PR c++/34912
[official-gcc.git] / gcc / lambda-code.c
blobdc656d3ef4e08b75c264e0f7b1b9e6886d7f2711
1 /* Loop transformation code generation
2 Copyright (C) 2003, 2004, 2005, 2006, 2007 Free Software Foundation, Inc.
3 Contributed by Daniel Berlin <dberlin@dberlin.org>
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "tm.h"
25 #include "ggc.h"
26 #include "tree.h"
27 #include "target.h"
28 #include "rtl.h"
29 #include "basic-block.h"
30 #include "diagnostic.h"
31 #include "obstack.h"
32 #include "tree-flow.h"
33 #include "tree-dump.h"
34 #include "timevar.h"
35 #include "cfgloop.h"
36 #include "expr.h"
37 #include "optabs.h"
38 #include "tree-chrec.h"
39 #include "tree-data-ref.h"
40 #include "tree-pass.h"
41 #include "tree-scalar-evolution.h"
42 #include "vec.h"
43 #include "lambda.h"
44 #include "vecprim.h"
46 /* This loop nest code generation is based on non-singular matrix
47 math.
49 A little terminology and a general sketch of the algorithm. See "A singular
50 loop transformation framework based on non-singular matrices" by Wei Li and
51 Keshav Pingali for formal proofs that the various statements below are
52 correct.
54 A loop iteration space represents the points traversed by the loop. A point in the
55 iteration space can be represented by a vector of size <loop depth>. You can
56 therefore represent the iteration space as an integral combinations of a set
57 of basis vectors.
59 A loop iteration space is dense if every integer point between the loop
60 bounds is a point in the iteration space. Every loop with a step of 1
61 therefore has a dense iteration space.
63 for i = 1 to 3, step 1 is a dense iteration space.
65 A loop iteration space is sparse if it is not dense. That is, the iteration
66 space skips integer points that are within the loop bounds.
68 for i = 1 to 3, step 2 is a sparse iteration space, because the integer point
69 2 is skipped.
71 Dense source spaces are easy to transform, because they don't skip any
72 points to begin with. Thus we can compute the exact bounds of the target
73 space using min/max and floor/ceil.
75 For a dense source space, we take the transformation matrix, decompose it
76 into a lower triangular part (H) and a unimodular part (U).
77 We then compute the auxiliary space from the unimodular part (source loop
78 nest . U = auxiliary space) , which has two important properties:
79 1. It traverses the iterations in the same lexicographic order as the source
80 space.
81 2. It is a dense space when the source is a dense space (even if the target
82 space is going to be sparse).
84 Given the auxiliary space, we use the lower triangular part to compute the
85 bounds in the target space by simple matrix multiplication.
86 The gaps in the target space (IE the new loop step sizes) will be the
87 diagonals of the H matrix.
89 Sparse source spaces require another step, because you can't directly compute
90 the exact bounds of the auxiliary and target space from the sparse space.
91 Rather than try to come up with a separate algorithm to handle sparse source
92 spaces directly, we just find a legal transformation matrix that gives you
93 the sparse source space, from a dense space, and then transform the dense
94 space.
96 For a regular sparse space, you can represent the source space as an integer
97 lattice, and the base space of that lattice will always be dense. Thus, we
98 effectively use the lattice to figure out the transformation from the lattice
99 base space, to the sparse iteration space (IE what transform was applied to
100 the dense space to make it sparse). We then compose this transform with the
101 transformation matrix specified by the user (since our matrix transformations
102 are closed under composition, this is okay). We can then use the base space
103 (which is dense) plus the composed transformation matrix, to compute the rest
104 of the transform using the dense space algorithm above.
106 In other words, our sparse source space (B) is decomposed into a dense base
107 space (A), and a matrix (L) that transforms A into B, such that A.L = B.
108 We then compute the composition of L and the user transformation matrix (T),
109 so that T is now a transform from A to the result, instead of from B to the
110 result.
111 IE A.(LT) = result instead of B.T = result
112 Since A is now a dense source space, we can use the dense source space
113 algorithm above to compute the result of applying transform (LT) to A.
115 Fourier-Motzkin elimination is used to compute the bounds of the base space
116 of the lattice. */
118 static bool perfect_nestify (struct loop *, VEC(tree,heap) *,
119 VEC(tree,heap) *, VEC(int,heap) *,
120 VEC(tree,heap) *);
121 /* Lattice stuff that is internal to the code generation algorithm. */
123 typedef struct lambda_lattice_s
125 /* Lattice base matrix. */
126 lambda_matrix base;
127 /* Lattice dimension. */
128 int dimension;
129 /* Origin vector for the coefficients. */
130 lambda_vector origin;
131 /* Origin matrix for the invariants. */
132 lambda_matrix origin_invariants;
133 /* Number of invariants. */
134 int invariants;
135 } *lambda_lattice;
137 #define LATTICE_BASE(T) ((T)->base)
138 #define LATTICE_DIMENSION(T) ((T)->dimension)
139 #define LATTICE_ORIGIN(T) ((T)->origin)
140 #define LATTICE_ORIGIN_INVARIANTS(T) ((T)->origin_invariants)
141 #define LATTICE_INVARIANTS(T) ((T)->invariants)
143 static bool lle_equal (lambda_linear_expression, lambda_linear_expression,
144 int, int);
145 static lambda_lattice lambda_lattice_new (int, int, struct obstack *);
146 static lambda_lattice lambda_lattice_compute_base (lambda_loopnest,
147 struct obstack *);
149 static tree find_induction_var_from_exit_cond (struct loop *);
150 static bool can_convert_to_perfect_nest (struct loop *);
152 /* Create a new lambda body vector. */
154 lambda_body_vector
155 lambda_body_vector_new (int size, struct obstack * lambda_obstack)
157 lambda_body_vector ret;
159 ret = (lambda_body_vector)obstack_alloc (lambda_obstack, sizeof (*ret));
160 LBV_COEFFICIENTS (ret) = lambda_vector_new (size);
161 LBV_SIZE (ret) = size;
162 LBV_DENOMINATOR (ret) = 1;
163 return ret;
166 /* Compute the new coefficients for the vector based on the
167 *inverse* of the transformation matrix. */
169 lambda_body_vector
170 lambda_body_vector_compute_new (lambda_trans_matrix transform,
171 lambda_body_vector vect,
172 struct obstack * lambda_obstack)
174 lambda_body_vector temp;
175 int depth;
177 /* Make sure the matrix is square. */
178 gcc_assert (LTM_ROWSIZE (transform) == LTM_COLSIZE (transform));
180 depth = LTM_ROWSIZE (transform);
182 temp = lambda_body_vector_new (depth, lambda_obstack);
183 LBV_DENOMINATOR (temp) =
184 LBV_DENOMINATOR (vect) * LTM_DENOMINATOR (transform);
185 lambda_vector_matrix_mult (LBV_COEFFICIENTS (vect), depth,
186 LTM_MATRIX (transform), depth,
187 LBV_COEFFICIENTS (temp));
188 LBV_SIZE (temp) = LBV_SIZE (vect);
189 return temp;
192 /* Print out a lambda body vector. */
194 void
195 print_lambda_body_vector (FILE * outfile, lambda_body_vector body)
197 print_lambda_vector (outfile, LBV_COEFFICIENTS (body), LBV_SIZE (body));
200 /* Return TRUE if two linear expressions are equal. */
202 static bool
203 lle_equal (lambda_linear_expression lle1, lambda_linear_expression lle2,
204 int depth, int invariants)
206 int i;
208 if (lle1 == NULL || lle2 == NULL)
209 return false;
210 if (LLE_CONSTANT (lle1) != LLE_CONSTANT (lle2))
211 return false;
212 if (LLE_DENOMINATOR (lle1) != LLE_DENOMINATOR (lle2))
213 return false;
214 for (i = 0; i < depth; i++)
215 if (LLE_COEFFICIENTS (lle1)[i] != LLE_COEFFICIENTS (lle2)[i])
216 return false;
217 for (i = 0; i < invariants; i++)
218 if (LLE_INVARIANT_COEFFICIENTS (lle1)[i] !=
219 LLE_INVARIANT_COEFFICIENTS (lle2)[i])
220 return false;
221 return true;
224 /* Create a new linear expression with dimension DIM, and total number
225 of invariants INVARIANTS. */
227 lambda_linear_expression
228 lambda_linear_expression_new (int dim, int invariants,
229 struct obstack * lambda_obstack)
231 lambda_linear_expression ret;
233 ret = (lambda_linear_expression)obstack_alloc (lambda_obstack,
234 sizeof (*ret));
235 LLE_COEFFICIENTS (ret) = lambda_vector_new (dim);
236 LLE_CONSTANT (ret) = 0;
237 LLE_INVARIANT_COEFFICIENTS (ret) = lambda_vector_new (invariants);
238 LLE_DENOMINATOR (ret) = 1;
239 LLE_NEXT (ret) = NULL;
241 return ret;
244 /* Print out a linear expression EXPR, with SIZE coefficients, to OUTFILE.
245 The starting letter used for variable names is START. */
247 static void
248 print_linear_expression (FILE * outfile, lambda_vector expr, int size,
249 char start)
251 int i;
252 bool first = true;
253 for (i = 0; i < size; i++)
255 if (expr[i] != 0)
257 if (first)
259 if (expr[i] < 0)
260 fprintf (outfile, "-");
261 first = false;
263 else if (expr[i] > 0)
264 fprintf (outfile, " + ");
265 else
266 fprintf (outfile, " - ");
267 if (abs (expr[i]) == 1)
268 fprintf (outfile, "%c", start + i);
269 else
270 fprintf (outfile, "%d%c", abs (expr[i]), start + i);
275 /* Print out a lambda linear expression structure, EXPR, to OUTFILE. The
276 depth/number of coefficients is given by DEPTH, the number of invariants is
277 given by INVARIANTS, and the character to start variable names with is given
278 by START. */
280 void
281 print_lambda_linear_expression (FILE * outfile,
282 lambda_linear_expression expr,
283 int depth, int invariants, char start)
285 fprintf (outfile, "\tLinear expression: ");
286 print_linear_expression (outfile, LLE_COEFFICIENTS (expr), depth, start);
287 fprintf (outfile, " constant: %d ", LLE_CONSTANT (expr));
288 fprintf (outfile, " invariants: ");
289 print_linear_expression (outfile, LLE_INVARIANT_COEFFICIENTS (expr),
290 invariants, 'A');
291 fprintf (outfile, " denominator: %d\n", LLE_DENOMINATOR (expr));
294 /* Print a lambda loop structure LOOP to OUTFILE. The depth/number of
295 coefficients is given by DEPTH, the number of invariants is
296 given by INVARIANTS, and the character to start variable names with is given
297 by START. */
299 void
300 print_lambda_loop (FILE * outfile, lambda_loop loop, int depth,
301 int invariants, char start)
303 int step;
304 lambda_linear_expression expr;
306 gcc_assert (loop);
308 expr = LL_LINEAR_OFFSET (loop);
309 step = LL_STEP (loop);
310 fprintf (outfile, " step size = %d \n", step);
312 if (expr)
314 fprintf (outfile, " linear offset: \n");
315 print_lambda_linear_expression (outfile, expr, depth, invariants,
316 start);
319 fprintf (outfile, " lower bound: \n");
320 for (expr = LL_LOWER_BOUND (loop); expr != NULL; expr = LLE_NEXT (expr))
321 print_lambda_linear_expression (outfile, expr, depth, invariants, start);
322 fprintf (outfile, " upper bound: \n");
323 for (expr = LL_UPPER_BOUND (loop); expr != NULL; expr = LLE_NEXT (expr))
324 print_lambda_linear_expression (outfile, expr, depth, invariants, start);
327 /* Create a new loop nest structure with DEPTH loops, and INVARIANTS as the
328 number of invariants. */
330 lambda_loopnest
331 lambda_loopnest_new (int depth, int invariants,
332 struct obstack * lambda_obstack)
334 lambda_loopnest ret;
335 ret = (lambda_loopnest)obstack_alloc (lambda_obstack, sizeof (*ret));
337 LN_LOOPS (ret) = (lambda_loop *)
338 obstack_alloc (lambda_obstack, depth * sizeof(LN_LOOPS(ret)));
339 LN_DEPTH (ret) = depth;
340 LN_INVARIANTS (ret) = invariants;
342 return ret;
345 /* Print a lambda loopnest structure, NEST, to OUTFILE. The starting
346 character to use for loop names is given by START. */
348 void
349 print_lambda_loopnest (FILE * outfile, lambda_loopnest nest, char start)
351 int i;
352 for (i = 0; i < LN_DEPTH (nest); i++)
354 fprintf (outfile, "Loop %c\n", start + i);
355 print_lambda_loop (outfile, LN_LOOPS (nest)[i], LN_DEPTH (nest),
356 LN_INVARIANTS (nest), 'i');
357 fprintf (outfile, "\n");
361 /* Allocate a new lattice structure of DEPTH x DEPTH, with INVARIANTS number
362 of invariants. */
364 static lambda_lattice
365 lambda_lattice_new (int depth, int invariants, struct obstack * lambda_obstack)
367 lambda_lattice ret
368 = (lambda_lattice)obstack_alloc (lambda_obstack, sizeof (*ret));
369 LATTICE_BASE (ret) = lambda_matrix_new (depth, depth);
370 LATTICE_ORIGIN (ret) = lambda_vector_new (depth);
371 LATTICE_ORIGIN_INVARIANTS (ret) = lambda_matrix_new (depth, invariants);
372 LATTICE_DIMENSION (ret) = depth;
373 LATTICE_INVARIANTS (ret) = invariants;
374 return ret;
377 /* Compute the lattice base for NEST. The lattice base is essentially a
378 non-singular transform from a dense base space to a sparse iteration space.
