2013-10-03 Marc Glisse <marc.glisse@inria.fr>
[official-gcc.git] / gcc / cfgloopmanip.c
blobb4840dcf014bd83d6568487df275647f3645bec6
1 /* Loop manipulation code for GNU compiler.
2 Copyright (C) 2002-2013 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "tm.h"
24 #include "rtl.h"
25 #include "basic-block.h"
26 #include "cfgloop.h"
27 #include "tree-ssa.h"
28 #include "dumpfile.h"
30 static void copy_loops_to (struct loop **, int,
31 struct loop *);
32 static void loop_redirect_edge (edge, basic_block);
33 static void remove_bbs (basic_block *, int);
34 static bool rpe_enum_p (const_basic_block, const void *);
35 static int find_path (edge, basic_block **);
36 static void fix_loop_placements (struct loop *, bool *);
37 static bool fix_bb_placement (basic_block);
38 static void fix_bb_placements (basic_block, bool *, bitmap);
40 /* Checks whether basic block BB is dominated by DATA. */
41 static bool
42 rpe_enum_p (const_basic_block bb, const void *data)
44 return dominated_by_p (CDI_DOMINATORS, bb, (const_basic_block) data);
47 /* Remove basic blocks BBS. NBBS is the number of the basic blocks. */
49 static void
50 remove_bbs (basic_block *bbs, int nbbs)
52 int i;
54 for (i = 0; i < nbbs; i++)
55 delete_basic_block (bbs[i]);
58 /* Find path -- i.e. the basic blocks dominated by edge E and put them
59 into array BBS, that will be allocated large enough to contain them.
60 E->dest must have exactly one predecessor for this to work (it is
61 easy to achieve and we do not put it here because we do not want to
62 alter anything by this function). The number of basic blocks in the
63 path is returned. */
64 static int
65 find_path (edge e, basic_block **bbs)
67 gcc_assert (EDGE_COUNT (e->dest->preds) <= 1);
69 /* Find bbs in the path. */
70 *bbs = XNEWVEC (basic_block, n_basic_blocks);
71 return dfs_enumerate_from (e->dest, 0, rpe_enum_p, *bbs,
72 n_basic_blocks, e->dest);
75 /* Fix placement of basic block BB inside loop hierarchy --
76 Let L be a loop to that BB belongs. Then every successor of BB must either
77 1) belong to some superloop of loop L, or
78 2) be a header of loop K such that K->outer is superloop of L
79 Returns true if we had to move BB into other loop to enforce this condition,
80 false if the placement of BB was already correct (provided that placements
81 of its successors are correct). */
82 static bool
83 fix_bb_placement (basic_block bb)
85 edge e;
86 edge_iterator ei;
87 struct loop *loop = current_loops->tree_root, *act;
89 FOR_EACH_EDGE (e, ei, bb->succs)
91 if (e->dest == EXIT_BLOCK_PTR)
92 continue;
94 act = e->dest->loop_father;
95 if (act->header == e->dest)
96 act = loop_outer (act);
98 if (flow_loop_nested_p (loop, act))
99 loop = act;
102 if (loop == bb->loop_father)
103 return false;
105 remove_bb_from_loops (bb);
106 add_bb_to_loop (bb, loop);
108 return true;
111 /* Fix placement of LOOP inside loop tree, i.e. find the innermost superloop
112 of LOOP to that leads at least one exit edge of LOOP, and set it
113 as the immediate superloop of LOOP. Return true if the immediate superloop
114 of LOOP changed.
116 IRRED_INVALIDATED is set to true if a change in the loop structures might
117 invalidate the information about irreducible regions. */
119 static bool
120 fix_loop_placement (struct loop *loop, bool *irred_invalidated)
122 unsigned i;
123 edge e;
124 vec<edge> exits = get_loop_exit_edges (loop);
125 struct loop *father = current_loops->tree_root, *act;
126 bool ret = false;
128 FOR_EACH_VEC_ELT (exits, i, e)
130 act = find_common_loop (loop, e->dest->loop_father);
131 if (flow_loop_nested_p (father, act))
132 father = act;
135 if (father != loop_outer (loop))
137 for (act = loop_outer (loop); act != father; act = loop_outer (act))
138 act->num_nodes -= loop->num_nodes;
139 flow_loop_tree_node_remove (loop);
140 flow_loop_tree_node_add (father, loop);
142 /* The exit edges of LOOP no longer exits its original immediate
143 superloops; remove them from the appropriate exit lists. */
144 FOR_EACH_VEC_ELT (exits, i, e)
146 /* We may need to recompute irreducible loops. */
147 if (e->flags & EDGE_IRREDUCIBLE_LOOP)
148 *irred_invalidated = true;
149 rescan_loop_exit (e, false, false);
152 ret = true;
155 exits.release ();
156 return ret;
159 /* Fix placements of basic blocks inside loop hierarchy stored in loops; i.e.
160 enforce condition condition stated in description of fix_bb_placement. We
161 start from basic block FROM that had some of its successors removed, so that
162 his placement no longer has to be correct, and iteratively fix placement of
163 its predecessors that may change if placement of FROM changed. Also fix
164 placement of subloops of FROM->loop_father, that might also be altered due
165 to this change; the condition for them is similar, except that instead of
166 successors we consider edges coming out of the loops.
168 If the changes may invalidate the information about irreducible regions,
169 IRRED_INVALIDATED is set to true.
171 If LOOP_CLOSED_SSA_INVLIDATED is non-zero then all basic blocks with
172 changed loop_father are collected there. */
174 static void
175 fix_bb_placements (basic_block from,
176 bool *irred_invalidated,
177 bitmap loop_closed_ssa_invalidated)
179 sbitmap in_queue;
180 basic_block *queue, *qtop, *qbeg, *qend;
181 struct loop *base_loop, *target_loop;
182 edge e;
184 /* We pass through blocks back-reachable from FROM, testing whether some
185 of their successors moved to outer loop. It may be necessary to
186 iterate several times, but it is finite, as we stop unless we move
187 the basic block up the loop structure. The whole story is a bit
188 more complicated due to presence of subloops, those are moved using
189 fix_loop_placement. */
191 base_loop = from->loop_father;
192 /* If we are already in the outermost loop, the basic blocks cannot be moved
193 outside of it. If FROM is the header of the base loop, it cannot be moved
194 outside of it, either. In both cases, we can end now. */
195 if (base_loop == current_loops->tree_root
196 || from == base_loop->header)
197 return;
199 in_queue = sbitmap_alloc (last_basic_block);
200 bitmap_clear (in_queue);
201 bitmap_set_bit (in_queue, from->index);
202 /* Prevent us from going out of the base_loop. */
203 bitmap_set_bit (in_queue, base_loop->header->index);
205 queue = XNEWVEC (basic_block, base_loop->num_nodes + 1);
206 qtop = queue + base_loop->num_nodes + 1;
207 qbeg = queue;
208 qend = queue + 1;
209 *qbeg = from;
211 while (qbeg != qend)
213 edge_iterator ei;
214 from = *qbeg;
215 qbeg++;
216 if (qbeg == qtop)
217 qbeg = queue;
218 bitmap_clear_bit (in_queue, from->index);
220 if (from->loop_father->header == from)
222 /* Subloop header, maybe move the loop upward. */
223 if (!fix_loop_placement (from->loop_father, irred_invalidated))
224 continue;
225 target_loop = loop_outer (from->loop_father);
226 if (loop_closed_ssa_invalidated)
228 basic_block *bbs = get_loop_body (from->loop_father);
229 for (unsigned i = 0; i < from->loop_father->num_nodes; ++i)
230 bitmap_set_bit (loop_closed_ssa_invalidated, bbs[i]->index);
231 free (bbs);
234 else
236 /* Ordinary basic block. */
237 if (!fix_bb_placement (from))
