1 /* Emit RTL for the GCC expander.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006
4 Free Software Foundation, Inc.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 2, or (at your option) any later
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING. If not, write to the Free
20 Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
24 /* Middle-to-low level generation of rtx code and insns.
26 This file contains support functions for creating rtl expressions
27 and manipulating them in the doubly-linked chain of insns.
29 The patterns of the insns are created by machine-dependent
30 routines in insn-emit.c, which is generated automatically from
31 the machine description. These routines make the individual rtx's
32 of the pattern with `gen_rtx_fmt_ee' and others in genrtl.[ch],
33 which are automatically generated from rtl.def; what is machine
34 dependent is the kind of rtx's they make and what arguments they
39 #include "coretypes.h"
49 #include "hard-reg-set.h"
51 #include "insn-config.h"
55 #include "basic-block.h"
58 #include "langhooks.h"
59 #include "tree-pass.h"
61 /* Commonly used modes. */
63 enum machine_mode byte_mode
; /* Mode whose width is BITS_PER_UNIT. */
64 enum machine_mode word_mode
; /* Mode whose width is BITS_PER_WORD. */
65 enum machine_mode double_mode
; /* Mode whose width is DOUBLE_TYPE_SIZE. */
66 enum machine_mode ptr_mode
; /* Mode whose width is POINTER_SIZE. */
69 /* This is *not* reset after each function. It gives each CODE_LABEL
70 in the entire compilation a unique label number. */
72 static GTY(()) int label_num
= 1;
74 /* Nonzero means do not generate NOTEs for source line numbers. */
76 static int no_line_numbers
;
78 /* Commonly used rtx's, so that we only need space for one copy.
79 These are initialized once for the entire compilation.
80 All of these are unique; no other rtx-object will be equal to any
83 rtx global_rtl
[GR_MAX
];
85 /* Commonly used RTL for hard registers. These objects are not necessarily
86 unique, so we allocate them separately from global_rtl. They are
87 initialized once per compilation unit, then copied into regno_reg_rtx
88 at the beginning of each function. */
89 static GTY(()) rtx static_regno_reg_rtx
[FIRST_PSEUDO_REGISTER
];
91 /* We record floating-point CONST_DOUBLEs in each floating-point mode for
92 the values of 0, 1, and 2. For the integer entries and VOIDmode, we
93 record a copy of const[012]_rtx. */
95 rtx const_tiny_rtx
[3][(int) MAX_MACHINE_MODE
];
99 REAL_VALUE_TYPE dconst0
;
100 REAL_VALUE_TYPE dconst1
;
101 REAL_VALUE_TYPE dconst2
;
102 REAL_VALUE_TYPE dconst3
;
103 REAL_VALUE_TYPE dconst10
;
104 REAL_VALUE_TYPE dconstm1
;
105 REAL_VALUE_TYPE dconstm2
;
106 REAL_VALUE_TYPE dconsthalf
;
107 REAL_VALUE_TYPE dconstthird
;
108 REAL_VALUE_TYPE dconstpi
;
109 REAL_VALUE_TYPE dconste
;
111 /* All references to the following fixed hard registers go through
112 these unique rtl objects. On machines where the frame-pointer and
113 arg-pointer are the same register, they use the same unique object.
115 After register allocation, other rtl objects which used to be pseudo-regs
116 may be clobbered to refer to the frame-pointer register.
117 But references that were originally to the frame-pointer can be
118 distinguished from the others because they contain frame_pointer_rtx.
120 When to use frame_pointer_rtx and hard_frame_pointer_rtx is a little
121 tricky: until register elimination has taken place hard_frame_pointer_rtx
122 should be used if it is being set, and frame_pointer_rtx otherwise. After
123 register elimination hard_frame_pointer_rtx should always be used.
124 On machines where the two registers are same (most) then these are the
127 In an inline procedure, the stack and frame pointer rtxs may not be
128 used for anything else. */
129 rtx static_chain_rtx
; /* (REG:Pmode STATIC_CHAIN_REGNUM) */
130 rtx static_chain_incoming_rtx
; /* (REG:Pmode STATIC_CHAIN_INCOMING_REGNUM) */
131 rtx pic_offset_table_rtx
; /* (REG:Pmode PIC_OFFSET_TABLE_REGNUM) */
133 /* This is used to implement __builtin_return_address for some machines.
134 See for instance the MIPS port. */
135 rtx return_address_pointer_rtx
; /* (REG:Pmode RETURN_ADDRESS_POINTER_REGNUM) */
137 /* We make one copy of (const_int C) where C is in
138 [- MAX_SAVED_CONST_INT, MAX_SAVED_CONST_INT]
139 to save space during the compilation and simplify comparisons of
142 rtx const_int_rtx
[MAX_SAVED_CONST_INT
* 2 + 1];
144 /* A hash table storing CONST_INTs whose absolute value is greater
145 than MAX_SAVED_CONST_INT. */
147 static GTY ((if_marked ("ggc_marked_p"), param_is (struct rtx_def
)))
148 htab_t const_int_htab
;
150 /* A hash table storing memory attribute structures. */
151 static GTY ((if_marked ("ggc_marked_p"), param_is (struct mem_attrs
)))
152 htab_t mem_attrs_htab
;
154 /* A hash table storing register attribute structures. */
155 static GTY ((if_marked ("ggc_marked_p"), param_is (struct reg_attrs
)))
156 htab_t reg_attrs_htab
;
158 /* A hash table storing all CONST_DOUBLEs. */
159 static GTY ((if_marked ("ggc_marked_p"), param_is (struct rtx_def
)))
160 htab_t const_double_htab
;
162 #define first_insn (cfun->emit->x_first_insn)
163 #define last_insn (cfun->emit->x_last_insn)
164 #define cur_insn_uid (cfun->emit->x_cur_insn_uid)
165 #define last_location (cfun->emit->x_last_location)
166 #define first_label_num (cfun->emit->x_first_label_num)
168 static rtx
make_call_insn_raw (rtx
);
169 static rtx
change_address_1 (rtx
, enum machine_mode
, rtx
, int);
170 static void unshare_all_decls (tree
);
171 static void reset_used_decls (tree
);
172 static void mark_label_nuses (rtx
);
173 static hashval_t
const_int_htab_hash (const void *);
174 static int const_int_htab_eq (const void *, const void *);
175 static hashval_t
const_double_htab_hash (const void *);
176 static int const_double_htab_eq (const void *, const void *);
177 static rtx
lookup_const_double (rtx
);
178 static hashval_t
mem_attrs_htab_hash (const void *);
179 static int mem_attrs_htab_eq (const void *, const void *);
180 static mem_attrs
*get_mem_attrs (HOST_WIDE_INT
, tree
, rtx
, rtx
, unsigned int,
182 static hashval_t
reg_attrs_htab_hash (const void *);
183 static int reg_attrs_htab_eq (const void *, const void *);
184 static reg_attrs
*get_reg_attrs (tree
, int);
185 static tree
component_ref_for_mem_expr (tree
);
186 static rtx
gen_const_vector (enum machine_mode
, int);
187 static void copy_rtx_if_shared_1 (rtx
*orig
);
189 /* Probability of the conditional branch currently proceeded by try_split.
190 Set to -1 otherwise. */
191 int split_branch_probability
= -1;
193 /* Returns a hash code for X (which is a really a CONST_INT). */
196 const_int_htab_hash (const void *x
)
198 return (hashval_t
) INTVAL ((rtx
) x
);
201 /* Returns nonzero if the value represented by X (which is really a
202 CONST_INT) is the same as that given by Y (which is really a
206 const_int_htab_eq (const void *x
, const void *y
)
208 return (INTVAL ((rtx
) x
) == *((const HOST_WIDE_INT
*) y
));
211 /* Returns a hash code for X (which is really a CONST_DOUBLE). */
213 const_double_htab_hash (const void *x
)
218 if (GET_MODE (value
) == VOIDmode
)
219 h
= CONST_DOUBLE_LOW (value
) ^ CONST_DOUBLE_HIGH (value
);
222 h
= real_hash (CONST_DOUBLE_REAL_VALUE (value
));
223 /* MODE is used in the comparison, so it should be in the hash. */
224 h
^= GET_MODE (value
);
229 /* Returns nonzero if the value represented by X (really a ...)
230 is the same as that represented by Y (really a ...) */
232 const_double_htab_eq (const void *x
, const void *y
)
234 rtx a
= (rtx
)x
, b
= (rtx
)y
;
236 if (GET_MODE (a
) != GET_MODE (b
))
238 if (GET_MODE (a
) == VOIDmode
)
239 return (CONST_DOUBLE_LOW (a
) == CONST_DOUBLE_LOW (b
)
240 && CONST_DOUBLE_HIGH (a
) == CONST_DOUBLE_HIGH (b
));
242 return real_identical (CONST_DOUBLE_REAL_VALUE (a
),
243 CONST_DOUBLE_REAL_VALUE (b
));
246 /* Returns a hash code for X (which is a really a mem_attrs *). */
249 mem_attrs_htab_hash (const void *x
)
251 mem_attrs
*p
= (mem_attrs
*) x
;
253 return (p
->alias
^ (p
->align
* 1000)
254 ^ ((p
->offset
? INTVAL (p
->offset
) : 0) * 50000)
255 ^ ((p
->size
? INTVAL (p
->size
) : 0) * 2500000)
256 ^ (size_t) iterative_hash_expr (p
->expr
, 0));
259 /* Returns nonzero if the value represented by X (which is really a
260 mem_attrs *) is the same as that given by Y (which is also really a
264 mem_attrs_htab_eq (const void *x
, const void *y
)
266 mem_attrs
*p
= (mem_attrs
*) x
;
267 mem_attrs
*q
= (mem_attrs
*) y
;
269 return (p
->alias
== q
->alias
&& p
->offset
== q
->offset
270 && p
->size
== q
->size
&& p
->align
== q
->align
271 && (p
->expr
== q
->expr
272 || (p
->expr
!= NULL_TREE
&& q
->expr
!= NULL_TREE
273 && operand_equal_p (p
->expr
, q
->expr
, 0))));
276 /* Allocate a new mem_attrs structure and insert it into the hash table if
277 one identical to it is not already in the table. We are doing this for
281 get_mem_attrs (HOST_WIDE_INT alias
, tree expr
, rtx offset
, rtx size
,
282 unsigned int align
, enum machine_mode mode
)
287 /* If everything is the default, we can just return zero.
288 This must match what the corresponding MEM_* macros return when the
289 field is not present. */
290 if (alias
== 0 && expr
== 0 && offset
== 0
292 || (mode
!= BLKmode
&& GET_MODE_SIZE (mode
) == INTVAL (size
)))
293 && (STRICT_ALIGNMENT
&& mode
!= BLKmode
294 ? align
== GET_MODE_ALIGNMENT (mode
) : align
== BITS_PER_UNIT
))
299 attrs
.offset
= offset
;
303 slot
= htab_find_slot (mem_attrs_htab
, &attrs
, INSERT
);
306 *slot
= ggc_alloc (sizeof (mem_attrs
));
307 memcpy (*slot
, &attrs
, sizeof (mem_attrs
));
313 /* Returns a hash code for X (which is a really a reg_attrs *). */
316 reg_attrs_htab_hash (const void *x
)
318 reg_attrs
*p
= (reg_attrs
*) x
;
320 return ((p
->offset
* 1000) ^ (long) p
->decl
);
323 /* Returns nonzero if the value represented by X (which is really a
324 reg_attrs *) is the same as that given by Y (which is also really a
328 reg_attrs_htab_eq (const void *x
, const void *y
)
330 reg_attrs
*p
= (reg_attrs
*) x
;
331 reg_attrs
*q
= (reg_attrs
*) y
;
333 return (p
->decl
== q
->decl
&& p
->offset
== q
->offset
);
335 /* Allocate a new reg_attrs structure and insert it into the hash table if
336 one identical to it is not already in the table. We are doing this for
340 get_reg_attrs (tree decl
, int offset
)
345 /* If everything is the default, we can just return zero. */
346 if (decl
== 0 && offset
== 0)
350 attrs
.offset
= offset
;
352 slot
= htab_find_slot (reg_attrs_htab
, &attrs
, INSERT
);
355 *slot
= ggc_alloc (sizeof (reg_attrs
));
356 memcpy (*slot
, &attrs
, sizeof (reg_attrs
));
362 /* Generate a new REG rtx. Make sure ORIGINAL_REGNO is set properly, and
363 don't attempt to share with the various global pieces of rtl (such as
364 frame_pointer_rtx). */
367 gen_raw_REG (enum machine_mode mode
, int regno
)
369 rtx x
= gen_rtx_raw_REG (mode
, regno
);
370 ORIGINAL_REGNO (x
) = regno
;
374 /* There are some RTL codes that require special attention; the generation
375 functions do the raw handling. If you add to this list, modify
376 special_rtx in gengenrtl.c as well. */
379 gen_rtx_CONST_INT (enum machine_mode mode ATTRIBUTE_UNUSED
, HOST_WIDE_INT arg
)
383 if (arg
>= - MAX_SAVED_CONST_INT
&& arg
<= MAX_SAVED_CONST_INT
)
384 return const_int_rtx
[arg
+ MAX_SAVED_CONST_INT
];
386 #if STORE_FLAG_VALUE != 1 && STORE_FLAG_VALUE != -1
387 if (const_true_rtx
&& arg
== STORE_FLAG_VALUE
)
388 return const_true_rtx
;
391 /* Look up the CONST_INT in the hash table. */
392 slot
= htab_find_slot_with_hash (const_int_htab
, &arg
,
393 (hashval_t
) arg
, INSERT
);
395 *slot
= gen_rtx_raw_CONST_INT (VOIDmode
, arg
);
401 gen_int_mode (HOST_WIDE_INT c
, enum machine_mode mode
)
403 return GEN_INT (trunc_int_for_mode (c
, mode
));
406 /* CONST_DOUBLEs might be created from pairs of integers, or from
407 REAL_VALUE_TYPEs. Also, their length is known only at run time,
408 so we cannot use gen_rtx_raw_CONST_DOUBLE. */
410 /* Determine whether REAL, a CONST_DOUBLE, already exists in the
411 hash table. If so, return its counterpart; otherwise add it
412 to the hash table and return it. */
414 lookup_const_double (rtx real
)
416 void **slot
= htab_find_slot (const_double_htab
, real
, INSERT
);
423 /* Return a CONST_DOUBLE rtx for a floating-point value specified by
424 VALUE in mode MODE. */
426 const_double_from_real_value (REAL_VALUE_TYPE value
, enum machine_mode mode
)
428 rtx real
= rtx_alloc (CONST_DOUBLE
);
429 PUT_MODE (real
, mode
);
433 return lookup_const_double (real
);
436 /* Return a CONST_DOUBLE or CONST_INT for a value specified as a pair
437 of ints: I0 is the low-order word and I1 is the high-order word.
438 Do not use this routine for non-integer modes; convert to
439 REAL_VALUE_TYPE and use CONST_DOUBLE_FROM_REAL_VALUE. */
442 immed_double_const (HOST_WIDE_INT i0
, HOST_WIDE_INT i1
, enum machine_mode mode
)
447 /* There are the following cases (note that there are no modes with
448 HOST_BITS_PER_WIDE_INT < GET_MODE_BITSIZE (mode) < 2 * HOST_BITS_PER_WIDE_INT):
450 1) If GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT, then we use
452 2) GET_MODE_BITSIZE (mode) == 2 * HOST_BITS_PER_WIDE_INT, but the value of
453 the integer fits into HOST_WIDE_INT anyway (i.e., i1 consists only
454 from copies of the sign bit, and sign of i0 and i1 are the same), then
455 we return a CONST_INT for i0.
456 3) Otherwise, we create a CONST_DOUBLE for i0 and i1. */
457 if (mode
!= VOIDmode
)
459 gcc_assert (GET_MODE_CLASS (mode
) == MODE_INT
460 || GET_MODE_CLASS (mode
) == MODE_PARTIAL_INT
461 /* We can get a 0 for an error mark. */
462 || GET_MODE_CLASS (mode
) == MODE_VECTOR_INT
463 || GET_MODE_CLASS (mode
) == MODE_VECTOR_FLOAT
);
465 if (GET_MODE_BITSIZE (mode
) <= HOST_BITS_PER_WIDE_INT
)
466 return gen_int_mode (i0
, mode
);
468 gcc_assert (GET_MODE_BITSIZE (mode
) == 2 * HOST_BITS_PER_WIDE_INT
);
471 /* If this integer fits in one word, return a CONST_INT. */
472 if ((i1
== 0 && i0
>= 0) || (i1
== ~0 && i0
< 0))
475 /* We use VOIDmode for integers. */
476 value
= rtx_alloc (CONST_DOUBLE
);
477 PUT_MODE (value
, VOIDmode
);
479 CONST_DOUBLE_LOW (value
) = i0
;
480 CONST_DOUBLE_HIGH (value
) = i1
;
482 for (i
= 2; i
< (sizeof CONST_DOUBLE_FORMAT
- 1); i
++)
483 XWINT (value
, i
) = 0;
485 return lookup_const_double (value
);
489 gen_rtx_REG (enum machine_mode mode
, unsigned int regno
)
491 /* In case the MD file explicitly references the frame pointer, have
492 all such references point to the same frame pointer. This is
493 used during frame pointer elimination to distinguish the explicit
494 references to these registers from pseudos that happened to be
497 If we have eliminated the frame pointer or arg pointer, we will
498 be using it as a normal register, for example as a spill
499 register. In such cases, we might be accessing it in a mode that
500 is not Pmode and therefore cannot use the pre-allocated rtx.
502 Also don't do this when we are making new REGs in reload, since
503 we don't want to get confused with the real pointers. */
505 if (mode
== Pmode
&& !reload_in_progress
)
507 if (regno
== FRAME_POINTER_REGNUM
508 && (!reload_completed
|| frame_pointer_needed
))
509 return frame_pointer_rtx
;
510 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
511 if (regno
== HARD_FRAME_POINTER_REGNUM
512 && (!reload_completed
|| frame_pointer_needed
))
513 return hard_frame_pointer_rtx
;
515 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM && HARD_FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
516 if (regno
== ARG_POINTER_REGNUM
)
517 return arg_pointer_rtx
;
519 #ifdef RETURN_ADDRESS_POINTER_REGNUM
520 if (regno
== RETURN_ADDRESS_POINTER_REGNUM
)
521 return return_address_pointer_rtx
;
523 if (regno
== (unsigned) PIC_OFFSET_TABLE_REGNUM
524 && fixed_regs
[PIC_OFFSET_TABLE_REGNUM
])
525 return pic_offset_table_rtx
;
526 if (regno
== STACK_POINTER_REGNUM
)
527 return stack_pointer_rtx
;
531 /* If the per-function register table has been set up, try to re-use
532 an existing entry in that table to avoid useless generation of RTL.
534 This code is disabled for now until we can fix the various backends
535 which depend on having non-shared hard registers in some cases. Long
536 term we want to re-enable this code as it can significantly cut down
537 on the amount of useless RTL that gets generated.
