1 /* Implementation of the SUM intrinsic
2 Copyright 2002 Free Software Foundation, Inc.
3 Contributed by Paul Brook <paul@nowt.org>
5 This file is part of the GNU Fortran 95 runtime library (libgfortran).
7 Libgfortran is free software; you can redistribute it and/or
8 modify it under the terms of the GNU General Public
9 License as published by the Free Software Foundation; either
10 version 2 of the License, or (at your option) any later version.
12 In addition to the permissions in the GNU General Public License, the
13 Free Software Foundation gives you unlimited permission to link the
14 compiled version of this file into combinations with other programs,
15 and to distribute those combinations without any restriction coming
16 from the use of this file. (The General Public License restrictions
17 do apply in other respects; for example, they cover modification of
18 the file, and distribution when not linked into a combine
21 Libgfortran is distributed in the hope that it will be useful,
22 but WITHOUT ANY WARRANTY; without even the implied warranty of
23 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
24 GNU General Public License for more details.
26 You should have received a copy of the GNU General Public
27 License along with libgfortran; see the file COPYING. If not,
28 write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
29 Boston, MA 02110-1301, USA. */
34 #include "libgfortran.h"
37 #if defined (HAVE_GFC_COMPLEX_16) && defined (HAVE_GFC_COMPLEX_16)
40 extern void sum_c16 (gfc_array_c16
* const restrict
,
41 gfc_array_c16
* const restrict
, const index_type
* const restrict
);
42 export_proto(sum_c16
);
45 sum_c16 (gfc_array_c16
* const restrict retarray
,
46 gfc_array_c16
* const restrict array
,
47 const index_type
* const restrict pdim
)
49 index_type count
[GFC_MAX_DIMENSIONS
];
50 index_type extent
[GFC_MAX_DIMENSIONS
];
51 index_type sstride
[GFC_MAX_DIMENSIONS
];
52 index_type dstride
[GFC_MAX_DIMENSIONS
];
53 const GFC_COMPLEX_16
* restrict base
;
54 GFC_COMPLEX_16
* restrict dest
;
61 /* Make dim zero based to avoid confusion. */
63 rank
= GFC_DESCRIPTOR_RANK (array
) - 1;
65 len
= array
->dim
[dim
].ubound
+ 1 - array
->dim
[dim
].lbound
;
66 delta
= array
->dim
[dim
].stride
;
68 for (n
= 0; n
< dim
; n
++)
70 sstride
[n
] = array
->dim
[n
].stride
;
71 extent
[n
] = array
->dim
[n
].ubound
+ 1 - array
->dim
[n
].lbound
;
76 for (n
= dim
; n
< rank
; n
++)
78 sstride
[n
] = array
->dim
[n
+ 1].stride
;
80 array
->dim
[n
+ 1].ubound
+ 1 - array
->dim
[n
+ 1].lbound
;
86 if (retarray
->data
== NULL
)
90 for (n
= 0; n
< rank
; n
++)
92 retarray
->dim
[n
].lbound
= 0;
93 retarray
->dim
[n
].ubound
= extent
[n
]-1;
95 retarray
->dim
[n
].stride
= 1;
97 retarray
->dim
[n
].stride
= retarray
->dim
[n
-1].stride
* extent
[n
-1];
100 retarray
->offset
= 0;
101 retarray
->dtype
= (array
->dtype
& ~GFC_DTYPE_RANK_MASK
) | rank
;
103 alloc_size
= sizeof (GFC_COMPLEX_16
) * retarray
->dim
[rank
-1].stride
108 /* Make sure we have a zero-sized array. */
109 retarray
->dim
[0].lbound
= 0;
110 retarray
->dim
[0].ubound
= -1;
114 retarray
->data
= internal_malloc_size (alloc_size
);
118 if (rank
!= GFC_DESCRIPTOR_RANK (retarray
))
119 runtime_error ("rank of return array incorrect");
122 for (n
= 0; n
< rank
; n
++)
125 dstride
[n
] = retarray
->dim
[n
].stride
;
131 dest
= retarray
->data
;
135 const GFC_COMPLEX_16
* restrict src
;
136 GFC_COMPLEX_16 result
;
145 for (n
= 0; n
< len
; n
++, src
+= delta
)
153 /* Advance to the next element. */
158 while (count
[n
] == extent
[n
])
160 /* When we get to the end of a dimension, reset it and increment
161 the next dimension. */
163 /* We could precalculate these products, but this is a less
164 frequently used path so probably not worth it. */
165 base
-= sstride
[n
] * extent
[n
];
166 dest
-= dstride
[n
] * extent
[n
];
170 /* Break out of the look. */
185 extern void msum_c16 (gfc_array_c16
* const restrict
,
186 gfc_array_c16
* const restrict
, const index_type
* const restrict
,
187 gfc_array_l4