238 continue;
239 target_loop = from->loop_father;
240 if (loop_closed_ssa_invalidated)
241 bitmap_set_bit (loop_closed_ssa_invalidated, from->index);
244 FOR_EACH_EDGE (e, ei, from->succs)
246 if (e->flags & EDGE_IRREDUCIBLE_LOOP)
247 *irred_invalidated = true;
250 /* Something has changed, insert predecessors into queue. */
251 FOR_EACH_EDGE (e, ei, from->preds)
253 basic_block pred = e->src;
254 struct loop *nca;
256 if (e->flags & EDGE_IRREDUCIBLE_LOOP)
257 *irred_invalidated = true;
259 if (bitmap_bit_p (in_queue, pred->index))
260 continue;
262 /* If it is subloop, then it either was not moved, or
263 the path up the loop tree from base_loop do not contain
264 it. */
265 nca = find_common_loop (pred->loop_father, base_loop);
266 if (pred->loop_father != base_loop
267 && (nca == base_loop
268 || nca != pred->loop_father))
269 pred = pred->loop_father->header;
270 else if (!flow_loop_nested_p (target_loop, pred->loop_father))
272 /* If PRED is already higher in the loop hierarchy than the
273 TARGET_LOOP to that we moved FROM, the change of the position
274 of FROM does not affect the position of PRED, so there is no
275 point in processing it. */
276 continue;
279 if (bitmap_bit_p (in_queue, pred->index))
280 continue;
282 /* Schedule the basic block. */
283 *qend = pred;
284 qend++;
285 if (qend == qtop)
286 qend = queue;
287 bitmap_set_bit (in_queue, pred->index);
290 free (in_queue);
291 free (queue);
294 /* Removes path beginning at edge E, i.e. remove basic blocks dominated by E
295 and update loop structures and dominators. Return true if we were able
296 to remove the path, false otherwise (and nothing is affected then). */
297 bool
298 remove_path (edge e)
300 edge ae;
301 basic_block *rem_bbs, *bord_bbs, from, bb;
302 vec<basic_block> dom_bbs;
303 int i, nrem, n_bord_bbs;
304 sbitmap seen;
305 bool irred_invalidated = false;
306 edge_iterator ei;
307 struct loop *l, *f;
309 if (!can_remove_branch_p (e))
310 return false;
312 /* Keep track of whether we need to update information about irreducible
313 regions. This is the case if the removed area is a part of the
314 irreducible region, or if the set of basic blocks that belong to a loop
315 that is inside an irreducible region is changed, or if such a loop is
316 removed. */
317 if (e->flags & EDGE_IRREDUCIBLE_LOOP)
318 irred_invalidated = true;
320 /* We need to check whether basic blocks are dominated by the edge
321 e, but we only have basic block dominators. This is easy to
322 fix -- when e->dest has exactly one predecessor, this corresponds
323 to blocks dominated by e->dest, if not, split the edge. */
324 if (!single_pred_p (e->dest))
325 e = single_pred_edge (split_edge (e));
327 /* It may happen that by removing path we remove one or more loops
328 we belong to. In this case first unloop the loops, then proceed
329 normally. We may assume that e->dest is not a header of any loop,
330 as it now has exactly one predecessor. */
331 for (l = e->src->loop_father; loop_outer (l); l = f)
333 f = loop_outer (l);
334 if (dominated_by_p (CDI_DOMINATORS, l->latch, e->dest))
335 unloop (l, &irred_invalidated, NULL);
338 /* Identify the path. */
339 nrem = find_path (e, &rem_bbs);
341 n_bord_bbs = 0;
342 bord_bbs = XNEWVEC (basic_block, n_basic_blocks);
343 seen = sbitmap_alloc (last_basic_block);
344 bitmap_clear (seen);
346 /* Find "border" hexes -- i.e. those with predecessor in removed path. */
347 for (i = 0; i < nrem; i++)
348 bitmap_set_bit (seen, rem_bbs[i]->index);
349 if (!irred_invalidated)
350 FOR_EACH_EDGE (ae, ei, e->src->succs)
351 if (ae != e && ae->dest != EXIT_BLOCK_PTR && !bitmap_bit_p (seen, ae->dest->index)
352 && ae->flags & EDGE_IRREDUCIBLE_LOOP)
354 irred_invalidated = true;
355 break;
358 for (i = 0; i < nrem; i++)
360 bb = rem_bbs[i];
361 FOR_EACH_EDGE (ae, ei, rem_bbs[i]->succs)
362 if (ae->dest != EXIT_BLOCK_PTR && !bitmap_bit_p (seen, ae->dest->index))
364 bitmap_set_bit (seen, ae->dest->index);
365 bord_bbs[n_bord_bbs++] = ae->dest;
367 if (ae->flags & EDGE_IRREDUCIBLE_LOOP)
368 irred_invalidated = true;
372 /* Remove the path. */
373 from = e->src;
374 remove_branch (e);
375 dom_bbs.create (0);
377 /* Cancel loops contained in the path. */
378 for (i = 0; i < nrem; i++)
379 if (rem_bbs[i]->loop_father->header == rem_bbs[i])
380 cancel_loop_tree (rem_bbs[i]->loop_father);
382 remove_bbs (rem_bbs, nrem);
383 free (rem_bbs);
385 /* Find blocks whose dominators may be affected. */
386 bitmap_clear (seen);
387 for (i = 0; i < n_bord_bbs; i++)
389 basic_block ldom;
391 bb = get_immediate_dominator (CDI_DOMINATORS, bord_bbs[i]);
392 if (bitmap_bit_p (seen, bb->index))
393 continue;
394 bitmap_set_bit (seen, bb->index);
396 for (ldom = first_dom_son (CDI_DOMINATORS, bb);
397 ldom;
398 ldom = next_dom_son (CDI_DOMINATORS, ldom))
399 if (!dominated_by_p (CDI_DOMINATORS, from, ldom))
400 dom_bbs.safe_push (ldom);
403 free (seen);
405 /* Recount dominators. */
406 iterate_fix_dominators (CDI_DOMINATORS, dom_bbs, true);
407 dom_bbs.release ();
408 free (bord_bbs);
410 /* Fix placements of basic blocks inside loops and the placement of
411 loops in the loop tree. */
412 fix_bb_placements (from, &irred_invalidated, NULL);
413 fix_loop_placements (from->loop_father, &irred_invalidated);
415 if (irred_invalidated
416 && loops_state_satisfies_p (LOOPS_HAVE_MARKED_IRREDUCIBLE_REGIONS))
417 mark_irreducible_loops ();
419 return true;
422 /* Creates place for a new LOOP in loops structure of FN. */
424 void
425 place_new_loop (struct function *fn, struct loop *loop)
427 loop->num = number_of_loops (fn);
428 vec_safe_push (loops_for_fn (fn)->larray, loop);
431 /* Given LOOP structure with filled header and latch, find the body of the
432 corresponding loop and add it to loops tree. Insert the LOOP as a son of
433 outer. */
435 void
436 add_loop (struct loop *loop, struct loop *outer)
438 basic_block *bbs;
439 int i, n;
440 struct loop *subloop;
441 edge e;
442 edge_iterator ei;
444 /* Add it to loop structure. */
445 place_new_loop (cfun, loop);
446 flow_loop_tree_node_add (outer, loop);
448 /* Find its nodes. */
449 bbs = XNEWVEC (basic_block, n_basic_blocks);
450 n = get_loop_body_with_size (loop, bbs, n_basic_blocks);
452 for (i = 0; i < n; i++)
454 if (bbs[i]->loop_father == outer)
456 remove_bb_from_loops (bbs[i]);
457 add_bb_to_loop (bbs[i], loop);
458 continue;
461 loop->num_nodes++;
463 /* If we find a direct subloop of OUTER, move it to LOOP. */
464 subloop = bbs[i]->loop_father;
465 if (loop_outer (subloop) == outer
466 && subloop->header == bbs[i])
468 flow_loop_tree_node_remove (subloop);
469 flow_loop_tree_node_add (loop, subloop);
473 /* Update the information about loop exit edges. */
474 for (i = 0; i < n; i++)
476 FOR_EACH_EDGE (e, ei, bbs[i]->succs)
478 rescan_loop_exit (e, false, false);
482 free (bbs);
485 /* Multiply all frequencies in LOOP by NUM/DEN. */
487 void
488 scale_loop_frequencies (struct loop *loop, int num, int den)
490 basic_block *bbs;
492 bbs = get_loop_body (loop);
493 scale_bbs_frequencies_int (bbs, loop->num_nodes, num, den);
494 free (bbs);
497 /* Multiply all frequencies in LOOP by SCALE/REG_BR_PROB_BASE.
