* doc/xml/manual/allocator.xml: Adjust link for Hoard.
[official-gcc.git] / gcc / asan.c
blob2aa0a795af2016140b9fb743ea66c8f29f60556c
1 /* AddressSanitizer, a fast memory error detector.
2 Copyright (C) 2012-2017 Free Software Foundation, Inc.
3 Contributed by Kostya Serebryany <kcc@google.com>
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "backend.h"
26 #include "target.h"
27 #include "rtl.h"
28 #include "tree.h"
29 #include "gimple.h"
30 #include "cfghooks.h"
31 #include "alloc-pool.h"
32 #include "tree-pass.h"
33 #include "memmodel.h"
34 #include "tm_p.h"
35 #include "ssa.h"
36 #include "stringpool.h"
37 #include "tree-ssanames.h"
38 #include "optabs.h"
39 #include "emit-rtl.h"
40 #include "cgraph.h"
41 #include "gimple-pretty-print.h"
42 #include "alias.h"
43 #include "fold-const.h"
44 #include "cfganal.h"
45 #include "gimplify.h"
46 #include "gimple-iterator.h"
47 #include "varasm.h"
48 #include "stor-layout.h"
49 #include "tree-iterator.h"
50 #include "stringpool.h"
51 #include "attribs.h"
52 #include "asan.h"
53 #include "dojump.h"
54 #include "explow.h"
55 #include "expr.h"
56 #include "output.h"
57 #include "langhooks.h"
58 #include "cfgloop.h"
59 #include "gimple-builder.h"
60 #include "gimple-fold.h"
61 #include "ubsan.h"
62 #include "params.h"
63 #include "builtins.h"
64 #include "fnmatch.h"
65 #include "tree-inline.h"
67 /* AddressSanitizer finds out-of-bounds and use-after-free bugs
68 with <2x slowdown on average.
70 The tool consists of two parts:
71 instrumentation module (this file) and a run-time library.
72 The instrumentation module adds a run-time check before every memory insn.
73 For a 8- or 16- byte load accessing address X:
74 ShadowAddr = (X >> 3) + Offset
75 ShadowValue = *(char*)ShadowAddr; // *(short*) for 16-byte access.
76 if (ShadowValue)
77 __asan_report_load8(X);
78 For a load of N bytes (N=1, 2 or 4) from address X:
79 ShadowAddr = (X >> 3) + Offset
80 ShadowValue = *(char*)ShadowAddr;
81 if (ShadowValue)
82 if ((X & 7) + N - 1 > ShadowValue)
83 __asan_report_loadN(X);
84 Stores are instrumented similarly, but using __asan_report_storeN functions.
85 A call too __asan_init_vN() is inserted to the list of module CTORs.
86 N is the version number of the AddressSanitizer API. The changes between the
87 API versions are listed in libsanitizer/asan/asan_interface_internal.h.
89 The run-time library redefines malloc (so that redzone are inserted around
90 the allocated memory) and free (so that reuse of free-ed memory is delayed),
91 provides __asan_report* and __asan_init_vN functions.
93 Read more:
94 http://code.google.com/p/address-sanitizer/wiki/AddressSanitizerAlgorithm
96 The current implementation supports detection of out-of-bounds and
97 use-after-free in the heap, on the stack and for global variables.
99 [Protection of stack variables]
101 To understand how detection of out-of-bounds and use-after-free works
102 for stack variables, lets look at this example on x86_64 where the
103 stack grows downward:
106 foo ()
108 char a[23] = {0};
109 int b[2] = {0};
111 a[5] = 1;
112 b[1] = 2;
114 return a[5] + b[1];
117 For this function, the stack protected by asan will be organized as
118 follows, from the top of the stack to the bottom:
120 Slot 1/ [red zone of 32 bytes called 'RIGHT RedZone']
122 Slot 2/ [8 bytes of red zone, that adds up to the space of 'a' to make
123 the next slot be 32 bytes aligned; this one is called Partial
124 Redzone; this 32 bytes alignment is an asan constraint]
126 Slot 3/ [24 bytes for variable 'a']
128 Slot 4/ [red zone of 32 bytes called 'Middle RedZone']
130 Slot 5/ [24 bytes of Partial Red Zone (similar to slot 2]
132 Slot 6/ [8 bytes for variable 'b']
134 Slot 7/ [32 bytes of Red Zone at the bottom of the stack, called
135 'LEFT RedZone']
137 The 32 bytes of LEFT red zone at the bottom of the stack can be
138 decomposed as such:
140 1/ The first 8 bytes contain a magical asan number that is always
141 0x41B58AB3.
143 2/ The following 8 bytes contains a pointer to a string (to be
144 parsed at runtime by the runtime asan library), which format is
145 the following:
147 "<function-name> <space> <num-of-variables-on-the-stack>
148 (<32-bytes-aligned-offset-in-bytes-of-variable> <space>
149 <length-of-var-in-bytes> ){n} "
151 where '(...){n}' means the content inside the parenthesis occurs 'n'
152 times, with 'n' being the number of variables on the stack.
154 3/ The following 8 bytes contain the PC of the current function which
155 will be used by the run-time library to print an error message.
157 4/ The following 8 bytes are reserved for internal use by the run-time.
159 The shadow memory for that stack layout is going to look like this:
161 - content of shadow memory 8 bytes for slot 7: 0xF1F1F1F1.
162 The F1 byte pattern is a magic number called
163 ASAN_STACK_MAGIC_LEFT and is a way for the runtime to know that
164 the memory for that shadow byte is part of a the LEFT red zone
165 intended to seat at the bottom of the variables on the stack.
167 - content of shadow memory 8 bytes for slots 6 and 5:
168 0xF4F4F400. The F4 byte pattern is a magic number
169 called ASAN_STACK_MAGIC_PARTIAL. It flags the fact that the
170 memory region for this shadow byte is a PARTIAL red zone
171 intended to pad a variable A, so that the slot following
172 {A,padding} is 32 bytes aligned.
174 Note that the fact that the least significant byte of this
175 shadow memory content is 00 means that 8 bytes of its
176 corresponding memory (which corresponds to the memory of
177 variable 'b') is addressable.
179 - content of shadow memory 8 bytes for slot 4: 0xF2F2F2F2.
180 The F2 byte pattern is a magic number called
181 ASAN_STACK_MAGIC_MIDDLE. It flags the fact that the memory
182 region for this shadow byte is a MIDDLE red zone intended to
183 seat between two 32 aligned slots of {variable,padding}.
185 - content of shadow memory 8 bytes for slot 3 and 2:
186 0xF4000000. This represents is the concatenation of
187 variable 'a' and the partial red zone following it, like what we
188 had for variable 'b'. The least significant 3 bytes being 00
189 means that the 3 bytes of variable 'a' are addressable.
191 - content of shadow memory 8 bytes for slot 1: 0xF3F3F3F3.
192 The F3 byte pattern is a magic number called
193 ASAN_STACK_MAGIC_RIGHT. It flags the fact that the memory
194 region for this shadow byte is a RIGHT red zone intended to seat
195 at the top of the variables of the stack.
197 Note that the real variable layout is done in expand_used_vars in
198 cfgexpand.c. As far as Address Sanitizer is concerned, it lays out
199 stack variables as well as the different red zones, emits some
200 prologue code to populate the shadow memory as to poison (mark as
201 non-accessible) the regions of the red zones and mark the regions of
202 stack variables as accessible, and emit some epilogue code to
203 un-poison (mark as accessible) the regions of red zones right before
204 the function exits.
206 [Protection of global variables]
208 The basic idea is to insert a red zone between two global variables
209 and install a constructor function that calls the asan runtime to do
210 the populating of the relevant shadow memory regions at load time.
212 So the global variables are laid out as to insert a red zone between
213 them. The size of the red zones is so that each variable starts on a
214 32 bytes boundary.
216 Then a constructor function is installed so that, for each global
217 variable, it calls the runtime asan library function
218 __asan_register_globals_with an instance of this type:
220 struct __asan_global
222 // Address of the beginning of the global variable.
223 const void *__beg;
225 // Initial size of the global variable.
226 uptr __size;
228 // Size of the global variable + size of the red zone. This
229 // size is 32 bytes aligned.
230 uptr __size_with_redzone;
232 // Name of the global variable.
233 const void *__name;
235 // Name of the module where the global variable is declared.
236 const void *__module_name;
238 // 1 if it has dynamic initialization, 0 otherwise.
239 uptr __has_dynamic_init;
241 // A pointer to struct that contains source location, could be NULL.
242 __asan_global_source_location *__location;
245 A destructor function that calls the runtime asan library function
246 _asan_unregister_globals is also installed. */
248 static unsigned HOST_WIDE_INT asan_shadow_offset_value;
249 static bool asan_shadow_offset_computed;
250 static vec<char *> sanitized_sections;
251 static tree last_alloca_addr;
253 /* Set of variable declarations that are going to be guarded by
254 use-after-scope sanitizer. */
256 static hash_set<tree> *asan_handled_variables = NULL;
258 hash_set <tree> *asan_used_labels = NULL;
260 /* Sets shadow offset to value in string VAL. */
262 bool
263 set_asan_shadow_offset (const char *val)
265 char *endp;
267 errno = 0;
268 #ifdef HAVE_LONG_LONG
269 asan_shadow_offset_value = strtoull (val, &endp, 0);
270 #else
271 asan_shadow_offset_value = strtoul (val, &endp, 0);
272 #endif
273 if (!(*val != '\0' && *endp == '\0' && errno == 0))
274 return false;
276 asan_shadow_offset_computed = true;
278 return true;
281 /* Set list of user-defined sections that need to be sanitized. */
283 void
284 set_sanitized_sections (const char *sections)
286 char *pat;
287 unsigned i;
288 FOR_EACH_VEC_ELT (sanitized_sections, i, pat)
289 free (pat);
290 sanitized_sections.truncate (0);
292 for (const char *s = sections; *s; )
294 const char *end;
295 for (end = s; *end && *end != ','; ++end);
296 size_t len = end - s;
297 sanitized_sections.safe_push (xstrndup (s, len));
298 s = *end ? end + 1 : end;
302 bool
303 asan_mark_p (gimple *stmt, enum asan_mark_flags flag)
305 return (gimple_call_internal_p (stmt, IFN_ASAN_MARK)
306 && tree_to_uhwi (gimple_call_arg (stmt, 0)) == flag);
309 bool
310 asan_sanitize_stack_p (void)
312 return (sanitize_flags_p (SANITIZE_ADDRESS) && ASAN_STACK);
315 bool
316 asan_sanitize_allocas_p (void)
318 return (asan_sanitize_stack_p () && ASAN_PROTECT_ALLOCAS);
321 /* Checks whether section SEC should be sanitized. */
323 static bool
324 section_sanitized_p (const char *sec)
326 char *pat;
327 unsigned i;
328 FOR_EACH_VEC_ELT (sanitized_sections, i, pat)
329 if (fnmatch (pat, sec, FNM_PERIOD) == 0)
330 return true;
331 return false;
334 /* Returns Asan shadow offset. */
336 static unsigned HOST_WIDE_INT
337 asan_shadow_offset ()
339 if (!asan_shadow_offset_computed)
341 asan_shadow_offset_computed = true;
342 asan_shadow_offset_value = targetm.asan_shadow_offset ();
344 return asan_shadow_offset_value;
347 alias_set_type asan_shadow_set = -1;
349 /* Pointer types to 1, 2 or 4 byte integers in shadow memory. A separate
350 alias set is used for all shadow memory accesses. */
351 static GTY(()) tree shadow_ptr_types[3];
353 /* Decl for __asan_option_detect_stack_use_after_return. */
354 static GTY(()) tree asan_detect_stack_use_after_return;
356 /* Hashtable support for memory references used by gimple
357 statements. */
359 /* This type represents a reference to a memory region. */
360 struct asan_mem_ref
362 /* The expression of the beginning of the memory region. */
363 tree start;
365 /* The size of the access. */
366 HOST_WIDE_INT access_size;
369 object_allocator <asan_mem_ref> asan_mem_ref_pool ("asan_mem_ref");
371 /* Initializes an instance of asan_mem_ref. */
373 static void
374 asan_mem_ref_init (asan_mem_ref *ref, tree start, HOST_WIDE_INT access_size)
376 ref->start = start;
377 ref->access_size = access_size;
380 /* Allocates memory for an instance of asan_mem_ref into the memory
381 pool returned by asan_mem_ref_get_alloc_pool and initialize it.
382 START is the address of (or the expression pointing to) the
383 beginning of memory reference. ACCESS_SIZE is the size of the
384 access to the referenced memory. */
386 static asan_mem_ref*
387 asan_mem_ref_new (tree start, HOST_WIDE_INT access_size)
389 asan_mem_ref *ref = asan_mem_ref_pool.allocate ();
391 asan_mem_ref_init (ref, start, access_size);
392 return ref;
395 /* This builds and returns a pointer to the end of the memory region
396 that starts at START and of length LEN. */
398 tree
399 asan_mem_ref_get_end (tree start, tree len)
401 if (len == NULL_TREE || integer_zerop (len))
402 return start;
404 if (!ptrofftype_p (len))
405 len = convert_to_ptrofftype (len);
407 return fold_build2 (POINTER_PLUS_EXPR, TREE_TYPE (start), start, len);
410 /* Return a tree expression that represents the end of the referenced
411 memory region. Beware that this function can actually build a new
412 tree expression. */
414 tree
415 asan_mem_ref_get_end (const asan_mem_ref *ref, tree len)
417 return asan_mem_ref_get_end (ref->start, len);
420 struct asan_mem_ref_hasher : nofree_ptr_hash <asan_mem_ref>
422 static inline hashval_t hash (const asan_mem_ref *);
423 static inline bool equal (const asan_mem_ref *, const asan_mem_ref *);
426 /* Hash a memory reference. */
428 inline hashval_t
429 asan_mem_ref_hasher::hash (const asan_mem_ref *mem_ref)
431 return iterative_hash_expr (mem_ref->start, 0);
434 /* Compare two memory references. We accept the length of either
435 memory references to be NULL_TREE. */
437 inline bool
438 asan_mem_ref_hasher::equal (const asan_mem_ref *m1,
439 const asan_mem_ref *m2)
441 return operand_equal_p (m1->start, m2->start, 0);
444 static hash_table<asan_mem_ref_hasher> *asan_mem_ref_ht;
446 /* Returns a reference to the hash table containing memory references.
447 This function ensures that the hash table is created. Note that
448 this hash table is updated by the function
449 update_mem_ref_hash_table. */
451 static hash_table<asan_mem_ref_hasher> *
452 get_mem_ref_hash_table ()
454 if (!asan_mem_ref_ht)
455 asan_mem_ref_ht = new hash_table<asan_mem_ref_hasher> (10);
457 return asan_mem_ref_ht;
460 /* Clear all entries from the memory references hash table. */
462 static void
463 empty_mem_ref_hash_table ()
465 if (asan_mem_ref_ht)
466 asan_mem_ref_ht->empty ();
469 /* Free the memory references hash table. */
471 static void
472 free_mem_ref_resources ()
474 delete asan_mem_ref_ht;
475 asan_mem_ref_ht = NULL;
477 asan_mem_ref_pool.release ();
480 /* Return true iff the memory reference REF has been instrumented. */
482 static bool
483 has_mem_ref_been_instrumented (tree ref, HOST_WIDE_INT access_size)
485 asan_mem_ref r;
486 asan_mem_ref_init (&r, ref, access_size);
488 asan_mem_ref *saved_ref = get_mem_ref_hash_table ()->find (&r);
489 return saved_ref && saved_ref->access_size >= access_size;
492 /* Return true iff the memory reference REF has been instrumented. */
494 static bool
495 has_mem_ref_been_instrumented (const asan_mem_ref *ref)
497 return has_mem_ref_been_instrumented (ref->start, ref->access_size);
500 /* Return true iff access to memory region starting at REF and of
501 length LEN has been instrumented. */
503 static bool
504 has_mem_ref_been_instrumented (const asan_mem_ref *ref, tree len)
506 HOST_WIDE_INT size_in_bytes
507 = tree_fits_shwi_p (len) ? tree_to_shwi (len) : -1;
509 return size_in_bytes != -1
510 && has_mem_ref_been_instrumented (ref->start, size_in_bytes);
513 /* Set REF to the memory reference present in a gimple assignment
514 ASSIGNMENT. Return true upon successful completion, false
515 otherwise. */
517 static bool
518 get_mem_ref_of_assignment (const gassign *assignment,
519 asan_mem_ref *ref,
520 bool *ref_is_store)
522 gcc_assert (gimple_assign_single_p (assignment));
524 if (gimple_store_p (assignment)
525 && !gimple_clobber_p (assignment))
527 ref->start = gimple_assign_lhs (assignment);
528 *ref_is_store = true;
530 else if (gimple_assign_load_p (assignment))
532 ref->start = gimple_assign_rhs1 (assignment);
533 *ref_is_store = false;
535 else
536 return false;
538 ref->access_size = int_size_in_bytes (TREE_TYPE (ref->start));
539 return true;
542 /* Return address of last allocated dynamic alloca. */
544 static tree
545 get_last_alloca_addr ()
547 if (last_alloca_addr)
548 return last_alloca_addr;
550 last_alloca_addr = create_tmp_reg (ptr_type_node, "last_alloca_addr");
551 gassign *g = gimple_build_assign (last_alloca_addr, null_pointer_node);
552 edge e = single_succ_edge (ENTRY_BLOCK_PTR_FOR_FN (cfun));
553 gsi_insert_on_edge_immediate (e, g);
554 return last_alloca_addr;
557 /* Insert __asan_allocas_unpoison (top, bottom) call after
558 __builtin_stack_restore (new_sp) call.
559 The pseudocode of this routine should look like this:
560 __builtin_stack_restore (new_sp);
561 top = last_alloca_addr;
562 bot = new_sp;
563 __asan_allocas_unpoison (top, bot);
564 last_alloca_addr = new_sp;
565 In general, we can't use new_sp as bot parameter because on some
566 architectures SP has non zero offset from dynamic stack area. Moreover, on
567 some architectures this offset (STACK_DYNAMIC_OFFSET) becomes known for each
568 particular function only after all callees were expanded to rtl.
569 The most noticeable example is PowerPC{,64}, see
570 http://refspecs.linuxfoundation.org/ELF/ppc64/PPC-elf64abi.html#DYNAM-STACK.
571 To overcome the issue we use following trick: pass new_sp as a second
572 parameter to __asan_allocas_unpoison and rewrite it during expansion with
573 virtual_dynamic_stack_rtx later in expand_asan_emit_allocas_unpoison
574 function.
