2008-11-19 Paul Thomas <pault@gcc.gnu.org>
[official-gcc.git] / gcc / tree-ssa-reassoc.c
blobaa01258da7038329eceb109e738af9aeda2bc65b
1 /* Reassociation for trees.
2 Copyright (C) 2005, 2007, 2008 Free Software Foundation, Inc.
3 Contributed by Daniel Berlin <dan@dberlin.org>
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3, or (at your option)
10 any later version.
12 GCC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "tm.h"
25 #include "errors.h"
26 #include "ggc.h"
27 #include "tree.h"
28 #include "basic-block.h"
29 #include "diagnostic.h"
30 #include "tree-inline.h"
31 #include "tree-flow.h"
32 #include "gimple.h"
33 #include "tree-dump.h"
34 #include "timevar.h"
35 #include "tree-iterator.h"
36 #include "tree-pass.h"
37 #include "alloc-pool.h"
38 #include "vec.h"
39 #include "langhooks.h"
40 #include "pointer-set.h"
41 #include "cfgloop.h"
42 #include "flags.h"
44 /* This is a simple global reassociation pass. It is, in part, based
45 on the LLVM pass of the same name (They do some things more/less
46 than we do, in different orders, etc).
48 It consists of five steps:
50 1. Breaking up subtract operations into addition + negate, where
51 it would promote the reassociation of adds.
53 2. Left linearization of the expression trees, so that (A+B)+(C+D)
54 becomes (((A+B)+C)+D), which is easier for us to rewrite later.
55 During linearization, we place the operands of the binary
56 expressions into a vector of operand_entry_t
58 3. Optimization of the operand lists, eliminating things like a +
59 -a, a & a, etc.
61 4. Rewrite the expression trees we linearized and optimized so
62 they are in proper rank order.
64 5. Repropagate negates, as nothing else will clean it up ATM.
66 A bit of theory on #4, since nobody seems to write anything down
67 about why it makes sense to do it the way they do it:
69 We could do this much nicer theoretically, but don't (for reasons
70 explained after how to do it theoretically nice :P).
72 In order to promote the most redundancy elimination, you want
73 binary expressions whose operands are the same rank (or
74 preferably, the same value) exposed to the redundancy eliminator,
75 for possible elimination.
77 So the way to do this if we really cared, is to build the new op
78 tree from the leaves to the roots, merging as you go, and putting the
79 new op on the end of the worklist, until you are left with one
80 thing on the worklist.
82 IE if you have to rewrite the following set of operands (listed with
83 rank in parentheses), with opcode PLUS_EXPR:
85 a (1), b (1), c (1), d (2), e (2)
88 We start with our merge worklist empty, and the ops list with all of
89 those on it.
91 You want to first merge all leaves of the same rank, as much as
92 possible.
94 So first build a binary op of
96 mergetmp = a + b, and put "mergetmp" on the merge worklist.
98 Because there is no three operand form of PLUS_EXPR, c is not going to
99 be exposed to redundancy elimination as a rank 1 operand.
101 So you might as well throw it on the merge worklist (you could also
102 consider it to now be a rank two operand, and merge it with d and e,
103 but in this case, you then have evicted e from a binary op. So at
104 least in this situation, you can't win.)
106 Then build a binary op of d + e
107 mergetmp2 = d + e
109 and put mergetmp2 on the merge worklist.
111 so merge worklist = {mergetmp, c, mergetmp2}
113 Continue building binary ops of these operations until you have only
114 one operation left on the worklist.
116 So we have
118 build binary op
119 mergetmp3 = mergetmp + c
121 worklist = {mergetmp2, mergetmp3}
123 mergetmp4 = mergetmp2 + mergetmp3
125 worklist = {mergetmp4}
127 because we have one operation left, we can now just set the original
128 statement equal to the result of that operation.
130 This will at least expose a + b and d + e to redundancy elimination
131 as binary operations.
133 For extra points, you can reuse the old statements to build the
134 mergetmps, since you shouldn't run out.
136 So why don't we do this?
138 Because it's expensive, and rarely will help. Most trees we are
139 reassociating have 3 or less ops. If they have 2 ops, they already
140 will be written into a nice single binary op. If you have 3 ops, a
141 single simple check suffices to tell you whether the first two are of the
142 same rank. If so, you know to order it
144 mergetmp = op1 + op2
145 newstmt = mergetmp + op3
147 instead of
148 mergetmp = op2 + op3
149 newstmt = mergetmp + op1
151 If all three are of the same rank, you can't expose them all in a
152 single binary operator anyway, so the above is *still* the best you
153 can do.
155 Thus, this is what we do. When we have three ops left, we check to see
156 what order to put them in, and call it a day. As a nod to vector sum
157 reduction, we check if any of the ops are really a phi node that is a
158 destructive update for the associating op, and keep the destructive
159 update together for vector sum reduction recognition. */
162 /* Statistics */
163 static struct
165 int linearized;
166 int constants_eliminated;
167 int ops_eliminated;
168 int rewritten;
169 } reassociate_stats;
171 /* Operator, rank pair. */
172 typedef struct operand_entry
174 unsigned int rank;
175 tree op;
176 } *operand_entry_t;
178 static alloc_pool operand_entry_pool;
181 /* Starting rank number for a given basic block, so that we can rank
182 operations using unmovable instructions in that BB based on the bb
183 depth. */
184 static long *bb_rank;
186 /* Operand->rank hashtable. */
187 static struct pointer_map_t *operand_rank;
190 /* Look up the operand rank structure for expression E. */
192 static inline long
193 find_operand_rank (tree e)
195 void **slot = pointer_map_contains (operand_rank, e);
196 return slot ? (long) *slot : -1;
199 /* Insert {E,RANK} into the operand rank hashtable. */
201 static inline void
202 insert_operand_rank (tree e, long rank)
204 void **slot;
205 gcc_assert (rank > 0);
206 slot = pointer_map_insert (operand_rank, e);
207 gcc_assert (!*slot);
208 *slot = (void *) rank;
211 /* Given an expression E, return the rank of the expression. */
213 static long
214 get_rank (tree e)
216 /* Constants have rank 0. */
217 if (is_gimple_min_invariant (e))
218 return 0;
220 /* SSA_NAME's have the rank of the expression they are the result
222 For globals and uninitialized values, the rank is 0.
223 For function arguments, use the pre-setup rank.
224 For PHI nodes, stores, asm statements, etc, we use the rank of
225 the BB.
226 For simple operations, the rank is the maximum rank of any of
227 its operands, or the bb_rank, whichever is less.