498 If ITERATION_BOUND is non-zero, scale even further if loop is predicted
499 to iterate too many times. */
501 void
502 scale_loop_profile (struct loop *loop, int scale, gcov_type iteration_bound)
504 gcov_type iterations = expected_loop_iterations_unbounded (loop);
505 edge e;
506 edge_iterator ei;
508 if (dump_file && (dump_flags & TDF_DETAILS))
509 fprintf (dump_file, ";; Scaling loop %i with scale %f, "
510 "bounding iterations to %i from guessed %i\n",
511 loop->num, (double)scale / REG_BR_PROB_BASE,
512 (int)iteration_bound, (int)iterations);
514 /* See if loop is predicted to iterate too many times. */
515 if (iteration_bound && iterations > 0
516 && apply_probability (iterations, scale) > iteration_bound)
518 /* Fixing loop profile for different trip count is not trivial; the exit
519 probabilities has to be updated to match and frequencies propagated down
520 to the loop body.
522 We fully update only the simple case of loop with single exit that is
523 either from the latch or BB just before latch and leads from BB with
524 simple conditional jump. This is OK for use in vectorizer. */
525 e = single_exit (loop);
526 if (e)
528 edge other_e;
529 int freq_delta;
530 gcov_type count_delta;
532 FOR_EACH_EDGE (other_e, ei, e->src->succs)
533 if (!(other_e->flags & (EDGE_ABNORMAL | EDGE_FAKE))
534 && e != other_e)
535 break;
537 /* Probability of exit must be 1/iterations. */
538 freq_delta = EDGE_FREQUENCY (e);
539 e->probability = REG_BR_PROB_BASE / iteration_bound;
540 other_e->probability = inverse_probability (e->probability);
541 freq_delta -= EDGE_FREQUENCY (e);
543 /* Adjust counts accordingly. */
544 count_delta = e->count;
545 e->count = apply_probability (e->src->count, e->probability);
546 other_e->count = apply_probability (e->src->count, other_e->probability);
547 count_delta -= e->count;
549 /* If latch exists, change its frequency and count, since we changed
550 probability of exit. Theoretically we should update everything from
551 source of exit edge to latch, but for vectorizer this is enough. */
552 if (loop->latch
553 && loop->latch != e->src)
555 loop->latch->frequency += freq_delta;
556 if (loop->latch->frequency < 0)
557 loop->latch->frequency = 0;
558 loop->latch->count += count_delta;
559 if (loop->latch->count < 0)
560 loop->latch->count = 0;
564 /* Roughly speaking we want to reduce the loop body profile by the
565 the difference of loop iterations. We however can do better if
566 we look at the actual profile, if it is available. */
567 scale = RDIV (iteration_bound * scale, iterations);
568 if (loop->header->count)
570 gcov_type count_in = 0;
572 FOR_EACH_EDGE (e, ei, loop->header->preds)
573 if (e->src != loop->latch)
574 count_in += e->count;
576 if (count_in != 0)
577 scale = GCOV_COMPUTE_SCALE (count_in * iteration_bound,
578 loop->header->count);
580 else if (loop->header->frequency)
582 int freq_in = 0;
584 FOR_EACH_EDGE (e, ei, loop->header->preds)
585 if (e->src != loop->latch)
586 freq_in += EDGE_FREQUENCY (e);
588 if (freq_in != 0)
589 scale = GCOV_COMPUTE_SCALE (freq_in * iteration_bound,
590 loop->header->frequency);
592 if (!scale)
593 scale = 1;
596 if (scale == REG_BR_PROB_BASE)
597 return;
599 /* Scale the actual probabilities. */
600 scale_loop_frequencies (loop, scale, REG_BR_PROB_BASE);
601 if (dump_file && (dump_flags & TDF_DETAILS))
602 fprintf (dump_file, ";; guessed iterations are now %i\n",
603 (int)expected_loop_iterations_unbounded (loop));
606 /* Recompute dominance information for basic blocks outside LOOP. */
608 static void
609 update_dominators_in_loop (struct loop *loop)
611 vec<basic_block> dom_bbs = vNULL;
612 sbitmap seen;
613 basic_block *body;
614 unsigned i;
616 seen = sbitmap_alloc (last_basic_block);
617 bitmap_clear (seen);
618 body = get_loop_body (loop);
620 for (i = 0; i < loop->num_nodes; i++)
621 bitmap_set_bit (seen, body[i]->index);
623 for (i = 0; i < loop->num_nodes; i++)
625 basic_block ldom;
627 for (ldom = first_dom_son (CDI_DOMINATORS, body[i]);
628 ldom;
629 ldom = next_dom_son (CDI_DOMINATORS, ldom))
630 if (!bitmap_bit_p (seen, ldom->index))
632 bitmap_set_bit (seen, ldom->index);
633 dom_bbs.safe_push (ldom);
637 iterate_fix_dominators (CDI_DOMINATORS, dom_bbs, false);
638 free (body);
639 free (seen);
640 dom_bbs.release ();
643 /* Creates an if region as shown above. CONDITION is used to create
644 the test for the if.
647 | ------------- -------------
648 | | pred_bb | | pred_bb |
649 | ------------- -------------
650 | | |
651 | | | ENTRY_EDGE
652 | | ENTRY_EDGE V
653 | | ====> -------------
654 | | | cond_bb |
655 | | | CONDITION |
656 | | -------------
657 | V / \
658 | ------------- e_false / \ e_true
659 | | succ_bb | V V
660 | ------------- ----------- -----------
661 | | false_bb | | true_bb |
662 | ----------- -----------
663 | \ /
664 | \ /
665 | V V
666 | -------------
667 | | join_bb |
668 | -------------
669 | | exit_edge (result)
671 | -----------
672 | | succ_bb |
673 | -----------
677 edge
678 create_empty_if_region_on_edge (edge entry_edge, tree condition)
681 basic_block cond_bb, true_bb, false_bb, join_bb;
682 edge e_true, e_false, exit_edge;
683 gimple cond_stmt;
684 tree simple_cond;
685 gimple_stmt_iterator gsi;
687 cond_bb = split_edge (entry_edge);
689 /* Insert condition in cond_bb. */
690 gsi = gsi_last_bb (cond_bb);
691 simple_cond =
692 force_gimple_operand_gsi (&gsi, condition, true, NULL,
693 false, GSI_NEW_STMT);
694 cond_stmt = gimple_build_cond_from_tree (simple_cond, NULL_TREE, NULL_TREE);
695 gsi = gsi_last_bb (cond_bb);
696 gsi_insert_after (&gsi, cond_stmt, GSI_NEW_STMT);
698 join_bb = split_edge (single_succ_edge (cond_bb));
700 e_true = single_succ_edge (cond_bb);
701 true_bb = split_edge (e_true);
703 e_false = make_edge (cond_bb, join_bb, 0);
704 false_bb = split_edge (e_false);
706 e_true->flags &= ~EDGE_FALLTHRU;
707 e_true->flags |= EDGE_TRUE_VALUE;
708 e_false->flags &= ~EDGE_FALLTHRU;
709 e_false->flags |= EDGE_FALSE_VALUE;
711 set_immediate_dominator (CDI_DOMINATORS, cond_bb, entry_edge->src);
712 set_immediate_dominator (CDI_DOMINATORS, true_bb, cond_bb);
713 set_immediate_dominator (CDI_DOMINATORS, false_bb, cond_bb);
714 set_immediate_dominator (CDI_DOMINATORS, join_bb, cond_bb);
716 exit_edge = single_succ_edge (join_bb);
718 if (single_pred_p (exit_edge->dest))
719 set_immediate_dominator (CDI_DOMINATORS, exit_edge->dest, join_bb);
721 return exit_edge;
724 /* create_empty_loop_on_edge
726 | - pred_bb - ------ pred_bb ------
727 | | | | iv0 = initial_value |
728 | -----|----- ---------|-----------
729 | | ______ | entry_edge
730 | | entry_edge / | |
731 | | ====> | -V---V- loop_header -------------
732 | V | | iv_before = phi (iv0, iv_after) |
733 | - succ_bb - | ---|-----------------------------
734 | | | | |
735 | ----------- | ---V--- loop_body ---------------
736 | | | iv_after = iv_before + stride |
737 | | | if (iv_before < upper_bound) |
738 | | ---|--------------\--------------
739 | | | \ exit_e
740 | | V \
741 | | - loop_latch - V- succ_bb -
742 | | | | | |
743 | | /------------- -----------
744 | \ ___ /
746 Creates an empty loop as shown above, the IV_BEFORE is the SSA_NAME
747 that is used before the increment of IV. IV_BEFORE should be used for
748 adding code to the body that uses the IV. OUTER is the outer loop in
749 which the new loop should be inserted.
