1 /* Perform instruction reorganizations for delay slot filling.
2 Copyright (C) 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002 Free Software Foundation, Inc.
4 Contributed by Richard Kenner (kenner@vlsi1.ultra.nyu.edu).
5 Hacked by Michael Tiemann (tiemann@cygnus.com).
7 This file is part of GCC.
9 GCC is free software; you can redistribute it and/or modify it under
10 the terms of the GNU General Public License as published by the Free
11 Software Foundation; either version 2, or (at your option) any later
14 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
15 WARRANTY; without even the implied warranty of MERCHANTABILITY or
16 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
19 You should have received a copy of the GNU General Public License
20 along with GCC; see the file COPYING. If not, write to the Free
21 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
24 /* Instruction reorganization pass.
26 This pass runs after register allocation and final jump
27 optimization. It should be the last pass to run before peephole.
28 It serves primarily to fill delay slots of insns, typically branch
29 and call insns. Other insns typically involve more complicated
30 interactions of data dependencies and resource constraints, and
31 are better handled by scheduling before register allocation (by the
32 function `schedule_insns').
34 The Branch Penalty is the number of extra cycles that are needed to
35 execute a branch insn. On an ideal machine, branches take a single
36 cycle, and the Branch Penalty is 0. Several RISC machines approach
37 branch delays differently:
39 The MIPS and AMD 29000 have a single branch delay slot. Most insns
40 (except other branches) can be used to fill this slot. When the
41 slot is filled, two insns execute in two cycles, reducing the
42 branch penalty to zero.
44 The Motorola 88000 conditionally exposes its branch delay slot,
45 so code is shorter when it is turned off, but will run faster
46 when useful insns are scheduled there.
48 The IBM ROMP has two forms of branch and call insns, both with and
49 without a delay slot. Much like the 88k, insns not using the delay
50 slot can be shorted (2 bytes vs. 4 bytes), but will run slowed.
52 The SPARC always has a branch delay slot, but its effects can be
53 annulled when the branch is not taken. This means that failing to
54 find other sources of insns, we can hoist an insn from the branch
55 target that would only be safe to execute knowing that the branch
58 The HP-PA always has a branch delay slot. For unconditional branches
59 its effects can be annulled when the branch is taken. The effects
60 of the delay slot in a conditional branch can be nullified for forward
61 taken branches, or for untaken backward branches. This means
62 we can hoist insns from the fall-through path for forward branches or
63 steal insns from the target of backward branches.
65 The TMS320C3x and C4x have three branch delay slots. When the three
66 slots are filled, the branch penalty is zero. Most insns can fill the
67 delay slots except jump insns.
69 Three techniques for filling delay slots have been implemented so far:
71 (1) `fill_simple_delay_slots' is the simplest, most efficient way
72 to fill delay slots. This pass first looks for insns which come
73 from before the branch and which are safe to execute after the
74 branch. Then it searches after the insn requiring delay slots or,
75 in the case of a branch, for insns that are after the point at
76 which the branch merges into the fallthrough code, if such a point
77 exists. When such insns are found, the branch penalty decreases
78 and no code expansion takes place.
80 (2) `fill_eager_delay_slots' is more complicated: it is used for
81 scheduling conditional jumps, or for scheduling jumps which cannot
82 be filled using (1). A machine need not have annulled jumps to use
83 this strategy, but it helps (by keeping more options open).
84 `fill_eager_delay_slots' tries to guess the direction the branch
85 will go; if it guesses right 100% of the time, it can reduce the
86 branch penalty as much as `fill_simple_delay_slots' does. If it
87 guesses wrong 100% of the time, it might as well schedule nops (or
88 on the m88k, unexpose the branch slot). When
89 `fill_eager_delay_slots' takes insns from the fall-through path of
90 the jump, usually there is no code expansion; when it takes insns
91 from the branch target, there is code expansion if it is not the
92 only way to reach that target.
94 (3) `relax_delay_slots' uses a set of rules to simplify code that
95 has been reorganized by (1) and (2). It finds cases where
96 conditional test can be eliminated, jumps can be threaded, extra
97 insns can be eliminated, etc. It is the job of (1) and (2) to do a
98 good job of scheduling locally; `relax_delay_slots' takes care of
99 making the various individual schedules work well together. It is
100 especially tuned to handle the control flow interactions of branch
101 insns. It does nothing for insns with delay slots that do not
104 On machines that use CC0, we are very conservative. We will not make
105 a copy of an insn involving CC0 since we want to maintain a 1-1
106 correspondence between the insn that sets and uses CC0. The insns are
107 allowed to be separated by placing an insn that sets CC0 (but not an insn
108 that uses CC0; we could do this, but it doesn't seem worthwhile) in a
109 delay slot. In that case, we point each insn at the other with REG_CC_USER
110 and REG_CC_SETTER notes. Note that these restrictions affect very few
111 machines because most RISC machines with delay slots will not use CC0
112 (the RT is the only known exception at this point).
116 The Acorn Risc Machine can conditionally execute most insns, so
117 it is profitable to move single insns into a position to execute
118 based on the condition code of the previous insn.
120 The HP-PA can conditionally nullify insns, providing a similar
121 effect to the ARM, differing mostly in which insn is "in charge". */
125 #include "coretypes.h"
131 #include "function.h"
132 #include "insn-config.h"
133 #include "conditions.h"
134 #include "hard-reg-set.h"
135 #include "basic-block.h"
141 #include "insn-attr.h"
142 #include "resource.h"
148 #ifndef ANNUL_IFTRUE_SLOTS
149 #define eligible_for_annul_true(INSN, SLOTS, TRIAL, FLAGS) 0
151 #ifndef ANNUL_IFFALSE_SLOTS
152 #define eligible_for_annul_false(INSN, SLOTS, TRIAL, FLAGS) 0
155 /* Insns which have delay slots that have not yet been filled. */
157 static struct obstack unfilled_slots_obstack
;
158 static rtx
*unfilled_firstobj
;
160 /* Define macros to refer to the first and last slot containing unfilled
161 insns. These are used because the list may move and its address
162 should be recomputed at each use. */
164 #define unfilled_slots_base \
165 ((rtx *) obstack_base (&unfilled_slots_obstack))
167 #define unfilled_slots_next \
168 ((rtx *) obstack_next_free (&unfilled_slots_obstack))
170 /* Points to the label before the end of the function. */
171 static rtx end_of_function_label
;
173 /* Mapping between INSN_UID's and position in the code since INSN_UID's do
174 not always monotonically increase. */
175 static int *uid_to_ruid
;
177 /* Highest valid index in `uid_to_ruid'. */
180 static int stop_search_p
PARAMS ((rtx
, int));
181 static int resource_conflicts_p
PARAMS ((struct resources
*,
182 struct resources
*));
183 static int insn_references_resource_p
PARAMS ((rtx
, struct resources
*, int));
184 static int insn_sets_resource_p
PARAMS ((rtx
, struct resources
*, int));
185 static rtx find_end_label
PARAMS ((void));
186 static rtx emit_delay_sequence
PARAMS ((rtx
, rtx
, int));
187 static rtx add_to_delay_list
PARAMS ((rtx
, rtx
));
188 static rtx delete_from_delay_slot
PARAMS ((rtx
));
189 static void delete_scheduled_jump
PARAMS ((rtx
));
190 static void note_delay_statistics
PARAMS ((int, int));
191 #if defined(ANNUL_IFFALSE_SLOTS) || defined(ANNUL_IFTRUE_SLOTS)
192 static rtx optimize_skip
PARAMS ((rtx
));
194 static int get_jump_flags
PARAMS ((rtx
, rtx
));
195 static int rare_destination
PARAMS ((rtx
));
196 static int mostly_true_jump
PARAMS ((rtx
, rtx
));
197 static rtx get_branch_condition
PARAMS ((rtx
, rtx
));
198 static int condition_dominates_p
PARAMS ((rtx
, rtx
));
199 static int redirect_with_delay_slots_safe_p
PARAMS ((rtx
, rtx
, rtx
));
200 static int redirect_with_delay_list_safe_p
PARAMS ((rtx
, rtx
, rtx
));
201 static int check_annul_list_true_false
PARAMS ((int, rtx
));
202 static rtx steal_delay_list_from_target
PARAMS ((rtx
, rtx
, rtx
, rtx
,
206 int, int *, int *, rtx
*));
207 static rtx steal_delay_list_from_fallthrough
PARAMS ((rtx
, rtx
, rtx
, rtx
,
212 static void try_merge_delay_insns
PARAMS ((rtx
, rtx
));
213 static rtx redundant_insn
PARAMS ((rtx
, rtx
, rtx
));
214 static int own_thread_p
PARAMS ((rtx
, rtx
, int));
215 static void update_block
PARAMS ((rtx
, rtx
));
216 static int reorg_redirect_jump
PARAMS ((rtx
, rtx
));
217 static void update_reg_dead_notes
PARAMS ((rtx
, rtx
));
218 static void fix_reg_dead_note
PARAMS ((rtx
, rtx
));
219 static void update_reg_unused_notes
PARAMS ((rtx
, rtx
));
220 static void fill_simple_delay_slots
PARAMS ((int));
221 static rtx fill_slots_from_thread
PARAMS ((rtx
, rtx
, rtx
, rtx
, int, int,
222 int, int, int *, rtx
));
223 static void fill_eager_delay_slots
PARAMS ((void));
224 static void relax_delay_slots
PARAMS ((rtx
));
226 static void make_return_insns
PARAMS ((rtx
));
229 /* Return TRUE if this insn should stop the search for insn to fill delay
230 slots. LABELS_P indicates that labels should terminate the search.
231 In all cases, jumps terminate the search. */
234 stop_search_p (insn
, labels_p
)
241 switch (GET_CODE (insn
))
255 /* OK unless it contains a delay slot or is an `asm' insn of some type.
256 We don't know anything about these. */
257 return (GET_CODE (PATTERN (insn
)) == SEQUENCE
258 || GET_CODE (PATTERN (insn
)) == ASM_INPUT
259 || asm_noperands (PATTERN (insn
)) >= 0);
266 /* Return TRUE if any resources are marked in both RES1 and RES2 or if either
267 resource set contains a volatile memory reference. Otherwise, return FALSE. */
270 resource_conflicts_p (res1
, res2
)
271 struct resources
*res1
, *res2
;
273 if ((res1
->cc
&& res2
->cc
) || (res1
->memory
&& res2
->memory
)
274 || (res1
->unch_memory
&& res2
->unch_memory
)
275 || res1
->volatil
|| res2
->volatil
)
279 return (res1
->regs
& res2
->regs
) != HARD_CONST (0);
284 for (i
= 0; i
< HARD_REG_SET_LONGS
; i
++)
285 if ((res1
->regs
[i
] & res2
->regs
[i
]) != 0)
292 /* Return TRUE if any resource marked in RES, a `struct resources', is
293 referenced by INSN. If INCLUDE_DELAYED_EFFECTS is set, return if the called
294 routine is using those resources.
296 We compute this by computing all the resources referenced by INSN and
297 seeing if this conflicts with RES. It might be faster to directly check
298 ourselves, and this is the way it used to work, but it means duplicating
299 a large block of complex code. */
302 insn_references_resource_p (insn
, res
, include_delayed_effects
)
304 struct resources
*res
;
305 int include_delayed_effects
;
307 struct resources insn_res
;
309 CLEAR_RESOURCE (&insn_res
);
310 mark_referenced_resources (insn
, &insn_res
, include_delayed_effects
);
311 return resource_conflicts_p (&insn_res
, res
);
314 /* Return TRUE if INSN modifies resources that are marked in RES.
315 INCLUDE_DELAYED_EFFECTS is set if the actions of that routine should be
316 included. CC0 is only modified if it is explicitly set; see comments
317 in front of mark_set_resources for details. */
320 insn_sets_resource_p (insn
, res
, include_delayed_effects
)
322 struct resources
*res
;
323 int include_delayed_effects
;
325 struct resources insn_sets
;
327 CLEAR_RESOURCE (&insn_sets
);
328 mark_set_resources (insn
, &insn_sets
, 0, include_delayed_effects
);
329 return resource_conflicts_p (&insn_sets
, res
);
332 /* Find a label at the end of the function or before a RETURN. If there is
340 /* If we found one previously, return it. */
341 if (end_of_function_label
)
342 return end_of_function_label
;
344 /* Otherwise, see if there is a label at the end of the function. If there
345 is, it must be that RETURN insns aren't needed, so that is our return
346 label and we don't have to do anything else. */
348 insn
= get_last_insn ();
349 while (GET_CODE (insn
) == NOTE
350 || (GET_CODE (insn
) == INSN
351 && (GET_CODE (PATTERN (insn
)) == USE
352 || GET_CODE (PATTERN (insn
)) == CLOBBER
)))
353 insn
= PREV_INSN (insn
);
355 /* When a target threads its epilogue we might already have a
356 suitable return insn. If so put a label before it for the
357 end_of_function_label. */
358 if (GET_CODE (insn
) == BARRIER
359 && GET_CODE (PREV_INSN (insn
)) == JUMP_INSN
360 && GET_CODE (PATTERN (PREV_INSN (insn
))) == RETURN
)
362 rtx temp
= PREV_INSN (PREV_INSN (insn
));
363 end_of_function_label
= gen_label_rtx ();
364 LABEL_NUSES (end_of_function_label
) = 0;
366 /* Put the label before an USE insns that may proceed the RETURN insn. */
367 while (GET_CODE (temp
) == USE
)
368 temp
= PREV_INSN (temp
);
370 emit_label_after (end_of_function_label
, temp
);
373 else if (GET_CODE (insn
) == CODE_LABEL
)
374 end_of_function_label
= insn
;
377 end_of_function_label
= gen_label_rtx ();
378 LABEL_NUSES (end_of_function_label
) = 0;
379 /* If the basic block reorder pass moves the return insn to
380 some other place try to locate it again and put our
381 end_of_function_label there. */
382 while (insn
&& ! (GET_CODE (insn
) == JUMP_INSN
383 && (GET_CODE (PATTERN (insn
)) == RETURN
)))
384 insn
= PREV_INSN (insn
);
387 insn
= PREV_INSN (insn
);
389 /* Put the label before an USE insns that may proceed the
391 while (GET_CODE (insn
) == USE
)
392 insn
= PREV_INSN (insn
);
394 emit_label_after (end_of_function_label
, insn
);
398 /* Otherwise, make a new label and emit a RETURN and BARRIER,
400 emit_label (end_of_function_label
);
404 /* The return we make may have delay slots too. */
405 rtx insn
= gen_return ();
406 insn
= emit_jump_insn (insn
);
408 if (num_delay_slots (insn
) > 0)
409 obstack_ptr_grow (&unfilled_slots_obstack
, insn
);
415 /* Show one additional use for this label so it won't go away until
417 ++LABEL_NUSES (end_of_function_label
);
419 return end_of_function_label
;
422 /* Put INSN and LIST together in a SEQUENCE rtx of LENGTH, and replace
423 the pattern of INSN with the SEQUENCE.
425 Chain the insns so that NEXT_INSN of each insn in the sequence points to
426 the next and NEXT_INSN of the last insn in the sequence points to
427 the first insn after the sequence. Similarly for PREV_INSN. This makes
428 it easier to scan all insns.
430 Returns the SEQUENCE that replaces INSN. */
433 emit_delay_sequence (insn
, list
, length
)
442 /* Allocate the rtvec to hold the insns and the SEQUENCE. */
443 rtvec seqv
= rtvec_alloc (length
+ 1);
444 rtx seq
= gen_rtx_SEQUENCE (VOIDmode
, seqv
);
445 rtx seq_insn
= make_insn_raw (seq
);
446 rtx first
= get_insns ();
447 rtx last
= get_last_insn ();
449 /* Make a copy of the insn having delay slots. */
450 rtx delay_insn
= copy_rtx (insn
);
452 /* If INSN is followed by a BARRIER, delete the BARRIER since it will only
453 confuse further processing. Update LAST in case it was the last insn.