228 I make no claims that this is optimal, however, it gives good
229 results. */
231 if (TREE_CODE (e) == SSA_NAME)
233 gimple stmt;
234 long rank, maxrank;
235 int i, n;
237 if (TREE_CODE (SSA_NAME_VAR (e)) == PARM_DECL
238 && SSA_NAME_IS_DEFAULT_DEF (e))
239 return find_operand_rank (e);
241 stmt = SSA_NAME_DEF_STMT (e);
242 if (gimple_bb (stmt) == NULL)
243 return 0;
245 if (!is_gimple_assign (stmt)
246 || !ZERO_SSA_OPERANDS (stmt, SSA_OP_VIRTUAL_DEFS))
247 return bb_rank[gimple_bb (stmt)->index];
249 /* If we already have a rank for this expression, use that. */
250 rank = find_operand_rank (e);
251 if (rank != -1)
252 return rank;
254 /* Otherwise, find the maximum rank for the operands, or the bb
255 rank, whichever is less. */
256 rank = 0;
257 maxrank = bb_rank[gimple_bb(stmt)->index];
258 if (gimple_assign_single_p (stmt))
260 tree rhs = gimple_assign_rhs1 (stmt);
261 n = TREE_OPERAND_LENGTH (rhs);
262 if (n == 0)
263 rank = MAX (rank, get_rank (rhs));
264 else
266 for (i = 0;
267 i < n && TREE_OPERAND (rhs, i) && rank != maxrank; i++)
268 rank = MAX(rank, get_rank (TREE_OPERAND (rhs, i)));
271 else
273 n = gimple_num_ops (stmt);
274 for (i = 1; i < n && rank != maxrank; i++)
276 gcc_assert (gimple_op (stmt, i));
277 rank = MAX(rank, get_rank (gimple_op (stmt, i)));
281 if (dump_file && (dump_flags & TDF_DETAILS))
283 fprintf (dump_file, "Rank for ");
284 print_generic_expr (dump_file, e, 0);
285 fprintf (dump_file, " is %ld\n", (rank + 1));
288 /* Note the rank in the hashtable so we don't recompute it. */
289 insert_operand_rank (e, (rank + 1));
290 return (rank + 1);
293 /* Globals, etc, are rank 0 */
294 return 0;
297 DEF_VEC_P(operand_entry_t);
298 DEF_VEC_ALLOC_P(operand_entry_t, heap);
300 /* We want integer ones to end up last no matter what, since they are
301 the ones we can do the most with. */
302 #define INTEGER_CONST_TYPE 1 << 3
303 #define FLOAT_CONST_TYPE 1 << 2
304 #define OTHER_CONST_TYPE 1 << 1
306 /* Classify an invariant tree into integer, float, or other, so that
307 we can sort them to be near other constants of the same type. */
308 static inline int
309 constant_type (tree t)
311 if (INTEGRAL_TYPE_P (TREE_TYPE (t)))
312 return INTEGER_CONST_TYPE;
313 else if (SCALAR_FLOAT_TYPE_P (TREE_TYPE (t)))
314 return FLOAT_CONST_TYPE;
315 else
316 return OTHER_CONST_TYPE;
319 /* qsort comparison function to sort operand entries PA and PB by rank
320 so that the sorted array is ordered by rank in decreasing order. */
321 static int
322 sort_by_operand_rank (const void *pa, const void *pb)
324 const operand_entry_t oea = *(const operand_entry_t *)pa;
325 const operand_entry_t oeb = *(const operand_entry_t *)pb;
327 /* It's nicer for optimize_expression if constants that are likely
328 to fold when added/multiplied//whatever are put next to each
329 other. Since all constants have rank 0, order them by type. */
330 if (oeb->rank == 0 && oea->rank == 0)
331 return constant_type (oeb->op) - constant_type (oea->op);
333 /* Lastly, make sure the versions that are the same go next to each
334 other. We use SSA_NAME_VERSION because it's stable. */
335 if ((oeb->rank - oea->rank == 0)
336 && TREE_CODE (oea->op) == SSA_NAME
337 && TREE_CODE (oeb->op) == SSA_NAME)
338 return SSA_NAME_VERSION (oeb->op) - SSA_NAME_VERSION (oea->op);
340 return oeb->rank - oea->rank;
343 /* Add an operand entry to *OPS for the tree operand OP. */
345 static void
346 add_to_ops_vec (VEC(operand_entry_t, heap) **ops, tree op)
348 operand_entry_t oe = (operand_entry_t) pool_alloc (operand_entry_pool);
350 oe->op = op;
351 oe->rank = get_rank (op);
352 VEC_safe_push (operand_entry_t, heap, *ops, oe);
355 /* Return true if STMT is reassociable operation containing a binary
356 operation with tree code CODE, and is inside LOOP. */
358 static bool
359 is_reassociable_op (gimple stmt, enum tree_code code, struct loop *loop)
361 basic_block bb = gimple_bb (stmt);
363 if (gimple_bb (stmt) == NULL)
364 return false;
366 if (!flow_bb_inside_loop_p (loop, bb))
367 return false;
369 if (is_gimple_assign (stmt)
370 && gimple_assign_rhs_code (stmt) == code
371 && has_single_use (gimple_assign_lhs (stmt)))
372 return true;
374 return false;
378 /* Given NAME, if NAME is defined by a unary operation OPCODE, return the
379 operand of the negate operation. Otherwise, return NULL. */
381 static tree
382 get_unary_op (tree name, enum tree_code opcode)
384 gimple stmt = SSA_NAME_DEF_STMT (name);
386 if (!is_gimple_assign (stmt))
387 return NULL_TREE;
389 if (gimple_assign_rhs_code (stmt) == opcode)
390 return gimple_assign_rhs1 (stmt);
391 return NULL_TREE;
394 /* If CURR and LAST are a pair of ops that OPCODE allows us to
395 eliminate through equivalences, do so, remove them from OPS, and
396 return true. Otherwise, return false. */
398 static bool
399 eliminate_duplicate_pair (enum tree_code opcode,
400 VEC (operand_entry_t, heap) **ops,
401 bool *all_done,
402 unsigned int i,
403 operand_entry_t curr,
404 operand_entry_t last)
407 /* If we have two of the same op, and the opcode is & |, min, or max,
408 we can eliminate one of them.
409 If we have two of the same op, and the opcode is ^, we can
410 eliminate both of them. */
412 if (last && last->op == curr->op)
414 switch (opcode)
416 case MAX_EXPR:
417 case MIN_EXPR:
418 case BIT_IOR_EXPR:
419 case BIT_AND_EXPR:
420 if (dump_file && (dump_flags & TDF_DETAILS))
422 fprintf (dump_file, "Equivalence: ");
423 print_generic_expr (dump_file, curr->op, 0);
424 fprintf (dump_file, " [&|minmax] ");
425 print_generic_expr (dump_file, last->op, 0);
426 fprintf (dump_file, " -> ");
427 print_generic_stmt (dump_file, last->op, 0);
430 VEC_ordered_remove (operand_entry_t, *ops, i);
431 reassociate_stats.ops_eliminated ++;
433 return true;
435 case BIT_XOR_EXPR:
436 if (dump_file && (dump_flags & TDF_DETAILS))
438 fprintf (dump_file, "Equivalence: ");
439 print_generic_expr (dump_file, curr->op, 0);
440 fprintf (dump_file, " ^ ");
441 print_generic_expr (dump_file, last->op, 0);
442 fprintf (dump_file, " -> nothing\n");
445 reassociate_stats.ops_eliminated += 2;
447 if (VEC_length (operand_entry_t, *ops) == 2)
449 VEC_free (operand_entry_t, heap, *ops);
450 *ops = NULL;
451 add_to_ops_vec (ops, fold_convert (TREE_TYPE (last->op),
452 integer_zero_node));
453 *all_done = true;
455 else
457 VEC_ordered_remove (operand_entry_t, *ops, i-1);
458 VEC_ordered_remove (operand_entry_t, *ops, i-1);
461 return true;
463 default:
464 break;
467 return false;
470 /* If OPCODE is PLUS_EXPR, CURR->OP is really a negate expression,
471 look in OPS for a corresponding positive operation to cancel it
472 out. If we find one, remove the other from OPS, replace
473 OPS[CURRINDEX] with 0, and return true. Otherwise, return
474 false. */
476 static bool
477 eliminate_plus_minus_pair (enum tree_code opcode,
478 VEC (operand_entry_t, heap) **ops,
479 unsigned int currindex,
480 operand_entry_t curr)
482 tree negateop;
483 unsigned int i;
484 operand_entry_t oe;
486 if (opcode != PLUS_EXPR || TREE_CODE (curr->op) != SSA_NAME)
487 return false;
489 negateop = get_unary_op (curr->op, NEGATE_EXPR);
490 if (negateop == NULL_TREE)
491 return false;
493 /* Any non-negated version will have a rank that is one less than
494 the current rank. So once we hit those ranks, if we don't find
495 one, we can stop. */
497 for (i = currindex + 1;
498 VEC_iterate (operand_entry_t, *ops, i, oe)
499 && oe->rank >= curr->rank - 1 ;
500 i++)
502 if (oe->op == negateop)
505 if (dump_file && (dump_flags & TDF_DETAILS))
507 fprintf (dump_file, "Equivalence: ");
508 print_generic_expr (dump_file, negateop, 0);
509 fprintf (dump_file, " + -");
510 print_generic_expr (dump_file, oe->op, 0);
511 fprintf (dump_file, " -> 0\n");
514 VEC_ordered_remove (operand_entry_t, *ops, i);
515 add_to_ops_vec (ops, fold_convert(TREE_TYPE (oe->op),
516 integer_zero_node));
517 VEC_ordered_remove (operand_entry_t, *ops, currindex);
518 reassociate_stats.ops_eliminated ++;
520 return true;
524 return false;
527 /* If OPCODE is BIT_IOR_EXPR, BIT_AND_EXPR, and, CURR->OP is really a
528 bitwise not expression, look in OPS for a corresponding operand to
529 cancel it out. If we find one, remove the other from OPS, replace
530 OPS[CURRINDEX] with 0, and return true. Otherwise, return
531 false. */
533 static bool
534 eliminate_not_pairs (enum tree_code opcode,
535 VEC (operand_entry_t, heap) **ops,
536 unsigned int currindex,
537 operand_entry_t curr)
539 tree notop;
540 unsigned int i;
541 operand_entry_t oe;
543 if ((opcode != BIT_IOR_EXPR && opcode != BIT_AND_EXPR)
544 || TREE_CODE (curr->op) != SSA_NAME)
545 return false;
547 notop = get_unary_op (curr->op, BIT_NOT_EXPR);
548 if (notop == NULL_TREE)
549 return false;
551 /* Any non-not version will have a rank that is one less than
552 the current rank. So once we hit those ranks, if we don't find
553 one, we can stop. */
555 for (i = currindex + 1;
556 VEC_iterate (operand_entry_t, *ops, i, oe)
557 && oe->rank >= curr->rank - 1;
558 i++)
560 if (oe->op == notop)
562 if (dump_file && (dump_flags & TDF_DETAILS))