751 Both INITIAL_VALUE and UPPER_BOUND expressions are gimplified and
752 inserted on the loop entry edge. This implies that this function
753 should be used only when the UPPER_BOUND expression is a loop
754 invariant. */
756 struct loop *
757 create_empty_loop_on_edge (edge entry_edge,
758 tree initial_value,
759 tree stride, tree upper_bound,
760 tree iv,
761 tree *iv_before,
762 tree *iv_after,
763 struct loop *outer)
765 basic_block loop_header, loop_latch, succ_bb, pred_bb;
766 struct loop *loop;
767 gimple_stmt_iterator gsi;
768 gimple_seq stmts;
769 gimple cond_expr;
770 tree exit_test;
771 edge exit_e;
772 int prob;
774 gcc_assert (entry_edge && initial_value && stride && upper_bound && iv);
776 /* Create header, latch and wire up the loop. */
777 pred_bb = entry_edge->src;
778 loop_header = split_edge (entry_edge);
779 loop_latch = split_edge (single_succ_edge (loop_header));
780 succ_bb = single_succ (loop_latch);
781 make_edge (loop_header, succ_bb, 0);
782 redirect_edge_succ_nodup (single_succ_edge (loop_latch), loop_header);
784 /* Set immediate dominator information. */
785 set_immediate_dominator (CDI_DOMINATORS, loop_header, pred_bb);
786 set_immediate_dominator (CDI_DOMINATORS, loop_latch, loop_header);
787 set_immediate_dominator (CDI_DOMINATORS, succ_bb, loop_header);
789 /* Initialize a loop structure and put it in a loop hierarchy. */
790 loop = alloc_loop ();
791 loop->header = loop_header;
792 loop->latch = loop_latch;
793 add_loop (loop, outer);
795 /* TODO: Fix frequencies and counts. */
796 prob = REG_BR_PROB_BASE / 2;
798 scale_loop_frequencies (loop, REG_BR_PROB_BASE - prob, REG_BR_PROB_BASE);
800 /* Update dominators. */
801 update_dominators_in_loop (loop);
803 /* Modify edge flags. */
804 exit_e = single_exit (loop);
805 exit_e->flags = EDGE_LOOP_EXIT | EDGE_FALSE_VALUE;
806 single_pred_edge (loop_latch)->flags = EDGE_TRUE_VALUE;
808 /* Construct IV code in loop. */
809 initial_value = force_gimple_operand (initial_value, &stmts, true, iv);
810 if (stmts)
812 gsi_insert_seq_on_edge (loop_preheader_edge (loop), stmts);
813 gsi_commit_edge_inserts ();
816 upper_bound = force_gimple_operand (upper_bound, &stmts, true, NULL);
817 if (stmts)
819 gsi_insert_seq_on_edge (loop_preheader_edge (loop), stmts);
820 gsi_commit_edge_inserts ();
823 gsi = gsi_last_bb (loop_header);
824 create_iv (initial_value, stride, iv, loop, &gsi, false,
825 iv_before, iv_after);
827 /* Insert loop exit condition. */
828 cond_expr = gimple_build_cond
829 (LT_EXPR, *iv_before, upper_bound, NULL_TREE, NULL_TREE);
831 exit_test = gimple_cond_lhs (cond_expr);
832 exit_test = force_gimple_operand_gsi (&gsi, exit_test, true, NULL,
833 false, GSI_NEW_STMT);
834 gimple_cond_set_lhs (cond_expr, exit_test);
835 gsi = gsi_last_bb (exit_e->src);
836 gsi_insert_after (&gsi, cond_expr, GSI_NEW_STMT);
838 split_block_after_labels (loop_header);
840 return loop;
843 /* Make area between HEADER_EDGE and LATCH_EDGE a loop by connecting
844 latch to header and update loop tree and dominators
845 accordingly. Everything between them plus LATCH_EDGE destination must
846 be dominated by HEADER_EDGE destination, and back-reachable from
847 LATCH_EDGE source. HEADER_EDGE is redirected to basic block SWITCH_BB,
848 FALSE_EDGE of SWITCH_BB to original destination of HEADER_EDGE and
849 TRUE_EDGE of SWITCH_BB to original destination of LATCH_EDGE.
850 Returns the newly created loop. Frequencies and counts in the new loop
851 are scaled by FALSE_SCALE and in the old one by TRUE_SCALE. */
853 struct loop *
854 loopify (edge latch_edge, edge header_edge,
855 basic_block switch_bb, edge true_edge, edge false_edge,
856 bool redirect_all_edges, unsigned true_scale, unsigned false_scale)
858 basic_block succ_bb = latch_edge->dest;
859 basic_block pred_bb = header_edge->src;
860 struct loop *loop = alloc_loop ();
861 struct loop *outer = loop_outer (succ_bb->loop_father);
862 int freq;
863 gcov_type cnt;
864 edge e;
865 edge_iterator ei;
867 loop->header = header_edge->dest;
868 loop->latch = latch_edge->src;
870 freq = EDGE_FREQUENCY (header_edge);
871 cnt = header_edge->count;
873 /* Redirect edges. */
874 loop_redirect_edge (latch_edge, loop->header);
875 loop_redirect_edge (true_edge, succ_bb);
877 /* During loop versioning, one of the switch_bb edge is already properly
878 set. Do not redirect it again unless redirect_all_edges is true. */
879 if (redirect_all_edges)
881 loop_redirect_edge (header_edge, switch_bb);
882 loop_redirect_edge (false_edge, loop->header);
884 /* Update dominators. */
885 set_immediate_dominator (CDI_DOMINATORS, switch_bb, pred_bb);
886 set_immediate_dominator (CDI_DOMINATORS, loop->header, switch_bb);
889 set_immediate_dominator (CDI_DOMINATORS, succ_bb, switch_bb);
891 /* Compute new loop. */
892 add_loop (loop, outer);
894 /* Add switch_bb to appropriate loop. */
895 if (switch_bb->loop_father)
896 remove_bb_from_loops (switch_bb);
897 add_bb_to_loop (switch_bb, outer);
899 /* Fix frequencies. */
900 if (redirect_all_edges)
902 switch_bb->frequency = freq;
903 switch_bb->count = cnt;
904 FOR_EACH_EDGE (e, ei, switch_bb->succs)
906 e->count = apply_probability (switch_bb->count, e->probability);
909 scale_loop_frequencies (loop, false_scale, REG_BR_PROB_BASE);
910 scale_loop_frequencies (succ_bb->loop_father, true_scale, REG_BR_PROB_BASE);
911 update_dominators_in_loop (loop);
913 return loop;
916 /* Remove the latch edge of a LOOP and update loops to indicate that
917 the LOOP was removed. After this function, original loop latch will
918 have no successor, which caller is expected to fix somehow.
