2011-02-19 François Dumont <francois.cppdevs@free.fr>
[official-gcc.git] / gcc / graphite-sese-to-poly.c
blob064ded3e2f03f57ab39bf46417aca5b4661b0bcf
1 /* Conversion of SESE regions to Polyhedra.
2 Copyright (C) 2009, 2010, 2011 Free Software Foundation, Inc.
3 Contributed by Sebastian Pop <sebastian.pop@amd.com>.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3, or (at your option)
10 any later version.
12 GCC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "tree-flow.h"
25 #include "tree-dump.h"
26 #include "cfgloop.h"
27 #include "tree-chrec.h"
28 #include "tree-data-ref.h"
29 #include "tree-scalar-evolution.h"
30 #include "domwalk.h"
31 #include "sese.h"
33 #ifdef HAVE_cloog
34 #include "ppl_c.h"
35 #include "graphite-ppl.h"
36 #include "graphite-poly.h"
37 #include "graphite-sese-to-poly.h"
39 /* Returns the index of the PHI argument defined in the outermost
40 loop. */
42 static size_t
43 phi_arg_in_outermost_loop (gimple phi)
45 loop_p loop = gimple_bb (phi)->loop_father;
46 size_t i, res = 0;
48 for (i = 0; i < gimple_phi_num_args (phi); i++)
49 if (!flow_bb_inside_loop_p (loop, gimple_phi_arg_edge (phi, i)->src))
51 loop = gimple_phi_arg_edge (phi, i)->src->loop_father;
52 res = i;
55 return res;
58 /* Removes a simple copy phi node "RES = phi (INIT, RES)" at position
59 PSI by inserting on the loop ENTRY edge assignment "RES = INIT". */
61 static void
62 remove_simple_copy_phi (gimple_stmt_iterator *psi)
64 gimple phi = gsi_stmt (*psi);
65 tree res = gimple_phi_result (phi);
66 size_t entry = phi_arg_in_outermost_loop (phi);
67 tree init = gimple_phi_arg_def (phi, entry);
68 gimple stmt = gimple_build_assign (res, init);
69 edge e = gimple_phi_arg_edge (phi, entry);
71 remove_phi_node (psi, false);
72 gsi_insert_on_edge_immediate (e, stmt);
73 SSA_NAME_DEF_STMT (res) = stmt;
76 /* Removes an invariant phi node at position PSI by inserting on the
77 loop ENTRY edge the assignment RES = INIT. */
79 static void
80 remove_invariant_phi (sese region, gimple_stmt_iterator *psi)
82 gimple phi = gsi_stmt (*psi);
83 loop_p loop = loop_containing_stmt (phi);
84 tree res = gimple_phi_result (phi);
85 tree scev = scalar_evolution_in_region (region, loop, res);
86 size_t entry = phi_arg_in_outermost_loop (phi);
87 edge e = gimple_phi_arg_edge (phi, entry);
88 tree var;
89 gimple stmt;
90 gimple_seq stmts;
91 gimple_stmt_iterator gsi;
93 if (tree_contains_chrecs (scev, NULL))
94 scev = gimple_phi_arg_def (phi, entry);
96 var = force_gimple_operand (scev, &stmts, true, NULL_TREE);
97 stmt = gimple_build_assign (res, var);
98 remove_phi_node (psi, false);
100 if (!stmts)
101 stmts = gimple_seq_alloc ();
103 gsi = gsi_last (stmts);
104 gsi_insert_after (&gsi, stmt, GSI_NEW_STMT);
105 gsi_insert_seq_on_edge (e, stmts);
106 gsi_commit_edge_inserts ();
107 SSA_NAME_DEF_STMT (res) = stmt;
110 /* Returns true when the phi node at PSI is of the form "a = phi (a, x)". */
112 static inline bool
113 simple_copy_phi_p (gimple phi)
115 tree res;
117 if (gimple_phi_num_args (phi) != 2)
118 return false;
120 res = gimple_phi_result (phi);
121 return (res == gimple_phi_arg_def (phi, 0)
122 || res == gimple_phi_arg_def (phi, 1));
125 /* Returns true when the phi node at position PSI is a reduction phi
126 node in REGION. Otherwise moves the pointer PSI to the next phi to
127 be considered. */
129 static bool
130 reduction_phi_p (sese region, gimple_stmt_iterator *psi)
132 loop_p loop;
133 gimple phi = gsi_stmt (*psi);
134 tree res = gimple_phi_result (phi);
136 loop = loop_containing_stmt (phi);
138 if (simple_copy_phi_p (phi))
140 /* PRE introduces phi nodes like these, for an example,
141 see id-5.f in the fortran graphite testsuite:
143 # prephitmp.85_265 = PHI <prephitmp.85_258(33), prephitmp.85_265(18)>
145 remove_simple_copy_phi (psi);
146 return false;
149 if (scev_analyzable_p (res, region))
151 tree scev = scalar_evolution_in_region (region, loop, res);
153 if (evolution_function_is_invariant_p (scev, loop->num))
154 remove_invariant_phi (region, psi);
155 else
156 gsi_next (psi);
158 return false;
161 /* All the other cases are considered reductions. */
162 return true;
165 /* Store the GRAPHITE representation of BB. */
167 static gimple_bb_p
168 new_gimple_bb (basic_block bb, VEC (data_reference_p, heap) *drs)
170 struct gimple_bb *gbb;
172 gbb = XNEW (struct gimple_bb);
173 bb->aux = gbb;
174 GBB_BB (gbb) = bb;
175 GBB_DATA_REFS (gbb) = drs;
176 GBB_CONDITIONS (gbb) = NULL;
177 GBB_CONDITION_CASES (gbb) = NULL;
179 return gbb;
182 static void
183 free_data_refs_aux (VEC (data_reference_p, heap) *datarefs)
185 unsigned int i;
186 struct data_reference *dr;
188 FOR_EACH_VEC_ELT (data_reference_p, datarefs, i, dr)
189 if (dr->aux)
191 base_alias_pair *bap = (base_alias_pair *)(dr->aux);
193 if (bap->alias_set)
194 free (bap->alias_set);
196 free (bap);
197 dr->aux = NULL;
200 /* Frees GBB. */
202 static void
203 free_gimple_bb (struct gimple_bb *gbb)
205 free_data_refs_aux (GBB_DATA_REFS (gbb));
206 free_data_refs (GBB_DATA_REFS (gbb));
208 VEC_free (gimple, heap, GBB_CONDITIONS (gbb));
209 VEC_free (gimple, heap, GBB_CONDITION_CASES (gbb));
210 GBB_BB (gbb)->aux = 0;
211 XDELETE (gbb);
214 /* Deletes all gimple bbs in SCOP. */
216 static void
217 remove_gbbs_in_scop (scop_p scop)
219 int i;
220 poly_bb_p pbb;
222 FOR_EACH_VEC_ELT (poly_bb_p, SCOP_BBS (scop), i, pbb)
223 free_gimple_bb (PBB_BLACK_BOX (pbb));
226 /* Deletes all scops in SCOPS. */
228 void
229 free_scops (VEC (scop_p, heap) *scops)
231 int i;
232 scop_p scop;
234 FOR_EACH_VEC_ELT (scop_p, scops, i, scop)
236 remove_gbbs_in_scop (scop);
237 free_sese (SCOP_REGION (scop));
238 free_scop (scop);
241 VEC_free (scop_p, heap, scops);
244 /* Same as outermost_loop_in_sese, returns the outermost loop
245 containing BB in REGION, but makes sure that the returned loop
246 belongs to the REGION, and so this returns the first loop in the
247 REGION when the loop containing BB does not belong to REGION. */
249 static loop_p
250 outermost_loop_in_sese_1 (sese region, basic_block bb)
252 loop_p nest = outermost_loop_in_sese (region, bb);
254 if (loop_in_sese_p (nest, region))
255 return nest;
257 /* When the basic block BB does not belong to a loop in the region,
258 return the first loop in the region. */
259 nest = nest->inner;
260 while (nest)
261 if (loop_in_sese_p (nest, region))
262 break;
263 else
264 nest = nest->next;
266 gcc_assert (nest);
267 return nest;
270 /* Generates a polyhedral black box only if the bb contains interesting
271 information. */
273 static gimple_bb_p
274 try_generate_gimple_bb (scop_p scop, basic_block bb)
276 VEC (data_reference_p, heap) *drs = VEC_alloc (data_reference_p, heap, 5);
277 sese region = SCOP_REGION (scop);
278 loop_p nest = outermost_loop_in_sese_1 (region, bb);
279 gimple_stmt_iterator gsi;
281 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
283 gimple stmt = gsi_stmt (gsi);
284 loop_p loop;
286 if (is_gimple_debug (stmt))
287 continue;
289 loop = loop_containing_stmt (stmt);
290 if (!loop_in_sese_p (loop, region))
291 loop = nest;
293 graphite_find_data_references_in_stmt (nest, loop, stmt, &drs);
296 return new_gimple_bb (bb, drs);
299 /* Returns true if all predecessors of BB, that are not dominated by BB, are
300 marked in MAP. The predecessors dominated by BB are loop latches and will
301 be handled after BB. */
303 static bool
304 all_non_dominated_preds_marked_p (basic_block bb, sbitmap map)
306 edge e;
307 edge_iterator ei;
309 FOR_EACH_EDGE (e, ei, bb->preds)
310 if (!TEST_BIT (map, e->src->index)
311 && !dominated_by_p (CDI_DOMINATORS, e->src, bb))
312 return false;
314 return true;
317 /* Compare the depth of two basic_block's P1 and P2. */
319 static int
320 compare_bb_depths (const void *p1, const void *p2)
322 const_basic_block const bb1 = *(const_basic_block const*)p1;
323 const_basic_block const bb2 = *(const_basic_block const*)p2;
324 int d1 = loop_depth (bb1->loop_father);
325 int d2 = loop_depth (bb2->loop_father);
327 if (d1 < d2)
328 return 1;
330 if (d1 > d2)
331 return -1;
333 return 0;
336 /* Sort the basic blocks from DOM such that the first are the ones at
337 a deepest loop level. */
339 static void
340 graphite_sort_dominated_info (VEC (basic_block, heap) *dom)
342 VEC_qsort (basic_block, dom, compare_bb_depths);
345 /* Recursive helper function for build_scops_bbs. */
347 static void
348 build_scop_bbs_1 (scop_p scop, sbitmap visited, basic_block bb)
350 sese region = SCOP_REGION (scop);
351 VEC (basic_block, heap) *dom;
352 poly_bb_p pbb;
354 if (TEST_BIT (visited, bb->index)
355 || !bb_in_sese_p (bb, region))
356 return;
358 pbb = new_poly_bb (scop, try_generate_gimple_bb (scop, bb));
359 VEC_safe_push (poly_bb_p, heap, SCOP_BBS (scop), pbb);
360 SET_BIT (visited, bb->index);
362 dom = get_dominated_by (CDI_DOMINATORS, bb);
364 if (dom == NULL)
365 return;
367 graphite_sort_dominated_info (dom);
369 while (!VEC_empty (basic_block, dom))
371 int i;
372 basic_block dom_bb;
374 FOR_EACH_VEC_ELT (basic_block, dom, i, dom_bb)
375 if (all_non_dominated_preds_marked_p (dom_bb, visited))
377 build_scop_bbs_1 (scop, visited, dom_bb);
378 VEC_unordered_remove (basic_block, dom, i);
379 break;
383 VEC_free (basic_block, heap, dom);
386 /* Gather the basic blocks belonging to the SCOP. */
388 static void
389 build_scop_bbs (scop_p scop)
391 sbitmap visited = sbitmap_alloc (last_basic_block);
392 sese region = SCOP_REGION (scop);
394 sbitmap_zero (visited);
395 build_scop_bbs_1 (scop, visited, SESE_ENTRY_BB (region));
396 sbitmap_free (visited);
399 /* Converts the STATIC_SCHEDULE of PBB into a scattering polyhedron.
400 We generate SCATTERING_DIMENSIONS scattering dimensions.
402 CLooG 0.15.0 and previous versions require, that all
403 scattering functions of one CloogProgram have the same number of
404 scattering dimensions, therefore we allow to specify it. This
405 should be removed in future versions of CLooG.
407 The scattering polyhedron consists of these dimensions: scattering,
408 loop_iterators, parameters.
410 Example:
412 | scattering_dimensions = 5
413 | used_scattering_dimensions = 3
414 | nb_iterators = 1
415 | scop_nb_params = 2
417 | Schedule:
419 | 4 5
421 | Scattering polyhedron:
423 | scattering: {s1, s2, s3, s4, s5}
424 | loop_iterators: {i}
425 | parameters: {p1, p2}
427 | s1 s2 s3 s4 s5 i p1 p2 1
428 | 1 0 0 0 0 0 0 0 -4 = 0
429 | 0 1 0 0 0 -1 0 0 0 = 0
430 | 0 0 1 0 0 0 0 0 -5 = 0 */
432 static void
433 build_pbb_scattering_polyhedrons (ppl_Linear_Expression_t static_schedule,
434 poly_bb_p pbb, int scattering_dimensions)
436 int i;
437 scop_p scop = PBB_SCOP (pbb);
438 int nb_iterators = pbb_dim_iter_domain (pbb);
439 int used_scattering_dimensions = nb_iterators * 2 + 1;
440 int nb_params = scop_nb_params (scop);
441 ppl_Coefficient_t c;
442 ppl_dimension_type dim = scattering_dimensions + nb_iterators + nb_params;
443 mpz_t v;
445 gcc_assert (scattering_dimensions >= used_scattering_dimensions);
447 mpz_init (v);
448 ppl_new_Coefficient (&c);
449 PBB_TRANSFORMED (pbb) = poly_scattering_new ();
450 ppl_new_C_Polyhedron_from_space_dimension
451 (&PBB_TRANSFORMED_SCATTERING (pbb), dim, 0);
453 PBB_NB_SCATTERING_TRANSFORM (pbb) = scattering_dimensions;
455 for (i = 0; i < scattering_dimensions; i++)
457 ppl_Constraint_t cstr;
458 ppl_Linear_Expression_t expr;
460 ppl_new_Linear_Expression_with_dimension (&expr, dim);
461 mpz_set_si (v, 1);
462 ppl_assign_Coefficient_from_mpz_t (c, v);
463 ppl_Linear_Expression_add_to_coefficient (expr, i, c);
465 /* Textual order inside this loop. */
466 if ((i % 2) == 0)
468 ppl_Linear_Expression_coefficient (static_schedule, i / 2, c);
469 ppl_Coefficient_to_mpz_t (c, v);
470 mpz_neg (v, v);
471 ppl_assign_Coefficient_from_mpz_t (c, v);
472 ppl_Linear_Expression_add_to_inhomogeneous (expr, c);
475 /* Iterations of this loop. */
476 else /* if ((i % 2) == 1) */
478 int loop = (i - 1) / 2;
480 mpz_set_si (v, -1);
481 ppl_assign_Coefficient_from_mpz_t (c, v);
482 ppl_Linear_Expression_add_to_coefficient
483 (expr, scattering_dimensions + loop, c);
486 ppl_new_Constraint (&cstr, expr, PPL_CONSTRAINT_TYPE_EQUAL);
487 ppl_Polyhedron_add_constraint (PBB_TRANSFORMED_SCATTERING (pbb), cstr);
488 ppl_delete_Linear_Expression (expr);
489 ppl_delete_Constraint (cstr);
492 mpz_clear (v);
493 ppl_delete_Coefficient (c);
495 PBB_ORIGINAL (pbb) = poly_scattering_copy (PBB_TRANSFORMED (pbb));
498 /* Build for BB the static schedule.