577 static void
578 handle_builtin_stack_restore (gcall *call, gimple_stmt_iterator *iter)
580 if (!iter || !asan_sanitize_allocas_p ())
581 return;
583 tree last_alloca = get_last_alloca_addr ();
584 tree restored_stack = gimple_call_arg (call, 0);
585 tree fn = builtin_decl_implicit (BUILT_IN_ASAN_ALLOCAS_UNPOISON);
586 gimple *g = gimple_build_call (fn, 2, last_alloca, restored_stack);
587 gsi_insert_after (iter, g, GSI_NEW_STMT);
588 g = gimple_build_assign (last_alloca, restored_stack);
589 gsi_insert_after (iter, g, GSI_NEW_STMT);
592 /* Deploy and poison redzones around __builtin_alloca call. To do this, we
593 should replace this call with another one with changed parameters and
594 replace all its uses with new address, so
595 addr = __builtin_alloca (old_size, align);
596 is replaced by
597 left_redzone_size = max (align, ASAN_RED_ZONE_SIZE);
598 Following two statements are optimized out if we know that
599 old_size & (ASAN_RED_ZONE_SIZE - 1) == 0, i.e. alloca doesn't need partial
600 redzone.
601 misalign = old_size & (ASAN_RED_ZONE_SIZE - 1);
602 partial_redzone_size = ASAN_RED_ZONE_SIZE - misalign;
603 right_redzone_size = ASAN_RED_ZONE_SIZE;
604 additional_size = left_redzone_size + partial_redzone_size +
605 right_redzone_size;
606 new_size = old_size + additional_size;
607 new_alloca = __builtin_alloca (new_size, max (align, 32))
608 __asan_alloca_poison (new_alloca, old_size)
609 addr = new_alloca + max (align, ASAN_RED_ZONE_SIZE);
610 last_alloca_addr = new_alloca;
611 ADDITIONAL_SIZE is added to make new memory allocation contain not only
612 requested memory, but also left, partial and right redzones as well as some
613 additional space, required by alignment. */
615 static void
616 handle_builtin_alloca (gcall *call, gimple_stmt_iterator *iter)
618 if (!iter || !asan_sanitize_allocas_p ())
619 return;
621 gassign *g;
622 gcall *gg;
623 const HOST_WIDE_INT redzone_mask = ASAN_RED_ZONE_SIZE - 1;
625 tree last_alloca = get_last_alloca_addr ();
626 tree callee = gimple_call_fndecl (call);
627 tree old_size = gimple_call_arg (call, 0);
628 tree ptr_type = gimple_call_lhs (call) ? TREE_TYPE (gimple_call_lhs (call))
629 : ptr_type_node;
630 tree partial_size = NULL_TREE;
631 bool alloca_with_align
632 = DECL_FUNCTION_CODE (callee) == BUILT_IN_ALLOCA_WITH_ALIGN;
633 unsigned int align
634 = alloca_with_align ? tree_to_uhwi (gimple_call_arg (call, 1)) : 0;
636 /* If ALIGN > ASAN_RED_ZONE_SIZE, we embed left redzone into first ALIGN
637 bytes of allocated space. Otherwise, align alloca to ASAN_RED_ZONE_SIZE
638 manually. */
639 align = MAX (align, ASAN_RED_ZONE_SIZE * BITS_PER_UNIT);
641 tree alloca_rz_mask = build_int_cst (size_type_node, redzone_mask);
642 tree redzone_size = build_int_cst (size_type_node, ASAN_RED_ZONE_SIZE);
644 /* Extract lower bits from old_size. */
645 wide_int size_nonzero_bits = get_nonzero_bits (old_size);
646 wide_int rz_mask
647 = wi::uhwi (redzone_mask, wi::get_precision (size_nonzero_bits));
648 wide_int old_size_lower_bits = wi::bit_and (size_nonzero_bits, rz_mask);
650 /* If alloca size is aligned to ASAN_RED_ZONE_SIZE, we don't need partial
651 redzone. Otherwise, compute its size here. */
652 if (wi::ne_p (old_size_lower_bits, 0))
654 /* misalign = size & (ASAN_RED_ZONE_SIZE - 1)
655 partial_size = ASAN_RED_ZONE_SIZE - misalign. */
656 g = gimple_build_assign (make_ssa_name (size_type_node, NULL),
657 BIT_AND_EXPR, old_size, alloca_rz_mask);
658 gsi_insert_before (iter, g, GSI_SAME_STMT);
659 tree misalign = gimple_assign_lhs (g);
660 g = gimple_build_assign (make_ssa_name (size_type_node, NULL), MINUS_EXPR,
661 redzone_size, misalign);
662 gsi_insert_before (iter, g, GSI_SAME_STMT);
663 partial_size = gimple_assign_lhs (g);
666 /* additional_size = align + ASAN_RED_ZONE_SIZE. */
667 tree additional_size = build_int_cst (size_type_node, align / BITS_PER_UNIT
668 + ASAN_RED_ZONE_SIZE);
669 /* If alloca has partial redzone, include it to additional_size too. */
670 if (partial_size)
672 /* additional_size += partial_size. */
673 g = gimple_build_assign (make_ssa_name (size_type_node), PLUS_EXPR,
674 partial_size, additional_size);
675 gsi_insert_before (iter, g, GSI_SAME_STMT);
676 additional_size = gimple_assign_lhs (g);
679 /* new_size = old_size + additional_size. */
680 g = gimple_build_assign (make_ssa_name (size_type_node), PLUS_EXPR, old_size,
681 additional_size);
682 gsi_insert_before (iter, g, GSI_SAME_STMT);
683 tree new_size = gimple_assign_lhs (g);
685 /* Build new __builtin_alloca call:
686 new_alloca_with_rz = __builtin_alloca (new_size, align). */
687 tree fn = builtin_decl_implicit (BUILT_IN_ALLOCA_WITH_ALIGN);
688 gg = gimple_build_call (fn, 2, new_size,
689 build_int_cst (size_type_node, align));
690 tree new_alloca_with_rz = make_ssa_name (ptr_type, gg);
691 gimple_call_set_lhs (gg, new_alloca_with_rz);
692 gsi_insert_before (iter, gg, GSI_SAME_STMT);
694 /* new_alloca = new_alloca_with_rz + align. */
695 g = gimple_build_assign (make_ssa_name (ptr_type), POINTER_PLUS_EXPR,
696 new_alloca_with_rz,
697 build_int_cst (size_type_node,
698 align / BITS_PER_UNIT));
699 gsi_insert_before (iter, g, GSI_SAME_STMT);
700 tree new_alloca = gimple_assign_lhs (g);
702 /* Poison newly created alloca redzones:
703 __asan_alloca_poison (new_alloca, old_size). */
704 fn = builtin_decl_implicit (BUILT_IN_ASAN_ALLOCA_POISON);
705 gg = gimple_build_call (fn, 2, new_alloca, old_size);
706 gsi_insert_before (iter, gg, GSI_SAME_STMT);
708 /* Save new_alloca_with_rz value into last_alloca to use it during
709 allocas unpoisoning. */
710 g = gimple_build_assign (last_alloca, new_alloca_with_rz);
711 gsi_insert_before (iter, g, GSI_SAME_STMT);
713 /* Finally, replace old alloca ptr with NEW_ALLOCA. */
714 replace_call_with_value (iter, new_alloca);
717 /* Return the memory references contained in a gimple statement
718 representing a builtin call that has to do with memory access. */
720 static bool
721 get_mem_refs_of_builtin_call (gcall *call,
722 asan_mem_ref *src0,
723 tree *src0_len,
724 bool *src0_is_store,
725 asan_mem_ref *src1,
726 tree *src1_len,
727 bool *src1_is_store,
728 asan_mem_ref *dst,
729 tree *dst_len,
730 bool *dst_is_store,
731 bool *dest_is_deref,
732 bool *intercepted_p,
733 gimple_stmt_iterator *iter = NULL)
735 gcc_checking_assert (gimple_call_builtin_p (call, BUILT_IN_NORMAL));
737 tree callee = gimple_call_fndecl (call);
738 tree source0 = NULL_TREE, source1 = NULL_TREE,
739 dest = NULL_TREE, len = NULL_TREE;
740 bool is_store = true, got_reference_p = false;
741 HOST_WIDE_INT access_size = 1;
743 *intercepted_p = asan_intercepted_p ((DECL_FUNCTION_CODE (callee)));
745 switch (DECL_FUNCTION_CODE (callee))
747 /* (s, s, n) style memops. */
748 case BUILT_IN_BCMP:
749 case BUILT_IN_MEMCMP:
750 source0 = gimple_call_arg (call, 0);
751 source1 = gimple_call_arg (call, 1);
752 len = gimple_call_arg (call, 2);
753 break;
755 /* (src, dest, n) style memops. */
756 case BUILT_IN_BCOPY:
757 source0 = gimple_call_arg (call, 0);
758 dest = gimple_call_arg (call, 1);
759 len = gimple_call_arg (call, 2);
760 break;
762 /* (dest, src, n) style memops. */
763 case BUILT_IN_MEMCPY:
764 case BUILT_IN_MEMCPY_CHK:
765 case BUILT_IN_MEMMOVE:
766 case BUILT_IN_MEMMOVE_CHK:
767 case BUILT_IN_MEMPCPY:
768 case BUILT_IN_MEMPCPY_CHK:
769 dest = gimple_call_arg (call, 0);
770 source0 = gimple_call_arg (call, 1);
771 len = gimple_call_arg (call, 2);
772 break;
774 /* (dest, n) style memops. */
775 case BUILT_IN_BZERO:
776 dest = gimple_call_arg (call, 0);
777 len = gimple_call_arg (call, 1);
778 break;
780 /* (dest, x, n) style memops*/
781 case BUILT_IN_MEMSET:
782 case BUILT_IN_MEMSET_CHK:
783 dest = gimple_call_arg (call, 0);
784 len = gimple_call_arg (call, 2);
785 break;
787 case BUILT_IN_STRLEN:
788 source0 = gimple_call_arg (call, 0);
789 len = gimple_call_lhs (call);
790 break;
792 case BUILT_IN_STACK_RESTORE:
793 handle_builtin_stack_restore (call, iter);
794 break;
796 case BUILT_IN_ALLOCA_WITH_ALIGN:
797 case BUILT_IN_ALLOCA:
798 handle_builtin_alloca (call, iter);
799 break;
800 /* And now the __atomic* and __sync builtins.
801 These are handled differently from the classical memory memory
802 access builtins above. */
804 case BUILT_IN_ATOMIC_LOAD_1:
805 is_store = false;
806 /* FALLTHRU */
807 case BUILT_IN_SYNC_FETCH_AND_ADD_1:
808 case BUILT_IN_SYNC_FETCH_AND_SUB_1:
809 case BUILT_IN_SYNC_FETCH_AND_OR_1:
810 case BUILT_IN_SYNC_FETCH_AND_AND_1:
811 case BUILT_IN_SYNC_FETCH_AND_XOR_1:
812 case BUILT_IN_SYNC_FETCH_AND_NAND_1:
813 case BUILT_IN_SYNC_ADD_AND_FETCH_1:
814 case BUILT_IN_SYNC_SUB_AND_FETCH_1:
815 case BUILT_IN_SYNC_OR_AND_FETCH_1:
816 case BUILT_IN_SYNC_AND_AND_FETCH_1:
817 case BUILT_IN_SYNC_XOR_AND_FETCH_1:
818 case BUILT_IN_SYNC_NAND_AND_FETCH_1:
819 case BUILT_IN_SYNC_BOOL_COMPARE_AND_SWAP_1:
820 case BUILT_IN_SYNC_VAL_COMPARE_AND_SWAP_1:
821 case BUILT_IN_SYNC_LOCK_TEST_AND_SET_1:
822 case BUILT_IN_SYNC_LOCK_RELEASE_1:
823 case BUILT_IN_ATOMIC_EXCHANGE_1:
824 case BUILT_IN_ATOMIC_COMPARE_EXCHANGE_1:
825 case BUILT_IN_ATOMIC_STORE_1:
826 case BUILT_IN_ATOMIC_ADD_FETCH_1:
827 case BUILT_IN_ATOMIC_SUB_FETCH_1:
828 case BUILT_IN_ATOMIC_AND_FETCH_1:
829 case BUILT_IN_ATOMIC_NAND_FETCH_1:
830 case BUILT_IN_ATOMIC_XOR_FETCH_1:
831 case BUILT_IN_ATOMIC_OR_FETCH_1:
832 case BUILT_IN_ATOMIC_FETCH_ADD_1:
833 case BUILT_IN_ATOMIC_FETCH_SUB_1:
834 case BUILT_IN_ATOMIC_FETCH_AND_1:
835 case BUILT_IN_ATOMIC_FETCH_NAND_1:
836 case BUILT_IN_ATOMIC_FETCH_XOR_1:
837 case BUILT_IN_ATOMIC_FETCH_OR_1:
838 access_size = 1;
839 goto do_atomic;
841 case BUILT_IN_ATOMIC_LOAD_2:
842 is_store = false;
843 /* FALLTHRU */
844 case BUILT_IN_SYNC_FETCH_AND_ADD_2:
845 case BUILT_IN_SYNC_FETCH_AND_SUB_2:
846 case BUILT_IN_SYNC_FETCH_AND_OR_2:
847 case BUILT_IN_SYNC_FETCH_AND_AND_2:
848 case BUILT_IN_SYNC_FETCH_AND_XOR_2:
849 case BUILT_IN_SYNC_FETCH_AND_NAND_2:
850 case BUILT_IN_SYNC_ADD_AND_FETCH_2:
851 case BUILT_IN_SYNC_SUB_AND_FETCH_2:
852 case BUILT_IN_SYNC_OR_AND_FETCH_2:
853 case BUILT_IN_SYNC_AND_AND_FETCH_2:
854 case BUILT_IN_SYNC_XOR_AND_FETCH_2:
855 case BUILT_IN_SYNC_NAND_AND_FETCH_2:
856 case BUILT_IN_SYNC_BOOL_COMPARE_AND_SWAP_2:
857 case BUILT_IN_SYNC_VAL_COMPARE_AND_SWAP_2:
858 case BUILT_IN_SYNC_LOCK_TEST_AND_SET_2:
859 case BUILT_IN_SYNC_LOCK_RELEASE_2:
860 case BUILT_IN_ATOMIC_EXCHANGE_2:
861 case BUILT_IN_ATOMIC_COMPARE_EXCHANGE_2:
862 case BUILT_IN_ATOMIC_STORE_2:
863 case BUILT_IN_ATOMIC_ADD_FETCH_2:
864 case BUILT_IN_ATOMIC_SUB_FETCH_2:
865 case BUILT_IN_ATOMIC_AND_FETCH_2:
866 case BUILT_IN_ATOMIC_NAND_FETCH_2:
867 case BUILT_IN_ATOMIC_XOR_FETCH_2:
868 case BUILT_IN_ATOMIC_OR_FETCH_2:
869 case BUILT_IN_ATOMIC_FETCH_ADD_2:
870 case BUILT_IN_ATOMIC_FETCH_SUB_2:
871 case BUILT_IN_ATOMIC_FETCH_AND_2:
872 case BUILT_IN_ATOMIC_FETCH_NAND_2:
873 case BUILT_IN_ATOMIC_FETCH_XOR_2:
874 case BUILT_IN_ATOMIC_FETCH_OR_2:
875 access_size = 2;
876 goto do_atomic;
878 case BUILT_IN_ATOMIC_LOAD_4:
879 is_store = false;
880 /* FALLTHRU */
881 case BUILT_IN_SYNC_FETCH_AND_ADD_4:
882 case BUILT_IN_SYNC_FETCH_AND_SUB_4:
883 case BUILT_IN_SYNC_FETCH_AND_OR_4:
884 case BUILT_IN_SYNC_FETCH_AND_AND_4:
885 case BUILT_IN_SYNC_FETCH_AND_XOR_4:
886 case BUILT_IN_SYNC_FETCH_AND_NAND_4:
887 case BUILT_IN_SYNC_ADD_AND_FETCH_4:
888 case BUILT_IN_SYNC_SUB_AND_FETCH_4:
889 case BUILT_IN_SYNC_OR_AND_FETCH_4:
890 case BUILT_IN_SYNC_AND_AND_FETCH_4:
891 case BUILT_IN_SYNC_XOR_AND_FETCH_4:
892 case BUILT_IN_SYNC_NAND_AND_FETCH_4:
893 case BUILT_IN_SYNC_BOOL_COMPARE_AND_SWAP_4:
894 case BUILT_IN_SYNC_VAL_COMPARE_AND_SWAP_4:
895 case BUILT_IN_SYNC_LOCK_TEST_AND_SET_4:
896 case BUILT_IN_SYNC_LOCK_RELEASE_4:
897 case BUILT_IN_ATOMIC_EXCHANGE_4:
898 case BUILT_IN_ATOMIC_COMPARE_EXCHANGE_4:
899 case BUILT_IN_ATOMIC_STORE_4:
900 case BUILT_IN_ATOMIC_ADD_FETCH_4:
901 case BUILT_IN_ATOMIC_SUB_FETCH_4:
902 case BUILT_IN_ATOMIC_AND_FETCH_4:
903 case BUILT_IN_ATOMIC_NAND_FETCH_4:
904 case BUILT_IN_ATOMIC_XOR_FETCH_4:
905 case BUILT_IN_ATOMIC_OR_FETCH_4:
906 case BUILT_IN_ATOMIC_FETCH_ADD_4:
907 case BUILT_IN_ATOMIC_FETCH_SUB_4:
908 case BUILT_IN_ATOMIC_FETCH_AND_4:
909 case BUILT_IN_ATOMIC_FETCH_NAND_4:
910 case BUILT_IN_ATOMIC_FETCH_XOR_4:
911 case BUILT_IN_ATOMIC_FETCH_OR_4:
912 access_size = 4;
913 goto do_atomic;
915 case BUILT_IN_ATOMIC_LOAD_8:
916 is_store = false;
917 /* FALLTHRU */
918 case BUILT_IN_SYNC_FETCH_AND_ADD_8:
919 case BUILT_IN_SYNC_FETCH_AND_SUB_8:
920 case BUILT_IN_SYNC_FETCH_AND_OR_8:
921 case BUILT_IN_SYNC_FETCH_AND_AND_8:
922 case BUILT_IN_SYNC_FETCH_AND_XOR_8:
923 case BUILT_IN_SYNC_FETCH_AND_NAND_8:
924 case BUILT_IN_SYNC_ADD_AND_FETCH_8:
925 case BUILT_IN_SYNC_SUB_AND_FETCH_8:
926 case BUILT_IN_SYNC_OR_AND_FETCH_8:
927 case BUILT_IN_SYNC_AND_AND_FETCH_8:
928 case BUILT_IN_SYNC_XOR_AND_FETCH_8:
929 case BUILT_IN_SYNC_NAND_AND_FETCH_8:
930 case BUILT_IN_SYNC_BOOL_COMPARE_AND_SWAP_8:
931 case BUILT_IN_SYNC_VAL_COMPARE_AND_SWAP_8:
932 case BUILT_IN_SYNC_LOCK_TEST_AND_SET_8:
933 case BUILT_IN_SYNC_LOCK_RELEASE_8:
934 case BUILT_IN_ATOMIC_EXCHANGE_8:
935 case BUILT_IN_ATOMIC_COMPARE_EXCHANGE_8:
936 case BUILT_IN_ATOMIC_STORE_8:
937 case BUILT_IN_ATOMIC_ADD_FETCH_8:
938 case BUILT_IN_ATOMIC_SUB_FETCH_8:
939 case BUILT_IN_ATOMIC_AND_FETCH_8:
940 case BUILT_IN_ATOMIC_NAND_FETCH_8:
941 case BUILT_IN_ATOMIC_XOR_FETCH_8:
942 case BUILT_IN_ATOMIC_OR_FETCH_8:
943 case BUILT_IN_ATOMIC_FETCH_ADD_8:
944 case BUILT_IN_ATOMIC_FETCH_SUB_8:
945 case BUILT_IN_ATOMIC_FETCH_AND_8:
946 case BUILT_IN_ATOMIC_FETCH_NAND_8:
947 case BUILT_IN_ATOMIC_FETCH_XOR_8:
948 case BUILT_IN_ATOMIC_FETCH_OR_8:
949 access_size = 8;
950 goto do_atomic;
952 case BUILT_IN_ATOMIC_LOAD_16:
953 is_store = false;
954 /* FALLTHRU */
955 case BUILT_IN_SYNC_FETCH_AND_ADD_16:
956 case BUILT_IN_SYNC_FETCH_AND_SUB_16:
957 case BUILT_IN_SYNC_FETCH_AND_OR_16:
958 case BUILT_IN_SYNC_FETCH_AND_AND_16:
959 case BUILT_IN_SYNC_FETCH_AND_XOR_16:
960 case BUILT_IN_SYNC_FETCH_AND_NAND_16:
961 case BUILT_IN_SYNC_ADD_AND_FETCH_16:
962 case BUILT_IN_SYNC_SUB_AND_FETCH_16:
963 case BUILT_IN_SYNC_OR_AND_FETCH_16:
964 case BUILT_IN_SYNC_AND_AND_FETCH_16:
965 case BUILT_IN_SYNC_XOR_AND_FETCH_16:
966 case BUILT_IN_SYNC_NAND_AND_FETCH_16:
967 case BUILT_IN_SYNC_BOOL_COMPARE_AND_SWAP_16:
968 case BUILT_IN_SYNC_VAL_COMPARE_AND_SWAP_16:
969 case BUILT_IN_SYNC_LOCK_TEST_AND_SET_16:
970 case BUILT_IN_SYNC_LOCK_RELEASE_16:
971 case BUILT_IN_ATOMIC_EXCHANGE_16:
972 case BUILT_IN_ATOMIC_COMPARE_EXCHANGE_16:
973 case BUILT_IN_ATOMIC_STORE_16:
974 case BUILT_IN_ATOMIC_ADD_FETCH_16:
975 case BUILT_IN_ATOMIC_SUB_FETCH_16:
976 case BUILT_IN_ATOMIC_AND_FETCH_16:
977 case BUILT_IN_ATOMIC_NAND_FETCH_16:
978 case BUILT_IN_ATOMIC_XOR_FETCH_16:
979 case BUILT_IN_ATOMIC_OR_FETCH_16:
980 case BUILT_IN_ATOMIC_FETCH_ADD_16:
981 case BUILT_IN_ATOMIC_FETCH_SUB_16:
982 case BUILT_IN_ATOMIC_FETCH_AND_16:
983 case BUILT_IN_ATOMIC_FETCH_NAND_16:
984 case BUILT_IN_ATOMIC_FETCH_XOR_16:
985 case BUILT_IN_ATOMIC_FETCH_OR_16:
986 access_size = 16;
987 /* FALLTHRU */
988 do_atomic:
990 dest = gimple_call_arg (call, 0);
991 /* DEST represents the address of a memory location.