539 We'll also need to fix some code that runs after reload that wants to
540 set ORIGINAL_REGNO. */
545 && regno
< FIRST_PSEUDO_REGISTER
546 && reg_raw_mode
[regno
] == mode
)
547 return regno_reg_rtx
[regno
];
550 return gen_raw_REG (mode
, regno
);
554 gen_rtx_MEM (enum machine_mode mode
, rtx addr
)
556 rtx rt
= gen_rtx_raw_MEM (mode
, addr
);
558 /* This field is not cleared by the mere allocation of the rtx, so
565 /* Generate a memory referring to non-trapping constant memory. */
568 gen_const_mem (enum machine_mode mode
, rtx addr
)
570 rtx mem
= gen_rtx_MEM (mode
, addr
);
571 MEM_READONLY_P (mem
) = 1;
572 MEM_NOTRAP_P (mem
) = 1;
576 /* Generate a MEM referring to fixed portions of the frame, e.g., register
580 gen_frame_mem (enum machine_mode mode
, rtx addr
)
582 rtx mem
= gen_rtx_MEM (mode
, addr
);
583 MEM_NOTRAP_P (mem
) = 1;
584 set_mem_alias_set (mem
, get_frame_alias_set ());
588 /* Generate a MEM referring to a temporary use of the stack, not part
589 of the fixed stack frame. For example, something which is pushed
590 by a target splitter. */
592 gen_tmp_stack_mem (enum machine_mode mode
, rtx addr
)
594 rtx mem
= gen_rtx_MEM (mode
, addr
);
595 MEM_NOTRAP_P (mem
) = 1;
596 if (!current_function_calls_alloca
)
597 set_mem_alias_set (mem
, get_frame_alias_set ());
601 /* We want to create (subreg:OMODE (obj:IMODE) OFFSET). Return true if
602 this construct would be valid, and false otherwise. */
605 validate_subreg (enum machine_mode omode
, enum machine_mode imode
,
606 rtx reg
, unsigned int offset
)
608 unsigned int isize
= GET_MODE_SIZE (imode
);
609 unsigned int osize
= GET_MODE_SIZE (omode
);
611 /* All subregs must be aligned. */
612 if (offset
% osize
!= 0)
615 /* The subreg offset cannot be outside the inner object. */
619 /* ??? This should not be here. Temporarily continue to allow word_mode
620 subregs of anything. The most common offender is (subreg:SI (reg:DF)).
621 Generally, backends are doing something sketchy but it'll take time to
623 if (omode
== word_mode
)
625 /* ??? Similarly, e.g. with (subreg:DF (reg:TI)). Though store_bit_field
626 is the culprit here, and not the backends. */
627 else if (osize
>= UNITS_PER_WORD
&& isize
>= osize
)
629 /* Allow component subregs of complex and vector. Though given the below
630 extraction rules, it's not always clear what that means. */
631 else if ((COMPLEX_MODE_P (imode
) || VECTOR_MODE_P (imode
))
632 && GET_MODE_INNER (imode
) == omode
)
634 /* ??? x86 sse code makes heavy use of *paradoxical* vector subregs,
635 i.e. (subreg:V4SF (reg:SF) 0). This surely isn't the cleanest way to
636 represent this. It's questionable if this ought to be represented at
637 all -- why can't this all be hidden in post-reload splitters that make
638 arbitrarily mode changes to the registers themselves. */
639 else if (VECTOR_MODE_P (omode
) && GET_MODE_INNER (omode
) == imode
)
641 /* Subregs involving floating point modes are not allowed to
642 change size. Therefore (subreg:DI (reg:DF) 0) is fine, but
643 (subreg:SI (reg:DF) 0) isn't. */
644 else if (FLOAT_MODE_P (imode
) || FLOAT_MODE_P (omode
))
650 /* Paradoxical subregs must have offset zero. */
654 /* This is a normal subreg. Verify that the offset is representable. */
656 /* For hard registers, we already have most of these rules collected in
657 subreg_offset_representable_p. */
658 if (reg
&& REG_P (reg
) && HARD_REGISTER_P (reg
))
660 unsigned int regno
= REGNO (reg
);
662 #ifdef CANNOT_CHANGE_MODE_CLASS
663 if ((COMPLEX_MODE_P (imode
) || VECTOR_MODE_P (imode
))
664 && GET_MODE_INNER (imode
) == omode
)
666 else if (REG_CANNOT_CHANGE_MODE_P (regno
, imode
, omode
))
670 return subreg_offset_representable_p (regno
, imode
, offset
, omode
);
673 /* For pseudo registers, we want most of the same checks. Namely:
674 If the register no larger than a word, the subreg must be lowpart.
675 If the register is larger than a word, the subreg must be the lowpart
676 of a subword. A subreg does *not* perform arbitrary bit extraction.
677 Given that we've already checked mode/offset alignment, we only have
678 to check subword subregs here. */
679 if (osize
< UNITS_PER_WORD
)
681 enum machine_mode wmode
= isize
> UNITS_PER_WORD
? word_mode
: imode
;
682 unsigned int low_off
= subreg_lowpart_offset (omode
, wmode
);
683 if (offset
% UNITS_PER_WORD
!= low_off
)
690 gen_rtx_SUBREG (enum machine_mode mode
, rtx reg
, int offset
)
692 gcc_assert (validate_subreg (mode
, GET_MODE (reg
), reg
, offset
));
693 return gen_rtx_raw_SUBREG (mode
, reg
, offset
);
696 /* Generate a SUBREG representing the least-significant part of REG if MODE
697 is smaller than mode of REG, otherwise paradoxical SUBREG. */
700 gen_lowpart_SUBREG (enum machine_mode mode
, rtx reg
)
702 enum machine_mode inmode
;
704 inmode
= GET_MODE (reg
);
705 if (inmode
== VOIDmode
)
707 return gen_rtx_SUBREG (mode
, reg
,
708 subreg_lowpart_offset (mode
, inmode
));
711 /* gen_rtvec (n, [rt1, ..., rtn])
713 ** This routine creates an rtvec and stores within it the
714 ** pointers to rtx's which are its arguments.
719 gen_rtvec (int n
, ...)
728 return NULL_RTVEC
; /* Don't allocate an empty rtvec... */
730 vector
= alloca (n
* sizeof (rtx
));
732 for (i
= 0; i
< n
; i
++)
733 vector
[i
] = va_arg (p
, rtx
);
735 /* The definition of VA_* in K&R C causes `n' to go out of scope. */
739 return gen_rtvec_v (save_n
, vector
);
743 gen_rtvec_v (int n
, rtx
*argp
)
749 return NULL_RTVEC
; /* Don't allocate an empty rtvec... */
751 rt_val
= rtvec_alloc (n
); /* Allocate an rtvec... */
753 for (i
= 0; i
< n
; i
++)
754 rt_val
->elem
[i
] = *argp
++;
759 /* Generate a REG rtx for a new pseudo register of mode MODE.
760 This pseudo is assigned the next sequential register number. */
763 gen_reg_rtx (enum machine_mode mode
)
765 struct function
*f
= cfun
;
768 /* Don't let anything called after initial flow analysis create new
770 gcc_assert (!no_new_pseudos
);
772 if (generating_concat_p
773 && (GET_MODE_CLASS (mode
) == MODE_COMPLEX_FLOAT
774 || GET_MODE_CLASS (mode
) == MODE_COMPLEX_INT
))
776 /* For complex modes, don't make a single pseudo.
777 Instead, make a CONCAT of two pseudos.
778 This allows noncontiguous allocation of the real and imaginary parts,
779 which makes much better code. Besides, allocating DCmode
780 pseudos overstrains reload on some machines like the 386. */
781 rtx realpart
, imagpart
;
782 enum machine_mode partmode
= GET_MODE_INNER (mode
);
784 realpart
= gen_reg_rtx (partmode
);
785 imagpart
= gen_reg_rtx (partmode
);
786 return gen_rtx_CONCAT (mode
, realpart
, imagpart
);
789 /* Make sure regno_pointer_align, and regno_reg_rtx are large
790 enough to have an element for this pseudo reg number. */
792 if (reg_rtx_no
== f
->emit
->regno_pointer_align_length
)
794 int old_size
= f
->emit
->regno_pointer_align_length
;
798 new = ggc_realloc (f
->emit
->regno_pointer_align
, old_size
* 2);
799 memset (new + old_size
, 0, old_size
);
800 f
->emit
->regno_pointer_align
= (unsigned char *) new;
802 new1
= ggc_realloc (f
->emit
->x_regno_reg_rtx
,
803 old_size
* 2 * sizeof (rtx
));
804 memset (new1
+ old_size
, 0, old_size
* sizeof (rtx
));
805 regno_reg_rtx
= new1
;
807 f
->emit
->regno_pointer_align_length
= old_size
* 2;
810 val
= gen_raw_REG (mode
, reg_rtx_no
);
811 regno_reg_rtx
[reg_rtx_no
++] = val
;
815 /* Generate a register with same attributes as REG, but offsetted by OFFSET.
816 Do the big endian correction if needed. */
819 gen_rtx_REG_offset (rtx reg
, enum machine_mode mode
, unsigned int regno
, int offset
)
821 rtx
new = gen_rtx_REG (mode
, regno
);
823 HOST_WIDE_INT var_size
;
825 /* PR middle-end/14084
826 The problem appears when a variable is stored in a larger register
827 and later it is used in the original mode or some mode in between
828 or some part of variable is accessed.
830 On little endian machines there is no problem because
831 the REG_OFFSET of the start of the variable is the same when
832 accessed in any mode (it is 0).
834 However, this is not true on big endian machines.
835 The offset of the start of the variable is different when accessed
837 When we are taking a part of the REG we have to change the OFFSET
838 from offset WRT size of mode of REG to offset WRT size of variable.
840 If we would not do the big endian correction the resulting REG_OFFSET
841 would be larger than the size of the DECL.
843 Examples of correction, for BYTES_BIG_ENDIAN WORDS_BIG_ENDIAN machine:
845 REG.mode MODE DECL size old offset new offset description
846 DI SI 4 4 0 int32 in SImode
847 DI SI 1 4 0 char in SImode
848 DI QI 1 7 0 char in QImode
849 DI QI 4 5 1 1st element in QImode
851 DI HI 4 6 2 1st element in HImode
854 If the size of DECL is equal or greater than the size of REG
855 we can't do this correction because the register holds the
856 whole variable or a part of the variable and thus the REG_OFFSET
857 is already correct. */
859 decl
= REG_EXPR (reg
);
860 if ((BYTES_BIG_ENDIAN
|| WORDS_BIG_ENDIAN
)
863 && GET_MODE_SIZE (GET_MODE (reg
)) > GET_MODE_SIZE (mode
)
864 && ((var_size
= int_size_in_bytes (TREE_TYPE (decl
))) > 0
865 && var_size
< GET_MODE_SIZE (GET_MODE (reg
))))
869 /* Convert machine endian to little endian WRT size of mode of REG. */
870 if (WORDS_BIG_ENDIAN
)
871 offset_le
= ((GET_MODE_SIZE (GET_MODE (reg
)) - 1 - offset
)
872 / UNITS_PER_WORD
) * UNITS_PER_WORD
;
874 offset_le
= (offset
/ UNITS_PER_WORD
) * UNITS_PER_WORD
;
876 if (BYTES_BIG_ENDIAN
)
877 offset_le
+= ((GET_MODE_SIZE (GET_MODE (reg
)) - 1 - offset
)
880 offset_le
+= offset
% UNITS_PER_WORD
;
882 if (offset_le
>= var_size
)
884 /* MODE is wider than the variable so the new reg will cover
885 the whole variable so the resulting OFFSET should be 0. */
890 /* Convert little endian to machine endian WRT size of variable. */
891 if (WORDS_BIG_ENDIAN
)
892 offset
= ((var_size
- 1 - offset_le
)
893 / UNITS_PER_WORD
) * UNITS_PER_WORD
;
895 offset
= (offset_le
/ UNITS_PER_WORD
) * UNITS_PER_WORD
;
897 if (BYTES_BIG_ENDIAN
)
898 offset
+= ((var_size
- 1 - offset_le
)
901 offset
+= offset_le
% UNITS_PER_WORD
;
905 REG_ATTRS (new) = get_reg_attrs (REG_EXPR (reg
),
906 REG_OFFSET (reg
) + offset
);
910 /* Set the decl for MEM to DECL. */
913 set_reg_attrs_from_mem (rtx reg
, rtx mem
)
915 if (MEM_OFFSET (mem
) && GET_CODE (MEM_OFFSET (mem
)) == CONST_INT
)
917 = get_reg_attrs (MEM_EXPR (mem
), INTVAL (MEM_OFFSET (mem
)));
920 /* Set the register attributes for registers contained in PARM_RTX.
921 Use needed values from memory attributes of MEM. */
924 set_reg_attrs_for_parm (rtx parm_rtx
, rtx mem
)
926 if (REG_P (parm_rtx
))
927 set_reg_attrs_from_mem (parm_rtx
, mem
);
928 else if (GET_CODE (parm_rtx
) == PARALLEL
)
930 /* Check for a NULL entry in the first slot, used to indicate that the
931 parameter goes both on the stack and in registers. */
932 int i
= XEXP (XVECEXP (parm_rtx
, 0, 0), 0) ? 0 : 1;
933 for (; i
< XVECLEN (parm_rtx
, 0); i
++)
935 rtx x
= XVECEXP (parm_rtx
, 0, i
);
936 if (REG_P (XEXP (x
, 0)))
937 REG_ATTRS (XEXP (x
, 0))
938 = get_reg_attrs (MEM_EXPR (mem
),
939 INTVAL (XEXP (x
, 1)));
944 /* Assign the RTX X to declaration T. */
946 set_decl_rtl (tree t
, rtx x
)
948 DECL_WRTL_CHECK (t
)->decl_with_rtl
.rtl
= x
;
952 /* For register, we maintain the reverse information too. */
954 REG_ATTRS (x
) = get_reg_attrs (t
, 0);
955 else if (GET_CODE (x
) == SUBREG
)
956 REG_ATTRS (SUBREG_REG (x
))
957 = get_reg_attrs (t
, -SUBREG_BYTE (x
));
958 if (GET_CODE (x
) == CONCAT
)
960 if (REG_P (XEXP (x
, 0)))
961 REG_ATTRS (XEXP (x
, 0)) = get_reg_attrs (t
, 0);
962 if (REG_P (XEXP (x
, 1)))
963 REG_ATTRS (XEXP (x
, 1))
964 = get_reg_attrs (t
, GET_MODE_UNIT_SIZE (GET_MODE (XEXP (x
, 0))));
966 if (GET_CODE (x
) == PARALLEL
)
969 for (i
= 0; i
< XVECLEN (x
, 0); i
++)
971 rtx y
= XVECEXP (x
, 0, i
);
972 if (REG_P (XEXP (y
, 0)))
973 REG_ATTRS (XEXP (y
, 0)) = get_reg_attrs (t
, INTVAL (XEXP (y
, 1)));
978 /* Assign the RTX X to parameter declaration T. */
980 set_decl_incoming_rtl (tree t
, rtx x
)
982 DECL_INCOMING_RTL (t
) = x
;
986 /* For register, we maintain the reverse information too. */
988 REG_ATTRS (x
) = get_reg_attrs (t
, 0);
989 else if (GET_CODE (x
) == SUBREG
)
990 REG_ATTRS (SUBREG_REG (x
))
991 = get_reg_attrs (t
, -SUBREG_BYTE (x
));
992 if (GET_CODE (x
) == CONCAT
)
994 if (REG_P (XEXP (x
, 0)))
995 REG_ATTRS (XEXP (x
, 0)) = get_reg_attrs (t
, 0);
996 if (REG_P (XEXP (x
, 1)))
997 REG_ATTRS (XEXP (x
, 1))
998 = get_reg_attrs (t
, GET_MODE_UNIT_SIZE (GET_MODE (XEXP (x
, 0))));
1000 if (GET_CODE (x
) == PARALLEL
)
1004 /* Check for a NULL entry, used to indicate that the parameter goes
1005 both on the stack and in registers. */
1006 if (XEXP (XVECEXP (x
, 0, 0), 0))
1011 for (i
= start
; i
< XVECLEN (x
, 0); i
++)
1013 rtx y
= XVECEXP (x
, 0, i
);
1014 if (REG_P (XEXP (y
, 0)))
1015 REG_ATTRS (XEXP (y
, 0)) = get_reg_attrs (t
, INTVAL (XEXP (y
, 1)));
1020 /* Identify REG (which may be a CONCAT) as a user register. */
1023 mark_user_reg (rtx reg
)
1025 if (GET_CODE (reg
) == CONCAT
)
1027 REG_USERVAR_P (XEXP (reg
, 0)) = 1;
1028 REG_USERVAR_P (XEXP (reg
, 1)) = 1;
1032 gcc_assert (REG_P (reg
));
1033 REG_USERVAR_P (reg
) = 1;
1037 /* Identify REG as a probable pointer register and show its alignment
1038 as ALIGN, if nonzero. */
1041 mark_reg_pointer (rtx reg
, int align
)
1043 if (! REG_POINTER (reg
))
1045 REG_POINTER (reg
) = 1;
1048 REGNO_POINTER_ALIGN (REGNO (reg
)) = align
;
1050 else if (align
&& align
< REGNO_POINTER_ALIGN (REGNO (reg
)))
1051 /* We can no-longer be sure just how aligned this pointer is. */
1052 REGNO_POINTER_ALIGN (REGNO (reg
)) = align
;
1055 /* Return 1 plus largest pseudo reg number used in the current function. */
1063 /* Return 1 + the largest label number used so far in the current function. */
1066 max_label_num (void)
1071 /* Return first label number used in this function (if any were used). */
1074 get_first_label_num (void)
1076 return first_label_num
;
1079 /* If the rtx for label was created during the expansion of a nested
1080 function, then first_label_num won't include this label number.
1081 Fix this now so that array indicies work later. */
1084 maybe_set_first_label_num (rtx x
)
1086 if (CODE_LABEL_NUMBER (x
) < first_label_num
)
1087 first_label_num
= CODE_LABEL_NUMBER (x
);
1090 /* Return a value representing some low-order bits of X, where the number
1091 of low-order bits is given by MODE. Note that no conversion is done
1092 between floating-point and fixed-point values, rather, the bit
1093 representation is returned.
1095 This function handles the cases in common between gen_lowpart, below,
1096 and two variants in cse.c and combine.c. These are the cases that can
1097 be safely handled at all points in the compilation.