564 fprintf (dump_file, "Equivalence: ");
565 print_generic_expr (dump_file, notop, 0);
566 if (opcode == BIT_AND_EXPR)
567 fprintf (dump_file, " & ~");
568 else if (opcode == BIT_IOR_EXPR)
569 fprintf (dump_file, " | ~");
570 print_generic_expr (dump_file, oe->op, 0);
571 if (opcode == BIT_AND_EXPR)
572 fprintf (dump_file, " -> 0\n");
573 else if (opcode == BIT_IOR_EXPR)
574 fprintf (dump_file, " -> -1\n");
577 if (opcode == BIT_AND_EXPR)
578 oe->op = fold_convert (TREE_TYPE (oe->op), integer_zero_node);
579 else if (opcode == BIT_IOR_EXPR)
580 oe->op = build_low_bits_mask (TREE_TYPE (oe->op),
581 TYPE_PRECISION (TREE_TYPE (oe->op)));
583 reassociate_stats.ops_eliminated
584 += VEC_length (operand_entry_t, *ops) - 1;
585 VEC_free (operand_entry_t, heap, *ops);
586 *ops = NULL;
587 VEC_safe_push (operand_entry_t, heap, *ops, oe);
588 return true;
592 return false;
595 /* Use constant value that may be present in OPS to try to eliminate
596 operands. Note that this function is only really used when we've
597 eliminated ops for other reasons, or merged constants. Across
598 single statements, fold already does all of this, plus more. There
599 is little point in duplicating logic, so I've only included the
600 identities that I could ever construct testcases to trigger. */
602 static void
603 eliminate_using_constants (enum tree_code opcode,
604 VEC(operand_entry_t, heap) **ops)
606 operand_entry_t oelast = VEC_last (operand_entry_t, *ops);
607 tree type = TREE_TYPE (oelast->op);
609 if (oelast->rank == 0
610 && (INTEGRAL_TYPE_P (type) || FLOAT_TYPE_P (type)))
612 switch (opcode)
614 case BIT_AND_EXPR:
615 if (integer_zerop (oelast->op))
617 if (VEC_length (operand_entry_t, *ops) != 1)
619 if (dump_file && (dump_flags & TDF_DETAILS))
620 fprintf (dump_file, "Found & 0, removing all other ops\n");
622 reassociate_stats.ops_eliminated
623 += VEC_length (operand_entry_t, *ops) - 1;
625 VEC_free (operand_entry_t, heap, *ops);
626 *ops = NULL;
627 VEC_safe_push (operand_entry_t, heap, *ops, oelast);
628 return;
631 else if (integer_all_onesp (oelast->op))
633 if (VEC_length (operand_entry_t, *ops) != 1)
635 if (dump_file && (dump_flags & TDF_DETAILS))
636 fprintf (dump_file, "Found & -1, removing\n");
637 VEC_pop (operand_entry_t, *ops);
638 reassociate_stats.ops_eliminated++;
641 break;
642 case BIT_IOR_EXPR:
643 if (integer_all_onesp (oelast->op))
645 if (VEC_length (operand_entry_t, *ops) != 1)
647 if (dump_file && (dump_flags & TDF_DETAILS))
648 fprintf (dump_file, "Found | -1, removing all other ops\n");
650 reassociate_stats.ops_eliminated
651 += VEC_length (operand_entry_t, *ops) - 1;
653 VEC_free (operand_entry_t, heap, *ops);
654 *ops = NULL;
655 VEC_safe_push (operand_entry_t, heap, *ops, oelast);
656 return;
659 else if (integer_zerop (oelast->op))
661 if (VEC_length (operand_entry_t, *ops) != 1)
663 if (dump_file && (dump_flags & TDF_DETAILS))
664 fprintf (dump_file, "Found | 0, removing\n");
665 VEC_pop (operand_entry_t, *ops);
666 reassociate_stats.ops_eliminated++;
669 break;
670 case MULT_EXPR:
671 if (integer_zerop (oelast->op)
672 || (FLOAT_TYPE_P (type)
673 && !HONOR_NANS (TYPE_MODE (type))
674 && !HONOR_SIGNED_ZEROS (TYPE_MODE (type))
675 && real_zerop (oelast->op)))
677 if (VEC_length (operand_entry_t, *ops) != 1)
679 if (dump_file && (dump_flags & TDF_DETAILS))
680 fprintf (dump_file, "Found * 0, removing all other ops\n");
682 reassociate_stats.ops_eliminated
683 += VEC_length (operand_entry_t, *ops) - 1;
684 VEC_free (operand_entry_t, heap, *ops);
685 *ops = NULL;
686 VEC_safe_push (operand_entry_t, heap, *ops, oelast);
687 return;
690 else if (integer_onep (oelast->op)
691 || (FLOAT_TYPE_P (type)
692 && !HONOR_SNANS (TYPE_MODE (type))
693 && real_onep (oelast->op)))
695 if (VEC_length (operand_entry_t, *ops) != 1)
697 if (dump_file && (dump_flags & TDF_DETAILS))
698 fprintf (dump_file, "Found * 1, removing\n");
699 VEC_pop (operand_entry_t, *ops);
700 reassociate_stats.ops_eliminated++;
701 return;
704 break;
705 case BIT_XOR_EXPR:
706 case PLUS_EXPR:
707 case MINUS_EXPR:
708 if (integer_zerop (oelast->op)
709 || (FLOAT_TYPE_P (type)
710 && (opcode == PLUS_EXPR || opcode == MINUS_EXPR)
711 && fold_real_zero_addition_p (type, oelast->op,
712 opcode == MINUS_EXPR)))
714 if (VEC_length (operand_entry_t, *ops) != 1)
716 if (dump_file && (dump_flags & TDF_DETAILS))
717 fprintf (dump_file, "Found [|^+] 0, removing\n");
718 VEC_pop (operand_entry_t, *ops);
719 reassociate_stats.ops_eliminated++;
720 return;
723 break;
724 default:
725 break;
731 static void linearize_expr_tree (VEC(operand_entry_t, heap) **, gimple,
732 bool, bool);
734 /* Structure for tracking and counting operands. */
735 typedef struct oecount_s {
736 int cnt;
737 enum tree_code oecode;
738 tree op;
739 } oecount;
741 DEF_VEC_O(oecount);
742 DEF_VEC_ALLOC_O(oecount,heap);
744 /* The heap for the oecount hashtable and the sorted list of operands. */
745 static VEC (oecount, heap) *cvec;
747 /* Hash function for oecount. */
749 static hashval_t
750 oecount_hash (const void *p)
752 const oecount *c = VEC_index (oecount, cvec, (size_t)p - 42);
753 return htab_hash_pointer (c->op) ^ (hashval_t)c->oecode;
756 /* Comparison function for oecount. */
758 static int
759 oecount_eq (const void *p1, const void *p2)
761 const oecount *c1 = VEC_index (oecount, cvec, (size_t)p1 - 42);
762 const oecount *c2 = VEC_index (oecount, cvec, (size_t)p2 - 42);
763 return (c1->oecode == c2->oecode
764 && c1->op == c2->op);
767 /* Comparison function for qsort sorting oecount elements by count. */
769 static int
770 oecount_cmp (const void *p1, const void *p2)
772 const oecount *c1 = (const oecount *)p1;
773 const oecount *c2 = (const oecount *)p2;
774 return c1->cnt - c2->cnt;
777 /* Walks the linear chain with result *DEF searching for an operation
778 with operand OP and code OPCODE removing that from the chain. *DEF
779 is updated if there is only one operand but no operation left. */
781 static void
782 zero_one_operation (tree *def, enum tree_code opcode, tree op)
784 gimple stmt = SSA_NAME_DEF_STMT (*def);
788 tree name = gimple_assign_rhs1 (stmt);
790 /* If this is the operation we look for and one of the operands
791 is ours simply propagate the other operand into the stmts
792 single use. */
793 if (gimple_assign_rhs_code (stmt) == opcode
794 && (name == op
795 || gimple_assign_rhs2 (stmt) == op))
797 gimple use_stmt;
798 use_operand_p use;
799 gimple_stmt_iterator gsi;
800 if (name == op)
801 name = gimple_assign_rhs2 (stmt);
802 gcc_assert (has_single_use (gimple_assign_lhs (stmt)));
803 single_imm_use (gimple_assign_lhs (stmt), &use, &use_stmt);
804 if (gimple_assign_lhs (stmt) == *def)
805 *def = name;
806 SET_USE (use, name);
807 if (TREE_CODE (name) != SSA_NAME)
808 update_stmt (use_stmt);
809 gsi = gsi_for_stmt (stmt);
810 gsi_remove (&gsi, true);
811 release_defs (stmt);
812 return;
815 /* Continue walking the chain. */
816 gcc_assert (name != op
817 && TREE_CODE (name) == SSA_NAME);
818 stmt = SSA_NAME_DEF_STMT (name);
820 while (1);
823 /* Builds one statement performing OP1 OPCODE OP2 using TMPVAR for
824 the result. Places the statement after the definition of either
825 OP1 or OP2. Returns the new statement. */
827 static gimple
828 build_and_add_sum (tree tmpvar, tree op1, tree op2, enum tree_code opcode)
830 gimple op1def = NULL, op2def = NULL;
831 gimple_stmt_iterator gsi;
832 tree op;
833 gimple sum;
835 /* Create the addition statement. */
836 sum = gimple_build_assign_with_ops (opcode, tmpvar, op1, op2);
837 op = make_ssa_name (tmpvar, sum);
838 gimple_assign_set_lhs (sum, op);
840 /* Find an insertion place and insert. */
841 if (TREE_CODE (op1) == SSA_NAME)
842 op1def = SSA_NAME_DEF_STMT (op1);
843 if (TREE_CODE (op2) == SSA_NAME)
844 op2def = SSA_NAME_DEF_STMT (op2);
845 if ((!op1def || gimple_nop_p (op1def))
846 && (!op2def || gimple_nop_p (op2def)))
848 gsi = gsi_start_bb (single_succ (ENTRY_BLOCK_PTR));
849 gsi_insert_before (&gsi, sum, GSI_NEW_STMT);
851 else if ((!op1def || gimple_nop_p (op1def))
852 || (op2def && !gimple_nop_p (op2def)
853 && stmt_dominates_stmt_p (op1def, op2def)))
855 if (gimple_code (op2def) == GIMPLE_PHI)
857 gsi = gsi_start_bb (gimple_bb (op2def));
858 gsi_insert_before (&gsi, sum, GSI_NEW_STMT);
860 else
862 if (!stmt_ends_bb_p (op2def))
864 gsi = gsi_for_stmt (op2def);
865 gsi_insert_after (&gsi, sum, GSI_NEW_STMT);
867 else
869 edge e;
870 edge_iterator ei;
872 FOR_EACH_EDGE (e, ei, gimple_bb (op2def)->succs)
873 if (e->flags & EDGE_FALLTHRU)
874 gsi_insert_on_edge_immediate (e, sum);
878 else
880 if (gimple_code (op1def) == GIMPLE_PHI)
882 gsi = gsi_start_bb (gimple_bb (op1def));
883 gsi_insert_before (&gsi, sum, GSI_NEW_STMT);
885 else
887 if (!stmt_ends_bb_p (op1def))
889 gsi = gsi_for_stmt (op1def);
890 gsi_insert_after (&gsi, sum, GSI_NEW_STMT);
892 else
894 edge e;
895 edge_iterator ei;
897 FOR_EACH_EDGE (e, ei, gimple_bb (op1def)->succs)
898 if (e->flags & EDGE_FALLTHRU)
899 gsi_insert_on_edge_immediate (e, sum);
903 update_stmt (sum);
905 return sum;
908 /* Perform un-distribution of divisions and multiplications.
