1 /* Instruction scheduling pass.
2 Copyright (C) 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000,
3 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010
4 Free Software Foundation, Inc.
5 Contributed by Michael Tiemann (tiemann@cygnus.com) Enhanced by,
6 and currently maintained by, Jim Wilson (wilson@cygnus.com)
8 This file is part of GCC.
10 GCC is free software; you can redistribute it and/or modify it under
11 the terms of the GNU General Public License as published by the Free
12 Software Foundation; either version 3, or (at your option) any later
15 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
16 WARRANTY; without even the implied warranty of MERCHANTABILITY or
17 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
20 You should have received a copy of the GNU General Public License
21 along with GCC; see the file COPYING3. If not see
22 <http://www.gnu.org/licenses/>. */
24 /* Instruction scheduling pass. This file, along with sched-deps.c,
25 contains the generic parts. The actual entry point is found for
26 the normal instruction scheduling pass is found in sched-rgn.c.
28 We compute insn priorities based on data dependencies. Flow
29 analysis only creates a fraction of the data-dependencies we must
30 observe: namely, only those dependencies which the combiner can be
31 expected to use. For this pass, we must therefore create the
32 remaining dependencies we need to observe: register dependencies,
33 memory dependencies, dependencies to keep function calls in order,
34 and the dependence between a conditional branch and the setting of
35 condition codes are all dealt with here.
37 The scheduler first traverses the data flow graph, starting with
38 the last instruction, and proceeding to the first, assigning values
39 to insn_priority as it goes. This sorts the instructions
40 topologically by data dependence.
42 Once priorities have been established, we order the insns using
43 list scheduling. This works as follows: starting with a list of
44 all the ready insns, and sorted according to priority number, we
45 schedule the insn from the end of the list by placing its
46 predecessors in the list according to their priority order. We
47 consider this insn scheduled by setting the pointer to the "end" of
48 the list to point to the previous insn. When an insn has no
49 predecessors, we either queue it until sufficient time has elapsed
50 or add it to the ready list. As the instructions are scheduled or
51 when stalls are introduced, the queue advances and dumps insns into
52 the ready list. When all insns down to the lowest priority have
53 been scheduled, the critical path of the basic block has been made
54 as short as possible. The remaining insns are then scheduled in
57 The following list shows the order in which we want to break ties
58 among insns in the ready list:
60 1. choose insn with the longest path to end of bb, ties
62 2. choose insn with least contribution to register pressure,
64 3. prefer in-block upon interblock motion, ties broken by
65 4. prefer useful upon speculative motion, ties broken by
66 5. choose insn with largest control flow probability, ties
68 6. choose insn with the least dependences upon the previously
69 scheduled insn, or finally
70 7 choose the insn which has the most insns dependent on it.
71 8. choose insn with lowest UID.
73 Memory references complicate matters. Only if we can be certain
74 that memory references are not part of the data dependency graph
75 (via true, anti, or output dependence), can we move operations past
76 memory references. To first approximation, reads can be done
77 independently, while writes introduce dependencies. Better
78 approximations will yield fewer dependencies.
80 Before reload, an extended analysis of interblock data dependences
81 is required for interblock scheduling. This is performed in
82 compute_block_backward_dependences ().
84 Dependencies set up by memory references are treated in exactly the
85 same way as other dependencies, by using insn backward dependences
86 INSN_BACK_DEPS. INSN_BACK_DEPS are translated into forward dependences
87 INSN_FORW_DEPS the purpose of forward list scheduling.
89 Having optimized the critical path, we may have also unduly
90 extended the lifetimes of some registers. If an operation requires
91 that constants be loaded into registers, it is certainly desirable
92 to load those constants as early as necessary, but no earlier.
93 I.e., it will not do to load up a bunch of registers at the
94 beginning of a basic block only to use them at the end, if they
95 could be loaded later, since this may result in excessive register
98 Note that since branches are never in basic blocks, but only end
99 basic blocks, this pass will not move branches. But that is ok,
100 since we can use GNU's delayed branch scheduling pass to take care
103 Also note that no further optimizations based on algebraic
104 identities are performed, so this pass would be a good one to
105 perform instruction splitting, such as breaking up a multiply
106 instruction into shifts and adds where that is profitable.
108 Given the memory aliasing analysis that this pass should perform,
109 it should be possible to remove redundant stores to memory, and to
110 load values from registers instead of hitting memory.
112 Before reload, speculative insns are moved only if a 'proof' exists
113 that no exception will be caused by this, and if no live registers
114 exist that inhibit the motion (live registers constraints are not
115 represented by data dependence edges).
117 This pass must update information that subsequent passes expect to
118 be correct. Namely: reg_n_refs, reg_n_sets, reg_n_deaths,
119 reg_n_calls_crossed, and reg_live_length. Also, BB_HEAD, BB_END.
121 The information in the line number notes is carefully retained by
122 this pass. Notes that refer to the starting and ending of
123 exception regions are also carefully retained by this pass. All
124 other NOTE insns are grouped in their same relative order at the
125 beginning of basic blocks and regions that have been scheduled. */
129 #include "coretypes.h"
131 #include "diagnostic-core.h"
134 #include "hard-reg-set.h"
136 #include "function.h"
138 #include "insn-config.h"
139 #include "insn-attr.h"
142 #include "sched-int.h"
150 #include "emit-rtl.h" /* FIXME: Can go away once crtl is moved to rtl.h. */
152 #ifdef INSN_SCHEDULING
154 /* issue_rate is the number of insns that can be scheduled in the same
155 machine cycle. It can be defined in the config/mach/mach.h file,
156 otherwise we set it to 1. */
160 /* sched-verbose controls the amount of debugging output the
161 scheduler prints. It is controlled by -fsched-verbose=N:
162 N>0 and no -DSR : the output is directed to stderr.
163 N>=10 will direct the printouts to stderr (regardless of -dSR).
165 N=2: bb's probabilities, detailed ready list info, unit/insn info.
166 N=3: rtl at abort point, control-flow, regions info.
167 N=5: dependences info. */
169 int sched_verbose
= 0;
171 /* Debugging file. All printouts are sent to dump, which is always set,
172 either to stderr, or to the dump listing file (-dRS). */
173 FILE *sched_dump
= 0;
175 /* This is a placeholder for the scheduler parameters common
176 to all schedulers. */
177 struct common_sched_info_def
*common_sched_info
;
179 #define INSN_TICK(INSN) (HID (INSN)->tick)
180 #define INTER_TICK(INSN) (HID (INSN)->inter_tick)
182 /* If INSN_TICK of an instruction is equal to INVALID_TICK,
183 then it should be recalculated from scratch. */
184 #define INVALID_TICK (-(max_insn_queue_index + 1))
185 /* The minimal value of the INSN_TICK of an instruction. */
186 #define MIN_TICK (-max_insn_queue_index)
188 /* List of important notes we must keep around. This is a pointer to the
189 last element in the list. */
192 static struct spec_info_def spec_info_var
;
193 /* Description of the speculative part of the scheduling.
194 If NULL - no speculation. */
195 spec_info_t spec_info
= NULL
;
197 /* True, if recovery block was added during scheduling of current block.
198 Used to determine, if we need to fix INSN_TICKs. */
199 static bool haifa_recovery_bb_recently_added_p
;
201 /* True, if recovery block was added during this scheduling pass.
202 Used to determine if we should have empty memory pools of dependencies
203 after finishing current region. */
204 bool haifa_recovery_bb_ever_added_p
;
206 /* Counters of different types of speculative instructions. */
207 static int nr_begin_data
, nr_be_in_data
, nr_begin_control
, nr_be_in_control
;
209 /* Array used in {unlink, restore}_bb_notes. */
210 static rtx
*bb_header
= 0;
212 /* Basic block after which recovery blocks will be created. */
213 static basic_block before_recovery
;
215 /* Basic block just before the EXIT_BLOCK and after recovery, if we have
217 basic_block after_recovery
;
219 /* FALSE if we add bb to another region, so we don't need to initialize it. */
220 bool adding_bb_to_current_region_p
= true;
224 /* An instruction is ready to be scheduled when all insns preceding it
225 have already been scheduled. It is important to ensure that all
226 insns which use its result will not be executed until its result
227 has been computed. An insn is maintained in one of four structures:
229 (P) the "Pending" set of insns which cannot be scheduled until
230 their dependencies have been satisfied.
231 (Q) the "Queued" set of insns that can be scheduled when sufficient
233 (R) the "Ready" list of unscheduled, uncommitted insns.
234 (S) the "Scheduled" list of insns.
236 Initially, all insns are either "Pending" or "Ready" depending on
237 whether their dependencies are satisfied.
239 Insns move from the "Ready" list to the "Scheduled" list as they
240 are committed to the schedule. As this occurs, the insns in the
241 "Pending" list have their dependencies satisfied and move to either
242 the "Ready" list or the "Queued" set depending on whether
243 sufficient time has passed to make them ready. As time passes,
244 insns move from the "Queued" set to the "Ready" list.
246 The "Pending" list (P) are the insns in the INSN_FORW_DEPS of the
247 unscheduled insns, i.e., those that are ready, queued, and pending.
248 The "Queued" set (Q) is implemented by the variable `insn_queue'.
249 The "Ready" list (R) is implemented by the variables `ready' and
251 The "Scheduled" list (S) is the new insn chain built by this pass.
253 The transition (R->S) is implemented in the scheduling loop in
254 `schedule_block' when the best insn to schedule is chosen.
255 The transitions (P->R and P->Q) are implemented in `schedule_insn' as
256 insns move from the ready list to the scheduled list.
257 The transition (Q->R) is implemented in 'queue_to_insn' as time
258 passes or stalls are introduced. */
260 /* Implement a circular buffer to delay instructions until sufficient
261 time has passed. For the new pipeline description interface,
262 MAX_INSN_QUEUE_INDEX is a power of two minus one which is not less
263 than maximal time of instruction execution computed by genattr.c on
264 the base maximal time of functional unit reservations and getting a
265 result. This is the longest time an insn may be queued. */
267 static rtx
*insn_queue
;
268 static int q_ptr
= 0;
269 static int q_size
= 0;
270 #define NEXT_Q(X) (((X)+1) & max_insn_queue_index)
271 #define NEXT_Q_AFTER(X, C) (((X)+C) & max_insn_queue_index)
273 #define QUEUE_SCHEDULED (-3)
274 #define QUEUE_NOWHERE (-2)
275 #define QUEUE_READY (-1)
276 /* QUEUE_SCHEDULED - INSN is scheduled.
277 QUEUE_NOWHERE - INSN isn't scheduled yet and is neither in
279 QUEUE_READY - INSN is in ready list.
280 N >= 0 - INSN queued for X [where NEXT_Q_AFTER (q_ptr, X) == N] cycles. */
282 #define QUEUE_INDEX(INSN) (HID (INSN)->queue_index)
284 /* The following variable value refers for all current and future
285 reservations of the processor units. */
288 /* The following variable value is size of memory representing all
289 current and future reservations of the processor units. */
290 size_t dfa_state_size
;
292 /* The following array is used to find the best insn from ready when
293 the automaton pipeline interface is used. */
294 char *ready_try
= NULL
;
296 /* The ready list. */
297 struct ready_list ready
= {NULL
, 0, 0, 0, 0};
299 /* The pointer to the ready list (to be removed). */
300 static struct ready_list
*readyp
= &ready
;
302 /* Scheduling clock. */
303 static int clock_var
;
305 static int may_trap_exp (const_rtx
, int);
307 /* Nonzero iff the address is comprised from at most 1 register. */
308 #define CONST_BASED_ADDRESS_P(x) \
310 || ((GET_CODE (x) == PLUS || GET_CODE (x) == MINUS \
311 || (GET_CODE (x) == LO_SUM)) \
312 && (CONSTANT_P (XEXP (x, 0)) \
313 || CONSTANT_P (XEXP (x, 1)))))
315 /* Returns a class that insn with GET_DEST(insn)=x may belong to,
316 as found by analyzing insn's expression. */
319 static int haifa_luid_for_non_insn (rtx x
);
321 /* Haifa version of sched_info hooks common to all headers. */
322 const struct common_sched_info_def haifa_common_sched_info
=
324 NULL
, /* fix_recovery_cfg */
325 NULL
, /* add_block */
326 NULL
, /* estimate_number_of_insns */
327 haifa_luid_for_non_insn
, /* luid_for_non_insn */
328 SCHED_PASS_UNKNOWN
/* sched_pass_id */
331 const struct sched_scan_info_def
*sched_scan_info
;
333 /* Mapping from instruction UID to its Logical UID. */
334 VEC (int, heap
) *sched_luids
= NULL
;
336 /* Next LUID to assign to an instruction. */
337 int sched_max_luid
= 1;
339 /* Haifa Instruction Data. */
340 VEC (haifa_insn_data_def
, heap
) *h_i_d
= NULL
;
342 void (* sched_init_only_bb
) (basic_block
, basic_block
);
344 /* Split block function. Different schedulers might use different functions
345 to handle their internal data consistent. */
346 basic_block (* sched_split_block
) (basic_block
, rtx
);
348 /* Create empty basic block after the specified block. */
349 basic_block (* sched_create_empty_bb
) (basic_block
);
352 may_trap_exp (const_rtx x
, int is_store
)
361 if (code
== MEM
&& may_trap_p (x
))
368 /* The insn uses memory: a volatile load. */
369 if (MEM_VOLATILE_P (x
))
371 /* An exception-free load. */
374 /* A load with 1 base register, to be further checked. */
375 if (CONST_BASED_ADDRESS_P (XEXP (x
, 0)))
376 return PFREE_CANDIDATE
;
377 /* No info on the load, to be further checked. */
378 return PRISKY_CANDIDATE
;
383 int i
, insn_class
= TRAP_FREE
;
385 /* Neither store nor load, check if it may cause a trap. */
388 /* Recursive step: walk the insn... */
389 fmt
= GET_RTX_FORMAT (code
);
390 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
394 int tmp_class
= may_trap_exp (XEXP (x
, i
), is_store
);
395 insn_class
= WORST_CLASS (insn_class
, tmp_class
);
397 else if (fmt
[i
] == 'E')
400 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
402 int tmp_class
= may_trap_exp (XVECEXP (x
, i
, j
), is_store
);
403 insn_class
= WORST_CLASS (insn_class
, tmp_class
);
404 if (insn_class
== TRAP_RISKY
|| insn_class
== IRISKY
)
408 if (insn_class
== TRAP_RISKY
|| insn_class
== IRISKY
)
415 /* Classifies rtx X of an insn for the purpose of verifying that X can be
416 executed speculatively (and consequently the insn can be moved
417 speculatively), by examining X, returning:
418 TRAP_RISKY: store, or risky non-load insn (e.g. division by variable).
419 TRAP_FREE: non-load insn.
420 IFREE: load from a globally safe location.
421 IRISKY: volatile load.
422 PFREE_CANDIDATE, PRISKY_CANDIDATE: load that need to be checked for
423 being either PFREE or PRISKY. */
426 haifa_classify_rtx (const_rtx x
)
428 int tmp_class
= TRAP_FREE
;
429 int insn_class
= TRAP_FREE
;
432 if (GET_CODE (x
) == PARALLEL
)
434 int i
, len
= XVECLEN (x
, 0);
436 for (i
= len
- 1; i
>= 0; i
--)
438 tmp_class
= haifa_classify_rtx (XVECEXP (x
, 0, i
));
439 insn_class
= WORST_CLASS (insn_class
, tmp_class
);
440 if (insn_class
== TRAP_RISKY
|| insn_class
== IRISKY
)
450 /* Test if it is a 'store'. */
451 tmp_class
= may_trap_exp (XEXP (x
, 0), 1);
454 /* Test if it is a store. */
455 tmp_class
= may_trap_exp (SET_DEST (x
), 1);
456 if (tmp_class
== TRAP_RISKY
)
458 /* Test if it is a load. */
460 WORST_CLASS (tmp_class
,
461 may_trap_exp (SET_SRC (x
), 0));
464 tmp_class
= haifa_classify_rtx (COND_EXEC_CODE (x
));
465 if (tmp_class
== TRAP_RISKY
)
467 tmp_class
= WORST_CLASS (tmp_class
,
468 may_trap_exp (COND_EXEC_TEST (x
), 0));
471 tmp_class
= TRAP_RISKY
;
475 insn_class
= tmp_class
;
482 haifa_classify_insn (const_rtx insn
)
484 return haifa_classify_rtx (PATTERN (insn
));
487 /* Forward declarations. */
489 static int priority (rtx
);
490 static int rank_for_schedule (const void *, const void *);
491 static void swap_sort (rtx
*, int);
492 static void queue_insn (rtx
, int);
493 static int schedule_insn (rtx
);
494 static void adjust_priority (rtx
);
495 static void advance_one_cycle (void);
496 static void extend_h_i_d (void);
499 /* Notes handling mechanism:
500 =========================
501 Generally, NOTES are saved before scheduling and restored after scheduling.
502 The scheduler distinguishes between two types of notes:
504 (1) LOOP_BEGIN, LOOP_END, SETJMP, EHREGION_BEG, EHREGION_END notes:
505 Before scheduling a region, a pointer to the note is added to the insn
506 that follows or precedes it. (This happens as part of the data dependence
507 computation). After scheduling an insn, the pointer contained in it is
508 used for regenerating the corresponding note (in reemit_notes).
510 (2) All other notes (e.g. INSN_DELETED): Before scheduling a block,
511 these notes are put in a list (in rm_other_notes() and
512 unlink_other_notes ()). After scheduling the block, these notes are
513 inserted at the beginning of the block (in schedule_block()). */
515 static void ready_add (struct ready_list
*, rtx
, bool);
516 static rtx
ready_remove_first (struct ready_list
*);
517 static rtx
ready_remove_first_dispatch (struct ready_list
*ready
);
519 static void queue_to_ready (struct ready_list
*);
520 static int early_queue_to_ready (state_t
, struct ready_list
*);
522 static void debug_ready_list (struct ready_list
*);
524 /* The following functions are used to implement multi-pass scheduling
525 on the first cycle. */
526 static rtx
ready_remove (struct ready_list
*, int);
527 static void ready_remove_insn (rtx
);
529 static void fix_inter_tick (rtx
, rtx
);
530 static int fix_tick_ready (rtx
);
531 static void change_queue_index (rtx
, int);
533 /* The following functions are used to implement scheduling of data/control
534 speculative instructions. */
536 static void extend_h_i_d (void);
537 static void init_h_i_d (rtx
);
538 static void generate_recovery_code (rtx
);
539 static void process_insn_forw_deps_be_in_spec (rtx
, rtx
, ds_t
);
540 static void begin_speculative_block (rtx
);
541 static void add_to_speculative_block (rtx
);
542 static void init_before_recovery (basic_block
*);
543 static void create_check_block_twin (rtx
, bool);
544 static void fix_recovery_deps (basic_block
);
545 static void haifa_change_pattern (rtx
, rtx
);
546 static void dump_new_block_header (int, basic_block
, rtx
, rtx
);
547 static void restore_bb_notes (basic_block
);
548 static void fix_jump_move (rtx
);
549 static void move_block_after_check (rtx
);
550 static void move_succs (VEC(edge
,gc
) **, basic_block
);
551 static void sched_remove_insn (rtx
);
552 static void clear_priorities (rtx
, rtx_vec_t
*);
553 static void calc_priorities (rtx_vec_t
);
554 static void add_jump_dependencies (rtx
, rtx
);
555 #ifdef ENABLE_CHECKING
556 static int has_edge_p (VEC(edge
,gc
) *, int);
557 static void check_cfg (rtx
, rtx
);
560 #endif /* INSN_SCHEDULING */
562 /* Point to state used for the current scheduling pass. */
563 struct haifa_sched_info
*current_sched_info
;
565 #ifndef INSN_SCHEDULING
567 schedule_insns (void)
572 /* Do register pressure sensitive insn scheduling if the flag is set
574 bool sched_pressure_p
;
576 /* Map regno -> its cover class. The map defined only when
577 SCHED_PRESSURE_P is true. */
578 enum reg_class
*sched_regno_cover_class
;
580 /* The current register pressure. Only elements corresponding cover
581 classes are defined. */
582 static int curr_reg_pressure
[N_REG_CLASSES
];
584 /* Saved value of the previous array. */
585 static int saved_reg_pressure
[N_REG_CLASSES
];
587 /* Register living at given scheduling point. */
588 static bitmap curr_reg_live
;
590 /* Saved value of the previous array. */
591 static bitmap saved_reg_live
;
593 /* Registers mentioned in the current region. */
594 static bitmap region_ref_regs
;
596 /* Initiate register pressure relative info for scheduling the current
597 region. Currently it is only clearing register mentioned in the
600 sched_init_region_reg_pressure_info (void)
602 bitmap_clear (region_ref_regs
);
605 /* Update current register pressure related info after birth (if
606 BIRTH_P) or death of register REGNO. */
608 mark_regno_birth_or_death (int regno
, bool birth_p
)
610 enum reg_class cover_class
;
612 cover_class
= sched_regno_cover_class
[regno
];
613 if (regno
>= FIRST_PSEUDO_REGISTER
)
615 if (cover_class
!= NO_REGS
)
619 bitmap_set_bit (curr_reg_live
, regno
);
620 curr_reg_pressure
[cover_class
]
621 += ira_reg_class_nregs
[cover_class
][PSEUDO_REGNO_MODE (regno
)];
625 bitmap_clear_bit (curr_reg_live
, regno
);
626 curr_reg_pressure
[cover_class
]
627 -= ira_reg_class_nregs
[cover_class
][PSEUDO_REGNO_MODE (regno
)];
631 else if (cover_class
!= NO_REGS
632 && ! TEST_HARD_REG_BIT (ira_no_alloc_regs
, regno
))
636 bitmap_set_bit (curr_reg_live
, regno
);
637 curr_reg_pressure
[cover_class
]++;
641 bitmap_clear_bit (curr_reg_live
, regno
);
642 curr_reg_pressure
[cover_class
]--;
647 /* Initiate current register pressure related info from living
648 registers given by LIVE. */
650 initiate_reg_pressure_info (bitmap live
)
656 for (i
= 0; i
< ira_reg_class_cover_size
; i
++)
657 curr_reg_pressure
[ira_reg_class_cover
[i
]] = 0;
658 bitmap_clear (curr_reg_live
);
659 EXECUTE_IF_SET_IN_BITMAP (live
, 0, j
, bi
)
660 if (current_nr_blocks
== 1 || bitmap_bit_p (region_ref_regs
, j
))
661 mark_regno_birth_or_death (j
, true);
664 /* Mark registers in X as mentioned in the current region. */
666 setup_ref_regs (rtx x
)
669 const RTX_CODE code
= GET_CODE (x
);
675 if (regno
>= FIRST_PSEUDO_REGISTER
)
676 bitmap_set_bit (region_ref_regs
, REGNO (x
));
678 for (i
= hard_regno_nregs
[regno
][GET_MODE (x
)] - 1; i
>= 0; i
--)
679 bitmap_set_bit (region_ref_regs
, regno
+ i
);
682 fmt
= GET_RTX_FORMAT (code
);
683 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
685 setup_ref_regs (XEXP (x
, i
));
686 else if (fmt
[i
] == 'E')
688 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
689 setup_ref_regs (XVECEXP (x
, i
, j
));
693 /* Initiate current register pressure related info at the start of
696 initiate_bb_reg_pressure_info (basic_block bb
)
698 unsigned int i ATTRIBUTE_UNUSED
;
701 if (current_nr_blocks
> 1)
702 FOR_BB_INSNS (bb
, insn
)
703 if (NONDEBUG_INSN_P (insn
))
704 setup_ref_regs (PATTERN (insn
));
705 initiate_reg_pressure_info (df_get_live_in (bb
));
706 #ifdef EH_RETURN_DATA_REGNO
707 if (bb_has_eh_pred (bb
))
710 unsigned int regno
= EH_RETURN_DATA_REGNO (i
);
712 if (regno
== INVALID_REGNUM
)
714 if (! bitmap_bit_p (df_get_live_in (bb
), regno
))
715 mark_regno_birth_or_death (regno
, true);
720 /* Save current register pressure related info. */
722 save_reg_pressure (void)
726 for (i
= 0; i
< ira_reg_class_cover_size
; i
++)
727 saved_reg_pressure
[ira_reg_class_cover
[i
]]
728 = curr_reg_pressure
[ira_reg_class_cover
[i
]];
729 bitmap_copy (saved_reg_live
, curr_reg_live
);
732 /* Restore saved register pressure related info. */
734 restore_reg_pressure (void)
738 for (i
= 0; i
< ira_reg_class_cover_size
; i
++)
739 curr_reg_pressure
[ira_reg_class_cover
[i
]]
740 = saved_reg_pressure
[ira_reg_class_cover
[i
]];
741 bitmap_copy (curr_reg_live
, saved_reg_live
);
744 /* Return TRUE if the register is dying after its USE. */
746 dying_use_p (struct reg_use_data
*use
)
748 struct reg_use_data
*next
;
750 for (next
= use
->next_regno_use
; next
!= use
; next
= next
->next_regno_use
)
751 if (NONDEBUG_INSN_P (next
->insn
)
752 && QUEUE_INDEX (next
->insn
) != QUEUE_SCHEDULED
)
757 /* Print info about the current register pressure and its excess for
760 print_curr_reg_pressure (void)
765 fprintf (sched_dump
, ";;\t");
766 for (i
= 0; i
< ira_reg_class_cover_size
; i
++)
768 cl
= ira_reg_class_cover
[i
];
769 gcc_assert (curr_reg_pressure
[cl
] >= 0);
770 fprintf (sched_dump
, " %s:%d(%d)", reg_class_names
[cl
],
771 curr_reg_pressure
[cl
],
772 curr_reg_pressure
[cl
] - ira_available_class_regs
[cl
]);
774 fprintf (sched_dump
, "\n");
777 /* Pointer to the last instruction scheduled. Used by rank_for_schedule,
778 so that insns independent of the last scheduled insn will be preferred
779 over dependent instructions. */
781 static rtx last_scheduled_insn
;
783 /* Cached cost of the instruction. Use below function to get cost of the
784 insn. -1 here means that the field is not initialized. */
785 #define INSN_COST(INSN) (HID (INSN)->cost)
787 /* Compute cost of executing INSN.