992 instrument_derefs wants the memory location, so lets
993 dereference the address DEST before handing it to
994 instrument_derefs. */
995 tree type = build_nonstandard_integer_type (access_size
996 * BITS_PER_UNIT, 1);
997 dest = build2 (MEM_REF, type, dest,
998 build_int_cst (build_pointer_type (char_type_node), 0));
999 break;
1002 default:
1003 /* The other builtins memory access are not instrumented in this
1004 function because they either don't have any length parameter,
1005 or their length parameter is just a limit. */
1006 break;
1009 if (len != NULL_TREE)
1011 if (source0 != NULL_TREE)
1013 src0->start = source0;
1014 src0->access_size = access_size;
1015 *src0_len = len;
1016 *src0_is_store = false;
1019 if (source1 != NULL_TREE)
1021 src1->start = source1;
1022 src1->access_size = access_size;
1023 *src1_len = len;
1024 *src1_is_store = false;
1027 if (dest != NULL_TREE)
1029 dst->start = dest;
1030 dst->access_size = access_size;
1031 *dst_len = len;
1032 *dst_is_store = true;
1035 got_reference_p = true;
1037 else if (dest)
1039 dst->start = dest;
1040 dst->access_size = access_size;
1041 *dst_len = NULL_TREE;
1042 *dst_is_store = is_store;
1043 *dest_is_deref = true;
1044 got_reference_p = true;
1047 return got_reference_p;
1050 /* Return true iff a given gimple statement has been instrumented.
1051 Note that the statement is "defined" by the memory references it
1052 contains. */
1054 static bool
1055 has_stmt_been_instrumented_p (gimple *stmt)
1057 if (gimple_assign_single_p (stmt))
1059 bool r_is_store;
1060 asan_mem_ref r;
1061 asan_mem_ref_init (&r, NULL, 1);
1063 if (get_mem_ref_of_assignment (as_a <gassign *> (stmt), &r,
1064 &r_is_store))
1065 return has_mem_ref_been_instrumented (&r);
1067 else if (gimple_call_builtin_p (stmt, BUILT_IN_NORMAL))
1069 asan_mem_ref src0, src1, dest;
1070 asan_mem_ref_init (&src0, NULL, 1);
1071 asan_mem_ref_init (&src1, NULL, 1);
1072 asan_mem_ref_init (&dest, NULL, 1);
1074 tree src0_len = NULL_TREE, src1_len = NULL_TREE, dest_len = NULL_TREE;
1075 bool src0_is_store = false, src1_is_store = false,
1076 dest_is_store = false, dest_is_deref = false, intercepted_p = true;
1077 if (get_mem_refs_of_builtin_call (as_a <gcall *> (stmt),
1078 &src0, &src0_len, &src0_is_store,
1079 &src1, &src1_len, &src1_is_store,
1080 &dest, &dest_len, &dest_is_store,
1081 &dest_is_deref, &intercepted_p))
1083 if (src0.start != NULL_TREE
1084 && !has_mem_ref_been_instrumented (&src0, src0_len))
1085 return false;
1087 if (src1.start != NULL_TREE
1088 && !has_mem_ref_been_instrumented (&src1, src1_len))
1089 return false;
1091 if (dest.start != NULL_TREE
1092 && !has_mem_ref_been_instrumented (&dest, dest_len))
1093 return false;
1095 return true;
1098 else if (is_gimple_call (stmt) && gimple_store_p (stmt))
1100 asan_mem_ref r;
1101 asan_mem_ref_init (&r, NULL, 1);
1103 r.start = gimple_call_lhs (stmt);
1104 r.access_size = int_size_in_bytes (TREE_TYPE (r.start));
1105 return has_mem_ref_been_instrumented (&r);
1108 return false;
1111 /* Insert a memory reference into the hash table. */
1113 static void
1114 update_mem_ref_hash_table (tree ref, HOST_WIDE_INT access_size)
1116 hash_table<asan_mem_ref_hasher> *ht = get_mem_ref_hash_table ();
1118 asan_mem_ref r;
1119 asan_mem_ref_init (&r, ref, access_size);
1121 asan_mem_ref **slot = ht->find_slot (&r, INSERT);
1122 if (*slot == NULL || (*slot)->access_size < access_size)
1123 *slot = asan_mem_ref_new (ref, access_size);
1126 /* Initialize shadow_ptr_types array. */
1128 static void
1129 asan_init_shadow_ptr_types (void)
1131 asan_shadow_set = new_alias_set ();
1132 tree types[3] = { signed_char_type_node, short_integer_type_node,
1133 integer_type_node };
1135 for (unsigned i = 0; i < 3; i++)
1137 shadow_ptr_types[i] = build_distinct_type_copy (types[i]);
1138 TYPE_ALIAS_SET (shadow_ptr_types[i]) = asan_shadow_set;
1139 shadow_ptr_types[i] = build_pointer_type (shadow_ptr_types[i]);
1142 initialize_sanitizer_builtins ();
1145 /* Create ADDR_EXPR of STRING_CST with the PP pretty printer text. */
1147 static tree
1148 asan_pp_string (pretty_printer *pp)
1150 const char *buf = pp_formatted_text (pp);
1151 size_t len = strlen (buf);
1152 tree ret = build_string (len + 1, buf);
1153 TREE_TYPE (ret)
1154 = build_array_type (TREE_TYPE (shadow_ptr_types[0]),
1155 build_index_type (size_int (len)));
1156 TREE_READONLY (ret) = 1;
1157 TREE_STATIC (ret) = 1;
1158 return build1 (ADDR_EXPR, shadow_ptr_types[0], ret);
1161 /* Return a CONST_INT representing 4 subsequent shadow memory bytes. */
1163 static rtx
1164 asan_shadow_cst (unsigned char shadow_bytes[4])
1166 int i;
1167 unsigned HOST_WIDE_INT val = 0;
1168 gcc_assert (WORDS_BIG_ENDIAN == BYTES_BIG_ENDIAN);
1169 for (i = 0; i < 4; i++)
1170 val |= (unsigned HOST_WIDE_INT) shadow_bytes[BYTES_BIG_ENDIAN ? 3 - i : i]
1171 << (BITS_PER_UNIT * i);
1172 return gen_int_mode (val, SImode);
1175 /* Clear shadow memory at SHADOW_MEM, LEN bytes. Can't call a library call here
1176 though. */
1178 static void
1179 asan_clear_shadow (rtx shadow_mem, HOST_WIDE_INT len)
1181 rtx_insn *insn, *insns, *jump;
1182 rtx_code_label *top_label;
1183 rtx end, addr, tmp;
1185 start_sequence ();
1186 clear_storage (shadow_mem, GEN_INT (len), BLOCK_OP_NORMAL);
1187 insns = get_insns ();
1188 end_sequence ();
1189 for (insn = insns; insn; insn = NEXT_INSN (insn))
1190 if (CALL_P (insn))
1191 break;
1192 if (insn == NULL_RTX)
1194 emit_insn (insns);
1195 return;
1198 gcc_assert ((len & 3) == 0);
1199 top_label = gen_label_rtx ();
1200 addr = copy_to_mode_reg (Pmode, XEXP (shadow_mem, 0));
1201 shadow_mem = adjust_automodify_address (shadow_mem, SImode, addr, 0);
1202 end = force_reg (Pmode, plus_constant (Pmode, addr, len));
1203 emit_label (top_label);
1205 emit_move_insn (shadow_mem, const0_rtx);
1206 tmp = expand_simple_binop (Pmode, PLUS, addr, gen_int_mode (4, Pmode), addr,
1207 true, OPTAB_LIB_WIDEN);
1208 if (tmp != addr)
1209 emit_move_insn (addr, tmp);
1210 emit_cmp_and_jump_insns (addr, end, LT, NULL_RTX, Pmode, true, top_label);
1211 jump = get_last_insn ();
1212 gcc_assert (JUMP_P (jump));
1213 add_reg_br_prob_note (jump,
1214 profile_probability::guessed_always ()
1215 .apply_scale (80, 100));
1218 void
1219 asan_function_start (void)
1221 section *fnsec = function_section (current_function_decl);
1222 switch_to_section (fnsec);
1223 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, "LASANPC",
1224 current_function_funcdef_no);
1227 /* Return number of shadow bytes that are occupied by a local variable
1228 of SIZE bytes. */
1230 static unsigned HOST_WIDE_INT
1231 shadow_mem_size (unsigned HOST_WIDE_INT size)
1233 return ROUND_UP (size, ASAN_SHADOW_GRANULARITY) / ASAN_SHADOW_GRANULARITY;
1236 /* Insert code to protect stack vars. The prologue sequence should be emitted
1237 directly, epilogue sequence returned. BASE is the register holding the
1238 stack base, against which OFFSETS array offsets are relative to, OFFSETS
1239 array contains pairs of offsets in reverse order, always the end offset
1240 of some gap that needs protection followed by starting offset,
1241 and DECLS is an array of representative decls for each var partition.
1242 LENGTH is the length of the OFFSETS array, DECLS array is LENGTH / 2 - 1
1243 elements long (OFFSETS include gap before the first variable as well
1244 as gaps after each stack variable). PBASE is, if non-NULL, some pseudo
1245 register which stack vars DECL_RTLs are based on. Either BASE should be
1246 assigned to PBASE, when not doing use after return protection, or
1247 corresponding address based on __asan_stack_malloc* return value. */
1249 rtx_insn *
1250 asan_emit_stack_protection (rtx base, rtx pbase, unsigned int alignb,
1251 HOST_WIDE_INT *offsets, tree *decls, int length)
1253 rtx shadow_base, shadow_mem, ret, mem, orig_base;
1254 rtx_code_label *lab;
1255 rtx_insn *insns;
1256 char buf[32];
1257 unsigned char shadow_bytes[4];
1258 HOST_WIDE_INT base_offset = offsets[length - 1];
1259 HOST_WIDE_INT base_align_bias = 0, offset, prev_offset;
1260 HOST_WIDE_INT asan_frame_size = offsets[0] - base_offset;
1261 HOST_WIDE_INT last_offset, last_size;
1262 int l;
1263 unsigned char cur_shadow_byte = ASAN_STACK_MAGIC_LEFT;
1264 tree str_cst, decl, id;
1265 int use_after_return_class = -1;
1267 if (shadow_ptr_types[0] == NULL_TREE)
1268 asan_init_shadow_ptr_types ();
1270 /* First of all, prepare the description string. */
1271 pretty_printer asan_pp;
1273 pp_decimal_int (&asan_pp, length / 2 - 1);
1274 pp_space (&asan_pp);
1275 for (l = length - 2; l; l -= 2)
1277 tree decl = decls[l / 2 - 1];
1278 pp_wide_integer (&asan_pp, offsets[l] - base_offset);
1279 pp_space (&asan_pp);
1280 pp_wide_integer (&asan_pp, offsets[l - 1] - offsets[l]);
1281 pp_space (&asan_pp);
1282 if (DECL_P (decl) && DECL_NAME (decl))
1284 pp_decimal_int (&asan_pp, IDENTIFIER_LENGTH (DECL_NAME (decl)));
1285 pp_space (&asan_pp);
1286 pp_tree_identifier (&asan_pp, DECL_NAME (decl));
1288 else
1289 pp_string (&asan_pp, "9 <unknown>");
1290 pp_space (&asan_pp);
1292 str_cst = asan_pp_string (&asan_pp);
1294 /* Emit the prologue sequence. */
1295 if (asan_frame_size > 32 && asan_frame_size <= 65536 && pbase
1296 && ASAN_USE_AFTER_RETURN)
1298 use_after_return_class = floor_log2 (asan_frame_size - 1) - 5;
1299 /* __asan_stack_malloc_N guarantees alignment
1300 N < 6 ? (64 << N) : 4096 bytes. */
1301 if (alignb > (use_after_return_class < 6
1302 ? (64U << use_after_return_class) : 4096U))
1303 use_after_return_class = -1;
1304 else if (alignb > ASAN_RED_ZONE_SIZE && (asan_frame_size & (alignb - 1)))
1305 base_align_bias = ((asan_frame_size + alignb - 1)
1306 & ~(alignb - HOST_WIDE_INT_1)) - asan_frame_size;
1308 /* Align base if target is STRICT_ALIGNMENT. */
1309 if (STRICT_ALIGNMENT)
1310 base = expand_binop (Pmode, and_optab, base,
1311 gen_int_mode (-((GET_MODE_ALIGNMENT (SImode)
1312 << ASAN_SHADOW_SHIFT)
1313 / BITS_PER_UNIT), Pmode), NULL_RTX,
1314 1, OPTAB_DIRECT);
1316 if (use_after_return_class == -1 && pbase)
1317 emit_move_insn (pbase, base);
1319 base = expand_binop (Pmode, add_optab, base,
1320 gen_int_mode (base_offset - base_align_bias, Pmode),
1321 NULL_RTX, 1, OPTAB_DIRECT);
1322 orig_base = NULL_RTX;
1323 if (use_after_return_class != -1)
1325 if (asan_detect_stack_use_after_return == NULL_TREE)
1327 id = get_identifier ("__asan_option_detect_stack_use_after_return");
1328 decl = build_decl (BUILTINS_LOCATION, VAR_DECL, id,
1329 integer_type_node);
1330 SET_DECL_ASSEMBLER_NAME (decl, id);
1331 TREE_ADDRESSABLE (decl) = 1;
1332 DECL_ARTIFICIAL (decl) = 1;
1333 DECL_IGNORED_P (decl) = 1;
1334 DECL_EXTERNAL (decl) = 1;
1335 TREE_STATIC (decl) = 1;
1336 TREE_PUBLIC (decl) = 1;
1337 TREE_USED (decl) = 1;
1338 asan_detect_stack_use_after_return = decl;
1340 orig_base = gen_reg_rtx (Pmode);
1341 emit_move_insn (orig_base, base);
1342 ret = expand_normal (asan_detect_stack_use_after_return);
1343 lab = gen_label_rtx ();
1344 emit_cmp_and_jump_insns (ret, const0_rtx, EQ, NULL_RTX,
1345 VOIDmode, 0, lab,
1346 profile_probability::very_likely ());
1347 snprintf (buf, sizeof buf, "__asan_stack_malloc_%d",
1348 use_after_return_class);
1349 ret = init_one_libfunc (buf);
1350 ret = emit_library_call_value (ret, NULL_RTX, LCT_NORMAL, ptr_mode,
1351 GEN_INT (asan_frame_size
1352 + base_align_bias),
1353 TYPE_MODE (pointer_sized_int_node));
1354 /* __asan_stack_malloc_[n] returns a pointer to fake stack if succeeded
1355 and NULL otherwise. Check RET value is NULL here and jump over the
1356 BASE reassignment in this case. Otherwise, reassign BASE to RET. */
1357 emit_cmp_and_jump_insns (ret, const0_rtx, EQ, NULL_RTX,
1358 VOIDmode, 0, lab,
1359 profile_probability:: very_unlikely ());
1360 ret = convert_memory_address (Pmode, ret);
1361 emit_move_insn (base, ret);
1362 emit_label (lab);
1363 emit_move_insn (pbase, expand_binop (Pmode, add_optab, base,
1364 gen_int_mode (base_align_bias
1365 - base_offset, Pmode),
1366 NULL_RTX, 1, OPTAB_DIRECT));
1368 mem = gen_rtx_MEM (ptr_mode, base);
1369 mem = adjust_address (mem, VOIDmode, base_align_bias);
1370 emit_move_insn (mem, gen_int_mode (ASAN_STACK_FRAME_MAGIC, ptr_mode));
1371 mem = adjust_address (mem, VOIDmode, GET_MODE_SIZE (ptr_mode));
1372 emit_move_insn (mem, expand_normal (str_cst));
1373 mem = adjust_address (mem, VOIDmode, GET_MODE_SIZE (ptr_mode));
1374 ASM_GENERATE_INTERNAL_LABEL (buf, "LASANPC", current_function_funcdef_no);
1375 id = get_identifier (buf);
1376 decl = build_decl (DECL_SOURCE_LOCATION (current_function_decl),
1377 VAR_DECL, id, char_type_node);
1378 SET_DECL_ASSEMBLER_NAME (decl, id);
1379 TREE_ADDRESSABLE (decl) = 1;
1380 TREE_READONLY (decl) = 1;
1381 DECL_ARTIFICIAL (decl) = 1;
1382 DECL_IGNORED_P (decl) = 1;
1383 TREE_STATIC (decl) = 1;
