1 /* Control flow functions for trees.
2 Copyright (C) 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009,
3 2010, 2011 Free Software Foundation, Inc.
4 Contributed by Diego Novillo <dnovillo@redhat.com>
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3, or (at your option)
13 GCC is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
24 #include "coretypes.h"
28 #include "basic-block.h"
33 #include "langhooks.h"
34 #include "tree-pretty-print.h"
35 #include "gimple-pretty-print.h"
36 #include "tree-flow.h"
38 #include "tree-dump.h"
39 #include "tree-pass.h"
40 #include "diagnostic-core.h"
43 #include "cfglayout.h"
44 #include "tree-ssa-propagate.h"
45 #include "value-prof.h"
46 #include "pointer-set.h"
47 #include "tree-inline.h"
49 /* This file contains functions for building the Control Flow Graph (CFG)
50 for a function tree. */
52 /* Local declarations. */
54 /* Initial capacity for the basic block array. */
55 static const int initial_cfg_capacity
= 20;
57 /* This hash table allows us to efficiently lookup all CASE_LABEL_EXPRs
58 which use a particular edge. The CASE_LABEL_EXPRs are chained together
59 via their TREE_CHAIN field, which we clear after we're done with the
60 hash table to prevent problems with duplication of GIMPLE_SWITCHes.
62 Access to this list of CASE_LABEL_EXPRs allows us to efficiently
63 update the case vector in response to edge redirections.
65 Right now this table is set up and torn down at key points in the
66 compilation process. It would be nice if we could make the table
67 more persistent. The key is getting notification of changes to
68 the CFG (particularly edge removal, creation and redirection). */
70 static struct pointer_map_t
*edge_to_cases
;
72 /* If we record edge_to_cases, this bitmap will hold indexes
73 of basic blocks that end in a GIMPLE_SWITCH which we touched
74 due to edge manipulations. */
76 static bitmap touched_switch_bbs
;
81 long num_merged_labels
;
84 static struct cfg_stats_d cfg_stats
;
86 /* Nonzero if we found a computed goto while building basic blocks. */
87 static bool found_computed_goto
;
89 /* Hash table to store last discriminator assigned for each locus. */
90 struct locus_discrim_map
95 static htab_t discriminator_per_locus
;
97 /* Basic blocks and flowgraphs. */
98 static void make_blocks (gimple_seq
);
99 static void factor_computed_gotos (void);
102 static void make_edges (void);
103 static void make_cond_expr_edges (basic_block
);
104 static void make_gimple_switch_edges (basic_block
);
105 static void make_goto_expr_edges (basic_block
);
106 static void make_gimple_asm_edges (basic_block
);
107 static unsigned int locus_map_hash (const void *);
108 static int locus_map_eq (const void *, const void *);
109 static void assign_discriminator (location_t
, basic_block
);
110 static edge
gimple_redirect_edge_and_branch (edge
, basic_block
);
111 static edge
gimple_try_redirect_by_replacing_jump (edge
, basic_block
);
112 static unsigned int split_critical_edges (void);
114 /* Various helpers. */
115 static inline bool stmt_starts_bb_p (gimple
, gimple
);
116 static int gimple_verify_flow_info (void);
117 static void gimple_make_forwarder_block (edge
);
118 static void gimple_cfg2vcg (FILE *);
119 static gimple
first_non_label_stmt (basic_block
);
121 /* Flowgraph optimization and cleanup. */
122 static void gimple_merge_blocks (basic_block
, basic_block
);
123 static bool gimple_can_merge_blocks_p (basic_block
, basic_block
);
124 static void remove_bb (basic_block
);
125 static edge
find_taken_edge_computed_goto (basic_block
, tree
);
126 static edge
find_taken_edge_cond_expr (basic_block
, tree
);
127 static edge
find_taken_edge_switch_expr (basic_block
, tree
);
128 static tree
find_case_label_for_value (gimple
, tree
);
129 static void group_case_labels_stmt (gimple
);
132 init_empty_tree_cfg_for_function (struct function
*fn
)
134 /* Initialize the basic block array. */
136 profile_status_for_function (fn
) = PROFILE_ABSENT
;
137 n_basic_blocks_for_function (fn
) = NUM_FIXED_BLOCKS
;
138 last_basic_block_for_function (fn
) = NUM_FIXED_BLOCKS
;
139 basic_block_info_for_function (fn
)
140 = VEC_alloc (basic_block
, gc
, initial_cfg_capacity