909 A * X + B * X is transformed into (A + B) * X and A / X + B / X
910 to (A + B) / X for real X.
912 The algorithm is organized as follows.
914 - First we walk the addition chain *OPS looking for summands that
915 are defined by a multiplication or a real division. This results
916 in the candidates bitmap with relevant indices into *OPS.
918 - Second we build the chains of multiplications or divisions for
919 these candidates, counting the number of occurences of (operand, code)
920 pairs in all of the candidates chains.
922 - Third we sort the (operand, code) pairs by number of occurence and
923 process them starting with the pair with the most uses.
925 * For each such pair we walk the candidates again to build a
926 second candidate bitmap noting all multiplication/division chains
927 that have at least one occurence of (operand, code).
929 * We build an alternate addition chain only covering these
930 candidates with one (operand, code) operation removed from their
931 multiplication/division chain.
933 * The first candidate gets replaced by the alternate addition chain
934 multiplied/divided by the operand.
936 * All candidate chains get disabled for further processing and
937 processing of (operand, code) pairs continues.
939 The alternate addition chains built are re-processed by the main
940 reassociation algorithm which allows optimizing a * x * y + b * y * x
941 to (a + b ) * x * y in one invocation of the reassociation pass. */
943 static bool
944 undistribute_ops_list (enum tree_code opcode,
945 VEC (operand_entry_t, heap) **ops, struct loop *loop)
947 unsigned int length = VEC_length (operand_entry_t, *ops);
948 operand_entry_t oe1;
949 unsigned i, j;
950 sbitmap candidates, candidates2;
951 unsigned nr_candidates, nr_candidates2;
952 sbitmap_iterator sbi0;
953 VEC (operand_entry_t, heap) **subops;
954 htab_t ctable;
955 bool changed = false;
957 if (length <= 1
958 || opcode != PLUS_EXPR)
959 return false;
961 /* Build a list of candidates to process. */
962 candidates = sbitmap_alloc (length);
963 sbitmap_zero (candidates);
964 nr_candidates = 0;
965 for (i = 0; VEC_iterate (operand_entry_t, *ops, i, oe1); ++i)
967 enum tree_code dcode;
968 gimple oe1def;
970 if (TREE_CODE (oe1->op) != SSA_NAME)
971 continue;
972 oe1def = SSA_NAME_DEF_STMT (oe1->op);
973 if (!is_gimple_assign (oe1def))
974 continue;
975 dcode = gimple_assign_rhs_code (oe1def);
976 if ((dcode != MULT_EXPR
977 && dcode != RDIV_EXPR)
978 || !is_reassociable_op (oe1def, dcode, loop))
979 continue;
981 SET_BIT (candidates, i);
982 nr_candidates++;
985 if (nr_candidates < 2)
987 sbitmap_free (candidates);
988 return false;
991 if (dump_file && (dump_flags & TDF_DETAILS))
993 fprintf (dump_file, "searching for un-distribute opportunities ");
994 print_generic_expr (dump_file,
995 VEC_index (operand_entry_t, *ops,
996 sbitmap_first_set_bit (candidates))->op, 0);
997 fprintf (dump_file, " %d\n", nr_candidates);
1000 /* Build linearized sub-operand lists and the counting table. */
1001 cvec = NULL;
1002 ctable = htab_create (15, oecount_hash, oecount_eq, NULL);
1003 subops = XCNEWVEC (VEC (operand_entry_t, heap) *,
1004 VEC_length (operand_entry_t, *ops));
1005 EXECUTE_IF_SET_IN_SBITMAP (candidates, 0, i, sbi0)
1007 gimple oedef;
1008 enum tree_code oecode;
1009 unsigned j;
1011 oedef = SSA_NAME_DEF_STMT (VEC_index (operand_entry_t, *ops, i)->op);
1012 oecode = gimple_assign_rhs_code (oedef);
1013 linearize_expr_tree (&subops[i], oedef,
1014 associative_tree_code (oecode), false);
1016 for (j = 0; VEC_iterate (operand_entry_t, subops[i], j, oe1); ++j)
1018 oecount c;
1019 void **slot;
1020 size_t idx;
1021 c.oecode = oecode;
1022 c.cnt = 1;
1023 c.op = oe1->op;
1024 VEC_safe_push (oecount, heap, cvec, &c);
1025 idx = VEC_length (oecount, cvec) + 41;
1026 slot = htab_find_slot (ctable, (void *)idx, INSERT);
1027 if (!*slot)
1029 *slot = (void *)idx;
1031 else
1033 VEC_pop (oecount, cvec);
1034 VEC_index (oecount, cvec, (size_t)*slot - 42)->cnt++;
1038 htab_delete (ctable);
1040 /* Sort the counting table. */
1041 qsort (VEC_address (oecount, cvec), VEC_length (oecount, cvec),
1042 sizeof (oecount), oecount_cmp);
1044 if (dump_file && (dump_flags & TDF_DETAILS))
1046 oecount *c;
1047 fprintf (dump_file, "Candidates:\n");
1048 for (j = 0; VEC_iterate (oecount, cvec, j, c); ++j)
1050 fprintf (dump_file, " %u %s: ", c->cnt,
1051 c->oecode == MULT_EXPR
1052 ? "*" : c->oecode == RDIV_EXPR ? "/" : "?");
1053 print_generic_expr (dump_file, c->op, 0);
1054 fprintf (dump_file, "\n");
1058 /* Process the (operand, code) pairs in order of most occurence. */
1059 candidates2 = sbitmap_alloc (length);
1060 while (!VEC_empty (oecount, cvec))
1062 oecount *c = VEC_last (oecount, cvec);
1063 if (c->cnt < 2)
1064 break;
1066 /* Now collect the operands in the outer chain that contain
1067 the common operand in their inner chain. */
1068 sbitmap_zero (candidates2);
1069 nr_candidates2 = 0;
1070 EXECUTE_IF_SET_IN_SBITMAP (candidates, 0, i, sbi0)
1072 gimple oedef;
1073 enum tree_code oecode;
1074 unsigned j;
1075 tree op = VEC_index (operand_entry_t, *ops, i)->op;
1077 /* If we undistributed in this chain already this may be
1078 a constant. */
1079 if (TREE_CODE (op) != SSA_NAME)
1080 continue;
1082 oedef = SSA_NAME_DEF_STMT (op);
1083 oecode = gimple_assign_rhs_code (oedef);
1084 if (oecode != c->oecode)
1085 continue;
1087 for (j = 0; VEC_iterate (operand_entry_t, subops[i], j, oe1); ++j)
1089 if (oe1->op == c->op)
1091 SET_BIT (candidates2, i);
1092 ++nr_candidates2;
1093 break;
1098 if (nr_candidates2 >= 2)
1100 operand_entry_t oe1, oe2;
1101 tree tmpvar;
1102 gimple prod;
1103 int first = sbitmap_first_set_bit (candidates2);
1105 /* Build the new addition chain. */
1106 oe1 = VEC_index (operand_entry_t, *ops, first);
1107 if (dump_file && (dump_flags & TDF_DETAILS))
1109 fprintf (dump_file, "Building (");
1110 print_generic_expr (dump_file, oe1->op, 0);
1112 tmpvar = create_tmp_var (TREE_TYPE (oe1->op), NULL);
1113 add_referenced_var (tmpvar);
1114 zero_one_operation (&oe1->op, c->oecode, c->op);