454 We will put the BARRIER back in later. */
455 if (NEXT_INSN (insn
) && GET_CODE (NEXT_INSN (insn
)) == BARRIER
)
457 delete_related_insns (NEXT_INSN (insn
));
458 last
= get_last_insn ();
462 /* Splice our SEQUENCE into the insn stream where INSN used to be. */
463 NEXT_INSN (seq_insn
) = NEXT_INSN (insn
);
464 PREV_INSN (seq_insn
) = PREV_INSN (insn
);
467 PREV_INSN (NEXT_INSN (seq_insn
)) = seq_insn
;
470 NEXT_INSN (PREV_INSN (seq_insn
)) = seq_insn
;
472 /* Note the calls to set_new_first_and_last_insn must occur after
473 SEQ_INSN has been completely spliced into the insn stream.
475 Otherwise CUR_INSN_UID will get set to an incorrect value because
476 set_new_first_and_last_insn will not find SEQ_INSN in the chain. */
478 set_new_first_and_last_insn (first
, seq_insn
);
481 set_new_first_and_last_insn (seq_insn
, last
);
483 /* Build our SEQUENCE and rebuild the insn chain. */
484 XVECEXP (seq
, 0, 0) = delay_insn
;
485 INSN_DELETED_P (delay_insn
) = 0;
486 PREV_INSN (delay_insn
) = PREV_INSN (seq_insn
);
488 for (li
= list
; li
; li
= XEXP (li
, 1), i
++)
490 rtx tem
= XEXP (li
, 0);
493 /* Show that this copy of the insn isn't deleted. */
494 INSN_DELETED_P (tem
) = 0;
496 XVECEXP (seq
, 0, i
) = tem
;
497 PREV_INSN (tem
) = XVECEXP (seq
, 0, i
- 1);
498 NEXT_INSN (XVECEXP (seq
, 0, i
- 1)) = tem
;
500 for (note
= REG_NOTES (tem
); note
; note
= next
)
502 next
= XEXP (note
, 1);
503 switch (REG_NOTE_KIND (note
))
506 /* Remove any REG_DEAD notes because we can't rely on them now
507 that the insn has been moved. */
508 remove_note (tem
, note
);
512 /* Keep the label reference count up to date. */
513 if (GET_CODE (XEXP (note
, 0)) == CODE_LABEL
)
514 LABEL_NUSES (XEXP (note
, 0)) ++;
523 NEXT_INSN (XVECEXP (seq
, 0, length
)) = NEXT_INSN (seq_insn
);
525 /* If the previous insn is a SEQUENCE, update the NEXT_INSN pointer on the
526 last insn in that SEQUENCE to point to us. Similarly for the first
527 insn in the following insn if it is a SEQUENCE. */
529 if (PREV_INSN (seq_insn
) && GET_CODE (PREV_INSN (seq_insn
)) == INSN
530 && GET_CODE (PATTERN (PREV_INSN (seq_insn
))) == SEQUENCE
)
531 NEXT_INSN (XVECEXP (PATTERN (PREV_INSN (seq_insn
)), 0,
532 XVECLEN (PATTERN (PREV_INSN (seq_insn
)), 0) - 1))
535 if (NEXT_INSN (seq_insn
) && GET_CODE (NEXT_INSN (seq_insn
)) == INSN
536 && GET_CODE (PATTERN (NEXT_INSN (seq_insn
))) == SEQUENCE
)
537 PREV_INSN (XVECEXP (PATTERN (NEXT_INSN (seq_insn
)), 0, 0)) = seq_insn
;
539 /* If there used to be a BARRIER, put it back. */
541 emit_barrier_after (seq_insn
);
549 /* Add INSN to DELAY_LIST and return the head of the new list. The list must
550 be in the order in which the insns are to be executed. */
553 add_to_delay_list (insn
, delay_list
)
557 /* If we have an empty list, just make a new list element. If
558 INSN has its block number recorded, clear it since we may
559 be moving the insn to a new block. */
563 clear_hashed_info_for_insn (insn
);
564 return gen_rtx_INSN_LIST (VOIDmode
, insn
, NULL_RTX
);
567 /* Otherwise this must be an INSN_LIST. Add INSN to the end of the
569 XEXP (delay_list
, 1) = add_to_delay_list (insn
, XEXP (delay_list
, 1));
574 /* Delete INSN from the delay slot of the insn that it is in, which may
575 produce an insn with no delay slots. Return the new insn. */
578 delete_from_delay_slot (insn
)
581 rtx trial
, seq_insn
, seq
, prev
;
585 /* We first must find the insn containing the SEQUENCE with INSN in its
586 delay slot. Do this by finding an insn, TRIAL, where
587 PREV_INSN (NEXT_INSN (TRIAL)) != TRIAL. */
590 PREV_INSN (NEXT_INSN (trial
)) == trial
;
591 trial
= NEXT_INSN (trial
))
594 seq_insn
= PREV_INSN (NEXT_INSN (trial
));
595 seq
= PATTERN (seq_insn
);
597 /* Create a delay list consisting of all the insns other than the one
598 we are deleting (unless we were the only one). */
599 if (XVECLEN (seq
, 0) > 2)
600 for (i
= 1; i
< XVECLEN (seq
, 0); i
++)
601 if (XVECEXP (seq
, 0, i
) != insn
)
602 delay_list
= add_to_delay_list (XVECEXP (seq
, 0, i
), delay_list
);
604 /* Delete the old SEQUENCE, re-emit the insn that used to have the delay
605 list, and rebuild the delay list if non-empty. */
606 prev
= PREV_INSN (seq_insn
);
607 trial
= XVECEXP (seq
, 0, 0);
608 delete_related_insns (seq_insn
);
609 add_insn_after (trial
, prev
);
611 if (GET_CODE (trial
) == JUMP_INSN
612 && (simplejump_p (trial
) || GET_CODE (PATTERN (trial
)) == RETURN
))
613 emit_barrier_after (trial
);
615 /* If there are any delay insns, remit them. Otherwise clear the
618 trial
= emit_delay_sequence (trial
, delay_list
, XVECLEN (seq
, 0) - 2);
619 else if (GET_CODE (trial
) == JUMP_INSN
620 || GET_CODE (trial
) == CALL_INSN
621 || GET_CODE (trial
) == INSN
)
622 INSN_ANNULLED_BRANCH_P (trial
) = 0;
624 INSN_FROM_TARGET_P (insn
) = 0;
626 /* Show we need to fill this insn again. */
627 obstack_ptr_grow (&unfilled_slots_obstack
, trial
);
632 /* Delete INSN, a JUMP_INSN. If it is a conditional jump, we must track down
633 the insn that sets CC0 for it and delete it too. */
636 delete_scheduled_jump (insn
)
639 /* Delete the insn that sets cc0 for us. On machines without cc0, we could
640 delete the insn that sets the condition code, but it is hard to find it.
641 Since this case is rare anyway, don't bother trying; there would likely
642 be other insns that became dead anyway, which we wouldn't know to
646 if (reg_mentioned_p (cc0_rtx
, insn
))
648 rtx note
= find_reg_note (insn
, REG_CC_SETTER
, NULL_RTX
);
650 /* If a reg-note was found, it points to an insn to set CC0. This
651 insn is in the delay list of some other insn. So delete it from
652 the delay list it was in. */
655 if (! FIND_REG_INC_NOTE (XEXP (note
, 0), NULL_RTX
)
656 && sets_cc0_p (PATTERN (XEXP (note
, 0))) == 1)
657 delete_from_delay_slot (XEXP (note
, 0));
661 /* The insn setting CC0 is our previous insn, but it may be in
662 a delay slot. It will be the last insn in the delay slot, if
664 rtx trial
= previous_insn (insn
);
665 if (GET_CODE (trial
) == NOTE
)
666 trial
= prev_nonnote_insn (trial
);
667 if (sets_cc0_p (PATTERN (trial
)) != 1
668 || FIND_REG_INC_NOTE (trial
, NULL_RTX
))
670 if (PREV_INSN (NEXT_INSN (trial
)) == trial
)
671 delete_related_insns (trial
);
673 delete_from_delay_slot (trial
);
678 delete_related_insns (insn
);
681 /* Counters for delay-slot filling. */
683 #define NUM_REORG_FUNCTIONS 2
684 #define MAX_DELAY_HISTOGRAM 3
685 #define MAX_REORG_PASSES 2
687 static int num_insns_needing_delays
[NUM_REORG_FUNCTIONS
][MAX_REORG_PASSES
];
689 static int num_filled_delays
[NUM_REORG_FUNCTIONS
][MAX_DELAY_HISTOGRAM
+1][MAX_REORG_PASSES
];
691 static int reorg_pass_number
;
694 note_delay_statistics (slots_filled
, index
)
695 int slots_filled
, index
;
697 num_insns_needing_delays
[index
][reorg_pass_number
]++;
698 if (slots_filled
> MAX_DELAY_HISTOGRAM
)
699 slots_filled
= MAX_DELAY_HISTOGRAM
;
700 num_filled_delays
[index
][slots_filled
][reorg_pass_number
]++;
703 #if defined(ANNUL_IFFALSE_SLOTS) || defined(ANNUL_IFTRUE_SLOTS)
705 /* Optimize the following cases:
707 1. When a conditional branch skips over only one instruction,
708 use an annulling branch and put that insn in the delay slot.
709 Use either a branch that annuls when the condition if true or
710 invert the test with a branch that annuls when the condition is
711 false. This saves insns, since otherwise we must copy an insn
714 (orig) (skip) (otherwise)
715 Bcc.n L1 Bcc',a L1 Bcc,a L1'
722 2. When a conditional branch skips over only one instruction,
723 and after that, it unconditionally branches somewhere else,
724 perform the similar optimization. This saves executing the
725 second branch in the case where the inverted condition is true.
734 This should be expanded to skip over N insns, where N is the number
735 of delay slots required. */
741 rtx trial
= next_nonnote_insn (insn
);
742 rtx next_trial
= next_active_insn (trial
);
747 flags
= get_jump_flags (insn
, JUMP_LABEL (insn
));
750 || GET_CODE (trial
) != INSN
751 || GET_CODE (PATTERN (trial
)) == SEQUENCE
752 || recog_memoized (trial
) < 0
753 || (! eligible_for_annul_false (insn
, 0, trial
, flags
)
754 && ! eligible_for_annul_true (insn
, 0, trial
, flags
))
755 || can_throw_internal (trial
))
758 /* There are two cases where we are just executing one insn (we assume
759 here that a branch requires only one insn; this should be generalized
760 at some point): Where the branch goes around a single insn or where
761 we have one insn followed by a branch to the same label we branch to.
762 In both of these cases, inverting the jump and annulling the delay
763 slot give the same effect in fewer insns. */
764 if ((next_trial
== next_active_insn (JUMP_LABEL (insn
))
765 && ! (next_trial
== 0 && current_function_epilogue_delay_list
!= 0))
767 && GET_CODE (next_trial
) == JUMP_INSN
768 && JUMP_LABEL (insn
) == JUMP_LABEL (next_trial
)
769 && (simplejump_p (next_trial
)
770 || GET_CODE (PATTERN (next_trial
)) == RETURN
)))
772 if (eligible_for_annul_false (insn
, 0, trial
, flags
))
774 if (invert_jump (insn
, JUMP_LABEL (insn
), 1))
775 INSN_FROM_TARGET_P (trial
) = 1;
776 else if (! eligible_for_annul_true (insn
, 0, trial
, flags
))
780 delay_list
= add_to_delay_list (trial
, NULL_RTX
);
781 next_trial
= next_active_insn (trial
);
782 update_block (trial
, trial
);
783 delete_related_insns (trial
);
785 /* Also, if we are targeting an unconditional
786 branch, thread our jump to the target of that branch. Don't
787 change this into a RETURN here, because it may not accept what
788 we have in the delay slot. We'll fix this up later. */
789 if (next_trial
&& GET_CODE (next_trial
) == JUMP_INSN
790 && (simplejump_p (next_trial
)
791 || GET_CODE (PATTERN (next_trial
)) == RETURN
))
793 target_label
= JUMP_LABEL (next_trial
);
794 if (target_label
== 0)
795 target_label
= find_end_label ();
797 /* Recompute the flags based on TARGET_LABEL since threading
798 the jump to TARGET_LABEL may change the direction of the
799 jump (which may change the circumstances in which the
800 delay slot is nullified). */
801 flags
= get_jump_flags (insn
, target_label
);
802 if (eligible_for_annul_true (insn
, 0, trial
, flags
))
803 reorg_redirect_jump (insn
, target_label
);
806 INSN_ANNULLED_BRANCH_P (insn
) = 1;
813 /* Encode and return branch direction and prediction information for
814 INSN assuming it will jump to LABEL.
816 Non conditional branches return no direction information and
817 are predicted as very likely taken. */
820 get_jump_flags (insn
, label
)
825 /* get_jump_flags can be passed any insn with delay slots, these may
826 be INSNs, CALL_INSNs, or JUMP_INSNs. Only JUMP_INSNs have branch
827 direction information, and only if they are conditional jumps.
829 If LABEL is zero, then there is no way to determine the branch
831 if (GET_CODE (insn
) == JUMP_INSN
832 && (condjump_p (insn
) || condjump_in_parallel_p (insn
))
833 && INSN_UID (insn
) <= max_uid
835 && INSN_UID (label
) <= max_uid
)
837 = (uid_to_ruid
[INSN_UID (label
)] > uid_to_ruid
[INSN_UID (insn
)])
838 ? ATTR_FLAG_forward
: ATTR_FLAG_backward
;
839 /* No valid direction information. */
843 /* If insn is a conditional branch call mostly_true_jump to get
844 determine the branch prediction.
846 Non conditional branches are predicted as very likely taken. */
847 if (GET_CODE (insn
) == JUMP_INSN
848 && (condjump_p (insn
) || condjump_in_parallel_p (insn
)))
852 prediction
= mostly_true_jump (insn
, get_branch_condition (insn
, label
));
856 flags
|= (ATTR_FLAG_very_likely
| ATTR_FLAG_likely
);
859 flags
|= ATTR_FLAG_likely
;
862 flags
|= ATTR_FLAG_unlikely
;
865 flags
|= (ATTR_FLAG_very_unlikely
| ATTR_FLAG_unlikely
);
873 flags
|= (ATTR_FLAG_very_likely
| ATTR_FLAG_likely
);
878 /* Return 1 if INSN is a destination that will be branched to rarely (the
879 return point of a function); return 2 if DEST will be branched to very
880 rarely (a call to a function that doesn't return). Otherwise,
884 rare_destination (insn
)
890 for (; insn
; insn
= next
)
892 if (GET_CODE (insn
) == INSN
&& GET_CODE (PATTERN (insn
)) == SEQUENCE
)
893 insn
= XVECEXP (PATTERN (insn
), 0, 0);
895 next
= NEXT_INSN (insn
);
897 switch (GET_CODE (insn
))
902 /* A BARRIER can either be after a JUMP_INSN or a CALL_INSN. We
903 don't scan past JUMP_INSNs, so any barrier we find here must
904 have been after a CALL_INSN and hence mean the call doesn't
908 if (GET_CODE (PATTERN (insn
)) == RETURN
)
910 else if (simplejump_p (insn
)
911 && jump_count
++ < 10)
912 next
= JUMP_LABEL (insn
);
921 /* If we got here it means we hit the end of the function. So this
922 is an unlikely destination. */
927 /* Return truth value of the statement that this branch
928 is mostly taken. If we think that the branch is extremely likely
929 to be taken, we return 2. If the branch is slightly more likely to be
930 taken, return 1. If the branch is slightly less likely to be taken,
931 return 0 and if the branch is highly unlikely to be taken, return -1.
