2004-04-23 Uros Bizjak <uros@kss-loka.si>
[official-gcc.git] / gcc / reg-stack.c
blob2836e63d7ed47b84a1500e5735cc8fa17411f47e
1 /* Register to Stack convert for GNU compiler.
2 Copyright (C) 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
3 2000, 2001, 2002, 2003, 2004 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it
8 under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT
13 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
14 or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
15 License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
22 /* This pass converts stack-like registers from the "flat register
23 file" model that gcc uses, to a stack convention that the 387 uses.
25 * The form of the input:
27 On input, the function consists of insn that have had their
28 registers fully allocated to a set of "virtual" registers. Note that
29 the word "virtual" is used differently here than elsewhere in gcc: for
30 each virtual stack reg, there is a hard reg, but the mapping between
31 them is not known until this pass is run. On output, hard register
32 numbers have been substituted, and various pop and exchange insns have
33 been emitted. The hard register numbers and the virtual register
34 numbers completely overlap - before this pass, all stack register
35 numbers are virtual, and afterward they are all hard.
37 The virtual registers can be manipulated normally by gcc, and their
38 semantics are the same as for normal registers. After the hard
39 register numbers are substituted, the semantics of an insn containing
40 stack-like regs are not the same as for an insn with normal regs: for
41 instance, it is not safe to delete an insn that appears to be a no-op
42 move. In general, no insn containing hard regs should be changed
43 after this pass is done.
45 * The form of the output:
47 After this pass, hard register numbers represent the distance from
48 the current top of stack to the desired register. A reference to
49 FIRST_STACK_REG references the top of stack, FIRST_STACK_REG + 1,
50 represents the register just below that, and so forth. Also, REG_DEAD
51 notes indicate whether or not a stack register should be popped.
53 A "swap" insn looks like a parallel of two patterns, where each
54 pattern is a SET: one sets A to B, the other B to A.
56 A "push" or "load" insn is a SET whose SET_DEST is FIRST_STACK_REG
57 and whose SET_DEST is REG or MEM. Any other SET_DEST, such as PLUS,
58 will replace the existing stack top, not push a new value.
60 A store insn is a SET whose SET_DEST is FIRST_STACK_REG, and whose
61 SET_SRC is REG or MEM.
63 The case where the SET_SRC and SET_DEST are both FIRST_STACK_REG
64 appears ambiguous. As a special case, the presence of a REG_DEAD note
65 for FIRST_STACK_REG differentiates between a load insn and a pop.
67 If a REG_DEAD is present, the insn represents a "pop" that discards
68 the top of the register stack. If there is no REG_DEAD note, then the
69 insn represents a "dup" or a push of the current top of stack onto the
70 stack.
72 * Methodology:
74 Existing REG_DEAD and REG_UNUSED notes for stack registers are
75 deleted and recreated from scratch. REG_DEAD is never created for a
76 SET_DEST, only REG_UNUSED.
78 * asm_operands:
80 There are several rules on the usage of stack-like regs in
81 asm_operands insns. These rules apply only to the operands that are
82 stack-like regs:
84 1. Given a set of input regs that die in an asm_operands, it is
85 necessary to know which are implicitly popped by the asm, and
86 which must be explicitly popped by gcc.
88 An input reg that is implicitly popped by the asm must be
89 explicitly clobbered, unless it is constrained to match an
90 output operand.
92 2. For any input reg that is implicitly popped by an asm, it is
93 necessary to know how to adjust the stack to compensate for the pop.
94 If any non-popped input is closer to the top of the reg-stack than
95 the implicitly popped reg, it would not be possible to know what the
96 stack looked like - it's not clear how the rest of the stack "slides
97 up".
99 All implicitly popped input regs must be closer to the top of
100 the reg-stack than any input that is not implicitly popped.
102 3. It is possible that if an input dies in an insn, reload might
103 use the input reg for an output reload. Consider this example:
105 asm ("foo" : "=t" (a) : "f" (b));
107 This asm says that input B is not popped by the asm, and that
108 the asm pushes a result onto the reg-stack, ie, the stack is one
109 deeper after the asm than it was before. But, it is possible that
110 reload will think that it can use the same reg for both the input and
111 the output, if input B dies in this insn.
113 If any input operand uses the "f" constraint, all output reg
114 constraints must use the "&" earlyclobber.
116 The asm above would be written as
118 asm ("foo" : "=&t" (a) : "f" (b));
120 4. Some operands need to be in particular places on the stack. All
121 output operands fall in this category - there is no other way to
122 know which regs the outputs appear in unless the user indicates
123 this in the constraints.
125 Output operands must specifically indicate which reg an output
126 appears in after an asm. "=f" is not allowed: the operand
127 constraints must select a class with a single reg.
129 5. Output operands may not be "inserted" between existing stack regs.
130 Since no 387 opcode uses a read/write operand, all output operands
131 are dead before the asm_operands, and are pushed by the asm_operands.
132 It makes no sense to push anywhere but the top of the reg-stack.
134 Output operands must start at the top of the reg-stack: output
135 operands may not "skip" a reg.
137 6. Some asm statements may need extra stack space for internal
138 calculations. This can be guaranteed by clobbering stack registers
139 unrelated to the inputs and outputs.
141 Here are a couple of reasonable asms to want to write. This asm
142 takes one input, which is internally popped, and produces two outputs.
144 asm ("fsincos" : "=t" (cos), "=u" (sin) : "0" (inp));
146 This asm takes two inputs, which are popped by the fyl2xp1 opcode,
147 and replaces them with one output. The user must code the "st(1)"
148 clobber for reg-stack.c to know that fyl2xp1 pops both inputs.
150 asm ("fyl2xp1" : "=t" (result) : "0" (x), "u" (y) : "st(1)");
154 #include "config.h"
155 #include "system.h"
156 #include "coretypes.h"
157 #include "tm.h"
158 #include "tree.h"
159 #include "rtl.h"
160 #include "tm_p.h"
161 #include "function.h"
162 #include "insn-config.h"
163 #include "regs.h"
164 #include "hard-reg-set.h"
165 #include "flags.h"
166 #include "toplev.h"
167 #include "recog.h"
168 #include "output.h"
169 #include "basic-block.h"
170 #include "varray.h"
171 #include "reload.h"
172 #include "ggc.h"
174 /* We use this array to cache info about insns, because otherwise we
175 spend too much time in stack_regs_mentioned_p.
177 Indexed by insn UIDs. A value of zero is uninitialized, one indicates
178 the insn uses stack registers, two indicates the insn does not use
179 stack registers. */
180 static GTY(()) varray_type stack_regs_mentioned_data;
182 #ifdef STACK_REGS
184 #define REG_STACK_SIZE (LAST_STACK_REG - FIRST_STACK_REG + 1)
186 /* This is the basic stack record. TOP is an index into REG[] such
187 that REG[TOP] is the top of stack. If TOP is -1 the stack is empty.
189 If TOP is -2, REG[] is not yet initialized. Stack initialization
190 consists of placing each live reg in array `reg' and setting `top'
191 appropriately.
193 REG_SET indicates which registers are live. */
195 typedef struct stack_def
197 int top; /* index to top stack element */
198 HARD_REG_SET reg_set; /* set of live registers */
199 unsigned char reg[REG_STACK_SIZE];/* register - stack mapping */
200 } *stack;
202 /* This is used to carry information about basic blocks. It is
203 attached to the AUX field of the standard CFG block. */
205 typedef struct block_info_def
207 struct stack_def stack_in; /* Input stack configuration. */
208 struct stack_def stack_out; /* Output stack configuration. */
209 HARD_REG_SET out_reg_set; /* Stack regs live on output. */
210 int done; /* True if block already converted. */
211 int predecessors; /* Number of predecessors that needs
212 to be visited. */
213 } *block_info;
215 #define BLOCK_INFO(B) ((block_info) (B)->aux)
217 /* Passed to change_stack to indicate where to emit insns. */
218 enum emit_where
220 EMIT_AFTER,
221 EMIT_BEFORE
224 /* The block we're currently working on. */
225 static basic_block current_block;
227 /* This is the register file for all register after conversion. */
228 static rtx
229 FP_mode_reg[LAST_STACK_REG+1-FIRST_STACK_REG][(int) MAX_MACHINE_MODE];
231 #define FP_MODE_REG(regno,mode) \
232 (FP_mode_reg[(regno)-FIRST_STACK_REG][(int) (mode)])
234 /* Used to initialize uninitialized registers. */
235 static rtx nan;
237 /* Forward declarations */
239 static int stack_regs_mentioned_p (rtx pat);
240 static void straighten_stack (rtx, stack);
241 static void pop_stack (stack, int);
242 static rtx *get_true_reg (rtx *);
244 static int check_asm_stack_operands (rtx);
245 static int get_asm_operand_n_inputs (rtx);
246 static rtx stack_result (tree);
247 static void replace_reg (rtx *, int);
248 static void remove_regno_note (rtx, enum reg_note, unsigned int);
249 static int get_hard_regnum (stack, rtx);
250 static rtx emit_pop_insn (rtx, stack, rtx, enum emit_where);
251 static void emit_swap_insn (rtx, stack, rtx);
252 static void swap_to_top(rtx, stack, rtx, rtx);
253 static bool move_for_stack_reg (rtx, stack, rtx);
254 static int swap_rtx_condition_1 (rtx);
255 static int swap_rtx_condition (rtx);
256 static void compare_for_stack_reg (rtx, stack, rtx);
257 static bool subst_stack_regs_pat (rtx, stack, rtx);
258 static void subst_asm_stack_regs (rtx, stack);
259 static bool subst_stack_regs (rtx, stack);
260 static void change_stack (rtx, stack, stack, enum emit_where);
261 static int convert_regs_entry (void);
262 static void convert_regs_exit (void);
263 static int convert_regs_1 (FILE *, basic_block);
264 static int convert_regs_2 (FILE *, basic_block);
265 static int convert_regs (FILE *);
266 static void print_stack (FILE *, stack);
267 static rtx next_flags_user (rtx);
268 static void record_label_references (rtx, rtx);
269 static bool compensate_edge (edge, FILE *);
271 /* Return nonzero if any stack register is mentioned somewhere within PAT. */
273 static int
274 stack_regs_mentioned_p (rtx pat)
276 const char *fmt;
277 int i;
279 if (STACK_REG_P (pat))
280 return 1;
282 fmt = GET_RTX_FORMAT (GET_CODE (pat));
283 for (i = GET_RTX_LENGTH (GET_CODE (pat)) - 1; i >= 0; i--)
285 if (fmt[i] == 'E')
287 int j;
289 for (j = XVECLEN (pat, i) - 1; j >= 0; j--)
290 if (stack_regs_mentioned_p (XVECEXP (pat, i, j)))
291 return 1;
293 else if (fmt[i] == 'e' && stack_regs_mentioned_p (XEXP (pat, i)))
294 return 1;
297 return 0;
300 /* Return nonzero if INSN mentions stacked registers, else return zero. */
303 stack_regs_mentioned (rtx insn)
305 unsigned int uid, max;
306 int test;
308 if (! INSN_P (insn) || !stack_regs_mentioned_data)
309 return 0;
311 uid = INSN_UID (insn);
312 max = VARRAY_SIZE (stack_regs_mentioned_data);
313 if (uid >= max)
315 /* Allocate some extra size to avoid too many reallocs, but
316 do not grow too quickly. */
317 max = uid + uid / 20;
318 VARRAY_GROW (stack_regs_mentioned_data, max);
321 test = VARRAY_CHAR (stack_regs_mentioned_data, uid);
322 if (test == 0)
324 /* This insn has yet to be examined. Do so now. */
325 test = stack_regs_mentioned_p (PATTERN (insn)) ? 1 : 2;
326 VARRAY_CHAR (stack_regs_mentioned_data, uid) = test;
329 return test == 1;
332 static rtx ix86_flags_rtx;
334 static rtx
335 next_flags_user (rtx insn)
337 /* Search forward looking for the first use of this value.
338 Stop at block boundaries. */
340 while (insn != BB_END (current_block))
342 insn = NEXT_INSN (insn);
344 if (INSN_P (insn) && reg_mentioned_p (ix86_flags_rtx, PATTERN (insn)))
345 return insn;
347 if (GET_CODE (insn) == CALL_INSN)
348 return NULL_RTX;
350 return NULL_RTX;
353 /* Reorganize the stack into ascending numbers,
354 after this insn. */
356 static void
357 straighten_stack (rtx insn, stack regstack)
359 struct stack_def temp_stack;
360 int top;
362 /* If there is only a single register on the stack, then the stack is
363 already in increasing order and no reorganization is needed.