1099 If this is not a case we can handle, return 0. */
1102 gen_lowpart_common (enum machine_mode mode
, rtx x
)
1104 int msize
= GET_MODE_SIZE (mode
);
1107 enum machine_mode innermode
;
1109 /* Unfortunately, this routine doesn't take a parameter for the mode of X,
1110 so we have to make one up. Yuk. */
1111 innermode
= GET_MODE (x
);
1112 if (GET_CODE (x
) == CONST_INT
1113 && msize
* BITS_PER_UNIT
<= HOST_BITS_PER_WIDE_INT
)
1114 innermode
= mode_for_size (HOST_BITS_PER_WIDE_INT
, MODE_INT
, 0);
1115 else if (innermode
== VOIDmode
)
1116 innermode
= mode_for_size (HOST_BITS_PER_WIDE_INT
* 2, MODE_INT
, 0);
1118 xsize
= GET_MODE_SIZE (innermode
);
1120 gcc_assert (innermode
!= VOIDmode
&& innermode
!= BLKmode
);
1122 if (innermode
== mode
)
1125 /* MODE must occupy no more words than the mode of X. */
1126 if ((msize
+ (UNITS_PER_WORD
- 1)) / UNITS_PER_WORD
1127 > ((xsize
+ (UNITS_PER_WORD
- 1)) / UNITS_PER_WORD
))
1130 /* Don't allow generating paradoxical FLOAT_MODE subregs. */
1131 if (SCALAR_FLOAT_MODE_P (mode
) && msize
> xsize
)
1134 offset
= subreg_lowpart_offset (mode
, innermode
);
1136 if ((GET_CODE (x
) == ZERO_EXTEND
|| GET_CODE (x
) == SIGN_EXTEND
)
1137 && (GET_MODE_CLASS (mode
) == MODE_INT
1138 || GET_MODE_CLASS (mode
) == MODE_PARTIAL_INT
))
1140 /* If we are getting the low-order part of something that has been
1141 sign- or zero-extended, we can either just use the object being
1142 extended or make a narrower extension. If we want an even smaller
1143 piece than the size of the object being extended, call ourselves
1146 This case is used mostly by combine and cse. */
1148 if (GET_MODE (XEXP (x
, 0)) == mode
)
1150 else if (msize
< GET_MODE_SIZE (GET_MODE (XEXP (x
, 0))))
1151 return gen_lowpart_common (mode
, XEXP (x
, 0));
1152 else if (msize
< xsize
)
1153 return gen_rtx_fmt_e (GET_CODE (x
), mode
, XEXP (x
, 0));
1155 else if (GET_CODE (x
) == SUBREG
|| REG_P (x
)
1156 || GET_CODE (x
) == CONCAT
|| GET_CODE (x
) == CONST_VECTOR
1157 || GET_CODE (x
) == CONST_DOUBLE
|| GET_CODE (x
) == CONST_INT
)
1158 return simplify_gen_subreg (mode
, x
, innermode
, offset
);
1160 /* Otherwise, we can't do this. */
1165 gen_highpart (enum machine_mode mode
, rtx x
)
1167 unsigned int msize
= GET_MODE_SIZE (mode
);
1170 /* This case loses if X is a subreg. To catch bugs early,
1171 complain if an invalid MODE is used even in other cases. */
1172 gcc_assert (msize
<= UNITS_PER_WORD
1173 || msize
== (unsigned int) GET_MODE_UNIT_SIZE (GET_MODE (x
)));
1175 result
= simplify_gen_subreg (mode
, x
, GET_MODE (x
),
1176 subreg_highpart_offset (mode
, GET_MODE (x
)));
1177 gcc_assert (result
);
1179 /* simplify_gen_subreg is not guaranteed to return a valid operand for
1180 the target if we have a MEM. gen_highpart must return a valid operand,
1181 emitting code if necessary to do so. */
1184 result
= validize_mem (result
);
1185 gcc_assert (result
);
1191 /* Like gen_highpart, but accept mode of EXP operand in case EXP can
1192 be VOIDmode constant. */
1194 gen_highpart_mode (enum machine_mode outermode
, enum machine_mode innermode
, rtx exp
)
1196 if (GET_MODE (exp
) != VOIDmode
)
1198 gcc_assert (GET_MODE (exp
) == innermode
);
1199 return gen_highpart (outermode
, exp
);
1201 return simplify_gen_subreg (outermode
, exp
, innermode
,
1202 subreg_highpart_offset (outermode
, innermode
));
1205 /* Return offset in bytes to get OUTERMODE low part
1206 of the value in mode INNERMODE stored in memory in target format. */
1209 subreg_lowpart_offset (enum machine_mode outermode
, enum machine_mode innermode
)
1211 unsigned int offset
= 0;
1212 int difference
= (GET_MODE_SIZE (innermode
) - GET_MODE_SIZE (outermode
));
1216 if (WORDS_BIG_ENDIAN
)
1217 offset
+= (difference
/ UNITS_PER_WORD
) * UNITS_PER_WORD
;
1218 if (BYTES_BIG_ENDIAN
)
1219 offset
+= difference
% UNITS_PER_WORD
;
1225 /* Return offset in bytes to get OUTERMODE high part
1226 of the value in mode INNERMODE stored in memory in target format. */
1228 subreg_highpart_offset (enum machine_mode outermode
, enum machine_mode innermode
)
1230 unsigned int offset
= 0;
1231 int difference
= (GET_MODE_SIZE (innermode
) - GET_MODE_SIZE (outermode
));
1233 gcc_assert (GET_MODE_SIZE (innermode
) >= GET_MODE_SIZE (outermode
));
1237 if (! WORDS_BIG_ENDIAN
)
1238 offset
+= (difference
/ UNITS_PER_WORD
) * UNITS_PER_WORD
;
1239 if (! BYTES_BIG_ENDIAN
)
1240 offset
+= difference
% UNITS_PER_WORD
;
1246 /* Return 1 iff X, assumed to be a SUBREG,
1247 refers to the least significant part of its containing reg.
1248 If X is not a SUBREG, always return 1 (it is its own low part!). */
1251 subreg_lowpart_p (rtx x
)
1253 if (GET_CODE (x
) != SUBREG
)
1255 else if (GET_MODE (SUBREG_REG (x
)) == VOIDmode
)
1258 return (subreg_lowpart_offset (GET_MODE (x
), GET_MODE (SUBREG_REG (x
)))
1259 == SUBREG_BYTE (x
));
1262 /* Return subword OFFSET of operand OP.
1263 The word number, OFFSET, is interpreted as the word number starting
1264 at the low-order address. OFFSET 0 is the low-order word if not
1265 WORDS_BIG_ENDIAN, otherwise it is the high-order word.
1267 If we cannot extract the required word, we return zero. Otherwise,
1268 an rtx corresponding to the requested word will be returned.
1270 VALIDATE_ADDRESS is nonzero if the address should be validated. Before
1271 reload has completed, a valid address will always be returned. After
1272 reload, if a valid address cannot be returned, we return zero.
1274 If VALIDATE_ADDRESS is zero, we simply form the required address; validating
1275 it is the responsibility of the caller.
1277 MODE is the mode of OP in case it is a CONST_INT.
1279 ??? This is still rather broken for some cases. The problem for the
1280 moment is that all callers of this thing provide no 'goal mode' to
1281 tell us to work with. This exists because all callers were written
1282 in a word based SUBREG world.
1283 Now use of this function can be deprecated by simplify_subreg in most
1288 operand_subword (rtx op
, unsigned int offset
, int validate_address
, enum machine_mode mode
)
1290 if (mode
== VOIDmode
)
1291 mode
= GET_MODE (op
);
1293 gcc_assert (mode
!= VOIDmode
);
1295 /* If OP is narrower than a word, fail. */
1297 && (GET_MODE_SIZE (mode
) < UNITS_PER_WORD
))
1300 /* If we want a word outside OP, return zero. */
1302 && (offset
+ 1) * UNITS_PER_WORD
> GET_MODE_SIZE (mode
))
1305 /* Form a new MEM at the requested address. */
1308 rtx
new = adjust_address_nv (op
, word_mode
, offset
* UNITS_PER_WORD
);
1310 if (! validate_address
)
1313 else if (reload_completed
)
1315 if (! strict_memory_address_p (word_mode
, XEXP (new, 0)))
1319 return replace_equiv_address (new, XEXP (new, 0));
1322 /* Rest can be handled by simplify_subreg. */
1323 return simplify_gen_subreg (word_mode
, op
, mode
, (offset
* UNITS_PER_WORD
));
1326 /* Similar to `operand_subword', but never return 0. If we can't
1327 extract the required subword, put OP into a register and try again.
1328 The second attempt must succeed. We always validate the address in
1331 MODE is the mode of OP, in case it is CONST_INT. */
1334 operand_subword_force (rtx op
, unsigned int offset
, enum machine_mode mode
)
1336 rtx result
= operand_subword (op
, offset
, 1, mode
);
1341 if (mode
!= BLKmode
&& mode
!= VOIDmode
)
1343 /* If this is a register which can not be accessed by words, copy it
1344 to a pseudo register. */
1346 op
= copy_to_reg (op
);
1348 op
= force_reg (mode
, op
);
1351 result
= operand_subword (op
, offset
, 1, mode
);
1352 gcc_assert (result
);
1357 /* Within a MEM_EXPR, we care about either (1) a component ref of a decl,
1358 or (2) a component ref of something variable. Represent the later with
1359 a NULL expression. */
1362 component_ref_for_mem_expr (tree ref
)
1364 tree inner
= TREE_OPERAND (ref
, 0);
1366 if (TREE_CODE (inner
) == COMPONENT_REF
)
1367 inner
= component_ref_for_mem_expr (inner
);
1370 /* Now remove any conversions: they don't change what the underlying
1371 object is. Likewise for SAVE_EXPR. */
1372 while (TREE_CODE (inner
) == NOP_EXPR
|| TREE_CODE (inner
) == CONVERT_EXPR
1373 || TREE_CODE (inner
) == NON_LVALUE_EXPR
1374 || TREE_CODE (inner
) == VIEW_CONVERT_EXPR
1375 || TREE_CODE (inner
) == SAVE_EXPR
)
1376 inner
= TREE_OPERAND (inner
, 0);
1378 if (! DECL_P (inner
))
1382 if (inner
== TREE_OPERAND (ref
, 0))
1385 return build3 (COMPONENT_REF
, TREE_TYPE (ref
), inner
,
1386 TREE_OPERAND (ref
, 1), NULL_TREE
);
1389 /* Returns 1 if both MEM_EXPR can be considered equal
1393 mem_expr_equal_p (tree expr1
, tree expr2
)
1398 if (! expr1
|| ! expr2
)
1401 if (TREE_CODE (expr1
) != TREE_CODE (expr2
))
1404 if (TREE_CODE (expr1
) == COMPONENT_REF
)
1406 mem_expr_equal_p (TREE_OPERAND (expr1
, 0),
1407 TREE_OPERAND (expr2
, 0))
1408 && mem_expr_equal_p (TREE_OPERAND (expr1
, 1), /* field decl */
1409 TREE_OPERAND (expr2
, 1));
1411 if (INDIRECT_REF_P (expr1
))
1412 return mem_expr_equal_p (TREE_OPERAND (expr1
, 0),
1413 TREE_OPERAND (expr2
, 0));
1415 /* ARRAY_REFs, ARRAY_RANGE_REFs and BIT_FIELD_REFs should already
1416 have been resolved here. */
1417 gcc_assert (DECL_P (expr1
));
1419 /* Decls with different pointers can't be equal. */
1423 /* Given REF, a MEM, and T, either the type of X or the expression
1424 corresponding to REF, set the memory attributes. OBJECTP is nonzero
1425 if we are making a new object of this type. BITPOS is nonzero if
1426 there is an offset outstanding on T that will be applied later. */
1429 set_mem_attributes_minus_bitpos (rtx ref
, tree t
, int objectp
,
1430 HOST_WIDE_INT bitpos
)
1432 HOST_WIDE_INT alias
= MEM_ALIAS_SET (ref
);
1433 tree expr
= MEM_EXPR (ref
);
1434 rtx offset
= MEM_OFFSET (ref
);
1435 rtx size
= MEM_SIZE (ref
);
1436 unsigned int align
= MEM_ALIGN (ref
);
1437 HOST_WIDE_INT apply_bitpos
= 0;
1440 /* It can happen that type_for_mode was given a mode for which there
1441 is no language-level type. In which case it returns NULL, which
1446 type
= TYPE_P (t
) ? t
: TREE_TYPE (t
);
1447 if (type
== error_mark_node
)
1450 /* If we have already set DECL_RTL = ref, get_alias_set will get the
1451 wrong answer, as it assumes that DECL_RTL already has the right alias
1452 info. Callers should not set DECL_RTL until after the call to
1453 set_mem_attributes. */
1454 gcc_assert (!DECL_P (t
) || ref
!= DECL_RTL_IF_SET (t
));
1456 /* Get the alias set from the expression or type (perhaps using a
1457 front-end routine) and use it. */
1458 alias
= get_alias_set (t
);
1460 MEM_VOLATILE_P (ref
) |= TYPE_VOLATILE (type
);
1461 MEM_IN_STRUCT_P (ref
) = AGGREGATE_TYPE_P (type
);
1462 MEM_POINTER (ref
) = POINTER_TYPE_P (type
);
1464 /* If we are making an object of this type, or if this is a DECL, we know
1465 that it is a scalar if the type is not an aggregate. */
1466 if ((objectp
|| DECL_P (t
)) && ! AGGREGATE_TYPE_P (type
))
1467 MEM_SCALAR_P (ref
) = 1;
1469 /* We can set the alignment from the type if we are making an object,
1470 this is an INDIRECT_REF, or if TYPE_ALIGN_OK. */
1471 if (objectp
|| TREE_CODE (t
) == INDIRECT_REF
1472 || TREE_CODE (t
) == ALIGN_INDIRECT_REF
1473 || TYPE_ALIGN_OK (type
))
1474 align
= MAX (align
, TYPE_ALIGN (type
));
1476 if (TREE_CODE (t
) == MISALIGNED_INDIRECT_REF
)
1478 if (integer_zerop (TREE_OPERAND (t
, 1)))
1479 /* We don't know anything about the alignment. */
1480 align
= BITS_PER_UNIT
;
1482 align
= tree_low_cst (TREE_OPERAND (t
, 1), 1);
1485 /* If the size is known, we can set that. */
1486 if (TYPE_SIZE_UNIT (type
) && host_integerp (TYPE_SIZE_UNIT (type
), 1))
1487 size
= GEN_INT (tree_low_cst (TYPE_SIZE_UNIT (type
), 1));
1489 /* If T is not a type, we may be able to deduce some more information about
1495 if (TREE_THIS_VOLATILE (t
))
1496 MEM_VOLATILE_P (ref
) = 1;
1498 /* Now remove any conversions: they don't change what the underlying
1499 object is. Likewise for SAVE_EXPR. */
1500 while (TREE_CODE (t
) == NOP_EXPR
|| TREE_CODE (t
) == CONVERT_EXPR
1501 || TREE_CODE (t
) == NON_LVALUE_EXPR
1502 || TREE_CODE (t
) == VIEW_CONVERT_EXPR
1503 || TREE_CODE (t
) == SAVE_EXPR
)
1504 t
= TREE_OPERAND (t
, 0);
1506 /* We may look through structure-like accesses for the purposes of
1507 examining TREE_THIS_NOTRAP, but not array-like accesses. */
1509 while (TREE_CODE (base
) == COMPONENT_REF
1510 || TREE_CODE (base
) == REALPART_EXPR
1511 || TREE_CODE (base
) == IMAGPART_EXPR
1512 || TREE_CODE (base
) == BIT_FIELD_REF
)
1513 base
= TREE_OPERAND (base
, 0);
1517 if (CODE_CONTAINS_STRUCT (TREE_CODE (base
), TS_DECL_WITH_VIS
))
1518 MEM_NOTRAP_P (ref
) = !DECL_WEAK (base
);
1520 MEM_NOTRAP_P (ref
) = 1;
1523 MEM_NOTRAP_P (ref
) = TREE_THIS_NOTRAP (base
);
1525 base
= get_base_address (base
);
1526 if (base
&& DECL_P (base
)
1527 && TREE_READONLY (base
)
1528 && (TREE_STATIC (base
) || DECL_EXTERNAL (base
)))
1530 tree base_type
= TREE_TYPE (base
);
1531 gcc_assert (!(base_type
&& TYPE_NEEDS_CONSTRUCTING (base_type
))
1532 || DECL_ARTIFICIAL (base
));
1533 MEM_READONLY_P (ref
) = 1;
1536 /* If this expression uses it's parent's alias set, mark it such
1537 that we won't change it. */
1538 if (component_uses_parent_alias_set (t
))
1539 MEM_KEEP_ALIAS_SET_P (ref
) = 1;
1541 /* If this is a decl, set the attributes of the MEM from it. */
1545 offset
= const0_rtx
;
1546 apply_bitpos
= bitpos
;
1547 size
= (DECL_SIZE_UNIT (t
)
1548 && host_integerp (DECL_SIZE_UNIT (t
), 1)
1549 ? GEN_INT (tree_low_cst (DECL_SIZE_UNIT (t
), 1)) : 0);
1550 align
= DECL_ALIGN (t
);
1553 /* If this is a constant, we know the alignment. */
1554 else if (CONSTANT_CLASS_P (t
))
1556 align
= TYPE_ALIGN (type
);
1557 #ifdef CONSTANT_ALIGNMENT
1558 align
= CONSTANT_ALIGNMENT (t
, align
);
1562 /* If this is a field reference and not a bit-field, record it. */
1563 /* ??? There is some information that can be gleened from bit-fields,
1564 such as the word offset in the structure that might be modified.
1565 But skip it for now. */
1566 else if (TREE_CODE (t
) == COMPONENT_REF
1567 && ! DECL_BIT_FIELD (TREE_OPERAND (t
, 1)))
1569 expr
= component_ref_for_mem_expr (t
);
1570 offset
= const0_rtx
;
1571 apply_bitpos
= bitpos
;
1572 /* ??? Any reason the field size would be different than
1573 the size we got from the type? */
1576 /* If this is an array reference, look for an outer field reference. */
1577 else if (TREE_CODE (t
) == ARRAY_REF
)
1579 tree off_tree
= size_zero_node
;
1580 /* We can't modify t, because we use it at the end of the
1586 tree index
= TREE_OPERAND (t2
, 1);
1587 tree low_bound
= array_ref_low_bound (t2
);
1588 tree unit_size
= array_ref_element_size (t2
);
1590 /* We assume all arrays have sizes that are a multiple of a byte.
1591 First subtract the lower bound, if any, in the type of the
1592 index, then convert to sizetype and multiply by the size of
1593 the array element. */
1594 if (! integer_zerop (low_bound
))
1595 index
= fold_build2 (MINUS_EXPR
, TREE_TYPE (index
),
1598 off_tree
= size_binop (PLUS_EXPR
,
1599 size_binop (MULT_EXPR
,
1600 fold_convert (sizetype
,
1604 t2
= TREE_OPERAND (t2
, 0);
1606 while (TREE_CODE (t2
) == ARRAY_REF
);
1612 if (host_integerp (off_tree
, 1))
1614 HOST_WIDE_INT ioff
= tree_low_cst (off_tree
, 1);
1615 HOST_WIDE_INT aoff
= (ioff
& -ioff
) * BITS_PER_UNIT
;
1616 align
= DECL_ALIGN (t2
);
1617 if (aoff
&& (unsigned HOST_WIDE_INT
) aoff
< align
)
1619 offset
= GEN_INT (ioff
);
1620 apply_bitpos
= bitpos
;
1623 else if (TREE_CODE (t2
) == COMPONENT_REF
)
1625 expr
= component_ref_for_mem_expr (t2
);
1626 if (host_integerp (off_tree
, 1))
1628 offset
= GEN_INT (tree_low_cst (off_tree
, 1));
1629 apply_bitpos
= bitpos
;
1631 /* ??? Any reason the field size would be different than
1632 the size we got from the type? */
1634 else if (flag_argument_noalias
> 1
1635 && (INDIRECT_REF_P (t2
))
1636 && TREE_CODE (TREE_OPERAND (t2
, 0)) == PARM_DECL
)
1643 /* If this is a Fortran indirect argument reference, record the
1645 else if (flag_argument_noalias
> 1
1646 && (INDIRECT_REF_P (t
))
1647 && TREE_CODE (TREE_OPERAND (t
, 0)) == PARM_DECL
)
1654 /* If we modified OFFSET based on T, then subtract the outstanding
1655 bit position offset. Similarly, increase the size of the accessed
1656 object to contain the negative offset. */
1659 offset
= plus_constant (offset
, -(apply_bitpos
/ BITS_PER_UNIT
));
1661 size
= plus_constant (size
, apply_bitpos
/ BITS_PER_UNIT
);
1664 if (TREE_CODE (t
) == ALIGN_INDIRECT_REF
)
1666 /* Force EXPR and OFFSE to NULL, since we don't know exactly what
1667 we're overlapping. */
1672 /* Now set the attributes we computed above. */
1674 = get_mem_attrs (alias
, expr
, offset
, size
, align
, GET_MODE (ref
));
1676 /* If this is already known to be a scalar or aggregate, we are done. */
1677 if (MEM_IN_STRUCT_P (ref
) || MEM_SCALAR_P (ref
))
1680 /* If it is a reference into an aggregate, this is part of an aggregate.