379 We use it so that we don't have to specially handle the case of a sparse
380 iteration space in other parts of the algorithm. As a result, this routine
381 only does something interesting (IE produce a matrix that isn't the
382 identity matrix) if NEST is a sparse space. */
384 static lambda_lattice
385 lambda_lattice_compute_base (lambda_loopnest nest,
386 struct obstack * lambda_obstack)
388 lambda_lattice ret;
389 int depth, invariants;
390 lambda_matrix base;
392 int i, j, step;
393 lambda_loop loop;
394 lambda_linear_expression expression;
396 depth = LN_DEPTH (nest);
397 invariants = LN_INVARIANTS (nest);
399 ret = lambda_lattice_new (depth, invariants, lambda_obstack);
400 base = LATTICE_BASE (ret);
401 for (i = 0; i < depth; i++)
403 loop = LN_LOOPS (nest)[i];
404 gcc_assert (loop);
405 step = LL_STEP (loop);
406 /* If we have a step of 1, then the base is one, and the
407 origin and invariant coefficients are 0. */
408 if (step == 1)
410 for (j = 0; j < depth; j++)
411 base[i][j] = 0;
412 base[i][i] = 1;
413 LATTICE_ORIGIN (ret)[i] = 0;
414 for (j = 0; j < invariants; j++)
415 LATTICE_ORIGIN_INVARIANTS (ret)[i][j] = 0;
417 else
419 /* Otherwise, we need the lower bound expression (which must
420 be an affine function) to determine the base. */
421 expression = LL_LOWER_BOUND (loop);
422 gcc_assert (expression && !LLE_NEXT (expression)
423 && LLE_DENOMINATOR (expression) == 1);
425 /* The lower triangular portion of the base is going to be the
426 coefficient times the step */
427 for (j = 0; j < i; j++)
428 base[i][j] = LLE_COEFFICIENTS (expression)[j]
429 * LL_STEP (LN_LOOPS (nest)[j]);
430 base[i][i] = step;
431 for (j = i + 1; j < depth; j++)
432 base[i][j] = 0;
434 /* Origin for this loop is the constant of the lower bound
435 expression. */
436 LATTICE_ORIGIN (ret)[i] = LLE_CONSTANT (expression);
438 /* Coefficient for the invariants are equal to the invariant
439 coefficients in the expression. */
440 for (j = 0; j < invariants; j++)
441 LATTICE_ORIGIN_INVARIANTS (ret)[i][j] =
442 LLE_INVARIANT_COEFFICIENTS (expression)[j];
445 return ret;
448 /* Compute the least common multiple of two numbers A and B . */
451 least_common_multiple (int a, int b)
453 return (abs (a) * abs (b) / gcd (a, b));
456 /* Perform Fourier-Motzkin elimination to calculate the bounds of the
457 auxiliary nest.
458 Fourier-Motzkin is a way of reducing systems of linear inequalities so that
459 it is easy to calculate the answer and bounds.
460 A sketch of how it works:
461 Given a system of linear inequalities, ai * xj >= bk, you can always
462 rewrite the constraints so they are all of the form
463 a <= x, or x <= b, or x >= constant for some x in x1 ... xj (and some b
464 in b1 ... bk, and some a in a1...ai)
465 You can then eliminate this x from the non-constant inequalities by
466 rewriting these as a <= b, x >= constant, and delete the x variable.
467 You can then repeat this for any remaining x variables, and then we have
468 an easy to use variable <= constant (or no variables at all) form that we
469 can construct our bounds from.
471 In our case, each time we eliminate, we construct part of the bound from
472 the ith variable, then delete the ith variable.
474 Remember the constant are in our vector a, our coefficient matrix is A,
475 and our invariant coefficient matrix is B.
477 SIZE is the size of the matrices being passed.
478 DEPTH is the loop nest depth.
479 INVARIANTS is the number of loop invariants.
480 A, B, and a are the coefficient matrix, invariant coefficient, and a
481 vector of constants, respectively. */
483 static lambda_loopnest
484 compute_nest_using_fourier_motzkin (int size,
485 int depth,
486 int invariants,
487 lambda_matrix A,
488 lambda_matrix B,
489 lambda_vector a,
490 struct obstack * lambda_obstack)
493 int multiple, f1, f2;
494 int i, j, k;
495 lambda_linear_expression expression;
496 lambda_loop loop;
497 lambda_loopnest auxillary_nest;
498 lambda_matrix swapmatrix, A1, B1;
499 lambda_vector swapvector, a1;
500 int newsize;
502 A1 = lambda_matrix_new (128, depth);
503 B1 = lambda_matrix_new (128, invariants);
504 a1 = lambda_vector_new (128);
506 auxillary_nest = lambda_loopnest_new (depth, invariants, lambda_obstack);
508 for (i = depth - 1; i >= 0; i--)
510 loop = lambda_loop_new ();
511 LN_LOOPS (auxillary_nest)[i] = loop;
512 LL_STEP (loop) = 1;
514 for (j = 0; j < size; j++)
516 if (A[j][i] < 0)
518 /* Any linear expression in the matrix with a coefficient less
519 than 0 becomes part of the new lower bound. */
520 expression = lambda_linear_expression_new (depth, invariants,
521 lambda_obstack);
523 for (k = 0; k < i; k++)
524 LLE_COEFFICIENTS (expression)[k] = A[j][k];
526 for (k = 0; k < invariants; k++)
527 LLE_INVARIANT_COEFFICIENTS (expression)[k] = -1 * B[j][k];
529 LLE_DENOMINATOR (expression) = -1 * A[j][i];
530 LLE_CONSTANT (expression) = -1 * a[j];
532 /* Ignore if identical to the existing lower bound. */
533 if (!lle_equal (LL_LOWER_BOUND (loop),
534 expression, depth, invariants))
536 LLE_NEXT (expression) = LL_LOWER_BOUND (loop);
537 LL_LOWER_BOUND (loop) = expression;
541 else if (A[j][i] > 0)
543 /* Any linear expression with a coefficient greater than 0
544 becomes part of the new upper bound. */
545 expression = lambda_linear_expression_new (depth, invariants,
546 lambda_obstack);
547 for (k = 0; k < i; k++)
548 LLE_COEFFICIENTS (expression)[k] = -1 * A[j][k];
550 for (k = 0; k < invariants; k++)
551 LLE_INVARIANT_COEFFICIENTS (expression)[k] = B[j][k];
553 LLE_DENOMINATOR (expression) = A[j][i];
554 LLE_CONSTANT (expression) = a[j];
556 /* Ignore if identical to the existing upper bound. */
557 if (!lle_equal (LL_UPPER_BOUND (loop),
558 expression, depth, invariants))
560 LLE_NEXT (expression) = LL_UPPER_BOUND (loop);
561 LL_UPPER_BOUND (loop) = expression;
567 /* This portion creates a new system of linear inequalities by deleting
568 the i'th variable, reducing the system by one variable. */
569 newsize = 0;
570 for (j = 0; j < size; j++)
572 /* If the coefficient for the i'th variable is 0, then we can just
573 eliminate the variable straightaway. Otherwise, we have to
574 multiply through by the coefficients we are eliminating. */
575 if (A[j][i] == 0)
577 lambda_vector_copy (A[j], A1[newsize], depth);
578 lambda_vector_copy (B[j], B1[newsize], invariants);
579 a1[newsize] = a[j];
580 newsize++;
582 else if (A[j][i] > 0)
584 for (k = 0; k < size; k++)
586 if (A[k][i] < 0)
588 multiple = least_common_multiple (A[j][i], A[k][i]);
589 f1 = multiple / A[j][i];
590 f2 = -1 * multiple / A[k][i];
592 lambda_vector_add_mc (A[j], f1, A[k], f2,
593 A1[newsize], depth);
594 lambda_vector_add_mc (B[j], f1, B[k], f2,
595 B1[newsize], invariants);
596 a1[newsize] = f1 * a[j] + f2 * a[k];
597 newsize++;
603 swapmatrix = A;
604 A = A1;
605 A1 = swapmatrix;
607 swapmatrix = B;
608 B = B1;
609 B1 = swapmatrix;
611 swapvector = a;
612 a = a1;
613 a1 = swapvector;
615 size = newsize;
618 return auxillary_nest;
621 /* Compute the loop bounds for the auxiliary space NEST.
622 Input system used is Ax <= b. TRANS is the unimodular transformation.
623 Given the original nest, this function will
624 1. Convert the nest into matrix form, which consists of a matrix for the
625 coefficients, a matrix for the
626 invariant coefficients, and a vector for the constants.
627 2. Use the matrix form to calculate the lattice base for the nest (which is
628 a dense space)
629 3. Compose the dense space transform with the user specified transform, to
630 get a transform we can easily calculate transformed bounds for.
631 4. Multiply the composed transformation matrix times the matrix form of the
632 loop.
633 5. Transform the newly created matrix (from step 4) back into a loop nest
634 using Fourier-Motzkin elimination to figure out the bounds. */
636 static lambda_loopnest
637 lambda_compute_auxillary_space (lambda_loopnest nest,
638 lambda_trans_matrix trans,
639 struct obstack * lambda_obstack)
641 lambda_matrix A, B, A1, B1;
642 lambda_vector a, a1;
643 lambda_matrix invertedtrans;
644 int depth, invariants, size;
645 int i, j;
646 lambda_loop loop;
647 lambda_linear_expression expression;
648 lambda_lattice lattice;
650 depth = LN_DEPTH (nest);
651 invariants = LN_INVARIANTS (nest);
653 /* Unfortunately, we can't know the number of constraints we'll have
654 ahead of time, but this should be enough even in ridiculous loop nest
655 cases. We must not go over this limit. */
656 A = lambda_matrix_new (128, depth);
657 B = lambda_matrix_new (128, invariants);
658 a = lambda_vector_new (128);
660 A1 = lambda_matrix_new (128, depth);
661 B1 = lambda_matrix_new (128, invariants);
662 a1 = lambda_vector_new (128);
664 /* Store the bounds in the equation matrix A, constant vector a, and
665 invariant matrix B, so that we have Ax <= a + B.
