns[i],
7630 newreg);
7633 delete_insn (insns[i]);
7636 return mode;
7639 /* If we have a fixed condition code register (or two), walk through
7640 the instructions and try to eliminate duplicate assignments. */
7642 void
7643 cse_condition_code_reg (void)
7645 unsigned int cc_regno_1;
7646 unsigned int cc_regno_2;
7647 rtx cc_reg_1;
7648 rtx cc_reg_2;
7649 basic_block bb;
7651 if (! targetm.fixed_condition_code_regs (&cc_regno_1, &cc_regno_2))
7652 return;
7654 cc_reg_1 = gen_rtx_REG (CCmode, cc_regno_1);
7655 if (cc_regno_2 != INVALID_REGNUM)
7656 cc_reg_2 = gen_rtx_REG (CCmode, cc_regno_2);
7657 else
7658 cc_reg_2 = NULL_RTX;
7660 FOR_EACH_BB (bb)
7662 rtx last_insn;
7663 rtx cc_reg;
7664 rtx insn;
7665 rtx cc_src_insn;
7666 rtx cc_src;
7667 enum machine_mode mode;
7668 enum machine_mode orig_mode;
7670 /* Look for blocks which end with a conditional jump based on a
7671 condition code register. Then look for the instruction which
7672 sets the condition code register. Then look through the
7673 successor blocks for instructions which set the condition
7674 code register to the same value. There are other possible
7675 uses of the condition code register, but these are by far the
7676 most common and the ones which we are most likely to be able
7677 to optimize. */
7679 last_insn = BB_END (bb);
7680 if (!JUMP_P (last_insn))
7681 continue;
7683 if (reg_referenced_p (cc_reg_1, PATTERN (last_insn)))
7684 cc_reg = cc_reg_1;
7685 else if (cc_reg_2 && reg_referenced_p (cc_reg_2, PATTERN (last_insn)))
7686 cc_reg = cc_reg_2;
7687 else
7688 continue;
7690 cc_src_insn = NULL_RTX;
7691 cc_src = NULL_RTX;
7692 for (insn = PREV_INSN (last_insn);
7693 insn && insn != PREV_INSN (BB_HEAD (bb));
7694 insn = PREV_INSN (insn))
7696 rtx set;
7698 if (! INSN_P (insn))
7699 continue;
7700 set = single_set (insn);
7701 if (set
7702 && REG_P (SET_DEST (set))
7703 && REGNO (SET_DEST (set)) == REGNO (cc_reg))
7705 cc_src_insn = insn;
7706 cc_src = SET_SRC (set);
7707 break;
7709 else if (reg_set_p (cc_reg, insn))
7710 break;
7713 if (! cc_src_insn)
7714 continue;
7716 if (modified_between_p (cc_src, cc_src_insn, NEXT_INSN (last_insn)))
7717 continue;
7719 /* Now CC_REG is a condition code register used for a
7720 conditional jump at the end of the block, and CC_SRC, in
7721 CC_SRC_INSN, is the value to which that condition code
7722 register is set, and CC_SRC is still meaningful at the end of
7723 the basic block. */
7725 orig_mode = GET_MODE (cc_src);
7726 mode = cse_cc_succs (bb, cc_reg, cc_src, true);
7727 if (mode != VOIDmode)
7729 gcc_assert (mode == GET_MODE (cc_src));
7730 if (mode != orig_mode)
7732 rtx newreg = gen_rtx_REG (mode, REGNO (cc_reg));
7734 cse_change_cc_mode_insn (cc_src_insn, newreg);
7736 /* Do the same in the following insns that use the
7737 current value of CC_REG within BB. */
7738 cse_change_cc_mode_insns (NEXT_INSN (cc_src_insn),
7739 NEXT_INSN (last_insn),
7740 newreg);