1681 Otherwise we don't know. */
1682 else if (TREE_CODE (t
) == COMPONENT_REF
|| TREE_CODE (t
) == ARRAY_REF
1683 || TREE_CODE (t
) == ARRAY_RANGE_REF
1684 || TREE_CODE (t
) == BIT_FIELD_REF
)
1685 MEM_IN_STRUCT_P (ref
) = 1;
1689 set_mem_attributes (rtx ref
, tree t
, int objectp
)
1691 set_mem_attributes_minus_bitpos (ref
, t
, objectp
, 0);
1694 /* Set the decl for MEM to DECL. */
1697 set_mem_attrs_from_reg (rtx mem
, rtx reg
)
1700 = get_mem_attrs (MEM_ALIAS_SET (mem
), REG_EXPR (reg
),
1701 GEN_INT (REG_OFFSET (reg
)),
1702 MEM_SIZE (mem
), MEM_ALIGN (mem
), GET_MODE (mem
));
1705 /* Set the alias set of MEM to SET. */
1708 set_mem_alias_set (rtx mem
, HOST_WIDE_INT set
)
1710 #ifdef ENABLE_CHECKING
1711 /* If the new and old alias sets don't conflict, something is wrong. */
1712 gcc_assert (alias_sets_conflict_p (set
, MEM_ALIAS_SET (mem
)));
1715 MEM_ATTRS (mem
) = get_mem_attrs (set
, MEM_EXPR (mem
), MEM_OFFSET (mem
),
1716 MEM_SIZE (mem
), MEM_ALIGN (mem
),
1720 /* Set the alignment of MEM to ALIGN bits. */
1723 set_mem_align (rtx mem
, unsigned int align
)
1725 MEM_ATTRS (mem
) = get_mem_attrs (MEM_ALIAS_SET (mem
), MEM_EXPR (mem
),
1726 MEM_OFFSET (mem
), MEM_SIZE (mem
), align
,
1730 /* Set the expr for MEM to EXPR. */
1733 set_mem_expr (rtx mem
, tree expr
)
1736 = get_mem_attrs (MEM_ALIAS_SET (mem
), expr
, MEM_OFFSET (mem
),
1737 MEM_SIZE (mem
), MEM_ALIGN (mem
), GET_MODE (mem
));
1740 /* Set the offset of MEM to OFFSET. */
1743 set_mem_offset (rtx mem
, rtx offset
)
1745 MEM_ATTRS (mem
) = get_mem_attrs (MEM_ALIAS_SET (mem
), MEM_EXPR (mem
),
1746 offset
, MEM_SIZE (mem
), MEM_ALIGN (mem
),
1750 /* Set the size of MEM to SIZE. */
1753 set_mem_size (rtx mem
, rtx size
)
1755 MEM_ATTRS (mem
) = get_mem_attrs (MEM_ALIAS_SET (mem
), MEM_EXPR (mem
),
1756 MEM_OFFSET (mem
), size
, MEM_ALIGN (mem
),
1760 /* Return a memory reference like MEMREF, but with its mode changed to MODE
1761 and its address changed to ADDR. (VOIDmode means don't change the mode.
1762 NULL for ADDR means don't change the address.) VALIDATE is nonzero if the
1763 returned memory location is required to be valid. The memory
1764 attributes are not changed. */
1767 change_address_1 (rtx memref
, enum machine_mode mode
, rtx addr
, int validate
)
1771 gcc_assert (MEM_P (memref
));
1772 if (mode
== VOIDmode
)
1773 mode
= GET_MODE (memref
);
1775 addr
= XEXP (memref
, 0);
1776 if (mode
== GET_MODE (memref
) && addr
== XEXP (memref
, 0)
1777 && (!validate
|| memory_address_p (mode
, addr
)))
1782 if (reload_in_progress
|| reload_completed
)
1783 gcc_assert (memory_address_p (mode
, addr
));
1785 addr
= memory_address (mode
, addr
);
1788 if (rtx_equal_p (addr
, XEXP (memref
, 0)) && mode
== GET_MODE (memref
))
1791 new = gen_rtx_MEM (mode
, addr
);
1792 MEM_COPY_ATTRIBUTES (new, memref
);
1796 /* Like change_address_1 with VALIDATE nonzero, but we are not saying in what
1797 way we are changing MEMREF, so we only preserve the alias set. */
1800 change_address (rtx memref
, enum machine_mode mode
, rtx addr
)
1802 rtx
new = change_address_1 (memref
, mode
, addr
, 1), size
;
1803 enum machine_mode mmode
= GET_MODE (new);
1806 size
= mmode
== BLKmode
? 0 : GEN_INT (GET_MODE_SIZE (mmode
));
1807 align
= mmode
== BLKmode
? BITS_PER_UNIT
: GET_MODE_ALIGNMENT (mmode
);
1809 /* If there are no changes, just return the original memory reference. */
1812 if (MEM_ATTRS (memref
) == 0
1813 || (MEM_EXPR (memref
) == NULL
1814 && MEM_OFFSET (memref
) == NULL
1815 && MEM_SIZE (memref
) == size
1816 && MEM_ALIGN (memref
) == align
))
1819 new = gen_rtx_MEM (mmode
, XEXP (memref
, 0));
1820 MEM_COPY_ATTRIBUTES (new, memref
);
1824 = get_mem_attrs (MEM_ALIAS_SET (memref
), 0, 0, size
, align
, mmode
);
1829 /* Return a memory reference like MEMREF, but with its mode changed
1830 to MODE and its address offset by OFFSET bytes. If VALIDATE is
1831 nonzero, the memory address is forced to be valid.
1832 If ADJUST is zero, OFFSET is only used to update MEM_ATTRS
1833 and caller is responsible for adjusting MEMREF base register. */
1836 adjust_address_1 (rtx memref
, enum machine_mode mode
, HOST_WIDE_INT offset
,
1837 int validate
, int adjust
)
1839 rtx addr
= XEXP (memref
, 0);
1841 rtx memoffset
= MEM_OFFSET (memref
);
1843 unsigned int memalign
= MEM_ALIGN (memref
);
1845 /* If there are no changes, just return the original memory reference. */
1846 if (mode
== GET_MODE (memref
) && !offset
1847 && (!validate
|| memory_address_p (mode
, addr
)))
1850 /* ??? Prefer to create garbage instead of creating shared rtl.
1851 This may happen even if offset is nonzero -- consider
1852 (plus (plus reg reg) const_int) -- so do this always. */
1853 addr
= copy_rtx (addr
);
1857 /* If MEMREF is a LO_SUM and the offset is within the alignment of the
1858 object, we can merge it into the LO_SUM. */
1859 if (GET_MODE (memref
) != BLKmode
&& GET_CODE (addr
) == LO_SUM
1861 && (unsigned HOST_WIDE_INT
) offset
1862 < GET_MODE_ALIGNMENT (GET_MODE (memref
)) / BITS_PER_UNIT
)
1863 addr
= gen_rtx_LO_SUM (Pmode
, XEXP (addr
, 0),
1864 plus_constant (XEXP (addr
, 1), offset
));
1866 addr
= plus_constant (addr
, offset
);
1869 new = change_address_1 (memref
, mode
, addr
, validate
);
1871 /* Compute the new values of the memory attributes due to this adjustment.
1872 We add the offsets and update the alignment. */
1874 memoffset
= GEN_INT (offset
+ INTVAL (memoffset
));
1876 /* Compute the new alignment by taking the MIN of the alignment and the
1877 lowest-order set bit in OFFSET, but don't change the alignment if OFFSET
1882 (unsigned HOST_WIDE_INT
) (offset
& -offset
) * BITS_PER_UNIT
);
1884 /* We can compute the size in a number of ways. */
1885 if (GET_MODE (new) != BLKmode
)
1886 size
= GEN_INT (GET_MODE_SIZE (GET_MODE (new)));
1887 else if (MEM_SIZE (memref
))
1888 size
= plus_constant (MEM_SIZE (memref
), -offset
);
1890 MEM_ATTRS (new) = get_mem_attrs (MEM_ALIAS_SET (memref
), MEM_EXPR (memref
),
1891 memoffset
, size
, memalign
, GET_MODE (new));
1893 /* At some point, we should validate that this offset is within the object,
1894 if all the appropriate values are known. */
1898 /* Return a memory reference like MEMREF, but with its mode changed
1899 to MODE and its address changed to ADDR, which is assumed to be
1900 MEMREF offseted by OFFSET bytes. If VALIDATE is
1901 nonzero, the memory address is forced to be valid. */
1904 adjust_automodify_address_1 (rtx memref
, enum machine_mode mode
, rtx addr
,
1905 HOST_WIDE_INT offset
, int validate
)
1907 memref
= change_address_1 (memref
, VOIDmode
, addr
, validate
);
1908 return adjust_address_1 (memref
, mode
, offset
, validate
, 0);
1911 /* Return a memory reference like MEMREF, but whose address is changed by
1912 adding OFFSET, an RTX, to it. POW2 is the highest power of two factor
1913 known to be in OFFSET (possibly 1). */
1916 offset_address (rtx memref
, rtx offset
, unsigned HOST_WIDE_INT pow2
)
1918 rtx
new, addr
= XEXP (memref
, 0);
1920 new = simplify_gen_binary (PLUS
, Pmode
, addr
, offset
);
1922 /* At this point we don't know _why_ the address is invalid. It
1923 could have secondary memory references, multiplies or anything.
1925 However, if we did go and rearrange things, we can wind up not
1926 being able to recognize the magic around pic_offset_table_rtx.
1927 This stuff is fragile, and is yet another example of why it is
1928 bad to expose PIC machinery too early. */
1929 if (! memory_address_p (GET_MODE (memref
), new)
1930 && GET_CODE (addr
) == PLUS
1931 && XEXP (addr
, 0) == pic_offset_table_rtx
)
1933 addr
= force_reg (GET_MODE (addr
), addr
);
1934 new = simplify_gen_binary (PLUS
, Pmode
, addr
, offset
);
1937 update_temp_slot_address (XEXP (memref
, 0), new);
1938 new = change_address_1 (memref
, VOIDmode
, new, 1);
1940 /* If there are no changes, just return the original memory reference. */
1944 /* Update the alignment to reflect the offset. Reset the offset, which
1947 = get_mem_attrs (MEM_ALIAS_SET (memref
), MEM_EXPR (memref
), 0, 0,
1948 MIN (MEM_ALIGN (memref
), pow2
* BITS_PER_UNIT
),
1953 /* Return a memory reference like MEMREF, but with its address changed to
1954 ADDR. The caller is asserting that the actual piece of memory pointed
1955 to is the same, just the form of the address is being changed, such as
1956 by putting something into a register. */
1959 replace_equiv_address (rtx memref
, rtx addr
)
1961 /* change_address_1 copies the memory attribute structure without change
1962 and that's exactly what we want here. */
1963 update_temp_slot_address (XEXP (memref
, 0), addr
);
1964 return change_address_1 (memref
, VOIDmode
, addr
, 1);
1967 /* Likewise, but the reference is not required to be valid. */
1970 replace_equiv_address_nv (rtx memref
, rtx addr
)
1972 return change_address_1 (memref
, VOIDmode
, addr
, 0);
1975 /* Return a memory reference like MEMREF, but with its mode widened to
1976 MODE and offset by OFFSET. This would be used by targets that e.g.
1977 cannot issue QImode memory operations and have to use SImode memory
1978 operations plus masking logic. */
1981 widen_memory_access (rtx memref
, enum machine_mode mode
, HOST_WIDE_INT offset
)
1983 rtx
new = adjust_address_1 (memref
, mode
, offset
, 1, 1);
1984 tree expr
= MEM_EXPR (new);
1985 rtx memoffset
= MEM_OFFSET (new);
1986 unsigned int size
= GET_MODE_SIZE (mode
);
1988 /* If there are no changes, just return the original memory reference. */
1992 /* If we don't know what offset we were at within the expression, then
1993 we can't know if we've overstepped the bounds. */
1999 if (TREE_CODE (expr
) == COMPONENT_REF
)
2001 tree field
= TREE_OPERAND (expr
, 1);
2002 tree offset
= component_ref_field_offset (expr
);
2004 if (! DECL_SIZE_UNIT (field
))
2010 /* Is the field at least as large as the access? If so, ok,
2011 otherwise strip back to the containing structure. */
2012 if (TREE_CODE (DECL_SIZE_UNIT (field
)) == INTEGER_CST
2013 && compare_tree_int (DECL_SIZE_UNIT (field
), size
) >= 0
2014 && INTVAL (memoffset
) >= 0)
2017 if (! host_integerp (offset
, 1))
2023 expr
= TREE_OPERAND (expr
, 0);
2025 = (GEN_INT (INTVAL (memoffset
)
2026 + tree_low_cst (offset
, 1)
2027 + (tree_low_cst (DECL_FIELD_BIT_OFFSET (field
), 1)
2030 /* Similarly for the decl. */
2031 else if (DECL_P (expr
)
2032 && DECL_SIZE_UNIT (expr
)
2033 && TREE_CODE (DECL_SIZE_UNIT (expr
)) == INTEGER_CST
2034 && compare_tree_int (DECL_SIZE_UNIT (expr
), size
) >= 0
2035 && (! memoffset
|| INTVAL (memoffset
) >= 0))
2039 /* The widened memory access overflows the expression, which means
2040 that it could alias another expression. Zap it. */
2047 memoffset
= NULL_RTX
;
2049 /* The widened memory may alias other stuff, so zap the alias set. */
2050 /* ??? Maybe use get_alias_set on any remaining expression. */
2052 MEM_ATTRS (new) = get_mem_attrs (0, expr
, memoffset
, GEN_INT (size
),
2053 MEM_ALIGN (new), mode
);
2058 /* Return a newly created CODE_LABEL rtx with a unique label number. */
2061 gen_label_rtx (void)
2063 return gen_rtx_CODE_LABEL (VOIDmode
, 0, NULL_RTX
, NULL_RTX
,
2064 NULL
, label_num
++, NULL
);
2067 /* For procedure integration. */
2069 /* Install new pointers to the first and last insns in the chain.
2070 Also, set cur_insn_uid to one higher than the last in use.
2071 Used for an inline-procedure after copying the insn chain. */
2074 set_new_first_and_last_insn (rtx first
, rtx last
)
2082 for (insn
= first
; insn
; insn
= NEXT_INSN (insn
))
2083 cur_insn_uid
= MAX (cur_insn_uid
, INSN_UID (insn
));
2088 /* Go through all the RTL insn bodies and copy any invalid shared
2089 structure. This routine should only be called once. */
2092 unshare_all_rtl_1 (tree fndecl
, rtx insn
)
2096 /* Make sure that virtual parameters are not shared. */
2097 for (decl
= DECL_ARGUMENTS (fndecl
); decl
; decl
= TREE_CHAIN (decl
))
2098 SET_DECL_RTL (decl
, copy_rtx_if_shared (DECL_RTL (decl
)));
2100 /* Make sure that virtual stack slots are not shared. */
2101 unshare_all_decls (DECL_INITIAL (fndecl
));
2103 /* Unshare just about everything else. */
2104 unshare_all_rtl_in_chain (insn
);
2106 /* Make sure the addresses of stack slots found outside the insn chain
2107 (such as, in DECL_RTL of a variable) are not shared
2108 with the insn chain.
2110 This special care is necessary when the stack slot MEM does not
2111 actually appear in the insn chain. If it does appear, its address
2112 is unshared from all else at that point. */
2113 stack_slot_list
= copy_rtx_if_shared (stack_slot_list
);
2116 /* Go through all the RTL insn bodies and copy any invalid shared
2117 structure, again. This is a fairly expensive thing to do so it
2118 should be done sparingly. */
2121 unshare_all_rtl_again (rtx insn
)
2126 for (p
= insn
; p
; p
= NEXT_INSN (p
))
2129 reset_used_flags (PATTERN (p
));
2130 reset_used_flags (REG_NOTES (p
));
2131 reset_used_flags (LOG_LINKS (p
));
2134 /* Make sure that virtual stack slots are not shared. */
2135 reset_used_decls (DECL_INITIAL (cfun
->decl
));
2137 /* Make sure that virtual parameters are not shared. */
2138 for (decl
= DECL_ARGUMENTS (cfun
->decl
); decl
; decl
= TREE_CHAIN (decl
))
2139 reset_used_flags (DECL_RTL (decl
));
2141 reset_used_flags (stack_slot_list
);
2143 unshare_all_rtl_1 (cfun
->decl
, insn
);
2147 unshare_all_rtl (void)
2149 unshare_all_rtl_1 (current_function_decl
, get_insns ());
2153 struct tree_opt_pass pass_unshare_all_rtl
=
2155 "unshare", /* name */
2157 unshare_all_rtl
, /* execute */
2160 0, /* static_pass_number */
2162 0, /* properties_required */
2163 0, /* properties_provided */
2164 0, /* properties_destroyed */
2165 0, /* todo_flags_start */
2166 TODO_dump_func
, /* todo_flags_finish */
2171 /* Check that ORIG is not marked when it should not be and mark ORIG as in use,
2172 Recursively does the same for subexpressions. */
2175 verify_rtx_sharing (rtx orig
, rtx insn
)
2180 const char *format_ptr
;
2185 code
= GET_CODE (x
);
2187 /* These types may be freely shared. */
2202 /* SCRATCH must be shared because they represent distinct values. */
2204 if (REG_P (XEXP (x
, 0)) && REGNO (XEXP (x
, 0)) < FIRST_PSEUDO_REGISTER
)
2209 /* CONST can be shared if it contains a SYMBOL_REF. If it contains
2210 a LABEL_REF, it isn't sharable. */
2211 if (GET_CODE (XEXP (x
, 0)) == PLUS
2212 && GET_CODE (XEXP (XEXP (x
, 0), 0)) == SYMBOL_REF
2213 && GET_CODE (XEXP (XEXP (x
, 0), 1)) == CONST_INT
)
2218 /* A MEM is allowed to be shared if its address is constant. */
2219 if (CONSTANT_ADDRESS_P (XEXP (x
, 0))
2220 || reload_completed
|| reload_in_progress
)
2229 /* This rtx may not be shared. If it has already been seen,
2230 replace it with a copy of itself. */
2231 #ifdef ENABLE_CHECKING
2232 if (RTX_FLAG (x
, used
))
2234 error ("invalid rtl sharing found in the insn");
2236 error ("shared rtx");
2238 internal_error ("internal consistency failure");
2241 gcc_assert (!RTX_FLAG (x
, used
));
2243 RTX_FLAG (x
, used
) = 1;
2245 /* Now scan the subexpressions recursively. */
2247 format_ptr
= GET_RTX_FORMAT (code
);
2249 for (i
= 0; i
< GET_RTX_LENGTH (code
); i
++)
2251 switch (*format_ptr
++)
2254 verify_rtx_sharing (XEXP (x
, i
), insn
);
2258 if (XVEC (x
, i
) != NULL
)
2261 int len
= XVECLEN (x
, i
);
2263 for (j
= 0; j
< len
; j
++)
2265 /* We allow sharing of ASM_OPERANDS inside single
2267 if (j
&& GET_CODE (XVECEXP (x
, i
, j
)) == SET
2268 && (GET_CODE (SET_SRC (XVECEXP (x
, i
, j
)))
2270 verify_rtx_sharing (SET_DEST (XVECEXP (x
, i
, j
)), insn
);
2272 verify_rtx_sharing (XVECEXP (x
, i
, j
), insn
);
2281 /* Go through all the RTL insn bodies and check that there is no unexpected
2282 sharing in between the subexpressions. */
2285 verify_rtl_sharing (void)
2289 for (p
= get_insns (); p
; p
= NEXT_INSN (p
))
2292 reset_used_flags (PATTERN (p
));
2293 reset_used_flags (REG_NOTES (p
));
2294 reset_used_flags (LOG_LINKS (p
));
2295 if (GET_CODE (PATTERN (p
)) == SEQUENCE
)
2298 rtx q
, sequence
= PATTERN (p
);
2300 for (i
= 0; i
< XVECLEN (sequence
, 0); i
++)
2302 q
= XVECEXP (sequence
, 0, i
);
2303 gcc_assert (INSN_P (q
));
2304 reset_used_flags (PATTERN (q
));
2305 reset_used_flags (REG_NOTES (q
));
2306 reset_used_flags (LOG_LINKS (q
));
2311 for (p
= get_insns (); p
; p
= NEXT_INSN (p
))
2314 verify_rtx_sharing (PATTERN (p
), p
);
2315 verify_rtx_sharing (REG_NOTES (p
), p
);
2316 verify_rtx_sharing (LOG_LINKS (p
), p
);
2320 /* Go through all the RTL insn bodies and copy any invalid shared structure.