920 If this may cause the information about irreducible regions to become
921 invalid, IRRED_INVALIDATED is set to true.
923 LOOP_CLOSED_SSA_INVALIDATED, if non-NULL, is a bitmap where we store
924 basic blocks that had non-trivial update on their loop_father.*/
926 void
927 unloop (struct loop *loop, bool *irred_invalidated,
928 bitmap loop_closed_ssa_invalidated)
930 basic_block *body;
931 struct loop *ploop;
932 unsigned i, n;
933 basic_block latch = loop->latch;
934 bool dummy = false;
936 if (loop_preheader_edge (loop)->flags & EDGE_IRREDUCIBLE_LOOP)
937 *irred_invalidated = true;
939 /* This is relatively straightforward. The dominators are unchanged, as
940 loop header dominates loop latch, so the only thing we have to care of
941 is the placement of loops and basic blocks inside the loop tree. We
942 move them all to the loop->outer, and then let fix_bb_placements do
943 its work. */
945 body = get_loop_body (loop);
946 n = loop->num_nodes;
947 for (i = 0; i < n; i++)
948 if (body[i]->loop_father == loop)
950 remove_bb_from_loops (body[i]);
951 add_bb_to_loop (body[i], loop_outer (loop));
953 free (body);
955 while (loop->inner)
957 ploop = loop->inner;
958 flow_loop_tree_node_remove (ploop);
959 flow_loop_tree_node_add (loop_outer (loop), ploop);
962 /* Remove the loop and free its data. */
963 delete_loop (loop);
965 remove_edge (single_succ_edge (latch));
967 /* We do not pass IRRED_INVALIDATED to fix_bb_placements here, as even if
968 there is an irreducible region inside the cancelled loop, the flags will
969 be still correct. */
970 fix_bb_placements (latch, &dummy, loop_closed_ssa_invalidated);
973 /* Fix placement of superloops of LOOP inside loop tree, i.e. ensure that
974 condition stated in description of fix_loop_placement holds for them.
975 It is used in case when we removed some edges coming out of LOOP, which
976 may cause the right placement of LOOP inside loop tree to change.
978 IRRED_INVALIDATED is set to true if a change in the loop structures might
979 invalidate the information about irreducible regions. */
981 static void
982 fix_loop_placements (struct loop *loop, bool *irred_invalidated)
984 struct loop *outer;
986 while (loop_outer (loop))
988 outer = loop_outer (loop);
989 if (!fix_loop_placement (loop, irred_invalidated))
990 break;
992 /* Changing the placement of a loop in the loop tree may alter the
993 validity of condition 2) of the description of fix_bb_placement
994 for its preheader, because the successor is the header and belongs
995 to the loop. So call fix_bb_placements to fix up the placement
996 of the preheader and (possibly) of its predecessors. */
997 fix_bb_placements (loop_preheader_edge (loop)->src,
998 irred_invalidated, NULL);
999 loop = outer;
1003 /* Duplicate loop bounds and other information we store about
1004 the loop into its duplicate. */
1006 void
1007 copy_loop_info (struct loop *loop, struct loop *target)
1009 gcc_checking_assert (!target->any_upper_bound && !target->any_estimate);
1010 target->any_upper_bound = loop->any_upper_bound;
1011 target->nb_iterations_upper_bound = loop->nb_iterations_upper_bound;
1012 target->any_estimate = loop->any_estimate;
1013 target->nb_iterations_estimate = loop->nb_iterations_estimate;
1014 target->estimate_state = loop->estimate_state;
1017 /* Copies copy of LOOP as subloop of TARGET loop, placing newly
1018 created loop into loops structure. */
1019 struct loop *
1020 duplicate_loop (struct loop *loop, struct loop *target)
1022 struct loop *cloop;
1023 cloop = alloc_loop ();
1024 place_new_loop (cfun, cloop);
1026 copy_loop_info (loop, cloop);
1028 /* Mark the new loop as copy of LOOP. */
1029 set_loop_copy (loop, cloop);
1031 /* Add it to target. */
1032 flow_loop_tree_node_add (target, cloop);
1034 return cloop;
1037 /* Copies structure of subloops of LOOP into TARGET loop, placing
1038 newly created loops into loop tree. */
1039 void
1040 duplicate_subloops (struct loop *loop, struct loop *target)
1042 struct loop *aloop, *cloop;
1044 for (aloop = loop->inner; aloop; aloop = aloop->next)
1046 cloop = duplicate_loop (aloop, target);
1047 duplicate_subloops (aloop, cloop);
1051 /* Copies structure of subloops of N loops, stored in array COPIED_LOOPS,
1052 into TARGET loop, placing newly created loops into loop tree. */
1053 static void
1054 copy_loops_to (struct loop **copied_loops, int n, struct loop *target)
1056 struct loop *aloop;
1057 int i;
1059 for (i = 0; i < n; i++)
1061 aloop = duplicate_loop (copied_loops[i], target);
1062 duplicate_subloops (copied_loops[i], aloop);
1066 /* Redirects edge E to basic block DEST. */
1067 static void
1068 loop_redirect_edge (edge e, basic_block dest)
1070 if (e->dest == dest)
1071 return;
1073 redirect_edge_and_branch_force (e, dest);
1076 /* Check whether LOOP's body can be duplicated. */
1077 bool
1078 can_duplicate_loop_p (const struct loop *loop)
1080 int ret;
1081 basic_block *bbs = get_loop_body (loop);
1083 ret = can_copy_bbs_p (bbs, loop->num_nodes);
1084 free (bbs);
1086 return ret;
1089 /* Sets probability and count of edge E to zero. The probability and count
1090 is redistributed evenly to the remaining edges coming from E->src. */
1092 static void
1093 set_zero_probability (edge e)
1095 basic_block bb = e->src;
1096 edge_iterator ei;
1097 edge ae, last = NULL;
1098 unsigned n = EDGE_COUNT (bb->succs);
1099 gcov_type cnt = e->count, cnt1;
1100 unsigned prob = e->probability, prob1;
1102 gcc_assert (n > 1);
1103 cnt1 = cnt / (n - 1);
1104 prob1 = prob / (n - 1);
1106 FOR_EACH_EDGE (ae, ei, bb->succs)
1108 if (ae == e)
1109 continue;
1111 ae->probability += prob1;
1112 ae->count += cnt1;
1113 last = ae;
1116 /* Move the rest to one of the edges. */
1117 last->probability += prob % (n - 1);
1118 last->count += cnt % (n - 1);
1120 e->probability = 0;
1121 e->count = 0;
1124 /* Duplicates body of LOOP to given edge E NDUPL times. Takes care of updating
1125 loop structure and dominators. E's destination must be LOOP header for
1126 this to work, i.e. it must be entry or latch edge of this loop; these are
1127 unique, as the loops must have preheaders for this function to work
1128 correctly (in case E is latch, the function unrolls the loop, if E is entry
1129 edge, it peels the loop). Store edges created by copying ORIG edge from
1130 copies corresponding to set bits in WONT_EXIT bitmap (bit 0 corresponds to