788 This is the number of cycles between instruction issue and
789 instruction results. */
797 if (recog_memoized (insn
) < 0)
800 cost
= insn_default_latency (insn
);
807 cost
= INSN_COST (insn
);
811 /* A USE insn, or something else we don't need to
812 understand. We can't pass these directly to
813 result_ready_cost or insn_default_latency because it will
814 trigger a fatal error for unrecognizable insns. */
815 if (recog_memoized (insn
) < 0)
817 INSN_COST (insn
) = 0;
822 cost
= insn_default_latency (insn
);
826 INSN_COST (insn
) = cost
;
833 /* Compute cost of dependence LINK.
834 This is the number of cycles between instruction issue and
836 ??? We also use this function to call recog_memoized on all insns. */
838 dep_cost_1 (dep_t link
, dw_t dw
)
840 rtx insn
= DEP_PRO (link
);
841 rtx used
= DEP_CON (link
);
844 /* A USE insn should never require the value used to be computed.
845 This allows the computation of a function's result and parameter
846 values to overlap the return and call. We don't care about the
847 the dependence cost when only decreasing register pressure. */
848 if (recog_memoized (used
) < 0)
851 recog_memoized (insn
);
855 enum reg_note dep_type
= DEP_TYPE (link
);
857 cost
= insn_cost (insn
);
859 if (INSN_CODE (insn
) >= 0)
861 if (dep_type
== REG_DEP_ANTI
)
863 else if (dep_type
== REG_DEP_OUTPUT
)
865 cost
= (insn_default_latency (insn
)
866 - insn_default_latency (used
));
870 else if (bypass_p (insn
))
871 cost
= insn_latency (insn
, used
);
875 if (targetm
.sched
.adjust_cost_2
)
876 cost
= targetm
.sched
.adjust_cost_2 (used
, (int) dep_type
, insn
, cost
,
878 else if (targetm
.sched
.adjust_cost
!= NULL
)
880 /* This variable is used for backward compatibility with the
882 rtx dep_cost_rtx_link
= alloc_INSN_LIST (NULL_RTX
, NULL_RTX
);
884 /* Make it self-cycled, so that if some tries to walk over this
885 incomplete list he/she will be caught in an endless loop. */
886 XEXP (dep_cost_rtx_link
, 1) = dep_cost_rtx_link
;
888 /* Targets use only REG_NOTE_KIND of the link. */
889 PUT_REG_NOTE_KIND (dep_cost_rtx_link
, DEP_TYPE (link
));
891 cost
= targetm
.sched
.adjust_cost (used
, dep_cost_rtx_link
,
894 free_INSN_LIST_node (dep_cost_rtx_link
);
904 /* Compute cost of dependence LINK.
905 This is the number of cycles between instruction issue and
906 instruction results. */
908 dep_cost (dep_t link
)
910 return dep_cost_1 (link
, 0);
913 /* Use this sel-sched.c friendly function in reorder2 instead of increasing
914 INSN_PRIORITY explicitly. */
916 increase_insn_priority (rtx insn
, int amount
)
920 /* We're dealing with haifa-sched.c INSN_PRIORITY. */
921 if (INSN_PRIORITY_KNOWN (insn
))
922 INSN_PRIORITY (insn
) += amount
;
926 /* In sel-sched.c INSN_PRIORITY is not kept up to date.
927 Use EXPR_PRIORITY instead. */
928 sel_add_to_insn_priority (insn
, amount
);
932 /* Return 'true' if DEP should be included in priority calculations. */
934 contributes_to_priority_p (dep_t dep
)
936 if (DEBUG_INSN_P (DEP_CON (dep
))
937 || DEBUG_INSN_P (DEP_PRO (dep
)))
940 /* Critical path is meaningful in block boundaries only. */
941 if (!current_sched_info
->contributes_to_priority (DEP_CON (dep
),
945 /* If flag COUNT_SPEC_IN_CRITICAL_PATH is set,
946 then speculative instructions will less likely be
947 scheduled. That is because the priority of
948 their producers will increase, and, thus, the
949 producers will more likely be scheduled, thus,
950 resolving the dependence. */
951 if (sched_deps_info
->generate_spec_deps
952 && !(spec_info
->flags
& COUNT_SPEC_IN_CRITICAL_PATH
)
953 && (DEP_STATUS (dep
) & SPECULATIVE
))
959 /* Compute the number of nondebug forward deps of an insn. */
962 dep_list_size (rtx insn
)
964 sd_iterator_def sd_it
;
966 int dbgcount
= 0, nodbgcount
= 0;
968 if (!MAY_HAVE_DEBUG_INSNS
)
969 return sd_lists_size (insn
, SD_LIST_FORW
);
971 FOR_EACH_DEP (insn
, SD_LIST_FORW
, sd_it
, dep
)
973 if (DEBUG_INSN_P (DEP_CON (dep
)))
975 else if (!DEBUG_INSN_P (DEP_PRO (dep
)))
979 gcc_assert (dbgcount
+ nodbgcount
== sd_lists_size (insn
, SD_LIST_FORW
));
984 /* Compute the priority number for INSN. */
991 /* We should not be interested in priority of an already scheduled insn. */
992 gcc_assert (QUEUE_INDEX (insn
) != QUEUE_SCHEDULED
);
994 if (!INSN_PRIORITY_KNOWN (insn
))
996 int this_priority
= -1;
998 if (dep_list_size (insn
) == 0)
999 /* ??? We should set INSN_PRIORITY to insn_cost when and insn has
1000 some forward deps but all of them are ignored by
1001 contributes_to_priority hook. At the moment we set priority of
1003 this_priority
= insn_cost (insn
);
1006 rtx prev_first
, twin
;
1009 /* For recovery check instructions we calculate priority slightly
1010 different than that of normal instructions. Instead of walking
1011 through INSN_FORW_DEPS (check) list, we walk through
1012 INSN_FORW_DEPS list of each instruction in the corresponding
1015 /* Selective scheduling does not define RECOVERY_BLOCK macro. */
1016 rec
= sel_sched_p () ? NULL
: RECOVERY_BLOCK (insn
);
1017 if (!rec
|| rec
== EXIT_BLOCK_PTR
)
1019 prev_first
= PREV_INSN (insn
);
1024 prev_first
= NEXT_INSN (BB_HEAD (rec
));
1025 twin
= PREV_INSN (BB_END (rec
));
1030 sd_iterator_def sd_it
;
1033 FOR_EACH_DEP (twin
, SD_LIST_FORW
, sd_it
, dep
)
1038 next
= DEP_CON (dep
);
1040 if (BLOCK_FOR_INSN (next
) != rec
)
1044 if (!contributes_to_priority_p (dep
))
1048 cost
= dep_cost (dep
);
1051 struct _dep _dep1
, *dep1
= &_dep1
;
1053 init_dep (dep1
, insn
, next
, REG_DEP_ANTI
);
1055 cost
= dep_cost (dep1
);
1058 next_priority
= cost
+ priority (next
);
1060 if (next_priority
> this_priority
)
1061 this_priority
= next_priority
;
1065 twin
= PREV_INSN (twin
);
1067 while (twin
!= prev_first
);
1070 if (this_priority
< 0)
1072 gcc_assert (this_priority
== -1);
1074 this_priority
= insn_cost (insn
);
1077 INSN_PRIORITY (insn
) = this_priority
;
1078 INSN_PRIORITY_STATUS (insn
) = 1;
1081 return INSN_PRIORITY (insn
);
1084 /* Macros and functions for keeping the priority queue sorted, and
1085 dealing with queuing and dequeuing of instructions. */
1087 #define SCHED_SORT(READY, N_READY) \
1088 do { if ((N_READY) == 2) \
1089 swap_sort (READY, N_READY); \
1090 else if ((N_READY) > 2) \
1091 qsort (READY, N_READY, sizeof (rtx), rank_for_schedule); } \
1094 /* Setup info about the current register pressure impact of scheduling
1095 INSN at the current scheduling point. */
1097 setup_insn_reg_pressure_info (rtx insn
)
1099 int i
, change
, before
, after
, hard_regno
;
1100 int excess_cost_change
;
1101 enum machine_mode mode
;
1103 struct reg_pressure_data
*pressure_info
;
1104 int *max_reg_pressure
;
1105 struct reg_use_data
*use
;
1106 static int death
[N_REG_CLASSES
];
1108 gcc_checking_assert (!DEBUG_INSN_P (insn
));
1110 excess_cost_change
= 0;
1111 for (i
= 0; i
< ira_reg_class_cover_size
; i
++)
1112 death
[ira_reg_class_cover
[i
]] = 0;
1113 for (use
= INSN_REG_USE_LIST (insn
); use
!= NULL
; use
= use
->next_insn_use
)
1114 if (dying_use_p (use
))
1116 cl
= sched_regno_cover_class
[use
->regno
];
1117 if (use
->regno
< FIRST_PSEUDO_REGISTER
)
1120 death
[cl
] += ira_reg_class_nregs
[cl
][PSEUDO_REGNO_MODE (use
->regno
)];
1122 pressure_info
= INSN_REG_PRESSURE (insn
);
1123 max_reg_pressure
= INSN_MAX_REG_PRESSURE (insn
);
1124 gcc_assert (pressure_info
!= NULL
&& max_reg_pressure
!= NULL
);
1125 for (i
= 0; i
< ira_reg_class_cover_size
; i
++)
1127 cl
= ira_reg_class_cover
[i
];
1128 gcc_assert (curr_reg_pressure
[cl
] >= 0);
1129 change
= (int) pressure_info
[i
].set_increase
- death
[cl
];
1130 before
= MAX (0, max_reg_pressure
[i
] - ira_available_class_regs
[cl
]);
1131 after
= MAX (0, max_reg_pressure
[i
] + change
1132 - ira_available_class_regs
[cl
]);
1133 hard_regno
= ira_class_hard_regs
[cl
][0];
1134 gcc_assert (hard_regno
>= 0);
1135 mode
= reg_raw_mode
[hard_regno
];
1136 excess_cost_change
+= ((after
- before
)
1137 * (ira_memory_move_cost
[mode
][cl
][0]
1138 + ira_memory_move_cost
[mode
][cl
][1]));
1140 INSN_REG_PRESSURE_EXCESS_COST_CHANGE (insn
) = excess_cost_change
;
1143 /* Returns a positive value if x is preferred; returns a negative value if
1144 y is preferred. Should never return 0, since that will make the sort
1148 rank_for_schedule (const void *x
, const void *y
)
1150 rtx tmp
= *(const rtx
*) y
;
1151 rtx tmp2
= *(const rtx
*) x
;
1153 int tmp_class
, tmp2_class
;
1154 int val
, priority_val
, info_val
;
1156 if (MAY_HAVE_DEBUG_INSNS
)
1158 /* Schedule debug insns as early as possible. */
1159 if (DEBUG_INSN_P (tmp
) && !DEBUG_INSN_P (tmp2
))
1161 else if (DEBUG_INSN_P (tmp2
))
1165 /* The insn in a schedule group should be issued the first. */
1166 if (flag_sched_group_heuristic
&&
1167 SCHED_GROUP_P (tmp
) != SCHED_GROUP_P (tmp2
))
1168 return SCHED_GROUP_P (tmp2
) ? 1 : -1;
1170 /* Make sure that priority of TMP and TMP2 are initialized. */
1171 gcc_assert (INSN_PRIORITY_KNOWN (tmp
) && INSN_PRIORITY_KNOWN (tmp2
));
1173 if (sched_pressure_p
)
1177 /* Prefer insn whose scheduling results in the smallest register
1179 if ((diff
= (INSN_REG_PRESSURE_EXCESS_COST_CHANGE (tmp
)
1180 + (INSN_TICK (tmp
) > clock_var
1181 ? INSN_TICK (tmp
) - clock_var
: 0)
1182 - INSN_REG_PRESSURE_EXCESS_COST_CHANGE (tmp2
)
1183 - (INSN_TICK (tmp2
) > clock_var
1184 ? INSN_TICK (tmp2
) - clock_var
: 0))) != 0)
1189 if (sched_pressure_p
1190 && (INSN_TICK (tmp2
) > clock_var
|| INSN_TICK (tmp
) > clock_var
))
1192 if (INSN_TICK (tmp
) <= clock_var
)
1194 else if (INSN_TICK (tmp2
) <= clock_var
)
1197 return INSN_TICK (tmp
) - INSN_TICK (tmp2
);
1199 /* Prefer insn with higher priority. */
1200 priority_val
= INSN_PRIORITY (tmp2
) - INSN_PRIORITY (tmp
);
1202 if (flag_sched_critical_path_heuristic
&& priority_val
)
1203 return priority_val
;
1205 /* Prefer speculative insn with greater dependencies weakness. */
1206 if (flag_sched_spec_insn_heuristic
&& spec_info
)
1212 ds1
= TODO_SPEC (tmp
) & SPECULATIVE
;
1214 dw1
= ds_weak (ds1
);
1218 ds2
= TODO_SPEC (tmp2
) & SPECULATIVE
;
1220 dw2
= ds_weak (ds2
);
1225 if (dw
> (NO_DEP_WEAK
/ 8) || dw
< -(NO_DEP_WEAK
/ 8))
1229 info_val
= (*current_sched_info
->rank
) (tmp
, tmp2
);
1230 if(flag_sched_rank_heuristic
&& info_val
)
1233 if (flag_sched_last_insn_heuristic
)
1235 last
= last_scheduled_insn
;
1237 if (DEBUG_INSN_P (last
) && last
!= current_sched_info
->prev_head
)
1239 last
= PREV_INSN (last
);
1240 while (!NONDEBUG_INSN_P (last
)
1241 && last
!= current_sched_info
->prev_head
);
1244 /* Compare insns based on their relation to the last scheduled
1246 if (flag_sched_last_insn_heuristic
&& NONDEBUG_INSN_P (last
))
1251 /* Classify the instructions into three classes:
1252 1) Data dependent on last schedule insn.
1253 2) Anti/Output dependent on last scheduled insn.
1254 3) Independent of last scheduled insn, or has latency of one.
1255 Choose the insn from the highest numbered class if different. */
1256 dep1
= sd_find_dep_between (last
, tmp
, true);
1258 if (dep1
== NULL
|| dep_cost (dep1
) == 1)
1260 else if (/* Data dependence. */
1261 DEP_TYPE (dep1
) == REG_DEP_TRUE
)
1266 dep2
= sd_find_dep_between (last
, tmp2
, true);
1268 if (dep2
== NULL
|| dep_cost (dep2
) == 1)
1270 else if (/* Data dependence. */
1271 DEP_TYPE (dep2
) == REG_DEP_TRUE
)
1276 if ((val
= tmp2_class
- tmp_class
))
1280 /* Prefer the insn which has more later insns that depend on it.