2321 Assumes the mark bits are cleared at entry. */
2324 unshare_all_rtl_in_chain (rtx insn
)
2326 for (; insn
; insn
= NEXT_INSN (insn
))
2329 PATTERN (insn
) = copy_rtx_if_shared (PATTERN (insn
));
2330 REG_NOTES (insn
) = copy_rtx_if_shared (REG_NOTES (insn
));
2331 LOG_LINKS (insn
) = copy_rtx_if_shared (LOG_LINKS (insn
));
2335 /* Go through all virtual stack slots of a function and copy any
2336 shared structure. */
2338 unshare_all_decls (tree blk
)
2342 /* Copy shared decls. */
2343 for (t
= BLOCK_VARS (blk
); t
; t
= TREE_CHAIN (t
))
2344 if (DECL_RTL_SET_P (t
))
2345 SET_DECL_RTL (t
, copy_rtx_if_shared (DECL_RTL (t
)));
2347 /* Now process sub-blocks. */
2348 for (t
= BLOCK_SUBBLOCKS (blk
); t
; t
= TREE_CHAIN (t
))
2349 unshare_all_decls (t
);
2352 /* Go through all virtual stack slots of a function and mark them as
2355 reset_used_decls (tree blk
)
2360 for (t
= BLOCK_VARS (blk
); t
; t
= TREE_CHAIN (t
))
2361 if (DECL_RTL_SET_P (t
))
2362 reset_used_flags (DECL_RTL (t
));
2364 /* Now process sub-blocks. */
2365 for (t
= BLOCK_SUBBLOCKS (blk
); t
; t
= TREE_CHAIN (t
))
2366 reset_used_decls (t
);
2369 /* Mark ORIG as in use, and return a copy of it if it was already in use.
2370 Recursively does the same for subexpressions. Uses
2371 copy_rtx_if_shared_1 to reduce stack space. */
2374 copy_rtx_if_shared (rtx orig
)
2376 copy_rtx_if_shared_1 (&orig
);
2380 /* Mark *ORIG1 as in use, and set it to a copy of it if it was already in
2381 use. Recursively does the same for subexpressions. */
2384 copy_rtx_if_shared_1 (rtx
*orig1
)
2390 const char *format_ptr
;
2394 /* Repeat is used to turn tail-recursion into iteration. */
2401 code
= GET_CODE (x
);
2403 /* These types may be freely shared. */
2417 /* SCRATCH must be shared because they represent distinct values. */
2420 if (REG_P (XEXP (x
, 0)) && REGNO (XEXP (x
, 0)) < FIRST_PSEUDO_REGISTER
)
2425 /* CONST can be shared if it contains a SYMBOL_REF. If it contains
2426 a LABEL_REF, it isn't sharable. */
2427 if (GET_CODE (XEXP (x
, 0)) == PLUS
2428 && GET_CODE (XEXP (XEXP (x
, 0), 0)) == SYMBOL_REF
2429 && GET_CODE (XEXP (XEXP (x
, 0), 1)) == CONST_INT
)
2438 /* The chain of insns is not being copied. */
2445 /* This rtx may not be shared. If it has already been seen,
2446 replace it with a copy of itself. */
2448 if (RTX_FLAG (x
, used
))
2450 x
= shallow_copy_rtx (x
);
2453 RTX_FLAG (x
, used
) = 1;
2455 /* Now scan the subexpressions recursively.
2456 We can store any replaced subexpressions directly into X
2457 since we know X is not shared! Any vectors in X
2458 must be copied if X was copied. */
2460 format_ptr
= GET_RTX_FORMAT (code
);
2461 length
= GET_RTX_LENGTH (code
);
2464 for (i
= 0; i
< length
; i
++)
2466 switch (*format_ptr
++)
2470 copy_rtx_if_shared_1 (last_ptr
);
2471 last_ptr
= &XEXP (x
, i
);
2475 if (XVEC (x
, i
) != NULL
)
2478 int len
= XVECLEN (x
, i
);
2480 /* Copy the vector iff I copied the rtx and the length
2482 if (copied
&& len
> 0)
2483 XVEC (x
, i
) = gen_rtvec_v (len
, XVEC (x
, i
)->elem
);
2485 /* Call recursively on all inside the vector. */
2486 for (j
= 0; j
< len
; j
++)
2489 copy_rtx_if_shared_1 (last_ptr
);
2490 last_ptr
= &XVECEXP (x
, i
, j
);
2505 /* Clear all the USED bits in X to allow copy_rtx_if_shared to be used
2506 to look for shared sub-parts. */
2509 reset_used_flags (rtx x
)
2513 const char *format_ptr
;
2516 /* Repeat is used to turn tail-recursion into iteration. */
2521 code
= GET_CODE (x
);
2523 /* These types may be freely shared so we needn't do any resetting
2544 /* The chain of insns is not being copied. */
2551 RTX_FLAG (x
, used
) = 0;
2553 format_ptr
= GET_RTX_FORMAT (code
);
2554 length
= GET_RTX_LENGTH (code
);
2556 for (i
= 0; i
< length
; i
++)
2558 switch (*format_ptr
++)
2566 reset_used_flags (XEXP (x
, i
));
2570 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
2571 reset_used_flags (XVECEXP (x
, i
, j
));
2577 /* Set all the USED bits in X to allow copy_rtx_if_shared to be used
2578 to look for shared sub-parts. */
2581 set_used_flags (rtx x
)
2585 const char *format_ptr
;
2590 code
= GET_CODE (x
);
2592 /* These types may be freely shared so we needn't do any resetting
2613 /* The chain of insns is not being copied. */
2620 RTX_FLAG (x
, used
) = 1;
2622 format_ptr
= GET_RTX_FORMAT (code
);
2623 for (i
= 0; i
< GET_RTX_LENGTH (code
); i
++)
2625 switch (*format_ptr
++)
2628 set_used_flags (XEXP (x
, i
));
2632 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
2633 set_used_flags (XVECEXP (x
, i
, j
));
2639 /* Copy X if necessary so that it won't be altered by changes in OTHER.
2640 Return X or the rtx for the pseudo reg the value of X was copied into.
2641 OTHER must be valid as a SET_DEST. */
2644 make_safe_from (rtx x
, rtx other
)
2647 switch (GET_CODE (other
))
2650 other
= SUBREG_REG (other
);
2652 case STRICT_LOW_PART
:
2655 other
= XEXP (other
, 0);
2664 && GET_CODE (x
) != SUBREG
)
2666 && (REGNO (other
) < FIRST_PSEUDO_REGISTER
2667 || reg_mentioned_p (other
, x
))))
2669 rtx temp
= gen_reg_rtx (GET_MODE (x
));
2670 emit_move_insn (temp
, x
);
2676 /* Emission of insns (adding them to the doubly-linked list). */
2678 /* Return the first insn of the current sequence or current function. */
2686 /* Specify a new insn as the first in the chain. */
2689 set_first_insn (rtx insn
)
2691 gcc_assert (!PREV_INSN (insn
));
2695 /* Return the last insn emitted in current sequence or current function. */
2698 get_last_insn (void)
2703 /* Specify a new insn as the last in the chain. */
2706 set_last_insn (rtx insn
)
2708 gcc_assert (!NEXT_INSN (insn
));
2712 /* Return the last insn emitted, even if it is in a sequence now pushed. */
2715 get_last_insn_anywhere (void)
2717 struct sequence_stack
*stack
;
2720 for (stack
= seq_stack
; stack
; stack
= stack
->next
)
2721 if (stack
->last
!= 0)
2726 /* Return the first nonnote insn emitted in current sequence or current
2727 function. This routine looks inside SEQUENCEs. */
2730 get_first_nonnote_insn (void)
2732 rtx insn
= first_insn
;
2737 for (insn
= next_insn (insn
);
2738 insn
&& NOTE_P (insn
);
2739 insn
= next_insn (insn
))
2743 if (NONJUMP_INSN_P (insn
)
2744 && GET_CODE (PATTERN (insn
)) == SEQUENCE
)
2745 insn
= XVECEXP (PATTERN (insn
), 0, 0);
2752 /* Return the last nonnote insn emitted in current sequence or current
2753 function. This routine looks inside SEQUENCEs. */
2756 get_last_nonnote_insn (void)
2758 rtx insn
= last_insn
;
2763 for (insn
= previous_insn (insn
);
2764 insn
&& NOTE_P (insn
);
2765 insn
= previous_insn (insn
))
2769 if (NONJUMP_INSN_P (insn
)
2770 && GET_CODE (PATTERN (insn
)) == SEQUENCE
)
2771 insn
= XVECEXP (PATTERN (insn
), 0,
2772 XVECLEN (PATTERN (insn
), 0) - 1);
2779 /* Return a number larger than any instruction's uid in this function. */
2784 return cur_insn_uid
;
2787 /* Renumber instructions so that no instruction UIDs are wasted. */
2790 renumber_insns (void)
2794 /* If we're not supposed to renumber instructions, don't. */
2795 if (!flag_renumber_insns
)
2798 /* If there aren't that many instructions, then it's not really
2799 worth renumbering them. */
2800 if (flag_renumber_insns
== 1 && get_max_uid () < 25000)
2805 for (insn
= get_insns (); insn
; insn
= NEXT_INSN (insn
))
2808 fprintf (dump_file
, "Renumbering insn %d to %d\n",
2809 INSN_UID (insn
), cur_insn_uid
);
2810 INSN_UID (insn
) = cur_insn_uid
++;
2814 /* Return the next insn. If it is a SEQUENCE, return the first insn
2818 next_insn (rtx insn
)
2822 insn
= NEXT_INSN (insn
);
2823 if (insn
&& NONJUMP_INSN_P (insn
)
2824 && GET_CODE (PATTERN (insn
)) == SEQUENCE
)
2825 insn
= XVECEXP (PATTERN (insn
), 0, 0);
2831 /* Return the previous insn. If it is a SEQUENCE, return the last insn
2835 previous_insn (rtx insn
)
2839 insn
= PREV_INSN (insn
);
2840 if (insn
&& NONJUMP_INSN_P (insn
)
2841 && GET_CODE (PATTERN (insn
)) == SEQUENCE
)
2842 insn
= XVECEXP (PATTERN (insn
), 0, XVECLEN (PATTERN (insn
), 0) - 1);
2848 /* Return the next insn after INSN that is not a NOTE. This routine does not
2849 look inside SEQUENCEs. */
2852 next_nonnote_insn (rtx insn
)
2856 insn
= NEXT_INSN (insn
);
2857 if (insn
== 0 || !NOTE_P (insn
))
2864 /* Return the previous insn before INSN that is not a NOTE. This routine does
2865 not look inside SEQUENCEs. */
2868 prev_nonnote_insn (rtx insn
)
2872 insn
= PREV_INSN (insn
);
2873 if (insn
== 0 || !NOTE_P (insn
))
2880 /* Return the next INSN, CALL_INSN or JUMP_INSN after INSN;
2881 or 0, if there is none. This routine does not look inside
2885 next_real_insn (rtx insn
)
2889 insn
= NEXT_INSN (insn
);
2890 if (insn
== 0 || INSN_P (insn
))
2897 /* Return the last INSN, CALL_INSN or JUMP_INSN before INSN;
2898 or 0, if there is none. This routine does not look inside
2902 prev_real_insn (rtx insn
)
2906 insn
= PREV_INSN (insn
);
2907 if (insn
== 0 || INSN_P (insn
))
2914 /* Return the last CALL_INSN in the current list, or 0 if there is none.
2915 This routine does not look inside SEQUENCEs. */
2918 last_call_insn (void)
2922 for (insn
= get_last_insn ();
2923 insn
&& !CALL_P (insn
);
2924 insn
= PREV_INSN (insn
))
2930 /* Find the next insn after INSN that really does something. This routine
2931 does not look inside SEQUENCEs. Until reload has completed, this is the
2932 same as next_real_insn. */
2935 active_insn_p (rtx insn
)
2937 return (CALL_P (insn
) || JUMP_P (insn
)
2938 || (NONJUMP_INSN_P (insn
)
2939 && (! reload_completed
2940 || (GET_CODE (PATTERN (insn
)) != USE
2941 && GET_CODE (PATTERN (insn
)) != CLOBBER
))));
2945 next_active_insn (rtx insn
)
2949 insn
= NEXT_INSN (insn
);
2950 if (insn
== 0 || active_insn_p (insn
))
2957 /* Find the last insn before INSN that really does something. This routine
2958 does not look inside SEQUENCEs. Until reload has completed, this is the
2959 same as prev_real_insn. */
2962 prev_active_insn (rtx insn
)
2966 insn
= PREV_INSN (insn
);
2967 if (insn
== 0 || active_insn_p (insn
))
2974 /* Return the next CODE_LABEL after the insn INSN, or 0 if there is none. */
2977 next_label (rtx insn
)
2981 insn
= NEXT_INSN (insn
);
2982 if (insn
== 0 || LABEL_P (insn
))
2989 /* Return the last CODE_LABEL before the insn INSN, or 0 if there is none. */
2992 prev_label (rtx insn
)
2996 insn
= PREV_INSN (insn
);
2997 if (insn
== 0 || LABEL_P (insn
))
3004 /* Return the last label to mark the same position as LABEL. Return null
3005 if LABEL itself is null. */
3008 skip_consecutive_labels (rtx label
)
3012 for (insn
= label
; insn
!= 0 && !INSN_P (insn
); insn
= NEXT_INSN (insn
))
3020 /* INSN uses CC0 and is being moved into a delay slot. Set up REG_CC_SETTER
3021 and REG_CC_USER notes so we can find it. */
3024 link_cc0_insns (rtx insn
)
3026 rtx user
= next_nonnote_insn (insn
);
3028 if (NONJUMP_INSN_P (user
) && GET_CODE (PATTERN (user
)) == SEQUENCE
)
3029 user
= XVECEXP (PATTERN (user
), 0, 0);
3031 REG_NOTES (user
) = gen_rtx_INSN_LIST (REG_CC_SETTER
, insn
,
3033 REG_NOTES (insn
) = gen_rtx_INSN_LIST (REG_CC_USER
, user
, REG_NOTES (insn
));
3036 /* Return the next insn that uses CC0 after INSN, which is assumed to
3037 set it. This is the inverse of prev_cc0_setter (i.e., prev_cc0_setter
3038 applied to the result of this function should yield INSN).
3040 Normally, this is simply the next insn. However, if a REG_CC_USER note
3041 is present, it contains the insn that uses CC0.
3043 Return 0 if we can't find the insn. */
3046 next_cc0_user (rtx insn
)
3048 rtx note
= find_reg_note (insn
, REG_CC_USER
, NULL_RTX
);
3051 return XEXP (note
, 0);
3053 insn
= next_nonnote_insn (insn
);
3054 if (insn
&& NONJUMP_INSN_P (insn
) && GET_CODE (PATTERN (insn
)) == SEQUENCE
)
3055 insn
= XVECEXP (PATTERN (insn
), 0, 0);
3057 if (insn
&& INSN_P (insn
) && reg_mentioned_p (cc0_rtx
, PATTERN (insn
)))
3063 /* Find the insn that set CC0 for INSN. Unless INSN has a REG_CC_SETTER
3064 note, it is the previous insn. */
3067 prev_cc0_setter (rtx insn
)
3069 rtx note
= find_reg_note (insn
, REG_CC_SETTER
, NULL_RTX
);
3072 return XEXP (note
, 0);
3074 insn
= prev_nonnote_insn (insn
);
3075 gcc_assert (sets_cc0_p (PATTERN (insn
)));
3081 /* Increment the label uses for all labels present in rtx. */
3084 mark_label_nuses (rtx x
)
3090 code
= GET_CODE (x
);
3091 if (code
== LABEL_REF
&& LABEL_P (XEXP (x
, 0)))
3092 LABEL_NUSES (XEXP (x
, 0))++;
3094 fmt
= GET_RTX_FORMAT (code
);
3095 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
3098 mark_label_nuses (XEXP (x
, i
));
3099 else if (fmt
[i
] == 'E')
3100 for (j
= XVECLEN (x
, i
) - 1; j
>= 0; j
--)
3101 mark_label_nuses (XVECEXP (x
, i
, j
));
3106 /* Try splitting insns that can be split for better scheduling.
3107 PAT is the pattern which might split.
3108 TRIAL is the insn providing PAT.
3109 LAST is nonzero if we should return the last insn of the sequence produced.
3111 If this routine succeeds in splitting, it returns the first or last
3112 replacement insn depending on the value of LAST. Otherwise, it
3113 returns TRIAL. If the insn to be returned can be split, it will be. */
3116 try_split (rtx pat
, rtx trial
, int last
)
3118 rtx before
= PREV_INSN (trial
);
3119 rtx after
= NEXT_INSN (trial
);
3120 int has_barrier
= 0;
3124 rtx insn_last
, insn
;
3127 if (any_condjump_p (trial
)
3128 && (note
= find_reg_note (trial
, REG_BR_PROB
, 0)))
3129 split_branch_probability
= INTVAL (XEXP (note
, 0));
3130 probability
= split_branch_probability
;
3132 seq
= split_insns (pat
, trial
);
3134 split_branch_probability
= -1;
3136 /* If we are splitting a JUMP_INSN, it might be followed by a BARRIER.
3137 We may need to handle this specially. */
3138 if (after
&& BARRIER_P (after
))
3141 after
= NEXT_INSN (after
);
3147 /* Avoid infinite loop if any insn of the result matches
3148 the original pattern. */
3152 if (INSN_P (insn_last
)
3153 && rtx_equal_p (PATTERN (insn_last
), pat
))
3155 if (!NEXT_INSN (insn_last
))
3157 insn_last
= NEXT_INSN (insn_last
);
3161 for (insn
= insn_last
; insn
; insn
= PREV_INSN (insn
))
3165 mark_jump_label (PATTERN (insn
), insn
, 0);
3167 if (probability
!= -1
3168 && any_condjump_p (insn
)
3169 && !find_reg_note (insn
, REG_BR_PROB
, 0))
3171 /* We can preserve the REG_BR_PROB notes only if exactly
3172 one jump is created, otherwise the machine description
3173 is responsible for this step using
3174 split_branch_probability variable. */
3175 gcc_assert (njumps
== 1);
3177 = gen_rtx_EXPR_LIST (REG_BR_PROB
,
3178 GEN_INT (probability
),
3184 /* If we are splitting a CALL_INSN, look for the CALL_INSN
3185 in SEQ and copy our CALL_INSN_FUNCTION_USAGE to it. */
3188 for (insn
= insn_last
; insn
; insn
= PREV_INSN (insn
))
3191 rtx
*p
= &CALL_INSN_FUNCTION_USAGE (insn
);
3194 *p
= CALL_INSN_FUNCTION_USAGE (trial
);
3195 SIBLING_CALL_P (insn
) = SIBLING_CALL_P (trial
);
3199 /* Copy notes, particularly those related to the CFG. */
3200 for (note
= REG_NOTES (trial
); note
; note
= XEXP (note
, 1))
3202 switch (REG_NOTE_KIND (note
))
3206 while (insn
!= NULL_RTX
)
3209 || (flag_non_call_exceptions
&& INSN_P (insn
)
3210 && may_trap_p (PATTERN (insn
))))
3212 = gen_rtx_EXPR_LIST (REG_EH_REGION
,
3215 insn
= PREV_INSN (insn
);
3222 while (insn
!= NULL_RTX
)
3226 = gen_rtx_EXPR_LIST (REG_NOTE_KIND (note
),
3229 insn
= PREV_INSN (insn
);
3233 case REG_NON_LOCAL_GOTO
:
3235 while (insn
!= NULL_RTX
)
3239 = gen_rtx_EXPR_LIST (REG_NOTE_KIND (note
),
3242 insn
= PREV_INSN (insn
);
3251 /* If there are LABELS inside the split insns increment the
3252 usage count so we don't delete the label. */
3253 if (NONJUMP_INSN_P (trial
))
3256 while (insn
!= NULL_RTX
)
3258 if (NONJUMP_INSN_P (insn
))
3259 mark_label_nuses (PATTERN (insn
));
3261 insn
= PREV_INSN (insn
);
3265 tem
= emit_insn_after_setloc (seq
, trial
, INSN_LOCATOR (trial
));
3267 delete_insn (trial
);
3269 emit_barrier_after (tem
);
3271 /* Recursively call try_split for each new insn created; by the
3272 time control returns here that insn will be fully split, so
3273 set LAST and continue from the insn after the one returned.
