1 /* Convert tree expression to rtl instructions, for GNU compiler.
2 Copyright (C) 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
3 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008
4 Free Software Foundation, Inc.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
24 #include "coretypes.h"
32 #include "hard-reg-set.h"
35 #include "insn-config.h"
36 #include "insn-attr.h"
37 /* Include expr.h after insn-config.h so we get HAVE_conditional_move. */
44 #include "typeclass.h"
47 #include "langhooks.h"
50 #include "tree-iterator.h"
51 #include "tree-pass.h"
52 #include "tree-flow.h"
56 #include "diagnostic.h"
58 /* Decide whether a function's arguments should be processed
59 from first to last or from last to first.
61 They should if the stack and args grow in opposite directions, but
62 only if we have push insns. */
66 #ifndef PUSH_ARGS_REVERSED
67 #if defined (STACK_GROWS_DOWNWARD) != defined (ARGS_GROW_DOWNWARD)
68 #define PUSH_ARGS_REVERSED /* If it's last to first. */
74 #ifndef STACK_PUSH_CODE
75 #ifdef STACK_GROWS_DOWNWARD
76 #define STACK_PUSH_CODE PRE_DEC
78 #define STACK_PUSH_CODE PRE_INC
83 /* If this is nonzero, we do not bother generating VOLATILE
84 around volatile memory references, and we are willing to
85 output indirect addresses. If cse is to follow, we reject
86 indirect addresses so a useful potential cse is generated;
87 if it is used only once, instruction combination will produce
88 the same indirect address eventually. */
91 /* This structure is used by move_by_pieces to describe the move to
102 int explicit_inc_from
;
103 unsigned HOST_WIDE_INT len
;
104 HOST_WIDE_INT offset
;
108 /* This structure is used by store_by_pieces to describe the clear to
111 struct store_by_pieces
117 unsigned HOST_WIDE_INT len
;
118 HOST_WIDE_INT offset
;
119 rtx (*constfun
) (void *, HOST_WIDE_INT
, enum machine_mode
);
124 static unsigned HOST_WIDE_INT
move_by_pieces_ninsns (unsigned HOST_WIDE_INT
,
127 static void move_by_pieces_1 (rtx (*) (rtx
, ...), enum machine_mode
,
128 struct move_by_pieces
*);
129 static bool block_move_libcall_safe_for_call_parm (void);
130 static bool emit_block_move_via_movmem (rtx
, rtx
, rtx
, unsigned, unsigned, HOST_WIDE_INT
);
131 static tree
emit_block_move_libcall_fn (int);
132 static void emit_block_move_via_loop (rtx
, rtx
, rtx
, unsigned);
133 static rtx
clear_by_pieces_1 (void *, HOST_WIDE_INT
, enum machine_mode
);
134 static void clear_by_pieces (rtx
, unsigned HOST_WIDE_INT
, unsigned int);
135 static void store_by_pieces_1 (struct store_by_pieces
*, unsigned int);
136 static void store_by_pieces_2 (rtx (*) (rtx
, ...), enum machine_mode
,
137 struct store_by_pieces
*);
138 static tree
clear_storage_libcall_fn (int);
139 static rtx
compress_float_constant (rtx
, rtx
);
140 static rtx
get_subtarget (rtx
);
141 static void store_constructor_field (rtx
, unsigned HOST_WIDE_INT
,
142 HOST_WIDE_INT
, enum machine_mode
,
143 tree
, tree
, int, alias_set_type
);
144 static void store_constructor (tree
, rtx
, int, HOST_WIDE_INT
);
145 static rtx
store_field (rtx
, HOST_WIDE_INT
, HOST_WIDE_INT
, enum machine_mode
,
146 tree
, tree
, alias_set_type
, bool);
148 static unsigned HOST_WIDE_INT
highest_pow2_factor_for_target (const_tree
, const_tree
);
150 static int is_aligning_offset (const_tree
, const_tree
);
151 static void expand_operands (tree
, tree
, rtx
, rtx
*, rtx
*,
152 enum expand_modifier
);
153 static rtx
reduce_to_bit_field_precision (rtx
, rtx
, tree
);
154 static rtx
do_store_flag (tree
, rtx
, enum machine_mode
, int);
156 static void emit_single_push_insn (enum machine_mode
, rtx
, tree
);
158 static void do_tablejump (rtx
, enum machine_mode
, rtx
, rtx
, rtx
);
159 static rtx
const_vector_from_tree (tree
);
160 static void write_complex_part (rtx
, rtx
, bool);
162 /* Record for each mode whether we can move a register directly to or
163 from an object of that mode in memory. If we can't, we won't try
164 to use that mode directly when accessing a field of that mode. */
166 static char direct_load
[NUM_MACHINE_MODES
];
167 static char direct_store
[NUM_MACHINE_MODES
];
169 /* Record for each mode whether we can float-extend from memory. */
171 static bool float_extend_from_mem
[NUM_MACHINE_MODES
][NUM_MACHINE_MODES
];
173 /* This macro is used to determine whether move_by_pieces should be called
174 to perform a structure copy. */
175 #ifndef MOVE_BY_PIECES_P
176 #define MOVE_BY_PIECES_P(SIZE, ALIGN) \
177 (move_by_pieces_ninsns (SIZE, ALIGN, MOVE_MAX_PIECES + 1) \
178 < (unsigned int) MOVE_RATIO (optimize_insn_for_speed_p ()))
181 /* This macro is used to determine whether clear_by_pieces should be
182 called to clear storage. */
183 #ifndef CLEAR_BY_PIECES_P
184 #define CLEAR_BY_PIECES_P(SIZE, ALIGN) \
185 (move_by_pieces_ninsns (SIZE, ALIGN, STORE_MAX_PIECES + 1) \
186 < (unsigned int) CLEAR_RATIO (optimize_insn_for_speed_p ()))
189 /* This macro is used to determine whether store_by_pieces should be
190 called to "memset" storage with byte values other than zero. */
191 #ifndef SET_BY_PIECES_P
192 #define SET_BY_PIECES_P(SIZE, ALIGN) \
193 (move_by_pieces_ninsns (SIZE, ALIGN, STORE_MAX_PIECES + 1) \
194 < (unsigned int) SET_RATIO (optimize_insn_for_speed_p ()))
197 /* This macro is used to determine whether store_by_pieces should be
198 called to "memcpy" storage when the source is a constant string. */
199 #ifndef STORE_BY_PIECES_P
200 #define STORE_BY_PIECES_P(SIZE, ALIGN) \
201 (move_by_pieces_ninsns (SIZE, ALIGN, STORE_MAX_PIECES + 1) \
202 < (unsigned int) MOVE_RATIO (optimize_insn_for_speed_p ()))
205 /* This array records the insn_code of insns to perform block moves. */
206 enum insn_code movmem_optab
[NUM_MACHINE_MODES
];
208 /* This array records the insn_code of insns to perform block sets. */
209 enum insn_code setmem_optab
[NUM_MACHINE_MODES
];
211 /* These arrays record the insn_code of three different kinds of insns
212 to perform block compares. */
213 enum insn_code cmpstr_optab
[NUM_MACHINE_MODES
];
214 enum insn_code cmpstrn_optab
[NUM_MACHINE_MODES
];
215 enum insn_code cmpmem_optab
[NUM_MACHINE_MODES
];
217 /* Synchronization primitives. */
218 enum insn_code sync_add_optab
[NUM_MACHINE_MODES
];
219 enum insn_code sync_sub_optab
[NUM_MACHINE_MODES
];
220 enum insn_code sync_ior_optab
[NUM_MACHINE_MODES
];
221 enum insn_code sync_and_optab
[NUM_MACHINE_MODES
];
222 enum insn_code sync_xor_optab
[NUM_MACHINE_MODES
];
223 enum insn_code sync_nand_optab
[NUM_MACHINE_MODES
];
224 enum insn_code sync_old_add_optab
[NUM_MACHINE_MODES
];
225 enum insn_code sync_old_sub_optab
[NUM_MACHINE_MODES
];
226 enum insn_code sync_old_ior_optab
[NUM_MACHINE_MODES
];
227 enum insn_code sync_old_and_optab
[NUM_MACHINE_MODES
];
228 enum insn_code sync_old_xor_optab
[NUM_MACHINE_MODES
];
229 enum insn_code sync_old_nand_optab
[NUM_MACHINE_MODES
];
230 enum insn_code sync_new_add_optab
[NUM_MACHINE_MODES
];
231 enum insn_code sync_new_sub_optab
[NUM_MACHINE_MODES
];
232 enum insn_code sync_new_ior_optab
[NUM_MACHINE_MODES
];
233 enum insn_code sync_new_and_optab
[NUM_MACHINE_MODES
];
234 enum insn_code sync_new_xor_optab
[NUM_MACHINE_MODES
];
235 enum insn_code sync_new_nand_optab
[NUM_MACHINE_MODES
];
236 enum insn_code sync_compare_and_swap
[NUM_MACHINE_MODES
];
237 enum insn_code sync_compare_and_swap_cc
[NUM_MACHINE_MODES
];
238 enum insn_code sync_lock_test_and_set
[NUM_MACHINE_MODES
];
239 enum insn_code sync_lock_release
[NUM_MACHINE_MODES
];
241 /* SLOW_UNALIGNED_ACCESS is nonzero if unaligned accesses are very slow. */
243 #ifndef SLOW_UNALIGNED_ACCESS
244 #define SLOW_UNALIGNED_ACCESS(MODE, ALIGN) STRICT_ALIGNMENT
247 /* This is run to set up which modes can be used
248 directly in memory and to initialize the block move optab. It is run
249 at the beginning of compilation and when the target is reinitialized. */
252 init_expr_target (void)
255 enum machine_mode mode
;
260 /* Try indexing by frame ptr and try by stack ptr.
261 It is known that on the Convex the stack ptr isn't a valid index.
262 With luck, one or the other is valid on any machine. */
263 mem
= gen_rtx_MEM (VOIDmode
, stack_pointer_rtx
);
264 mem1
= gen_rtx_MEM (VOIDmode
, frame_pointer_rtx
);
266 /* A scratch register we can modify in-place below to avoid
267 useless RTL allocations. */
268 reg
= gen_rtx_REG (VOIDmode
, -1);
270 insn
= rtx_alloc (INSN
);
271 pat
= gen_rtx_SET (0, NULL_RTX
, NULL_RTX
);
272 PATTERN (insn
) = pat
;
274 for (mode
= VOIDmode
; (int) mode
< NUM_MACHINE_MODES
;
275 mode
= (enum machine_mode
) ((int) mode
+ 1))
279 direct_load
[(int) mode
] = direct_store
[(int) mode
] = 0;
280 PUT_MODE (mem
, mode
);
281 PUT_MODE (mem1
, mode
);
282 PUT_MODE (reg
, mode
);
284 /* See if there is some register that can be used in this mode and
285 directly loaded or stored from memory. */
287 if (mode
!= VOIDmode
&& mode
!= BLKmode
)
288 for (regno
= 0; regno
< FIRST_PSEUDO_REGISTER
289 && (direct_load
[(int) mode
] == 0 || direct_store
[(int) mode
] == 0);
292 if (! HARD_REGNO_MODE_OK (regno
, mode
))
295 SET_REGNO (reg
, regno
);
298 SET_DEST (pat
) = reg
;
299 if (recog (pat
, insn
, &num_clobbers
) >= 0)
300 direct_load
[(int) mode
] = 1;
302 SET_SRC (pat
) = mem1
;
303 SET_DEST (pat
) = reg
;
304 if (recog (pat
, insn
, &num_clobbers
) >= 0)
305 direct_load
[(int) mode
] = 1;
308 SET_DEST (pat
) = mem
;
309 if (recog (pat
, insn
, &num_clobbers
) >= 0)
310 direct_store
[(int) mode
] = 1;
313 SET_DEST (pat
) = mem1
;
314 if (recog (pat
, insn
, &num_clobbers
) >= 0)
315 direct_store
[(int) mode
] = 1;
319 mem
= gen_rtx_MEM (VOIDmode
, gen_rtx_raw_REG (Pmode
, 10000));
321 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_FLOAT
); mode
!= VOIDmode
;
322 mode
= GET_MODE_WIDER_MODE (mode
))
324 enum machine_mode srcmode
;
325 for (srcmode
= GET_CLASS_NARROWEST_MODE (MODE_FLOAT
); srcmode
!= mode
;
326 srcmode
= GET_MODE_WIDER_MODE (srcmode
))
330 ic
= can_extend_p (mode
, srcmode
, 0);
331 if (ic
== CODE_FOR_nothing
)
334 PUT_MODE (mem
, srcmode
);
336 if ((*insn_data
[ic
].operand
[1].predicate
) (mem
, srcmode
))
337 float_extend_from_mem
[mode
][srcmode
] = true;
342 /* This is run at the start of compiling a function. */
347 memset (&crtl
->expr
, 0, sizeof (crtl
->expr
));
350 /* Copy data from FROM to TO, where the machine modes are not the same.
351 Both modes may be integer, or both may be floating, or both may be
353 UNSIGNEDP should be nonzero if FROM is an unsigned type.
354 This causes zero-extension instead of sign-extension. */
357 convert_move (rtx to
, rtx from
, int unsignedp
)
359 enum machine_mode to_mode
= GET_MODE (to
);
360 enum machine_mode from_mode
= GET_MODE (from
);
361 int to_real
= SCALAR_FLOAT_MODE_P (to_mode
);
362 int from_real
= SCALAR_FLOAT_MODE_P (from_mode
);
366 /* rtx code for making an equivalent value. */
367 enum rtx_code equiv_code
= (unsignedp
< 0 ? UNKNOWN
368 : (unsignedp
? ZERO_EXTEND
: SIGN_EXTEND
));
371 gcc_assert (to_real
== from_real
);
372 gcc_assert (to_mode
!= BLKmode
);
373 gcc_assert (from_mode
!= BLKmode
);
375 /* If the source and destination are already the same, then there's
380 /* If FROM is a SUBREG that indicates that we have already done at least
381 the required extension, strip it. We don't handle such SUBREGs as
384 if (GET_CODE (from
) == SUBREG
&& SUBREG_PROMOTED_VAR_P (from
)
385 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (from
)))
386 >= GET_MODE_SIZE (to_mode
))
387 && SUBREG_PROMOTED_UNSIGNED_P (from
) == unsignedp
)
388 from
= gen_lowpart (to_mode
, from
), from_mode
= to_mode
;
390 gcc_assert (GET_CODE (to
) != SUBREG
|| !SUBREG_PROMOTED_VAR_P (to
));
392 if (to_mode
== from_mode
393 || (from_mode
== VOIDmode
&& CONSTANT_P (from
)))
395 emit_move_insn (to
, from
);
399 if (VECTOR_MODE_P (to_mode
) || VECTOR_MODE_P (from_mode
))
401 gcc_assert (GET_MODE_BITSIZE (from_mode
) == GET_MODE_BITSIZE (to_mode
));
403 if (VECTOR_MODE_P (to_mode
))
404 from
= simplify_gen_subreg (to_mode
, from
, GET_MODE (from
), 0);
406 to
= simplify_gen_subreg (from_mode
, to
, GET_MODE (to
), 0);
408 emit_move_insn (to
, from
);
412 if (GET_CODE (to
) == CONCAT
&& GET_CODE (from
) == CONCAT
)
414 convert_move (XEXP (to
, 0), XEXP (from
, 0), unsignedp
);
415 convert_move (XEXP (to
, 1), XEXP (from
, 1), unsignedp
);
424 gcc_assert ((GET_MODE_PRECISION (from_mode
)
425 != GET_MODE_PRECISION (to_mode
))
426 || (DECIMAL_FLOAT_MODE_P (from_mode
)
427 != DECIMAL_FLOAT_MODE_P (to_mode
)));
429 if (GET_MODE_PRECISION (from_mode
) == GET_MODE_PRECISION (to_mode
))
430 /* Conversion between decimal float and binary float, same size. */
431 tab
= DECIMAL_FLOAT_MODE_P (from_mode
) ? trunc_optab
: sext_optab
;
432 else if (GET_MODE_PRECISION (from_mode
) < GET_MODE_PRECISION (to_mode
))
437 /* Try converting directly if the insn is supported. */
439 code
= convert_optab_handler (tab
, to_mode
, from_mode
)->insn_code
;
440 if (code
!= CODE_FOR_nothing
)
442 emit_unop_insn (code
, to
, from
,
443 tab
== sext_optab
? FLOAT_EXTEND
: FLOAT_TRUNCATE
);
447 /* Otherwise use a libcall. */
448 libcall
= convert_optab_libfunc (tab
, to_mode
, from_mode
);
450 /* Is this conversion implemented yet? */
451 gcc_assert (libcall
);
454 value
= emit_library_call_value (libcall
, NULL_RTX
, LCT_CONST
, to_mode
,
456 insns
= get_insns ();
458 emit_libcall_block (insns
, to
, value
,
459 tab
== trunc_optab
? gen_rtx_FLOAT_TRUNCATE (to_mode
,
461 : gen_rtx_FLOAT_EXTEND (to_mode
, from
));
465 /* Handle pointer conversion. */ /* SPEE 900220. */
466 /* Targets are expected to provide conversion insns between PxImode and
467 xImode for all MODE_PARTIAL_INT modes they use, but no others. */
468 if (GET_MODE_CLASS (to_mode
) == MODE_PARTIAL_INT
)
470 enum machine_mode full_mode
471 = smallest_mode_for_size (GET_MODE_BITSIZE (to_mode
), MODE_INT
);
473 gcc_assert (convert_optab_handler (trunc_optab
, to_mode
, full_mode
)->insn_code
474 != CODE_FOR_nothing
);
476 if (full_mode
!= from_mode
)
477 from
= convert_to_mode (full_mode
, from
, unsignedp
);
478 emit_unop_insn (convert_optab_handler (trunc_optab
, to_mode
, full_mode
)->insn_code
,
482 if (GET_MODE_CLASS (from_mode
) == MODE_PARTIAL_INT
)
485 enum machine_mode full_mode
486 = smallest_mode_for_size (GET_MODE_BITSIZE (from_mode
), MODE_INT
);
488 gcc_assert (convert_optab_handler (sext_optab
, full_mode
, from_mode
)->insn_code
489 != CODE_FOR_nothing
);
491 if (to_mode
== full_mode
)
493 emit_unop_insn (convert_optab_handler (sext_optab
, full_mode
, from_mode
)->insn_code
,
498 new_from
= gen_reg_rtx (full_mode
);
499 emit_unop_insn (convert_optab_handler (sext_optab
, full_mode
, from_mode
)->insn_code
,
500 new_from
, from
, UNKNOWN
);
502 /* else proceed to integer conversions below. */
503 from_mode
= full_mode
;
507 /* Make sure both are fixed-point modes or both are not. */
508 gcc_assert (ALL_SCALAR_FIXED_POINT_MODE_P (from_mode
) ==
509 ALL_SCALAR_FIXED_POINT_MODE_P (to_mode
));
510 if (ALL_SCALAR_FIXED_POINT_MODE_P (from_mode
))
512 /* If we widen from_mode to to_mode and they are in the same class,
513 we won't saturate the result.
514 Otherwise, always saturate the result to play safe. */
515 if (GET_MODE_CLASS (from_mode
) == GET_MODE_CLASS (to_mode
)
516 && GET_MODE_SIZE (from_mode
) < GET_MODE_SIZE (to_mode
))
517 expand_fixed_convert (to
, from
, 0, 0);
519 expand_fixed_convert (to
, from
, 0, 1);
523 /* Now both modes are integers. */
525 /* Handle expanding beyond a word. */
526 if (GET_MODE_BITSIZE (from_mode
) < GET_MODE_BITSIZE (to_mode
)
527 && GET_MODE_BITSIZE (to_mode
) > BITS_PER_WORD
)
534 enum machine_mode lowpart_mode
;
535 int nwords
= CEIL (GET_MODE_SIZE (to_mode
), UNITS_PER_WORD
);
537 /* Try converting directly if the insn is supported. */
538 if ((code
= can_extend_p (to_mode
, from_mode
, unsignedp
))
541 /* If FROM is a SUBREG, put it into a register. Do this
542 so that we always generate the same set of insns for
543 better cse'ing; if an intermediate assignment occurred,
544 we won't be doing the operation directly on the SUBREG. */
545 if (optimize
> 0 && GET_CODE (from
) == SUBREG
)
546 from
= force_reg (from_mode
, from
);
547 emit_unop_insn (code
, to
, from
, equiv_code
);
550 /* Next, try converting via full word. */
551 else if (GET_MODE_BITSIZE (from_mode
) < BITS_PER_WORD
552 && ((code
= can_extend_p (to_mode
, word_mode
, unsignedp
))
553 != CODE_FOR_nothing
))
555 rtx word_to
= gen_reg_rtx (word_mode
);
558 if (reg_overlap_mentioned_p (to
, from
))
559 from
= force_reg (from_mode
, from
);
562 convert_move (word_to
, from
, unsignedp
);
563 emit_unop_insn (code
, to
, word_to
, equiv_code
);
567 /* No special multiword conversion insn; do it by hand. */
570 /* Since we will turn this into a no conflict block, we must ensure
571 that the source does not overlap the target. */
573 if (reg_overlap_mentioned_p (to
, from
))
574 from
= force_reg (from_mode
, from
);
576 /* Get a copy of FROM widened to a word, if necessary. */
577 if (GET_MODE_BITSIZE (from_mode
) < BITS_PER_WORD
)
578 lowpart_mode
= word_mode
;
580 lowpart_mode
= from_mode
;
582 lowfrom
= convert_to_mode (lowpart_mode
, from
, unsignedp
);
584 lowpart
= gen_lowpart (lowpart_mode
, to
);
585 emit_move_insn (lowpart
, lowfrom
);
587 /* Compute the value to put in each remaining word. */
589 fill_value
= const0_rtx
;
594 && insn_data
[(int) CODE_FOR_slt
].operand
[0].mode
== word_mode
595 && STORE_FLAG_VALUE
== -1)
597 emit_cmp_insn (lowfrom
, const0_rtx
, NE
, NULL_RTX
,
599 fill_value
= gen_reg_rtx (word_mode
);
600 emit_insn (gen_slt (fill_value
));
606 = expand_shift (RSHIFT_EXPR
, lowpart_mode
, lowfrom
,
607 size_int (GET_MODE_BITSIZE (lowpart_mode
) - 1),
609 fill_value
= convert_to_mode (word_mode
, fill_value
, 1);
613 /* Fill the remaining words. */
614 for (i
= GET_MODE_SIZE (lowpart_mode
) / UNITS_PER_WORD
; i
< nwords
; i
++)
616 int index
= (WORDS_BIG_ENDIAN
? nwords
- i
- 1 : i
);
617 rtx subword
= operand_subword (to
, index
, 1, to_mode
);
619 gcc_assert (subword
);
621 if (fill_value
!= subword
)
622 emit_move_insn (subword
, fill_value
);
625 insns
= get_insns ();
632 /* Truncating multi-word to a word or less. */
633 if (GET_MODE_BITSIZE (from_mode
) > BITS_PER_WORD
634 && GET_MODE_BITSIZE (to_mode
) <= BITS_PER_WORD
)
637 && ! MEM_VOLATILE_P (from
)
638 && direct_load
[(int) to_mode
]
639 && ! mode_dependent_address_p (XEXP (from
, 0)))
641 || GET_CODE (from
) == SUBREG
))
642 from
= force_reg (from_mode
, from
);
643 convert_move (to
, gen_lowpart (word_mode
, from
), 0);
647 /* Now follow all the conversions between integers
648 no more than a word long. */
650 /* For truncation, usually we can just refer to FROM in a narrower mode. */
651 if (GET_MODE_BITSIZE (to_mode
) < GET_MODE_BITSIZE (from_mode
)
652 && TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (to_mode
),
653 GET_MODE_BITSIZE (from_mode
)))
656 && ! MEM_VOLATILE_P (from
)
657 && direct_load
[(int) to_mode
]
658 && ! mode_dependent_address_p (XEXP (from
, 0)))
660 || GET_CODE (from
) == SUBREG
))
661 from
= force_reg (from_mode
, from
);
662 if (REG_P (from
) && REGNO (from
) < FIRST_PSEUDO_REGISTER
663 && ! HARD_REGNO_MODE_OK (REGNO (from
), to_mode
))
664 from
= copy_to_reg (from
);
665 emit_move_insn (to
, gen_lowpart (to_mode
, from
));
669 /* Handle extension. */
670 if (GET_MODE_BITSIZE (to_mode
) > GET_MODE_BITSIZE (from_mode
))
672 /* Convert directly if that works. */
673 if ((code
= can_extend_p (to_mode
, from_mode
, unsignedp
))
676 emit_unop_insn (code
, to
, from
, equiv_code
);
681 enum machine_mode intermediate
;
685 /* Search for a mode to convert via. */
686 for (intermediate
= from_mode
; intermediate
!= VOIDmode
;
687 intermediate
= GET_MODE_WIDER_MODE (intermediate
))
688 if (((can_extend_p (to_mode
, intermediate
, unsignedp
)
690 || (GET_MODE_SIZE (to_mode
) < GET_MODE_SIZE (intermediate
)
691 && TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (to_mode
),
692 GET_MODE_BITSIZE (intermediate
))))
693 && (can_extend_p (intermediate
, from_mode
, unsignedp
)
694 != CODE_FOR_nothing
))
696 convert_move (to
, convert_to_mode (intermediate
, from
,
697 unsignedp
), unsignedp
);
701 /* No suitable intermediate mode.
702 Generate what we need with shifts. */
703 shift_amount
= build_int_cst (NULL_TREE
,
704 GET_MODE_BITSIZE (to_mode
)
705 - GET_MODE_BITSIZE (from_mode
));
706 from
= gen_lowpart (to_mode
, force_reg (from_mode
, from
));
707 tmp
= expand_shift (LSHIFT_EXPR
, to_mode
, from
, shift_amount
,
709 tmp
= expand_shift (RSHIFT_EXPR
, to_mode
, tmp
, shift_amount
,
712 emit_move_insn (to
, tmp
);
717 /* Support special truncate insns for certain modes. */
718 if (convert_optab_handler (trunc_optab
, to_mode
, from_mode
)->insn_code
!= CODE_FOR_nothing
)
720 emit_unop_insn (convert_optab_handler (trunc_optab
, to_mode
, from_mode
)->insn_code
,
725 /* Handle truncation of volatile memrefs, and so on;
726 the things that couldn't be truncated directly,
727 and for which there was no special instruction.
729 ??? Code above formerly short-circuited this, for most integer
730 mode pairs, with a force_reg in from_mode followed by a recursive
731 call to this routine. Appears always to have been wrong. */
732 if (GET_MODE_BITSIZE (to_mode
) < GET_MODE_BITSIZE (from_mode
))
734 rtx temp
= force_reg (to_mode
, gen_lowpart (to_mode
, from
));
735 emit_move_insn (to
, temp
);
739 /* Mode combination is not recognized. */
743 /* Return an rtx for a value that would result
744 from converting X to mode MODE.
745 Both X and MODE may be floating, or both integer.
746 UNSIGNEDP is nonzero if X is an unsigned value.
747 This can be done by referring to a part of X in place
748 or by copying to a new temporary with conversion. */
751 convert_to_mode (enum machine_mode mode
, rtx x
, int unsignedp
)
753 return convert_modes (mode
, VOIDmode
, x
, unsignedp
);
756 /* Return an rtx for a value that would result
757 from converting X from mode OLDMODE to mode MODE.
758 Both modes may be floating, or both integer.
759 UNSIGNEDP is nonzero if X is an unsigned value.
761 This can be done by referring to a part of X in place
762 or by copying to a new temporary with conversion.
764 You can give VOIDmode for OLDMODE, if you are sure X has a nonvoid mode. */
767 convert_modes (enum machine_mode mode
, enum machine_mode oldmode
, rtx x
, int unsignedp
)
771 /* If FROM is a SUBREG that indicates that we have already done at least
772 the required extension, strip it. */
774 if (GET_CODE (x
) == SUBREG
&& SUBREG_PROMOTED_VAR_P (x
)
775 && GET_MODE_SIZE (GET_MODE (SUBREG_REG (x
))) >= GET_MODE_SIZE (mode
)
776 && SUBREG_PROMOTED_UNSIGNED_P (x
) == unsignedp
)
777 x
= gen_lowpart (mode
, x
);
779 if (GET_MODE (x
) != VOIDmode
)
780 oldmode
= GET_MODE (x
);
785 /* There is one case that we must handle specially: If we are converting
786 a CONST_INT into a mode whose size is twice HOST_BITS_PER_WIDE_INT and
787 we are to interpret the constant as unsigned, gen_lowpart will do
788 the wrong if the constant appears negative. What we want to do is
789 make the high-order word of the constant zero, not all ones. */
791 if (unsignedp
&& GET_MODE_CLASS (mode
) == MODE_INT
792 && GET_MODE_BITSIZE (mode
) == 2 * HOST_BITS_PER_WIDE_INT
793 && GET_CODE (x
) == CONST_INT
&& INTVAL (x
) < 0)
795 HOST_WIDE_INT val
= INTVAL (x
);
797 if (oldmode
!= VOIDmode
798 && HOST_BITS_PER_WIDE_INT
> GET_MODE_BITSIZE (oldmode
))
800 int width
= GET_MODE_BITSIZE (oldmode
);
802 /* We need to zero extend VAL. */
803 val
&= ((HOST_WIDE_INT
) 1 << width
) - 1;
806 return immed_double_const (val
, (HOST_WIDE_INT
) 0, mode
);
809 /* We can do this with a gen_lowpart if both desired and current modes
810 are integer, and this is either a constant integer, a register, or a
811 non-volatile MEM. Except for the constant case where MODE is no
812 wider than HOST_BITS_PER_WIDE_INT, we must be narrowing the operand. */
814 if ((GET_CODE (x
) == CONST_INT
815 && GET_MODE_BITSIZE (mode
) <= HOST_BITS_PER_WIDE_INT
)
816 || (GET_MODE_CLASS (mode
) == MODE_INT
817 && GET_MODE_CLASS (oldmode
) == MODE_INT
818 && (GET_CODE (x
) == CONST_DOUBLE
819 || (GET_MODE_SIZE (mode
) <= GET_MODE_SIZE (oldmode
)
820 && ((MEM_P (x
) && ! MEM_VOLATILE_P (x
)
821 && direct_load
[(int) mode
])
823 && (! HARD_REGISTER_P (x
)
824 || HARD_REGNO_MODE_OK (REGNO (x
), mode
))
825 && TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (mode
),
826 GET_MODE_BITSIZE (GET_MODE (x
)))))))))
828 /* ?? If we don't know OLDMODE, we have to assume here that
829 X does not need sign- or zero-extension. This may not be
830 the case, but it's the best we can do. */
831 if (GET_CODE (x
) == CONST_INT
&& oldmode
!= VOIDmode
832 && GET_MODE_SIZE (mode
) > GET_MODE_SIZE (oldmode
))
834 HOST_WIDE_INT val
= INTVAL (x
);
835 int width
= GET_MODE_BITSIZE (oldmode
);
837 /* We must sign or zero-extend in this case. Start by
838 zero-extending, then sign extend if we need to. */
839 val
&= ((HOST_WIDE_INT
) 1 << width
) - 1;
841 && (val
& ((HOST_WIDE_INT
) 1 << (width
- 1))))
842 val
|= (HOST_WIDE_INT
) (-1) << width
;
844 return gen_int_mode (val
, mode
);
847 return gen_lowpart (mode
, x
);
850 /* Converting from integer constant into mode is always equivalent to an
852 if (VECTOR_MODE_P (mode
) && GET_MODE (x
) == VOIDmode
)
854 gcc_assert (GET_MODE_BITSIZE (mode
) == GET_MODE_BITSIZE (oldmode
));
855 return simplify_gen_subreg (mode
, x
, oldmode
, 0);
858 temp
= gen_reg_rtx (mode
);
859 convert_move (temp
, x
, unsignedp
);
863 /* STORE_MAX_PIECES is the number of bytes at a time that we can
864 store efficiently. Due to internal GCC limitations, this is
865 MOVE_MAX_PIECES limited by the number of bytes GCC can represent
866 for an immediate constant. */
868 #define STORE_MAX_PIECES MIN (MOVE_MAX_PIECES, 2 * sizeof (HOST_WIDE_INT))
870 /* Determine whether the LEN bytes can be moved by using several move
871 instructions. Return nonzero if a call to move_by_pieces should
875 can_move_by_pieces (unsigned HOST_WIDE_INT len
,
876 unsigned int align ATTRIBUTE_UNUSED
)
878 return MOVE_BY_PIECES_P (len
, align
);
881 /* Generate several move instructions to copy LEN bytes from block FROM to
882 block TO. (These are MEM rtx's with BLKmode).
884 If PUSH_ROUNDING is defined and TO is NULL, emit_single_push_insn is
885 used to push FROM to the stack.
887 ALIGN is maximum stack alignment we can assume.
889 If ENDP is 0 return to, if ENDP is 1 return memory at the end ala
890 mempcpy, and if ENDP is 2 return memory the end minus one byte ala
894 move_by_pieces (rtx to
, rtx from
, unsigned HOST_WIDE_INT len
,
895 unsigned int align
, int endp
)
897 struct move_by_pieces data
;
898 rtx to_addr
, from_addr
= XEXP (from
, 0);
899 unsigned int max_size
= MOVE_MAX_PIECES
+ 1;
900 enum machine_mode mode
= VOIDmode
, tmode
;
901 enum insn_code icode
;
903 align
= MIN (to
? MEM_ALIGN (to
) : align
, MEM_ALIGN (from
));
906 data
.from_addr
= from_addr
;
909 to_addr
= XEXP (to
, 0);
912 = (GET_CODE (to_addr
) == PRE_INC
|| GET_CODE (to_addr
) == PRE_DEC
913 || GET_CODE (to_addr
) == POST_INC
|| GET_CODE (to_addr
) == POST_DEC
);
915 = (GET_CODE (to_addr
) == PRE_DEC
|| GET_CODE (to_addr
) == POST_DEC
);
922 #ifdef STACK_GROWS_DOWNWARD
928 data
.to_addr
= to_addr
;
931 = (GET_CODE (from_addr
) == PRE_INC
|| GET_CODE (from_addr
) == PRE_DEC
932 || GET_CODE (from_addr
) == POST_INC
933 || GET_CODE (from_addr
) == POST_DEC
);
935 data
.explicit_inc_from
= 0;
936 data
.explicit_inc_to
= 0;
937 if (data
.reverse
) data
.offset
= len
;
940 /* If copying requires more than two move insns,
941 copy addresses to registers (to make displacements shorter)
942 and use post-increment if available. */
943 if (!(data
.autinc_from
&& data
.autinc_to
)
944 && move_by_pieces_ninsns (len
, align
, max_size
) > 2)
946 /* Find the mode of the largest move... */
947 for (tmode
= GET_CLASS_NARROWEST_MODE (MODE_INT
);
948 tmode
!= VOIDmode
; tmode
= GET_MODE_WIDER_MODE (tmode
))
949 if (GET_MODE_SIZE (tmode
) < max_size
)
952 if (USE_LOAD_PRE_DECREMENT (mode
) && data
.reverse
&& ! data
.autinc_from
)
954 data
.from_addr
= copy_addr_to_reg (plus_constant (from_addr
, len
));
955 data
.autinc_from
= 1;
956 data
.explicit_inc_from
= -1;
958 if (USE_LOAD_POST_INCREMENT (mode
) && ! data
.autinc_from
)
960 data
.from_addr
= copy_addr_to_reg (from_addr
);
961 data
.autinc_from
= 1;
962 data
.explicit_inc_from
= 1;
964 if (!data
.autinc_from
&& CONSTANT_P (from_addr
))
965 data
.from_addr
= copy_addr_to_reg (from_addr
);
966 if (USE_STORE_PRE_DECREMENT (mode
) && data
.reverse
&& ! data
.autinc_to
)
968 data
.to_addr
= copy_addr_to_reg (plus_constant (to_addr
, len
));
970 data
.explicit_inc_to
= -1;
972 if (USE_STORE_POST_INCREMENT (mode
) && ! data
.reverse
&& ! data
.autinc_to
)
974 data
.to_addr
= copy_addr_to_reg (to_addr
);
976 data
.explicit_inc_to
= 1;
978 if (!data
.autinc_to
&& CONSTANT_P (to_addr
))
979 data
.to_addr
= copy_addr_to_reg (to_addr
);
982 tmode
= mode_for_size (MOVE_MAX_PIECES
* BITS_PER_UNIT
, MODE_INT
, 1);
983 if (align
>= GET_MODE_ALIGNMENT (tmode
))
984 align
= GET_MODE_ALIGNMENT (tmode
);
987 enum machine_mode xmode
;
989 for (tmode
= GET_CLASS_NARROWEST_MODE (MODE_INT
), xmode
= tmode
;
991 xmode
= tmode
, tmode
= GET_MODE_WIDER_MODE (tmode
))
992 if (GET_MODE_SIZE (tmode
) > MOVE_MAX_PIECES
993 || SLOW_UNALIGNED_ACCESS (tmode
, align
))
996 align
= MAX (align
, GET_MODE_ALIGNMENT (xmode
));
999 /* First move what we can in the largest integer mode, then go to
1000 successively smaller modes. */
1002 while (max_size
> 1)
1004 for (tmode
= GET_CLASS_NARROWEST_MODE (MODE_INT
);
1005 tmode
!= VOIDmode
; tmode
= GET_MODE_WIDER_MODE (tmode
))
1006 if (GET_MODE_SIZE (tmode
) < max_size
)
1009 if (mode
== VOIDmode
)
1012 icode
= optab_handler (mov_optab
, mode
)->insn_code
;
1013 if (icode
!= CODE_FOR_nothing
&& align
>= GET_MODE_ALIGNMENT (mode
))
1014 move_by_pieces_1 (GEN_FCN (icode
), mode
, &data
);
1016 max_size
= GET_MODE_SIZE (mode
);
1019 /* The code above should have handled everything. */
1020 gcc_assert (!data
.len
);
1026 gcc_assert (!data
.reverse
);
1031 if (HAVE_POST_INCREMENT
&& data
.explicit_inc_to
> 0)
1032 emit_insn (gen_add2_insn (data
.to_addr
, constm1_rtx
));
1034 data
.to_addr
= copy_addr_to_reg (plus_constant (data
.to_addr
,
1037 to1
= adjust_automodify_address (data
.to
, QImode
, data
.to_addr
,
1044 to1
= adjust_address (data
.to
, QImode
, data
.offset
);
1052 /* Return number of insns required to move L bytes by pieces.
1053 ALIGN (in bits) is maximum alignment we can assume. */
1055 static unsigned HOST_WIDE_INT
1056 move_by_pieces_ninsns (unsigned HOST_WIDE_INT l
, unsigned int align
,
1057 unsigned int max_size
)
1059 unsigned HOST_WIDE_INT n_insns
= 0;
1060 enum machine_mode tmode
;
1062 tmode
= mode_for_size (MOVE_MAX_PIECES
* BITS_PER_UNIT
, MODE_INT
, 1);
1063 if (align
>= GET_MODE_ALIGNMENT (tmode
))
1064 align
= GET_MODE_ALIGNMENT (tmode
);
1067 enum machine_mode tmode
, xmode
;
1069 for (tmode
= GET_CLASS_NARROWEST_MODE (MODE_INT
), xmode
= tmode
;
1071 xmode
= tmode
, tmode
= GET_MODE_WIDER_MODE (tmode
))
1072 if (GET_MODE_SIZE (tmode
) > MOVE_MAX_PIECES
1073 || SLOW_UNALIGNED_ACCESS (tmode
, align
))
1076 align
= MAX (align
, GET_MODE_ALIGNMENT (xmode
));
1079 while (max_size
> 1)
1081 enum machine_mode mode
= VOIDmode
;
1082 enum insn_code icode
;
1084 for (tmode
= GET_CLASS_NARROWEST_MODE (MODE_INT
);
1085 tmode
!= VOIDmode
; tmode
= GET_MODE_WIDER_MODE (tmode
))
1086 if (GET_MODE_SIZE (tmode
) < max_size
)
1089 if (mode
== VOIDmode
)
1092 icode
= optab_handler (mov_optab
, mode
)->insn_code
;
1093 if (icode
!= CODE_FOR_nothing
&& align
>= GET_MODE_ALIGNMENT (mode
))
1094 n_insns
+= l
/ GET_MODE_SIZE (mode
), l
%= GET_MODE_SIZE (mode
);
1096 max_size
= GET_MODE_SIZE (mode
);
1103 /* Subroutine of move_by_pieces. Move as many bytes as appropriate
1104 with move instructions for mode MODE. GENFUN is the gen_... function
1105 to make a move insn for that mode. DATA has all the other info. */
1108 move_by_pieces_1 (rtx (*genfun
) (rtx
, ...), enum machine_mode mode
,
1109 struct move_by_pieces
*data
)
1111 unsigned int size
= GET_MODE_SIZE (mode
);
1112 rtx to1
= NULL_RTX
, from1
;
1114 while (data
->len
>= size
)
1117 data
->offset
-= size
;
1121 if (data
->autinc_to
)
1122 to1
= adjust_automodify_address (data
->to
, mode
, data
->to_addr
,
1125 to1
= adjust_address (data
->to
, mode
, data
->offset
);
1128 if (data
->autinc_from
)
1129 from1
= adjust_automodify_address (data
->from
, mode
, data
->from_addr
,
1132 from1
= adjust_address (data
->from
, mode
, data
->offset
);
1134 if (HAVE_PRE_DECREMENT
&& data
->explicit_inc_to
< 0)
1135 emit_insn (gen_add2_insn (data
->to_addr
,
1136 GEN_INT (-(HOST_WIDE_INT
)size
)));
1137 if (HAVE_PRE_DECREMENT
&& data
->explicit_inc_from
< 0)
1138 emit_insn (gen_add2_insn (data
->from_addr
,
1139 GEN_INT (-(HOST_WIDE_INT
)size
)));
1142 emit_insn ((*genfun
) (to1
, from1
));
1145 #ifdef PUSH_ROUNDING
1146 emit_single_push_insn (mode
, from1
, NULL
);
1152 if (HAVE_POST_INCREMENT
&& data
->explicit_inc_to
> 0)
1153 emit_insn (gen_add2_insn (data
->to_addr
, GEN_INT (size
)));
1154 if (HAVE_POST_INCREMENT
&& data
->explicit_inc_from
> 0)
1155 emit_insn (gen_add2_insn (data
->from_addr
, GEN_INT (size
)));
1157 if (! data
->reverse
)
1158 data
->offset
+= size
;
1164 /* Emit code to move a block Y to a block X. This may be done with
1165 string-move instructions, with multiple scalar move instructions,
1166 or with a library call.