1131 original LOOP body, the other copies are numbered in order given by control
1132 flow through them) into TO_REMOVE array. Returns false if duplication is
1133 impossible. */
1135 bool
1136 duplicate_loop_to_header_edge (struct loop *loop, edge e,
1137 unsigned int ndupl, sbitmap wont_exit,
1138 edge orig, vec<edge> *to_remove,
1139 int flags)
1141 struct loop *target, *aloop;
1142 struct loop **orig_loops;
1143 unsigned n_orig_loops;
1144 basic_block header = loop->header, latch = loop->latch;
1145 basic_block *new_bbs, *bbs, *first_active;
1146 basic_block new_bb, bb, first_active_latch = NULL;
1147 edge ae, latch_edge;
1148 edge spec_edges[2], new_spec_edges[2];
1149 #define SE_LATCH 0
1150 #define SE_ORIG 1
1151 unsigned i, j, n;
1152 int is_latch = (latch == e->src);
1153 int scale_act = 0, *scale_step = NULL, scale_main = 0;
1154 int scale_after_exit = 0;
1155 int p, freq_in, freq_le, freq_out_orig;
1156 int prob_pass_thru, prob_pass_wont_exit, prob_pass_main;
1157 int add_irreducible_flag;
1158 basic_block place_after;
1159 bitmap bbs_to_scale = NULL;
1160 bitmap_iterator bi;
1162 gcc_assert (e->dest == loop->header);
1163 gcc_assert (ndupl > 0);
1165 if (orig)
1167 /* Orig must be edge out of the loop. */
1168 gcc_assert (flow_bb_inside_loop_p (loop, orig->src));
1169 gcc_assert (!flow_bb_inside_loop_p (loop, orig->dest));
1172 n = loop->num_nodes;
1173 bbs = get_loop_body_in_dom_order (loop);
1174 gcc_assert (bbs[0] == loop->header);
1175 gcc_assert (bbs[n - 1] == loop->latch);
1177 /* Check whether duplication is possible. */
1178 if (!can_copy_bbs_p (bbs, loop->num_nodes))
1180 free (bbs);
1181 return false;
1183 new_bbs = XNEWVEC (basic_block, loop->num_nodes);
1185 /* In case we are doing loop peeling and the loop is in the middle of
1186 irreducible region, the peeled copies will be inside it too. */
1187 add_irreducible_flag = e->flags & EDGE_IRREDUCIBLE_LOOP;
1188 gcc_assert (!is_latch || !add_irreducible_flag);
1190 /* Find edge from latch. */
1191 latch_edge = loop_latch_edge (loop);
1193 if (flags & DLTHE_FLAG_UPDATE_FREQ)
1195 /* Calculate coefficients by that we have to scale frequencies
1196 of duplicated loop bodies. */
1197 freq_in = header->frequency;
1198 freq_le = EDGE_FREQUENCY (latch_edge);
1199 if (freq_in == 0)
1200 freq_in = 1;
1201 if (freq_in < freq_le)
1202 freq_in = freq_le;
1203 freq_out_orig = orig ? EDGE_FREQUENCY (orig) : freq_in - freq_le;
1204 if (freq_out_orig > freq_in - freq_le)
1205 freq_out_orig = freq_in - freq_le;
1206 prob_pass_thru = RDIV (REG_BR_PROB_BASE * freq_le, freq_in);
1207 prob_pass_wont_exit =
1208 RDIV (REG_BR_PROB_BASE * (freq_le + freq_out_orig), freq_in);
1210 if (orig
1211 && REG_BR_PROB_BASE - orig->probability != 0)
1213 /* The blocks that are dominated by a removed exit edge ORIG have
1214 frequencies scaled by this. */
1215 scale_after_exit
1216 = GCOV_COMPUTE_SCALE (REG_BR_PROB_BASE,
1217 REG_BR_PROB_BASE - orig->probability);
1218 bbs_to_scale = BITMAP_ALLOC (NULL);
1219 for (i = 0; i < n; i++)
1221 if (bbs[i] != orig->src
1222 && dominated_by_p (CDI_DOMINATORS, bbs[i], orig->src))
1223 bitmap_set_bit (bbs_to_scale, i);
1227 scale_step = XNEWVEC (int, ndupl);
1229 for (i = 1; i <= ndupl; i++)
1230 scale_step[i - 1] = bitmap_bit_p (wont_exit, i)
1231 ? prob_pass_wont_exit
1232 : prob_pass_thru;
1234 /* Complete peeling is special as the probability of exit in last
1235 copy becomes 1. */
1236 if (flags & DLTHE_FLAG_COMPLETTE_PEEL)
1238 int wanted_freq = EDGE_FREQUENCY (e);
1240 if (wanted_freq > freq_in)
1241 wanted_freq = freq_in;
1243 gcc_assert (!is_latch);
1244 /* First copy has frequency of incoming edge. Each subsequent
1245 frequency should be reduced by prob_pass_wont_exit. Caller
1246 should've managed the flags so all except for original loop
1247 has won't exist set. */
1248 scale_act = GCOV_COMPUTE_SCALE (wanted_freq, freq_in);
1249 /* Now simulate the duplication adjustments and compute header
1250 frequency of the last copy. */
1251 for (i = 0; i < ndupl; i++)
1252 wanted_freq = combine_probabilities (wanted_freq, scale_step[i]);
1253 scale_main = GCOV_COMPUTE_SCALE (wanted_freq, freq_in);
1255 else if (is_latch)
1257 prob_pass_main = bitmap_bit_p (wont_exit, 0)
1258 ? prob_pass_wont_exit
1259 : prob_pass_thru;
1260 p = prob_pass_main;
1261 scale_main = REG_BR_PROB_BASE;
1262 for (i = 0; i < ndupl; i++)
1264 scale_main += p;
1265 p = combine_probabilities (p, scale_step[i]);
1267 scale_main = GCOV_COMPUTE_SCALE (REG_BR_PROB_BASE, scale_main);
1268 scale_act = combine_probabilities (scale_main, prob_pass_main);
1270 else
1272 scale_main = REG_BR_PROB_BASE;
1273 for (i = 0; i < ndupl; i++)
1274 scale_main = combine_probabilities (scale_main, scale_step[i]);
1275 scale_act = REG_BR_PROB_BASE - prob_pass_thru;
1277 for (i = 0; i < ndupl; i++)
1278 gcc_assert (scale_step[i] >= 0 && scale_step[i] <= REG_BR_PROB_BASE);
1279 gcc_assert (scale_main >= 0 && scale_main <= REG_BR_PROB_BASE
1280 && scale_act >= 0 && scale_act <= REG_BR_PROB_BASE);
1283 /* Loop the new bbs will belong to. */
1284 target = e->src->loop_father;
1286 /* Original loops. */
1287 n_orig_loops = 0;
1288 for (aloop = loop->inner; aloop; aloop = aloop->next)
1289 n_orig_loops++;
1290 orig_loops = XNEWVEC (struct loop *, n_orig_loops);
1291 for (aloop = loop->inner, i = 0; aloop; aloop = aloop->next, i++)
1292 orig_loops[i] = aloop;
1294 set_loop_copy (loop, target);
1296 first_active = XNEWVEC (basic_block, n);
1297 if (is_latch)
1299 memcpy (first_active, bbs, n * sizeof (basic_block));
1300 first_active_latch = latch;
1303 spec_edges[SE_ORIG] = orig;
1304 spec_edges[SE_LATCH] = latch_edge;
1306 place_after = e->src;
1307 for (j = 0; j < ndupl; j++)
1309 /* Copy loops. */
1310 copy_loops_to (orig_loops, n_orig_loops, target);
1312 /* Copy bbs. */
1313 copy_bbs (bbs, n, new_bbs, spec_edges, 2, new_spec_edges, loop,
1314 place_after, true);
1315 place_after = new_spec_edges[SE_LATCH]->src;
1317 if (flags & DLTHE_RECORD_COPY_NUMBER)
1318 for (i = 0; i < n; i++)
1320 gcc_assert (!new_bbs[i]->aux);
1321 new_bbs[i]->aux = (void *)(size_t)(j + 1);
1324 /* Note whether the blocks and edges belong to an irreducible loop. */
1325 if (add_irreducible_flag)
1327 for (i = 0; i < n; i++)
1328 new_bbs[i]->flags |= BB_DUPLICATED;
1329 for (i = 0; i < n; i++)
1331 edge_iterator ei;