1115 EXECUTE_IF_SET_IN_SBITMAP (candidates2, first+1, i, sbi0)
1117 gimple sum;
1118 oe2 = VEC_index (operand_entry_t, *ops, i);
1119 if (dump_file && (dump_flags & TDF_DETAILS))
1121 fprintf (dump_file, " + ");
1122 print_generic_expr (dump_file, oe2->op, 0);
1124 zero_one_operation (&oe2->op, c->oecode, c->op);
1125 sum = build_and_add_sum (tmpvar, oe1->op, oe2->op, opcode);
1126 oe2->op = fold_convert (TREE_TYPE (oe2->op), integer_zero_node);
1127 oe2->rank = 0;
1128 oe1->op = gimple_get_lhs (sum);
1131 /* Apply the multiplication/division. */
1132 prod = build_and_add_sum (tmpvar, oe1->op, c->op, c->oecode);
1133 if (dump_file && (dump_flags & TDF_DETAILS))
1135 fprintf (dump_file, ") %s ", c->oecode == MULT_EXPR ? "*" : "/");
1136 print_generic_expr (dump_file, c->op, 0);
1137 fprintf (dump_file, "\n");
1140 /* Record it in the addition chain and disable further
1141 undistribution with this op. */
1142 oe1->op = gimple_assign_lhs (prod);
1143 oe1->rank = get_rank (oe1->op);
1144 VEC_free (operand_entry_t, heap, subops[first]);
1146 changed = true;
1149 VEC_pop (oecount, cvec);
1152 for (i = 0; i < VEC_length (operand_entry_t, *ops); ++i)
1153 VEC_free (operand_entry_t, heap, subops[i]);
1154 free (subops);
1155 VEC_free (oecount, heap, cvec);
1156 sbitmap_free (candidates);
1157 sbitmap_free (candidates2);
1159 return changed;
1163 /* Perform various identities and other optimizations on the list of
1164 operand entries, stored in OPS. The tree code for the binary
1165 operation between all the operands is OPCODE. */
1167 static void
1168 optimize_ops_list (enum tree_code opcode,
1169 VEC (operand_entry_t, heap) **ops)
1171 unsigned int length = VEC_length (operand_entry_t, *ops);
1172 unsigned int i;
1173 operand_entry_t oe;
1174 operand_entry_t oelast = NULL;
1175 bool iterate = false;
1177 if (length == 1)
1178 return;
1180 oelast = VEC_last (operand_entry_t, *ops);
1182 /* If the last two are constants, pop the constants off, merge them
1183 and try the next two. */
1184 if (oelast->rank == 0 && is_gimple_min_invariant (oelast->op))
1186 operand_entry_t oelm1 = VEC_index (operand_entry_t, *ops, length - 2);
1188 if (oelm1->rank == 0
1189 && is_gimple_min_invariant (oelm1->op)
1190 && useless_type_conversion_p (TREE_TYPE (oelm1->op),
1191 TREE_TYPE (oelast->op)))
1193 tree folded = fold_binary (opcode, TREE_TYPE (oelm1->op),
1194 oelm1->op, oelast->op);
1196 if (folded && is_gimple_min_invariant (folded))
1198 if (dump_file && (dump_flags & TDF_DETAILS))
1199 fprintf (dump_file, "Merging constants\n");
1201 VEC_pop (operand_entry_t, *ops);
1202 VEC_pop (operand_entry_t, *ops);
1204 add_to_ops_vec (ops, folded);
1205 reassociate_stats.constants_eliminated++;
1207 optimize_ops_list (opcode, ops);
1208 return;
1213 eliminate_using_constants (opcode, ops);
1214 oelast = NULL;
1216 for (i = 0; VEC_iterate (operand_entry_t, *ops, i, oe);)
1218 bool done = false;
1220 if (eliminate_not_pairs (opcode, ops, i, oe))
1221 return;
1222 if (eliminate_duplicate_pair (opcode, ops, &done, i, oe, oelast)
1223 || (!done && eliminate_plus_minus_pair (opcode, ops, i, oe)))
1225 if (done)
1226 return;
1227 iterate = true;
1228 oelast = NULL;
1229 continue;
1231 oelast = oe;
1232 i++;
1235 length = VEC_length (operand_entry_t, *ops);
1236 oelast = VEC_last (operand_entry_t, *ops);
1238 if (iterate)
1239 optimize_ops_list (opcode, ops);
1242 /* Return true if OPERAND is defined by a PHI node which uses the LHS
1243 of STMT in it's operands. This is also known as a "destructive
1244 update" operation. */
1246 static bool
1247 is_phi_for_stmt (gimple stmt, tree operand)
1249 gimple def_stmt;
1250 tree lhs;
1251 use_operand_p arg_p;
1252 ssa_op_iter i;
1254 if (TREE_CODE (operand) != SSA_NAME)
1255 return false;
1257 lhs = gimple_assign_lhs (stmt);
1259 def_stmt = SSA_NAME_DEF_STMT (operand);
1260 if (gimple_code (def_stmt) != GIMPLE_PHI)
1261 return false;
1263 FOR_EACH_PHI_ARG (arg_p, def_stmt, i, SSA_OP_USE)
1264 if (lhs == USE_FROM_PTR (arg_p))
1265 return true;
1266 return false;
1269 /* Recursively rewrite our linearized statements so that the operators
1270 match those in OPS[OPINDEX], putting the computation in rank
1271 order. */
1273 static void
1274 rewrite_expr_tree (gimple stmt, unsigned int opindex,
1275 VEC(operand_entry_t, heap) * ops)
1277 tree rhs1 = gimple_assign_rhs1 (stmt);
1278 tree rhs2 = gimple_assign_rhs2 (stmt);
1279 operand_entry_t oe;
1281 /* If we have three operands left, then we want to make sure the one
1282 that gets the double binary op are the ones with the same rank.
1284 The alternative we try is to see if this is a destructive
1285 update style statement, which is like:
1286 b = phi (a, ...)
1287 a = c + b;
1288 In that case, we want to use the destructive update form to
1289 expose the possible vectorizer sum reduction opportunity.
1290 In that case, the third operand will be the phi node.
1292 We could, of course, try to be better as noted above, and do a
1293 lot of work to try to find these opportunities in >3 operand
1294 cases, but it is unlikely to be worth it. */
1295 if (opindex + 3 == VEC_length (operand_entry_t, ops))
1297 operand_entry_t oe1, oe2, oe3;
1299 oe1 = VEC_index (operand_entry_t, ops, opindex);
1300 oe2 = VEC_index (operand_entry_t, ops, opindex + 1);
1301 oe3 = VEC_index (operand_entry_t, ops, opindex + 2);
1303 if ((oe1->rank == oe2->rank
1304 && oe2->rank != oe3->rank)
1305 || (is_phi_for_stmt (stmt, oe3->op)
1306 && !is_phi_for_stmt (stmt, oe1->op)
1307 && !is_phi_for_stmt (stmt, oe2->op)))
1309 struct operand_entry temp = *oe3;
1310 oe3->op = oe1->op;
1311 oe3->rank = oe1->rank;
1312 oe1->op = temp.op;
1313 oe1->rank= temp.rank;
1315 else if ((oe1->rank == oe3->rank
1316 && oe2->rank != oe3->rank)
1317 || (is_phi_for_stmt (stmt, oe2->op)
1318 && !is_phi_for_stmt (stmt, oe1->op)
1319 && !is_phi_for_stmt (stmt, oe3->op)))
1321 struct operand_entry temp = *oe2;
1322 oe2->op = oe1->op;
1323 oe2->rank = oe1->rank;
1324 oe1->op = temp.op;
1325 oe1->rank= temp.rank;
1329 /* The final recursion case for this function is that you have
1330 exactly two operations left.