666 This requires a little equation rearranging so that everything is on the
667 correct side of the inequality. */
668 size = 0;
669 for (i = 0; i < depth; i++)
671 loop = LN_LOOPS (nest)[i];
673 /* First we do the lower bound. */
674 if (LL_STEP (loop) > 0)
675 expression = LL_LOWER_BOUND (loop);
676 else
677 expression = LL_UPPER_BOUND (loop);
679 for (; expression != NULL; expression = LLE_NEXT (expression))
681 /* Fill in the coefficient. */
682 for (j = 0; j < i; j++)
683 A[size][j] = LLE_COEFFICIENTS (expression)[j];
685 /* And the invariant coefficient. */
686 for (j = 0; j < invariants; j++)
687 B[size][j] = LLE_INVARIANT_COEFFICIENTS (expression)[j];
689 /* And the constant. */
690 a[size] = LLE_CONSTANT (expression);
692 /* Convert (2x+3y+2+b)/4 <= z to 2x+3y-4z <= -2-b. IE put all
693 constants and single variables on */
694 A[size][i] = -1 * LLE_DENOMINATOR (expression);
695 a[size] *= -1;
696 for (j = 0; j < invariants; j++)
697 B[size][j] *= -1;
699 size++;
700 /* Need to increase matrix sizes above. */
701 gcc_assert (size <= 127);
705 /* Then do the exact same thing for the upper bounds. */
706 if (LL_STEP (loop) > 0)
707 expression = LL_UPPER_BOUND (loop);
708 else
709 expression = LL_LOWER_BOUND (loop);
711 for (; expression != NULL; expression = LLE_NEXT (expression))
713 /* Fill in the coefficient. */
714 for (j = 0; j < i; j++)
715 A[size][j] = LLE_COEFFICIENTS (expression)[j];
717 /* And the invariant coefficient. */
718 for (j = 0; j < invariants; j++)
719 B[size][j] = LLE_INVARIANT_COEFFICIENTS (expression)[j];
721 /* And the constant. */
722 a[size] = LLE_CONSTANT (expression);
724 /* Convert z <= (2x+3y+2+b)/4 to -2x-3y+4z <= 2+b. */
725 for (j = 0; j < i; j++)
726 A[size][j] *= -1;
727 A[size][i] = LLE_DENOMINATOR (expression);
728 size++;
729 /* Need to increase matrix sizes above. */
730 gcc_assert (size <= 127);
735 /* Compute the lattice base x = base * y + origin, where y is the
736 base space. */
737 lattice = lambda_lattice_compute_base (nest, lambda_obstack);
739 /* Ax <= a + B then becomes ALy <= a+B - A*origin. L is the lattice base */
741 /* A1 = A * L */
742 lambda_matrix_mult (A, LATTICE_BASE (lattice), A1, size, depth, depth);
744 /* a1 = a - A * origin constant. */
745 lambda_matrix_vector_mult (A, size, depth, LATTICE_ORIGIN (lattice), a1);
746 lambda_vector_add_mc (a, 1, a1, -1, a1, size);
748 /* B1 = B - A * origin invariant. */
749 lambda_matrix_mult (A, LATTICE_ORIGIN_INVARIANTS (lattice), B1, size, depth,
750 invariants);
751 lambda_matrix_add_mc (B, 1, B1, -1, B1, size, invariants);
753 /* Now compute the auxiliary space bounds by first inverting U, multiplying
754 it by A1, then performing Fourier-Motzkin. */
756 invertedtrans = lambda_matrix_new (depth, depth);
758 /* Compute the inverse of U. */
759 lambda_matrix_inverse (LTM_MATRIX (trans),
760 invertedtrans, depth);
762 /* A = A1 inv(U). */
763 lambda_matrix_mult (A1, invertedtrans, A, size, depth, depth);
765 return compute_nest_using_fourier_motzkin (size, depth, invariants,
766 A, B1, a1, lambda_obstack);
769 /* Compute the loop bounds for the target space, using the bounds of
770 the auxiliary nest AUXILLARY_NEST, and the triangular matrix H.
771 The target space loop bounds are computed by multiplying the triangular
772 matrix H by the auxiliary nest, to get the new loop bounds. The sign of
773 the loop steps (positive or negative) is then used to swap the bounds if
774 the loop counts downwards.
775 Return the target loopnest. */
777 static lambda_loopnest
778 lambda_compute_target_space (lambda_loopnest auxillary_nest,
779 lambda_trans_matrix H, lambda_vector stepsigns,
780 struct obstack * lambda_obstack)
782 lambda_matrix inverse, H1;
783 int determinant, i, j;
784 int gcd1, gcd2;
785 int factor;
787 lambda_loopnest target_nest;
788 int depth, invariants;
789 lambda_matrix target;
791 lambda_loop auxillary_loop, target_loop;
792 lambda_linear_expression expression, auxillary_expr, target_expr, tmp_expr;
794 depth = LN_DEPTH (auxillary_nest);
795 invariants = LN_INVARIANTS (auxillary_nest);
797 inverse = lambda_matrix_new (depth, depth);
798 determinant = lambda_matrix_inverse (LTM_MATRIX (H), inverse, depth);
800 /* H1 is H excluding its diagonal. */
801 H1 = lambda_matrix_new (depth, depth);
802 lambda_matrix_copy (LTM_MATRIX (H), H1, depth, depth);
804 for (i = 0; i < depth; i++)
805 H1[i][i] = 0;
807 /* Computes the linear offsets of the loop bounds. */
808 target = lambda_matrix_new (depth, depth);
809 lambda_matrix_mult (H1, inverse, target, depth, depth, depth);
811 target_nest = lambda_loopnest_new (depth, invariants, lambda_obstack);
813 for (i = 0; i < depth; i++)
816 /* Get a new loop structure. */
817 target_loop = lambda_loop_new ();
818 LN_LOOPS (target_nest)[i] = target_loop;
820 /* Computes the gcd of the coefficients of the linear part. */
821 gcd1 = lambda_vector_gcd (target[i], i);
823 /* Include the denominator in the GCD. */
824 gcd1 = gcd (gcd1, determinant);
826 /* Now divide through by the gcd. */
827 for (j = 0; j < i; j++)
828 target[i][j] = target[i][j] / gcd1;
830 expression = lambda_linear_expression_new (depth, invariants,
831 lambda_obstack);
832 lambda_vector_copy (target[i], LLE_COEFFICIENTS (expression), depth);
833 LLE_DENOMINATOR (expression) = determinant / gcd1;
834 LLE_CONSTANT (expression) = 0;
835 lambda_vector_clear (LLE_INVARIANT_COEFFICIENTS (expression),
836 invariants);
837 LL_LINEAR_OFFSET (target_loop) = expression;
840 /* For each loop, compute the new bounds from H. */
841 for (i = 0; i < depth; i++)
843 auxillary_loop = LN_LOOPS (auxillary_nest)[i];
844 target_loop = LN_LOOPS (target_nest)[i];
845 LL_STEP (target_loop) = LTM_MATRIX (H)[i][i];
846 factor = LTM_MATRIX (H)[i][i];
848 /* First we do the lower bound. */
849 auxillary_expr = LL_LOWER_BOUND (auxillary_loop);
851 for (; auxillary_expr != NULL;
852 auxillary_expr = LLE_NEXT (auxillary_expr))
854 target_expr = lambda_linear_expression_new (depth, invariants,
855 lambda_obstack);
856 lambda_vector_matrix_mult (LLE_COEFFICIENTS (auxillary_expr),
857 depth, inverse, depth,
858 LLE_COEFFICIENTS (target_expr));
859 lambda_vector_mult_const (LLE_COEFFICIENTS (target_expr),
860 LLE_COEFFICIENTS (target_expr), depth,
861 factor);
863 LLE_CONSTANT (target_expr) = LLE_CONSTANT (auxillary_expr) * factor;
864 lambda_vector_copy (LLE_INVARIANT_COEFFICIENTS (auxillary_expr),
865 LLE_INVARIANT_COEFFICIENTS (target_expr),
866 invariants);
867 lambda_vector_mult_const (LLE_INVARIANT_COEFFICIENTS (target_expr),
868 LLE_INVARIANT_COEFFICIENTS (target_expr),
869 invariants, factor);
870 LLE_DENOMINATOR (target_expr) = LLE_DENOMINATOR (auxillary_expr);
872 if (!lambda_vector_zerop (LLE_COEFFICIENTS (target_expr), depth))
874 LLE_CONSTANT (target_expr) = LLE_CONSTANT (target_expr)
875 * determinant;
876 lambda_vector_mult_const (LLE_INVARIANT_COEFFICIENTS
877 (target_expr),
878 LLE_INVARIANT_COEFFICIENTS
879 (target_expr), invariants,
880 determinant);
881 LLE_DENOMINATOR (target_expr) =
882 LLE_DENOMINATOR (target_expr) * determinant;
884 /* Find the gcd and divide by it here, rather than doing it
885 at the tree level. */
886 gcd1 = lambda_vector_gcd (LLE_COEFFICIENTS (target_expr), depth);
887 gcd2 = lambda_vector_gcd (LLE_INVARIANT_COEFFICIENTS (target_expr),
888 invariants);
889 gcd1 = gcd (gcd1, gcd2);
890 gcd1 = gcd (gcd1, LLE_CONSTANT (target_expr));
891 gcd1 = gcd (gcd1, LLE_DENOMINATOR (target_expr));
892 for (j = 0; j < depth; j++)
893 LLE_COEFFICIENTS (target_expr)[j] /= gcd1;
894 for (j = 0; j < invariants; j++)
895 LLE_INVARIANT_COEFFICIENTS (target_expr)[j] /= gcd1;
896 LLE_CONSTANT (target_expr) /= gcd1;
897 LLE_DENOMINATOR (target_expr) /= gcd1;
898 /* Ignore if identical to existing bound. */
899 if (!lle_equal (LL_LOWER_BOUND (target_loop), target_expr, depth,
900 invariants))
902 LLE_NEXT (target_expr) = LL_LOWER_BOUND (target_loop);
903 LL_LOWER_BOUND (target_loop) = target_expr;
906 /* Now do the upper bound. */
907 auxillary_expr = LL_UPPER_BOUND (auxillary_loop);
909 for (; auxillary_expr != NULL;
910 auxillary_expr = LLE_NEXT (auxillary_expr))
912 target_expr = lambda_linear_expression_new (depth, invariants,
913 lambda_obstack);
914 lambda_vector_matrix_mult (LLE_COEFFICIENTS (auxillary_expr),
915 depth, inverse, depth,
916 LLE_COEFFICIENTS (target_expr));
917 lambda_vector_mult_const (LLE_COEFFICIENTS (target_expr),
918 LLE_COEFFICIENTS (target_expr), depth,
919 factor);
920 LLE_CONSTANT (target_expr) = LLE_CONSTANT (auxillary_expr) * factor;
921 lambda_vector_copy (LLE_INVARIANT_COEFFICIENTS (auxillary_expr),
922 LLE_INVARIANT_COEFFICIENTS (target_expr),
923 invariants);
924 lambda_vector_mult_const (LLE_INVARIANT_COEFFICIENTS (target_expr),
925 LLE_INVARIANT_COEFFICIENTS (target_expr),
926 invariants, factor);
927 LLE_DENOMINATOR (target_expr) = LLE_DENOMINATOR (auxillary_expr);
929 if (!lambda_vector_zerop (LLE_COEFFICIENTS (target_expr), depth))
931 LLE_CONSTANT (target_expr) = LLE_CONSTANT (target_expr)
932 * determinant;
933 lambda_vector_mult_const (LLE_INVARIANT_COEFFICIENTS
934 (target_expr),
935 LLE_INVARIANT_COEFFICIENTS
936 (target_expr), invariants,
937 determinant);
938 LLE_DENOMINATOR (target_expr) =
939 LLE_DENOMINATOR (target_expr) * determinant;
941 /* Find the gcd and divide by it here, instead of at the
942 tree level. */
943 gcd1 = lambda_vector_gcd (LLE_COEFFICIENTS (target_expr), depth);
944 gcd2 = lambda_vector_gcd (LLE_INVARIANT_COEFFICIENTS (target_expr),
945 invariants);
946 gcd1 = gcd (gcd1, gcd2);
947 gcd1 = gcd (gcd1, LLE_CONSTANT (target_expr));
948 gcd1 = gcd (gcd1, LLE_DENOMINATOR (target_expr));
949 for (j = 0; j < depth; j++)
950 LLE_COEFFICIENTS (target_expr)[j] /= gcd1;
951 for (j = 0; j < invariants; j++)
952 LLE_INVARIANT_COEFFICIENTS (target_expr)[j] /= gcd1;
953 LLE_CONSTANT (target_expr) /= gcd1;
954 LLE_DENOMINATOR (target_expr) /= gcd1;
955 /* Ignore if equal to existing bound. */
956 if (!lle_equal (LL_UPPER_BOUND (target_loop), target_expr, depth,
957 invariants))
959 LLE_NEXT (target_expr) = LL_UPPER_BOUND (target_loop);
960 LL_UPPER_BOUND (target_loop) = target_expr;
964 for (i = 0; i < depth; i++)
966 target_loop = LN_LOOPS (target_nest)[i];
967 /* If necessary, exchange the upper and lower bounds and negate
968 the step size. */
969 if (stepsigns[i] < 0)
971 LL_STEP (target_loop) *= -1;
972 tmp_expr = LL_LOWER_BOUND (target_loop);
973 LL_LOWER_BOUND (target_loop) = LL_UPPER_BOUND (target_loop);
974 LL_UPPER_BOUND (target_loop) = tmp_expr;
977 return target_nest;
980 /* Compute the step signs of TRANS, using TRANS and stepsigns. Return the new
981 result. */
983 static lambda_vector
984 lambda_compute_step_signs (lambda_trans_matrix trans, lambda_vector stepsigns)
986 lambda_matrix matrix, H;
987 int size;
988 lambda_vector newsteps;
989 int i, j, factor, minimum_column;
990 int temp;
992 matrix = LTM_MATRIX (trans);
993 size = LTM_ROWSIZE (trans);
994 H = lambda_matrix_new (size, size);
996 newsteps = lambda_vector_new (size);
997 lambda_vector_copy (stepsigns, newsteps, size);
999 lambda_matrix_copy (matrix, H, size, size);
1001 for (j = 0; j < size; j++)
1003 lambda_vector row;
1004 row = H[j];
1005 for (i = j; i < size; i++)
1006 if (row[i] < 0)
1007 lambda_matrix_col_negate (H, size, i);
1008 while (lambda_vector_first_nz (row, size, j + 1) < size)
1010 minimum_column = lambda_vector_min_nz (row, size, j);
1011 lambda_matrix_col_exchange (H, size, j, minimum_column);
1013 temp = newsteps[j];
1014 newsteps[j] = newsteps[minimum_column];
1015 newsteps[minimum_column] = temp;
1017 for (i = j + 1; i < size; i++)
1019 factor = row[i] / row[j];
1020 lambda_matrix_col_add (H, size, j, i, -1 * factor);
1024 return newsteps;
1027 /* Transform NEST according to TRANS, and return the new loopnest.