1168 Both X and Y must be MEM rtx's (perhaps inside VOLATILE) with mode BLKmode.
1169 SIZE is an rtx that says how long they are.
1170 ALIGN is the maximum alignment we can assume they have.
1171 METHOD describes what kind of copy this is, and what mechanisms may be used.
1173 Return the address of the new block, if memcpy is called and returns it,
1177 emit_block_move_hints (rtx x
, rtx y
, rtx size
, enum block_op_methods method
,
1178 unsigned int expected_align
, HOST_WIDE_INT expected_size
)
1186 case BLOCK_OP_NORMAL
:
1187 case BLOCK_OP_TAILCALL
:
1188 may_use_call
= true;
1191 case BLOCK_OP_CALL_PARM
:
1192 may_use_call
= block_move_libcall_safe_for_call_parm ();
1194 /* Make inhibit_defer_pop nonzero around the library call
1195 to force it to pop the arguments right away. */
1199 case BLOCK_OP_NO_LIBCALL
:
1200 may_use_call
= false;
1207 align
= MIN (MEM_ALIGN (x
), MEM_ALIGN (y
));
1209 gcc_assert (MEM_P (x
));
1210 gcc_assert (MEM_P (y
));
1213 /* Make sure we've got BLKmode addresses; store_one_arg can decide that
1214 block copy is more efficient for other large modes, e.g. DCmode. */
1215 x
= adjust_address (x
, BLKmode
, 0);
1216 y
= adjust_address (y
, BLKmode
, 0);
1218 /* Set MEM_SIZE as appropriate for this block copy. The main place this
1219 can be incorrect is coming from __builtin_memcpy. */
1220 if (GET_CODE (size
) == CONST_INT
)
1222 if (INTVAL (size
) == 0)
1225 x
= shallow_copy_rtx (x
);
1226 y
= shallow_copy_rtx (y
);
1227 set_mem_size (x
, size
);
1228 set_mem_size (y
, size
);
1231 if (GET_CODE (size
) == CONST_INT
&& MOVE_BY_PIECES_P (INTVAL (size
), align
))
1232 move_by_pieces (x
, y
, INTVAL (size
), align
, 0);
1233 else if (emit_block_move_via_movmem (x
, y
, size
, align
,
1234 expected_align
, expected_size
))
1236 else if (may_use_call
)
1237 retval
= emit_block_move_via_libcall (x
, y
, size
,
1238 method
== BLOCK_OP_TAILCALL
);
1240 emit_block_move_via_loop (x
, y
, size
, align
);
1242 if (method
== BLOCK_OP_CALL_PARM
)
1249 emit_block_move (rtx x
, rtx y
, rtx size
, enum block_op_methods method
)
1251 return emit_block_move_hints (x
, y
, size
, method
, 0, -1);
1254 /* A subroutine of emit_block_move. Returns true if calling the
1255 block move libcall will not clobber any parameters which may have
1256 already been placed on the stack. */
1259 block_move_libcall_safe_for_call_parm (void)
1261 #if defined (REG_PARM_STACK_SPACE)
1265 /* If arguments are pushed on the stack, then they're safe. */
1269 /* If registers go on the stack anyway, any argument is sure to clobber
1270 an outgoing argument. */
1271 #if defined (REG_PARM_STACK_SPACE)
1272 fn
= emit_block_move_libcall_fn (false);
1273 if (OUTGOING_REG_PARM_STACK_SPACE ((!fn
? NULL_TREE
: TREE_TYPE (fn
)))
1274 && REG_PARM_STACK_SPACE (fn
) != 0)
1278 /* If any argument goes in memory, then it might clobber an outgoing
1281 CUMULATIVE_ARGS args_so_far
;
1284 fn
= emit_block_move_libcall_fn (false);
1285 INIT_CUMULATIVE_ARGS (args_so_far
, TREE_TYPE (fn
), NULL_RTX
, 0, 3);
1287 arg
= TYPE_ARG_TYPES (TREE_TYPE (fn
));
1288 for ( ; arg
!= void_list_node
; arg
= TREE_CHAIN (arg
))
1290 enum machine_mode mode
= TYPE_MODE (TREE_VALUE (arg
));
1291 rtx tmp
= FUNCTION_ARG (args_so_far
, mode
, NULL_TREE
, 1);
1292 if (!tmp
|| !REG_P (tmp
))
1294 if (targetm
.calls
.arg_partial_bytes (&args_so_far
, mode
, NULL
, 1))
1296 FUNCTION_ARG_ADVANCE (args_so_far
, mode
, NULL_TREE
, 1);
1302 /* A subroutine of emit_block_move. Expand a movmem pattern;
1303 return true if successful. */
1306 emit_block_move_via_movmem (rtx x
, rtx y
, rtx size
, unsigned int align
,
1307 unsigned int expected_align
, HOST_WIDE_INT expected_size
)
1309 rtx opalign
= GEN_INT (align
/ BITS_PER_UNIT
);
1310 int save_volatile_ok
= volatile_ok
;
1311 enum machine_mode mode
;
1313 if (expected_align
< align
)
1314 expected_align
= align
;
1316 /* Since this is a move insn, we don't care about volatility. */
1319 /* Try the most limited insn first, because there's no point
1320 including more than one in the machine description unless
1321 the more limited one has some advantage. */
1323 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_INT
); mode
!= VOIDmode
;
1324 mode
= GET_MODE_WIDER_MODE (mode
))
1326 enum insn_code code
= movmem_optab
[(int) mode
];
1327 insn_operand_predicate_fn pred
;
1329 if (code
!= CODE_FOR_nothing
1330 /* We don't need MODE to be narrower than BITS_PER_HOST_WIDE_INT
1331 here because if SIZE is less than the mode mask, as it is
1332 returned by the macro, it will definitely be less than the
1333 actual mode mask. */
1334 && ((GET_CODE (size
) == CONST_INT
1335 && ((unsigned HOST_WIDE_INT
) INTVAL (size
)
1336 <= (GET_MODE_MASK (mode
) >> 1)))
1337 || GET_MODE_BITSIZE (mode
) >= BITS_PER_WORD
)
1338 && ((pred
= insn_data
[(int) code
].operand
[0].predicate
) == 0
1339 || (*pred
) (x
, BLKmode
))
1340 && ((pred
= insn_data
[(int) code
].operand
[1].predicate
) == 0
1341 || (*pred
) (y
, BLKmode
))
1342 && ((pred
= insn_data
[(int) code
].operand
[3].predicate
) == 0
1343 || (*pred
) (opalign
, VOIDmode
)))
1346 rtx last
= get_last_insn ();
1349 op2
= convert_to_mode (mode
, size
, 1);
1350 pred
= insn_data
[(int) code
].operand
[2].predicate
;
1351 if (pred
!= 0 && ! (*pred
) (op2
, mode
))
1352 op2
= copy_to_mode_reg (mode
, op2
);
1354 /* ??? When called via emit_block_move_for_call, it'd be
1355 nice if there were some way to inform the backend, so
1356 that it doesn't fail the expansion because it thinks
1357 emitting the libcall would be more efficient. */
1359 if (insn_data
[(int) code
].n_operands
== 4)
1360 pat
= GEN_FCN ((int) code
) (x
, y
, op2
, opalign
);
1362 pat
= GEN_FCN ((int) code
) (x
, y
, op2
, opalign
,
1363 GEN_INT (expected_align
1365 GEN_INT (expected_size
));
1369 volatile_ok
= save_volatile_ok
;
1373 delete_insns_since (last
);
1377 volatile_ok
= save_volatile_ok
;
1381 /* A subroutine of emit_block_move. Expand a call to memcpy.
1382 Return the return value from memcpy, 0 otherwise. */
1385 emit_block_move_via_libcall (rtx dst
, rtx src
, rtx size
, bool tailcall
)
1387 rtx dst_addr
, src_addr
;
1388 tree call_expr
, fn
, src_tree
, dst_tree
, size_tree
;
1389 enum machine_mode size_mode
;
1392 /* Emit code to copy the addresses of DST and SRC and SIZE into new
1393 pseudos. We can then place those new pseudos into a VAR_DECL and
1396 dst_addr
= copy_to_mode_reg (Pmode
, XEXP (dst
, 0));
1397 src_addr
= copy_to_mode_reg (Pmode
, XEXP (src
, 0));
1399 dst_addr
= convert_memory_address (ptr_mode
, dst_addr
);
1400 src_addr
= convert_memory_address (ptr_mode
, src_addr
);
1402 dst_tree
= make_tree (ptr_type_node
, dst_addr
);
1403 src_tree
= make_tree (ptr_type_node
, src_addr
);
1405 size_mode
= TYPE_MODE (sizetype
);
1407 size
= convert_to_mode (size_mode
, size
, 1);
1408 size
= copy_to_mode_reg (size_mode
, size
);
1410 /* It is incorrect to use the libcall calling conventions to call
1411 memcpy in this context. This could be a user call to memcpy and
1412 the user may wish to examine the return value from memcpy. For
1413 targets where libcalls and normal calls have different conventions
1414 for returning pointers, we could end up generating incorrect code. */
1416 size_tree
= make_tree (sizetype
, size
);
1418 fn
= emit_block_move_libcall_fn (true);
1419 call_expr
= build_call_expr (fn
, 3, dst_tree
, src_tree
, size_tree
);
1420 CALL_EXPR_TAILCALL (call_expr
) = tailcall
;
1422 retval
= expand_normal (call_expr
);
1427 /* A subroutine of emit_block_move_via_libcall. Create the tree node
1428 for the function we use for block copies. The first time FOR_CALL
1429 is true, we call assemble_external. */
1431 static GTY(()) tree block_move_fn
;
1434 init_block_move_fn (const char *asmspec
)
1440 fn
= get_identifier ("memcpy");
1441 args
= build_function_type_list (ptr_type_node
, ptr_type_node
,
1442 const_ptr_type_node
, sizetype
,
1445 fn
= build_decl (FUNCTION_DECL
, fn
, args
);
1446 DECL_EXTERNAL (fn
) = 1;
1447 TREE_PUBLIC (fn
) = 1;
1448 DECL_ARTIFICIAL (fn
) = 1;
1449 TREE_NOTHROW (fn
) = 1;
1450 DECL_VISIBILITY (fn
) = VISIBILITY_DEFAULT
;
1451 DECL_VISIBILITY_SPECIFIED (fn
) = 1;
1457 set_user_assembler_name (block_move_fn
, asmspec
);
1461 emit_block_move_libcall_fn (int for_call
)
1463 static bool emitted_extern
;
1466 init_block_move_fn (NULL
);
1468 if (for_call
&& !emitted_extern
)
1470 emitted_extern
= true;
1471 make_decl_rtl (block_move_fn
);
1472 assemble_external (block_move_fn
);
1475 return block_move_fn
;
1478 /* A subroutine of emit_block_move. Copy the data via an explicit
1479 loop. This is used only when libcalls are forbidden. */
1480 /* ??? It'd be nice to copy in hunks larger than QImode. */
1483 emit_block_move_via_loop (rtx x
, rtx y
, rtx size
,
1484 unsigned int align ATTRIBUTE_UNUSED
)
1486 rtx cmp_label
, top_label
, iter
, x_addr
, y_addr
, tmp
;
1487 enum machine_mode iter_mode
;
1489 iter_mode
= GET_MODE (size
);
1490 if (iter_mode
== VOIDmode
)
1491 iter_mode
= word_mode
;
1493 top_label
= gen_label_rtx ();
1494 cmp_label
= gen_label_rtx ();
1495 iter
= gen_reg_rtx (iter_mode
);
1497 emit_move_insn (iter
, const0_rtx
);
1499 x_addr
= force_operand (XEXP (x
, 0), NULL_RTX
);
1500 y_addr
= force_operand (XEXP (y
, 0), NULL_RTX
);
1501 do_pending_stack_adjust ();
1503 emit_jump (cmp_label
);
1504 emit_label (top_label
);
1506 tmp
= convert_modes (Pmode
, iter_mode
, iter
, true);
1507 x_addr
= gen_rtx_PLUS (Pmode
, x_addr
, tmp
);
1508 y_addr
= gen_rtx_PLUS (Pmode
, y_addr
, tmp
);
1509 x
= change_address (x
, QImode
, x_addr
);
1510 y
= change_address (y
, QImode
, y_addr
);
1512 emit_move_insn (x
, y
);
1514 tmp
= expand_simple_binop (iter_mode
, PLUS
, iter
, const1_rtx
, iter
,
1515 true, OPTAB_LIB_WIDEN
);
1517 emit_move_insn (iter
, tmp
);
1519 emit_label (cmp_label
);
1521 emit_cmp_and_jump_insns (iter
, size
, LT
, NULL_RTX
, iter_mode
,
1525 /* Copy all or part of a value X into registers starting at REGNO.
1526 The number of registers to be filled is NREGS. */
1529 move_block_to_reg (int regno
, rtx x
, int nregs
, enum machine_mode mode
)
1532 #ifdef HAVE_load_multiple
1540 if (CONSTANT_P (x
) && ! LEGITIMATE_CONSTANT_P (x
))
1541 x
= validize_mem (force_const_mem (mode
, x
));
1543 /* See if the machine can do this with a load multiple insn. */
1544 #ifdef HAVE_load_multiple
1545 if (HAVE_load_multiple
)
1547 last
= get_last_insn ();
1548 pat
= gen_load_multiple (gen_rtx_REG (word_mode
, regno
), x
,
1556 delete_insns_since (last
);
1560 for (i
= 0; i
< nregs
; i
++)
1561 emit_move_insn (gen_rtx_REG (word_mode
, regno
+ i
),
1562 operand_subword_force (x
, i
, mode
));
1565 /* Copy all or part of a BLKmode value X out of registers starting at REGNO.
1566 The number of registers to be filled is NREGS. */
1569 move_block_from_reg (int regno
, rtx x
, int nregs
)
1576 /* See if the machine can do this with a store multiple insn. */
1577 #ifdef HAVE_store_multiple
1578 if (HAVE_store_multiple
)
1580 rtx last
= get_last_insn ();
1581 rtx pat
= gen_store_multiple (x
, gen_rtx_REG (word_mode
, regno
),
1589 delete_insns_since (last
);
1593 for (i
= 0; i
< nregs
; i
++)
1595 rtx tem
= operand_subword (x
, i
, 1, BLKmode
);
1599 emit_move_insn (tem
, gen_rtx_REG (word_mode
, regno
+ i
));
1603 /* Generate a PARALLEL rtx for a new non-consecutive group of registers from
1604 ORIG, where ORIG is a non-consecutive group of registers represented by
1605 a PARALLEL. The clone is identical to the original except in that the
1606 original set of registers is replaced by a new set of pseudo registers.
1607 The new set has the same modes as the original set. */
1610 gen_group_rtx (rtx orig
)
1615 gcc_assert (GET_CODE (orig
) == PARALLEL
);
1617 length
= XVECLEN (orig
, 0);
1618 tmps
= XALLOCAVEC (rtx
, length
);
1620 /* Skip a NULL entry in first slot. */
1621 i
= XEXP (XVECEXP (orig
, 0, 0), 0) ? 0 : 1;
1626 for (; i
< length
; i
++)
1628 enum machine_mode mode
= GET_MODE (XEXP (XVECEXP (orig
, 0, i
), 0));
1629 rtx offset
= XEXP (XVECEXP (orig
, 0, i
), 1);
1631 tmps
[i
] = gen_rtx_EXPR_LIST (VOIDmode
, gen_reg_rtx (mode
), offset
);
1634 return gen_rtx_PARALLEL (GET_MODE (orig
), gen_rtvec_v (length
, tmps
));
1637 /* A subroutine of emit_group_load. Arguments as for emit_group_load,
1638 except that values are placed in TMPS[i], and must later be moved
1639 into corresponding XEXP (XVECEXP (DST, 0, i), 0) element. */
1642 emit_group_load_1 (rtx
*tmps
, rtx dst
, rtx orig_src
, tree type
, int ssize
)
1646 enum machine_mode m
= GET_MODE (orig_src
);
1648 gcc_assert (GET_CODE (dst
) == PARALLEL
);
1651 && !SCALAR_INT_MODE_P (m
)
1652 && !MEM_P (orig_src
)
1653 && GET_CODE (orig_src
) != CONCAT
)
1655 enum machine_mode imode
= int_mode_for_mode (GET_MODE (orig_src
));
1656 if (imode
== BLKmode
)
1657 src
= assign_stack_temp (GET_MODE (orig_src
), ssize
, 0);
1659 src
= gen_reg_rtx (imode
);
1660 if (imode
!= BLKmode
)
1661 src
= gen_lowpart (GET_MODE (orig_src
), src
);
1662 emit_move_insn (src
, orig_src
);
1663 /* ...and back again. */
1664 if (imode
!= BLKmode
)
1665 src
= gen_lowpart (imode
, src
);
1666 emit_group_load_1 (tmps
, dst
, src
, type
, ssize
);
1670 /* Check for a NULL entry, used to indicate that the parameter goes
1671 both on the stack and in registers. */
1672 if (XEXP (XVECEXP (dst
, 0, 0), 0))
1677 /* Process the pieces. */
1678 for (i
= start
; i
< XVECLEN (dst
, 0); i
++)
1680 enum machine_mode mode
= GET_MODE (XEXP (XVECEXP (dst
, 0, i
), 0));
1681 HOST_WIDE_INT bytepos
= INTVAL (XEXP (XVECEXP (dst
, 0, i
), 1));
1682 unsigned int bytelen
= GET_MODE_SIZE (mode
);
1685 /* Handle trailing fragments that run over the size of the struct. */
1686 if (ssize
>= 0 && bytepos
+ (HOST_WIDE_INT
) bytelen
> ssize
)
1688 /* Arrange to shift the fragment to where it belongs.
1689 extract_bit_field loads to the lsb of the reg. */
1691 #ifdef BLOCK_REG_PADDING
1692 BLOCK_REG_PADDING (GET_MODE (orig_src
), type
, i
== start
)
1693 == (BYTES_BIG_ENDIAN
? upward
: downward
)
1698 shift
= (bytelen
- (ssize
- bytepos
)) * BITS_PER_UNIT
;
1699 bytelen
= ssize
- bytepos
;
1700 gcc_assert (bytelen
> 0);
1703 /* If we won't be loading directly from memory, protect the real source
1704 from strange tricks we might play; but make sure that the source can
1705 be loaded directly into the destination. */
1707 if (!MEM_P (orig_src
)
1708 && (!CONSTANT_P (orig_src
)
1709 || (GET_MODE (orig_src
) != mode
1710 && GET_MODE (orig_src
) != VOIDmode
)))
1712 if (GET_MODE (orig_src
) == VOIDmode
)
1713 src
= gen_reg_rtx (mode
);
1715 src
= gen_reg_rtx (GET_MODE (orig_src
));
1717 emit_move_insn (src
, orig_src
);
1720 /* Optimize the access just a bit. */
1722 && (! SLOW_UNALIGNED_ACCESS (mode
, MEM_ALIGN (src
))
1723 || MEM_ALIGN (src
) >= GET_MODE_ALIGNMENT (mode
))
1724 && bytepos
* BITS_PER_UNIT
% GET_MODE_ALIGNMENT (mode
) == 0
1725 && bytelen
== GET_MODE_SIZE (mode
))
1727 tmps
[i
] = gen_reg_rtx (mode
);
1728 emit_move_insn (tmps
[i
], adjust_address (src
, mode
, bytepos
));
1730 else if (COMPLEX_MODE_P (mode
)
1731 && GET_MODE (src
) == mode
1732 && bytelen
== GET_MODE_SIZE (mode
))
1733 /* Let emit_move_complex do the bulk of the work. */
1735 else if (GET_CODE (src
) == CONCAT
)
1737 unsigned int slen
= GET_MODE_SIZE (GET_MODE (src
));
1738 unsigned int slen0
= GET_MODE_SIZE (GET_MODE (XEXP (src
, 0)));
1740 if ((bytepos
== 0 && bytelen
== slen0
)
1741 || (bytepos
!= 0 && bytepos
+ bytelen
<= slen
))
1743 /* The following assumes that the concatenated objects all
1744 have the same size. In this case, a simple calculation
1745 can be used to determine the object and the bit field
1747 tmps
[i
] = XEXP (src
, bytepos
/ slen0
);
1748 if (! CONSTANT_P (tmps
[i
])
1749 && (!REG_P (tmps
[i
]) || GET_MODE (tmps
[i
]) != mode
))
1750 tmps
[i
] = extract_bit_field (tmps
[i
], bytelen
* BITS_PER_UNIT
,
1751 (bytepos
% slen0
) * BITS_PER_UNIT
,
1752 1, NULL_RTX
, mode
, mode
);
1758 gcc_assert (!bytepos
);
1759 mem
= assign_stack_temp (GET_MODE (src
), slen
, 0);
1760 emit_move_insn (mem
, src
);
1761 tmps
[i
] = extract_bit_field (mem
, bytelen
* BITS_PER_UNIT
,
1762 0, 1, NULL_RTX
, mode
, mode
);
1765 /* FIXME: A SIMD parallel will eventually lead to a subreg of a
1766 SIMD register, which is currently broken. While we get GCC
1767 to emit proper RTL for these cases, let's dump to memory. */
1768 else if (VECTOR_MODE_P (GET_MODE (dst
))
1771 int slen
= GET_MODE_SIZE (GET_MODE (src
));
1774 mem
= assign_stack_temp (GET_MODE (src
), slen
, 0);
1775 emit_move_insn (mem
, src
);
1776 tmps
[i
] = adjust_address (mem
, mode
, (int) bytepos
);
1778 else if (CONSTANT_P (src
) && GET_MODE (dst
) != BLKmode
1779 && XVECLEN (dst
, 0) > 1)
1780 tmps
[i
] = simplify_gen_subreg (mode
, src
, GET_MODE(dst
), bytepos
);
1781 else if (CONSTANT_P (src
))
1783 HOST_WIDE_INT len
= (HOST_WIDE_INT
) bytelen
;
1791 gcc_assert (2 * len
== ssize
);
1792 split_double (src
, &first
, &second
);
1799 else if (REG_P (src
) && GET_MODE (src
) == mode
)
1802 tmps
[i
] = extract_bit_field (src
, bytelen
* BITS_PER_UNIT
,
1803 bytepos
* BITS_PER_UNIT
, 1, NULL_RTX
,
1807 tmps
[i
] = expand_shift (LSHIFT_EXPR
, mode
, tmps
[i
],
1808 build_int_cst (NULL_TREE
, shift
), tmps
[i
], 0);
1812 /* Emit code to move a block SRC of type TYPE to a block DST,
1813 where DST is non-consecutive registers represented by a PARALLEL.
1814 SSIZE represents the total size of block ORIG_SRC in bytes, or -1
1818 emit_group_load (rtx dst
, rtx src
, tree type
, int ssize
)
1823 tmps
= XALLOCAVEC (rtx
, XVECLEN (dst
, 0));
1824 emit_group_load_1 (tmps
, dst
, src
, type
, ssize
);
1826 /* Copy the extracted pieces into the proper (probable) hard regs. */
1827 for (i
= 0; i
< XVECLEN (dst
, 0); i
++)
1829 rtx d
= XEXP (XVECEXP (dst
, 0, i
), 0);
1832 emit_move_insn (d
, tmps
[i
]);
1836 /* Similar, but load SRC into new pseudos in a format that looks like
1837 PARALLEL. This can later be fed to emit_group_move to get things
1838 in the right place. */
1841 emit_group_load_into_temps (rtx parallel
, rtx src
, tree type
, int ssize
)
1846 vec
= rtvec_alloc (XVECLEN (parallel
, 0));
1847 emit_group_load_1 (&RTVEC_ELT (vec
, 0), parallel
, src
, type
, ssize
);
1849 /* Convert the vector to look just like the original PARALLEL, except
1850 with the computed values. */
1851 for (i
= 0; i
< XVECLEN (parallel
, 0); i
++)
1853 rtx e
= XVECEXP (parallel
, 0, i
);
1854 rtx d
= XEXP (e
, 0);
1858 d
= force_reg (GET_MODE (d
), RTVEC_ELT (vec
, i
));
1859 e
= alloc_EXPR_LIST (REG_NOTE_KIND (e
), d
, XEXP (e
, 1));
1861 RTVEC_ELT (vec
, i
) = e
;
1864 return gen_rtx_PARALLEL (GET_MODE (parallel
), vec
);
1867 /* Emit code to move a block SRC to block DST, where SRC and DST are
1868 non-consecutive groups of registers, each represented by a PARALLEL. */
1871 emit_group_move (rtx dst
, rtx src
)
1875 gcc_assert (GET_CODE (src
) == PARALLEL
1876 && GET_CODE (dst
) == PARALLEL
1877 && XVECLEN (src
, 0) == XVECLEN (dst
, 0));
1879 /* Skip first entry if NULL. */
1880 for (i
= XEXP (XVECEXP (src
, 0, 0), 0) ? 0 : 1; i
< XVECLEN (src
, 0); i
++)
1881 emit_move_insn (XEXP (XVECEXP (dst
, 0, i
), 0),
1882 XEXP (XVECEXP (src
, 0, i
), 0));
1885 /* Move a group of registers represented by a PARALLEL into pseudos. */
1888 emit_group_move_into_temps (rtx src
)
1890 rtvec vec
= rtvec_alloc (XVECLEN (src
, 0));
1893 for (i
= 0; i
< XVECLEN (src
, 0); i
++)
1895 rtx e
= XVECEXP (src
, 0, i
);
1896 rtx d
= XEXP (e
, 0);
1899 e
= alloc_EXPR_LIST (REG_NOTE_KIND (e
), copy_to_reg (d
), XEXP (e
, 1));
1900 RTVEC_ELT (vec
, i
) = e
;
1903 return gen_rtx_PARALLEL (GET_MODE (src
), vec
);
1906 /* Emit code to move a block SRC to a block ORIG_DST of type TYPE,
1907 where SRC is non-consecutive registers represented by a PARALLEL.
1908 SSIZE represents the total size of block ORIG_DST, or -1 if not
1912 emit_group_store (rtx orig_dst
, rtx src
, tree type ATTRIBUTE_UNUSED
, int ssize
)
1915 int start
, finish
, i
;
1916 enum machine_mode m
= GET_MODE (orig_dst
);
1918 gcc_assert (GET_CODE (src
) == PARALLEL
);
1920 if (!SCALAR_INT_MODE_P (m
)
1921 && !MEM_P (orig_dst
) && GET_CODE (orig_dst
) != CONCAT
)
1923 enum machine_mode imode
= int_mode_for_mode (GET_MODE (orig_dst
));
1924 if (imode
== BLKmode
)
1925 dst
= assign_stack_temp (GET_MODE (orig_dst
), ssize
, 0);
1927 dst
= gen_reg_rtx (imode
);
1928 emit_group_store (dst
, src
, type
, ssize
);
1929 if (imode
!= BLKmode
)
1930 dst
= gen_lowpart (GET_MODE (orig_dst
), dst
);
1931 emit_move_insn (orig_dst
, dst
);
1935 /* Check for a NULL entry, used to indicate that the parameter goes
1936 both on the stack and in registers. */
1937 if (XEXP (XVECEXP (src
, 0, 0), 0))
1941 finish
= XVECLEN (src
, 0);
1943 tmps
= XALLOCAVEC (rtx
, finish
);
1945 /* Copy the (probable) hard regs into pseudos. */
1946 for (i
= start
; i
< finish
; i
++)
1948 rtx reg
= XEXP (XVECEXP (src
, 0, i
), 0);
1949 if (!REG_P (reg
) || REGNO (reg
) < FIRST_PSEUDO_REGISTER
)
1951 tmps
[i
] = gen_reg_rtx (GET_MODE (reg
));
1952 emit_move_insn (tmps
[i
], reg
);
1958 /* If we won't be storing directly into memory, protect the real destination
1959 from strange tricks we might play. */
1961 if (GET_CODE (dst
) == PARALLEL
)
1965 /* We can get a PARALLEL dst if there is a conditional expression in
1966 a return statement. In that case, the dst and src are the same,
1967 so no action is necessary. */
1968 if (rtx_equal_p (dst
, src
))
1971 /* It is unclear if we can ever reach here, but we may as well handle
1972 it. Allocate a temporary, and split this into a store/load to/from
1975 temp
= assign_stack_temp (GET_MODE (dst
), ssize
, 0);
1976 emit_group_store (temp
, src
, type
, ssize
);
1977 emit_group_load (dst
, temp
, type
, ssize
);
1980 else if (!MEM_P (dst
) && GET_CODE (dst
) != CONCAT
)
1982 enum machine_mode outer
= GET_MODE (dst
);
1983 enum machine_mode inner
;
1984 HOST_WIDE_INT bytepos
;
1988 if (!REG_P (dst
) || REGNO (dst
) < FIRST_PSEUDO_REGISTER
)
1989 dst
= gen_reg_rtx (outer
);
1991 /* Make life a bit easier for combine. */
1992 /* If the first element of the vector is the low part
1993 of the destination mode, use a paradoxical subreg to
1994 initialize the destination. */
1997 inner
= GET_MODE (tmps
[start
]);
1998 bytepos
= subreg_lowpart_offset (inner
, outer
);
1999 if (INTVAL (XEXP (XVECEXP (src
, 0, start
), 1)) == bytepos
)
2001 temp
= simplify_gen_subreg (outer
, tmps
[start
],
2005 emit_move_insn (dst
, temp
);
2012 /* If the first element wasn't the low part, try the last. */
2014 && start
< finish
- 1)
2016 inner
= GET_MODE (tmps
[finish
- 1]);
2017 bytepos
= subreg_lowpart_offset (inner
, outer
);
2018 if (INTVAL (XEXP (XVECEXP (src
, 0, finish
- 1), 1)) == bytepos
)
2020 temp
= simplify_gen_subreg (outer
, tmps
[finish
- 1],
2024 emit_move_insn (dst
, temp
);
2031 /* Otherwise, simply initialize the result to zero. */
2033 emit_move_insn (dst
, CONST0_RTX (outer
));
2036 /* Process the pieces. */
2037 for (i
= start
; i
< finish
; i
++)
2039 HOST_WIDE_INT bytepos
= INTVAL (XEXP (XVECEXP (src
, 0, i
), 1));
2040 enum machine_mode mode
= GET_MODE (tmps
[i
]);
2041 unsigned int bytelen
= GET_MODE_SIZE (mode
);
2044 /* Handle trailing fragments that run over the size of the struct. */
2045 if (ssize
>= 0 && bytepos
+ (HOST_WIDE_INT
) bytelen
> ssize
)
2047 /* store_bit_field always takes its value from the lsb.
2048 Move the fragment to the lsb if it's not already there. */
2050 #ifdef BLOCK_REG_PADDING
2051 BLOCK_REG_PADDING (GET_MODE (orig_dst
), type
, i
== start
)
2052 == (BYTES_BIG_ENDIAN
? upward
: downward
)
2058 int shift
= (bytelen
- (ssize
- bytepos
)) * BITS_PER_UNIT
;
2059 tmps
[i
] = expand_shift (RSHIFT_EXPR
, mode
, tmps
[i
],
2060 build_int_cst (NULL_TREE
, shift
),
2063 bytelen
= ssize
- bytepos
;
2066 if (GET_CODE (dst
) == CONCAT
)
2068 if (bytepos
+ bytelen
<= GET_MODE_SIZE (GET_MODE (XEXP (dst
, 0))))
2069 dest
= XEXP (dst
, 0);
2070 else if (bytepos
>= GET_MODE_SIZE (GET_MODE (XEXP (dst
, 0))))
2072 bytepos
-= GET_MODE_SIZE (GET_MODE (XEXP (dst
, 0)));
2073 dest
= XEXP (dst
, 1);
2077 enum machine_mode dest_mode
= GET_MODE (dest
);
2078 enum machine_mode tmp_mode
= GET_MODE (tmps
[i
]);
2080 gcc_assert (bytepos
== 0 && XVECLEN (src
, 0));
2082 if (GET_MODE_ALIGNMENT (dest_mode
)
2083 >= GET_MODE_ALIGNMENT (tmp_mode
))
2085 dest
= assign_stack_temp (dest_mode
,
2086 GET_MODE_SIZE (dest_mode
),
2088 emit_move_insn (adjust_address (dest
,
2096 dest
= assign_stack_temp (tmp_mode
,
2097 GET_MODE_SIZE (tmp_mode
),
2099 emit_move_insn (dest
, tmps
[i
]);
2100 dst
= adjust_address (dest
, dest_mode
, bytepos
);
2106 /* Optimize the access just a bit. */
2108 && (! SLOW_UNALIGNED_ACCESS (mode
, MEM_ALIGN (dest
))
2109 || MEM_ALIGN (dest
) >= GET_MODE_ALIGNMENT (mode
))
2110 && bytepos
* BITS_PER_UNIT
% GET_MODE_ALIGNMENT (mode
) == 0
2111 && bytelen
== GET_MODE_SIZE (mode
))
2112 emit_move_insn (adjust_address (dest
, mode
, bytepos
), tmps
[i
]);
2114 store_bit_field (dest
, bytelen
* BITS_PER_UNIT
, bytepos
* BITS_PER_UNIT
,
2118 /* Copy from the pseudo into the (probable) hard reg. */
2119 if (orig_dst
!= dst
)
2120 emit_move_insn (orig_dst
, dst
);
2123 /* Generate code to copy a BLKmode object of TYPE out of a
2124 set of registers starting with SRCREG into TGTBLK. If TGTBLK
2125 is null, a stack temporary is created. TGTBLK is returned.
2127 The purpose of this routine is to handle functions that return
2128 BLKmode structures in registers. Some machines (the PA for example)
2129 want to return all small structures in registers regardless of the
2130 structure's alignment. */
2133 copy_blkmode_from_reg (rtx tgtblk
, rtx srcreg
, tree type
)
2135 unsigned HOST_WIDE_INT bytes
= int_size_in_bytes (type
);
2136 rtx src
= NULL
, dst
= NULL
;
2137 unsigned HOST_WIDE_INT bitsize
= MIN (TYPE_ALIGN (type
), BITS_PER_WORD
);
2138 unsigned HOST_WIDE_INT bitpos
, xbitpos
, padding_correction
= 0;
2139 enum machine_mode copy_mode
;
2143 tgtblk
= assign_temp (build_qualified_type (type
,
2145 | TYPE_QUAL_CONST
)),
2147 preserve_temp_slots (tgtblk
);
2150 /* This code assumes srcreg is at least a full word. If it isn't, copy it
2151 into a new pseudo which is a full word. */
2153 if (GET_MODE (srcreg
) != BLKmode
2154 && GET_MODE_SIZE (GET_MODE (srcreg
)) < UNITS_PER_WORD
)
2155 srcreg
= convert_to_mode (word_mode
, srcreg
, TYPE_UNSIGNED (type
));
2157 /* If the structure doesn't take up a whole number of words, see whether
2158 SRCREG is padded on the left or on the right. If it's on the left,
2159 set PADDING_CORRECTION to the number of bits to skip.
2161 In most ABIs, the structure will be returned at the least end of
2162 the register, which translates to right padding on little-endian
2163 targets and left padding on big-endian targets. The opposite
2164 holds if the structure is returned at the most significant
2165 end of the register. */
2166 if (bytes
% UNITS_PER_WORD
!= 0
2167 && (targetm
.calls
.return_in_msb (type
)
2169 : BYTES_BIG_ENDIAN
))
2171 = (BITS_PER_WORD
- ((bytes
% UNITS_PER_WORD
) * BITS_PER_UNIT
));
2173 /* Copy the structure BITSIZE bits at a time. If the target lives in
2174 memory, take care of not reading/writing past its end by selecting
2175 a copy mode suited to BITSIZE. This should always be possible given
2178 We could probably emit more efficient code for machines which do not use
2179 strict alignment, but it doesn't seem worth the effort at the current
2182 copy_mode
= word_mode
;
2185 enum machine_mode mem_mode
= mode_for_size (bitsize
, MODE_INT
, 1);
2186 if (mem_mode
!= BLKmode
)
2187 copy_mode
= mem_mode
;
2190 for (bitpos
= 0, xbitpos
= padding_correction
;
2191 bitpos
< bytes
* BITS_PER_UNIT
;
2192 bitpos
+= bitsize
, xbitpos
+= bitsize
)
2194 /* We need a new source operand each time xbitpos is on a
2195 word boundary and when xbitpos == padding_correction
2196 (the first time through). */
2197 if (xbitpos
% BITS_PER_WORD
== 0
2198 || xbitpos
== padding_correction
)
2199 src
= operand_subword_force (srcreg
, xbitpos
/ BITS_PER_WORD
,
2202 /* We need a new destination operand each time bitpos is on
2204 if (bitpos
% BITS_PER_WORD
== 0)
2205 dst
= operand_subword (tgtblk
, bitpos
/ BITS_PER_WORD
, 1, BLKmode
);
2207 /* Use xbitpos for the source extraction (right justified) and
2208 bitpos for the destination store (left justified). */
2209 store_bit_field (dst
, bitsize
, bitpos
% BITS_PER_WORD
, copy_mode
,
2210 extract_bit_field (src
, bitsize
,
2211 xbitpos
% BITS_PER_WORD
, 1,
2212 NULL_RTX
, copy_mode
, copy_mode
));
2218 /* Add a USE expression for REG to the (possibly empty) list pointed
2219 to by CALL_FUSAGE. REG must denote a hard register. */
2222 use_reg (rtx
*call_fusage
, rtx reg
)
2224 gcc_assert (REG_P (reg
) && REGNO (reg
) < FIRST_PSEUDO_REGISTER
);
2227 = gen_rtx_EXPR_LIST (VOIDmode
,
2228 gen_rtx_USE (VOIDmode
, reg
), *call_fusage
);
2231 /* Add USE expressions to *CALL_FUSAGE for each of NREGS consecutive regs,
2232 starting at REGNO. All of these registers must be hard registers. */
2235 use_regs (rtx
*call_fusage
, int regno
, int nregs
)
2239 gcc_assert (regno
+ nregs
<= FIRST_PSEUDO_REGISTER
);
2241 for (i
= 0; i
< nregs
; i
++)
2242 use_reg (call_fusage
, regno_reg_rtx
[regno
+ i
]);
2245 /* Add USE expressions to *CALL_FUSAGE for each REG contained in the
2246 PARALLEL REGS. This is for calls that pass values in multiple
2247 non-contiguous locations. The Irix 6 ABI has examples of this. */
2250 use_group_regs (rtx
*call_fusage
, rtx regs
)
2254 for (i
= 0; i
< XVECLEN (regs
, 0); i
++)
2256 rtx reg
= XEXP (XVECEXP (regs
, 0, i
), 0);
2258 /* A NULL entry means the parameter goes both on the stack and in
2259 registers. This can also be a MEM for targets that pass values
2260 partially on the stack and partially in registers. */
2261 if (reg
!= 0 && REG_P (reg
))
2262 use_reg (call_fusage
, reg
);
2267 /* Determine whether the LEN bytes generated by CONSTFUN can be
2268 stored to memory using several move instructions. CONSTFUNDATA is
2269 a pointer which will be passed as argument in every CONSTFUN call.
2270 ALIGN is maximum alignment we can assume. MEMSETP is true if this is
2271 a memset operation and false if it's a copy of a constant string.
2272 Return nonzero if a call to store_by_pieces should succeed. */
2275 can_store_by_pieces (unsigned HOST_WIDE_INT len
,
2276 rtx (*constfun
) (void *, HOST_WIDE_INT
, enum machine_mode
),
2277 void *constfundata
, unsigned int align
, bool memsetp
)
2279 unsigned HOST_WIDE_INT l
;
2280 unsigned int max_size
;
2281 HOST_WIDE_INT offset
= 0;
2282 enum machine_mode mode
, tmode
;
2283 enum insn_code icode
;
2291 ? SET_BY_PIECES_P (len
, align
)
2292 : STORE_BY_PIECES_P (len
, align
)))
2295 tmode
= mode_for_size (STORE_MAX_PIECES
* BITS_PER_UNIT
, MODE_INT
, 1);
2296 if (align
>= GET_MODE_ALIGNMENT (tmode
))
2297 align
= GET_MODE_ALIGNMENT (tmode
);
2300 enum machine_mode xmode
;
2302 for (tmode
= GET_CLASS_NARROWEST_MODE (MODE_INT
), xmode
= tmode
;
2304 xmode
= tmode
, tmode
= GET_MODE_WIDER_MODE (tmode
))
2305 if (GET_MODE_SIZE (tmode
) > STORE_MAX_PIECES
2306 || SLOW_UNALIGNED_ACCESS (tmode
, align
))
2309 align
= MAX (align
, GET_MODE_ALIGNMENT (xmode
));
2312 /* We would first store what we can in the largest integer mode, then go to
2313 successively smaller modes. */
2316 reverse
<= (HAVE_PRE_DECREMENT
|| HAVE_POST_DECREMENT
);
2321 max_size
= STORE_MAX_PIECES
+ 1;
2322 while (max_size
> 1)
2324 for (tmode
= GET_CLASS_NARROWEST_MODE (MODE_INT
);
2325 tmode
!= VOIDmode
; tmode
= GET_MODE_WIDER_MODE (tmode
))
2326 if (GET_MODE_SIZE (tmode
) < max_size
)
2329 if (mode
== VOIDmode
)
2332 icode
= optab_handler (mov_optab
, mode
)->insn_code
;
2333 if (icode
!= CODE_FOR_nothing
2334 && align
>= GET_MODE_ALIGNMENT (mode
))
2336 unsigned int size
= GET_MODE_SIZE (mode
);
2343 cst
= (*constfun
) (constfundata
, offset
, mode
);
2344 if (!LEGITIMATE_CONSTANT_P (cst
))
2354 max_size
= GET_MODE_SIZE (mode
);
2357 /* The code above should have handled everything. */
2364 /* Generate several move instructions to store LEN bytes generated by
2365 CONSTFUN to block TO. (A MEM rtx with BLKmode). CONSTFUNDATA is a
2366 pointer which will be passed as argument in every CONSTFUN call.
2367 ALIGN is maximum alignment we can assume. MEMSETP is true if this is
2368 a memset operation and false if it's a copy of a constant string.
2369 If ENDP is 0 return to, if ENDP is 1 return memory at the end ala
2370 mempcpy, and if ENDP is 2 return memory the end minus one byte ala
2374 store_by_pieces (rtx to
, unsigned HOST_WIDE_INT len
,
2375 rtx (*constfun
) (void *, HOST_WIDE_INT
, enum machine_mode
),
2376 void *constfundata
, unsigned int align
, bool memsetp
, int endp
)
2378 struct store_by_pieces data
;
2382 gcc_assert (endp
!= 2);
2387 ? SET_BY_PIECES_P (len
, align
)
2388 : STORE_BY_PIECES_P (len
, align
));
2389 data
.constfun
= constfun
;
2390 data
.constfundata
= constfundata
;
2393 store_by_pieces_1 (&data
, align
);
2398 gcc_assert (!data
.reverse
);
2403 if (HAVE_POST_INCREMENT
&& data
.explicit_inc_to
> 0)
2404 emit_insn (gen_add2_insn (data
.to_addr
, constm1_rtx
));
2406 data
.to_addr
= copy_addr_to_reg (plus_constant (data
.to_addr
,
2409 to1
= adjust_automodify_address (data
.to
, QImode
, data
.to_addr
,
2416 to1
= adjust_address (data
.to
, QImode
, data
.offset
);
2424 /* Generate several move instructions to clear LEN bytes of block TO. (A MEM
2425 rtx with BLKmode). ALIGN is maximum alignment we can assume. */
2428 clear_by_pieces (rtx to
, unsigned HOST_WIDE_INT len
, unsigned int align
)
2430 struct store_by_pieces data
;
2435 data
.constfun
= clear_by_pieces_1
;
2436 data
.constfundata
= NULL
;
2439 store_by_pieces_1 (&data
, align
);
2442 /* Callback routine for clear_by_pieces.
2443 Return const0_rtx unconditionally. */
2446 clear_by_pieces_1 (void *data ATTRIBUTE_UNUSED
,
2447 HOST_WIDE_INT offset ATTRIBUTE_UNUSED
,
2448 enum machine_mode mode ATTRIBUTE_UNUSED
)
2453 /* Subroutine of clear_by_pieces and store_by_pieces.
2454 Generate several move instructions to store LEN bytes of block TO. (A MEM
2455 rtx with BLKmode). ALIGN is maximum alignment we can assume. */
2458 store_by_pieces_1 (struct store_by_pieces
*data ATTRIBUTE_UNUSED
,
2459 unsigned int align ATTRIBUTE_UNUSED
)
2461 rtx to_addr
= XEXP (data
->to
, 0);
2462 unsigned int max_size
= STORE_MAX_PIECES
+ 1;
2463 enum machine_mode mode
= VOIDmode
, tmode
;
2464 enum insn_code icode
;
2467 data
->to_addr
= to_addr
;
2469 = (GET_CODE (to_addr
) == PRE_INC
|| GET_CODE (to_addr
) == PRE_DEC
2470 || GET_CODE (to_addr
) == POST_INC
|| GET_CODE (to_addr
) == POST_DEC
);
2472 data
->explicit_inc_to
= 0;
2474 = (GET_CODE (to_addr
) == PRE_DEC
|| GET_CODE (to_addr
) == POST_DEC
);
2476 data
->offset
= data
->len
;
2478 /* If storing requires more than two move insns,
2479 copy addresses to registers (to make displacements shorter)
2480 and use post-increment if available. */
2481 if (!data
->autinc_to
2482 && move_by_pieces_ninsns (data
->len
, align
, max_size
) > 2)
2484 /* Determine the main mode we'll be using. */
2485 for (tmode
= GET_CLASS_NARROWEST_MODE (MODE_INT
);
2486 tmode
!= VOIDmode
; tmode
= GET_MODE_WIDER_MODE (tmode
))
2487 if (GET_MODE_SIZE (tmode
) < max_size
)
2490 if (USE_STORE_PRE_DECREMENT (mode
) && data
->reverse
&& ! data
->autinc_to
)
2492 data
->to_addr
= copy_addr_to_reg (plus_constant (to_addr
, data
->len
));
2493 data
->autinc_to
= 1;
2494 data
->explicit_inc_to
= -1;
2497 if (USE_STORE_POST_INCREMENT (mode
) && ! data
->reverse
2498 && ! data
->autinc_to
)
2500 data
->to_addr
= copy_addr_to_reg (to_addr
);
2501 data
->autinc_to
= 1;
2502 data
->explicit_inc_to
= 1;
2505 if ( !data
->autinc_to
&& CONSTANT_P (to_addr
))
2506 data
->to_addr
= copy_addr_to_reg (to_addr
);
2509 tmode
= mode_for_size (STORE_MAX_PIECES
* BITS_PER_UNIT
, MODE_INT
, 1);
2510 if (align
>= GET_MODE_ALIGNMENT (tmode
))
2511 align
= GET_MODE_ALIGNMENT (tmode
);
2514 enum machine_mode xmode
;
2516 for (tmode
= GET_CLASS_NARROWEST_MODE (MODE_INT
), xmode
= tmode
;
2518 xmode
= tmode
, tmode
= GET_MODE_WIDER_MODE (tmode
))
2519 if (GET_MODE_SIZE (tmode
) > STORE_MAX_PIECES
2520 || SLOW_UNALIGNED_ACCESS (tmode
, align
))
2523 align
= MAX (align
, GET_MODE_ALIGNMENT (xmode
));
2526 /* First store what we can in the largest integer mode, then go to
2527 successively smaller modes. */
2529 while (max_size
> 1)
2531 for (tmode
= GET_CLASS_NARROWEST_MODE (MODE_INT
);
2532 tmode
!= VOIDmode
; tmode
= GET_MODE_WIDER_MODE (tmode
))
2533 if (GET_MODE_SIZE (tmode
) < max_size
)
2536 if (mode
== VOIDmode
)
2539 icode
= optab_handler (mov_optab
, mode
)->insn_code
;
2540 if (icode
!= CODE_FOR_nothing
&& align
>= GET_MODE_ALIGNMENT (mode
))
2541 store_by_pieces_2 (GEN_FCN (icode
), mode
, data
);
2543 max_size
= GET_MODE_SIZE (mode
);
2546 /* The code above should have handled everything. */
2547 gcc_assert (!data
->len
);
2550 /* Subroutine of store_by_pieces_1. Store as many bytes as appropriate
2551 with move instructions for mode MODE. GENFUN is the gen_... function
2552 to make a move insn for that mode. DATA has all the other info. */
2555 store_by_pieces_2 (rtx (*genfun
) (rtx
, ...), enum machine_mode mode
,
2556 struct store_by_pieces
*data
)
2558 unsigned int size
= GET_MODE_SIZE (mode
);
2561 while (data
->len
>= size
)
2564 data
->offset
-= size
;
2566 if (data
->autinc_to
)
2567 to1
= adjust_automodify_address (data
->to
, mode
, data
->to_addr
,
2570 to1
= adjust_address (data
->to
, mode
, data
->offset
);
2572 if (HAVE_PRE_DECREMENT
&& data
->explicit_inc_to
< 0)
2573 emit_insn (gen_add2_insn (data
->to_addr
,
2574 GEN_INT (-(HOST_WIDE_INT
) size
)));
2576 cst
= (*data
->constfun
) (data
->constfundata
, data
->offset
, mode
);
2577 emit_insn ((*genfun
) (to1
, cst
));
2579 if (HAVE_POST_INCREMENT
&& data
->explicit_inc_to
> 0)
2580 emit_insn (gen_add2_insn (data
->to_addr
, GEN_INT (size
)));
2582 if (! data
->reverse
)
2583 data
->offset
+= size
;
2589 /* Write zeros through the storage of OBJECT. If OBJECT has BLKmode, SIZE is
2590 its length in bytes. */
2593 clear_storage_hints (rtx object
, rtx size
, enum block_op_methods method
,
2594 unsigned int expected_align
, HOST_WIDE_INT expected_size
)
2596 enum machine_mode mode
= GET_MODE (object
);
2599 gcc_assert (method
== BLOCK_OP_NORMAL
|| method
== BLOCK_OP_TAILCALL
);
2601 /* If OBJECT is not BLKmode and SIZE is the same size as its mode,
2602 just move a zero. Otherwise, do this a piece at a time. */
2604 && GET_CODE (size
) == CONST_INT
2605 && INTVAL (size
) == (HOST_WIDE_INT
) GET_MODE_SIZE (mode
))
2607 rtx zero
= CONST0_RTX (mode
);
2610 emit_move_insn (object
, zero
);
2614 if (COMPLEX_MODE_P (mode
))
2616 zero
= CONST0_RTX (GET_MODE_INNER (mode
));
2619 write_complex_part (object
, zero
, 0);
2620 write_complex_part (object
, zero
, 1);
2626 if (size
== const0_rtx
)
2629 align
= MEM_ALIGN (object
);
2631 if (GET_CODE (size
) == CONST_INT
2632 && CLEAR_BY_PIECES_P (INTVAL (size
), align
))
2633 clear_by_pieces (object
, INTVAL (size
), align
);
2634 else if (set_storage_via_setmem (object
, size
, const0_rtx
, align
,
2635 expected_align
, expected_size
))
2638 return set_storage_via_libcall (object
, size
, const0_rtx
,
2639 method
== BLOCK_OP_TAILCALL
);
2645 clear_storage (rtx object
, rtx size
, enum block_op_methods method
)
2647 return clear_storage_hints (object
, size
, method
, 0, -1);
2651 /* A subroutine of clear_storage. Expand a call to memset.