365 Similarly if the stack is empty. */
366 if (regstack->top <= 0)
367 return;
369 COPY_HARD_REG_SET (temp_stack.reg_set, regstack->reg_set);
371 for (top = temp_stack.top = regstack->top; top >= 0; top--)
372 temp_stack.reg[top] = FIRST_STACK_REG + temp_stack.top - top;
374 change_stack (insn, regstack, &temp_stack, EMIT_AFTER);
377 /* Pop a register from the stack. */
379 static void
380 pop_stack (stack regstack, int regno)
382 int top = regstack->top;
384 CLEAR_HARD_REG_BIT (regstack->reg_set, regno);
385 regstack->top--;
386 /* If regno was not at the top of stack then adjust stack. */
387 if (regstack->reg [top] != regno)
389 int i;
390 for (i = regstack->top; i >= 0; i--)
391 if (regstack->reg [i] == regno)
393 int j;
394 for (j = i; j < top; j++)
395 regstack->reg [j] = regstack->reg [j + 1];
396 break;
401 /* Convert register usage from "flat" register file usage to a "stack
402 register file. FIRST is the first insn in the function, FILE is the
403 dump file, if used.
405 Construct a CFG and run life analysis. Then convert each insn one
406 by one. Run a last cleanup_cfg pass, if optimizing, to eliminate
407 code duplication created when the converter inserts pop insns on
408 the edges. */
410 bool
411 reg_to_stack (rtx first, FILE *file)
413 basic_block bb;
414 int i;
415 int max_uid;
417 /* Clean up previous run. */
418 stack_regs_mentioned_data = 0;
420 /* See if there is something to do. Flow analysis is quite
421 expensive so we might save some compilation time. */
422 for (i = FIRST_STACK_REG; i <= LAST_STACK_REG; i++)
423 if (regs_ever_live[i])
424 break;
425 if (i > LAST_STACK_REG)
426 return false;
428 /* Ok, floating point instructions exist. If not optimizing,
429 build the CFG and run life analysis.
430 Also need to rebuild life when superblock scheduling is done
431 as it don't update liveness yet. */
432 if (!optimize
433 || (flag_sched2_use_superblocks
434 && flag_schedule_insns_after_reload))
436 count_or_remove_death_notes (NULL, 1);
437 life_analysis (first, file, PROP_DEATH_NOTES);
439 mark_dfs_back_edges ();
441 /* Set up block info for each basic block. */
442 alloc_aux_for_blocks (sizeof (struct block_info_def));
443 FOR_EACH_BB_REVERSE (bb)
445 edge e;
446 for (e = bb->pred; e; e = e->pred_next)
447 if (!(e->flags & EDGE_DFS_BACK)
448 && e->src != ENTRY_BLOCK_PTR)
449 BLOCK_INFO (bb)->predecessors++;
452 /* Create the replacement registers up front. */
453 for (i = FIRST_STACK_REG; i <= LAST_STACK_REG; i++)
455 enum machine_mode mode;
456 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT);
457 mode != VOIDmode;
458 mode = GET_MODE_WIDER_MODE (mode))
459 FP_MODE_REG (i, mode) = gen_rtx_REG (mode, i);
460 for (mode = GET_CLASS_NARROWEST_MODE (MODE_COMPLEX_FLOAT);
461 mode != VOIDmode;
462 mode = GET_MODE_WIDER_MODE (mode))
463 FP_MODE_REG (i, mode) = gen_rtx_REG (mode, i);
466 ix86_flags_rtx = gen_rtx_REG (CCmode, FLAGS_REG);
468 /* A QNaN for initializing uninitialized variables.
470 ??? We can't load from constant memory in PIC mode, because
471 we're inserting these instructions before the prologue and
472 the PIC register hasn't been set up. In that case, fall back
473 on zero, which we can get from `ldz'. */
475 if (flag_pic)
476 nan = CONST0_RTX (SFmode);
477 else
479 nan = gen_lowpart (SFmode, GEN_INT (0x7fc00000));
480 nan = force_const_mem (SFmode, nan);
483 /* Allocate a cache for stack_regs_mentioned. */
484 max_uid = get_max_uid ();
485 VARRAY_CHAR_INIT (stack_regs_mentioned_data, max_uid + 1,
486 "stack_regs_mentioned cache");
488 convert_regs (file);
490 free_aux_for_blocks ();
491 return true;
494 /* Check PAT, which is in INSN, for LABEL_REFs. Add INSN to the
495 label's chain of references, and note which insn contains each
496 reference. */
498 static void
499 record_label_references (rtx insn, rtx pat)
501 enum rtx_code code = GET_CODE (pat);
502 int i;
503 const char *fmt;
505 if (code == LABEL_REF)
507 rtx label = XEXP (pat, 0);
508 rtx ref;
510 if (GET_CODE (label) != CODE_LABEL)
511 abort ();
513 /* If this is an undefined label, LABEL_REFS (label) contains
514 garbage. */
515 if (INSN_UID (label) == 0)
516 return;
518 /* Don't make a duplicate in the code_label's chain. */
520 for (ref = LABEL_REFS (label);
521 ref && ref != label;
522 ref = LABEL_NEXTREF (ref))
523 if (CONTAINING_INSN (ref) == insn)
524 return;
526 CONTAINING_INSN (pat) = insn;
527 LABEL_NEXTREF (pat) = LABEL_REFS (label);
528 LABEL_REFS (label) = pat;
530 return;
533 fmt = GET_RTX_FORMAT (code);
534 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
536 if (fmt[i] == 'e')
537 record_label_references (insn, XEXP (pat, i));
538 if (fmt[i] == 'E')
540 int j;
541 for (j = 0; j < XVECLEN (pat, i); j++)
542 record_label_references (insn, XVECEXP (pat, i, j));
547 /* Return a pointer to the REG expression within PAT. If PAT is not a
548 REG, possible enclosed by a conversion rtx, return the inner part of
549 PAT that stopped the search. */
551 static rtx *
552 get_true_reg (rtx *pat)
554 for (;;)
555 switch (GET_CODE (*pat))
557 case SUBREG:
558 /* Eliminate FP subregister accesses in favor of the
559 actual FP register in use. */
561 rtx subreg;
562 if (FP_REG_P (subreg = SUBREG_REG (*pat)))
564 int regno_off = subreg_regno_offset (REGNO (subreg),
565 GET_MODE (subreg),
566 SUBREG_BYTE (*pat),
567 GET_MODE (*pat));
568 *pat = FP_MODE_REG (REGNO (subreg) + regno_off,
569 GET_MODE (subreg));
570 default:
571 return pat;
574 case FLOAT:
575 case FIX:
576 case FLOAT_EXTEND:
577 pat = & XEXP (*pat, 0);
578 break;
580 case FLOAT_TRUNCATE:
581 if (!flag_unsafe_math_optimizations)
582 return pat;
583 pat = & XEXP (*pat, 0);
584 break;
588 /* Set if we find any malformed asms in a block. */
589 static bool any_malformed_asm;
591 /* There are many rules that an asm statement for stack-like regs must
592 follow. Those rules are explained at the top of this file: the rule
593 numbers below refer to that explanation. */
595 static int
596 check_asm_stack_operands (rtx insn)
598 int i;
599 int n_clobbers;
600 int malformed_asm = 0;
601 rtx body = PATTERN (insn);
603 char reg_used_as_output[FIRST_PSEUDO_REGISTER];
604 char implicitly_dies[FIRST_PSEUDO_REGISTER];
605 int alt;
607 rtx *clobber_reg = 0;
608 int n_inputs, n_outputs;
610 /* Find out what the constraints require. If no constraint
611 alternative matches, this asm is malformed. */
612 extract_insn (insn);
613 constrain_operands (1);
614 alt = which_alternative;
616 preprocess_constraints ();
618 n_inputs = get_asm_operand_n_inputs (body);
619 n_outputs = recog_data.n_operands - n_inputs;
621 if (alt < 0)
623 malformed_asm = 1;
624 /* Avoid further trouble with this insn. */
625 PATTERN (insn) = gen_rtx_USE (VOIDmode, const0_rtx);
626 return 0;
629 /* Strip SUBREGs here to make the following code simpler. */
630 for (i = 0; i < recog_data.n_operands; i++)
631 if (GET_CODE (recog_data.operand[i]) == SUBREG
632 && GET_CODE (SUBREG_REG (recog_data.operand[i])) == REG)
633 recog_data.operand[i] = SUBREG_REG (recog_data.operand[i]);
635 /* Set up CLOBBER_REG. */
637 n_clobbers = 0;
639 if (GET_CODE (body) == PARALLEL)
641 clobber_reg = alloca (XVECLEN (body, 0) * sizeof (rtx));
643 for (i = 0; i < XVECLEN (body, 0); i++)
644 if (GET_CODE (XVECEXP (body, 0, i)) == CLOBBER)
646 rtx clobber = XVECEXP (body, 0, i);
647 rtx reg = XEXP (clobber, 0);
649 if (GET_CODE (reg) == SUBREG && GET_CODE (SUBREG_REG (reg)) == REG)
650 reg = SUBREG_REG (reg);
652 if (STACK_REG_P (reg))
654 clobber_reg[n_clobbers] = reg;
655 n_clobbers++;
660 /* Enforce rule #4: Output operands must specifically indicate which
661 reg an output appears in after an asm. "=f" is not allowed: the
662 operand constraints must select a class with a single reg.
664 Also enforce rule #5: Output operands must start at the top of
665 the reg-stack: output operands may not "skip" a reg. */
667 memset (reg_used_as_output, 0, sizeof (reg_used_as_output));
668 for (i = 0; i < n_outputs; i++)
669 if (STACK_REG_P (recog_data.operand[i]))
671 if (reg_class_size[(int) recog_op_alt[i][alt].class] != 1)
673 error_for_asm (insn, "output constraint %d must specify a single register", i);
674 malformed_asm = 1;
676 else
678 int j;
680 for (j = 0; j < n_clobbers; j++)
681 if (REGNO (recog_data.operand[i]) == REGNO (clobber_reg[j]))
683 error_for_asm (insn, "output constraint %d cannot be specified together with \"%s\" clobber",
684 i, reg_names [REGNO (clobber_reg[j])]);
685 malformed_asm = 1;
686 break;
688 if (j == n_clobbers)
689 reg_used_as_output[REGNO (recog_data.operand[i])] = 1;
694 /* Search for first non-popped reg. */
695 for (i = FIRST_STACK_REG; i < LAST_STACK_REG + 1; i++)
696 if (! reg_used_as_output[i])
697 break;
699 /* If there are any other popped regs, that's an error. */
700 for (; i < LAST_STACK_REG + 1; i++)
701 if (reg_used_as_output[i])
702 break;
704 if (i != LAST_STACK_REG + 1)
706 error_for_asm (insn, "output regs must be grouped at top of stack");
707 malformed_asm = 1;
710 /* Enforce rule #2: All implicitly popped input regs must be closer
711 to the top of the reg-stack than any input that is not implicitly
712 popped. */
714 memset (implicitly_dies, 0, sizeof (implicitly_dies));
715 for (i = n_outputs; i < n_outputs + n_inputs; i++)
716 if (STACK_REG_P (recog_data.operand[i]))
718 /* An input reg is implicitly popped if it is tied to an
719 output, or if there is a CLOBBER for it. */
720 int j;
722 for (j = 0; j < n_clobbers; j++)
723 if (operands_match_p (clobber_reg[j], recog_data.operand[i]))
724 break;
726 if (j < n_clobbers || recog_op_alt[i][alt].matches >= 0)
727 implicitly_dies[REGNO (recog_data.operand[i])] = 1;
730 /* Search for first non-popped reg. */
731 for (i = FIRST_STACK_REG; i < LAST_STACK_REG + 1; i++)
732 if (! implicitly_dies[i])
733 break;
735 /* If there are any other popped regs, that's an error. */
736 for (; i < LAST_STACK_REG + 1; i++)
737 if (implicitly_dies[i])
738 break;
740 if (i != LAST_STACK_REG + 1)
742 error_for_asm (insn,
743 "implicitly popped regs must be grouped at top of stack");
744 malformed_asm = 1;
747 /* Enforce rule #3: If any input operand uses the "f" constraint, all
748 output constraints must use the "&" earlyclobber.