);
141 VEC_safe_grow_cleared (basic_block
, gc
,
142 basic_block_info_for_function (fn
),
143 initial_cfg_capacity
);
145 /* Build a mapping of labels to their associated blocks. */
146 label_to_block_map_for_function (fn
)
147 = VEC_alloc (basic_block
, gc
, initial_cfg_capacity
);
148 VEC_safe_grow_cleared (basic_block
, gc
,
149 label_to_block_map_for_function (fn
),
150 initial_cfg_capacity
);
152 SET_BASIC_BLOCK_FOR_FUNCTION (fn
, ENTRY_BLOCK
,
153 ENTRY_BLOCK_PTR_FOR_FUNCTION (fn
));
154 SET_BASIC_BLOCK_FOR_FUNCTION (fn
, EXIT_BLOCK
,
155 EXIT_BLOCK_PTR_FOR_FUNCTION (fn
));
157 ENTRY_BLOCK_PTR_FOR_FUNCTION (fn
)->next_bb
158 = EXIT_BLOCK_PTR_FOR_FUNCTION (fn
);
159 EXIT_BLOCK_PTR_FOR_FUNCTION (fn
)->prev_bb
160 = ENTRY_BLOCK_PTR_FOR_FUNCTION (fn
);
164 init_empty_tree_cfg (void)
166 init_empty_tree_cfg_for_function (cfun
);
169 /*---------------------------------------------------------------------------
171 ---------------------------------------------------------------------------*/
173 /* Entry point to the CFG builder for trees. SEQ is the sequence of
174 statements to be added to the flowgraph. */
177 build_gimple_cfg (gimple_seq seq
)
179 /* Register specific gimple functions. */
180 gimple_register_cfg_hooks ();
182 memset ((void *) &cfg_stats
, 0, sizeof (cfg_stats
));
184 init_empty_tree_cfg ();
186 found_computed_goto
= 0;
189 /* Computed gotos are hell to deal with, especially if there are
190 lots of them with a large number of destinations. So we factor
191 them to a common computed goto location before we build the
192 edge list. After we convert back to normal form, we will un-factor
193 the computed gotos since factoring introduces an unwanted jump. */
194 if (found_computed_goto
)
195 factor_computed_gotos ();
197 /* Make sure there is always at least one block, even if it's empty. */
198 if (n_basic_blocks
== NUM_FIXED_BLOCKS
)
199 create_empty_bb (ENTRY_BLOCK_PTR
);
201 /* Adjust the size of the array. */
202 if (VEC_length (basic_block
, basic_block_info
) < (size_t) n_basic_blocks
)
203 VEC_safe_grow_cleared (basic_block
, gc
, basic_block_info
, n_basic_blocks
);
205 /* To speed up statement iterator walks, we first purge dead labels. */
206 cleanup_dead_labels ();
208 /* Group case nodes to reduce the number of edges.
209 We do this after cleaning up dead labels because otherwise we miss
210 a lot of obvious case merging opportunities. */
211 group_case_labels ();
213 /* Create the edges of the flowgraph. */
214 discriminator_per_locus
= htab_create (13, locus_map_hash
, locus_map_eq
,
217 cleanup_dead_labels ();
218 htab_delete (discriminator_per_locus
);
220 /* Debugging dumps. */
222 /* Write the flowgraph to a VCG file. */
224 int local_dump_flags
;
225 FILE *vcg_file
= dump_begin (TDI_vcg
, &local_dump_flags
);
228 gimple_cfg2vcg (vcg_file
);
229 dump_end (TDI_vcg
, vcg_file
);
235 execute_build_cfg (void)
237 gimple_seq body
= gimple_body (current_function_decl
);
239 build_gimple_cfg (body
);
240 gimple_set_body (current_function_decl
, NULL
);
241 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
243 fprintf (dump_file
, "Scope blocks:\n");
244 dump_scope_blocks (dump_file
, dump_flags
);
249 struct gimple_opt_pass pass_build_cfg
=
255 execute_build_cfg
, /* execute */
258 0, /* static_pass_number */
259 TV_TREE_CFG
, /* tv_id */
260 PROP_gimple_leh
, /* properties_required */
261 PROP_cfg
, /* properties_provided */
262 0, /* properties_destroyed */
263 0, /* todo_flags_start */
264 TODO_verify_stmts
| TODO_cleanup_cfg
265 | TODO_dump_func
/* todo_flags_finish */
270 /* Return true if T is a computed goto. */
273 computed_goto_p (gimple t
)
275 return (gimple_code (t
) == GIMPLE_GOTO
276 && TREE_CODE (gimple_goto_dest (t
)) != LABEL_DECL
);
280 /* Search the CFG for any computed gotos. If found, factor them to a
281 common computed goto site. Also record the location of that site so
282 that we can un-factor the gotos after we have converted back to
286 factor_computed_gotos (void)
289 tree factored_label_decl
= NULL
;
291 gimple factored_computed_goto_label
= NULL
;
292 gimple factored_computed_goto
= NULL
;
294 /* We know there are one or more computed gotos in this function.