500 The static schedule is a Dewey numbering of the abstract syntax
501 tree: http://en.wikipedia.org/wiki/Dewey_Decimal_Classification
503 The following example informally defines the static schedule:
506 for (i: ...)
508 for (j: ...)
514 for (k: ...)
522 Static schedules for A to F:
524 DEPTH
525 0 1 2
527 B 1 0 0
528 C 1 0 1
529 D 1 1 0
530 E 1 1 1
534 static void
535 build_scop_scattering (scop_p scop)
537 int i;
538 poly_bb_p pbb;
539 gimple_bb_p previous_gbb = NULL;
540 ppl_Linear_Expression_t static_schedule;
541 ppl_Coefficient_t c;
542 mpz_t v;
544 mpz_init (v);
545 ppl_new_Coefficient (&c);
546 ppl_new_Linear_Expression (&static_schedule);
548 /* We have to start schedules at 0 on the first component and
549 because we cannot compare_prefix_loops against a previous loop,
550 prefix will be equal to zero, and that index will be
551 incremented before copying. */
552 mpz_set_si (v, -1);
553 ppl_assign_Coefficient_from_mpz_t (c, v);
554 ppl_Linear_Expression_add_to_coefficient (static_schedule, 0, c);
556 FOR_EACH_VEC_ELT (poly_bb_p, SCOP_BBS (scop), i, pbb)
558 gimple_bb_p gbb = PBB_BLACK_BOX (pbb);
559 ppl_Linear_Expression_t common;
560 int prefix;
561 int nb_scat_dims = pbb_dim_iter_domain (pbb) * 2 + 1;
563 if (previous_gbb)
564 prefix = nb_common_loops (SCOP_REGION (scop), previous_gbb, gbb);
565 else
566 prefix = 0;
568 previous_gbb = gbb;
569 ppl_new_Linear_Expression_with_dimension (&common, prefix + 1);
570 ppl_assign_Linear_Expression_from_Linear_Expression (common,
571 static_schedule);
573 mpz_set_si (v, 1);
574 ppl_assign_Coefficient_from_mpz_t (c, v);
575 ppl_Linear_Expression_add_to_coefficient (common, prefix, c);
576 ppl_assign_Linear_Expression_from_Linear_Expression (static_schedule,
577 common);
579 build_pbb_scattering_polyhedrons (common, pbb, nb_scat_dims);
581 ppl_delete_Linear_Expression (common);
584 mpz_clear (v);
585 ppl_delete_Coefficient (c);
586 ppl_delete_Linear_Expression (static_schedule);
589 /* Add the value K to the dimension D of the linear expression EXPR. */
591 static void
592 add_value_to_dim (ppl_dimension_type d, ppl_Linear_Expression_t expr,
593 mpz_t k)
595 mpz_t val;
596 ppl_Coefficient_t coef;
598 ppl_new_Coefficient (&coef);
599 ppl_Linear_Expression_coefficient (expr, d, coef);
600 mpz_init (val);
601 ppl_Coefficient_to_mpz_t (coef, val);
603 mpz_add (val, val, k);
605 ppl_assign_Coefficient_from_mpz_t (coef, val);
606 ppl_Linear_Expression_add_to_coefficient (expr, d, coef);
607 mpz_clear (val);
608 ppl_delete_Coefficient (coef);
611 /* In the context of scop S, scan E, the right hand side of a scalar
612 evolution function in loop VAR, and translate it to a linear
613 expression EXPR. */
615 static void
616 scan_tree_for_params_right_scev (sese s, tree e, int var,
617 ppl_Linear_Expression_t expr)
619 if (expr)
621 loop_p loop = get_loop (var);
622 ppl_dimension_type l = sese_loop_depth (s, loop) - 1;
623 mpz_t val;
625 /* Scalar evolutions should happen in the sese region. */
626 gcc_assert (sese_loop_depth (s, loop) > 0);
628 /* We can not deal with parametric strides like:
630 | p = parameter;
632 | for i:
633 | a [i * p] = ... */
634 gcc_assert (TREE_CODE (e) == INTEGER_CST);
636 mpz_init (val);
637 tree_int_to_gmp (e, val);
638 add_value_to_dim (l, expr, val);
639 mpz_clear (val);
643 /* Scan the integer constant CST, and add it to the inhomogeneous part of the
644 linear expression EXPR. K is the multiplier of the constant. */
646 static void
647 scan_tree_for_params_int (tree cst, ppl_Linear_Expression_t expr, mpz_t k)
649 mpz_t val;
650 ppl_Coefficient_t coef;
651 tree type = TREE_TYPE (cst);
653 mpz_init (val);
655 /* Necessary to not get "-1 = 2^n - 1". */
656 mpz_set_double_int (val, double_int_sext (tree_to_double_int (cst),
657 TYPE_PRECISION (type)), false);
659 mpz_mul (val, val, k);
660 ppl_new_Coefficient (&coef);
661 ppl_assign_Coefficient_from_mpz_t (coef, val);
662 ppl_Linear_Expression_add_to_inhomogeneous (expr, coef);
663 mpz_clear (val);
664 ppl_delete_Coefficient (coef);
667 /* When parameter NAME is in REGION, returns its index in SESE_PARAMS.
668 Otherwise returns -1. */
670 static inline int
671 parameter_index_in_region_1 (tree name, sese region)
673 int i;
674 tree p;
676 gcc_assert (TREE_CODE (name) == SSA_NAME);
678 FOR_EACH_VEC_ELT (tree, SESE_PARAMS (region), i, p)
679 if (p == name)
680 return i;
682 return -1;
685 /* When the parameter NAME is in REGION, returns its index in
686 SESE_PARAMS. Otherwise this function inserts NAME in SESE_PARAMS
687 and returns the index of NAME. */
689 static int
690 parameter_index_in_region (tree name, sese region)
692 int i;
694 gcc_assert (TREE_CODE (name) == SSA_NAME);
696 i = parameter_index_in_region_1 (name, region);
697 if (i != -1)
698 return i;
700 gcc_assert (SESE_ADD_PARAMS (region));
702 i = VEC_length (tree, SESE_PARAMS (region));
703 VEC_safe_push (tree, heap, SESE_PARAMS (region), name);
704 return i;
707 /* In the context of sese S, scan the expression E and translate it to
708 a linear expression C. When parsing a symbolic multiplication, K
709 represents the constant multiplier of an expression containing
710 parameters. */
712 static void
713 scan_tree_for_params (sese s, tree e, ppl_Linear_Expression_t c,
714 mpz_t k)
716 if (e == chrec_dont_know)
717 return;
719 switch (TREE_CODE (e))
721 case POLYNOMIAL_CHREC:
722 scan_tree_for_params_right_scev (s, CHREC_RIGHT (e),
723 CHREC_VARIABLE (e), c);
724 scan_tree_for_params (s, CHREC_LEFT (e), c, k);
725 break;
727 case MULT_EXPR:
728 if (chrec_contains_symbols (TREE_OPERAND (e, 0)))
730 if (c)
732 mpz_t val;
733 gcc_assert (host_integerp (TREE_OPERAND (e, 1), 0));
734 mpz_init (val);
735 tree_int_to_gmp (TREE_OPERAND (e, 1), val);
736 mpz_mul (val, val, k);
737 scan_tree_for_params (s, TREE_OPERAND (e, 0), c, val);
738 mpz_clear (val);
740 else
741 scan_tree_for_params (s, TREE_OPERAND (e, 0), c, k);
743 else
745 if (c)
747 mpz_t val;
748 gcc_assert (host_integerp (TREE_OPERAND (e, 0), 0));
749 mpz_init (val);
750 tree_int_to_gmp (TREE_OPERAND (e, 0), val);
751 mpz_mul (val, val, k);
752 scan_tree_for_params (s, TREE_OPERAND (e, 1), c, val);
753 mpz_clear (val);
755 else
756 scan_tree_for_params (s, TREE_OPERAND (e, 1), c, k);
758 break;
760 case PLUS_EXPR:
761 case POINTER_PLUS_EXPR:
762 scan_tree_for_params (s, TREE_OPERAND (e, 0), c, k);
763 scan_tree_for_params (s, TREE_OPERAND (e, 1), c, k);
764 break;
766 case MINUS_EXPR:
768 ppl_Linear_Expression_t tmp_expr = NULL;
770 if (c)
772 ppl_dimension_type dim;
773 ppl_Linear_Expression_space_dimension (c, &dim);
774 ppl_new_Linear_Expression_with_dimension (&tmp_expr, dim);
777 scan_tree_for_params (s, TREE_OPERAND (e, 0), c, k);
778 scan_tree_for_params (s, TREE_OPERAND (e, 1), tmp_expr, k);
780 if (c)
782 ppl_subtract_Linear_Expression_from_Linear_Expression (c,
783 tmp_expr);
784 ppl_delete_Linear_Expression (tmp_expr);
787 break;
790 case NEGATE_EXPR:
792 ppl_Linear_Expression_t tmp_expr = NULL;
794 if (c)
796 ppl_dimension_type dim;
797 ppl_Linear_Expression_space_dimension (c, &dim);
798 ppl_new_Linear_Expression_with_dimension (&tmp_expr, dim);
801 scan_tree_for_params (s, TREE_OPERAND (e, 0), tmp_expr, k);
803 if (c)
805 ppl_subtract_Linear_Expression_from_Linear_Expression (c,
806 tmp_expr);
807 ppl_delete_Linear_Expression (tmp_expr);
810 break;
813 case BIT_NOT_EXPR:
815 ppl_Linear_Expression_t tmp_expr = NULL;
817 if (c)
819 ppl_dimension_type dim;
820 ppl_Linear_Expression_space_dimension (c, &dim);
821 ppl_new_Linear_Expression_with_dimension (&tmp_expr, dim);
824 scan_tree_for_params (s, TREE_OPERAND (e, 0), tmp_expr, k);
826 if (c)
828 ppl_Coefficient_t coef;
829 mpz_t minus_one;
831 ppl_subtract_Linear_Expression_from_Linear_Expression (c,
832 tmp_expr);
833 ppl_delete_Linear_Expression (tmp_expr);
834 mpz_init (minus_one);
835 mpz_set_si (minus_one, -1);
836 ppl_new_Coefficient_from_mpz_t (&coef, minus_one);
837 ppl_Linear_Expression_add_to_inhomogeneous (c, coef);
838 mpz_clear (minus_one);
839 ppl_delete_Coefficient (coef);
842 break;
845 case SSA_NAME:
847 ppl_dimension_type p = parameter_index_in_region (e, s);
849 if (c)
851 ppl_dimension_type dim;
852 ppl_Linear_Expression_space_dimension (c, &dim);
853 p += dim - sese_nb_params (s);
854 add_value_to_dim (p, c, k);
856 break;
859 case INTEGER_CST:
860 if (c)
861 scan_tree_for_params_int (e, c, k);
862 break;
864 CASE_CONVERT:
865 case NON_LVALUE_EXPR:
866 scan_tree_for_params (s, TREE_OPERAND (e, 0), c, k);
867 break;
869 case ADDR_EXPR:
870 break;
872 default:
873 gcc_unreachable ();
874 break;
878 /* Find parameters with respect to REGION in BB. We are looking in memory
879 access functions, conditions and loop bounds. */
881 static void
882 find_params_in_bb (sese region, gimple_bb_p gbb)
884 int i;
885 unsigned j;
886 data_reference_p dr;
887 gimple stmt;
888 loop_p loop = GBB_BB (gbb)->loop_father;
889 mpz_t one;
891 mpz_init (one);
892 mpz_set_si (one, 1);
894 /* Find parameters in the access functions of data references. */
895 FOR_EACH_VEC_ELT (data_reference_p, GBB_DATA_REFS (gbb), i, dr)
896 for (j = 0; j < DR_NUM_DIMENSIONS (dr); j++)
897 scan_tree_for_params (region, DR_ACCESS_FN (dr, j), NULL, one);
899 /* Find parameters in conditional statements. */
900 FOR_EACH_VEC_ELT (gimple, GBB_CONDITIONS (gbb), i, stmt)
902 tree lhs = scalar_evolution_in_region (region, loop,
903 gimple_cond_lhs (stmt));
904 tree rhs = scalar_evolution_in_region (region, loop,
905 gimple_cond_rhs (stmt));
907 scan_tree_for_params (region, lhs, NULL, one);
908 scan_tree_for_params (region, rhs, NULL, one);
911 mpz_clear (one);
914 /* Record the parameters used in the SCOP. A variable is a parameter