2652 Return the return value of memset, 0 otherwise. */
2655 set_storage_via_libcall (rtx object
, rtx size
, rtx val
, bool tailcall
)
2657 tree call_expr
, fn
, object_tree
, size_tree
, val_tree
;
2658 enum machine_mode size_mode
;
2661 /* Emit code to copy OBJECT and SIZE into new pseudos. We can then
2662 place those into new pseudos into a VAR_DECL and use them later. */
2664 object
= copy_to_mode_reg (Pmode
, XEXP (object
, 0));
2666 size_mode
= TYPE_MODE (sizetype
);
2667 size
= convert_to_mode (size_mode
, size
, 1);
2668 size
= copy_to_mode_reg (size_mode
, size
);
2670 /* It is incorrect to use the libcall calling conventions to call
2671 memset in this context. This could be a user call to memset and
2672 the user may wish to examine the return value from memset. For
2673 targets where libcalls and normal calls have different conventions
2674 for returning pointers, we could end up generating incorrect code. */
2676 object_tree
= make_tree (ptr_type_node
, object
);
2677 if (GET_CODE (val
) != CONST_INT
)
2678 val
= convert_to_mode (TYPE_MODE (integer_type_node
), val
, 1);
2679 size_tree
= make_tree (sizetype
, size
);
2680 val_tree
= make_tree (integer_type_node
, val
);
2682 fn
= clear_storage_libcall_fn (true);
2683 call_expr
= build_call_expr (fn
, 3,
2684 object_tree
, integer_zero_node
, size_tree
);
2685 CALL_EXPR_TAILCALL (call_expr
) = tailcall
;
2687 retval
= expand_normal (call_expr
);
2692 /* A subroutine of set_storage_via_libcall. Create the tree node
2693 for the function we use for block clears. The first time FOR_CALL
2694 is true, we call assemble_external. */
2696 static GTY(()) tree block_clear_fn
;
2699 init_block_clear_fn (const char *asmspec
)
2701 if (!block_clear_fn
)
2705 fn
= get_identifier ("memset");
2706 args
= build_function_type_list (ptr_type_node
, ptr_type_node
,
2707 integer_type_node
, sizetype
,
2710 fn
= build_decl (FUNCTION_DECL
, fn
, args
);
2711 DECL_EXTERNAL (fn
) = 1;
2712 TREE_PUBLIC (fn
) = 1;
2713 DECL_ARTIFICIAL (fn
) = 1;
2714 TREE_NOTHROW (fn
) = 1;
2715 DECL_VISIBILITY (fn
) = VISIBILITY_DEFAULT
;
2716 DECL_VISIBILITY_SPECIFIED (fn
) = 1;
2718 block_clear_fn
= fn
;
2722 set_user_assembler_name (block_clear_fn
, asmspec
);
2726 clear_storage_libcall_fn (int for_call
)
2728 static bool emitted_extern
;
2730 if (!block_clear_fn
)
2731 init_block_clear_fn (NULL
);
2733 if (for_call
&& !emitted_extern
)
2735 emitted_extern
= true;
2736 make_decl_rtl (block_clear_fn
);
2737 assemble_external (block_clear_fn
);
2740 return block_clear_fn
;
2743 /* Expand a setmem pattern; return true if successful. */
2746 set_storage_via_setmem (rtx object
, rtx size
, rtx val
, unsigned int align
,
2747 unsigned int expected_align
, HOST_WIDE_INT expected_size
)
2749 /* Try the most limited insn first, because there's no point
2750 including more than one in the machine description unless
2751 the more limited one has some advantage. */
2753 rtx opalign
= GEN_INT (align
/ BITS_PER_UNIT
);
2754 enum machine_mode mode
;
2756 if (expected_align
< align
)
2757 expected_align
= align
;
2759 for (mode
= GET_CLASS_NARROWEST_MODE (MODE_INT
); mode
!= VOIDmode
;
2760 mode
= GET_MODE_WIDER_MODE (mode
))
2762 enum insn_code code
= setmem_optab
[(int) mode
];
2763 insn_operand_predicate_fn pred
;
2765 if (code
!= CODE_FOR_nothing
2766 /* We don't need MODE to be narrower than
2767 BITS_PER_HOST_WIDE_INT here because if SIZE is less than
2768 the mode mask, as it is returned by the macro, it will
2769 definitely be less than the actual mode mask. */
2770 && ((GET_CODE (size
) == CONST_INT
2771 && ((unsigned HOST_WIDE_INT
) INTVAL (size
)
2772 <= (GET_MODE_MASK (mode
) >> 1)))
2773 || GET_MODE_BITSIZE (mode
) >= BITS_PER_WORD
)
2774 && ((pred
= insn_data
[(int) code
].operand
[0].predicate
) == 0
2775 || (*pred
) (object
, BLKmode
))
2776 && ((pred
= insn_data
[(int) code
].operand
[3].predicate
) == 0
2777 || (*pred
) (opalign
, VOIDmode
)))
2780 enum machine_mode char_mode
;
2781 rtx last
= get_last_insn ();
2784 opsize
= convert_to_mode (mode
, size
, 1);
2785 pred
= insn_data
[(int) code
].operand
[1].predicate
;
2786 if (pred
!= 0 && ! (*pred
) (opsize
, mode
))
2787 opsize
= copy_to_mode_reg (mode
, opsize
);
2790 char_mode
= insn_data
[(int) code
].operand
[2].mode
;
2791 if (char_mode
!= VOIDmode
)
2793 opchar
= convert_to_mode (char_mode
, opchar
, 1);
2794 pred
= insn_data
[(int) code
].operand
[2].predicate
;
2795 if (pred
!= 0 && ! (*pred
) (opchar
, char_mode
))
2796 opchar
= copy_to_mode_reg (char_mode
, opchar
);
2799 if (insn_data
[(int) code
].n_operands
== 4)
2800 pat
= GEN_FCN ((int) code
) (object
, opsize
, opchar
, opalign
);
2802 pat
= GEN_FCN ((int) code
) (object
, opsize
, opchar
, opalign
,
2803 GEN_INT (expected_align
2805 GEN_INT (expected_size
));
2812 delete_insns_since (last
);
2820 /* Write to one of the components of the complex value CPLX. Write VAL to
2821 the real part if IMAG_P is false, and the imaginary part if its true. */
2824 write_complex_part (rtx cplx
, rtx val
, bool imag_p
)
2826 enum machine_mode cmode
;
2827 enum machine_mode imode
;
2830 if (GET_CODE (cplx
) == CONCAT
)
2832 emit_move_insn (XEXP (cplx
, imag_p
), val
);
2836 cmode
= GET_MODE (cplx
);
2837 imode
= GET_MODE_INNER (cmode
);
2838 ibitsize
= GET_MODE_BITSIZE (imode
);
2840 /* For MEMs simplify_gen_subreg may generate an invalid new address
2841 because, e.g., the original address is considered mode-dependent
2842 by the target, which restricts simplify_subreg from invoking
2843 adjust_address_nv. Instead of preparing fallback support for an
2844 invalid address, we call adjust_address_nv directly. */
2847 emit_move_insn (adjust_address_nv (cplx
, imode
,
2848 imag_p
? GET_MODE_SIZE (imode
) : 0),
2853 /* If the sub-object is at least word sized, then we know that subregging
2854 will work. This special case is important, since store_bit_field
2855 wants to operate on integer modes, and there's rarely an OImode to
2856 correspond to TCmode. */
2857 if (ibitsize
>= BITS_PER_WORD
2858 /* For hard regs we have exact predicates. Assume we can split
2859 the original object if it spans an even number of hard regs.
2860 This special case is important for SCmode on 64-bit platforms
2861 where the natural size of floating-point regs is 32-bit. */
2863 && REGNO (cplx
) < FIRST_PSEUDO_REGISTER
2864 && hard_regno_nregs
[REGNO (cplx
)][cmode
] % 2 == 0))
2866 rtx part
= simplify_gen_subreg (imode
, cplx
, cmode
,
2867 imag_p
? GET_MODE_SIZE (imode
) : 0);
2870 emit_move_insn (part
, val
);
2874 /* simplify_gen_subreg may fail for sub-word MEMs. */
2875 gcc_assert (MEM_P (cplx
) && ibitsize
< BITS_PER_WORD
);
2878 store_bit_field (cplx
, ibitsize
, imag_p
? ibitsize
: 0, imode
, val
);
2881 /* Extract one of the components of the complex value CPLX. Extract the
2882 real part if IMAG_P is false, and the imaginary part if it's true. */
2885 read_complex_part (rtx cplx
, bool imag_p
)
2887 enum machine_mode cmode
, imode
;
2890 if (GET_CODE (cplx
) == CONCAT
)
2891 return XEXP (cplx
, imag_p
);
2893 cmode
= GET_MODE (cplx
);
2894 imode
= GET_MODE_INNER (cmode
);
2895 ibitsize
= GET_MODE_BITSIZE (imode
);
2897 /* Special case reads from complex constants that got spilled to memory. */
2898 if (MEM_P (cplx
) && GET_CODE (XEXP (cplx
, 0)) == SYMBOL_REF
)
2900 tree decl
= SYMBOL_REF_DECL (XEXP (cplx
, 0));
2901 if (decl
&& TREE_CODE (decl
) == COMPLEX_CST
)
2903 tree part
= imag_p
? TREE_IMAGPART (decl
) : TREE_REALPART (decl
);
2904 if (CONSTANT_CLASS_P (part
))
2905 return expand_expr (part
, NULL_RTX
, imode
, EXPAND_NORMAL
);
2909 /* For MEMs simplify_gen_subreg may generate an invalid new address
2910 because, e.g., the original address is considered mode-dependent
2911 by the target, which restricts simplify_subreg from invoking
2912 adjust_address_nv. Instead of preparing fallback support for an
2913 invalid address, we call adjust_address_nv directly. */
2915 return adjust_address_nv (cplx
, imode
,
2916 imag_p
? GET_MODE_SIZE (imode
) : 0);
2918 /* If the sub-object is at least word sized, then we know that subregging
2919 will work. This special case is important, since extract_bit_field
2920 wants to operate on integer modes, and there's rarely an OImode to
2921 correspond to TCmode. */
2922 if (ibitsize
>= BITS_PER_WORD
2923 /* For hard regs we have exact predicates. Assume we can split
2924 the original object if it spans an even number of hard regs.
2925 This special case is important for SCmode on 64-bit platforms
2926 where the natural size of floating-point regs is 32-bit. */
2928 && REGNO (cplx
) < FIRST_PSEUDO_REGISTER
2929 && hard_regno_nregs
[REGNO (cplx
)][cmode
] % 2 == 0))
2931 rtx ret
= simplify_gen_subreg (imode
, cplx
, cmode
,
2932 imag_p
? GET_MODE_SIZE (imode
) : 0);
2936 /* simplify_gen_subreg may fail for sub-word MEMs. */
2937 gcc_assert (MEM_P (cplx
) && ibitsize
< BITS_PER_WORD
);
2940 return extract_bit_field (cplx
, ibitsize
, imag_p
? ibitsize
: 0,
2941 true, NULL_RTX
, imode
, imode
);
2944 /* A subroutine of emit_move_insn_1. Yet another lowpart generator.
2945 NEW_MODE and OLD_MODE are the same size. Return NULL if X cannot be
2946 represented in NEW_MODE. If FORCE is true, this will never happen, as
2947 we'll force-create a SUBREG if needed. */
2950 emit_move_change_mode (enum machine_mode new_mode
,
2951 enum machine_mode old_mode
, rtx x
, bool force
)
2955 if (push_operand (x
, GET_MODE (x
)))
2957 ret
= gen_rtx_MEM (new_mode
, XEXP (x
, 0));
2958 MEM_COPY_ATTRIBUTES (ret
, x
);
2962 /* We don't have to worry about changing the address since the
2963 size in bytes is supposed to be the same. */
2964 if (reload_in_progress
)
2966 /* Copy the MEM to change the mode and move any
2967 substitutions from the old MEM to the new one. */
2968 ret
= adjust_address_nv (x
, new_mode
, 0);
2969 copy_replacements (x
, ret
);
2972 ret
= adjust_address (x
, new_mode
, 0);
2976 /* Note that we do want simplify_subreg's behavior of validating
2977 that the new mode is ok for a hard register. If we were to use
2978 simplify_gen_subreg, we would create the subreg, but would
2979 probably run into the target not being able to implement it. */
2980 /* Except, of course, when FORCE is true, when this is exactly what
2981 we want. Which is needed for CCmodes on some targets. */
2983 ret
= simplify_gen_subreg (new_mode
, x
, old_mode
, 0);
2985 ret
= simplify_subreg (new_mode
, x
, old_mode
, 0);
2991 /* A subroutine of emit_move_insn_1. Generate a move from Y into X using
2992 an integer mode of the same size as MODE. Returns the instruction
2993 emitted, or NULL if such a move could not be generated. */
2996 emit_move_via_integer (enum machine_mode mode
, rtx x
, rtx y
, bool force
)
2998 enum machine_mode imode
;
2999 enum insn_code code
;
3001 /* There must exist a mode of the exact size we require. */
3002 imode
= int_mode_for_mode (mode
);
3003 if (imode
== BLKmode
)
3006 /* The target must support moves in this mode. */
3007 code
= optab_handler (mov_optab
, imode
)->insn_code
;
3008 if (code
== CODE_FOR_nothing
)
3011 x
= emit_move_change_mode (imode
, mode
, x
, force
);
3014 y
= emit_move_change_mode (imode
, mode
, y
, force
);
3017 return emit_insn (GEN_FCN (code
) (x
, y
));
3020 /* A subroutine of emit_move_insn_1. X is a push_operand in MODE.
3021 Return an equivalent MEM that does not use an auto-increment. */
3024 emit_move_resolve_push (enum machine_mode mode
, rtx x
)
3026 enum rtx_code code
= GET_CODE (XEXP (x
, 0));
3027 HOST_WIDE_INT adjust
;
3030 adjust
= GET_MODE_SIZE (mode
);
3031 #ifdef PUSH_ROUNDING
3032 adjust
= PUSH_ROUNDING (adjust
);
3034 if (code
== PRE_DEC
|| code
== POST_DEC
)
3036 else if (code
== PRE_MODIFY
|| code
== POST_MODIFY
)
3038 rtx expr
= XEXP (XEXP (x
, 0), 1);
3041 gcc_assert (GET_CODE (expr
) == PLUS
|| GET_CODE (expr
) == MINUS
);
3042 gcc_assert (GET_CODE (XEXP (expr
, 1)) == CONST_INT
);
3043 val
= INTVAL (XEXP (expr
, 1));
3044 if (GET_CODE (expr
) == MINUS
)
3046 gcc_assert (adjust
== val
|| adjust
== -val
);
3050 /* Do not use anti_adjust_stack, since we don't want to update
3051 stack_pointer_delta. */
3052 temp
= expand_simple_binop (Pmode
, PLUS
, stack_pointer_rtx
,
3053 GEN_INT (adjust
), stack_pointer_rtx
,
3054 0, OPTAB_LIB_WIDEN
);
3055 if (temp
!= stack_pointer_rtx
)
3056 emit_move_insn (stack_pointer_rtx
, temp
);
3063 temp
= stack_pointer_rtx
;
3068 temp
= plus_constant (stack_pointer_rtx
, -adjust
);
3074 return replace_equiv_address (x
, temp
);
3077 /* A subroutine of emit_move_complex. Generate a move from Y into X.
3078 X is known to satisfy push_operand, and MODE is known to be complex.
3079 Returns the last instruction emitted. */
3082 emit_move_complex_push (enum machine_mode mode
, rtx x
, rtx y
)
3084 enum machine_mode submode
= GET_MODE_INNER (mode
);
3087 #ifdef PUSH_ROUNDING
3088 unsigned int submodesize
= GET_MODE_SIZE (submode
);
3090 /* In case we output to the stack, but the size is smaller than the
3091 machine can push exactly, we need to use move instructions. */
3092 if (PUSH_ROUNDING (submodesize
) != submodesize
)
3094 x
= emit_move_resolve_push (mode
, x
);
3095 return emit_move_insn (x
, y
);
3099 /* Note that the real part always precedes the imag part in memory
3100 regardless of machine's endianness. */
3101 switch (GET_CODE (XEXP (x
, 0)))
3115 emit_move_insn (gen_rtx_MEM (submode
, XEXP (x
, 0)),
3116 read_complex_part (y
, imag_first
));
3117 return emit_move_insn (gen_rtx_MEM (submode
, XEXP (x
, 0)),
3118 read_complex_part (y
, !imag_first
));
3121 /* A subroutine of emit_move_complex. Perform the move from Y to X
3122 via two moves of the parts. Returns the last instruction emitted. */
3125 emit_move_complex_parts (rtx x
, rtx y
)
3127 /* Show the output dies here. This is necessary for SUBREGs
3128 of pseudos since we cannot track their lifetimes correctly;
3129 hard regs shouldn't appear here except as return values. */
3130 if (!reload_completed
&& !reload_in_progress
3131 && REG_P (x
) && !reg_overlap_mentioned_p (x
, y
))
3134 write_complex_part (x
, read_complex_part (y
, false), false);
3135 write_complex_part (x
, read_complex_part (y
, true), true);
3137 return get_last_insn ();
3140 /* A subroutine of emit_move_insn_1. Generate a move from Y into X.
3141 MODE is known to be complex. Returns the last instruction emitted. */
3144 emit_move_complex (enum machine_mode mode
, rtx x
, rtx y
)
3148 /* Need to take special care for pushes, to maintain proper ordering
3149 of the data, and possibly extra padding. */
3150 if (push_operand (x
, mode
))
3151 return emit_move_complex_push (mode
, x
, y
);
3153 /* See if we can coerce the target into moving both values at once. */
3155 /* Move floating point as parts. */
3156 if (GET_MODE_CLASS (mode
) == MODE_COMPLEX_FLOAT
3157 && optab_handler (mov_optab
, GET_MODE_INNER (mode
))->insn_code
!= CODE_FOR_nothing
)
3159 /* Not possible if the values are inherently not adjacent. */
3160 else if (GET_CODE (x
) == CONCAT
|| GET_CODE (y
) == CONCAT
)
3162 /* Is possible if both are registers (or subregs of registers). */
3163 else if (register_operand (x
, mode
) && register_operand (y
, mode
))
3165 /* If one of the operands is a memory, and alignment constraints
3166 are friendly enough, we may be able to do combined memory operations.
3167 We do not attempt this if Y is a constant because that combination is
3168 usually better with the by-parts thing below. */
3169 else if ((MEM_P (x
) ? !CONSTANT_P (y
) : MEM_P (y
))
3170 && (!STRICT_ALIGNMENT
3171 || get_mode_alignment (mode
) == BIGGEST_ALIGNMENT
))
3180 /* For memory to memory moves, optimal behavior can be had with the
3181 existing block move logic. */
3182 if (MEM_P (x
) && MEM_P (y
))
3184 emit_block_move (x
, y
, GEN_INT (GET_MODE_SIZE (mode
)),
3185 BLOCK_OP_NO_LIBCALL
);
3186 return get_last_insn ();
3189 ret
= emit_move_via_integer (mode
, x
, y
, true);
3194 return emit_move_complex_parts (x
, y
);
3197 /* A subroutine of emit_move_insn_1. Generate a move from Y into X.
3198 MODE is known to be MODE_CC. Returns the last instruction emitted. */
3201 emit_move_ccmode (enum machine_mode mode
, rtx x
, rtx y
)
3205 /* Assume all MODE_CC modes are equivalent; if we have movcc, use it. */
3208 enum insn_code code
= optab_handler (mov_optab
, CCmode
)->insn_code
;
3209 if (code
!= CODE_FOR_nothing
)
3211 x
= emit_move_change_mode (CCmode
, mode
, x
, true);
3212 y
= emit_move_change_mode (CCmode
, mode
, y
, true);
3213 return emit_insn (GEN_FCN (code
) (x
, y
));
3217 /* Otherwise, find the MODE_INT mode of the same width. */
3218 ret
= emit_move_via_integer (mode
, x
, y
, false);
3219 gcc_assert (ret
!= NULL
);
3223 /* Return true if word I of OP lies entirely in the
3224 undefined bits of a paradoxical subreg. */
3227 undefined_operand_subword_p (const_rtx op
, int i
)
3229 enum machine_mode innermode
, innermostmode
;
3231 if (GET_CODE (op
) != SUBREG
)
3233 innermode
= GET_MODE (op
);
3234 innermostmode
= GET_MODE (SUBREG_REG (op
));
3235 offset
= i
* UNITS_PER_WORD
+ SUBREG_BYTE (op
);
3236 /* The SUBREG_BYTE represents offset, as if the value were stored in
3237 memory, except for a paradoxical subreg where we define
3238 SUBREG_BYTE to be 0; undo this exception as in
3240 if (SUBREG_BYTE (op
) == 0
3241 && GET_MODE_SIZE (innermostmode
) < GET_MODE_SIZE (innermode
))
3243 int difference
= (GET_MODE_SIZE (innermostmode
) - GET_MODE_SIZE (innermode
));
3244 if (WORDS_BIG_ENDIAN
)
3245 offset
+= (difference
/ UNITS_PER_WORD
) * UNITS_PER_WORD
;
3246 if (BYTES_BIG_ENDIAN
)
3247 offset
+= difference
% UNITS_PER_WORD
;
3249 if (offset
>= GET_MODE_SIZE (innermostmode
)
3250 || offset
<= -GET_MODE_SIZE (word_mode
))
3255 /* A subroutine of emit_move_insn_1. Generate a move from Y into X.
3256 MODE is any multi-word or full-word mode that lacks a move_insn
3257 pattern. Note that you will get better code if you define such
3258 patterns, even if they must turn into multiple assembler instructions. */
3261 emit_move_multi_word (enum machine_mode mode
, rtx x
, rtx y
)
3268 gcc_assert (GET_MODE_SIZE (mode
) >= UNITS_PER_WORD
);
3270 /* If X is a push on the stack, do the push now and replace
3271 X with a reference to the stack pointer. */
3272 if (push_operand (x
, mode
))
3273 x
= emit_move_resolve_push (mode
, x
);
3275 /* If we are in reload, see if either operand is a MEM whose address
3276 is scheduled for replacement. */
3277 if (reload_in_progress
&& MEM_P (x
)
3278 && (inner
= find_replacement (&XEXP (x
, 0))) != XEXP (x
, 0))
3279 x
= replace_equiv_address_nv (x
, inner
);
3280 if (reload_in_progress
&& MEM_P (y
)
3281 && (inner
= find_replacement (&XEXP (y
, 0))) != XEXP (y
, 0))
3282 y
= replace_equiv_address_nv (y
, inner
);
3286 need_clobber
= false;
3288 i
< (GET_MODE_SIZE (mode
) + (UNITS_PER_WORD
- 1)) / UNITS_PER_WORD
;
3291 rtx xpart
= operand_subword (x
, i
, 1, mode
);
3294 /* Do not generate code for a move if it would come entirely
3295 from the undefined bits of a paradoxical subreg. */
3296 if (undefined_operand_subword_p (y
, i
))
3299 ypart
= operand_subword (y
, i
, 1, mode
);
3301 /* If we can't get a part of Y, put Y into memory if it is a
3302 constant. Otherwise, force it into a register. Then we must
3303 be able to get a part of Y. */
3304 if (ypart
== 0 && CONSTANT_P (y
))
3306 y
= use_anchored_address (force_const_mem (mode
, y
));
3307 ypart
= operand_subword (y
, i
, 1, mode
);
3309 else if (ypart
== 0)
3310 ypart
= operand_subword_force (y
, i
, mode
);
3312 gcc_assert (xpart
&& ypart
);
3314 need_clobber
|= (GET_CODE (xpart
) == SUBREG
);
3316 last_insn
= emit_move_insn (xpart
, ypart
);
3322 /* Show the output dies here. This is necessary for SUBREGs
3323 of pseudos since we cannot track their lifetimes correctly;
3324 hard regs shouldn't appear here except as return values.
3325 We never want to emit such a clobber after reload. */
3327 && ! (reload_in_progress
|| reload_completed
)
3328 && need_clobber
!= 0)
3336 /* Low level part of emit_move_insn.
3337 Called just like emit_move_insn, but assumes X and Y
3338 are basically valid. */
3341 emit_move_insn_1 (rtx x
, rtx y
)
3343 enum machine_mode mode
= GET_MODE (x
);
3344 enum insn_code code
;
3346 gcc_assert ((unsigned int) mode
< (unsigned int) MAX_MACHINE_MODE
);
3348 code
= optab_handler (mov_optab
, mode
)->insn_code
;
3349 if (code
!= CODE_FOR_nothing
)
3350 return emit_insn (GEN_FCN (code
) (x
, y
));
3352 /* Expand complex moves by moving real part and imag part. */
3353 if (COMPLEX_MODE_P (mode
))
3354 return emit_move_complex (mode
, x
, y
);
3356 if (GET_MODE_CLASS (mode
) == MODE_DECIMAL_FLOAT
3357 || ALL_FIXED_POINT_MODE_P (mode
))
3359 rtx result
= emit_move_via_integer (mode
, x
, y
, true);
3361 /* If we can't find an integer mode, use multi words. */
3365 return emit_move_multi_word (mode
, x
, y
);
3368 if (GET_MODE_CLASS (mode
) == MODE_CC
)
3369 return emit_move_ccmode (mode
, x
, y
);
3371 /* Try using a move pattern for the corresponding integer mode. This is
3372 only safe when simplify_subreg can convert MODE constants into integer
3373 constants. At present, it can only do this reliably if the value
3374 fits within a HOST_WIDE_INT. */
3375 if (!CONSTANT_P (y
) || GET_MODE_BITSIZE (mode
) <= HOST_BITS_PER_WIDE_INT
)
3377 rtx ret
= emit_move_via_integer (mode
, x
, y
, false);
3382 return emit_move_multi_word (mode
, x
, y
);
3385 /* Generate code to copy Y into X.
3386 Both Y and X must have the same mode, except that
3387 Y can be a constant with VOIDmode.
3388 This mode cannot be BLKmode; use emit_block_move for that.
3390 Return the last instruction emitted. */
3393 emit_move_insn (rtx x
, rtx y
)
3395 enum machine_mode mode
= GET_MODE (x
);
3396 rtx y_cst
= NULL_RTX
;
3399 gcc_assert (mode
!= BLKmode
3400 && (GET_MODE (y
) == mode
|| GET_MODE (y
) == VOIDmode
));
3405 && SCALAR_FLOAT_MODE_P (GET_MODE (x
))
3406 && (last_insn
= compress_float_constant (x
, y
)))
3411 if (!LEGITIMATE_CONSTANT_P (y
))
3413 y
= force_const_mem (mode
, y
);
3415 /* If the target's cannot_force_const_mem prevented the spill,
3416 assume that the target's move expanders will also take care
3417 of the non-legitimate constant. */
3421 y
= use_anchored_address (y
);
3425 /* If X or Y are memory references, verify that their addresses are valid
3428 && (! memory_address_p (GET_MODE (x
), XEXP (x
, 0))
3429 && ! push_operand (x
, GET_MODE (x
))))
3430 x
= validize_mem (x
);
3433 && ! memory_address_p (GET_MODE (y
), XEXP (y
, 0)))
3434 y
= validize_mem (y
);
3436 gcc_assert (mode
!= BLKmode
);
3438 last_insn
= emit_move_insn_1 (x
, y
);
3440 if (y_cst
&& REG_P (x
)
3441 && (set
= single_set (last_insn
)) != NULL_RTX
3442 && SET_DEST (set
) == x
3443 && ! rtx_equal_p (y_cst
, SET_SRC (set
)))
3444 set_unique_reg_note (last_insn
, REG_EQUAL
, y_cst
);
3449 /* If Y is representable exactly in a narrower mode, and the target can
3450 perform the extension directly from constant or memory, then emit the
3451 move as an extension. */
3454 compress_float_constant (rtx x
, rtx y
)
3456 enum machine_mode dstmode
= GET_MODE (x
);
3457 enum machine_mode orig_srcmode
= GET_MODE (y
);
3458 enum machine_mode srcmode
;
3460 int oldcost
, newcost
;
3461 bool speed
= optimize_insn_for_speed_p ();
3463 REAL_VALUE_FROM_CONST_DOUBLE (r
, y
);
3465 if (LEGITIMATE_CONSTANT_P (y
))
3466 oldcost
= rtx_cost (y
, SET
, speed
);
3468 oldcost
= rtx_cost (force_const_mem (dstmode
, y
), SET
, speed
);
3470 for (srcmode
= GET_CLASS_NARROWEST_MODE (GET_MODE_CLASS (orig_srcmode
));
3471 srcmode
!= orig_srcmode
;
3472 srcmode
= GET_MODE_WIDER_MODE (srcmode
))
3475 rtx trunc_y
, last_insn
;
3477 /* Skip if the target can't extend this way. */
3478 ic
= can_extend_p (dstmode
, srcmode
, 0);
3479 if (ic
== CODE_FOR_nothing
)
3482 /* Skip if the narrowed value isn't exact. */
3483 if (! exact_real_truncate (srcmode
, &r
))
3486 trunc_y
= CONST_DOUBLE_FROM_REAL_VALUE (r
, srcmode
);
3488 if (LEGITIMATE_CONSTANT_P (trunc_y
))
3490 /* Skip if the target needs extra instructions to perform
3492 if (! (*insn_data
[ic
].operand
[1].predicate
) (trunc_y
, srcmode
))
3494 /* This is valid, but may not be cheaper than the original. */
3495 newcost
= rtx_cost (gen_rtx_FLOAT_EXTEND (dstmode
, trunc_y
), SET
, speed
);
3496 if (oldcost
< newcost
)
3499 else if (float_extend_from_mem
[dstmode
][srcmode
])
3501 trunc_y
= force_const_mem (srcmode
, trunc_y
);
3502 /* This is valid, but may not be cheaper than the original. */
3503 newcost
= rtx_cost (gen_rtx_FLOAT_EXTEND (dstmode
, trunc_y
), SET
, speed
);
3504 if (oldcost
< newcost
)
3506 trunc_y
= validize_mem (trunc_y
);
3511 /* For CSE's benefit, force the compressed constant pool entry
3512 into a new pseudo. This constant may be used in different modes,
3513 and if not, combine will put things back together for us. */
3514 trunc_y
= force_reg (srcmode
, trunc_y
);
3515 emit_unop_insn (ic
, x
, trunc_y
, UNKNOWN
);
3516 last_insn
= get_last_insn ();
3519 set_unique_reg_note (last_insn
, REG_EQUAL
, y
);
3527 /* Pushing data onto the stack. */
3529 /* Push a block of length SIZE (perhaps variable)
3530 and return an rtx to address the beginning of the block.
3531 The value may be virtual_outgoing_args_rtx.
3533 EXTRA is the number of bytes of padding to push in addition to SIZE.
3534 BELOW nonzero means this padding comes at low addresses;
3535 otherwise, the padding comes at high addresses. */
3538 push_block (rtx size
, int extra
, int below
)
3542 size
= convert_modes (Pmode
, ptr_mode
, size
, 1);
3543 if (CONSTANT_P (size
))
3544 anti_adjust_stack (plus_constant (size
, extra
));
3545 else if (REG_P (size
) && extra
== 0)
3546 anti_adjust_stack (size
);
3549 temp
= copy_to_mode_reg (Pmode
, size
);
3551 temp
= expand_binop (Pmode
, add_optab
, temp
, GEN_INT (extra
),
3552 temp
, 0, OPTAB_LIB_WIDEN
);
3553 anti_adjust_stack (temp
);
3556 #ifndef STACK_GROWS_DOWNWARD
3562 temp
= virtual_outgoing_args_rtx
;
3563 if (extra
!= 0 && below
)
3564 temp
= plus_constant (temp
, extra
);
3568 if (GET_CODE (size
) == CONST_INT
)
3569 temp
= plus_constant (virtual_outgoing_args_rtx
,
3570 -INTVAL (size
) - (below
? 0 : extra
));
3571 else if (extra
!= 0 && !below
)
3572 temp
= gen_rtx_PLUS (Pmode
, virtual_outgoing_args_rtx
,
3573 negate_rtx (Pmode
, plus_constant (size
, extra
)));
3575 temp
= gen_rtx_PLUS (Pmode
, virtual_outgoing_args_rtx
,
3576 negate_rtx (Pmode
, size
));
3579 return memory_address (GET_CLASS_NARROWEST_MODE (MODE_INT
), temp
);
3582 #ifdef PUSH_ROUNDING
3584 /* Emit single push insn. */
3587 emit_single_push_insn (enum machine_mode mode
, rtx x
, tree type
)
3590 unsigned rounded_size
= PUSH_ROUNDING (GET_MODE_SIZE (mode
));
3592 enum insn_code icode
;
3593 insn_operand_predicate_fn pred
;
3595 stack_pointer_delta
+= PUSH_ROUNDING (GET_MODE_SIZE (mode
));
3596 /* If there is push pattern, use it. Otherwise try old way of throwing
3597 MEM representing push operation to move expander. */
3598 icode
= optab_handler (push_optab
, mode
)->insn_code
;
3599 if (icode
!= CODE_FOR_nothing
)
3601 if (((pred
= insn_data
[(int) icode
].operand
[0].predicate
)
3602 && !((*pred
) (x
, mode
))))
3603 x
= force_reg (mode
, x
);
3604 emit_insn (GEN_FCN (icode
) (x
));
3607 if (GET_MODE_SIZE (mode
) == rounded_size
)
3608 dest_addr
= gen_rtx_fmt_e (STACK_PUSH_CODE
, Pmode
, stack_pointer_rtx
);
3609 /* If we are to pad downward, adjust the stack pointer first and
3610 then store X into the stack location using an offset. This is
3611 because emit_move_insn does not know how to pad; it does not have
3613 else if (FUNCTION_ARG_PADDING (mode
, type
) == downward
)
3615 unsigned padding_size
= rounded_size
- GET_MODE_SIZE (mode
);
3616 HOST_WIDE_INT offset
;
3618 emit_move_insn (stack_pointer_rtx
,
3619 expand_binop (Pmode
,
3620 #ifdef STACK_GROWS_DOWNWARD
3626 GEN_INT (rounded_size
),
3627 NULL_RTX
, 0, OPTAB_LIB_WIDEN
));
3629 offset
= (HOST_WIDE_INT
) padding_size
;
3630 #ifdef STACK_GROWS_DOWNWARD
3631 if (STACK_PUSH_CODE
== POST_DEC
)
3632 /* We have already decremented the stack pointer, so get the
3634 offset
+= (HOST_WIDE_INT
) rounded_size
;
3636 if (STACK_PUSH_CODE
== POST_INC
)
3637 /* We have already incremented the stack pointer, so get the
3639 offset
-= (HOST_WIDE_INT
) rounded_size
;
3641 dest_addr
= gen_rtx_PLUS (Pmode
, stack_pointer_rtx
, GEN_INT (offset
));
3645 #ifdef STACK_GROWS_DOWNWARD
3646 /* ??? This seems wrong if STACK_PUSH_CODE == POST_DEC. */
3647 dest_addr
= gen_rtx_PLUS (Pmode
, stack_pointer_rtx
,
3648 GEN_INT (-(HOST_WIDE_INT
) rounded_size
));
3650 /* ??? This seems wrong if STACK_PUSH_CODE == POST_INC. */
3651 dest_addr
= gen_rtx_PLUS (Pmode
, stack_pointer_rtx
,
3652 GEN_INT (rounded_size
));
3654 dest_addr
= gen_rtx_PRE_MODIFY (Pmode
, stack_pointer_rtx
, dest_addr
);
3657 dest
= gen_rtx_MEM (mode
, dest_addr
);
3661 set_mem_attributes (dest
, type
, 1);
3663 if (flag_optimize_sibling_calls
)
3664 /* Function incoming arguments may overlap with sibling call
3665 outgoing arguments and we cannot allow reordering of reads
3666 from function arguments with stores to outgoing arguments
3667 of sibling calls. */
3668 set_mem_alias_set (dest
, 0);
3670 emit_move_insn (dest
, x
);
3674 /* Generate code to push X onto the stack, assuming it has mode MODE and
3676 MODE is redundant except when X is a CONST_INT (since they don't
3678 SIZE is an rtx for the size of data to be copied (in bytes),
3679 needed only if X is BLKmode.
3681 ALIGN (in bits) is maximum alignment we can assume.
3683 If PARTIAL and REG are both nonzero, then copy that many of the first
3684 bytes of X into registers starting with REG, and push the rest of X.
3685 The amount of space pushed is decreased by PARTIAL bytes.
3686 REG must be a hard register in this case.
3687 If REG is zero but PARTIAL is not, take any all others actions for an
3688 argument partially in registers, but do not actually load any
3691 EXTRA is the amount in bytes of extra space to leave next to this arg.
3692 This is ignored if an argument block has already been allocated.
3694 On a machine that lacks real push insns, ARGS_ADDR is the address of
3695 the bottom of the argument block for this call. We use indexing off there
3696 to store the arg. On machines with push insns, ARGS_ADDR is 0 when a
3697 argument block has not been preallocated.
3699 ARGS_SO_FAR is the size of args previously pushed for this call.
3701 REG_PARM_STACK_SPACE is nonzero if functions require stack space
3702 for arguments passed in registers. If nonzero, it will be the number
3703 of bytes required. */
3706 emit_push_insn (rtx x
, enum machine_mode mode
, tree type
, rtx size
,
3707 unsigned int align
, int partial
, rtx reg
, int extra
,
3708 rtx args_addr
, rtx args_so_far
, int reg_parm_stack_space
,
3712 enum direction stack_direction
3713 #ifdef STACK_GROWS_DOWNWARD
3719 /* Decide where to pad the argument: `downward' for below,
3720 `upward' for above, or `none' for don't pad it.
3721 Default is below for small data on big-endian machines; else above. */
3722 enum direction where_pad
= FUNCTION_ARG_PADDING (mode
, type
);
3724 /* Invert direction if stack is post-decrement.
3726 if (STACK_PUSH_CODE
== POST_DEC
)
3727 if (where_pad
!= none
)
3728 where_pad
= (where_pad
== downward
? upward
: downward
);
3733 || (STRICT_ALIGNMENT
&& align
< GET_MODE_ALIGNMENT (mode
)))
3735 /* Copy a block into the stack, entirely or partially. */
3742 offset
= partial
% (PARM_BOUNDARY
/ BITS_PER_UNIT
);
3743 used
= partial
- offset
;
3745 if (mode
!= BLKmode
)
3747 /* A value is to be stored in an insufficiently aligned
3748 stack slot; copy via a suitably aligned slot if
3750 size
= GEN_INT (GET_MODE_SIZE (mode
));
3751 if (!MEM_P (xinner
))
3753 temp
= assign_temp (type
, 0, 1, 1);
3754 emit_move_insn (temp
, xinner
);
3761 /* USED is now the # of bytes we need not copy to the stack
3762 because registers will take care of them. */
3765 xinner
= adjust_address (xinner
, BLKmode
, used
);
3767 /* If the partial register-part of the arg counts in its stack size,
3768 skip the part of stack space corresponding to the registers.
3769 Otherwise, start copying to the beginning of the stack space,
3770 by setting SKIP to 0. */
3771 skip
= (reg_parm_stack_space
== 0) ? 0 : used
;
3773 #ifdef PUSH_ROUNDING
3774 /* Do it with several push insns if that doesn't take lots of insns
3775 and if there is no difficulty with push insns that skip bytes
3776 on the stack for alignment purposes. */
3779 && GET_CODE (size
) == CONST_INT
3781 && MEM_ALIGN (xinner
) >= align
3782 && (MOVE_BY_PIECES_P ((unsigned) INTVAL (size
) - used
, align
))
3783 /* Here we avoid the case of a structure whose weak alignment
3784 forces many pushes of a small amount of data,
3785 and such small pushes do rounding that causes trouble. */
3786 && ((! SLOW_UNALIGNED_ACCESS (word_mode
, align
))
3787 || align
>= BIGGEST_ALIGNMENT
3788 || (PUSH_ROUNDING (align
/ BITS_PER_UNIT
)
3789 == (align
/ BITS_PER_UNIT
)))
3790 && PUSH_ROUNDING (INTVAL (size
)) == INTVAL (size
))
3792 /* Push padding now if padding above and stack grows down,
3793 or if padding below and stack grows up.
3794 But if space already allocated, this has already been done. */
3795 if (extra
&& args_addr
== 0
3796 && where_pad
!= none
&& where_pad
!= stack_direction
)
3797 anti_adjust_stack (GEN_INT (extra
));
3799 move_by_pieces (NULL
, xinner
, INTVAL (size
) - used
, align
, 0);
3802 #endif /* PUSH_ROUNDING */
3806 /* Otherwise make space on the stack and copy the data
3807 to the address of that space. */
3809 /* Deduct words put into registers from the size we must copy. */
3812 if (GET_CODE (size
) == CONST_INT
)
3813 size
= GEN_INT (INTVAL (size
) - used
);
3815 size
= expand_binop (GET_MODE (size
), sub_optab
, size
,
3816 GEN_INT (used
), NULL_RTX
, 0,
3820 /* Get the address of the stack space.
3821 In this case, we do not deal with EXTRA separately.
3822 A single stack adjust will do. */
3825 temp
= push_block (size
, extra
, where_pad
== downward
);
3828 else if (GET_CODE (args_so_far
) == CONST_INT
)
3829 temp
= memory_address (BLKmode
,
3830 plus_constant (args_addr
,
3831 skip
+ INTVAL (args_so_far
)));
3833 temp
= memory_address (BLKmode
,
3834 plus_constant (gen_rtx_PLUS (Pmode
,
3839 if (!ACCUMULATE_OUTGOING_ARGS
)
3841 /* If the source is referenced relative to the stack pointer,
3842 copy it to another register to stabilize it. We do not need
3843 to do this if we know that we won't be changing sp. */
3845 if (reg_mentioned_p (virtual_stack_dynamic_rtx
, temp
)
3846 || reg_mentioned_p (virtual_outgoing_args_rtx
, temp
))
3847 temp
= copy_to_reg (temp
);
3850 target
= gen_rtx_MEM (BLKmode
, temp
);
3852 /* We do *not* set_mem_attributes here, because incoming arguments
3853 may overlap with sibling call outgoing arguments and we cannot
3854 allow reordering of reads from function arguments with stores
3855 to outgoing arguments of sibling calls. We do, however, want
3856 to record the alignment of the stack slot. */
3857 /* ALIGN may well be better aligned than TYPE, e.g. due to
3858 PARM_BOUNDARY. Assume the caller isn't lying. */
3859 set_mem_align (target
, align
);
3861 emit_block_move (target
, xinner
, size
, BLOCK_OP_CALL_PARM
);
3864 else if (partial
> 0)
3866 /* Scalar partly in registers. */
3868 int size
= GET_MODE_SIZE (mode
) / UNITS_PER_WORD
;
3871 /* # bytes of start of argument
3872 that we must make space for but need not store. */
3873 int offset
= partial
% (PARM_BOUNDARY
/ BITS_PER_UNIT
);
3874 int args_offset
= INTVAL (args_so_far
);
3877 /* Push padding now if padding above and stack grows down,
3878 or if padding below and stack grows up.
3879 But if space already allocated, this has already been done. */
3880 if (extra
&& args_addr
== 0
3881 && where_pad
!= none
&& where_pad
!= stack_direction
)
3882 anti_adjust_stack (GEN_INT (extra
));
3884 /* If we make space by pushing it, we might as well push
3885 the real data. Otherwise, we can leave OFFSET nonzero
3886 and leave the space uninitialized. */
3890 /* Now NOT_STACK gets the number of words that we don't need to
3891 allocate on the stack. Convert OFFSET to words too. */
3892 not_stack
= (partial
- offset
) / UNITS_PER_WORD
;
3893 offset
/= UNITS_PER_WORD
;
3895 /* If the partial register-part of the arg counts in its stack size,
3896 skip the part of stack space corresponding to the registers.