933 CONDITION, if nonzero, is the condition that JUMP_INSN is testing. */
936 mostly_true_jump (jump_insn
, condition
)
937 rtx jump_insn
, condition
;
939 rtx target_label
= JUMP_LABEL (jump_insn
);
941 int rare_dest
= rare_destination (target_label
);
942 int rare_fallthrough
= rare_destination (NEXT_INSN (jump_insn
));
944 /* If branch probabilities are available, then use that number since it
945 always gives a correct answer. */
946 note
= find_reg_note (jump_insn
, REG_BR_PROB
, 0);
949 int prob
= INTVAL (XEXP (note
, 0));
951 if (prob
>= REG_BR_PROB_BASE
* 9 / 10)
953 else if (prob
>= REG_BR_PROB_BASE
/ 2)
955 else if (prob
>= REG_BR_PROB_BASE
/ 10)
961 /* ??? Ought to use estimate_probability instead. */
963 /* If this is a branch outside a loop, it is highly unlikely. */
964 if (GET_CODE (PATTERN (jump_insn
)) == SET
965 && GET_CODE (SET_SRC (PATTERN (jump_insn
))) == IF_THEN_ELSE
966 && ((GET_CODE (XEXP (SET_SRC (PATTERN (jump_insn
)), 1)) == LABEL_REF
967 && LABEL_OUTSIDE_LOOP_P (XEXP (SET_SRC (PATTERN (jump_insn
)), 1)))
968 || (GET_CODE (XEXP (SET_SRC (PATTERN (jump_insn
)), 2)) == LABEL_REF
969 && LABEL_OUTSIDE_LOOP_P (XEXP (SET_SRC (PATTERN (jump_insn
)), 2)))))
974 /* If this is the test of a loop, it is very likely true. We scan
975 backwards from the target label. If we find a NOTE_INSN_LOOP_BEG
976 before the next real insn, we assume the branch is to the top of
978 for (insn
= PREV_INSN (target_label
);
979 insn
&& GET_CODE (insn
) == NOTE
;
980 insn
= PREV_INSN (insn
))
981 if (NOTE_LINE_NUMBER (insn
) == NOTE_INSN_LOOP_BEG
)
984 /* If this is a jump to the test of a loop, it is likely true. We scan
985 forwards from the target label. If we find a NOTE_INSN_LOOP_VTOP
986 before the next real insn, we assume the branch is to the loop branch
988 for (insn
= NEXT_INSN (target_label
);
989 insn
&& GET_CODE (insn
) == NOTE
;
990 insn
= PREV_INSN (insn
))
991 if (NOTE_LINE_NUMBER (insn
) == NOTE_INSN_LOOP_VTOP
)
995 /* Look at the relative rarities of the fallthrough and destination. If
996 they differ, we can predict the branch that way. */
998 switch (rare_fallthrough
- rare_dest
)
1012 /* If we couldn't figure out what this jump was, assume it won't be
1013 taken. This should be rare. */
1017 /* EQ tests are usually false and NE tests are usually true. Also,
1018 most quantities are positive, so we can make the appropriate guesses
1019 about signed comparisons against zero. */
1020 switch (GET_CODE (condition
))
1023 /* Unconditional branch. */
1031 if (XEXP (condition
, 1) == const0_rtx
)
1036 if (XEXP (condition
, 1) == const0_rtx
)
1044 /* Predict backward branches usually take, forward branches usually not. If
1045 we don't know whether this is forward or backward, assume the branch
1046 will be taken, since most are. */
1047 return (target_label
== 0 || INSN_UID (jump_insn
) > max_uid
1048 || INSN_UID (target_label
) > max_uid
1049 || (uid_to_ruid
[INSN_UID (jump_insn
)]
1050 > uid_to_ruid
[INSN_UID (target_label
)]));
1053 /* Return the condition under which INSN will branch to TARGET. If TARGET
1054 is zero, return the condition under which INSN will return. If INSN is
1055 an unconditional branch, return const_true_rtx. If INSN isn't a simple
1056 type of jump, or it doesn't go to TARGET, return 0. */
1059 get_branch_condition (insn
, target
)
1063 rtx pat
= PATTERN (insn
);
1066 if (condjump_in_parallel_p (insn
))
1067 pat
= XVECEXP (pat
, 0, 0);
1069 if (GET_CODE (pat
) == RETURN
)
1070 return target
== 0 ? const_true_rtx
: 0;
1072 else if (GET_CODE (pat
) != SET
|| SET_DEST (pat
) != pc_rtx
)
1075 src
= SET_SRC (pat
);
1076 if (GET_CODE (src
) == LABEL_REF
&& XEXP (src
, 0) == target
)
1077 return const_true_rtx
;
1079 else if (GET_CODE (src
) == IF_THEN_ELSE
1080 && ((target
== 0 && GET_CODE (XEXP (src
, 1)) == RETURN
)
1081 || (GET_CODE (XEXP (src
, 1)) == LABEL_REF
1082 && XEXP (XEXP (src
, 1), 0) == target
))
1083 && XEXP (src
, 2) == pc_rtx
)
1084 return XEXP (src
, 0);
1086 else if (GET_CODE (src
) == IF_THEN_ELSE
1087 && ((target
== 0 && GET_CODE (XEXP (src
, 2)) == RETURN
)
1088 || (GET_CODE (XEXP (src
, 2)) == LABEL_REF
1089 && XEXP (XEXP (src
, 2), 0) == target
))
1090 && XEXP (src
, 1) == pc_rtx
)
1093 rev
= reversed_comparison_code (XEXP (src
, 0), insn
);
1095 return gen_rtx_fmt_ee (rev
, GET_MODE (XEXP (src
, 0)),
1096 XEXP (XEXP (src
, 0), 0),
1097 XEXP (XEXP (src
, 0), 1));
1103 /* Return nonzero if CONDITION is more strict than the condition of
1104 INSN, i.e., if INSN will always branch if CONDITION is true. */
1107 condition_dominates_p (condition
, insn
)
1111 rtx other_condition
= get_branch_condition (insn
, JUMP_LABEL (insn
));
1112 enum rtx_code code
= GET_CODE (condition
);
1113 enum rtx_code other_code
;
1115 if (rtx_equal_p (condition
, other_condition
)
1116 || other_condition
== const_true_rtx
)
1119 else if (condition
== const_true_rtx
|| other_condition
== 0)
1122 other_code
= GET_CODE (other_condition
);
1123 if (GET_RTX_LENGTH (code
) != 2 || GET_RTX_LENGTH (other_code
) != 2
1124 || ! rtx_equal_p (XEXP (condition
, 0), XEXP (other_condition
, 0))
1125 || ! rtx_equal_p (XEXP (condition
, 1), XEXP (other_condition
, 1)))
1128 return comparison_dominates_p (code
, other_code
);
1131 /* Return nonzero if redirecting JUMP to NEWLABEL does not invalidate
1132 any insns already in the delay slot of JUMP. */
1135 redirect_with_delay_slots_safe_p (jump
, newlabel
, seq
)
1136 rtx jump
, newlabel
, seq
;
1139 rtx pat
= PATTERN (seq
);
1141 /* Make sure all the delay slots of this jump would still
1142 be valid after threading the jump. If they are still
1143 valid, then return nonzero. */
1145 flags
= get_jump_flags (jump
, newlabel
);
1146 for (i
= 1; i
< XVECLEN (pat
, 0); i
++)
1148 #ifdef ANNUL_IFFALSE_SLOTS
1149 (INSN_ANNULLED_BRANCH_P (jump
)
1150 && INSN_FROM_TARGET_P (XVECEXP (pat
, 0, i
)))
1151 ? eligible_for_annul_false (jump
, i
- 1,
1152 XVECEXP (pat
, 0, i
), flags
) :
1154 #ifdef ANNUL_IFTRUE_SLOTS
1155 (INSN_ANNULLED_BRANCH_P (jump
)
1156 && ! INSN_FROM_TARGET_P (XVECEXP (pat
, 0, i
)))
1157 ? eligible_for_annul_true (jump
, i
- 1,
1158 XVECEXP (pat
, 0, i
), flags
) :
1160 eligible_for_delay (jump
, i
- 1, XVECEXP (pat
, 0, i
), flags
)))
1163 return (i
== XVECLEN (pat
, 0));
1166 /* Return nonzero if redirecting JUMP to NEWLABEL does not invalidate
1167 any insns we wish to place in the delay slot of JUMP. */
1170 redirect_with_delay_list_safe_p (jump
, newlabel
, delay_list
)
1171 rtx jump
, newlabel
, delay_list
;
1176 /* Make sure all the insns in DELAY_LIST would still be
1177 valid after threading the jump. If they are still
1178 valid, then return nonzero. */
1180 flags
= get_jump_flags (jump
, newlabel
);
1181 for (li
= delay_list
, i
= 0; li
; li
= XEXP (li
, 1), i
++)
1183 #ifdef ANNUL_IFFALSE_SLOTS
1184 (INSN_ANNULLED_BRANCH_P (jump
)
1185 && INSN_FROM_TARGET_P (XEXP (li
, 0)))
1186 ? eligible_for_annul_false (jump
, i
, XEXP (li
, 0), flags
) :
1188 #ifdef ANNUL_IFTRUE_SLOTS
1189 (INSN_ANNULLED_BRANCH_P (jump
)
1190 && ! INSN_FROM_TARGET_P (XEXP (li
, 0)))
1191 ? eligible_for_annul_true (jump
, i
, XEXP (li
, 0), flags
) :
1193 eligible_for_delay (jump
, i
, XEXP (li
, 0), flags
)))
1196 return (li
== NULL
);
1199 /* DELAY_LIST is a list of insns that have already been placed into delay
1200 slots. See if all of them have the same annulling status as ANNUL_TRUE_P.
1201 If not, return 0; otherwise return 1. */
1204 check_annul_list_true_false (annul_true_p
, delay_list
)
1212 for (temp
= delay_list
; temp
; temp
= XEXP (temp
, 1))
1214 rtx trial
= XEXP (temp
, 0);
1216 if ((annul_true_p
&& INSN_FROM_TARGET_P (trial
))
1217 || (!annul_true_p
&& !INSN_FROM_TARGET_P (trial
)))
1225 /* INSN branches to an insn whose pattern SEQ is a SEQUENCE. Given that
1226 the condition tested by INSN is CONDITION and the resources shown in
1227 OTHER_NEEDED are needed after INSN, see whether INSN can take all the insns
1228 from SEQ's delay list, in addition to whatever insns it may execute
1229 (in DELAY_LIST). SETS and NEEDED are denote resources already set and
1230 needed while searching for delay slot insns. Return the concatenated
1231 delay list if possible, otherwise, return 0.
1233 SLOTS_TO_FILL is the total number of slots required by INSN, and
1234 PSLOTS_FILLED points to the number filled so far (also the number of
1235 insns in DELAY_LIST). It is updated with the number that have been
1236 filled from the SEQUENCE, if any.
1238 PANNUL_P points to a nonzero value if we already know that we need
1239 to annul INSN. If this routine determines that annulling is needed,
1240 it may set that value nonzero.
1242 PNEW_THREAD points to a location that is to receive the place at which
1243 execution should continue. */
1246 steal_delay_list_from_target (insn
, condition
, seq
, delay_list
,
1247 sets
, needed
, other_needed
,
1248 slots_to_fill
, pslots_filled
, pannul_p
,
1250 rtx insn
, condition
;
1253 struct resources
*sets
, *needed
, *other_needed
;
1260 int slots_remaining
= slots_to_fill
- *pslots_filled
;
1261 int total_slots_filled
= *pslots_filled
;
1262 rtx new_delay_list
= 0;
1263 int must_annul
= *pannul_p
;
1266 struct resources cc_set
;
1268 /* We can't do anything if there are more delay slots in SEQ than we
1269 can handle, or if we don't know that it will be a taken branch.
1270 We know that it will be a taken branch if it is either an unconditional
1271 branch or a conditional branch with a stricter branch condition.
1273 Also, exit if the branch has more than one set, since then it is computing
1274 other results that can't be ignored, e.g. the HPPA mov&branch instruction.
1275 ??? It may be possible to move other sets into INSN in addition to
1276 moving the instructions in the delay slots.
1278 We can not steal the delay list if one of the instructions in the
1279 current delay_list modifies the condition codes and the jump in the
1280 sequence is a conditional jump. We can not do this because we can
1281 not change the direction of the jump because the condition codes
1282 will effect the direction of the jump in the sequence. */
1284 CLEAR_RESOURCE (&cc_set
);
1285 for (temp
= delay_list
; temp
; temp
= XEXP (temp
, 1))
1287 rtx trial
= XEXP (temp
, 0);
1289 mark_set_resources (trial
, &cc_set
, 0, MARK_SRC_DEST_CALL
);
1290 if (insn_references_resource_p (XVECEXP (seq
, 0, 0), &cc_set
, 0))
1294 if (XVECLEN (seq
, 0) - 1 > slots_remaining
1295 || ! condition_dominates_p (condition
, XVECEXP (seq
, 0, 0))
1296 || ! single_set (XVECEXP (seq
, 0, 0)))
1299 #ifdef MD_CAN_REDIRECT_BRANCH
1300 /* On some targets, branches with delay slots can have a limited
1301 displacement. Give the back end a chance to tell us we can't do
1303 if (! MD_CAN_REDIRECT_BRANCH (insn
, XVECEXP (seq
, 0, 0)))
1307 for (i
= 1; i
< XVECLEN (seq
, 0); i
++)
1309 rtx trial
= XVECEXP (seq
, 0, i
);
1312 if (insn_references_resource_p (trial
, sets
, 0)
1313 || insn_sets_resource_p (trial
, needed
, 0)
1314 || insn_sets_resource_p (trial
, sets
, 0)
1316 /* If TRIAL sets CC0, we can't copy it, so we can't steal this
1318 || find_reg_note (trial
, REG_CC_USER
, NULL_RTX
)
1320 /* If TRIAL is from the fallthrough code of an annulled branch insn
1321 in SEQ, we cannot use it. */
1322 || (INSN_ANNULLED_BRANCH_P (XVECEXP (seq
, 0, 0))
1323 && ! INSN_FROM_TARGET_P (trial
)))
1326 /* If this insn was already done (usually in a previous delay slot),
1327 pretend we put it in our delay slot. */
1328 if (redundant_insn (trial
, insn
, new_delay_list
))
1331 /* We will end up re-vectoring this branch, so compute flags
1332 based on jumping to the new label. */
1333 flags
= get_jump_flags (insn
, JUMP_LABEL (XVECEXP (seq
, 0, 0)));
1336 && ((condition
== const_true_rtx
1337 || (! insn_sets_resource_p (trial
, other_needed
, 0)
1338 && ! may_trap_p (PATTERN (trial
)))))
1339 ? eligible_for_delay (insn
, total_slots_filled
, trial
, flags
)
1340 : (must_annul
|| (delay_list
== NULL
&& new_delay_list
== NULL
))
1342 check_annul_list_true_false (0, delay_list
)
1343 && check_annul_list_true_false (0, new_delay_list
)
1344 && eligible_for_annul_false (insn
, total_slots_filled
,
1349 temp
= copy_rtx (trial
);
1350 INSN_FROM_TARGET_P (temp
) = 1;
1351 new_delay_list
= add_to_delay_list (temp
, new_delay_list
);
1352 total_slots_filled
++;
1354 if (--slots_remaining
== 0)
1361 /* Show the place to which we will be branching. */
1362 *pnew_thread
= next_active_insn (JUMP_LABEL (XVECEXP (seq
, 0, 0)));
1364 /* Add any new insns to the delay list and update the count of the
1365 number of slots filled. */
1366 *pslots_filled
= total_slots_filled
;
1370 if (delay_list
== 0)
1371 return new_delay_list
;
1373 for (temp
= new_delay_list
; temp
; temp
= XEXP (temp
, 1))
1374 delay_list
= add_to_delay_list (XEXP (temp
, 0), delay_list
);
1379 /* Similar to steal_delay_list_from_target except that SEQ is on the
1380 fallthrough path of INSN. Here we only do something if the delay insn
1381 of SEQ is an unconditional branch. In that case we steal its delay slot
1382 for INSN since unconditional branches are much easier to fill. */
1385 steal_delay_list_from_fallthrough (insn
, condition
, seq
,
1386 delay_list
, sets
, needed
, other_needed
,
1387 slots_to_fill
, pslots_filled
, pannul_p
)
1388 rtx insn
, condition
;
1391 struct resources
*sets
, *needed
, *other_needed
;
1398 int must_annul
= *pannul_p
;
1401 flags
= get_jump_flags (insn
, JUMP_LABEL (insn
));
1403 /* We can't do anything if SEQ's delay insn isn't an
1404 unconditional branch. */
1406 if (! simplejump_p (XVECEXP (seq
, 0, 0))
1407 && GET_CODE (PATTERN (XVECEXP (seq
, 0, 0))) != RETURN
)
1410 for (i
= 1; i
< XVECLEN (seq
, 0); i
++)
1412 rtx trial
= XVECEXP (seq
, 0, i
);
1414 /* If TRIAL sets CC0, stealing it will move it too far from the use
1416 if (insn_references_resource_p (trial
, sets
, 0)
1417 || insn_sets_resource_p (trial
, needed
, 0)
1418 || insn_sets_resource_p (trial
, sets
, 0)
1420 || sets_cc0_p (PATTERN (trial
))
1426 /* If this insn was already done, we don't need it. */
1427 if (redundant_insn (trial
, insn
, delay_list
))
1429 delete_from_delay_slot (trial
);
1434 && ((condition
== const_true_rtx
1435 || (! insn_sets_resource_p (trial
, other_needed
, 0)
1436 && ! may_trap_p (PATTERN (trial
)))))
1437 ? eligible_for_delay (insn
, *pslots_filled
, trial
, flags
)
1438 : (must_annul
|| delay_list
== NULL
) && (must_annul
= 1,
1439 check_annul_list_true_false (1, delay_list
)
1440 && eligible_for_annul_true (insn
, *pslots_filled
, trial
, flags
)))
1444 delete_from_delay_slot (trial
);
1445 delay_list
= add_to_delay_list (trial
, delay_list
);
1447 if (++(*pslots_filled
) == slots_to_fill
)
1459 /* Try merging insns starting at THREAD which match exactly the insns in
1462 If all insns were matched and the insn was previously annulling, the
1463 annul bit will be cleared.