1384 TREE_PUBLIC (decl) = 0;
1385 TREE_USED (decl) = 1;
1386 DECL_INITIAL (decl) = decl;
1387 TREE_ASM_WRITTEN (decl) = 1;
1388 TREE_ASM_WRITTEN (id) = 1;
1389 emit_move_insn (mem, expand_normal (build_fold_addr_expr (decl)));
1390 shadow_base = expand_binop (Pmode, lshr_optab, base,
1391 GEN_INT (ASAN_SHADOW_SHIFT),
1392 NULL_RTX, 1, OPTAB_DIRECT);
1393 shadow_base
1394 = plus_constant (Pmode, shadow_base,
1395 asan_shadow_offset ()
1396 + (base_align_bias >> ASAN_SHADOW_SHIFT));
1397 gcc_assert (asan_shadow_set != -1
1398 && (ASAN_RED_ZONE_SIZE >> ASAN_SHADOW_SHIFT) == 4);
1399 shadow_mem = gen_rtx_MEM (SImode, shadow_base);
1400 set_mem_alias_set (shadow_mem, asan_shadow_set);
1401 if (STRICT_ALIGNMENT)
1402 set_mem_align (shadow_mem, (GET_MODE_ALIGNMENT (SImode)));
1403 prev_offset = base_offset;
1404 for (l = length; l; l -= 2)
1406 if (l == 2)
1407 cur_shadow_byte = ASAN_STACK_MAGIC_RIGHT;
1408 offset = offsets[l - 1];
1409 if ((offset - base_offset) & (ASAN_RED_ZONE_SIZE - 1))
1411 int i;
1412 HOST_WIDE_INT aoff
1413 = base_offset + ((offset - base_offset)
1414 & ~(ASAN_RED_ZONE_SIZE - HOST_WIDE_INT_1));
1415 shadow_mem = adjust_address (shadow_mem, VOIDmode,
1416 (aoff - prev_offset)
1417 >> ASAN_SHADOW_SHIFT);
1418 prev_offset = aoff;
1419 for (i = 0; i < 4; i++, aoff += ASAN_SHADOW_GRANULARITY)
1420 if (aoff < offset)
1422 if (aoff < offset - (HOST_WIDE_INT)ASAN_SHADOW_GRANULARITY + 1)
1423 shadow_bytes[i] = 0;
1424 else
1425 shadow_bytes[i] = offset - aoff;
1427 else
1428 shadow_bytes[i] = ASAN_STACK_MAGIC_MIDDLE;
1429 emit_move_insn (shadow_mem, asan_shadow_cst (shadow_bytes));
1430 offset = aoff;
1432 while (offset <= offsets[l - 2] - ASAN_RED_ZONE_SIZE)
1434 shadow_mem = adjust_address (shadow_mem, VOIDmode,
1435 (offset - prev_offset)
1436 >> ASAN_SHADOW_SHIFT);
1437 prev_offset = offset;
1438 memset (shadow_bytes, cur_shadow_byte, 4);
1439 emit_move_insn (shadow_mem, asan_shadow_cst (shadow_bytes));
1440 offset += ASAN_RED_ZONE_SIZE;
1442 cur_shadow_byte = ASAN_STACK_MAGIC_MIDDLE;
1444 do_pending_stack_adjust ();
1446 /* Construct epilogue sequence. */
1447 start_sequence ();
1449 lab = NULL;
1450 if (use_after_return_class != -1)
1452 rtx_code_label *lab2 = gen_label_rtx ();
1453 char c = (char) ASAN_STACK_MAGIC_USE_AFTER_RET;
1454 emit_cmp_and_jump_insns (orig_base, base, EQ, NULL_RTX,
1455 VOIDmode, 0, lab2,
1456 profile_probability::very_likely ());
1457 shadow_mem = gen_rtx_MEM (BLKmode, shadow_base);
1458 set_mem_alias_set (shadow_mem, asan_shadow_set);
1459 mem = gen_rtx_MEM (ptr_mode, base);
1460 mem = adjust_address (mem, VOIDmode, base_align_bias);
1461 emit_move_insn (mem, gen_int_mode (ASAN_STACK_RETIRED_MAGIC, ptr_mode));
1462 unsigned HOST_WIDE_INT sz = asan_frame_size >> ASAN_SHADOW_SHIFT;
1463 if (use_after_return_class < 5
1464 && can_store_by_pieces (sz, builtin_memset_read_str, &c,
1465 BITS_PER_UNIT, true))
1466 store_by_pieces (shadow_mem, sz, builtin_memset_read_str, &c,
1467 BITS_PER_UNIT, true, 0);
1468 else if (use_after_return_class >= 5
1469 || !set_storage_via_setmem (shadow_mem,
1470 GEN_INT (sz),
1471 gen_int_mode (c, QImode),
1472 BITS_PER_UNIT, BITS_PER_UNIT,
1473 -1, sz, sz, sz))
1475 snprintf (buf, sizeof buf, "__asan_stack_free_%d",
1476 use_after_return_class);
1477 ret = init_one_libfunc (buf);
1478 rtx addr = convert_memory_address (ptr_mode, base);
1479 rtx orig_addr = convert_memory_address (ptr_mode, orig_base);
1480 emit_library_call (ret, LCT_NORMAL, ptr_mode, addr, ptr_mode,
1481 GEN_INT (asan_frame_size + base_align_bias),
1482 TYPE_MODE (pointer_sized_int_node),
1483 orig_addr, ptr_mode);
1485 lab = gen_label_rtx ();
1486 emit_jump (lab);
1487 emit_label (lab2);
1490 shadow_mem = gen_rtx_MEM (BLKmode, shadow_base);
1491 set_mem_alias_set (shadow_mem, asan_shadow_set);
1493 if (STRICT_ALIGNMENT)
1494 set_mem_align (shadow_mem, (GET_MODE_ALIGNMENT (SImode)));
1496 prev_offset = base_offset;
1497 last_offset = base_offset;
1498 last_size = 0;
1499 for (l = length; l; l -= 2)
1501 offset = base_offset + ((offsets[l - 1] - base_offset)
1502 & ~(ASAN_RED_ZONE_SIZE - HOST_WIDE_INT_1));
1503 if (last_offset + last_size != offset)
1505 shadow_mem = adjust_address (shadow_mem, VOIDmode,
1506 (last_offset - prev_offset)
1507 >> ASAN_SHADOW_SHIFT);
1508 prev_offset = last_offset;
1509 asan_clear_shadow (shadow_mem, last_size >> ASAN_SHADOW_SHIFT);
1510 last_offset = offset;
1511 last_size = 0;
1513 last_size += base_offset + ((offsets[l - 2] - base_offset)
1514 & ~(ASAN_RED_ZONE_SIZE - HOST_WIDE_INT_1))
1515 - offset;
1517 /* Unpoison shadow memory that corresponds to a variable that is
1518 is subject of use-after-return sanitization. */
1519 if (l > 2)
1521 decl = decls[l / 2 - 2];
1522 if (asan_handled_variables != NULL
1523 && asan_handled_variables->contains (decl))
1525 HOST_WIDE_INT size = offsets[l - 3] - offsets[l - 2];
1526 if (dump_file && (dump_flags & TDF_DETAILS))
1528 const char *n = (DECL_NAME (decl)
1529 ? IDENTIFIER_POINTER (DECL_NAME (decl))
1530 : "<unknown>");
1531 fprintf (dump_file, "Unpoisoning shadow stack for variable: "
1532 "%s (%" PRId64 " B)\n", n, size);
1535 last_size += size & ~(ASAN_RED_ZONE_SIZE - HOST_WIDE_INT_1);
1539 if (last_size)
1541 shadow_mem = adjust_address (shadow_mem, VOIDmode,
1542 (last_offset - prev_offset)
1543 >> ASAN_SHADOW_SHIFT);
1544 asan_clear_shadow (shadow_mem, last_size >> ASAN_SHADOW_SHIFT);
1547 /* Clean-up set with instrumented stack variables. */
1548 delete asan_handled_variables;
1549 asan_handled_variables = NULL;
1550 delete asan_used_labels;
1551 asan_used_labels = NULL;
1553 do_pending_stack_adjust ();
1554 if (lab)
1555 emit_label (lab);
1557 insns = get_insns ();
1558 end_sequence ();
1559 return insns;
1562 /* Emit __asan_allocas_unpoison (top, bot) call. The BASE parameter corresponds
1563 to BOT argument, for TOP virtual_stack_dynamic_rtx is used. NEW_SEQUENCE
1564 indicates whether we're emitting new instructions sequence or not. */
1566 rtx_insn *
1567 asan_emit_allocas_unpoison (rtx top, rtx bot, rtx_insn *before)
1569 if (before)
1570 push_to_sequence (before);
1571 else
1572 start_sequence ();
1573 rtx ret = init_one_libfunc ("__asan_allocas_unpoison");
1574 top = convert_memory_address (ptr_mode, top);
1575 bot = convert_memory_address (ptr_mode, bot);
1576 ret = emit_library_call_value (ret, NULL_RTX, LCT_NORMAL, ptr_mode,
1577 top, ptr_mode, bot, ptr_mode);
1579 do_pending_stack_adjust ();
1580 rtx_insn *insns = get_insns ();
1581 end_sequence ();
1582 return insns;
1585 /* Return true if DECL, a global var, might be overridden and needs
1586 therefore a local alias. */
1588 static bool
1589 asan_needs_local_alias (tree decl)
1591 return DECL_WEAK (decl) || !targetm.binds_local_p (decl);
1594 /* Return true if DECL, a global var, is an artificial ODR indicator symbol
1595 therefore doesn't need protection. */
1597 static bool
1598 is_odr_indicator (tree decl)
1600 return (DECL_ARTIFICIAL (decl)
1601 && lookup_attribute ("asan odr indicator", DECL_ATTRIBUTES (decl)));
1604 /* Return true if DECL is a VAR_DECL that should be protected
1605 by Address Sanitizer, by appending a red zone with protected
1606 shadow memory after it and aligning it to at least
1607 ASAN_RED_ZONE_SIZE bytes. */
1609 bool
1610 asan_protect_global (tree decl)
1612 if (!ASAN_GLOBALS)
1613 return false;
1615 rtx rtl, symbol;
1617 if (TREE_CODE (decl) == STRING_CST)
1619 /* Instrument all STRING_CSTs except those created
1620 by asan_pp_string here. */
1621 if (shadow_ptr_types[0] != NULL_TREE
1622 && TREE_CODE (TREE_TYPE (decl)) == ARRAY_TYPE
1623 && TREE_TYPE (TREE_TYPE (decl)) == TREE_TYPE (shadow_ptr_types[0]))
1624 return false;
1625 return true;
1627 if (!VAR_P (decl)
1628 /* TLS vars aren't statically protectable. */
1629 || DECL_THREAD_LOCAL_P (decl)
1630 /* Externs will be protected elsewhere. */
1631 || DECL_EXTERNAL (decl)
1632 || !DECL_RTL_SET_P (decl)
1633 /* Comdat vars pose an ABI problem, we can't know if
1634 the var that is selected by the linker will have
1635 padding or not. */
1636 || DECL_ONE_ONLY (decl)
1637 /* Similarly for common vars. People can use -fno-common.
1638 Note: Linux kernel is built with -fno-common, so we do instrument
1639 globals there even if it is C. */
1640 || (DECL_COMMON (decl) && TREE_PUBLIC (decl))
1641 /* Don't protect if using user section, often vars placed
1642 into user section from multiple TUs are then assumed
1643 to be an array of such vars, putting padding in there
1644 breaks this assumption. */
1645 || (DECL_SECTION_NAME (decl) != NULL
1646 && !symtab_node::get (decl)->implicit_section
1647 && !section_sanitized_p (DECL_SECTION_NAME (decl)))
1648 || DECL_SIZE (decl) == 0
1649 || ASAN_RED_ZONE_SIZE * BITS_PER_UNIT > MAX_OFILE_ALIGNMENT
1650 || !valid_constant_size_p (DECL_SIZE_UNIT (decl))
1651 || DECL_ALIGN_UNIT (decl) > 2 * ASAN_RED_ZONE_SIZE
1652 || TREE_TYPE (decl) == ubsan_get_source_location_type ()
1653 || is_odr_indicator (decl))
1654 return false;
1656 rtl = DECL_RTL (decl);
1657 if (!MEM_P (rtl) || GET_CODE (XEXP (rtl, 0)) != SYMBOL_REF)
1658 return false;
1659 symbol = XEXP (rtl, 0);
1661 if (CONSTANT_POOL_ADDRESS_P (symbol)
1662 || TREE_CONSTANT_POOL_ADDRESS_P (symbol))
1663 return false;
1665 if (lookup_attribute ("weakref", DECL_ATTRIBUTES (decl)))
1666 return false;
1668 if (!TARGET_SUPPORTS_ALIASES && asan_needs_local_alias (decl))
1669 return false;
1671 return true;
1674 /* Construct a function tree for __asan_report_{load,store}{1,2,4,8,16,_n}.
1675 IS_STORE is either 1 (for a store) or 0 (for a load). */
1677 static tree
1678 report_error_func (bool is_store, bool recover_p, HOST_WIDE_INT size_in_bytes,
1679 int *nargs)
1681 static enum built_in_function report[2][2][6]
1682 = { { { BUILT_IN_ASAN_REPORT_LOAD1, BUILT_IN_ASAN_REPORT_LOAD2,
1683 BUILT_IN_ASAN_REPORT_LOAD4, BUILT_IN_ASAN_REPORT_LOAD8,
1684 BUILT_IN_ASAN_REPORT_LOAD16, BUILT_IN_ASAN_REPORT_LOAD_N },
1685 { BUILT_IN_ASAN_REPORT_STORE1, BUILT_IN_ASAN_REPORT_STORE2,
1686 BUILT_IN_ASAN_REPORT_STORE4, BUILT_IN_ASAN_REPORT_STORE8,
1687 BUILT_IN_ASAN_REPORT_STORE16, BUILT_IN_ASAN_REPORT_STORE_N } },
1688 { { BUILT_IN_ASAN_REPORT_LOAD1_NOABORT,
1689 BUILT_IN_ASAN_REPORT_LOAD2_NOABORT,
1690 BUILT_IN_ASAN_REPORT_LOAD4_NOABORT,
1691 BUILT_IN_ASAN_REPORT_LOAD8_NOABORT,
1692 BUILT_IN_ASAN_REPORT_LOAD16_NOABORT,
1693 BUILT_IN_ASAN_REPORT_LOAD_N_NOABORT },
1694 { BUILT_IN_ASAN_REPORT_STORE1_NOABORT,
1695 BUILT_IN_ASAN_REPORT_STORE2_NOABORT,
1696 BUILT_IN_ASAN_REPORT_STORE4_NOABORT,
1697 BUILT_IN_ASAN_REPORT_STORE8_NOABORT,
1698 BUILT_IN_ASAN_REPORT_STORE16_NOABORT,
1699 BUILT_IN_ASAN_REPORT_STORE_N_NOABORT } } };
1700 if (size_in_bytes == -1)
1702 *nargs = 2;
1703 return builtin_decl_implicit (report[recover_p][is_store][5]);
1705 *nargs = 1;
1706 int size_log2 = exact_log2 (size_in_bytes);
1707 return builtin_decl_implicit (report[recover_p][is_store][size_log2]);
1710 /* Construct a function tree for __asan_{load,store}{1,2,4,8,16,_n}.
1711 IS_STORE is either 1 (for a store) or 0 (for a load). */
1713 static tree
1714 check_func (bool is_store, bool recover_p, HOST_WIDE_INT size_in_bytes,
1715 int *nargs)
1717 static enum built_in_function check[2][2][6]
1718 = { { { BUILT_IN_ASAN_LOAD1, BUILT_IN_ASAN_LOAD2,
1719 BUILT_IN_ASAN_LOAD4, BUILT_IN_ASAN_LOAD8,
1720 BUILT_IN_ASAN_LOAD16, BUILT_IN_ASAN_LOADN },
1721 { BUILT_IN_ASAN_STORE1, BUILT_IN_ASAN_STORE2,
1722 BUILT_IN_ASAN_STORE4, BUILT_IN_ASAN_STORE8,
1723 BUILT_IN_ASAN_STORE16, BUILT_IN_ASAN_STOREN } },
1724 { { BUILT_IN_ASAN_LOAD1_NOABORT,
1725 BUILT_IN_ASAN_LOAD2_NOABORT,
1726 BUILT_IN_ASAN_LOAD4_NOABORT,
1727 BUILT_IN_ASAN_LOAD8_NOABORT,
1728 BUILT_IN_ASAN_LOAD16_NOABORT,
1729 BUILT_IN_ASAN_LOADN_NOABORT },
1730 { BUILT_IN_ASAN_STORE1_NOABORT,
1731 BUILT_IN_ASAN_STORE2_NOABORT,
1732 BUILT_IN_ASAN_STORE4_NOABORT,
1733 BUILT_IN_ASAN_STORE8_NOABORT,
1734 BUILT_IN_ASAN_STORE16_NOABORT,
1735 BUILT_IN_ASAN_STOREN_NOABORT } } };
1736 if (size_in_bytes == -1)
1738 *nargs = 2;
1739 return builtin_decl_implicit (check[recover_p][is_store][5]);
1741 *nargs = 1;
1742 int size_log2 = exact_log2 (size_in_bytes);
1743 return builtin_decl_implicit (check[recover_p][is_store][size_log2]);
1746 /* Split the current basic block and create a condition statement
1747 insertion point right before or after the statement pointed to by
1748 ITER. Return an iterator to the point at which the caller might
1749 safely insert the condition statement.
1751 THEN_BLOCK must be set to the address of an uninitialized instance
1752 of basic_block. The function will then set *THEN_BLOCK to the
1753 'then block' of the condition statement to be inserted by the
1754 caller.
1756 If CREATE_THEN_FALLTHRU_EDGE is false, no edge will be created from
1757 *THEN_BLOCK to *FALLTHROUGH_BLOCK.