1028 This involves
1029 1. Computing a lattice base for the transformation
1030 2. Composing the dense base with the specified transformation (TRANS)
1031 3. Decomposing the combined transformation into a lower triangular portion,
1032 and a unimodular portion.
1033 4. Computing the auxiliary nest using the unimodular portion.
1034 5. Computing the target nest using the auxiliary nest and the lower
1035 triangular portion. */
1037 lambda_loopnest
1038 lambda_loopnest_transform (lambda_loopnest nest, lambda_trans_matrix trans,
1039 struct obstack * lambda_obstack)
1041 lambda_loopnest auxillary_nest, target_nest;
1043 int depth, invariants;
1044 int i, j;
1045 lambda_lattice lattice;
1046 lambda_trans_matrix trans1, H, U;
1047 lambda_loop loop;
1048 lambda_linear_expression expression;
1049 lambda_vector origin;
1050 lambda_matrix origin_invariants;
1051 lambda_vector stepsigns;
1052 int f;
1054 depth = LN_DEPTH (nest);
1055 invariants = LN_INVARIANTS (nest);
1057 /* Keep track of the signs of the loop steps. */
1058 stepsigns = lambda_vector_new (depth);
1059 for (i = 0; i < depth; i++)
1061 if (LL_STEP (LN_LOOPS (nest)[i]) > 0)
1062 stepsigns[i] = 1;
1063 else
1064 stepsigns[i] = -1;
1067 /* Compute the lattice base. */
1068 lattice = lambda_lattice_compute_base (nest, lambda_obstack);
1069 trans1 = lambda_trans_matrix_new (depth, depth);
1071 /* Multiply the transformation matrix by the lattice base. */
1073 lambda_matrix_mult (LTM_MATRIX (trans), LATTICE_BASE (lattice),
1074 LTM_MATRIX (trans1), depth, depth, depth);
1076 /* Compute the Hermite normal form for the new transformation matrix. */
1077 H = lambda_trans_matrix_new (depth, depth);
1078 U = lambda_trans_matrix_new (depth, depth);
1079 lambda_matrix_hermite (LTM_MATRIX (trans1), depth, LTM_MATRIX (H),
1080 LTM_MATRIX (U));
1082 /* Compute the auxiliary loop nest's space from the unimodular
1083 portion. */
1084 auxillary_nest = lambda_compute_auxillary_space (nest, U, lambda_obstack);
1086 /* Compute the loop step signs from the old step signs and the
1087 transformation matrix. */
1088 stepsigns = lambda_compute_step_signs (trans1, stepsigns);
1090 /* Compute the target loop nest space from the auxiliary nest and
1091 the lower triangular matrix H. */
1092 target_nest = lambda_compute_target_space (auxillary_nest, H, stepsigns,
1093 lambda_obstack);
1094 origin = lambda_vector_new (depth);
1095 origin_invariants = lambda_matrix_new (depth, invariants);
1096 lambda_matrix_vector_mult (LTM_MATRIX (trans), depth, depth,
1097 LATTICE_ORIGIN (lattice), origin);
1098 lambda_matrix_mult (LTM_MATRIX (trans), LATTICE_ORIGIN_INVARIANTS (lattice),
1099 origin_invariants, depth, depth, invariants);
1101 for (i = 0; i < depth; i++)
1103 loop = LN_LOOPS (target_nest)[i];
1104 expression = LL_LINEAR_OFFSET (loop);
1105 if (lambda_vector_zerop (LLE_COEFFICIENTS (expression), depth))
1106 f = 1;
1107 else
1108 f = LLE_DENOMINATOR (expression);
1110 LLE_CONSTANT (expression) += f * origin[i];
1112 for (j = 0; j < invariants; j++)
1113 LLE_INVARIANT_COEFFICIENTS (expression)[j] +=
1114 f * origin_invariants[i][j];
1117 return target_nest;
1121 /* Convert a gcc tree expression EXPR to a lambda linear expression, and
1122 return the new expression. DEPTH is the depth of the loopnest.
1123 OUTERINDUCTIONVARS is an array of the induction variables for outer loops
1124 in this nest. INVARIANTS is the array of invariants for the loop. EXTRA
1125 is the amount we have to add/subtract from the expression because of the
1126 type of comparison it is used in. */
1128 static lambda_linear_expression
1129 gcc_tree_to_linear_expression (int depth, tree expr,
1130 VEC(tree,heap) *outerinductionvars,
1131 VEC(tree,heap) *invariants, int extra,
1132 struct obstack * lambda_obstack)
1134 lambda_linear_expression lle = NULL;
1135 switch (TREE_CODE (expr))
1137 case INTEGER_CST:
1139 lle = lambda_linear_expression_new (depth, 2 * depth, lambda_obstack);
1140 LLE_CONSTANT (lle) = TREE_INT_CST_LOW (expr);
1141 if (extra != 0)
1142 LLE_CONSTANT (lle) += extra;
1144 LLE_DENOMINATOR (lle) = 1;
1146 break;
1147 case SSA_NAME:
1149 tree iv, invar;
1150 size_t i;
1151 for (i = 0; VEC_iterate (tree, outerinductionvars, i, iv); i++)
1152 if (iv != NULL)
1154 if (SSA_NAME_VAR (iv) == SSA_NAME_VAR (expr))
1156 lle = lambda_linear_expression_new (depth, 2 * depth,
1157 lambda_obstack);
1158 LLE_COEFFICIENTS (lle)[i] = 1;
1159 if (extra != 0)
1160 LLE_CONSTANT (lle) = extra;
1162 LLE_DENOMINATOR (lle) = 1;
1165 for (i = 0; VEC_iterate (tree, invariants, i, invar); i++)
1166 if (invar != NULL)
1168 if (SSA_NAME_VAR (invar) == SSA_NAME_VAR (expr))
1170 lle = lambda_linear_expression_new (depth, 2 * depth,
1171 lambda_obstack);
1172 LLE_INVARIANT_COEFFICIENTS (lle)[i] = 1;
1173 if (extra != 0)
1174 LLE_CONSTANT (lle) = extra;
1175 LLE_DENOMINATOR (lle) = 1;
1179 break;
1180 default:
1181 return NULL;
1184 return lle;
1187 /* Return the depth of the loopnest NEST */
1189 static int
1190 depth_of_nest (struct loop *nest)
1192 size_t depth = 0;
1193 while (nest)
1195 depth++;
1196 nest = nest->inner;
1198 return depth;
1202 /* Return true if OP is invariant in LOOP and all outer loops. */
1204 static bool
1205 invariant_in_loop_and_outer_loops (struct loop *loop, tree op)
1207 if (is_gimple_min_invariant (op))
1208 return true;
1209 if (loop_depth (loop) == 0)
1210 return true;
1211 if (!expr_invariant_in_loop_p (loop, op))
1212 return false;
1213 if (!invariant_in_loop_and_outer_loops (loop_outer (loop), op))
1214 return false;
1215 return true;
1218 /* Generate a lambda loop from a gcc loop LOOP. Return the new lambda loop,
1219 or NULL if it could not be converted.
1220 DEPTH is the depth of the loop.
1221 INVARIANTS is a pointer to the array of loop invariants.
1222 The induction variable for this loop should be stored in the parameter
1223 OURINDUCTIONVAR.
1224 OUTERINDUCTIONVARS is an array of induction variables for outer loops. */
1226 static lambda_loop
1227 gcc_loop_to_lambda_loop (struct loop *loop, int depth,
1228 VEC(tree,heap) ** invariants,
1229 tree * ourinductionvar,
1230 VEC(tree,heap) * outerinductionvars,
1231 VEC(tree,heap) ** lboundvars,
1232 VEC(tree,heap) ** uboundvars,
1233 VEC(int,heap) ** steps,
1234 struct obstack * lambda_obstack)
1236 tree phi;
1237 tree exit_cond;
1238 tree access_fn, inductionvar;
1239 tree step;
1240 lambda_loop lloop = NULL;
1241 lambda_linear_expression lbound, ubound;
1242 tree test;
1243 int stepint;
1244 int extra = 0;
1245 tree lboundvar, uboundvar, uboundresult;
1247 /* Find out induction var and exit condition. */
1248 inductionvar = find_induction_var_from_exit_cond (loop);
1249 exit_cond = get_loop_exit_condition (loop);
1251 if (inductionvar == NULL || exit_cond == NULL)
1253 if (dump_file && (dump_flags & TDF_DETAILS))
1254 fprintf (dump_file,
1255 "Unable to convert loop: Cannot determine exit condition or induction variable for loop.\n");
1256 return NULL;
1259 test = TREE_OPERAND (exit_cond, 0);
1261 if (SSA_NAME_DEF_STMT (inductionvar) == NULL_TREE)
1264 if (dump_file && (dump_flags & TDF_DETAILS))
1265 fprintf (dump_file,
1266 "Unable to convert loop: Cannot find PHI node for induction variable\n");
1268 return NULL;
1271 phi = SSA_NAME_DEF_STMT (inductionvar);
1272 if (TREE_CODE (phi) != PHI_NODE)
1274 phi = SINGLE_SSA_TREE_OPERAND (phi, SSA_OP_USE);
1275 if (!phi)
1278 if (dump_file && (dump_flags & TDF_DETAILS))
1279 fprintf (dump_file,
1280 "Unable to convert loop: Cannot find PHI node for induction variable\n");
1282 return NULL;
1285 phi = SSA_NAME_DEF_STMT (phi);
1286 if (TREE_CODE (phi) != PHI_NODE)
1289 if (dump_file && (dump_flags & TDF_DETAILS))
1290 fprintf (dump_file,
1291 "Unable to convert loop: Cannot find PHI node for induction variable\n");
1292 return NULL;
1297 /* The induction variable name/version we want to put in the array is the
1298 result of the induction variable phi node. */
1299 *ourinductionvar = PHI_RESULT (phi);
1300 access_fn = instantiate_parameters
1301 (loop, analyze_scalar_evolution (loop, PHI_RESULT (phi)));
1302 if (access_fn == chrec_dont_know)
1304 if (dump_file && (dump_flags & TDF_DETAILS))
1305 fprintf (dump_file,
1306 "Unable to convert loop: Access function for induction variable phi is unknown\n");
1308 return NULL;
1311 step = evolution_part_in_loop_num (access_fn, loop->num);
1312 if (!step || step == chrec_dont_know)
1314 if (dump_file && (dump_flags & TDF_DETAILS))
1315 fprintf (dump_file,
1316 "Unable to convert loop: Cannot determine step of loop.\n");
1318 return NULL;
1320 if (TREE_CODE (step) != INTEGER_CST)
1323 if (dump_file && (dump_flags & TDF_DETAILS))
1324 fprintf (dump_file,
1325 "Unable to convert loop: Step of loop is not integer.\n");
1326 return NULL;
1329 stepint = TREE_INT_CST_LOW (step);
1331 /* Only want phis for induction vars, which will have two
1332 arguments. */
1333 if (PHI_NUM_ARGS (phi) != 2)
1335 if (dump_file && (dump_flags & TDF_DETAILS))
1336 fprintf (dump_file,
1337 "Unable to convert loop: PHI node for induction variable has >2 arguments\n");
1338 return NULL;
1341 /* Another induction variable check. One argument's source should be
1342 in the loop, one outside the loop. */
1343 if (flow_bb_inside_loop_p (loop, PHI_ARG_EDGE (phi, 0)->src)
1344 && flow_bb_inside_loop_p (loop, PHI_ARG_EDGE (phi, 1)->src))
1347 if (dump_file && (dump_flags & TDF_DETAILS))
1348 fprintf (dump_file,
1349 "Unable to convert loop: PHI edges both inside loop, or both outside loop.\n");
1351 return NULL;
1354 if (flow_bb_inside_loop_p (loop, PHI_ARG_EDGE (phi, 0)->src))
1356 lboundvar = PHI_ARG_DEF (phi, 1);
1357 lbound = gcc_tree_to_linear_expression (depth, lboundvar,
1358 outerinductionvars, *invariants,
1359 0, lambda_obstack);
1361 else
1363 lboundvar = PHI_ARG_DEF (phi, 0);
1364 lbound = gcc_tree_to_linear_expression (depth, lboundvar,
1365 outerinductionvars, *invariants,
1366 0, lambda_obstack);
1369 if (!lbound)
1372 if (dump_file && (dump_flags & TDF_DETAILS))
1373 fprintf (dump_file,
1374 "Unable to convert loop: Cannot convert lower bound to linear expression\n");
1376 return NULL;
1378 /* One part of the test may be a loop invariant tree. */
1379 VEC_reserve (tree, heap, *invariants, 1);
1380 if (TREE_CODE (TREE_OPERAND (test, 1)) == SSA_NAME
1381 && invariant_in_loop_and_outer_loops (loop, TREE_OPERAND (test, 1)))
1382 VEC_quick_push (tree, *invariants, TREE_OPERAND (test, 1));
1383 else if (TREE_CODE (TREE_OPERAND (test, 0)) == SSA_NAME
1384 && invariant_in_loop_and_outer_loops (loop, TREE_OPERAND (test, 0)))
1385 VEC_quick_push (tree, *invariants, TREE_OPERAND (test, 0));
1387 /* The non-induction variable part of the test is the upper bound variable.