750 ??? Detect this more deterministically by having constrain_asm_operands
751 record any earlyclobber. */
753 for (i = n_outputs; i < n_outputs + n_inputs; i++)
754 if (recog_op_alt[i][alt].matches == -1)
756 int j;
758 for (j = 0; j < n_outputs; j++)
759 if (operands_match_p (recog_data.operand[j], recog_data.operand[i]))
761 error_for_asm (insn,
762 "output operand %d must use `&' constraint", j);
763 malformed_asm = 1;
767 if (malformed_asm)
769 /* Avoid further trouble with this insn. */
770 PATTERN (insn) = gen_rtx_USE (VOIDmode, const0_rtx);
771 any_malformed_asm = true;
772 return 0;
775 return 1;
778 /* Calculate the number of inputs and outputs in BODY, an
779 asm_operands. N_OPERANDS is the total number of operands, and
780 N_INPUTS and N_OUTPUTS are pointers to ints into which the results are
781 placed. */
783 static int
784 get_asm_operand_n_inputs (rtx body)
786 if (GET_CODE (body) == SET && GET_CODE (SET_SRC (body)) == ASM_OPERANDS)
787 return ASM_OPERANDS_INPUT_LENGTH (SET_SRC (body));
789 else if (GET_CODE (body) == ASM_OPERANDS)
790 return ASM_OPERANDS_INPUT_LENGTH (body);
792 else if (GET_CODE (body) == PARALLEL
793 && GET_CODE (XVECEXP (body, 0, 0)) == SET)
794 return ASM_OPERANDS_INPUT_LENGTH (SET_SRC (XVECEXP (body, 0, 0)));
796 else if (GET_CODE (body) == PARALLEL
797 && GET_CODE (XVECEXP (body, 0, 0)) == ASM_OPERANDS)
798 return ASM_OPERANDS_INPUT_LENGTH (XVECEXP (body, 0, 0));
800 abort ();
803 /* If current function returns its result in an fp stack register,
804 return the REG. Otherwise, return 0. */
806 static rtx
807 stack_result (tree decl)
809 rtx result;
811 /* If the value is supposed to be returned in memory, then clearly
812 it is not returned in a stack register. */
813 if (aggregate_value_p (DECL_RESULT (decl), decl))
814 return 0;
816 result = DECL_RTL_IF_SET (DECL_RESULT (decl));
817 if (result != 0)
819 #ifdef FUNCTION_OUTGOING_VALUE
820 result
821 = FUNCTION_OUTGOING_VALUE (TREE_TYPE (DECL_RESULT (decl)), decl);
822 #else
823 result = FUNCTION_VALUE (TREE_TYPE (DECL_RESULT (decl)), decl);
824 #endif
827 return result != 0 && STACK_REG_P (result) ? result : 0;
832 * This section deals with stack register substitution, and forms the second
833 * pass over the RTL.
836 /* Replace REG, which is a pointer to a stack reg RTX, with an RTX for
837 the desired hard REGNO. */
839 static void
840 replace_reg (rtx *reg, int regno)
842 if (regno < FIRST_STACK_REG || regno > LAST_STACK_REG
843 || ! STACK_REG_P (*reg))
844 abort ();
846 switch (GET_MODE_CLASS (GET_MODE (*reg)))
848 default: abort ();
849 case MODE_FLOAT:
850 case MODE_COMPLEX_FLOAT:;
853 *reg = FP_MODE_REG (regno, GET_MODE (*reg));
856 /* Remove a note of type NOTE, which must be found, for register
857 number REGNO from INSN. Remove only one such note. */
859 static void
860 remove_regno_note (rtx insn, enum reg_note note, unsigned int regno)
862 rtx *note_link, this;
864 note_link = &REG_NOTES (insn);
865 for (this = *note_link; this; this = XEXP (this, 1))
866 if (REG_NOTE_KIND (this) == note
867 && REG_P (XEXP (this, 0)) && REGNO (XEXP (this, 0)) == regno)
869 *note_link = XEXP (this, 1);
870 return;
872 else
873 note_link = &XEXP (this, 1);
875 abort ();
878 /* Find the hard register number of virtual register REG in REGSTACK.
879 The hard register number is relative to the top of the stack. -1 is
880 returned if the register is not found. */
882 static int
883 get_hard_regnum (stack regstack, rtx reg)
885 int i;
887 if (! STACK_REG_P (reg))
888 abort ();
890 for (i = regstack->top; i >= 0; i--)
891 if (regstack->reg[i] == REGNO (reg))
892 break;
894 return i >= 0 ? (FIRST_STACK_REG + regstack->top - i) : -1;
897 /* Emit an insn to pop virtual register REG before or after INSN.
898 REGSTACK is the stack state after INSN and is updated to reflect this
899 pop. WHEN is either emit_insn_before or emit_insn_after. A pop insn
900 is represented as a SET whose destination is the register to be popped
901 and source is the top of stack. A death note for the top of stack
902 cases the movdf pattern to pop. */
904 static rtx
905 emit_pop_insn (rtx insn, stack regstack, rtx reg, enum emit_where where)
907 rtx pop_insn, pop_rtx;
908 int hard_regno;
910 /* For complex types take care to pop both halves. These may survive in
911 CLOBBER and USE expressions. */
912 if (COMPLEX_MODE_P (GET_MODE (reg)))
914 rtx reg1 = FP_MODE_REG (REGNO (reg), DFmode);
915 rtx reg2 = FP_MODE_REG (REGNO (reg) + 1, DFmode);
917 pop_insn = NULL_RTX;
918 if (get_hard_regnum (regstack, reg1) >= 0)
919 pop_insn = emit_pop_insn (insn, regstack, reg1, where);
920 if (get_hard_regnum (regstack, reg2) >= 0)
921 pop_insn = emit_pop_insn (insn, regstack, reg2, where);
922 if (!pop_insn)
923 abort ();
924 return pop_insn;
927 hard_regno = get_hard_regnum (regstack, reg);
929 if (hard_regno < FIRST_STACK_REG)
930 abort ();
932 pop_rtx = gen_rtx_SET (VOIDmode, FP_MODE_REG (hard_regno, DFmode),
933 FP_MODE_REG (FIRST_STACK_REG, DFmode));
935 if (where == EMIT_AFTER)
936 pop_insn = emit_insn_after (pop_rtx, insn);
937 else
938 pop_insn = emit_insn_before (pop_rtx, insn);
940 REG_NOTES (pop_insn)
941 = gen_rtx_EXPR_LIST (REG_DEAD, FP_MODE_REG (FIRST_STACK_REG, DFmode),
942 REG_NOTES (pop_insn));
944 regstack->reg[regstack->top - (hard_regno - FIRST_STACK_REG)]
945 = regstack->reg[regstack->top];
946 regstack->top -= 1;
947 CLEAR_HARD_REG_BIT (regstack->reg_set, REGNO (reg));
949 return pop_insn;
952 /* Emit an insn before or after INSN to swap virtual register REG with
953 the top of stack. REGSTACK is the stack state before the swap, and
954 is updated to reflect the swap. A swap insn is represented as a
955 PARALLEL of two patterns: each pattern moves one reg to the other.
957 If REG is already at the top of the stack, no insn is emitted. */
959 static void
960 emit_swap_insn (rtx insn, stack regstack, rtx reg)
962 int hard_regno;
963 rtx swap_rtx;
964 int tmp, other_reg; /* swap regno temps */
965 rtx i1; /* the stack-reg insn prior to INSN */
966 rtx i1set = NULL_RTX; /* the SET rtx within I1 */
968 hard_regno = get_hard_regnum (regstack, reg);
970 if (hard_regno < FIRST_STACK_REG)
971 abort ();
972 if (hard_regno == FIRST_STACK_REG)
973 return;
975 other_reg = regstack->top - (hard_regno - FIRST_STACK_REG);
977 tmp = regstack->reg[other_reg];
978 regstack->reg[other_reg] = regstack->reg[regstack->top];
979 regstack->reg[regstack->top] = tmp;
981 /* Find the previous insn involving stack regs, but don't pass a
982 block boundary. */
983 i1 = NULL;
984 if (current_block && insn != BB_HEAD (current_block))
986 rtx tmp = PREV_INSN (insn);
987 rtx limit = PREV_INSN (BB_HEAD (current_block));
988 while (tmp != limit)
990 if (GET_CODE (tmp) == CODE_LABEL
991 || GET_CODE (tmp) == CALL_INSN
992 || NOTE_INSN_BASIC_BLOCK_P (tmp)
993 || (GET_CODE (tmp) == INSN
994 && stack_regs_mentioned (tmp)))
996 i1 = tmp;
997 break;
999 tmp = PREV_INSN (tmp);
1003 if (i1 != NULL_RTX
1004 && (i1set = single_set (i1)) != NULL_RTX)
1006 rtx i1src = *get_true_reg (&SET_SRC (i1set));
1007 rtx i1dest = *get_true_reg (&SET_DEST (i1set));
1009 /* If the previous register stack push was from the reg we are to
1010 swap with, omit the swap. */
1012 if (GET_CODE (i1dest) == REG && REGNO (i1dest) == FIRST_STACK_REG
1013 && GET_CODE (i1src) == REG
1014 && REGNO (i1src) == (unsigned) hard_regno - 1
1015 && find_regno_note (i1, REG_DEAD, FIRST_STACK_REG) == NULL_RTX)
1016 return;
1018 /* If the previous insn wrote to the reg we are to swap with,
1019 omit the swap. */
1021 if (GET_CODE (i1dest) == REG && REGNO (i1dest) == (unsigned) hard_regno
1022 && GET_CODE (i1src) == REG && REGNO (i1src) == FIRST_STACK_REG
1023 && find_regno_note (i1, REG_DEAD, FIRST_STACK_REG) == NULL_RTX)
1024 return;
1027 swap_rtx = gen_swapxf (FP_MODE_REG (hard_regno, XFmode),
1028 FP_MODE_REG (FIRST_STACK_REG, XFmode));
1030 if (i1)
1031 emit_insn_after (swap_rtx, i1);
1032 else if (current_block)
1033 emit_insn_before (swap_rtx, BB_HEAD (current_block));
1034 else
1035 emit_insn_before (swap_rtx, insn);
1038 /* Emit an insns before INSN to swap virtual register SRC1 with
1039 the top of stack and virtual register SRC2 with second stack
1040 slot. REGSTACK is the stack state before the swaps, and
1041 is updated to reflect the swaps. A swap insn is represented as a
1042 PARALLEL of two patterns: each pattern moves one reg to the other.
1044 If SRC1 and/or SRC2 are already at the right place, no swap insn
1045 is emitted. */
1047 static void
1048 swap_to_top (rtx insn, stack regstack, rtx src1, rtx src2)
1050 struct stack_def temp_stack;
1051 int regno, j, k, temp;
1053 temp_stack = *regstack;
1055 /* Place operand 1 at the top of stack. */
1056 regno = get_hard_regnum (&temp_stack, src1);
1057 if (regno < 0)
1058 abort ();
1059 if (regno != FIRST_STACK_REG)
1061 k = temp_stack.top - (regno - FIRST_STACK_REG);
1062 j = temp_stack.top;
1064 temp = temp_stack.reg[k];
1065 temp_stack.reg[k] = temp_stack.reg[j];
1066 temp_stack.reg[j] = temp;
1069 /* Place operand 2 next on the stack. */
1070 regno = get_hard_regnum (&temp_stack, src2);
1071 if (regno < 0)
1072 abort ();
1073 if (regno != FIRST_STACK_REG + 1)
1075 k = temp_stack.top - (regno - FIRST_STACK_REG);
1076 j = temp_stack.top - 1;
1078 temp = temp_stack.reg[k];
1079 temp_stack.reg[k] = temp_stack.reg[j];
1080 temp_stack.reg[j] = temp;
1083 change_stack (insn, regstack, &temp_stack, EMIT_BEFORE);
1086 /* Handle a move to or from a stack register in PAT, which is in INSN.
1087 REGSTACK is the current stack. Return whether a control flow insn
1088 was deleted in the process. */
1090 static bool
1091 move_for_stack_reg (rtx insn, stack regstack, rtx pat)
1093 rtx *psrc = get_true_reg (&SET_SRC (pat));
1094 rtx *pdest = get_true_reg (&SET_DEST (pat));
1095 rtx src, dest;
1096 rtx note;
1097 bool control_flow_insn_deleted = false;
1099 src = *psrc; dest = *pdest;
1101 if (STACK_REG_P (src) && STACK_REG_P (dest))
1103 /* Write from one stack reg to another. If SRC dies here, then
1104 just change the register mapping and delete the insn. */
1106 note = find_regno_note (insn, REG_DEAD, REGNO (src));
1107 if (note)
1109 int i;
1111 /* If this is a no-op move, there must not be a REG_DEAD note. */
1112 if (REGNO (src) == REGNO (dest))
1113 abort ();
1115 for (i = regstack->top; i >= 0; i--)
1116 if (regstack->reg[i] == REGNO (src))
1117 break;
1119 /* The source must be live, and the dest must be dead. */
1120 if (i < 0 || get_hard_regnum (regstack, dest) >= FIRST_STACK_REG)
1121 abort ();
1123 /* It is possible that the dest is unused after this insn.
1124 If so, just pop the src. */
1126 if (find_regno_note (insn, REG_UNUSED, REGNO (dest)))
1127 emit_pop_insn (insn, regstack, src, EMIT_AFTER);
1128 else
1130 regstack->reg[i] = REGNO (dest);
1131 SET_HARD_REG_BIT (regstack->reg_set, REGNO (dest));
1132 CLEAR_HARD_REG_BIT (regstack->reg_set, REGNO (src));
1135 control_flow_insn_deleted |= control_flow_insn_p (insn);
1136 delete_insn (insn);
1137 return control_flow_insn_deleted;
1140 /* The source reg does not die. */
1142 /* If this appears to be a no-op move, delete it, or else it
1143 will confuse the machine description output patterns. But if
1144 it is REG_UNUSED, we must pop the reg now, as per-insn processing
1145 for REG_UNUSED will not work for deleted insns. */
1147 if (REGNO (src) == REGNO (dest))
1149 if (find_regno_note (insn, REG_UNUSED, REGNO (dest)))
1150 emit_pop_insn (insn, regstack, dest, EMIT_AFTER);
1152 control_flow_insn_deleted |= control_flow_insn_p (insn);
1153 delete_insn (insn);
1154 return control_flow_insn_deleted;
1157 /* The destination ought to be dead. */
1158 if (get_hard_regnum (regstack, dest) >= FIRST_STACK_REG)
1159 abort ();
1161 replace_reg (psrc, get_hard_regnum (regstack, src));
1163 regstack->reg[++regstack->top] = REGNO (dest);
1164 SET_HARD_REG_BIT (regstack->reg_set, REGNO (dest));
1165 replace_reg (pdest, FIRST_STACK_REG);
1167 else if (STACK_REG_P (src))
1169 /* Save from a stack reg to MEM, or possibly integer reg. Since
1170 only top of stack may be saved, emit an exchange first if
1171 needs be. */
1173 emit_swap_insn (insn, regstack, src);
1175 note = find_regno_note (insn, REG_DEAD, REGNO (src));
1176 if (note)
1178 replace_reg (&XEXP (note, 0), FIRST_STACK_REG);
1179 regstack->top--;
1180 CLEAR_HARD_REG_BIT (regstack->reg_set, REGNO (src));
1182 else if ((GET_MODE (src) == XFmode)
1183 && regstack->top < REG_STACK_SIZE - 1)
1185 /* A 387 cannot write an XFmode value to a MEM without
1186 clobbering the source reg. The output code can handle
1187 this by reading back the value from the MEM.