3274 We can't use next_active_insn here since AFTER may be a note.
3275 Ignore deleted insns, which can be occur if not optimizing. */
3276 for (tem
= NEXT_INSN (before
); tem
!= after
; tem
= NEXT_INSN (tem
))
3277 if (! INSN_DELETED_P (tem
) && INSN_P (tem
))
3278 tem
= try_split (PATTERN (tem
), tem
, 1);
3280 /* Return either the first or the last insn, depending on which was
3283 ? (after
? PREV_INSN (after
) : last_insn
)
3284 : NEXT_INSN (before
);
3287 /* Make and return an INSN rtx, initializing all its slots.
3288 Store PATTERN in the pattern slots. */
3291 make_insn_raw (rtx pattern
)
3295 insn
= rtx_alloc (INSN
);
3297 INSN_UID (insn
) = cur_insn_uid
++;
3298 PATTERN (insn
) = pattern
;
3299 INSN_CODE (insn
) = -1;
3300 LOG_LINKS (insn
) = NULL
;
3301 REG_NOTES (insn
) = NULL
;
3302 INSN_LOCATOR (insn
) = 0;
3303 BLOCK_FOR_INSN (insn
) = NULL
;
3305 #ifdef ENABLE_RTL_CHECKING
3308 && (returnjump_p (insn
)
3309 || (GET_CODE (insn
) == SET
3310 && SET_DEST (insn
) == pc_rtx
)))
3312 warning (0, "ICE: emit_insn used where emit_jump_insn needed:\n");
3320 /* Like `make_insn_raw' but make a JUMP_INSN instead of an insn. */
3323 make_jump_insn_raw (rtx pattern
)
3327 insn
= rtx_alloc (JUMP_INSN
);
3328 INSN_UID (insn
) = cur_insn_uid
++;
3330 PATTERN (insn
) = pattern
;
3331 INSN_CODE (insn
) = -1;
3332 LOG_LINKS (insn
) = NULL
;
3333 REG_NOTES (insn
) = NULL
;
3334 JUMP_LABEL (insn
) = NULL
;
3335 INSN_LOCATOR (insn
) = 0;
3336 BLOCK_FOR_INSN (insn
) = NULL
;
3341 /* Like `make_insn_raw' but make a CALL_INSN instead of an insn. */
3344 make_call_insn_raw (rtx pattern
)
3348 insn
= rtx_alloc (CALL_INSN
);
3349 INSN_UID (insn
) = cur_insn_uid
++;
3351 PATTERN (insn
) = pattern
;
3352 INSN_CODE (insn
) = -1;
3353 LOG_LINKS (insn
) = NULL
;
3354 REG_NOTES (insn
) = NULL
;
3355 CALL_INSN_FUNCTION_USAGE (insn
) = NULL
;
3356 INSN_LOCATOR (insn
) = 0;
3357 BLOCK_FOR_INSN (insn
) = NULL
;
3362 /* Add INSN to the end of the doubly-linked list.
3363 INSN may be an INSN, JUMP_INSN, CALL_INSN, CODE_LABEL, BARRIER or NOTE. */
3368 PREV_INSN (insn
) = last_insn
;
3369 NEXT_INSN (insn
) = 0;
3371 if (NULL
!= last_insn
)
3372 NEXT_INSN (last_insn
) = insn
;
3374 if (NULL
== first_insn
)
3380 /* Add INSN into the doubly-linked list after insn AFTER. This and
3381 the next should be the only functions called to insert an insn once
3382 delay slots have been filled since only they know how to update a
3386 add_insn_after (rtx insn
, rtx after
)
3388 rtx next
= NEXT_INSN (after
);
3391 gcc_assert (!optimize
|| !INSN_DELETED_P (after
));
3393 NEXT_INSN (insn
) = next
;
3394 PREV_INSN (insn
) = after
;
3398 PREV_INSN (next
) = insn
;
3399 if (NONJUMP_INSN_P (next
) && GET_CODE (PATTERN (next
)) == SEQUENCE
)
3400 PREV_INSN (XVECEXP (PATTERN (next
), 0, 0)) = insn
;
3402 else if (last_insn
== after
)
3406 struct sequence_stack
*stack
= seq_stack
;
3407 /* Scan all pending sequences too. */
3408 for (; stack
; stack
= stack
->next
)
3409 if (after
== stack
->last
)
3418 if (!BARRIER_P (after
)
3419 && !BARRIER_P (insn
)
3420 && (bb
= BLOCK_FOR_INSN (after
)))
3422 set_block_for_insn (insn
, bb
);
3424 bb
->flags
|= BB_DIRTY
;
3425 /* Should not happen as first in the BB is always
3426 either NOTE or LABEL. */
3427 if (BB_END (bb
) == after
3428 /* Avoid clobbering of structure when creating new BB. */
3429 && !BARRIER_P (insn
)
3431 || NOTE_LINE_NUMBER (insn
) != NOTE_INSN_BASIC_BLOCK
))
3435 NEXT_INSN (after
) = insn
;
3436 if (NONJUMP_INSN_P (after
) && GET_CODE (PATTERN (after
)) == SEQUENCE
)
3438 rtx sequence
= PATTERN (after
);
3439 NEXT_INSN (XVECEXP (sequence
, 0, XVECLEN (sequence
, 0) - 1)) = insn
;
3443 /* Add INSN into the doubly-linked list before insn BEFORE. This and
3444 the previous should be the only functions called to insert an insn once
3445 delay slots have been filled since only they know how to update a
3449 add_insn_before (rtx insn
, rtx before
)
3451 rtx prev
= PREV_INSN (before
);
3454 gcc_assert (!optimize
|| !INSN_DELETED_P (before
));
3456 PREV_INSN (insn
) = prev
;
3457 NEXT_INSN (insn
) = before
;
3461 NEXT_INSN (prev
) = insn
;
3462 if (NONJUMP_INSN_P (prev
) && GET_CODE (PATTERN (prev
)) == SEQUENCE
)
3464 rtx sequence
= PATTERN (prev
);
3465 NEXT_INSN (XVECEXP (sequence
, 0, XVECLEN (sequence
, 0) - 1)) = insn
;
3468 else if (first_insn
== before
)
3472 struct sequence_stack
*stack
= seq_stack
;
3473 /* Scan all pending sequences too. */
3474 for (; stack
; stack
= stack
->next
)
3475 if (before
== stack
->first
)
3477 stack
->first
= insn
;
3484 if (!BARRIER_P (before
)
3485 && !BARRIER_P (insn
)
3486 && (bb
= BLOCK_FOR_INSN (before
)))
3488 set_block_for_insn (insn
, bb
);
3490 bb
->flags
|= BB_DIRTY
;
3491 /* Should not happen as first in the BB is always either NOTE or
3493 gcc_assert (BB_HEAD (bb
) != insn
3494 /* Avoid clobbering of structure when creating new BB. */
3497 && NOTE_LINE_NUMBER (insn
) == NOTE_INSN_BASIC_BLOCK
));
3500 PREV_INSN (before
) = insn
;
3501 if (NONJUMP_INSN_P (before
) && GET_CODE (PATTERN (before
)) == SEQUENCE
)
3502 PREV_INSN (XVECEXP (PATTERN (before
), 0, 0)) = insn
;
3505 /* Remove an insn from its doubly-linked list. This function knows how
3506 to handle sequences. */
3508 remove_insn (rtx insn
)
3510 rtx next
= NEXT_INSN (insn
);
3511 rtx prev
= PREV_INSN (insn
);
3516 NEXT_INSN (prev
) = next
;
3517 if (NONJUMP_INSN_P (prev
) && GET_CODE (PATTERN (prev
)) == SEQUENCE
)
3519 rtx sequence
= PATTERN (prev
);
3520 NEXT_INSN (XVECEXP (sequence
, 0, XVECLEN (sequence
, 0) - 1)) = next
;
3523 else if (first_insn
== insn
)
3527 struct sequence_stack
*stack
= seq_stack
;
3528 /* Scan all pending sequences too. */
3529 for (; stack
; stack
= stack
->next
)
3530 if (insn
== stack
->first
)
3532 stack
->first
= next
;
3541 PREV_INSN (next
) = prev
;
3542 if (NONJUMP_INSN_P (next
) && GET_CODE (PATTERN (next
)) == SEQUENCE
)
3543 PREV_INSN (XVECEXP (PATTERN (next
), 0, 0)) = prev
;
3545 else if (last_insn
== insn
)
3549 struct sequence_stack
*stack
= seq_stack
;
3550 /* Scan all pending sequences too. */
3551 for (; stack
; stack
= stack
->next
)
3552 if (insn
== stack
->last
)
3560 if (!BARRIER_P (insn
)
3561 && (bb
= BLOCK_FOR_INSN (insn
)))
3564 bb
->flags
|= BB_DIRTY
;
3565 if (BB_HEAD (bb
) == insn
)
3567 /* Never ever delete the basic block note without deleting whole
3569 gcc_assert (!NOTE_P (insn
));
3570 BB_HEAD (bb
) = next
;
3572 if (BB_END (bb
) == insn
)
3577 /* Append CALL_FUSAGE to the CALL_INSN_FUNCTION_USAGE for CALL_INSN. */
3580 add_function_usage_to (rtx call_insn
, rtx call_fusage
)
3582 gcc_assert (call_insn
&& CALL_P (call_insn
));
3584 /* Put the register usage information on the CALL. If there is already
3585 some usage information, put ours at the end. */
3586 if (CALL_INSN_FUNCTION_USAGE (call_insn
))
3590 for (link
= CALL_INSN_FUNCTION_USAGE (call_insn
); XEXP (link
, 1) != 0;
3591 link
= XEXP (link
, 1))
3594 XEXP (link
, 1) = call_fusage
;
3597 CALL_INSN_FUNCTION_USAGE (call_insn
) = call_fusage
;
3600 /* Delete all insns made since FROM.
3601 FROM becomes the new last instruction. */
3604 delete_insns_since (rtx from
)
3609 NEXT_INSN (from
) = 0;
3613 /* This function is deprecated, please use sequences instead.
3615 Move a consecutive bunch of insns to a different place in the chain.
3616 The insns to be moved are those between FROM and TO.
3617 They are moved to a new position after the insn AFTER.
3618 AFTER must not be FROM or TO or any insn in between.
3620 This function does not know about SEQUENCEs and hence should not be
3621 called after delay-slot filling has been done. */
3624 reorder_insns_nobb (rtx from
, rtx to
, rtx after
)
3626 /* Splice this bunch out of where it is now. */
3627 if (PREV_INSN (from
))
3628 NEXT_INSN (PREV_INSN (from
)) = NEXT_INSN (to
);
3630 PREV_INSN (NEXT_INSN (to
)) = PREV_INSN (from
);
3631 if (last_insn
== to
)
3632 last_insn
= PREV_INSN (from
);
3633 if (first_insn
== from
)
3634 first_insn
= NEXT_INSN (to
);
3636 /* Make the new neighbors point to it and it to them. */
3637 if (NEXT_INSN (after
))
3638 PREV_INSN (NEXT_INSN (after
)) = to
;
3640 NEXT_INSN (to
) = NEXT_INSN (after
);
3641 PREV_INSN (from
) = after
;
3642 NEXT_INSN (after
) = from
;
3643 if (after
== last_insn
)
3647 /* Same as function above, but take care to update BB boundaries. */
3649 reorder_insns (rtx from
, rtx to
, rtx after
)
3651 rtx prev
= PREV_INSN (from
);
3652 basic_block bb
, bb2
;
3654 reorder_insns_nobb (from
, to
, after
);
3656 if (!BARRIER_P (after
)
3657 && (bb
= BLOCK_FOR_INSN (after
)))
3660 bb
->flags
|= BB_DIRTY
;
3662 if (!BARRIER_P (from
)
3663 && (bb2
= BLOCK_FOR_INSN (from
)))
3665 if (BB_END (bb2
) == to
)
3666 BB_END (bb2
) = prev
;
3667 bb2
->flags
|= BB_DIRTY
;
3670 if (BB_END (bb
) == after
)
3673 for (x
= from
; x
!= NEXT_INSN (to
); x
= NEXT_INSN (x
))
3675 set_block_for_insn (x
, bb
);
3680 /* Emit insn(s) of given code and pattern
3681 at a specified place within the doubly-linked list.
3683 All of the emit_foo global entry points accept an object
3684 X which is either an insn list or a PATTERN of a single
3687 There are thus a few canonical ways to generate code and
3688 emit it at a specific place in the instruction stream. For
3689 example, consider the instruction named SPOT and the fact that
3690 we would like to emit some instructions before SPOT. We might
3694 ... emit the new instructions ...
3695 insns_head = get_insns ();
3698 emit_insn_before (insns_head, SPOT);
3700 It used to be common to generate SEQUENCE rtl instead, but that
3701 is a relic of the past which no longer occurs. The reason is that
3702 SEQUENCE rtl results in much fragmented RTL memory since the SEQUENCE
3703 generated would almost certainly die right after it was created. */
3705 /* Make X be output before the instruction BEFORE. */
3708 emit_insn_before_noloc (rtx x
, rtx before
)
3713 gcc_assert (before
);
3718 switch (GET_CODE (x
))
3729 rtx next
= NEXT_INSN (insn
);
3730 add_insn_before (insn
, before
);
3736 #ifdef ENABLE_RTL_CHECKING
3743 last
= make_insn_raw (x
);
3744 add_insn_before (last
, before
);
3751 /* Make an instruction with body X and code JUMP_INSN
3752 and output it before the instruction BEFORE. */
3755 emit_jump_insn_before_noloc (rtx x
, rtx before
)
3757 rtx insn
, last
= NULL_RTX
;
3759 gcc_assert (before
);
3761 switch (GET_CODE (x
))
3772 rtx next
= NEXT_INSN (insn
);
3773 add_insn_before (insn
, before
);
3779 #ifdef ENABLE_RTL_CHECKING
3786 last
= make_jump_insn_raw (x
);
3787 add_insn_before (last
, before
);
3794 /* Make an instruction with body X and code CALL_INSN
3795 and output it before the instruction BEFORE. */
3798 emit_call_insn_before_noloc (rtx x
, rtx before
)
3800 rtx last
= NULL_RTX
, insn
;
3802 gcc_assert (before
);
3804 switch (GET_CODE (x
))
3815 rtx next
= NEXT_INSN (insn
);
3816 add_insn_before (insn
, before
);
3822 #ifdef ENABLE_RTL_CHECKING
3829 last
= make_call_insn_raw (x
);
3830 add_insn_before (last
, before
);
3837 /* Make an insn of code BARRIER
3838 and output it before the insn BEFORE. */
3841 emit_barrier_before (rtx before
)
3843 rtx insn
= rtx_alloc (BARRIER
);
3845 INSN_UID (insn
) = cur_insn_uid
++;
3847 add_insn_before (insn
, before
);
3851 /* Emit the label LABEL before the insn BEFORE. */
3854 emit_label_before (rtx label
, rtx before
)
3856 /* This can be called twice for the same label as a result of the
3857 confusion that follows a syntax error! So make it harmless. */
3858 if (INSN_UID (label
) == 0)
3860 INSN_UID (label
) = cur_insn_uid
++;
3861 add_insn_before (label
, before
);
3867 /* Emit a note of subtype SUBTYPE before the insn BEFORE. */
3870 emit_note_before (int subtype
, rtx before
)
3872 rtx note
= rtx_alloc (NOTE
);
3873 INSN_UID (note
) = cur_insn_uid
++;
3874 #ifndef USE_MAPPED_LOCATION
3875 NOTE_SOURCE_FILE (note
) = 0;
3877 NOTE_LINE_NUMBER (note
) = subtype
;
3878 BLOCK_FOR_INSN (note
) = NULL
;
3880 add_insn_before (note
, before
);
3884 /* Helper for emit_insn_after, handles lists of instructions
3887 static rtx
emit_insn_after_1 (rtx
, rtx
);
3890 emit_insn_after_1 (rtx first
, rtx after
)
3896 if (!BARRIER_P (after
)
3897 && (bb
= BLOCK_FOR_INSN (after
)))
3899 bb
->flags
|= BB_DIRTY
;
3900 for (last
= first
; NEXT_INSN (last
); last
= NEXT_INSN (last
))
3901 if (!BARRIER_P (last
))
3902 set_block_for_insn (last
, bb
);
3903 if (!BARRIER_P (last
))
3904 set_block_for_insn (last
, bb
);
3905 if (BB_END (bb
) == after
)
3909 for (last
= first
; NEXT_INSN (last
); last
= NEXT_INSN (last
))
3912 after_after
= NEXT_INSN (after
);
3914 NEXT_INSN (after
) = first
;
3915 PREV_INSN (first
) = after
;
3916 NEXT_INSN (last
) = after_after
;
3918 PREV_INSN (after_after
) = last
;
3920 if (after
== last_insn
)
3925 /* Make X be output after the insn AFTER. */
3928 emit_insn_after_noloc (rtx x
, rtx after
)
3937 switch (GET_CODE (x
))
3945 last
= emit_insn_after_1 (x
, after
);
3948 #ifdef ENABLE_RTL_CHECKING
3955 last
= make_insn_raw (x
);
3956 add_insn_after (last
, after
);
3964 /* Make an insn of code JUMP_INSN with body X
3965 and output it after the insn AFTER. */
3968 emit_jump_insn_after_noloc (rtx x
, rtx after
)
3974 switch (GET_CODE (x
))
3982 last
= emit_insn_after_1 (x
, after
);
3985 #ifdef ENABLE_RTL_CHECKING
3992 last
= make_jump_insn_raw (x
);
3993 add_insn_after (last
, after
);
4000 /* Make an instruction with body X and code CALL_INSN
4001 and output it after the instruction AFTER. */
4004 emit_call_insn_after_noloc (rtx x
, rtx after
)
4010 switch (GET_CODE (x
))
4018 last
= emit_insn_after_1 (x
, after
);
4021 #ifdef ENABLE_RTL_CHECKING
4028 last
= make_call_insn_raw (x
);
4029 add_insn_after (last
, after
);
4036 /* Make an insn of code BARRIER
4037 and output it after the insn AFTER. */
4040 emit_barrier_after (rtx after
)
4042 rtx insn
= rtx_alloc (BARRIER
);
4044 INSN_UID (insn
) = cur_insn_uid
++;
4046 add_insn_after (insn
, after
);
4050 /* Emit the label LABEL after the insn AFTER. */
4053 emit_label_after (rtx label
, rtx after
)
4055 /* This can be called twice for the same label
4056 as a result of the confusion that follows a syntax error!