1465 For each insn that is merged, if the branch is or will be non-annulling,
1466 we delete the merged insn. */
1469 try_merge_delay_insns (insn
, thread
)
1472 rtx trial
, next_trial
;
1473 rtx delay_insn
= XVECEXP (PATTERN (insn
), 0, 0);
1474 int annul_p
= INSN_ANNULLED_BRANCH_P (delay_insn
);
1475 int slot_number
= 1;
1476 int num_slots
= XVECLEN (PATTERN (insn
), 0);
1477 rtx next_to_match
= XVECEXP (PATTERN (insn
), 0, slot_number
);
1478 struct resources set
, needed
;
1479 rtx merged_insns
= 0;
1483 flags
= get_jump_flags (delay_insn
, JUMP_LABEL (delay_insn
));
1485 CLEAR_RESOURCE (&needed
);
1486 CLEAR_RESOURCE (&set
);
1488 /* If this is not an annulling branch, take into account anything needed in
1489 INSN's delay slot. This prevents two increments from being incorrectly
1490 folded into one. If we are annulling, this would be the correct
1491 thing to do. (The alternative, looking at things set in NEXT_TO_MATCH
1492 will essentially disable this optimization. This method is somewhat of
1493 a kludge, but I don't see a better way.) */
1495 for (i
= 1 ; i
< num_slots
; i
++)
1496 if (XVECEXP (PATTERN (insn
), 0, i
))
1497 mark_referenced_resources (XVECEXP (PATTERN (insn
), 0, i
), &needed
, 1);
1499 for (trial
= thread
; !stop_search_p (trial
, 1); trial
= next_trial
)
1501 rtx pat
= PATTERN (trial
);
1502 rtx oldtrial
= trial
;
1504 next_trial
= next_nonnote_insn (trial
);
1506 /* TRIAL must be a CALL_INSN or INSN. Skip USE and CLOBBER. */
1507 if (GET_CODE (trial
) == INSN
1508 && (GET_CODE (pat
) == USE
|| GET_CODE (pat
) == CLOBBER
))
1511 if (GET_CODE (next_to_match
) == GET_CODE (trial
)
1513 /* We can't share an insn that sets cc0. */
1514 && ! sets_cc0_p (pat
)
1516 && ! insn_references_resource_p (trial
, &set
, 1)
1517 && ! insn_sets_resource_p (trial
, &set
, 1)
1518 && ! insn_sets_resource_p (trial
, &needed
, 1)
1519 && (trial
= try_split (pat
, trial
, 0)) != 0
1520 /* Update next_trial, in case try_split succeeded. */
1521 && (next_trial
= next_nonnote_insn (trial
))
1522 /* Likewise THREAD. */
1523 && (thread
= oldtrial
== thread
? trial
: thread
)
1524 && rtx_equal_p (PATTERN (next_to_match
), PATTERN (trial
))
1525 /* Have to test this condition if annul condition is different
1526 from (and less restrictive than) non-annulling one. */
1527 && eligible_for_delay (delay_insn
, slot_number
- 1, trial
, flags
))
1532 update_block (trial
, thread
);
1533 if (trial
== thread
)
1534 thread
= next_active_insn (thread
);
1536 delete_related_insns (trial
);
1537 INSN_FROM_TARGET_P (next_to_match
) = 0;
1540 merged_insns
= gen_rtx_INSN_LIST (VOIDmode
, trial
, merged_insns
);
1542 if (++slot_number
== num_slots
)
1545 next_to_match
= XVECEXP (PATTERN (insn
), 0, slot_number
);
1548 mark_set_resources (trial
, &set
, 0, MARK_SRC_DEST_CALL
);
1549 mark_referenced_resources (trial
, &needed
, 1);
1552 /* See if we stopped on a filled insn. If we did, try to see if its
1553 delay slots match. */
1554 if (slot_number
!= num_slots
1555 && trial
&& GET_CODE (trial
) == INSN
1556 && GET_CODE (PATTERN (trial
)) == SEQUENCE
1557 && ! INSN_ANNULLED_BRANCH_P (XVECEXP (PATTERN (trial
), 0, 0)))
1559 rtx pat
= PATTERN (trial
);
1560 rtx filled_insn
= XVECEXP (pat
, 0, 0);
1562 /* Account for resources set/needed by the filled insn. */
1563 mark_set_resources (filled_insn
, &set
, 0, MARK_SRC_DEST_CALL
);
1564 mark_referenced_resources (filled_insn
, &needed
, 1);
1566 for (i
= 1; i
< XVECLEN (pat
, 0); i
++)
1568 rtx dtrial
= XVECEXP (pat
, 0, i
);
1570 if (! insn_references_resource_p (dtrial
, &set
, 1)
1571 && ! insn_sets_resource_p (dtrial
, &set
, 1)
1572 && ! insn_sets_resource_p (dtrial
, &needed
, 1)
1574 && ! sets_cc0_p (PATTERN (dtrial
))
1576 && rtx_equal_p (PATTERN (next_to_match
), PATTERN (dtrial
))
1577 && eligible_for_delay (delay_insn
, slot_number
- 1, dtrial
, flags
))
1583 update_block (dtrial
, thread
);
1584 new = delete_from_delay_slot (dtrial
);
1585 if (INSN_DELETED_P (thread
))
1587 INSN_FROM_TARGET_P (next_to_match
) = 0;
1590 merged_insns
= gen_rtx_INSN_LIST (SImode
, dtrial
,
1593 if (++slot_number
== num_slots
)
1596 next_to_match
= XVECEXP (PATTERN (insn
), 0, slot_number
);
1600 /* Keep track of the set/referenced resources for the delay
1601 slots of any trial insns we encounter. */
1602 mark_set_resources (dtrial
, &set
, 0, MARK_SRC_DEST_CALL
);
1603 mark_referenced_resources (dtrial
, &needed
, 1);
1608 /* If all insns in the delay slot have been matched and we were previously
1609 annulling the branch, we need not any more. In that case delete all the
1610 merged insns. Also clear the INSN_FROM_TARGET_P bit of each insn in
1611 the delay list so that we know that it isn't only being used at the
1613 if (slot_number
== num_slots
&& annul_p
)
1615 for (; merged_insns
; merged_insns
= XEXP (merged_insns
, 1))
1617 if (GET_MODE (merged_insns
) == SImode
)
1621 update_block (XEXP (merged_insns
, 0), thread
);
1622 new = delete_from_delay_slot (XEXP (merged_insns
, 0));
1623 if (INSN_DELETED_P (thread
))
1628 update_block (XEXP (merged_insns
, 0), thread
);
1629 delete_related_insns (XEXP (merged_insns
, 0));
1633 INSN_ANNULLED_BRANCH_P (delay_insn
) = 0;
1635 for (i
= 0; i
< XVECLEN (PATTERN (insn
), 0); i
++)
1636 INSN_FROM_TARGET_P (XVECEXP (PATTERN (insn
), 0, i
)) = 0;
1640 /* See if INSN is redundant with an insn in front of TARGET. Often this
1641 is called when INSN is a candidate for a delay slot of TARGET.
1642 DELAY_LIST are insns that will be placed in delay slots of TARGET in front
1643 of INSN. Often INSN will be redundant with an insn in a delay slot of
1644 some previous insn. This happens when we have a series of branches to the
1645 same label; in that case the first insn at the target might want to go
1646 into each of the delay slots.
1648 If we are not careful, this routine can take up a significant fraction
1649 of the total compilation time (4%), but only wins rarely. Hence we
1650 speed this routine up by making two passes. The first pass goes back
1651 until it hits a label and sees if it find an insn with an identical
1652 pattern. Only in this (relatively rare) event does it check for
1655 We do not split insns we encounter. This could cause us not to find a
1656 redundant insn, but the cost of splitting seems greater than the possible
1657 gain in rare cases. */
1660 redundant_insn (insn
, target
, delay_list
)
1665 rtx target_main
= target
;
1666 rtx ipat
= PATTERN (insn
);
1668 struct resources needed
, set
;
1670 unsigned insns_to_search
;
1672 /* If INSN has any REG_UNUSED notes, it can't match anything since we
1673 are allowed to not actually assign to such a register. */
1674 if (find_reg_note (insn
, REG_UNUSED
, NULL_RTX
) != 0)
1677 /* Scan backwards looking for a match. */
1678 for (trial
= PREV_INSN (target
),
1679 insns_to_search
= MAX_DELAY_SLOT_INSN_SEARCH
;
1680 trial
&& insns_to_search
> 0;
1681 trial
= PREV_INSN (trial
), --insns_to_search
)
1683 if (GET_CODE (trial
) == CODE_LABEL
)
1686 if (! INSN_P (trial
))
1689 pat
= PATTERN (trial
);
1690 if (GET_CODE (pat
) == USE
|| GET_CODE (pat
) == CLOBBER
)
1693 if (GET_CODE (pat
) == SEQUENCE
)
1695 /* Stop for a CALL and its delay slots because it is difficult to
1696 track its resource needs correctly. */
1697 if (GET_CODE (XVECEXP (pat
, 0, 0)) == CALL_INSN
)
1700 /* Stop for an INSN or JUMP_INSN with delayed effects and its delay
1701 slots because it is difficult to track its resource needs
1704 #ifdef INSN_SETS_ARE_DELAYED
1705 if (INSN_SETS_ARE_DELAYED (XVECEXP (pat
, 0, 0)))
1709 #ifdef INSN_REFERENCES_ARE_DELAYED
1710 if (INSN_REFERENCES_ARE_DELAYED (XVECEXP (pat
, 0, 0)))
1714 /* See if any of the insns in the delay slot match, updating
1715 resource requirements as we go. */
1716 for (i
= XVECLEN (pat
, 0) - 1; i
> 0; i
--)
1717 if (GET_CODE (XVECEXP (pat
, 0, i
)) == GET_CODE (insn
)
1718 && rtx_equal_p (PATTERN (XVECEXP (pat
, 0, i
)), ipat
)
1719 && ! find_reg_note (XVECEXP (pat
, 0, i
), REG_UNUSED
, NULL_RTX
))
1722 /* If found a match, exit this loop early. */
1727 else if (GET_CODE (trial
) == GET_CODE (insn
) && rtx_equal_p (pat
, ipat
)
1728 && ! find_reg_note (trial
, REG_UNUSED
, NULL_RTX
))
1732 /* If we didn't find an insn that matches, return 0. */
1736 /* See what resources this insn sets and needs. If they overlap, or
1737 if this insn references CC0, it can't be redundant. */
1739 CLEAR_RESOURCE (&needed
);
1740 CLEAR_RESOURCE (&set
);
1741 mark_set_resources (insn
, &set
, 0, MARK_SRC_DEST_CALL
);
1742 mark_referenced_resources (insn
, &needed
, 1);
1744 /* If TARGET is a SEQUENCE, get the main insn. */
1745 if (GET_CODE (target
) == INSN
&& GET_CODE (PATTERN (target
)) == SEQUENCE
)
1746 target_main
= XVECEXP (PATTERN (target
), 0, 0);
1748 if (resource_conflicts_p (&needed
, &set
)
1750 || reg_mentioned_p (cc0_rtx
, ipat
)
1752 /* The insn requiring the delay may not set anything needed or set by
1754 || insn_sets_resource_p (target_main
, &needed
, 1)
1755 || insn_sets_resource_p (target_main
, &set
, 1))
1758 /* Insns we pass may not set either NEEDED or SET, so merge them for
1760 needed
.memory
|= set
.memory
;
1761 needed
.unch_memory
|= set
.unch_memory
;
1762 IOR_HARD_REG_SET (needed
.regs
, set
.regs
);
1764 /* This insn isn't redundant if it conflicts with an insn that either is
1765 or will be in a delay slot of TARGET. */
1769 if (insn_sets_resource_p (XEXP (delay_list
, 0), &needed
, 1))
1771 delay_list
= XEXP (delay_list
, 1);
1774 if (GET_CODE (target
) == INSN
&& GET_CODE (PATTERN (target
)) == SEQUENCE
)
1775 for (i
= 1; i
< XVECLEN (PATTERN (target
), 0); i
++)
1776 if (insn_sets_resource_p (XVECEXP (PATTERN (target
), 0, i
), &needed
, 1))
1779 /* Scan backwards until we reach a label or an insn that uses something
1780 INSN sets or sets something insn uses or sets. */
1782 for (trial
= PREV_INSN (target
),
1783 insns_to_search
= MAX_DELAY_SLOT_INSN_SEARCH
;
1784 trial
&& GET_CODE (trial
) != CODE_LABEL
&& insns_to_search
> 0;
1785 trial
= PREV_INSN (trial
), --insns_to_search
)
1787 if (GET_CODE (trial
) != INSN
&& GET_CODE (trial
) != CALL_INSN
1788 && GET_CODE (trial
) != JUMP_INSN
)
1791 pat
= PATTERN (trial
);
1792 if (GET_CODE (pat
) == USE
|| GET_CODE (pat
) == CLOBBER
)
1795 if (GET_CODE (pat
) == SEQUENCE
)
1797 /* If this is a CALL_INSN and its delay slots, it is hard to track
1798 the resource needs properly, so give up. */
1799 if (GET_CODE (XVECEXP (pat
, 0, 0)) == CALL_INSN
)
1802 /* If this is an INSN or JUMP_INSN with delayed effects, it
1803 is hard to track the resource needs properly, so give up. */
1805 #ifdef INSN_SETS_ARE_DELAYED
1806 if (INSN_SETS_ARE_DELAYED (XVECEXP (pat
, 0, 0)))
1810 #ifdef INSN_REFERENCES_ARE_DELAYED
1811 if (INSN_REFERENCES_ARE_DELAYED (XVECEXP (pat
, 0, 0)))
1815 /* See if any of the insns in the delay slot match, updating
1816 resource requirements as we go. */
1817 for (i
= XVECLEN (pat
, 0) - 1; i
> 0; i
--)
1819 rtx candidate
= XVECEXP (pat
, 0, i
);
1821 /* If an insn will be annulled if the branch is false, it isn't
1822 considered as a possible duplicate insn. */
1823 if (rtx_equal_p (PATTERN (candidate
), ipat
)
1824 && ! (INSN_ANNULLED_BRANCH_P (XVECEXP (pat
, 0, 0))
1825 && INSN_FROM_TARGET_P (candidate
)))
1827 /* Show that this insn will be used in the sequel. */
1828 INSN_FROM_TARGET_P (candidate
) = 0;
1832 /* Unless this is an annulled insn from the target of a branch,
1833 we must stop if it sets anything needed or set by INSN. */
1834 if ((! INSN_ANNULLED_BRANCH_P (XVECEXP (pat
, 0, 0))
1835 || ! INSN_FROM_TARGET_P (candidate
))
1836 && insn_sets_resource_p (candidate
, &needed
, 1))
1840 /* If the insn requiring the delay slot conflicts with INSN, we
1842 if (insn_sets_resource_p (XVECEXP (pat
, 0, 0), &needed
, 1))
1847 /* See if TRIAL is the same as INSN. */
1848 pat
= PATTERN (trial
);
1849 if (rtx_equal_p (pat
, ipat
))
1852 /* Can't go any further if TRIAL conflicts with INSN. */
1853 if (insn_sets_resource_p (trial
, &needed
, 1))
1861 /* Return 1 if THREAD can only be executed in one way. If LABEL is nonzero,
1862 it is the target of the branch insn being scanned. If ALLOW_FALLTHROUGH
1863 is nonzero, we are allowed to fall into this thread; otherwise, we are
1866 If LABEL is used more than one or we pass a label other than LABEL before
1867 finding an active insn, we do not own this thread. */
1870 own_thread_p (thread
, label
, allow_fallthrough
)
1873 int allow_fallthrough
;
1878 /* We don't own the function end. */
1882 /* Get the first active insn, or THREAD, if it is an active insn. */
1883 active_insn
= next_active_insn (PREV_INSN (thread
));
1885 for (insn
= thread
; insn
!= active_insn
; insn
= NEXT_INSN (insn
))
1886 if (GET_CODE (insn
) == CODE_LABEL
1887 && (insn
!= label
|| LABEL_NUSES (insn
) != 1))
1890 if (allow_fallthrough
)
1893 /* Ensure that we reach a BARRIER before any insn or label. */
1894 for (insn
= prev_nonnote_insn (thread
);
1895 insn
== 0 || GET_CODE (insn
) != BARRIER
;
1896 insn
= prev_nonnote_insn (insn
))
1898 || GET_CODE (insn
) == CODE_LABEL
1899 || (GET_CODE (insn
) == INSN
1900 && GET_CODE (PATTERN (insn
)) != USE
1901 && GET_CODE (PATTERN (insn
)) != CLOBBER
))
1907 /* Called when INSN is being moved from a location near the target of a jump.
1908 We leave a marker of the form (use (INSN)) immediately in front
1909 of WHERE for mark_target_live_regs. These markers will be deleted when
1912 We used to try to update the live status of registers if WHERE is at
1913 the start of a basic block, but that can't work since we may remove a
1914 BARRIER in relax_delay_slots. */
1917 update_block (insn
, where
)
1921 /* Ignore if this was in a delay slot and it came from the target of
1923 if (INSN_FROM_TARGET_P (insn
))
1926 emit_insn_before (gen_rtx_USE (VOIDmode
, insn
), where
);
1928 /* INSN might be making a value live in a block where it didn't use to
1929 be. So recompute liveness information for this block. */
1931 incr_ticks_for_insn (insn
);
1934 /* Similar to REDIRECT_JUMP except that we update the BB_TICKS entry for
1935 the basic block containing the jump. */
1938 reorg_redirect_jump (jump
, nlabel
)
1942 incr_ticks_for_insn (jump
);
1943 return redirect_jump (jump
, nlabel
, 1);
1946 /* Called when INSN is being moved forward into a delay slot of DELAYED_INSN.