1188 But it is more efficient to use a temp register if one is
1189 available. Push the source value here if the register
1190 stack is not full, and then write the value to memory via
1191 a pop. */
1192 rtx push_rtx, push_insn;
1193 rtx top_stack_reg = FP_MODE_REG (FIRST_STACK_REG, GET_MODE (src));
1195 push_rtx = gen_movxf (top_stack_reg, top_stack_reg);
1196 push_insn = emit_insn_before (push_rtx, insn);
1197 REG_NOTES (insn) = gen_rtx_EXPR_LIST (REG_DEAD, top_stack_reg,
1198 REG_NOTES (insn));
1201 replace_reg (psrc, FIRST_STACK_REG);
1203 else if (STACK_REG_P (dest))
1205 /* Load from MEM, or possibly integer REG or constant, into the
1206 stack regs. The actual target is always the top of the
1207 stack. The stack mapping is changed to reflect that DEST is
1208 now at top of stack. */
1210 /* The destination ought to be dead. */
1211 if (get_hard_regnum (regstack, dest) >= FIRST_STACK_REG)
1212 abort ();
1214 if (regstack->top >= REG_STACK_SIZE)
1215 abort ();
1217 regstack->reg[++regstack->top] = REGNO (dest);
1218 SET_HARD_REG_BIT (regstack->reg_set, REGNO (dest));
1219 replace_reg (pdest, FIRST_STACK_REG);
1221 else
1222 abort ();
1224 return control_flow_insn_deleted;
1227 /* Swap the condition on a branch, if there is one. Return true if we
1228 found a condition to swap. False if the condition was not used as
1229 such. */
1231 static int
1232 swap_rtx_condition_1 (rtx pat)
1234 const char *fmt;
1235 int i, r = 0;
1237 if (COMPARISON_P (pat))
1239 PUT_CODE (pat, swap_condition (GET_CODE (pat)));
1240 r = 1;
1242 else
1244 fmt = GET_RTX_FORMAT (GET_CODE (pat));
1245 for (i = GET_RTX_LENGTH (GET_CODE (pat)) - 1; i >= 0; i--)
1247 if (fmt[i] == 'E')
1249 int j;
1251 for (j = XVECLEN (pat, i) - 1; j >= 0; j--)
1252 r |= swap_rtx_condition_1 (XVECEXP (pat, i, j));
1254 else if (fmt[i] == 'e')
1255 r |= swap_rtx_condition_1 (XEXP (pat, i));
1259 return r;
1262 static int
1263 swap_rtx_condition (rtx insn)
1265 rtx pat = PATTERN (insn);
1267 /* We're looking for a single set to cc0 or an HImode temporary. */
1269 if (GET_CODE (pat) == SET
1270 && GET_CODE (SET_DEST (pat)) == REG
1271 && REGNO (SET_DEST (pat)) == FLAGS_REG)
1273 insn = next_flags_user (insn);
1274 if (insn == NULL_RTX)
1275 return 0;
1276 pat = PATTERN (insn);
1279 /* See if this is, or ends in, a fnstsw, aka unspec 9. If so, we're
1280 not doing anything with the cc value right now. We may be able to
1281 search for one though. */
1283 if (GET_CODE (pat) == SET
1284 && GET_CODE (SET_SRC (pat)) == UNSPEC
1285 && XINT (SET_SRC (pat), 1) == UNSPEC_FNSTSW)
1287 rtx dest = SET_DEST (pat);
1289 /* Search forward looking for the first use of this value.
1290 Stop at block boundaries. */
1291 while (insn != BB_END (current_block))
1293 insn = NEXT_INSN (insn);
1294 if (INSN_P (insn) && reg_mentioned_p (dest, insn))
1295 break;
1296 if (GET_CODE (insn) == CALL_INSN)
1297 return 0;
1300 /* So we've found the insn using this value. If it is anything
1301 other than sahf, aka unspec 10, or the value does not die
1302 (meaning we'd have to search further), then we must give up. */
1303 pat = PATTERN (insn);
1304 if (GET_CODE (pat) != SET
1305 || GET_CODE (SET_SRC (pat)) != UNSPEC
1306 || XINT (SET_SRC (pat), 1) != UNSPEC_SAHF
1307 || ! dead_or_set_p (insn, dest))
1308 return 0;
1310 /* Now we are prepared to handle this as a normal cc0 setter. */
1311 insn = next_flags_user (insn);
1312 if (insn == NULL_RTX)
1313 return 0;
1314 pat = PATTERN (insn);
1317 if (swap_rtx_condition_1 (pat))
1319 int fail = 0;
1320 INSN_CODE (insn) = -1;
1321 if (recog_memoized (insn) == -1)
1322 fail = 1;
1323 /* In case the flags don't die here, recurse to try fix
1324 following user too. */
1325 else if (! dead_or_set_p (insn, ix86_flags_rtx))
1327 insn = next_flags_user (insn);
1328 if (!insn || !swap_rtx_condition (insn))
1329 fail = 1;
1331 if (fail)
1333 swap_rtx_condition_1 (pat);
1334 return 0;
1336 return 1;
1338 return 0;
1341 /* Handle a comparison. Special care needs to be taken to avoid
1342 causing comparisons that a 387 cannot do correctly, such as EQ.
1344 Also, a pop insn may need to be emitted. The 387 does have an
1345 `fcompp' insn that can pop two regs, but it is sometimes too expensive
1346 to do this - a `fcomp' followed by a `fstpl %st(0)' may be easier to
1347 set up. */
1349 static void
1350 compare_for_stack_reg (rtx insn, stack regstack, rtx pat_src)
1352 rtx *src1, *src2;
1353 rtx src1_note, src2_note;
1354 rtx flags_user;
1356 src1 = get_true_reg (&XEXP (pat_src, 0));
1357 src2 = get_true_reg (&XEXP (pat_src, 1));
1358 flags_user = next_flags_user (insn);
1360 /* ??? If fxch turns out to be cheaper than fstp, give priority to
1361 registers that die in this insn - move those to stack top first. */
1362 if ((! STACK_REG_P (*src1)
1363 || (STACK_REG_P (*src2)
1364 && get_hard_regnum (regstack, *src2) == FIRST_STACK_REG))
1365 && swap_rtx_condition (insn))
1367 rtx temp;
1368 temp = XEXP (pat_src, 0);
1369 XEXP (pat_src, 0) = XEXP (pat_src, 1);
1370 XEXP (pat_src, 1) = temp;
1372 src1 = get_true_reg (&XEXP (pat_src, 0));
1373 src2 = get_true_reg (&XEXP (pat_src, 1));
1375 INSN_CODE (insn) = -1;
1378 /* We will fix any death note later. */
1380 src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1382 if (STACK_REG_P (*src2))
1383 src2_note = find_regno_note (insn, REG_DEAD, REGNO (*src2));
1384 else
1385 src2_note = NULL_RTX;
1387 emit_swap_insn (insn, regstack, *src1);
1389 replace_reg (src1, FIRST_STACK_REG);
1391 if (STACK_REG_P (*src2))
1392 replace_reg (src2, get_hard_regnum (regstack, *src2));
1394 if (src1_note)
1396 pop_stack (regstack, REGNO (XEXP (src1_note, 0)));
1397 replace_reg (&XEXP (src1_note, 0), FIRST_STACK_REG);
1400 /* If the second operand dies, handle that. But if the operands are
1401 the same stack register, don't bother, because only one death is
1402 needed, and it was just handled. */
1404 if (src2_note
1405 && ! (STACK_REG_P (*src1) && STACK_REG_P (*src2)
1406 && REGNO (*src1) == REGNO (*src2)))
1408 /* As a special case, two regs may die in this insn if src2 is
1409 next to top of stack and the top of stack also dies. Since
1410 we have already popped src1, "next to top of stack" is really
1411 at top (FIRST_STACK_REG) now. */
1413 if (get_hard_regnum (regstack, XEXP (src2_note, 0)) == FIRST_STACK_REG
1414 && src1_note)
1416 pop_stack (regstack, REGNO (XEXP (src2_note, 0)));
1417 replace_reg (&XEXP (src2_note, 0), FIRST_STACK_REG + 1);
1419 else
1421 /* The 386 can only represent death of the first operand in
1422 the case handled above. In all other cases, emit a separate
1423 pop and remove the death note from here. */
1425 /* link_cc0_insns (insn); */
1427 remove_regno_note (insn, REG_DEAD, REGNO (XEXP (src2_note, 0)));
1429 emit_pop_insn (insn, regstack, XEXP (src2_note, 0),
1430 EMIT_AFTER);
1435 /* Substitute new registers in PAT, which is part of INSN. REGSTACK
1436 is the current register layout. Return whether a control flow insn
1437 was deleted in the process. */
1439 static bool
1440 subst_stack_regs_pat (rtx insn, stack regstack, rtx pat)
1442 rtx *dest, *src;
1443 bool control_flow_insn_deleted = false;
1445 switch (GET_CODE (pat))
1447 case USE:
1448 /* Deaths in USE insns can happen in non optimizing compilation.
1449 Handle them by popping the dying register. */
1450 src = get_true_reg (&XEXP (pat, 0));
1451 if (STACK_REG_P (*src)
1452 && find_regno_note (insn, REG_DEAD, REGNO (*src)))
1454 emit_pop_insn (insn, regstack, *src, EMIT_AFTER);
1455 return control_flow_insn_deleted;
1457 /* ??? Uninitialized USE should not happen. */
1458 else if (get_hard_regnum (regstack, *src) == -1)
1459 abort ();
1460 break;
1462 case CLOBBER:
1464 rtx note;
1466 dest = get_true_reg (&XEXP (pat, 0));
1467 if (STACK_REG_P (*dest))
1469 note = find_reg_note (insn, REG_DEAD, *dest);
1471 if (pat != PATTERN (insn))
1473 /* The fix_truncdi_1 pattern wants to be able to allocate
1474 it's own scratch register. It does this by clobbering
1475 an fp reg so that it is assured of an empty reg-stack
1476 register. If the register is live, kill it now.