3897 Otherwise, start copying to the beginning of the stack space,
3898 by setting SKIP to 0. */
3899 skip
= (reg_parm_stack_space
== 0) ? 0 : not_stack
;
3901 if (CONSTANT_P (x
) && ! LEGITIMATE_CONSTANT_P (x
))
3902 x
= validize_mem (force_const_mem (mode
, x
));
3904 /* If X is a hard register in a non-integer mode, copy it into a pseudo;
3905 SUBREGs of such registers are not allowed. */
3906 if ((REG_P (x
) && REGNO (x
) < FIRST_PSEUDO_REGISTER
3907 && GET_MODE_CLASS (GET_MODE (x
)) != MODE_INT
))
3908 x
= copy_to_reg (x
);
3910 /* Loop over all the words allocated on the stack for this arg. */
3911 /* We can do it by words, because any scalar bigger than a word
3912 has a size a multiple of a word. */
3913 #ifndef PUSH_ARGS_REVERSED
3914 for (i
= not_stack
; i
< size
; i
++)
3916 for (i
= size
- 1; i
>= not_stack
; i
--)
3918 if (i
>= not_stack
+ offset
)
3919 emit_push_insn (operand_subword_force (x
, i
, mode
),
3920 word_mode
, NULL_TREE
, NULL_RTX
, align
, 0, NULL_RTX
,
3922 GEN_INT (args_offset
+ ((i
- not_stack
+ skip
)
3924 reg_parm_stack_space
, alignment_pad
);
3931 /* Push padding now if padding above and stack grows down,
3932 or if padding below and stack grows up.
3933 But if space already allocated, this has already been done. */
3934 if (extra
&& args_addr
== 0
3935 && where_pad
!= none
&& where_pad
!= stack_direction
)
3936 anti_adjust_stack (GEN_INT (extra
));
3938 #ifdef PUSH_ROUNDING
3939 if (args_addr
== 0 && PUSH_ARGS
)
3940 emit_single_push_insn (mode
, x
, type
);
3944 if (GET_CODE (args_so_far
) == CONST_INT
)
3946 = memory_address (mode
,
3947 plus_constant (args_addr
,
3948 INTVAL (args_so_far
)));
3950 addr
= memory_address (mode
, gen_rtx_PLUS (Pmode
, args_addr
,
3952 dest
= gen_rtx_MEM (mode
, addr
);
3954 /* We do *not* set_mem_attributes here, because incoming arguments
3955 may overlap with sibling call outgoing arguments and we cannot
3956 allow reordering of reads from function arguments with stores
3957 to outgoing arguments of sibling calls. We do, however, want
3958 to record the alignment of the stack slot. */
3959 /* ALIGN may well be better aligned than TYPE, e.g. due to
3960 PARM_BOUNDARY. Assume the caller isn't lying. */
3961 set_mem_align (dest
, align
);
3963 emit_move_insn (dest
, x
);
3967 /* If part should go in registers, copy that part
3968 into the appropriate registers. Do this now, at the end,
3969 since mem-to-mem copies above may do function calls. */
3970 if (partial
> 0 && reg
!= 0)
3972 /* Handle calls that pass values in multiple non-contiguous locations.
3973 The Irix 6 ABI has examples of this. */
3974 if (GET_CODE (reg
) == PARALLEL
)
3975 emit_group_load (reg
, x
, type
, -1);
3978 gcc_assert (partial
% UNITS_PER_WORD
== 0);
3979 move_block_to_reg (REGNO (reg
), x
, partial
/ UNITS_PER_WORD
, mode
);
3983 if (extra
&& args_addr
== 0 && where_pad
== stack_direction
)
3984 anti_adjust_stack (GEN_INT (extra
));
3986 if (alignment_pad
&& args_addr
== 0)
3987 anti_adjust_stack (alignment_pad
);
3990 /* Return X if X can be used as a subtarget in a sequence of arithmetic
3994 get_subtarget (rtx x
)
3998 /* Only registers can be subtargets. */
4000 /* Don't use hard regs to avoid extending their life. */
4001 || REGNO (x
) < FIRST_PSEUDO_REGISTER
4005 /* A subroutine of expand_assignment. Optimize FIELD op= VAL, where
4006 FIELD is a bitfield. Returns true if the optimization was successful,
4007 and there's nothing else to do. */
4010 optimize_bitfield_assignment_op (unsigned HOST_WIDE_INT bitsize
,
4011 unsigned HOST_WIDE_INT bitpos
,
4012 enum machine_mode mode1
, rtx str_rtx
,
4015 enum machine_mode str_mode
= GET_MODE (str_rtx
);
4016 unsigned int str_bitsize
= GET_MODE_BITSIZE (str_mode
);
4021 if (mode1
!= VOIDmode
4022 || bitsize
>= BITS_PER_WORD
4023 || str_bitsize
> BITS_PER_WORD
4024 || TREE_SIDE_EFFECTS (to
)
4025 || TREE_THIS_VOLATILE (to
))
4029 if (!BINARY_CLASS_P (src
)
4030 || TREE_CODE (TREE_TYPE (src
)) != INTEGER_TYPE
)
4033 op0
= TREE_OPERAND (src
, 0);
4034 op1
= TREE_OPERAND (src
, 1);
4037 if (!operand_equal_p (to
, op0
, 0))
4040 if (MEM_P (str_rtx
))
4042 unsigned HOST_WIDE_INT offset1
;
4044 if (str_bitsize
== 0 || str_bitsize
> BITS_PER_WORD
)
4045 str_mode
= word_mode
;
4046 str_mode
= get_best_mode (bitsize
, bitpos
,
4047 MEM_ALIGN (str_rtx
), str_mode
, 0);
4048 if (str_mode
== VOIDmode
)
4050 str_bitsize
= GET_MODE_BITSIZE (str_mode
);
4053 bitpos
%= str_bitsize
;
4054 offset1
= (offset1
- bitpos
) / BITS_PER_UNIT
;
4055 str_rtx
= adjust_address (str_rtx
, str_mode
, offset1
);
4057 else if (!REG_P (str_rtx
) && GET_CODE (str_rtx
) != SUBREG
)
4060 /* If the bit field covers the whole REG/MEM, store_field
4061 will likely generate better code. */
4062 if (bitsize
>= str_bitsize
)
4065 /* We can't handle fields split across multiple entities. */
4066 if (bitpos
+ bitsize
> str_bitsize
)
4069 if (BYTES_BIG_ENDIAN
)
4070 bitpos
= str_bitsize
- bitpos
- bitsize
;
4072 switch (TREE_CODE (src
))
4076 /* For now, just optimize the case of the topmost bitfield
4077 where we don't need to do any masking and also
4078 1 bit bitfields where xor can be used.
4079 We might win by one instruction for the other bitfields
4080 too if insv/extv instructions aren't used, so that
4081 can be added later. */
4082 if (bitpos
+ bitsize
!= str_bitsize
4083 && (bitsize
!= 1 || TREE_CODE (op1
) != INTEGER_CST
))
4086 value
= expand_expr (op1
, NULL_RTX
, str_mode
, EXPAND_NORMAL
);
4087 value
= convert_modes (str_mode
,
4088 TYPE_MODE (TREE_TYPE (op1
)), value
,
4089 TYPE_UNSIGNED (TREE_TYPE (op1
)));
4091 /* We may be accessing data outside the field, which means
4092 we can alias adjacent data. */
4093 if (MEM_P (str_rtx
))
4095 str_rtx
= shallow_copy_rtx (str_rtx
);
4096 set_mem_alias_set (str_rtx
, 0);
4097 set_mem_expr (str_rtx
, 0);
4100 binop
= TREE_CODE (src
) == PLUS_EXPR
? add_optab
: sub_optab
;
4101 if (bitsize
== 1 && bitpos
+ bitsize
!= str_bitsize
)
4103 value
= expand_and (str_mode
, value
, const1_rtx
, NULL
);
4106 value
= expand_shift (LSHIFT_EXPR
, str_mode
, value
,
4107 build_int_cst (NULL_TREE
, bitpos
),
4109 result
= expand_binop (str_mode
, binop
, str_rtx
,
4110 value
, str_rtx
, 1, OPTAB_WIDEN
);
4111 if (result
!= str_rtx
)
4112 emit_move_insn (str_rtx
, result
);
4117 if (TREE_CODE (op1
) != INTEGER_CST
)
4119 value
= expand_expr (op1
, NULL_RTX
, GET_MODE (str_rtx
), EXPAND_NORMAL
);
4120 value
= convert_modes (GET_MODE (str_rtx
),
4121 TYPE_MODE (TREE_TYPE (op1
)), value
,
4122 TYPE_UNSIGNED (TREE_TYPE (op1
)));
4124 /* We may be accessing data outside the field, which means
4125 we can alias adjacent data. */
4126 if (MEM_P (str_rtx
))
4128 str_rtx
= shallow_copy_rtx (str_rtx
);
4129 set_mem_alias_set (str_rtx
, 0);
4130 set_mem_expr (str_rtx
, 0);
4133 binop
= TREE_CODE (src
) == BIT_IOR_EXPR
? ior_optab
: xor_optab
;
4134 if (bitpos
+ bitsize
!= GET_MODE_BITSIZE (GET_MODE (str_rtx
)))
4136 rtx mask
= GEN_INT (((unsigned HOST_WIDE_INT
) 1 << bitsize
)
4138 value
= expand_and (GET_MODE (str_rtx
), value
, mask
,
4141 value
= expand_shift (LSHIFT_EXPR
, GET_MODE (str_rtx
), value
,
4142 build_int_cst (NULL_TREE
, bitpos
),
4144 result
= expand_binop (GET_MODE (str_rtx
), binop
, str_rtx
,
4145 value
, str_rtx
, 1, OPTAB_WIDEN
);
4146 if (result
!= str_rtx
)
4147 emit_move_insn (str_rtx
, result
);
4158 /* Expand an assignment that stores the value of FROM into TO. If NONTEMPORAL
4159 is true, try generating a nontemporal store. */
4162 expand_assignment (tree to
, tree from
, bool nontemporal
)
4167 /* Don't crash if the lhs of the assignment was erroneous. */
4168 if (TREE_CODE (to
) == ERROR_MARK
)
4170 result
= expand_normal (from
);
4174 /* Optimize away no-op moves without side-effects. */
4175 if (operand_equal_p (to
, from
, 0))
4178 /* Assignment of a structure component needs special treatment
4179 if the structure component's rtx is not simply a MEM.
4180 Assignment of an array element at a constant index, and assignment of
4181 an array element in an unaligned packed structure field, has the same
4183 if (handled_component_p (to
)
4184 || TREE_CODE (TREE_TYPE (to
)) == ARRAY_TYPE
)
4186 enum machine_mode mode1
;
4187 HOST_WIDE_INT bitsize
, bitpos
;
4194 tem
= get_inner_reference (to
, &bitsize
, &bitpos
, &offset
, &mode1
,
4195 &unsignedp
, &volatilep
, true);
4197 /* If we are going to use store_bit_field and extract_bit_field,
4198 make sure to_rtx will be safe for multiple use. */
4200 to_rtx
= expand_normal (tem
);
4206 if (!MEM_P (to_rtx
))
4208 /* We can get constant negative offsets into arrays with broken
4209 user code. Translate this to a trap instead of ICEing. */
4210 gcc_assert (TREE_CODE (offset
) == INTEGER_CST
);
4211 expand_builtin_trap ();
4212 to_rtx
= gen_rtx_MEM (BLKmode
, const0_rtx
);
4215 offset_rtx
= expand_expr (offset
, NULL_RTX
, VOIDmode
, EXPAND_SUM
);
4216 #ifdef POINTERS_EXTEND_UNSIGNED
4217 if (GET_MODE (offset_rtx
) != Pmode
)
4218 offset_rtx
= convert_to_mode (Pmode
, offset_rtx
, 0);
4220 if (GET_MODE (offset_rtx
) != ptr_mode
)
4221 offset_rtx
= convert_to_mode (ptr_mode
, offset_rtx
, 0);
4224 /* A constant address in TO_RTX can have VOIDmode, we must not try
4225 to call force_reg for that case. Avoid that case. */
4227 && GET_MODE (to_rtx
) == BLKmode
4228 && GET_MODE (XEXP (to_rtx
, 0)) != VOIDmode
4230 && (bitpos
% bitsize
) == 0
4231 && (bitsize
% GET_MODE_ALIGNMENT (mode1
)) == 0
4232 && MEM_ALIGN (to_rtx
) == GET_MODE_ALIGNMENT (mode1
))
4234 to_rtx
= adjust_address (to_rtx
, mode1
, bitpos
/ BITS_PER_UNIT
);
4238 to_rtx
= offset_address (to_rtx
, offset_rtx
,
4239 highest_pow2_factor_for_target (to
,
4243 /* Handle expand_expr of a complex value returning a CONCAT. */
4244 if (GET_CODE (to_rtx
) == CONCAT
)
4246 if (TREE_CODE (TREE_TYPE (from
)) == COMPLEX_TYPE
)
4248 gcc_assert (bitpos
== 0);
4249 result
= store_expr (from
, to_rtx
, false, nontemporal
);
4253 gcc_assert (bitpos
== 0 || bitpos
== GET_MODE_BITSIZE (mode1
));
4254 result
= store_expr (from
, XEXP (to_rtx
, bitpos
!= 0), false,
4262 /* If the field is at offset zero, we could have been given the
4263 DECL_RTX of the parent struct. Don't munge it. */
4264 to_rtx
= shallow_copy_rtx (to_rtx
);
4266 set_mem_attributes_minus_bitpos (to_rtx
, to
, 0, bitpos
);
4268 /* Deal with volatile and readonly fields. The former is only
4269 done for MEM. Also set MEM_KEEP_ALIAS_SET_P if needed. */
4271 MEM_VOLATILE_P (to_rtx
) = 1;
4272 if (component_uses_parent_alias_set (to
))
4273 MEM_KEEP_ALIAS_SET_P (to_rtx
) = 1;
4276 if (optimize_bitfield_assignment_op (bitsize
, bitpos
, mode1
,
4280 result
= store_field (to_rtx
, bitsize
, bitpos
, mode1
, from
,
4281 TREE_TYPE (tem
), get_alias_set (to
),
4286 preserve_temp_slots (result
);
4292 /* If the rhs is a function call and its value is not an aggregate,
4293 call the function before we start to compute the lhs.
4294 This is needed for correct code for cases such as
4295 val = setjmp (buf) on machines where reference to val
4296 requires loading up part of an address in a separate insn.
4298 Don't do this if TO is a VAR_DECL or PARM_DECL whose DECL_RTL is REG
4299 since it might be a promoted variable where the zero- or sign- extension
4300 needs to be done. Handling this in the normal way is safe because no
4301 computation is done before the call. */
4302 if (TREE_CODE (from
) == CALL_EXPR
&& ! aggregate_value_p (from
, from
)
4303 && COMPLETE_TYPE_P (TREE_TYPE (from
))
4304 && TREE_CODE (TYPE_SIZE (TREE_TYPE (from
))) == INTEGER_CST
4305 && ! ((TREE_CODE (to
) == VAR_DECL
|| TREE_CODE (to
) == PARM_DECL
)
4306 && REG_P (DECL_RTL (to
))))
4311 value
= expand_normal (from
);
4313 to_rtx
= expand_expr (to
, NULL_RTX
, VOIDmode
, EXPAND_WRITE
);
4315 /* Handle calls that return values in multiple non-contiguous locations.
4316 The Irix 6 ABI has examples of this. */
4317 if (GET_CODE (to_rtx
) == PARALLEL
)
4318 emit_group_load (to_rtx
, value
, TREE_TYPE (from
),
4319 int_size_in_bytes (TREE_TYPE (from
)));
4320 else if (GET_MODE (to_rtx
) == BLKmode
)
4321 emit_block_move (to_rtx
, value
, expr_size (from
), BLOCK_OP_NORMAL
);
4324 if (POINTER_TYPE_P (TREE_TYPE (to
)))
4325 value
= convert_memory_address (GET_MODE (to_rtx
), value
);
4326 emit_move_insn (to_rtx
, value
);
4328 preserve_temp_slots (to_rtx
);
4334 /* Ordinary treatment. Expand TO to get a REG or MEM rtx.
4335 Don't re-expand if it was expanded already (in COMPONENT_REF case). */
4338 to_rtx
= expand_expr (to
, NULL_RTX
, VOIDmode
, EXPAND_WRITE
);
4340 /* Don't move directly into a return register. */
4341 if (TREE_CODE (to
) == RESULT_DECL
4342 && (REG_P (to_rtx
) || GET_CODE (to_rtx
) == PARALLEL
))
4347 temp
= expand_expr (from
, NULL_RTX
, GET_MODE (to_rtx
), EXPAND_NORMAL
);
4349 if (GET_CODE (to_rtx
) == PARALLEL
)
4350 emit_group_load (to_rtx
, temp
, TREE_TYPE (from
),
4351 int_size_in_bytes (TREE_TYPE (from
)));
4353 emit_move_insn (to_rtx
, temp
);
4355 preserve_temp_slots (to_rtx
);
4361 /* In case we are returning the contents of an object which overlaps
4362 the place the value is being stored, use a safe function when copying
4363 a value through a pointer into a structure value return block. */
4364 if (TREE_CODE (to
) == RESULT_DECL
&& TREE_CODE (from
) == INDIRECT_REF
4365 && cfun
->returns_struct
4366 && !cfun
->returns_pcc_struct
)
4371 size
= expr_size (from
);
4372 from_rtx
= expand_normal (from
);
4374 emit_library_call (memmove_libfunc
, LCT_NORMAL
,
4375 VOIDmode
, 3, XEXP (to_rtx
, 0), Pmode
,
4376 XEXP (from_rtx
, 0), Pmode
,
4377 convert_to_mode (TYPE_MODE (sizetype
),
4378 size
, TYPE_UNSIGNED (sizetype
)),
4379 TYPE_MODE (sizetype
));
4381 preserve_temp_slots (to_rtx
);
4387 /* Compute FROM and store the value in the rtx we got. */
4390 result
= store_expr (from
, to_rtx
, 0, nontemporal
);
4391 preserve_temp_slots (result
);
4397 /* Emits nontemporal store insn that moves FROM to TO. Returns true if this
4398 succeeded, false otherwise. */
4401 emit_storent_insn (rtx to
, rtx from
)
4403 enum machine_mode mode
= GET_MODE (to
), imode
;
4404 enum insn_code code
= optab_handler (storent_optab
, mode
)->insn_code
;
4407 if (code
== CODE_FOR_nothing
)
4410 imode
= insn_data
[code
].operand
[0].mode
;
4411 if (!insn_data
[code
].operand
[0].predicate (to
, imode
))
4414 imode
= insn_data
[code
].operand
[1].mode
;
4415 if (!insn_data
[code
].operand
[1].predicate (from
, imode
))
4417 from
= copy_to_mode_reg (imode
, from
);
4418 if (!insn_data
[code
].operand
[1].predicate (from
, imode
))
4422 pattern
= GEN_FCN (code
) (to
, from
);
4423 if (pattern
== NULL_RTX
)
4426 emit_insn (pattern
);
4430 /* Generate code for computing expression EXP,
4431 and storing the value into TARGET.
4433 If the mode is BLKmode then we may return TARGET itself.
4434 It turns out that in BLKmode it doesn't cause a problem.
4435 because C has no operators that could combine two different
4436 assignments into the same BLKmode object with different values
4437 with no sequence point. Will other languages need this to
4440 If CALL_PARAM_P is nonzero, this is a store into a call param on the
4441 stack, and block moves may need to be treated specially.
4443 If NONTEMPORAL is true, try using a nontemporal store instruction. */
4446 store_expr (tree exp
, rtx target
, int call_param_p
, bool nontemporal
)
4449 rtx alt_rtl
= NULL_RTX
;
4450 int dont_return_target
= 0;
4452 if (VOID_TYPE_P (TREE_TYPE (exp
)))
4454 /* C++ can generate ?: expressions with a throw expression in one
4455 branch and an rvalue in the other. Here, we resolve attempts to
4456 store the throw expression's nonexistent result. */
4457 gcc_assert (!call_param_p
);
4458 expand_expr (exp
, const0_rtx
, VOIDmode
, EXPAND_NORMAL
);
4461 if (TREE_CODE (exp
) == COMPOUND_EXPR
)
4463 /* Perform first part of compound expression, then assign from second
4465 expand_expr (TREE_OPERAND (exp
, 0), const0_rtx
, VOIDmode
,
4466 call_param_p
? EXPAND_STACK_PARM
: EXPAND_NORMAL
);
4467 return store_expr (TREE_OPERAND (exp
, 1), target
, call_param_p
,
4470 else if (TREE_CODE (exp
) == COND_EXPR
&& GET_MODE (target
) == BLKmode
)
4472 /* For conditional expression, get safe form of the target. Then
4473 test the condition, doing the appropriate assignment on either
4474 side. This avoids the creation of unnecessary temporaries.
4475 For non-BLKmode, it is more efficient not to do this. */
4477 rtx lab1
= gen_label_rtx (), lab2
= gen_label_rtx ();
4479 do_pending_stack_adjust ();
4481 jumpifnot (TREE_OPERAND (exp
, 0), lab1
);
4482 store_expr (TREE_OPERAND (exp
, 1), target
, call_param_p
,
4484 emit_jump_insn (gen_jump (lab2
));
4487 store_expr (TREE_OPERAND (exp
, 2), target
, call_param_p
,
4494 else if (GET_CODE (target
) == SUBREG
&& SUBREG_PROMOTED_VAR_P (target
))
4495 /* If this is a scalar in a register that is stored in a wider mode
4496 than the declared mode, compute the result into its declared mode
4497 and then convert to the wider mode. Our value is the computed
4500 rtx inner_target
= 0;
4502 /* We can do the conversion inside EXP, which will often result
4503 in some optimizations. Do the conversion in two steps: first
4504 change the signedness, if needed, then the extend. But don't
4505 do this if the type of EXP is a subtype of something else
4506 since then the conversion might involve more than just
4507 converting modes. */
4508 if (INTEGRAL_TYPE_P (TREE_TYPE (exp
))
4509 && TREE_TYPE (TREE_TYPE (exp
)) == 0
4510 && GET_MODE_PRECISION (GET_MODE (target
))
4511 == TYPE_PRECISION (TREE_TYPE (exp
)))
4513 if (TYPE_UNSIGNED (TREE_TYPE (exp
))
4514 != SUBREG_PROMOTED_UNSIGNED_P (target
))
4516 /* Some types, e.g. Fortran's logical*4, won't have a signed
4517 version, so use the mode instead. */
4519 = (signed_or_unsigned_type_for
4520 (SUBREG_PROMOTED_UNSIGNED_P (target
), TREE_TYPE (exp
)));
4522 ntype
= lang_hooks
.types
.type_for_mode
4523 (TYPE_MODE (TREE_TYPE (exp
)),
4524 SUBREG_PROMOTED_UNSIGNED_P (target
));
4526 exp
= fold_convert (ntype
, exp
);
4529 exp
= fold_convert (lang_hooks
.types
.type_for_mode
4530 (GET_MODE (SUBREG_REG (target
)),
4531 SUBREG_PROMOTED_UNSIGNED_P (target
)),
4534 inner_target
= SUBREG_REG (target
);
4537 temp
= expand_expr (exp
, inner_target
, VOIDmode
,
4538 call_param_p
? EXPAND_STACK_PARM
: EXPAND_NORMAL
);
4540 /* If TEMP is a VOIDmode constant, use convert_modes to make
4541 sure that we properly convert it. */
4542 if (CONSTANT_P (temp
) && GET_MODE (temp
) == VOIDmode
)
4544 temp
= convert_modes (GET_MODE (target
), TYPE_MODE (TREE_TYPE (exp
)),
4545 temp
, SUBREG_PROMOTED_UNSIGNED_P (target
));
4546 temp
= convert_modes (GET_MODE (SUBREG_REG (target
)),
4547 GET_MODE (target
), temp
,
4548 SUBREG_PROMOTED_UNSIGNED_P (target
));
4551 convert_move (SUBREG_REG (target
), temp
,
4552 SUBREG_PROMOTED_UNSIGNED_P (target
));
4556 else if (TREE_CODE (exp
) == STRING_CST
4557 && !nontemporal
&& !call_param_p
4558 && TREE_STRING_LENGTH (exp
) > 0
4559 && TYPE_MODE (TREE_TYPE (exp
)) == BLKmode
)
4561 /* Optimize initialization of an array with a STRING_CST. */
4562 HOST_WIDE_INT exp_len
, str_copy_len
;
4565 exp_len
= int_expr_size (exp
);
4569 str_copy_len
= strlen (TREE_STRING_POINTER (exp
));
4570 if (str_copy_len
< TREE_STRING_LENGTH (exp
) - 1)
4573 str_copy_len
= TREE_STRING_LENGTH (exp
);
4574 if ((STORE_MAX_PIECES
& (STORE_MAX_PIECES
- 1)) == 0)
4576 str_copy_len
+= STORE_MAX_PIECES
- 1;
4577 str_copy_len
&= ~(STORE_MAX_PIECES
- 1);
4579 str_copy_len
= MIN (str_copy_len
, exp_len
);
4580 if (!can_store_by_pieces (str_copy_len
, builtin_strncpy_read_str
,
4581 CONST_CAST(char *, TREE_STRING_POINTER (exp
)),
4582 MEM_ALIGN (target
), false))
4587 dest_mem
= store_by_pieces (dest_mem
,
4588 str_copy_len
, builtin_strncpy_read_str
,
4589 CONST_CAST(char *, TREE_STRING_POINTER (exp
)),
4590 MEM_ALIGN (target
), false,
4591 exp_len
> str_copy_len
? 1 : 0);
4592 if (exp_len
> str_copy_len
)
4593 clear_storage (adjust_address (dest_mem
, BLKmode
, 0),
4594 GEN_INT (exp_len
- str_copy_len
),
4603 /* If we want to use a nontemporal store, force the value to
4605 tmp_target
= nontemporal
? NULL_RTX
: target
;
4606 temp
= expand_expr_real (exp
, tmp_target
, GET_MODE (target
),
4608 ? EXPAND_STACK_PARM
: EXPAND_NORMAL
),
4610 /* Return TARGET if it's a specified hardware register.
4611 If TARGET is a volatile mem ref, either return TARGET
4612 or return a reg copied *from* TARGET; ANSI requires this.
4614 Otherwise, if TEMP is not TARGET, return TEMP
4615 if it is constant (for efficiency),
4616 or if we really want the correct value. */
4617 if (!(target
&& REG_P (target
)
4618 && REGNO (target
) < FIRST_PSEUDO_REGISTER
)
4619 && !(MEM_P (target
) && MEM_VOLATILE_P (target
))
4620 && ! rtx_equal_p (temp
, target
)
4621 && CONSTANT_P (temp
))
4622 dont_return_target
= 1;
4625 /* If TEMP is a VOIDmode constant and the mode of the type of EXP is not
4626 the same as that of TARGET, adjust the constant. This is needed, for
4627 example, in case it is a CONST_DOUBLE and we want only a word-sized
4629 if (CONSTANT_P (temp
) && GET_MODE (temp
) == VOIDmode
4630 && TREE_CODE (exp
) != ERROR_MARK
4631 && GET_MODE (target
) != TYPE_MODE (TREE_TYPE (exp
)))
4632 temp
= convert_modes (GET_MODE (target
), TYPE_MODE (TREE_TYPE (exp
)),
4633 temp
, TYPE_UNSIGNED (TREE_TYPE (exp
)));
4635 /* If value was not generated in the target, store it there.
4636 Convert the value to TARGET's type first if necessary and emit the
4637 pending incrementations that have been queued when expanding EXP.
4638 Note that we cannot emit the whole queue blindly because this will
4639 effectively disable the POST_INC optimization later.
4641 If TEMP and TARGET compare equal according to rtx_equal_p, but
4642 one or both of them are volatile memory refs, we have to distinguish
4644 - expand_expr has used TARGET. In this case, we must not generate
4645 another copy. This can be detected by TARGET being equal according
4647 - expand_expr has not used TARGET - that means that the source just
4648 happens to have the same RTX form. Since temp will have been created
4649 by expand_expr, it will compare unequal according to == .
4650 We must generate a copy in this case, to reach the correct number
4651 of volatile memory references. */
4653 if ((! rtx_equal_p (temp
, target
)
4654 || (temp
!= target
&& (side_effects_p (temp
)
4655 || side_effects_p (target
))))
4656 && TREE_CODE (exp
) != ERROR_MARK
4657 /* If store_expr stores a DECL whose DECL_RTL(exp) == TARGET,
4658 but TARGET is not valid memory reference, TEMP will differ
4659 from TARGET although it is really the same location. */
4660 && !(alt_rtl
&& rtx_equal_p (alt_rtl
, target
))
4661 /* If there's nothing to copy, don't bother. Don't call
4662 expr_size unless necessary, because some front-ends (C++)
4663 expr_size-hook must not be given objects that are not
4664 supposed to be bit-copied or bit-initialized. */
4665 && expr_size (exp
) != const0_rtx
)
4667 if (GET_MODE (temp
) != GET_MODE (target
)
4668 && GET_MODE (temp
) != VOIDmode
)
4670 int unsignedp
= TYPE_UNSIGNED (TREE_TYPE (exp
));
4671 if (dont_return_target
)
4673 /* In this case, we will return TEMP,
4674 so make sure it has the proper mode.
4675 But don't forget to store the value into TARGET. */
4676 temp
= convert_to_mode (GET_MODE (target
), temp
, unsignedp
);
4677 emit_move_insn (target
, temp
);
4679 else if (GET_MODE (target
) == BLKmode
4680 || GET_MODE (temp
) == BLKmode
)
4681 emit_block_move (target
, temp
, expr_size (exp
),
4683 ? BLOCK_OP_CALL_PARM
4684 : BLOCK_OP_NORMAL
));
4686 convert_move (target
, temp
, unsignedp
);
4689 else if (GET_MODE (temp
) == BLKmode
&& TREE_CODE (exp
) == STRING_CST
)
4691 /* Handle copying a string constant into an array. The string
4692 constant may be shorter than the array. So copy just the string's
4693 actual length, and clear the rest. First get the size of the data
4694 type of the string, which is actually the size of the target. */
4695 rtx size
= expr_size (exp
);
4697 if (GET_CODE (size
) == CONST_INT
4698 && INTVAL (size
) < TREE_STRING_LENGTH (exp
))
4699 emit_block_move (target
, temp
, size
,
4701 ? BLOCK_OP_CALL_PARM
: BLOCK_OP_NORMAL
));
4704 /* Compute the size of the data to copy from the string. */
4706 = size_binop (MIN_EXPR
,
4707 make_tree (sizetype
, size
),
4708 size_int (TREE_STRING_LENGTH (exp
)));
4710 = expand_expr (copy_size
, NULL_RTX
, VOIDmode
,
4712 ? EXPAND_STACK_PARM
: EXPAND_NORMAL
));
4715 /* Copy that much. */
4716 copy_size_rtx
= convert_to_mode (ptr_mode
, copy_size_rtx
,
4717 TYPE_UNSIGNED (sizetype
));
4718 emit_block_move (target
, temp
, copy_size_rtx
,
4720 ? BLOCK_OP_CALL_PARM
: BLOCK_OP_NORMAL
));
4722 /* Figure out how much is left in TARGET that we have to clear.
4723 Do all calculations in ptr_mode. */
4724 if (GET_CODE (copy_size_rtx
) == CONST_INT
)
4726 size
= plus_constant (size
, -INTVAL (copy_size_rtx
));
4727 target
= adjust_address (target
, BLKmode
,
4728 INTVAL (copy_size_rtx
));
4732 size
= expand_binop (TYPE_MODE (sizetype
), sub_optab
, size
,
4733 copy_size_rtx
, NULL_RTX
, 0,
4736 #ifdef POINTERS_EXTEND_UNSIGNED
4737 if (GET_MODE (copy_size_rtx
) != Pmode
)
4738 copy_size_rtx
= convert_to_mode (Pmode
, copy_size_rtx
,
4739 TYPE_UNSIGNED (sizetype
));
4742 target
= offset_address (target
, copy_size_rtx
,
4743 highest_pow2_factor (copy_size
));
4744 label
= gen_label_rtx ();
4745 emit_cmp_and_jump_insns (size
, const0_rtx
, LT
, NULL_RTX
,
4746 GET_MODE (size
), 0, label
);
4749 if (size
!= const0_rtx
)
4750 clear_storage (target
, size
, BLOCK_OP_NORMAL
);
4756 /* Handle calls that return values in multiple non-contiguous locations.
4757 The Irix 6 ABI has examples of this. */
4758 else if (GET_CODE (target
) == PARALLEL
)
4759 emit_group_load (target
, temp
, TREE_TYPE (exp
),
4760 int_size_in_bytes (TREE_TYPE (exp
)));
4761 else if (GET_MODE (temp
) == BLKmode
)
4762 emit_block_move (target
, temp
, expr_size (exp
),
4764 ? BLOCK_OP_CALL_PARM
: BLOCK_OP_NORMAL
));
4765 else if (nontemporal
4766 && emit_storent_insn (target
, temp
))
4767 /* If we managed to emit a nontemporal store, there is nothing else to
4772 temp
= force_operand (temp
, target
);
4774 emit_move_insn (target
, temp
);
4781 /* Helper for categorize_ctor_elements. Identical interface. */
4784 categorize_ctor_elements_1 (const_tree ctor
, HOST_WIDE_INT
*p_nz_elts
,
4785 HOST_WIDE_INT
*p_elt_count
,
4788 unsigned HOST_WIDE_INT idx
;
4789 HOST_WIDE_INT nz_elts
, elt_count
;
4790 tree value
, purpose
;
4792 /* Whether CTOR is a valid constant initializer, in accordance with what
4793 initializer_constant_valid_p does. If inferred from the constructor
4794 elements, true until proven otherwise. */
4795 bool const_from_elts_p
= constructor_static_from_elts_p (ctor
);
4796 bool const_p
= const_from_elts_p
? true : TREE_STATIC (ctor
);
4801 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (ctor
), idx
, purpose
, value
)
4806 if (TREE_CODE (purpose
) == RANGE_EXPR
)
4808 tree lo_index
= TREE_OPERAND (purpose
, 0);
4809 tree hi_index
= TREE_OPERAND (purpose
, 1);
4811 if (host_integerp (lo_index
, 1) && host_integerp (hi_index
, 1))
4812 mult
= (tree_low_cst (hi_index
, 1)
4813 - tree_low_cst (lo_index
, 1) + 1);
4816 switch (TREE_CODE (value
))
4820 HOST_WIDE_INT nz
= 0, ic
= 0;
4823 = categorize_ctor_elements_1 (value
, &nz
, &ic
, p_must_clear
);
4825 nz_elts
+= mult
* nz
;
4826 elt_count
+= mult
* ic
;
4828 if (const_from_elts_p
&& const_p
)
4829 const_p
= const_elt_p
;
4836 if (!initializer_zerop (value
))
4842 nz_elts
+= mult
* TREE_STRING_LENGTH (value
);
4843 elt_count
+= mult
* TREE_STRING_LENGTH (value
);
4847 if (!initializer_zerop (TREE_REALPART (value
)))
4849 if (!initializer_zerop (TREE_IMAGPART (value
)))
4857 for (v
= TREE_VECTOR_CST_ELTS (value
); v
; v
= TREE_CHAIN (v
))
4859 if (!initializer_zerop (TREE_VALUE (v
)))
4870 if (const_from_elts_p
&& const_p
)
4871 const_p
= initializer_constant_valid_p (value
, TREE_TYPE (value
))
4878 && (TREE_CODE (TREE_TYPE (ctor
)) == UNION_TYPE
4879 || TREE_CODE (TREE_TYPE (ctor
)) == QUAL_UNION_TYPE
))
4882 bool clear_this
= true;
4884 if (!VEC_empty (constructor_elt
, CONSTRUCTOR_ELTS (ctor
)))
4886 /* We don't expect more than one element of the union to be
4887 initialized. Not sure what we should do otherwise... */
4888 gcc_assert (VEC_length (constructor_elt
, CONSTRUCTOR_ELTS (ctor
))
4891 init_sub_type
= TREE_TYPE (VEC_index (constructor_elt
,
4892 CONSTRUCTOR_ELTS (ctor
),
4895 /* ??? We could look at each element of the union, and find the
4896 largest element. Which would avoid comparing the size of the
4897 initialized element against any tail padding in the union.
4898 Doesn't seem worth the effort... */
4899 if (simple_cst_equal (TYPE_SIZE (TREE_TYPE (ctor
)),
4900 TYPE_SIZE (init_sub_type
)) == 1)
4902 /* And now we have to find out if the element itself is fully
4903 constructed. E.g. for union { struct { int a, b; } s; } u
4904 = { .s = { .a = 1 } }. */
4905 if (elt_count
== count_type_elements (init_sub_type
, false))
4910 *p_must_clear
= clear_this
;
4913 *p_nz_elts
+= nz_elts
;
4914 *p_elt_count
+= elt_count
;
4919 /* Examine CTOR to discover:
4920 * how many scalar fields are set to nonzero values,
4921 and place it in *P_NZ_ELTS;
4922 * how many scalar fields in total are in CTOR,
4923 and place it in *P_ELT_COUNT.
4924 * if a type is a union, and the initializer from the constructor
4925 is not the largest element in the union, then set *p_must_clear.
4927 Return whether or not CTOR is a valid static constant initializer, the same
4928 as "initializer_constant_valid_p (CTOR, TREE_TYPE (CTOR)) != 0". */
4931 categorize_ctor_elements (const_tree ctor
, HOST_WIDE_INT
*p_nz_elts
,
4932 HOST_WIDE_INT
*p_elt_count
,
4937 *p_must_clear
= false;
4940 categorize_ctor_elements_1 (ctor
, p_nz_elts
, p_elt_count
, p_must_clear
);
4943 /* Count the number of scalars in TYPE. Return -1 on overflow or
4944 variable-sized. If ALLOW_FLEXARR is true, don't count flexible
4945 array member at the end of the structure. */
4948 count_type_elements (const_tree type
, bool allow_flexarr
)
4950 const HOST_WIDE_INT max
= ~((HOST_WIDE_INT
)1 << (HOST_BITS_PER_WIDE_INT
-1));
4951 switch (TREE_CODE (type
))
4955 tree telts
= array_type_nelts (type
);
4956 if (telts
&& host_integerp (telts
, 1))
4958 HOST_WIDE_INT n
= tree_low_cst (telts
, 1) + 1;
4959 HOST_WIDE_INT m
= count_type_elements (TREE_TYPE (type
), false);
4962 else if (max
/ n
> m
)
4970 HOST_WIDE_INT n
= 0, t
;
4973 for (f
= TYPE_FIELDS (type
); f
; f
= TREE_CHAIN (f
))
4974 if (TREE_CODE (f
) == FIELD_DECL
)
4976 t
= count_type_elements (TREE_TYPE (f
), false);
4979 /* Check for structures with flexible array member. */
4980 tree tf
= TREE_TYPE (f
);
4982 && TREE_CHAIN (f
) == NULL
4983 && TREE_CODE (tf
) == ARRAY_TYPE
4985 && TYPE_MIN_VALUE (TYPE_DOMAIN (tf
))
4986 && integer_zerop (TYPE_MIN_VALUE (TYPE_DOMAIN (tf
)))
4987 && !TYPE_MAX_VALUE (TYPE_DOMAIN (tf
))
4988 && int_size_in_bytes (type
) >= 0)
5000 case QUAL_UNION_TYPE
:
5007 return TYPE_VECTOR_SUBPARTS (type
);
5011 case FIXED_POINT_TYPE
:
5016 case REFERENCE_TYPE
:
5028 /* Return 1 if EXP contains mostly (3/4) zeros. */
5031 mostly_zeros_p (const_tree exp
)
5033 if (TREE_CODE (exp
) == CONSTRUCTOR
)
5036 HOST_WIDE_INT nz_elts
, count
, elts
;
5039 categorize_ctor_elements (exp
, &nz_elts
, &count
, &must_clear
);
5043 elts
= count_type_elements (TREE_TYPE (exp
), false);
5045 return nz_elts
< elts
/ 4;
5048 return initializer_zerop (exp
);
5051 /* Return 1 if EXP contains all zeros. */
5054 all_zeros_p (const_tree exp
)
5056 if (TREE_CODE (exp
) == CONSTRUCTOR
)
5059 HOST_WIDE_INT nz_elts
, count
;
5062 categorize_ctor_elements (exp
, &nz_elts
, &count
, &must_clear
);
5063 return nz_elts
== 0;
5066 return initializer_zerop (exp
);
5069 /* Helper function for store_constructor.
5070 TARGET, BITSIZE, BITPOS, MODE, EXP are as for store_field.
5071 TYPE is the type of the CONSTRUCTOR, not the element type.
5072 CLEARED is as for store_constructor.
5073 ALIAS_SET is the alias set to use for any stores.
5075 This provides a recursive shortcut back to store_constructor when it isn't
5076 necessary to go through store_field. This is so that we can pass through
5077 the cleared field to let store_constructor know that we may not have to
5078 clear a substructure if the outer structure has already been cleared. */
5081 store_constructor_field (rtx target
, unsigned HOST_WIDE_INT bitsize
,
5082 HOST_WIDE_INT bitpos
, enum machine_mode mode
,
5083 tree exp
, tree type
, int cleared
,
5084 alias_set_type alias_set
)
5086 if (TREE_CODE (exp
) == CONSTRUCTOR
5087 /* We can only call store_constructor recursively if the size and
5088 bit position are on a byte boundary. */
5089 && bitpos
% BITS_PER_UNIT
== 0
5090 && (bitsize
> 0 && bitsize
% BITS_PER_UNIT
== 0)
5091 /* If we have a nonzero bitpos for a register target, then we just
5092 let store_field do the bitfield handling. This is unlikely to
5093 generate unnecessary clear instructions anyways. */
5094 && (bitpos
== 0 || MEM_P (target
)))
5098 = adjust_address (target
,
5099 GET_MODE (target
) == BLKmode
5101 % GET_MODE_ALIGNMENT (GET_MODE (target
)))
5102 ? BLKmode
: VOIDmode
, bitpos
/ BITS_PER_UNIT
);
5105 /* Update the alias set, if required. */
5106 if (MEM_P (target
) && ! MEM_KEEP_ALIAS_SET_P (target
)
5107 && MEM_ALIAS_SET (target
) != 0)
5109 target
= copy_rtx (target
);
5110 set_mem_alias_set (target
, alias_set
);
5113 store_constructor (exp
, target
, cleared
, bitsize
/ BITS_PER_UNIT
);
5116 store_field (target
, bitsize
, bitpos
, mode
, exp
, type
, alias_set
, false);
5119 /* Store the value of constructor EXP into the rtx TARGET.
5120 TARGET is either a REG or a MEM; we know it cannot conflict, since
5121 safe_from_p has been called.