1947 We check every instruction between INSN and DELAYED_INSN for REG_DEAD notes
1948 that reference values used in INSN. If we find one, then we move the
1949 REG_DEAD note to INSN.
1951 This is needed to handle the case where an later insn (after INSN) has a
1952 REG_DEAD note for a register used by INSN, and this later insn subsequently
1953 gets moved before a CODE_LABEL because it is a redundant insn. In this
1954 case, mark_target_live_regs may be confused into thinking the register
1955 is dead because it sees a REG_DEAD note immediately before a CODE_LABEL. */
1958 update_reg_dead_notes (insn
, delayed_insn
)
1959 rtx insn
, delayed_insn
;
1963 for (p
= next_nonnote_insn (insn
); p
!= delayed_insn
;
1964 p
= next_nonnote_insn (p
))
1965 for (link
= REG_NOTES (p
); link
; link
= next
)
1967 next
= XEXP (link
, 1);
1969 if (REG_NOTE_KIND (link
) != REG_DEAD
1970 || GET_CODE (XEXP (link
, 0)) != REG
)
1973 if (reg_referenced_p (XEXP (link
, 0), PATTERN (insn
)))
1975 /* Move the REG_DEAD note from P to INSN. */
1976 remove_note (p
, link
);
1977 XEXP (link
, 1) = REG_NOTES (insn
);
1978 REG_NOTES (insn
) = link
;
1983 /* Called when an insn redundant with start_insn is deleted. If there
1984 is a REG_DEAD note for the target of start_insn between start_insn
1985 and stop_insn, then the REG_DEAD note needs to be deleted since the
1986 value no longer dies there.
1988 If the REG_DEAD note isn't deleted, then mark_target_live_regs may be
1989 confused into thinking the register is dead. */
1992 fix_reg_dead_note (start_insn
, stop_insn
)
1993 rtx start_insn
, stop_insn
;
1997 for (p
= next_nonnote_insn (start_insn
); p
!= stop_insn
;
1998 p
= next_nonnote_insn (p
))
1999 for (link
= REG_NOTES (p
); link
; link
= next
)
2001 next
= XEXP (link
, 1);
2003 if (REG_NOTE_KIND (link
) != REG_DEAD
2004 || GET_CODE (XEXP (link
, 0)) != REG
)
2007 if (reg_set_p (XEXP (link
, 0), PATTERN (start_insn
)))
2009 remove_note (p
, link
);
2015 /* Delete any REG_UNUSED notes that exist on INSN but not on REDUNDANT_INSN.
2017 This handles the case of udivmodXi4 instructions which optimize their
2018 output depending on whether any REG_UNUSED notes are present.
2019 we must make sure that INSN calculates as many results as REDUNDANT_INSN
2023 update_reg_unused_notes (insn
, redundant_insn
)
2024 rtx insn
, redundant_insn
;
2028 for (link
= REG_NOTES (insn
); link
; link
= next
)
2030 next
= XEXP (link
, 1);
2032 if (REG_NOTE_KIND (link
) != REG_UNUSED
2033 || GET_CODE (XEXP (link
, 0)) != REG
)
2036 if (! find_regno_note (redundant_insn
, REG_UNUSED
,
2037 REGNO (XEXP (link
, 0))))
2038 remove_note (insn
, link
);
2042 /* Scan a function looking for insns that need a delay slot and find insns to
2043 put into the delay slot.
2045 NON_JUMPS_P is nonzero if we are to only try to fill non-jump insns (such
2046 as calls). We do these first since we don't want jump insns (that are
2047 easier to fill) to get the only insns that could be used for non-jump insns.
2048 When it is zero, only try to fill JUMP_INSNs.
2050 When slots are filled in this manner, the insns (including the
2051 delay_insn) are put together in a SEQUENCE rtx. In this fashion,
2052 it is possible to tell whether a delay slot has really been filled
2053 or not. `final' knows how to deal with this, by communicating
2054 through FINAL_SEQUENCE. */
2057 fill_simple_delay_slots (non_jumps_p
)
2060 rtx insn
, pat
, trial
, next_trial
;
2062 int num_unfilled_slots
= unfilled_slots_next
- unfilled_slots_base
;
2063 struct resources needed
, set
;
2064 int slots_to_fill
, slots_filled
;
2067 for (i
= 0; i
< num_unfilled_slots
; i
++)
2070 /* Get the next insn to fill. If it has already had any slots assigned,
2071 we can't do anything with it. Maybe we'll improve this later. */
2073 insn
= unfilled_slots_base
[i
];
2075 || INSN_DELETED_P (insn
)
2076 || (GET_CODE (insn
) == INSN
2077 && GET_CODE (PATTERN (insn
)) == SEQUENCE
)
2078 || (GET_CODE (insn
) == JUMP_INSN
&& non_jumps_p
)
2079 || (GET_CODE (insn
) != JUMP_INSN
&& ! non_jumps_p
))
2082 /* It may have been that this insn used to need delay slots, but
2083 now doesn't; ignore in that case. This can happen, for example,
2084 on the HP PA RISC, where the number of delay slots depends on
2085 what insns are nearby. */
2086 slots_to_fill
= num_delay_slots (insn
);
2088 /* Some machine description have defined instructions to have
2089 delay slots only in certain circumstances which may depend on
2090 nearby insns (which change due to reorg's actions).
2092 For example, the PA port normally has delay slots for unconditional
2095 However, the PA port claims such jumps do not have a delay slot
2096 if they are immediate successors of certain CALL_INSNs. This
2097 allows the port to favor filling the delay slot of the call with
2098 the unconditional jump. */
2099 if (slots_to_fill
== 0)
2102 /* This insn needs, or can use, some delay slots. SLOTS_TO_FILL
2103 says how many. After initialization, first try optimizing
2106 nop add %o7,.-L1,%o7
2110 If this case applies, the delay slot of the call is filled with
2111 the unconditional jump. This is done first to avoid having the
2112 delay slot of the call filled in the backward scan. Also, since
2113 the unconditional jump is likely to also have a delay slot, that
2114 insn must exist when it is subsequently scanned.
2116 This is tried on each insn with delay slots as some machines
2117 have insns which perform calls, but are not represented as
2123 if (GET_CODE (insn
) == JUMP_INSN
)
2124 flags
= get_jump_flags (insn
, JUMP_LABEL (insn
));
2126 flags
= get_jump_flags (insn
, NULL_RTX
);
2128 if ((trial
= next_active_insn (insn
))
2129 && GET_CODE (trial
) == JUMP_INSN
2130 && simplejump_p (trial
)
2131 && eligible_for_delay (insn
, slots_filled
, trial
, flags
)
2132 && no_labels_between_p (insn
, trial
)
2133 && ! can_throw_internal (trial
))
2137 delay_list
= add_to_delay_list (trial
, delay_list
);
2139 /* TRIAL may have had its delay slot filled, then unfilled. When
2140 the delay slot is unfilled, TRIAL is placed back on the unfilled
2141 slots obstack. Unfortunately, it is placed on the end of the
2142 obstack, not in its original location. Therefore, we must search
2143 from entry i + 1 to the end of the unfilled slots obstack to
2144 try and find TRIAL. */
2145 tmp
= &unfilled_slots_base
[i
+ 1];
2146 while (*tmp
!= trial
&& tmp
!= unfilled_slots_next
)
2149 /* Remove the unconditional jump from consideration for delay slot
2150 filling and unthread it. */
2154 rtx next
= NEXT_INSN (trial
);
2155 rtx prev
= PREV_INSN (trial
);
2157 NEXT_INSN (prev
) = next
;
2159 PREV_INSN (next
) = prev
;
2163 /* Now, scan backwards from the insn to search for a potential
2164 delay-slot candidate. Stop searching when a label or jump is hit.
2166 For each candidate, if it is to go into the delay slot (moved
2167 forward in execution sequence), it must not need or set any resources
2168 that were set by later insns and must not set any resources that
2169 are needed for those insns.
2171 The delay slot insn itself sets resources unless it is a call
2172 (in which case the called routine, not the insn itself, is doing
2175 if (slots_filled
< slots_to_fill
)
2177 CLEAR_RESOURCE (&needed
);
2178 CLEAR_RESOURCE (&set
);
2179 mark_set_resources (insn
, &set
, 0, MARK_SRC_DEST
);
2180 mark_referenced_resources (insn
, &needed
, 0);
2182 for (trial
= prev_nonnote_insn (insn
); ! stop_search_p (trial
, 1);
2185 next_trial
= prev_nonnote_insn (trial
);
2187 /* This must be an INSN or CALL_INSN. */
2188 pat
= PATTERN (trial
);
2190 /* USE and CLOBBER at this level was just for flow; ignore it. */
2191 if (GET_CODE (pat
) == USE
|| GET_CODE (pat
) == CLOBBER
)
2194 /* Check for resource conflict first, to avoid unnecessary
2196 if (! insn_references_resource_p (trial
, &set
, 1)
2197 && ! insn_sets_resource_p (trial
, &set
, 1)
2198 && ! insn_sets_resource_p (trial
, &needed
, 1)
2200 /* Can't separate set of cc0 from its use. */
2201 && ! (reg_mentioned_p (cc0_rtx
, pat
) && ! sets_cc0_p (pat
))
2203 && ! can_throw_internal (trial
))
2205 trial
= try_split (pat
, trial
, 1);
2206 next_trial
= prev_nonnote_insn (trial
);
2207 if (eligible_for_delay (insn
, slots_filled
, trial
, flags
))
2209 /* In this case, we are searching backward, so if we
2210 find insns to put on the delay list, we want
2211 to put them at the head, rather than the
2212 tail, of the list. */
2214 update_reg_dead_notes (trial
, insn
);
2215 delay_list
= gen_rtx_INSN_LIST (VOIDmode
,
2217 update_block (trial
, trial
);
2218 delete_related_insns (trial
);
2219 if (slots_to_fill
== ++slots_filled
)
2225 mark_set_resources (trial
, &set
, 0, MARK_SRC_DEST_CALL
);
2226 mark_referenced_resources (trial
, &needed
, 1);
2230 /* If all needed slots haven't been filled, we come here. */
2232 /* Try to optimize case of jumping around a single insn. */
2233 #if defined(ANNUL_IFFALSE_SLOTS) || defined(ANNUL_IFTRUE_SLOTS)
2234 if (slots_filled
!= slots_to_fill
2236 && GET_CODE (insn
) == JUMP_INSN
2237 && (condjump_p (insn
) || condjump_in_parallel_p (insn
)))
2239 delay_list
= optimize_skip (insn
);
2245 /* Try to get insns from beyond the insn needing the delay slot.
2246 These insns can neither set or reference resources set in insns being
2247 skipped, cannot set resources in the insn being skipped, and, if this
2248 is a CALL_INSN (or a CALL_INSN is passed), cannot trap (because the
2249 call might not return).
2251 There used to be code which continued past the target label if
2252 we saw all uses of the target label. This code did not work,
2253 because it failed to account for some instructions which were
2254 both annulled and marked as from the target. This can happen as a
2255 result of optimize_skip. Since this code was redundant with
2256 fill_eager_delay_slots anyways, it was just deleted. */
2258 if (slots_filled
!= slots_to_fill
2259 /* If this instruction could throw an exception which is
2260 caught in the same function, then it's not safe to fill
2261 the delay slot with an instruction from beyond this
2262 point. For example, consider:
2273 Even though `i' is a local variable, we must be sure not
2274 to put `i = 3' in the delay slot if `f' might throw an
2277 Presumably, we should also check to see if we could get
2278 back to this function via `setjmp'. */
2279 && ! can_throw_internal (insn
)
2280 && (GET_CODE (insn
) != JUMP_INSN
2281 || ((condjump_p (insn
) || condjump_in_parallel_p (insn
))
2282 && ! simplejump_p (insn
)
2283 && JUMP_LABEL (insn
) != 0)))
2285 /* Invariant: If insn is a JUMP_INSN, the insn's jump
2286 label. Otherwise, zero. */
2288 int maybe_never
= 0;
2289 rtx pat
, trial_delay
;
2291 CLEAR_RESOURCE (&needed
);
2292 CLEAR_RESOURCE (&set
);
2294 if (GET_CODE (insn
) == CALL_INSN
)
2296 mark_set_resources (insn
, &set
, 0, MARK_SRC_DEST_CALL
);
2297 mark_referenced_resources (insn
, &needed
, 1);
2302 mark_set_resources (insn
, &set
, 0, MARK_SRC_DEST_CALL
);
2303 mark_referenced_resources (insn
, &needed
, 1);
2304 if (GET_CODE (insn
) == JUMP_INSN
)
2305 target
= JUMP_LABEL (insn
);
2309 for (trial
= next_nonnote_insn (insn
); trial
; trial
= next_trial
)
2311 next_trial
= next_nonnote_insn (trial
);
2313 if (GET_CODE (trial
) == CODE_LABEL
2314 || GET_CODE (trial
) == BARRIER
)
2317 /* We must have an INSN, JUMP_INSN, or CALL_INSN. */
2318 pat
= PATTERN (trial
);
2320 /* Stand-alone USE and CLOBBER are just for flow. */
2321 if (GET_CODE (pat
) == USE
|| GET_CODE (pat
) == CLOBBER
)
2324 /* If this already has filled delay slots, get the insn needing
2326 if (GET_CODE (pat
) == SEQUENCE
)
2327 trial_delay
= XVECEXP (pat
, 0, 0);
2329 trial_delay
= trial
;
2331 /* Stop our search when seeing an unconditional jump. */
2332 if (GET_CODE (trial_delay
) == JUMP_INSN
)
2335 /* See if we have a resource problem before we try to
2337 if (GET_CODE (pat
) != SEQUENCE
2338 && ! insn_references_resource_p (trial
, &set
, 1)
2339 && ! insn_sets_resource_p (trial
, &set
, 1)
2340 && ! insn_sets_resource_p (trial
, &needed
, 1)
2342 && ! (reg_mentioned_p (cc0_rtx
, pat
) && ! sets_cc0_p (pat
))
2344 && ! (maybe_never
&& may_trap_p (pat
))
2345 && (trial
= try_split (pat
, trial
, 0))
2346 && eligible_for_delay (insn
, slots_filled
, trial
, flags
)
2347 && ! can_throw_internal(trial
))
2349 next_trial
= next_nonnote_insn (trial
);
2350 delay_list
= add_to_delay_list (trial
, delay_list
);
2353 if (reg_mentioned_p (cc0_rtx
, pat
))
2354 link_cc0_insns (trial
);
2357 delete_related_insns (trial
);
2358 if (slots_to_fill
== ++slots_filled
)
2363 mark_set_resources (trial
, &set
, 0, MARK_SRC_DEST_CALL
);
2364 mark_referenced_resources (trial
, &needed
, 1);
2366 /* Ensure we don't put insns between the setting of cc and the
2367 comparison by moving a setting of cc into an earlier delay
2368 slot since these insns could clobber the condition code. */
2371 /* If this is a call or jump, we might not get here. */
2372 if (GET_CODE (trial_delay
) == CALL_INSN
2373 || GET_CODE (trial_delay
) == JUMP_INSN
)
2377 /* If there are slots left to fill and our search was stopped by an
2378 unconditional branch, try the insn at the branch target. We can
2379 redirect the branch if it works.
2381 Don't do this if the insn at the branch target is a branch. */
2382 if (slots_to_fill
!= slots_filled
2384 && GET_CODE (trial
) == JUMP_INSN
2385 && simplejump_p (trial
)
2386 && (target
== 0 || JUMP_LABEL (trial
) == target
)
2387 && (next_trial
= next_active_insn (JUMP_LABEL (trial
))) != 0
2388 && ! (GET_CODE (next_trial
) == INSN
2389 && GET_CODE (PATTERN (next_trial
)) == SEQUENCE
)
2390 && GET_CODE (next_trial
) != JUMP_INSN
2391 && ! insn_references_resource_p (next_trial
, &set
, 1)
2392 && ! insn_sets_resource_p (next_trial
, &set
, 1)
2393 && ! insn_sets_resource_p (next_trial
, &needed
, 1)
2395 && ! reg_mentioned_p (cc0_rtx
, PATTERN (next_trial
))
2397 && ! (maybe_never
&& may_trap_p (PATTERN (next_trial
)))
2398 && (next_trial
= try_split (PATTERN (next_trial
), next_trial
, 0))
2399 && eligible_for_delay (insn
, slots_filled
, next_trial
, flags
)
2400 && ! can_throw_internal (trial
))
2402 rtx new_label
= next_active_insn (next_trial
);
2405 new_label
= get_label_before (new_label
);
2407 new_label
= find_end_label ();
2410 = add_to_delay_list (copy_rtx (next_trial
), delay_list
);
2412 reorg_redirect_jump (trial
, new_label
);
2414 /* If we merged because we both jumped to the same place,
2415 redirect the original insn also. */
2417 reorg_redirect_jump (insn
, new_label
);
2421 /* If this is an unconditional jump, then try to get insns from the
2422 target of the jump. */
2423 if (GET_CODE (insn
) == JUMP_INSN
2424 && simplejump_p (insn
)
2425 && slots_filled
!= slots_to_fill
)
2427 = fill_slots_from_thread (insn
, const_true_rtx
,
2428 next_active_insn (JUMP_LABEL (insn
)),
2430 own_thread_p (JUMP_LABEL (insn
),
2431 JUMP_LABEL (insn
), 0),
2432 slots_to_fill
, &slots_filled
,
2436 unfilled_slots_base
[i
]
2437 = emit_delay_sequence (insn
, delay_list
, slots_filled
);
2439 if (slots_to_fill
== slots_filled
)
2440 unfilled_slots_base
[i
] = 0;
2442 note_delay_statistics (slots_filled
, 0);
2445 #ifdef DELAY_SLOTS_FOR_EPILOGUE
2446 /* See if the epilogue needs any delay slots. Try to fill them if so.