1477 Remove the DEAD/UNUSED note so we don't try to kill it
1478 later too. */
1480 if (note)
1481 emit_pop_insn (insn, regstack, *dest, EMIT_BEFORE);
1482 else
1484 note = find_reg_note (insn, REG_UNUSED, *dest);
1485 if (!note)
1486 abort ();
1488 remove_note (insn, note);
1489 replace_reg (dest, FIRST_STACK_REG + 1);
1491 else
1493 /* A top-level clobber with no REG_DEAD, and no hard-regnum
1494 indicates an uninitialized value. Because reload removed
1495 all other clobbers, this must be due to a function
1496 returning without a value. Load up a NaN. */
1498 if (! note
1499 && get_hard_regnum (regstack, *dest) == -1)
1501 pat = gen_rtx_SET (VOIDmode,
1502 FP_MODE_REG (REGNO (*dest), SFmode),
1503 nan);
1504 PATTERN (insn) = pat;
1505 control_flow_insn_deleted |= move_for_stack_reg (insn, regstack, pat);
1507 if (! note && COMPLEX_MODE_P (GET_MODE (*dest))
1508 && get_hard_regnum (regstack, FP_MODE_REG (REGNO (*dest), DFmode)) == -1)
1510 pat = gen_rtx_SET (VOIDmode,
1511 FP_MODE_REG (REGNO (*dest) + 1, SFmode),
1512 nan);
1513 PATTERN (insn) = pat;
1514 control_flow_insn_deleted |= move_for_stack_reg (insn, regstack, pat);
1518 break;
1521 case SET:
1523 rtx *src1 = (rtx *) 0, *src2;
1524 rtx src1_note, src2_note;
1525 rtx pat_src;
1527 dest = get_true_reg (&SET_DEST (pat));
1528 src = get_true_reg (&SET_SRC (pat));
1529 pat_src = SET_SRC (pat);
1531 /* See if this is a `movM' pattern, and handle elsewhere if so. */
1532 if (STACK_REG_P (*src)
1533 || (STACK_REG_P (*dest)
1534 && (GET_CODE (*src) == REG || GET_CODE (*src) == MEM
1535 || GET_CODE (*src) == CONST_DOUBLE)))
1537 control_flow_insn_deleted |= move_for_stack_reg (insn, regstack, pat);
1538 break;
1541 switch (GET_CODE (pat_src))
1543 case COMPARE:
1544 compare_for_stack_reg (insn, regstack, pat_src);
1545 break;
1547 case CALL:
1549 int count;
1550 for (count = hard_regno_nregs[REGNO (*dest)][GET_MODE (*dest)];
1551 --count >= 0;)
1553 regstack->reg[++regstack->top] = REGNO (*dest) + count;
1554 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest) + count);
1557 replace_reg (dest, FIRST_STACK_REG);
1558 break;
1560 case REG:
1561 /* This is a `tstM2' case. */
1562 if (*dest != cc0_rtx)
1563 abort ();
1564 src1 = src;
1566 /* Fall through. */
1568 case FLOAT_TRUNCATE:
1569 case SQRT:
1570 case ABS:
1571 case NEG:
1572 /* These insns only operate on the top of the stack. DEST might
1573 be cc0_rtx if we're processing a tstM pattern. Also, it's
1574 possible that the tstM case results in a REG_DEAD note on the
1575 source. */
1577 if (src1 == 0)
1578 src1 = get_true_reg (&XEXP (pat_src, 0));
1580 emit_swap_insn (insn, regstack, *src1);
1582 src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1584 if (STACK_REG_P (*dest))
1585 replace_reg (dest, FIRST_STACK_REG);
1587 if (src1_note)
1589 replace_reg (&XEXP (src1_note, 0), FIRST_STACK_REG);
1590 regstack->top--;
1591 CLEAR_HARD_REG_BIT (regstack->reg_set, REGNO (*src1));
1594 replace_reg (src1, FIRST_STACK_REG);
1595 break;
1597 case MINUS:
1598 case DIV:
1599 /* On i386, reversed forms of subM3 and divM3 exist for
1600 MODE_FLOAT, so the same code that works for addM3 and mulM3
1601 can be used. */
1602 case MULT:
1603 case PLUS:
1604 /* These insns can accept the top of stack as a destination
1605 from a stack reg or mem, or can use the top of stack as a
1606 source and some other stack register (possibly top of stack)
1607 as a destination. */
1609 src1 = get_true_reg (&XEXP (pat_src, 0));
1610 src2 = get_true_reg (&XEXP (pat_src, 1));
1612 /* We will fix any death note later. */
1614 if (STACK_REG_P (*src1))
1615 src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1616 else
1617 src1_note = NULL_RTX;
1618 if (STACK_REG_P (*src2))
1619 src2_note = find_regno_note (insn, REG_DEAD, REGNO (*src2));
1620 else
1621 src2_note = NULL_RTX;
1623 /* If either operand is not a stack register, then the dest
1624 must be top of stack. */
1626 if (! STACK_REG_P (*src1) || ! STACK_REG_P (*src2))
1627 emit_swap_insn (insn, regstack, *dest);
1628 else
1630 /* Both operands are REG. If neither operand is already
1631 at the top of stack, choose to make the one that is the dest
1632 the new top of stack. */
1634 int src1_hard_regnum, src2_hard_regnum;
1636 src1_hard_regnum = get_hard_regnum (regstack, *src1);
1637 src2_hard_regnum = get_hard_regnum (regstack, *src2);
1638 if (src1_hard_regnum == -1 || src2_hard_regnum == -1)
1639 abort ();
1641 if (src1_hard_regnum != FIRST_STACK_REG
1642 && src2_hard_regnum != FIRST_STACK_REG)
1643 emit_swap_insn (insn, regstack, *dest);
1646 if (STACK_REG_P (*src1))
1647 replace_reg (src1, get_hard_regnum (regstack, *src1));
1648 if (STACK_REG_P (*src2))
1649 replace_reg (src2, get_hard_regnum (regstack, *src2));
1651 if (src1_note)
1653 rtx src1_reg = XEXP (src1_note, 0);
1655 /* If the register that dies is at the top of stack, then
1656 the destination is somewhere else - merely substitute it.
1657 But if the reg that dies is not at top of stack, then
1658 move the top of stack to the dead reg, as though we had
1659 done the insn and then a store-with-pop. */
1661 if (REGNO (src1_reg) == regstack->reg[regstack->top])
1663 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1664 replace_reg (dest, get_hard_regnum (regstack, *dest));
1666 else
1668 int regno = get_hard_regnum (regstack, src1_reg);
1670 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1671 replace_reg (dest, regno);
1673 regstack->reg[regstack->top - (regno - FIRST_STACK_REG)]
1674 = regstack->reg[regstack->top];
1677 CLEAR_HARD_REG_BIT (regstack->reg_set,
1678 REGNO (XEXP (src1_note, 0)));
1679 replace_reg (&XEXP (src1_note, 0), FIRST_STACK_REG);
1680 regstack->top--;
1682 else if (src2_note)
1684 rtx src2_reg = XEXP (src2_note, 0);
1685 if (REGNO (src2_reg) == regstack->reg[regstack->top])
1687 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1688 replace_reg (dest, get_hard_regnum (regstack, *dest));
1690 else
1692 int regno = get_hard_regnum (regstack, src2_reg);
1694 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1695 replace_reg (dest, regno);
1697 regstack->reg[regstack->top - (regno - FIRST_STACK_REG)]
1698 = regstack->reg[regstack->top];
1701 CLEAR_HARD_REG_BIT (regstack->reg_set,
1702 REGNO (XEXP (src2_note, 0)));
1703 replace_reg (&XEXP (src2_note, 0), FIRST_STACK_REG);
1704 regstack->top--;
1706 else
1708 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1709 replace_reg (dest, get_hard_regnum (regstack, *dest));
1712 /* Keep operand 1 matching with destination. */
1713 if (COMMUTATIVE_ARITH_P (pat_src)
1714 && REG_P (*src1) && REG_P (*src2)
1715 && REGNO (*src1) != REGNO (*dest))
1717 int tmp = REGNO (*src1);
1718 replace_reg (src1, REGNO (*src2));
1719 replace_reg (src2, tmp);
1721 break;
1723 case UNSPEC:
1724 switch (XINT (pat_src, 1))
1726 case UNSPEC_SIN:
1727 case UNSPEC_COS:
1728 case UNSPEC_FRNDINT:
1729 case UNSPEC_F2XM1:
1730 /* These insns only operate on the top of the stack. */
1732 src1 = get_true_reg (&XVECEXP (pat_src, 0, 0));
1734 emit_swap_insn (insn, regstack, *src1);
1736 src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1738 if (STACK_REG_P (*dest))
1739 replace_reg (dest, FIRST_STACK_REG);
1741 if (src1_note)
1743 replace_reg (&XEXP (src1_note, 0), FIRST_STACK_REG);
1744 regstack->top--;
1745 CLEAR_HARD_REG_BIT (regstack->reg_set, REGNO (*src1));
1748 replace_reg (src1, FIRST_STACK_REG);
1749 break;
1751 case UNSPEC_FPATAN:
1752 case UNSPEC_FYL2X:
1753 /* These insns operate on the top two stack slots. */
1755 src1 = get_true_reg (&XVECEXP (pat_src, 0, 0));
1756 src2 = get_true_reg (&XVECEXP (pat_src, 0, 1));
1758 src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1759 src2_note = find_regno_note (insn, REG_DEAD, REGNO (*src2));
1761 swap_to_top (insn, regstack, *src1, *src2);
1763 replace_reg (src1, FIRST_STACK_REG);
1764 replace_reg (src2, FIRST_STACK_REG + 1);
1766 if (src1_note)
1767 replace_reg (&XEXP (src1_note, 0), FIRST_STACK_REG);
1768 if (src2_note)
1769 replace_reg (&XEXP (src2_note, 0), FIRST_STACK_REG + 1);
1771 /* Pop both input operands from the stack. */
1772 CLEAR_HARD_REG_BIT (regstack->reg_set,
1773 regstack->reg[regstack->top]);
1774 CLEAR_HARD_REG_BIT (regstack->reg_set,
1775 regstack->reg[regstack->top - 1]);
1776 regstack->top -= 2;
1778 /* Push the result back onto the stack. */
1779 regstack->reg[++regstack->top] = REGNO (*dest);
1780 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1781 replace_reg (dest, FIRST_STACK_REG);
1782 break;
1784 case UNSPEC_FSCALE_FRACT:
1785 /* These insns operate on the top two stack slots.
1786 first part of double input, double output insn. */
1788 src1 = get_true_reg (&XVECEXP (pat_src, 0, 0));
1789 src2 = get_true_reg (&XVECEXP (pat_src, 0, 1));
1791 src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1792 src2_note = find_regno_note (insn, REG_DEAD, REGNO (*src2));
1794 /* Inputs should never die, they are
1795 replaced with outputs. */
1796 if ((src1_note) || (src2_note))
1797 abort();
1799 swap_to_top (insn, regstack, *src1, *src2);
1801 /* Push the result back onto stack. Empty stack slot
1802 will be filled in second part of insn. */
1803 if (STACK_REG_P (*dest)) {
1804 regstack->reg[regstack->top] = REGNO (*dest);
1805 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1806 replace_reg (dest, FIRST_STACK_REG);
1809 replace_reg (src1, FIRST_STACK_REG);
1810 replace_reg (src2, FIRST_STACK_REG + 1);
1811 break;
1813 case UNSPEC_FSCALE_EXP:
1814 /* These insns operate on the top two stack slots./
1815 second part of double input, double output insn. */
1817 src1 = get_true_reg (&XVECEXP (pat_src, 0, 0));
1818 src2 = get_true_reg (&XVECEXP (pat_src, 0, 1));
1820 src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1821 src2_note = find_regno_note (insn, REG_DEAD, REGNO (*src2));
1823 /* Inputs should never die, they are
1824 replaced with outputs. */
1825 if ((src1_note) || (src2_note))
1826 abort();
1828 swap_to_top (insn, regstack, *src1, *src2);
1830 /* Push the result back onto stack. Fill empty slot from
1831 first part of insn and fix top of stack pointer. */
1832 if (STACK_REG_P (*dest)) {
1833 regstack->reg[regstack->top - 1] = REGNO (*dest);
1834 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1835 replace_reg (dest, FIRST_STACK_REG + 1);
1838 replace_reg (src1, FIRST_STACK_REG);
1839 replace_reg (src2, FIRST_STACK_REG + 1);
1840 break;
1842 case UNSPEC_SINCOS_COS:
1843 case UNSPEC_TAN_ONE:
1844 case UNSPEC_XTRACT_FRACT:
1845 /* These insns operate on the top two stack slots,
1846 first part of one input, double output insn. */
1848 src1 = get_true_reg (&XVECEXP (pat_src, 0, 0));
1850 emit_swap_insn (insn, regstack, *src1);
1852 src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1854 /* Push the result back onto stack. Empty stack slot
1855 will be filled in second part of insn. */
1856 if (STACK_REG_P (*dest)) {
1857 regstack->reg[regstack->top + 1] = REGNO (*dest);
1858 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1859 replace_reg (dest, FIRST_STACK_REG);
1862 if (src1_note)
1864 replace_reg (&XEXP (src1_note, 0), FIRST_STACK_REG);
1865 regstack->top--;
1866 CLEAR_HARD_REG_BIT (regstack->reg_set, REGNO (*src1));
1868 replace_reg (src1, FIRST_STACK_REG);
1869 break;
1871 case UNSPEC_SINCOS_SIN:
1872 case UNSPEC_TAN_TAN:
1873 case UNSPEC_XTRACT_EXP:
1874 /* These insns operate on the top two stack slots,
1875 second part of one input, double output insn. */
1877 src1 = get_true_reg (&XVECEXP (pat_src, 0, 0));
1879 emit_swap_insn (insn, regstack, *src1);
1881 src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1883 /* Push the result back onto stack. Fill empty slot from
1884 first part of insn and fix top of stack pointer. */
1885 if (STACK_REG_P (*dest)) {
1886 regstack->reg[regstack->top] = REGNO (*dest);
1887 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1888 replace_reg (dest, FIRST_STACK_REG + 1);
1890 regstack->top++;
1893 if (src1_note)
1895 replace_reg (&XEXP (src1_note, 0), FIRST_STACK_REG);
1896 regstack->top--;
1897 CLEAR_HARD_REG_BIT (regstack->reg_set, REGNO (*src1));
1900 replace_reg (src1, FIRST_STACK_REG);
1901 break;
1903 case UNSPEC_SAHF:
1904 /* (unspec [(unspec [(compare)] UNSPEC_FNSTSW)] UNSPEC_SAHF)
1905 The combination matches the PPRO fcomi instruction. */
1907 pat_src = XVECEXP (pat_src, 0, 0);
1908 if (GET_CODE (pat_src) != UNSPEC
1909 || XINT (pat_src, 1) != UNSPEC_FNSTSW)
1910 abort ();
1911 /* Fall through. */
1913 case UNSPEC_FNSTSW:
1914 /* Combined fcomp+fnstsw generated for doing well with
1915 CSE. When optimizing this would have been broken
1916 up before now. */
1918 pat_src = XVECEXP (pat_src, 0, 0);
1919 if (GET_CODE (pat_src) != COMPARE)
1920 abort ();
1922 compare_for_stack_reg (insn, regstack, pat_src);
1923 break;
1925 default:
1926 abort ();
1928 break;
1930 case IF_THEN_ELSE:
1931 /* This insn requires the top of stack to be the destination. */
1933 src1 = get_true_reg (&XEXP (pat_src, 1));
1934 src2 = get_true_reg (&XEXP (pat_src, 2));
1936 src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1937 src2_note = find_regno_note (insn, REG_DEAD, REGNO (*src2));
1939 /* If the comparison operator is an FP comparison operator,
1940 it is handled correctly by compare_for_stack_reg () who
1941 will move the destination to the top of stack. But if the
1942 comparison operator is not an FP comparison operator, we
1943 have to handle it here. */
1944 if (get_hard_regnum (regstack, *dest) >= FIRST_STACK_REG
1945 && REGNO (*dest) != regstack->reg[regstack->top])
1947 /* In case one of operands is the top of stack and the operands
1948 dies, it is safe to make it the destination operand by
1949 reversing the direction of cmove and avoid fxch. */
1950 if ((REGNO (*src1) == regstack->reg[regstack->top]
1951 && src1_note)
1952 || (REGNO (*src2) == regstack->reg[regstack->top]
1953 && src2_note))
1955 int idx1 = (get_hard_regnum (regstack, *src1)
1956 - FIRST_STACK_REG);
1957 int idx2 = (get_hard_regnum (regstack, *src2)
1958 - FIRST_STACK_REG);
1960 /* Make reg-stack believe that the operands are already
1961 swapped on the stack */
1962 regstack->reg[regstack->top - idx1] = REGNO (*src2);
1963 regstack->reg[regstack->top - idx2] = REGNO (*src1);
1965 /* Reverse condition to compensate the operand swap.