5122 CLEARED is true if TARGET is known to have been zero'd.
5123 SIZE is the number of bytes of TARGET we are allowed to modify: this
5124 may not be the same as the size of EXP if we are assigning to a field
5125 which has been packed to exclude padding bits. */
5128 store_constructor (tree exp
, rtx target
, int cleared
, HOST_WIDE_INT size
)
5130 tree type
= TREE_TYPE (exp
);
5131 #ifdef WORD_REGISTER_OPERATIONS
5132 HOST_WIDE_INT exp_size
= int_size_in_bytes (type
);
5135 switch (TREE_CODE (type
))
5139 case QUAL_UNION_TYPE
:
5141 unsigned HOST_WIDE_INT idx
;
5144 /* If size is zero or the target is already cleared, do nothing. */
5145 if (size
== 0 || cleared
)
5147 /* We either clear the aggregate or indicate the value is dead. */
5148 else if ((TREE_CODE (type
) == UNION_TYPE
5149 || TREE_CODE (type
) == QUAL_UNION_TYPE
)
5150 && ! CONSTRUCTOR_ELTS (exp
))
5151 /* If the constructor is empty, clear the union. */
5153 clear_storage (target
, expr_size (exp
), BLOCK_OP_NORMAL
);
5157 /* If we are building a static constructor into a register,
5158 set the initial value as zero so we can fold the value into
5159 a constant. But if more than one register is involved,
5160 this probably loses. */
5161 else if (REG_P (target
) && TREE_STATIC (exp
)
5162 && GET_MODE_SIZE (GET_MODE (target
)) <= UNITS_PER_WORD
)
5164 emit_move_insn (target
, CONST0_RTX (GET_MODE (target
)));
5168 /* If the constructor has fewer fields than the structure or
5169 if we are initializing the structure to mostly zeros, clear
5170 the whole structure first. Don't do this if TARGET is a
5171 register whose mode size isn't equal to SIZE since
5172 clear_storage can't handle this case. */
5174 && (((int)VEC_length (constructor_elt
, CONSTRUCTOR_ELTS (exp
))
5175 != fields_length (type
))
5176 || mostly_zeros_p (exp
))
5178 || ((HOST_WIDE_INT
) GET_MODE_SIZE (GET_MODE (target
))
5181 clear_storage (target
, GEN_INT (size
), BLOCK_OP_NORMAL
);
5185 if (REG_P (target
) && !cleared
)
5186 emit_clobber (target
);
5188 /* Store each element of the constructor into the
5189 corresponding field of TARGET. */
5190 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (exp
), idx
, field
, value
)
5192 enum machine_mode mode
;
5193 HOST_WIDE_INT bitsize
;
5194 HOST_WIDE_INT bitpos
= 0;
5196 rtx to_rtx
= target
;
5198 /* Just ignore missing fields. We cleared the whole
5199 structure, above, if any fields are missing. */
5203 if (cleared
&& initializer_zerop (value
))
5206 if (host_integerp (DECL_SIZE (field
), 1))
5207 bitsize
= tree_low_cst (DECL_SIZE (field
), 1);
5211 mode
= DECL_MODE (field
);
5212 if (DECL_BIT_FIELD (field
))
5215 offset
= DECL_FIELD_OFFSET (field
);
5216 if (host_integerp (offset
, 0)
5217 && host_integerp (bit_position (field
), 0))
5219 bitpos
= int_bit_position (field
);
5223 bitpos
= tree_low_cst (DECL_FIELD_BIT_OFFSET (field
), 0);
5230 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (offset
,
5231 make_tree (TREE_TYPE (exp
),
5234 offset_rtx
= expand_normal (offset
);
5235 gcc_assert (MEM_P (to_rtx
));
5237 #ifdef POINTERS_EXTEND_UNSIGNED
5238 if (GET_MODE (offset_rtx
) != Pmode
)
5239 offset_rtx
= convert_to_mode (Pmode
, offset_rtx
, 0);
5241 if (GET_MODE (offset_rtx
) != ptr_mode
)
5242 offset_rtx
= convert_to_mode (ptr_mode
, offset_rtx
, 0);
5245 to_rtx
= offset_address (to_rtx
, offset_rtx
,
5246 highest_pow2_factor (offset
));
5249 #ifdef WORD_REGISTER_OPERATIONS
5250 /* If this initializes a field that is smaller than a
5251 word, at the start of a word, try to widen it to a full
5252 word. This special case allows us to output C++ member
5253 function initializations in a form that the optimizers
5256 && bitsize
< BITS_PER_WORD
5257 && bitpos
% BITS_PER_WORD
== 0
5258 && GET_MODE_CLASS (mode
) == MODE_INT
5259 && TREE_CODE (value
) == INTEGER_CST
5261 && bitpos
+ BITS_PER_WORD
<= exp_size
* BITS_PER_UNIT
)
5263 tree type
= TREE_TYPE (value
);
5265 if (TYPE_PRECISION (type
) < BITS_PER_WORD
)
5267 type
= lang_hooks
.types
.type_for_size
5268 (BITS_PER_WORD
, TYPE_UNSIGNED (type
));
5269 value
= fold_convert (type
, value
);
5272 if (BYTES_BIG_ENDIAN
)
5274 = fold_build2 (LSHIFT_EXPR
, type
, value
,
5275 build_int_cst (type
,
5276 BITS_PER_WORD
- bitsize
));
5277 bitsize
= BITS_PER_WORD
;
5282 if (MEM_P (to_rtx
) && !MEM_KEEP_ALIAS_SET_P (to_rtx
)
5283 && DECL_NONADDRESSABLE_P (field
))
5285 to_rtx
= copy_rtx (to_rtx
);
5286 MEM_KEEP_ALIAS_SET_P (to_rtx
) = 1;
5289 store_constructor_field (to_rtx
, bitsize
, bitpos
, mode
,
5290 value
, type
, cleared
,
5291 get_alias_set (TREE_TYPE (field
)));
5298 unsigned HOST_WIDE_INT i
;
5301 tree elttype
= TREE_TYPE (type
);
5303 HOST_WIDE_INT minelt
= 0;
5304 HOST_WIDE_INT maxelt
= 0;
5306 domain
= TYPE_DOMAIN (type
);
5307 const_bounds_p
= (TYPE_MIN_VALUE (domain
)
5308 && TYPE_MAX_VALUE (domain
)
5309 && host_integerp (TYPE_MIN_VALUE (domain
), 0)
5310 && host_integerp (TYPE_MAX_VALUE (domain
), 0));
5312 /* If we have constant bounds for the range of the type, get them. */
5315 minelt
= tree_low_cst (TYPE_MIN_VALUE (domain
), 0);
5316 maxelt
= tree_low_cst (TYPE_MAX_VALUE (domain
), 0);
5319 /* If the constructor has fewer elements than the array, clear
5320 the whole array first. Similarly if this is static
5321 constructor of a non-BLKmode object. */
5324 else if (REG_P (target
) && TREE_STATIC (exp
))
5328 unsigned HOST_WIDE_INT idx
;
5330 HOST_WIDE_INT count
= 0, zero_count
= 0;
5331 need_to_clear
= ! const_bounds_p
;
5333 /* This loop is a more accurate version of the loop in
5334 mostly_zeros_p (it handles RANGE_EXPR in an index). It
5335 is also needed to check for missing elements. */
5336 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (exp
), idx
, index
, value
)
5338 HOST_WIDE_INT this_node_count
;
5343 if (index
!= NULL_TREE
&& TREE_CODE (index
) == RANGE_EXPR
)
5345 tree lo_index
= TREE_OPERAND (index
, 0);
5346 tree hi_index
= TREE_OPERAND (index
, 1);
5348 if (! host_integerp (lo_index
, 1)
5349 || ! host_integerp (hi_index
, 1))
5355 this_node_count
= (tree_low_cst (hi_index
, 1)
5356 - tree_low_cst (lo_index
, 1) + 1);
5359 this_node_count
= 1;
5361 count
+= this_node_count
;
5362 if (mostly_zeros_p (value
))
5363 zero_count
+= this_node_count
;
5366 /* Clear the entire array first if there are any missing
5367 elements, or if the incidence of zero elements is >=
5370 && (count
< maxelt
- minelt
+ 1
5371 || 4 * zero_count
>= 3 * count
))
5375 if (need_to_clear
&& size
> 0)
5378 emit_move_insn (target
, CONST0_RTX (GET_MODE (target
)));
5380 clear_storage (target
, GEN_INT (size
), BLOCK_OP_NORMAL
);
5384 if (!cleared
&& REG_P (target
))
5385 /* Inform later passes that the old value is dead. */
5386 emit_clobber (target
);
5388 /* Store each element of the constructor into the
5389 corresponding element of TARGET, determined by counting the
5391 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (exp
), i
, index
, value
)
5393 enum machine_mode mode
;
5394 HOST_WIDE_INT bitsize
;
5395 HOST_WIDE_INT bitpos
;
5397 rtx xtarget
= target
;
5399 if (cleared
&& initializer_zerop (value
))
5402 unsignedp
= TYPE_UNSIGNED (elttype
);
5403 mode
= TYPE_MODE (elttype
);
5404 if (mode
== BLKmode
)
5405 bitsize
= (host_integerp (TYPE_SIZE (elttype
), 1)
5406 ? tree_low_cst (TYPE_SIZE (elttype
), 1)
5409 bitsize
= GET_MODE_BITSIZE (mode
);
5411 if (index
!= NULL_TREE
&& TREE_CODE (index
) == RANGE_EXPR
)
5413 tree lo_index
= TREE_OPERAND (index
, 0);
5414 tree hi_index
= TREE_OPERAND (index
, 1);
5415 rtx index_r
, pos_rtx
;
5416 HOST_WIDE_INT lo
, hi
, count
;
5419 /* If the range is constant and "small", unroll the loop. */
5421 && host_integerp (lo_index
, 0)
5422 && host_integerp (hi_index
, 0)
5423 && (lo
= tree_low_cst (lo_index
, 0),
5424 hi
= tree_low_cst (hi_index
, 0),
5425 count
= hi
- lo
+ 1,
5428 || (host_integerp (TYPE_SIZE (elttype
), 1)
5429 && (tree_low_cst (TYPE_SIZE (elttype
), 1) * count
5432 lo
-= minelt
; hi
-= minelt
;
5433 for (; lo
<= hi
; lo
++)
5435 bitpos
= lo
* tree_low_cst (TYPE_SIZE (elttype
), 0);
5438 && !MEM_KEEP_ALIAS_SET_P (target
)
5439 && TREE_CODE (type
) == ARRAY_TYPE
5440 && TYPE_NONALIASED_COMPONENT (type
))
5442 target
= copy_rtx (target
);
5443 MEM_KEEP_ALIAS_SET_P (target
) = 1;
5446 store_constructor_field
5447 (target
, bitsize
, bitpos
, mode
, value
, type
, cleared
,
5448 get_alias_set (elttype
));
5453 rtx loop_start
= gen_label_rtx ();
5454 rtx loop_end
= gen_label_rtx ();
5457 expand_normal (hi_index
);
5458 unsignedp
= TYPE_UNSIGNED (domain
);
5460 index
= build_decl (VAR_DECL
, NULL_TREE
, domain
);
5463 = gen_reg_rtx (promote_mode (domain
, DECL_MODE (index
),
5465 SET_DECL_RTL (index
, index_r
);
5466 store_expr (lo_index
, index_r
, 0, false);
5468 /* Build the head of the loop. */
5469 do_pending_stack_adjust ();
5470 emit_label (loop_start
);
5472 /* Assign value to element index. */
5474 fold_convert (ssizetype
,
5475 fold_build2 (MINUS_EXPR
,
5478 TYPE_MIN_VALUE (domain
)));
5481 size_binop (MULT_EXPR
, position
,
5482 fold_convert (ssizetype
,
5483 TYPE_SIZE_UNIT (elttype
)));
5485 pos_rtx
= expand_normal (position
);
5486 xtarget
= offset_address (target
, pos_rtx
,
5487 highest_pow2_factor (position
));
5488 xtarget
= adjust_address (xtarget
, mode
, 0);
5489 if (TREE_CODE (value
) == CONSTRUCTOR
)
5490 store_constructor (value
, xtarget
, cleared
,
5491 bitsize
/ BITS_PER_UNIT
);
5493 store_expr (value
, xtarget
, 0, false);
5495 /* Generate a conditional jump to exit the loop. */
5496 exit_cond
= build2 (LT_EXPR
, integer_type_node
,
5498 jumpif (exit_cond
, loop_end
);
5500 /* Update the loop counter, and jump to the head of
5502 expand_assignment (index
,
5503 build2 (PLUS_EXPR
, TREE_TYPE (index
),
5504 index
, integer_one_node
),
5507 emit_jump (loop_start
);
5509 /* Build the end of the loop. */
5510 emit_label (loop_end
);
5513 else if ((index
!= 0 && ! host_integerp (index
, 0))
5514 || ! host_integerp (TYPE_SIZE (elttype
), 1))
5519 index
= ssize_int (1);
5522 index
= fold_convert (ssizetype
,
5523 fold_build2 (MINUS_EXPR
,
5526 TYPE_MIN_VALUE (domain
)));
5529 size_binop (MULT_EXPR
, index
,
5530 fold_convert (ssizetype
,
5531 TYPE_SIZE_UNIT (elttype
)));
5532 xtarget
= offset_address (target
,
5533 expand_normal (position
),
5534 highest_pow2_factor (position
));
5535 xtarget
= adjust_address (xtarget
, mode
, 0);
5536 store_expr (value
, xtarget
, 0, false);
5541 bitpos
= ((tree_low_cst (index
, 0) - minelt
)
5542 * tree_low_cst (TYPE_SIZE (elttype
), 1));
5544 bitpos
= (i
* tree_low_cst (TYPE_SIZE (elttype
), 1));
5546 if (MEM_P (target
) && !MEM_KEEP_ALIAS_SET_P (target
)
5547 && TREE_CODE (type
) == ARRAY_TYPE
5548 && TYPE_NONALIASED_COMPONENT (type
))
5550 target
= copy_rtx (target
);
5551 MEM_KEEP_ALIAS_SET_P (target
) = 1;
5553 store_constructor_field (target
, bitsize
, bitpos
, mode
, value
,
5554 type
, cleared
, get_alias_set (elttype
));
5562 unsigned HOST_WIDE_INT idx
;
5563 constructor_elt
*ce
;
5567 tree elttype
= TREE_TYPE (type
);
5568 int elt_size
= tree_low_cst (TYPE_SIZE (elttype
), 1);
5569 enum machine_mode eltmode
= TYPE_MODE (elttype
);
5570 HOST_WIDE_INT bitsize
;
5571 HOST_WIDE_INT bitpos
;
5572 rtvec vector
= NULL
;
5575 gcc_assert (eltmode
!= BLKmode
);
5577 n_elts
= TYPE_VECTOR_SUBPARTS (type
);
5578 if (REG_P (target
) && VECTOR_MODE_P (GET_MODE (target
)))
5580 enum machine_mode mode
= GET_MODE (target
);
5582 icode
= (int) optab_handler (vec_init_optab
, mode
)->insn_code
;
5583 if (icode
!= CODE_FOR_nothing
)
5587 vector
= rtvec_alloc (n_elts
);
5588 for (i
= 0; i
< n_elts
; i
++)
5589 RTVEC_ELT (vector
, i
) = CONST0_RTX (GET_MODE_INNER (mode
));
5593 /* If the constructor has fewer elements than the vector,
5594 clear the whole array first. Similarly if this is static
5595 constructor of a non-BLKmode object. */
5598 else if (REG_P (target
) && TREE_STATIC (exp
))
5602 unsigned HOST_WIDE_INT count
= 0, zero_count
= 0;
5605 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (exp
), idx
, value
)
5607 int n_elts_here
= tree_low_cst
5608 (int_const_binop (TRUNC_DIV_EXPR
,
5609 TYPE_SIZE (TREE_TYPE (value
)),
5610 TYPE_SIZE (elttype
), 0), 1);
5612 count
+= n_elts_here
;
5613 if (mostly_zeros_p (value
))
5614 zero_count
+= n_elts_here
;
5617 /* Clear the entire vector first if there are any missing elements,
5618 or if the incidence of zero elements is >= 75%. */
5619 need_to_clear
= (count
< n_elts
|| 4 * zero_count
>= 3 * count
);
5622 if (need_to_clear
&& size
> 0 && !vector
)
5625 emit_move_insn (target
, CONST0_RTX (GET_MODE (target
)));
5627 clear_storage (target
, GEN_INT (size
), BLOCK_OP_NORMAL
);
5631 /* Inform later passes that the old value is dead. */
5632 if (!cleared
&& !vector
&& REG_P (target
))
5633 emit_move_insn (target
, CONST0_RTX (GET_MODE (target
)));
5635 /* Store each element of the constructor into the corresponding
5636 element of TARGET, determined by counting the elements. */
5637 for (idx
= 0, i
= 0;
5638 VEC_iterate (constructor_elt
, CONSTRUCTOR_ELTS (exp
), idx
, ce
);
5639 idx
++, i
+= bitsize
/ elt_size
)
5641 HOST_WIDE_INT eltpos
;
5642 tree value
= ce
->value
;
5644 bitsize
= tree_low_cst (TYPE_SIZE (TREE_TYPE (value
)), 1);
5645 if (cleared
&& initializer_zerop (value
))
5649 eltpos
= tree_low_cst (ce
->index
, 1);
5655 /* Vector CONSTRUCTORs should only be built from smaller
5656 vectors in the case of BLKmode vectors. */
5657 gcc_assert (TREE_CODE (TREE_TYPE (value
)) != VECTOR_TYPE
);
5658 RTVEC_ELT (vector
, eltpos
)
5659 = expand_normal (value
);
5663 enum machine_mode value_mode
=
5664 TREE_CODE (TREE_TYPE (value
)) == VECTOR_TYPE
5665 ? TYPE_MODE (TREE_TYPE (value
))
5667 bitpos
= eltpos
* elt_size
;
5668 store_constructor_field (target
, bitsize
, bitpos
,
5669 value_mode
, value
, type
,
5670 cleared
, get_alias_set (elttype
));
5675 emit_insn (GEN_FCN (icode
)
5677 gen_rtx_PARALLEL (GET_MODE (target
), vector
)));
5686 /* Store the value of EXP (an expression tree)
5687 into a subfield of TARGET which has mode MODE and occupies
5688 BITSIZE bits, starting BITPOS bits from the start of TARGET.
5689 If MODE is VOIDmode, it means that we are storing into a bit-field.
5691 Always return const0_rtx unless we have something particular to
5694 TYPE is the type of the underlying object,
5696 ALIAS_SET is the alias set for the destination. This value will
5697 (in general) be different from that for TARGET, since TARGET is a
5698 reference to the containing structure.
5700 If NONTEMPORAL is true, try generating a nontemporal store. */
5703 store_field (rtx target
, HOST_WIDE_INT bitsize
, HOST_WIDE_INT bitpos
,
5704 enum machine_mode mode
, tree exp
, tree type
,
5705 alias_set_type alias_set
, bool nontemporal
)
5707 HOST_WIDE_INT width_mask
= 0;
5709 if (TREE_CODE (exp
) == ERROR_MARK
)
5712 /* If we have nothing to store, do nothing unless the expression has
5715 return expand_expr (exp
, const0_rtx
, VOIDmode
, EXPAND_NORMAL
);
5716 else if (bitsize
>= 0 && bitsize
< HOST_BITS_PER_WIDE_INT
)
5717 width_mask
= ((HOST_WIDE_INT
) 1 << bitsize
) - 1;
5719 /* If we are storing into an unaligned field of an aligned union that is
5720 in a register, we may have the mode of TARGET being an integer mode but
5721 MODE == BLKmode. In that case, get an aligned object whose size and
5722 alignment are the same as TARGET and store TARGET into it (we can avoid
5723 the store if the field being stored is the entire width of TARGET). Then
5724 call ourselves recursively to store the field into a BLKmode version of
5725 that object. Finally, load from the object into TARGET. This is not
5726 very efficient in general, but should only be slightly more expensive
5727 than the otherwise-required unaligned accesses. Perhaps this can be
5728 cleaned up later. It's tempting to make OBJECT readonly, but it's set
5729 twice, once with emit_move_insn and once via store_field. */
5732 && (REG_P (target
) || GET_CODE (target
) == SUBREG
))
5734 rtx object
= assign_temp (type
, 0, 1, 1);
5735 rtx blk_object
= adjust_address (object
, BLKmode
, 0);
5737 if (bitsize
!= (HOST_WIDE_INT
) GET_MODE_BITSIZE (GET_MODE (target
)))
5738 emit_move_insn (object
, target
);
5740 store_field (blk_object
, bitsize
, bitpos
, mode
, exp
, type
, alias_set
,
5743 emit_move_insn (target
, object
);
5745 /* We want to return the BLKmode version of the data. */
5749 if (GET_CODE (target
) == CONCAT
)
5751 /* We're storing into a struct containing a single __complex. */
5753 gcc_assert (!bitpos
);
5754 return store_expr (exp
, target
, 0, nontemporal
);
5757 /* If the structure is in a register or if the component
5758 is a bit field, we cannot use addressing to access it.
5759 Use bit-field techniques or SUBREG to store in it. */
5761 if (mode
== VOIDmode
5762 || (mode
!= BLKmode
&& ! direct_store
[(int) mode
]
5763 && GET_MODE_CLASS (mode
) != MODE_COMPLEX_INT
5764 && GET_MODE_CLASS (mode
) != MODE_COMPLEX_FLOAT
)
5766 || GET_CODE (target
) == SUBREG
5767 /* If the field isn't aligned enough to store as an ordinary memref,
5768 store it as a bit field. */
5770 && ((((MEM_ALIGN (target
) < GET_MODE_ALIGNMENT (mode
))
5771 || bitpos
% GET_MODE_ALIGNMENT (mode
))
5772 && SLOW_UNALIGNED_ACCESS (mode
, MEM_ALIGN (target
)))
5773 || (bitpos
% BITS_PER_UNIT
!= 0)))
5774 /* If the RHS and field are a constant size and the size of the
5775 RHS isn't the same size as the bitfield, we must use bitfield
5778 && TREE_CODE (TYPE_SIZE (TREE_TYPE (exp
))) == INTEGER_CST
5779 && compare_tree_int (TYPE_SIZE (TREE_TYPE (exp
)), bitsize
) != 0))
5783 /* If EXP is a NOP_EXPR of precision less than its mode, then that
5784 implies a mask operation. If the precision is the same size as
5785 the field we're storing into, that mask is redundant. This is
5786 particularly common with bit field assignments generated by the
5788 if (TREE_CODE (exp
) == NOP_EXPR
)
5790 tree type
= TREE_TYPE (exp
);
5791 if (INTEGRAL_TYPE_P (type
)
5792 && TYPE_PRECISION (type
) < GET_MODE_BITSIZE (TYPE_MODE (type
))
5793 && bitsize
== TYPE_PRECISION (type
))
5795 type
= TREE_TYPE (TREE_OPERAND (exp
, 0));
5796 if (INTEGRAL_TYPE_P (type
) && TYPE_PRECISION (type
) >= bitsize
)
5797 exp
= TREE_OPERAND (exp
, 0);
5801 temp
= expand_normal (exp
);
5803 /* If BITSIZE is narrower than the size of the type of EXP
5804 we will be narrowing TEMP. Normally, what's wanted are the
5805 low-order bits. However, if EXP's type is a record and this is
5806 big-endian machine, we want the upper BITSIZE bits. */
5807 if (BYTES_BIG_ENDIAN
&& GET_MODE_CLASS (GET_MODE (temp
)) == MODE_INT
5808 && bitsize
< (HOST_WIDE_INT
) GET_MODE_BITSIZE (GET_MODE (temp
))
5809 && TREE_CODE (TREE_TYPE (exp
)) == RECORD_TYPE
)
5810 temp
= expand_shift (RSHIFT_EXPR
, GET_MODE (temp
), temp
,
5811 size_int (GET_MODE_BITSIZE (GET_MODE (temp
))
5815 /* Unless MODE is VOIDmode or BLKmode, convert TEMP to
5817 if (mode
!= VOIDmode
&& mode
!= BLKmode
5818 && mode
!= TYPE_MODE (TREE_TYPE (exp
)))
5819 temp
= convert_modes (mode
, TYPE_MODE (TREE_TYPE (exp
)), temp
, 1);
5821 /* If the modes of TEMP and TARGET are both BLKmode, both
5822 must be in memory and BITPOS must be aligned on a byte
5823 boundary. If so, we simply do a block copy. Likewise
5824 for a BLKmode-like TARGET. */
5825 if (GET_MODE (temp
) == BLKmode
5826 && (GET_MODE (target
) == BLKmode
5828 && GET_MODE_CLASS (GET_MODE (target
)) == MODE_INT
5829 && (bitpos
% BITS_PER_UNIT
) == 0
5830 && (bitsize
% BITS_PER_UNIT
) == 0)))
5832 gcc_assert (MEM_P (target
) && MEM_P (temp
)
5833 && (bitpos
% BITS_PER_UNIT
) == 0);
5835 target
= adjust_address (target
, VOIDmode
, bitpos
/ BITS_PER_UNIT
);
5836 emit_block_move (target
, temp
,
5837 GEN_INT ((bitsize
+ BITS_PER_UNIT
- 1)
5844 /* Store the value in the bitfield. */
5845 store_bit_field (target
, bitsize
, bitpos
, mode
, temp
);
5851 /* Now build a reference to just the desired component. */
5852 rtx to_rtx
= adjust_address (target
, mode
, bitpos
/ BITS_PER_UNIT
);
5854 if (to_rtx
== target
)
5855 to_rtx
= copy_rtx (to_rtx
);
5857 MEM_SET_IN_STRUCT_P (to_rtx
, 1);
5858 if (!MEM_KEEP_ALIAS_SET_P (to_rtx
) && MEM_ALIAS_SET (to_rtx
) != 0)
5859 set_mem_alias_set (to_rtx
, alias_set
);
5861 return store_expr (exp
, to_rtx
, 0, nontemporal
);
5865 /* Given an expression EXP that may be a COMPONENT_REF, a BIT_FIELD_REF,
5866 an ARRAY_REF, or an ARRAY_RANGE_REF, look for nested operations of these
5867 codes and find the ultimate containing object, which we return.
5869 We set *PBITSIZE to the size in bits that we want, *PBITPOS to the
5870 bit position, and *PUNSIGNEDP to the signedness of the field.
5871 If the position of the field is variable, we store a tree
5872 giving the variable offset (in units) in *POFFSET.
5873 This offset is in addition to the bit position.
5874 If the position is not variable, we store 0 in *POFFSET.
5876 If any of the extraction expressions is volatile,
5877 we store 1 in *PVOLATILEP. Otherwise we don't change that.
5879 If the field is a non-BLKmode bit-field, *PMODE is set to VOIDmode.
5880 Otherwise, it is a mode that can be used to access the field.
5882 If the field describes a variable-sized object, *PMODE is set to
5883 BLKmode and *PBITSIZE is set to -1. An access cannot be made in
5884 this case, but the address of the object can be found.
5886 If KEEP_ALIGNING is true and the target is STRICT_ALIGNMENT, we don't
5887 look through nodes that serve as markers of a greater alignment than
5888 the one that can be deduced from the expression. These nodes make it
5889 possible for front-ends to prevent temporaries from being created by
5890 the middle-end on alignment considerations. For that purpose, the
5891 normal operating mode at high-level is to always pass FALSE so that
5892 the ultimate containing object is really returned; moreover, the
5893 associated predicate handled_component_p will always return TRUE
5894 on these nodes, thus indicating that they are essentially handled
5895 by get_inner_reference. TRUE should only be passed when the caller
5896 is scanning the expression in order to build another representation
5897 and specifically knows how to handle these nodes; as such, this is
5898 the normal operating mode in the RTL expanders. */
5901 get_inner_reference (tree exp
, HOST_WIDE_INT
*pbitsize
,
5902 HOST_WIDE_INT
*pbitpos
, tree
*poffset
,
5903 enum machine_mode
*pmode
, int *punsignedp
,
5904 int *pvolatilep
, bool keep_aligning
)
5907 enum machine_mode mode
= VOIDmode
;
5908 bool blkmode_bitfield
= false;
5909 tree offset
= size_zero_node
;
5910 tree bit_offset
= bitsize_zero_node
;
5912 /* First get the mode, signedness, and size. We do this from just the
5913 outermost expression. */
5914 if (TREE_CODE (exp
) == COMPONENT_REF
)
5916 tree field
= TREE_OPERAND (exp
, 1);
5917 size_tree
= DECL_SIZE (field
);
5918 if (!DECL_BIT_FIELD (field
))
5919 mode
= DECL_MODE (field
);
5920 else if (DECL_MODE (field
) == BLKmode
)
5921 blkmode_bitfield
= true;
5923 *punsignedp
= DECL_UNSIGNED (field
);
5925 else if (TREE_CODE (exp
) == BIT_FIELD_REF
)
5927 size_tree
= TREE_OPERAND (exp
, 1);
5928 *punsignedp
= (! INTEGRAL_TYPE_P (TREE_TYPE (exp
))
5929 || TYPE_UNSIGNED (TREE_TYPE (exp
)));
5931 /* For vector types, with the correct size of access, use the mode of
5933 if (TREE_CODE (TREE_TYPE (TREE_OPERAND (exp
, 0))) == VECTOR_TYPE
5934 && TREE_TYPE (exp
) == TREE_TYPE (TREE_TYPE (TREE_OPERAND (exp
, 0)))
5935 && tree_int_cst_equal (size_tree
, TYPE_SIZE (TREE_TYPE (exp
))))
5936 mode
= TYPE_MODE (TREE_TYPE (exp
));
5940 mode
= TYPE_MODE (TREE_TYPE (exp
));
5941 *punsignedp
= TYPE_UNSIGNED (TREE_TYPE (exp
));
5943 if (mode
== BLKmode
)
5944 size_tree
= TYPE_SIZE (TREE_TYPE (exp
));
5946 *pbitsize
= GET_MODE_BITSIZE (mode
);
5951 if (! host_integerp (size_tree
, 1))
5952 mode
= BLKmode
, *pbitsize
= -1;
5954 *pbitsize
= tree_low_cst (size_tree
, 1);
5957 /* Compute cumulative bit-offset for nested component-refs and array-refs,
5958 and find the ultimate containing object. */
5961 switch (TREE_CODE (exp
))
5964 bit_offset
= size_binop (PLUS_EXPR
, bit_offset
,
5965 TREE_OPERAND (exp
, 2));
5970 tree field
= TREE_OPERAND (exp
, 1);
5971 tree this_offset
= component_ref_field_offset (exp
);
5973 /* If this field hasn't been filled in yet, don't go past it.
5974 This should only happen when folding expressions made during
5975 type construction. */
5976 if (this_offset
== 0)
5979 offset
= size_binop (PLUS_EXPR
, offset
, this_offset
);
5980 bit_offset
= size_binop (PLUS_EXPR
, bit_offset
,
5981 DECL_FIELD_BIT_OFFSET (field
));
5983 /* ??? Right now we don't do anything with DECL_OFFSET_ALIGN. */
5988 case ARRAY_RANGE_REF
:
5990 tree index
= TREE_OPERAND (exp
, 1);
5991 tree low_bound
= array_ref_low_bound (exp
);
5992 tree unit_size
= array_ref_element_size (exp
);
5994 /* We assume all arrays have sizes that are a multiple of a byte.
5995 First subtract the lower bound, if any, in the type of the
5996 index, then convert to sizetype and multiply by the size of
5997 the array element. */
5998 if (! integer_zerop (low_bound
))
5999 index
= fold_build2 (MINUS_EXPR
, TREE_TYPE (index
),
6002 offset
= size_binop (PLUS_EXPR
, offset
,
6003 size_binop (MULT_EXPR
,
6004 fold_convert (sizetype
, index
),
6013 bit_offset
= size_binop (PLUS_EXPR
, bit_offset
,
6014 bitsize_int (*pbitsize
));
6017 case VIEW_CONVERT_EXPR
:
6018 if (keep_aligning
&& STRICT_ALIGNMENT
6019 && (TYPE_ALIGN (TREE_TYPE (exp
))
6020 > TYPE_ALIGN (TREE_TYPE (TREE_OPERAND (exp
, 0))))
6021 && (TYPE_ALIGN (TREE_TYPE (TREE_OPERAND (exp
, 0)))
6022 < BIGGEST_ALIGNMENT
)
6023 && (TYPE_ALIGN_OK (TREE_TYPE (exp
))
6024 || TYPE_ALIGN_OK (TREE_TYPE (TREE_OPERAND (exp
, 0)))))
6032 /* If any reference in the chain is volatile, the effect is volatile. */
6033 if (TREE_THIS_VOLATILE (exp
))
6036 exp
= TREE_OPERAND (exp
, 0);
6040 /* If OFFSET is constant, see if we can return the whole thing as a
6041 constant bit position. Make sure to handle overflow during
6043 if (host_integerp (offset
, 0))
6045 double_int tem
= double_int_mul (tree_to_double_int (offset
),
6046 uhwi_to_double_int (BITS_PER_UNIT
));
6047 tem
= double_int_add (tem
, tree_to_double_int (bit_offset
));
6048 if (double_int_fits_in_shwi_p (tem
))
6050 *pbitpos
= double_int_to_shwi (tem
);
6051 *poffset
= offset
= NULL_TREE
;
6055 /* Otherwise, split it up. */
6058 *pbitpos
= tree_low_cst (bit_offset
, 0);
6062 /* We can use BLKmode for a byte-aligned BLKmode bitfield. */
6063 if (mode
== VOIDmode
6065 && (*pbitpos
% BITS_PER_UNIT
) == 0
6066 && (*pbitsize
% BITS_PER_UNIT
) == 0)
6074 /* Given an expression EXP that may be a COMPONENT_REF or an ARRAY_REF,
6075 look for whether EXP or any nested component-refs within EXP is marked
6079 contains_packed_reference (const_tree exp
)
6081 bool packed_p
= false;
6085 switch (TREE_CODE (exp
))
6089 tree field
= TREE_OPERAND (exp
, 1);
6090 packed_p
= DECL_PACKED (field
)
6091 || TYPE_PACKED (TREE_TYPE (field
))
6092 || TYPE_PACKED (TREE_TYPE (exp
));
6100 case ARRAY_RANGE_REF
:
6103 case VIEW_CONVERT_EXPR
:
6109 exp
= TREE_OPERAND (exp
, 0);
6115 /* Return a tree of sizetype representing the size, in bytes, of the element
6116 of EXP, an ARRAY_REF. */
6119 array_ref_element_size (tree exp
)
6121 tree aligned_size
= TREE_OPERAND (exp
, 3);
6122 tree elmt_type
= TREE_TYPE (TREE_TYPE (TREE_OPERAND (exp
, 0)));
6124 /* If a size was specified in the ARRAY_REF, it's the size measured
6125 in alignment units of the element type. So multiply by that value. */
6128 /* ??? tree_ssa_useless_type_conversion will eliminate casts to
6129 sizetype from another type of the same width and signedness. */
6130 if (TREE_TYPE (aligned_size
) != sizetype
)
6131 aligned_size
= fold_convert (sizetype
, aligned_size
);
6132 return size_binop (MULT_EXPR
, aligned_size
,
6133 size_int (TYPE_ALIGN_UNIT (elmt_type
)));
6136 /* Otherwise, take the size from that of the element type. Substitute
6137 any PLACEHOLDER_EXPR that we have. */
6139 return SUBSTITUTE_PLACEHOLDER_IN_EXPR (TYPE_SIZE_UNIT (elmt_type
), exp
);
6142 /* Return a tree representing the lower bound of the array mentioned in
6143 EXP, an ARRAY_REF. */
6146 array_ref_low_bound (tree exp
)
6148 tree domain_type
= TYPE_DOMAIN (TREE_TYPE (TREE_OPERAND (exp
, 0)));
6150 /* If a lower bound is specified in EXP, use it. */
6151 if (TREE_OPERAND (exp
, 2))
6152 return TREE_OPERAND (exp
, 2);
6154 /* Otherwise, if there is a domain type and it has a lower bound, use it,
6155 substituting for a PLACEHOLDER_EXPR as needed. */
6156 if (domain_type
&& TYPE_MIN_VALUE (domain_type
))
6157 return SUBSTITUTE_PLACEHOLDER_IN_EXPR (TYPE_MIN_VALUE (domain_type
), exp
);
6159 /* Otherwise, return a zero of the appropriate type. */
6160 return build_int_cst (TREE_TYPE (TREE_OPERAND (exp
, 1)), 0);
6163 /* Return a tree representing the upper bound of the array mentioned in
6164 EXP, an ARRAY_REF. */
6167 array_ref_up_bound (tree exp
)
6169 tree domain_type
= TYPE_DOMAIN (TREE_TYPE (TREE_OPERAND (exp
, 0)));
6171 /* If there is a domain type and it has an upper bound, use it, substituting
6172 for a PLACEHOLDER_EXPR as needed. */
6173 if (domain_type
&& TYPE_MAX_VALUE (domain_type
))
6174 return SUBSTITUTE_PLACEHOLDER_IN_EXPR (TYPE_MAX_VALUE (domain_type
), exp
);
6176 /* Otherwise fail. */
6180 /* Return a tree representing the offset, in bytes, of the field referenced
6181 by EXP. This does not include any offset in DECL_FIELD_BIT_OFFSET. */
6184 component_ref_field_offset (tree exp
)
6186 tree aligned_offset
= TREE_OPERAND (exp
, 2);
6187 tree field
= TREE_OPERAND (exp
, 1);
6189 /* If an offset was specified in the COMPONENT_REF, it's the offset measured
6190 in units of DECL_OFFSET_ALIGN / BITS_PER_UNIT. So multiply by that
6194 /* ??? tree_ssa_useless_type_conversion will eliminate casts to
6195 sizetype from another type of the same width and signedness. */
6196 if (TREE_TYPE (aligned_offset
) != sizetype
)
6197 aligned_offset
= fold_convert (sizetype
, aligned_offset
);
6198 return size_binop (MULT_EXPR
, aligned_offset
,
6199 size_int (DECL_OFFSET_ALIGN (field
) / BITS_PER_UNIT
));
6202 /* Otherwise, take the offset from that of the field. Substitute
6203 any PLACEHOLDER_EXPR that we have. */
6205 return SUBSTITUTE_PLACEHOLDER_IN_EXPR (DECL_FIELD_OFFSET (field
), exp
);
6208 /* Return 1 if T is an expression that get_inner_reference handles. */
6211 handled_component_p (const_tree t
)
6213 switch (TREE_CODE (t
))
6218 case ARRAY_RANGE_REF
:
6219 case VIEW_CONVERT_EXPR
:
6229 /* Given an rtx VALUE that may contain additions and multiplications, return
6230 an equivalent value that just refers to a register, memory, or constant.
6231 This is done by generating instructions to perform the arithmetic and
6232 returning a pseudo-register containing the value.
6234 The returned value may be a REG, SUBREG, MEM or constant. */
6237 force_operand (rtx value
, rtx target
)
6240 /* Use subtarget as the target for operand 0 of a binary operation. */
6241 rtx subtarget
= get_subtarget (target
);
6242 enum rtx_code code
= GET_CODE (value
);
6244 /* Check for subreg applied to an expression produced by loop optimizer. */
6246 && !REG_P (SUBREG_REG (value
))
6247 && !MEM_P (SUBREG_REG (value
)))
6250 = simplify_gen_subreg (GET_MODE (value
),
6251 force_reg (GET_MODE (SUBREG_REG (value
)),
6252 force_operand (SUBREG_REG (value
),
6254 GET_MODE (SUBREG_REG (value
)),
6255 SUBREG_BYTE (value
));
6256 code
= GET_CODE (value
);
6259 /* Check for a PIC address load. */
6260 if ((code
== PLUS
|| code
== MINUS
)
6261 && XEXP (value
, 0) == pic_offset_table_rtx
6262 && (GET_CODE (XEXP (value
, 1)) == SYMBOL_REF
6263 || GET_CODE (XEXP (value
, 1)) == LABEL_REF
6264 || GET_CODE (XEXP (value
, 1)) == CONST
))
6267 subtarget
= gen_reg_rtx (GET_MODE (value
));
6268 emit_move_insn (subtarget
, value
);
6272 if (ARITHMETIC_P (value
))
6274 op2
= XEXP (value
, 1);
6275 if (!CONSTANT_P (op2
) && !(REG_P (op2
) && op2
!= subtarget
))
6277 if (code
== MINUS
&& GET_CODE (op2
) == CONST_INT
)
6280 op2
= negate_rtx (GET_MODE (value
), op2
);
6283 /* Check for an addition with OP2 a constant integer and our first
6284 operand a PLUS of a virtual register and something else. In that
6285 case, we want to emit the sum of the virtual register and the
6286 constant first and then add the other value. This allows virtual
6287 register instantiation to simply modify the constant rather than
6288 creating another one around this addition. */
6289 if (code
== PLUS
&& GET_CODE (op2
) == CONST_INT
6290 && GET_CODE (XEXP (value
, 0)) == PLUS
6291 && REG_P (XEXP (XEXP (value
, 0), 0))
6292 && REGNO (XEXP (XEXP (value
, 0), 0)) >= FIRST_VIRTUAL_REGISTER
6293 && REGNO (XEXP (XEXP (value
, 0), 0)) <= LAST_VIRTUAL_REGISTER
)
6295 rtx temp
= expand_simple_binop (GET_MODE (value
), code
,
6296 XEXP (XEXP (value
, 0), 0), op2
,
6297 subtarget
, 0, OPTAB_LIB_WIDEN
);
6298 return expand_simple_binop (GET_MODE (value
), code
, temp
,
6299 force_operand (XEXP (XEXP (value
,
6301 target
, 0, OPTAB_LIB_WIDEN
);
6304 op1
= force_operand (XEXP (value
, 0), subtarget
);
6305 op2
= force_operand (op2
, NULL_RTX
);
6309 return expand_mult (GET_MODE (value
), op1
, op2
, target
, 1);
6311 if (!INTEGRAL_MODE_P (GET_MODE (value
)))
6312 return expand_simple_binop (GET_MODE (value
), code
, op1
, op2
,
6313 target
, 1, OPTAB_LIB_WIDEN
);
6315 return expand_divmod (0,
6316 FLOAT_MODE_P (GET_MODE (value
))
6317 ? RDIV_EXPR
: TRUNC_DIV_EXPR
,
6318 GET_MODE (value
), op1
, op2
, target
, 0);
6320 return expand_divmod (1, TRUNC_MOD_EXPR
, GET_MODE (value
), op1
, op2
,
6323 return expand_divmod (0, TRUNC_DIV_EXPR
, GET_MODE (value
), op1
, op2
,
6326 return expand_divmod (1, TRUNC_MOD_EXPR
, GET_MODE (value
), op1
, op2
,
6329 return expand_simple_binop (GET_MODE (value
), code
, op1
, op2
,
6330 target
, 0, OPTAB_LIB_WIDEN
);
6332 return expand_simple_binop (GET_MODE (value
), code
, op1
, op2
,
6333 target
, 1, OPTAB_LIB_WIDEN
);
6336 if (UNARY_P (value
))
6339 target
= gen_reg_rtx (GET_MODE (value
));
6340 op1
= force_operand (XEXP (value
, 0), NULL_RTX
);
6347 case FLOAT_TRUNCATE
:
6348 convert_move (target
, op1
, code
== ZERO_EXTEND
);
6353 expand_fix (target
, op1
, code
== UNSIGNED_FIX
);
6357 case UNSIGNED_FLOAT
:
6358 expand_float (target
, op1
, code
== UNSIGNED_FLOAT
);
6362 return expand_simple_unop (GET_MODE (value
), code
, op1
, target
, 0);
6366 #ifdef INSN_SCHEDULING
6367 /* On machines that have insn scheduling, we want all memory reference to be
6368 explicit, so we need to deal with such paradoxical SUBREGs. */
6369 if (GET_CODE (value
) == SUBREG
&& MEM_P (SUBREG_REG (value
))
6370 && (GET_MODE_SIZE (GET_MODE (value
))
6371 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (value
)))))
6373 = simplify_gen_subreg (GET_MODE (value
),
6374 force_reg (GET_MODE (SUBREG_REG (value
)),
6375 force_operand (SUBREG_REG (value
),
6377 GET_MODE (SUBREG_REG (value
)),
6378 SUBREG_BYTE (value
));
6384 /* Subroutine of expand_expr: return nonzero iff there is no way that
6385 EXP can reference X, which is being modified. TOP_P is nonzero if this
6386 call is going to be used to determine whether we need a temporary
6387 for EXP, as opposed to a recursive call to this function.
6389 It is always safe for this routine to return zero since it merely
6390 searches for optimization opportunities. */
6393 safe_from_p (const_rtx x
, tree exp
, int top_p
)
6399 /* If EXP has varying size, we MUST use a target since we currently
6400 have no way of allocating temporaries of variable size
6401 (except for arrays that have TYPE_ARRAY_MAX_SIZE set).
6402 So we assume here that something at a higher level has prevented a
6403 clash. This is somewhat bogus, but the best we can do. Only
6404 do this when X is BLKmode and when we are at the top level. */
6405 || (top_p
&& TREE_TYPE (exp
) != 0 && COMPLETE_TYPE_P (TREE_TYPE (exp
))
6406 && TREE_CODE (TYPE_SIZE (TREE_TYPE (exp
))) != INTEGER_CST
6407 && (TREE_CODE (TREE_TYPE (exp
)) != ARRAY_TYPE
6408 || TYPE_ARRAY_MAX_SIZE (TREE_TYPE (exp
)) == NULL_TREE
6409 || TREE_CODE (TYPE_ARRAY_MAX_SIZE (TREE_TYPE (exp
)))
6411 && GET_MODE (x
) == BLKmode
)
6412 /* If X is in the outgoing argument area, it is always safe. */
6414 && (XEXP (x
, 0) == virtual_outgoing_args_rtx
6415 || (GET_CODE (XEXP (x
, 0)) == PLUS
6416 && XEXP (XEXP (x
, 0), 0) == virtual_outgoing_args_rtx
))))
6419 /* If this is a subreg of a hard register, declare it unsafe, otherwise,
6420 find the underlying pseudo. */
6421 if (GET_CODE (x
) == SUBREG
)
6424 if (REG_P (x
) && REGNO (x
) < FIRST_PSEUDO_REGISTER
)
6428 /* Now look at our tree code and possibly recurse. */
6429 switch (TREE_CODE_CLASS (TREE_CODE (exp
)))
6431 case tcc_declaration
:
6432 exp_rtl
= DECL_RTL_IF_SET (exp
);
6438 case tcc_exceptional
:
6439 if (TREE_CODE (exp
) == TREE_LIST
)
6443 if (TREE_VALUE (exp
) && !safe_from_p (x
, TREE_VALUE (exp
), 0))
6445 exp
= TREE_CHAIN (exp
);
6448 if (TREE_CODE (exp
) != TREE_LIST
)
6449 return safe_from_p (x
, exp
, 0);
6452 else if (TREE_CODE (exp
) == CONSTRUCTOR
)
6454 constructor_elt
*ce
;
6455 unsigned HOST_WIDE_INT idx
;
6458 VEC_iterate (constructor_elt
, CONSTRUCTOR_ELTS (exp
), idx
, ce
);
6460 if ((ce
->index
!= NULL_TREE
&& !safe_from_p (x
, ce
->index
, 0))
6461 || !safe_from_p (x
, ce
->value
, 0))
6465 else if (TREE_CODE (exp
) == ERROR_MARK
)
6466 return 1; /* An already-visited SAVE_EXPR? */
6471 /* The only case we look at here is the DECL_INITIAL inside a
6473 return (TREE_CODE (exp
) != DECL_EXPR
6474 || TREE_CODE (DECL_EXPR_DECL (exp
)) != VAR_DECL
6475 || !DECL_INITIAL (DECL_EXPR_DECL (exp
))
6476 || safe_from_p (x
, DECL_INITIAL (DECL_EXPR_DECL (exp
)), 0));
6479 case tcc_comparison
:
6480 if (!safe_from_p (x
, TREE_OPERAND (exp
, 1), 0))
6485 return safe_from_p (x
, TREE_OPERAND (exp
, 0), 0);
6487 case tcc_expression
:
6490 /* Now do code-specific tests. EXP_RTL is set to any rtx we find in
6491 the expression. If it is set, we conflict iff we are that rtx or
6492 both are in memory. Otherwise, we check all operands of the
6493 expression recursively. */
6495 switch (TREE_CODE (exp
))
6498 /* If the operand is static or we are static, we can't conflict.