1759 Similarly, the function will set *FALLTRHOUGH_BLOCK to the 'else
1760 block' of the condition statement to be inserted by the caller.
1762 Note that *FALLTHROUGH_BLOCK is a new block that contains the
1763 statements starting from *ITER, and *THEN_BLOCK is a new empty
1764 block.
1766 *ITER is adjusted to point to always point to the first statement
1767 of the basic block * FALLTHROUGH_BLOCK. That statement is the
1768 same as what ITER was pointing to prior to calling this function,
1769 if BEFORE_P is true; otherwise, it is its following statement. */
1771 gimple_stmt_iterator
1772 create_cond_insert_point (gimple_stmt_iterator *iter,
1773 bool before_p,
1774 bool then_more_likely_p,
1775 bool create_then_fallthru_edge,
1776 basic_block *then_block,
1777 basic_block *fallthrough_block)
1779 gimple_stmt_iterator gsi = *iter;
1781 if (!gsi_end_p (gsi) && before_p)
1782 gsi_prev (&gsi);
1784 basic_block cur_bb = gsi_bb (*iter);
1786 edge e = split_block (cur_bb, gsi_stmt (gsi));
1788 /* Get a hold on the 'condition block', the 'then block' and the
1789 'else block'. */
1790 basic_block cond_bb = e->src;
1791 basic_block fallthru_bb = e->dest;
1792 basic_block then_bb = create_empty_bb (cond_bb);
1793 if (current_loops)
1795 add_bb_to_loop (then_bb, cond_bb->loop_father);
1796 loops_state_set (LOOPS_NEED_FIXUP);
1799 /* Set up the newly created 'then block'. */
1800 e = make_edge (cond_bb, then_bb, EDGE_TRUE_VALUE);
1801 profile_probability fallthrough_probability
1802 = then_more_likely_p
1803 ? profile_probability::very_unlikely ()
1804 : profile_probability::very_likely ();
1805 e->probability = fallthrough_probability.invert ();
1806 if (create_then_fallthru_edge)
1807 make_single_succ_edge (then_bb, fallthru_bb, EDGE_FALLTHRU);
1809 /* Set up the fallthrough basic block. */
1810 e = find_edge (cond_bb, fallthru_bb);
1811 e->flags = EDGE_FALSE_VALUE;
1812 e->count = cond_bb->count;
1813 e->probability = fallthrough_probability;
1815 /* Update dominance info for the newly created then_bb; note that
1816 fallthru_bb's dominance info has already been updated by
1817 split_bock. */
1818 if (dom_info_available_p (CDI_DOMINATORS))
1819 set_immediate_dominator (CDI_DOMINATORS, then_bb, cond_bb);
1821 *then_block = then_bb;
1822 *fallthrough_block = fallthru_bb;
1823 *iter = gsi_start_bb (fallthru_bb);
1825 return gsi_last_bb (cond_bb);
1828 /* Insert an if condition followed by a 'then block' right before the
1829 statement pointed to by ITER. The fallthrough block -- which is the
1830 else block of the condition as well as the destination of the
1831 outcoming edge of the 'then block' -- starts with the statement
1832 pointed to by ITER.
1834 COND is the condition of the if.
1836 If THEN_MORE_LIKELY_P is true, the probability of the edge to the
1837 'then block' is higher than the probability of the edge to the
1838 fallthrough block.
1840 Upon completion of the function, *THEN_BB is set to the newly
1841 inserted 'then block' and similarly, *FALLTHROUGH_BB is set to the
1842 fallthrough block.
1844 *ITER is adjusted to still point to the same statement it was
1845 pointing to initially. */
1847 static void
1848 insert_if_then_before_iter (gcond *cond,
1849 gimple_stmt_iterator *iter,
1850 bool then_more_likely_p,
1851 basic_block *then_bb,
1852 basic_block *fallthrough_bb)
1854 gimple_stmt_iterator cond_insert_point =
1855 create_cond_insert_point (iter,
1856 /*before_p=*/true,
1857 then_more_likely_p,
1858 /*create_then_fallthru_edge=*/true,
1859 then_bb,
1860 fallthrough_bb);
1861 gsi_insert_after (&cond_insert_point, cond, GSI_NEW_STMT);
1864 /* Build (base_addr >> ASAN_SHADOW_SHIFT) + asan_shadow_offset ().
1865 If RETURN_ADDRESS is set to true, return memory location instread
1866 of a value in the shadow memory. */
1868 static tree
1869 build_shadow_mem_access (gimple_stmt_iterator *gsi, location_t location,
1870 tree base_addr, tree shadow_ptr_type,
1871 bool return_address = false)
1873 tree t, uintptr_type = TREE_TYPE (base_addr);
1874 tree shadow_type = TREE_TYPE (shadow_ptr_type);
1875 gimple *g;
1877 t = build_int_cst (uintptr_type, ASAN_SHADOW_SHIFT);
1878 g = gimple_build_assign (make_ssa_name (uintptr_type), RSHIFT_EXPR,
1879 base_addr, t);
1880 gimple_set_location (g, location);
1881 gsi_insert_after (gsi, g, GSI_NEW_STMT);
1883 t = build_int_cst (uintptr_type, asan_shadow_offset ());
1884 g = gimple_build_assign (make_ssa_name (uintptr_type), PLUS_EXPR,
1885 gimple_assign_lhs (g), t);
1886 gimple_set_location (g, location);
1887 gsi_insert_after (gsi, g, GSI_NEW_STMT);
1889 g = gimple_build_assign (make_ssa_name (shadow_ptr_type), NOP_EXPR,
1890 gimple_assign_lhs (g));
1891 gimple_set_location (g, location);
1892 gsi_insert_after (gsi, g, GSI_NEW_STMT);
1894 if (!return_address)
1896 t = build2 (MEM_REF, shadow_type, gimple_assign_lhs (g),
1897 build_int_cst (shadow_ptr_type, 0));
1898 g = gimple_build_assign (make_ssa_name (shadow_type), MEM_REF, t);
1899 gimple_set_location (g, location);
1900 gsi_insert_after (gsi, g, GSI_NEW_STMT);
1903 return gimple_assign_lhs (g);
1906 /* BASE can already be an SSA_NAME; in that case, do not create a
1907 new SSA_NAME for it. */
1909 static tree
1910 maybe_create_ssa_name (location_t loc, tree base, gimple_stmt_iterator *iter,
1911 bool before_p)
1913 if (TREE_CODE (base) == SSA_NAME)
1914 return base;
1915 gimple *g = gimple_build_assign (make_ssa_name (TREE_TYPE (base)),
1916 TREE_CODE (base), base);
1917 gimple_set_location (g, loc);
1918 if (before_p)
1919 gsi_insert_before (iter, g, GSI_SAME_STMT);
1920 else
1921 gsi_insert_after (iter, g, GSI_NEW_STMT);
1922 return gimple_assign_lhs (g);
1925 /* LEN can already have necessary size and precision;
1926 in that case, do not create a new variable. */
1928 tree
1929 maybe_cast_to_ptrmode (location_t loc, tree len, gimple_stmt_iterator *iter,
1930 bool before_p)
1932 if (ptrofftype_p (len))
1933 return len;
1934 gimple *g = gimple_build_assign (make_ssa_name (pointer_sized_int_node),
1935 NOP_EXPR, len);
1936 gimple_set_location (g, loc);
1937 if (before_p)
1938 gsi_insert_before (iter, g, GSI_SAME_STMT);
1939 else
1940 gsi_insert_after (iter, g, GSI_NEW_STMT);
1941 return gimple_assign_lhs (g);
1944 /* Instrument the memory access instruction BASE. Insert new
1945 statements before or after ITER.
1947 Note that the memory access represented by BASE can be either an
1948 SSA_NAME, or a non-SSA expression. LOCATION is the source code
1949 location. IS_STORE is TRUE for a store, FALSE for a load.
1950 BEFORE_P is TRUE for inserting the instrumentation code before
1951 ITER, FALSE for inserting it after ITER. IS_SCALAR_ACCESS is TRUE
1952 for a scalar memory access and FALSE for memory region access.
1953 NON_ZERO_P is TRUE if memory region is guaranteed to have non-zero
1954 length. ALIGN tells alignment of accessed memory object.
1956 START_INSTRUMENTED and END_INSTRUMENTED are TRUE if start/end of
1957 memory region have already been instrumented.
1959 If BEFORE_P is TRUE, *ITER is arranged to still point to the
1960 statement it was pointing to prior to calling this function,
1961 otherwise, it points to the statement logically following it. */
1963 static void
1964 build_check_stmt (location_t loc, tree base, tree len,
1965 HOST_WIDE_INT size_in_bytes, gimple_stmt_iterator *iter,
1966 bool is_non_zero_len, bool before_p, bool is_store,
1967 bool is_scalar_access, unsigned int align = 0)
1969 gimple_stmt_iterator gsi = *iter;
1970 gimple *g;
1972 gcc_assert (!(size_in_bytes > 0 && !is_non_zero_len));
1974 gsi = *iter;
1976 base = unshare_expr (base);
1977 base = maybe_create_ssa_name (loc, base, &gsi, before_p);
1979 if (len)
1981 len = unshare_expr (len);
1982 len = maybe_cast_to_ptrmode (loc, len, iter, before_p);
1984 else
1986 gcc_assert (size_in_bytes != -1);
1987 len = build_int_cst (pointer_sized_int_node, size_in_bytes);
1990 if (size_in_bytes > 1)
1992 if ((size_in_bytes & (size_in_bytes - 1)) != 0
1993 || size_in_bytes > 16)
1994 is_scalar_access = false;
1995 else if (align && align < size_in_bytes * BITS_PER_UNIT)
1997 /* On non-strict alignment targets, if
1998 16-byte access is just 8-byte aligned,
1999 this will result in misaligned shadow
2000 memory 2 byte load, but otherwise can
2001 be handled using one read. */
2002 if (size_in_bytes != 16
2003 || STRICT_ALIGNMENT
2004 || align < 8 * BITS_PER_UNIT)
2005 is_scalar_access = false;
2009 HOST_WIDE_INT flags = 0;
2010 if (is_store)
2011 flags |= ASAN_CHECK_STORE;
2012 if (is_non_zero_len)
2013 flags |= ASAN_CHECK_NON_ZERO_LEN;
2014 if (is_scalar_access)
2015 flags |= ASAN_CHECK_SCALAR_ACCESS;
2017 g = gimple_build_call_internal (IFN_ASAN_CHECK, 4,
2018 build_int_cst (integer_type_node, flags),
2019 base, len,
2020 build_int_cst (integer_type_node,
2021 align / BITS_PER_UNIT));
2022 gimple_set_location (g, loc);
2023 if (before_p)
2024 gsi_insert_before (&gsi, g, GSI_SAME_STMT);
2025 else
2027 gsi_insert_after (&gsi, g, GSI_NEW_STMT);
2028 gsi_next (&gsi);
2029 *iter = gsi;
2033 /* If T represents a memory access, add instrumentation code before ITER.
2034 LOCATION is source code location.
2035 IS_STORE is either TRUE (for a store) or FALSE (for a load). */
2037 static void
2038 instrument_derefs (gimple_stmt_iterator *iter, tree t,
2039 location_t location, bool is_store)
2041 if (is_store && !ASAN_INSTRUMENT_WRITES)
2042 return;
2043 if (!is_store && !ASAN_INSTRUMENT_READS)
2044 return;
2046 tree type, base;
2047 HOST_WIDE_INT size_in_bytes;
2048 if (location == UNKNOWN_LOCATION)
2049 location = EXPR_LOCATION (t);
2051 type = TREE_TYPE (t);
2052 switch (TREE_CODE (t))
2054 case ARRAY_REF:
2055 case COMPONENT_REF:
2056 case INDIRECT_REF:
2057 case MEM_REF:
2058 case VAR_DECL:
2059 case BIT_FIELD_REF:
2060 break;
2061 /* FALLTHRU */
2062 default:
2063 return;
2066 size_in_bytes = int_size_in_bytes (type);
2067 if (size_in_bytes <= 0)
2068 return;
2070 HOST_WIDE_INT bitsize, bitpos;
2071 tree offset;
2072 machine_mode mode;
2073 int unsignedp, reversep, volatilep = 0;
2074 tree inner = get_inner_reference (t, &bitsize, &bitpos, &offset, &mode,
2075 &unsignedp, &reversep, &volatilep);
2077 if (TREE_CODE (t) == COMPONENT_REF
2078 && DECL_BIT_FIELD_REPRESENTATIVE (TREE_OPERAND (t, 1)) != NULL_TREE)
2080 tree repr = DECL_BIT_FIELD_REPRESENTATIVE (TREE_OPERAND (t, 1));
2081 instrument_derefs (iter, build3 (COMPONENT_REF, TREE_TYPE (repr),
2082 TREE_OPERAND (t, 0), repr,
2083 TREE_OPERAND (t, 2)),
2084 location, is_store);
2085 return;
2088 if (bitpos % BITS_PER_UNIT
2089 || bitsize != size_in_bytes * BITS_PER_UNIT)
2090 return;
2092 if (VAR_P (inner) && DECL_HARD_REGISTER (inner))
2093 return;
2095 if (VAR_P (inner)
2096 && offset == NULL_TREE
2097 && bitpos >= 0
2098 && DECL_SIZE (inner)
2099 && tree_fits_shwi_p (DECL_SIZE (inner))
2100 && bitpos + bitsize <= tree_to_shwi (DECL_SIZE (inner)))
2102 if (DECL_THREAD_LOCAL_P (inner))
2103 return;
2104 if (!ASAN_GLOBALS && is_global_var (inner))
2105 return;
2106 if (!TREE_STATIC (inner))
2108 /* Automatic vars in the current function will be always
2109 accessible. */
2110 if (decl_function_context (inner) == current_function_decl
2111 && (!asan_sanitize_use_after_scope ()
2112 || !TREE_ADDRESSABLE (inner)))
2113 return;
2115 /* Always instrument external vars, they might be dynamically
2116 initialized. */
2117 else if (!DECL_EXTERNAL (inner))
2119 /* For static vars if they are known not to be dynamically
2120 initialized, they will be always accessible. */
2121 varpool_node *vnode = varpool_node::get (inner);
2122 if (vnode && !vnode->dynamically_initialized)
2123 return;
2127 base = build_fold_addr_expr (t);
2128 if (!has_mem_ref_been_instrumented (base, size_in_bytes))
2130 unsigned int align = get_object_alignment (t);
2131 build_check_stmt (location, base, NULL_TREE, size_in_bytes, iter,
2132 /*is_non_zero_len*/size_in_bytes > 0, /*before_p=*/true,
2133 is_store, /*is_scalar_access*/true, align);
2134 update_mem_ref_hash_table (base, size_in_bytes);
2135 update_mem_ref_hash_table (t, size_in_bytes);
2140 /* Insert a memory reference into the hash table if access length
2141 can be determined in compile time. */
2143 static void
2144 maybe_update_mem_ref_hash_table (tree base, tree len)
2146 if (!POINTER_TYPE_P (TREE_TYPE (base))
2147 || !INTEGRAL_TYPE_P (TREE_TYPE (len)))
2148 return;
2150 HOST_WIDE_INT size_in_bytes = tree_fits_shwi_p (len) ? tree_to_shwi (len) : -1;
2152 if (size_in_bytes != -1)
2153 update_mem_ref_hash_table (base, size_in_bytes);
2156 /* Instrument an access to a contiguous memory region that starts at
2157 the address pointed to by BASE, over a length of LEN (expressed in
2158 the sizeof (*BASE) bytes). ITER points to the instruction before
2159 which the instrumentation instructions must be inserted. LOCATION
2160 is the source location that the instrumentation instructions must
2161 have. If IS_STORE is true, then the memory access is a store;
2162 otherwise, it's a load. */
2164 static void
2165 instrument_mem_region_access (tree base, tree len,
2166 gimple_stmt_iterator *iter,
2167 location_t location, bool is_store)
2169 if (!POINTER_TYPE_P (TREE_TYPE (base))
2170 || !INTEGRAL_TYPE_P (TREE_TYPE (len))
2171 || integer_zerop (len))
2172 return;
2174 HOST_WIDE_INT size_in_bytes = tree_fits_shwi_p (len) ? tree_to_shwi (len) : -1;
2176 if ((size_in_bytes == -1)
2177 || !has_mem_ref_been_instrumented (base, size_in_bytes))
2179 build_check_stmt (location, base, len, size_in_bytes, iter,
2180 /*is_non_zero_len*/size_in_bytes > 0, /*before_p*/true,
2181 is_store, /*is_scalar_access*/false, /*align*/0);
2184 maybe_update_mem_ref_hash_table (base, len);
2185 *iter = gsi_for_stmt (gsi_stmt (*iter));
2188 /* Instrument the call to a built-in memory access function that is
2189 pointed to by the iterator ITER.
2191 Upon completion, return TRUE iff *ITER has been advanced to the
2192 statement following the one it was originally pointing to. */
2194 static bool
2195 instrument_builtin_call (gimple_stmt_iterator *iter)
2197 if (!ASAN_MEMINTRIN)
2198 return false;
2200 bool iter_advanced_p = false;
2201 gcall *call = as_a <gcall *> (gsi_stmt (*iter));
2203 gcc_checking_assert (gimple_call_builtin_p (call, BUILT_IN_NORMAL));
2205 location_t loc = gimple_location (call);
2207 asan_mem_ref src0, src1, dest;
2208 asan_mem_ref_init (&src0, NULL, 1);
2209 asan_mem_ref_init (&src1, NULL, 1);
2210 asan_mem_ref_init (&dest, NULL, 1);
2212 tree src0_len = NULL_TREE, src1_len = NULL_TREE, dest_len = NULL_TREE;
2213 bool src0_is_store = false, src1_is_store = false, dest_is_store = false,
2214 dest_is_deref = false, intercepted_p = true;
2216 if (get_mem_refs_of_builtin_call (call,
2217 &src0, &src0_len, &src0_is_store,
2218 &src1, &src1_len, &src1_is_store,
2219 &dest, &dest_len, &dest_is_store,
2220 &dest_is_deref, &intercepted_p, iter))
2222 if (dest_is_deref)
2224 instrument_derefs (iter, dest.start, loc, dest_is_store);
2225 gsi_next (iter);
2226 iter_advanced_p = true;
2228 else if (!intercepted_p
2229 && (src0_len || src1_len || dest_len))
2231 if (src0.start != NULL_TREE)
2232 instrument_mem_region_access (src0.start, src0_len,
2233 iter, loc, /*is_store=*/false);
2234 if (src1.start != NULL_TREE)
2235 instrument_mem_region_access (src1.start, src1_len,
2236 iter, loc, /*is_store=*/false);
2237 if (dest.start != NULL_TREE)
2238 instrument_mem_region_access (dest.start, dest_len,
2239 iter, loc, /*is_store=*/true);
2241 *iter = gsi_for_stmt (call);
2242 gsi_next (iter);
2243 iter_advanced_p = true;
2245 else
2247 if (src0.start != NULL_TREE)
2248 maybe_update_mem_ref_hash_table (src0.start, src0_len);
2249 if (src1.start != NULL_TREE)
2250 maybe_update_mem_ref_hash_table (src1.start, src1_len);
2251 if (dest.start != NULL_TREE)
2252 maybe_update_mem_ref_hash_table (dest.start, dest_len);
2255 return iter_advanced_p;
2258 /* Instrument the assignment statement ITER if it is subject to
2259 instrumentation. Return TRUE iff instrumentation actually
2260 happened. In that case, the iterator ITER is advanced to the next
2261 logical expression following the one initially pointed to by ITER,
2262 and the relevant memory reference that which access has been
2263 instrumented is added to the memory references hash table. */
2265 static bool
2266 maybe_instrument_assignment (gimple_stmt_iterator *iter)
2268 gimple *s = gsi_stmt (*iter);
2270 gcc_assert (gimple_assign_single_p (s));
2272 tree ref_expr = NULL_TREE;
2273 bool is_store, is_instrumented = false;
2275 if (gimple_store_p (s))
2277 ref_expr = gimple_assign_lhs (s);
2278 is_store = true;
2279 instrument_derefs (iter, ref_expr,
2280 gimple_location (s),
2281 is_store);
2282 is_instrumented = true;
2285 if (gimple_assign_load_p (s))
2287 ref_expr = gimple_assign_rhs1 (s);
2288 is_store = false;
2289 instrument_derefs (iter, ref_expr,
2290 gimple_location (s),
2291 is_store);
2292 is_instrumented = true;
2295 if (is_instrumented)
2296 gsi_next (iter);
2298 return is_instrumented;
2301 /* Instrument the function call pointed to by the iterator ITER, if it
2302 is subject to instrumentation. At the moment, the only function
2303 calls that are instrumented are some built-in functions that access
2304 memory. Look at instrument_builtin_call to learn more.