1281 This gives the scheduler more freedom when scheduling later
1282 instructions at the expense of added register pressure. */
1284 val
= (dep_list_size (tmp2
) - dep_list_size (tmp
));
1286 if (flag_sched_dep_count_heuristic
&& val
!= 0)
1289 /* If insns are equally good, sort by INSN_LUID (original insn order),
1290 so that we make the sort stable. This minimizes instruction movement,
1291 thus minimizing sched's effect on debugging and cross-jumping. */
1292 return INSN_LUID (tmp
) - INSN_LUID (tmp2
);
1295 /* Resort the array A in which only element at index N may be out of order. */
1297 HAIFA_INLINE
static void
1298 swap_sort (rtx
*a
, int n
)
1300 rtx insn
= a
[n
- 1];
1303 while (i
>= 0 && rank_for_schedule (a
+ i
, &insn
) >= 0)
1311 /* Add INSN to the insn queue so that it can be executed at least
1312 N_CYCLES after the currently executing insn. Preserve insns
1313 chain for debugging purposes. */
1315 HAIFA_INLINE
static void
1316 queue_insn (rtx insn
, int n_cycles
)
1318 int next_q
= NEXT_Q_AFTER (q_ptr
, n_cycles
);
1319 rtx link
= alloc_INSN_LIST (insn
, insn_queue
[next_q
]);
1321 gcc_assert (n_cycles
<= max_insn_queue_index
);
1322 gcc_assert (!DEBUG_INSN_P (insn
));
1324 insn_queue
[next_q
] = link
;
1327 if (sched_verbose
>= 2)
1329 fprintf (sched_dump
, ";;\t\tReady-->Q: insn %s: ",
1330 (*current_sched_info
->print_insn
) (insn
, 0));
1332 fprintf (sched_dump
, "queued for %d cycles.\n", n_cycles
);
1335 QUEUE_INDEX (insn
) = next_q
;
1338 /* Remove INSN from queue. */
1340 queue_remove (rtx insn
)
1342 gcc_assert (QUEUE_INDEX (insn
) >= 0);
1343 remove_free_INSN_LIST_elem (insn
, &insn_queue
[QUEUE_INDEX (insn
)]);
1345 QUEUE_INDEX (insn
) = QUEUE_NOWHERE
;
1348 /* Return a pointer to the bottom of the ready list, i.e. the insn
1349 with the lowest priority. */
1352 ready_lastpos (struct ready_list
*ready
)
1354 gcc_assert (ready
->n_ready
>= 1);
1355 return ready
->vec
+ ready
->first
- ready
->n_ready
+ 1;
1358 /* Add an element INSN to the ready list so that it ends up with the
1359 lowest/highest priority depending on FIRST_P. */
1361 HAIFA_INLINE
static void
1362 ready_add (struct ready_list
*ready
, rtx insn
, bool first_p
)
1366 if (ready
->first
== ready
->n_ready
)
1368 memmove (ready
->vec
+ ready
->veclen
- ready
->n_ready
,
1369 ready_lastpos (ready
),
1370 ready
->n_ready
* sizeof (rtx
));
1371 ready
->first
= ready
->veclen
- 1;
1373 ready
->vec
[ready
->first
- ready
->n_ready
] = insn
;
1377 if (ready
->first
== ready
->veclen
- 1)
1380 /* ready_lastpos() fails when called with (ready->n_ready == 0). */
1381 memmove (ready
->vec
+ ready
->veclen
- ready
->n_ready
- 1,
1382 ready_lastpos (ready
),
1383 ready
->n_ready
* sizeof (rtx
));
1384 ready
->first
= ready
->veclen
- 2;
1386 ready
->vec
[++(ready
->first
)] = insn
;
1390 if (DEBUG_INSN_P (insn
))
1393 gcc_assert (QUEUE_INDEX (insn
) != QUEUE_READY
);
1394 QUEUE_INDEX (insn
) = QUEUE_READY
;
1397 /* Remove the element with the highest priority from the ready list and
1400 HAIFA_INLINE
static rtx
1401 ready_remove_first (struct ready_list
*ready
)
1405 gcc_assert (ready
->n_ready
);
1406 t
= ready
->vec
[ready
->first
--];
1408 if (DEBUG_INSN_P (t
))
1410 /* If the queue becomes empty, reset it. */
1411 if (ready
->n_ready
== 0)
1412 ready
->first
= ready
->veclen
- 1;
1414 gcc_assert (QUEUE_INDEX (t
) == QUEUE_READY
);
1415 QUEUE_INDEX (t
) = QUEUE_NOWHERE
;
1420 /* The following code implements multi-pass scheduling for the first
1421 cycle. In other words, we will try to choose ready insn which
1422 permits to start maximum number of insns on the same cycle. */
1424 /* Return a pointer to the element INDEX from the ready. INDEX for
1425 insn with the highest priority is 0, and the lowest priority has
1429 ready_element (struct ready_list
*ready
, int index
)
1431 gcc_assert (ready
->n_ready
&& index
< ready
->n_ready
);
1433 return ready
->vec
[ready
->first
- index
];
1436 /* Remove the element INDEX from the ready list and return it. INDEX
1437 for insn with the highest priority is 0, and the lowest priority
1440 HAIFA_INLINE
static rtx
1441 ready_remove (struct ready_list
*ready
, int index
)
1447 return ready_remove_first (ready
);
1448 gcc_assert (ready
->n_ready
&& index
< ready
->n_ready
);
1449 t
= ready
->vec
[ready
->first
- index
];
1451 if (DEBUG_INSN_P (t
))
1453 for (i
= index
; i
< ready
->n_ready
; i
++)
1454 ready
->vec
[ready
->first
- i
] = ready
->vec
[ready
->first
- i
- 1];
1455 QUEUE_INDEX (t
) = QUEUE_NOWHERE
;
1459 /* Remove INSN from the ready list. */
1461 ready_remove_insn (rtx insn
)
1465 for (i
= 0; i
< readyp
->n_ready
; i
++)
1466 if (ready_element (readyp
, i
) == insn
)
1468 ready_remove (readyp
, i
);
1474 /* Sort the ready list READY by ascending priority, using the SCHED_SORT
1478 ready_sort (struct ready_list
*ready
)
1481 rtx
*first
= ready_lastpos (ready
);
1483 if (sched_pressure_p
)
1485 for (i
= 0; i
< ready
->n_ready
; i
++)
1486 if (!DEBUG_INSN_P (first
[i
]))
1487 setup_insn_reg_pressure_info (first
[i
]);
1489 SCHED_SORT (first
, ready
->n_ready
);
1492 /* PREV is an insn that is ready to execute. Adjust its priority if that
1493 will help shorten or lengthen register lifetimes as appropriate. Also
1494 provide a hook for the target to tweak itself. */
1496 HAIFA_INLINE
static void
1497 adjust_priority (rtx prev
)
1499 /* ??? There used to be code here to try and estimate how an insn
1500 affected register lifetimes, but it did it by looking at REG_DEAD
1501 notes, which we removed in schedule_region. Nor did it try to
1502 take into account register pressure or anything useful like that.
1504 Revisit when we have a machine model to work with and not before. */
1506 if (targetm
.sched
.adjust_priority
)
1507 INSN_PRIORITY (prev
) =
1508 targetm
.sched
.adjust_priority (prev
, INSN_PRIORITY (prev
));
1511 /* Advance DFA state STATE on one cycle. */
1513 advance_state (state_t state
)
1515 if (targetm
.sched
.dfa_pre_advance_cycle
)
1516 targetm
.sched
.dfa_pre_advance_cycle ();
1518 if (targetm
.sched
.dfa_pre_cycle_insn
)
1519 state_transition (state
,
1520 targetm
.sched
.dfa_pre_cycle_insn ());
1522 state_transition (state
, NULL
);
1524 if (targetm
.sched
.dfa_post_cycle_insn
)
1525 state_transition (state
,
1526 targetm
.sched
.dfa_post_cycle_insn ());
1528 if (targetm
.sched
.dfa_post_advance_cycle
)
1529 targetm
.sched
.dfa_post_advance_cycle ();
1532 /* Advance time on one cycle. */
1533 HAIFA_INLINE
static void
1534 advance_one_cycle (void)
1536 advance_state (curr_state
);
1537 if (sched_verbose
>= 6)
1538 fprintf (sched_dump
, ";;\tAdvanced a state.\n");
1541 /* Clock at which the previous instruction was issued. */
1542 static int last_clock_var
;
1544 /* Update register pressure after scheduling INSN. */
1546 update_register_pressure (rtx insn
)
1548 struct reg_use_data
*use
;
1549 struct reg_set_data
*set
;
1551 gcc_checking_assert (!DEBUG_INSN_P (insn
));
1553 for (use
= INSN_REG_USE_LIST (insn
); use
!= NULL
; use
= use
->next_insn_use
)
1554 if (dying_use_p (use
) && bitmap_bit_p (curr_reg_live
, use
->regno
))
1555 mark_regno_birth_or_death (use
->regno
, false);
1556 for (set
= INSN_REG_SET_LIST (insn
); set
!= NULL
; set
= set
->next_insn_set
)
1557 mark_regno_birth_or_death (set
->regno
, true);
1560 /* Set up or update (if UPDATE_P) max register pressure (see its
1561 meaning in sched-int.h::_haifa_insn_data) for all current BB insns
1562 after insn AFTER. */
1564 setup_insn_max_reg_pressure (rtx after
, bool update_p
)
1569 static int max_reg_pressure
[N_REG_CLASSES
];
1571 save_reg_pressure ();
1572 for (i
= 0; i
< ira_reg_class_cover_size
; i
++)
1573 max_reg_pressure
[ira_reg_class_cover
[i
]]
1574 = curr_reg_pressure
[ira_reg_class_cover
[i
]];
1575 for (insn
= NEXT_INSN (after
);
1576 insn
!= NULL_RTX
&& ! BARRIER_P (insn
)
1577 && BLOCK_FOR_INSN (insn
) == BLOCK_FOR_INSN (after
);
1578 insn
= NEXT_INSN (insn
))
1579 if (NONDEBUG_INSN_P (insn
))
1582 for (i
= 0; i
< ira_reg_class_cover_size
; i
++)
1584 p
= max_reg_pressure
[ira_reg_class_cover
[i
]];
1585 if (INSN_MAX_REG_PRESSURE (insn
)[i
] != p
)
1588 INSN_MAX_REG_PRESSURE (insn
)[i
]
1589 = max_reg_pressure
[ira_reg_class_cover
[i
]];
1592 if (update_p
&& eq_p
)
1594 update_register_pressure (insn
);
1595 for (i
= 0; i
< ira_reg_class_cover_size
; i
++)
1596 if (max_reg_pressure
[ira_reg_class_cover
[i
]]
1597 < curr_reg_pressure
[ira_reg_class_cover
[i
]])
1598 max_reg_pressure
[ira_reg_class_cover
[i
]]
1599 = curr_reg_pressure
[ira_reg_class_cover
[i
]];
1601 restore_reg_pressure ();
1604 /* Update the current register pressure after scheduling INSN. Update
1605 also max register pressure for unscheduled insns of the current
1608 update_reg_and_insn_max_reg_pressure (rtx insn
)
1611 int before
[N_REG_CLASSES
];
1613 for (i
= 0; i
< ira_reg_class_cover_size
; i
++)
1614 before
[i
] = curr_reg_pressure
[ira_reg_class_cover
[i
]];
1615 update_register_pressure (insn
);
1616 for (i
= 0; i
< ira_reg_class_cover_size
; i
++)
1617 if (curr_reg_pressure
[ira_reg_class_cover
[i
]] != before
[i
])
1619 if (i
< ira_reg_class_cover_size
)
1620 setup_insn_max_reg_pressure (insn
, true);
1623 /* Set up register pressure at the beginning of basic block BB whose
1624 insns starting after insn AFTER. Set up also max register pressure
1625 for all insns of the basic block. */
1627 sched_setup_bb_reg_pressure_info (basic_block bb
, rtx after
)
1629 gcc_assert (sched_pressure_p
);
1630 initiate_bb_reg_pressure_info (bb
);
1631 setup_insn_max_reg_pressure (after
, false);
1634 /* INSN is the "currently executing insn". Launch each insn which was
1635 waiting on INSN. READY is the ready list which contains the insns
1636 that are ready to fire. CLOCK is the current cycle. The function
1637 returns necessary cycle advance after issuing the insn (it is not
1638 zero for insns in a schedule group). */
1641 schedule_insn (rtx insn
)
1643 sd_iterator_def sd_it
;
1648 if (sched_verbose
>= 1)
1650 struct reg_pressure_data
*pressure_info
;
1653 print_insn (buf
, insn
, 0);
1655 fprintf (sched_dump
, ";;\t%3i--> %-40s:", clock_var
, buf
);
1657 if (recog_memoized (insn
) < 0)
1658 fprintf (sched_dump
, "nothing");
1660 print_reservation (sched_dump
, insn
);
1661 pressure_info
= INSN_REG_PRESSURE (insn
);
1662 if (pressure_info
!= NULL
)
1664 fputc (':', sched_dump
);
1665 for (i
= 0; i
< ira_reg_class_cover_size
; i
++)
1666 fprintf (sched_dump
, "%s%+d(%d)",
1667 reg_class_names
[ira_reg_class_cover
[i
]],
1668 pressure_info
[i
].set_increase
, pressure_info
[i
].change
);
1670 fputc ('\n', sched_dump
);
1673 if (sched_pressure_p
&& !DEBUG_INSN_P (insn
))
1674 update_reg_and_insn_max_reg_pressure (insn
);
1676 /* Scheduling instruction should have all its dependencies resolved and
1677 should have been removed from the ready list. */
1678 gcc_assert (sd_lists_empty_p (insn
, SD_LIST_BACK
));
1680 /* Reset debug insns invalidated by moving this insn. */
1681 if (MAY_HAVE_DEBUG_INSNS
&& !DEBUG_INSN_P (insn
))
1682 for (sd_it
= sd_iterator_start (insn
, SD_LIST_BACK
);
1683 sd_iterator_cond (&sd_it
, &dep
);)
1685 rtx dbg
= DEP_PRO (dep
);
1686 struct reg_use_data
*use
, *next
;
1688 gcc_assert (DEBUG_INSN_P (dbg
));
1690 if (sched_verbose
>= 6)
1691 fprintf (sched_dump
, ";;\t\tresetting: debug insn %d\n",
1694 /* ??? Rather than resetting the debug insn, we might be able
1695 to emit a debug temp before the just-scheduled insn, but
1696 this would involve checking that the expression at the
1697 point of the debug insn is equivalent to the expression
1698 before the just-scheduled insn. They might not be: the
1699 expression in the debug insn may depend on other insns not
1700 yet scheduled that set MEMs, REGs or even other debug
1701 insns. It's not clear that attempting to preserve debug
1702 information in these cases is worth the effort, given how
1703 uncommon these resets are and the likelihood that the debug
1704 temps introduced won't survive the schedule change. */
1705 INSN_VAR_LOCATION_LOC (dbg
) = gen_rtx_UNKNOWN_VAR_LOC ();
1706 df_insn_rescan (dbg
);
1708 /* Unknown location doesn't use any registers. */
1709 for (use
= INSN_REG_USE_LIST (dbg
); use
!= NULL
; use
= next
)
1711 struct reg_use_data
*prev
= use
;
1713 /* Remove use from the cyclic next_regno_use chain first. */
1714 while (prev
->next_regno_use
!= use
)
1715 prev
= prev
->next_regno_use
;
1716 prev
->next_regno_use
= use
->next_regno_use
;
1717 next
= use
->next_insn_use
;
1720 INSN_REG_USE_LIST (dbg
) = NULL
;
1722 /* We delete rather than resolve these deps, otherwise we
1723 crash in sched_free_deps(), because forward deps are
1724 expected to be released before backward deps. */
1725 sd_delete_dep (sd_it
);
1728 gcc_assert (QUEUE_INDEX (insn
) == QUEUE_NOWHERE
);
1729 QUEUE_INDEX (insn
) = QUEUE_SCHEDULED
;
1731 gcc_assert (INSN_TICK (insn
) >= MIN_TICK
);
1732 if (INSN_TICK (insn
) > clock_var
)
1733 /* INSN has been prematurely moved from the queue to the ready list.
1734 This is possible only if following flag is set. */
1735 gcc_assert (flag_sched_stalled_insns
);
1737 /* ??? Probably, if INSN is scheduled prematurely, we should leave
1738 INSN_TICK untouched. This is a machine-dependent issue, actually. */
1739 INSN_TICK (insn
) = clock_var
;
1741 /* Update dependent instructions. */
1742 for (sd_it
= sd_iterator_start (insn
, SD_LIST_FORW
);
1743 sd_iterator_cond (&sd_it
, &dep
);)
1745 rtx next
= DEP_CON (dep
);
1747 /* Resolve the dependence between INSN and NEXT.
1748 sd_resolve_dep () moves current dep to another list thus
1749 advancing the iterator. */
1750 sd_resolve_dep (sd_it
);
1752 /* Don't bother trying to mark next as ready if insn is a debug
1753 insn. If insn is the last hard dependency, it will have
1754 already been discounted. */
1755 if (DEBUG_INSN_P (insn
) && !DEBUG_INSN_P (next
))
1758 if (!IS_SPECULATION_BRANCHY_CHECK_P (insn
))
1762 effective_cost
= try_ready (next
);
1764 if (effective_cost
>= 0
1765 && SCHED_GROUP_P (next
)
1766 && advance
< effective_cost
)
1767 advance
= effective_cost
;
1770 /* Check always has only one forward dependence (to the first insn in
1771 the recovery block), therefore, this will be executed only once. */
1773 gcc_assert (sd_lists_empty_p (insn
, SD_LIST_FORW
));
1774 fix_recovery_deps (RECOVERY_BLOCK (insn
));
1778 /* This is the place where scheduler doesn't *basically* need backward and
1779 forward dependencies for INSN anymore. Nevertheless they are used in
1780 heuristics in rank_for_schedule (), early_queue_to_ready () and in
1781 some targets (e.g. rs6000). Thus the earliest place where we *can*
1782 remove dependencies is after targetm.sched.finish () call in
1783 schedule_block (). But, on the other side, the safest place to remove
1784 dependencies is when we are finishing scheduling entire region. As we
1785 don't generate [many] dependencies during scheduling itself, we won't
1786 need memory until beginning of next region.
1787 Bottom line: Dependencies are removed for all insns in the end of
1788 scheduling the region. */
1790 /* Annotate the instruction with issue information -- TImode
1791 indicates that the instruction is expected not to be able
1792 to issue on the same cycle as the previous insn. A machine
1793 may use this information to decide how the instruction should
1796 && GET_CODE (PATTERN (insn
)) != USE
1797 && GET_CODE (PATTERN (insn
)) != CLOBBER
1798 && !DEBUG_INSN_P (insn
))
1800 if (reload_completed
)
1801 PUT_MODE (insn
, clock_var
> last_clock_var
? TImode
: VOIDmode
);
1802 last_clock_var
= clock_var
;
1808 /* Functions for handling of notes. */
1810 /* Add note list that ends on FROM_END to the end of TO_ENDP. */
1812 concat_note_lists (rtx from_end
, rtx
*to_endp
)
1816 /* It's easy when have nothing to concat. */
1817 if (from_end
== NULL
)
1820 /* It's also easy when destination is empty. */
1821 if (*to_endp
== NULL
)
1823 *to_endp
= from_end
;
1827 from_start
= from_end
;
1828 while (PREV_INSN (from_start
) != NULL
)
1829 from_start
= PREV_INSN (from_start
);
1831 PREV_INSN (from_start
) = *to_endp
;
1832 NEXT_INSN (*to_endp
) = from_start
;
1833 *to_endp
= from_end
;
1836 /* Delete notes between HEAD and TAIL and put them in the chain
1837 of notes ended by NOTE_LIST. */
1839 remove_notes (rtx head
, rtx tail
)
1841 rtx next_tail
, insn
, next
;
1844 if (head
== tail
&& !INSN_P (head
))
1847 next_tail
= NEXT_INSN (tail
);
1848 for (insn
= head
; insn
!= next_tail
; insn
= next
)
1850 next
= NEXT_INSN (insn
);
1854 switch (NOTE_KIND (insn
))
1856 case NOTE_INSN_BASIC_BLOCK
:
1859 case NOTE_INSN_EPILOGUE_BEG
:
1863 add_reg_note (next
, REG_SAVE_NOTE
,
1864 GEN_INT (NOTE_INSN_EPILOGUE_BEG
));
1872 /* Add the note to list that ends at NOTE_LIST. */
1873 PREV_INSN (insn
) = note_list
;
1874 NEXT_INSN (insn
) = NULL_RTX
;
1876 NEXT_INSN (note_list
) = insn
;
1881 gcc_assert ((sel_sched_p () || insn
!= tail
) && insn
!= head
);
1886 /* Return the head and tail pointers of ebb starting at BEG and ending
1889 get_ebb_head_tail (basic_block beg
, basic_block end
, rtx
*headp
, rtx
*tailp
)
1891 rtx beg_head
= BB_HEAD (beg
);
1892 rtx beg_tail
= BB_END (beg
);
1893 rtx end_head
= BB_HEAD (end
);
1894 rtx end_tail
= BB_END (end
);
1896 /* Don't include any notes or labels at the beginning of the BEG
1897 basic block, or notes at the end of the END basic blocks. */
1899 if (LABEL_P (beg_head
))
1900 beg_head
= NEXT_INSN (beg_head
);
1902 while (beg_head
!= beg_tail
)
1903 if (NOTE_P (beg_head
))
1904 beg_head
= NEXT_INSN (beg_head
);
1905 else if (DEBUG_INSN_P (beg_head
))
1909 for (note
= NEXT_INSN (beg_head
);
1913 next
= NEXT_INSN (note
);
1916 if (sched_verbose
>= 9)
1917 fprintf (sched_dump
, "reorder %i\n", INSN_UID (note
));
1919 reorder_insns_nobb (note
, note
, PREV_INSN (beg_head
));
1921 if (BLOCK_FOR_INSN (note
) != beg
)
1922 df_insn_change_bb (note
, beg
);
1924 else if (!DEBUG_INSN_P (note
))
1936 end_head
= beg_head
;
1937 else if (LABEL_P (end_head
))
1938 end_head
= NEXT_INSN (end_head
);
1940 while (end_head
!= end_tail
)
1941 if (NOTE_P (end_tail
))
1942 end_tail
= PREV_INSN (end_tail
);
1943 else if (DEBUG_INSN_P (end_tail
))
1947 for (note
= PREV_INSN (end_tail
);
1951 prev
= PREV_INSN (note
);
1954 if (sched_verbose
>= 9)
1955 fprintf (sched_dump
, "reorder %i\n", INSN_UID (note
));
1957 reorder_insns_nobb (note
, note
, end_tail
);
1959 if (end_tail
== BB_END (end
))
1960 BB_END (end
) = note
;
1962 if (BLOCK_FOR_INSN (note
) != end
)
1963 df_insn_change_bb (note
, end
);
1965 else if (!DEBUG_INSN_P (note
))
1977 /* Return nonzero if there are no real insns in the range [ HEAD, TAIL ]. */
1980 no_real_insns_p (const_rtx head
, const_rtx tail
)
1982 while (head
!= NEXT_INSN (tail
))
1984 if (!NOTE_P (head
) && !LABEL_P (head
))
1986 head
= NEXT_INSN (head
);
1991 /* Restore-other-notes: NOTE_LIST is the end of a chain of notes
1992 previously found among the insns. Insert them just before HEAD. */
1994 restore_other_notes (rtx head
, basic_block head_bb
)
1998 rtx note_head
= note_list
;
2001 head_bb
= BLOCK_FOR_INSN (head
);
2003 head
= NEXT_INSN (bb_note (head_bb
));
2005 while (PREV_INSN (note_head
))
2007 set_block_for_insn (note_head
, head_bb
);
2008 note_head
= PREV_INSN (note_head
);
2010 /* In the above cycle we've missed this note. */
2011 set_block_for_insn (note_head
, head_bb
);
2013 PREV_INSN (note_head
) = PREV_INSN (head
);
2014 NEXT_INSN (PREV_INSN (head
)) = note_head
;
2015 PREV_INSN (head
) = note_list
;
2016 NEXT_INSN (note_list
) = head
;
2018 if (BLOCK_FOR_INSN (head
) != head_bb
)
2019 BB_END (head_bb
) = note_list
;
2027 /* Move insns that became ready to fire from queue to ready list. */
2030 queue_to_ready (struct ready_list
*ready
)
2036 q_ptr
= NEXT_Q (q_ptr
);
2038 if (dbg_cnt (sched_insn
) == false)
2039 /* If debug counter is activated do not requeue insn next after
2040 last_scheduled_insn. */
2041 skip_insn
= next_nonnote_nondebug_insn (last_scheduled_insn
);
2043 skip_insn
= NULL_RTX
;
2045 /* Add all pending insns that can be scheduled without stalls to the
2047 for (link
= insn_queue
[q_ptr
]; link
; link
= XEXP (link
, 1))
2049 insn
= XEXP (link
, 0);
2052 if (sched_verbose
>= 2)
2053 fprintf (sched_dump
, ";;\t\tQ-->Ready: insn %s: ",
2054 (*current_sched_info
->print_insn
) (insn
, 0));
2056 /* If the ready list is full, delay the insn for 1 cycle.