6499 Likewise if we don't conflict with the operand at all. */
6500 if (staticp (TREE_OPERAND (exp
, 0))
6501 || TREE_STATIC (exp
)
6502 || safe_from_p (x
, TREE_OPERAND (exp
, 0), 0))
6505 /* Otherwise, the only way this can conflict is if we are taking
6506 the address of a DECL a that address if part of X, which is
6508 exp
= TREE_OPERAND (exp
, 0);
6511 if (!DECL_RTL_SET_P (exp
)
6512 || !MEM_P (DECL_RTL (exp
)))
6515 exp_rtl
= XEXP (DECL_RTL (exp
), 0);
6519 case MISALIGNED_INDIRECT_REF
:
6520 case ALIGN_INDIRECT_REF
:
6523 && alias_sets_conflict_p (MEM_ALIAS_SET (x
),
6524 get_alias_set (exp
)))
6529 /* Assume that the call will clobber all hard registers and
6531 if ((REG_P (x
) && REGNO (x
) < FIRST_PSEUDO_REGISTER
)
6536 case WITH_CLEANUP_EXPR
:
6537 case CLEANUP_POINT_EXPR
:
6538 /* Lowered by gimplify.c. */
6542 return safe_from_p (x
, TREE_OPERAND (exp
, 0), 0);
6548 /* If we have an rtx, we do not need to scan our operands. */
6552 nops
= TREE_OPERAND_LENGTH (exp
);
6553 for (i
= 0; i
< nops
; i
++)
6554 if (TREE_OPERAND (exp
, i
) != 0
6555 && ! safe_from_p (x
, TREE_OPERAND (exp
, i
), 0))
6561 /* Should never get a type here. */
6565 /* If we have an rtl, find any enclosed object. Then see if we conflict
6569 if (GET_CODE (exp_rtl
) == SUBREG
)
6571 exp_rtl
= SUBREG_REG (exp_rtl
);
6573 && REGNO (exp_rtl
) < FIRST_PSEUDO_REGISTER
)
6577 /* If the rtl is X, then it is not safe. Otherwise, it is unless both
6578 are memory and they conflict. */
6579 return ! (rtx_equal_p (x
, exp_rtl
)
6580 || (MEM_P (x
) && MEM_P (exp_rtl
)
6581 && true_dependence (exp_rtl
, VOIDmode
, x
,
6582 rtx_addr_varies_p
)));
6585 /* If we reach here, it is safe. */
6590 /* Return the highest power of two that EXP is known to be a multiple of.
6591 This is used in updating alignment of MEMs in array references. */
6593 unsigned HOST_WIDE_INT
6594 highest_pow2_factor (const_tree exp
)
6596 unsigned HOST_WIDE_INT c0
, c1
;
6598 switch (TREE_CODE (exp
))
6601 /* We can find the lowest bit that's a one. If the low
6602 HOST_BITS_PER_WIDE_INT bits are zero, return BIGGEST_ALIGNMENT.
6603 We need to handle this case since we can find it in a COND_EXPR,
6604 a MIN_EXPR, or a MAX_EXPR. If the constant overflows, we have an
6605 erroneous program, so return BIGGEST_ALIGNMENT to avoid any
6607 if (TREE_OVERFLOW (exp
))
6608 return BIGGEST_ALIGNMENT
;
6611 /* Note: tree_low_cst is intentionally not used here,
6612 we don't care about the upper bits. */
6613 c0
= TREE_INT_CST_LOW (exp
);
6615 return c0
? c0
: BIGGEST_ALIGNMENT
;
6619 case PLUS_EXPR
: case MINUS_EXPR
: case MIN_EXPR
: case MAX_EXPR
:
6620 c0
= highest_pow2_factor (TREE_OPERAND (exp
, 0));
6621 c1
= highest_pow2_factor (TREE_OPERAND (exp
, 1));
6622 return MIN (c0
, c1
);
6625 c0
= highest_pow2_factor (TREE_OPERAND (exp
, 0));
6626 c1
= highest_pow2_factor (TREE_OPERAND (exp
, 1));
6629 case ROUND_DIV_EXPR
: case TRUNC_DIV_EXPR
: case FLOOR_DIV_EXPR
:
6631 if (integer_pow2p (TREE_OPERAND (exp
, 1))
6632 && host_integerp (TREE_OPERAND (exp
, 1), 1))
6634 c0
= highest_pow2_factor (TREE_OPERAND (exp
, 0));
6635 c1
= tree_low_cst (TREE_OPERAND (exp
, 1), 1);
6636 return MAX (1, c0
/ c1
);
6641 /* The highest power of two of a bit-and expression is the maximum of
6642 that of its operands. We typically get here for a complex LHS and
6643 a constant negative power of two on the RHS to force an explicit
6644 alignment, so don't bother looking at the LHS. */
6645 return highest_pow2_factor (TREE_OPERAND (exp
, 1));
6649 return highest_pow2_factor (TREE_OPERAND (exp
, 0));
6652 return highest_pow2_factor (TREE_OPERAND (exp
, 1));
6655 c0
= highest_pow2_factor (TREE_OPERAND (exp
, 1));
6656 c1
= highest_pow2_factor (TREE_OPERAND (exp
, 2));
6657 return MIN (c0
, c1
);
6666 /* Similar, except that the alignment requirements of TARGET are
6667 taken into account. Assume it is at least as aligned as its
6668 type, unless it is a COMPONENT_REF in which case the layout of
6669 the structure gives the alignment. */
6671 static unsigned HOST_WIDE_INT
6672 highest_pow2_factor_for_target (const_tree target
, const_tree exp
)
6674 unsigned HOST_WIDE_INT target_align
, factor
;
6676 factor
= highest_pow2_factor (exp
);
6677 if (TREE_CODE (target
) == COMPONENT_REF
)
6678 target_align
= DECL_ALIGN_UNIT (TREE_OPERAND (target
, 1));
6680 target_align
= TYPE_ALIGN_UNIT (TREE_TYPE (target
));
6681 return MAX (factor
, target_align
);
6684 /* Return &VAR expression for emulated thread local VAR. */
6687 emutls_var_address (tree var
)
6689 tree emuvar
= emutls_decl (var
);
6690 tree fn
= built_in_decls
[BUILT_IN_EMUTLS_GET_ADDRESS
];
6691 tree arg
= build_fold_addr_expr_with_type (emuvar
, ptr_type_node
);
6692 tree arglist
= build_tree_list (NULL_TREE
, arg
);
6693 tree call
= build_function_call_expr (fn
, arglist
);
6694 return fold_convert (build_pointer_type (TREE_TYPE (var
)), call
);
6698 /* Subroutine of expand_expr. Expand the two operands of a binary
6699 expression EXP0 and EXP1 placing the results in OP0 and OP1.
6700 The value may be stored in TARGET if TARGET is nonzero. The
6701 MODIFIER argument is as documented by expand_expr. */
6704 expand_operands (tree exp0
, tree exp1
, rtx target
, rtx
*op0
, rtx
*op1
,
6705 enum expand_modifier modifier
)
6707 if (! safe_from_p (target
, exp1
, 1))
6709 if (operand_equal_p (exp0
, exp1
, 0))
6711 *op0
= expand_expr (exp0
, target
, VOIDmode
, modifier
);
6712 *op1
= copy_rtx (*op0
);
6716 /* If we need to preserve evaluation order, copy exp0 into its own
6717 temporary variable so that it can't be clobbered by exp1. */
6718 if (flag_evaluation_order
&& TREE_SIDE_EFFECTS (exp1
))
6719 exp0
= save_expr (exp0
);
6720 *op0
= expand_expr (exp0
, target
, VOIDmode
, modifier
);
6721 *op1
= expand_expr (exp1
, NULL_RTX
, VOIDmode
, modifier
);
6726 /* Return a MEM that contains constant EXP. DEFER is as for
6727 output_constant_def and MODIFIER is as for expand_expr. */
6730 expand_expr_constant (tree exp
, int defer
, enum expand_modifier modifier
)
6734 mem
= output_constant_def (exp
, defer
);
6735 if (modifier
!= EXPAND_INITIALIZER
)
6736 mem
= use_anchored_address (mem
);
6740 /* A subroutine of expand_expr_addr_expr. Evaluate the address of EXP.
6741 The TARGET, TMODE and MODIFIER arguments are as for expand_expr. */
6744 expand_expr_addr_expr_1 (tree exp
, rtx target
, enum machine_mode tmode
,
6745 enum expand_modifier modifier
)
6747 rtx result
, subtarget
;
6749 HOST_WIDE_INT bitsize
, bitpos
;
6750 int volatilep
, unsignedp
;
6751 enum machine_mode mode1
;
6753 /* If we are taking the address of a constant and are at the top level,
6754 we have to use output_constant_def since we can't call force_const_mem
6756 /* ??? This should be considered a front-end bug. We should not be
6757 generating ADDR_EXPR of something that isn't an LVALUE. The only
6758 exception here is STRING_CST. */
6759 if (CONSTANT_CLASS_P (exp
))
6760 return XEXP (expand_expr_constant (exp
, 0, modifier
), 0);
6762 /* Everything must be something allowed by is_gimple_addressable. */
6763 switch (TREE_CODE (exp
))
6766 /* This case will happen via recursion for &a->b. */
6767 return expand_expr (TREE_OPERAND (exp
, 0), target
, tmode
, modifier
);
6770 /* Recurse and make the output_constant_def clause above handle this. */
6771 return expand_expr_addr_expr_1 (DECL_INITIAL (exp
), target
,
6775 /* The real part of the complex number is always first, therefore
6776 the address is the same as the address of the parent object. */
6779 inner
= TREE_OPERAND (exp
, 0);
6783 /* The imaginary part of the complex number is always second.
6784 The expression is therefore always offset by the size of the
6787 bitpos
= GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (exp
)));
6788 inner
= TREE_OPERAND (exp
, 0);
6792 /* TLS emulation hook - replace __thread VAR's &VAR with
6793 __emutls_get_address (&_emutls.VAR). */
6794 if (! targetm
.have_tls
6795 && TREE_CODE (exp
) == VAR_DECL
6796 && DECL_THREAD_LOCAL_P (exp
))
6798 exp
= emutls_var_address (exp
);
6799 return expand_expr (exp
, target
, tmode
, modifier
);
6804 /* If the object is a DECL, then expand it for its rtl. Don't bypass
6805 expand_expr, as that can have various side effects; LABEL_DECLs for
6806 example, may not have their DECL_RTL set yet. Expand the rtl of
6807 CONSTRUCTORs too, which should yield a memory reference for the
6808 constructor's contents. Assume language specific tree nodes can
6809 be expanded in some interesting way. */
6811 || TREE_CODE (exp
) == CONSTRUCTOR
6812 || TREE_CODE (exp
) >= LAST_AND_UNUSED_TREE_CODE
)
6814 result
= expand_expr (exp
, target
, tmode
,
6815 modifier
== EXPAND_INITIALIZER
6816 ? EXPAND_INITIALIZER
: EXPAND_CONST_ADDRESS
);
6818 /* If the DECL isn't in memory, then the DECL wasn't properly
6819 marked TREE_ADDRESSABLE, which will be either a front-end
6820 or a tree optimizer bug. */
6821 gcc_assert (MEM_P (result
));
6822 result
= XEXP (result
, 0);
6824 /* ??? Is this needed anymore? */
6825 if (DECL_P (exp
) && !TREE_USED (exp
) == 0)
6827 assemble_external (exp
);
6828 TREE_USED (exp
) = 1;
6831 if (modifier
!= EXPAND_INITIALIZER
6832 && modifier
!= EXPAND_CONST_ADDRESS
)
6833 result
= force_operand (result
, target
);
6837 /* Pass FALSE as the last argument to get_inner_reference although
6838 we are expanding to RTL. The rationale is that we know how to
6839 handle "aligning nodes" here: we can just bypass them because
6840 they won't change the final object whose address will be returned
6841 (they actually exist only for that purpose). */
6842 inner
= get_inner_reference (exp
, &bitsize
, &bitpos
, &offset
,
6843 &mode1
, &unsignedp
, &volatilep
, false);
6847 /* We must have made progress. */
6848 gcc_assert (inner
!= exp
);
6850 subtarget
= offset
|| bitpos
? NULL_RTX
: target
;
6851 result
= expand_expr_addr_expr_1 (inner
, subtarget
, tmode
, modifier
);
6857 if (modifier
!= EXPAND_NORMAL
)
6858 result
= force_operand (result
, NULL
);
6859 tmp
= expand_expr (offset
, NULL_RTX
, tmode
,
6860 modifier
== EXPAND_INITIALIZER
6861 ? EXPAND_INITIALIZER
: EXPAND_NORMAL
);
6863 result
= convert_memory_address (tmode
, result
);
6864 tmp
= convert_memory_address (tmode
, tmp
);
6866 if (modifier
== EXPAND_SUM
|| modifier
== EXPAND_INITIALIZER
)
6867 result
= gen_rtx_PLUS (tmode
, result
, tmp
);
6870 subtarget
= bitpos
? NULL_RTX
: target
;
6871 result
= expand_simple_binop (tmode
, PLUS
, result
, tmp
, subtarget
,
6872 1, OPTAB_LIB_WIDEN
);
6878 /* Someone beforehand should have rejected taking the address
6879 of such an object. */
6880 gcc_assert ((bitpos
% BITS_PER_UNIT
) == 0);
6882 result
= plus_constant (result
, bitpos
/ BITS_PER_UNIT
);
6883 if (modifier
< EXPAND_SUM
)
6884 result
= force_operand (result
, target
);
6890 /* A subroutine of expand_expr. Evaluate EXP, which is an ADDR_EXPR.
6891 The TARGET, TMODE and MODIFIER arguments are as for expand_expr. */
6894 expand_expr_addr_expr (tree exp
, rtx target
, enum machine_mode tmode
,
6895 enum expand_modifier modifier
)
6897 enum machine_mode rmode
;
6900 /* Target mode of VOIDmode says "whatever's natural". */
6901 if (tmode
== VOIDmode
)
6902 tmode
= TYPE_MODE (TREE_TYPE (exp
));
6904 /* We can get called with some Weird Things if the user does silliness
6905 like "(short) &a". In that case, convert_memory_address won't do
6906 the right thing, so ignore the given target mode. */
6907 if (tmode
!= Pmode
&& tmode
!= ptr_mode
)
6910 result
= expand_expr_addr_expr_1 (TREE_OPERAND (exp
, 0), target
,
6913 /* Despite expand_expr claims concerning ignoring TMODE when not
6914 strictly convenient, stuff breaks if we don't honor it. Note
6915 that combined with the above, we only do this for pointer modes. */
6916 rmode
= GET_MODE (result
);
6917 if (rmode
== VOIDmode
)
6920 result
= convert_memory_address (tmode
, result
);
6925 /* Generate code for computing CONSTRUCTOR EXP.
6926 An rtx for the computed value is returned. If AVOID_TEMP_MEM
6927 is TRUE, instead of creating a temporary variable in memory
6928 NULL is returned and the caller needs to handle it differently. */
6931 expand_constructor (tree exp
, rtx target
, enum expand_modifier modifier
,
6932 bool avoid_temp_mem
)
6934 tree type
= TREE_TYPE (exp
);
6935 enum machine_mode mode
= TYPE_MODE (type
);
6937 /* Try to avoid creating a temporary at all. This is possible
6938 if all of the initializer is zero.
6939 FIXME: try to handle all [0..255] initializers we can handle
6941 if (TREE_STATIC (exp
)
6942 && !TREE_ADDRESSABLE (exp
)
6943 && target
!= 0 && mode
== BLKmode
6944 && all_zeros_p (exp
))
6946 clear_storage (target
, expr_size (exp
), BLOCK_OP_NORMAL
);
6950 /* All elts simple constants => refer to a constant in memory. But
6951 if this is a non-BLKmode mode, let it store a field at a time
6952 since that should make a CONST_INT or CONST_DOUBLE when we
6953 fold. Likewise, if we have a target we can use, it is best to
6954 store directly into the target unless the type is large enough
6955 that memcpy will be used. If we are making an initializer and
6956 all operands are constant, put it in memory as well.
6958 FIXME: Avoid trying to fill vector constructors piece-meal.
6959 Output them with output_constant_def below unless we're sure
6960 they're zeros. This should go away when vector initializers
6961 are treated like VECTOR_CST instead of arrays. */
6962 if ((TREE_STATIC (exp
)
6963 && ((mode
== BLKmode
6964 && ! (target
!= 0 && safe_from_p (target
, exp
, 1)))
6965 || TREE_ADDRESSABLE (exp
)
6966 || (host_integerp (TYPE_SIZE_UNIT (type
), 1)
6967 && (! MOVE_BY_PIECES_P
6968 (tree_low_cst (TYPE_SIZE_UNIT (type
), 1),
6970 && ! mostly_zeros_p (exp
))))
6971 || ((modifier
== EXPAND_INITIALIZER
|| modifier
== EXPAND_CONST_ADDRESS
)
6972 && TREE_CONSTANT (exp
)))
6979 constructor
= expand_expr_constant (exp
, 1, modifier
);
6981 if (modifier
!= EXPAND_CONST_ADDRESS
6982 && modifier
!= EXPAND_INITIALIZER
6983 && modifier
!= EXPAND_SUM
)
6984 constructor
= validize_mem (constructor
);
6989 /* Handle calls that pass values in multiple non-contiguous
6990 locations. The Irix 6 ABI has examples of this. */
6991 if (target
== 0 || ! safe_from_p (target
, exp
, 1)
6992 || GET_CODE (target
) == PARALLEL
|| modifier
== EXPAND_STACK_PARM
)
6998 = assign_temp (build_qualified_type (type
, (TYPE_QUALS (type
)
6999 | (TREE_READONLY (exp
)
7000 * TYPE_QUAL_CONST
))),
7001 0, TREE_ADDRESSABLE (exp
), 1);
7004 store_constructor (exp
, target
, 0, int_expr_size (exp
));
7009 /* expand_expr: generate code for computing expression EXP.
7010 An rtx for the computed value is returned. The value is never null.
7011 In the case of a void EXP, const0_rtx is returned.
7013 The value may be stored in TARGET if TARGET is nonzero.
7014 TARGET is just a suggestion; callers must assume that
7015 the rtx returned may not be the same as TARGET.
7017 If TARGET is CONST0_RTX, it means that the value will be ignored.
7019 If TMODE is not VOIDmode, it suggests generating the
7020 result in mode TMODE. But this is done only when convenient.
7021 Otherwise, TMODE is ignored and the value generated in its natural mode.
7022 TMODE is just a suggestion; callers must assume that
7023 the rtx returned may not have mode TMODE.
7025 Note that TARGET may have neither TMODE nor MODE. In that case, it
7026 probably will not be used.
7028 If MODIFIER is EXPAND_SUM then when EXP is an addition
7029 we can return an rtx of the form (MULT (REG ...) (CONST_INT ...))
7030 or a nest of (PLUS ...) and (MINUS ...) where the terms are
7031 products as above, or REG or MEM, or constant.
7032 Ordinarily in such cases we would output mul or add instructions
7033 and then return a pseudo reg containing the sum.
7035 EXPAND_INITIALIZER is much like EXPAND_SUM except that
7036 it also marks a label as absolutely required (it can't be dead).
7037 It also makes a ZERO_EXTEND or SIGN_EXTEND instead of emitting extend insns.
7038 This is used for outputting expressions used in initializers.
7040 EXPAND_CONST_ADDRESS says that it is okay to return a MEM
7041 with a constant address even if that address is not normally legitimate.
7042 EXPAND_INITIALIZER and EXPAND_SUM also have this effect.
7044 EXPAND_STACK_PARM is used when expanding to a TARGET on the stack for
7045 a call parameter. Such targets require special care as we haven't yet
7046 marked TARGET so that it's safe from being trashed by libcalls. We
7047 don't want to use TARGET for anything but the final result;
7048 Intermediate values must go elsewhere. Additionally, calls to
7049 emit_block_move will be flagged with BLOCK_OP_CALL_PARM.
7051 If EXP is a VAR_DECL whose DECL_RTL was a MEM with an invalid
7052 address, and ALT_RTL is non-NULL, then *ALT_RTL is set to the
7053 DECL_RTL of the VAR_DECL. *ALT_RTL is also set if EXP is a
7054 COMPOUND_EXPR whose second argument is such a VAR_DECL, and so on
7057 static rtx
expand_expr_real_1 (tree
, rtx
, enum machine_mode
,
7058 enum expand_modifier
, rtx
*);
7061 expand_expr_real (tree exp
, rtx target
, enum machine_mode tmode
,
7062 enum expand_modifier modifier
, rtx
*alt_rtl
)
7065 rtx ret
, last
= NULL
;
7067 /* Handle ERROR_MARK before anybody tries to access its type. */
7068 if (TREE_CODE (exp
) == ERROR_MARK
7069 || (TREE_CODE (TREE_TYPE (exp
)) == ERROR_MARK
))
7071 ret
= CONST0_RTX (tmode
);
7072 return ret
? ret
: const0_rtx
;
7075 if (flag_non_call_exceptions
)
7077 rn
= lookup_expr_eh_region (exp
);
7079 /* If rn < 0, then either (1) tree-ssa not used or (2) doesn't throw. */
7081 last
= get_last_insn ();
7084 /* If this is an expression of some kind and it has an associated line
7085 number, then emit the line number before expanding the expression.
7087 We need to save and restore the file and line information so that
7088 errors discovered during expansion are emitted with the right
7089 information. It would be better of the diagnostic routines
7090 used the file/line information embedded in the tree nodes rather
7092 if (cfun
&& EXPR_HAS_LOCATION (exp
))
7094 location_t saved_location
= input_location
;
7095 input_location
= EXPR_LOCATION (exp
);
7096 set_curr_insn_source_location (input_location
);
7098 /* Record where the insns produced belong. */
7099 set_curr_insn_block (TREE_BLOCK (exp
));
7101 ret
= expand_expr_real_1 (exp
, target
, tmode
, modifier
, alt_rtl
);
7103 input_location
= saved_location
;
7107 ret
= expand_expr_real_1 (exp
, target
, tmode
, modifier
, alt_rtl
);
7110 /* If using non-call exceptions, mark all insns that may trap.
7111 expand_call() will mark CALL_INSNs before we get to this code,
7112 but it doesn't handle libcalls, and these may trap. */
7116 for (insn
= next_real_insn (last
); insn
;
7117 insn
= next_real_insn (insn
))
7119 if (! find_reg_note (insn
, REG_EH_REGION
, NULL_RTX
)
7120 /* If we want exceptions for non-call insns, any
7121 may_trap_p instruction may throw. */
7122 && GET_CODE (PATTERN (insn
)) != CLOBBER
7123 && GET_CODE (PATTERN (insn
)) != USE
7124 && (CALL_P (insn
) || may_trap_p (PATTERN (insn
))))
7125 add_reg_note (insn
, REG_EH_REGION
, GEN_INT (rn
));
7133 expand_expr_real_1 (tree exp
, rtx target
, enum machine_mode tmode
,
7134 enum expand_modifier modifier
, rtx
*alt_rtl
)
7136 rtx op0
, op1
, op2
, temp
, decl_rtl
;
7139 enum machine_mode mode
;
7140 enum tree_code code
= TREE_CODE (exp
);
7142 rtx subtarget
, original_target
;
7144 tree context
, subexp0
, subexp1
;
7145 bool reduce_bit_field
;
7146 #define REDUCE_BIT_FIELD(expr) (reduce_bit_field \
7147 ? reduce_to_bit_field_precision ((expr), \
7152 type
= TREE_TYPE (exp
);
7153 mode
= TYPE_MODE (type
);
7154 unsignedp
= TYPE_UNSIGNED (type
);
7156 ignore
= (target
== const0_rtx
7157 || ((CONVERT_EXPR_CODE_P (code
)
7158 || code
== COND_EXPR
|| code
== VIEW_CONVERT_EXPR
)
7159 && TREE_CODE (type
) == VOID_TYPE
));
7161 /* An operation in what may be a bit-field type needs the
7162 result to be reduced to the precision of the bit-field type,
7163 which is narrower than that of the type's mode. */
7164 reduce_bit_field
= (!ignore
7165 && TREE_CODE (type
) == INTEGER_TYPE
7166 && GET_MODE_PRECISION (mode
) > TYPE_PRECISION (type
));
7168 /* If we are going to ignore this result, we need only do something
7169 if there is a side-effect somewhere in the expression. If there
7170 is, short-circuit the most common cases here. Note that we must
7171 not call expand_expr with anything but const0_rtx in case this
7172 is an initial expansion of a size that contains a PLACEHOLDER_EXPR. */
7176 if (! TREE_SIDE_EFFECTS (exp
))
7179 /* Ensure we reference a volatile object even if value is ignored, but
7180 don't do this if all we are doing is taking its address. */
7181 if (TREE_THIS_VOLATILE (exp
)
7182 && TREE_CODE (exp
) != FUNCTION_DECL
7183 && mode
!= VOIDmode
&& mode
!= BLKmode
7184 && modifier
!= EXPAND_CONST_ADDRESS
)
7186 temp
= expand_expr (exp
, NULL_RTX
, VOIDmode
, modifier
);
7188 temp
= copy_to_reg (temp
);
7192 if (TREE_CODE_CLASS (code
) == tcc_unary
7193 || code
== COMPONENT_REF
|| code
== INDIRECT_REF
)
7194 return expand_expr (TREE_OPERAND (exp
, 0), const0_rtx
, VOIDmode
,
7197 else if (TREE_CODE_CLASS (code
) == tcc_binary
7198 || TREE_CODE_CLASS (code
) == tcc_comparison
7199 || code
== ARRAY_REF
|| code
== ARRAY_RANGE_REF
)
7201 expand_expr (TREE_OPERAND (exp
, 0), const0_rtx
, VOIDmode
, modifier
);
7202 expand_expr (TREE_OPERAND (exp
, 1), const0_rtx
, VOIDmode
, modifier
);
7205 else if (code
== BIT_FIELD_REF
)
7207 expand_expr (TREE_OPERAND (exp
, 0), const0_rtx
, VOIDmode
, modifier
);
7208 expand_expr (TREE_OPERAND (exp
, 1), const0_rtx
, VOIDmode
, modifier
);
7209 expand_expr (TREE_OPERAND (exp
, 2), const0_rtx
, VOIDmode
, modifier
);
7216 if (reduce_bit_field
&& modifier
== EXPAND_STACK_PARM
)
7219 /* Use subtarget as the target for operand 0 of a binary operation. */
7220 subtarget
= get_subtarget (target
);
7221 original_target
= target
;
7227 tree function
= decl_function_context (exp
);
7229 temp
= label_rtx (exp
);
7230 temp
= gen_rtx_LABEL_REF (Pmode
, temp
);
7232 if (function
!= current_function_decl
7234 LABEL_REF_NONLOCAL_P (temp
) = 1;
7236 temp
= gen_rtx_MEM (FUNCTION_MODE
, temp
);
7241 return expand_expr_real_1 (SSA_NAME_VAR (exp
), target
, tmode
, modifier
,
7246 /* If a static var's type was incomplete when the decl was written,
7247 but the type is complete now, lay out the decl now. */
7248 if (DECL_SIZE (exp
) == 0
7249 && COMPLETE_OR_UNBOUND_ARRAY_TYPE_P (TREE_TYPE (exp
))
7250 && (TREE_STATIC (exp
) || DECL_EXTERNAL (exp
)))
7251 layout_decl (exp
, 0);
7253 /* TLS emulation hook - replace __thread vars with
7254 *__emutls_get_address (&_emutls.var). */
7255 if (! targetm
.have_tls
7256 && TREE_CODE (exp
) == VAR_DECL
7257 && DECL_THREAD_LOCAL_P (exp
))
7259 exp
= build_fold_indirect_ref (emutls_var_address (exp
));
7260 return expand_expr_real_1 (exp
, target
, tmode
, modifier
, NULL
);
7263 /* ... fall through ... */
7267 decl_rtl
= DECL_RTL (exp
);
7268 gcc_assert (decl_rtl
);
7269 decl_rtl
= copy_rtx (decl_rtl
);
7271 /* Ensure variable marked as used even if it doesn't go through
7272 a parser. If it hasn't be used yet, write out an external
7274 if (! TREE_USED (exp
))
7276 assemble_external (exp
);
7277 TREE_USED (exp
) = 1;
7280 /* Show we haven't gotten RTL for this yet. */
7283 /* Variables inherited from containing functions should have
7284 been lowered by this point. */
7285 context
= decl_function_context (exp
);
7286 gcc_assert (!context
7287 || context
== current_function_decl
7288 || TREE_STATIC (exp
)
7289 /* ??? C++ creates functions that are not TREE_STATIC. */
7290 || TREE_CODE (exp
) == FUNCTION_DECL
);
7292 /* This is the case of an array whose size is to be determined
7293 from its initializer, while the initializer is still being parsed.
7296 if (MEM_P (decl_rtl
) && REG_P (XEXP (decl_rtl
, 0)))
7297 temp
= validize_mem (decl_rtl
);
7299 /* If DECL_RTL is memory, we are in the normal case and the
7300 address is not valid, get the address into a register. */
7302 else if (MEM_P (decl_rtl
) && modifier
!= EXPAND_INITIALIZER
)
7305 *alt_rtl
= decl_rtl
;
7306 decl_rtl
= use_anchored_address (decl_rtl
);
7307 if (modifier
!= EXPAND_CONST_ADDRESS
7308 && modifier
!= EXPAND_SUM
7309 && !memory_address_p (DECL_MODE (exp
), XEXP (decl_rtl
, 0)))
7310 temp
= replace_equiv_address (decl_rtl
,
7311 copy_rtx (XEXP (decl_rtl
, 0)));
7314 /* If we got something, return it. But first, set the alignment
7315 if the address is a register. */
7318 if (MEM_P (temp
) && REG_P (XEXP (temp
, 0)))
7319 mark_reg_pointer (XEXP (temp
, 0), DECL_ALIGN (exp
));
7324 /* If the mode of DECL_RTL does not match that of the decl, it
7325 must be a promoted value. We return a SUBREG of the wanted mode,
7326 but mark it so that we know that it was already extended. */
7328 if (REG_P (decl_rtl
)
7329 && GET_MODE (decl_rtl
) != DECL_MODE (exp
))
7331 enum machine_mode pmode
;
7333 /* Get the signedness used for this variable. Ensure we get the
7334 same mode we got when the variable was declared. */
7335 pmode
= promote_mode (type
, DECL_MODE (exp
), &unsignedp
,
7336 (TREE_CODE (exp
) == RESULT_DECL
7337 || TREE_CODE (exp
) == PARM_DECL
) ? 1 : 0);
7338 gcc_assert (GET_MODE (decl_rtl
) == pmode
);
7340 temp
= gen_lowpart_SUBREG (mode
, decl_rtl
);
7341 SUBREG_PROMOTED_VAR_P (temp
) = 1;
7342 SUBREG_PROMOTED_UNSIGNED_SET (temp
, unsignedp
);
7349 temp
= immed_double_const (TREE_INT_CST_LOW (exp
),
7350 TREE_INT_CST_HIGH (exp
), mode
);
7356 tree tmp
= NULL_TREE
;
7357 if (GET_MODE_CLASS (mode
) == MODE_VECTOR_INT
7358 || GET_MODE_CLASS (mode
) == MODE_VECTOR_FLOAT
7359 || GET_MODE_CLASS (mode
) == MODE_VECTOR_FRACT
7360 || GET_MODE_CLASS (mode
) == MODE_VECTOR_UFRACT
7361 || GET_MODE_CLASS (mode
) == MODE_VECTOR_ACCUM
7362 || GET_MODE_CLASS (mode
) == MODE_VECTOR_UACCUM
)
7363 return const_vector_from_tree (exp
);
7364 if (GET_MODE_CLASS (mode
) == MODE_INT
)
7366 tree type_for_mode
= lang_hooks
.types
.type_for_mode (mode
, 1);
7368 tmp
= fold_unary (VIEW_CONVERT_EXPR
, type_for_mode
, exp
);
7371 tmp
= build_constructor_from_list (type
,
7372 TREE_VECTOR_CST_ELTS (exp
));
7373 return expand_expr (tmp
, ignore
? const0_rtx
: target
,
7378 return expand_expr (DECL_INITIAL (exp
), target
, VOIDmode
, modifier
);
7381 /* If optimized, generate immediate CONST_DOUBLE
7382 which will be turned into memory by reload if necessary.
7384 We used to force a register so that loop.c could see it. But
7385 this does not allow gen_* patterns to perform optimizations with
7386 the constants. It also produces two insns in cases like "x = 1.0;".
7387 On most machines, floating-point constants are not permitted in
7388 many insns, so we'd end up copying it to a register in any case.
7390 Now, we do the copying in expand_binop, if appropriate. */
7391 return CONST_DOUBLE_FROM_REAL_VALUE (TREE_REAL_CST (exp
),
7392 TYPE_MODE (TREE_TYPE (exp
)));
7395 return CONST_FIXED_FROM_FIXED_VALUE (TREE_FIXED_CST (exp
),
7396 TYPE_MODE (TREE_TYPE (exp
)));
7399 /* Handle evaluating a complex constant in a CONCAT target. */
7400 if (original_target
&& GET_CODE (original_target
) == CONCAT
)
7402 enum machine_mode mode
= TYPE_MODE (TREE_TYPE (TREE_TYPE (exp
)));
7405 rtarg
= XEXP (original_target
, 0);
7406 itarg
= XEXP (original_target
, 1);
7408 /* Move the real and imaginary parts separately. */
7409 op0
= expand_expr (TREE_REALPART (exp
), rtarg
, mode
, EXPAND_NORMAL
);
7410 op1
= expand_expr (TREE_IMAGPART (exp
), itarg
, mode
, EXPAND_NORMAL
);
7413 emit_move_insn (rtarg
, op0
);
7415 emit_move_insn (itarg
, op1
);
7417 return original_target
;
7420 /* ... fall through ... */
7423 temp
= expand_expr_constant (exp
, 1, modifier
);
7425 /* temp contains a constant address.
7426 On RISC machines where a constant address isn't valid,
7427 make some insns to get that address into a register. */
7428 if (modifier
!= EXPAND_CONST_ADDRESS
7429 && modifier
!= EXPAND_INITIALIZER
7430 && modifier
!= EXPAND_SUM
7431 && ! memory_address_p (mode
, XEXP (temp
, 0)))
7432 return replace_equiv_address (temp
,
7433 copy_rtx (XEXP (temp
, 0)));
7438 tree val
= TREE_OPERAND (exp
, 0);
7439 rtx ret
= expand_expr_real_1 (val
, target
, tmode
, modifier
, alt_rtl
);
7441 if (!SAVE_EXPR_RESOLVED_P (exp
))
7443 /* We can indeed still hit this case, typically via builtin
7444 expanders calling save_expr immediately before expanding
7445 something. Assume this means that we only have to deal
7446 with non-BLKmode values. */
7447 gcc_assert (GET_MODE (ret
) != BLKmode
);
7449 val
= build_decl (VAR_DECL
, NULL
, TREE_TYPE (exp
));
7450 DECL_ARTIFICIAL (val
) = 1;
7451 DECL_IGNORED_P (val
) = 1;
7452 TREE_OPERAND (exp
, 0) = val
;
7453 SAVE_EXPR_RESOLVED_P (exp
) = 1;
7455 if (!CONSTANT_P (ret
))
7456 ret
= copy_to_reg (ret
);
7457 SET_DECL_RTL (val
, ret
);
7464 if (TREE_CODE (TREE_OPERAND (exp
, 0)) == LABEL_DECL
)
7465 expand_goto (TREE_OPERAND (exp
, 0));
7467 expand_computed_goto (TREE_OPERAND (exp
, 0));
7471 /* If we don't need the result, just ensure we evaluate any
7475 unsigned HOST_WIDE_INT idx
;
7478 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (exp
), idx
, value
)
7479 expand_expr (value
, const0_rtx
, VOIDmode
, EXPAND_NORMAL
);
7484 return expand_constructor (exp
, target
, modifier
, false);
7486 case MISALIGNED_INDIRECT_REF
:
7487 case ALIGN_INDIRECT_REF
:
7490 tree exp1
= TREE_OPERAND (exp
, 0);
7492 if (modifier
!= EXPAND_WRITE
)
7496 t
= fold_read_from_constant_string (exp
);
7498 return expand_expr (t
, target
, tmode
, modifier
);
7501 op0
= expand_expr (exp1
, NULL_RTX
, VOIDmode
, EXPAND_SUM
);
7502 op0
= memory_address (mode
, op0
);
7504 if (code
== ALIGN_INDIRECT_REF
)
7506 int align
= TYPE_ALIGN_UNIT (type
);
7507 op0
= gen_rtx_AND (Pmode
, op0
, GEN_INT (-align
));
7508 op0
= memory_address (mode
, op0
);
7511 temp
= gen_rtx_MEM (mode
, op0
);
7513 set_mem_attributes (temp
, exp
, 0);
7515 /* Resolve the misalignment now, so that we don't have to remember
7516 to resolve it later. Of course, this only works for reads. */
7517 /* ??? When we get around to supporting writes, we'll have to handle
7518 this in store_expr directly. The vectorizer isn't generating
7519 those yet, however. */
7520 if (code
== MISALIGNED_INDIRECT_REF
)
7525 gcc_assert (modifier
== EXPAND_NORMAL
7526 || modifier
== EXPAND_STACK_PARM
);
7528 /* The vectorizer should have already checked the mode. */
7529 icode
= optab_handler (movmisalign_optab
, mode
)->insn_code
;
7530 gcc_assert (icode
!= CODE_FOR_nothing
);
7532 /* We've already validated the memory, and we're creating a
7533 new pseudo destination. The predicates really can't fail. */
7534 reg
= gen_reg_rtx (mode
);
7536 /* Nor can the insn generator. */
7537 insn
= GEN_FCN (icode
) (reg
, temp
);
7546 case TARGET_MEM_REF
:
7548 struct mem_address addr
;
7550 get_address_description (exp
, &addr
);
7551 op0
= addr_for_mem_ref (&addr
, true);
7552 op0
= memory_address (mode
, op0
);
7553 temp
= gen_rtx_MEM (mode
, op0
);
7554 set_mem_attributes (temp
, TMR_ORIGINAL (exp
), 0);
7561 tree array
= TREE_OPERAND (exp
, 0);
7562 tree index
= TREE_OPERAND (exp
, 1);
7564 /* Fold an expression like: "foo"[2].
7565 This is not done in fold so it won't happen inside &.
7566 Don't fold if this is for wide characters since it's too
7567 difficult to do correctly and this is a very rare case. */
7569 if (modifier
!= EXPAND_CONST_ADDRESS
7570 && modifier
!= EXPAND_INITIALIZER
7571 && modifier
!= EXPAND_MEMORY
)
7573 tree t
= fold_read_from_constant_string (exp
);
7576 return expand_expr (t
, target
, tmode
, modifier
);
7579 /* If this is a constant index into a constant array,
7580 just get the value from the array. Handle both the cases when
7581 we have an explicit constructor and when our operand is a variable
7582 that was declared const. */
7584 if (modifier
!= EXPAND_CONST_ADDRESS
7585 && modifier
!= EXPAND_INITIALIZER
7586 && modifier
!= EXPAND_MEMORY
7587 && TREE_CODE (array
) == CONSTRUCTOR
7588 && ! TREE_SIDE_EFFECTS (array
)
7589 && TREE_CODE (index
) == INTEGER_CST
)
7591 unsigned HOST_WIDE_INT ix
;
7594 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (array
), ix
,
7596 if (tree_int_cst_equal (field
, index
))
7598 if (!TREE_SIDE_EFFECTS (value
))
7599 return expand_expr (fold (value
), target
, tmode
, modifier
);
7604 else if (optimize
>= 1
7605 && modifier
!= EXPAND_CONST_ADDRESS
7606 && modifier
!= EXPAND_INITIALIZER
7607 && modifier
!= EXPAND_MEMORY
7608 && TREE_READONLY (array
) && ! TREE_SIDE_EFFECTS (array
)
7609 && TREE_CODE (array
) == VAR_DECL
&& DECL_INITIAL (array
)
7610 && TREE_CODE (DECL_INITIAL (array
)) != ERROR_MARK
7611 && targetm
.binds_local_p (array
))
7613 if (TREE_CODE (index
) == INTEGER_CST
)
7615 tree init
= DECL_INITIAL (array
);
7617 if (TREE_CODE (init
) == CONSTRUCTOR
)
7619 unsigned HOST_WIDE_INT ix
;
7622 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (init
), ix
,
7624 if (tree_int_cst_equal (field
, index
))
7626 if (TREE_SIDE_EFFECTS (value
))
7629 if (TREE_CODE (value
) == CONSTRUCTOR
)
7631 /* If VALUE is a CONSTRUCTOR, this
7632 optimization is only useful if
7633 this doesn't store the CONSTRUCTOR
7634 into memory. If it does, it is more
7635 efficient to just load the data from
7636 the array directly. */
7637 rtx ret
= expand_constructor (value
, target
,
7639 if (ret
== NULL_RTX
)
7643 return expand_expr (fold (value
), target
, tmode
,
7647 else if(TREE_CODE (init
) == STRING_CST
)
7649 tree index1
= index
;
7650 tree low_bound
= array_ref_low_bound (exp
);
7651 index1
= fold_convert (sizetype
, TREE_OPERAND (exp
, 1));
7653 /* Optimize the special-case of a zero lower bound.
7655 We convert the low_bound to sizetype to avoid some problems
7656 with constant folding. (E.g. suppose the lower bound is 1,
7657 and its mode is QI. Without the conversion,l (ARRAY
7658 +(INDEX-(unsigned char)1)) becomes ((ARRAY+(-(unsigned char)1))
7659 +INDEX), which becomes (ARRAY+255+INDEX). Opps!) */
7661 if (! integer_zerop (low_bound
))
7662 index1
= size_diffop (index1
, fold_convert (sizetype
,
7665 if (0 > compare_tree_int (index1
,
7666 TREE_STRING_LENGTH (init
)))
7668 tree type
= TREE_TYPE (TREE_TYPE (init
));
7669 enum machine_mode mode
= TYPE_MODE (type
);
7671 if (GET_MODE_CLASS (mode
) == MODE_INT
7672 && GET_MODE_SIZE (mode
) == 1)
7673 return gen_int_mode (TREE_STRING_POINTER (init
)
7674 [TREE_INT_CST_LOW (index1
)],
7681 goto normal_inner_ref
;
7684 /* If the operand is a CONSTRUCTOR, we can just extract the
7685 appropriate field if it is present. */
7686 if (TREE_CODE (TREE_OPERAND (exp
, 0)) == CONSTRUCTOR
)
7688 unsigned HOST_WIDE_INT idx
;
7691 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (TREE_OPERAND (exp
, 0)),
7693 if (field
== TREE_OPERAND (exp
, 1)
7694 /* We can normally use the value of the field in the
7695 CONSTRUCTOR. However, if this is a bitfield in
7696 an integral mode that we can fit in a HOST_WIDE_INT,
7697 we must mask only the number of bits in the bitfield,
7698 since this is done implicitly by the constructor. If
7699 the bitfield does not meet either of those conditions,
7700 we can't do this optimization. */
7701 && (! DECL_BIT_FIELD (field
)
7702 || ((GET_MODE_CLASS (DECL_MODE (field
)) == MODE_INT
)
7703 && (GET_MODE_BITSIZE (DECL_MODE (field
))
7704 <= HOST_BITS_PER_WIDE_INT
))))
7706 if (DECL_BIT_FIELD (field
)
7707 && modifier
== EXPAND_STACK_PARM
)
7709 op0
= expand_expr (value
, target
, tmode
, modifier
);
7710 if (DECL_BIT_FIELD (field
))
7712 HOST_WIDE_INT bitsize
= TREE_INT_CST_LOW (DECL_SIZE (field
));
7713 enum machine_mode imode
= TYPE_MODE (TREE_TYPE (field
));
7715 if (TYPE_UNSIGNED (TREE_TYPE (field
)))
7717 op1
= GEN_INT (((HOST_WIDE_INT
) 1 << bitsize
) - 1);
7718 op0
= expand_and (imode
, op0
, op1
, target
);
7723 = build_int_cst (NULL_TREE
,
7724 GET_MODE_BITSIZE (imode
) - bitsize
);
7726 op0
= expand_shift (LSHIFT_EXPR
, imode
, op0
, count
,
7728 op0
= expand_shift (RSHIFT_EXPR
, imode
, op0
, count
,
7736 goto normal_inner_ref
;
7739 case ARRAY_RANGE_REF
:
7742 enum machine_mode mode1
;
7743 HOST_WIDE_INT bitsize
, bitpos
;
7746 tree tem
= get_inner_reference (exp
, &bitsize
, &bitpos
, &offset
,
7747 &mode1
, &unsignedp
, &volatilep
, true);
7750 /* If we got back the original object, something is wrong. Perhaps
7751 we are evaluating an expression too early. In any event, don't
7752 infinitely recurse. */
7753 gcc_assert (tem
!= exp
);
7755 /* If TEM's type is a union of variable size, pass TARGET to the inner
7756 computation, since it will need a temporary and TARGET is known
7757 to have to do. This occurs in unchecked conversion in Ada. */
7761 (TREE_CODE (TREE_TYPE (tem
)) == UNION_TYPE
7762 && (TREE_CODE (TYPE_SIZE (TREE_TYPE (tem
)))
7764 && modifier
!= EXPAND_STACK_PARM
7765 ? target
: NULL_RTX
),
7767 (modifier
== EXPAND_INITIALIZER
7768 || modifier
== EXPAND_CONST_ADDRESS
7769 || modifier
== EXPAND_STACK_PARM
)
7770 ? modifier
: EXPAND_NORMAL
);
7772 /* If this is a constant, put it into a register if it is a legitimate
7773 constant, OFFSET is 0, and we won't try to extract outside the
7774 register (in case we were passed a partially uninitialized object
7775 or a view_conversion to a larger size) or a BLKmode piece of it
7776 (e.g. if it is unchecked-converted to a record type in Ada). Force
7777 the constant to memory otherwise. */
7778 if (CONSTANT_P (op0
))
7780 enum machine_mode mode
= TYPE_MODE (TREE_TYPE (tem
));
7781 if (mode
!= BLKmode
&& LEGITIMATE_CONSTANT_P (op0
)
7784 && bitpos
+ bitsize
<= GET_MODE_BITSIZE (mode
))
7785 op0
= force_reg (mode
, op0
);
7787 op0
= validize_mem (force_const_mem (mode
, op0
));
7790 /* Otherwise, if this object not in memory and we either have an
7791 offset, a BLKmode result, or a reference outside the object, put it
7792 there. Such cases can occur in Ada if we have unchecked conversion
7793 of an expression from a scalar type to an array or record type or
7794 for an ARRAY_RANGE_REF whose type is BLKmode. */
7795 else if (!MEM_P (op0
)
7798 || (bitpos
+ bitsize
7799 > GET_MODE_BITSIZE (GET_MODE (op0
)))))
7801 tree nt
= build_qualified_type (TREE_TYPE (tem
),
7802 (TYPE_QUALS (TREE_TYPE (tem
))
7803 | TYPE_QUAL_CONST
));
7804 rtx memloc
= assign_temp (nt
, 1, 1, 1);
7806 emit_move_insn (memloc
, op0
);
7812 rtx offset_rtx
= expand_expr (offset
, NULL_RTX
, VOIDmode
,
7815 gcc_assert (MEM_P (op0
));
7817 #ifdef POINTERS_EXTEND_UNSIGNED
7818 if (GET_MODE (offset_rtx
) != Pmode
)
7819 offset_rtx
= convert_to_mode (Pmode
, offset_rtx
, 0);
7821 if (GET_MODE (offset_rtx
) != ptr_mode
)
7822 offset_rtx
= convert_to_mode (ptr_mode
, offset_rtx
, 0);
7825 if (GET_MODE (op0
) == BLKmode
7826 /* A constant address in OP0 can have VOIDmode, we must
7827 not try to call force_reg in that case. */
7828 && GET_MODE (XEXP (op0
, 0)) != VOIDmode
7830 && (bitpos
% bitsize
) == 0
7831 && (bitsize
% GET_MODE_ALIGNMENT (mode1
)) == 0
7832 && MEM_ALIGN (op0
) == GET_MODE_ALIGNMENT (mode1
))
7834 op0
= adjust_address (op0
, mode1
, bitpos
/ BITS_PER_UNIT
);
7838 op0
= offset_address (op0
, offset_rtx
,
7839 highest_pow2_factor (offset
));
7842 /* If OFFSET is making OP0 more aligned than BIGGEST_ALIGNMENT,
7843 record its alignment as BIGGEST_ALIGNMENT. */
7844 if (MEM_P (op0
) && bitpos
== 0 && offset
!= 0
7845 && is_aligning_offset (offset
, tem
))
7846 set_mem_align (op0
, BIGGEST_ALIGNMENT
);
7848 /* Don't forget about volatility even if this is a bitfield. */
7849 if (MEM_P (op0
) && volatilep
&& ! MEM_VOLATILE_P (op0
))
7851 if (op0
== orig_op0
)
7852 op0
= copy_rtx (op0
);
7854 MEM_VOLATILE_P (op0
) = 1;
7857 /* The following code doesn't handle CONCAT.