2306 Upon completion return TRUE iff *ITER was advanced to the statement
2307 following the one it was originally pointing to. */
2309 static bool
2310 maybe_instrument_call (gimple_stmt_iterator *iter)
2312 gimple *stmt = gsi_stmt (*iter);
2313 bool is_builtin = gimple_call_builtin_p (stmt, BUILT_IN_NORMAL);
2315 if (is_builtin && instrument_builtin_call (iter))
2316 return true;
2318 if (gimple_call_noreturn_p (stmt))
2320 if (is_builtin)
2322 tree callee = gimple_call_fndecl (stmt);
2323 switch (DECL_FUNCTION_CODE (callee))
2325 case BUILT_IN_UNREACHABLE:
2326 case BUILT_IN_TRAP:
2327 /* Don't instrument these. */
2328 return false;
2329 default:
2330 break;
2333 tree decl = builtin_decl_implicit (BUILT_IN_ASAN_HANDLE_NO_RETURN);
2334 gimple *g = gimple_build_call (decl, 0);
2335 gimple_set_location (g, gimple_location (stmt));
2336 gsi_insert_before (iter, g, GSI_SAME_STMT);
2339 bool instrumented = false;
2340 if (gimple_store_p (stmt))
2342 tree ref_expr = gimple_call_lhs (stmt);
2343 instrument_derefs (iter, ref_expr,
2344 gimple_location (stmt),
2345 /*is_store=*/true);
2347 instrumented = true;
2350 /* Walk through gimple_call arguments and check them id needed. */
2351 unsigned args_num = gimple_call_num_args (stmt);
2352 for (unsigned i = 0; i < args_num; ++i)
2354 tree arg = gimple_call_arg (stmt, i);
2355 /* If ARG is not a non-aggregate register variable, compiler in general
2356 creates temporary for it and pass it as argument to gimple call.
2357 But in some cases, e.g. when we pass by value a small structure that
2358 fits to register, compiler can avoid extra overhead by pulling out
2359 these temporaries. In this case, we should check the argument. */
2360 if (!is_gimple_reg (arg) && !is_gimple_min_invariant (arg))
2362 instrument_derefs (iter, arg,
2363 gimple_location (stmt),
2364 /*is_store=*/false);
2365 instrumented = true;
2368 if (instrumented)
2369 gsi_next (iter);
2370 return instrumented;
2373 /* Walk each instruction of all basic block and instrument those that
2374 represent memory references: loads, stores, or function calls.
2375 In a given basic block, this function avoids instrumenting memory
2376 references that have already been instrumented. */
2378 static void
2379 transform_statements (void)
2381 basic_block bb, last_bb = NULL;
2382 gimple_stmt_iterator i;
2383 int saved_last_basic_block = last_basic_block_for_fn (cfun);
2385 FOR_EACH_BB_FN (bb, cfun)
2387 basic_block prev_bb = bb;
2389 if (bb->index >= saved_last_basic_block) continue;
2391 /* Flush the mem ref hash table, if current bb doesn't have
2392 exactly one predecessor, or if that predecessor (skipping
2393 over asan created basic blocks) isn't the last processed
2394 basic block. Thus we effectively flush on extended basic
2395 block boundaries. */
2396 while (single_pred_p (prev_bb))
2398 prev_bb = single_pred (prev_bb);
2399 if (prev_bb->index < saved_last_basic_block)
2400 break;
2402 if (prev_bb != last_bb)
2403 empty_mem_ref_hash_table ();
2404 last_bb = bb;
2406 for (i = gsi_start_bb (bb); !gsi_end_p (i);)
2408 gimple *s = gsi_stmt (i);
2410 if (has_stmt_been_instrumented_p (s))
2411 gsi_next (&i);
2412 else if (gimple_assign_single_p (s)
2413 && !gimple_clobber_p (s)
2414 && maybe_instrument_assignment (&i))
2415 /* Nothing to do as maybe_instrument_assignment advanced
2416 the iterator I. */;
2417 else if (is_gimple_call (s) && maybe_instrument_call (&i))
2418 /* Nothing to do as maybe_instrument_call
2419 advanced the iterator I. */;
2420 else
2422 /* No instrumentation happened.
2424 If the current instruction is a function call that
2425 might free something, let's forget about the memory
2426 references that got instrumented. Otherwise we might
2427 miss some instrumentation opportunities. Do the same
2428 for a ASAN_MARK poisoning internal function. */
2429 if (is_gimple_call (s)
2430 && (!nonfreeing_call_p (s)
2431 || asan_mark_p (s, ASAN_MARK_POISON)))
2432 empty_mem_ref_hash_table ();
2434 gsi_next (&i);
2438 free_mem_ref_resources ();
2441 /* Build
2442 __asan_before_dynamic_init (module_name)
2444 __asan_after_dynamic_init ()
2445 call. */
2447 tree
2448 asan_dynamic_init_call (bool after_p)
2450 if (shadow_ptr_types[0] == NULL_TREE)
2451 asan_init_shadow_ptr_types ();
2453 tree fn = builtin_decl_implicit (after_p
2454 ? BUILT_IN_ASAN_AFTER_DYNAMIC_INIT
2455 : BUILT_IN_ASAN_BEFORE_DYNAMIC_INIT);
2456 tree module_name_cst = NULL_TREE;
2457 if (!after_p)
2459 pretty_printer module_name_pp;
2460 pp_string (&module_name_pp, main_input_filename);
2462 module_name_cst = asan_pp_string (&module_name_pp);
2463 module_name_cst = fold_convert (const_ptr_type_node,
2464 module_name_cst);
2467 return build_call_expr (fn, after_p ? 0 : 1, module_name_cst);
2470 /* Build
2471 struct __asan_global
2473 const void *__beg;
2474 uptr __size;
2475 uptr __size_with_redzone;
2476 const void *__name;
2477 const void *__module_name;
2478 uptr __has_dynamic_init;
2479 __asan_global_source_location *__location;
2480 char *__odr_indicator;
2481 } type. */
2483 static tree
2484 asan_global_struct (void)
2486 static const char *field_names[]
2487 = { "__beg", "__size", "__size_with_redzone",
2488 "__name", "__module_name", "__has_dynamic_init", "__location",
2489 "__odr_indicator" };
2490 tree fields[ARRAY_SIZE (field_names)], ret;
2491 unsigned i;
2493 ret = make_node (RECORD_TYPE);
2494 for (i = 0; i < ARRAY_SIZE (field_names); i++)
2496 fields[i]
2497 = build_decl (UNKNOWN_LOCATION, FIELD_DECL,
2498 get_identifier (field_names[i]),
2499 (i == 0 || i == 3) ? const_ptr_type_node
2500 : pointer_sized_int_node);
2501 DECL_CONTEXT (fields[i]) = ret;
2502 if (i)
2503 DECL_CHAIN (fields[i - 1]) = fields[i];
2505 tree type_decl = build_decl (input_location, TYPE_DECL,
2506 get_identifier ("__asan_global"), ret);
2507 DECL_IGNORED_P (type_decl) = 1;
2508 DECL_ARTIFICIAL (type_decl) = 1;
2509 TYPE_FIELDS (ret) = fields[0];
2510 TYPE_NAME (ret) = type_decl;
2511 TYPE_STUB_DECL (ret) = type_decl;
2512 layout_type (ret);
2513 return ret;
2516 /* Create and return odr indicator symbol for DECL.
2517 TYPE is __asan_global struct type as returned by asan_global_struct. */
2519 static tree
2520 create_odr_indicator (tree decl, tree type)
2522 char *name;
2523 tree uptr = TREE_TYPE (DECL_CHAIN (TYPE_FIELDS (type)));
2524 tree decl_name
2525 = (HAS_DECL_ASSEMBLER_NAME_P (decl) ? DECL_ASSEMBLER_NAME (decl)
2526 : DECL_NAME (decl));
2527 /* DECL_NAME theoretically might be NULL. Bail out with 0 in this case. */
2528 if (decl_name == NULL_TREE)
2529 return build_int_cst (uptr, 0);
2530 const char *dname = IDENTIFIER_POINTER (decl_name);
2531 if (HAS_DECL_ASSEMBLER_NAME_P (decl))
2532 dname = targetm.strip_name_encoding (dname);
2533 size_t len = strlen (dname) + sizeof ("__odr_asan_");
2534 name = XALLOCAVEC (char, len);
2535 snprintf (name, len, "__odr_asan_%s", dname);
2536 #ifndef NO_DOT_IN_LABEL
2537 name[sizeof ("__odr_asan") - 1] = '.';
2538 #elif !defined(NO_DOLLAR_IN_LABEL)
2539 name[sizeof ("__odr_asan") - 1] = '$';
2540 #endif
2541 tree var = build_decl (UNKNOWN_LOCATION, VAR_DECL, get_identifier (name),
2542 char_type_node);
2543 TREE_ADDRESSABLE (var) = 1;
2544 TREE_READONLY (var) = 0;
2545 TREE_THIS_VOLATILE (var) = 1;
2546 DECL_GIMPLE_REG_P (var) = 0;
2547 DECL_ARTIFICIAL (var) = 1;
2548 DECL_IGNORED_P (var) = 1;
2549 TREE_STATIC (var) = 1;
2550 TREE_PUBLIC (var) = 1;
2551 DECL_VISIBILITY (var) = DECL_VISIBILITY (decl);
2552 DECL_VISIBILITY_SPECIFIED (var) = DECL_VISIBILITY_SPECIFIED (decl);
2554 TREE_USED (var) = 1;
2555 tree ctor = build_constructor_va (TREE_TYPE (var), 1, NULL_TREE,
2556 build_int_cst (unsigned_type_node, 0));
2557 TREE_CONSTANT (ctor) = 1;
2558 TREE_STATIC (ctor) = 1;
2559 DECL_INITIAL (var) = ctor;
2560 DECL_ATTRIBUTES (var) = tree_cons (get_identifier ("asan odr indicator"),
2561 NULL, DECL_ATTRIBUTES (var));
2562 make_decl_rtl (var);
2563 varpool_node::finalize_decl (var);
2564 return fold_convert (uptr, build_fold_addr_expr (var));
2567 /* Return true if DECL, a global var, might be overridden and needs
2568 an additional odr indicator symbol. */
2570 static bool
2571 asan_needs_odr_indicator_p (tree decl)
2573 /* Don't emit ODR indicators for kernel because:
2574 a) Kernel is written in C thus doesn't need ODR indicators.
2575 b) Some kernel code may have assumptions about symbols containing specific
2576 patterns in their names. Since ODR indicators contain original names
2577 of symbols they are emitted for, these assumptions would be broken for
2578 ODR indicator symbols. */
2579 return (!(flag_sanitize & SANITIZE_KERNEL_ADDRESS)
2580 && !DECL_ARTIFICIAL (decl)
2581 && !DECL_WEAK (decl)
2582 && TREE_PUBLIC (decl));
2585 /* Append description of a single global DECL into vector V.
2586 TYPE is __asan_global struct type as returned by asan_global_struct. */
2588 static void
2589 asan_add_global (tree decl, tree type, vec<constructor_elt, va_gc> *v)
2591 tree init, uptr = TREE_TYPE (DECL_CHAIN (TYPE_FIELDS (type)));
2592 unsigned HOST_WIDE_INT size;
2593 tree str_cst, module_name_cst, refdecl = decl;
2594 vec<constructor_elt, va_gc> *vinner = NULL;
2596 pretty_printer asan_pp, module_name_pp;
2598 if (DECL_NAME (decl))
2599 pp_tree_identifier (&asan_pp, DECL_NAME (decl));
2600 else
2601 pp_string (&asan_pp, "<unknown>");
2602 str_cst = asan_pp_string (&asan_pp);
2604 pp_string (&module_name_pp, main_input_filename);
2605 module_name_cst = asan_pp_string (&module_name_pp);
2607 if (asan_needs_local_alias (decl))
2609 char buf[20];
2610 ASM_GENERATE_INTERNAL_LABEL (buf, "LASAN", vec_safe_length (v) + 1);
2611 refdecl = build_decl (DECL_SOURCE_LOCATION (decl),
2612 VAR_DECL, get_identifier (buf), TREE_TYPE (decl));
2613 TREE_ADDRESSABLE (refdecl) = TREE_ADDRESSABLE (decl);
2614 TREE_READONLY (refdecl) = TREE_READONLY (decl);
2615 TREE_THIS_VOLATILE (refdecl) = TREE_THIS_VOLATILE (decl);
2616 DECL_GIMPLE_REG_P (refdecl) = DECL_GIMPLE_REG_P (decl);
2617 DECL_ARTIFICIAL (refdecl) = DECL_ARTIFICIAL (decl);
2618 DECL_IGNORED_P (refdecl) = DECL_IGNORED_P (decl);
2619 TREE_STATIC (refdecl) = 1;
2620 TREE_PUBLIC (refdecl) = 0;
2621 TREE_USED (refdecl) = 1;
2622 assemble_alias (refdecl, DECL_ASSEMBLER_NAME (decl));
2625 tree odr_indicator_ptr
2626 = (asan_needs_odr_indicator_p (decl) ? create_odr_indicator (decl, type)
2627 : build_int_cst (uptr, 0));
2628 CONSTRUCTOR_APPEND_ELT (vinner, NULL_TREE,
2629 fold_convert (const_ptr_type_node,
2630 build_fold_addr_expr (refdecl)));
2631 size = tree_to_uhwi (DECL_SIZE_UNIT (decl));
2632 CONSTRUCTOR_APPEND_ELT (vinner, NULL_TREE, build_int_cst (uptr, size));
2633 size += asan_red_zone_size (size);
2634 CONSTRUCTOR_APPEND_ELT (vinner, NULL_TREE, build_int_cst (uptr, size));
2635 CONSTRUCTOR_APPEND_ELT (vinner, NULL_TREE,
2636 fold_convert (const_ptr_type_node, str_cst));
2637 CONSTRUCTOR_APPEND_ELT (vinner, NULL_TREE,
2638 fold_convert (const_ptr_type_node, module_name_cst));
2639 varpool_node *vnode = varpool_node::get (decl);
2640 int has_dynamic_init = 0;
2641 /* FIXME: Enable initialization order fiasco detection in LTO mode once
2642 proper fix for PR 79061 will be applied. */
2643 if (!in_lto_p)
2644 has_dynamic_init = vnode ? vnode->dynamically_initialized : 0;
2645 CONSTRUCTOR_APPEND_ELT (vinner, NULL_TREE,
2646 build_int_cst (uptr, has_dynamic_init));
2647 tree locptr = NULL_TREE;
2648 location_t loc = DECL_SOURCE_LOCATION (decl);
2649 expanded_location xloc = expand_location (loc);
2650 if (xloc.file != NULL)
2652 static int lasanloccnt = 0;
2653 char buf[25];
2654 ASM_GENERATE_INTERNAL_LABEL (buf, "LASANLOC", ++lasanloccnt);
2655 tree var = build_decl (UNKNOWN_LOCATION, VAR_DECL, get_identifier (buf),
2656 ubsan_get_source_location_type ());
2657 TREE_STATIC (var) = 1;
2658 TREE_PUBLIC (var) = 0;
2659 DECL_ARTIFICIAL (var) = 1;
2660 DECL_IGNORED_P (var) = 1;
2661 pretty_printer filename_pp;
2662 pp_string (&filename_pp, xloc.file);
2663 tree str = asan_pp_string (&filename_pp);
2664 tree ctor = build_constructor_va (TREE_TYPE (var), 3,
2665 NULL_TREE, str, NULL_TREE,
2666 build_int_cst (unsigned_type_node,
2667 xloc.line), NULL_TREE,
2668 build_int_cst (unsigned_type_node,
2669 xloc.column));
2670 TREE_CONSTANT (ctor) = 1;
2671 TREE_STATIC (ctor) = 1;
2672 DECL_INITIAL (var) = ctor;
2673 varpool_node::finalize_decl (var);
2674 locptr = fold_convert (uptr, build_fold_addr_expr (var));
2676 else
2677 locptr = build_int_cst (uptr, 0);
2678 CONSTRUCTOR_APPEND_ELT (vinner, NULL_TREE, locptr);
2679 CONSTRUCTOR_APPEND_ELT (vinner, NULL_TREE, odr_indicator_ptr);
2680 init = build_constructor (type, vinner);
2681 CONSTRUCTOR_APPEND_ELT (v, NULL_TREE, init);
2684 /* Initialize sanitizer.def builtins if the FE hasn't initialized them. */
2685 void
2686 initialize_sanitizer_builtins (void)
2688 tree decl;
2690 if (builtin_decl_implicit_p (BUILT_IN_ASAN_INIT))
2691 return;
2693 tree BT_FN_VOID = build_function_type_list (void_type_node, NULL_TREE);
2694 tree BT_FN_VOID_PTR
2695 = build_function_type_list (void_type_node, ptr_type_node, NULL_TREE);
2696 tree BT_FN_VOID_CONST_PTR
2697 = build_function_type_list (void_type_node, const_ptr_type_node, NULL_TREE);
2698 tree BT_FN_VOID_PTR_PTR
2699 = build_function_type_list (void_type_node, ptr_type_node,
2700 ptr_type_node, NULL_TREE);
2701 tree BT_FN_VOID_PTR_PTR_PTR
2702 = build_function_type_list (void_type_node, ptr_type_node,
2703 ptr_type_node, ptr_type_node, NULL_TREE);
2704 tree BT_FN_VOID_PTR_PTRMODE
2705 = build_function_type_list (void_type_node, ptr_type_node,
2706 pointer_sized_int_node, NULL_TREE);
2707 tree BT_FN_VOID_INT
2708 = build_function_type_list (void_type_node, integer_type_node, NULL_TREE);
2709 tree BT_FN_SIZE_CONST_PTR_INT
2710 = build_function_type_list (size_type_node, const_ptr_type_node,
2711 integer_type_node, NULL_TREE);
2713 tree BT_FN_VOID_UINT8_UINT8
2714 = build_function_type_list (void_type_node, unsigned_char_type_node,
2715 unsigned_char_type_node, NULL_TREE);
2716 tree BT_FN_VOID_UINT16_UINT16
2717 = build_function_type_list (void_type_node, uint16_type_node,
2718 uint16_type_node, NULL_TREE);
2719 tree BT_FN_VOID_UINT32_UINT32
2720 = build_function_type_list (void_type_node, uint32_type_node,
2721 uint32_type_node, NULL_TREE);
2722 tree BT_FN_VOID_UINT64_UINT64
2723 = build_function_type_list (void_type_node, uint64_type_node,
2724 uint64_type_node, NULL_TREE);
2725 tree BT_FN_VOID_FLOAT_FLOAT
2726 = build_function_type_list (void_type_node, float_type_node,
2727 float_type_node, NULL_TREE);
2728 tree BT_FN_VOID_DOUBLE_DOUBLE
2729 = build_function_type_list (void_type_node, double_type_node,
2730 double_type_node, NULL_TREE);
2731 tree BT_FN_VOID_UINT64_PTR
2732 = build_function_type_list (void_type_node, uint64_type_node,
2733 ptr_type_node, NULL_TREE);
2735 tree BT_FN_BOOL_VPTR_PTR_IX_INT_INT[5];
2736 tree BT_FN_IX_CONST_VPTR_INT[5];
2737 tree BT_FN_IX_VPTR_IX_INT[5];
2738 tree BT_FN_VOID_VPTR_IX_INT[5];
2739 tree vptr
2740 = build_pointer_type (build_qualified_type (void_type_node,
2741 TYPE_QUAL_VOLATILE));
2742 tree cvptr
2743 = build_pointer_type (build_qualified_type (void_type_node,
2744 TYPE_QUAL_VOLATILE
2745 |TYPE_QUAL_CONST));
2746 tree boolt
2747 = lang_hooks.types.type_for_size (BOOL_TYPE_SIZE, 1);