1331 If we had one exactly one op in the entire list to start with, we
1332 would have never called this function, and the tail recursion
1333 rewrites them one at a time. */
1334 if (opindex + 2 == VEC_length (operand_entry_t, ops))
1336 operand_entry_t oe1, oe2;
1338 oe1 = VEC_index (operand_entry_t, ops, opindex);
1339 oe2 = VEC_index (operand_entry_t, ops, opindex + 1);
1341 if (rhs1 != oe1->op || rhs2 != oe2->op)
1343 if (dump_file && (dump_flags & TDF_DETAILS))
1345 fprintf (dump_file, "Transforming ");
1346 print_gimple_stmt (dump_file, stmt, 0, 0);
1349 gimple_assign_set_rhs1 (stmt, oe1->op);
1350 gimple_assign_set_rhs2 (stmt, oe2->op);
1351 update_stmt (stmt);
1353 if (dump_file && (dump_flags & TDF_DETAILS))
1355 fprintf (dump_file, " into ");
1356 print_gimple_stmt (dump_file, stmt, 0, 0);
1360 return;
1363 /* If we hit here, we should have 3 or more ops left. */
1364 gcc_assert (opindex + 2 < VEC_length (operand_entry_t, ops));
1366 /* Rewrite the next operator. */
1367 oe = VEC_index (operand_entry_t, ops, opindex);
1369 if (oe->op != rhs2)
1372 if (dump_file && (dump_flags & TDF_DETAILS))
1374 fprintf (dump_file, "Transforming ");
1375 print_gimple_stmt (dump_file, stmt, 0, 0);
1378 gimple_assign_set_rhs2 (stmt, oe->op);
1379 update_stmt (stmt);
1381 if (dump_file && (dump_flags & TDF_DETAILS))
1383 fprintf (dump_file, " into ");
1384 print_gimple_stmt (dump_file, stmt, 0, 0);
1387 /* Recurse on the LHS of the binary operator, which is guaranteed to
1388 be the non-leaf side. */
1389 rewrite_expr_tree (SSA_NAME_DEF_STMT (rhs1), opindex + 1, ops);
1392 /* Transform STMT, which is really (A +B) + (C + D) into the left
1393 linear form, ((A+B)+C)+D.
1394 Recurse on D if necessary. */
1396 static void
1397 linearize_expr (gimple stmt)
1399 gimple_stmt_iterator gsinow, gsirhs;
1400 gimple binlhs = SSA_NAME_DEF_STMT (gimple_assign_rhs1 (stmt));
1401 gimple binrhs = SSA_NAME_DEF_STMT (gimple_assign_rhs2 (stmt));
1402 enum tree_code rhscode = gimple_assign_rhs_code (stmt);
1403 gimple newbinrhs = NULL;
1404 struct loop *loop = loop_containing_stmt (stmt);
1406 gcc_assert (is_reassociable_op (binlhs, rhscode, loop)
1407 && is_reassociable_op (binrhs, rhscode, loop));
1409 gsinow = gsi_for_stmt (stmt);
1410 gsirhs = gsi_for_stmt (binrhs);
1411 gsi_move_before (&gsirhs, &gsinow);
1413 gimple_assign_set_rhs2 (stmt, gimple_assign_rhs1 (binrhs));
1414 gimple_assign_set_rhs1 (binrhs, gimple_assign_lhs (binlhs));
1415 gimple_assign_set_rhs1 (stmt, gimple_assign_lhs (binrhs));
1417 if (TREE_CODE (gimple_assign_rhs2 (stmt)) == SSA_NAME)
1418 newbinrhs = SSA_NAME_DEF_STMT (gimple_assign_rhs2 (stmt));
1420 if (dump_file && (dump_flags & TDF_DETAILS))
1422 fprintf (dump_file, "Linearized: ");
1423 print_gimple_stmt (dump_file, stmt, 0, 0);
1426 reassociate_stats.linearized++;
1427 update_stmt (binrhs);
1428 update_stmt (binlhs);
1429 update_stmt (stmt);
1431 gimple_set_visited (stmt, true);
1432 gimple_set_visited (binlhs, true);
1433 gimple_set_visited (binrhs, true);
1435 /* Tail recurse on the new rhs if it still needs reassociation. */
1436 if (newbinrhs && is_reassociable_op (newbinrhs, rhscode, loop))
1437 /* ??? This should probably be linearize_expr (newbinrhs) but I don't
1438 want to change the algorithm while converting to tuples. */
1439 linearize_expr (stmt);
1442 /* If LHS has a single immediate use that is a GIMPLE_ASSIGN statement, return
1443 it. Otherwise, return NULL. */
1445 static gimple
1446 get_single_immediate_use (tree lhs)
1448 use_operand_p immuse;
1449 gimple immusestmt;
1451 if (TREE_CODE (lhs) == SSA_NAME
1452 && single_imm_use (lhs, &immuse, &immusestmt)
1453 && is_gimple_assign (immusestmt))
1454 return immusestmt;
1456 return NULL;
1459 static VEC(tree, heap) *broken_up_subtracts;
1461 /* Recursively negate the value of TONEGATE, and return the SSA_NAME
1462 representing the negated value. Insertions of any necessary
1463 instructions go before GSI.
1464 This function is recursive in that, if you hand it "a_5" as the
1465 value to negate, and a_5 is defined by "a_5 = b_3 + b_4", it will
1466 transform b_3 + b_4 into a_5 = -b_3 + -b_4. */
1468 static tree
1469 negate_value (tree tonegate, gimple_stmt_iterator *gsi)
1471 gimple negatedefstmt= NULL;
1472 tree resultofnegate;
1474 /* If we are trying to negate a name, defined by an add, negate the
1475 add operands instead. */
1476 if (TREE_CODE (tonegate) == SSA_NAME)
1477 negatedefstmt = SSA_NAME_DEF_STMT (tonegate);
1478 if (TREE_CODE (tonegate) == SSA_NAME
1479 && is_gimple_assign (negatedefstmt)
1480 && TREE_CODE (gimple_assign_lhs (negatedefstmt)) == SSA_NAME
1481 && has_single_use (gimple_assign_lhs (negatedefstmt))
1482 && gimple_assign_rhs_code (negatedefstmt) == PLUS_EXPR)
1484 gimple_stmt_iterator gsi;
1485 tree rhs1 = gimple_assign_rhs1 (negatedefstmt);
1486 tree rhs2 = gimple_assign_rhs2 (negatedefstmt);
1488 gsi = gsi_for_stmt (negatedefstmt);
1489 rhs1 = negate_value (rhs1, &gsi);
1490 gimple_assign_set_rhs1 (negatedefstmt, rhs1);
1492 gsi = gsi_for_stmt (negatedefstmt);
1493 rhs2 = negate_value (rhs2, &gsi);
1494 gimple_assign_set_rhs2 (negatedefstmt, rhs2);
1496 update_stmt (negatedefstmt);
1497 return gimple_assign_lhs (negatedefstmt);
1500 tonegate = fold_build1 (NEGATE_EXPR, TREE_TYPE (tonegate), tonegate);
1501 resultofnegate = force_gimple_operand_gsi (gsi, tonegate, true,
1502 NULL_TREE, true, GSI_SAME_STMT);
1503 VEC_safe_push (tree, heap, broken_up_subtracts, resultofnegate);
1504 return resultofnegate;
1507 /* Return true if we should break up the subtract in STMT into an add
1508 with negate. This is true when we the subtract operands are really
1509 adds, or the subtract itself is used in an add expression. In
1510 either case, breaking up the subtract into an add with negate
1511 exposes the adds to reassociation. */
1513 static bool
1514 should_break_up_subtract (gimple stmt)
1516 tree lhs = gimple_assign_lhs (stmt);
1517 tree binlhs = gimple_assign_rhs1 (stmt);
1518 tree binrhs = gimple_assign_rhs2 (stmt);
1519 gimple immusestmt;
1520 struct loop *loop = loop_containing_stmt (stmt);
1522 if (TREE_CODE (binlhs) == SSA_NAME
1523 && is_reassociable_op (SSA_NAME_DEF_STMT (binlhs), PLUS_EXPR, loop))
1524 return true;
1526 if (TREE_CODE (binrhs) == SSA_NAME
1527 && is_reassociable_op (SSA_NAME_DEF_STMT (binrhs), PLUS_EXPR, loop))
1528 return true;
1530 if (TREE_CODE (lhs) == SSA_NAME
1531 && (immusestmt = get_single_immediate_use (lhs))
1532 && is_gimple_assign (immusestmt)
1533 && (gimple_assign_rhs_code (immusestmt) == PLUS_EXPR
1534 || gimple_assign_rhs_code (immusestmt) == MULT_EXPR))
1535 return true;
1536 return false;
1539 /* Transform STMT from A - B into A + -B. */
1541 static void
1542 break_up_subtract (gimple stmt, gimple_stmt_iterator *gsip)
1544 tree rhs1 = gimple_assign_rhs1 (stmt);
1545 tree rhs2 = gimple_assign_rhs2 (stmt);
1547 if (dump_file && (dump_flags & TDF_DETAILS))
1549 fprintf (dump_file, "Breaking up subtract ");
1550 print_gimple_stmt (dump_file, stmt, 0, 0);
1553 rhs2 = negate_value (rhs2, gsip);
1554 gimple_assign_set_rhs_with_ops (gsip, PLUS_EXPR, rhs1, rhs2);
1555 update_stmt (stmt);
1558 /* Recursively linearize a binary expression that is the RHS of STMT.