2057 See the comment in schedule_block for the rationale. */
2058 if (!reload_completed
2059 && ready
->n_ready
- ready
->n_debug
> MAX_SCHED_READY_INSNS
2060 && !SCHED_GROUP_P (insn
)
2061 && insn
!= skip_insn
)
2063 if (sched_verbose
>= 2)
2064 fprintf (sched_dump
, "requeued because ready full\n");
2065 queue_insn (insn
, 1);
2069 ready_add (ready
, insn
, false);
2070 if (sched_verbose
>= 2)
2071 fprintf (sched_dump
, "moving to ready without stalls\n");
2074 free_INSN_LIST_list (&insn_queue
[q_ptr
]);
2076 /* If there are no ready insns, stall until one is ready and add all
2077 of the pending insns at that point to the ready list. */
2078 if (ready
->n_ready
== 0)
2082 for (stalls
= 1; stalls
<= max_insn_queue_index
; stalls
++)
2084 if ((link
= insn_queue
[NEXT_Q_AFTER (q_ptr
, stalls
)]))
2086 for (; link
; link
= XEXP (link
, 1))
2088 insn
= XEXP (link
, 0);
2091 if (sched_verbose
>= 2)
2092 fprintf (sched_dump
, ";;\t\tQ-->Ready: insn %s: ",
2093 (*current_sched_info
->print_insn
) (insn
, 0));
2095 ready_add (ready
, insn
, false);
2096 if (sched_verbose
>= 2)
2097 fprintf (sched_dump
, "moving to ready with %d stalls\n", stalls
);
2099 free_INSN_LIST_list (&insn_queue
[NEXT_Q_AFTER (q_ptr
, stalls
)]);
2101 advance_one_cycle ();
2106 advance_one_cycle ();
2109 q_ptr
= NEXT_Q_AFTER (q_ptr
, stalls
);
2110 clock_var
+= stalls
;
2114 /* Used by early_queue_to_ready. Determines whether it is "ok" to
2115 prematurely move INSN from the queue to the ready list. Currently,
2116 if a target defines the hook 'is_costly_dependence', this function
2117 uses the hook to check whether there exist any dependences which are
2118 considered costly by the target, between INSN and other insns that
2119 have already been scheduled. Dependences are checked up to Y cycles
2120 back, with default Y=1; The flag -fsched-stalled-insns-dep=Y allows
2121 controlling this value.
2122 (Other considerations could be taken into account instead (or in
2123 addition) depending on user flags and target hooks. */
2126 ok_for_early_queue_removal (rtx insn
)
2129 rtx prev_insn
= last_scheduled_insn
;
2131 if (targetm
.sched
.is_costly_dependence
)
2133 for (n_cycles
= flag_sched_stalled_insns_dep
; n_cycles
; n_cycles
--)
2135 for ( ; prev_insn
; prev_insn
= PREV_INSN (prev_insn
))
2139 if (prev_insn
== current_sched_info
->prev_head
)
2145 if (!NOTE_P (prev_insn
))
2149 dep
= sd_find_dep_between (prev_insn
, insn
, true);
2153 cost
= dep_cost (dep
);
2155 if (targetm
.sched
.is_costly_dependence (dep
, cost
,
2156 flag_sched_stalled_insns_dep
- n_cycles
))
2161 if (GET_MODE (prev_insn
) == TImode
) /* end of dispatch group */
2167 prev_insn
= PREV_INSN (prev_insn
);
2175 /* Remove insns from the queue, before they become "ready" with respect
2176 to FU latency considerations. */
2179 early_queue_to_ready (state_t state
, struct ready_list
*ready
)
2187 state_t temp_state
= alloca (dfa_state_size
);
2189 int insns_removed
= 0;
2192 Flag '-fsched-stalled-insns=X' determines the aggressiveness of this
2195 X == 0: There is no limit on how many queued insns can be removed
2196 prematurely. (flag_sched_stalled_insns = -1).
2198 X >= 1: Only X queued insns can be removed prematurely in each
2199 invocation. (flag_sched_stalled_insns = X).
2201 Otherwise: Early queue removal is disabled.
2202 (flag_sched_stalled_insns = 0)
2205 if (! flag_sched_stalled_insns
)
2208 for (stalls
= 0; stalls
<= max_insn_queue_index
; stalls
++)
2210 if ((link
= insn_queue
[NEXT_Q_AFTER (q_ptr
, stalls
)]))
2212 if (sched_verbose
> 6)
2213 fprintf (sched_dump
, ";; look at index %d + %d\n", q_ptr
, stalls
);
2218 next_link
= XEXP (link
, 1);
2219 insn
= XEXP (link
, 0);
2220 if (insn
&& sched_verbose
> 6)
2221 print_rtl_single (sched_dump
, insn
);
2223 memcpy (temp_state
, state
, dfa_state_size
);
2224 if (recog_memoized (insn
) < 0)
2225 /* non-negative to indicate that it's not ready
2226 to avoid infinite Q->R->Q->R... */
2229 cost
= state_transition (temp_state
, insn
);
2231 if (sched_verbose
>= 6)
2232 fprintf (sched_dump
, "transition cost = %d\n", cost
);
2234 move_to_ready
= false;
2237 move_to_ready
= ok_for_early_queue_removal (insn
);
2238 if (move_to_ready
== true)
2240 /* move from Q to R */
2242 ready_add (ready
, insn
, false);
2245 XEXP (prev_link
, 1) = next_link
;
2247 insn_queue
[NEXT_Q_AFTER (q_ptr
, stalls
)] = next_link
;
2249 free_INSN_LIST_node (link
);
2251 if (sched_verbose
>= 2)
2252 fprintf (sched_dump
, ";;\t\tEarly Q-->Ready: insn %s\n",
2253 (*current_sched_info
->print_insn
) (insn
, 0));
2256 if (insns_removed
== flag_sched_stalled_insns
)
2257 /* Remove no more than flag_sched_stalled_insns insns
2258 from Q at a time. */
2259 return insns_removed
;
2263 if (move_to_ready
== false)
2270 } /* for stalls.. */
2272 return insns_removed
;
2276 /* Print the ready list for debugging purposes. Callable from debugger. */
2279 debug_ready_list (struct ready_list
*ready
)
2284 if (ready
->n_ready
== 0)
2286 fprintf (sched_dump
, "\n");
2290 p
= ready_lastpos (ready
);
2291 for (i
= 0; i
< ready
->n_ready
; i
++)
2293 fprintf (sched_dump
, " %s:%d",
2294 (*current_sched_info
->print_insn
) (p
[i
], 0),
2296 if (sched_pressure_p
)
2297 fprintf (sched_dump
, "(cost=%d",
2298 INSN_REG_PRESSURE_EXCESS_COST_CHANGE (p
[i
]));
2299 if (INSN_TICK (p
[i
]) > clock_var
)
2300 fprintf (sched_dump
, ":delay=%d", INSN_TICK (p
[i
]) - clock_var
);
2301 if (sched_pressure_p
)
2302 fprintf (sched_dump
, ")");
2304 fprintf (sched_dump
, "\n");
2307 /* Search INSN for REG_SAVE_NOTE notes and convert them back into insn
2308 NOTEs. This is used for NOTE_INSN_EPILOGUE_BEG, so that sched-ebb
2309 replaces the epilogue note in the correct basic block. */
2311 reemit_notes (rtx insn
)
2313 rtx note
, last
= insn
;
2315 for (note
= REG_NOTES (insn
); note
; note
= XEXP (note
, 1))
2317 if (REG_NOTE_KIND (note
) == REG_SAVE_NOTE
)
2319 enum insn_note note_type
= (enum insn_note
) INTVAL (XEXP (note
, 0));
2321 last
= emit_note_before (note_type
, last
);
2322 remove_note (insn
, note
);
2327 /* Move INSN. Reemit notes if needed. Update CFG, if needed. */
2329 move_insn (rtx insn
, rtx last
, rtx nt
)
2331 if (PREV_INSN (insn
) != last
)
2337 bb
= BLOCK_FOR_INSN (insn
);
2339 /* BB_HEAD is either LABEL or NOTE. */
2340 gcc_assert (BB_HEAD (bb
) != insn
);
2342 if (BB_END (bb
) == insn
)
2343 /* If this is last instruction in BB, move end marker one
2346 /* Jumps are always placed at the end of basic block. */
2347 jump_p
= control_flow_insn_p (insn
);
2350 || ((common_sched_info
->sched_pass_id
== SCHED_RGN_PASS
)
2351 && IS_SPECULATION_BRANCHY_CHECK_P (insn
))
2352 || (common_sched_info
->sched_pass_id
2353 == SCHED_EBB_PASS
));
2355 gcc_assert (BLOCK_FOR_INSN (PREV_INSN (insn
)) == bb
);
2357 BB_END (bb
) = PREV_INSN (insn
);
2360 gcc_assert (BB_END (bb
) != last
);
2363 /* We move the block note along with jump. */
2367 note
= NEXT_INSN (insn
);
2368 while (NOTE_NOT_BB_P (note
) && note
!= nt
)
2369 note
= NEXT_INSN (note
);
2373 || BARRIER_P (note
)))
2374 note
= NEXT_INSN (note
);
2376 gcc_assert (NOTE_INSN_BASIC_BLOCK_P (note
));
2381 NEXT_INSN (PREV_INSN (insn
)) = NEXT_INSN (note
);
2382 PREV_INSN (NEXT_INSN (note
)) = PREV_INSN (insn
);
2384 NEXT_INSN (note
) = NEXT_INSN (last
);
2385 PREV_INSN (NEXT_INSN (last
)) = note
;
2387 NEXT_INSN (last
) = insn
;
2388 PREV_INSN (insn
) = last
;
2390 bb
= BLOCK_FOR_INSN (last
);
2394 fix_jump_move (insn
);
2396 if (BLOCK_FOR_INSN (insn
) != bb
)
2397 move_block_after_check (insn
);
2399 gcc_assert (BB_END (bb
) == last
);
2402 df_insn_change_bb (insn
, bb
);
2404 /* Update BB_END, if needed. */
2405 if (BB_END (bb
) == last
)
2409 SCHED_GROUP_P (insn
) = 0;
2412 /* Return true if scheduling INSN will finish current clock cycle. */
2414 insn_finishes_cycle_p (rtx insn
)
2416 if (SCHED_GROUP_P (insn
))
2417 /* After issuing INSN, rest of the sched_group will be forced to issue
2418 in order. Don't make any plans for the rest of cycle. */
2421 /* Finishing the block will, apparently, finish the cycle. */
2422 if (current_sched_info
->insn_finishes_block_p
2423 && current_sched_info
->insn_finishes_block_p (insn
))
2429 /* Define type for target data used in multipass scheduling. */
2430 #ifndef TARGET_SCHED_FIRST_CYCLE_MULTIPASS_DATA_T
2431 # define TARGET_SCHED_FIRST_CYCLE_MULTIPASS_DATA_T int
2433 typedef TARGET_SCHED_FIRST_CYCLE_MULTIPASS_DATA_T first_cycle_multipass_data_t
;
2435 /* The following structure describe an entry of the stack of choices. */
2438 /* Ordinal number of the issued insn in the ready queue. */
2440 /* The number of the rest insns whose issues we should try. */
2442 /* The number of issued essential insns. */
2444 /* State after issuing the insn. */
2446 /* Target-specific data. */
2447 first_cycle_multipass_data_t target_data
;
2450 /* The following array is used to implement a stack of choices used in
2451 function max_issue. */
2452 static struct choice_entry
*choice_stack
;
2454 /* The following variable value is number of essential insns issued on
2455 the current cycle. An insn is essential one if it changes the
2456 processors state. */
2457 int cycle_issued_insns
;
2459 /* This holds the value of the target dfa_lookahead hook. */
2462 /* The following variable value is maximal number of tries of issuing
2463 insns for the first cycle multipass insn scheduling. We define
2464 this value as constant*(DFA_LOOKAHEAD**ISSUE_RATE). We would not
2465 need this constraint if all real insns (with non-negative codes)
2466 had reservations because in this case the algorithm complexity is
2467 O(DFA_LOOKAHEAD**ISSUE_RATE). Unfortunately, the dfa descriptions
2468 might be incomplete and such insn might occur. For such
2469 descriptions, the complexity of algorithm (without the constraint)
2470 could achieve DFA_LOOKAHEAD ** N , where N is the queue length. */
2471 static int max_lookahead_tries
;
2473 /* The following value is value of hook
2474 `first_cycle_multipass_dfa_lookahead' at the last call of
2476 static int cached_first_cycle_multipass_dfa_lookahead
= 0;
2478 /* The following value is value of `issue_rate' at the last call of
2480 static int cached_issue_rate
= 0;
2482 /* The following function returns maximal (or close to maximal) number
2483 of insns which can be issued on the same cycle and one of which
2484 insns is insns with the best rank (the first insn in READY). To
2485 make this function tries different samples of ready insns. READY
2486 is current queue `ready'. Global array READY_TRY reflects what
2487 insns are already issued in this try. The function stops immediately,
2488 if it reached the such a solution, that all instruction can be issued.
2489 INDEX will contain index of the best insn in READY. The following
2490 function is used only for first cycle multipass scheduling.
2494 This function expects recognized insns only. All USEs,
2495 CLOBBERs, etc must be filtered elsewhere. */
2497 max_issue (struct ready_list
*ready
, int privileged_n
, state_t state
,
2498 bool first_cycle_insn_p
, int *index
)
2500 int n
, i
, all
, n_ready
, best
, delay
, tries_num
;
2502 struct choice_entry
*top
;
2505 n_ready
= ready
->n_ready
;
2506 gcc_assert (dfa_lookahead
>= 1 && privileged_n
>= 0
2507 && privileged_n
<= n_ready
);
2509 /* Init MAX_LOOKAHEAD_TRIES. */
2510 if (cached_first_cycle_multipass_dfa_lookahead
!= dfa_lookahead
)
2512 cached_first_cycle_multipass_dfa_lookahead
= dfa_lookahead
;
2513 max_lookahead_tries
= 100;
2514 for (i
= 0; i
< issue_rate
; i
++)
2515 max_lookahead_tries
*= dfa_lookahead
;
2518 /* Init max_points. */
2519 more_issue
= issue_rate
- cycle_issued_insns
;
2520 gcc_assert (more_issue
>= 0);
2522 /* The number of the issued insns in the best solution. */
2527 /* Set initial state of the search. */
2528 memcpy (top
->state
, state
, dfa_state_size
);
2529 top
->rest
= dfa_lookahead
;
2531 if (targetm
.sched
.first_cycle_multipass_begin
)
2532 targetm
.sched
.first_cycle_multipass_begin (&top
->target_data
,
2534 first_cycle_insn_p
);
2536 /* Count the number of the insns to search among. */
2537 for (all
= i
= 0; i
< n_ready
; i
++)
2541 /* I is the index of the insn to try next. */
2546 if (/* If we've reached a dead end or searched enough of what we have
2549 /* or have nothing else to try... */
2551 /* or should not issue more. */
2552 || top
->n
>= more_issue
)
2554 /* ??? (... || i == n_ready). */
2555 gcc_assert (i
<= n_ready
);
2557 /* We should not issue more than issue_rate instructions. */
2558 gcc_assert (top
->n
<= more_issue
);
2560 if (top
== choice_stack
)
2563 if (best
< top
- choice_stack
)
2568 /* Try to find issued privileged insn. */
2569 while (n
&& !ready_try
[--n
]);
2572 if (/* If all insns are equally good... */
2574 /* Or a privileged insn will be issued. */
2576 /* Then we have a solution. */
2578 best
= top
- choice_stack
;
2579 /* This is the index of the insn issued first in this
2581 *index
= choice_stack
[1].index
;
2582 if (top
->n
== more_issue
|| best
== all
)
2587 /* Set ready-list index to point to the last insn
2588 ('i++' below will advance it to the next insn). */
2594 if (targetm
.sched
.first_cycle_multipass_backtrack
)
2595 targetm
.sched
.first_cycle_multipass_backtrack (&top
->target_data
,
2596 ready_try
, n_ready
);
2599 memcpy (state
, top
->state
, dfa_state_size
);
2601 else if (!ready_try
[i
])
2604 if (tries_num
> max_lookahead_tries
)
2606 insn
= ready_element (ready
, i
);
2607 delay
= state_transition (state
, insn
);
2610 if (state_dead_lock_p (state
)
2611 || insn_finishes_cycle_p (insn
))
2612 /* We won't issue any more instructions in the next
2619 if (memcmp (top
->state
, state
, dfa_state_size
) != 0)
2622 /* Advance to the next choice_entry. */
2624 /* Initialize it. */
2625 top
->rest
= dfa_lookahead
;
2628 memcpy (top
->state
, state
, dfa_state_size
);
2631 if (targetm
.sched
.first_cycle_multipass_issue
)
2632 targetm
.sched
.first_cycle_multipass_issue (&top
->target_data
,
2642 /* Increase ready-list index. */
2646 if (targetm
.sched
.first_cycle_multipass_end
)
2647 targetm
.sched
.first_cycle_multipass_end (best
!= 0
2648 ? &choice_stack
[1].target_data
2651 /* Restore the original state of the DFA. */
2652 memcpy (state
, choice_stack
->state
, dfa_state_size
);
2657 /* The following function chooses insn from READY and modifies
2658 READY. The following function is used only for first
2659 cycle multipass scheduling.
2661 -1 if cycle should be advanced,
2662 0 if INSN_PTR is set to point to the desirable insn,
2663 1 if choose_ready () should be restarted without advancing the cycle. */
2665 choose_ready (struct ready_list
*ready
, bool first_cycle_insn_p
,
2670 if (dbg_cnt (sched_insn
) == false)
2674 insn
= next_nonnote_insn (last_scheduled_insn
);
2676 if (QUEUE_INDEX (insn
) == QUEUE_READY
)
2677 /* INSN is in the ready_list. */
2679 ready_remove_insn (insn
);
2684 /* INSN is in the queue. Advance cycle to move it to the ready list. */
2690 if (targetm
.sched
.first_cycle_multipass_dfa_lookahead
)
2691 lookahead
= targetm
.sched
.first_cycle_multipass_dfa_lookahead ();
2692 if (lookahead
<= 0 || SCHED_GROUP_P (ready_element (ready
, 0))
2693 || DEBUG_INSN_P (ready_element (ready
, 0)))
2695 if (targetm
.sched
.dispatch (NULL_RTX
, IS_DISPATCH_ON
))
2696 *insn_ptr
= ready_remove_first_dispatch (ready
);
2698 *insn_ptr
= ready_remove_first (ready
);
2704 /* Try to choose the better insn. */
2705 int index
= 0, i
, n
;
2707 int try_data
= 1, try_control
= 1;
2710 insn
= ready_element (ready
, 0);
2711 if (INSN_CODE (insn
) < 0)
2713 *insn_ptr
= ready_remove_first (ready
);
2718 && spec_info
->flags
& (PREFER_NON_DATA_SPEC
2719 | PREFER_NON_CONTROL_SPEC
))
2721 for (i
= 0, n
= ready
->n_ready
; i
< n
; i
++)
2726 x
= ready_element (ready
, i
);
2729 if (spec_info
->flags
& PREFER_NON_DATA_SPEC
2730 && !(s
& DATA_SPEC
))
2733 if (!(spec_info
->flags
& PREFER_NON_CONTROL_SPEC
)
2738 if (spec_info
->flags
& PREFER_NON_CONTROL_SPEC
2739 && !(s
& CONTROL_SPEC
))
2742 if (!(spec_info
->flags
& PREFER_NON_DATA_SPEC
) || !try_data
)
2748 ts
= TODO_SPEC (insn
);
2749 if ((ts
& SPECULATIVE
)
2750 && (((!try_data
&& (ts
& DATA_SPEC
))
2751 || (!try_control
&& (ts
& CONTROL_SPEC
)))
2752 || (targetm
.sched
.first_cycle_multipass_dfa_lookahead_guard_spec
2754 .first_cycle_multipass_dfa_lookahead_guard_spec (insn
))))
2755 /* Discard speculative instruction that stands first in the ready
2758 change_queue_index (insn
, 1);
2764 for (i
= 1; i
< ready
->n_ready
; i
++)
2766 insn
= ready_element (ready
, i
);
2769 = ((!try_data
&& (TODO_SPEC (insn
) & DATA_SPEC
))
2770 || (!try_control
&& (TODO_SPEC (insn
) & CONTROL_SPEC
)));
2773 /* Let the target filter the search space. */
2774 for (i
= 1; i
< ready
->n_ready
; i
++)
2777 insn
= ready_element (ready
, i
);
2779 /* If this insn is recognizable we should have already
2780 recognized it earlier.
2781 ??? Not very clear where this is supposed to be done.