2748 int i;
2749 for (i = 0; i < 5; i++)
2751 tree ix = build_nonstandard_integer_type (BITS_PER_UNIT * (1 << i), 1);
2752 BT_FN_BOOL_VPTR_PTR_IX_INT_INT[i]
2753 = build_function_type_list (boolt, vptr, ptr_type_node, ix,
2754 integer_type_node, integer_type_node,
2755 NULL_TREE);
2756 BT_FN_IX_CONST_VPTR_INT[i]
2757 = build_function_type_list (ix, cvptr, integer_type_node, NULL_TREE);
2758 BT_FN_IX_VPTR_IX_INT[i]
2759 = build_function_type_list (ix, vptr, ix, integer_type_node,
2760 NULL_TREE);
2761 BT_FN_VOID_VPTR_IX_INT[i]
2762 = build_function_type_list (void_type_node, vptr, ix,
2763 integer_type_node, NULL_TREE);
2765 #define BT_FN_BOOL_VPTR_PTR_I1_INT_INT BT_FN_BOOL_VPTR_PTR_IX_INT_INT[0]
2766 #define BT_FN_I1_CONST_VPTR_INT BT_FN_IX_CONST_VPTR_INT[0]
2767 #define BT_FN_I1_VPTR_I1_INT BT_FN_IX_VPTR_IX_INT[0]
2768 #define BT_FN_VOID_VPTR_I1_INT BT_FN_VOID_VPTR_IX_INT[0]
2769 #define BT_FN_BOOL_VPTR_PTR_I2_INT_INT BT_FN_BOOL_VPTR_PTR_IX_INT_INT[1]
2770 #define BT_FN_I2_CONST_VPTR_INT BT_FN_IX_CONST_VPTR_INT[1]
2771 #define BT_FN_I2_VPTR_I2_INT BT_FN_IX_VPTR_IX_INT[1]
2772 #define BT_FN_VOID_VPTR_I2_INT BT_FN_VOID_VPTR_IX_INT[1]
2773 #define BT_FN_BOOL_VPTR_PTR_I4_INT_INT BT_FN_BOOL_VPTR_PTR_IX_INT_INT[2]
2774 #define BT_FN_I4_CONST_VPTR_INT BT_FN_IX_CONST_VPTR_INT[2]
2775 #define BT_FN_I4_VPTR_I4_INT BT_FN_IX_VPTR_IX_INT[2]
2776 #define BT_FN_VOID_VPTR_I4_INT BT_FN_VOID_VPTR_IX_INT[2]
2777 #define BT_FN_BOOL_VPTR_PTR_I8_INT_INT BT_FN_BOOL_VPTR_PTR_IX_INT_INT[3]
2778 #define BT_FN_I8_CONST_VPTR_INT BT_FN_IX_CONST_VPTR_INT[3]
2779 #define BT_FN_I8_VPTR_I8_INT BT_FN_IX_VPTR_IX_INT[3]
2780 #define BT_FN_VOID_VPTR_I8_INT BT_FN_VOID_VPTR_IX_INT[3]
2781 #define BT_FN_BOOL_VPTR_PTR_I16_INT_INT BT_FN_BOOL_VPTR_PTR_IX_INT_INT[4]
2782 #define BT_FN_I16_CONST_VPTR_INT BT_FN_IX_CONST_VPTR_INT[4]
2783 #define BT_FN_I16_VPTR_I16_INT BT_FN_IX_VPTR_IX_INT[4]
2784 #define BT_FN_VOID_VPTR_I16_INT BT_FN_VOID_VPTR_IX_INT[4]
2785 #undef ATTR_NOTHROW_LEAF_LIST
2786 #define ATTR_NOTHROW_LEAF_LIST ECF_NOTHROW | ECF_LEAF
2787 #undef ATTR_TMPURE_NOTHROW_LEAF_LIST
2788 #define ATTR_TMPURE_NOTHROW_LEAF_LIST ECF_TM_PURE | ATTR_NOTHROW_LEAF_LIST
2789 #undef ATTR_NORETURN_NOTHROW_LEAF_LIST
2790 #define ATTR_NORETURN_NOTHROW_LEAF_LIST ECF_NORETURN | ATTR_NOTHROW_LEAF_LIST
2791 #undef ATTR_CONST_NORETURN_NOTHROW_LEAF_LIST
2792 #define ATTR_CONST_NORETURN_NOTHROW_LEAF_LIST \
2793 ECF_CONST | ATTR_NORETURN_NOTHROW_LEAF_LIST
2794 #undef ATTR_TMPURE_NORETURN_NOTHROW_LEAF_LIST
2795 #define ATTR_TMPURE_NORETURN_NOTHROW_LEAF_LIST \
2796 ECF_TM_PURE | ATTR_NORETURN_NOTHROW_LEAF_LIST
2797 #undef ATTR_COLD_NOTHROW_LEAF_LIST
2798 #define ATTR_COLD_NOTHROW_LEAF_LIST \
2799 /* ECF_COLD missing */ ATTR_NOTHROW_LEAF_LIST
2800 #undef ATTR_COLD_NORETURN_NOTHROW_LEAF_LIST
2801 #define ATTR_COLD_NORETURN_NOTHROW_LEAF_LIST \
2802 /* ECF_COLD missing */ ATTR_NORETURN_NOTHROW_LEAF_LIST
2803 #undef ATTR_COLD_CONST_NORETURN_NOTHROW_LEAF_LIST
2804 #define ATTR_COLD_CONST_NORETURN_NOTHROW_LEAF_LIST \
2805 /* ECF_COLD missing */ ATTR_CONST_NORETURN_NOTHROW_LEAF_LIST
2806 #undef ATTR_PURE_NOTHROW_LEAF_LIST
2807 #define ATTR_PURE_NOTHROW_LEAF_LIST ECF_PURE | ATTR_NOTHROW_LEAF_LIST
2808 #undef DEF_BUILTIN_STUB
2809 #define DEF_BUILTIN_STUB(ENUM, NAME)
2810 #undef DEF_SANITIZER_BUILTIN
2811 #define DEF_SANITIZER_BUILTIN(ENUM, NAME, TYPE, ATTRS) \
2812 do { \
2813 decl = add_builtin_function ("__builtin_" NAME, TYPE, ENUM, \
2814 BUILT_IN_NORMAL, NAME, NULL_TREE); \
2815 set_call_expr_flags (decl, ATTRS); \
2816 set_builtin_decl (ENUM, decl, true); \
2817 } while (0);
2819 #include "sanitizer.def"
2821 /* -fsanitize=object-size uses __builtin_object_size, but that might
2822 not be available for e.g. Fortran at this point. We use
2823 DEF_SANITIZER_BUILTIN here only as a convenience macro. */
2824 if ((flag_sanitize & SANITIZE_OBJECT_SIZE)
2825 && !builtin_decl_implicit_p (BUILT_IN_OBJECT_SIZE))
2826 DEF_SANITIZER_BUILTIN (BUILT_IN_OBJECT_SIZE, "object_size",
2827 BT_FN_SIZE_CONST_PTR_INT,
2828 ATTR_PURE_NOTHROW_LEAF_LIST)
2830 #undef DEF_SANITIZER_BUILTIN
2831 #undef DEF_BUILTIN_STUB
2834 /* Called via htab_traverse. Count number of emitted
2835 STRING_CSTs in the constant hash table. */
2838 count_string_csts (constant_descriptor_tree **slot,
2839 unsigned HOST_WIDE_INT *data)
2841 struct constant_descriptor_tree *desc = *slot;
2842 if (TREE_CODE (desc->value) == STRING_CST
2843 && TREE_ASM_WRITTEN (desc->value)
2844 && asan_protect_global (desc->value))
2845 ++*data;
2846 return 1;
2849 /* Helper structure to pass two parameters to
2850 add_string_csts. */
2852 struct asan_add_string_csts_data
2854 tree type;
2855 vec<constructor_elt, va_gc> *v;
2858 /* Called via hash_table::traverse. Call asan_add_global
2859 on emitted STRING_CSTs from the constant hash table. */
2862 add_string_csts (constant_descriptor_tree **slot,
2863 asan_add_string_csts_data *aascd)
2865 struct constant_descriptor_tree *desc = *slot;
2866 if (TREE_CODE (desc->value) == STRING_CST
2867 && TREE_ASM_WRITTEN (desc->value)
2868 && asan_protect_global (desc->value))
2870 asan_add_global (SYMBOL_REF_DECL (XEXP (desc->rtl, 0)),
2871 aascd->type, aascd->v);
2873 return 1;
2876 /* Needs to be GTY(()), because cgraph_build_static_cdtor may
2877 invoke ggc_collect. */
2878 static GTY(()) tree asan_ctor_statements;
2880 /* Module-level instrumentation.
2881 - Insert __asan_init_vN() into the list of CTORs.
2882 - TODO: insert redzones around globals.
2885 void
2886 asan_finish_file (void)
2888 varpool_node *vnode;
2889 unsigned HOST_WIDE_INT gcount = 0;
2891 if (shadow_ptr_types[0] == NULL_TREE)
2892 asan_init_shadow_ptr_types ();
2893 /* Avoid instrumenting code in the asan ctors/dtors.
2894 We don't need to insert padding after the description strings,
2895 nor after .LASAN* array. */
2896 flag_sanitize &= ~SANITIZE_ADDRESS;
2898 /* For user-space we want asan constructors to run first.
2899 Linux kernel does not support priorities other than default, and the only
2900 other user of constructors is coverage. So we run with the default
2901 priority. */
2902 int priority = flag_sanitize & SANITIZE_USER_ADDRESS
2903 ? MAX_RESERVED_INIT_PRIORITY - 1 : DEFAULT_INIT_PRIORITY;
2905 if (flag_sanitize & SANITIZE_USER_ADDRESS)
2907 tree fn = builtin_decl_implicit (BUILT_IN_ASAN_INIT);
2908 append_to_statement_list (build_call_expr (fn, 0), &asan_ctor_statements);
2909 fn = builtin_decl_implicit (BUILT_IN_ASAN_VERSION_MISMATCH_CHECK);
2910 append_to_statement_list (build_call_expr (fn, 0), &asan_ctor_statements);
2912 FOR_EACH_DEFINED_VARIABLE (vnode)
2913 if (TREE_ASM_WRITTEN (vnode->decl)
2914 && asan_protect_global (vnode->decl))
2915 ++gcount;
2916 hash_table<tree_descriptor_hasher> *const_desc_htab = constant_pool_htab ();
2917 const_desc_htab->traverse<unsigned HOST_WIDE_INT *, count_string_csts>
2918 (&gcount);
2919 if (gcount)
2921 tree type = asan_global_struct (), var, ctor;
2922 tree dtor_statements = NULL_TREE;
2923 vec<constructor_elt, va_gc> *v;
2924 char buf[20];
2926 type = build_array_type_nelts (type, gcount);
2927 ASM_GENERATE_INTERNAL_LABEL (buf, "LASAN", 0);
2928 var = build_decl (UNKNOWN_LOCATION, VAR_DECL, get_identifier (buf),
2929 type);
2930 TREE_STATIC (var) = 1;
2931 TREE_PUBLIC (var) = 0;
2932 DECL_ARTIFICIAL (var) = 1;
2933 DECL_IGNORED_P (var) = 1;
2934 vec_alloc (v, gcount);
2935 FOR_EACH_DEFINED_VARIABLE (vnode)
2936 if (TREE_ASM_WRITTEN (vnode->decl)
2937 && asan_protect_global (vnode->decl))
2938 asan_add_global (vnode->decl, TREE_TYPE (type), v);
2939 struct asan_add_string_csts_data aascd;
2940 aascd.type = TREE_TYPE (type);
2941 aascd.v = v;
2942 const_desc_htab->traverse<asan_add_string_csts_data *, add_string_csts>
2943 (&aascd);
2944 ctor = build_constructor (type, v);
2945 TREE_CONSTANT (ctor) = 1;
2946 TREE_STATIC (ctor) = 1;
2947 DECL_INITIAL (var) = ctor;
2948 varpool_node::finalize_decl (var);
2950 tree fn = builtin_decl_implicit (BUILT_IN_ASAN_REGISTER_GLOBALS);
2951 tree gcount_tree = build_int_cst (pointer_sized_int_node, gcount);
2952 append_to_statement_list (build_call_expr (fn, 2,
2953 build_fold_addr_expr (var),
2954 gcount_tree),
2955 &asan_ctor_statements);
2957 fn = builtin_decl_implicit (BUILT_IN_ASAN_UNREGISTER_GLOBALS);
2958 append_to_statement_list (build_call_expr (fn, 2,
2959 build_fold_addr_expr (var),
2960 gcount_tree),
2961 &dtor_statements);
2962 cgraph_build_static_cdtor ('D', dtor_statements, priority);
2964 if (asan_ctor_statements)
2965 cgraph_build_static_cdtor ('I', asan_ctor_statements, priority);
2966 flag_sanitize |= SANITIZE_ADDRESS;
2969 /* Poison or unpoison (depending on IS_CLOBBER variable) shadow memory based
2970 on SHADOW address. Newly added statements will be added to ITER with
2971 given location LOC. We mark SIZE bytes in shadow memory, where
2972 LAST_CHUNK_SIZE is greater than zero in situation where we are at the
2973 end of a variable. */
2975 static void
2976 asan_store_shadow_bytes (gimple_stmt_iterator *iter, location_t loc,
2977 tree shadow,
2978 unsigned HOST_WIDE_INT base_addr_offset,
2979 bool is_clobber, unsigned size,
2980 unsigned last_chunk_size)
2982 tree shadow_ptr_type;
2984 switch (size)
2986 case 1:
2987 shadow_ptr_type = shadow_ptr_types[0];
2988 break;
2989 case 2:
2990 shadow_ptr_type = shadow_ptr_types[1];
2991 break;
2992 case 4:
2993 shadow_ptr_type = shadow_ptr_types[2];
2994 break;
2995 default:
2996 gcc_unreachable ();
2999 unsigned char c = (char) is_clobber ? ASAN_STACK_MAGIC_USE_AFTER_SCOPE : 0;
3000 unsigned HOST_WIDE_INT val = 0;
3001 unsigned last_pos = size;
3002 if (last_chunk_size && !is_clobber)
3003 last_pos = BYTES_BIG_ENDIAN ? 0 : size - 1;
3004 for (unsigned i = 0; i < size; ++i)
3006 unsigned char shadow_c = c;
3007 if (i == last_pos)
3008 shadow_c = last_chunk_size;
3009 val |= (unsigned HOST_WIDE_INT) shadow_c << (BITS_PER_UNIT * i);
3012 /* Handle last chunk in unpoisoning. */
3013 tree magic = build_int_cst (TREE_TYPE (shadow_ptr_type), val);
3015 tree dest = build2 (MEM_REF, TREE_TYPE (shadow_ptr_type), shadow,
3016 build_int_cst (shadow_ptr_type, base_addr_offset));
3018 gimple *g = gimple_build_assign (dest, magic);
3019 gimple_set_location (g, loc);
3020 gsi_insert_after (iter, g, GSI_NEW_STMT);
3023 /* Expand the ASAN_MARK builtins. */
3025 bool
3026 asan_expand_mark_ifn (gimple_stmt_iterator *iter)
3028 gimple *g = gsi_stmt (*iter);
3029 location_t loc = gimple_location (g);
3030 HOST_WIDE_INT flag = tree_to_shwi (gimple_call_arg (g, 0));
3031 bool is_poison = ((asan_mark_flags)flag) == ASAN_MARK_POISON;
3033 tree base = gimple_call_arg (g, 1);
3034 gcc_checking_assert (TREE_CODE (base) == ADDR_EXPR);
3035 tree decl = TREE_OPERAND (base, 0);
3037 /* For a nested function, we can have: ASAN_MARK (2, &FRAME.2.fp_input, 4) */
3038 if (TREE_CODE (decl) == COMPONENT_REF
3039 && DECL_NONLOCAL_FRAME (TREE_OPERAND (decl, 0)))
3040 decl = TREE_OPERAND (decl, 0);
3042 gcc_checking_assert (TREE_CODE (decl) == VAR_DECL);
3044 if (is_poison)
3046 if (asan_handled_variables == NULL)
3047 asan_handled_variables = new hash_set<tree> (16);
3048 asan_handled_variables->add (decl);
3050 tree len = gimple_call_arg (g, 2);
3052 gcc_assert (tree_fits_shwi_p (len));
3053 unsigned HOST_WIDE_INT size_in_bytes = tree_to_shwi (len);
3054 gcc_assert (size_in_bytes);
3056 g = gimple_build_assign (make_ssa_name (pointer_sized_int_node),
3057 NOP_EXPR, base);
3058 gimple_set_location (g, loc);
3059 gsi_replace (iter, g, false);
3060 tree base_addr = gimple_assign_lhs (g);
3062 /* Generate direct emission if size_in_bytes is small. */
3063 if (size_in_bytes <= ASAN_PARAM_USE_AFTER_SCOPE_DIRECT_EMISSION_THRESHOLD)
3065 unsigned HOST_WIDE_INT shadow_size = shadow_mem_size (size_in_bytes);
3067 tree shadow = build_shadow_mem_access (iter, loc, base_addr,
3068 shadow_ptr_types[0], true);
3070 for (unsigned HOST_WIDE_INT offset = 0; offset < shadow_size;)
3072 unsigned size = 1;
3073 if (shadow_size - offset >= 4)
3074 size = 4;
3075 else if (shadow_size - offset >= 2)
3076 size = 2;
3078 unsigned HOST_WIDE_INT last_chunk_size = 0;
3079 unsigned HOST_WIDE_INT s = (offset + size) * ASAN_SHADOW_GRANULARITY;
3080 if (s > size_in_bytes)
3081 last_chunk_size = ASAN_SHADOW_GRANULARITY - (s - size_in_bytes);
3083 asan_store_shadow_bytes (iter, loc, shadow, offset, is_poison,
3084 size, last_chunk_size);
3085 offset += size;
3088 else
3090 g = gimple_build_assign (make_ssa_name (pointer_sized_int_node),
3091 NOP_EXPR, len);
3092 gimple_set_location (g, loc);
3093 gsi_insert_before (iter, g, GSI_SAME_STMT);
3094 tree sz_arg = gimple_assign_lhs (g);
3096 tree fun
3097 = builtin_decl_implicit (is_poison ? BUILT_IN_ASAN_POISON_STACK_MEMORY
3098 : BUILT_IN_ASAN_UNPOISON_STACK_MEMORY);
3099 g = gimple_build_call (fun, 2, base_addr, sz_arg);
3100 gimple_set_location (g, loc);
3101 gsi_insert_after (iter, g, GSI_NEW_STMT);
3104 return false;
3107 /* Expand the ASAN_{LOAD,STORE} builtins. */
3109 bool
3110 asan_expand_check_ifn (gimple_stmt_iterator *iter, bool use_calls)
3112 gimple *g = gsi_stmt (*iter);
3113 location_t loc = gimple_location (g);
3114 bool recover_p;
3115 if (flag_sanitize & SANITIZE_USER_ADDRESS)
3116 recover_p = (flag_sanitize_recover & SANITIZE_USER_ADDRESS) != 0;
3117 else
3118 recover_p = (flag_sanitize_recover & SANITIZE_KERNEL_ADDRESS) != 0;
3120 HOST_WIDE_INT flags = tree_to_shwi (gimple_call_arg (g, 0));
3121 gcc_assert (flags < ASAN_CHECK_LAST);
3122 bool is_scalar_access = (flags & ASAN_CHECK_SCALAR_ACCESS) != 0;
3123 bool is_store = (flags & ASAN_CHECK_STORE) != 0;
3124 bool is_non_zero_len = (flags & ASAN_CHECK_NON_ZERO_LEN) != 0;
3126 tree base = gimple_call_arg (g, 1);
3127 tree len = gimple_call_arg (g, 2);
3128 HOST_WIDE_INT align = tree_to_shwi (gimple_call_arg (g, 3));
3130 HOST_WIDE_INT size_in_bytes
3131 = is_scalar_access && tree_fits_shwi_p (len) ? tree_to_shwi (len) : -1;
3133 if (use_calls)
3135 /* Instrument using callbacks. */
3136 gimple *g = gimple_build_assign (make_ssa_name (pointer_sized_int_node),
3137 NOP_EXPR, base);
3138 gimple_set_location (g, loc);
3139 gsi_insert_before (iter, g, GSI_SAME_STMT);
3140 tree base_addr = gimple_assign_lhs (g);
3142 int nargs;
3143 tree fun = check_func (is_store, recover_p, size_in_bytes, &nargs);
3144 if (nargs == 1)
3145 g = gimple_build_call (fun, 1, base_addr);
3146 else
3148 gcc_assert (nargs == 2);
3149 g = gimple_build_assign (make_ssa_name (pointer_sized_int_node),
3150 NOP_EXPR, len);
3151 gimple_set_location (g, loc);
3152 gsi_insert_before (iter, g, GSI_SAME_STMT);
3153 tree sz_arg = gimple_assign_lhs (g);
3154 g = gimple_build_call (fun, nargs, base_addr, sz_arg);
3156 gimple_set_location (g, loc);
3157 gsi_replace (iter, g, false);
3158 return false;
3161 HOST_WIDE_INT real_size_in_bytes = size_in_bytes == -1 ? 1 : size_in_bytes;
3163 tree shadow_ptr_type = shadow_ptr_types[real_size_in_bytes == 16 ? 1 : 0];
3164 tree shadow_type = TREE_TYPE (shadow_ptr_type);
3166 gimple_stmt_iterator gsi = *iter;
3168 if (!is_non_zero_len)
3170 /* So, the length of the memory area to asan-protect is
3171 non-constant. Let's guard the generated instrumentation code
3172 like:
3174 if (len != 0)
3176 //asan instrumentation code goes here.