1966 i386 do have comparison always reversible. */
1967 PUT_CODE (XEXP (pat_src, 0),
1968 reversed_comparison_code (XEXP (pat_src, 0), insn));
1970 else
1971 emit_swap_insn (insn, regstack, *dest);
1975 rtx src_note [3];
1976 int i;
1978 src_note[0] = 0;
1979 src_note[1] = src1_note;
1980 src_note[2] = src2_note;
1982 if (STACK_REG_P (*src1))
1983 replace_reg (src1, get_hard_regnum (regstack, *src1));
1984 if (STACK_REG_P (*src2))
1985 replace_reg (src2, get_hard_regnum (regstack, *src2));
1987 for (i = 1; i <= 2; i++)
1988 if (src_note [i])
1990 int regno = REGNO (XEXP (src_note[i], 0));
1992 /* If the register that dies is not at the top of
1993 stack, then move the top of stack to the dead reg */
1994 if (regno != regstack->reg[regstack->top])
1996 remove_regno_note (insn, REG_DEAD, regno);
1997 emit_pop_insn (insn, regstack, XEXP (src_note[i], 0),
1998 EMIT_AFTER);
2000 else
2001 /* Top of stack never dies, as it is the
2002 destination. */
2003 abort ();
2007 /* Make dest the top of stack. Add dest to regstack if
2008 not present. */
2009 if (get_hard_regnum (regstack, *dest) < FIRST_STACK_REG)
2010 regstack->reg[++regstack->top] = REGNO (*dest);
2011 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
2012 replace_reg (dest, FIRST_STACK_REG);
2013 break;
2015 default:
2016 abort ();
2018 break;
2021 default:
2022 break;
2025 return control_flow_insn_deleted;
2028 /* Substitute hard regnums for any stack regs in INSN, which has
2029 N_INPUTS inputs and N_OUTPUTS outputs. REGSTACK is the stack info
2030 before the insn, and is updated with changes made here.
2032 There are several requirements and assumptions about the use of
2033 stack-like regs in asm statements. These rules are enforced by
2034 record_asm_stack_regs; see comments there for details. Any
2035 asm_operands left in the RTL at this point may be assume to meet the
2036 requirements, since record_asm_stack_regs removes any problem asm. */
2038 static void
2039 subst_asm_stack_regs (rtx insn, stack regstack)
2041 rtx body = PATTERN (insn);
2042 int alt;
2044 rtx *note_reg; /* Array of note contents */
2045 rtx **note_loc; /* Address of REG field of each note */
2046 enum reg_note *note_kind; /* The type of each note */
2048 rtx *clobber_reg = 0;
2049 rtx **clobber_loc = 0;
2051 struct stack_def temp_stack;
2052 int n_notes;
2053 int n_clobbers;
2054 rtx note;
2055 int i;
2056 int n_inputs, n_outputs;
2058 if (! check_asm_stack_operands (insn))
2059 return;
2061 /* Find out what the constraints required. If no constraint
2062 alternative matches, that is a compiler bug: we should have caught
2063 such an insn in check_asm_stack_operands. */
2064 extract_insn (insn);
2065 constrain_operands (1);
2066 alt = which_alternative;
2068 preprocess_constraints ();
2070 n_inputs = get_asm_operand_n_inputs (body);
2071 n_outputs = recog_data.n_operands - n_inputs;
2073 if (alt < 0)
2074 abort ();
2076 /* Strip SUBREGs here to make the following code simpler. */
2077 for (i = 0; i < recog_data.n_operands; i++)
2078 if (GET_CODE (recog_data.operand[i]) == SUBREG
2079 && GET_CODE (SUBREG_REG (recog_data.operand[i])) == REG)
2081 recog_data.operand_loc[i] = & SUBREG_REG (recog_data.operand[i]);
2082 recog_data.operand[i] = SUBREG_REG (recog_data.operand[i]);
2085 /* Set up NOTE_REG, NOTE_LOC and NOTE_KIND. */
2087 for (i = 0, note = REG_NOTES (insn); note; note = XEXP (note, 1))
2088 i++;
2090 note_reg = alloca (i * sizeof (rtx));
2091 note_loc = alloca (i * sizeof (rtx *));
2092 note_kind = alloca (i * sizeof (enum reg_note));
2094 n_notes = 0;
2095 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
2097 rtx reg = XEXP (note, 0);
2098 rtx *loc = & XEXP (note, 0);
2100 if (GET_CODE (reg) == SUBREG && GET_CODE (SUBREG_REG (reg)) == REG)
2102 loc = & SUBREG_REG (reg);
2103 reg = SUBREG_REG (reg);
2106 if (STACK_REG_P (reg)
2107 && (REG_NOTE_KIND (note) == REG_DEAD
2108 || REG_NOTE_KIND (note) == REG_UNUSED))
2110 note_reg[n_notes] = reg;
2111 note_loc[n_notes] = loc;
2112 note_kind[n_notes] = REG_NOTE_KIND (note);
2113 n_notes++;
2117 /* Set up CLOBBER_REG and CLOBBER_LOC. */
2119 n_clobbers = 0;
2121 if (GET_CODE (body) == PARALLEL)
2123 clobber_reg = alloca (XVECLEN (body, 0) * sizeof (rtx));
2124 clobber_loc = alloca (XVECLEN (body, 0) * sizeof (rtx *));
2126 for (i = 0; i < XVECLEN (body, 0); i++)
2127 if (GET_CODE (XVECEXP (body, 0, i)) == CLOBBER)
2129 rtx clobber = XVECEXP (body, 0, i);
2130 rtx reg = XEXP (clobber, 0);
2131 rtx *loc = & XEXP (clobber, 0);
2133 if (GET_CODE (reg) == SUBREG && GET_CODE (SUBREG_REG (reg)) == REG)
2135 loc = & SUBREG_REG (reg);
2136 reg = SUBREG_REG (reg);
2139 if (STACK_REG_P (reg))
2141 clobber_reg[n_clobbers] = reg;
2142 clobber_loc[n_clobbers] = loc;
2143 n_clobbers++;
2148 temp_stack = *regstack;
2150 /* Put the input regs into the desired place in TEMP_STACK. */
2152 for (i = n_outputs; i < n_outputs + n_inputs; i++)
2153 if (STACK_REG_P (recog_data.operand[i])
2154 && reg_class_subset_p (recog_op_alt[i][alt].class,
2155 FLOAT_REGS)
2156 && recog_op_alt[i][alt].class != FLOAT_REGS)
2158 /* If an operand needs to be in a particular reg in
2159 FLOAT_REGS, the constraint was either 't' or 'u'. Since
2160 these constraints are for single register classes, and
2161 reload guaranteed that operand[i] is already in that class,
2162 we can just use REGNO (recog_data.operand[i]) to know which
2163 actual reg this operand needs to be in. */
2165 int regno = get_hard_regnum (&temp_stack, recog_data.operand[i]);
2167 if (regno < 0)
2168 abort ();
2170 if ((unsigned int) regno != REGNO (recog_data.operand[i]))
2172 /* recog_data.operand[i] is not in the right place. Find
2173 it and swap it with whatever is already in I's place.
2174 K is where recog_data.operand[i] is now. J is where it
2175 should be. */
2176 int j, k, temp;
2178 k = temp_stack.top - (regno - FIRST_STACK_REG);
2179 j = (temp_stack.top
2180 - (REGNO (recog_data.operand[i]) - FIRST_STACK_REG));
2182 temp = temp_stack.reg[k];
2183 temp_stack.reg[k] = temp_stack.reg[j];
2184 temp_stack.reg[j] = temp;
2188 /* Emit insns before INSN to make sure the reg-stack is in the right
2189 order. */
2191 change_stack (insn, regstack, &temp_stack, EMIT_BEFORE);
2193 /* Make the needed input register substitutions. Do death notes and
2194 clobbers too, because these are for inputs, not outputs. */
2196 for (i = n_outputs; i < n_outputs + n_inputs; i++)
2197 if (STACK_REG_P (recog_data.operand[i]))
2199 int regnum = get_hard_regnum (regstack, recog_data.operand[i]);
2201 if (regnum < 0)
2202 abort ();
2204 replace_reg (recog_data.operand_loc[i], regnum);
2207 for (i = 0; i < n_notes; i++)
2208 if (note_kind[i] == REG_DEAD)
2210 int regnum = get_hard_regnum (regstack, note_reg[i]);
2212 if (regnum < 0)
2213 abort ();
2215 replace_reg (note_loc[i], regnum);
2218 for (i = 0; i < n_clobbers; i++)
2220 /* It's OK for a CLOBBER to reference a reg that is not live.
2221 Don't try to replace it in that case. */
2222 int regnum = get_hard_regnum (regstack, clobber_reg[i]);
2224 if (regnum >= 0)
2226 /* Sigh - clobbers always have QImode. But replace_reg knows
2227 that these regs can't be MODE_INT and will abort. Just put
2228 the right reg there without calling replace_reg. */
2230 *clobber_loc[i] = FP_MODE_REG (regnum, DFmode);
2234 /* Now remove from REGSTACK any inputs that the asm implicitly popped. */
2236 for (i = n_outputs; i < n_outputs + n_inputs; i++)
2237 if (STACK_REG_P (recog_data.operand[i]))
2239 /* An input reg is implicitly popped if it is tied to an
2240 output, or if there is a CLOBBER for it. */
2241 int j;
2243 for (j = 0; j < n_clobbers; j++)
2244 if (operands_match_p (clobber_reg[j], recog_data.operand[i]))
2245 break;
2247 if (j < n_clobbers || recog_op_alt[i][alt].matches >= 0)
2249 /* recog_data.operand[i] might not be at the top of stack.
2250 But that's OK, because all we need to do is pop the
2251 right number of regs off of the top of the reg-stack.
2252 record_asm_stack_regs guaranteed that all implicitly
2253 popped regs were grouped at the top of the reg-stack. */
2255 CLEAR_HARD_REG_BIT (regstack->reg_set,
2256 regstack->reg[regstack->top]);
2257 regstack->top--;
2261 /* Now add to REGSTACK any outputs that the asm implicitly pushed.
2262 Note that there isn't any need to substitute register numbers.
2263 ??? Explain why this is true. */
2265 for (i = LAST_STACK_REG; i >= FIRST_STACK_REG; i--)
2267 /* See if there is an output for this hard reg. */
2268 int j;
2270 for (j = 0; j < n_outputs; j++)
2271 if (STACK_REG_P (recog_data.operand[j])
2272 && REGNO (recog_data.operand[j]) == (unsigned) i)
2274 regstack->reg[++regstack->top] = i;
2275 SET_HARD_REG_BIT (regstack->reg_set, i);
2276 break;
2280 /* Now emit a pop insn for any REG_UNUSED output, or any REG_DEAD
2281 input that the asm didn't implicitly pop. If the asm didn't
2282 implicitly pop an input reg, that reg will still be live.