915 in a scop if it does not vary during the execution of that scop. */
917 static void
918 find_scop_parameters (scop_p scop)
920 poly_bb_p pbb;
921 unsigned i;
922 sese region = SCOP_REGION (scop);
923 struct loop *loop;
924 mpz_t one;
926 mpz_init (one);
927 mpz_set_si (one, 1);
929 /* Find the parameters used in the loop bounds. */
930 FOR_EACH_VEC_ELT (loop_p, SESE_LOOP_NEST (region), i, loop)
932 tree nb_iters = number_of_latch_executions (loop);
934 if (!chrec_contains_symbols (nb_iters))
935 continue;
937 nb_iters = scalar_evolution_in_region (region, loop, nb_iters);
938 scan_tree_for_params (region, nb_iters, NULL, one);
941 mpz_clear (one);
943 /* Find the parameters used in data accesses. */
944 FOR_EACH_VEC_ELT (poly_bb_p, SCOP_BBS (scop), i, pbb)
945 find_params_in_bb (region, PBB_BLACK_BOX (pbb));
947 scop_set_nb_params (scop, sese_nb_params (region));
948 SESE_ADD_PARAMS (region) = false;
950 ppl_new_Pointset_Powerset_C_Polyhedron_from_space_dimension
951 (&SCOP_CONTEXT (scop), scop_nb_params (scop), 0);
954 /* Insert in the SCOP context constraints from the estimation of the
955 number of iterations. UB_EXPR is a linear expression describing
956 the number of iterations in a loop. This expression is bounded by
957 the estimation NIT. */
959 static void
960 add_upper_bounds_from_estimated_nit (scop_p scop, double_int nit,
961 ppl_dimension_type dim,
962 ppl_Linear_Expression_t ub_expr)
964 mpz_t val;
965 ppl_Linear_Expression_t nb_iters_le;
966 ppl_Polyhedron_t pol;
967 ppl_Coefficient_t coef;
968 ppl_Constraint_t ub;
970 ppl_new_C_Polyhedron_from_space_dimension (&pol, dim, 0);
971 ppl_new_Linear_Expression_from_Linear_Expression (&nb_iters_le,
972 ub_expr);
974 /* Construct the negated number of last iteration in VAL. */
975 mpz_init (val);
976 mpz_set_double_int (val, nit, false);
977 mpz_sub_ui (val, val, 1);
978 mpz_neg (val, val);
980 /* NB_ITERS_LE holds the number of last iteration in
981 parametrical form. Subtract estimated number of last
982 iteration and assert that result is not positive. */
983 ppl_new_Coefficient_from_mpz_t (&coef, val);
984 ppl_Linear_Expression_add_to_inhomogeneous (nb_iters_le, coef);
985 ppl_delete_Coefficient (coef);
986 ppl_new_Constraint (&ub, nb_iters_le,
987 PPL_CONSTRAINT_TYPE_LESS_OR_EQUAL);
988 ppl_Polyhedron_add_constraint (pol, ub);
990 /* Remove all but last GDIM dimensions from POL to obtain
991 only the constraints on the parameters. */
993 graphite_dim_t gdim = scop_nb_params (scop);
994 ppl_dimension_type *dims = XNEWVEC (ppl_dimension_type, dim - gdim);
995 graphite_dim_t i;
997 for (i = 0; i < dim - gdim; i++)
998 dims[i] = i;
1000 ppl_Polyhedron_remove_space_dimensions (pol, dims, dim - gdim);
1001 XDELETEVEC (dims);
1004 /* Add the constraints on the parameters to the SCoP context. */
1006 ppl_Pointset_Powerset_C_Polyhedron_t constraints_ps;
1008 ppl_new_Pointset_Powerset_C_Polyhedron_from_C_Polyhedron
1009 (&constraints_ps, pol);
1010 ppl_Pointset_Powerset_C_Polyhedron_intersection_assign
1011 (SCOP_CONTEXT (scop), constraints_ps);
1012 ppl_delete_Pointset_Powerset_C_Polyhedron (constraints_ps);
1015 ppl_delete_Polyhedron (pol);
1016 ppl_delete_Linear_Expression (nb_iters_le);
1017 ppl_delete_Constraint (ub);
1018 mpz_clear (val);
1021 /* Builds the constraint polyhedra for LOOP in SCOP. OUTER_PH gives
1022 the constraints for the surrounding loops. */
1024 static void
1025 build_loop_iteration_domains (scop_p scop, struct loop *loop,
1026 ppl_Polyhedron_t outer_ph, int nb,
1027 ppl_Pointset_Powerset_C_Polyhedron_t *domains)
1029 int i;
1030 ppl_Polyhedron_t ph;
1031 tree nb_iters = number_of_latch_executions (loop);
1032 ppl_dimension_type dim = nb + 1 + scop_nb_params (scop);
1033 sese region = SCOP_REGION (scop);
1036 ppl_const_Constraint_System_t pcs;
1037 ppl_dimension_type *map
1038 = (ppl_dimension_type *) XNEWVEC (ppl_dimension_type, dim);
1040 ppl_new_C_Polyhedron_from_space_dimension (&ph, dim, 0);
1041 ppl_Polyhedron_get_constraints (outer_ph, &pcs);
1042 ppl_Polyhedron_add_constraints (ph, pcs);
1044 for (i = 0; i < (int) nb; i++)
1045 map[i] = i;
1046 for (i = (int) nb; i < (int) dim - 1; i++)
1047 map[i] = i + 1;
1048 map[dim - 1] = nb;
1050 ppl_Polyhedron_map_space_dimensions (ph, map, dim);
1051 free (map);
1054 /* 0 <= loop_i */
1056 ppl_Constraint_t lb;
1057 ppl_Linear_Expression_t lb_expr;
1059 ppl_new_Linear_Expression_with_dimension (&lb_expr, dim);
1060 ppl_set_coef (lb_expr, nb, 1);
1061 ppl_new_Constraint (&lb, lb_expr, PPL_CONSTRAINT_TYPE_GREATER_OR_EQUAL);
1062 ppl_delete_Linear_Expression (lb_expr);
1063 ppl_Polyhedron_add_constraint (ph, lb);
1064 ppl_delete_Constraint (lb);
1067 if (TREE_CODE (nb_iters) == INTEGER_CST)
1069 ppl_Constraint_t ub;
1070 ppl_Linear_Expression_t ub_expr;
1072 ppl_new_Linear_Expression_with_dimension (&ub_expr, dim);
1074 /* loop_i <= cst_nb_iters */
1075 ppl_set_coef (ub_expr, nb, -1);
1076 ppl_set_inhomogeneous_tree (ub_expr, nb_iters);
1077 ppl_new_Constraint (&ub, ub_expr, PPL_CONSTRAINT_TYPE_GREATER_OR_EQUAL);
1078 ppl_Polyhedron_add_constraint (ph, ub);
1079 ppl_delete_Linear_Expression (ub_expr);
1080 ppl_delete_Constraint (ub);
1082 else if (!chrec_contains_undetermined (nb_iters))
1084 mpz_t one;
1085 ppl_Constraint_t ub;
1086 ppl_Linear_Expression_t ub_expr;
1087 double_int nit;
1089 mpz_init (one);
1090 mpz_set_si (one, 1);
1091 ppl_new_Linear_Expression_with_dimension (&ub_expr, dim);
1092 nb_iters = scalar_evolution_in_region (region, loop, nb_iters);
1093 scan_tree_for_params (SCOP_REGION (scop), nb_iters, ub_expr, one);
1094 mpz_clear (one);
1096 if (estimated_loop_iterations (loop, true, &nit))
1097 add_upper_bounds_from_estimated_nit (scop, nit, dim, ub_expr);
1099 /* loop_i <= expr_nb_iters */
1100 ppl_set_coef (ub_expr, nb, -1);
1101 ppl_new_Constraint (&ub, ub_expr, PPL_CONSTRAINT_TYPE_GREATER_OR_EQUAL);
1102 ppl_Polyhedron_add_constraint (ph, ub);
1103 ppl_delete_Linear_Expression (ub_expr);
1104 ppl_delete_Constraint (ub);
1106 else
1107 gcc_unreachable ();
1109 if (loop->inner && loop_in_sese_p (loop->inner, region))
1110 build_loop_iteration_domains (scop, loop->inner, ph, nb + 1, domains);
1112 if (nb != 0
1113 && loop->next
1114 && loop_in_sese_p (loop->next, region))
1115 build_loop_iteration_domains (scop, loop->next, outer_ph, nb, domains);
1117 ppl_new_Pointset_Powerset_C_Polyhedron_from_C_Polyhedron
1118 (&domains[loop->num], ph);
1120 ppl_delete_Polyhedron (ph);
1123 /* Returns a linear expression for tree T evaluated in PBB. */
1125 static ppl_Linear_Expression_t
1126 create_linear_expr_from_tree (poly_bb_p pbb, tree t)
1128 mpz_t one;
1129 ppl_Linear_Expression_t res;
1130 ppl_dimension_type dim;
1131 sese region = SCOP_REGION (PBB_SCOP (pbb));
1132 loop_p loop = pbb_loop (pbb);
1134 dim = pbb_dim_iter_domain (pbb) + pbb_nb_params (pbb);
1135 ppl_new_Linear_Expression_with_dimension (&res, dim);
1137 t = scalar_evolution_in_region (region, loop, t);
1138 gcc_assert (!automatically_generated_chrec_p (t));
1140 mpz_init (one);
1141 mpz_set_si (one, 1);
1142 scan_tree_for_params (region, t, res, one);
1143 mpz_clear (one);
1145 return res;
1148 /* Returns the ppl constraint type from the gimple tree code CODE. */
1150 static enum ppl_enum_Constraint_Type
1151 ppl_constraint_type_from_tree_code (enum tree_code code)
1153 switch (code)
1155 /* We do not support LT and GT to be able to work with C_Polyhedron.
1156 As we work on integer polyhedron "a < b" can be expressed by
1157 "a + 1 <= b". */
1158 case LT_EXPR:
1159 case GT_EXPR:
1160 gcc_unreachable ();
1162 case LE_EXPR:
1163 return PPL_CONSTRAINT_TYPE_LESS_OR_EQUAL;
1165 case GE_EXPR:
1166 return PPL_CONSTRAINT_TYPE_GREATER_OR_EQUAL;
1168 case EQ_EXPR:
1169 return PPL_CONSTRAINT_TYPE_EQUAL;
1171 default:
1172 gcc_unreachable ();
1176 /* Add conditional statement STMT to PS. It is evaluated in PBB and
1177 CODE is used as the comparison operator. This allows us to invert the
1178 condition or to handle inequalities. */
1180 static void
1181 add_condition_to_domain (ppl_Pointset_Powerset_C_Polyhedron_t ps, gimple stmt,
1182 poly_bb_p pbb, enum tree_code code)
1184 mpz_t v;
1185 ppl_Coefficient_t c;
1186 ppl_Linear_Expression_t left, right;
1187 ppl_Constraint_t cstr;
1188 enum ppl_enum_Constraint_Type type;
1190 left = create_linear_expr_from_tree (pbb, gimple_cond_lhs (stmt));
1191 right = create_linear_expr_from_tree (pbb, gimple_cond_rhs (stmt));
1193 /* If we have < or > expressions convert them to <= or >= by adding 1 to
1194 the left or the right side of the expression. */
1195 if (code == LT_EXPR)
1197 mpz_init (v);
1198 mpz_set_si (v, 1);
1199 ppl_new_Coefficient (&c);
1200 ppl_assign_Coefficient_from_mpz_t (c, v);
1201 ppl_Linear_Expression_add_to_inhomogeneous (left, c);
1202 ppl_delete_Coefficient (c);
1203 mpz_clear (v);
1205 code = LE_EXPR;
1207 else if (code == GT_EXPR)
1209 mpz_init (v);
1210 mpz_set_si (v, 1);
1211 ppl_new_Coefficient (&c);
1212 ppl_assign_Coefficient_from_mpz_t (c, v);
1213 ppl_Linear_Expression_add_to_inhomogeneous (right, c);
1214 ppl_delete_Coefficient (c);
1215 mpz_clear (v);
1217 code = GE_EXPR;
1220 type = ppl_constraint_type_from_tree_code (code);
1222 ppl_subtract_Linear_Expression_from_Linear_Expression (left, right);
1224 ppl_new_Constraint (&cstr, left, type);
1225 ppl_Pointset_Powerset_C_Polyhedron_add_constraint (ps, cstr);
1227 ppl_delete_Constraint (cstr);
1228 ppl_delete_Linear_Expression (left);
1229 ppl_delete_Linear_Expression (right);
1232 /* Add conditional statement STMT to pbb. CODE is used as the comparision
1233 operator. This allows us to invert the condition or to handle
1234 inequalities. */
1236 static void