2447 The only thing we can do is scan backwards from the end of the
2448 function. If we did this in a previous pass, it is incorrect to do it
2450 if (current_function_epilogue_delay_list
)
2453 slots_to_fill
= DELAY_SLOTS_FOR_EPILOGUE
;
2454 if (slots_to_fill
== 0)
2458 CLEAR_RESOURCE (&set
);
2460 /* The frame pointer and stack pointer are needed at the beginning of
2461 the epilogue, so instructions setting them can not be put in the
2462 epilogue delay slot. However, everything else needed at function
2463 end is safe, so we don't want to use end_of_function_needs here. */
2464 CLEAR_RESOURCE (&needed
);
2465 if (frame_pointer_needed
)
2467 SET_HARD_REG_BIT (needed
.regs
, FRAME_POINTER_REGNUM
);
2468 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
2469 SET_HARD_REG_BIT (needed
.regs
, HARD_FRAME_POINTER_REGNUM
);
2471 #ifdef EXIT_IGNORE_STACK
2472 if (! EXIT_IGNORE_STACK
2473 || current_function_sp_is_unchanging
)
2475 SET_HARD_REG_BIT (needed
.regs
, STACK_POINTER_REGNUM
);
2478 SET_HARD_REG_BIT (needed
.regs
, STACK_POINTER_REGNUM
);
2480 #ifdef EPILOGUE_USES
2481 for (i
= 0; i
< FIRST_PSEUDO_REGISTER
; i
++)
2483 if (EPILOGUE_USES (i
))
2484 SET_HARD_REG_BIT (needed
.regs
, i
);
2488 for (trial
= get_last_insn (); ! stop_search_p (trial
, 1);
2489 trial
= PREV_INSN (trial
))
2491 if (GET_CODE (trial
) == NOTE
)
2493 pat
= PATTERN (trial
);
2494 if (GET_CODE (pat
) == USE
|| GET_CODE (pat
) == CLOBBER
)
2497 if (! insn_references_resource_p (trial
, &set
, 1)
2498 && ! insn_sets_resource_p (trial
, &needed
, 1)
2499 && ! insn_sets_resource_p (trial
, &set
, 1)
2501 /* Don't want to mess with cc0 here. */
2502 && ! reg_mentioned_p (cc0_rtx
, pat
)
2504 && ! can_throw_internal (trial
))
2506 trial
= try_split (pat
, trial
, 1);
2507 if (ELIGIBLE_FOR_EPILOGUE_DELAY (trial
, slots_filled
))
2509 /* Here as well we are searching backward, so put the
2510 insns we find on the head of the list. */
2512 current_function_epilogue_delay_list
2513 = gen_rtx_INSN_LIST (VOIDmode
, trial
,
2514 current_function_epilogue_delay_list
);
2515 mark_end_of_function_resources (trial
, 1);
2516 update_block (trial
, trial
);
2517 delete_related_insns (trial
);
2519 /* Clear deleted bit so final.c will output the insn. */
2520 INSN_DELETED_P (trial
) = 0;
2522 if (slots_to_fill
== ++slots_filled
)
2528 mark_set_resources (trial
, &set
, 0, MARK_SRC_DEST_CALL
);
2529 mark_referenced_resources (trial
, &needed
, 1);
2532 note_delay_statistics (slots_filled
, 0);
2536 /* Try to find insns to place in delay slots.
2538 INSN is the jump needing SLOTS_TO_FILL delay slots. It tests CONDITION
2539 or is an unconditional branch if CONDITION is const_true_rtx.
2540 *PSLOTS_FILLED is updated with the number of slots that we have filled.
2542 THREAD is a flow-of-control, either the insns to be executed if the
2543 branch is true or if the branch is false, THREAD_IF_TRUE says which.
2545 OPPOSITE_THREAD is the thread in the opposite direction. It is used
2546 to see if any potential delay slot insns set things needed there.
2548 LIKELY is nonzero if it is extremely likely that the branch will be
2549 taken and THREAD_IF_TRUE is set. This is used for the branch at the
2550 end of a loop back up to the top.
2552 OWN_THREAD and OWN_OPPOSITE_THREAD are true if we are the only user of the
2553 thread. I.e., it is the fallthrough code of our jump or the target of the
2554 jump when we are the only jump going there.
2556 If OWN_THREAD is false, it must be the "true" thread of a jump. In that
2557 case, we can only take insns from the head of the thread for our delay
2558 slot. We then adjust the jump to point after the insns we have taken. */
2561 fill_slots_from_thread (insn
, condition
, thread
, opposite_thread
, likely
,
2562 thread_if_true
, own_thread
,
2563 slots_to_fill
, pslots_filled
, delay_list
)
2566 rtx thread
, opposite_thread
;
2570 int slots_to_fill
, *pslots_filled
;
2574 struct resources opposite_needed
, set
, needed
;
2580 /* Validate our arguments. */
2581 if ((condition
== const_true_rtx
&& ! thread_if_true
)
2582 || (! own_thread
&& ! thread_if_true
))
2585 flags
= get_jump_flags (insn
, JUMP_LABEL (insn
));
2587 /* If our thread is the end of subroutine, we can't get any delay
2592 /* If this is an unconditional branch, nothing is needed at the
2593 opposite thread. Otherwise, compute what is needed there. */
2594 if (condition
== const_true_rtx
)
2595 CLEAR_RESOURCE (&opposite_needed
);
2597 mark_target_live_regs (get_insns (), opposite_thread
, &opposite_needed
);
2599 /* If the insn at THREAD can be split, do it here to avoid having to
2600 update THREAD and NEW_THREAD if it is done in the loop below. Also
2601 initialize NEW_THREAD. */
2603 new_thread
= thread
= try_split (PATTERN (thread
), thread
, 0);
2605 /* Scan insns at THREAD. We are looking for an insn that can be removed
2606 from THREAD (it neither sets nor references resources that were set
2607 ahead of it and it doesn't set anything needs by the insns ahead of
2608 it) and that either can be placed in an annulling insn or aren't
2609 needed at OPPOSITE_THREAD. */
2611 CLEAR_RESOURCE (&needed
);
2612 CLEAR_RESOURCE (&set
);
2614 /* If we do not own this thread, we must stop as soon as we find
2615 something that we can't put in a delay slot, since all we can do
2616 is branch into THREAD at a later point. Therefore, labels stop
2617 the search if this is not the `true' thread. */
2619 for (trial
= thread
;
2620 ! stop_search_p (trial
, ! thread_if_true
) && (! lose
|| own_thread
);
2621 trial
= next_nonnote_insn (trial
))
2625 /* If we have passed a label, we no longer own this thread. */
2626 if (GET_CODE (trial
) == CODE_LABEL
)
2632 pat
= PATTERN (trial
);
2633 if (GET_CODE (pat
) == USE
|| GET_CODE (pat
) == CLOBBER
)
2636 /* If TRIAL conflicts with the insns ahead of it, we lose. Also,
2637 don't separate or copy insns that set and use CC0. */
2638 if (! insn_references_resource_p (trial
, &set
, 1)
2639 && ! insn_sets_resource_p (trial
, &set
, 1)
2640 && ! insn_sets_resource_p (trial
, &needed
, 1)
2642 && ! (reg_mentioned_p (cc0_rtx
, pat
)
2643 && (! own_thread
|| ! sets_cc0_p (pat
)))
2645 && ! can_throw_internal (trial
))
2649 /* If TRIAL is redundant with some insn before INSN, we don't
2650 actually need to add it to the delay list; we can merely pretend
2652 if ((prior_insn
= redundant_insn (trial
, insn
, delay_list
)))
2654 fix_reg_dead_note (prior_insn
, insn
);
2657 update_block (trial
, thread
);
2658 if (trial
== thread
)
2660 thread
= next_active_insn (thread
);
2661 if (new_thread
== trial
)
2662 new_thread
= thread
;
2665 delete_related_insns (trial
);
2669 update_reg_unused_notes (prior_insn
, trial
);
2670 new_thread
= next_active_insn (trial
);
2676 /* There are two ways we can win: If TRIAL doesn't set anything
2677 needed at the opposite thread and can't trap, or if it can
2678 go into an annulled delay slot. */
2680 && (condition
== const_true_rtx
2681 || (! insn_sets_resource_p (trial
, &opposite_needed
, 1)
2682 && ! may_trap_p (pat
))))
2685 trial
= try_split (pat
, trial
, 0);
2686 if (new_thread
== old_trial
)
2688 if (thread
== old_trial
)
2690 pat
= PATTERN (trial
);
2691 if (eligible_for_delay (insn
, *pslots_filled
, trial
, flags
))
2695 #ifdef ANNUL_IFTRUE_SLOTS
2698 #ifdef ANNUL_IFFALSE_SLOTS
2704 trial
= try_split (pat
, trial
, 0);
2705 if (new_thread
== old_trial
)
2707 if (thread
== old_trial
)
2709 pat
= PATTERN (trial
);
2710 if ((must_annul
|| delay_list
== NULL
) && (thread_if_true
2711 ? check_annul_list_true_false (0, delay_list
)
2712 && eligible_for_annul_false (insn
, *pslots_filled
, trial
, flags
)
2713 : check_annul_list_true_false (1, delay_list
)
2714 && eligible_for_annul_true (insn
, *pslots_filled
, trial
, flags
)))
2722 if (reg_mentioned_p (cc0_rtx
, pat
))
2723 link_cc0_insns (trial
);
2726 /* If we own this thread, delete the insn. If this is the
2727 destination of a branch, show that a basic block status
2728 may have been updated. In any case, mark the new
2729 starting point of this thread. */
2734 update_block (trial
, thread
);
2735 if (trial
== thread
)
2737 thread
= next_active_insn (thread
);
2738 if (new_thread
== trial
)
2739 new_thread
= thread
;
2742 /* We are moving this insn, not deleting it. We must
2743 temporarily increment the use count on any referenced
2744 label lest it be deleted by delete_related_insns. */
2745 note
= find_reg_note (trial
, REG_LABEL
, 0);
2746 /* REG_LABEL could be NOTE_INSN_DELETED_LABEL too. */
2747 if (note
&& GET_CODE (XEXP (note
, 0)) == CODE_LABEL
)
2748 LABEL_NUSES (XEXP (note
, 0))++;
2750 delete_related_insns (trial
);
2752 if (note
&& GET_CODE (XEXP (note
, 0)) == CODE_LABEL
)
2753 LABEL_NUSES (XEXP (note
, 0))--;
2756 new_thread
= next_active_insn (trial
);
2758 temp
= own_thread
? trial
: copy_rtx (trial
);
2760 INSN_FROM_TARGET_P (temp
) = 1;
2762 delay_list
= add_to_delay_list (temp
, delay_list
);
2764 if (slots_to_fill
== ++(*pslots_filled
))
2766 /* Even though we have filled all the slots, we
2767 may be branching to a location that has a
2768 redundant insn. Skip any if so. */
2769 while (new_thread
&& ! own_thread
2770 && ! insn_sets_resource_p (new_thread
, &set
, 1)
2771 && ! insn_sets_resource_p (new_thread
, &needed
, 1)
2772 && ! insn_references_resource_p (new_thread
,
2775 = redundant_insn (new_thread
, insn
,
2778 /* We know we do not own the thread, so no need
2779 to call update_block and delete_insn. */
2780 fix_reg_dead_note (prior_insn
, insn
);
2781 update_reg_unused_notes (prior_insn
, new_thread
);
2782 new_thread
= next_active_insn (new_thread
);
2792 /* This insn can't go into a delay slot. */
2794 mark_set_resources (trial
, &set
, 0, MARK_SRC_DEST_CALL
);
2795 mark_referenced_resources (trial
, &needed
, 1);
2797 /* Ensure we don't put insns between the setting of cc and the comparison
2798 by moving a setting of cc into an earlier delay slot since these insns
2799 could clobber the condition code. */
2802 /* If this insn is a register-register copy and the next insn has
2803 a use of our destination, change it to use our source. That way,
2804 it will become a candidate for our delay slot the next time
2805 through this loop. This case occurs commonly in loops that
2808 We could check for more complex cases than those tested below,
2809 but it doesn't seem worth it. It might also be a good idea to try
2810 to swap the two insns. That might do better.
2812 We can't do this if the next insn modifies our destination, because
2813 that would make the replacement into the insn invalid. We also can't
2814 do this if it modifies our source, because it might be an earlyclobber
2815 operand. This latter test also prevents updating the contents of
2818 if (GET_CODE (trial
) == INSN
&& GET_CODE (pat
) == SET
2819 && GET_CODE (SET_SRC (pat
)) == REG
2820 && GET_CODE (SET_DEST (pat
)) == REG
)
2822 rtx next
= next_nonnote_insn (trial
);
2824 if (next
&& GET_CODE (next
) == INSN
2825 && GET_CODE (PATTERN (next
)) != USE
2826 && ! reg_set_p (SET_DEST (pat
), next
)
2827 && ! reg_set_p (SET_SRC (pat
), next
)
2828 && reg_referenced_p (SET_DEST (pat
), PATTERN (next
))
2829 && ! modified_in_p (SET_DEST (pat
), next
))
2830 validate_replace_rtx (SET_DEST (pat
), SET_SRC (pat
), next
);
2834 /* If we stopped on a branch insn that has delay slots, see if we can
2835 steal some of the insns in those slots. */
2836 if (trial
&& GET_CODE (trial
) == INSN
2837 && GET_CODE (PATTERN (trial
)) == SEQUENCE
2838 && GET_CODE (XVECEXP (PATTERN (trial
), 0, 0)) == JUMP_INSN
)
2840 /* If this is the `true' thread, we will want to follow the jump,
2841 so we can only do this if we have taken everything up to here. */
2842 if (thread_if_true
&& trial
== new_thread
)
2845 = steal_delay_list_from_target (insn
, condition
, PATTERN (trial
),
2846 delay_list
, &set
, &needed
,
2847 &opposite_needed
, slots_to_fill
,
2848 pslots_filled
, &must_annul
,
2850 /* If we owned the thread and are told that it branched
2851 elsewhere, make sure we own the thread at the new location. */
2852 if (own_thread
&& trial
!= new_thread
)
2853 own_thread
= own_thread_p (new_thread
, new_thread
, 0);
2855 else if (! thread_if_true
)
2857 = steal_delay_list_from_fallthrough (insn
, condition
,
2859 delay_list
, &set
, &needed
,
2860 &opposite_needed
, slots_to_fill
,
2861 pslots_filled
, &must_annul
);
2864 /* If we haven't found anything for this delay slot and it is very
2865 likely that the branch will be taken, see if the insn at our target
2866 increments or decrements a register with an increment that does not
2867 depend on the destination register. If so, try to place the opposite
2868 arithmetic insn after the jump insn and put the arithmetic insn in the
2869 delay slot. If we can't do this, return. */
2870 if (delay_list
== 0 && likely
&& new_thread
2871 && GET_CODE (new_thread
) == INSN
2872 && GET_CODE (PATTERN (new_thread
)) != ASM_INPUT
2873 && asm_noperands (PATTERN (new_thread
)) < 0)
2875 rtx pat
= PATTERN (new_thread
);
2880 pat
= PATTERN (trial
);
2882 if (GET_CODE (trial
) != INSN
2883 || GET_CODE (pat
) != SET
2884 || ! eligible_for_delay (insn
, 0, trial
, flags
)
2885 || can_throw_internal (trial
))
2888 dest
= SET_DEST (pat
), src
= SET_SRC (pat
);
2889 if ((GET_CODE (src
) == PLUS
|| GET_CODE (src
) == MINUS
)
2890 && rtx_equal_p (XEXP (src
, 0), dest
)
2891 && ! reg_overlap_mentioned_p (dest
, XEXP (src
, 1))
2892 && ! side_effects_p (pat
))
2894 rtx other
= XEXP (src
, 1);
2898 /* If this is a constant adjustment, use the same code with
2899 the negated constant. Otherwise, reverse the sense of the
2901 if (GET_CODE (other
) == CONST_INT
)
2902 new_arith
= gen_rtx_fmt_ee (GET_CODE (src
), GET_MODE (src
), dest
,
2903 negate_rtx (GET_MODE (src
), other
));
2905 new_arith
= gen_rtx_fmt_ee (GET_CODE (src
) == PLUS
? MINUS
: PLUS
,
2906 GET_MODE (src
), dest
, other
);
2908 ninsn
= emit_insn_after (gen_rtx_SET (VOIDmode
, dest
, new_arith
),
2911 if (recog_memoized (ninsn
) < 0
2912 || (extract_insn (ninsn
), ! constrain_operands (1)))
2914 delete_related_insns (ninsn
);
2920 update_block (trial
, thread
);
2921 if (trial
== thread
)
2923 thread
= next_active_insn (thread
);
2924 if (new_thread
== trial
)
2925 new_thread
= thread
;
2927 delete_related_insns (trial
);
2930 new_thread
= next_active_insn (trial
);
2932 ninsn
= own_thread
? trial
: copy_rtx (trial
);
2934 INSN_FROM_TARGET_P (ninsn
) = 1;
2936 delay_list
= add_to_delay_list (ninsn
, NULL_RTX
);
2941 if (delay_list
&& must_annul
)
2942 INSN_ANNULLED_BRANCH_P (insn
) = 1;
2944 /* If we are to branch into the middle of this thread, find an appropriate
2945 label or make a new one if none, and redirect INSN to it. If we hit the
2946 end of the function, use the end-of-function label. */
2947 if (new_thread
!= thread
)
2951 if (! thread_if_true
)
2954 if (new_thread
&& GET_CODE (new_thread
) == JUMP_INSN
2955 && (simplejump_p (new_thread
)
2956 || GET_CODE (PATTERN (new_thread
)) == RETURN
)
2957 && redirect_with_delay_list_safe_p (insn
,
2958 JUMP_LABEL (new_thread
),
2960 new_thread
= follow_jumps (JUMP_LABEL (new_thread
));
2962 if (new_thread
== 0)
2963 label
= find_end_label ();
2964 else if (GET_CODE (new_thread
) == CODE_LABEL
)
2967 label
= get_label_before (new_thread
);
2969 reorg_redirect_jump (insn
, label
);
2975 /* Make another attempt to find insns to place in delay slots.