1559 Place the operands of the expression tree in the vector named OPS. */
1561 static void
1562 linearize_expr_tree (VEC(operand_entry_t, heap) **ops, gimple stmt,
1563 bool is_associative, bool set_visited)
1565 gimple_stmt_iterator gsinow, gsilhs;
1566 tree binlhs = gimple_assign_rhs1 (stmt);
1567 tree binrhs = gimple_assign_rhs2 (stmt);
1568 gimple binlhsdef, binrhsdef;
1569 bool binlhsisreassoc = false;
1570 bool binrhsisreassoc = false;
1571 enum tree_code rhscode = gimple_assign_rhs_code (stmt);
1572 struct loop *loop = loop_containing_stmt (stmt);
1574 if (set_visited)
1575 gimple_set_visited (stmt, true);
1577 if (TREE_CODE (binlhs) == SSA_NAME)
1579 binlhsdef = SSA_NAME_DEF_STMT (binlhs);
1580 binlhsisreassoc = is_reassociable_op (binlhsdef, rhscode, loop);
1583 if (TREE_CODE (binrhs) == SSA_NAME)
1585 binrhsdef = SSA_NAME_DEF_STMT (binrhs);
1586 binrhsisreassoc = is_reassociable_op (binrhsdef, rhscode, loop);
1589 /* If the LHS is not reassociable, but the RHS is, we need to swap
1590 them. If neither is reassociable, there is nothing we can do, so
1591 just put them in the ops vector. If the LHS is reassociable,
1592 linearize it. If both are reassociable, then linearize the RHS
1593 and the LHS. */
1595 if (!binlhsisreassoc)
1597 tree temp;
1599 /* If this is not a associative operation like division, give up. */
1600 if (!is_associative)
1602 add_to_ops_vec (ops, binrhs);
1603 return;
1606 if (!binrhsisreassoc)
1608 add_to_ops_vec (ops, binrhs);
1609 add_to_ops_vec (ops, binlhs);
1610 return;
1613 if (dump_file && (dump_flags & TDF_DETAILS))
1615 fprintf (dump_file, "swapping operands of ");
1616 print_gimple_stmt (dump_file, stmt, 0, 0);
1619 swap_tree_operands (stmt,
1620 gimple_assign_rhs1_ptr (stmt),
1621 gimple_assign_rhs2_ptr (stmt));
1622 update_stmt (stmt);
1624 if (dump_file && (dump_flags & TDF_DETAILS))
1626 fprintf (dump_file, " is now ");
1627 print_gimple_stmt (dump_file, stmt, 0, 0);
1630 /* We want to make it so the lhs is always the reassociative op,
1631 so swap. */
1632 temp = binlhs;
1633 binlhs = binrhs;
1634 binrhs = temp;
1636 else if (binrhsisreassoc)
1638 linearize_expr (stmt);
1639 binlhs = gimple_assign_rhs1 (stmt);
1640 binrhs = gimple_assign_rhs2 (stmt);
1643 gcc_assert (TREE_CODE (binrhs) != SSA_NAME
1644 || !is_reassociable_op (SSA_NAME_DEF_STMT (binrhs),
1645 rhscode, loop));
1646 gsinow = gsi_for_stmt (stmt);
1647 gsilhs = gsi_for_stmt (SSA_NAME_DEF_STMT (binlhs));
1648 gsi_move_before (&gsilhs, &gsinow);
1649 linearize_expr_tree (ops, SSA_NAME_DEF_STMT (binlhs),
1650 is_associative, set_visited);
1651 add_to_ops_vec (ops, binrhs);
1654 /* Repropagate the negates back into subtracts, since no other pass
1655 currently does it. */
1657 static void
1658 repropagate_negates (void)
1660 unsigned int i = 0;
1661 tree negate;
1663 for (i = 0; VEC_iterate (tree, broken_up_subtracts, i, negate); i++)
1665 gimple user = get_single_immediate_use (negate);
1667 /* The negate operand can be either operand of a PLUS_EXPR
1668 (it can be the LHS if the RHS is a constant for example).
1670 Force the negate operand to the RHS of the PLUS_EXPR, then
1671 transform the PLUS_EXPR into a MINUS_EXPR. */
1672 if (user
1673 && is_gimple_assign (user)
1674 && gimple_assign_rhs_code (user) == PLUS_EXPR)
1676 /* If the negated operand appears on the LHS of the
1677 PLUS_EXPR, exchange the operands of the PLUS_EXPR
1678 to force the negated operand to the RHS of the PLUS_EXPR. */
1679 if (gimple_assign_rhs1 (user) == negate)
1681 swap_tree_operands (user,
1682 gimple_assign_rhs1_ptr (user),
1683 gimple_assign_rhs2_ptr (user));
1686 /* Now transform the PLUS_EXPR into a MINUS_EXPR and replace
1687 the RHS of the PLUS_EXPR with the operand of the NEGATE_EXPR. */
1688 if (gimple_assign_rhs2 (user) == negate)
1690 tree rhs1 = gimple_assign_rhs1 (user);
1691 tree rhs2 = get_unary_op (negate, NEGATE_EXPR);
1692 gimple_stmt_iterator gsi = gsi_for_stmt (user);
1693 gimple_assign_set_rhs_with_ops (&gsi, MINUS_EXPR, rhs1, rhs2);
1694 update_stmt (user);
1700 /* Break up subtract operations in block BB.
1702 We do this top down because we don't know whether the subtract is
1703 part of a possible chain of reassociation except at the top.
1705 IE given
1706 d = f + g
1707 c = a + e
1708 b = c - d
1709 q = b - r
1710 k = t - q
1712 we want to break up k = t - q, but we won't until we've transformed q
1713 = b - r, which won't be broken up until we transform b = c - d.
1715 En passant, clear the GIMPLE visited flag on every statement. */
1717 static void
1718 break_up_subtract_bb (basic_block bb)
1720 gimple_stmt_iterator gsi;
1721 basic_block son;
1723 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1725 gimple stmt = gsi_stmt (gsi);
1726 gimple_set_visited (stmt, false);
1728 /* Look for simple gimple subtract operations. */
1729 if (is_gimple_assign (stmt)
1730 && gimple_assign_rhs_code (stmt) == MINUS_EXPR)
1732 tree lhs = gimple_assign_lhs (stmt);
1733 tree rhs1 = gimple_assign_rhs1 (stmt);
1734 tree rhs2 = gimple_assign_rhs2 (stmt);
1736 /* If associative-math we can do reassociation for
1737 non-integral types. Or, we can do reassociation for
1738 non-saturating fixed-point types. */
1739 if ((!INTEGRAL_TYPE_P (TREE_TYPE (lhs))
1740 || !INTEGRAL_TYPE_P (TREE_TYPE (rhs1))
1741 || !INTEGRAL_TYPE_P (TREE_TYPE (rhs2)))
1742 && (!SCALAR_FLOAT_TYPE_P (TREE_TYPE (lhs))
1743 || !SCALAR_FLOAT_TYPE_P (TREE_TYPE(rhs1))
1744 || !SCALAR_FLOAT_TYPE_P (TREE_TYPE(rhs2))
1745 || !flag_associative_math)
1746 && (!NON_SAT_FIXED_POINT_TYPE_P (TREE_TYPE (lhs))
1747 || !NON_SAT_FIXED_POINT_TYPE_P (TREE_TYPE(rhs1))
1748 || !NON_SAT_FIXED_POINT_TYPE_P (TREE_TYPE(rhs2))))
1749 continue;
1751 /* Check for a subtract used only in an addition. If this
1752 is the case, transform it into add of a negate for better
1753 reassociation. IE transform C = A-B into C = A + -B if C
1754 is only used in an addition. */
1755 if (should_break_up_subtract (stmt))
1756 break_up_subtract (stmt, &gsi);
1759 for (son = first_dom_son (CDI_DOMINATORS, bb);
1760 son;
1761 son = next_dom_son (CDI_DOMINATORS, son))
1762 break_up_subtract_bb (son);
1765 /* Reassociate expressions in basic block BB and its post-dominator as
1766 children. */
1768 static void
1769 reassociate_bb (basic_block bb)
1771 gimple_stmt_iterator gsi;
1772 basic_block son;
1774 for (gsi = gsi_last_bb (bb); !gsi_end_p (gsi); gsi_prev (&gsi))
1776 gimple stmt = gsi_stmt (gsi);
1778 if (is_gimple_assign (stmt))
1780 tree lhs, rhs1, rhs2;
1781 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
1783 /* If this is not a gimple binary expression, there is
1784 nothing for us to do with it. */
1785 if (get_gimple_rhs_class (rhs_code) != GIMPLE_BINARY_RHS)
1786 continue;
1788 /* If this was part of an already processed statement,
1789 we don't need to touch it again. */
1790 if (gimple_visited_p (stmt))
1792 /* This statement might have become dead because of previous
1793 reassociations. */
1794 if (has_zero_uses (gimple_get_lhs (stmt)))
1796 gsi_remove (&gsi, true);
1797 release_defs (stmt);
1798 /* We might end up removing the last stmt above which
1799 places the iterator to the end of the sequence.