1237 add_condition_to_pbb (poly_bb_p pbb, gimple stmt, enum tree_code code)
1239 if (code == NE_EXPR)
1241 ppl_Pointset_Powerset_C_Polyhedron_t left = PBB_DOMAIN (pbb);
1242 ppl_Pointset_Powerset_C_Polyhedron_t right;
1243 ppl_new_Pointset_Powerset_C_Polyhedron_from_Pointset_Powerset_C_Polyhedron
1244 (&right, left);
1245 add_condition_to_domain (left, stmt, pbb, LT_EXPR);
1246 add_condition_to_domain (right, stmt, pbb, GT_EXPR);
1247 ppl_Pointset_Powerset_C_Polyhedron_upper_bound_assign (left, right);
1248 ppl_delete_Pointset_Powerset_C_Polyhedron (right);
1250 else
1251 add_condition_to_domain (PBB_DOMAIN (pbb), stmt, pbb, code);
1254 /* Add conditions to the domain of PBB. */
1256 static void
1257 add_conditions_to_domain (poly_bb_p pbb)
1259 unsigned int i;
1260 gimple stmt;
1261 gimple_bb_p gbb = PBB_BLACK_BOX (pbb);
1263 if (VEC_empty (gimple, GBB_CONDITIONS (gbb)))
1264 return;
1266 FOR_EACH_VEC_ELT (gimple, GBB_CONDITIONS (gbb), i, stmt)
1267 switch (gimple_code (stmt))
1269 case GIMPLE_COND:
1271 enum tree_code code = gimple_cond_code (stmt);
1273 /* The conditions for ELSE-branches are inverted. */
1274 if (!VEC_index (gimple, GBB_CONDITION_CASES (gbb), i))
1275 code = invert_tree_comparison (code, false);
1277 add_condition_to_pbb (pbb, stmt, code);
1278 break;
1281 case GIMPLE_SWITCH:
1282 /* Switch statements are not supported right now - fall throught. */
1284 default:
1285 gcc_unreachable ();
1286 break;
1290 /* Traverses all the GBBs of the SCOP and add their constraints to the
1291 iteration domains. */
1293 static void
1294 add_conditions_to_constraints (scop_p scop)
1296 int i;
1297 poly_bb_p pbb;
1299 FOR_EACH_VEC_ELT (poly_bb_p, SCOP_BBS (scop), i, pbb)
1300 add_conditions_to_domain (pbb);
1303 /* Structure used to pass data to dom_walk. */
1305 struct bsc
1307 VEC (gimple, heap) **conditions, **cases;
1308 sese region;
1311 /* Returns a COND_EXPR statement when BB has a single predecessor, the
1312 edge between BB and its predecessor is not a loop exit edge, and
1313 the last statement of the single predecessor is a COND_EXPR. */
1315 static gimple
1316 single_pred_cond_non_loop_exit (basic_block bb)
1318 if (single_pred_p (bb))
1320 edge e = single_pred_edge (bb);
1321 basic_block pred = e->src;
1322 gimple stmt;
1324 if (loop_depth (pred->loop_father) > loop_depth (bb->loop_father))
1325 return NULL;
1327 stmt = last_stmt (pred);
1329 if (stmt && gimple_code (stmt) == GIMPLE_COND)
1330 return stmt;
1333 return NULL;
1336 /* Call-back for dom_walk executed before visiting the dominated
1337 blocks. */
1339 static void
1340 build_sese_conditions_before (struct dom_walk_data *dw_data,
1341 basic_block bb)
1343 struct bsc *data = (struct bsc *) dw_data->global_data;
1344 VEC (gimple, heap) **conditions = data->conditions;
1345 VEC (gimple, heap) **cases = data->cases;
1346 gimple_bb_p gbb;
1347 gimple stmt;
1349 if (!bb_in_sese_p (bb, data->region))
1350 return;
1352 stmt = single_pred_cond_non_loop_exit (bb);
1354 if (stmt)
1356 edge e = single_pred_edge (bb);
1358 VEC_safe_push (gimple, heap, *conditions, stmt);
1360 if (e->flags & EDGE_TRUE_VALUE)
1361 VEC_safe_push (gimple, heap, *cases, stmt);
1362 else
1363 VEC_safe_push (gimple, heap, *cases, NULL);
1366 gbb = gbb_from_bb (bb);
1368 if (gbb)
1370 GBB_CONDITIONS (gbb) = VEC_copy (gimple, heap, *conditions);
1371 GBB_CONDITION_CASES (gbb) = VEC_copy (gimple, heap, *cases);
1375 /* Call-back for dom_walk executed after visiting the dominated
1376 blocks. */
1378 static void
1379 build_sese_conditions_after (struct dom_walk_data *dw_data,
1380 basic_block bb)
1382 struct bsc *data = (struct bsc *) dw_data->global_data;
1383 VEC (gimple, heap) **conditions = data->conditions;
1384 VEC (gimple, heap) **cases = data->cases;
1386 if (!bb_in_sese_p (bb, data->region))
1387 return;
1389 if (single_pred_cond_non_loop_exit (bb))
1391 VEC_pop (gimple, *conditions);
1392 VEC_pop (gimple, *cases);
1396 /* Record all conditions in REGION. */
1398 static void
1399 build_sese_conditions (sese region)
1401 struct dom_walk_data walk_data;
1402 VEC (gimple, heap) *conditions = VEC_alloc (gimple, heap, 3);
1403 VEC (gimple, heap) *cases = VEC_alloc (gimple, heap, 3);
1404 struct bsc data;
1406 data.conditions = &conditions;
1407 data.cases = &cases;
1408 data.region = region;
1410 walk_data.dom_direction = CDI_DOMINATORS;
1411 walk_data.initialize_block_local_data = NULL;
1412 walk_data.before_dom_children = build_sese_conditions_before;
1413 walk_data.after_dom_children = build_sese_conditions_after;
1414 walk_data.global_data = &data;
1415 walk_data.block_local_data_size = 0;
1417 init_walk_dominator_tree (&walk_data);
1418 walk_dominator_tree (&walk_data, SESE_ENTRY_BB (region));
1419 fini_walk_dominator_tree (&walk_data);
1421 VEC_free (gimple, heap, conditions);
1422 VEC_free (gimple, heap, cases);
1425 /* Add constraints on the possible values of parameter P from the type
1426 of P. */
1428 static void
1429 add_param_constraints (scop_p scop, ppl_Polyhedron_t context, graphite_dim_t p)
1431 ppl_Constraint_t cstr;
1432 ppl_Linear_Expression_t le;
1433 tree parameter = VEC_index (tree, SESE_PARAMS (SCOP_REGION (scop)), p);
1434 tree type = TREE_TYPE (parameter);
1435 tree lb = NULL_TREE;
1436 tree ub = NULL_TREE;
1438 if (POINTER_TYPE_P (type) || !TYPE_MIN_VALUE (type))
1439 lb = lower_bound_in_type (type, type);
1440 else
1441 lb = TYPE_MIN_VALUE (type);
1443 if (POINTER_TYPE_P (type) || !TYPE_MAX_VALUE (type))
1444 ub = upper_bound_in_type (type, type);
1445 else
1446 ub = TYPE_MAX_VALUE (type);
1448 if (lb)
1450 ppl_new_Linear_Expression_with_dimension (&le, scop_nb_params (scop));
1451 ppl_set_coef (le, p, -1);
1452 ppl_set_inhomogeneous_tree (le, lb);
1453 ppl_new_Constraint (&cstr, le, PPL_CONSTRAINT_TYPE_LESS_OR_EQUAL);
1454 ppl_Polyhedron_add_constraint (context, cstr);
1455 ppl_delete_Linear_Expression (le);
1456 ppl_delete_Constraint (cstr);
1459 if (ub)
1461 ppl_new_Linear_Expression_with_dimension (&le, scop_nb_params (scop));
1462 ppl_set_coef (le, p, -1);
1463 ppl_set_inhomogeneous_tree (le, ub);
1464 ppl_new_Constraint (&cstr, le, PPL_CONSTRAINT_TYPE_GREATER_OR_EQUAL);
1465 ppl_Polyhedron_add_constraint (context, cstr);
1466 ppl_delete_Linear_Expression (le);
1467 ppl_delete_Constraint (cstr);
1471 /* Build the context of the SCOP. The context usually contains extra
1472 constraints that are added to the iteration domains that constrain
1473 some parameters. */
1475 static void
1476 build_scop_context (scop_p scop)
1478 ppl_Polyhedron_t context;
1479 ppl_Pointset_Powerset_C_Polyhedron_t ps;
1480 graphite_dim_t p, n = scop_nb_params (scop);
1482 ppl_new_C_Polyhedron_from_space_dimension (&context, n, 0);
1484 for (p = 0; p < n; p++)
1485 add_param_constraints (scop, context, p);
1487 ppl_new_Pointset_Powerset_C_Polyhedron_from_C_Polyhedron
1488 (&ps, context);
1489 ppl_Pointset_Powerset_C_Polyhedron_intersection_assign
1490 (SCOP_CONTEXT (scop), ps);
1492 ppl_delete_Pointset_Powerset_C_Polyhedron (ps);
1493 ppl_delete_Polyhedron (context);
1496 /* Build the iteration domains: the loops belonging to the current
1497 SCOP, and that vary for the execution of the current basic block.
1498 Returns false if there is no loop in SCOP. */
1500 static void
1501 build_scop_iteration_domain (scop_p scop)
1503 struct loop *loop;
1504 sese region = SCOP_REGION (scop);
1505 int i;
1506 ppl_Polyhedron_t ph;
1507 poly_bb_p pbb;
1508 int nb_loops = number_of_loops ();
1509 ppl_Pointset_Powerset_C_Polyhedron_t *domains
1510 = XNEWVEC (ppl_Pointset_Powerset_C_Polyhedron_t, nb_loops);
1512 for (i = 0; i < nb_loops; i++)
1513 domains[i] = NULL;
1515 ppl_new_C_Polyhedron_from_space_dimension (&ph, scop_nb_params (scop), 0);
1517 FOR_EACH_VEC_ELT (loop_p, SESE_LOOP_NEST (region), i, loop)
1518 if (!loop_in_sese_p (loop_outer (loop), region))
1519 build_loop_iteration_domains (scop, loop, ph, 0, domains);
1521 FOR_EACH_VEC_ELT (poly_bb_p, SCOP_BBS (scop), i, pbb)
1522 if (domains[gbb_loop (PBB_BLACK_BOX (pbb))->num])
1523 ppl_new_Pointset_Powerset_C_Polyhedron_from_Pointset_Powerset_C_Polyhedron
1524 (&PBB_DOMAIN (pbb), (ppl_const_Pointset_Powerset_C_Polyhedron_t)
1525 domains[gbb_loop (PBB_BLACK_BOX (pbb))->num]);
1526 else
1527 ppl_new_Pointset_Powerset_C_Polyhedron_from_C_Polyhedron
1528 (&PBB_DOMAIN (pbb), ph);
1530 for (i = 0; i < nb_loops; i++)
1531 if (domains[i])
1532 ppl_delete_Pointset_Powerset_C_Polyhedron (domains[i]);
1534 ppl_delete_Polyhedron (ph);
1535 free (domains);
1538 /* Add a constrain to the ACCESSES polyhedron for the alias set of
1539 data reference DR. ACCESSP_NB_DIMS is the dimension of the
1540 ACCESSES polyhedron, DOM_NB_DIMS is the dimension of the iteration
1541 domain. */
1543 static void
1544 pdr_add_alias_set (ppl_Polyhedron_t accesses, data_reference_p dr,
1545 ppl_dimension_type accessp_nb_dims,
1546 ppl_dimension_type dom_nb_dims)
1548 ppl_Linear_Expression_t alias;
1549 ppl_Constraint_t cstr;
1550 int alias_set_num = 0;
1551 base_alias_pair *bap = (base_alias_pair *)(dr->aux);
1553 if (bap && bap->alias_set)
1554 alias_set_num = *(bap->alias_set);
1556 ppl_new_Linear_Expression_with_dimension (&alias, accessp_nb_dims);
1558 ppl_set_coef (alias, dom_nb_dims, 1);
1559 ppl_set_inhomogeneous (alias, -alias_set_num);
1560 ppl_new_Constraint (&cstr, alias, PPL_CONSTRAINT_TYPE_EQUAL);
1561 ppl_Polyhedron_add_constraint (accesses, cstr);
1563 ppl_delete_Linear_Expression (alias);
1564 ppl_delete_Constraint (cstr);
1567 /* Add to ACCESSES polyhedron equalities defining the access functions
1568 to the memory. ACCESSP_NB_DIMS is the dimension of the ACCESSES
1569 polyhedron, DOM_NB_DIMS is the dimension of the iteration domain.