3178 // falltrough instructions, starting with *ITER. */
3180 g = gimple_build_cond (NE_EXPR,
3181 len,
3182 build_int_cst (TREE_TYPE (len), 0),
3183 NULL_TREE, NULL_TREE);
3184 gimple_set_location (g, loc);
3186 basic_block then_bb, fallthrough_bb;
3187 insert_if_then_before_iter (as_a <gcond *> (g), iter,
3188 /*then_more_likely_p=*/true,
3189 &then_bb, &fallthrough_bb);
3190 /* Note that fallthrough_bb starts with the statement that was
3191 pointed to by ITER. */
3193 /* The 'then block' of the 'if (len != 0) condition is where
3194 we'll generate the asan instrumentation code now. */
3195 gsi = gsi_last_bb (then_bb);
3198 /* Get an iterator on the point where we can add the condition
3199 statement for the instrumentation. */
3200 basic_block then_bb, else_bb;
3201 gsi = create_cond_insert_point (&gsi, /*before_p*/false,
3202 /*then_more_likely_p=*/false,
3203 /*create_then_fallthru_edge*/recover_p,
3204 &then_bb,
3205 &else_bb);
3207 g = gimple_build_assign (make_ssa_name (pointer_sized_int_node),
3208 NOP_EXPR, base);
3209 gimple_set_location (g, loc);
3210 gsi_insert_before (&gsi, g, GSI_NEW_STMT);
3211 tree base_addr = gimple_assign_lhs (g);
3213 tree t = NULL_TREE;
3214 if (real_size_in_bytes >= 8)
3216 tree shadow = build_shadow_mem_access (&gsi, loc, base_addr,
3217 shadow_ptr_type);
3218 t = shadow;
3220 else
3222 /* Slow path for 1, 2 and 4 byte accesses. */
3223 /* Test (shadow != 0)
3224 & ((base_addr & 7) + (real_size_in_bytes - 1)) >= shadow). */
3225 tree shadow = build_shadow_mem_access (&gsi, loc, base_addr,
3226 shadow_ptr_type);
3227 gimple *shadow_test = build_assign (NE_EXPR, shadow, 0);
3228 gimple_seq seq = NULL;
3229 gimple_seq_add_stmt (&seq, shadow_test);
3230 /* Aligned (>= 8 bytes) can test just
3231 (real_size_in_bytes - 1 >= shadow), as base_addr & 7 is known
3232 to be 0. */
3233 if (align < 8)
3235 gimple_seq_add_stmt (&seq, build_assign (BIT_AND_EXPR,
3236 base_addr, 7));
3237 gimple_seq_add_stmt (&seq,
3238 build_type_cast (shadow_type,
3239 gimple_seq_last (seq)));
3240 if (real_size_in_bytes > 1)
3241 gimple_seq_add_stmt (&seq,
3242 build_assign (PLUS_EXPR,
3243 gimple_seq_last (seq),
3244 real_size_in_bytes - 1));
3245 t = gimple_assign_lhs (gimple_seq_last_stmt (seq));
3247 else
3248 t = build_int_cst (shadow_type, real_size_in_bytes - 1);
3249 gimple_seq_add_stmt (&seq, build_assign (GE_EXPR, t, shadow));
3250 gimple_seq_add_stmt (&seq, build_assign (BIT_AND_EXPR, shadow_test,
3251 gimple_seq_last (seq)));
3252 t = gimple_assign_lhs (gimple_seq_last (seq));
3253 gimple_seq_set_location (seq, loc);
3254 gsi_insert_seq_after (&gsi, seq, GSI_CONTINUE_LINKING);
3256 /* For non-constant, misaligned or otherwise weird access sizes,
3257 check first and last byte. */
3258 if (size_in_bytes == -1)
3260 g = gimple_build_assign (make_ssa_name (pointer_sized_int_node),
3261 MINUS_EXPR, len,
3262 build_int_cst (pointer_sized_int_node, 1));
3263 gimple_set_location (g, loc);
3264 gsi_insert_after (&gsi, g, GSI_NEW_STMT);
3265 tree last = gimple_assign_lhs (g);
3266 g = gimple_build_assign (make_ssa_name (pointer_sized_int_node),
3267 PLUS_EXPR, base_addr, last);
3268 gimple_set_location (g, loc);
3269 gsi_insert_after (&gsi, g, GSI_NEW_STMT);
3270 tree base_end_addr = gimple_assign_lhs (g);
3272 tree shadow = build_shadow_mem_access (&gsi, loc, base_end_addr,
3273 shadow_ptr_type);
3274 gimple *shadow_test = build_assign (NE_EXPR, shadow, 0);
3275 gimple_seq seq = NULL;
3276 gimple_seq_add_stmt (&seq, shadow_test);
3277 gimple_seq_add_stmt (&seq, build_assign (BIT_AND_EXPR,
3278 base_end_addr, 7));
3279 gimple_seq_add_stmt (&seq, build_type_cast (shadow_type,
3280 gimple_seq_last (seq)));
3281 gimple_seq_add_stmt (&seq, build_assign (GE_EXPR,
3282 gimple_seq_last (seq),
3283 shadow));
3284 gimple_seq_add_stmt (&seq, build_assign (BIT_AND_EXPR, shadow_test,
3285 gimple_seq_last (seq)));
3286 gimple_seq_add_stmt (&seq, build_assign (BIT_IOR_EXPR, t,
3287 gimple_seq_last (seq)));
3288 t = gimple_assign_lhs (gimple_seq_last (seq));
3289 gimple_seq_set_location (seq, loc);
3290 gsi_insert_seq_after (&gsi, seq, GSI_CONTINUE_LINKING);
3294 g = gimple_build_cond (NE_EXPR, t, build_int_cst (TREE_TYPE (t), 0),
3295 NULL_TREE, NULL_TREE);
3296 gimple_set_location (g, loc);
3297 gsi_insert_after (&gsi, g, GSI_NEW_STMT);
3299 /* Generate call to the run-time library (e.g. __asan_report_load8). */
3300 gsi = gsi_start_bb (then_bb);
3301 int nargs;
3302 tree fun = report_error_func (is_store, recover_p, size_in_bytes, &nargs);
3303 g = gimple_build_call (fun, nargs, base_addr, len);
3304 gimple_set_location (g, loc);
3305 gsi_insert_after (&gsi, g, GSI_NEW_STMT);
3307 gsi_remove (iter, true);
3308 *iter = gsi_start_bb (else_bb);
3310 return true;
3313 /* Create ASAN shadow variable for a VAR_DECL which has been rewritten
3314 into SSA. Already seen VAR_DECLs are stored in SHADOW_VARS_MAPPING. */
3316 static tree
3317 create_asan_shadow_var (tree var_decl,
3318 hash_map<tree, tree> &shadow_vars_mapping)
3320 tree *slot = shadow_vars_mapping.get (var_decl);
3321 if (slot == NULL)
3323 tree shadow_var = copy_node (var_decl);
3325 copy_body_data id;
3326 memset (&id, 0, sizeof (copy_body_data));
3327 id.src_fn = id.dst_fn = current_function_decl;
3328 copy_decl_for_dup_finish (&id, var_decl, shadow_var);
3330 DECL_ARTIFICIAL (shadow_var) = 1;
3331 DECL_IGNORED_P (shadow_var) = 1;
3332 DECL_SEEN_IN_BIND_EXPR_P (shadow_var) = 0;
3333 gimple_add_tmp_var (shadow_var);
3335 shadow_vars_mapping.put (var_decl, shadow_var);
3336 return shadow_var;
3338 else
3339 return *slot;
3342 /* Expand ASAN_POISON ifn. */
3344 bool
3345 asan_expand_poison_ifn (gimple_stmt_iterator *iter,
3346 bool *need_commit_edge_insert,
3347 hash_map<tree, tree> &shadow_vars_mapping)
3349 gimple *g = gsi_stmt (*iter);
3350 tree poisoned_var = gimple_call_lhs (g);
3351 if (!poisoned_var || has_zero_uses (poisoned_var))
3353 gsi_remove (iter, true);
3354 return true;
3357 if (SSA_NAME_VAR (poisoned_var) == NULL_TREE)
3358 SET_SSA_NAME_VAR_OR_IDENTIFIER (poisoned_var,
3359 create_tmp_var (TREE_TYPE (poisoned_var)));
3361 tree shadow_var = create_asan_shadow_var (SSA_NAME_VAR (poisoned_var),
3362 shadow_vars_mapping);
3364 bool recover_p;
3365 if (flag_sanitize & SANITIZE_USER_ADDRESS)
3366 recover_p = (flag_sanitize_recover & SANITIZE_USER_ADDRESS) != 0;
3367 else
3368 recover_p = (flag_sanitize_recover & SANITIZE_KERNEL_ADDRESS) != 0;
3369 tree size = DECL_SIZE_UNIT (shadow_var);
3370 gimple *poison_call
3371 = gimple_build_call_internal (IFN_ASAN_MARK, 3,
3372 build_int_cst (integer_type_node,
3373 ASAN_MARK_POISON),
3374 build_fold_addr_expr (shadow_var), size);
3376 gimple *use;
3377 imm_use_iterator imm_iter;
3378 FOR_EACH_IMM_USE_STMT (use, imm_iter, poisoned_var)
3380 if (is_gimple_debug (use))
3381 continue;
3383 int nargs;
3384 bool store_p = gimple_call_internal_p (use, IFN_ASAN_POISON_USE);
3385 tree fun = report_error_func (store_p, recover_p, tree_to_uhwi (size),
3386 &nargs);
3388 gcall *call = gimple_build_call (fun, 1,
3389 build_fold_addr_expr (shadow_var));
3390 gimple_set_location (call, gimple_location (use));
3391 gimple *call_to_insert = call;
3393 /* The USE can be a gimple PHI node. If so, insert the call on
3394 all edges leading to the PHI node. */
3395 if (is_a <gphi *> (use))
3397 gphi *phi = dyn_cast<gphi *> (use);
3398 for (unsigned i = 0; i < gimple_phi_num_args (phi); ++i)
3399 if (gimple_phi_arg_def (phi, i) == poisoned_var)
3401 edge e = gimple_phi_arg_edge (phi, i);
3403 if (call_to_insert == NULL)
3404 call_to_insert = gimple_copy (call);
3406 gsi_insert_seq_on_edge (e, call_to_insert);
3407 *need_commit_edge_insert = true;
3408 call_to_insert = NULL;
3411 else
3413 gimple_stmt_iterator gsi = gsi_for_stmt (use);
3414 if (store_p)
3415 gsi_replace (&gsi, call, true);
3416 else
3417 gsi_insert_before (&gsi, call, GSI_NEW_STMT);
3421 SSA_NAME_IS_DEFAULT_DEF (poisoned_var) = true;
3422 SSA_NAME_DEF_STMT (poisoned_var) = gimple_build_nop ();
3423 gsi_replace (iter, poison_call, false);
3425 return true;
3428 /* Instrument the current function. */
3430 static unsigned int
3431 asan_instrument (void)
3433 if (shadow_ptr_types[0] == NULL_TREE)
3434 asan_init_shadow_ptr_types ();
3435 transform_statements ();
3436 last_alloca_addr = NULL_TREE;
3437 return 0;
3440 static bool
3441 gate_asan (void)
3443 return sanitize_flags_p (SANITIZE_ADDRESS);
3446 namespace {
3448 const pass_data pass_data_asan =
3450 GIMPLE_PASS, /* type */
3451 "asan", /* name */
3452 OPTGROUP_NONE, /* optinfo_flags */
3453 TV_NONE, /* tv_id */
3454 ( PROP_ssa | PROP_cfg | PROP_gimple_leh ), /* properties_required */
3455 0, /* properties_provided */
3456 0, /* properties_destroyed */
3457 0, /* todo_flags_start */
3458 TODO_update_ssa, /* todo_flags_finish */
3461 class pass_asan : public gimple_opt_pass
3463 public:
3464 pass_asan (gcc::context *ctxt)
3465 : gimple_opt_pass (pass_data_asan, ctxt)
3468 /* opt_pass methods: */
3469 opt_pass * clone () { return new pass_asan (m_ctxt); }
3470 virtual bool gate (function *) { return gate_asan (); }
3471 virtual unsigned int execute (function *) { return asan_instrument (); }
3473 }; // class pass_asan
3475 } // anon namespace
3477 gimple_opt_pass *
3478 make_pass_asan (gcc::context *ctxt)
3480 return new pass_asan (ctxt);
3483 namespace {
3485 const pass_data pass_data_asan_O0 =
3487 GIMPLE_PASS, /* type */
3488 "asan0", /* name */
3489 OPTGROUP_NONE, /* optinfo_flags */
3490 TV_NONE, /* tv_id */
3491 ( PROP_ssa | PROP_cfg | PROP_gimple_leh ), /* properties_required */
3492 0, /* properties_provided */
3493 0, /* properties_destroyed */
3494 0, /* todo_flags_start */
3495 TODO_update_ssa, /* todo_flags_finish */
3498 class pass_asan_O0 : public gimple_opt_pass
3500 public:
3501 pass_asan_O0 (gcc::context *ctxt)
3502 : gimple_opt_pass (pass_data_asan_O0, ctxt)
3505 /* opt_pass methods: */
3506 virtual bool gate (function *) { return !optimize && gate_asan (); }
3507 virtual unsigned int execute (function *) { return asan_instrument (); }
3509 }; // class pass_asan_O0
3511 } // anon namespace
3513 gimple_opt_pass *
3514 make_pass_asan_O0 (gcc::context *ctxt)
3516 return new pass_asan_O0 (ctxt);
3519 #include "gt-asan.h"