2783 gcc_checking_assert (INSN_CODE (insn
) >= 0
2784 || recog_memoized (insn
) < 0);
2787 = (/* INSN_CODE check can be omitted here as it is also done later
2789 INSN_CODE (insn
) < 0
2790 || (targetm
.sched
.first_cycle_multipass_dfa_lookahead_guard
2791 && !targetm
.sched
.first_cycle_multipass_dfa_lookahead_guard
2795 if (max_issue (ready
, 1, curr_state
, first_cycle_insn_p
, &index
) == 0)
2797 *insn_ptr
= ready_remove_first (ready
);
2798 if (sched_verbose
>= 4)
2799 fprintf (sched_dump
, ";;\t\tChosen insn (but can't issue) : %s \n",
2800 (*current_sched_info
->print_insn
) (*insn_ptr
, 0));
2805 if (sched_verbose
>= 4)
2806 fprintf (sched_dump
, ";;\t\tChosen insn : %s\n",
2807 (*current_sched_info
->print_insn
)
2808 (ready_element (ready
, index
), 0));
2810 *insn_ptr
= ready_remove (ready
, index
);
2816 /* Use forward list scheduling to rearrange insns of block pointed to by
2817 TARGET_BB, possibly bringing insns from subsequent blocks in the same
2821 schedule_block (basic_block
*target_bb
)
2824 bool first_cycle_insn_p
;
2826 state_t temp_state
= NULL
; /* It is used for multipass scheduling. */
2827 int sort_p
, advance
, start_clock_var
;
2829 /* Head/tail info for this block. */
2830 rtx prev_head
= current_sched_info
->prev_head
;
2831 rtx next_tail
= current_sched_info
->next_tail
;
2832 rtx head
= NEXT_INSN (prev_head
);
2833 rtx tail
= PREV_INSN (next_tail
);
2835 /* We used to have code to avoid getting parameters moved from hard
2836 argument registers into pseudos.
2838 However, it was removed when it proved to be of marginal benefit
2839 and caused problems because schedule_block and compute_forward_dependences
2840 had different notions of what the "head" insn was. */
2842 gcc_assert (head
!= tail
|| INSN_P (head
));
2844 haifa_recovery_bb_recently_added_p
= false;
2848 dump_new_block_header (0, *target_bb
, head
, tail
);
2850 state_reset (curr_state
);
2852 /* Clear the ready list. */
2853 ready
.first
= ready
.veclen
- 1;
2857 /* It is used for first cycle multipass scheduling. */
2858 temp_state
= alloca (dfa_state_size
);
2860 if (targetm
.sched
.init
)
2861 targetm
.sched
.init (sched_dump
, sched_verbose
, ready
.veclen
);
2863 /* We start inserting insns after PREV_HEAD. */
2864 last_scheduled_insn
= prev_head
;
2866 gcc_assert ((NOTE_P (last_scheduled_insn
)
2867 || DEBUG_INSN_P (last_scheduled_insn
))
2868 && BLOCK_FOR_INSN (last_scheduled_insn
) == *target_bb
);
2870 /* Initialize INSN_QUEUE. Q_SIZE is the total number of insns in the
2875 insn_queue
= XALLOCAVEC (rtx
, max_insn_queue_index
+ 1);
2876 memset (insn_queue
, 0, (max_insn_queue_index
+ 1) * sizeof (rtx
));
2878 /* Start just before the beginning of time. */
2881 /* We need queue and ready lists and clock_var be initialized
2882 in try_ready () (which is called through init_ready_list ()). */
2883 (*current_sched_info
->init_ready_list
) ();
2885 /* The algorithm is O(n^2) in the number of ready insns at any given
2886 time in the worst case. Before reload we are more likely to have
2887 big lists so truncate them to a reasonable size. */
2888 if (!reload_completed
2889 && ready
.n_ready
- ready
.n_debug
> MAX_SCHED_READY_INSNS
)
2891 ready_sort (&ready
);
2893 /* Find first free-standing insn past MAX_SCHED_READY_INSNS.
2894 If there are debug insns, we know they're first. */
2895 for (i
= MAX_SCHED_READY_INSNS
+ ready
.n_debug
; i
< ready
.n_ready
; i
++)
2896 if (!SCHED_GROUP_P (ready_element (&ready
, i
)))
2899 if (sched_verbose
>= 2)
2901 fprintf (sched_dump
,
2902 ";;\t\tReady list on entry: %d insns\n", ready
.n_ready
);
2903 fprintf (sched_dump
,
2904 ";;\t\t before reload => truncated to %d insns\n", i
);
2907 /* Delay all insns past it for 1 cycle. If debug counter is
2908 activated make an exception for the insn right after
2909 last_scheduled_insn. */
2913 if (dbg_cnt (sched_insn
) == false)
2914 skip_insn
= next_nonnote_insn (last_scheduled_insn
);
2916 skip_insn
= NULL_RTX
;
2918 while (i
< ready
.n_ready
)
2922 insn
= ready_remove (&ready
, i
);
2924 if (insn
!= skip_insn
)
2925 queue_insn (insn
, 1);
2930 /* Now we can restore basic block notes and maintain precise cfg. */
2931 restore_bb_notes (*target_bb
);
2933 last_clock_var
= -1;
2938 /* Loop until all the insns in BB are scheduled. */
2939 while ((*current_sched_info
->schedule_more_p
) ())
2943 start_clock_var
= clock_var
;
2947 advance_one_cycle ();
2949 /* Add to the ready list all pending insns that can be issued now.
2950 If there are no ready insns, increment clock until one
2951 is ready and add all pending insns at that point to the ready
2953 queue_to_ready (&ready
);
2955 gcc_assert (ready
.n_ready
);
2957 if (sched_verbose
>= 2)
2959 fprintf (sched_dump
, ";;\t\tReady list after queue_to_ready: ");
2960 debug_ready_list (&ready
);
2962 advance
-= clock_var
- start_clock_var
;
2964 while (advance
> 0);
2968 /* Sort the ready list based on priority. */
2969 ready_sort (&ready
);
2971 if (sched_verbose
>= 2)
2973 fprintf (sched_dump
, ";;\t\tReady list after ready_sort: ");
2974 debug_ready_list (&ready
);
2978 /* We don't want md sched reorder to even see debug isns, so put
2979 them out right away. */
2980 if (ready
.n_ready
&& DEBUG_INSN_P (ready_element (&ready
, 0)))
2982 if (control_flow_insn_p (last_scheduled_insn
))
2984 *target_bb
= current_sched_info
->advance_target_bb
2991 x
= next_real_insn (last_scheduled_insn
);
2993 dump_new_block_header (1, *target_bb
, x
, tail
);
2996 last_scheduled_insn
= bb_note (*target_bb
);
2999 while (ready
.n_ready
&& DEBUG_INSN_P (ready_element (&ready
, 0)))
3001 rtx insn
= ready_remove_first (&ready
);
3002 gcc_assert (DEBUG_INSN_P (insn
));
3003 (*current_sched_info
->begin_schedule_ready
) (insn
,
3004 last_scheduled_insn
);
3005 move_insn (insn
, last_scheduled_insn
,
3006 current_sched_info
->next_tail
);
3007 last_scheduled_insn
= insn
;
3008 advance
= schedule_insn (insn
);
3009 gcc_assert (advance
== 0);
3010 if (ready
.n_ready
> 0)
3011 ready_sort (&ready
);
3018 /* Allow the target to reorder the list, typically for
3019 better instruction bundling. */
3020 if (sort_p
&& targetm
.sched
.reorder
3021 && (ready
.n_ready
== 0
3022 || !SCHED_GROUP_P (ready_element (&ready
, 0))))
3024 targetm
.sched
.reorder (sched_dump
, sched_verbose
,
3025 ready_lastpos (&ready
),
3026 &ready
.n_ready
, clock_var
);
3028 can_issue_more
= issue_rate
;
3030 first_cycle_insn_p
= true;
3031 cycle_issued_insns
= 0;
3038 if (sched_verbose
>= 2)
3040 fprintf (sched_dump
, ";;\tReady list (t = %3d): ",
3042 debug_ready_list (&ready
);
3043 if (sched_pressure_p
)
3044 print_curr_reg_pressure ();
3047 if (ready
.n_ready
== 0
3049 && reload_completed
)
3051 /* Allow scheduling insns directly from the queue in case
3052 there's nothing better to do (ready list is empty) but
3053 there are still vacant dispatch slots in the current cycle. */
3054 if (sched_verbose
>= 6)
3055 fprintf (sched_dump
,";;\t\tSecond chance\n");
3056 memcpy (temp_state
, curr_state
, dfa_state_size
);
3057 if (early_queue_to_ready (temp_state
, &ready
))
3058 ready_sort (&ready
);
3061 if (ready
.n_ready
== 0
3063 || state_dead_lock_p (curr_state
)
3064 || !(*current_sched_info
->schedule_more_p
) ())
3067 /* Select and remove the insn from the ready list. */
3073 res
= choose_ready (&ready
, first_cycle_insn_p
, &insn
);
3079 /* Restart choose_ready (). */
3082 gcc_assert (insn
!= NULL_RTX
);
3085 insn
= ready_remove_first (&ready
);
3087 if (sched_pressure_p
&& INSN_TICK (insn
) > clock_var
)
3089 ready_add (&ready
, insn
, true);
3094 if (targetm
.sched
.dfa_new_cycle
3095 && targetm
.sched
.dfa_new_cycle (sched_dump
, sched_verbose
,
3096 insn
, last_clock_var
,
3097 clock_var
, &sort_p
))
3098 /* SORT_P is used by the target to override sorting
3099 of the ready list. This is needed when the target
3100 has modified its internal structures expecting that
3101 the insn will be issued next. As we need the insn
3102 to have the highest priority (so it will be returned by
3103 the ready_remove_first call above), we invoke
3104 ready_add (&ready, insn, true).
3105 But, still, there is one issue: INSN can be later
3106 discarded by scheduler's front end through
3107 current_sched_info->can_schedule_ready_p, hence, won't
3110 ready_add (&ready
, insn
, true);
3115 memcpy (temp_state
, curr_state
, dfa_state_size
);
3116 if (recog_memoized (insn
) < 0)
3118 asm_p
= (GET_CODE (PATTERN (insn
)) == ASM_INPUT
3119 || asm_noperands (PATTERN (insn
)) >= 0);
3120 if (!first_cycle_insn_p
&& asm_p
)
3121 /* This is asm insn which is tried to be issued on the
3122 cycle not first. Issue it on the next cycle. */
3125 /* A USE insn, or something else we don't need to
3126 understand. We can't pass these directly to
3127 state_transition because it will trigger a
3128 fatal error for unrecognizable insns. */
3131 else if (sched_pressure_p
)
3135 cost
= state_transition (temp_state
, insn
);
3144 queue_insn (insn
, cost
);
3145 if (SCHED_GROUP_P (insn
))
3154 if (current_sched_info
->can_schedule_ready_p
3155 && ! (*current_sched_info
->can_schedule_ready_p
) (insn
))
3156 /* We normally get here only if we don't want to move
3157 insn from the split block. */
3159 TODO_SPEC (insn
) = (TODO_SPEC (insn
) & ~SPECULATIVE
) | HARD_DEP
;
3163 /* DECISION is made. */
3165 if (TODO_SPEC (insn
) & SPECULATIVE
)
3166 generate_recovery_code (insn
);
3168 if (control_flow_insn_p (last_scheduled_insn
)
3169 /* This is used to switch basic blocks by request
3170 from scheduler front-end (actually, sched-ebb.c only).
3171 This is used to process blocks with single fallthru
3172 edge. If succeeding block has jump, it [jump] will try
3173 move at the end of current bb, thus corrupting CFG. */
3174 || current_sched_info
->advance_target_bb (*target_bb
, insn
))
3176 *target_bb
= current_sched_info
->advance_target_bb
3183 x
= next_real_insn (last_scheduled_insn
);
3185 dump_new_block_header (1, *target_bb
, x
, tail
);
3188 last_scheduled_insn
= bb_note (*target_bb
);
3191 /* Update counters, etc in the scheduler's front end. */
3192 (*current_sched_info
->begin_schedule_ready
) (insn
,
3193 last_scheduled_insn
);
3195 move_insn (insn
, last_scheduled_insn
, current_sched_info
->next_tail
);
3197 if (targetm
.sched
.dispatch (NULL_RTX
, IS_DISPATCH_ON
))
3198 targetm
.sched
.dispatch_do (insn
, ADD_TO_DISPATCH_WINDOW
);
3200 reemit_notes (insn
);
3201 last_scheduled_insn
= insn
;
3203 if (memcmp (curr_state
, temp_state
, dfa_state_size
) != 0)
3205 cycle_issued_insns
++;
3206 memcpy (curr_state
, temp_state
, dfa_state_size
);
3209 if (targetm
.sched
.variable_issue
)
3211 targetm
.sched
.variable_issue (sched_dump
, sched_verbose
,
3212 insn
, can_issue_more
);
3213 /* A naked CLOBBER or USE generates no instruction, so do
3214 not count them against the issue rate. */
3215 else if (GET_CODE (PATTERN (insn
)) != USE
3216 && GET_CODE (PATTERN (insn
)) != CLOBBER
)
3218 advance
= schedule_insn (insn
);
3220 /* After issuing an asm insn we should start a new cycle. */
3221 if (advance
== 0 && asm_p
)
3226 first_cycle_insn_p
= false;
3228 /* Sort the ready list based on priority. This must be
3229 redone here, as schedule_insn may have readied additional
3230 insns that will not be sorted correctly. */
3231 if (ready
.n_ready
> 0)
3232 ready_sort (&ready
);
3234 /* Quickly go through debug insns such that md sched
3235 reorder2 doesn't have to deal with debug insns. */
3236 if (ready
.n_ready
&& DEBUG_INSN_P (ready_element (&ready
, 0))
3237 && (*current_sched_info
->schedule_more_p
) ())
3239 if (control_flow_insn_p (last_scheduled_insn
))
3241 *target_bb
= current_sched_info
->advance_target_bb
3248 x
= next_real_insn (last_scheduled_insn
);
3250 dump_new_block_header (1, *target_bb
, x
, tail
);
3253 last_scheduled_insn
= bb_note (*target_bb
);
3256 while (ready
.n_ready
&& DEBUG_INSN_P (ready_element (&ready
, 0)))
3258 insn
= ready_remove_first (&ready
);
3259 gcc_assert (DEBUG_INSN_P (insn
));
3260 (*current_sched_info
->begin_schedule_ready
)
3261 (insn
, last_scheduled_insn
);
3262 move_insn (insn
, last_scheduled_insn
,
3263 current_sched_info
->next_tail
);
3264 advance
= schedule_insn (insn
);
3265 last_scheduled_insn
= insn
;
3266 gcc_assert (advance
== 0);
3267 if (ready
.n_ready
> 0)
3268 ready_sort (&ready
);
3272 if (targetm
.sched
.reorder2
3273 && (ready
.n_ready
== 0
3274 || !SCHED_GROUP_P (ready_element (&ready
, 0))))
3277 targetm
.sched
.reorder2 (sched_dump
, sched_verbose
,
3279 ? ready_lastpos (&ready
) : NULL
,
3280 &ready
.n_ready
, clock_var
);
3288 fprintf (sched_dump
, ";;\tReady list (final): ");
3289 debug_ready_list (&ready
);
3292 if (current_sched_info
->queue_must_finish_empty
)
3293 /* Sanity check -- queue must be empty now. Meaningless if region has
3295 gcc_assert (!q_size
&& !ready
.n_ready
&& !ready
.n_debug
);
3298 /* We must maintain QUEUE_INDEX between blocks in region. */
3299 for (i
= ready
.n_ready
- 1; i
>= 0; i
--)
3303 x
= ready_element (&ready
, i
);
3304 QUEUE_INDEX (x
) = QUEUE_NOWHERE
;
3305 TODO_SPEC (x
) = (TODO_SPEC (x
) & ~SPECULATIVE
) | HARD_DEP
;
3309 for (i
= 0; i
<= max_insn_queue_index
; i
++)
3312 for (link
= insn_queue
[i
]; link
; link
= XEXP (link
, 1))
3317 QUEUE_INDEX (x
) = QUEUE_NOWHERE
;
3318 TODO_SPEC (x
) = (TODO_SPEC (x
) & ~SPECULATIVE
) | HARD_DEP
;
3320 free_INSN_LIST_list (&insn_queue
[i
]);
3325 fprintf (sched_dump
, ";; total time = %d\n", clock_var
);
3327 if (!current_sched_info
->queue_must_finish_empty
3328 || haifa_recovery_bb_recently_added_p
)
3330 /* INSN_TICK (minimum clock tick at which the insn becomes
3331 ready) may be not correct for the insn in the subsequent
3332 blocks of the region. We should use a correct value of
3333 `clock_var' or modify INSN_TICK. It is better to keep
3334 clock_var value equal to 0 at the start of a basic block.
3335 Therefore we modify INSN_TICK here. */
3336 fix_inter_tick (NEXT_INSN (prev_head
), last_scheduled_insn
);
3339 if (targetm
.sched
.finish
)
3341 targetm
.sched
.finish (sched_dump
, sched_verbose
);
3342 /* Target might have added some instructions to the scheduled block
3343 in its md_finish () hook. These new insns don't have any data
3344 initialized and to identify them we extend h_i_d so that they'll
3346 sched_init_luids (NULL
, NULL
, NULL
, NULL
);
3350 fprintf (sched_dump
, ";; new head = %d\n;; new tail = %d\n\n",
3351 INSN_UID (head
), INSN_UID (tail
));
3353 /* Update head/tail boundaries. */
3354 head
= NEXT_INSN (prev_head
);
3355 tail
= last_scheduled_insn
;
3357 head
= restore_other_notes (head
, NULL
);
3359 current_sched_info
->head
= head
;
3360 current_sched_info
->tail
= tail
;
3363 /* Set_priorities: compute priority of each insn in the block. */
3366 set_priorities (rtx head
, rtx tail
)
3370 int sched_max_insns_priority
=
3371 current_sched_info
->sched_max_insns_priority
;
3374 if (head
== tail
&& ! INSN_P (head
))
3379 prev_head
= PREV_INSN (head
);
3380 for (insn
= tail
; insn
!= prev_head
; insn
= PREV_INSN (insn
))
3386 (void) priority (insn
);
3388 gcc_assert (INSN_PRIORITY_KNOWN (insn
));
3390 sched_max_insns_priority
= MAX (sched_max_insns_priority
,
3391 INSN_PRIORITY (insn
));
3394 current_sched_info
->sched_max_insns_priority
= sched_max_insns_priority
;
3399 /* Set dump and sched_verbose for the desired debugging output. If no
3400 dump-file was specified, but -fsched-verbose=N (any N), print to stderr.
3401 For -fsched-verbose=N, N>=10, print everything to stderr. */
3403 setup_sched_dump (void)
3405 sched_verbose
= sched_verbose_param
;
3406 if (sched_verbose_param
== 0 && dump_file
)
3408 sched_dump
= ((sched_verbose_param
>= 10 || !dump_file
)
3409 ? stderr
: dump_file
);
3412 /* Initialize some global state for the scheduler. This function works
3413 with the common data shared between all the schedulers. It is called
3414 from the scheduler specific initialization routine. */
3419 /* Disable speculative loads in their presence if cc0 defined. */
3421 flag_schedule_speculative_load
= 0;
3424 if (targetm
.sched
.dispatch (NULL_RTX
, IS_DISPATCH_ON
))
3425 targetm
.sched
.dispatch_do (NULL_RTX
, DISPATCH_INIT
);
3427 sched_pressure_p
= (flag_sched_pressure
&& ! reload_completed
3428 && common_sched_info
->sched_pass_id
== SCHED_RGN_PASS
);
3430 if (sched_pressure_p
)
3431 ira_setup_eliminable_regset ();
3433 /* Initialize SPEC_INFO. */
3434 if (targetm
.sched
.set_sched_flags
)
3436 spec_info
= &spec_info_var
;
3437 targetm
.sched
.set_sched_flags (spec_info
);
3439 if (spec_info
->mask
!= 0)
3441 spec_info
->data_weakness_cutoff
=
3442 (PARAM_VALUE (PARAM_SCHED_SPEC_PROB_CUTOFF
) * MAX_DEP_WEAK
) / 100;
3443 spec_info
->control_weakness_cutoff
=
3444 (PARAM_VALUE (PARAM_SCHED_SPEC_PROB_CUTOFF
)
3445 * REG_BR_PROB_BASE
) / 100;
3448 /* So we won't read anything accidentally. */
3453 /* So we won't read anything accidentally. */
3456 /* Initialize issue_rate. */
3457 if (targetm
.sched
.issue_rate
)
3458 issue_rate
= targetm
.sched
.issue_rate ();
3462 if (cached_issue_rate
!= issue_rate
)
3464 cached_issue_rate
= issue_rate
;
3465 /* To invalidate max_lookahead_tries: */
3466 cached_first_cycle_multipass_dfa_lookahead
= 0;
3469 if (targetm
.sched
.first_cycle_multipass_dfa_lookahead
)
3470 dfa_lookahead
= targetm
.sched
.first_cycle_multipass_dfa_lookahead ();
3474 if (targetm
.sched
.init_dfa_pre_cycle_insn
)
3475 targetm
.sched
.init_dfa_pre_cycle_insn ();
3477 if (targetm
.sched
.init_dfa_post_cycle_insn
)
3478 targetm
.sched
.init_dfa_post_cycle_insn ();
3481 dfa_state_size
= state_size ();
3483 init_alias_analysis ();
3485 df_set_flags (DF_LR_RUN_DCE
);
3486 df_note_add_problem ();
3488 /* More problems needed for interloop dep calculation in SMS. */
3489 if (common_sched_info
->sched_pass_id
== SCHED_SMS_PASS
)
3491 df_rd_add_problem ();
3492 df_chain_add_problem (DF_DU_CHAIN
+ DF_UD_CHAIN
);
3497 /* Do not run DCE after reload, as this can kill nops inserted
3499 if (reload_completed
)
3500 df_clear_flags (DF_LR_RUN_DCE
);
3502 regstat_compute_calls_crossed ();
3504 if (targetm
.sched
.init_global
)
3505 targetm
.sched
.init_global (sched_dump
, sched_verbose
, get_max_uid () + 1);
3507 if (sched_pressure_p
)
3509 int i
, max_regno
= max_reg_num ();
3511 ira_set_pseudo_classes (sched_verbose
? sched_dump
: NULL
);
3512 sched_regno_cover_class
3513 = (enum reg_class
*) xmalloc (max_regno
* sizeof (enum reg_class
));
3514 for (i
= 0; i
< max_regno
; i
++)
3515 sched_regno_cover_class
[i
]
3516 = (i
< FIRST_PSEUDO_REGISTER
3517 ? ira_class_translate
[REGNO_REG_CLASS (i
)]
3518 : reg_cover_class (i
));
3519 curr_reg_live
= BITMAP_ALLOC (NULL
);
3520 saved_reg_live
= BITMAP_ALLOC (NULL
);
3521 region_ref_regs
= BITMAP_ALLOC (NULL
);
3524 curr_state
= xmalloc (dfa_state_size
);
3527 static void haifa_init_only_bb (basic_block
, basic_block
);
3529 /* Initialize data structures specific to the Haifa scheduler. */
3531 haifa_sched_init (void)
3533 setup_sched_dump ();
3536 if (spec_info
!= NULL
)
3538 sched_deps_info
->use_deps_list
= 1;
3539 sched_deps_info
->generate_spec_deps
= 1;
3542 /* Initialize luids, dependency caches, target and h_i_d for the
3545 bb_vec_t bbs
= VEC_alloc (basic_block
, heap
, n_basic_blocks
);
3551 VEC_quick_push (basic_block
, bbs
, bb
);
3552 sched_init_luids (bbs
, NULL
, NULL
, NULL
);
3553 sched_deps_init (true);
3554 sched_extend_target ();
3555 haifa_init_h_i_d (bbs
, NULL
, NULL
, NULL
);
3557 VEC_free (basic_block
, heap
, bbs
);
3560 sched_init_only_bb
= haifa_init_only_bb
;
3561 sched_split_block
= sched_split_block_1
;
3562 sched_create_empty_bb
= sched_create_empty_bb_1
;
3563 haifa_recovery_bb_ever_added_p
= false;
3565 #ifdef ENABLE_CHECKING
3566 /* This is used preferably for finding bugs in check_cfg () itself.