1570 PBB is the poly_bb_p that contains the data reference DR. */
1572 static void
1573 pdr_add_memory_accesses (ppl_Polyhedron_t accesses, data_reference_p dr,
1574 ppl_dimension_type accessp_nb_dims,
1575 ppl_dimension_type dom_nb_dims,
1576 poly_bb_p pbb)
1578 int i, nb_subscripts = DR_NUM_DIMENSIONS (dr);
1579 mpz_t v;
1580 scop_p scop = PBB_SCOP (pbb);
1581 sese region = SCOP_REGION (scop);
1583 mpz_init (v);
1585 for (i = 0; i < nb_subscripts; i++)
1587 ppl_Linear_Expression_t fn, access;
1588 ppl_Constraint_t cstr;
1589 ppl_dimension_type subscript = dom_nb_dims + 1 + i;
1590 tree afn = DR_ACCESS_FN (dr, nb_subscripts - 1 - i);
1592 ppl_new_Linear_Expression_with_dimension (&fn, dom_nb_dims);
1593 ppl_new_Linear_Expression_with_dimension (&access, accessp_nb_dims);
1595 mpz_set_si (v, 1);
1596 scan_tree_for_params (region, afn, fn, v);
1597 ppl_assign_Linear_Expression_from_Linear_Expression (access, fn);
1599 ppl_set_coef (access, subscript, -1);
1600 ppl_new_Constraint (&cstr, access, PPL_CONSTRAINT_TYPE_EQUAL);
1601 ppl_Polyhedron_add_constraint (accesses, cstr);
1603 ppl_delete_Linear_Expression (fn);
1604 ppl_delete_Linear_Expression (access);
1605 ppl_delete_Constraint (cstr);
1608 mpz_clear (v);
1611 /* Add constrains representing the size of the accessed data to the
1612 ACCESSES polyhedron. ACCESSP_NB_DIMS is the dimension of the
1613 ACCESSES polyhedron, DOM_NB_DIMS is the dimension of the iteration
1614 domain. */
1616 static void
1617 pdr_add_data_dimensions (ppl_Polyhedron_t accesses, data_reference_p dr,
1618 ppl_dimension_type accessp_nb_dims,
1619 ppl_dimension_type dom_nb_dims)
1621 tree ref = DR_REF (dr);
1622 int i, nb_subscripts = DR_NUM_DIMENSIONS (dr);
1624 for (i = nb_subscripts - 1; i >= 0; i--, ref = TREE_OPERAND (ref, 0))
1626 ppl_Linear_Expression_t expr;
1627 ppl_Constraint_t cstr;
1628 ppl_dimension_type subscript = dom_nb_dims + 1 + i;
1629 tree low, high;
1631 if (TREE_CODE (ref) != ARRAY_REF)
1632 break;
1634 low = array_ref_low_bound (ref);
1636 /* subscript - low >= 0 */
1637 if (host_integerp (low, 0))
1639 tree minus_low;
1641 ppl_new_Linear_Expression_with_dimension (&expr, accessp_nb_dims);
1642 ppl_set_coef (expr, subscript, 1);
1644 minus_low = fold_build1 (NEGATE_EXPR, TREE_TYPE (low), low);
1645 ppl_set_inhomogeneous_tree (expr, minus_low);
1647 ppl_new_Constraint (&cstr, expr, PPL_CONSTRAINT_TYPE_GREATER_OR_EQUAL);
1648 ppl_Polyhedron_add_constraint (accesses, cstr);
1649 ppl_delete_Linear_Expression (expr);
1650 ppl_delete_Constraint (cstr);
1653 high = array_ref_up_bound (ref);
1655 /* high - subscript >= 0 */
1656 if (high && host_integerp (high, 0)
1657 /* 1-element arrays at end of structures may extend over
1658 their declared size. */
1659 && !(array_at_struct_end_p (ref)
1660 && operand_equal_p (low, high, 0)))
1662 ppl_new_Linear_Expression_with_dimension (&expr, accessp_nb_dims);
1663 ppl_set_coef (expr, subscript, -1);
1665 ppl_set_inhomogeneous_tree (expr, high);
1667 ppl_new_Constraint (&cstr, expr, PPL_CONSTRAINT_TYPE_GREATER_OR_EQUAL);
1668 ppl_Polyhedron_add_constraint (accesses, cstr);
1669 ppl_delete_Linear_Expression (expr);
1670 ppl_delete_Constraint (cstr);
1675 /* Build data accesses for DR in PBB. */
1677 static void
1678 build_poly_dr (data_reference_p dr, poly_bb_p pbb)
1680 ppl_Polyhedron_t accesses;
1681 ppl_Pointset_Powerset_C_Polyhedron_t accesses_ps;
1682 ppl_dimension_type dom_nb_dims;
1683 ppl_dimension_type accessp_nb_dims;
1684 int dr_base_object_set;
1686 ppl_Pointset_Powerset_C_Polyhedron_space_dimension (PBB_DOMAIN (pbb),
1687 &dom_nb_dims);
1688 accessp_nb_dims = dom_nb_dims + 1 + DR_NUM_DIMENSIONS (dr);
1690 ppl_new_C_Polyhedron_from_space_dimension (&accesses, accessp_nb_dims, 0);
1692 pdr_add_alias_set (accesses, dr, accessp_nb_dims, dom_nb_dims);
1693 pdr_add_memory_accesses (accesses, dr, accessp_nb_dims, dom_nb_dims, pbb);
1694 pdr_add_data_dimensions (accesses, dr, accessp_nb_dims, dom_nb_dims);
1696 ppl_new_Pointset_Powerset_C_Polyhedron_from_C_Polyhedron (&accesses_ps,
1697 accesses);
1698 ppl_delete_Polyhedron (accesses);
1700 gcc_assert (dr->aux);
1701 dr_base_object_set = ((base_alias_pair *)(dr->aux))->base_obj_set;
1703 new_poly_dr (pbb, dr_base_object_set, accesses_ps,
1704 DR_IS_READ (dr) ? PDR_READ : PDR_WRITE,
1705 dr, DR_NUM_DIMENSIONS (dr));
1708 /* Write to FILE the alias graph of data references in DIMACS format. */
1710 static inline bool
1711 write_alias_graph_to_ascii_dimacs (FILE *file, char *comment,
1712 VEC (data_reference_p, heap) *drs)
1714 int num_vertex = VEC_length (data_reference_p, drs);
1715 int edge_num = 0;
1716 data_reference_p dr1, dr2;
1717 int i, j;
1719 if (num_vertex == 0)
1720 return true;
1722 FOR_EACH_VEC_ELT (data_reference_p, drs, i, dr1)
1723 for (j = i + 1; VEC_iterate (data_reference_p, drs, j, dr2); j++)
1724 if (dr_may_alias_p (dr1, dr2))
1725 edge_num++;
1727 fprintf (file, "$\n");
1729 if (comment)
1730 fprintf (file, "c %s\n", comment);
1732 fprintf (file, "p edge %d %d\n", num_vertex, edge_num);
1734 FOR_EACH_VEC_ELT (data_reference_p, drs, i, dr1)
1735 for (j = i + 1; VEC_iterate (data_reference_p, drs, j, dr2); j++)
1736 if (dr_may_alias_p (dr1, dr2))
1737 fprintf (file, "e %d %d\n", i + 1, j + 1);
1739 return true;
1742 /* Write to FILE the alias graph of data references in DOT format. */
1744 static inline bool
1745 write_alias_graph_to_ascii_dot (FILE *file, char *comment,
1746 VEC (data_reference_p, heap) *drs)
1748 int num_vertex = VEC_length (data_reference_p, drs);
1749 data_reference_p dr1, dr2;
1750 int i, j;
1752 if (num_vertex == 0)
1753 return true;
1755 fprintf (file, "$\n");
1757 if (comment)
1758 fprintf (file, "c %s\n", comment);
1760 /* First print all the vertices. */
1761 FOR_EACH_VEC_ELT (data_reference_p, drs, i, dr1)
1762 fprintf (file, "n%d;\n", i);
1764 FOR_EACH_VEC_ELT (data_reference_p, drs, i, dr1)
1765 for (j = i + 1; VEC_iterate (data_reference_p, drs, j, dr2); j++)
1766 if (dr_may_alias_p (dr1, dr2))
1767 fprintf (file, "n%d n%d\n", i, j);
1769 return true;
1772 /* Write to FILE the alias graph of data references in ECC format. */
1774 static inline bool
1775 write_alias_graph_to_ascii_ecc (FILE *file, char *comment,
1776 VEC (data_reference_p, heap) *drs)
1778 int num_vertex = VEC_length (data_reference_p, drs);
1779 data_reference_p dr1, dr2;
1780 int i, j;
1782 if (num_vertex == 0)
1783 return true;
1785 fprintf (file, "$\n");
1787 if (comment)
1788 fprintf (file, "c %s\n", comment);
1790 FOR_EACH_VEC_ELT (data_reference_p, drs, i, dr1)
1791 for (j = i + 1; VEC_iterate (data_reference_p, drs, j, dr2); j++)
1792 if (dr_may_alias_p (dr1, dr2))
1793 fprintf (file, "%d %d\n", i, j);
1795 return true;
1798 /* Check if DR1 and DR2 are in the same object set. */
1800 static bool
1801 dr_same_base_object_p (const struct data_reference *dr1,
1802 const struct data_reference *dr2)
1804 return operand_equal_p (DR_BASE_OBJECT (dr1), DR_BASE_OBJECT (dr2), 0);
1807 /* Uses DFS component number as representative of alias-sets. Also tests for
1808 optimality by verifying if every connected component is a clique. Returns
1809 true (1) if the above test is true, and false (0) otherwise. */
1811 static int
1812 build_alias_set_optimal_p (VEC (data_reference_p, heap) *drs)
1814 int num_vertices = VEC_length (data_reference_p, drs);
1815 struct graph *g = new_graph (num_vertices);
1816 data_reference_p dr1, dr2;
1817 int i, j;
1818 int num_connected_components;
1819 int v_indx1, v_indx2, num_vertices_in_component;
1820 int *all_vertices;
1821 int *vertices;
1822 struct graph_edge *e;
1823 int this_component_is_clique;
1824 int all_components_are_cliques = 1;
1826 FOR_EACH_VEC_ELT (data_reference_p, drs, i, dr1)
1827 for (j = i+1; VEC_iterate (data_reference_p, drs, j, dr2); j++)
1828 if (dr_may_alias_p (dr1, dr2))
1830 add_edge (g, i, j);
1831 add_edge (g, j, i);
1834 all_vertices = XNEWVEC (int, num_vertices);
1835 vertices = XNEWVEC (int, num_vertices);
1836 for (i = 0; i < num_vertices; i++)
1837 all_vertices[i] = i;
1839 num_connected_components = graphds_dfs (g, all_vertices, num_vertices,
1840 NULL, true, NULL);
1841 for (i = 0; i < g->n_vertices; i++)
1843 data_reference_p dr = VEC_index (data_reference_p, drs, i);
1844 base_alias_pair *bap;
1846 gcc_assert (dr->aux);
1847 bap = (base_alias_pair *)(dr->aux);
1849 bap->alias_set = XNEW (int);
1850 *(bap->alias_set) = g->vertices[i].component + 1;
1853 /* Verify if the DFS numbering results in optimal solution. */
1854 for (i = 0; i < num_connected_components; i++)
1856 num_vertices_in_component = 0;
1857 /* Get all vertices whose DFS component number is the same as i. */
1858 for (j = 0; j < num_vertices; j++)
1859 if (g->vertices[j].component == i)
1860 vertices[num_vertices_in_component++] = j;
1862 /* Now test if the vertices in 'vertices' form a clique, by testing
1863 for edges among each pair. */
1864 this_component_is_clique = 1;
1865 for (v_indx1 = 0; v_indx1 < num_vertices_in_component; v_indx1++)
1867 for (v_indx2 = v_indx1+1; v_indx2 < num_vertices_in_component; v_indx2++)
1869 /* Check if the two vertices are connected by iterating
1870 through all the edges which have one of these are source. */
1871 e = g->vertices[vertices[v_indx2]].pred;
1872 while (e)
1874 if (e->src == vertices[v_indx1])
1875 break;
1876 e = e->pred_next;
1878 if (!e)
1880 this_component_is_clique = 0;
1881 break;
1884 if (!this_component_is_clique)
1885 all_components_are_cliques = 0;
1889 free (all_vertices);
1890 free (vertices);
1891 free_graph (g);
1892 return all_components_are_cliques;
1895 /* Group each data reference in DRS with its base object set num. */
1897 static void
1898 build_base_obj_set_for_drs (VEC (data_reference_p, heap) *drs)
1900 int num_vertex = VEC_length (data_reference_p, drs);
1901 struct graph *g = new_graph (num_vertex);
1902 data_reference_p dr1, dr2;
1903 int i, j;
1904 int *queue;
1906 FOR_EACH_VEC_ELT (data_reference_p, drs, i, dr1)
1907 for (j = i + 1; VEC_iterate (data_reference_p, drs, j, dr2); j++)
1908 if (dr_same_base_object_p (dr1, dr2))
1910 add_edge (g, i, j);
1911 add_edge (g, j, i);
1914 queue = XNEWVEC (int, num_vertex);
1915 for (i = 0; i < num_vertex; i++)
1916 queue[i] = i;
1918 graphds_dfs (g, queue, num_vertex, NULL, true, NULL);
1920 for (i = 0; i < g->n_vertices; i++)
1922 data_reference_p dr = VEC_index (data_reference_p, drs, i);
1923 base_alias_pair *bap;
1925 gcc_assert (dr->aux);
1926 bap = (base_alias_pair *)(dr->aux);
1928 bap->base_obj_set = g->vertices[i].component + 1;
1931 free (queue);
1932 free_graph (g);
1935 /* Build the data references for PBB. */
1937 static void
1938 build_pbb_drs (poly_bb_p pbb)
1940 int j;
1941 data_reference_p dr;
1942 VEC (data_reference_p, heap) *gbb_drs = GBB_DATA_REFS (PBB_BLACK_BOX (pbb));
1944 FOR_EACH_VEC_ELT (data_reference_p, gbb_drs, j, dr)
1945 build_poly_dr (dr, pbb);
1948 /* Dump to file the alias graphs for the data references in DRS. */
1950 static void
1951 dump_alias_graphs (VEC (data_reference_p, heap) *drs)
1953 char comment[100];
1954 FILE *file_dimacs, *file_ecc, *file_dot;
1956 file_dimacs = fopen ("/tmp/dr_alias_graph_dimacs", "ab");
1957 if (file_dimacs)
1959 snprintf (comment, sizeof (comment), "%s %s", main_input_filename,
1960 current_function_name ());
1961 write_alias_graph_to_ascii_dimacs (file_dimacs, comment, drs);
1962 fclose (file_dimacs);
1965 file_ecc = fopen ("/tmp/dr_alias_graph_ecc", "ab");
1966 if (file_ecc)
1968 snprintf (comment, sizeof (comment), "%s %s", main_input_filename,
1969 current_function_name ());
1970 write_alias_graph_to_ascii_ecc (file_ecc, comment, drs);
1971 fclose (file_ecc);
1974 file_dot = fopen ("/tmp/dr_alias_graph_dot", "ab");
1975 if (file_dot)
1977 snprintf (comment, sizeof (comment), "%s %s", main_input_filename,
1978 current_function_name ());
1979 write_alias_graph_to_ascii_dot (file_dot, comment, drs);
1980 fclose (file_dot);
1984 /* Build data references in SCOP. */
1986 static void