1389 if (TREE_OPERAND (test, 0) == inductionvar)
1390 uboundvar = TREE_OPERAND (test, 1);
1391 else
1392 uboundvar = TREE_OPERAND (test, 0);
1395 /* We only size the vectors assuming we have, at max, 2 times as many
1396 invariants as we do loops (one for each bound).
1397 This is just an arbitrary number, but it has to be matched against the
1398 code below. */
1399 gcc_assert (VEC_length (tree, *invariants) <= (unsigned int) (2 * depth));
1402 /* We might have some leftover. */
1403 if (TREE_CODE (test) == LT_EXPR)
1404 extra = -1 * stepint;
1405 else if (TREE_CODE (test) == NE_EXPR)
1406 extra = -1 * stepint;
1407 else if (TREE_CODE (test) == GT_EXPR)
1408 extra = -1 * stepint;
1409 else if (TREE_CODE (test) == EQ_EXPR)
1410 extra = 1 * stepint;
1412 ubound = gcc_tree_to_linear_expression (depth, uboundvar,
1413 outerinductionvars,
1414 *invariants, extra, lambda_obstack);
1415 uboundresult = build2 (PLUS_EXPR, TREE_TYPE (uboundvar), uboundvar,
1416 build_int_cst (TREE_TYPE (uboundvar), extra));
1417 VEC_safe_push (tree, heap, *uboundvars, uboundresult);
1418 VEC_safe_push (tree, heap, *lboundvars, lboundvar);
1419 VEC_safe_push (int, heap, *steps, stepint);
1420 if (!ubound)
1422 if (dump_file && (dump_flags & TDF_DETAILS))
1423 fprintf (dump_file,
1424 "Unable to convert loop: Cannot convert upper bound to linear expression\n");
1425 return NULL;
1428 lloop = lambda_loop_new ();
1429 LL_STEP (lloop) = stepint;
1430 LL_LOWER_BOUND (lloop) = lbound;
1431 LL_UPPER_BOUND (lloop) = ubound;
1432 return lloop;
1435 /* Given a LOOP, find the induction variable it is testing against in the exit
1436 condition. Return the induction variable if found, NULL otherwise. */
1438 static tree
1439 find_induction_var_from_exit_cond (struct loop *loop)
1441 tree expr = get_loop_exit_condition (loop);
1442 tree ivarop;
1443 tree test;
1444 if (expr == NULL_TREE)
1445 return NULL_TREE;
1446 if (TREE_CODE (expr) != COND_EXPR)
1447 return NULL_TREE;
1448 test = TREE_OPERAND (expr, 0);
1449 if (!COMPARISON_CLASS_P (test))
1450 return NULL_TREE;
1452 /* Find the side that is invariant in this loop. The ivar must be the other
1453 side. */
1455 if (expr_invariant_in_loop_p (loop, TREE_OPERAND (test, 0)))
1456 ivarop = TREE_OPERAND (test, 1);
1457 else if (expr_invariant_in_loop_p (loop, TREE_OPERAND (test, 1)))
1458 ivarop = TREE_OPERAND (test, 0);
1459 else
1460 return NULL_TREE;
1462 if (TREE_CODE (ivarop) != SSA_NAME)
1463 return NULL_TREE;
1464 return ivarop;
1467 DEF_VEC_P(lambda_loop);
1468 DEF_VEC_ALLOC_P(lambda_loop,heap);
1470 /* Generate a lambda loopnest from a gcc loopnest LOOP_NEST.
1471 Return the new loop nest.
1472 INDUCTIONVARS is a pointer to an array of induction variables for the
1473 loopnest that will be filled in during this process.
1474 INVARIANTS is a pointer to an array of invariants that will be filled in
1475 during this process. */
1477 lambda_loopnest
1478 gcc_loopnest_to_lambda_loopnest (struct loop *loop_nest,
1479 VEC(tree,heap) **inductionvars,
1480 VEC(tree,heap) **invariants,
1481 struct obstack * lambda_obstack)
1483 lambda_loopnest ret = NULL;
1484 struct loop *temp = loop_nest;
1485 int depth = depth_of_nest (loop_nest);
1486 size_t i;
1487 VEC(lambda_loop,heap) *loops = NULL;
1488 VEC(tree,heap) *uboundvars = NULL;
1489 VEC(tree,heap) *lboundvars = NULL;
1490 VEC(int,heap) *steps = NULL;
1491 lambda_loop newloop;
1492 tree inductionvar = NULL;
1493 bool perfect_nest = perfect_nest_p (loop_nest);
1495 if (!perfect_nest && !can_convert_to_perfect_nest (loop_nest))
1496 goto fail;
1498 while (temp)
1500 newloop = gcc_loop_to_lambda_loop (temp, depth, invariants,
1501 &inductionvar, *inductionvars,
1502 &lboundvars, &uboundvars,
1503 &steps, lambda_obstack);
1504 if (!newloop)
1505 goto fail;
1507 VEC_safe_push (tree, heap, *inductionvars, inductionvar);
1508 VEC_safe_push (lambda_loop, heap, loops, newloop);
1509 temp = temp->inner;
1512 if (!perfect_nest)
1514 if (!perfect_nestify (loop_nest, lboundvars, uboundvars, steps,
1515 *inductionvars))
1517 if (dump_file)
1518 fprintf (dump_file,
1519 "Not a perfect loop nest and couldn't convert to one.\n");
1520 goto fail;
1522 else if (dump_file)
1523 fprintf (dump_file,
1524 "Successfully converted loop nest to perfect loop nest.\n");
1527 ret = lambda_loopnest_new (depth, 2 * depth, lambda_obstack);
1529 for (i = 0; VEC_iterate (lambda_loop, loops, i, newloop); i++)
1530 LN_LOOPS (ret)[i] = newloop;
1532 fail:
1533 VEC_free (lambda_loop, heap, loops);
1534 VEC_free (tree, heap, uboundvars);
1535 VEC_free (tree, heap, lboundvars);
1536 VEC_free (int, heap, steps);
1538 return ret;
1541 /* Convert a lambda body vector LBV to a gcc tree, and return the new tree.
1542 STMTS_TO_INSERT is a pointer to a tree where the statements we need to be
1543 inserted for us are stored. INDUCTION_VARS is the array of induction
1544 variables for the loop this LBV is from. TYPE is the tree type to use for
1545 the variables and trees involved. */
1547 static tree
1548 lbv_to_gcc_expression (lambda_body_vector lbv,
1549 tree type, VEC(tree,heap) *induction_vars,
1550 tree *stmts_to_insert)
1552 int k;
1553 tree resvar;
1554 tree expr = build_linear_expr (type, LBV_COEFFICIENTS (lbv), induction_vars);
1556 k = LBV_DENOMINATOR (lbv);
1557 gcc_assert (k != 0);
1558 if (k != 1)
1559 expr = fold_build2 (CEIL_DIV_EXPR, type, expr, build_int_cst (type, k));
1561 resvar = create_tmp_var (type, "lbvtmp");
1562 add_referenced_var (resvar);
1563 return force_gimple_operand (fold (expr), stmts_to_insert, true, resvar);
1566 /* Convert a linear expression from coefficient and constant form to a
1567 gcc tree.
1568 Return the tree that represents the final value of the expression.
1569 LLE is the linear expression to convert.
1570 OFFSET is the linear offset to apply to the expression.
1571 TYPE is the tree type to use for the variables and math.
1572 INDUCTION_VARS is a vector of induction variables for the loops.
1573 INVARIANTS is a vector of the loop nest invariants.
1574 WRAP specifies what tree code to wrap the results in, if there is more than
1575 one (it is either MAX_EXPR, or MIN_EXPR).
1576 STMTS_TO_INSERT Is a pointer to the statement list we fill in with
1577 statements that need to be inserted for the linear expression. */
1579 static tree
1580 lle_to_gcc_expression (lambda_linear_expression lle,
1581 lambda_linear_expression offset,
1582 tree type,
1583 VEC(tree,heap) *induction_vars,
1584 VEC(tree,heap) *invariants,
1585 enum tree_code wrap, tree *stmts_to_insert)
1587 int k;
1588 tree resvar;
1589 tree expr = NULL_TREE;
1590 VEC(tree,heap) *results = NULL;
1592 gcc_assert (wrap == MAX_EXPR || wrap == MIN_EXPR);
1594 /* Build up the linear expressions. */
1595 for (; lle != NULL; lle = LLE_NEXT (lle))
1597 expr = build_linear_expr (type, LLE_COEFFICIENTS (lle), induction_vars);
1598 expr = fold_build2 (PLUS_EXPR, type, expr,
1599 build_linear_expr (type,
1600 LLE_INVARIANT_COEFFICIENTS (lle),
1601 invariants));
1603 k = LLE_CONSTANT (lle);
1604 if (k)
1605 expr = fold_build2 (PLUS_EXPR, type, expr, build_int_cst (type, k));
1607 k = LLE_CONSTANT (offset);
1608 if (k)
1609 expr = fold_build2 (PLUS_EXPR, type, expr, build_int_cst (type, k));
1611 k = LLE_DENOMINATOR (lle);
1612 if (k != 1)
1613 expr = fold_build2 (wrap == MAX_EXPR ? CEIL_DIV_EXPR : FLOOR_DIV_EXPR,
1614 type, expr, build_int_cst (type, k));
1616 expr = fold (expr);
1617 VEC_safe_push (tree, heap, results, expr);
1620 gcc_assert (expr);
1622 /* We may need to wrap the results in a MAX_EXPR or MIN_EXPR. */
1623 if (VEC_length (tree, results) > 1)
1625 size_t i;
1626 tree op;
1628 expr = VEC_index (tree, results, 0);
1629 for (i = 1; VEC_iterate (tree, results, i, op); i++)
1630 expr = fold_build2 (wrap, type, expr, op);
1633 VEC_free (tree, heap, results);
1635 resvar = create_tmp_var (type, "lletmp");
1636 add_referenced_var (resvar);
1637 return force_gimple_operand (fold (expr), stmts_to_insert, true, resvar);
1640 /* Remove the induction variable defined at IV_STMT. */
1642 void
1643 remove_iv (tree iv_stmt)
1645 if (TREE_CODE (iv_stmt) == PHI_NODE)
1647 int i;
1649 for (i = 0; i < PHI_NUM_ARGS (iv_stmt); i++)
1651 tree stmt;
1652 imm_use_iterator imm_iter;
1653 tree arg = PHI_ARG_DEF (iv_stmt, i);
1654 bool used = false;
1656 if (TREE_CODE (arg) != SSA_NAME)
1657 continue;
1659 FOR_EACH_IMM_USE_STMT (stmt, imm_iter, arg)
1660 if (stmt != iv_stmt)
1661 used = true;
1663 if (!used)
1664 remove_iv (SSA_NAME_DEF_STMT (arg));
1667 remove_phi_node (iv_stmt, NULL_TREE, true);
1669 else
1671 block_stmt_iterator bsi = bsi_for_stmt (iv_stmt);
1673 bsi_remove (&bsi, true);
1674 release_defs (iv_stmt);
1678 /* Transform a lambda loopnest NEW_LOOPNEST, which had TRANSFORM applied to
1679 it, back into gcc code. This changes the
1680 loops, their induction variables, and their bodies, so that they
1681 match the transformed loopnest.