1800 Reset it to the last stmt in this case which might
1801 be the end of the sequence as well if we removed
1802 the last statement of the sequence. In which case
1803 we need to bail out. */
1804 if (gsi_end_p (gsi))
1806 gsi = gsi_last_bb (bb);
1807 if (gsi_end_p (gsi))
1808 break;
1811 continue;
1814 lhs = gimple_assign_lhs (stmt);
1815 rhs1 = gimple_assign_rhs1 (stmt);
1816 rhs2 = gimple_assign_rhs2 (stmt);
1818 /* If associative-math we can do reassociation for
1819 non-integral types. Or, we can do reassociation for
1820 non-saturating fixed-point types. */
1821 if ((!INTEGRAL_TYPE_P (TREE_TYPE (lhs))
1822 || !INTEGRAL_TYPE_P (TREE_TYPE (rhs1))
1823 || !INTEGRAL_TYPE_P (TREE_TYPE (rhs2)))
1824 && (!SCALAR_FLOAT_TYPE_P (TREE_TYPE (lhs))
1825 || !SCALAR_FLOAT_TYPE_P (TREE_TYPE(rhs1))
1826 || !SCALAR_FLOAT_TYPE_P (TREE_TYPE(rhs2))
1827 || !flag_associative_math)
1828 && (!NON_SAT_FIXED_POINT_TYPE_P (TREE_TYPE (lhs))
1829 || !NON_SAT_FIXED_POINT_TYPE_P (TREE_TYPE(rhs1))
1830 || !NON_SAT_FIXED_POINT_TYPE_P (TREE_TYPE(rhs2))))
1831 continue;
1833 if (associative_tree_code (rhs_code))
1835 VEC(operand_entry_t, heap) *ops = NULL;
1837 /* There may be no immediate uses left by the time we
1838 get here because we may have eliminated them all. */
1839 if (TREE_CODE (lhs) == SSA_NAME && has_zero_uses (lhs))
1840 continue;
1842 gimple_set_visited (stmt, true);
1843 linearize_expr_tree (&ops, stmt, true, true);
1844 qsort (VEC_address (operand_entry_t, ops),
1845 VEC_length (operand_entry_t, ops),
1846 sizeof (operand_entry_t),
1847 sort_by_operand_rank);
1848 optimize_ops_list (rhs_code, &ops);
1849 if (undistribute_ops_list (rhs_code, &ops,
1850 loop_containing_stmt (stmt)))
1852 qsort (VEC_address (operand_entry_t, ops),
1853 VEC_length (operand_entry_t, ops),
1854 sizeof (operand_entry_t),
1855 sort_by_operand_rank);
1856 optimize_ops_list (rhs_code, &ops);
1859 if (VEC_length (operand_entry_t, ops) == 1)
1861 if (dump_file && (dump_flags & TDF_DETAILS))
1863 fprintf (dump_file, "Transforming ");
1864 print_gimple_stmt (dump_file, stmt, 0, 0);
1867 gimple_assign_set_rhs_from_tree (&gsi,
1868 VEC_last (operand_entry_t,
1869 ops)->op);
1870 update_stmt (stmt);
1872 if (dump_file && (dump_flags & TDF_DETAILS))
1874 fprintf (dump_file, " into ");
1875 print_gimple_stmt (dump_file, stmt, 0, 0);
1878 else
1880 rewrite_expr_tree (stmt, 0, ops);
1883 VEC_free (operand_entry_t, heap, ops);
1887 for (son = first_dom_son (CDI_POST_DOMINATORS, bb);
1888 son;
1889 son = next_dom_son (CDI_POST_DOMINATORS, son))
1890 reassociate_bb (son);
1893 void dump_ops_vector (FILE *file, VEC (operand_entry_t, heap) *ops);
1894 void debug_ops_vector (VEC (operand_entry_t, heap) *ops);
1896 /* Dump the operand entry vector OPS to FILE. */
1898 void
1899 dump_ops_vector (FILE *file, VEC (operand_entry_t, heap) *ops)
1901 operand_entry_t oe;
1902 unsigned int i;
1904 for (i = 0; VEC_iterate (operand_entry_t, ops, i, oe); i++)
1906 fprintf (file, "Op %d -> rank: %d, tree: ", i, oe->rank);
1907 print_generic_expr (file, oe->op, 0);
1911 /* Dump the operand entry vector OPS to STDERR. */
1913 void
1914 debug_ops_vector (VEC (operand_entry_t, heap) *ops)
1916 dump_ops_vector (stderr, ops);
1919 static void
1920 do_reassoc (void)
1922 break_up_subtract_bb (ENTRY_BLOCK_PTR);
1923 reassociate_bb (EXIT_BLOCK_PTR);
1926 /* Initialize the reassociation pass. */
1928 static void
1929 init_reassoc (void)
1931 int i;
1932 long rank = 2;
1933 tree param;
1934 int *bbs = XNEWVEC (int, last_basic_block + 1);
1936 /* Find the loops, so that we can prevent moving calculations in
1937 them. */
1938 loop_optimizer_init (AVOID_CFG_MODIFICATIONS);
1940 memset (&reassociate_stats, 0, sizeof (reassociate_stats));
1942 operand_entry_pool = create_alloc_pool ("operand entry pool",
1943 sizeof (struct operand_entry), 30);
1945 /* Reverse RPO (Reverse Post Order) will give us something where
1946 deeper loops come later. */
1947 pre_and_rev_post_order_compute (NULL, bbs, false);
1948 bb_rank = XCNEWVEC (long, last_basic_block + 1);
1949 operand_rank = pointer_map_create ();
1951 /* Give each argument a distinct rank. */
1952 for (param = DECL_ARGUMENTS (current_function_decl);
1953 param;
1954 param = TREE_CHAIN (param))
1956 if (gimple_default_def (cfun, param) != NULL)
1958 tree def = gimple_default_def (cfun, param);
1959 insert_operand_rank (def, ++rank);
1963 /* Give the chain decl a distinct rank. */
1964 if (cfun->static_chain_decl != NULL)
1966 tree def = gimple_default_def (cfun, cfun->static_chain_decl);
1967 if (def != NULL)
1968 insert_operand_rank (def, ++rank);
1971 /* Set up rank for each BB */
1972 for (i = 0; i < n_basic_blocks - NUM_FIXED_BLOCKS; i++)
1973 bb_rank[bbs[i]] = ++rank << 16;
1975 free (bbs);
1976 calculate_dominance_info (CDI_POST_DOMINATORS);
1977 broken_up_subtracts = NULL;
1980 /* Cleanup after the reassociation pass, and print stats if
1981 requested. */
1983 static void
1984 fini_reassoc (void)
1986 statistics_counter_event (cfun, "Linearized",
1987 reassociate_stats.linearized);
1988 statistics_counter_event (cfun, "Constants eliminated",
1989 reassociate_stats.constants_eliminated);
1990 statistics_counter_event (cfun, "Ops eliminated",
1991 reassociate_stats.ops_eliminated);
1992 statistics_counter_event (cfun, "Statements rewritten",
1993 reassociate_stats.rewritten);
1995 pointer_map_destroy (operand_rank);
1996 free_alloc_pool (operand_entry_pool);
1997 free (bb_rank);
1998 VEC_free (tree, heap, broken_up_subtracts);
1999 free_dominance_info (CDI_POST_DOMINATORS);
2000 loop_optimizer_finalize ();
2003 /* Gate and execute functions for Reassociation. */
2005 static unsigned int
2006 execute_reassoc (void)
2008 init_reassoc ();
2010 do_reassoc ();
2011 repropagate_negates ();
2013 fini_reassoc ();
2014 return 0;
2017 static bool
2018 gate_tree_ssa_reassoc (void)
2020 return flag_tree_reassoc != 0;
2023 struct gimple_opt_pass pass_reassoc =
2026 GIMPLE_PASS,
2027 "reassoc", /* name */
2028 gate_tree_ssa_reassoc, /* gate */
2029 execute_reassoc, /* execute */
2030 NULL, /* sub */
2031 NULL, /* next */
2032 0, /* static_pass_number */
2033 TV_TREE_REASSOC, /* tv_id */
2034 PROP_cfg | PROP_ssa | PROP_alias, /* properties_required */
2035 0, /* properties_provided */
2036 0, /* properties_destroyed */
2037 0, /* todo_flags_start */
2038 TODO_dump_func | TODO_ggc_collect | TODO_verify_ssa /* todo_flags_finish */