2977 We previously looked for insns located in front of the delay insn
2978 and, for non-jump delay insns, located behind the delay insn.
2980 Here only try to schedule jump insns and try to move insns from either
2981 the target or the following insns into the delay slot. If annulling is
2982 supported, we will be likely to do this. Otherwise, we can do this only
2986 fill_eager_delay_slots ()
2990 int num_unfilled_slots
= unfilled_slots_next
- unfilled_slots_base
;
2992 for (i
= 0; i
< num_unfilled_slots
; i
++)
2995 rtx target_label
, insn_at_target
, fallthrough_insn
;
2998 int own_fallthrough
;
2999 int prediction
, slots_to_fill
, slots_filled
;
3001 insn
= unfilled_slots_base
[i
];
3003 || INSN_DELETED_P (insn
)
3004 || GET_CODE (insn
) != JUMP_INSN
3005 || ! (condjump_p (insn
) || condjump_in_parallel_p (insn
)))
3008 slots_to_fill
= num_delay_slots (insn
);
3009 /* Some machine description have defined instructions to have
3010 delay slots only in certain circumstances which may depend on
3011 nearby insns (which change due to reorg's actions).
3013 For example, the PA port normally has delay slots for unconditional
3016 However, the PA port claims such jumps do not have a delay slot
3017 if they are immediate successors of certain CALL_INSNs. This
3018 allows the port to favor filling the delay slot of the call with
3019 the unconditional jump. */
3020 if (slots_to_fill
== 0)
3024 target_label
= JUMP_LABEL (insn
);
3025 condition
= get_branch_condition (insn
, target_label
);
3030 /* Get the next active fallthrough and target insns and see if we own
3031 them. Then see whether the branch is likely true. We don't need
3032 to do a lot of this for unconditional branches. */
3034 insn_at_target
= next_active_insn (target_label
);
3035 own_target
= own_thread_p (target_label
, target_label
, 0);
3037 if (condition
== const_true_rtx
)
3039 own_fallthrough
= 0;
3040 fallthrough_insn
= 0;
3045 fallthrough_insn
= next_active_insn (insn
);
3046 own_fallthrough
= own_thread_p (NEXT_INSN (insn
), NULL_RTX
, 1);
3047 prediction
= mostly_true_jump (insn
, condition
);
3050 /* If this insn is expected to branch, first try to get insns from our
3051 target, then our fallthrough insns. If it is not expected to branch,
3052 try the other order. */
3057 = fill_slots_from_thread (insn
, condition
, insn_at_target
,
3058 fallthrough_insn
, prediction
== 2, 1,
3060 slots_to_fill
, &slots_filled
, delay_list
);
3062 if (delay_list
== 0 && own_fallthrough
)
3064 /* Even though we didn't find anything for delay slots,
3065 we might have found a redundant insn which we deleted
3066 from the thread that was filled. So we have to recompute
3067 the next insn at the target. */
3068 target_label
= JUMP_LABEL (insn
);
3069 insn_at_target
= next_active_insn (target_label
);
3072 = fill_slots_from_thread (insn
, condition
, fallthrough_insn
,
3073 insn_at_target
, 0, 0,
3075 slots_to_fill
, &slots_filled
,
3081 if (own_fallthrough
)
3083 = fill_slots_from_thread (insn
, condition
, fallthrough_insn
,
3084 insn_at_target
, 0, 0,
3086 slots_to_fill
, &slots_filled
,
3089 if (delay_list
== 0)
3091 = fill_slots_from_thread (insn
, condition
, insn_at_target
,
3092 next_active_insn (insn
), 0, 1,
3094 slots_to_fill
, &slots_filled
,
3099 unfilled_slots_base
[i
]
3100 = emit_delay_sequence (insn
, delay_list
, slots_filled
);
3102 if (slots_to_fill
== slots_filled
)
3103 unfilled_slots_base
[i
] = 0;
3105 note_delay_statistics (slots_filled
, 1);
3109 /* Once we have tried two ways to fill a delay slot, make a pass over the
3110 code to try to improve the results and to do such things as more jump
3114 relax_delay_slots (first
)
3117 rtx insn
, next
, pat
;
3118 rtx trial
, delay_insn
, target_label
;
3120 /* Look at every JUMP_INSN and see if we can improve it. */
3121 for (insn
= first
; insn
; insn
= next
)
3125 next
= next_active_insn (insn
);
3127 /* If this is a jump insn, see if it now jumps to a jump, jumps to
3128 the next insn, or jumps to a label that is not the last of a
3129 group of consecutive labels. */
3130 if (GET_CODE (insn
) == JUMP_INSN
3131 && (condjump_p (insn
) || condjump_in_parallel_p (insn
))
3132 && (target_label
= JUMP_LABEL (insn
)) != 0)
3134 target_label
= follow_jumps (target_label
);
3135 target_label
= prev_label (next_active_insn (target_label
));
3137 if (target_label
== 0)
3138 target_label
= find_end_label ();
3140 if (next_active_insn (target_label
) == next
3141 && ! condjump_in_parallel_p (insn
))
3147 if (target_label
!= JUMP_LABEL (insn
))
3148 reorg_redirect_jump (insn
, target_label
);
3150 /* See if this jump branches around an unconditional jump.
3151 If so, invert this jump and point it to the target of the
3153 if (next
&& GET_CODE (next
) == JUMP_INSN
3154 && (simplejump_p (next
) || GET_CODE (PATTERN (next
)) == RETURN
)
3155 && next_active_insn (target_label
) == next_active_insn (next
)
3156 && no_labels_between_p (insn
, next
))
3158 rtx label
= JUMP_LABEL (next
);
3160 /* Be careful how we do this to avoid deleting code or
3161 labels that are momentarily dead. See similar optimization
3164 We also need to ensure we properly handle the case when
3165 invert_jump fails. */
3167 ++LABEL_NUSES (target_label
);
3169 ++LABEL_NUSES (label
);
3171 if (invert_jump (insn
, label
, 1))
3173 delete_related_insns (next
);
3178 --LABEL_NUSES (label
);
3180 if (--LABEL_NUSES (target_label
) == 0)
3181 delete_related_insns (target_label
);
3187 /* If this is an unconditional jump and the previous insn is a
3188 conditional jump, try reversing the condition of the previous
3189 insn and swapping our targets. The next pass might be able to
3192 Don't do this if we expect the conditional branch to be true, because
3193 we would then be making the more common case longer. */
3195 if (GET_CODE (insn
) == JUMP_INSN
3196 && (simplejump_p (insn
) || GET_CODE (PATTERN (insn
)) == RETURN
)
3197 && (other
= prev_active_insn (insn
)) != 0
3198 && (condjump_p (other
) || condjump_in_parallel_p (other
))
3199 && no_labels_between_p (other
, insn
)
3200 && 0 > mostly_true_jump (other
,
3201 get_branch_condition (other
,
3202 JUMP_LABEL (other
))))
3204 rtx other_target
= JUMP_LABEL (other
);
3205 target_label
= JUMP_LABEL (insn
);
3207 if (invert_jump (other
, target_label
, 0))
3208 reorg_redirect_jump (insn
, other_target
);
3211 /* Now look only at cases where we have filled a delay slot. */
3212 if (GET_CODE (insn
) != INSN
3213 || GET_CODE (PATTERN (insn
)) != SEQUENCE
)
3216 pat
= PATTERN (insn
);
3217 delay_insn
= XVECEXP (pat
, 0, 0);
3219 /* See if the first insn in the delay slot is redundant with some
3220 previous insn. Remove it from the delay slot if so; then set up
3221 to reprocess this insn. */
3222 if (redundant_insn (XVECEXP (pat
, 0, 1), delay_insn
, 0))
3224 delete_from_delay_slot (XVECEXP (pat
, 0, 1));
3225 next
= prev_active_insn (next
);
3229 /* See if we have a RETURN insn with a filled delay slot followed
3230 by a RETURN insn with an unfilled a delay slot. If so, we can delete
3231 the first RETURN (but not it's delay insn). This gives the same
3232 effect in fewer instructions.
3234 Only do so if optimizing for size since this results in slower, but
3237 && GET_CODE (PATTERN (delay_insn
)) == RETURN
3239 && GET_CODE (next
) == JUMP_INSN
3240 && GET_CODE (PATTERN (next
)) == RETURN
)
3245 /* Delete the RETURN and just execute the delay list insns.
3247 We do this by deleting the INSN containing the SEQUENCE, then
3248 re-emitting the insns separately, and then deleting the RETURN.
3249 This allows the count of the jump target to be properly
3252 /* Clear the from target bit, since these insns are no longer
3254 for (i
= 0; i
< XVECLEN (pat
, 0); i
++)
3255 INSN_FROM_TARGET_P (XVECEXP (pat
, 0, i
)) = 0;
3257 trial
= PREV_INSN (insn
);
3258 delete_related_insns (insn
);
3259 if (GET_CODE (pat
) != SEQUENCE
)
3262 for (i
= 0; i
< XVECLEN (pat
, 0); i
++)
3264 rtx this_insn
= XVECEXP (pat
, 0, i
);
3265 add_insn_after (this_insn
, after
);
3268 delete_scheduled_jump (delay_insn
);
3272 /* Now look only at the cases where we have a filled JUMP_INSN. */
3273 if (GET_CODE (XVECEXP (PATTERN (insn
), 0, 0)) != JUMP_INSN
3274 || ! (condjump_p (XVECEXP (PATTERN (insn
), 0, 0))
3275 || condjump_in_parallel_p (XVECEXP (PATTERN (insn
), 0, 0))))
3278 target_label
= JUMP_LABEL (delay_insn
);
3282 /* If this jump goes to another unconditional jump, thread it, but
3283 don't convert a jump into a RETURN here. */
3284 trial
= follow_jumps (target_label
);
3285 /* We use next_real_insn instead of next_active_insn, so that
3286 the special USE insns emitted by reorg won't be ignored.
3287 If they are ignored, then they will get deleted if target_label
3288 is now unreachable, and that would cause mark_target_live_regs
3290 trial
= prev_label (next_real_insn (trial
));
3291 if (trial
== 0 && target_label
!= 0)
3292 trial
= find_end_label ();
3294 if (trial
!= target_label
3295 && redirect_with_delay_slots_safe_p (delay_insn
, trial
, insn
))
3297 reorg_redirect_jump (delay_insn
, trial
);
3298 target_label
= trial
;
3301 /* If the first insn at TARGET_LABEL is redundant with a previous
3302 insn, redirect the jump to the following insn process again. */
3303 trial
= next_active_insn (target_label
);
3304 if (trial
&& GET_CODE (PATTERN (trial
)) != SEQUENCE
3305 && redundant_insn (trial
, insn
, 0)
3306 && ! can_throw_internal (trial
))
3310 /* Figure out where to emit the special USE insn so we don't
3311 later incorrectly compute register live/death info. */
3312 tmp
= next_active_insn (trial
);
3314 tmp
= find_end_label ();
3316 /* Insert the special USE insn and update dataflow info. */
3317 update_block (trial
, tmp
);
3319 /* Now emit a label before the special USE insn, and
3320 redirect our jump to the new label. */
3321 target_label
= get_label_before (PREV_INSN (tmp
));
3322 reorg_redirect_jump (delay_insn
, target_label
);
3327 /* Similarly, if it is an unconditional jump with one insn in its
3328 delay list and that insn is redundant, thread the jump. */
3329 if (trial
&& GET_CODE (PATTERN (trial
)) == SEQUENCE
3330 && XVECLEN (PATTERN (trial
), 0) == 2
3331 && GET_CODE (XVECEXP (PATTERN (trial
), 0, 0)) == JUMP_INSN
3332 && (simplejump_p (XVECEXP (PATTERN (trial
), 0, 0))
3333 || GET_CODE (PATTERN (XVECEXP (PATTERN (trial
), 0, 0))) == RETURN
)
3334 && redundant_insn (XVECEXP (PATTERN (trial
), 0, 1), insn
, 0))
3336 target_label
= JUMP_LABEL (XVECEXP (PATTERN (trial
), 0, 0));
3337 if (target_label
== 0)
3338 target_label
= find_end_label ();
3340 if (redirect_with_delay_slots_safe_p (delay_insn
, target_label
,
3343 reorg_redirect_jump (delay_insn
, target_label
);
3350 if (! INSN_ANNULLED_BRANCH_P (delay_insn
)
3351 && prev_active_insn (target_label
) == insn
3352 && ! condjump_in_parallel_p (delay_insn
)
3354 /* If the last insn in the delay slot sets CC0 for some insn,
3355 various code assumes that it is in a delay slot. We could
3356 put it back where it belonged and delete the register notes,
3357 but it doesn't seem worthwhile in this uncommon case. */
3358 && ! find_reg_note (XVECEXP (pat
, 0, XVECLEN (pat
, 0) - 1),
3359 REG_CC_USER
, NULL_RTX
)
3366 /* All this insn does is execute its delay list and jump to the
3367 following insn. So delete the jump and just execute the delay
3370 We do this by deleting the INSN containing the SEQUENCE, then
3371 re-emitting the insns separately, and then deleting the jump.