3567 We must call sched_bbs_init () before check_cfg () because check_cfg ()
3568 assumes that the last insn in the last bb has a non-null successor. */
3572 nr_begin_data
= nr_begin_control
= nr_be_in_data
= nr_be_in_control
= 0;
3573 before_recovery
= 0;
3577 /* Finish work with the data specific to the Haifa scheduler. */
3579 haifa_sched_finish (void)
3581 sched_create_empty_bb
= NULL
;
3582 sched_split_block
= NULL
;
3583 sched_init_only_bb
= NULL
;
3585 if (spec_info
&& spec_info
->dump
)
3587 char c
= reload_completed
? 'a' : 'b';
3589 fprintf (spec_info
->dump
,
3590 ";; %s:\n", current_function_name ());
3592 fprintf (spec_info
->dump
,
3593 ";; Procedure %cr-begin-data-spec motions == %d\n",
3595 fprintf (spec_info
->dump
,
3596 ";; Procedure %cr-be-in-data-spec motions == %d\n",
3598 fprintf (spec_info
->dump
,
3599 ";; Procedure %cr-begin-control-spec motions == %d\n",
3600 c
, nr_begin_control
);
3601 fprintf (spec_info
->dump
,
3602 ";; Procedure %cr-be-in-control-spec motions == %d\n",
3603 c
, nr_be_in_control
);
3606 /* Finalize h_i_d, dependency caches, and luids for the whole
3607 function. Target will be finalized in md_global_finish (). */
3608 sched_deps_finish ();
3609 sched_finish_luids ();
3610 current_sched_info
= NULL
;
3614 /* Free global data used during insn scheduling. This function works with
3615 the common data shared between the schedulers. */
3620 haifa_finish_h_i_d ();
3621 if (sched_pressure_p
)
3623 free (sched_regno_cover_class
);
3624 BITMAP_FREE (region_ref_regs
);
3625 BITMAP_FREE (saved_reg_live
);
3626 BITMAP_FREE (curr_reg_live
);
3630 if (targetm
.sched
.finish_global
)
3631 targetm
.sched
.finish_global (sched_dump
, sched_verbose
);
3633 end_alias_analysis ();
3635 regstat_free_calls_crossed ();
3639 #ifdef ENABLE_CHECKING
3640 /* After reload ia64 backend clobbers CFG, so can't check anything. */
3641 if (!reload_completed
)
3646 /* Fix INSN_TICKs of the instructions in the current block as well as
3647 INSN_TICKs of their dependents.
3648 HEAD and TAIL are the begin and the end of the current scheduled block. */
3650 fix_inter_tick (rtx head
, rtx tail
)
3652 /* Set of instructions with corrected INSN_TICK. */
3653 bitmap_head processed
;
3654 /* ??? It is doubtful if we should assume that cycle advance happens on
3655 basic block boundaries. Basically insns that are unconditionally ready
3656 on the start of the block are more preferable then those which have
3657 a one cycle dependency over insn from the previous block. */
3658 int next_clock
= clock_var
+ 1;
3660 bitmap_initialize (&processed
, 0);
3662 /* Iterates over scheduled instructions and fix their INSN_TICKs and
3663 INSN_TICKs of dependent instructions, so that INSN_TICKs are consistent
3664 across different blocks. */
3665 for (tail
= NEXT_INSN (tail
); head
!= tail
; head
= NEXT_INSN (head
))
3670 sd_iterator_def sd_it
;
3673 tick
= INSN_TICK (head
);
3674 gcc_assert (tick
>= MIN_TICK
);
3676 /* Fix INSN_TICK of instruction from just scheduled block. */
3677 if (bitmap_set_bit (&processed
, INSN_LUID (head
)))
3681 if (tick
< MIN_TICK
)
3684 INSN_TICK (head
) = tick
;
3687 FOR_EACH_DEP (head
, SD_LIST_RES_FORW
, sd_it
, dep
)
3691 next
= DEP_CON (dep
);
3692 tick
= INSN_TICK (next
);
3694 if (tick
!= INVALID_TICK
3695 /* If NEXT has its INSN_TICK calculated, fix it.
3696 If not - it will be properly calculated from
3697 scratch later in fix_tick_ready. */
3698 && bitmap_set_bit (&processed
, INSN_LUID (next
)))
3702 if (tick
< MIN_TICK
)
3705 if (tick
> INTER_TICK (next
))
3706 INTER_TICK (next
) = tick
;
3708 tick
= INTER_TICK (next
);
3710 INSN_TICK (next
) = tick
;
3715 bitmap_clear (&processed
);
3718 static int haifa_speculate_insn (rtx
, ds_t
, rtx
*);
3720 /* Check if NEXT is ready to be added to the ready or queue list.
3721 If "yes", add it to the proper list.
3723 -1 - is not ready yet,
3724 0 - added to the ready list,
3725 0 < N - queued for N cycles. */
3727 try_ready (rtx next
)
3731 ts
= &TODO_SPEC (next
);
3734 gcc_assert (!(old_ts
& ~(SPECULATIVE
| HARD_DEP
))
3735 && ((old_ts
& HARD_DEP
)
3736 || (old_ts
& SPECULATIVE
)));
3738 if (sd_lists_empty_p (next
, SD_LIST_BACK
))
3739 /* NEXT has all its dependencies resolved. */
3741 /* Remove HARD_DEP bit from NEXT's status. */
3744 if (current_sched_info
->flags
& DO_SPECULATION
)
3745 /* Remove all speculative bits from NEXT's status. */
3746 *ts
&= ~SPECULATIVE
;
3750 /* One of the NEXT's dependencies has been resolved.
3751 Recalculate NEXT's status. */
3753 *ts
&= ~SPECULATIVE
& ~HARD_DEP
;
3755 if (sd_lists_empty_p (next
, SD_LIST_HARD_BACK
))
3756 /* Now we've got NEXT with speculative deps only.
3757 1. Look at the deps to see what we have to do.
3758 2. Check if we can do 'todo'. */
3760 sd_iterator_def sd_it
;
3762 bool first_p
= true;
3764 FOR_EACH_DEP (next
, SD_LIST_BACK
, sd_it
, dep
)
3766 ds_t ds
= DEP_STATUS (dep
) & SPECULATIVE
;
3768 if (DEBUG_INSN_P (DEP_PRO (dep
))
3769 && !DEBUG_INSN_P (next
))
3779 *ts
= ds_merge (*ts
, ds
);
3782 if (ds_weak (*ts
) < spec_info
->data_weakness_cutoff
)
3783 /* Too few points. */
3784 *ts
= (*ts
& ~SPECULATIVE
) | HARD_DEP
;
3791 gcc_assert (*ts
== old_ts
3792 && QUEUE_INDEX (next
) == QUEUE_NOWHERE
);
3793 else if (current_sched_info
->new_ready
)
3794 *ts
= current_sched_info
->new_ready (next
, *ts
);
3796 /* * if !(old_ts & SPECULATIVE) (e.g. HARD_DEP or 0), then insn might
3797 have its original pattern or changed (speculative) one. This is due
3798 to changing ebb in region scheduling.
3799 * But if (old_ts & SPECULATIVE), then we are pretty sure that insn
3800 has speculative pattern.
3802 We can't assert (!(*ts & HARD_DEP) || *ts == old_ts) here because
3803 control-speculative NEXT could have been discarded by sched-rgn.c
3804 (the same case as when discarded by can_schedule_ready_p ()). */
3806 if ((*ts
& SPECULATIVE
)
3807 /* If (old_ts == *ts), then (old_ts & SPECULATIVE) and we don't
3808 need to change anything. */
3814 gcc_assert ((*ts
& SPECULATIVE
) && !(*ts
& ~SPECULATIVE
));
3816 res
= haifa_speculate_insn (next
, *ts
, &new_pat
);
3821 /* It would be nice to change DEP_STATUS of all dependences,
3822 which have ((DEP_STATUS & SPECULATIVE) == *ts) to HARD_DEP,
3823 so we won't reanalyze anything. */
3824 *ts
= (*ts
& ~SPECULATIVE
) | HARD_DEP
;
3828 /* We follow the rule, that every speculative insn
3829 has non-null ORIG_PAT. */
3830 if (!ORIG_PAT (next
))
3831 ORIG_PAT (next
) = PATTERN (next
);
3835 if (!ORIG_PAT (next
))
3836 /* If we gonna to overwrite the original pattern of insn,
3838 ORIG_PAT (next
) = PATTERN (next
);
3840 haifa_change_pattern (next
, new_pat
);
3848 /* We need to restore pattern only if (*ts == 0), because otherwise it is
3849 either correct (*ts & SPECULATIVE),
3850 or we simply don't care (*ts & HARD_DEP). */
3852 gcc_assert (!ORIG_PAT (next
)
3853 || !IS_SPECULATION_BRANCHY_CHECK_P (next
));
3857 /* We can't assert (QUEUE_INDEX (next) == QUEUE_NOWHERE) here because
3858 control-speculative NEXT could have been discarded by sched-rgn.c
3859 (the same case as when discarded by can_schedule_ready_p ()). */
3860 /*gcc_assert (QUEUE_INDEX (next) == QUEUE_NOWHERE);*/
3862 change_queue_index (next
, QUEUE_NOWHERE
);
3865 else if (!(*ts
& BEGIN_SPEC
) && ORIG_PAT (next
) && !IS_SPECULATION_CHECK_P (next
))
3866 /* We should change pattern of every previously speculative
3867 instruction - and we determine if NEXT was speculative by using
3868 ORIG_PAT field. Except one case - speculation checks have ORIG_PAT
3869 pat too, so skip them. */
3871 haifa_change_pattern (next
, ORIG_PAT (next
));
3872 ORIG_PAT (next
) = 0;
3875 if (sched_verbose
>= 2)
3877 int s
= TODO_SPEC (next
);
3879 fprintf (sched_dump
, ";;\t\tdependencies resolved: insn %s",
3880 (*current_sched_info
->print_insn
) (next
, 0));
3882 if (spec_info
&& spec_info
->dump
)
3885 fprintf (spec_info
->dump
, "; data-spec;");
3886 if (s
& BEGIN_CONTROL
)
3887 fprintf (spec_info
->dump
, "; control-spec;");
3888 if (s
& BE_IN_CONTROL
)
3889 fprintf (spec_info
->dump
, "; in-control-spec;");
3892 fprintf (sched_dump
, "\n");
3895 adjust_priority (next
);
3897 return fix_tick_ready (next
);
3900 /* Calculate INSN_TICK of NEXT and add it to either ready or queue list. */
3902 fix_tick_ready (rtx next
)
3906 if (!sd_lists_empty_p (next
, SD_LIST_RES_BACK
))
3909 sd_iterator_def sd_it
;
3912 tick
= INSN_TICK (next
);
3913 /* if tick is not equal to INVALID_TICK, then update
3914 INSN_TICK of NEXT with the most recent resolved dependence
3915 cost. Otherwise, recalculate from scratch. */
3916 full_p
= (tick
== INVALID_TICK
);
3918 FOR_EACH_DEP (next
, SD_LIST_RES_BACK
, sd_it
, dep
)
3920 rtx pro
= DEP_PRO (dep
);
3923 gcc_assert (INSN_TICK (pro
) >= MIN_TICK
);
3925 tick1
= INSN_TICK (pro
) + dep_cost (dep
);
3936 INSN_TICK (next
) = tick
;
3938 delay
= tick
- clock_var
;
3939 if (delay
<= 0 || sched_pressure_p
)
3940 delay
= QUEUE_READY
;
3942 change_queue_index (next
, delay
);
3947 /* Move NEXT to the proper queue list with (DELAY >= 1),
3948 or add it to the ready list (DELAY == QUEUE_READY),
3949 or remove it from ready and queue lists at all (DELAY == QUEUE_NOWHERE). */
3951 change_queue_index (rtx next
, int delay
)
3953 int i
= QUEUE_INDEX (next
);
3955 gcc_assert (QUEUE_NOWHERE
<= delay
&& delay
<= max_insn_queue_index
3957 gcc_assert (i
!= QUEUE_SCHEDULED
);
3959 if ((delay
> 0 && NEXT_Q_AFTER (q_ptr
, delay
) == i
)
3960 || (delay
< 0 && delay
== i
))
3961 /* We have nothing to do. */
3964 /* Remove NEXT from wherever it is now. */
3965 if (i
== QUEUE_READY
)
3966 ready_remove_insn (next
);
3968 queue_remove (next
);
3970 /* Add it to the proper place. */
3971 if (delay
== QUEUE_READY
)
3972 ready_add (readyp
, next
, false);
3973 else if (delay
>= 1)
3974 queue_insn (next
, delay
);
3976 if (sched_verbose
>= 2)
3978 fprintf (sched_dump
, ";;\t\ttick updated: insn %s",
3979 (*current_sched_info
->print_insn
) (next
, 0));
3981 if (delay
== QUEUE_READY
)
3982 fprintf (sched_dump
, " into ready\n");
3983 else if (delay
>= 1)
3984 fprintf (sched_dump
, " into queue with cost=%d\n", delay
);
3986 fprintf (sched_dump
, " removed from ready or queue lists\n");
3990 static int sched_ready_n_insns
= -1;
3992 /* Initialize per region data structures. */
3994 sched_extend_ready_list (int new_sched_ready_n_insns
)
3998 if (sched_ready_n_insns
== -1)
3999 /* At the first call we need to initialize one more choice_stack
4003 sched_ready_n_insns
= 0;
4006 i
= sched_ready_n_insns
+ 1;
4008 ready
.veclen
= new_sched_ready_n_insns
+ issue_rate
;
4009 ready
.vec
= XRESIZEVEC (rtx
, ready
.vec
, ready
.veclen
);
4011 gcc_assert (new_sched_ready_n_insns
>= sched_ready_n_insns
);
4013 ready_try
= (char *) xrecalloc (ready_try
, new_sched_ready_n_insns
,
4014 sched_ready_n_insns
, sizeof (*ready_try
));
4016 /* We allocate +1 element to save initial state in the choice_stack[0]
4018 choice_stack
= XRESIZEVEC (struct choice_entry
, choice_stack
,
4019 new_sched_ready_n_insns
+ 1);
4021 for (; i
<= new_sched_ready_n_insns
; i
++)
4023 choice_stack
[i
].state
= xmalloc (dfa_state_size
);
4025 if (targetm
.sched
.first_cycle_multipass_init
)
4026 targetm
.sched
.first_cycle_multipass_init (&(choice_stack
[i
]
4030 sched_ready_n_insns
= new_sched_ready_n_insns
;
4033 /* Free per region data structures. */
4035 sched_finish_ready_list (void)
4046 for (i
= 0; i
<= sched_ready_n_insns
; i
++)
4048 if (targetm
.sched
.first_cycle_multipass_fini
)
4049 targetm
.sched
.first_cycle_multipass_fini (&(choice_stack
[i
]
4052 free (choice_stack
[i
].state
);
4054 free (choice_stack
);
4055 choice_stack
= NULL
;
4057 sched_ready_n_insns
= -1;
4061 haifa_luid_for_non_insn (rtx x
)
4063 gcc_assert (NOTE_P (x
) || LABEL_P (x
));
4068 /* Generates recovery code for INSN. */
4070 generate_recovery_code (rtx insn
)
4072 if (TODO_SPEC (insn
) & BEGIN_SPEC
)
4073 begin_speculative_block (insn
);
4075 /* Here we have insn with no dependencies to
4076 instructions other then CHECK_SPEC ones. */
4078 if (TODO_SPEC (insn
) & BE_IN_SPEC
)
4079 add_to_speculative_block (insn
);
4083 Tries to add speculative dependencies of type FS between instructions
4084 in deps_list L and TWIN. */
4086 process_insn_forw_deps_be_in_spec (rtx insn
, rtx twin
, ds_t fs
)
4088 sd_iterator_def sd_it
;
4091 FOR_EACH_DEP (insn
, SD_LIST_FORW
, sd_it
, dep
)
4096 consumer
= DEP_CON (dep
);
4098 ds
= DEP_STATUS (dep
);
4100 if (/* If we want to create speculative dep. */
4102 /* And we can do that because this is a true dep. */
4103 && (ds
& DEP_TYPES
) == DEP_TRUE
)
4105 gcc_assert (!(ds
& BE_IN_SPEC
));
4107 if (/* If this dep can be overcome with 'begin speculation'. */
4109 /* Then we have a choice: keep the dep 'begin speculative'
4110 or transform it into 'be in speculative'. */
4112 if (/* In try_ready we assert that if insn once became ready
4113 it can be removed from the ready (or queue) list only
4114 due to backend decision. Hence we can't let the
4115 probability of the speculative dep to decrease. */
4116 ds_weak (ds
) <= ds_weak (fs
))
4120 new_ds
= (ds
& ~BEGIN_SPEC
) | fs
;
4122 if (/* consumer can 'be in speculative'. */
4123 sched_insn_is_legitimate_for_speculation_p (consumer
,
4125 /* Transform it to be in speculative. */
4130 /* Mark the dep as 'be in speculative'. */
4135 dep_def _new_dep
, *new_dep
= &_new_dep
;
4137 init_dep_1 (new_dep
, twin
, consumer
, DEP_TYPE (dep
), ds
);
4138 sd_add_dep (new_dep
, false);
4143 /* Generates recovery code for BEGIN speculative INSN. */
4145 begin_speculative_block (rtx insn
)
4147 if (TODO_SPEC (insn
) & BEGIN_DATA
)
4149 if (TODO_SPEC (insn
) & BEGIN_CONTROL
)
4152 create_check_block_twin (insn
, false);
4154 TODO_SPEC (insn
) &= ~BEGIN_SPEC
;
4157 static void haifa_init_insn (rtx
);
4159 /* Generates recovery code for BE_IN speculative INSN. */
4161 add_to_speculative_block (rtx insn
)
4164 sd_iterator_def sd_it
;
4167 rtx_vec_t priorities_roots
;
4169 ts
= TODO_SPEC (insn
);
4170 gcc_assert (!(ts
& ~BE_IN_SPEC
));
4172 if (ts
& BE_IN_DATA
)
4174 if (ts
& BE_IN_CONTROL
)
4177 TODO_SPEC (insn
) &= ~BE_IN_SPEC
;
4178 gcc_assert (!TODO_SPEC (insn
));
4180 DONE_SPEC (insn
) |= ts
;
4182 /* First we convert all simple checks to branchy. */
4183 for (sd_it
= sd_iterator_start (insn
, SD_LIST_SPEC_BACK
);
4184 sd_iterator_cond (&sd_it
, &dep
);)
4186 rtx check
= DEP_PRO (dep
);
4188 if (IS_SPECULATION_SIMPLE_CHECK_P (check
))
4190 create_check_block_twin (check
, true);
4192 /* Restart search. */
4193 sd_it
= sd_iterator_start (insn
, SD_LIST_SPEC_BACK
);
4196 /* Continue search. */
4197 sd_iterator_next (&sd_it
);
4200 priorities_roots
= NULL
;
4201 clear_priorities (insn
, &priorities_roots
);
4208 /* Get the first backward dependency of INSN. */
4209 sd_it
= sd_iterator_start (insn
, SD_LIST_SPEC_BACK
);
4210 if (!sd_iterator_cond (&sd_it
, &dep
))
4211 /* INSN has no backward dependencies left. */
4214 gcc_assert ((DEP_STATUS (dep
) & BEGIN_SPEC
) == 0
4215 && (DEP_STATUS (dep
) & BE_IN_SPEC
) != 0
4216 && (DEP_STATUS (dep
) & DEP_TYPES
) == DEP_TRUE
);
4218 check
= DEP_PRO (dep
);
4220 gcc_assert (!IS_SPECULATION_CHECK_P (check
) && !ORIG_PAT (check
)
4221 && QUEUE_INDEX (check
) == QUEUE_NOWHERE
);
4223 rec
= BLOCK_FOR_INSN (check
);
4225 twin
= emit_insn_before (copy_insn (PATTERN (insn
)), BB_END (rec
));
4226 haifa_init_insn (twin
);
4228 sd_copy_back_deps (twin
, insn
, true);
4230 if (sched_verbose
&& spec_info
->dump
)
4231 /* INSN_BB (insn) isn't determined for twin insns yet.