1682 OLD_LOOPNEST is the loopnest before we've replaced it with the new
1683 loopnest.
1684 OLD_IVS is a vector of induction variables from the old loopnest.
1685 INVARIANTS is a vector of loop invariants from the old loopnest.
1686 NEW_LOOPNEST is the new lambda loopnest to replace OLD_LOOPNEST with.
1687 TRANSFORM is the matrix transform that was applied to OLD_LOOPNEST to get
1688 NEW_LOOPNEST. */
1690 void
1691 lambda_loopnest_to_gcc_loopnest (struct loop *old_loopnest,
1692 VEC(tree,heap) *old_ivs,
1693 VEC(tree,heap) *invariants,
1694 VEC(tree,heap) **remove_ivs,
1695 lambda_loopnest new_loopnest,
1696 lambda_trans_matrix transform,
1697 struct obstack * lambda_obstack)
1699 struct loop *temp;
1700 size_t i = 0;
1701 int j;
1702 size_t depth = 0;
1703 VEC(tree,heap) *new_ivs = NULL;
1704 tree oldiv;
1705 block_stmt_iterator bsi;
1707 transform = lambda_trans_matrix_inverse (transform);
1709 if (dump_file)
1711 fprintf (dump_file, "Inverse of transformation matrix:\n");
1712 print_lambda_trans_matrix (dump_file, transform);
1714 depth = depth_of_nest (old_loopnest);
1715 temp = old_loopnest;
1717 while (temp)
1719 lambda_loop newloop;
1720 basic_block bb;
1721 edge exit;
1722 tree ivvar, ivvarinced, exitcond, stmts;
1723 enum tree_code testtype;
1724 tree newupperbound, newlowerbound;
1725 lambda_linear_expression offset;
1726 tree type;
1727 bool insert_after;
1728 tree inc_stmt;
1730 oldiv = VEC_index (tree, old_ivs, i);
1731 type = TREE_TYPE (oldiv);
1733 /* First, build the new induction variable temporary */
1735 ivvar = create_tmp_var (type, "lnivtmp");
1736 add_referenced_var (ivvar);
1738 VEC_safe_push (tree, heap, new_ivs, ivvar);
1740 newloop = LN_LOOPS (new_loopnest)[i];
1742 /* Linear offset is a bit tricky to handle. Punt on the unhandled
1743 cases for now. */
1744 offset = LL_LINEAR_OFFSET (newloop);
1746 gcc_assert (LLE_DENOMINATOR (offset) == 1 &&
1747 lambda_vector_zerop (LLE_COEFFICIENTS (offset), depth));
1749 /* Now build the new lower bounds, and insert the statements
1750 necessary to generate it on the loop preheader. */
1751 newlowerbound = lle_to_gcc_expression (LL_LOWER_BOUND (newloop),
1752 LL_LINEAR_OFFSET (newloop),
1753 type,
1754 new_ivs,
1755 invariants, MAX_EXPR, &stmts);
1757 if (stmts)
1759 bsi_insert_on_edge (loop_preheader_edge (temp), stmts);
1760 bsi_commit_edge_inserts ();
1762 /* Build the new upper bound and insert its statements in the
1763 basic block of the exit condition */
1764 newupperbound = lle_to_gcc_expression (LL_UPPER_BOUND (newloop),
1765 LL_LINEAR_OFFSET (newloop),
1766 type,
1767 new_ivs,
1768 invariants, MIN_EXPR, &stmts);
1769 exit = single_exit (temp);
1770 exitcond = get_loop_exit_condition (temp);
1771 bb = bb_for_stmt (exitcond);
1772 bsi = bsi_after_labels (bb);
1773 if (stmts)
1774 bsi_insert_before (&bsi, stmts, BSI_NEW_STMT);
1776 /* Create the new iv. */
1778 standard_iv_increment_position (temp, &bsi, &insert_after);
1779 create_iv (newlowerbound,
1780 build_int_cst (type, LL_STEP (newloop)),
1781 ivvar, temp, &bsi, insert_after, &ivvar,
1782 NULL);
1784 /* Unfortunately, the incremented ivvar that create_iv inserted may not
1785 dominate the block containing the exit condition.
1786 So we simply create our own incremented iv to use in the new exit
1787 test, and let redundancy elimination sort it out. */
1788 inc_stmt = build2 (PLUS_EXPR, type,
1789 ivvar, build_int_cst (type, LL_STEP (newloop)));
1790 inc_stmt = build_gimple_modify_stmt (SSA_NAME_VAR (ivvar), inc_stmt);
1791 ivvarinced = make_ssa_name (SSA_NAME_VAR (ivvar), inc_stmt);
1792 GIMPLE_STMT_OPERAND (inc_stmt, 0) = ivvarinced;
1793 bsi = bsi_for_stmt (exitcond);
1794 bsi_insert_before (&bsi, inc_stmt, BSI_SAME_STMT);
1796 /* Replace the exit condition with the new upper bound
1797 comparison. */
1799 testtype = LL_STEP (newloop) >= 0 ? LE_EXPR : GE_EXPR;
1801 /* We want to build a conditional where true means exit the loop, and
1802 false means continue the loop.
1803 So swap the testtype if this isn't the way things are.*/
1805 if (exit->flags & EDGE_FALSE_VALUE)
1806 testtype = swap_tree_comparison (testtype);
1808 COND_EXPR_COND (exitcond) = build2 (testtype,
1809 boolean_type_node,
1810 newupperbound, ivvarinced);
1811 update_stmt (exitcond);
1812 VEC_replace (tree, new_ivs, i, ivvar);
1814 i++;
1815 temp = temp->inner;
1818 /* Rewrite uses of the old ivs so that they are now specified in terms of
1819 the new ivs. */
1821 for (i = 0; VEC_iterate (tree, old_ivs, i, oldiv); i++)
1823 imm_use_iterator imm_iter;
1824 use_operand_p use_p;
1825 tree oldiv_def;
1826 tree oldiv_stmt = SSA_NAME_DEF_STMT (oldiv);
1827 tree stmt;
1829 if (TREE_CODE (oldiv_stmt) == PHI_NODE)
1830 oldiv_def = PHI_RESULT (oldiv_stmt);
1831 else
1832 oldiv_def = SINGLE_SSA_TREE_OPERAND (oldiv_stmt, SSA_OP_DEF);
1833 gcc_assert (oldiv_def != NULL_TREE);
1835 FOR_EACH_IMM_USE_STMT (stmt, imm_iter, oldiv_def)
1837 tree newiv, stmts;
1838 lambda_body_vector lbv, newlbv;
1840 /* Compute the new expression for the induction
1841 variable. */
1842 depth = VEC_length (tree, new_ivs);
1843 lbv = lambda_body_vector_new (depth, lambda_obstack);
1844 LBV_COEFFICIENTS (lbv)[i] = 1;
1846 newlbv = lambda_body_vector_compute_new (transform, lbv,
1847 lambda_obstack);
1849 newiv = lbv_to_gcc_expression (newlbv, TREE_TYPE (oldiv),
1850 new_ivs, &stmts);
1852 if (stmts && TREE_CODE (stmt) != PHI_NODE)
1854 bsi = bsi_for_stmt (stmt);
1855 bsi_insert_before (&bsi, stmts, BSI_SAME_STMT);
1858 FOR_EACH_IMM_USE_ON_STMT (use_p, imm_iter)
1859 propagate_value (use_p, newiv);
1861 if (stmts && TREE_CODE (stmt) == PHI_NODE)
1862 for (j = 0; j < PHI_NUM_ARGS (stmt); j++)
1863 if (PHI_ARG_DEF (stmt, j) == newiv)
1864 bsi_insert_on_edge (PHI_ARG_EDGE (stmt, j), stmts);
1866 update_stmt (stmt);
1869 /* Remove the now unused induction variable. */
1870 VEC_safe_push (tree, heap, *remove_ivs, oldiv_stmt);
1872 VEC_free (tree, heap, new_ivs);
1875 /* Return TRUE if this is not interesting statement from the perspective of
1876 determining if we have a perfect loop nest. */
1878 static bool
1879 not_interesting_stmt (tree stmt)
1881 /* Note that COND_EXPR's aren't interesting because if they were exiting the
1882 loop, we would have already failed the number of exits tests. */
1883 if (TREE_CODE (stmt) == LABEL_EXPR
1884 || TREE_CODE (stmt) == GOTO_EXPR
1885 || TREE_CODE (stmt) == COND_EXPR)
1886 return true;
1887 return false;
1890 /* Return TRUE if PHI uses DEF for it's in-the-loop edge for LOOP. */
1892 static bool
1893 phi_loop_edge_uses_def (struct loop *loop, tree phi, tree def)
1895 int i;
1896 for (i = 0; i < PHI_NUM_ARGS (phi); i++)
1897 if (flow_bb_inside_loop_p (loop, PHI_ARG_EDGE (phi, i)->src))
1898 if (PHI_ARG_DEF (phi, i) == def)
1899 return true;
1900 return false;
1903 /* Return TRUE if STMT is a use of PHI_RESULT. */
1905 static bool
1906 stmt_uses_phi_result (tree stmt, tree phi_result)
1908 tree use = SINGLE_SSA_TREE_OPERAND (stmt, SSA_OP_USE);
1910 /* This is conservatively true, because we only want SIMPLE bumpers
1911 of the form x +- constant for our pass. */
1912 return (use == phi_result);
1915 /* STMT is a bumper stmt for LOOP if the version it defines is used in the
1916 in-loop-edge in a phi node, and the operand it uses is the result of that
1917 phi node.
1918 I.E. i_29 = i_3 + 1
1919 i_3 = PHI (0, i_29); */
1921 static bool
1922 stmt_is_bumper_for_loop (struct loop *loop, tree stmt)
1924 tree use;
1925 tree def;
1926 imm_use_iterator iter;
1927 use_operand_p use_p;
1929 def = SINGLE_SSA_TREE_OPERAND (stmt, SSA_OP_DEF);
1930 if (!def)
1931 return false;
1933 FOR_EACH_IMM_USE_FAST (use_p, iter, def)
1935 use = USE_STMT (use_p);
1936 if (TREE_CODE (use) == PHI_NODE)
1938 if (phi_loop_edge_uses_def (loop, use, def))
1939 if (stmt_uses_phi_result (stmt, PHI_RESULT (use)))
1940 return true;
1943 return false;
1947 /* Return true if LOOP is a perfect loop nest.
1948 Perfect loop nests are those loop nests where all code occurs in the
1949 innermost loop body.
1950 If S is a program statement, then
1952 i.e.
1953 DO I = 1, 20
1955 DO J = 1, 20
1957 END DO
1958 END DO
1959 is not a perfect loop nest because of S1.
1961 DO I = 1, 20
1962 DO J = 1, 20
1965 END DO
1966 END DO
1967 is a perfect loop nest.