1332 new_bb = new_bbs[i];
1333 if (new_bb->loop_father == target)
1334 new_bb->flags |= BB_IRREDUCIBLE_LOOP;
1336 FOR_EACH_EDGE (ae, ei, new_bb->succs)
1337 if ((ae->dest->flags & BB_DUPLICATED)
1338 && (ae->src->loop_father == target
1339 || ae->dest->loop_father == target))
1340 ae->flags |= EDGE_IRREDUCIBLE_LOOP;
1342 for (i = 0; i < n; i++)
1343 new_bbs[i]->flags &= ~BB_DUPLICATED;
1346 /* Redirect the special edges. */
1347 if (is_latch)
1349 redirect_edge_and_branch_force (latch_edge, new_bbs[0]);
1350 redirect_edge_and_branch_force (new_spec_edges[SE_LATCH],
1351 loop->header);
1352 set_immediate_dominator (CDI_DOMINATORS, new_bbs[0], latch);
1353 latch = loop->latch = new_bbs[n - 1];
1354 e = latch_edge = new_spec_edges[SE_LATCH];
1356 else
1358 redirect_edge_and_branch_force (new_spec_edges[SE_LATCH],
1359 loop->header);
1360 redirect_edge_and_branch_force (e, new_bbs[0]);
1361 set_immediate_dominator (CDI_DOMINATORS, new_bbs[0], e->src);
1362 e = new_spec_edges[SE_LATCH];
1365 /* Record exit edge in this copy. */
1366 if (orig && bitmap_bit_p (wont_exit, j + 1))
1368 if (to_remove)
1369 to_remove->safe_push (new_spec_edges[SE_ORIG]);
1370 set_zero_probability (new_spec_edges[SE_ORIG]);
1372 /* Scale the frequencies of the blocks dominated by the exit. */
1373 if (bbs_to_scale)
1375 EXECUTE_IF_SET_IN_BITMAP (bbs_to_scale, 0, i, bi)
1377 scale_bbs_frequencies_int (new_bbs + i, 1, scale_after_exit,
1378 REG_BR_PROB_BASE);
1383 /* Record the first copy in the control flow order if it is not
1384 the original loop (i.e. in case of peeling). */
1385 if (!first_active_latch)
1387 memcpy (first_active, new_bbs, n * sizeof (basic_block));
1388 first_active_latch = new_bbs[n - 1];
1391 /* Set counts and frequencies. */
1392 if (flags & DLTHE_FLAG_UPDATE_FREQ)
1394 scale_bbs_frequencies_int (new_bbs, n, scale_act, REG_BR_PROB_BASE);
1395 scale_act = combine_probabilities (scale_act, scale_step[j]);
1398 free (new_bbs);
1399 free (orig_loops);
1401 /* Record the exit edge in the original loop body, and update the frequencies. */
1402 if (orig && bitmap_bit_p (wont_exit, 0))
1404 if (to_remove)
1405 to_remove->safe_push (orig);
1406 set_zero_probability (orig);
1408 /* Scale the frequencies of the blocks dominated by the exit. */
1409 if (bbs_to_scale)
1411 EXECUTE_IF_SET_IN_BITMAP (bbs_to_scale, 0, i, bi)
1413 scale_bbs_frequencies_int (bbs + i, 1, scale_after_exit,
1414 REG_BR_PROB_BASE);
1419 /* Update the original loop. */
1420 if (!is_latch)
1421 set_immediate_dominator (CDI_DOMINATORS, e->dest, e->src);
1422 if (flags & DLTHE_FLAG_UPDATE_FREQ)
1424 scale_bbs_frequencies_int (bbs, n, scale_main, REG_BR_PROB_BASE);
1425 free (scale_step);
1428 /* Update dominators of outer blocks if affected. */
1429 for (i = 0; i < n; i++)
1431 basic_block dominated, dom_bb;
1432 vec<basic_block> dom_bbs;
1433 unsigned j;
1435 bb = bbs[i];
1436 bb->aux = 0;
1438 dom_bbs = get_dominated_by (CDI_DOMINATORS, bb);
1439 FOR_EACH_VEC_ELT (dom_bbs, j, dominated)
1441 if (flow_bb_inside_loop_p (loop, dominated))
1442 continue;
1443 dom_bb = nearest_common_dominator (
1444 CDI_DOMINATORS, first_active[i], first_active_latch);
1445 set_immediate_dominator (CDI_DOMINATORS, dominated, dom_bb);
1447 dom_bbs.release ();
1449 free (first_active);
1451 free (bbs);
1452 BITMAP_FREE (bbs_to_scale);
1454 return true;
1457 /* A callback for make_forwarder block, to redirect all edges except for
1458 MFB_KJ_EDGE to the entry part. E is the edge for that we should decide
1459 whether to redirect it. */
1461 edge mfb_kj_edge;
1462 bool
1463 mfb_keep_just (edge e)
1465 return e != mfb_kj_edge;
1468 /* True when a candidate preheader BLOCK has predecessors from LOOP. */
1470 static bool
1471 has_preds_from_loop (basic_block block, struct loop *loop)
1473 edge e;
1474 edge_iterator ei;
1476 FOR_EACH_EDGE (e, ei, block->preds)
1477 if (e->src->loop_father == loop)
1478 return true;
1479 return false;
1482 /* Creates a pre-header for a LOOP. Returns newly created block. Unless
1483 CP_SIMPLE_PREHEADERS is set in FLAGS, we only force LOOP to have single
1484 entry; otherwise we also force preheader block to have only one successor.
1485 When CP_FALLTHRU_PREHEADERS is set in FLAGS, we force the preheader block
1486 to be a fallthru predecessor to the loop header and to have only
1487 predecessors from outside of the loop.
1488 The function also updates dominators. */
1490 basic_block
1491 create_preheader (struct loop *loop, int flags)
1493 edge e, fallthru;
1494 basic_block dummy;
1495 int nentry = 0;
1496 bool irred = false;
1497 bool latch_edge_was_fallthru;
1498 edge one_succ_pred = NULL, single_entry = NULL;
1499 edge_iterator ei;
1501 FOR_EACH_EDGE (e, ei, loop->header->preds)
1503 if (e->src == loop->latch)
1504 continue;
1505 irred |= (e->flags & EDGE_IRREDUCIBLE_LOOP) != 0;
1506 nentry++;
1507 single_entry = e;
1508 if (single_succ_p (e->src))
1509 one_succ_pred = e;
1511 gcc_assert (nentry);
1512 if (nentry == 1)
1514 bool need_forwarder_block = false;
1516 /* We do not allow entry block to be the loop preheader, since we
1517 cannot emit code there. */
1518 if (single_entry->src == ENTRY_BLOCK_PTR)
1519 need_forwarder_block = true;
1520 else
1522 /* If we want simple preheaders, also force the preheader to have
1523 just a single successor. */
1524 if ((flags & CP_SIMPLE_PREHEADERS)
1525 && !single_succ_p (single_entry->src))
1526 need_forwarder_block = true;
1527 /* If we want fallthru preheaders, also create forwarder block when
1528 preheader ends with a jump or has predecessors from loop. */
1529 else if ((flags & CP_FALLTHRU_PREHEADERS)
1530 && (JUMP_P (BB_END (single_entry->src))
1531 || has_preds_from_loop (single_entry->src, loop)))
1532 need_forwarder_block = true;
1534 if (! need_forwarder_block)
1535 return NULL;
1538 mfb_kj_edge = loop_latch_edge (loop);
1539 latch_edge_was_fallthru = (mfb_kj_edge->flags & EDGE_FALLTHRU) != 0;
1540 fallthru = make_forwarder_block (loop->header, mfb_keep_just, NULL);
1541 dummy = fallthru->src;
1542 loop->header = fallthru->dest;
1544 /* Try to be clever in placing the newly created preheader. The idea is to
1545 avoid breaking any "fallthruness" relationship between blocks.
1547 The preheader was created just before the header and all incoming edges
1548 to the header were redirected to the preheader, except the latch edge.