7858 Assume only bitpos == 0 can be used for CONCAT, due to
7859 one element arrays having the same mode as its element. */
7860 if (GET_CODE (op0
) == CONCAT
)
7862 gcc_assert (bitpos
== 0
7863 && bitsize
== GET_MODE_BITSIZE (GET_MODE (op0
)));
7867 /* In cases where an aligned union has an unaligned object
7868 as a field, we might be extracting a BLKmode value from
7869 an integer-mode (e.g., SImode) object. Handle this case
7870 by doing the extract into an object as wide as the field
7871 (which we know to be the width of a basic mode), then
7872 storing into memory, and changing the mode to BLKmode. */
7873 if (mode1
== VOIDmode
7874 || REG_P (op0
) || GET_CODE (op0
) == SUBREG
7875 || (mode1
!= BLKmode
&& ! direct_load
[(int) mode1
]
7876 && GET_MODE_CLASS (mode
) != MODE_COMPLEX_INT
7877 && GET_MODE_CLASS (mode
) != MODE_COMPLEX_FLOAT
7878 && modifier
!= EXPAND_CONST_ADDRESS
7879 && modifier
!= EXPAND_INITIALIZER
)
7880 /* If the field isn't aligned enough to fetch as a memref,
7881 fetch it as a bit field. */
7882 || (mode1
!= BLKmode
7883 && (((TYPE_ALIGN (TREE_TYPE (tem
)) < GET_MODE_ALIGNMENT (mode
)
7884 || (bitpos
% GET_MODE_ALIGNMENT (mode
) != 0)
7886 && (MEM_ALIGN (op0
) < GET_MODE_ALIGNMENT (mode1
)
7887 || (bitpos
% GET_MODE_ALIGNMENT (mode1
) != 0))))
7888 && ((modifier
== EXPAND_CONST_ADDRESS
7889 || modifier
== EXPAND_INITIALIZER
)
7891 : SLOW_UNALIGNED_ACCESS (mode1
, MEM_ALIGN (op0
))))
7892 || (bitpos
% BITS_PER_UNIT
!= 0)))
7893 /* If the type and the field are a constant size and the
7894 size of the type isn't the same size as the bitfield,
7895 we must use bitfield operations. */
7897 && TYPE_SIZE (TREE_TYPE (exp
))
7898 && TREE_CODE (TYPE_SIZE (TREE_TYPE (exp
))) == INTEGER_CST
7899 && 0 != compare_tree_int (TYPE_SIZE (TREE_TYPE (exp
)),
7902 enum machine_mode ext_mode
= mode
;
7904 if (ext_mode
== BLKmode
7905 && ! (target
!= 0 && MEM_P (op0
)
7907 && bitpos
% BITS_PER_UNIT
== 0))
7908 ext_mode
= mode_for_size (bitsize
, MODE_INT
, 1);
7910 if (ext_mode
== BLKmode
)
7913 target
= assign_temp (type
, 0, 1, 1);
7918 /* In this case, BITPOS must start at a byte boundary and
7919 TARGET, if specified, must be a MEM. */
7920 gcc_assert (MEM_P (op0
)
7921 && (!target
|| MEM_P (target
))
7922 && !(bitpos
% BITS_PER_UNIT
));
7924 emit_block_move (target
,
7925 adjust_address (op0
, VOIDmode
,
7926 bitpos
/ BITS_PER_UNIT
),
7927 GEN_INT ((bitsize
+ BITS_PER_UNIT
- 1)
7929 (modifier
== EXPAND_STACK_PARM
7930 ? BLOCK_OP_CALL_PARM
: BLOCK_OP_NORMAL
));
7935 op0
= validize_mem (op0
);
7937 if (MEM_P (op0
) && REG_P (XEXP (op0
, 0)))
7938 mark_reg_pointer (XEXP (op0
, 0), MEM_ALIGN (op0
));
7940 op0
= extract_bit_field (op0
, bitsize
, bitpos
, unsignedp
,
7941 (modifier
== EXPAND_STACK_PARM
7942 ? NULL_RTX
: target
),
7943 ext_mode
, ext_mode
);
7945 /* If the result is a record type and BITSIZE is narrower than
7946 the mode of OP0, an integral mode, and this is a big endian
7947 machine, we must put the field into the high-order bits. */
7948 if (TREE_CODE (type
) == RECORD_TYPE
&& BYTES_BIG_ENDIAN
7949 && GET_MODE_CLASS (GET_MODE (op0
)) == MODE_INT
7950 && bitsize
< (HOST_WIDE_INT
) GET_MODE_BITSIZE (GET_MODE (op0
)))
7951 op0
= expand_shift (LSHIFT_EXPR
, GET_MODE (op0
), op0
,
7952 size_int (GET_MODE_BITSIZE (GET_MODE (op0
))
7956 /* If the result type is BLKmode, store the data into a temporary
7957 of the appropriate type, but with the mode corresponding to the
7958 mode for the data we have (op0's mode). It's tempting to make
7959 this a constant type, since we know it's only being stored once,
7960 but that can cause problems if we are taking the address of this
7961 COMPONENT_REF because the MEM of any reference via that address
7962 will have flags corresponding to the type, which will not
7963 necessarily be constant. */
7964 if (mode
== BLKmode
)
7966 HOST_WIDE_INT size
= GET_MODE_BITSIZE (ext_mode
);
7969 /* If the reference doesn't use the alias set of its type,
7970 we cannot create the temporary using that type. */
7971 if (component_uses_parent_alias_set (exp
))
7973 new_rtx
= assign_stack_local (ext_mode
, size
, 0);
7974 set_mem_alias_set (new_rtx
, get_alias_set (exp
));
7977 new_rtx
= assign_stack_temp_for_type (ext_mode
, size
, 0, type
);
7979 emit_move_insn (new_rtx
, op0
);
7980 op0
= copy_rtx (new_rtx
);
7981 PUT_MODE (op0
, BLKmode
);
7982 set_mem_attributes (op0
, exp
, 1);
7988 /* If the result is BLKmode, use that to access the object
7990 if (mode
== BLKmode
)
7993 /* Get a reference to just this component. */
7994 if (modifier
== EXPAND_CONST_ADDRESS
7995 || modifier
== EXPAND_SUM
|| modifier
== EXPAND_INITIALIZER
)
7996 op0
= adjust_address_nv (op0
, mode1
, bitpos
/ BITS_PER_UNIT
);
7998 op0
= adjust_address (op0
, mode1
, bitpos
/ BITS_PER_UNIT
);
8000 if (op0
== orig_op0
)
8001 op0
= copy_rtx (op0
);
8003 set_mem_attributes (op0
, exp
, 0);
8004 if (REG_P (XEXP (op0
, 0)))
8005 mark_reg_pointer (XEXP (op0
, 0), MEM_ALIGN (op0
));
8007 MEM_VOLATILE_P (op0
) |= volatilep
;
8008 if (mode
== mode1
|| mode1
== BLKmode
|| mode1
== tmode
8009 || modifier
== EXPAND_CONST_ADDRESS
8010 || modifier
== EXPAND_INITIALIZER
)
8012 else if (target
== 0)
8013 target
= gen_reg_rtx (tmode
!= VOIDmode
? tmode
: mode
);
8015 convert_move (target
, op0
, unsignedp
);
8020 return expand_expr (OBJ_TYPE_REF_EXPR (exp
), target
, tmode
, modifier
);
8023 /* All valid uses of __builtin_va_arg_pack () are removed during
8025 if (CALL_EXPR_VA_ARG_PACK (exp
))
8026 error ("%Kinvalid use of %<__builtin_va_arg_pack ()%>", exp
);
8028 tree fndecl
= get_callee_fndecl (exp
), attr
;
8031 && (attr
= lookup_attribute ("error",
8032 DECL_ATTRIBUTES (fndecl
))) != NULL
)
8033 error ("%Kcall to %qs declared with attribute error: %s",
8034 exp
, lang_hooks
.decl_printable_name (fndecl
, 1),
8035 TREE_STRING_POINTER (TREE_VALUE (TREE_VALUE (attr
))));
8037 && (attr
= lookup_attribute ("warning",
8038 DECL_ATTRIBUTES (fndecl
))) != NULL
)
8039 warning (0, "%Kcall to %qs declared with attribute warning: %s",
8040 exp
, lang_hooks
.decl_printable_name (fndecl
, 1),
8041 TREE_STRING_POINTER (TREE_VALUE (TREE_VALUE (attr
))));
8043 /* Check for a built-in function. */
8044 if (fndecl
&& DECL_BUILT_IN (fndecl
))
8046 if (DECL_BUILT_IN_CLASS (fndecl
) == BUILT_IN_FRONTEND
)
8047 return lang_hooks
.expand_expr (exp
, original_target
,
8048 tmode
, modifier
, alt_rtl
);
8050 return expand_builtin (exp
, target
, subtarget
, tmode
, ignore
);
8053 return expand_call (exp
, target
, ignore
);
8057 if (TREE_OPERAND (exp
, 0) == error_mark_node
)
8060 if (TREE_CODE (type
) == UNION_TYPE
)
8062 tree valtype
= TREE_TYPE (TREE_OPERAND (exp
, 0));
8064 /* If both input and output are BLKmode, this conversion isn't doing
8065 anything except possibly changing memory attribute. */
8066 if (mode
== BLKmode
&& TYPE_MODE (valtype
) == BLKmode
)
8068 rtx result
= expand_expr (TREE_OPERAND (exp
, 0), target
, tmode
,
8071 result
= copy_rtx (result
);
8072 set_mem_attributes (result
, exp
, 0);
8078 if (TYPE_MODE (type
) != BLKmode
)
8079 target
= gen_reg_rtx (TYPE_MODE (type
));
8081 target
= assign_temp (type
, 0, 1, 1);
8085 /* Store data into beginning of memory target. */
8086 store_expr (TREE_OPERAND (exp
, 0),
8087 adjust_address (target
, TYPE_MODE (valtype
), 0),
8088 modifier
== EXPAND_STACK_PARM
,
8093 gcc_assert (REG_P (target
));
8095 /* Store this field into a union of the proper type. */
8096 store_field (target
,
8097 MIN ((int_size_in_bytes (TREE_TYPE
8098 (TREE_OPERAND (exp
, 0)))
8100 (HOST_WIDE_INT
) GET_MODE_BITSIZE (mode
)),
8101 0, TYPE_MODE (valtype
), TREE_OPERAND (exp
, 0),
8105 /* Return the entire union. */
8109 if (mode
== TYPE_MODE (TREE_TYPE (TREE_OPERAND (exp
, 0))))
8111 op0
= expand_expr (TREE_OPERAND (exp
, 0), target
, VOIDmode
,
8114 /* If the signedness of the conversion differs and OP0 is
8115 a promoted SUBREG, clear that indication since we now
8116 have to do the proper extension. */
8117 if (TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (exp
, 0))) != unsignedp
8118 && GET_CODE (op0
) == SUBREG
)
8119 SUBREG_PROMOTED_VAR_P (op0
) = 0;
8121 return REDUCE_BIT_FIELD (op0
);
8124 op0
= expand_expr (TREE_OPERAND (exp
, 0), NULL_RTX
, mode
,
8125 modifier
== EXPAND_SUM
? EXPAND_NORMAL
: modifier
);
8126 if (GET_MODE (op0
) == mode
)
8129 /* If OP0 is a constant, just convert it into the proper mode. */
8130 else if (CONSTANT_P (op0
))
8132 tree inner_type
= TREE_TYPE (TREE_OPERAND (exp
, 0));
8133 enum machine_mode inner_mode
= TYPE_MODE (inner_type
);
8135 if (modifier
== EXPAND_INITIALIZER
)
8136 op0
= simplify_gen_subreg (mode
, op0
, inner_mode
,
8137 subreg_lowpart_offset (mode
,
8140 op0
= convert_modes (mode
, inner_mode
, op0
,
8141 TYPE_UNSIGNED (inner_type
));
8144 else if (modifier
== EXPAND_INITIALIZER
)
8145 op0
= gen_rtx_fmt_e (unsignedp
? ZERO_EXTEND
: SIGN_EXTEND
, mode
, op0
);
8147 else if (target
== 0)
8148 op0
= convert_to_mode (mode
, op0
,
8149 TYPE_UNSIGNED (TREE_TYPE
8150 (TREE_OPERAND (exp
, 0))));
8153 convert_move (target
, op0
,
8154 TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (exp
, 0))));
8158 return REDUCE_BIT_FIELD (op0
);
8160 case VIEW_CONVERT_EXPR
:
8163 /* If we are converting to BLKmode, try to avoid an intermediate
8164 temporary by fetching an inner memory reference. */
8166 && TREE_CODE (TYPE_SIZE (TREE_TYPE (exp
))) == INTEGER_CST
8167 && TYPE_MODE (TREE_TYPE (TREE_OPERAND (exp
, 0))) != BLKmode
8168 && handled_component_p (TREE_OPERAND (exp
, 0)))
8170 enum machine_mode mode1
;
8171 HOST_WIDE_INT bitsize
, bitpos
;
8176 = get_inner_reference (TREE_OPERAND (exp
, 0), &bitsize
, &bitpos
,
8177 &offset
, &mode1
, &unsignedp
, &volatilep
,
8181 /* ??? We should work harder and deal with non-zero offsets. */
8183 && (bitpos
% BITS_PER_UNIT
) == 0
8185 && compare_tree_int (TYPE_SIZE (TREE_TYPE (exp
)), bitsize
) == 0)
8187 /* See the normal_inner_ref case for the rationale. */
8190 (TREE_CODE (TREE_TYPE (tem
)) == UNION_TYPE
8191 && (TREE_CODE (TYPE_SIZE (TREE_TYPE (tem
)))
8193 && modifier
!= EXPAND_STACK_PARM
8194 ? target
: NULL_RTX
),
8196 (modifier
== EXPAND_INITIALIZER
8197 || modifier
== EXPAND_CONST_ADDRESS
8198 || modifier
== EXPAND_STACK_PARM
)
8199 ? modifier
: EXPAND_NORMAL
);
8201 if (MEM_P (orig_op0
))
8205 /* Get a reference to just this component. */
8206 if (modifier
== EXPAND_CONST_ADDRESS
8207 || modifier
== EXPAND_SUM
8208 || modifier
== EXPAND_INITIALIZER
)
8209 op0
= adjust_address_nv (op0
, mode
, bitpos
/ BITS_PER_UNIT
);
8211 op0
= adjust_address (op0
, mode
, bitpos
/ BITS_PER_UNIT
);
8213 if (op0
== orig_op0
)
8214 op0
= copy_rtx (op0
);
8216 set_mem_attributes (op0
, TREE_OPERAND (exp
, 0), 0);
8217 if (REG_P (XEXP (op0
, 0)))
8218 mark_reg_pointer (XEXP (op0
, 0), MEM_ALIGN (op0
));
8220 MEM_VOLATILE_P (op0
) |= volatilep
;
8226 op0
= expand_expr (TREE_OPERAND (exp
, 0), NULL_RTX
, mode
, modifier
);
8228 /* If the input and output modes are both the same, we are done. */
8229 if (mode
== GET_MODE (op0
))
8231 /* If neither mode is BLKmode, and both modes are the same size
8232 then we can use gen_lowpart. */
8233 else if (mode
!= BLKmode
&& GET_MODE (op0
) != BLKmode
8234 && GET_MODE_SIZE (mode
) == GET_MODE_SIZE (GET_MODE (op0
)))
8236 if (GET_CODE (op0
) == SUBREG
)
8237 op0
= force_reg (GET_MODE (op0
), op0
);
8238 op0
= gen_lowpart (mode
, op0
);
8240 /* If both modes are integral, then we can convert from one to the
8242 else if (SCALAR_INT_MODE_P (GET_MODE (op0
)) && SCALAR_INT_MODE_P (mode
))
8243 op0
= convert_modes (mode
, GET_MODE (op0
), op0
,
8244 TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (exp
, 0))));
8245 /* As a last resort, spill op0 to memory, and reload it in a
8247 else if (!MEM_P (op0
))
8249 /* If the operand is not a MEM, force it into memory. Since we
8250 are going to be changing the mode of the MEM, don't call
8251 force_const_mem for constants because we don't allow pool
8252 constants to change mode. */
8253 tree inner_type
= TREE_TYPE (TREE_OPERAND (exp
, 0));
8255 gcc_assert (!TREE_ADDRESSABLE (exp
));
8257 if (target
== 0 || GET_MODE (target
) != TYPE_MODE (inner_type
))
8259 = assign_stack_temp_for_type
8260 (TYPE_MODE (inner_type
),
8261 GET_MODE_SIZE (TYPE_MODE (inner_type
)), 0, inner_type
);
8263 emit_move_insn (target
, op0
);
8267 /* At this point, OP0 is in the correct mode. If the output type is
8268 such that the operand is known to be aligned, indicate that it is.
8269 Otherwise, we need only be concerned about alignment for non-BLKmode
8273 op0
= copy_rtx (op0
);
8275 if (TYPE_ALIGN_OK (type
))
8276 set_mem_align (op0
, MAX (MEM_ALIGN (op0
), TYPE_ALIGN (type
)));
8277 else if (STRICT_ALIGNMENT
8279 && MEM_ALIGN (op0
) < GET_MODE_ALIGNMENT (mode
))
8281 tree inner_type
= TREE_TYPE (TREE_OPERAND (exp
, 0));
8282 HOST_WIDE_INT temp_size
8283 = MAX (int_size_in_bytes (inner_type
),
8284 (HOST_WIDE_INT
) GET_MODE_SIZE (mode
));
8286 = assign_stack_temp_for_type (mode
, temp_size
, 0, type
);
8287 rtx new_with_op0_mode
8288 = adjust_address (new_rtx
, GET_MODE (op0
), 0);
8290 gcc_assert (!TREE_ADDRESSABLE (exp
));
8292 if (GET_MODE (op0
) == BLKmode
)
8293 emit_block_move (new_with_op0_mode
, op0
,
8294 GEN_INT (GET_MODE_SIZE (mode
)),
8295 (modifier
== EXPAND_STACK_PARM
8296 ? BLOCK_OP_CALL_PARM
: BLOCK_OP_NORMAL
));
8298 emit_move_insn (new_with_op0_mode
, op0
);
8303 op0
= adjust_address (op0
, mode
, 0);
8308 case POINTER_PLUS_EXPR
:
8309 /* Even though the sizetype mode and the pointer's mode can be different
8310 expand is able to handle this correctly and get the correct result out
8311 of the PLUS_EXPR code. */
8314 /* Check if this is a case for multiplication and addition. */
8315 if ((TREE_CODE (type
) == INTEGER_TYPE
8316 || TREE_CODE (type
) == FIXED_POINT_TYPE
)
8317 && TREE_CODE (TREE_OPERAND (exp
, 0)) == MULT_EXPR
)
8319 tree subsubexp0
, subsubexp1
;
8320 enum tree_code code0
, code1
, this_code
;
8322 subexp0
= TREE_OPERAND (exp
, 0);
8323 subsubexp0
= TREE_OPERAND (subexp0
, 0);
8324 subsubexp1
= TREE_OPERAND (subexp0
, 1);
8325 code0
= TREE_CODE (subsubexp0
);
8326 code1
= TREE_CODE (subsubexp1
);
8327 this_code
= TREE_CODE (type
) == INTEGER_TYPE
? NOP_EXPR
8328 : FIXED_CONVERT_EXPR
;
8329 if (code0
== this_code
&& code1
== this_code
8330 && (TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (subsubexp0
, 0)))
8331 < TYPE_PRECISION (TREE_TYPE (subsubexp0
)))
8332 && (TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (subsubexp0
, 0)))
8333 == TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (subsubexp1
, 0))))
8334 && (TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (subsubexp0
, 0)))
8335 == TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (subsubexp1
, 0)))))
8337 tree op0type
= TREE_TYPE (TREE_OPERAND (subsubexp0
, 0));
8338 enum machine_mode innermode
= TYPE_MODE (op0type
);
8339 bool zextend_p
= TYPE_UNSIGNED (op0type
);
8340 bool sat_p
= TYPE_SATURATING (TREE_TYPE (subsubexp0
));
8342 this_optab
= zextend_p
? umadd_widen_optab
: smadd_widen_optab
;
8344 this_optab
= zextend_p
? usmadd_widen_optab
8345 : ssmadd_widen_optab
;
8346 if (mode
== GET_MODE_2XWIDER_MODE (innermode
)
8347 && (optab_handler (this_optab
, mode
)->insn_code
8348 != CODE_FOR_nothing
))
8350 expand_operands (TREE_OPERAND (subsubexp0
, 0),
8351 TREE_OPERAND (subsubexp1
, 0),
8352 NULL_RTX
, &op0
, &op1
, EXPAND_NORMAL
);
8353 op2
= expand_expr (TREE_OPERAND (exp
, 1), subtarget
,
8354 VOIDmode
, EXPAND_NORMAL
);
8355 temp
= expand_ternary_op (mode
, this_optab
, op0
, op1
, op2
,
8358 return REDUCE_BIT_FIELD (temp
);
8363 /* If we are adding a constant, a VAR_DECL that is sp, fp, or ap, and
8364 something else, make sure we add the register to the constant and
8365 then to the other thing. This case can occur during strength
8366 reduction and doing it this way will produce better code if the
8367 frame pointer or argument pointer is eliminated.
8369 fold-const.c will ensure that the constant is always in the inner
8370 PLUS_EXPR, so the only case we need to do anything about is if
8371 sp, ap, or fp is our second argument, in which case we must swap
8372 the innermost first argument and our second argument. */
8374 if (TREE_CODE (TREE_OPERAND (exp
, 0)) == PLUS_EXPR
8375 && TREE_CODE (TREE_OPERAND (TREE_OPERAND (exp
, 0), 1)) == INTEGER_CST
8376 && TREE_CODE (TREE_OPERAND (exp
, 1)) == VAR_DECL
8377 && (DECL_RTL (TREE_OPERAND (exp
, 1)) == frame_pointer_rtx
8378 || DECL_RTL (TREE_OPERAND (exp
, 1)) == stack_pointer_rtx
8379 || DECL_RTL (TREE_OPERAND (exp
, 1)) == arg_pointer_rtx
))
8381 tree t
= TREE_OPERAND (exp
, 1);
8383 TREE_OPERAND (exp
, 1) = TREE_OPERAND (TREE_OPERAND (exp
, 0), 0);
8384 TREE_OPERAND (TREE_OPERAND (exp
, 0), 0) = t
;
8387 /* If the result is to be ptr_mode and we are adding an integer to
8388 something, we might be forming a constant. So try to use
8389 plus_constant. If it produces a sum and we can't accept it,
8390 use force_operand. This allows P = &ARR[const] to generate
8391 efficient code on machines where a SYMBOL_REF is not a valid
8394 If this is an EXPAND_SUM call, always return the sum. */
8395 if (modifier
== EXPAND_SUM
|| modifier
== EXPAND_INITIALIZER
8396 || (mode
== ptr_mode
&& (unsignedp
|| ! flag_trapv
)))
8398 if (modifier
== EXPAND_STACK_PARM
)
8400 if (TREE_CODE (TREE_OPERAND (exp
, 0)) == INTEGER_CST
8401 && GET_MODE_BITSIZE (mode
) <= HOST_BITS_PER_WIDE_INT
8402 && TREE_CONSTANT (TREE_OPERAND (exp
, 1)))
8406 op1
= expand_expr (TREE_OPERAND (exp
, 1), subtarget
, VOIDmode
,
8408 /* Use immed_double_const to ensure that the constant is
8409 truncated according to the mode of OP1, then sign extended
8410 to a HOST_WIDE_INT. Using the constant directly can result
8411 in non-canonical RTL in a 64x32 cross compile. */
8413 = immed_double_const (TREE_INT_CST_LOW (TREE_OPERAND (exp
, 0)),
8415 TYPE_MODE (TREE_TYPE (TREE_OPERAND (exp
, 1))));
8416 op1
= plus_constant (op1
, INTVAL (constant_part
));
8417 if (modifier
!= EXPAND_SUM
&& modifier
!= EXPAND_INITIALIZER
)
8418 op1
= force_operand (op1
, target
);
8419 return REDUCE_BIT_FIELD (op1
);
8422 else if (TREE_CODE (TREE_OPERAND (exp
, 1)) == INTEGER_CST
8423 && GET_MODE_BITSIZE (mode
) <= HOST_BITS_PER_WIDE_INT
8424 && TREE_CONSTANT (TREE_OPERAND (exp
, 0)))
8428 op0
= expand_expr (TREE_OPERAND (exp
, 0), subtarget
, VOIDmode
,
8429 (modifier
== EXPAND_INITIALIZER
8430 ? EXPAND_INITIALIZER
: EXPAND_SUM
));
8431 if (! CONSTANT_P (op0
))
8433 op1
= expand_expr (TREE_OPERAND (exp
, 1), NULL_RTX
,
8434 VOIDmode
, modifier
);
8435 /* Return a PLUS if modifier says it's OK. */
8436 if (modifier
== EXPAND_SUM
8437 || modifier
== EXPAND_INITIALIZER
)
8438 return simplify_gen_binary (PLUS
, mode
, op0
, op1
);
8441 /* Use immed_double_const to ensure that the constant is
8442 truncated according to the mode of OP1, then sign extended
8443 to a HOST_WIDE_INT. Using the constant directly can result
8444 in non-canonical RTL in a 64x32 cross compile. */
8446 = immed_double_const (TREE_INT_CST_LOW (TREE_OPERAND (exp
, 1)),
8448 TYPE_MODE (TREE_TYPE (TREE_OPERAND (exp
, 0))));
8449 op0
= plus_constant (op0
, INTVAL (constant_part
));
8450 if (modifier
!= EXPAND_SUM
&& modifier
!= EXPAND_INITIALIZER
)
8451 op0
= force_operand (op0
, target
);
8452 return REDUCE_BIT_FIELD (op0
);
8456 /* No sense saving up arithmetic to be done
8457 if it's all in the wrong mode to form part of an address.
8458 And force_operand won't know whether to sign-extend or
8460 if ((modifier
!= EXPAND_SUM
&& modifier
!= EXPAND_INITIALIZER
)
8461 || mode
!= ptr_mode
)
8463 expand_operands (TREE_OPERAND (exp
, 0), TREE_OPERAND (exp
, 1),
8464 subtarget
, &op0
, &op1
, 0);
8465 if (op0
== const0_rtx
)
8467 if (op1
== const0_rtx
)
8472 expand_operands (TREE_OPERAND (exp
, 0), TREE_OPERAND (exp
, 1),
8473 subtarget
, &op0
, &op1
, modifier
);
8474 return REDUCE_BIT_FIELD (simplify_gen_binary (PLUS
, mode
, op0
, op1
));
8477 /* Check if this is a case for multiplication and subtraction. */
8478 if ((TREE_CODE (type
) == INTEGER_TYPE
8479 || TREE_CODE (type
) == FIXED_POINT_TYPE
)
8480 && TREE_CODE (TREE_OPERAND (exp
, 1)) == MULT_EXPR
)
8482 tree subsubexp0
, subsubexp1
;
8483 enum tree_code code0
, code1
, this_code
;
8485 subexp1
= TREE_OPERAND (exp
, 1);
8486 subsubexp0
= TREE_OPERAND (subexp1
, 0);
8487 subsubexp1
= TREE_OPERAND (subexp1
, 1);
8488 code0
= TREE_CODE (subsubexp0
);
8489 code1
= TREE_CODE (subsubexp1
);
8490 this_code
= TREE_CODE (type
) == INTEGER_TYPE
? NOP_EXPR
8491 : FIXED_CONVERT_EXPR
;
8492 if (code0
== this_code
&& code1
== this_code
8493 && (TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (subsubexp0
, 0)))
8494 < TYPE_PRECISION (TREE_TYPE (subsubexp0
)))
8495 && (TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (subsubexp0
, 0)))
8496 == TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (subsubexp1
, 0))))
8497 && (TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (subsubexp0
, 0)))
8498 == TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (subsubexp1
, 0)))))
8500 tree op0type
= TREE_TYPE (TREE_OPERAND (subsubexp0
, 0));
8501 enum machine_mode innermode
= TYPE_MODE (op0type
);
8502 bool zextend_p
= TYPE_UNSIGNED (op0type
);
8503 bool sat_p
= TYPE_SATURATING (TREE_TYPE (subsubexp0
));
8505 this_optab
= zextend_p
? umsub_widen_optab
: smsub_widen_optab
;
8507 this_optab
= zextend_p
? usmsub_widen_optab
8508 : ssmsub_widen_optab
;
8509 if (mode
== GET_MODE_2XWIDER_MODE (innermode
)
8510 && (optab_handler (this_optab
, mode
)->insn_code
8511 != CODE_FOR_nothing
))
8513 expand_operands (TREE_OPERAND (subsubexp0
, 0),
8514 TREE_OPERAND (subsubexp1
, 0),
8515 NULL_RTX
, &op0
, &op1
, EXPAND_NORMAL
);
8516 op2
= expand_expr (TREE_OPERAND (exp
, 0), subtarget
,
8517 VOIDmode
, EXPAND_NORMAL
);
8518 temp
= expand_ternary_op (mode
, this_optab
, op0
, op1
, op2
,
8521 return REDUCE_BIT_FIELD (temp
);
8526 /* For initializers, we are allowed to return a MINUS of two
8527 symbolic constants. Here we handle all cases when both operands
8529 /* Handle difference of two symbolic constants,
8530 for the sake of an initializer. */
8531 if ((modifier
== EXPAND_SUM
|| modifier
== EXPAND_INITIALIZER
)
8532 && really_constant_p (TREE_OPERAND (exp
, 0))
8533 && really_constant_p (TREE_OPERAND (exp
, 1)))
8535 expand_operands (TREE_OPERAND (exp
, 0), TREE_OPERAND (exp
, 1),
8536 NULL_RTX
, &op0
, &op1
, modifier
);
8538 /* If the last operand is a CONST_INT, use plus_constant of
8539 the negated constant. Else make the MINUS. */
8540 if (GET_CODE (op1
) == CONST_INT
)
8541 return REDUCE_BIT_FIELD (plus_constant (op0
, - INTVAL (op1
)));
8543 return REDUCE_BIT_FIELD (gen_rtx_MINUS (mode
, op0
, op1
));
8546 /* No sense saving up arithmetic to be done
8547 if it's all in the wrong mode to form part of an address.
8548 And force_operand won't know whether to sign-extend or
8550 if ((modifier
!= EXPAND_SUM
&& modifier
!= EXPAND_INITIALIZER
)
8551 || mode
!= ptr_mode
)
8554 expand_operands (TREE_OPERAND (exp
, 0), TREE_OPERAND (exp
, 1),
8555 subtarget
, &op0
, &op1
, modifier
);
8557 /* Convert A - const to A + (-const). */
8558 if (GET_CODE (op1
) == CONST_INT
)
8560 op1
= negate_rtx (mode
, op1
);
8561 return REDUCE_BIT_FIELD (simplify_gen_binary (PLUS
, mode
, op0
, op1
));
8567 /* If this is a fixed-point operation, then we cannot use the code
8568 below because "expand_mult" doesn't support sat/no-sat fixed-point
8570 if (ALL_FIXED_POINT_MODE_P (mode
))
8573 /* If first operand is constant, swap them.
8574 Thus the following special case checks need only
8575 check the second operand. */
8576 if (TREE_CODE (TREE_OPERAND (exp
, 0)) == INTEGER_CST
)
8578 tree t1
= TREE_OPERAND (exp
, 0);
8579 TREE_OPERAND (exp
, 0) = TREE_OPERAND (exp
, 1);
8580 TREE_OPERAND (exp
, 1) = t1
;
8583 /* Attempt to return something suitable for generating an
8584 indexed address, for machines that support that. */
8586 if (modifier
== EXPAND_SUM
&& mode
== ptr_mode
8587 && host_integerp (TREE_OPERAND (exp
, 1), 0))
8589 tree exp1
= TREE_OPERAND (exp
, 1);
8591 op0
= expand_expr (TREE_OPERAND (exp
, 0), subtarget
, VOIDmode
,
8595 op0
= force_operand (op0
, NULL_RTX
);
8597 op0
= copy_to_mode_reg (mode
, op0
);
8599 return REDUCE_BIT_FIELD (gen_rtx_MULT (mode
, op0
,
8600 gen_int_mode (tree_low_cst (exp1
, 0),
8601 TYPE_MODE (TREE_TYPE (exp1
)))));
8604 if (modifier
== EXPAND_STACK_PARM
)
8607 /* Check for multiplying things that have been extended
8608 from a narrower type. If this machine supports multiplying
8609 in that narrower type with a result in the desired type,
8610 do it that way, and avoid the explicit type-conversion. */
8612 subexp0
= TREE_OPERAND (exp
, 0);
8613 subexp1
= TREE_OPERAND (exp
, 1);
8614 /* First, check if we have a multiplication of one signed and one
8615 unsigned operand. */
8616 if (TREE_CODE (subexp0
) == NOP_EXPR
8617 && TREE_CODE (subexp1
) == NOP_EXPR
8618 && TREE_CODE (type
) == INTEGER_TYPE
8619 && (TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (subexp0
, 0)))
8620 < TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (exp
, 0))))
8621 && (TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (subexp0
, 0)))
8622 == TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (subexp1
, 0))))
8623 && (TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (subexp0
, 0)))
8624 != TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (subexp1
, 0)))))
8626 enum machine_mode innermode
8627 = TYPE_MODE (TREE_TYPE (TREE_OPERAND (subexp0
, 0)));
8628 this_optab
= usmul_widen_optab
;
8629 if (mode
== GET_MODE_WIDER_MODE (innermode
))
8631 if (optab_handler (this_optab
, mode
)->insn_code
!= CODE_FOR_nothing
)
8633 if (TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (subexp0
, 0))))
8634 expand_operands (TREE_OPERAND (subexp0
, 0),
8635 TREE_OPERAND (subexp1
, 0),
8636 NULL_RTX
, &op0
, &op1
, 0);
8638 expand_operands (TREE_OPERAND (subexp0
, 0),
8639 TREE_OPERAND (subexp1
, 0),
8640 NULL_RTX
, &op1
, &op0
, 0);
8646 /* Check for a multiplication with matching signedness. */
8647 else if (TREE_CODE (TREE_OPERAND (exp
, 0)) == NOP_EXPR
8648 && TREE_CODE (type
) == INTEGER_TYPE
8649 && (TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (TREE_OPERAND (exp
, 0), 0)))
8650 < TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (exp
, 0))))
8651 && ((TREE_CODE (TREE_OPERAND (exp
, 1)) == INTEGER_CST
8652 && int_fits_type_p (TREE_OPERAND (exp
, 1),
8653 TREE_TYPE (TREE_OPERAND (TREE_OPERAND (exp
, 0), 0)))
8654 /* Don't use a widening multiply if a shift will do. */
8655 && ((GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (TREE_OPERAND (exp
, 1))))
8656 > HOST_BITS_PER_WIDE_INT
)
8657 || exact_log2 (TREE_INT_CST_LOW (TREE_OPERAND (exp
, 1))) < 0))
8659 (TREE_CODE (TREE_OPERAND (exp
, 1)) == NOP_EXPR
8660 && (TYPE_PRECISION (TREE_TYPE
8661 (TREE_OPERAND (TREE_OPERAND (exp
, 1), 0)))
8662 == TYPE_PRECISION (TREE_TYPE
8664 (TREE_OPERAND (exp
, 0), 0))))
8665 /* If both operands are extended, they must either both
8666 be zero-extended or both be sign-extended. */
8667 && (TYPE_UNSIGNED (TREE_TYPE
8668 (TREE_OPERAND (TREE_OPERAND (exp
, 1), 0)))
8669 == TYPE_UNSIGNED (TREE_TYPE
8671 (TREE_OPERAND (exp
, 0), 0)))))))
8673 tree op0type
= TREE_TYPE (TREE_OPERAND (TREE_OPERAND (exp
, 0), 0));
8674 enum machine_mode innermode
= TYPE_MODE (op0type
);
8675 bool zextend_p
= TYPE_UNSIGNED (op0type
);
8676 optab other_optab
= zextend_p
? smul_widen_optab
: umul_widen_optab
;
8677 this_optab
= zextend_p
? umul_widen_optab
: smul_widen_optab
;
8679 if (mode
== GET_MODE_2XWIDER_MODE (innermode
))
8681 if (optab_handler (this_optab
, mode
)->insn_code
!= CODE_FOR_nothing
)
8683 if (TREE_CODE (TREE_OPERAND (exp
, 1)) == INTEGER_CST
)
8684 expand_operands (TREE_OPERAND (TREE_OPERAND (exp
, 0), 0),
8685 TREE_OPERAND (exp
, 1),
8686 NULL_RTX
, &op0
, &op1
, EXPAND_NORMAL
);
8688 expand_operands (TREE_OPERAND (TREE_OPERAND (exp
, 0), 0),
8689 TREE_OPERAND (TREE_OPERAND (exp
, 1), 0),
8690 NULL_RTX
, &op0
, &op1
, EXPAND_NORMAL
);
8693 else if (optab_handler (other_optab
, mode
)->insn_code
!= CODE_FOR_nothing
8694 && innermode
== word_mode
)
8697 op0
= expand_normal (TREE_OPERAND (TREE_OPERAND (exp
, 0), 0));
8698 if (TREE_CODE (TREE_OPERAND (exp
, 1)) == INTEGER_CST
)
8699 op1
= convert_modes (innermode
, mode
,
8700 expand_normal (TREE_OPERAND (exp
, 1)),
8703 op1
= expand_normal (TREE_OPERAND (TREE_OPERAND (exp
, 1), 0));
8704 temp
= expand_binop (mode
, other_optab
, op0
, op1
, target
,
8705 unsignedp
, OPTAB_LIB_WIDEN
);
8706 hipart
= gen_highpart (innermode
, temp
);
8707 htem
= expand_mult_highpart_adjust (innermode
, hipart
,
8711 emit_move_insn (hipart
, htem
);
8712 return REDUCE_BIT_FIELD (temp
);
8716 expand_operands (TREE_OPERAND (exp
, 0), TREE_OPERAND (exp
, 1),
8717 subtarget
, &op0
, &op1
, 0);
8718 return REDUCE_BIT_FIELD (expand_mult (mode
, op0
, op1
, target
, unsignedp
));
8720 case TRUNC_DIV_EXPR
:
8721 case FLOOR_DIV_EXPR
:
8723 case ROUND_DIV_EXPR
:
8724 case EXACT_DIV_EXPR
:
8725 /* If this is a fixed-point operation, then we cannot use the code
8726 below because "expand_divmod" doesn't support sat/no-sat fixed-point
8728 if (ALL_FIXED_POINT_MODE_P (mode
))
8731 if (modifier
== EXPAND_STACK_PARM
)
8733 /* Possible optimization: compute the dividend with EXPAND_SUM
8734 then if the divisor is constant can optimize the case
8735 where some terms of the dividend have coeffs divisible by it. */
8736 expand_operands (TREE_OPERAND (exp
, 0), TREE_OPERAND (exp
, 1),
8737 subtarget
, &op0
, &op1
, 0);
8738 return expand_divmod (0, code
, mode
, op0
, op1
, target
, unsignedp
);
8743 case TRUNC_MOD_EXPR
:
8744 case FLOOR_MOD_EXPR
:
8746 case ROUND_MOD_EXPR
:
8747 if (modifier
== EXPAND_STACK_PARM
)
8749 expand_operands (TREE_OPERAND (exp
, 0), TREE_OPERAND (exp
, 1),
8750 subtarget
, &op0
, &op1
, 0);
8751 return expand_divmod (1, code
, mode
, op0
, op1
, target
, unsignedp
);
8753 case FIXED_CONVERT_EXPR
:
8754 op0
= expand_normal (TREE_OPERAND (exp
, 0));
8755 if (target
== 0 || modifier
== EXPAND_STACK_PARM
)
8756 target
= gen_reg_rtx (mode
);
8758 if ((TREE_CODE (TREE_TYPE (TREE_OPERAND (exp
, 0))) == INTEGER_TYPE
8759 && TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (exp
, 0))))
8760 || (TREE_CODE (type
) == INTEGER_TYPE
&& TYPE_UNSIGNED (type
)))
8761 expand_fixed_convert (target
, op0
, 1, TYPE_SATURATING (type
));
8763 expand_fixed_convert (target
, op0
, 0, TYPE_SATURATING (type
));
8766 case FIX_TRUNC_EXPR
:
8767 op0
= expand_normal (TREE_OPERAND (exp
, 0));
8768 if (target
== 0 || modifier
== EXPAND_STACK_PARM
)
8769 target
= gen_reg_rtx (mode
);
8770 expand_fix (target
, op0
, unsignedp
);
8774 op0
= expand_normal (TREE_OPERAND (exp
, 0));
8775 if (target
== 0 || modifier
== EXPAND_STACK_PARM
)
8776 target
= gen_reg_rtx (mode
);
8777 /* expand_float can't figure out what to do if FROM has VOIDmode.
8778 So give it the correct mode. With -O, cse will optimize this. */
8779 if (GET_MODE (op0
) == VOIDmode
)
8780 op0
= copy_to_mode_reg (TYPE_MODE (TREE_TYPE (TREE_OPERAND (exp
, 0))),
8782 expand_float (target
, op0
,
8783 TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (exp
, 0))));
8787 op0
= expand_expr (TREE_OPERAND (exp
, 0), subtarget
,
8788 VOIDmode
, EXPAND_NORMAL
);
8789 if (modifier
== EXPAND_STACK_PARM
)
8791 temp
= expand_unop (mode
,
8792 optab_for_tree_code (NEGATE_EXPR
, type
,
8796 return REDUCE_BIT_FIELD (temp
);
8799 op0
= expand_expr (TREE_OPERAND (exp
, 0), subtarget
,
8800 VOIDmode
, EXPAND_NORMAL
);
8801 if (modifier
== EXPAND_STACK_PARM
)
8804 /* ABS_EXPR is not valid for complex arguments. */
8805 gcc_assert (GET_MODE_CLASS (mode
) != MODE_COMPLEX_INT
8806 && GET_MODE_CLASS (mode
) != MODE_COMPLEX_FLOAT
);
8808 /* Unsigned abs is simply the operand. Testing here means we don't
8809 risk generating incorrect code below. */
8810 if (TYPE_UNSIGNED (type
))
8813 return expand_abs (mode
, op0
, target
, unsignedp
,
8814 safe_from_p (target
, TREE_OPERAND (exp
, 0), 1));
8818 target
= original_target
;
8820 || modifier
== EXPAND_STACK_PARM
8821 || (MEM_P (target
) && MEM_VOLATILE_P (target
))
8822 || GET_MODE (target
) != mode
8824 && REGNO (target
) < FIRST_PSEUDO_REGISTER
))
8825 target
= gen_reg_rtx (mode
);
8826 expand_operands (TREE_OPERAND (exp
, 0), TREE_OPERAND (exp
, 1),
8827 target
, &op0
, &op1
, 0);
8829 /* First try to do it with a special MIN or MAX instruction.