2284 Note that we can't use find_regno_note here: the register numbers
2285 in the death notes have already been substituted. */
2287 for (i = 0; i < n_outputs; i++)
2288 if (STACK_REG_P (recog_data.operand[i]))
2290 int j;
2292 for (j = 0; j < n_notes; j++)
2293 if (REGNO (recog_data.operand[i]) == REGNO (note_reg[j])
2294 && note_kind[j] == REG_UNUSED)
2296 insn = emit_pop_insn (insn, regstack, recog_data.operand[i],
2297 EMIT_AFTER);
2298 break;
2302 for (i = n_outputs; i < n_outputs + n_inputs; i++)
2303 if (STACK_REG_P (recog_data.operand[i]))
2305 int j;
2307 for (j = 0; j < n_notes; j++)
2308 if (REGNO (recog_data.operand[i]) == REGNO (note_reg[j])
2309 && note_kind[j] == REG_DEAD
2310 && TEST_HARD_REG_BIT (regstack->reg_set,
2311 REGNO (recog_data.operand[i])))
2313 insn = emit_pop_insn (insn, regstack, recog_data.operand[i],
2314 EMIT_AFTER);
2315 break;
2320 /* Substitute stack hard reg numbers for stack virtual registers in
2321 INSN. Non-stack register numbers are not changed. REGSTACK is the
2322 current stack content. Insns may be emitted as needed to arrange the
2323 stack for the 387 based on the contents of the insn. Return whether
2324 a control flow insn was deleted in the process. */
2326 static bool
2327 subst_stack_regs (rtx insn, stack regstack)
2329 rtx *note_link, note;
2330 bool control_flow_insn_deleted = false;
2331 int i;
2333 if (GET_CODE (insn) == CALL_INSN)
2335 int top = regstack->top;
2337 /* If there are any floating point parameters to be passed in
2338 registers for this call, make sure they are in the right
2339 order. */
2341 if (top >= 0)
2343 straighten_stack (PREV_INSN (insn), regstack);
2345 /* Now mark the arguments as dead after the call. */
2347 while (regstack->top >= 0)
2349 CLEAR_HARD_REG_BIT (regstack->reg_set, FIRST_STACK_REG + regstack->top);
2350 regstack->top--;
2355 /* Do the actual substitution if any stack regs are mentioned.
2356 Since we only record whether entire insn mentions stack regs, and
2357 subst_stack_regs_pat only works for patterns that contain stack regs,
2358 we must check each pattern in a parallel here. A call_value_pop could
2359 fail otherwise. */
2361 if (stack_regs_mentioned (insn))
2363 int n_operands = asm_noperands (PATTERN (insn));
2364 if (n_operands >= 0)
2366 /* This insn is an `asm' with operands. Decode the operands,
2367 decide how many are inputs, and do register substitution.
2368 Any REG_UNUSED notes will be handled by subst_asm_stack_regs. */
2370 subst_asm_stack_regs (insn, regstack);
2371 return control_flow_insn_deleted;
2374 if (GET_CODE (PATTERN (insn)) == PARALLEL)
2375 for (i = 0; i < XVECLEN (PATTERN (insn), 0); i++)
2377 if (stack_regs_mentioned_p (XVECEXP (PATTERN (insn), 0, i)))
2379 if (GET_CODE (XVECEXP (PATTERN (insn), 0, i)) == CLOBBER)
2380 XVECEXP (PATTERN (insn), 0, i)
2381 = shallow_copy_rtx (XVECEXP (PATTERN (insn), 0, i));
2382 control_flow_insn_deleted
2383 |= subst_stack_regs_pat (insn, regstack,
2384 XVECEXP (PATTERN (insn), 0, i));
2387 else
2388 control_flow_insn_deleted
2389 |= subst_stack_regs_pat (insn, regstack, PATTERN (insn));
2392 /* subst_stack_regs_pat may have deleted a no-op insn. If so, any
2393 REG_UNUSED will already have been dealt with, so just return. */
2395 if (GET_CODE (insn) == NOTE || INSN_DELETED_P (insn))
2396 return control_flow_insn_deleted;
2398 /* If there is a REG_UNUSED note on a stack register on this insn,
2399 the indicated reg must be popped. The REG_UNUSED note is removed,
2400 since the form of the newly emitted pop insn references the reg,
2401 making it no longer `unset'. */
2403 note_link = &REG_NOTES (insn);
2404 for (note = *note_link; note; note = XEXP (note, 1))
2405 if (REG_NOTE_KIND (note) == REG_UNUSED && STACK_REG_P (XEXP (note, 0)))
2407 *note_link = XEXP (note, 1);
2408 insn = emit_pop_insn (insn, regstack, XEXP (note, 0), EMIT_AFTER);
2410 else
2411 note_link = &XEXP (note, 1);
2413 return control_flow_insn_deleted;
2416 /* Change the organization of the stack so that it fits a new basic
2417 block. Some registers might have to be popped, but there can never be
2418 a register live in the new block that is not now live.
2420 Insert any needed insns before or after INSN, as indicated by
2421 WHERE. OLD is the original stack layout, and NEW is the desired
2422 form. OLD is updated to reflect the code emitted, ie, it will be
2423 the same as NEW upon return.
2425 This function will not preserve block_end[]. But that information
2426 is no longer needed once this has executed. */
2428 static void
2429 change_stack (rtx insn, stack old, stack new, enum emit_where where)
2431 int reg;
2432 int update_end = 0;
2434 /* We will be inserting new insns "backwards". If we are to insert
2435 after INSN, find the next insn, and insert before it. */
2437 if (where == EMIT_AFTER)
2439 if (current_block && BB_END (current_block) == insn)
2440 update_end = 1;
2441 insn = NEXT_INSN (insn);
2444 /* Pop any registers that are not needed in the new block. */
2446 for (reg = old->top; reg >= 0; reg--)
2447 if (! TEST_HARD_REG_BIT (new->reg_set, old->reg[reg]))
2448 emit_pop_insn (insn, old, FP_MODE_REG (old->reg[reg], DFmode),
2449 EMIT_BEFORE);
2451 if (new->top == -2)
2453 /* If the new block has never been processed, then it can inherit
2454 the old stack order. */
2456 new->top = old->top;
2457 memcpy (new->reg, old->reg, sizeof (new->reg));
2459 else
2461 /* This block has been entered before, and we must match the
2462 previously selected stack order. */
2464 /* By now, the only difference should be the order of the stack,
2465 not their depth or liveliness. */
2467 GO_IF_HARD_REG_EQUAL (old->reg_set, new->reg_set, win);
2468 abort ();
2469 win:
2470 if (old->top != new->top)
2471 abort ();
2473 /* If the stack is not empty (new->top != -1), loop here emitting
2474 swaps until the stack is correct.
2476 The worst case number of swaps emitted is N + 2, where N is the
2477 depth of the stack. In some cases, the reg at the top of
2478 stack may be correct, but swapped anyway in order to fix
2479 other regs. But since we never swap any other reg away from
2480 its correct slot, this algorithm will converge. */
2482 if (new->top != -1)
2485 /* Swap the reg at top of stack into the position it is
2486 supposed to be in, until the correct top of stack appears. */
2488 while (old->reg[old->top] != new->reg[new->top])
2490 for (reg = new->top; reg >= 0; reg--)
2491 if (new->reg[reg] == old->reg[old->top])
2492 break;
2494 if (reg == -1)
2495 abort ();
2497 emit_swap_insn (insn, old,
2498 FP_MODE_REG (old->reg[reg], DFmode));
2501 /* See if any regs remain incorrect. If so, bring an
2502 incorrect reg to the top of stack, and let the while loop
2503 above fix it. */
2505 for (reg = new->top; reg >= 0; reg--)
2506 if (new->reg[reg] != old->reg[reg])
2508 emit_swap_insn (insn, old,
2509 FP_MODE_REG (old->reg[reg], DFmode));
2510 break;
2512 } while (reg >= 0);
2514 /* At this point there must be no differences. */
2516 for (reg = old->top; reg >= 0; reg--)
2517 if (old->reg[reg] != new->reg[reg])
2518 abort ();
2521 if (update_end)
2522 BB_END (current_block) = PREV_INSN (insn);
2525 /* Print stack configuration. */
2527 static void
2528 print_stack (FILE *file, stack s)
2530 if (! file)
2531 return;
2533 if (s->top == -2)
2534 fprintf (file, "uninitialized\n");
2535 else if (s->top == -1)
2536 fprintf (file, "empty\n");
2537 else
2539 int i;
2540 fputs ("[ ", file);
2541 for (i = 0; i <= s->top; ++i)
2542 fprintf (file, "%d ", s->reg[i]);
2543 fputs ("]\n", file);
2547 /* This function was doing life analysis. We now let the regular live
2548 code do it's job, so we only need to check some extra invariants
2549 that reg-stack expects. Primary among these being that all registers
2550 are initialized before use.
2552 The function returns true when code was emitted to CFG edges and
2553 commit_edge_insertions needs to be called. */
2555 static int
2556 convert_regs_entry (void)
2558 int inserted = 0;
2559 edge e;
2560 basic_block block;
2562 FOR_EACH_BB_REVERSE (block)
2564 block_info bi = BLOCK_INFO (block);
2565 int reg;
2567 /* Set current register status at last instruction `uninitialized'. */
2568 bi->stack_in.top = -2;
2570 /* Copy live_at_end and live_at_start into temporaries. */
2571 for (reg = FIRST_STACK_REG; reg <= LAST_STACK_REG; reg++)
2573 if (REGNO_REG_SET_P (block->global_live_at_end, reg))
2574 SET_HARD_REG_BIT (bi->out_reg_set, reg);
2575 if (REGNO_REG_SET_P (block->global_live_at_start, reg))
2576 SET_HARD_REG_BIT (bi->stack_in.reg_set, reg);
2580 /* Load something into each stack register live at function entry.
2581 Such live registers can be caused by uninitialized variables or
2582 functions not returning values on all paths. In order to keep
2583 the push/pop code happy, and to not scrog the register stack, we
2584 must put something in these registers. Use a QNaN.
2586 Note that we are inserting converted code here. This code is
2587 never seen by the convert_regs pass. */
2589 for (e = ENTRY_BLOCK_PTR->succ; e ; e = e->succ_next)
2591 basic_block block = e->dest;
2592 block_info bi = BLOCK_INFO (block);
2593 int reg, top = -1;
2595 for (reg = LAST_STACK_REG; reg >= FIRST_STACK_REG; --reg)
2596 if (TEST_HARD_REG_BIT (bi->stack_in.reg_set, reg))
2598 rtx init;
2600 bi->stack_in.reg[++top] = reg;
2602 init = gen_rtx_SET (VOIDmode,
2603 FP_MODE_REG (FIRST_STACK_REG, SFmode),
2604 nan);
2605 insert_insn_on_edge (init, e);
2606 inserted = 1;
2609 bi->stack_in.top = top;
2612 return inserted;
2615 /* Construct the desired stack for function exit. This will either
2616 be `empty', or the function return value at top-of-stack. */
2618 static void
2619 convert_regs_exit (void)
2621 int value_reg_low, value_reg_high;
2622 stack output_stack;
2623 rtx retvalue;
2625 retvalue = stack_result (current_function_decl);
2626 value_reg_low = value_reg_high = -1;
2627 if (retvalue)
2629 value_reg_low = REGNO (retvalue);
2630 value_reg_high = value_reg_low
2631 + hard_regno_nregs[value_reg_low][GET_MODE (retvalue)] - 1;
2634 output_stack = &BLOCK_INFO (EXIT_BLOCK_PTR)->stack_in;
2635 if (value_reg_low == -1)
2636 output_stack->top = -1;
2637 else
2639 int reg;
2641 output_stack->top = value_reg_high - value_reg_low;
2642 for (reg = value_reg_low; reg <= value_reg_high; ++reg)
2644 output_stack->reg[value_reg_high - reg] = reg;
2645 SET_HARD_REG_BIT (output_stack->reg_set, reg);
2650 /* Adjust the stack of this block on exit to match the stack of the
2651 target block, or copy stack info into the stack of the successor
2652 of the successor hasn't been processed yet. */
2653 static bool
2654 compensate_edge (edge e, FILE *file)
2656 basic_block block = e->src, target = e->dest;
2657 block_info bi = BLOCK_INFO (block);
2658 struct stack_def regstack, tmpstack;
2659 stack target_stack = &BLOCK_INFO (target)->stack_in;
2660 int reg;
2662 current_block = block;
2663 regstack = bi->stack_out;
2664 if (file)
2665 fprintf (file, "Edge %d->%d: ", block->index, target->index);
2667 if (target_stack->top == -2)
2669 /* The target block hasn't had a stack order selected.