1549 So the only problematic case is when this latch edge was a fallthru
1550 edge: it is not anymore after the preheader creation so we have broken
1551 the fallthruness. We're therefore going to look for a better place. */
1552 if (latch_edge_was_fallthru)
1554 if (one_succ_pred)
1555 e = one_succ_pred;
1556 else
1557 e = EDGE_PRED (dummy, 0);
1559 move_block_after (dummy, e->src);
1562 if (irred)
1564 dummy->flags |= BB_IRREDUCIBLE_LOOP;
1565 single_succ_edge (dummy)->flags |= EDGE_IRREDUCIBLE_LOOP;
1568 if (dump_file)
1569 fprintf (dump_file, "Created preheader block for loop %i\n",
1570 loop->num);
1572 if (flags & CP_FALLTHRU_PREHEADERS)
1573 gcc_assert ((single_succ_edge (dummy)->flags & EDGE_FALLTHRU)
1574 && !JUMP_P (BB_END (dummy)));
1576 return dummy;
1579 /* Create preheaders for each loop; for meaning of FLAGS see create_preheader. */
1581 void
1582 create_preheaders (int flags)
1584 loop_iterator li;
1585 struct loop *loop;
1587 if (!current_loops)
1588 return;
1590 FOR_EACH_LOOP (li, loop, 0)
1591 create_preheader (loop, flags);
1592 loops_state_set (LOOPS_HAVE_PREHEADERS);
1595 /* Forces all loop latches to have only single successor. */
1597 void
1598 force_single_succ_latches (void)
1600 loop_iterator li;
1601 struct loop *loop;
1602 edge e;
1604 FOR_EACH_LOOP (li, loop, 0)
1606 if (loop->latch != loop->header && single_succ_p (loop->latch))
1607 continue;
1609 e = find_edge (loop->latch, loop->header);
1610 gcc_checking_assert (e != NULL);
1612 split_edge (e);
1614 loops_state_set (LOOPS_HAVE_SIMPLE_LATCHES);
1617 /* This function is called from loop_version. It splits the entry edge
1618 of the loop we want to version, adds the versioning condition, and
1619 adjust the edges to the two versions of the loop appropriately.
1620 e is an incoming edge. Returns the basic block containing the
1621 condition.
1623 --- edge e ---- > [second_head]
1625 Split it and insert new conditional expression and adjust edges.
1627 --- edge e ---> [cond expr] ---> [first_head]
1629 +---------> [second_head]
1631 THEN_PROB is the probability of then branch of the condition. */
1633 static basic_block
1634 lv_adjust_loop_entry_edge (basic_block first_head, basic_block second_head,
1635 edge e, void *cond_expr, unsigned then_prob)
1637 basic_block new_head = NULL;
1638 edge e1;
1640 gcc_assert (e->dest == second_head);
1642 /* Split edge 'e'. This will create a new basic block, where we can
1643 insert conditional expr. */
1644 new_head = split_edge (e);
1646 lv_add_condition_to_bb (first_head, second_head, new_head,
1647 cond_expr);
1649 /* Don't set EDGE_TRUE_VALUE in RTL mode, as it's invalid there. */
1650 e = single_succ_edge (new_head);
1651 e1 = make_edge (new_head, first_head,
1652 current_ir_type () == IR_GIMPLE ? EDGE_TRUE_VALUE : 0);
1653 e1->probability = then_prob;
1654 e->probability = REG_BR_PROB_BASE - then_prob;
1655 e1->count = apply_probability (e->count, e1->probability);
1656 e->count = apply_probability (e->count, e->probability);
1658 set_immediate_dominator (CDI_DOMINATORS, first_head, new_head);
1659 set_immediate_dominator (CDI_DOMINATORS, second_head, new_head);
1661 /* Adjust loop header phi nodes. */
1662 lv_adjust_loop_header_phi (first_head, second_head, new_head, e1);
1664 return new_head;
1667 /* Main entry point for Loop Versioning transformation.
1669 This transformation given a condition and a loop, creates
1670 -if (condition) { loop_copy1 } else { loop_copy2 },
1671 where loop_copy1 is the loop transformed in one way, and loop_copy2
1672 is the loop transformed in another way (or unchanged). 'condition'
1673 may be a run time test for things that were not resolved by static
1674 analysis (overlapping ranges (anti-aliasing), alignment, etc.).
1676 THEN_PROB is the probability of the then edge of the if. THEN_SCALE
1677 is the ratio by that the frequencies in the original loop should
1678 be scaled. ELSE_SCALE is the ratio by that the frequencies in the
1679 new loop should be scaled.
1681 If PLACE_AFTER is true, we place the new loop after LOOP in the
1682 instruction stream, otherwise it is placed before LOOP. */
1684 struct loop *
1685 loop_version (struct loop *loop,
1686 void *cond_expr, basic_block *condition_bb,
1687 unsigned then_prob, unsigned then_scale, unsigned else_scale,
1688 bool place_after)
1690 basic_block first_head, second_head;
1691 edge entry, latch_edge, true_edge, false_edge;
1692 int irred_flag;
1693 struct loop *nloop;
1694 basic_block cond_bb;
1696 /* Record entry and latch edges for the loop */
1697 entry = loop_preheader_edge (loop);
1698 irred_flag = entry->flags & EDGE_IRREDUCIBLE_LOOP;
1699 entry->flags &= ~EDGE_IRREDUCIBLE_LOOP;
1701 /* Note down head of loop as first_head. */
1702 first_head = entry->dest;
1704 /* Duplicate loop. */
1705 if (!cfg_hook_duplicate_loop_to_header_edge (loop, entry, 1,
1706 NULL, NULL, NULL, 0))
1708 entry->flags |= irred_flag;
1709 return NULL;
1712 /* After duplication entry edge now points to new loop head block.
1713 Note down new head as second_head. */
1714 second_head = entry->dest;
1716 /* Split loop entry edge and insert new block with cond expr. */
1717 cond_bb = lv_adjust_loop_entry_edge (first_head, second_head,
1718 entry, cond_expr, then_prob);
1719 if (condition_bb)
1720 *condition_bb = cond_bb;
1722 if (!cond_bb)
1724 entry->flags |= irred_flag;
1725 return NULL;
1728 latch_edge = single_succ_edge (get_bb_copy (loop->latch));
1730 extract_cond_bb_edges (cond_bb, &true_edge, &false_edge);
1731 nloop = loopify (latch_edge,
1732 single_pred_edge (get_bb_copy (loop->header)),
1733 cond_bb, true_edge, false_edge,
1734 false /* Do not redirect all edges. */,
1735 then_scale, else_scale);
1737 copy_loop_info (loop, nloop);
1739 /* loopify redirected latch_edge. Update its PENDING_STMTS. */
1740 lv_flush_pending_stmts (latch_edge);
1742 /* loopify redirected condition_bb's succ edge. Update its PENDING_STMTS. */
1743 extract_cond_bb_edges (cond_bb, &true_edge, &false_edge);
1744 lv_flush_pending_stmts (false_edge);
1745 /* Adjust irreducible flag. */
1746 if (irred_flag)
1748 cond_bb->flags |= BB_IRREDUCIBLE_LOOP;
1749 loop_preheader_edge (loop)->flags |= EDGE_IRREDUCIBLE_LOOP;
1750 loop_preheader_edge (nloop)->flags |= EDGE_IRREDUCIBLE_LOOP;
1751 single_pred_edge (cond_bb)->flags |= EDGE_IRREDUCIBLE_LOOP;
1754 if (place_after)
1756 basic_block *bbs = get_loop_body_in_dom_order (nloop), after;
1757 unsigned i;
1759 after = loop->latch;
1761 for (i = 0; i < nloop->num_nodes; i++)
1763 move_block_after (bbs[i], after);
1764 after = bbs[i];
1766 free (bbs);
1769 /* At this point condition_bb is loop preheader with two successors,
1770 first_head and second_head. Make sure that loop preheader has only
1771 one successor. */
1772 split_edge (loop_preheader_edge (loop));
1773 split_edge (loop_preheader_edge (nloop));
1775 return nloop;