4232 So we can't use current_sched_info->print_insn. */
4233 fprintf (spec_info
->dump
, ";;\t\tGenerated twin insn : %d/rec%d\n",
4234 INSN_UID (twin
), rec
->index
);
4236 twins
= alloc_INSN_LIST (twin
, twins
);
4238 /* Add dependences between TWIN and all appropriate
4239 instructions from REC. */
4240 FOR_EACH_DEP (insn
, SD_LIST_SPEC_BACK
, sd_it
, dep
)
4242 rtx pro
= DEP_PRO (dep
);
4244 gcc_assert (DEP_TYPE (dep
) == REG_DEP_TRUE
);
4246 /* INSN might have dependencies from the instructions from
4247 several recovery blocks. At this iteration we process those
4248 producers that reside in REC. */
4249 if (BLOCK_FOR_INSN (pro
) == rec
)
4251 dep_def _new_dep
, *new_dep
= &_new_dep
;
4253 init_dep (new_dep
, pro
, twin
, REG_DEP_TRUE
);
4254 sd_add_dep (new_dep
, false);
4258 process_insn_forw_deps_be_in_spec (insn
, twin
, ts
);
4260 /* Remove all dependencies between INSN and insns in REC. */
4261 for (sd_it
= sd_iterator_start (insn
, SD_LIST_SPEC_BACK
);
4262 sd_iterator_cond (&sd_it
, &dep
);)
4264 rtx pro
= DEP_PRO (dep
);
4266 if (BLOCK_FOR_INSN (pro
) == rec
)
4267 sd_delete_dep (sd_it
);
4269 sd_iterator_next (&sd_it
);
4273 /* We couldn't have added the dependencies between INSN and TWINS earlier
4274 because that would make TWINS appear in the INSN_BACK_DEPS (INSN). */
4279 twin
= XEXP (twins
, 0);
4282 dep_def _new_dep
, *new_dep
= &_new_dep
;
4284 init_dep (new_dep
, insn
, twin
, REG_DEP_OUTPUT
);
4285 sd_add_dep (new_dep
, false);
4288 twin
= XEXP (twins
, 1);
4289 free_INSN_LIST_node (twins
);
4293 calc_priorities (priorities_roots
);
4294 VEC_free (rtx
, heap
, priorities_roots
);
4297 /* Extends and fills with zeros (only the new part) array pointed to by P. */
4299 xrecalloc (void *p
, size_t new_nmemb
, size_t old_nmemb
, size_t size
)
4301 gcc_assert (new_nmemb
>= old_nmemb
);
4302 p
= XRESIZEVAR (void, p
, new_nmemb
* size
);
4303 memset (((char *) p
) + old_nmemb
* size
, 0, (new_nmemb
- old_nmemb
) * size
);
4308 Find fallthru edge from PRED. */
4310 find_fallthru_edge_from (basic_block pred
)
4315 succ
= pred
->next_bb
;
4316 gcc_assert (succ
->prev_bb
== pred
);
4318 if (EDGE_COUNT (pred
->succs
) <= EDGE_COUNT (succ
->preds
))
4320 e
= find_fallthru_edge (pred
->succs
);
4324 gcc_assert (e
->dest
== succ
);
4330 e
= find_fallthru_edge (succ
->preds
);
4334 gcc_assert (e
->src
== pred
);
4342 /* Extend per basic block data structures. */
4344 sched_extend_bb (void)
4348 /* The following is done to keep current_sched_info->next_tail non null. */
4349 insn
= BB_END (EXIT_BLOCK_PTR
->prev_bb
);
4350 if (NEXT_INSN (insn
) == 0
4353 /* Don't emit a NOTE if it would end up before a BARRIER. */
4354 && !BARRIER_P (NEXT_INSN (insn
))))
4356 rtx note
= emit_note_after (NOTE_INSN_DELETED
, insn
);
4357 /* Make insn appear outside BB. */
4358 set_block_for_insn (note
, NULL
);
4359 BB_END (EXIT_BLOCK_PTR
->prev_bb
) = insn
;
4363 /* Init per basic block data structures. */
4365 sched_init_bbs (void)
4370 /* Initialize BEFORE_RECOVERY variable. */
4372 init_before_recovery (basic_block
*before_recovery_ptr
)
4377 last
= EXIT_BLOCK_PTR
->prev_bb
;
4378 e
= find_fallthru_edge_from (last
);
4382 /* We create two basic blocks:
4383 1. Single instruction block is inserted right after E->SRC
4385 2. Empty block right before EXIT_BLOCK.
4386 Between these two blocks recovery blocks will be emitted. */
4388 basic_block single
, empty
;
4391 /* If the fallthrough edge to exit we've found is from the block we've
4392 created before, don't do anything more. */
4393 if (last
== after_recovery
)
4396 adding_bb_to_current_region_p
= false;
4398 single
= sched_create_empty_bb (last
);
4399 empty
= sched_create_empty_bb (single
);
4401 /* Add new blocks to the root loop. */
4402 if (current_loops
!= NULL
)
4404 add_bb_to_loop (single
, VEC_index (loop_p
, current_loops
->larray
, 0));
4405 add_bb_to_loop (empty
, VEC_index (loop_p
, current_loops
->larray
, 0));
4408 single
->count
= last
->count
;
4409 empty
->count
= last
->count
;
4410 single
->frequency
= last
->frequency
;
4411 empty
->frequency
= last
->frequency
;
4412 BB_COPY_PARTITION (single
, last
);
4413 BB_COPY_PARTITION (empty
, last
);
4415 redirect_edge_succ (e
, single
);
4416 make_single_succ_edge (single
, empty
, 0);
4417 make_single_succ_edge (empty
, EXIT_BLOCK_PTR
,
4418 EDGE_FALLTHRU
| EDGE_CAN_FALLTHRU
);
4420 label
= block_label (empty
);
4421 x
= emit_jump_insn_after (gen_jump (label
), BB_END (single
));
4422 JUMP_LABEL (x
) = label
;
4423 LABEL_NUSES (label
)++;
4424 haifa_init_insn (x
);
4426 emit_barrier_after (x
);
4428 sched_init_only_bb (empty
, NULL
);
4429 sched_init_only_bb (single
, NULL
);
4432 adding_bb_to_current_region_p
= true;
4433 before_recovery
= single
;
4434 after_recovery
= empty
;
4436 if (before_recovery_ptr
)
4437 *before_recovery_ptr
= before_recovery
;
4439 if (sched_verbose
>= 2 && spec_info
->dump
)
4440 fprintf (spec_info
->dump
,
4441 ";;\t\tFixed fallthru to EXIT : %d->>%d->%d->>EXIT\n",
4442 last
->index
, single
->index
, empty
->index
);
4445 before_recovery
= last
;
4448 /* Returns new recovery block. */
4450 sched_create_recovery_block (basic_block
*before_recovery_ptr
)
4456 haifa_recovery_bb_recently_added_p
= true;
4457 haifa_recovery_bb_ever_added_p
= true;
4459 init_before_recovery (before_recovery_ptr
);
4461 barrier
= get_last_bb_insn (before_recovery
);
4462 gcc_assert (BARRIER_P (barrier
));
4464 label
= emit_label_after (gen_label_rtx (), barrier
);
4466 rec
= create_basic_block (label
, label
, before_recovery
);
4468 /* A recovery block always ends with an unconditional jump. */
4469 emit_barrier_after (BB_END (rec
));
4471 if (BB_PARTITION (before_recovery
) != BB_UNPARTITIONED
)
4472 BB_SET_PARTITION (rec
, BB_COLD_PARTITION
);
4474 if (sched_verbose
&& spec_info
->dump
)
4475 fprintf (spec_info
->dump
, ";;\t\tGenerated recovery block rec%d\n",
4481 /* Create edges: FIRST_BB -> REC; FIRST_BB -> SECOND_BB; REC -> SECOND_BB
4482 and emit necessary jumps. */
4484 sched_create_recovery_edges (basic_block first_bb
, basic_block rec
,
4485 basic_block second_bb
)
4491 /* This is fixing of incoming edge. */
4492 /* ??? Which other flags should be specified? */
4493 if (BB_PARTITION (first_bb
) != BB_PARTITION (rec
))
4494 /* Partition type is the same, if it is "unpartitioned". */
4495 edge_flags
= EDGE_CROSSING
;
4499 make_edge (first_bb
, rec
, edge_flags
);
4500 label
= block_label (second_bb
);
4501 jump
= emit_jump_insn_after (gen_jump (label
), BB_END (rec
));
4502 JUMP_LABEL (jump
) = label
;
4503 LABEL_NUSES (label
)++;
4505 if (BB_PARTITION (second_bb
) != BB_PARTITION (rec
))
4506 /* Partition type is the same, if it is "unpartitioned". */
4508 /* Rewritten from cfgrtl.c. */
4509 if (flag_reorder_blocks_and_partition
4510 && targetm
.have_named_sections
)
4512 /* We don't need the same note for the check because
4513 any_condjump_p (check) == true. */
4514 add_reg_note (jump
, REG_CROSSING_JUMP
, NULL_RTX
);
4516 edge_flags
= EDGE_CROSSING
;
4521 make_single_succ_edge (rec
, second_bb
, edge_flags
);
4522 if (dom_info_available_p (CDI_DOMINATORS
))
4523 set_immediate_dominator (CDI_DOMINATORS
, rec
, first_bb
);
4526 /* This function creates recovery code for INSN. If MUTATE_P is nonzero,
4527 INSN is a simple check, that should be converted to branchy one. */
4529 create_check_block_twin (rtx insn
, bool mutate_p
)
4532 rtx label
, check
, twin
;
4534 sd_iterator_def sd_it
;
4536 dep_def _new_dep
, *new_dep
= &_new_dep
;
4539 gcc_assert (ORIG_PAT (insn
) != NULL_RTX
);
4542 todo_spec
= TODO_SPEC (insn
);
4545 gcc_assert (IS_SPECULATION_SIMPLE_CHECK_P (insn
)
4546 && (TODO_SPEC (insn
) & SPECULATIVE
) == 0);
4548 todo_spec
= CHECK_SPEC (insn
);
4551 todo_spec
&= SPECULATIVE
;
4553 /* Create recovery block. */
4554 if (mutate_p
|| targetm
.sched
.needs_block_p (todo_spec
))
4556 rec
= sched_create_recovery_block (NULL
);
4557 label
= BB_HEAD (rec
);
4561 rec
= EXIT_BLOCK_PTR
;
4566 check
= targetm
.sched
.gen_spec_check (insn
, label
, todo_spec
);
4568 if (rec
!= EXIT_BLOCK_PTR
)
4570 /* To have mem_reg alive at the beginning of second_bb,
4571 we emit check BEFORE insn, so insn after splitting
4572 insn will be at the beginning of second_bb, which will
4573 provide us with the correct life information. */
4574 check
= emit_jump_insn_before (check
, insn
);
4575 JUMP_LABEL (check
) = label
;
4576 LABEL_NUSES (label
)++;
4579 check
= emit_insn_before (check
, insn
);
4581 /* Extend data structures. */
4582 haifa_init_insn (check
);
4584 /* CHECK is being added to current region. Extend ready list. */
4585 gcc_assert (sched_ready_n_insns
!= -1);
4586 sched_extend_ready_list (sched_ready_n_insns
+ 1);
4588 if (current_sched_info
->add_remove_insn
)
4589 current_sched_info
->add_remove_insn (insn
, 0);
4591 RECOVERY_BLOCK (check
) = rec
;
4593 if (sched_verbose
&& spec_info
->dump
)
4594 fprintf (spec_info
->dump
, ";;\t\tGenerated check insn : %s\n",
4595 (*current_sched_info
->print_insn
) (check
, 0));
4597 gcc_assert (ORIG_PAT (insn
));
4599 /* Initialize TWIN (twin is a duplicate of original instruction
4600 in the recovery block). */
4601 if (rec
!= EXIT_BLOCK_PTR
)
4603 sd_iterator_def sd_it
;
4606 FOR_EACH_DEP (insn
, SD_LIST_RES_BACK
, sd_it
, dep
)
4607 if ((DEP_STATUS (dep
) & DEP_OUTPUT
) != 0)
4609 struct _dep _dep2
, *dep2
= &_dep2
;
4611 init_dep (dep2
, DEP_PRO (dep
), check
, REG_DEP_TRUE
);
4613 sd_add_dep (dep2
, true);
4616 twin
= emit_insn_after (ORIG_PAT (insn
), BB_END (rec
));
4617 haifa_init_insn (twin
);
4619 if (sched_verbose
&& spec_info
->dump
)
4620 /* INSN_BB (insn) isn't determined for twin insns yet.
4621 So we can't use current_sched_info->print_insn. */
4622 fprintf (spec_info
->dump
, ";;\t\tGenerated twin insn : %d/rec%d\n",
4623 INSN_UID (twin
), rec
->index
);
4627 ORIG_PAT (check
) = ORIG_PAT (insn
);
4628 HAS_INTERNAL_DEP (check
) = 1;
4630 /* ??? We probably should change all OUTPUT dependencies to
4634 /* Copy all resolved back dependencies of INSN to TWIN. This will
4635 provide correct value for INSN_TICK (TWIN). */
4636 sd_copy_back_deps (twin
, insn
, true);
4638 if (rec
!= EXIT_BLOCK_PTR
)
4639 /* In case of branchy check, fix CFG. */
4641 basic_block first_bb
, second_bb
;
4644 first_bb
= BLOCK_FOR_INSN (check
);
4645 second_bb
= sched_split_block (first_bb
, check
);
4647 sched_create_recovery_edges (first_bb
, rec
, second_bb
);
4649 sched_init_only_bb (second_bb
, first_bb
);
4650 sched_init_only_bb (rec
, EXIT_BLOCK_PTR
);
4652 jump
= BB_END (rec
);
4653 haifa_init_insn (jump
);
4656 /* Move backward dependences from INSN to CHECK and
4657 move forward dependences from INSN to TWIN. */
4659 /* First, create dependencies between INSN's producers and CHECK & TWIN. */
4660 FOR_EACH_DEP (insn
, SD_LIST_BACK
, sd_it
, dep
)
4662 rtx pro
= DEP_PRO (dep
);
4665 /* If BEGIN_DATA: [insn ~~TRUE~~> producer]:
4666 check --TRUE--> producer ??? or ANTI ???
4667 twin --TRUE--> producer
4668 twin --ANTI--> check
4670 If BEGIN_CONTROL: [insn ~~ANTI~~> producer]:
4671 check --ANTI--> producer
4672 twin --ANTI--> producer
4673 twin --ANTI--> check
4675 If BE_IN_SPEC: [insn ~~TRUE~~> producer]:
4676 check ~~TRUE~~> producer
4677 twin ~~TRUE~~> producer
4678 twin --ANTI--> check */
4680 ds
= DEP_STATUS (dep
);
4682 if (ds
& BEGIN_SPEC
)
4684 gcc_assert (!mutate_p
);
4688 init_dep_1 (new_dep
, pro
, check
, DEP_TYPE (dep
), ds
);
4689 sd_add_dep (new_dep
, false);
4691 if (rec
!= EXIT_BLOCK_PTR
)
4693 DEP_CON (new_dep
) = twin
;
4694 sd_add_dep (new_dep
, false);
4698 /* Second, remove backward dependencies of INSN. */
4699 for (sd_it
= sd_iterator_start (insn
, SD_LIST_SPEC_BACK
);
4700 sd_iterator_cond (&sd_it
, &dep
);)
4702 if ((DEP_STATUS (dep
) & BEGIN_SPEC
)
4704 /* We can delete this dep because we overcome it with
4705 BEGIN_SPECULATION. */
4706 sd_delete_dep (sd_it
);
4708 sd_iterator_next (&sd_it
);
4711 /* Future Speculations. Determine what BE_IN speculations will be like. */
4714 /* Fields (DONE_SPEC (x) & BEGIN_SPEC) and CHECK_SPEC (x) are set only
4717 gcc_assert (!DONE_SPEC (insn
));
4721 ds_t ts
= TODO_SPEC (insn
);
4723 DONE_SPEC (insn
) = ts
& BEGIN_SPEC
;
4724 CHECK_SPEC (check
) = ts
& BEGIN_SPEC
;
4726 /* Luckiness of future speculations solely depends upon initial
4727 BEGIN speculation. */
4728 if (ts
& BEGIN_DATA
)
4729 fs
= set_dep_weak (fs
, BE_IN_DATA
, get_dep_weak (ts
, BEGIN_DATA
));
4730 if (ts
& BEGIN_CONTROL
)
4731 fs
= set_dep_weak (fs
, BE_IN_CONTROL
,
4732 get_dep_weak (ts
, BEGIN_CONTROL
));
4735 CHECK_SPEC (check
) = CHECK_SPEC (insn
);
4737 /* Future speculations: call the helper. */
4738 process_insn_forw_deps_be_in_spec (insn
, twin
, fs
);
4740 if (rec
!= EXIT_BLOCK_PTR
)
4742 /* Which types of dependencies should we use here is,
4743 generally, machine-dependent question... But, for now,
4748 init_dep (new_dep
, insn
, check
, REG_DEP_TRUE
);
4749 sd_add_dep (new_dep
, false);
4751 init_dep (new_dep
, insn
, twin
, REG_DEP_OUTPUT
);
4752 sd_add_dep (new_dep
, false);
4756 if (spec_info
->dump
)
4757 fprintf (spec_info
->dump
, ";;\t\tRemoved simple check : %s\n",
4758 (*current_sched_info
->print_insn
) (insn
, 0));
4760 /* Remove all dependencies of the INSN. */
4762 sd_it
= sd_iterator_start (insn
, (SD_LIST_FORW
4764 | SD_LIST_RES_BACK
));
4765 while (sd_iterator_cond (&sd_it
, &dep
))
4766 sd_delete_dep (sd_it
);
4769 /* If former check (INSN) already was moved to the ready (or queue)
4770 list, add new check (CHECK) there too. */
4771 if (QUEUE_INDEX (insn
) != QUEUE_NOWHERE
)
4774 /* Remove old check from instruction stream and free its
4776 sched_remove_insn (insn
);
4779 init_dep (new_dep
, check
, twin
, REG_DEP_ANTI
);
4780 sd_add_dep (new_dep
, false);
4784 init_dep_1 (new_dep
, insn
, check
, REG_DEP_TRUE
, DEP_TRUE
| DEP_OUTPUT
);
4785 sd_add_dep (new_dep
, false);
4789 /* Fix priorities. If MUTATE_P is nonzero, this is not necessary,
4790 because it'll be done later in add_to_speculative_block. */
4792 rtx_vec_t priorities_roots
= NULL
;
4794 clear_priorities (twin
, &priorities_roots
);
4795 calc_priorities (priorities_roots
);
4796 VEC_free (rtx
, heap
, priorities_roots
);
4800 /* Removes dependency between instructions in the recovery block REC
4801 and usual region instructions. It keeps inner dependences so it
4802 won't be necessary to recompute them. */
4804 fix_recovery_deps (basic_block rec
)
4806 rtx note
, insn
, jump
, ready_list
= 0;
4807 bitmap_head in_ready
;
4810 bitmap_initialize (&in_ready
, 0);
4812 /* NOTE - a basic block note. */
4813 note
= NEXT_INSN (BB_HEAD (rec
));
4814 gcc_assert (NOTE_INSN_BASIC_BLOCK_P (note
));
4815 insn
= BB_END (rec
);
4816 gcc_assert (JUMP_P (insn
));
4817 insn
= PREV_INSN (insn
);
4821 sd_iterator_def sd_it
;
4824 for (sd_it
= sd_iterator_start (insn
, SD_LIST_FORW
);
4825 sd_iterator_cond (&sd_it
, &dep
);)
4827 rtx consumer
= DEP_CON (dep
);
4829 if (BLOCK_FOR_INSN (consumer
) != rec
)
4831 sd_delete_dep (sd_it
);
4833 if (bitmap_set_bit (&in_ready
, INSN_LUID (consumer
)))
4834 ready_list
= alloc_INSN_LIST (consumer
, ready_list
);
4838 gcc_assert ((DEP_STATUS (dep
) & DEP_TYPES
) == DEP_TRUE
);
4840 sd_iterator_next (&sd_it
);
4844 insn
= PREV_INSN (insn
);
4846 while (insn
!= note
);
4848 bitmap_clear (&in_ready
);
4850 /* Try to add instructions to the ready or queue list. */
4851 for (link
= ready_list
; link
; link
= XEXP (link
, 1))
4852 try_ready (XEXP (link
, 0));
4853 free_INSN_LIST_list (&ready_list
);
4855 /* Fixing jump's dependences. */
4856 insn
= BB_HEAD (rec
);
4857 jump
= BB_END (rec
);
4859 gcc_assert (LABEL_P (insn
));
4860 insn
= NEXT_INSN (insn
);
4862 gcc_assert (NOTE_INSN_BASIC_BLOCK_P (insn
));
4863 add_jump_dependencies (insn
, jump
);
4866 /* Change pattern of INSN to NEW_PAT. */
4868 sched_change_pattern (rtx insn
, rtx new_pat
)
4872 t
= validate_change (insn
, &PATTERN (insn
), new_pat
, 0);
4874 dfa_clear_single_insn_cache (insn
);
4877 /* Change pattern of INSN to NEW_PAT. Invalidate cached haifa
4878 instruction data. */
4880 haifa_change_pattern (rtx insn
, rtx new_pat
)
4882 sched_change_pattern (insn
, new_pat
);
4884 /* Invalidate INSN_COST, so it'll be recalculated. */
4885 INSN_COST (insn
) = -1;
4886 /* Invalidate INSN_TICK, so it'll be recalculated. */
4887 INSN_TICK (insn
) = INVALID_TICK
;
4890 /* -1 - can't speculate,
4891 0 - for speculation with REQUEST mode it is OK to use
4892 current instruction pattern,
4893 1 - need to change pattern for *NEW_PAT to be speculative. */
4895 sched_speculate_insn (rtx insn
, ds_t request
, rtx
*new_pat
)
4897 gcc_assert (current_sched_info
->flags
& DO_SPECULATION
4898 && (request
& SPECULATIVE
)
4899 && sched_insn_is_legitimate_for_speculation_p (insn
, request
));
4901 if ((request
& spec_info
->mask
) != request
)
4904 if (request
& BE_IN_SPEC
4905 && !(request
& BEGIN_SPEC
))
4908 return targetm
.sched
.speculate_insn (insn
, request
, new_pat
);
4912 haifa_speculate_insn (rtx insn
, ds_t request
, rtx
*new_pat
)
4914 gcc_assert (sched_deps_info
->generate_spec_deps
4915 && !IS_SPECULATION_CHECK_P (insn
));
4917 if (HAS_INTERNAL_DEP (insn
)
4918 || SCHED_GROUP_P (insn
))
4921 return sched_speculate_insn (insn
, request
, new_pat
);
4924 /* Print some information about block BB, which starts with HEAD and
4925 ends with TAIL, before scheduling it.