8830 If that does not win, use a conditional jump to select the proper
8832 this_optab
= optab_for_tree_code (code
, type
, optab_default
);
8833 temp
= expand_binop (mode
, this_optab
, op0
, op1
, target
, unsignedp
,
8838 /* At this point, a MEM target is no longer useful; we will get better
8841 if (! REG_P (target
))
8842 target
= gen_reg_rtx (mode
);
8844 /* If op1 was placed in target, swap op0 and op1. */
8845 if (target
!= op0
&& target
== op1
)
8852 /* We generate better code and avoid problems with op1 mentioning
8853 target by forcing op1 into a pseudo if it isn't a constant. */
8854 if (! CONSTANT_P (op1
))
8855 op1
= force_reg (mode
, op1
);
8858 enum rtx_code comparison_code
;
8861 if (code
== MAX_EXPR
)
8862 comparison_code
= unsignedp
? GEU
: GE
;
8864 comparison_code
= unsignedp
? LEU
: LE
;
8866 /* Canonicalize to comparisons against 0. */
8867 if (op1
== const1_rtx
)
8869 /* Converting (a >= 1 ? a : 1) into (a > 0 ? a : 1)
8870 or (a != 0 ? a : 1) for unsigned.
8871 For MIN we are safe converting (a <= 1 ? a : 1)
8872 into (a <= 0 ? a : 1) */
8873 cmpop1
= const0_rtx
;
8874 if (code
== MAX_EXPR
)
8875 comparison_code
= unsignedp
? NE
: GT
;
8877 if (op1
== constm1_rtx
&& !unsignedp
)
8879 /* Converting (a >= -1 ? a : -1) into (a >= 0 ? a : -1)
8880 and (a <= -1 ? a : -1) into (a < 0 ? a : -1) */
8881 cmpop1
= const0_rtx
;
8882 if (code
== MIN_EXPR
)
8883 comparison_code
= LT
;
8885 #ifdef HAVE_conditional_move
8886 /* Use a conditional move if possible. */
8887 if (can_conditionally_move_p (mode
))
8891 /* ??? Same problem as in expmed.c: emit_conditional_move
8892 forces a stack adjustment via compare_from_rtx, and we
8893 lose the stack adjustment if the sequence we are about
8894 to create is discarded. */
8895 do_pending_stack_adjust ();
8899 /* Try to emit the conditional move. */
8900 insn
= emit_conditional_move (target
, comparison_code
,
8905 /* If we could do the conditional move, emit the sequence,
8909 rtx seq
= get_insns ();
8915 /* Otherwise discard the sequence and fall back to code with
8921 emit_move_insn (target
, op0
);
8923 temp
= gen_label_rtx ();
8924 do_compare_rtx_and_jump (target
, cmpop1
, comparison_code
,
8925 unsignedp
, mode
, NULL_RTX
, NULL_RTX
, temp
);
8927 emit_move_insn (target
, op1
);
8932 op0
= expand_expr (TREE_OPERAND (exp
, 0), subtarget
,
8933 VOIDmode
, EXPAND_NORMAL
);
8934 if (modifier
== EXPAND_STACK_PARM
)
8936 temp
= expand_unop (mode
, one_cmpl_optab
, op0
, target
, 1);
8940 /* ??? Can optimize bitwise operations with one arg constant.
8941 Can optimize (a bitwise1 n) bitwise2 (a bitwise3 b)
8942 and (a bitwise1 b) bitwise2 b (etc)
8943 but that is probably not worth while. */
8945 /* BIT_AND_EXPR is for bitwise anding. TRUTH_AND_EXPR is for anding two
8946 boolean values when we want in all cases to compute both of them. In
8947 general it is fastest to do TRUTH_AND_EXPR by computing both operands
8948 as actual zero-or-1 values and then bitwise anding. In cases where
8949 there cannot be any side effects, better code would be made by
8950 treating TRUTH_AND_EXPR like TRUTH_ANDIF_EXPR; but the question is
8951 how to recognize those cases. */
8953 case TRUTH_AND_EXPR
:
8954 code
= BIT_AND_EXPR
;
8959 code
= BIT_IOR_EXPR
;
8963 case TRUTH_XOR_EXPR
:
8964 code
= BIT_XOR_EXPR
;
8970 gcc_assert (VECTOR_MODE_P (TYPE_MODE (type
))
8971 || (GET_MODE_PRECISION (TYPE_MODE (type
))
8972 == TYPE_PRECISION (type
)));
8977 /* If this is a fixed-point operation, then we cannot use the code
8978 below because "expand_shift" doesn't support sat/no-sat fixed-point
8980 if (ALL_FIXED_POINT_MODE_P (mode
))
8983 if (! safe_from_p (subtarget
, TREE_OPERAND (exp
, 1), 1))
8985 if (modifier
== EXPAND_STACK_PARM
)
8987 op0
= expand_expr (TREE_OPERAND (exp
, 0), subtarget
,
8988 VOIDmode
, EXPAND_NORMAL
);
8989 temp
= expand_shift (code
, mode
, op0
, TREE_OPERAND (exp
, 1), target
,
8991 if (code
== LSHIFT_EXPR
)
8992 temp
= REDUCE_BIT_FIELD (temp
);
8995 /* Could determine the answer when only additive constants differ. Also,
8996 the addition of one can be handled by changing the condition. */
9003 case UNORDERED_EXPR
:
9011 temp
= do_store_flag (exp
,
9012 modifier
!= EXPAND_STACK_PARM
? target
: NULL_RTX
,
9013 tmode
!= VOIDmode
? tmode
: mode
, 0);
9017 /* For foo != 0, load foo, and if it is nonzero load 1 instead. */
9018 if (code
== NE_EXPR
&& integer_zerop (TREE_OPERAND (exp
, 1))
9020 && REG_P (original_target
)
9021 && (GET_MODE (original_target
)
9022 == TYPE_MODE (TREE_TYPE (TREE_OPERAND (exp
, 0)))))
9024 temp
= expand_expr (TREE_OPERAND (exp
, 0), original_target
,
9025 VOIDmode
, EXPAND_NORMAL
);
9027 /* If temp is constant, we can just compute the result. */
9028 if (GET_CODE (temp
) == CONST_INT
)
9030 if (INTVAL (temp
) != 0)
9031 emit_move_insn (target
, const1_rtx
);
9033 emit_move_insn (target
, const0_rtx
);
9038 if (temp
!= original_target
)
9040 enum machine_mode mode1
= GET_MODE (temp
);
9041 if (mode1
== VOIDmode
)
9042 mode1
= tmode
!= VOIDmode
? tmode
: mode
;
9044 temp
= copy_to_mode_reg (mode1
, temp
);
9047 op1
= gen_label_rtx ();
9048 emit_cmp_and_jump_insns (temp
, const0_rtx
, EQ
, NULL_RTX
,
9049 GET_MODE (temp
), unsignedp
, op1
);
9050 emit_move_insn (temp
, const1_rtx
);
9055 /* If no set-flag instruction, must generate a conditional store
9056 into a temporary variable. Drop through and handle this
9058 /* Although TRUTH_{AND,OR}IF_EXPR aren't present in GIMPLE, they
9059 are occassionally created by folding during expansion. */
9060 case TRUTH_ANDIF_EXPR
:
9061 case TRUTH_ORIF_EXPR
:
9064 || modifier
== EXPAND_STACK_PARM
9065 || ! safe_from_p (target
, exp
, 1)
9066 /* Make sure we don't have a hard reg (such as function's return
9067 value) live across basic blocks, if not optimizing. */
9068 || (!optimize
&& REG_P (target
)
9069 && REGNO (target
) < FIRST_PSEUDO_REGISTER
)))
9070 target
= gen_reg_rtx (tmode
!= VOIDmode
? tmode
: mode
);
9073 emit_move_insn (target
, const0_rtx
);
9075 op1
= gen_label_rtx ();
9076 jumpifnot (exp
, op1
);
9079 emit_move_insn (target
, const1_rtx
);
9082 return ignore
? const0_rtx
: target
;
9084 case TRUTH_NOT_EXPR
:
9085 if (modifier
== EXPAND_STACK_PARM
)
9087 op0
= expand_expr (TREE_OPERAND (exp
, 0), target
,
9088 VOIDmode
, EXPAND_NORMAL
);
9089 /* The parser is careful to generate TRUTH_NOT_EXPR
9090 only with operands that are always zero or one. */
9091 temp
= expand_binop (mode
, xor_optab
, op0
, const1_rtx
,
9092 target
, 1, OPTAB_LIB_WIDEN
);
9096 case STATEMENT_LIST
:
9098 tree_stmt_iterator iter
;
9100 gcc_assert (ignore
);
9102 for (iter
= tsi_start (exp
); !tsi_end_p (iter
); tsi_next (&iter
))
9103 expand_expr (tsi_stmt (iter
), const0_rtx
, VOIDmode
, modifier
);
9108 /* A COND_EXPR with its type being VOID_TYPE represents a
9109 conditional jump and is handled in
9110 expand_gimple_cond_expr. */
9111 gcc_assert (!VOID_TYPE_P (TREE_TYPE (exp
)));
9113 /* Note that COND_EXPRs whose type is a structure or union
9114 are required to be constructed to contain assignments of
9115 a temporary variable, so that we can evaluate them here
9116 for side effect only. If type is void, we must do likewise. */
9118 gcc_assert (!TREE_ADDRESSABLE (type
)
9120 && TREE_TYPE (TREE_OPERAND (exp
, 1)) != void_type_node
9121 && TREE_TYPE (TREE_OPERAND (exp
, 2)) != void_type_node
);
9123 /* If we are not to produce a result, we have no target. Otherwise,
9124 if a target was specified use it; it will not be used as an
9125 intermediate target unless it is safe. If no target, use a
9128 if (modifier
!= EXPAND_STACK_PARM
9130 && safe_from_p (original_target
, TREE_OPERAND (exp
, 0), 1)
9131 && GET_MODE (original_target
) == mode
9132 #ifdef HAVE_conditional_move
9133 && (! can_conditionally_move_p (mode
)
9134 || REG_P (original_target
))
9136 && !MEM_P (original_target
))
9137 temp
= original_target
;
9139 temp
= assign_temp (type
, 0, 0, 1);
9141 do_pending_stack_adjust ();
9143 op0
= gen_label_rtx ();
9144 op1
= gen_label_rtx ();
9145 jumpifnot (TREE_OPERAND (exp
, 0), op0
);
9146 store_expr (TREE_OPERAND (exp
, 1), temp
,
9147 modifier
== EXPAND_STACK_PARM
,
9150 emit_jump_insn (gen_jump (op1
));
9153 store_expr (TREE_OPERAND (exp
, 2), temp
,
9154 modifier
== EXPAND_STACK_PARM
,
9162 target
= expand_vec_cond_expr (exp
, target
);
9167 tree lhs
= TREE_OPERAND (exp
, 0);
9168 tree rhs
= TREE_OPERAND (exp
, 1);
9169 gcc_assert (ignore
);
9171 /* Check for |= or &= of a bitfield of size one into another bitfield
9172 of size 1. In this case, (unless we need the result of the
9173 assignment) we can do this more efficiently with a
9174 test followed by an assignment, if necessary.
9176 ??? At this point, we can't get a BIT_FIELD_REF here. But if
9177 things change so we do, this code should be enhanced to
9179 if (TREE_CODE (lhs
) == COMPONENT_REF
9180 && (TREE_CODE (rhs
) == BIT_IOR_EXPR
9181 || TREE_CODE (rhs
) == BIT_AND_EXPR
)
9182 && TREE_OPERAND (rhs
, 0) == lhs
9183 && TREE_CODE (TREE_OPERAND (rhs
, 1)) == COMPONENT_REF
9184 && integer_onep (DECL_SIZE (TREE_OPERAND (lhs
, 1)))
9185 && integer_onep (DECL_SIZE (TREE_OPERAND (TREE_OPERAND (rhs
, 1), 1))))
9187 rtx label
= gen_label_rtx ();
9188 int value
= TREE_CODE (rhs
) == BIT_IOR_EXPR
;
9189 do_jump (TREE_OPERAND (rhs
, 1),
9192 expand_assignment (lhs
, build_int_cst (TREE_TYPE (rhs
), value
),
9193 MOVE_NONTEMPORAL (exp
));
9194 do_pending_stack_adjust ();
9199 expand_assignment (lhs
, rhs
, MOVE_NONTEMPORAL (exp
));
9204 if (!TREE_OPERAND (exp
, 0))
9205 expand_null_return ();
9207 expand_return (TREE_OPERAND (exp
, 0));
9211 return expand_expr_addr_expr (exp
, target
, tmode
, modifier
);
9214 /* Get the rtx code of the operands. */
9215 op0
= expand_normal (TREE_OPERAND (exp
, 0));
9216 op1
= expand_normal (TREE_OPERAND (exp
, 1));
9219 target
= gen_reg_rtx (TYPE_MODE (TREE_TYPE (exp
)));
9221 /* Move the real (op0) and imaginary (op1) parts to their location. */
9222 write_complex_part (target
, op0
, false);
9223 write_complex_part (target
, op1
, true);
9228 op0
= expand_normal (TREE_OPERAND (exp
, 0));
9229 return read_complex_part (op0
, false);
9232 op0
= expand_normal (TREE_OPERAND (exp
, 0));
9233 return read_complex_part (op0
, true);
9236 expand_resx_expr (exp
);
9239 case TRY_CATCH_EXPR
:
9241 case EH_FILTER_EXPR
:
9242 case TRY_FINALLY_EXPR
:
9243 /* Lowered by tree-eh.c. */
9246 case WITH_CLEANUP_EXPR
:
9247 case CLEANUP_POINT_EXPR
:
9249 case CASE_LABEL_EXPR
:
9255 case PREINCREMENT_EXPR
:
9256 case PREDECREMENT_EXPR
:
9257 case POSTINCREMENT_EXPR
:
9258 case POSTDECREMENT_EXPR
:
9261 /* Lowered by gimplify.c. */
9264 case CHANGE_DYNAMIC_TYPE_EXPR
:
9265 /* This is ignored at the RTL level. The tree level set
9266 DECL_POINTER_ALIAS_SET of any variable to be 0, which is
9267 overkill for the RTL layer but is all that we can
9272 return get_exception_pointer ();
9275 return get_exception_filter ();
9278 /* Function descriptors are not valid except for as
9279 initialization constants, and should not be expanded. */
9287 expand_label (TREE_OPERAND (exp
, 0));
9291 expand_asm_expr (exp
);
9294 case WITH_SIZE_EXPR
:
9295 /* WITH_SIZE_EXPR expands to its first argument. The caller should
9296 have pulled out the size to use in whatever context it needed. */
9297 return expand_expr_real (TREE_OPERAND (exp
, 0), original_target
, tmode
,
9300 case REALIGN_LOAD_EXPR
:
9302 tree oprnd0
= TREE_OPERAND (exp
, 0);
9303 tree oprnd1
= TREE_OPERAND (exp
, 1);
9304 tree oprnd2
= TREE_OPERAND (exp
, 2);
9307 this_optab
= optab_for_tree_code (code
, type
, optab_default
);
9308 expand_operands (oprnd0
, oprnd1
, NULL_RTX
, &op0
, &op1
, EXPAND_NORMAL
);
9309 op2
= expand_normal (oprnd2
);
9310 temp
= expand_ternary_op (mode
, this_optab
, op0
, op1
, op2
,
9318 tree oprnd0
= TREE_OPERAND (exp
, 0);
9319 tree oprnd1
= TREE_OPERAND (exp
, 1);
9320 tree oprnd2
= TREE_OPERAND (exp
, 2);
9323 expand_operands (oprnd0
, oprnd1
, NULL_RTX
, &op0
, &op1
, EXPAND_NORMAL
);
9324 op2
= expand_normal (oprnd2
);
9325 target
= expand_widen_pattern_expr (exp
, op0
, op1
, op2
,
9330 case WIDEN_SUM_EXPR
:
9332 tree oprnd0
= TREE_OPERAND (exp
, 0);
9333 tree oprnd1
= TREE_OPERAND (exp
, 1);
9335 expand_operands (oprnd0
, oprnd1
, NULL_RTX
, &op0
, &op1
, 0);
9336 target
= expand_widen_pattern_expr (exp
, op0
, NULL_RTX
, op1
,
9341 case REDUC_MAX_EXPR
:
9342 case REDUC_MIN_EXPR
:
9343 case REDUC_PLUS_EXPR
:
9345 op0
= expand_normal (TREE_OPERAND (exp
, 0));
9346 this_optab
= optab_for_tree_code (code
, type
, optab_default
);
9347 temp
= expand_unop (mode
, this_optab
, op0
, target
, unsignedp
);
9352 case VEC_EXTRACT_EVEN_EXPR
:
9353 case VEC_EXTRACT_ODD_EXPR
:
9355 expand_operands (TREE_OPERAND (exp
, 0), TREE_OPERAND (exp
, 1),
9356 NULL_RTX
, &op0
, &op1
, 0);
9357 this_optab
= optab_for_tree_code (code
, type
, optab_default
);
9358 temp
= expand_binop (mode
, this_optab
, op0
, op1
, target
, unsignedp
,
9364 case VEC_INTERLEAVE_HIGH_EXPR
:
9365 case VEC_INTERLEAVE_LOW_EXPR
:
9367 expand_operands (TREE_OPERAND (exp
, 0), TREE_OPERAND (exp
, 1),
9368 NULL_RTX
, &op0
, &op1
, 0);
9369 this_optab
= optab_for_tree_code (code
, type
, optab_default
);
9370 temp
= expand_binop (mode
, this_optab
, op0
, op1
, target
, unsignedp
,
9376 case VEC_LSHIFT_EXPR
:
9377 case VEC_RSHIFT_EXPR
:
9379 target
= expand_vec_shift_expr (exp
, target
);
9383 case VEC_UNPACK_HI_EXPR
:
9384 case VEC_UNPACK_LO_EXPR
:
9386 op0
= expand_normal (TREE_OPERAND (exp
, 0));
9387 this_optab
= optab_for_tree_code (code
, type
, optab_default
);
9388 temp
= expand_widen_pattern_expr (exp
, op0
, NULL_RTX
, NULL_RTX
,
9394 case VEC_UNPACK_FLOAT_HI_EXPR
:
9395 case VEC_UNPACK_FLOAT_LO_EXPR
:
9397 op0
= expand_normal (TREE_OPERAND (exp
, 0));
9398 /* The signedness is determined from input operand. */
9399 this_optab
= optab_for_tree_code (code
,
9400 TREE_TYPE (TREE_OPERAND (exp
, 0)),
9402 temp
= expand_widen_pattern_expr
9403 (exp
, op0
, NULL_RTX
, NULL_RTX
,
9404 target
, TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (exp
, 0))));
9410 case VEC_WIDEN_MULT_HI_EXPR
:
9411 case VEC_WIDEN_MULT_LO_EXPR
:
9413 tree oprnd0
= TREE_OPERAND (exp
, 0);
9414 tree oprnd1
= TREE_OPERAND (exp
, 1);
9416 expand_operands (oprnd0
, oprnd1
, NULL_RTX
, &op0
, &op1
, 0);
9417 target
= expand_widen_pattern_expr (exp
, op0
, op1
, NULL_RTX
,
9419 gcc_assert (target
);
9423 case VEC_PACK_TRUNC_EXPR
:
9424 case VEC_PACK_SAT_EXPR
:
9425 case VEC_PACK_FIX_TRUNC_EXPR
:
9426 mode
= TYPE_MODE (TREE_TYPE (TREE_OPERAND (exp
, 0)));
9430 return lang_hooks
.expand_expr (exp
, original_target
, tmode
,
9434 /* Here to do an ordinary binary operator. */
9436 expand_operands (TREE_OPERAND (exp
, 0), TREE_OPERAND (exp
, 1),
9437 subtarget
, &op0
, &op1
, 0);
9439 this_optab
= optab_for_tree_code (code
, type
, optab_default
);
9441 if (modifier
== EXPAND_STACK_PARM
)
9443 temp
= expand_binop (mode
, this_optab
, op0
, op1
, target
,
9444 unsignedp
, OPTAB_LIB_WIDEN
);
9446 return REDUCE_BIT_FIELD (temp
);
9448 #undef REDUCE_BIT_FIELD
9450 /* Subroutine of above: reduce EXP to the precision of TYPE (in the
9451 signedness of TYPE), possibly returning the result in TARGET. */
9453 reduce_to_bit_field_precision (rtx exp
, rtx target
, tree type
)
9455 HOST_WIDE_INT prec
= TYPE_PRECISION (type
);
9456 if (target
&& GET_MODE (target
) != GET_MODE (exp
))
9458 /* For constant values, reduce using build_int_cst_type. */
9459 if (GET_CODE (exp
) == CONST_INT
)
9461 HOST_WIDE_INT value
= INTVAL (exp
);
9462 tree t
= build_int_cst_type (type
, value
);
9463 return expand_expr (t
, target
, VOIDmode
, EXPAND_NORMAL
);
9465 else if (TYPE_UNSIGNED (type
))
9468 if (prec
< HOST_BITS_PER_WIDE_INT
)
9469 mask
= immed_double_const (((unsigned HOST_WIDE_INT
) 1 << prec
) - 1, 0,
9472 mask
= immed_double_const ((unsigned HOST_WIDE_INT
) -1,
9473 ((unsigned HOST_WIDE_INT
) 1
9474 << (prec
- HOST_BITS_PER_WIDE_INT
)) - 1,
9476 return expand_and (GET_MODE (exp
), exp
, mask
, target
);
9480 tree count
= build_int_cst (NULL_TREE
,
9481 GET_MODE_BITSIZE (GET_MODE (exp
)) - prec
);
9482 exp
= expand_shift (LSHIFT_EXPR
, GET_MODE (exp
), exp
, count
, target
, 0);
9483 return expand_shift (RSHIFT_EXPR
, GET_MODE (exp
), exp
, count
, target
, 0);
9487 /* Subroutine of above: returns 1 if OFFSET corresponds to an offset that
9488 when applied to the address of EXP produces an address known to be
9489 aligned more than BIGGEST_ALIGNMENT. */
9492 is_aligning_offset (const_tree offset
, const_tree exp
)
9494 /* Strip off any conversions. */
9495 while (CONVERT_EXPR_P (offset
))
9496 offset
= TREE_OPERAND (offset
, 0);
9498 /* We must now have a BIT_AND_EXPR with a constant that is one less than
9499 power of 2 and which is larger than BIGGEST_ALIGNMENT. */
9500 if (TREE_CODE (offset
) != BIT_AND_EXPR
9501 || !host_integerp (TREE_OPERAND (offset
, 1), 1)
9502 || compare_tree_int (TREE_OPERAND (offset
, 1),
9503 BIGGEST_ALIGNMENT
/ BITS_PER_UNIT
) <= 0
9504 || !exact_log2 (tree_low_cst (TREE_OPERAND (offset
, 1), 1) + 1) < 0)
9507 /* Look at the first operand of BIT_AND_EXPR and strip any conversion.
9508 It must be NEGATE_EXPR. Then strip any more conversions. */
9509 offset
= TREE_OPERAND (offset
, 0);
9510 while (CONVERT_EXPR_P (offset
))
9511 offset
= TREE_OPERAND (offset
, 0);
9513 if (TREE_CODE (offset
) != NEGATE_EXPR
)
9516 offset
= TREE_OPERAND (offset
, 0);
9517 while (CONVERT_EXPR_P (offset
))
9518 offset
= TREE_OPERAND (offset
, 0);
9520 /* This must now be the address of EXP. */
9521 return TREE_CODE (offset
) == ADDR_EXPR
&& TREE_OPERAND (offset
, 0) == exp
;
9524 /* Return the tree node if an ARG corresponds to a string constant or zero
9525 if it doesn't. If we return nonzero, set *PTR_OFFSET to the offset
9526 in bytes within the string that ARG is accessing. The type of the
9527 offset will be `sizetype'. */
9530 string_constant (tree arg
, tree
*ptr_offset
)
9532 tree array
, offset
, lower_bound
;
9535 if (TREE_CODE (arg
) == ADDR_EXPR
)
9537 if (TREE_CODE (TREE_OPERAND (arg
, 0)) == STRING_CST
)
9539 *ptr_offset
= size_zero_node
;
9540 return TREE_OPERAND (arg
, 0);
9542 else if (TREE_CODE (TREE_OPERAND (arg
, 0)) == VAR_DECL
)
9544 array
= TREE_OPERAND (arg
, 0);
9545 offset
= size_zero_node
;
9547 else if (TREE_CODE (TREE_OPERAND (arg
, 0)) == ARRAY_REF
)
9549 array
= TREE_OPERAND (TREE_OPERAND (arg
, 0), 0);
9550 offset
= TREE_OPERAND (TREE_OPERAND (arg
, 0), 1);
9551 if (TREE_CODE (array
) != STRING_CST
9552 && TREE_CODE (array
) != VAR_DECL
)
9555 /* Check if the array has a nonzero lower bound. */
9556 lower_bound
= array_ref_low_bound (TREE_OPERAND (arg
, 0));
9557 if (!integer_zerop (lower_bound
))
9559 /* If the offset and base aren't both constants, return 0. */
9560 if (TREE_CODE (lower_bound
) != INTEGER_CST
)
9562 if (TREE_CODE (offset
) != INTEGER_CST
)
9564 /* Adjust offset by the lower bound. */
9565 offset
= size_diffop (fold_convert (sizetype
, offset
),
9566 fold_convert (sizetype
, lower_bound
));
9572 else if (TREE_CODE (arg
) == PLUS_EXPR
|| TREE_CODE (arg
) == POINTER_PLUS_EXPR
)
9574 tree arg0
= TREE_OPERAND (arg
, 0);
9575 tree arg1
= TREE_OPERAND (arg
, 1);
9580 if (TREE_CODE (arg0
) == ADDR_EXPR
9581 && (TREE_CODE (TREE_OPERAND (arg0
, 0)) == STRING_CST
9582 || TREE_CODE (TREE_OPERAND (arg0
, 0)) == VAR_DECL
))
9584 array
= TREE_OPERAND (arg0
, 0);
9587 else if (TREE_CODE (arg1
) == ADDR_EXPR
9588 && (TREE_CODE (TREE_OPERAND (arg1
, 0)) == STRING_CST
9589 || TREE_CODE (TREE_OPERAND (arg1
, 0)) == VAR_DECL
))
9591 array
= TREE_OPERAND (arg1
, 0);
9600 if (TREE_CODE (array
) == STRING_CST
)
9602 *ptr_offset
= fold_convert (sizetype
, offset
);
9605 else if (TREE_CODE (array
) == VAR_DECL
)
9609 /* Variables initialized to string literals can be handled too. */
9610 if (DECL_INITIAL (array
) == NULL_TREE
9611 || TREE_CODE (DECL_INITIAL (array
)) != STRING_CST
)
9614 /* If they are read-only, non-volatile and bind locally. */
9615 if (! TREE_READONLY (array
)
9616 || TREE_SIDE_EFFECTS (array
)
9617 || ! targetm
.binds_local_p (array
))
9620 /* Avoid const char foo[4] = "abcde"; */
9621 if (DECL_SIZE_UNIT (array
) == NULL_TREE
9622 || TREE_CODE (DECL_SIZE_UNIT (array
)) != INTEGER_CST
9623 || (length
= TREE_STRING_LENGTH (DECL_INITIAL (array
))) <= 0
9624 || compare_tree_int (DECL_SIZE_UNIT (array
), length
) < 0)
9627 /* If variable is bigger than the string literal, OFFSET must be constant
9628 and inside of the bounds of the string literal. */
9629 offset
= fold_convert (sizetype
, offset
);
9630 if (compare_tree_int (DECL_SIZE_UNIT (array
), length
) > 0
9631 && (! host_integerp (offset
, 1)
9632 || compare_tree_int (offset
, length
) >= 0))
9635 *ptr_offset
= offset
;
9636 return DECL_INITIAL (array
);
9642 /* Generate code to calculate EXP using a store-flag instruction
9643 and return an rtx for the result. EXP is either a comparison
9644 or a TRUTH_NOT_EXPR whose operand is a comparison.
9646 If TARGET is nonzero, store the result there if convenient.
9648 If ONLY_CHEAP is nonzero, only do this if it is likely to be very
9651 Return zero if there is no suitable set-flag instruction
9652 available on this machine.
9654 Once expand_expr has been called on the arguments of the comparison,
9655 we are committed to doing the store flag, since it is not safe to
9656 re-evaluate the expression. We emit the store-flag insn by calling
9657 emit_store_flag, but only expand the arguments if we have a reason
9658 to believe that emit_store_flag will be successful. If we think that
9659 it will, but it isn't, we have to simulate the store-flag with a
9660 set/jump/set sequence. */
9663 do_store_flag (tree exp
, rtx target
, enum machine_mode mode
, int only_cheap
)
9666 tree arg0
, arg1
, type
;
9668 enum machine_mode operand_mode
;
9672 enum insn_code icode
;
9673 rtx subtarget
= target
;
9676 /* If this is a TRUTH_NOT_EXPR, set a flag indicating we must invert the
9677 result at the end. We can't simply invert the test since it would
9678 have already been inverted if it were valid. This case occurs for
9679 some floating-point comparisons. */
9681 if (TREE_CODE (exp
) == TRUTH_NOT_EXPR
)
9682 invert
= 1, exp
= TREE_OPERAND (exp
, 0);
9684 arg0
= TREE_OPERAND (exp
, 0);
9685 arg1
= TREE_OPERAND (exp
, 1);
9687 /* Don't crash if the comparison was erroneous. */
9688 if (arg0
== error_mark_node
|| arg1
== error_mark_node
)
9691 type
= TREE_TYPE (arg0
);
9692 operand_mode
= TYPE_MODE (type
);
9693 unsignedp
= TYPE_UNSIGNED (type
);
9695 /* We won't bother with BLKmode store-flag operations because it would mean
9696 passing a lot of information to emit_store_flag. */
9697 if (operand_mode
== BLKmode
)
9700 /* We won't bother with store-flag operations involving function pointers
9701 when function pointers must be canonicalized before comparisons. */
9702 #ifdef HAVE_canonicalize_funcptr_for_compare
9703 if (HAVE_canonicalize_funcptr_for_compare
9704 && ((TREE_CODE (TREE_TYPE (TREE_OPERAND (exp
, 0))) == POINTER_TYPE
9705 && (TREE_CODE (TREE_TYPE (TREE_TYPE (TREE_OPERAND (exp
, 0))))
9707 || (TREE_CODE (TREE_TYPE (TREE_OPERAND (exp
, 1))) == POINTER_TYPE
9708 && (TREE_CODE (TREE_TYPE (TREE_TYPE (TREE_OPERAND (exp
, 1))))
9709 == FUNCTION_TYPE
))))
9716 /* Get the rtx comparison code to use. We know that EXP is a comparison
9717 operation of some type. Some comparisons against 1 and -1 can be
9718 converted to comparisons with zero. Do so here so that the tests
9719 below will be aware that we have a comparison with zero. These
9720 tests will not catch constants in the first operand, but constants
9721 are rarely passed as the first operand. */
9723 switch (TREE_CODE (exp
))
9732 if (integer_onep (arg1
))
9733 arg1
= integer_zero_node
, code
= unsignedp
? LEU
: LE
;
9735 code
= unsignedp
? LTU
: LT
;
9738 if (! unsignedp
&& integer_all_onesp (arg1
))
9739 arg1
= integer_zero_node
, code
= LT
;
9741 code
= unsignedp
? LEU
: LE
;
9744 if (! unsignedp
&& integer_all_onesp (arg1
))
9745 arg1
= integer_zero_node
, code
= GE
;
9747 code
= unsignedp
? GTU
: GT
;
9750 if (integer_onep (arg1
))
9751 arg1
= integer_zero_node
, code
= unsignedp
? GTU
: GT
;
9753 code
= unsignedp
? GEU
: GE
;
9756 case UNORDERED_EXPR
:
9785 /* Put a constant second. */
9786 if (TREE_CODE (arg0
) == REAL_CST
|| TREE_CODE (arg0
) == INTEGER_CST
9787 || TREE_CODE (arg0
) == FIXED_CST
)
9789 tem
= arg0
; arg0
= arg1
; arg1
= tem
;
9790 code
= swap_condition (code
);
9793 /* If this is an equality or inequality test of a single bit, we can
9794 do this by shifting the bit being tested to the low-order bit and
9795 masking the result with the constant 1. If the condition was EQ,
9796 we xor it with 1. This does not require an scc insn and is faster
9797 than an scc insn even if we have it.
9799 The code to make this transformation was moved into fold_single_bit_test,
9800 so we just call into the folder and expand its result. */
9802 if ((code
== NE
|| code
== EQ
)
9803 && TREE_CODE (arg0
) == BIT_AND_EXPR
&& integer_zerop (arg1
)
9804 && integer_pow2p (TREE_OPERAND (arg0
, 1)))
9806 tree type
= lang_hooks
.types
.type_for_mode (mode
, unsignedp
);
9807 return expand_expr (fold_single_bit_test (code
== NE
? NE_EXPR
: EQ_EXPR
,
9809 target
, VOIDmode
, EXPAND_NORMAL
);
9812 /* Now see if we are likely to be able to do this. Return if not. */
9813 if (! can_compare_p (code
, operand_mode
, ccp_store_flag
))
9816 icode
= setcc_gen_code
[(int) code
];
9818 if (icode
== CODE_FOR_nothing
)
9820 enum machine_mode wmode
;
9822 for (wmode
= operand_mode
;
9823 icode
== CODE_FOR_nothing
&& wmode
!= VOIDmode
;
9824 wmode
= GET_MODE_WIDER_MODE (wmode
))
9825 icode
= optab_handler (cstore_optab
, wmode
)->insn_code
;
9828 if (icode
== CODE_FOR_nothing
9829 || (only_cheap
&& insn_data
[(int) icode
].operand
[0].mode
!= mode
))
9831 /* We can only do this if it is one of the special cases that
9832 can be handled without an scc insn. */
9833 if ((code
== LT
&& integer_zerop (arg1
))
9834 || (! only_cheap
&& code
== GE
&& integer_zerop (arg1
)))
9836 else if (! only_cheap
&& (code
== NE
|| code
== EQ
)
9837 && TREE_CODE (type
) != REAL_TYPE
9838 && ((optab_handler (abs_optab
, operand_mode
)->insn_code
9839 != CODE_FOR_nothing
)
9840 || (optab_handler (ffs_optab
, operand_mode
)->insn_code
9841 != CODE_FOR_nothing
)))
9847 if (! get_subtarget (target
)
9848 || GET_MODE (subtarget
) != operand_mode
)
9851 expand_operands (arg0
, arg1
, subtarget
, &op0
, &op1
, 0);
9854 target
= gen_reg_rtx (mode
);
9856 result
= emit_store_flag (target
, code
, op0
, op1
,
9857 operand_mode
, unsignedp
, 1);
9862 result
= expand_binop (mode
, xor_optab
, result
, const1_rtx
,
9863 result
, 0, OPTAB_LIB_WIDEN
);
9867 /* If this failed, we have to do this with set/compare/jump/set code. */
9869 || reg_mentioned_p (target
, op0
) || reg_mentioned_p (target
, op1
))
9870 target
= gen_reg_rtx (GET_MODE (target
));
9872 emit_move_insn (target
, invert
? const0_rtx
: const1_rtx
);
9873 label
= gen_label_rtx ();
9874 do_compare_rtx_and_jump (op0
, op1
, code
, unsignedp
, operand_mode
, NULL_RTX
,
9877 emit_move_insn (target
, invert
? const1_rtx
: const0_rtx
);
9884 /* Stubs in case we haven't got a casesi insn. */
9886 # define HAVE_casesi 0
9887 # define gen_casesi(a, b, c, d, e) (0)
9888 # define CODE_FOR_casesi CODE_FOR_nothing
9891 /* If the machine does not have a case insn that compares the bounds,
9892 this means extra overhead for dispatch tables, which raises the
9893 threshold for using them. */
9894 #ifndef CASE_VALUES_THRESHOLD
9895 #define CASE_VALUES_THRESHOLD (HAVE_casesi ? 4 : 5)
9896 #endif /* CASE_VALUES_THRESHOLD */
9899 case_values_threshold (void)
9901 return CASE_VALUES_THRESHOLD
;
9904 /* Attempt to generate a casesi instruction. Returns 1 if successful,
9905 0 otherwise (i.e. if there is no casesi instruction). */
9907 try_casesi (tree index_type
, tree index_expr
, tree minval
, tree range
,
9908 rtx table_label ATTRIBUTE_UNUSED
, rtx default_label
,
9909 rtx fallback_label ATTRIBUTE_UNUSED
)
9911 enum machine_mode index_mode
= SImode
;
9912 int index_bits
= GET_MODE_BITSIZE (index_mode
);
9913 rtx op1
, op2
, index
;
9914 enum machine_mode op_mode
;
9919 /* Convert the index to SImode. */
9920 if (GET_MODE_BITSIZE (TYPE_MODE (index_type
)) > GET_MODE_BITSIZE (index_mode
))
9922 enum machine_mode omode
= TYPE_MODE (index_type
);
9923 rtx rangertx
= expand_normal (range
);
9925 /* We must handle the endpoints in the original mode. */
9926 index_expr
= build2 (MINUS_EXPR
, index_type
,
9927 index_expr
, minval
);
9928 minval
= integer_zero_node
;
9929 index
= expand_normal (index_expr
);
9931 emit_cmp_and_jump_insns (rangertx
, index
, LTU
, NULL_RTX
,
9932 omode
, 1, default_label
);
9933 /* Now we can safely truncate. */
9934 index
= convert_to_mode (index_mode
, index
, 0);
9938 if (TYPE_MODE (index_type
) != index_mode
)
9940 index_type
= lang_hooks
.types
.type_for_size (index_bits
, 0);
9941 index_expr
= fold_convert (index_type
, index_expr
);
9944 index
= expand_normal (index_expr
);
9947 do_pending_stack_adjust ();
9949 op_mode
= insn_data
[(int) CODE_FOR_casesi
].operand
[0].mode
;
9950 if (! (*insn_data
[(int) CODE_FOR_casesi
].operand
[0].predicate
)
9952 index
= copy_to_mode_reg (op_mode
, index
);
9954 op1
= expand_normal (minval
);
9956 op_mode
= insn_data
[(int) CODE_FOR_casesi
].operand
[1].mode
;
9957 op1
= convert_modes (op_mode
, TYPE_MODE (TREE_TYPE (minval
)),
9958 op1
, TYPE_UNSIGNED (TREE_TYPE (minval
)));
9959 if (! (*insn_data
[(int) CODE_FOR_casesi
].operand
[1].predicate
)
9961 op1
= copy_to_mode_reg (op_mode
, op1
);
9963 op2
= expand_normal (range
);
9965 op_mode
= insn_data
[(int) CODE_FOR_casesi
].operand
[2].mode
;
9966 op2
= convert_modes (op_mode
, TYPE_MODE (TREE_TYPE (range
)),
9967 op2
, TYPE_UNSIGNED (TREE_TYPE (range
)));
9968 if (! (*insn_data
[(int) CODE_FOR_casesi
].operand
[2].predicate
)
9970 op2
= copy_to_mode_reg (op_mode
, op2
);
9972 emit_jump_insn (gen_casesi (index
, op1
, op2
,
9973 table_label
, !default_label
9974 ? fallback_label
: default_label
));
9978 /* Attempt to generate a tablejump instruction; same concept. */
9979 #ifndef HAVE_tablejump
9980 #define HAVE_tablejump 0
9981 #define gen_tablejump(x, y) (0)
9984 /* Subroutine of the next function.
9986 INDEX is the value being switched on, with the lowest value
9987 in the table already subtracted.
9988 MODE is its expected mode (needed if INDEX is constant).
9989 RANGE is the length of the jump table.
9990 TABLE_LABEL is a CODE_LABEL rtx for the table itself.
9992 DEFAULT_LABEL is a CODE_LABEL rtx to jump to if the
9993 index value is out of range. */
9996 do_tablejump (rtx index
, enum machine_mode mode
, rtx range
, rtx table_label
,
10001 if (INTVAL (range
) > cfun
->cfg
->max_jumptable_ents
)
10002 cfun
->cfg
->max_jumptable_ents
= INTVAL (range
);
10004 /* Do an unsigned comparison (in the proper mode) between the index
10005 expression and the value which represents the length of the range.
10006 Since we just finished subtracting the lower bound of the range
10007 from the index expression, this comparison allows us to simultaneously
10008 check that the original index expression value is both greater than
10009 or equal to the minimum value of the range and less than or equal to
10010 the maximum value of the range. */
10013 emit_cmp_and_jump_insns (index
, range
, GTU
, NULL_RTX
, mode
, 1,
10016 /* If index is in range, it must fit in Pmode.
10017 Convert to Pmode so we can index with it. */
10019 index
= convert_to_mode (Pmode
, index
, 1);
10021 /* Don't let a MEM slip through, because then INDEX that comes
10022 out of PIC_CASE_VECTOR_ADDRESS won't be a valid address,
10023 and break_out_memory_refs will go to work on it and mess it up. */
10024 #ifdef PIC_CASE_VECTOR_ADDRESS
10025 if (flag_pic
&& !REG_P (index
))
10026 index
= copy_to_mode_reg (Pmode
, index
);
10029 /* ??? The only correct use of CASE_VECTOR_MODE is the one inside the
10030 GET_MODE_SIZE, because this indicates how large insns are. The other
10031 uses should all be Pmode, because they are addresses. This code
10032 could fail if addresses and insns are not the same size. */
10033 index
= gen_rtx_PLUS (Pmode
,
10034 gen_rtx_MULT (Pmode
, index
,
10035 GEN_INT (GET_MODE_SIZE (CASE_VECTOR_MODE
))),
10036 gen_rtx_LABEL_REF (Pmode
, table_label
));
10037 #ifdef PIC_CASE_VECTOR_ADDRESS
10039 index
= PIC_CASE_VECTOR_ADDRESS (index
);
10042 index
= memory_address (CASE_VECTOR_MODE
, index
);
10043 temp
= gen_reg_rtx (CASE_VECTOR_MODE
);
10044 vector
= gen_const_mem (CASE_VECTOR_MODE
, index
);
10045 convert_move (temp
, vector
, 0);
10047 emit_jump_insn (gen_tablejump (temp
, table_label
));
10049 /* If we are generating PIC code or if the table is PC-relative, the
10050 table and JUMP_INSN must be adjacent, so don't output a BARRIER. */
10051 if (! CASE_VECTOR_PC_RELATIVE
&& ! flag_pic
)
10056 try_tablejump (tree index_type
, tree index_expr
, tree minval
, tree range
,
10057 rtx table_label
, rtx default_label
)
10061 if (! HAVE_tablejump
)
10064 index_expr
= fold_build2 (MINUS_EXPR
, index_type
,
10065 fold_convert (index_type
, index_expr
),
10066 fold_convert (index_type
, minval
));
10067 index
= expand_normal (index_expr
);
10068 do_pending_stack_adjust ();
10070 do_tablejump (index
, TYPE_MODE (index_type
),
10071 convert_modes (TYPE_MODE (index_type
),
10072 TYPE_MODE (TREE_TYPE (range
)),
10073 expand_normal (range
),
10074 TYPE_UNSIGNED (TREE_TYPE (range
))),
10075 table_label
, default_label
);
10079 /* Nonzero if the mode is a valid vector mode for this architecture.
10080 This returns nonzero even if there is no hardware support for the
10081 vector mode, but we can emulate with narrower modes. */
10084 vector_mode_valid_p (enum machine_mode mode
)
10086 enum mode_class mclass
= GET_MODE_CLASS (mode
);
10087 enum machine_mode innermode
;
10089 /* Doh! What's going on? */
10090 if (mclass
!= MODE_VECTOR_INT
10091 && mclass
!= MODE_VECTOR_FLOAT
10092 && mclass
!= MODE_VECTOR_FRACT
10093 && mclass
!= MODE_VECTOR_UFRACT
10094 && mclass
!= MODE_VECTOR_ACCUM
10095 && mclass
!= MODE_VECTOR_UACCUM
)
10098 /* Hardware support. Woo hoo! */
10099 if (targetm
.vector_mode_supported_p (mode
))
10102 innermode
= GET_MODE_INNER (mode
);
10104 /* We should probably return 1 if requesting V4DI and we have no DI,
10105 but we have V2DI, but this is probably very unlikely. */
10107 /* If we have support for the inner mode, we can safely emulate it.
10108 We may not have V2DI, but me can emulate with a pair of DIs. */
10109 return targetm
.scalar_mode_supported_p (innermode
);
10112 /* Return a CONST_VECTOR rtx for a VECTOR_CST tree. */
10114 const_vector_from_tree (tree exp
)
10119 enum machine_mode inner
, mode
;
10121 mode
= TYPE_MODE (TREE_TYPE (exp
));
10123 if (initializer_zerop (exp
))
10124 return CONST0_RTX (mode
);
10126 units
= GET_MODE_NUNITS (mode
);
10127 inner
= GET_MODE_INNER (mode
);
10129 v
= rtvec_alloc (units
);
10131 link
= TREE_VECTOR_CST_ELTS (exp
);
10132 for (i
= 0; link
; link
= TREE_CHAIN (link
), ++i
)
10134 elt
= TREE_VALUE (link
);
10136 if (TREE_CODE (elt
) == REAL_CST
)
10137 RTVEC_ELT (v
, i
) = CONST_DOUBLE_FROM_REAL_VALUE (TREE_REAL_CST (elt
),
10139 else if (TREE_CODE (elt
) == FIXED_CST
)
10140 RTVEC_ELT (v
, i
) = CONST_FIXED_FROM_FIXED_VALUE (TREE_FIXED_CST (elt
),
10143 RTVEC_ELT (v
, i
) = immed_double_const (TREE_INT_CST_LOW (elt
),
10144 TREE_INT_CST_HIGH (elt
),
10148 /* Initialize remaining elements to 0. */
10149 for (; i
< units
; ++i
)
10150 RTVEC_ELT (v
, i
) = CONST0_RTX (inner
);
10152 return gen_rtx_CONST_VECTOR (mode
, v
);
10154 #include "gt-expr.h"