1969 Since we don't have high level loops anymore, we basically have to walk our
1970 statements and ignore those that are there because the loop needs them (IE
1971 the induction variable increment, and jump back to the top of the loop). */
1973 bool
1974 perfect_nest_p (struct loop *loop)
1976 basic_block *bbs;
1977 size_t i;
1978 tree exit_cond;
1980 /* Loops at depth 0 are perfect nests. */
1981 if (!loop->inner)
1982 return true;
1984 bbs = get_loop_body (loop);
1985 exit_cond = get_loop_exit_condition (loop);
1987 for (i = 0; i < loop->num_nodes; i++)
1989 if (bbs[i]->loop_father == loop)
1991 block_stmt_iterator bsi;
1993 for (bsi = bsi_start (bbs[i]); !bsi_end_p (bsi); bsi_next (&bsi))
1995 tree stmt = bsi_stmt (bsi);
1997 if (TREE_CODE (stmt) == COND_EXPR
1998 && exit_cond != stmt)
1999 goto non_perfectly_nested;
2001 if (stmt == exit_cond
2002 || not_interesting_stmt (stmt)
2003 || stmt_is_bumper_for_loop (loop, stmt))
2004 continue;
2006 non_perfectly_nested:
2007 free (bbs);
2008 return false;
2013 free (bbs);
2015 return perfect_nest_p (loop->inner);
2018 /* Replace the USES of X in STMT, or uses with the same step as X with Y.
2019 YINIT is the initial value of Y, REPLACEMENTS is a hash table to
2020 avoid creating duplicate temporaries and FIRSTBSI is statement
2021 iterator where new temporaries should be inserted at the beginning
2022 of body basic block. */
2024 static void
2025 replace_uses_equiv_to_x_with_y (struct loop *loop, tree stmt, tree x,
2026 int xstep, tree y, tree yinit,
2027 htab_t replacements,
2028 block_stmt_iterator *firstbsi)
2030 ssa_op_iter iter;
2031 use_operand_p use_p;
2033 FOR_EACH_SSA_USE_OPERAND (use_p, stmt, iter, SSA_OP_USE)
2035 tree use = USE_FROM_PTR (use_p);
2036 tree step = NULL_TREE;
2037 tree scev, init, val, var, setstmt;
2038 struct tree_map *h, in;
2039 void **loc;
2041 /* Replace uses of X with Y right away. */
2042 if (use == x)
2044 SET_USE (use_p, y);
2045 continue;
2048 scev = instantiate_parameters (loop,
2049 analyze_scalar_evolution (loop, use));
2051 if (scev == NULL || scev == chrec_dont_know)
2052 continue;
2054 step = evolution_part_in_loop_num (scev, loop->num);
2055 if (step == NULL
2056 || step == chrec_dont_know
2057 || TREE_CODE (step) != INTEGER_CST
2058 || int_cst_value (step) != xstep)
2059 continue;
2061 /* Use REPLACEMENTS hash table to cache already created
2062 temporaries. */
2063 in.hash = htab_hash_pointer (use);
2064 in.base.from = use;
2065 h = (struct tree_map *) htab_find_with_hash (replacements, &in, in.hash);
2066 if (h != NULL)
2068 SET_USE (use_p, h->to);
2069 continue;
2072 /* USE which has the same step as X should be replaced
2073 with a temporary set to Y + YINIT - INIT. */
2074 init = initial_condition_in_loop_num (scev, loop->num);
2075 gcc_assert (init != NULL && init != chrec_dont_know);
2076 if (TREE_TYPE (use) == TREE_TYPE (y))
2078 val = fold_build2 (MINUS_EXPR, TREE_TYPE (y), init, yinit);
2079 val = fold_build2 (PLUS_EXPR, TREE_TYPE (y), y, val);
2080 if (val == y)
2082 /* If X has the same type as USE, the same step
2083 and same initial value, it can be replaced by Y. */
2084 SET_USE (use_p, y);
2085 continue;
2088 else
2090 val = fold_build2 (MINUS_EXPR, TREE_TYPE (y), y, yinit);
2091 val = fold_convert (TREE_TYPE (use), val);
2092 val = fold_build2 (PLUS_EXPR, TREE_TYPE (use), val, init);
2095 /* Create a temporary variable and insert it at the beginning
2096 of the loop body basic block, right after the PHI node
2097 which sets Y. */
2098 var = create_tmp_var (TREE_TYPE (use), "perfecttmp");
2099 add_referenced_var (var);
2100 val = force_gimple_operand_bsi (firstbsi, val, false, NULL,
2101 true, BSI_SAME_STMT);
2102 setstmt = build_gimple_modify_stmt (var, val);
2103 var = make_ssa_name (var, setstmt);
2104 GIMPLE_STMT_OPERAND (setstmt, 0) = var;
2105 bsi_insert_before (firstbsi, setstmt, BSI_SAME_STMT);
2106 update_stmt (setstmt);
2107 SET_USE (use_p, var);
2108 h = GGC_NEW (struct tree_map);
2109 h->hash = in.hash;
2110 h->base.from = use;
2111 h->to = var;
2112 loc = htab_find_slot_with_hash (replacements, h, in.hash, INSERT);
2113 gcc_assert ((*(struct tree_map **)loc) == NULL);
2114 *(struct tree_map **) loc = h;
2118 /* Return true if STMT is an exit PHI for LOOP */
2120 static bool
2121 exit_phi_for_loop_p (struct loop *loop, tree stmt)
2124 if (TREE_CODE (stmt) != PHI_NODE
2125 || PHI_NUM_ARGS (stmt) != 1
2126 || bb_for_stmt (stmt) != single_exit (loop)->dest)
2127 return false;
2129 return true;
2132 /* Return true if STMT can be put back into the loop INNER, by
2133 copying it to the beginning of that loop and changing the uses. */
2135 static bool
2136 can_put_in_inner_loop (struct loop *inner, tree stmt)
2138 imm_use_iterator imm_iter;
2139 use_operand_p use_p;
2141 gcc_assert (TREE_CODE (stmt) == GIMPLE_MODIFY_STMT);
2142 if (!ZERO_SSA_OPERANDS (stmt, SSA_OP_ALL_VIRTUALS)
2143 || !expr_invariant_in_loop_p (inner, GIMPLE_STMT_OPERAND (stmt, 1)))
2144 return false;
2146 FOR_EACH_IMM_USE_FAST (use_p, imm_iter, GIMPLE_STMT_OPERAND (stmt, 0))
2148 if (!exit_phi_for_loop_p (inner, USE_STMT (use_p)))
2150 basic_block immbb = bb_for_stmt (USE_STMT (use_p));
2152 if (!flow_bb_inside_loop_p (inner, immbb))
2153 return false;
2156 return true;
2159 /* Return true if STMT can be put *after* the inner loop of LOOP. */
2160 static bool
2161 can_put_after_inner_loop (struct loop *loop, tree stmt)
2163 imm_use_iterator imm_iter;
2164 use_operand_p use_p;
2166 if (!ZERO_SSA_OPERANDS (stmt, SSA_OP_ALL_VIRTUALS))
2167 return false;
2169 FOR_EACH_IMM_USE_FAST (use_p, imm_iter, GIMPLE_STMT_OPERAND (stmt, 0))
2171 if (!exit_phi_for_loop_p (loop, USE_STMT (use_p)))
2173 basic_block immbb = bb_for_stmt (USE_STMT (use_p));
2175 if (!dominated_by_p (CDI_DOMINATORS,
2176 immbb,
2177 loop->inner->header)
2178 && !can_put_in_inner_loop (loop->inner, stmt))
2179 return false;
2182 return true;
2185 /* Return true when the induction variable IV is simple enough to be
2186 re-synthesized. */
2188 static bool
2189 can_duplicate_iv (tree iv, struct loop *loop)
2191 tree scev = instantiate_parameters
2192 (loop, analyze_scalar_evolution (loop, iv));
2194 if (!automatically_generated_chrec_p (scev))
2196 tree step = evolution_part_in_loop_num (scev, loop->num);
2198 if (step && step != chrec_dont_know && TREE_CODE (step) == INTEGER_CST)
2199 return true;
2202 return false;
2205 /* If this is a scalar operation that can be put back into the inner
2206 loop, or after the inner loop, through copying, then do so. This
2207 works on the theory that any amount of scalar code we have to
2208 reduplicate into or after the loops is less expensive that the win
2209 we get from rearranging the memory walk the loop is doing so that
2210 it has better cache behavior. */
2212 static bool
2213 cannot_convert_modify_to_perfect_nest (tree stmt, struct loop *loop)
2216 use_operand_p use_a, use_b;
2217 imm_use_iterator imm_iter;
2218 ssa_op_iter op_iter, op_iter1;
2219 tree op0 = GIMPLE_STMT_OPERAND (stmt, 0);
2221 /* The statement should not define a variable used in the inner
2222 loop. */
2223 if (TREE_CODE (op0) == SSA_NAME
2224 && !can_duplicate_iv (op0, loop))
2225 FOR_EACH_IMM_USE_FAST (use_a, imm_iter, op0)
2226 if (bb_for_stmt (USE_STMT (use_a))->loop_father
2227 == loop->inner)
2228 return true;
2230 FOR_EACH_SSA_USE_OPERAND (use_a, stmt, op_iter, SSA_OP_USE)
2232 tree node, op = USE_FROM_PTR (use_a);
2234 /* The variables should not be used in both loops. */
2235 if (!can_duplicate_iv (op, loop))
2236 FOR_EACH_IMM_USE_FAST (use_b, imm_iter, op)
2237 if (bb_for_stmt (USE_STMT (use_b))->loop_father
2238 == loop->inner)
2239 return true;
2241 /* The statement should not use the value of a scalar that was
2242 modified in the loop. */
2243 node = SSA_NAME_DEF_STMT (op);
2244 if (TREE_CODE (node) == PHI_NODE)
2245 FOR_EACH_PHI_ARG (use_b, node, op_iter1, SSA_OP_USE)
2247 tree arg = USE_FROM_PTR (use_b);
2249 if (TREE_CODE (arg) == SSA_NAME)
2251 tree arg_stmt = SSA_NAME_DEF_STMT (arg);
2253 if (bb_for_stmt (arg_stmt)
2254 && (bb_for_stmt (arg_stmt)->loop_father
2255 == loop->inner))
2256 return true;
2261 return false;
2264 /* Return true when BB contains statements that can harm the transform
2265 to a perfect loop nest. */
2267 static bool
2268 cannot_convert_bb_to_perfect_nest (basic_block bb, struct loop *loop)
2270 block_stmt_iterator bsi;
2271 tree exit_condition = get_loop_exit_condition (loop);
2273 for (bsi = bsi_start (bb); !bsi_end_p (bsi); bsi_next (&bsi))
2275 tree stmt = bsi_stmt (bsi);
2277 if (stmt == exit_condition
2278 || not_interesting_stmt (stmt)
2279 || stmt_is_bumper_for_loop (loop, stmt))
2280 continue;
2282 if (TREE_CODE (stmt) == GIMPLE_MODIFY_STMT)
2284 if (cannot_convert_modify_to_perfect_nest (stmt, loop))
2285 return true;
2287 if (can_duplicate_iv (GIMPLE_STMT_OPERAND (stmt, 0), loop))
2288 continue;
2290 if (can_put_in_inner_loop (loop->inner, stmt)
2291 || can_put_after_inner_loop (loop, stmt))
2292 continue;
2295 /* If the bb of a statement we care about isn't dominated by the
2296 header of the inner loop, then we can't handle this case
2297 right now. This test ensures that the statement comes
2298 completely *after* the inner loop. */
2299 if (!dominated_by_p (CDI_DOMINATORS,
2300 bb_for_stmt (stmt),
2301 loop->inner->header))
2302 return true;
2305 return false;
2308 /* Return TRUE if LOOP is an imperfect nest that we can convert to a
2309 perfect one. At the moment, we only handle imperfect nests of
2310 depth 2, where all of the statements occur after the inner loop. */
2312 static bool
2313 can_convert_to_perfect_nest (struct loop *loop)
2315 basic_block *bbs;
2316 tree phi;
2317 size_t i;
2319 /* Can't handle triply nested+ loops yet. */
2320 if (!loop->inner || loop->inner->inner)
2321 return false;
2323 bbs = get_loop_body (loop);
2324 for (i = 0; i < loop->num_nodes; i++)
2325 if (bbs[i]->loop_father == loop
2326 && cannot_convert_bb_to_perfect_nest (bbs[i], loop))
2327 goto fail;
2329 /* We also need to make sure the loop exit only has simple copy phis in it,
2330 otherwise we don't know how to transform it into a perfect nest. */
2331 for (phi = phi_nodes (single_exit (loop)->dest); phi; phi = PHI_CHAIN (phi))
2332 if (PHI_NUM_ARGS (phi) != 1)
2333 goto fail;
2335 free (bbs);
2336 return true;
2338 fail:
2339 free (bbs);
2340 return false;
2343 /* Transform the loop nest into a perfect nest, if possible.