2670 We need merely ensure that no pops are needed. */
2671 for (reg = regstack.top; reg >= 0; --reg)
2672 if (!TEST_HARD_REG_BIT (target_stack->reg_set, regstack.reg[reg]))
2673 break;
2675 if (reg == -1)
2677 if (file)
2678 fprintf (file, "new block; copying stack position\n");
2680 /* change_stack kills values in regstack. */
2681 tmpstack = regstack;
2683 change_stack (BB_END (block), &tmpstack, target_stack, EMIT_AFTER);
2684 return false;
2687 if (file)
2688 fprintf (file, "new block; pops needed\n");
2690 else
2692 if (target_stack->top == regstack.top)
2694 for (reg = target_stack->top; reg >= 0; --reg)
2695 if (target_stack->reg[reg] != regstack.reg[reg])
2696 break;
2698 if (reg == -1)
2700 if (file)
2701 fprintf (file, "no changes needed\n");
2702 return false;
2706 if (file)
2708 fprintf (file, "correcting stack to ");
2709 print_stack (file, target_stack);
2713 /* Care for non-call EH edges specially. The normal return path have
2714 values in registers. These will be popped en masse by the unwind
2715 library. */
2716 if ((e->flags & (EDGE_EH | EDGE_ABNORMAL_CALL)) == EDGE_EH)
2717 target_stack->top = -1;
2719 /* Other calls may appear to have values live in st(0), but the
2720 abnormal return path will not have actually loaded the values. */
2721 else if (e->flags & EDGE_ABNORMAL_CALL)
2723 /* Assert that the lifetimes are as we expect -- one value
2724 live at st(0) on the end of the source block, and no
2725 values live at the beginning of the destination block. */
2726 HARD_REG_SET tmp;
2728 CLEAR_HARD_REG_SET (tmp);
2729 GO_IF_HARD_REG_EQUAL (target_stack->reg_set, tmp, eh1);
2730 abort ();
2731 eh1:
2733 /* We are sure that there is st(0) live, otherwise we won't compensate.
2734 For complex return values, we may have st(1) live as well. */
2735 SET_HARD_REG_BIT (tmp, FIRST_STACK_REG);
2736 if (TEST_HARD_REG_BIT (regstack.reg_set, FIRST_STACK_REG + 1))
2737 SET_HARD_REG_BIT (tmp, FIRST_STACK_REG + 1);
2738 GO_IF_HARD_REG_EQUAL (regstack.reg_set, tmp, eh2);
2739 abort ();
2740 eh2:
2742 target_stack->top = -1;
2745 /* It is better to output directly to the end of the block
2746 instead of to the edge, because emit_swap can do minimal
2747 insn scheduling. We can do this when there is only one
2748 edge out, and it is not abnormal. */
2749 else if (block->succ->succ_next == NULL && !(e->flags & EDGE_ABNORMAL))
2751 /* change_stack kills values in regstack. */
2752 tmpstack = regstack;
2754 change_stack (BB_END (block), &tmpstack, target_stack,
2755 (GET_CODE (BB_END (block)) == JUMP_INSN
2756 ? EMIT_BEFORE : EMIT_AFTER));
2758 else
2760 rtx seq, after;
2762 /* We don't support abnormal edges. Global takes care to
2763 avoid any live register across them, so we should never
2764 have to insert instructions on such edges. */
2765 if (e->flags & EDGE_ABNORMAL)
2766 abort ();
2768 current_block = NULL;
2769 start_sequence ();
2771 /* ??? change_stack needs some point to emit insns after. */
2772 after = emit_note (NOTE_INSN_DELETED);
2774 tmpstack = regstack;
2775 change_stack (after, &tmpstack, target_stack, EMIT_BEFORE);
2777 seq = get_insns ();
2778 end_sequence ();
2780 insert_insn_on_edge (seq, e);
2781 return true;
2783 return false;
2786 /* Convert stack register references in one block. */
2788 static int
2789 convert_regs_1 (FILE *file, basic_block block)
2791 struct stack_def regstack;
2792 block_info bi = BLOCK_INFO (block);
2793 int deleted, inserted, reg;
2794 rtx insn, next;
2795 edge e, beste = NULL;
2796 bool control_flow_insn_deleted = false;
2798 inserted = 0;
2799 deleted = 0;
2800 any_malformed_asm = false;
2802 /* Find the edge we will copy stack from. It should be the most frequent
2803 one as it will get cheapest after compensation code is generated,
2804 if multiple such exists, take one with largest count, prefer critical
2805 one (as splitting critical edges is more expensive), or one with lowest
2806 index, to avoid random changes with different orders of the edges. */
2807 for (e = block->pred; e ; e = e->pred_next)
2809 if (e->flags & EDGE_DFS_BACK)
2811 else if (! beste)
2812 beste = e;
2813 else if (EDGE_FREQUENCY (beste) < EDGE_FREQUENCY (e))
2814 beste = e;
2815 else if (EDGE_FREQUENCY (beste) > EDGE_FREQUENCY (e))
2817 else if (beste->count < e->count)
2818 beste = e;
2819 else if (beste->count > e->count)
2821 else if ((EDGE_CRITICAL_P (e) != 0)
2822 != (EDGE_CRITICAL_P (beste) != 0))
2824 if (EDGE_CRITICAL_P (e))
2825 beste = e;
2827 else if (e->src->index < beste->src->index)
2828 beste = e;
2831 /* Initialize stack at block entry. */
2832 if (bi->stack_in.top == -2)
2834 if (beste)
2835 inserted |= compensate_edge (beste, file);
2836 else
2838 /* No predecessors. Create an arbitrary input stack. */
2839 int reg;
2841 bi->stack_in.top = -1;
2842 for (reg = LAST_STACK_REG; reg >= FIRST_STACK_REG; --reg)
2843 if (TEST_HARD_REG_BIT (bi->stack_in.reg_set, reg))
2844 bi->stack_in.reg[++bi->stack_in.top] = reg;
2847 else
2848 /* Entry blocks do have stack already initialized. */
2849 beste = NULL;
2851 current_block = block;
2853 if (file)
2855 fprintf (file, "\nBasic block %d\nInput stack: ", block->index);
2856 print_stack (file, &bi->stack_in);
2859 /* Process all insns in this block. Keep track of NEXT so that we
2860 don't process insns emitted while substituting in INSN. */
2861 next = BB_HEAD (block);
2862 regstack = bi->stack_in;
2865 insn = next;
2866 next = NEXT_INSN (insn);
2868 /* Ensure we have not missed a block boundary. */
2869 if (next == NULL)
2870 abort ();
2871 if (insn == BB_END (block))
2872 next = NULL;
2874 /* Don't bother processing unless there is a stack reg
2875 mentioned or if it's a CALL_INSN. */
2876 if (stack_regs_mentioned (insn)
2877 || GET_CODE (insn) == CALL_INSN)
2879 if (file)
2881 fprintf (file, " insn %d input stack: ",
2882 INSN_UID (insn));
2883 print_stack (file, &regstack);
2885 control_flow_insn_deleted |= subst_stack_regs (insn, &regstack);
2888 while (next);
2890 if (file)
2892 fprintf (file, "Expected live registers [");
2893 for (reg = FIRST_STACK_REG; reg <= LAST_STACK_REG; ++reg)
2894 if (TEST_HARD_REG_BIT (bi->out_reg_set, reg))
2895 fprintf (file, " %d", reg);
2896 fprintf (file, " ]\nOutput stack: ");
2897 print_stack (file, &regstack);
2900 insn = BB_END (block);
2901 if (GET_CODE (insn) == JUMP_INSN)
2902 insn = PREV_INSN (insn);
2904 /* If the function is declared to return a value, but it returns one
2905 in only some cases, some registers might come live here. Emit
2906 necessary moves for them. */
2908 for (reg = FIRST_STACK_REG; reg <= LAST_STACK_REG; ++reg)
2910 if (TEST_HARD_REG_BIT (bi->out_reg_set, reg)
2911 && ! TEST_HARD_REG_BIT (regstack.reg_set, reg))
2913 rtx set;
2915 if (file)
2917 fprintf (file, "Emitting insn initializing reg %d\n",
2918 reg);
2921 set = gen_rtx_SET (VOIDmode, FP_MODE_REG (reg, SFmode),
2922 nan);
2923 insn = emit_insn_after (set, insn);
2924 control_flow_insn_deleted |= subst_stack_regs (insn, &regstack);
2928 /* Amongst the insns possibly deleted during the substitution process above,
2929 might have been the only trapping insn in the block. We purge the now
2930 possibly dead EH edges here to avoid an ICE from fixup_abnormal_edges,
2931 called at the end of convert_regs. The order in which we process the
2932 blocks ensures that we never delete an already processed edge.
2934 Note that, at this point, the CFG may have been damaged by the emission
2935 of instructions after an abnormal call, which moves the basic block end
2936 (and is the reason why we call fixup_abnormal_edges later). So we must
2937 be sure that the trapping insn has been deleted before trying to purge
2938 dead edges, otherwise we risk purging valid edges.
2940 ??? We are normally supposed not to delete trapping insns, so we pretend
2941 that the insns deleted above don't actually trap. It would have been
2942 better to detect this earlier and avoid creating the EH edge in the first
2943 place, still, but we don't have enough information at that time. */
2945 if (control_flow_insn_deleted)
2946 purge_dead_edges (block);
2948 /* Something failed if the stack lives don't match. If we had malformed
2949 asms, we zapped the instruction itself, but that didn't produce the
2950 same pattern of register kills as before. */
2951 GO_IF_HARD_REG_EQUAL (regstack.reg_set, bi->out_reg_set, win);
2952 if (!any_malformed_asm)
2953 abort ();
2954 win:
2955 bi->stack_out = regstack;
2957 /* Compensate the back edges, as those wasn't visited yet. */
2958 for (e = block->succ; e ; e = e->succ_next)
2960 if (e->flags & EDGE_DFS_BACK
2961 || (e->dest == EXIT_BLOCK_PTR))
2963 if (!BLOCK_INFO (e->dest)->done
2964 && e->dest != block)
2965 abort ();
2966 inserted |= compensate_edge (e, file);
2969 for (e = block->pred; e ; e = e->pred_next)
2971 if (e != beste && !(e->flags & EDGE_DFS_BACK)
2972 && e->src != ENTRY_BLOCK_PTR)
2974 if (!BLOCK_INFO (e->src)->done)
2975 abort ();
2976 inserted |= compensate_edge (e, file);
2980 return inserted;
2983 /* Convert registers in all blocks reachable from BLOCK. */
2985 static int
2986 convert_regs_2 (FILE *file, basic_block block)
2988 basic_block *stack, *sp;
2989 int inserted;
2991 /* We process the blocks in a top-down manner, in a way such that one block
2992 is only processed after all its predecessors. The number of predecessors
2993 of every block has already been computed. */
2995 stack = xmalloc (sizeof (*stack) * n_basic_blocks);
2996 sp = stack;
2998 *sp++ = block;
3000 inserted = 0;
3003 edge e;
3005 block = *--sp;
3007 /* Processing BLOCK is achieved by convert_regs_1, which may purge
3008 some dead EH outgoing edge after the deletion of the trapping
3009 insn inside the block. Since the number of predecessors of
3010 BLOCK's successors was computed based on the initial edge set,
3011 we check the necessity to process some of these successors
3012 before such an edge deletion may happen. However, there is
3013 a pitfall: if BLOCK is the only predecessor of a successor and
3014 the edge between them happens to be deleted, the successor
3015 becomes unreachable and should not be processed. The problem
3016 is that there is no way to preventively detect this case so we
3017 stack the successor in all cases and hand over the task of
3018 fixing up the discrepancy to convert_regs_1. */
3020 for (e = block->succ; e ; e = e->succ_next)
3021 if (! (e->flags & EDGE_DFS_BACK))
3023 BLOCK_INFO (e->dest)->predecessors--;
3024 if (!BLOCK_INFO (e->dest)->predecessors)
3025 *sp++ = e->dest;
3028 inserted |= convert_regs_1 (file, block);
3029 BLOCK_INFO (block)->done = 1;
3031 while (sp != stack);
3033 return inserted;
3036 /* Traverse all basic blocks in a function, converting the register
3037 references in each insn from the "flat" register file that gcc uses,
3038 to the stack-like registers the 387 uses. */
3040 static int
3041 convert_regs (FILE *file)
3043 int inserted;
3044 basic_block b;
3045 edge e;
3047 /* Initialize uninitialized registers on function entry. */
3048 inserted = convert_regs_entry ();
3050 /* Construct the desired stack for function exit. */
3051 convert_regs_exit ();
3052 BLOCK_INFO (EXIT_BLOCK_PTR)->done = 1;
3054 /* ??? Future: process inner loops first, and give them arbitrary
3055 initial stacks which emit_swap_insn can modify. This ought to
3056 prevent double fxch that aften appears at the head of a loop. */
3058 /* Process all blocks reachable from all entry points. */
3059 for (e = ENTRY_BLOCK_PTR->succ; e ; e = e->succ_next)
3060 inserted |= convert_regs_2 (file, e->dest);
3062 /* ??? Process all unreachable blocks. Though there's no excuse
3063 for keeping these even when not optimizing. */
3064 FOR_EACH_BB (b)
3066 block_info bi = BLOCK_INFO (b);
3068 if (! bi->done)
3069 inserted |= convert_regs_2 (file, b);
3071 clear_aux_for_blocks ();
3073 fixup_abnormal_edges ();
3074 if (inserted)
3075 commit_edge_insertions ();
3077 if (file)
3078 fputc ('\n', file);
3080 return inserted;
3082 #endif /* STACK_REGS */
3084 #include "gt-reg-stack.h"