4057 So make it harmless. */
4058 if (INSN_UID (label
) == 0)
4060 INSN_UID (label
) = cur_insn_uid
++;
4061 add_insn_after (label
, after
);
4067 /* Emit a note of subtype SUBTYPE after the insn AFTER. */
4070 emit_note_after (int subtype
, rtx after
)
4072 rtx note
= rtx_alloc (NOTE
);
4073 INSN_UID (note
) = cur_insn_uid
++;
4074 #ifndef USE_MAPPED_LOCATION
4075 NOTE_SOURCE_FILE (note
) = 0;
4077 NOTE_LINE_NUMBER (note
) = subtype
;
4078 BLOCK_FOR_INSN (note
) = NULL
;
4079 add_insn_after (note
, after
);
4083 /* Like emit_insn_after_noloc, but set INSN_LOCATOR according to SCOPE. */
4085 emit_insn_after_setloc (rtx pattern
, rtx after
, int loc
)
4087 rtx last
= emit_insn_after_noloc (pattern
, after
);
4089 if (pattern
== NULL_RTX
|| !loc
)
4092 after
= NEXT_INSN (after
);
4095 if (active_insn_p (after
) && !INSN_LOCATOR (after
))
4096 INSN_LOCATOR (after
) = loc
;
4099 after
= NEXT_INSN (after
);
4104 /* Like emit_insn_after_noloc, but set INSN_LOCATOR according to AFTER. */
4106 emit_insn_after (rtx pattern
, rtx after
)
4109 return emit_insn_after_setloc (pattern
, after
, INSN_LOCATOR (after
));
4111 return emit_insn_after_noloc (pattern
, after
);
4114 /* Like emit_jump_insn_after_noloc, but set INSN_LOCATOR according to SCOPE. */
4116 emit_jump_insn_after_setloc (rtx pattern
, rtx after
, int loc
)
4118 rtx last
= emit_jump_insn_after_noloc (pattern
, after
);
4120 if (pattern
== NULL_RTX
|| !loc
)
4123 after
= NEXT_INSN (after
);
4126 if (active_insn_p (after
) && !INSN_LOCATOR (after
))
4127 INSN_LOCATOR (after
) = loc
;
4130 after
= NEXT_INSN (after
);
4135 /* Like emit_jump_insn_after_noloc, but set INSN_LOCATOR according to AFTER. */
4137 emit_jump_insn_after (rtx pattern
, rtx after
)
4140 return emit_jump_insn_after_setloc (pattern
, after
, INSN_LOCATOR (after
));
4142 return emit_jump_insn_after_noloc (pattern
, after
);
4145 /* Like emit_call_insn_after_noloc, but set INSN_LOCATOR according to SCOPE. */
4147 emit_call_insn_after_setloc (rtx pattern
, rtx after
, int loc
)
4149 rtx last
= emit_call_insn_after_noloc (pattern
, after
);
4151 if (pattern
== NULL_RTX
|| !loc
)
4154 after
= NEXT_INSN (after
);
4157 if (active_insn_p (after
) && !INSN_LOCATOR (after
))
4158 INSN_LOCATOR (after
) = loc
;
4161 after
= NEXT_INSN (after
);
4166 /* Like emit_call_insn_after_noloc, but set INSN_LOCATOR according to AFTER. */
4168 emit_call_insn_after (rtx pattern
, rtx after
)
4171 return emit_call_insn_after_setloc (pattern
, after
, INSN_LOCATOR (after
));
4173 return emit_call_insn_after_noloc (pattern
, after
);
4176 /* Like emit_insn_before_noloc, but set INSN_LOCATOR according to SCOPE. */
4178 emit_insn_before_setloc (rtx pattern
, rtx before
, int loc
)
4180 rtx first
= PREV_INSN (before
);
4181 rtx last
= emit_insn_before_noloc (pattern
, before
);
4183 if (pattern
== NULL_RTX
|| !loc
)
4186 first
= NEXT_INSN (first
);
4189 if (active_insn_p (first
) && !INSN_LOCATOR (first
))
4190 INSN_LOCATOR (first
) = loc
;
4193 first
= NEXT_INSN (first
);
4198 /* Like emit_insn_before_noloc, but set INSN_LOCATOR according to BEFORE. */
4200 emit_insn_before (rtx pattern
, rtx before
)
4202 if (INSN_P (before
))
4203 return emit_insn_before_setloc (pattern
, before
, INSN_LOCATOR (before
));
4205 return emit_insn_before_noloc (pattern
, before
);
4208 /* like emit_insn_before_noloc, but set insn_locator according to scope. */
4210 emit_jump_insn_before_setloc (rtx pattern
, rtx before
, int loc
)
4212 rtx first
= PREV_INSN (before
);
4213 rtx last
= emit_jump_insn_before_noloc (pattern
, before
);
4215 if (pattern
== NULL_RTX
)
4218 first
= NEXT_INSN (first
);
4221 if (active_insn_p (first
) && !INSN_LOCATOR (first
))
4222 INSN_LOCATOR (first
) = loc
;
4225 first
= NEXT_INSN (first
);
4230 /* Like emit_jump_insn_before_noloc, but set INSN_LOCATOR according to BEFORE. */
4232 emit_jump_insn_before (rtx pattern
, rtx before
)
4234 if (INSN_P (before
))
4235 return emit_jump_insn_before_setloc (pattern
, before
, INSN_LOCATOR (before
));
4237 return emit_jump_insn_before_noloc (pattern
, before
);
4240 /* like emit_insn_before_noloc, but set insn_locator according to scope. */
4242 emit_call_insn_before_setloc (rtx pattern
, rtx before
, int loc
)
4244 rtx first
= PREV_INSN (before
);
4245 rtx last
= emit_call_insn_before_noloc (pattern
, before
);
4247 if (pattern
== NULL_RTX
)
4250 first
= NEXT_INSN (first
);
4253 if (active_insn_p (first
) && !INSN_LOCATOR (first
))
4254 INSN_LOCATOR (first
) = loc
;
4257 first
= NEXT_INSN (first
);
4262 /* like emit_call_insn_before_noloc,
4263 but set insn_locator according to before. */
4265 emit_call_insn_before (rtx pattern
, rtx before
)
4267 if (INSN_P (before
))
4268 return emit_call_insn_before_setloc (pattern
, before
, INSN_LOCATOR (before
));
4270 return emit_call_insn_before_noloc (pattern
, before
);
4273 /* Take X and emit it at the end of the doubly-linked
4276 Returns the last insn emitted. */
4281 rtx last
= last_insn
;
4287 switch (GET_CODE (x
))
4298 rtx next
= NEXT_INSN (insn
);
4305 #ifdef ENABLE_RTL_CHECKING
4312 last
= make_insn_raw (x
);
4320 /* Make an insn of code JUMP_INSN with pattern X
4321 and add it to the end of the doubly-linked list. */
4324 emit_jump_insn (rtx x
)
4326 rtx last
= NULL_RTX
, insn
;
4328 switch (GET_CODE (x
))
4339 rtx next
= NEXT_INSN (insn
);
4346 #ifdef ENABLE_RTL_CHECKING
4353 last
= make_jump_insn_raw (x
);
4361 /* Make an insn of code CALL_INSN with pattern X
4362 and add it to the end of the doubly-linked list. */
4365 emit_call_insn (rtx x
)
4369 switch (GET_CODE (x
))
4377 insn
= emit_insn (x
);
4380 #ifdef ENABLE_RTL_CHECKING
4387 insn
= make_call_insn_raw (x
);
4395 /* Add the label LABEL to the end of the doubly-linked list. */
4398 emit_label (rtx label
)
4400 /* This can be called twice for the same label
4401 as a result of the confusion that follows a syntax error!
4402 So make it harmless. */
4403 if (INSN_UID (label
) == 0)
4405 INSN_UID (label
) = cur_insn_uid
++;
4411 /* Make an insn of code BARRIER
4412 and add it to the end of the doubly-linked list. */
4417 rtx barrier
= rtx_alloc (BARRIER
);
4418 INSN_UID (barrier
) = cur_insn_uid
++;
4423 /* Make line numbering NOTE insn for LOCATION add it to the end
4424 of the doubly-linked list, but only if line-numbers are desired for
4425 debugging info and it doesn't match the previous one. */
4428 emit_line_note (location_t location
)
4432 #ifdef USE_MAPPED_LOCATION
4433 if (location
== last_location
)
4436 if (location
.file
&& last_location
.file
4437 && !strcmp (location
.file
, last_location
.file
)
4438 && location
.line
== last_location
.line
)
4441 last_location
= location
;
4443 if (no_line_numbers
)
4449 #ifdef USE_MAPPED_LOCATION
4450 note
= emit_note ((int) location
);
4452 note
= emit_note (location
.line
);
4453 NOTE_SOURCE_FILE (note
) = location
.file
;
4459 /* Emit a copy of note ORIG. */
4462 emit_note_copy (rtx orig
)
4466 note
= rtx_alloc (NOTE
);
4468 INSN_UID (note
) = cur_insn_uid
++;
4469 NOTE_DATA (note
) = NOTE_DATA (orig
);
4470 NOTE_LINE_NUMBER (note
) = NOTE_LINE_NUMBER (orig
);
4471 BLOCK_FOR_INSN (note
) = NULL
;
4477 /* Make an insn of code NOTE or type NOTE_NO
4478 and add it to the end of the doubly-linked list. */
4481 emit_note (int note_no
)
4485 note
= rtx_alloc (NOTE
);
4486 INSN_UID (note
) = cur_insn_uid
++;
4487 NOTE_LINE_NUMBER (note
) = note_no
;
4488 memset (&NOTE_DATA (note
), 0, sizeof (NOTE_DATA (note
)));
4489 BLOCK_FOR_INSN (note
) = NULL
;
4494 /* Cause next statement to emit a line note even if the line number
4498 force_next_line_note (void)
4500 #ifdef USE_MAPPED_LOCATION
4503 last_location
.line
= -1;
4507 /* Place a note of KIND on insn INSN with DATUM as the datum. If a
4508 note of this type already exists, remove it first. */
4511 set_unique_reg_note (rtx insn
, enum reg_note kind
, rtx datum
)
4513 rtx note
= find_reg_note (insn
, kind
, NULL_RTX
);
4519 /* Don't add REG_EQUAL/REG_EQUIV notes if the insn
4520 has multiple sets (some callers assume single_set
4521 means the insn only has one set, when in fact it
4522 means the insn only has one * useful * set). */
4523 if (GET_CODE (PATTERN (insn
)) == PARALLEL
&& multiple_sets (insn
))
4529 /* Don't add ASM_OPERAND REG_EQUAL/REG_EQUIV notes.
4530 It serves no useful purpose and breaks eliminate_regs. */
4531 if (GET_CODE (datum
) == ASM_OPERANDS
)
4541 XEXP (note
, 0) = datum
;
4545 REG_NOTES (insn
) = gen_rtx_EXPR_LIST (kind
, datum
, REG_NOTES (insn
));
4546 return REG_NOTES (insn
);
4549 /* Return an indication of which type of insn should have X as a body.
4550 The value is CODE_LABEL, INSN, CALL_INSN or JUMP_INSN. */
4552 static enum rtx_code
4553 classify_insn (rtx x
)
4557 if (GET_CODE (x
) == CALL
)
4559 if (GET_CODE (x
) == RETURN
)
4561 if (GET_CODE (x
) == SET
)
4563 if (SET_DEST (x
) == pc_rtx
)
4565 else if (GET_CODE (SET_SRC (x
)) == CALL
)
4570 if (GET_CODE (x
) == PARALLEL
)
4573 for (j
= XVECLEN (x
, 0) - 1; j
>= 0; j
--)
4574 if (GET_CODE (XVECEXP (x
, 0, j
)) == CALL
)
4576 else if (GET_CODE (XVECEXP (x
, 0, j
)) == SET
4577 && SET_DEST (XVECEXP (x
, 0, j
)) == pc_rtx
)
4579 else if (GET_CODE (XVECEXP (x
, 0, j
)) == SET
4580 && GET_CODE (SET_SRC (XVECEXP (x
, 0, j
))) == CALL
)
4586 /* Emit the rtl pattern X as an appropriate kind of insn.
4587 If X is a label, it is simply added into the insn chain. */
4592 enum rtx_code code
= classify_insn (x
);
4597 return emit_label (x
);
4599 return emit_insn (x
);
4602 rtx insn
= emit_jump_insn (x
);
4603 if (any_uncondjump_p (insn
) || GET_CODE (x
) == RETURN
)
4604 return emit_barrier ();
4608 return emit_call_insn (x
);
4614 /* Space for free sequence stack entries. */
4615 static GTY ((deletable
)) struct sequence_stack
*free_sequence_stack
;
4617 /* Begin emitting insns to a sequence. If this sequence will contain
4618 something that might cause the compiler to pop arguments to function
4619 calls (because those pops have previously been deferred; see
4620 INHIBIT_DEFER_POP for more details), use do_pending_stack_adjust
4621 before calling this function. That will ensure that the deferred
4622 pops are not accidentally emitted in the middle of this sequence. */
4625 start_sequence (void)
4627 struct sequence_stack
*tem
;
4629 if (free_sequence_stack
!= NULL
)
4631 tem
= free_sequence_stack
;
4632 free_sequence_stack
= tem
->next
;
4635 tem
= ggc_alloc (sizeof (struct sequence_stack
));
4637 tem
->next
= seq_stack
;
4638 tem
->first
= first_insn
;
4639 tem
->last
= last_insn
;
4647 /* Set up the insn chain starting with FIRST as the current sequence,
4648 saving the previously current one. See the documentation for
4649 start_sequence for more information about how to use this function. */
4652 push_to_sequence (rtx first
)
4658 for (last
= first
; last
&& NEXT_INSN (last
); last
= NEXT_INSN (last
));
4664 /* Set up the outer-level insn chain
4665 as the current sequence, saving the previously current one. */
4668 push_topmost_sequence (void)
4670 struct sequence_stack
*stack
, *top
= NULL
;
4674 for (stack
= seq_stack
; stack
; stack
= stack
->next
)
4677 first_insn
= top
->first
;
4678 last_insn
= top
->last
;
4681 /* After emitting to the outer-level insn chain, update the outer-level
4682 insn chain, and restore the previous saved state. */
4685 pop_topmost_sequence (void)
4687 struct sequence_stack
*stack
, *top
= NULL
;
4689 for (stack
= seq_stack
; stack
; stack
= stack
->next
)
4692 top
->first
= first_insn
;
4693 top
->last
= last_insn
;
4698 /* After emitting to a sequence, restore previous saved state.
4700 To get the contents of the sequence just made, you must call
4701 `get_insns' *before* calling here.
4703 If the compiler might have deferred popping arguments while
4704 generating this sequence, and this sequence will not be immediately
4705 inserted into the instruction stream, use do_pending_stack_adjust
4706 before calling get_insns. That will ensure that the deferred
4707 pops are inserted into this sequence, and not into some random
4708 location in the instruction stream. See INHIBIT_DEFER_POP for more
4709 information about deferred popping of arguments. */
4714 struct sequence_stack
*tem
= seq_stack
;
4716 first_insn
= tem
->first
;
4717 last_insn
= tem
->last
;
4718 seq_stack
= tem
->next
;
4720 memset (tem
, 0, sizeof (*tem
));
4721 tem
->next
= free_sequence_stack
;
4722 free_sequence_stack
= tem
;
4725 /* Return 1 if currently emitting into a sequence. */
4728 in_sequence_p (void)
4730 return seq_stack
!= 0;
4733 /* Put the various virtual registers into REGNO_REG_RTX. */
4736 init_virtual_regs (struct emit_status
*es
)
4738 rtx
*ptr
= es
->x_regno_reg_rtx
;
4739 ptr
[VIRTUAL_INCOMING_ARGS_REGNUM
] = virtual_incoming_args_rtx
;
4740 ptr
[VIRTUAL_STACK_VARS_REGNUM
] = virtual_stack_vars_rtx
;
4741 ptr
[VIRTUAL_STACK_DYNAMIC_REGNUM
] = virtual_stack_dynamic_rtx
;
4742 ptr
[VIRTUAL_OUTGOING_ARGS_REGNUM
] = virtual_outgoing_args_rtx
;
4743 ptr
[VIRTUAL_CFA_REGNUM
] = virtual_cfa_rtx
;
4747 /* Used by copy_insn_1 to avoid copying SCRATCHes more than once. */
4748 static rtx copy_insn_scratch_in
[MAX_RECOG_OPERANDS
];
4749 static rtx copy_insn_scratch_out
[MAX_RECOG_OPERANDS
];
4750 static int copy_insn_n_scratches
;
4752 /* When an insn is being copied by copy_insn_1, this is nonzero if we have
4753 copied an ASM_OPERANDS.
4754 In that case, it is the original input-operand vector. */
4755 static rtvec orig_asm_operands_vector
;
4757 /* When an insn is being copied by copy_insn_1, this is nonzero if we have
4758 copied an ASM_OPERANDS.
4759 In that case, it is the copied input-operand vector. */
4760 static rtvec copy_asm_operands_vector
;
4762 /* Likewise for the constraints vector. */
4763 static rtvec orig_asm_constraints_vector
;
4764 static rtvec copy_asm_constraints_vector
;
4766 /* Recursively create a new copy of an rtx for copy_insn.
4767 This function differs from copy_rtx in that it handles SCRATCHes and
4768 ASM_OPERANDs properly.
4769 Normally, this function is not used directly; use copy_insn as front end.
4770 However, you could first copy an insn pattern with copy_insn and then use
4771 this function afterwards to properly copy any REG_NOTEs containing
4775 copy_insn_1 (rtx orig
)
4780 const char *format_ptr
;
4782 code
= GET_CODE (orig
);
4796 if (REG_P (XEXP (orig
, 0)) && REGNO (XEXP (orig
, 0)) < FIRST_PSEUDO_REGISTER
)
4801 for (i
= 0; i
< copy_insn_n_scratches
; i
++)
4802 if (copy_insn_scratch_in
[i
] == orig
)
4803 return copy_insn_scratch_out
[i
];
4807 /* CONST can be shared if it contains a SYMBOL_REF. If it contains
4808 a LABEL_REF, it isn't sharable. */
4809 if (GET_CODE (XEXP (orig
, 0)) == PLUS
4810 && GET_CODE (XEXP (XEXP (orig
, 0), 0)) == SYMBOL_REF
4811 && GET_CODE (XEXP (XEXP (orig
, 0), 1)) == CONST_INT
)
4815 /* A MEM with a constant address is not sharable. The problem is that
4816 the constant address may need to be reloaded. If the mem is shared,
4817 then reloading one copy of this mem will cause all copies to appear
4818 to have been reloaded. */
4824 /* Copy the various flags, fields, and other information. We assume
4825 that all fields need copying, and then clear the fields that should
4826 not be copied. That is the sensible default behavior, and forces
4827 us to explicitly document why we are *not* copying a flag. */
4828 copy
= shallow_copy_rtx (orig
);
4830 /* We do not copy the USED flag, which is used as a mark bit during
4831 walks over the RTL. */
4832 RTX_FLAG (copy
, used
) = 0;
4834 /* We do not copy JUMP, CALL, or FRAME_RELATED for INSNs. */
4837 RTX_FLAG (copy
, jump
) = 0;
4838 RTX_FLAG (copy
, call
) = 0;
4839 RTX_FLAG (copy
, frame_related
) = 0;
4842 format_ptr
= GET_RTX_FORMAT (GET_CODE (copy
));
4844 for (i
= 0; i
< GET_RTX_LENGTH (GET_CODE (copy
)); i
++)
4845 switch (*format_ptr
++)
4848 if (XEXP (orig
, i
) != NULL
)
4849 XEXP (copy
, i
) = copy_insn_1 (XEXP (orig
, i
));
4854 if (XVEC (orig
, i
) == orig_asm_constraints_vector
)
4855 XVEC (copy
, i
) = copy_asm_constraints_vector
;
4856 else if (XVEC (orig
, i
) == orig_asm_operands_vector
)
4857 XVEC (copy
, i
) = copy_asm_operands_vector
;
4858 else if (XVEC (orig
, i
) != NULL
)
4860 XVEC (copy
, i
) = rtvec_alloc (XVECLEN (orig
, i
));
4861 for (j
= 0; j
< XVECLEN (copy
, i
); j
++)
4862 XVECEXP (copy
, i
, j
) = copy_insn_1 (XVECEXP (orig
, i
, j
));
4873 /* These are left unchanged. */
4880 if (code
== SCRATCH
)
4882 i
= copy_insn_n_scratches
++;
4883 gcc_assert (i
< MAX_RECOG_OPERANDS
);
4884 copy_insn_scratch_in
[i
] = orig
;
4885 copy_insn_scratch_out
[i
] = copy
;
4887 else if (code
== ASM_OPERANDS
)
4889 orig_asm_operands_vector
= ASM_OPERANDS_INPUT_VEC (orig
);
4890 copy_asm_operands_vector
= ASM_OPERANDS_INPUT_VEC (copy
);
4891 orig_asm_constraints_vector
= ASM_OPERANDS_INPUT_CONSTRAINT_VEC (orig
);
4892 copy_asm_constraints_vector
= ASM_OPERANDS_INPUT_CONSTRAINT_VEC (copy
);
4898 /* Create a new copy of an rtx.