2344 LOOP is the loop nest to transform into a perfect nest
2345 LBOUNDS are the lower bounds for the loops to transform
2346 UBOUNDS are the upper bounds for the loops to transform
2347 STEPS is the STEPS for the loops to transform.
2348 LOOPIVS is the induction variables for the loops to transform.
2350 Basically, for the case of
2352 FOR (i = 0; i < 50; i++)
2354 FOR (j =0; j < 50; j++)
2356 <whatever>
2358 <some code>
2361 This function will transform it into a perfect loop nest by splitting the
2362 outer loop into two loops, like so:
2364 FOR (i = 0; i < 50; i++)
2366 FOR (j = 0; j < 50; j++)
2368 <whatever>
2372 FOR (i = 0; i < 50; i ++)
2374 <some code>
2377 Return FALSE if we can't make this loop into a perfect nest. */
2379 static bool
2380 perfect_nestify (struct loop *loop,
2381 VEC(tree,heap) *lbounds,
2382 VEC(tree,heap) *ubounds,
2383 VEC(int,heap) *steps,
2384 VEC(tree,heap) *loopivs)
2386 basic_block *bbs;
2387 tree exit_condition;
2388 tree cond_stmt;
2389 basic_block preheaderbb, headerbb, bodybb, latchbb, olddest;
2390 int i;
2391 block_stmt_iterator bsi, firstbsi;
2392 bool insert_after;
2393 edge e;
2394 struct loop *newloop;
2395 tree phi;
2396 tree uboundvar;
2397 tree stmt;
2398 tree oldivvar, ivvar, ivvarinced;
2399 VEC(tree,heap) *phis = NULL;
2400 htab_t replacements = NULL;
2402 /* Create the new loop. */
2403 olddest = single_exit (loop)->dest;
2404 preheaderbb = split_edge (single_exit (loop));
2405 headerbb = create_empty_bb (EXIT_BLOCK_PTR->prev_bb);
2407 /* Push the exit phi nodes that we are moving. */
2408 for (phi = phi_nodes (olddest); phi; phi = PHI_CHAIN (phi))
2410 VEC_reserve (tree, heap, phis, 2);
2411 VEC_quick_push (tree, phis, PHI_RESULT (phi));
2412 VEC_quick_push (tree, phis, PHI_ARG_DEF (phi, 0));
2414 e = redirect_edge_and_branch (single_succ_edge (preheaderbb), headerbb);
2416 /* Remove the exit phis from the old basic block. */
2417 while (phi_nodes (olddest) != NULL)
2418 remove_phi_node (phi_nodes (olddest), NULL, false);
2420 /* and add them back to the new basic block. */
2421 while (VEC_length (tree, phis) != 0)
2423 tree def;
2424 tree phiname;
2425 def = VEC_pop (tree, phis);
2426 phiname = VEC_pop (tree, phis);
2427 phi = create_phi_node (phiname, preheaderbb);
2428 add_phi_arg (phi, def, single_pred_edge (preheaderbb));
2430 flush_pending_stmts (e);
2431 VEC_free (tree, heap, phis);
2433 bodybb = create_empty_bb (EXIT_BLOCK_PTR->prev_bb);
2434 latchbb = create_empty_bb (EXIT_BLOCK_PTR->prev_bb);
2435 make_edge (headerbb, bodybb, EDGE_FALLTHRU);
2436 cond_stmt = build3 (COND_EXPR, void_type_node,
2437 build2 (NE_EXPR, boolean_type_node,
2438 integer_one_node,
2439 integer_zero_node),
2440 NULL_TREE, NULL_TREE);
2441 bsi = bsi_start (bodybb);
2442 bsi_insert_after (&bsi, cond_stmt, BSI_NEW_STMT);
2443 e = make_edge (bodybb, olddest, EDGE_FALSE_VALUE);
2444 make_edge (bodybb, latchbb, EDGE_TRUE_VALUE);
2445 make_edge (latchbb, headerbb, EDGE_FALLTHRU);
2447 /* Update the loop structures. */
2448 newloop = duplicate_loop (loop, olddest->loop_father);
2449 newloop->header = headerbb;
2450 newloop->latch = latchbb;
2451 add_bb_to_loop (latchbb, newloop);
2452 add_bb_to_loop (bodybb, newloop);
2453 add_bb_to_loop (headerbb, newloop);
2454 set_immediate_dominator (CDI_DOMINATORS, bodybb, headerbb);
2455 set_immediate_dominator (CDI_DOMINATORS, headerbb, preheaderbb);
2456 set_immediate_dominator (CDI_DOMINATORS, preheaderbb,
2457 single_exit (loop)->src);
2458 set_immediate_dominator (CDI_DOMINATORS, latchbb, bodybb);
2459 set_immediate_dominator (CDI_DOMINATORS, olddest,
2460 recompute_dominator (CDI_DOMINATORS, olddest));
2461 /* Create the new iv. */
2462 oldivvar = VEC_index (tree, loopivs, 0);
2463 ivvar = create_tmp_var (TREE_TYPE (oldivvar), "perfectiv");
2464 add_referenced_var (ivvar);
2465 standard_iv_increment_position (newloop, &bsi, &insert_after);
2466 create_iv (VEC_index (tree, lbounds, 0),
2467 build_int_cst (TREE_TYPE (oldivvar), VEC_index (int, steps, 0)),
2468 ivvar, newloop, &bsi, insert_after, &ivvar, &ivvarinced);
2470 /* Create the new upper bound. This may be not just a variable, so we copy
2471 it to one just in case. */
2473 exit_condition = get_loop_exit_condition (newloop);
2474 uboundvar = create_tmp_var (integer_type_node, "uboundvar");
2475 add_referenced_var (uboundvar);
2476 stmt = build_gimple_modify_stmt (uboundvar, VEC_index (tree, ubounds, 0));
2477 uboundvar = make_ssa_name (uboundvar, stmt);
2478 GIMPLE_STMT_OPERAND (stmt, 0) = uboundvar;
2480 if (insert_after)
2481 bsi_insert_after (&bsi, stmt, BSI_SAME_STMT);
2482 else
2483 bsi_insert_before (&bsi, stmt, BSI_SAME_STMT);
2484 update_stmt (stmt);
2485 COND_EXPR_COND (exit_condition) = build2 (GE_EXPR,
2486 boolean_type_node,
2487 uboundvar,
2488 ivvarinced);
2489 update_stmt (exit_condition);
2490 replacements = htab_create_ggc (20, tree_map_hash,
2491 tree_map_eq, NULL);
2492 bbs = get_loop_body_in_dom_order (loop);
2493 /* Now move the statements, and replace the induction variable in the moved
2494 statements with the correct loop induction variable. */
2495 oldivvar = VEC_index (tree, loopivs, 0);
2496 firstbsi = bsi_start (bodybb);
2497 for (i = loop->num_nodes - 1; i >= 0 ; i--)
2499 block_stmt_iterator tobsi = bsi_last (bodybb);
2500 if (bbs[i]->loop_father == loop)
2502 /* If this is true, we are *before* the inner loop.
2503 If this isn't true, we are *after* it.
2505 The only time can_convert_to_perfect_nest returns true when we
2506 have statements before the inner loop is if they can be moved
2507 into the inner loop.
2509 The only time can_convert_to_perfect_nest returns true when we
2510 have statements after the inner loop is if they can be moved into
2511 the new split loop. */
2513 if (dominated_by_p (CDI_DOMINATORS, loop->inner->header, bbs[i]))
2515 block_stmt_iterator header_bsi
2516 = bsi_after_labels (loop->inner->header);
2518 for (bsi = bsi_start (bbs[i]); !bsi_end_p (bsi);)
2520 tree stmt = bsi_stmt (bsi);
2522 if (stmt == exit_condition
2523 || not_interesting_stmt (stmt)
2524 || stmt_is_bumper_for_loop (loop, stmt))
2526 bsi_next (&bsi);
2527 continue;
2530 bsi_move_before (&bsi, &header_bsi);
2533 else
2535 /* Note that the bsi only needs to be explicitly incremented
2536 when we don't move something, since it is automatically
2537 incremented when we do. */
2538 for (bsi = bsi_start (bbs[i]); !bsi_end_p (bsi);)
2540 ssa_op_iter i;
2541 tree n, stmt = bsi_stmt (bsi);
2543 if (stmt == exit_condition
2544 || not_interesting_stmt (stmt)
2545 || stmt_is_bumper_for_loop (loop, stmt))
2547 bsi_next (&bsi);
2548 continue;
2551 replace_uses_equiv_to_x_with_y
2552 (loop, stmt, oldivvar, VEC_index (int, steps, 0), ivvar,
2553 VEC_index (tree, lbounds, 0), replacements, &firstbsi);
2555 bsi_move_before (&bsi, &tobsi);
2557 /* If the statement has any virtual operands, they may
2558 need to be rewired because the original loop may
2559 still reference them. */
2560 FOR_EACH_SSA_TREE_OPERAND (n, stmt, i, SSA_OP_ALL_VIRTUALS)
2561 mark_sym_for_renaming (SSA_NAME_VAR (n));
2568 free (bbs);
2569 htab_delete (replacements);
2570 return perfect_nest_p (loop);
2573 /* Return true if TRANS is a legal transformation matrix that respects
2574 the dependence vectors in DISTS and DIRS. The conservative answer
2575 is false.
2577 "Wolfe proves that a unimodular transformation represented by the
2578 matrix T is legal when applied to a loop nest with a set of
2579 lexicographically non-negative distance vectors RDG if and only if
2580 for each vector d in RDG, (T.d >= 0) is lexicographically positive.
2581 i.e.: if and only if it transforms the lexicographically positive
2582 distance vectors to lexicographically positive vectors. Note that
2583 a unimodular matrix must transform the zero vector (and only it) to
2584 the zero vector." S.Muchnick. */
2586 bool
2587 lambda_transform_legal_p (lambda_trans_matrix trans,
2588 int nb_loops,
2589 VEC (ddr_p, heap) *dependence_relations)
2591 unsigned int i, j;
2592 lambda_vector distres;
2593 struct data_dependence_relation *ddr;
2595 gcc_assert (LTM_COLSIZE (trans) == nb_loops
2596 && LTM_ROWSIZE (trans) == nb_loops);
2598 /* When there are no dependences, the transformation is correct. */
2599 if (VEC_length (ddr_p, dependence_relations) == 0)
2600 return true;
2602 ddr = VEC_index (ddr_p, dependence_relations, 0);
2603 if (ddr == NULL)
2604 return true;
2606 /* When there is an unknown relation in the dependence_relations, we
2607 know that it is no worth looking at this loop nest: give up. */
2608 if (DDR_ARE_DEPENDENT (ddr) == chrec_dont_know)
2609 return false;
2611 distres = lambda_vector_new (nb_loops);
2613 /* For each distance vector in the dependence graph. */
2614 for (i = 0; VEC_iterate (ddr_p, dependence_relations, i, ddr); i++)
2616 /* Don't care about relations for which we know that there is no
2617 dependence, nor about read-read (aka. output-dependences):
2618 these data accesses can happen in any order. */
2619 if (DDR_ARE_DEPENDENT (ddr) == chrec_known
2620 || (DR_IS_READ (DDR_A (ddr)) && DR_IS_READ (DDR_B (ddr))))
2621 continue;
2623 /* Conservatively answer: "this transformation is not valid". */
2624 if (DDR_ARE_DEPENDENT (ddr) == chrec_dont_know)
2625 return false;
2627 /* If the dependence could not be captured by a distance vector,
2628 conservatively answer that the transform is not valid. */
2629 if (DDR_NUM_DIST_VECTS (ddr) == 0)
2630 return false;
2632 /* Compute trans.dist_vect */
2633 for (j = 0; j < DDR_NUM_DIST_VECTS (ddr); j++)
2635 lambda_matrix_vector_mult (LTM_MATRIX (trans), nb_loops, nb_loops,
2636 DDR_DIST_VECT (ddr, j), distres);
2638 if (!lambda_vector_lexico_pos (distres, nb_loops))
2639 return false;
2642 return true;