3372 This allows the count of the jump target to be properly
3375 /* Clear the from target bit, since these insns are no longer
3377 for (i
= 0; i
< XVECLEN (pat
, 0); i
++)
3378 INSN_FROM_TARGET_P (XVECEXP (pat
, 0, i
)) = 0;
3380 trial
= PREV_INSN (insn
);
3381 delete_related_insns (insn
);
3382 if (GET_CODE (pat
) != SEQUENCE
)
3385 for (i
= 0; i
< XVECLEN (pat
, 0); i
++)
3387 rtx this_insn
= XVECEXP (pat
, 0, i
);
3388 add_insn_after (this_insn
, after
);
3391 delete_scheduled_jump (delay_insn
);
3395 /* See if this is an unconditional jump around a single insn which is
3396 identical to the one in its delay slot. In this case, we can just
3397 delete the branch and the insn in its delay slot. */
3398 if (next
&& GET_CODE (next
) == INSN
3399 && prev_label (next_active_insn (next
)) == target_label
3400 && simplejump_p (insn
)
3401 && XVECLEN (pat
, 0) == 2
3402 && rtx_equal_p (PATTERN (next
), PATTERN (XVECEXP (pat
, 0, 1))))
3404 delete_related_insns (insn
);
3408 /* See if this jump (with its delay slots) branches around another
3409 jump (without delay slots). If so, invert this jump and point
3410 it to the target of the second jump. We cannot do this for
3411 annulled jumps, though. Again, don't convert a jump to a RETURN
3413 if (! INSN_ANNULLED_BRANCH_P (delay_insn
)
3414 && next
&& GET_CODE (next
) == JUMP_INSN
3415 && (simplejump_p (next
) || GET_CODE (PATTERN (next
)) == RETURN
)
3416 && next_active_insn (target_label
) == next_active_insn (next
)
3417 && no_labels_between_p (insn
, next
))
3419 rtx label
= JUMP_LABEL (next
);
3420 rtx old_label
= JUMP_LABEL (delay_insn
);
3423 label
= find_end_label ();
3425 /* find_end_label can generate a new label. Check this first. */
3426 if (no_labels_between_p (insn
, next
)
3427 && redirect_with_delay_slots_safe_p (delay_insn
, label
, insn
))
3429 /* Be careful how we do this to avoid deleting code or labels
3430 that are momentarily dead. See similar optimization in
3433 ++LABEL_NUSES (old_label
);
3435 if (invert_jump (delay_insn
, label
, 1))
3439 /* Must update the INSN_FROM_TARGET_P bits now that
3440 the branch is reversed, so that mark_target_live_regs
3441 will handle the delay slot insn correctly. */
3442 for (i
= 1; i
< XVECLEN (PATTERN (insn
), 0); i
++)
3444 rtx slot
= XVECEXP (PATTERN (insn
), 0, i
);
3445 INSN_FROM_TARGET_P (slot
) = ! INSN_FROM_TARGET_P (slot
);
3448 delete_related_insns (next
);
3452 if (old_label
&& --LABEL_NUSES (old_label
) == 0)
3453 delete_related_insns (old_label
);
3458 /* If we own the thread opposite the way this insn branches, see if we
3459 can merge its delay slots with following insns. */
3460 if (INSN_FROM_TARGET_P (XVECEXP (pat
, 0, 1))
3461 && own_thread_p (NEXT_INSN (insn
), 0, 1))
3462 try_merge_delay_insns (insn
, next
);
3463 else if (! INSN_FROM_TARGET_P (XVECEXP (pat
, 0, 1))
3464 && own_thread_p (target_label
, target_label
, 0))
3465 try_merge_delay_insns (insn
, next_active_insn (target_label
));
3467 /* If we get here, we haven't deleted INSN. But we may have deleted
3468 NEXT, so recompute it. */
3469 next
= next_active_insn (insn
);
3475 /* Look for filled jumps to the end of function label. We can try to convert
3476 them into RETURN insns if the insns in the delay slot are valid for the
3480 make_return_insns (first
)
3483 rtx insn
, jump_insn
, pat
;
3484 rtx real_return_label
= end_of_function_label
;
3487 #ifdef DELAY_SLOTS_FOR_EPILOGUE
3488 /* If a previous pass filled delay slots in the epilogue, things get a
3489 bit more complicated, as those filler insns would generally (without
3490 data flow analysis) have to be executed after any existing branch
3491 delay slot filler insns. It is also unknown whether such a
3492 transformation would actually be profitable. Note that the existing
3493 code only cares for branches with (some) filled delay slots. */
3494 if (current_function_epilogue_delay_list
!= NULL
)
3498 /* See if there is a RETURN insn in the function other than the one we
3499 made for END_OF_FUNCTION_LABEL. If so, set up anything we can't change
3500 into a RETURN to jump to it. */
3501 for (insn
= first
; insn
; insn
= NEXT_INSN (insn
))
3502 if (GET_CODE (insn
) == JUMP_INSN
&& GET_CODE (PATTERN (insn
)) == RETURN
)
3504 real_return_label
= get_label_before (insn
);
3508 /* Show an extra usage of REAL_RETURN_LABEL so it won't go away if it
3509 was equal to END_OF_FUNCTION_LABEL. */
3510 LABEL_NUSES (real_return_label
)++;
3512 /* Clear the list of insns to fill so we can use it. */
3513 obstack_free (&unfilled_slots_obstack
, unfilled_firstobj
);
3515 for (insn
= first
; insn
; insn
= NEXT_INSN (insn
))
3519 /* Only look at filled JUMP_INSNs that go to the end of function
3521 if (GET_CODE (insn
) != INSN
3522 || GET_CODE (PATTERN (insn
)) != SEQUENCE
3523 || GET_CODE (XVECEXP (PATTERN (insn
), 0, 0)) != JUMP_INSN
3524 || JUMP_LABEL (XVECEXP (PATTERN (insn
), 0, 0)) != end_of_function_label
)
3527 pat
= PATTERN (insn
);
3528 jump_insn
= XVECEXP (pat
, 0, 0);
3530 /* If we can't make the jump into a RETURN, try to redirect it to the best
3531 RETURN and go on to the next insn. */
3532 if (! reorg_redirect_jump (jump_insn
, NULL_RTX
))
3534 /* Make sure redirecting the jump will not invalidate the delay
3536 if (redirect_with_delay_slots_safe_p (jump_insn
,
3539 reorg_redirect_jump (jump_insn
, real_return_label
);
3543 /* See if this RETURN can accept the insns current in its delay slot.
3544 It can if it has more or an equal number of slots and the contents
3545 of each is valid. */
3547 flags
= get_jump_flags (jump_insn
, JUMP_LABEL (jump_insn
));
3548 slots
= num_delay_slots (jump_insn
);
3549 if (slots
>= XVECLEN (pat
, 0) - 1)
3551 for (i
= 1; i
< XVECLEN (pat
, 0); i
++)
3553 #ifdef ANNUL_IFFALSE_SLOTS
3554 (INSN_ANNULLED_BRANCH_P (jump_insn
)
3555 && INSN_FROM_TARGET_P (XVECEXP (pat
, 0, i
)))
3556 ? eligible_for_annul_false (jump_insn
, i
- 1,
3557 XVECEXP (pat
, 0, i
), flags
) :
3559 #ifdef ANNUL_IFTRUE_SLOTS
3560 (INSN_ANNULLED_BRANCH_P (jump_insn
)
3561 && ! INSN_FROM_TARGET_P (XVECEXP (pat
, 0, i
)))
3562 ? eligible_for_annul_true (jump_insn
, i
- 1,
3563 XVECEXP (pat
, 0, i
), flags
) :
3565 eligible_for_delay (jump_insn
, i
- 1,
3566 XVECEXP (pat
, 0, i
), flags
)))
3572 if (i
== XVECLEN (pat
, 0))
3575 /* We have to do something with this insn. If it is an unconditional
3576 RETURN, delete the SEQUENCE and output the individual insns,
3577 followed by the RETURN. Then set things up so we try to find
3578 insns for its delay slots, if it needs some. */
3579 if (GET_CODE (PATTERN (jump_insn
)) == RETURN
)
3581 rtx prev
= PREV_INSN (insn
);
3583 delete_related_insns (insn
);
3584 for (i
= 1; i
< XVECLEN (pat
, 0); i
++)
3585 prev
= emit_insn_after (PATTERN (XVECEXP (pat
, 0, i
)), prev
);
3587 insn
= emit_jump_insn_after (PATTERN (jump_insn
), prev
);
3588 emit_barrier_after (insn
);
3591 obstack_ptr_grow (&unfilled_slots_obstack
, insn
);
3594 /* It is probably more efficient to keep this with its current
3595 delay slot as a branch to a RETURN. */
3596 reorg_redirect_jump (jump_insn
, real_return_label
);
3599 /* Now delete REAL_RETURN_LABEL if we never used it. Then try to fill any
3600 new delay slots we have created. */
3601 if (--LABEL_NUSES (real_return_label
) == 0)
3602 delete_related_insns (real_return_label
);
3604 fill_simple_delay_slots (1);
3605 fill_simple_delay_slots (0);
3609 /* Try to find insns to place in delay slots. */
3612 dbr_schedule (first
, file
)
3616 rtx insn
, next
, epilogue_insn
= 0;
3619 int old_flag_no_peephole
= flag_no_peephole
;
3621 /* Execute `final' once in prescan mode to delete any insns that won't be
3622 used. Don't let final try to do any peephole optimization--it will
3623 ruin dataflow information for this pass. */
3625 flag_no_peephole
= 1;
3626 final (first
, 0, NO_DEBUG
, 1, 1);
3627 flag_no_peephole
= old_flag_no_peephole
;
3630 /* If the current function has no insns other than the prologue and
3631 epilogue, then do not try to fill any delay slots. */
3632 if (n_basic_blocks
== 0)
3635 /* Find the highest INSN_UID and allocate and initialize our map from
3636 INSN_UID's to position in code. */
3637 for (max_uid
= 0, insn
= first
; insn
; insn
= NEXT_INSN (insn
))
3639 if (INSN_UID (insn
) > max_uid
)
3640 max_uid
= INSN_UID (insn
);
3641 if (GET_CODE (insn
) == NOTE
3642 && NOTE_LINE_NUMBER (insn
) == NOTE_INSN_EPILOGUE_BEG
)
3643 epilogue_insn
= insn
;
3646 uid_to_ruid
= (int *) xmalloc ((max_uid
+ 1) * sizeof (int));
3647 for (i
= 0, insn
= first
; insn
; i
++, insn
= NEXT_INSN (insn
))
3648 uid_to_ruid
[INSN_UID (insn
)] = i
;
3650 /* Initialize the list of insns that need filling. */
3651 if (unfilled_firstobj
== 0)
3653 gcc_obstack_init (&unfilled_slots_obstack
);
3654 unfilled_firstobj
= (rtx
*) obstack_alloc (&unfilled_slots_obstack
, 0);
3657 for (insn
= next_active_insn (first
); insn
; insn
= next_active_insn (insn
))
3661 INSN_ANNULLED_BRANCH_P (insn
) = 0;
3662 INSN_FROM_TARGET_P (insn
) = 0;
3664 /* Skip vector tables. We can't get attributes for them. */
3665 if (GET_CODE (insn
) == JUMP_INSN
3666 && (GET_CODE (PATTERN (insn
)) == ADDR_VEC
3667 || GET_CODE (PATTERN (insn
)) == ADDR_DIFF_VEC
))
3670 if (num_delay_slots (insn
) > 0)
3671 obstack_ptr_grow (&unfilled_slots_obstack
, insn
);
3673 /* Ensure all jumps go to the last of a set of consecutive labels. */
3674 if (GET_CODE (insn
) == JUMP_INSN
3675 && (condjump_p (insn
) || condjump_in_parallel_p (insn
))
3676 && JUMP_LABEL (insn
) != 0
3677 && ((target
= prev_label (next_active_insn (JUMP_LABEL (insn
))))
3678 != JUMP_LABEL (insn
)))
3679 redirect_jump (insn
, target
, 1);
3682 init_resource_info (epilogue_insn
);
3684 /* Show we haven't computed an end-of-function label yet. */
3685 end_of_function_label
= 0;
3687 /* Initialize the statistics for this function. */
3688 memset ((char *) num_insns_needing_delays
, 0, sizeof num_insns_needing_delays
);
3689 memset ((char *) num_filled_delays
, 0, sizeof num_filled_delays
);
3691 /* Now do the delay slot filling. Try everything twice in case earlier
3692 changes make more slots fillable. */
3694 for (reorg_pass_number
= 0;
3695 reorg_pass_number
< MAX_REORG_PASSES
;
3696 reorg_pass_number
++)
3698 fill_simple_delay_slots (1);
3699 fill_simple_delay_slots (0);
3700 fill_eager_delay_slots ();
3701 relax_delay_slots (first
);
3704 /* Delete any USE insns made by update_block; subsequent passes don't need
3705 them or know how to deal with them. */
3706 for (insn
= first
; insn
; insn
= next
)
3708 next
= NEXT_INSN (insn
);
3710 if (GET_CODE (insn
) == INSN
&& GET_CODE (PATTERN (insn
)) == USE
3711 && INSN_P (XEXP (PATTERN (insn
), 0)))
3712 next
= delete_related_insns (insn
);
3715 /* If we made an end of function label, indicate that it is now
3716 safe to delete it by undoing our prior adjustment to LABEL_NUSES.
3717 If it is now unused, delete it. */
3718 if (end_of_function_label
&& --LABEL_NUSES (end_of_function_label
) == 0)
3719 delete_related_insns (end_of_function_label
);
3722 if (HAVE_return
&& end_of_function_label
!= 0)
3723 make_return_insns (first
);
3726 obstack_free (&unfilled_slots_obstack
, unfilled_firstobj
);
3728 /* It is not clear why the line below is needed, but it does seem to be. */
3729 unfilled_firstobj
= (rtx
*) obstack_alloc (&unfilled_slots_obstack
, 0);
3733 int i
, j
, need_comma
;
3734 int total_delay_slots
[MAX_DELAY_HISTOGRAM
+ 1];
3735 int total_annul_slots
[MAX_DELAY_HISTOGRAM
+ 1];
3737 for (reorg_pass_number
= 0;
3738 reorg_pass_number
< MAX_REORG_PASSES
;
3739 reorg_pass_number
++)
3741 fprintf (file
, ";; Reorg pass #%d:\n", reorg_pass_number
+ 1);
3742 for (i
= 0; i
< NUM_REORG_FUNCTIONS
; i
++)
3745 fprintf (file
, ";; Reorg function #%d\n", i
);
3747 fprintf (file
, ";; %d insns needing delay slots\n;; ",
3748 num_insns_needing_delays
[i
][reorg_pass_number
]);
3750 for (j
= 0; j
< MAX_DELAY_HISTOGRAM
+ 1; j
++)
3751 if (num_filled_delays
[i
][j
][reorg_pass_number
])
3754 fprintf (file
, ", ");
3756 fprintf (file
, "%d got %d delays",
3757 num_filled_delays
[i
][j
][reorg_pass_number
], j
);
3759 fprintf (file
, "\n");
3762 memset ((char *) total_delay_slots
, 0, sizeof total_delay_slots
);
3763 memset ((char *) total_annul_slots
, 0, sizeof total_annul_slots
);
3764 for (insn
= first
; insn
; insn
= NEXT_INSN (insn
))
3766 if (! INSN_DELETED_P (insn
)
3767 && GET_CODE (insn
) == INSN
3768 && GET_CODE (PATTERN (insn
)) != USE
3769 && GET_CODE (PATTERN (insn
)) != CLOBBER
)
3771 if (GET_CODE (PATTERN (insn
)) == SEQUENCE
)
3773 j
= XVECLEN (PATTERN (insn
), 0) - 1;
3774 if (j
> MAX_DELAY_HISTOGRAM
)
3775 j
= MAX_DELAY_HISTOGRAM
;
3776 if (INSN_ANNULLED_BRANCH_P (XVECEXP (PATTERN (insn
), 0, 0)))
3777 total_annul_slots
[j
]++;
3779 total_delay_slots
[j
]++;
3781 else if (num_delay_slots (insn
) > 0)
3782 total_delay_slots
[0]++;
3785 fprintf (file
, ";; Reorg totals: ");
3787 for (j
= 0; j
< MAX_DELAY_HISTOGRAM
+ 1; j
++)
3789 if (total_delay_slots
[j
])
3792 fprintf (file
, ", ");
3794 fprintf (file
, "%d got %d delays", total_delay_slots
[j
], j
);
3797 fprintf (file
, "\n");
3798 #if defined (ANNUL_IFTRUE_SLOTS) || defined (ANNUL_IFFALSE_SLOTS)
3799 fprintf (file
, ";; Reorg annuls: ");
3801 for (j
= 0; j
< MAX_DELAY_HISTOGRAM
+ 1; j
++)
3803 if (total_annul_slots
[j
])
3806 fprintf (file
, ", ");
3808 fprintf (file
, "%d got %d delays", total_annul_slots
[j
], j
);
3811 fprintf (file
, "\n");
3813 fprintf (file
, "\n");
3816 /* For all JUMP insns, fill in branch prediction notes, so that during
3817 assembler output a target can set branch prediction bits in the code.
3818 We have to do this now, as up until this point the destinations of
3819 JUMPS can be moved around and changed, but past right here that cannot
3821 for (insn
= first
; insn
; insn
= NEXT_INSN (insn
))
3825 if (GET_CODE (insn
) == INSN
)
3827 rtx pat
= PATTERN (insn
);
3829 if (GET_CODE (pat
) == SEQUENCE
)
3830 insn
= XVECEXP (pat
, 0, 0);
3832 if (GET_CODE (insn
) != JUMP_INSN
)
3835 pred_flags
= get_jump_flags (insn
, JUMP_LABEL (insn
));
3836 REG_NOTES (insn
) = gen_rtx_EXPR_LIST (REG_BR_PRED
,
3837 GEN_INT (pred_flags
),
3840 free_resource_info ();
3843 #endif /* DELAY_SLOTS */