4926 I is zero, if scheduler is about to start with the fresh ebb. */
4928 dump_new_block_header (int i
, basic_block bb
, rtx head
, rtx tail
)
4931 fprintf (sched_dump
,
4932 ";; ======================================================\n");
4934 fprintf (sched_dump
,
4935 ";; =====================ADVANCING TO=====================\n");
4936 fprintf (sched_dump
,
4937 ";; -- basic block %d from %d to %d -- %s reload\n",
4938 bb
->index
, INSN_UID (head
), INSN_UID (tail
),
4939 (reload_completed
? "after" : "before"));
4940 fprintf (sched_dump
,
4941 ";; ======================================================\n");
4942 fprintf (sched_dump
, "\n");
4945 /* Unlink basic block notes and labels and saves them, so they
4946 can be easily restored. We unlink basic block notes in EBB to
4947 provide back-compatibility with the previous code, as target backends
4948 assume, that there'll be only instructions between
4949 current_sched_info->{head and tail}. We restore these notes as soon
4951 FIRST (LAST) is the first (last) basic block in the ebb.
4952 NB: In usual case (FIRST == LAST) nothing is really done. */
4954 unlink_bb_notes (basic_block first
, basic_block last
)
4956 /* We DON'T unlink basic block notes of the first block in the ebb. */
4960 bb_header
= XNEWVEC (rtx
, last_basic_block
);
4962 /* Make a sentinel. */
4963 if (last
->next_bb
!= EXIT_BLOCK_PTR
)
4964 bb_header
[last
->next_bb
->index
] = 0;
4966 first
= first
->next_bb
;
4969 rtx prev
, label
, note
, next
;
4971 label
= BB_HEAD (last
);
4972 if (LABEL_P (label
))
4973 note
= NEXT_INSN (label
);
4976 gcc_assert (NOTE_INSN_BASIC_BLOCK_P (note
));
4978 prev
= PREV_INSN (label
);
4979 next
= NEXT_INSN (note
);
4980 gcc_assert (prev
&& next
);
4982 NEXT_INSN (prev
) = next
;
4983 PREV_INSN (next
) = prev
;
4985 bb_header
[last
->index
] = label
;
4990 last
= last
->prev_bb
;
4995 /* Restore basic block notes.
4996 FIRST is the first basic block in the ebb. */
4998 restore_bb_notes (basic_block first
)
5003 /* We DON'T unlink basic block notes of the first block in the ebb. */
5004 first
= first
->next_bb
;
5005 /* Remember: FIRST is actually a second basic block in the ebb. */
5007 while (first
!= EXIT_BLOCK_PTR
5008 && bb_header
[first
->index
])
5010 rtx prev
, label
, note
, next
;
5012 label
= bb_header
[first
->index
];
5013 prev
= PREV_INSN (label
);
5014 next
= NEXT_INSN (prev
);
5016 if (LABEL_P (label
))
5017 note
= NEXT_INSN (label
);
5020 gcc_assert (NOTE_INSN_BASIC_BLOCK_P (note
));
5022 bb_header
[first
->index
] = 0;
5024 NEXT_INSN (prev
) = label
;
5025 NEXT_INSN (note
) = next
;
5026 PREV_INSN (next
) = note
;
5028 first
= first
->next_bb
;
5036 Fix CFG after both in- and inter-block movement of
5037 control_flow_insn_p JUMP. */
5039 fix_jump_move (rtx jump
)
5041 basic_block bb
, jump_bb
, jump_bb_next
;
5043 bb
= BLOCK_FOR_INSN (PREV_INSN (jump
));
5044 jump_bb
= BLOCK_FOR_INSN (jump
);
5045 jump_bb_next
= jump_bb
->next_bb
;
5047 gcc_assert (common_sched_info
->sched_pass_id
== SCHED_EBB_PASS
5048 || IS_SPECULATION_BRANCHY_CHECK_P (jump
));
5050 if (!NOTE_INSN_BASIC_BLOCK_P (BB_END (jump_bb_next
)))
5051 /* if jump_bb_next is not empty. */
5052 BB_END (jump_bb
) = BB_END (jump_bb_next
);
5054 if (BB_END (bb
) != PREV_INSN (jump
))
5055 /* Then there are instruction after jump that should be placed
5057 BB_END (jump_bb_next
) = BB_END (bb
);
5059 /* Otherwise jump_bb_next is empty. */
5060 BB_END (jump_bb_next
) = NEXT_INSN (BB_HEAD (jump_bb_next
));
5062 /* To make assertion in move_insn happy. */
5063 BB_END (bb
) = PREV_INSN (jump
);
5065 update_bb_for_insn (jump_bb_next
);
5068 /* Fix CFG after interblock movement of control_flow_insn_p JUMP. */
5070 move_block_after_check (rtx jump
)
5072 basic_block bb
, jump_bb
, jump_bb_next
;
5075 bb
= BLOCK_FOR_INSN (PREV_INSN (jump
));
5076 jump_bb
= BLOCK_FOR_INSN (jump
);
5077 jump_bb_next
= jump_bb
->next_bb
;
5079 update_bb_for_insn (jump_bb
);
5081 gcc_assert (IS_SPECULATION_CHECK_P (jump
)
5082 || IS_SPECULATION_CHECK_P (BB_END (jump_bb_next
)));
5084 unlink_block (jump_bb_next
);
5085 link_block (jump_bb_next
, bb
);
5089 move_succs (&(jump_bb
->succs
), bb
);
5090 move_succs (&(jump_bb_next
->succs
), jump_bb
);
5091 move_succs (&t
, jump_bb_next
);
5093 df_mark_solutions_dirty ();
5095 common_sched_info
->fix_recovery_cfg
5096 (bb
->index
, jump_bb
->index
, jump_bb_next
->index
);
5099 /* Helper function for move_block_after_check.
5100 This functions attaches edge vector pointed to by SUCCSP to
5103 move_succs (VEC(edge
,gc
) **succsp
, basic_block to
)
5108 gcc_assert (to
->succs
== 0);
5110 to
->succs
= *succsp
;
5112 FOR_EACH_EDGE (e
, ei
, to
->succs
)
5118 /* Remove INSN from the instruction stream.
5119 INSN should have any dependencies. */
5121 sched_remove_insn (rtx insn
)
5123 sd_finish_insn (insn
);
5125 change_queue_index (insn
, QUEUE_NOWHERE
);
5126 current_sched_info
->add_remove_insn (insn
, 1);
5130 /* Clear priorities of all instructions, that are forward dependent on INSN.
5131 Store in vector pointed to by ROOTS_PTR insns on which priority () should
5132 be invoked to initialize all cleared priorities. */
5134 clear_priorities (rtx insn
, rtx_vec_t
*roots_ptr
)
5136 sd_iterator_def sd_it
;
5138 bool insn_is_root_p
= true;
5140 gcc_assert (QUEUE_INDEX (insn
) != QUEUE_SCHEDULED
);
5142 FOR_EACH_DEP (insn
, SD_LIST_BACK
, sd_it
, dep
)
5144 rtx pro
= DEP_PRO (dep
);
5146 if (INSN_PRIORITY_STATUS (pro
) >= 0
5147 && QUEUE_INDEX (insn
) != QUEUE_SCHEDULED
)
5149 /* If DEP doesn't contribute to priority then INSN itself should
5150 be added to priority roots. */
5151 if (contributes_to_priority_p (dep
))
5152 insn_is_root_p
= false;
5154 INSN_PRIORITY_STATUS (pro
) = -1;
5155 clear_priorities (pro
, roots_ptr
);
5160 VEC_safe_push (rtx
, heap
, *roots_ptr
, insn
);
5163 /* Recompute priorities of instructions, whose priorities might have been
5164 changed. ROOTS is a vector of instructions whose priority computation will
5165 trigger initialization of all cleared priorities. */
5167 calc_priorities (rtx_vec_t roots
)
5172 FOR_EACH_VEC_ELT (rtx
, roots
, i
, insn
)
5177 /* Add dependences between JUMP and other instructions in the recovery
5178 block. INSN is the first insn the recovery block. */
5180 add_jump_dependencies (rtx insn
, rtx jump
)
5184 insn
= NEXT_INSN (insn
);
5188 if (dep_list_size (insn
) == 0)
5190 dep_def _new_dep
, *new_dep
= &_new_dep
;
5192 init_dep (new_dep
, insn
, jump
, REG_DEP_ANTI
);
5193 sd_add_dep (new_dep
, false);
5198 gcc_assert (!sd_lists_empty_p (jump
, SD_LIST_BACK
));
5201 /* Return the NOTE_INSN_BASIC_BLOCK of BB. */
5203 bb_note (basic_block bb
)
5207 note
= BB_HEAD (bb
);
5209 note
= NEXT_INSN (note
);
5211 gcc_assert (NOTE_INSN_BASIC_BLOCK_P (note
));
5215 #ifdef ENABLE_CHECKING
5216 /* Helper function for check_cfg.
5217 Return nonzero, if edge vector pointed to by EL has edge with TYPE in
5220 has_edge_p (VEC(edge
,gc
) *el
, int type
)
5225 FOR_EACH_EDGE (e
, ei
, el
)
5226 if (e
->flags
& type
)
5231 /* Search back, starting at INSN, for an insn that is not a
5232 NOTE_INSN_VAR_LOCATION. Don't search beyond HEAD, and return it if
5233 no such insn can be found. */
5235 prev_non_location_insn (rtx insn
, rtx head
)
5237 while (insn
!= head
&& NOTE_P (insn
)
5238 && NOTE_KIND (insn
) == NOTE_INSN_VAR_LOCATION
)
5239 insn
= PREV_INSN (insn
);
5244 /* Check few properties of CFG between HEAD and TAIL.
5245 If HEAD (TAIL) is NULL check from the beginning (till the end) of the
5246 instruction stream. */
5248 check_cfg (rtx head
, rtx tail
)
5252 int not_first
= 0, not_last
;
5255 head
= get_insns ();
5257 tail
= get_last_insn ();
5258 next_tail
= NEXT_INSN (tail
);
5262 not_last
= head
!= tail
;
5265 gcc_assert (NEXT_INSN (PREV_INSN (head
)) == head
);
5267 gcc_assert (PREV_INSN (NEXT_INSN (head
)) == head
);
5270 || (NOTE_INSN_BASIC_BLOCK_P (head
)
5272 || (not_first
&& !LABEL_P (PREV_INSN (head
))))))
5274 gcc_assert (bb
== 0);
5275 bb
= BLOCK_FOR_INSN (head
);
5277 gcc_assert (BB_HEAD (bb
) == head
);
5279 /* This is the case of jump table. See inside_basic_block_p (). */
5280 gcc_assert (LABEL_P (head
) && !inside_basic_block_p (head
));
5285 gcc_assert (!inside_basic_block_p (head
));
5286 head
= NEXT_INSN (head
);
5290 gcc_assert (inside_basic_block_p (head
)
5292 gcc_assert (BLOCK_FOR_INSN (head
) == bb
);
5296 head
= NEXT_INSN (head
);
5297 gcc_assert (NOTE_INSN_BASIC_BLOCK_P (head
));
5301 if (control_flow_insn_p (head
))
5303 gcc_assert (prev_non_location_insn (BB_END (bb
), head
)
5306 if (any_uncondjump_p (head
))
5307 gcc_assert (EDGE_COUNT (bb
->succs
) == 1
5308 && BARRIER_P (NEXT_INSN (head
)));
5309 else if (any_condjump_p (head
))
5310 gcc_assert (/* Usual case. */
5311 (EDGE_COUNT (bb
->succs
) > 1
5312 && !BARRIER_P (NEXT_INSN (head
)))
5313 /* Or jump to the next instruction. */
5314 || (EDGE_COUNT (bb
->succs
) == 1
5315 && (BB_HEAD (EDGE_I (bb
->succs
, 0)->dest
)
5316 == JUMP_LABEL (head
))));
5318 if (BB_END (bb
) == head
)
5320 if (EDGE_COUNT (bb
->succs
) > 1)
5321 gcc_assert (control_flow_insn_p (prev_non_location_insn
5322 (head
, BB_HEAD (bb
)))
5323 || has_edge_p (bb
->succs
, EDGE_COMPLEX
));
5327 head
= NEXT_INSN (head
);
5333 while (head
!= next_tail
);
5335 gcc_assert (bb
== 0);
5338 #endif /* ENABLE_CHECKING */
5340 /* Extend per basic block data structures. */
5344 if (sched_scan_info
->extend_bb
)
5345 sched_scan_info
->extend_bb ();
5348 /* Init data for BB. */
5350 init_bb (basic_block bb
)
5352 if (sched_scan_info
->init_bb
)
5353 sched_scan_info
->init_bb (bb
);
5356 /* Extend per insn data structures. */
5360 if (sched_scan_info
->extend_insn
)
5361 sched_scan_info
->extend_insn ();
5364 /* Init data structures for INSN. */
5366 init_insn (rtx insn
)
5368 if (sched_scan_info
->init_insn
)
5369 sched_scan_info
->init_insn (insn
);
5372 /* Init all insns in BB. */
5374 init_insns_in_bb (basic_block bb
)
5378 FOR_BB_INSNS (bb
, insn
)
5382 /* A driver function to add a set of basic blocks (BBS),
5383 a single basic block (BB), a set of insns (INSNS) or a single insn (INSN)
5384 to the scheduling region. */
5386 sched_scan (const struct sched_scan_info_def
*ssi
,
5387 bb_vec_t bbs
, basic_block bb
, insn_vec_t insns
, rtx insn
)
5389 sched_scan_info
= ssi
;
5391 if (bbs
!= NULL
|| bb
!= NULL
)
5400 FOR_EACH_VEC_ELT (basic_block
, bbs
, i
, x
)
5415 FOR_EACH_VEC_ELT (basic_block
, bbs
, i
, x
)
5416 init_insns_in_bb (x
);
5420 init_insns_in_bb (bb
);
5427 FOR_EACH_VEC_ELT (rtx
, insns
, i
, x
)
5436 /* Extend data structures for logical insn UID. */
5438 luids_extend_insn (void)
5440 int new_luids_max_uid
= get_max_uid () + 1;
5442 VEC_safe_grow_cleared (int, heap
, sched_luids
, new_luids_max_uid
);
5445 /* Initialize LUID for INSN. */
5447 luids_init_insn (rtx insn
)
5449 int i
= INSN_P (insn
) ? 1 : common_sched_info
->luid_for_non_insn (insn
);
5454 luid
= sched_max_luid
;
5455 sched_max_luid
+= i
;
5460 SET_INSN_LUID (insn
, luid
);
5463 /* Initialize luids for BBS, BB, INSNS and INSN.
5464 The hook common_sched_info->luid_for_non_insn () is used to determine
5465 if notes, labels, etc. need luids. */
5467 sched_init_luids (bb_vec_t bbs
, basic_block bb
, insn_vec_t insns
, rtx insn
)
5469 const struct sched_scan_info_def ssi
=
5471 NULL
, /* extend_bb */
5473 luids_extend_insn
, /* extend_insn */
5474 luids_init_insn
/* init_insn */
5477 sched_scan (&ssi
, bbs
, bb
, insns
, insn
);
5482 sched_finish_luids (void)
5484 VEC_free (int, heap
, sched_luids
);
5488 /* Return logical uid of INSN. Helpful while debugging. */
5490 insn_luid (rtx insn
)
5492 return INSN_LUID (insn
);
5495 /* Extend per insn data in the target. */
5497 sched_extend_target (void)
5499 if (targetm
.sched
.h_i_d_extended
)
5500 targetm
.sched
.h_i_d_extended ();
5503 /* Extend global scheduler structures (those, that live across calls to
5504 schedule_block) to include information about just emitted INSN. */
5508 int reserve
= (get_max_uid () + 1
5509 - VEC_length (haifa_insn_data_def
, h_i_d
));
5511 && ! VEC_space (haifa_insn_data_def
, h_i_d
, reserve
))
5513 VEC_safe_grow_cleared (haifa_insn_data_def
, heap
, h_i_d
,
5514 3 * get_max_uid () / 2);
5515 sched_extend_target ();
5519 /* Initialize h_i_d entry of the INSN with default values.
5520 Values, that are not explicitly initialized here, hold zero. */
5522 init_h_i_d (rtx insn
)
5524 if (INSN_LUID (insn
) > 0)
5526 INSN_COST (insn
) = -1;
5527 QUEUE_INDEX (insn
) = QUEUE_NOWHERE
;
5528 INSN_TICK (insn
) = INVALID_TICK
;
5529 INTER_TICK (insn
) = INVALID_TICK
;
5530 TODO_SPEC (insn
) = HARD_DEP
;
5534 /* Initialize haifa_insn_data for BBS, BB, INSNS and INSN. */
5536 haifa_init_h_i_d (bb_vec_t bbs
, basic_block bb
, insn_vec_t insns
, rtx insn
)
5538 const struct sched_scan_info_def ssi
=
5540 NULL
, /* extend_bb */
5542 extend_h_i_d
, /* extend_insn */
5543 init_h_i_d
/* init_insn */
5546 sched_scan (&ssi
, bbs
, bb
, insns
, insn
);
5549 /* Finalize haifa_insn_data. */
5551 haifa_finish_h_i_d (void)
5554 haifa_insn_data_t data
;
5555 struct reg_use_data
*use
, *next
;
5557 FOR_EACH_VEC_ELT (haifa_insn_data_def
, h_i_d
, i
, data
)
5559 if (data
->reg_pressure
!= NULL
)
5560 free (data
->reg_pressure
);
5561 for (use
= data
->reg_use_list
; use
!= NULL
; use
= next
)
5563 next
= use
->next_insn_use
;
5567 VEC_free (haifa_insn_data_def
, heap
, h_i_d
);
5570 /* Init data for the new insn INSN. */
5572 haifa_init_insn (rtx insn
)
5574 gcc_assert (insn
!= NULL
);
5576 sched_init_luids (NULL
, NULL
, NULL
, insn
);
5577 sched_extend_target ();
5578 sched_deps_init (false);
5579 haifa_init_h_i_d (NULL
, NULL
, NULL
, insn
);
5581 if (adding_bb_to_current_region_p
)
5583 sd_init_insn (insn
);
5585 /* Extend dependency caches by one element. */
5586 extend_dependency_caches (1, false);
5590 /* Init data for the new basic block BB which comes after AFTER. */
5592 haifa_init_only_bb (basic_block bb
, basic_block after
)
5594 gcc_assert (bb
!= NULL
);
5598 if (common_sched_info
->add_block
)
5599 /* This changes only data structures of the front-end. */
5600 common_sched_info
->add_block (bb
, after
);
5603 /* A generic version of sched_split_block (). */
5605 sched_split_block_1 (basic_block first_bb
, rtx after
)
5609 e
= split_block (first_bb
, after
);
5610 gcc_assert (e
->src
== first_bb
);
5612 /* sched_split_block emits note if *check == BB_END. Probably it
5613 is better to rip that note off. */
5618 /* A generic version of sched_create_empty_bb (). */
5620 sched_create_empty_bb_1 (basic_block after
)
5622 return create_empty_bb (after
);
5625 /* Insert PAT as an INSN into the schedule and update the necessary data
5626 structures to account for it. */
5628 sched_emit_insn (rtx pat
)
5630 rtx insn
= emit_insn_after (pat
, last_scheduled_insn
);
5631 last_scheduled_insn
= insn
;
5632 haifa_init_insn (insn
);
5636 /* This function returns a candidate satisfying dispatch constraints from
5640 ready_remove_first_dispatch (struct ready_list
*ready
)
5643 rtx insn
= ready_element (ready
, 0);
5645 if (ready
->n_ready
== 1
5646 || INSN_CODE (insn
) < 0
5648 || !active_insn_p (insn
)
5649 || targetm
.sched
.dispatch (insn
, FITS_DISPATCH_WINDOW
))
5650 return ready_remove_first (ready
);
5652 for (i
= 1; i
< ready
->n_ready
; i
++)
5654 insn
= ready_element (ready
, i
);
5656 if (INSN_CODE (insn
) < 0
5658 || !active_insn_p (insn
))
5661 if (targetm
.sched
.dispatch (insn
, FITS_DISPATCH_WINDOW
))
5663 /* Return ith element of ready. */
5664 insn
= ready_remove (ready
, i
);
5669 if (targetm
.sched
.dispatch (NULL_RTX
, DISPATCH_VIOLATION
))
5670 return ready_remove_first (ready
);
5672 for (i
= 1; i
< ready
->n_ready
; i
++)
5674 insn
= ready_element (ready
, i
);
5676 if (INSN_CODE (insn
) < 0
5678 || !active_insn_p (insn
))
5681 /* Return i-th element of ready. */
5682 if (targetm
.sched
.dispatch (insn
, IS_CMP
))
5683 return ready_remove (ready
, i
);
5686 return ready_remove_first (ready
);
5689 /* Get number of ready insn in the ready list. */
5692 number_in_ready (void)
5694 return ready
.n_ready
;
5697 /* Get number of ready's in the ready list. */
5700 get_ready_element (int i
)
5702 return ready_element (&ready
, i
);
5705 #endif /* INSN_SCHEDULING */