1987 build_scop_drs (scop_p scop)
1989 int i, j;
1990 poly_bb_p pbb;
1991 data_reference_p dr;
1992 VEC (data_reference_p, heap) *drs = VEC_alloc (data_reference_p, heap, 3);
1994 /* Remove all the PBBs that do not have data references: these basic
1995 blocks are not handled in the polyhedral representation. */
1996 for (i = 0; VEC_iterate (poly_bb_p, SCOP_BBS (scop), i, pbb); i++)
1997 if (VEC_empty (data_reference_p, GBB_DATA_REFS (PBB_BLACK_BOX (pbb))))
1999 free_gimple_bb (PBB_BLACK_BOX (pbb));
2000 VEC_ordered_remove (poly_bb_p, SCOP_BBS (scop), i);
2001 i--;
2004 FOR_EACH_VEC_ELT (poly_bb_p, SCOP_BBS (scop), i, pbb)
2005 for (j = 0; VEC_iterate (data_reference_p,
2006 GBB_DATA_REFS (PBB_BLACK_BOX (pbb)), j, dr); j++)
2007 VEC_safe_push (data_reference_p, heap, drs, dr);
2009 FOR_EACH_VEC_ELT (data_reference_p, drs, i, dr)
2010 dr->aux = XNEW (base_alias_pair);
2012 if (!build_alias_set_optimal_p (drs))
2014 /* TODO: Add support when building alias set is not optimal. */
2018 build_base_obj_set_for_drs (drs);
2020 /* When debugging, enable the following code. This cannot be used
2021 in production compilers. */
2022 if (0)
2023 dump_alias_graphs (drs);
2025 VEC_free (data_reference_p, heap, drs);
2027 FOR_EACH_VEC_ELT (poly_bb_p, SCOP_BBS (scop), i, pbb)
2028 build_pbb_drs (pbb);
2031 /* Return a gsi at the position of the phi node STMT. */
2033 static gimple_stmt_iterator
2034 gsi_for_phi_node (gimple stmt)
2036 gimple_stmt_iterator psi;
2037 basic_block bb = gimple_bb (stmt);
2039 for (psi = gsi_start_phis (bb); !gsi_end_p (psi); gsi_next (&psi))
2040 if (stmt == gsi_stmt (psi))
2041 return psi;
2043 gcc_unreachable ();
2044 return psi;
2047 /* Analyze all the data references of STMTS and add them to the
2048 GBB_DATA_REFS vector of BB. */
2050 static void
2051 analyze_drs_in_stmts (scop_p scop, basic_block bb, VEC (gimple, heap) *stmts)
2053 loop_p nest;
2054 gimple_bb_p gbb;
2055 gimple stmt;
2056 int i;
2057 sese region = SCOP_REGION (scop);
2059 if (!bb_in_sese_p (bb, region))
2060 return;
2062 nest = outermost_loop_in_sese_1 (region, bb);
2063 gbb = gbb_from_bb (bb);
2065 FOR_EACH_VEC_ELT (gimple, stmts, i, stmt)
2067 loop_p loop;
2069 if (is_gimple_debug (stmt))
2070 continue;
2072 loop = loop_containing_stmt (stmt);
2073 if (!loop_in_sese_p (loop, region))
2074 loop = nest;
2076 graphite_find_data_references_in_stmt (nest, loop, stmt,
2077 &GBB_DATA_REFS (gbb));
2081 /* Insert STMT at the end of the STMTS sequence and then insert the
2082 statements from STMTS at INSERT_GSI and call analyze_drs_in_stmts
2083 on STMTS. */
2085 static void
2086 insert_stmts (scop_p scop, gimple stmt, gimple_seq stmts,
2087 gimple_stmt_iterator insert_gsi)
2089 gimple_stmt_iterator gsi;
2090 VEC (gimple, heap) *x = VEC_alloc (gimple, heap, 3);
2092 if (!stmts)
2093 stmts = gimple_seq_alloc ();
2095 gsi = gsi_last (stmts);
2096 gsi_insert_after (&gsi, stmt, GSI_NEW_STMT);
2097 for (gsi = gsi_start (stmts); !gsi_end_p (gsi); gsi_next (&gsi))
2098 VEC_safe_push (gimple, heap, x, gsi_stmt (gsi));
2100 gsi_insert_seq_before (&insert_gsi, stmts, GSI_SAME_STMT);
2101 analyze_drs_in_stmts (scop, gsi_bb (insert_gsi), x);
2102 VEC_free (gimple, heap, x);
2105 /* Insert the assignment "RES := EXPR" just after AFTER_STMT. */
2107 static void
2108 insert_out_of_ssa_copy (scop_p scop, tree res, tree expr, gimple after_stmt)
2110 gimple_seq stmts;
2111 gimple_stmt_iterator si;
2112 gimple_stmt_iterator gsi;
2113 tree var = force_gimple_operand (expr, &stmts, true, NULL_TREE);
2114 gimple stmt = gimple_build_assign (res, var);
2115 VEC (gimple, heap) *x = VEC_alloc (gimple, heap, 3);
2117 if (!stmts)
2118 stmts = gimple_seq_alloc ();
2119 si = gsi_last (stmts);
2120 gsi_insert_after (&si, stmt, GSI_NEW_STMT);
2121 for (gsi = gsi_start (stmts); !gsi_end_p (gsi); gsi_next (&gsi))
2122 VEC_safe_push (gimple, heap, x, gsi_stmt (gsi));
2124 if (gimple_code (after_stmt) == GIMPLE_PHI)
2126 gsi = gsi_after_labels (gimple_bb (after_stmt));
2127 gsi_insert_seq_before (&gsi, stmts, GSI_NEW_STMT);
2129 else
2131 gsi = gsi_for_stmt (after_stmt);
2132 gsi_insert_seq_after (&gsi, stmts, GSI_NEW_STMT);
2135 analyze_drs_in_stmts (scop, gimple_bb (after_stmt), x);
2136 VEC_free (gimple, heap, x);
2139 /* Creates a poly_bb_p for basic_block BB from the existing PBB. */
2141 static void
2142 new_pbb_from_pbb (scop_p scop, poly_bb_p pbb, basic_block bb)
2144 VEC (data_reference_p, heap) *drs = VEC_alloc (data_reference_p, heap, 3);
2145 gimple_bb_p gbb = PBB_BLACK_BOX (pbb);
2146 gimple_bb_p gbb1 = new_gimple_bb (bb, drs);
2147 poly_bb_p pbb1 = new_poly_bb (scop, gbb1);
2148 int index, n = VEC_length (poly_bb_p, SCOP_BBS (scop));
2150 /* The INDEX of PBB in SCOP_BBS. */
2151 for (index = 0; index < n; index++)
2152 if (VEC_index (poly_bb_p, SCOP_BBS (scop), index) == pbb)
2153 break;
2155 if (PBB_DOMAIN (pbb))
2156 ppl_new_Pointset_Powerset_C_Polyhedron_from_Pointset_Powerset_C_Polyhedron
2157 (&PBB_DOMAIN (pbb1), PBB_DOMAIN (pbb));
2159 GBB_PBB (gbb1) = pbb1;
2160 GBB_CONDITIONS (gbb1) = VEC_copy (gimple, heap, GBB_CONDITIONS (gbb));
2161 GBB_CONDITION_CASES (gbb1) = VEC_copy (gimple, heap, GBB_CONDITION_CASES (gbb));
2162 VEC_safe_insert (poly_bb_p, heap, SCOP_BBS (scop), index + 1, pbb1);
2165 /* Insert on edge E the assignment "RES := EXPR". */
2167 static void
2168 insert_out_of_ssa_copy_on_edge (scop_p scop, edge e, tree res, tree expr)
2170 gimple_stmt_iterator gsi;
2171 gimple_seq stmts;
2172 tree var = force_gimple_operand (expr, &stmts, true, NULL_TREE);
2173 gimple stmt = gimple_build_assign (res, var);
2174 basic_block bb;
2175 VEC (gimple, heap) *x = VEC_alloc (gimple, heap, 3);
2177 if (!stmts)
2178 stmts = gimple_seq_alloc ();
2180 gsi = gsi_last (stmts);
2181 gsi_insert_after (&gsi, stmt, GSI_NEW_STMT);
2182 for (gsi = gsi_start (stmts); !gsi_end_p (gsi); gsi_next (&gsi))
2183 VEC_safe_push (gimple, heap, x, gsi_stmt (gsi));
2185 gsi_insert_seq_on_edge (e, stmts);
2186 gsi_commit_edge_inserts ();
2187 bb = gimple_bb (stmt);
2189 if (!bb_in_sese_p (bb, SCOP_REGION (scop)))
2190 return;
2192 if (!gbb_from_bb (bb))
2193 new_pbb_from_pbb (scop, pbb_from_bb (e->src), bb);
2195 analyze_drs_in_stmts (scop, bb, x);
2196 VEC_free (gimple, heap, x);
2199 /* Creates a zero dimension array of the same type as VAR. */
2201 static tree
2202 create_zero_dim_array (tree var, const char *base_name)
2204 tree index_type = build_index_type (integer_zero_node);
2205 tree elt_type = TREE_TYPE (var);
2206 tree array_type = build_array_type (elt_type, index_type);
2207 tree base = create_tmp_var (array_type, base_name);
2209 add_referenced_var (base);
2211 return build4 (ARRAY_REF, elt_type, base, integer_zero_node, NULL_TREE,
2212 NULL_TREE);
2215 /* Returns true when PHI is a loop close phi node. */
2217 static bool
2218 scalar_close_phi_node_p (gimple phi)
2220 if (gimple_code (phi) != GIMPLE_PHI
2221 || !is_gimple_reg (gimple_phi_result (phi)))
2222 return false;
2224 /* Note that loop close phi nodes should have a single argument
2225 because we translated the representation into a canonical form
2226 before Graphite: see canonicalize_loop_closed_ssa_form. */
2227 return (gimple_phi_num_args (phi) == 1);
2230 /* For a definition DEF in REGION, propagates the expression EXPR in
2231 all the uses of DEF outside REGION. */
2233 static void
2234 propagate_expr_outside_region (tree def, tree expr, sese region)
2236 imm_use_iterator imm_iter;
2237 gimple use_stmt;
2238 gimple_seq stmts;
2239 bool replaced_once = false;
2241 gcc_assert (TREE_CODE (def) == SSA_NAME);
2243 expr = force_gimple_operand (unshare_expr (expr), &stmts, true,
2244 NULL_TREE);
2246 FOR_EACH_IMM_USE_STMT (use_stmt, imm_iter, def)
2247 if (!is_gimple_debug (use_stmt)
2248 && !bb_in_sese_p (gimple_bb (use_stmt), region))
2250 ssa_op_iter iter;
2251 use_operand_p use_p;
2253 FOR_EACH_PHI_OR_STMT_USE (use_p, use_stmt, iter, SSA_OP_ALL_USES)
2254 if (operand_equal_p (def, USE_FROM_PTR (use_p), 0)
2255 && (replaced_once = true))
2256 replace_exp (use_p, expr);
2258 update_stmt (use_stmt);
2261 if (replaced_once)
2263 gsi_insert_seq_on_edge (SESE_ENTRY (region), stmts);
2264 gsi_commit_edge_inserts ();
2268 /* Rewrite out of SSA the reduction phi node at PSI by creating a zero
2269 dimension array for it. */
2271 static void
2272 rewrite_close_phi_out_of_ssa (scop_p scop, gimple_stmt_iterator *psi)
2274 sese region = SCOP_REGION (scop);
2275 gimple phi = gsi_stmt (*psi);
2276 tree res = gimple_phi_result (phi);
2277 tree var = SSA_NAME_VAR (res);
2278 basic_block bb = gimple_bb (phi);
2279 gimple_stmt_iterator gsi = gsi_after_labels (bb);
2280 tree arg = gimple_phi_arg_def (phi, 0);
2281 gimple stmt;
2283 /* Note that loop close phi nodes should have a single argument
2284 because we translated the representation into a canonical form
2285 before Graphite: see canonicalize_loop_closed_ssa_form. */
2286 gcc_assert (gimple_phi_num_args (phi) == 1);
2288 /* The phi node can be a non close phi node, when its argument is
2289 invariant, or a default definition. */
2290 if (is_gimple_min_invariant (arg)
2291 || SSA_NAME_IS_DEFAULT_DEF (arg))
2293 propagate_expr_outside_region (res, arg, region);
2294 gsi_next (psi);
2295 return;
2298 else if (gimple_bb (SSA_NAME_DEF_STMT (arg))->loop_father == bb->loop_father)
2300 propagate_expr_outside_region (res, arg, region);
2301 stmt = gimple_build_assign (res, arg);
2302 remove_phi_node (psi, false);
2303 gsi_insert_before (&gsi, stmt, GSI_NEW_STMT);
2304 SSA_NAME_DEF_STMT (res) = stmt;
2305 return;
2308 /* If res is scev analyzable and is not a scalar value, it is safe
2309 to ignore the close phi node: it will be code generated in the
2310 out of Graphite pass. */
2311 else if (scev_analyzable_p (res, region))
2313 loop_p loop = loop_containing_stmt (SSA_NAME_DEF_STMT (res));
2314 tree scev;
2316 if (!loop_in_sese_p (loop, region))
2318 loop = loop_containing_stmt (SSA_NAME_DEF_STMT (arg));
2319 scev = scalar_evolution_in_region (region, loop, arg);
2320 scev = compute_overall_effect_of_inner_loop (loop, scev);
2322 else
2323 scev = scalar_evolution_in_region (region, loop, res);
2325 if (tree_does_not_contain_chrecs (scev))
2326 propagate_expr_outside_region (res, scev, region);
2328 gsi_next (psi);
2329 return;
2331 else
2333 tree zero_dim_array = create_zero_dim_array (var, "Close_Phi");
2335 stmt = gimple_build_assign (res, zero_dim_array);
2337 if (TREE_CODE (arg) == SSA_NAME)
2338 insert_out_of_ssa_copy (scop, zero_dim_array, arg,
2339 SSA_NAME_DEF_STMT (arg));
2340 else
2341 insert_out_of_ssa_copy_on_edge (scop, single_pred_edge (bb),
2342 zero_dim_array, arg);
2345 remove_phi_node (psi, false);
2346 SSA_NAME_DEF_STMT (res) = stmt;
2348 insert_stmts (scop, stmt, NULL, gsi_after_labels (bb));
2351 /* Rewrite out of SSA the reduction phi node at PSI by creating a zero
2352 dimension array for it. */
2354 static void
2355 rewrite_phi_out_of_ssa (scop_p scop, gimple_stmt_iterator *psi)
2357 size_t i;
2358 gimple phi = gsi_stmt (*psi);
2359 basic_block bb = gimple_bb (phi);
2360 tree res = gimple_phi_result (phi);
2361 tree var = SSA_NAME_VAR (res);
2362 tree zero_dim_array = create_zero_dim_array (var, "phi_out_of_ssa");
2363 gimple stmt;
2364 gimple_seq stmts;
2366 for (i = 0; i < gimple_phi_num_args (phi); i++)
2368 tree arg = gimple_phi_arg_def (phi, i);
2369 edge e = gimple_phi_arg_edge (phi, i);
2371 /* Avoid the insertion of code in the loop latch to please the
2372 pattern matching of the vectorizer. */
2373 if (TREE_CODE (arg) == SSA_NAME
2374 && e->src == bb->loop_father->latch)
2375 insert_out_of_ssa_copy (scop, zero_dim_array, arg,
2376 SSA_NAME_DEF_STMT (arg));
2377 else
2378 insert_out_of_ssa_copy_on_edge (scop, e, zero_dim_array, arg);
2381 var = force_gimple_operand (zero_dim_array, &stmts, true, NULL_TREE);
2383 stmt = gimple_build_assign (res, var);
2384 remove_phi_node (psi, false);
2385 SSA_NAME_DEF_STMT (res) = stmt;
2387 insert_stmts (scop, stmt, stmts, gsi_after_labels (bb));