4899 This function differs from copy_rtx in that it handles SCRATCHes and
4900 ASM_OPERANDs properly.
4901 INSN doesn't really have to be a full INSN; it could be just the
4904 copy_insn (rtx insn
)
4906 copy_insn_n_scratches
= 0;
4907 orig_asm_operands_vector
= 0;
4908 orig_asm_constraints_vector
= 0;
4909 copy_asm_operands_vector
= 0;
4910 copy_asm_constraints_vector
= 0;
4911 return copy_insn_1 (insn
);
4914 /* Initialize data structures and variables in this file
4915 before generating rtl for each function. */
4920 struct function
*f
= cfun
;
4922 f
->emit
= ggc_alloc (sizeof (struct emit_status
));
4926 reg_rtx_no
= LAST_VIRTUAL_REGISTER
+ 1;
4927 last_location
= UNKNOWN_LOCATION
;
4928 first_label_num
= label_num
;
4931 /* Init the tables that describe all the pseudo regs. */
4933 f
->emit
->regno_pointer_align_length
= LAST_VIRTUAL_REGISTER
+ 101;
4935 f
->emit
->regno_pointer_align
4936 = ggc_alloc_cleared (f
->emit
->regno_pointer_align_length
4937 * sizeof (unsigned char));
4940 = ggc_alloc (f
->emit
->regno_pointer_align_length
* sizeof (rtx
));
4942 /* Put copies of all the hard registers into regno_reg_rtx. */
4943 memcpy (regno_reg_rtx
,
4944 static_regno_reg_rtx
,
4945 FIRST_PSEUDO_REGISTER
* sizeof (rtx
));
4947 /* Put copies of all the virtual register rtx into regno_reg_rtx. */
4948 init_virtual_regs (f
->emit
);
4950 /* Indicate that the virtual registers and stack locations are
4952 REG_POINTER (stack_pointer_rtx
) = 1;
4953 REG_POINTER (frame_pointer_rtx
) = 1;
4954 REG_POINTER (hard_frame_pointer_rtx
) = 1;
4955 REG_POINTER (arg_pointer_rtx
) = 1;
4957 REG_POINTER (virtual_incoming_args_rtx
) = 1;
4958 REG_POINTER (virtual_stack_vars_rtx
) = 1;
4959 REG_POINTER (virtual_stack_dynamic_rtx
) = 1;
4960 REG_POINTER (virtual_outgoing_args_rtx
) = 1;
4961 REG_POINTER (virtual_cfa_rtx
) = 1;
4963 #ifdef STACK_BOUNDARY
4964 REGNO_POINTER_ALIGN (STACK_POINTER_REGNUM
) = STACK_BOUNDARY
;
4965 REGNO_POINTER_ALIGN (FRAME_POINTER_REGNUM
) = STACK_BOUNDARY
;
4966 REGNO_POINTER_ALIGN (HARD_FRAME_POINTER_REGNUM
) = STACK_BOUNDARY
;
4967 REGNO_POINTER_ALIGN (ARG_POINTER_REGNUM
) = STACK_BOUNDARY
;
4969 REGNO_POINTER_ALIGN (VIRTUAL_INCOMING_ARGS_REGNUM
) = STACK_BOUNDARY
;
4970 REGNO_POINTER_ALIGN (VIRTUAL_STACK_VARS_REGNUM
) = STACK_BOUNDARY
;
4971 REGNO_POINTER_ALIGN (VIRTUAL_STACK_DYNAMIC_REGNUM
) = STACK_BOUNDARY
;
4972 REGNO_POINTER_ALIGN (VIRTUAL_OUTGOING_ARGS_REGNUM
) = STACK_BOUNDARY
;
4973 REGNO_POINTER_ALIGN (VIRTUAL_CFA_REGNUM
) = BITS_PER_WORD
;
4976 #ifdef INIT_EXPANDERS
4981 /* Generate a vector constant for mode MODE and constant value CONSTANT. */
4984 gen_const_vector (enum machine_mode mode
, int constant
)
4989 enum machine_mode inner
;
4991 units
= GET_MODE_NUNITS (mode
);
4992 inner
= GET_MODE_INNER (mode
);
4994 gcc_assert (!DECIMAL_FLOAT_MODE_P (inner
));
4996 v
= rtvec_alloc (units
);
4998 /* We need to call this function after we set the scalar const_tiny_rtx
5000 gcc_assert (const_tiny_rtx
[constant
][(int) inner
]);
5002 for (i
= 0; i
< units
; ++i
)
5003 RTVEC_ELT (v
, i
) = const_tiny_rtx
[constant
][(int) inner
];
5005 tem
= gen_rtx_raw_CONST_VECTOR (mode
, v
);
5009 /* Generate a vector like gen_rtx_raw_CONST_VEC, but use the zero vector when
5010 all elements are zero, and the one vector when all elements are one. */
5012 gen_rtx_CONST_VECTOR (enum machine_mode mode
, rtvec v
)
5014 enum machine_mode inner
= GET_MODE_INNER (mode
);
5015 int nunits
= GET_MODE_NUNITS (mode
);
5019 /* Check to see if all of the elements have the same value. */
5020 x
= RTVEC_ELT (v
, nunits
- 1);
5021 for (i
= nunits
- 2; i
>= 0; i
--)
5022 if (RTVEC_ELT (v
, i
) != x
)
5025 /* If the values are all the same, check to see if we can use one of the
5026 standard constant vectors. */
5029 if (x
== CONST0_RTX (inner
))
5030 return CONST0_RTX (mode
);
5031 else if (x
== CONST1_RTX (inner
))
5032 return CONST1_RTX (mode
);
5035 return gen_rtx_raw_CONST_VECTOR (mode
, v
);
5038 /* Create some permanent unique rtl objects shared between all functions.
5039 LINE_NUMBERS is nonzero if line numbers are to be generated. */
5042 init_emit_once (int line_numbers
)
5045 enum machine_mode mode
;
5046 enum machine_mode double_mode
;
5048 /* We need reg_raw_mode, so initialize the modes now. */
5049 init_reg_modes_once ();
5051 /* Initialize the CONST_INT, CONST_DOUBLE, and memory attribute hash
5053 const_int_htab
= htab_create_ggc (37, const_int_htab_hash
,
5054 const_int_htab_eq
, NULL
);
5056 const_double_htab
= htab_create_ggc (37, const_double_htab_hash
,
5057 const_double_htab_eq
, NULL
);
5059 mem_attrs_htab
= htab_create_ggc (37, mem_attrs_htab_hash
,
5060 mem_attrs_htab_eq
, NULL
);
5061 reg_attrs_htab
= htab_create_ggc (37, reg_attrs_htab_hash
,
5062 reg_attrs_htab_eq
, NULL
);
5064 no_line_numbers
= ! line_numbers
;
5066 /* Compute the word and byte modes. */
5068 byte_mode
= VOIDmode
;
5069 word_mode
= VOIDmode
;
5070 double_mode
= VOIDmode
;
5072 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_INT
);
5074 mode
= GET_MODE_WIDER_MODE (mode
))
5076 if (GET_MODE_BITSIZE (mode
) == BITS_PER_UNIT
5077 && byte_mode
== VOIDmode
)
5080 if (GET_MODE_BITSIZE (mode
) == BITS_PER_WORD
5081 && word_mode
== VOIDmode
)
5085 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_FLOAT
);
5087 mode
= GET_MODE_WIDER_MODE (mode
))
5089 if (GET_MODE_BITSIZE (mode
) == DOUBLE_TYPE_SIZE
5090 && double_mode
== VOIDmode
)
5094 ptr_mode
= mode_for_size (POINTER_SIZE
, GET_MODE_CLASS (Pmode
), 0);
5096 /* Assign register numbers to the globally defined register rtx.
5097 This must be done at runtime because the register number field
5098 is in a union and some compilers can't initialize unions. */
5100 pc_rtx
= gen_rtx_PC (VOIDmode
);
5101 cc0_rtx
= gen_rtx_CC0 (VOIDmode
);
5102 stack_pointer_rtx
= gen_raw_REG (Pmode
, STACK_POINTER_REGNUM
);
5103 frame_pointer_rtx
= gen_raw_REG (Pmode
, FRAME_POINTER_REGNUM
);
5104 if (hard_frame_pointer_rtx
== 0)
5105 hard_frame_pointer_rtx
= gen_raw_REG (Pmode
,
5106 HARD_FRAME_POINTER_REGNUM
);
5107 if (arg_pointer_rtx
== 0)
5108 arg_pointer_rtx
= gen_raw_REG (Pmode
, ARG_POINTER_REGNUM
);
5109 virtual_incoming_args_rtx
=
5110 gen_raw_REG (Pmode
, VIRTUAL_INCOMING_ARGS_REGNUM
);
5111 virtual_stack_vars_rtx
=
5112 gen_raw_REG (Pmode
, VIRTUAL_STACK_VARS_REGNUM
);
5113 virtual_stack_dynamic_rtx
=
5114 gen_raw_REG (Pmode
, VIRTUAL_STACK_DYNAMIC_REGNUM
);
5115 virtual_outgoing_args_rtx
=
5116 gen_raw_REG (Pmode
, VIRTUAL_OUTGOING_ARGS_REGNUM
);
5117 virtual_cfa_rtx
= gen_raw_REG (Pmode
, VIRTUAL_CFA_REGNUM
);
5119 /* Initialize RTL for commonly used hard registers. These are
5120 copied into regno_reg_rtx as we begin to compile each function. */
5121 for (i
= 0; i
< FIRST_PSEUDO_REGISTER
; i
++)
5122 static_regno_reg_rtx
[i
] = gen_raw_REG (reg_raw_mode
[i
], i
);
5124 #ifdef INIT_EXPANDERS
5125 /* This is to initialize {init|mark|free}_machine_status before the first
5126 call to push_function_context_to. This is needed by the Chill front
5127 end which calls push_function_context_to before the first call to
5128 init_function_start. */
5132 /* Create the unique rtx's for certain rtx codes and operand values. */
5134 /* Don't use gen_rtx_CONST_INT here since gen_rtx_CONST_INT in this case
5135 tries to use these variables. */
5136 for (i
= - MAX_SAVED_CONST_INT
; i
<= MAX_SAVED_CONST_INT
; i
++)
5137 const_int_rtx
[i
+ MAX_SAVED_CONST_INT
] =
5138 gen_rtx_raw_CONST_INT (VOIDmode
, (HOST_WIDE_INT
) i
);
5140 if (STORE_FLAG_VALUE
>= - MAX_SAVED_CONST_INT
5141 && STORE_FLAG_VALUE
<= MAX_SAVED_CONST_INT
)
5142 const_true_rtx
= const_int_rtx
[STORE_FLAG_VALUE
+ MAX_SAVED_CONST_INT
];
5144 const_true_rtx
= gen_rtx_CONST_INT (VOIDmode
, STORE_FLAG_VALUE
);
5146 REAL_VALUE_FROM_INT (dconst0
, 0, 0, double_mode
);
5147 REAL_VALUE_FROM_INT (dconst1
, 1, 0, double_mode
);
5148 REAL_VALUE_FROM_INT (dconst2
, 2, 0, double_mode
);
5149 REAL_VALUE_FROM_INT (dconst3
, 3, 0, double_mode
);
5150 REAL_VALUE_FROM_INT (dconst10
, 10, 0, double_mode
);
5151 REAL_VALUE_FROM_INT (dconstm1
, -1, -1, double_mode
);
5152 REAL_VALUE_FROM_INT (dconstm2
, -2, -1, double_mode
);
5154 dconsthalf
= dconst1
;
5155 SET_REAL_EXP (&dconsthalf
, REAL_EXP (&dconsthalf
) - 1);
5157 real_arithmetic (&dconstthird
, RDIV_EXPR
, &dconst1
, &dconst3
);
5159 /* Initialize mathematical constants for constant folding builtins.
5160 These constants need to be given to at least 160 bits precision. */
5161 real_from_string (&dconstpi
,
5162 "3.1415926535897932384626433832795028841971693993751058209749445923078");
5163 real_from_string (&dconste
,
5164 "2.7182818284590452353602874713526624977572470936999595749669676277241");
5166 for (i
= 0; i
< (int) ARRAY_SIZE (const_tiny_rtx
); i
++)
5168 REAL_VALUE_TYPE
*r
=
5169 (i
== 0 ? &dconst0
: i
== 1 ? &dconst1
: &dconst2
);
5171 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_FLOAT
);
5173 mode
= GET_MODE_WIDER_MODE (mode
))
5174 const_tiny_rtx
[i
][(int) mode
] =
5175 CONST_DOUBLE_FROM_REAL_VALUE (*r
, mode
);
5177 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_DECIMAL_FLOAT
);
5179 mode
= GET_MODE_WIDER_MODE (mode
))
5180 const_tiny_rtx
[i
][(int) mode
] =
5181 CONST_DOUBLE_FROM_REAL_VALUE (*r
, mode
);
5183 const_tiny_rtx
[i
][(int) VOIDmode
] = GEN_INT (i
);
5185 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_INT
);
5187 mode
= GET_MODE_WIDER_MODE (mode
))
5188 const_tiny_rtx
[i
][(int) mode
] = GEN_INT (i
);
5190 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_PARTIAL_INT
);
5192 mode
= GET_MODE_WIDER_MODE (mode
))
5193 const_tiny_rtx
[i
][(int) mode
] = GEN_INT (i
);
5196 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_VECTOR_INT
);
5198 mode
= GET_MODE_WIDER_MODE (mode
))
5200 const_tiny_rtx
[0][(int) mode
] = gen_const_vector (mode
, 0);
5201 const_tiny_rtx
[1][(int) mode
] = gen_const_vector (mode
, 1);
5204 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_VECTOR_FLOAT
);
5206 mode
= GET_MODE_WIDER_MODE (mode
))
5208 const_tiny_rtx
[0][(int) mode
] = gen_const_vector (mode
, 0);
5209 const_tiny_rtx
[1][(int) mode
] = gen_const_vector (mode
, 1);
5212 for (i
= (int) CCmode
; i
< (int) MAX_MACHINE_MODE
; ++i
)
5213 if (GET_MODE_CLASS ((enum machine_mode
) i
) == MODE_CC
)
5214 const_tiny_rtx
[0][i
] = const0_rtx
;
5216 const_tiny_rtx
[0][(int) BImode
] = const0_rtx
;
5217 if (STORE_FLAG_VALUE
== 1)
5218 const_tiny_rtx
[1][(int) BImode
] = const1_rtx
;
5220 #ifdef RETURN_ADDRESS_POINTER_REGNUM
5221 return_address_pointer_rtx
5222 = gen_raw_REG (Pmode
, RETURN_ADDRESS_POINTER_REGNUM
);
5225 #ifdef STATIC_CHAIN_REGNUM
5226 static_chain_rtx
= gen_rtx_REG (Pmode
, STATIC_CHAIN_REGNUM
);
5228 #ifdef STATIC_CHAIN_INCOMING_REGNUM
5229 if (STATIC_CHAIN_INCOMING_REGNUM
!= STATIC_CHAIN_REGNUM
)
5230 static_chain_incoming_rtx
5231 = gen_rtx_REG (Pmode
, STATIC_CHAIN_INCOMING_REGNUM
);
5234 static_chain_incoming_rtx
= static_chain_rtx
;
5238 static_chain_rtx
= STATIC_CHAIN
;
5240 #ifdef STATIC_CHAIN_INCOMING
5241 static_chain_incoming_rtx
= STATIC_CHAIN_INCOMING
;
5243 static_chain_incoming_rtx
= static_chain_rtx
;
5247 if ((unsigned) PIC_OFFSET_TABLE_REGNUM
!= INVALID_REGNUM
)
5248 pic_offset_table_rtx
= gen_raw_REG (Pmode
, PIC_OFFSET_TABLE_REGNUM
);
5251 /* Produce exact duplicate of insn INSN after AFTER.
5252 Care updating of libcall regions if present. */
5255 emit_copy_of_insn_after (rtx insn
, rtx after
)
5258 rtx note1
, note2
, link
;
5260 switch (GET_CODE (insn
))
5263 new = emit_insn_after (copy_insn (PATTERN (insn
)), after
);
5267 new = emit_jump_insn_after (copy_insn (PATTERN (insn
)), after
);
5271 new = emit_call_insn_after (copy_insn (PATTERN (insn
)), after
);
5272 if (CALL_INSN_FUNCTION_USAGE (insn
))
5273 CALL_INSN_FUNCTION_USAGE (new)
5274 = copy_insn (CALL_INSN_FUNCTION_USAGE (insn
));
5275 SIBLING_CALL_P (new) = SIBLING_CALL_P (insn
);
5276 CONST_OR_PURE_CALL_P (new) = CONST_OR_PURE_CALL_P (insn
);
5283 /* Update LABEL_NUSES. */
5284 mark_jump_label (PATTERN (new), new, 0);
5286 INSN_LOCATOR (new) = INSN_LOCATOR (insn
);
5288 /* If the old insn is frame related, then so is the new one. This is
5289 primarily needed for IA-64 unwind info which marks epilogue insns,
5290 which may be duplicated by the basic block reordering code. */
5291 RTX_FRAME_RELATED_P (new) = RTX_FRAME_RELATED_P (insn
);
5293 /* Copy all REG_NOTES except REG_LABEL since mark_jump_label will
5295 for (link
= REG_NOTES (insn
); link
; link
= XEXP (link
, 1))
5296 if (REG_NOTE_KIND (link
) != REG_LABEL
)
5298 if (GET_CODE (link
) == EXPR_LIST
)
5300 = copy_insn_1 (gen_rtx_EXPR_LIST (REG_NOTE_KIND (link
),
5305 = copy_insn_1 (gen_rtx_INSN_LIST (REG_NOTE_KIND (link
),
5310 /* Fix the libcall sequences. */
5311 if ((note1
= find_reg_note (new, REG_RETVAL
, NULL_RTX
)) != NULL
)
5314 while ((note2
= find_reg_note (p
, REG_LIBCALL
, NULL_RTX
)) == NULL
)
5316 XEXP (note1
, 0) = p
;
5317 XEXP (note2
, 0) = new;
5319 INSN_CODE (new) = INSN_CODE (insn
);
5323 static GTY((deletable
)) rtx hard_reg_clobbers
[NUM_MACHINE_MODES
][FIRST_PSEUDO_REGISTER
];
5325 gen_hard_reg_clobber (enum machine_mode mode
, unsigned int regno
)
5327 if (hard_reg_clobbers
[mode
][regno
])
5328 return hard_reg_clobbers
[mode
][regno
];
5330 return (hard_reg_clobbers
[mode
][regno
] =
5331 gen_rtx_CLOBBER (VOIDmode
, gen_rtx_REG (mode
, regno
)));
5334 #include "gt-emit-rtl.h"