* const restrict
);
188 export_proto(msum_c16
);
191 msum_c16 (gfc_array_c16
* const restrict retarray
,
192 gfc_array_c16
* const restrict array
,
193 const index_type
* const restrict pdim
,
194 gfc_array_l4
* const restrict mask
)
196 index_type count
[GFC_MAX_DIMENSIONS
];
197 index_type extent
[GFC_MAX_DIMENSIONS
];
198 index_type sstride
[GFC_MAX_DIMENSIONS
];
199 index_type dstride
[GFC_MAX_DIMENSIONS
];
200 index_type mstride
[GFC_MAX_DIMENSIONS
];
201 GFC_COMPLEX_16
* restrict dest
;
202 const GFC_COMPLEX_16
* restrict base
;
203 const GFC_LOGICAL_4
* restrict mbase
;
212 rank
= GFC_DESCRIPTOR_RANK (array
) - 1;
214 len
= array
->dim
[dim
].ubound
+ 1 - array
->dim
[dim
].lbound
;
217 delta
= array
->dim
[dim
].stride
;
218 mdelta
= mask
->dim
[dim
].stride
;
220 for (n
= 0; n
< dim
; n
++)
222 sstride
[n
] = array
->dim
[n
].stride
;
223 mstride
[n
] = mask
->dim
[n
].stride
;
224 extent
[n
] = array
->dim
[n
].ubound
+ 1 - array
->dim
[n
].lbound
;
230 for (n
= dim
; n
< rank
; n
++)
232 sstride
[n
] = array
->dim
[n
+ 1].stride
;
233 mstride
[n
] = mask
->dim
[n
+ 1].stride
;
235 array
->dim
[n
+ 1].ubound
+ 1 - array
->dim
[n
+ 1].lbound
;
241 if (retarray
->data
== NULL
)
245 for (n
= 0; n
< rank
; n
++)
247 retarray
->dim
[n
].lbound
= 0;
248 retarray
->dim
[n
].ubound
= extent
[n
]-1;
250 retarray
->dim
[n
].stride
= 1;
252 retarray
->dim
[n
].stride
= retarray
->dim
[n
-1].stride
* extent
[n
-1];
255 alloc_size
= sizeof (GFC_COMPLEX_16
) * retarray
->dim
[rank
-1].stride
258 retarray
->offset
= 0;
259 retarray
->dtype
= (array
->dtype
& ~GFC_DTYPE_RANK_MASK
) | rank
;
263 /* Make sure we have a zero-sized array. */
264 retarray
->dim
[0].lbound
= 0;
265 retarray
->dim
[0].ubound
= -1;
269 retarray
->data
= internal_malloc_size (alloc_size
);
274 if (rank
!= GFC_DESCRIPTOR_RANK (retarray
))
275 runtime_error ("rank of return array incorrect");
278 for (n
= 0; n
< rank
; n
++)
281 dstride
[n
] = retarray
->dim
[n
].stride
;
286 dest
= retarray
->data
;
290 if (GFC_DESCRIPTOR_SIZE (mask
) != 4)
292 /* This allows the same loop to be used for all logical types. */
293 assert (GFC_DESCRIPTOR_SIZE (mask
) == 8);
294 for (n
= 0; n
< rank
; n
++)
297 mbase
= (GFOR_POINTER_L8_TO_L4 (mbase
));
302 const GFC_COMPLEX_16
* restrict src
;
303 const GFC_LOGICAL_4
* restrict msrc
;
304 GFC_COMPLEX_16 result
;
314 for (n
= 0; n
< len
; n
++, src
+= delta
, msrc
+= mdelta
)
323 /* Advance to the next element. */
329 while (count
[n
] == extent
[n
])
331 /* When we get to the end of a dimension, reset it and increment
332 the next dimension. */
334 /* We could precalculate these products, but this is a less
335 frequently used path so probably not worth it. */
336 base
-= sstride
[n
] * extent
[n
];
337 mbase
-= mstride
[n
] * extent
[n
];
338 dest
-= dstride
[n
] * extent
[n
];
342 /* Break out of the look. */
358 extern void ssum_c16 (gfc_array_c16
* const restrict
,
359 gfc_array_c16
* const restrict
, const index_type
* const restrict
,
361 export_proto(ssum_c16
);
364 ssum_c16 (gfc_array_c16
* const restrict retarray
,
365 gfc_array_c16
* const restrict array
,
366 const index_type
* const restrict pdim
,
367 GFC_LOGICAL_4
* mask
)
372 GFC_COMPLEX_16
*dest
;
376 sum_c16 (retarray
, array
, pdim
);
379 rank
= GFC_DESCRIPTOR_RANK (array
);
381 runtime_error ("Rank of array needs to be > 0");
383 if (retarray
->data
== NULL
)
385 retarray
->dim
[0].lbound
= 0;
386 retarray
->dim
[0].ubound
= rank
-1;
387 retarray
->dim
[0].stride
= 1;
388 retarray
->dtype
= (retarray
->dtype
& ~GFC_DTYPE_RANK_MASK
) | 1;
389 retarray
->offset
= 0;
390 retarray
->data
= internal_malloc_size (sizeof (GFC_COMPLEX_16
) * rank
);
394 if (GFC_DESCRIPTOR_RANK (retarray
) != 1)
395 runtime_error ("rank of return array does not equal 1");
397 if (retarray
->dim
[0].ubound
+ 1 - retarray
->dim
[0].lbound
!= rank
)
398 runtime_error ("dimension of return array incorrect");
401 dstride
= retarray
->dim
[0].stride
;
402 dest
= retarray
->data
;
404 for (n
= 0; n
< rank
; n
++)
405 dest
[n
* dstride
] = 0 ;