2390 /* Rewrite the degenerate phi node at position PSI from the degenerate
2391 form "x = phi (y, y, ..., y)" to "x = y". */
2393 static void
2394 rewrite_degenerate_phi (gimple_stmt_iterator *psi)
2396 tree rhs;
2397 gimple stmt;
2398 gimple_stmt_iterator gsi;
2399 gimple phi = gsi_stmt (*psi);
2400 tree res = gimple_phi_result (phi);
2401 basic_block bb;
2403 bb = gimple_bb (phi);
2404 rhs = degenerate_phi_result (phi);
2405 gcc_assert (rhs);
2407 stmt = gimple_build_assign (res, rhs);
2408 remove_phi_node (psi, false);
2409 SSA_NAME_DEF_STMT (res) = stmt;
2411 gsi = gsi_after_labels (bb);
2412 gsi_insert_before (&gsi, stmt, GSI_NEW_STMT);
2415 /* Rewrite out of SSA all the reduction phi nodes of SCOP. */
2417 static void
2418 rewrite_reductions_out_of_ssa (scop_p scop)
2420 basic_block bb;
2421 gimple_stmt_iterator psi;
2422 sese region = SCOP_REGION (scop);
2424 FOR_EACH_BB (bb)
2425 if (bb_in_sese_p (bb, region))
2426 for (psi = gsi_start_phis (bb); !gsi_end_p (psi);)
2428 gimple phi = gsi_stmt (psi);
2430 if (!is_gimple_reg (gimple_phi_result (phi)))
2432 gsi_next (&psi);
2433 continue;
2436 if (gimple_phi_num_args (phi) > 1
2437 && degenerate_phi_result (phi))
2438 rewrite_degenerate_phi (&psi);
2440 else if (scalar_close_phi_node_p (phi))
2441 rewrite_close_phi_out_of_ssa (scop, &psi);
2443 else if (reduction_phi_p (region, &psi))
2444 rewrite_phi_out_of_ssa (scop, &psi);
2447 update_ssa (TODO_update_ssa);
2448 #ifdef ENABLE_CHECKING
2449 verify_loop_closed_ssa (true);
2450 #endif
2453 /* Rewrite the scalar dependence of DEF used in USE_STMT with a memory
2454 read from ZERO_DIM_ARRAY. */
2456 static void
2457 rewrite_cross_bb_scalar_dependence (scop_p scop, tree zero_dim_array,
2458 tree def, gimple use_stmt)
2460 tree var = SSA_NAME_VAR (def);
2461 gimple name_stmt = gimple_build_assign (var, zero_dim_array);
2462 tree name = make_ssa_name (var, name_stmt);
2463 ssa_op_iter iter;
2464 use_operand_p use_p;
2466 gcc_assert (gimple_code (use_stmt) != GIMPLE_PHI);
2468 gimple_assign_set_lhs (name_stmt, name);
2469 insert_stmts (scop, name_stmt, NULL, gsi_for_stmt (use_stmt));
2471 FOR_EACH_SSA_USE_OPERAND (use_p, use_stmt, iter, SSA_OP_ALL_USES)
2472 if (operand_equal_p (def, USE_FROM_PTR (use_p), 0))
2473 replace_exp (use_p, name);
2475 update_stmt (use_stmt);
2478 /* For every definition DEF in the SCOP that is used outside the scop,
2479 insert a closing-scop definition in the basic block just after this
2480 SCOP. */
2482 static void
2483 handle_scalar_deps_crossing_scop_limits (scop_p scop, tree def, gimple stmt)
2485 tree var = create_tmp_reg (TREE_TYPE (def), NULL);
2486 tree new_name = make_ssa_name (var, stmt);
2487 bool needs_copy = false;
2488 use_operand_p use_p;
2489 imm_use_iterator imm_iter;
2490 gimple use_stmt;
2491 sese region = SCOP_REGION (scop);
2493 FOR_EACH_IMM_USE_STMT (use_stmt, imm_iter, def)
2495 if (!bb_in_sese_p (gimple_bb (use_stmt), region))
2497 FOR_EACH_IMM_USE_ON_STMT (use_p, imm_iter)
2499 SET_USE (use_p, new_name);
2501 update_stmt (use_stmt);
2502 needs_copy = true;
2506 /* Insert in the empty BB just after the scop a use of DEF such
2507 that the rewrite of cross_bb_scalar_dependences won't insert
2508 arrays everywhere else. */
2509 if (needs_copy)
2511 gimple assign = gimple_build_assign (new_name, def);
2512 gimple_stmt_iterator psi = gsi_after_labels (SESE_EXIT (region)->dest);
2514 add_referenced_var (var);
2515 SSA_NAME_DEF_STMT (new_name) = assign;
2516 update_stmt (assign);
2517 gsi_insert_before (&psi, assign, GSI_SAME_STMT);
2521 /* Rewrite the scalar dependences crossing the boundary of the BB
2522 containing STMT with an array. Return true when something has been
2523 changed. */
2525 static bool
2526 rewrite_cross_bb_scalar_deps (scop_p scop, gimple_stmt_iterator *gsi)
2528 sese region = SCOP_REGION (scop);
2529 gimple stmt = gsi_stmt (*gsi);
2530 imm_use_iterator imm_iter;
2531 tree def;
2532 basic_block def_bb;
2533 tree zero_dim_array = NULL_TREE;
2534 gimple use_stmt;
2535 bool res = false;
2537 switch (gimple_code (stmt))
2539 case GIMPLE_ASSIGN:
2540 def = gimple_assign_lhs (stmt);
2541 break;
2543 case GIMPLE_CALL:
2544 def = gimple_call_lhs (stmt);
2545 break;
2547 default:
2548 return false;
2551 if (!def
2552 || !is_gimple_reg (def))
2553 return false;
2555 if (scev_analyzable_p (def, region))
2557 loop_p loop = loop_containing_stmt (SSA_NAME_DEF_STMT (def));
2558 tree scev = scalar_evolution_in_region (region, loop, def);
2560 if (tree_contains_chrecs (scev, NULL))
2561 return false;
2563 propagate_expr_outside_region (def, scev, region);
2564 return true;
2567 def_bb = gimple_bb (stmt);
2569 handle_scalar_deps_crossing_scop_limits (scop, def, stmt);
2571 FOR_EACH_IMM_USE_STMT (use_stmt, imm_iter, def)
2572 if (gimple_code (use_stmt) == GIMPLE_PHI
2573 && (res = true))
2575 gimple_stmt_iterator psi = gsi_for_stmt (use_stmt);
2577 if (scalar_close_phi_node_p (gsi_stmt (psi)))
2578 rewrite_close_phi_out_of_ssa (scop, &psi);
2579 else
2580 rewrite_phi_out_of_ssa (scop, &psi);
2583 FOR_EACH_IMM_USE_STMT (use_stmt, imm_iter, def)
2584 if (gimple_code (use_stmt) != GIMPLE_PHI
2585 && def_bb != gimple_bb (use_stmt)
2586 && !is_gimple_debug (use_stmt)
2587 && (res = true))
2589 if (!zero_dim_array)
2591 zero_dim_array = create_zero_dim_array
2592 (SSA_NAME_VAR (def), "Cross_BB_scalar_dependence");
2593 insert_out_of_ssa_copy (scop, zero_dim_array, def,
2594 SSA_NAME_DEF_STMT (def));
2595 gsi_next (gsi);
2598 rewrite_cross_bb_scalar_dependence (scop, zero_dim_array,
2599 def, use_stmt);
2602 return res;
2605 /* Rewrite out of SSA all the reduction phi nodes of SCOP. */
2607 static void
2608 rewrite_cross_bb_scalar_deps_out_of_ssa (scop_p scop)
2610 basic_block bb;
2611 gimple_stmt_iterator psi;
2612 sese region = SCOP_REGION (scop);
2613 bool changed = false;
2615 /* Create an extra empty BB after the scop. */
2616 split_edge (SESE_EXIT (region));
2618 FOR_EACH_BB (bb)
2619 if (bb_in_sese_p (bb, region))
2620 for (psi = gsi_start_bb (bb); !gsi_end_p (psi); gsi_next (&psi))
2621 changed |= rewrite_cross_bb_scalar_deps (scop, &psi);
2623 if (changed)
2625 scev_reset_htab ();
2626 update_ssa (TODO_update_ssa);
2627 #ifdef ENABLE_CHECKING
2628 verify_loop_closed_ssa (true);
2629 #endif
2633 /* Returns the number of pbbs that are in loops contained in SCOP. */
2635 static int
2636 nb_pbbs_in_loops (scop_p scop)
2638 int i;
2639 poly_bb_p pbb;
2640 int res = 0;
2642 FOR_EACH_VEC_ELT (poly_bb_p, SCOP_BBS (scop), i, pbb)
2643 if (loop_in_sese_p (gbb_loop (PBB_BLACK_BOX (pbb)), SCOP_REGION (scop)))
2644 res++;
2646 return res;
2649 /* Return the number of data references in BB that write in
2650 memory. */
2652 static int
2653 nb_data_writes_in_bb (basic_block bb)
2655 int res = 0;
2656 gimple_stmt_iterator gsi;
2658 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
2659 if (gimple_vdef (gsi_stmt (gsi)))
2660 res++;
2662 return res;
2665 /* Splits at STMT the basic block BB represented as PBB in the
2666 polyhedral form. */
2668 static edge
2669 split_pbb (scop_p scop, poly_bb_p pbb, basic_block bb, gimple stmt)
2671 edge e1 = split_block (bb, stmt);
2672 new_pbb_from_pbb (scop, pbb, e1->dest);
2673 return e1;
2676 /* Splits STMT out of its current BB. This is done for reduction
2677 statements for which we want to ignore data dependences. */
2679 static basic_block
2680 split_reduction_stmt (scop_p scop, gimple stmt)
2682 basic_block bb = gimple_bb (stmt);
2683 poly_bb_p pbb = pbb_from_bb (bb);
2684 gimple_bb_p gbb = gbb_from_bb (bb);
2685 edge e1;
2686 int i;
2687 data_reference_p dr;
2689 /* Do not split basic blocks with no writes to memory: the reduction
2690 will be the only write to memory. */
2691 if (nb_data_writes_in_bb (bb) == 0
2692 /* Or if we have already marked BB as a reduction. */
2693 || PBB_IS_REDUCTION (pbb_from_bb (bb)))
2694 return bb;
2696 e1 = split_pbb (scop, pbb, bb, stmt);
2698 /* Split once more only when the reduction stmt is not the only one
2699 left in the original BB. */
2700 if (!gsi_one_before_end_p (gsi_start_nondebug_bb (bb)))
2702 gimple_stmt_iterator gsi = gsi_last_bb (bb);
2703 gsi_prev (&gsi);
2704 e1 = split_pbb (scop, pbb, bb, gsi_stmt (gsi));
2707 /* A part of the data references will end in a different basic block
2708 after the split: move the DRs from the original GBB to the newly
2709 created GBB1. */
2710 FOR_EACH_VEC_ELT (data_reference_p, GBB_DATA_REFS (gbb), i, dr)
2712 basic_block bb1 = gimple_bb (DR_STMT (dr));
2714 if (bb1 != bb)
2716 gimple_bb_p gbb1 = gbb_from_bb (bb1);
2717 VEC_safe_push (data_reference_p, heap, GBB_DATA_REFS (gbb1), dr);
2718 VEC_ordered_remove (data_reference_p, GBB_DATA_REFS (gbb), i);
2719 i--;
2723 return e1->dest;
2726 /* Return true when stmt is a reduction operation. */
2728 static inline bool
2729 is_reduction_operation_p (gimple stmt)
2731 enum tree_code code;
2733 gcc_assert (is_gimple_assign (stmt));
2734 code = gimple_assign_rhs_code (stmt);
2736 return flag_associative_math
2737 && commutative_tree_code (code)
2738 && associative_tree_code (code);
2741 /* Returns true when PHI contains an argument ARG. */
2743 static bool
2744 phi_contains_arg (gimple phi, tree arg)
2746 size_t i;
2748 for (i = 0; i < gimple_phi_num_args (phi); i++)
2749 if (operand_equal_p (arg, gimple_phi_arg_def (phi, i), 0))
2750 return true;
2752 return false;
2755 /* Return a loop phi node that corresponds to a reduction containing LHS. */
2757 static gimple
2758 follow_ssa_with_commutative_ops (tree arg, tree lhs)
2760 gimple stmt;
2762 if (TREE_CODE (arg) != SSA_NAME)
2763 return NULL;
2765 stmt = SSA_NAME_DEF_STMT (arg);
2767 if (gimple_code (stmt) == GIMPLE_NOP
2768 || gimple_code (stmt) == GIMPLE_CALL)
2769 return NULL;
2771 if (gimple_code (stmt) == GIMPLE_PHI)
2773 if (phi_contains_arg (stmt, lhs))
2774 return stmt;
2775 return NULL;
2778 if (!is_gimple_assign (stmt))
2779 return NULL;
2781 if (gimple_num_ops (stmt) == 2)
2782 return follow_ssa_with_commutative_ops (gimple_assign_rhs1 (stmt), lhs);
2784 if (is_reduction_operation_p (stmt))
2786 gimple res = follow_ssa_with_commutative_ops (gimple_assign_rhs1 (stmt), lhs);
2788 return res ? res :
2789 follow_ssa_with_commutative_ops (gimple_assign_rhs2 (stmt), lhs);
2792 return NULL;
2795 /* Detect commutative and associative scalar reductions starting at
2796 the STMT. Return the phi node of the reduction cycle, or NULL. */
2798 static gimple
2799 detect_commutative_reduction_arg (tree lhs, gimple stmt, tree arg,
2800 VEC (gimple, heap) **in,
2801 VEC (gimple, heap) **out)
2803 gimple phi = follow_ssa_with_commutative_ops (arg, lhs);
2805 if (!phi)
2806 return NULL;
2808 VEC_safe_push (gimple, heap, *in, stmt);
2809 VEC_safe_push (gimple, heap, *out, stmt);
2810 return phi;
2813 /* Detect commutative and associative scalar reductions starting at
2814 STMT. Return the phi node of the reduction cycle, or NULL. */
2816 static gimple
2817 detect_commutative_reduction_assign (gimple stmt, VEC (gimple, heap) **in,
2818 VEC (gimple, heap) **out)
2820 tree lhs = gimple_assign_lhs (stmt);
2822 if (gimple_num_ops (stmt) == 2)
2823 return detect_commutative_reduction_arg (lhs, stmt,
2824 gimple_assign_rhs1 (stmt),
2825 in, out);
2827 if (is_reduction_operation_p (stmt))
2829 gimple res = detect_commutative_reduction_arg (lhs, stmt,
2830 gimple_assign_rhs1 (stmt),
2831 in, out);
2832 return res ? res
2833 : detect_commutative_reduction_arg (lhs, stmt,
2834 gimple_assign_rhs2 (stmt),
2835 in, out);
2838 return NULL;
2841 /* Return a loop phi node that corresponds to a reduction containing LHS. */
2843 static gimple
2844 follow_inital_value_to_phi (tree arg, tree lhs)
2846 gimple stmt;
2848 if (!arg || TREE_CODE (arg) != SSA_NAME)
2849 return NULL;
2851 stmt = SSA_NAME_DEF_STMT (arg);
2853 if (gimple_code (stmt) == GIMPLE_PHI
2854 && phi_contains_arg (stmt, lhs))
2855 return stmt;
2857 return NULL;
2861 /* Return the argument of the loop PHI that is the inital value coming
2862 from outside the loop. */
2864 static edge
2865 edge_initial_value_for_loop_phi (gimple phi)
2867 size_t i;
2869 for (i = 0; i < gimple_phi_num_args (phi); i++)
2871 edge e = gimple_phi_arg_edge (phi, i);
2873 if (loop_depth (e->src->loop_father)
2874 < loop_depth (e->dest->loop_father))
2875 return e;
2878 return NULL;
2881 /* Return the argument of the loop PHI that is the inital value coming
2882 from outside the loop. */
2884 static tree
2885 initial_value_for_loop_phi (gimple phi)
2887 size_t i;
2889 for (i = 0; i < gimple_phi_num_args (phi); i++)
2891 edge e = gimple_phi_arg_edge (phi, i);
2893 if (loop_depth (e->src->loop_father)
2894 < loop_depth (e->dest->loop_father))
2895 return gimple_phi_arg_def (phi, i);
2898 return NULL_TREE;
2901 /* Returns true when DEF is used outside the reduction cycle of
2902 LOOP_PHI. */
2904 static bool
2905 used_outside_reduction (tree def, gimple loop_phi)
2907 use_operand_p use_p;
2908 imm_use_iterator imm_iter;
2909 loop_p loop = loop_containing_stmt (loop_phi);
2911 /* In LOOP, DEF should be used only in LOOP_PHI. */
2912 FOR_EACH_IMM_USE_FAST (use_p, imm_iter, def)
2914 gimple stmt = USE_STMT (use_p);
2916 if (stmt != loop_phi
2917 && !is_gimple_debug (stmt)
2918 && flow_bb_inside_loop_p (loop, gimple_bb (stmt)))
2919 return true;
2922 return false;
2925 /* Detect commutative and associative scalar reductions belonging to
2926 the SCOP starting at the loop closed phi node STMT. Return the phi
2927 node of the reduction cycle, or NULL. */
2929 static gimple
2930 detect_commutative_reduction (scop_p scop, gimple stmt, VEC (gimple, heap) **in,
2931 VEC (gimple, heap) **out)
2933 if (scalar_close_phi_node_p (stmt))
2935 gimple def, loop_phi, phi, close_phi = stmt;
2936 tree init, lhs, arg = gimple_phi_arg_def (close_phi, 0);
2938 if (TREE_CODE (arg) != SSA_NAME)
2939 return NULL;
2941 /* Note that loop close phi nodes should have a single argument
2942 because we translated the representation into a canonical form
2943 before Graphite: see canonicalize_loop_closed_ssa_form. */
2944 gcc_assert (gimple_phi_num_args (close_phi) == 1);
2946 def = SSA_NAME_DEF_STMT (arg);
2947 if (!stmt_in_sese_p (def, SCOP_REGION (scop))
2948 || !(loop_phi = detect_commutative_reduction (scop, def, in, out)))
2949 return NULL;
2951 lhs = gimple_phi_result (close_phi);
2952 init = initial_value_for_loop_phi (loop_phi);
2953 phi = follow_inital_value_to_phi (init, lhs);
2955 if (phi && (used_outside_reduction (lhs, phi)
2956 || !has_single_use (gimple_phi_result (phi))))
2957 return NULL;
2959 VEC_safe_push (gimple, heap, *in, loop_phi);
2960 VEC_safe_push (gimple, heap, *out, close_phi);
2961 return phi;
2964 if (gimple_code (stmt) == GIMPLE_ASSIGN)
2965 return detect_commutative_reduction_assign (stmt, in, out);
2967 return NULL;
2970 /* Translate the scalar reduction statement STMT to an array RED
2971 knowing that its recursive phi node is LOOP_PHI. */
2973 static void
2974 translate_scalar_reduction_to_array_for_stmt (scop_p scop, tree red,
2975 gimple stmt, gimple loop_phi)
2977 tree res = gimple_phi_result (loop_phi);
2978 gimple assign = gimple_build_assign (res, unshare_expr (red));
2979 gimple_stmt_iterator gsi;
2981 insert_stmts (scop, assign, NULL, gsi_after_labels (gimple_bb (loop_phi)));
2983 assign = gimple_build_assign (unshare_expr (red), gimple_assign_lhs (stmt));
2984 gsi = gsi_for_stmt (stmt);
2985 gsi_next (&gsi);
2986 insert_stmts (scop, assign, NULL, gsi);
2989 /* Removes the PHI node and resets all the debug stmts that are using
2990 the PHI_RESULT. */
2992 static void
2993 remove_phi (gimple phi)
2995 imm_use_iterator imm_iter;
2996 tree def;
2997 use_operand_p use_p;
2998 gimple_stmt_iterator gsi;
2999 VEC (gimple, heap) *update = VEC_alloc (gimple, heap, 3);
3000 unsigned int i;
3001 gimple stmt;
3003 def = PHI_RESULT (phi);
3004 FOR_EACH_IMM_USE_FAST (use_p, imm_iter, def)
3006 stmt = USE_STMT (use_p);
3008 if (is_gimple_debug (stmt))
3010 gimple_debug_bind_reset_value (stmt);
3011 VEC_safe_push (gimple, heap, update, stmt);
3015 FOR_EACH_VEC_ELT (gimple, update, i, stmt)
3016 update_stmt (stmt);
3018 VEC_free (gimple, heap, update);
3020 gsi = gsi_for_phi_node (phi);
3021 remove_phi_node (&gsi, false);
3024 /* Helper function for for_each_index. For each INDEX of the data
3025 reference REF, returns true when its indices are valid in the loop
3026 nest LOOP passed in as DATA. */
3028 static bool
3029 dr_indices_valid_in_loop (tree ref ATTRIBUTE_UNUSED, tree *index, void *data)
3031 loop_p loop;
3032 basic_block header, def_bb;
3033 gimple stmt;
3035 if (TREE_CODE (*index) != SSA_NAME)
3036 return true;
3038 loop = *((loop_p *) data);
3039 header = loop->header;
3040 stmt = SSA_NAME_DEF_STMT (*index);
3042 if (!stmt)
3043 return true;
3045 def_bb = gimple_bb (stmt);
3047 if (!def_bb)
3048 return true;
3050 return dominated_by_p (CDI_DOMINATORS, header, def_bb);
3053 /* When the result of a CLOSE_PHI is written to a memory location,
3054 return a pointer to that memory reference, otherwise return
3055 NULL_TREE. */
3057 static tree
3058 close_phi_written_to_memory (gimple close_phi)
3060 imm_use_iterator imm_iter;
3061 use_operand_p use_p;
3062 gimple stmt;
3063 tree res, def = gimple_phi_result (close_phi);
3065 FOR_EACH_IMM_USE_FAST (use_p, imm_iter, def)
3066 if ((stmt = USE_STMT (use_p))
3067 && gimple_code (stmt) == GIMPLE_ASSIGN
3068 && (res = gimple_assign_lhs (stmt)))
3070 switch (TREE_CODE (res))
3072 case VAR_DECL:
3073 case PARM_DECL:
3074 case RESULT_DECL:
3075 return res;
3077 case ARRAY_REF:
3078 case MEM_REF:
3080 tree arg = gimple_phi_arg_def (close_phi, 0);
3081 loop_p nest = loop_containing_stmt (SSA_NAME_DEF_STMT (arg));
3083 /* FIXME: this restriction is for id-{24,25}.f and
3084 could be handled by duplicating the computation of
3085 array indices before the loop of the close_phi. */
3086 if (for_each_index (&res, dr_indices_valid_in_loop, &nest))
3087 return res;
3089 /* Fallthru. */
3091 default:
3092 continue;
3095 return NULL_TREE;
3098 /* Rewrite out of SSA the reduction described by the loop phi nodes
3099 IN, and the close phi nodes OUT. IN and OUT are structured by loop
3100 levels like this:
3102 IN: stmt, loop_n, ..., loop_0
3103 OUT: stmt, close_n, ..., close_0
3105 the first element is the reduction statement, and the next elements
3106 are the loop and close phi nodes of each of the outer loops. */
3108 static void
3109 translate_scalar_reduction_to_array (scop_p scop,
3110 VEC (gimple, heap) *in,
3111 VEC (gimple, heap) *out)
3113 gimple loop_phi;
3114 unsigned int i = VEC_length (gimple, out) - 1;
3115 tree red = close_phi_written_to_memory (VEC_index (gimple, out, i));
3117 FOR_EACH_VEC_ELT (gimple, in, i, loop_phi)
3119 gimple close_phi = VEC_index (gimple, out, i);
3121 if (i == 0)
3123 gimple stmt = loop_phi;
3124 basic_block bb = split_reduction_stmt (scop, stmt);
3125 poly_bb_p pbb = pbb_from_bb (bb);
3126 PBB_IS_REDUCTION (pbb) = true;
3127 gcc_assert (close_phi == loop_phi);
3129 if (!red)
3130 red = create_zero_dim_array
3131 (gimple_assign_lhs (stmt), "Commutative_Associative_Reduction");
3133 translate_scalar_reduction_to_array_for_stmt
3134 (scop, red, stmt, VEC_index (gimple, in, 1));
3135 continue;
3138 if (i == VEC_length (gimple, in) - 1)
3140 insert_out_of_ssa_copy (scop, gimple_phi_result (close_phi),
3141 unshare_expr (red), close_phi);
3142 insert_out_of_ssa_copy_on_edge
3143 (scop, edge_initial_value_for_loop_phi (loop_phi),
3144 unshare_expr (red), initial_value_for_loop_phi (loop_phi));
3147 remove_phi (loop_phi);
3148 remove_phi (close_phi);
3152 /* Rewrites out of SSA a commutative reduction at CLOSE_PHI. Returns
3153 true when something has been changed. */
3155 static bool
3156 rewrite_commutative_reductions_out_of_ssa_close_phi (scop_p scop,
3157 gimple close_phi)
3159 bool res;
3160 VEC (gimple, heap) *in = VEC_alloc (gimple, heap, 10);
3161 VEC (gimple, heap) *out = VEC_alloc (gimple, heap, 10);
3163 detect_commutative_reduction (scop, close_phi, &in, &out);
3164 res = VEC_length (gimple, in) > 1;
3165 if (res)
3166 translate_scalar_reduction_to_array (scop, in, out);
3168 VEC_free (gimple, heap, in);
3169 VEC_free (gimple, heap, out);
3170 return res;
3173 /* Rewrites all the commutative reductions from LOOP out of SSA.
3174 Returns true when something has been changed. */
3176 static bool
3177 rewrite_commutative_reductions_out_of_ssa_loop (scop_p scop,
3178 loop_p loop)
3180 gimple_stmt_iterator gsi;
3181 edge exit = single_exit (loop);
3182 tree res;
3183 bool changed = false;
3185 if (!exit)
3186 return false;
3188 for (gsi = gsi_start_phis (exit->dest); !gsi_end_p (gsi); gsi_next (&gsi))
3189 if ((res = gimple_phi_result (gsi_stmt (gsi)))
3190 && is_gimple_reg (res)
3191 && !scev_analyzable_p (res, SCOP_REGION (scop)))
3192 changed |= rewrite_commutative_reductions_out_of_ssa_close_phi
3193 (scop, gsi_stmt (gsi));
3195 return changed;
3198 /* Rewrites all the commutative reductions from SCOP out of SSA. */
3200 static void
3201 rewrite_commutative_reductions_out_of_ssa (scop_p scop)
3203 loop_iterator li;
3204 loop_p loop;
3205 bool changed = false;
3206 sese region = SCOP_REGION (scop);
3208 FOR_EACH_LOOP (li, loop, 0)
3209 if (loop_in_sese_p (loop, region))
3210 changed |= rewrite_commutative_reductions_out_of_ssa_loop (scop, loop);
3212 if (changed)
3214 scev_reset_htab ();
3215 gsi_commit_edge_inserts ();
3216 update_ssa (TODO_update_ssa);
3217 #ifdef ENABLE_CHECKING
3218 verify_loop_closed_ssa (true);
3219 #endif
3223 /* Java does not initialize long_long_integer_type_node. */
3224 #define my_long_long (long_long_integer_type_node ? long_long_integer_type_node : ssizetype)
3226 /* Can all ivs be represented by a signed integer?
3227 As CLooG might generate negative values in its expressions, signed loop ivs
3228 are required in the backend. */
3230 static bool
3231 scop_ivs_can_be_represented (scop_p scop)
3233 loop_iterator li;
3234 loop_p loop;
3235 gimple_stmt_iterator psi;
3237 FOR_EACH_LOOP (li, loop, 0)
3239 if (!loop_in_sese_p (loop, SCOP_REGION (scop)))
3240 continue;
3242 for (psi = gsi_start_phis (loop->header);
3243 !gsi_end_p (psi); gsi_next (&psi))
3245 gimple phi = gsi_stmt (psi);
3246 tree res = PHI_RESULT (phi);
3247 tree type = TREE_TYPE (res);
3249 if (TYPE_UNSIGNED (type)
3250 && TYPE_PRECISION (type) >= TYPE_PRECISION (my_long_long))
3251 return false;
3255 return true;
3258 #undef my_long_long
3260 /* Builds the polyhedral representation for a SESE region. */
3262 void
3263 build_poly_scop (scop_p scop)
3265 sese region = SCOP_REGION (scop);
3266 graphite_dim_t max_dim;
3268 build_scop_bbs (scop);
3270 /* FIXME: This restriction is needed to avoid a problem in CLooG.
3271 Once CLooG is fixed, remove this guard. Anyways, it makes no
3272 sense to optimize a scop containing only PBBs that do not belong
3273 to any loops. */
3274 if (nb_pbbs_in_loops (scop) == 0)
3275 return;
3277 if (!scop_ivs_can_be_represented (scop))
3278 return;
3280 if (flag_associative_math)
3281 rewrite_commutative_reductions_out_of_ssa (scop);
3283 build_sese_loop_nests (region);
3284 build_sese_conditions (region);
3285 find_scop_parameters (scop);
3287 max_dim = PARAM_VALUE (PARAM_GRAPHITE_MAX_NB_SCOP_PARAMS);
3288 if (scop_nb_params (scop) > max_dim)
3289 return;
3291 build_scop_iteration_domain (scop);
3292 build_scop_context (scop);
3293 add_conditions_to_constraints (scop);
3295 /* Rewrite out of SSA only after having translated the
3296 representation to the polyhedral representation to avoid scev
3297 analysis failures. That means that these functions will insert
3298 new data references that they create in the right place. */
3299 rewrite_reductions_out_of_ssa (scop);
3300 rewrite_cross_bb_scalar_deps_out_of_ssa (scop);
3302 build_scop_drs (scop);
3303 scop_to_lst (scop);
3304 build_scop_scattering (scop);
3306 /* This SCoP has been translated to the polyhedral
3307 representation. */
3308 POLY_SCOP_P (scop) = true;
3310 #endif