295 Examine the last statement in each basic block to see if the block
296 ends with a computed goto. */
300 gimple_stmt_iterator gsi
= gsi_last_bb (bb
);
306 last
= gsi_stmt (gsi
);
308 /* Ignore the computed goto we create when we factor the original
310 if (last
== factored_computed_goto
)
313 /* If the last statement is a computed goto, factor it. */
314 if (computed_goto_p (last
))
318 /* The first time we find a computed goto we need to create
319 the factored goto block and the variable each original
320 computed goto will use for their goto destination. */
321 if (!factored_computed_goto
)
323 basic_block new_bb
= create_empty_bb (bb
);
324 gimple_stmt_iterator new_gsi
= gsi_start_bb (new_bb
);
326 /* Create the destination of the factored goto. Each original
327 computed goto will put its desired destination into this
328 variable and jump to the label we create immediately
330 var
= create_tmp_var (ptr_type_node
, "gotovar");
332 /* Build a label for the new block which will contain the
333 factored computed goto. */
334 factored_label_decl
= create_artificial_label (UNKNOWN_LOCATION
);
335 factored_computed_goto_label
336 = gimple_build_label (factored_label_decl
);
337 gsi_insert_after (&new_gsi
, factored_computed_goto_label
,
340 /* Build our new computed goto. */
341 factored_computed_goto
= gimple_build_goto (var
);
342 gsi_insert_after (&new_gsi
, factored_computed_goto
, GSI_NEW_STMT
);
345 /* Copy the original computed goto's destination into VAR. */
346 assignment
= gimple_build_assign (var
, gimple_goto_dest (last
));
347 gsi_insert_before (&gsi
, assignment
, GSI_SAME_STMT
);
349 /* And re-vector the computed goto to the new destination. */
350 gimple_goto_set_dest (last
, factored_label_decl
);
356 /* Build a flowgraph for the sequence of stmts SEQ. */
359 make_blocks (gimple_seq seq
)
361 gimple_stmt_iterator i
= gsi_start (seq
);
363 bool start_new_block
= true;
364 bool first_stmt_of_seq
= true;
365 basic_block bb
= ENTRY_BLOCK_PTR
;
367 while (!gsi_end_p (i
))
374 /* If the statement starts a new basic block or if we have determined
375 in a previous pass that we need to create a new block for STMT, do
377 if (start_new_block
|| stmt_starts_bb_p (stmt
, prev_stmt
))
379 if (!first_stmt_of_seq
)
380 seq
= gsi_split_seq_before (&i
);
381 bb
= create_basic_block (seq
, NULL
, bb
);
382 start_new_block
= false;
385 /* Now add STMT to BB and create the subgraphs for special statement
387 gimple_set_bb (stmt
, bb
);
389 if (computed_goto_p (stmt
))
390 found_computed_goto
= true;
392 /* If STMT is a basic block terminator, set START_NEW_BLOCK for the
394 if (stmt_ends_bb_p (stmt
))
396 /* If the stmt can make abnormal goto use a new temporary
397 for the assignment to the LHS. This makes sure the old value
398 of the LHS is available on the abnormal edge. Otherwise
399 we will end up with overlapping life-ranges for abnormal
401 if (gimple_has_lhs (stmt
)
402 && stmt_can_make_abnormal_goto (stmt
)
403 && is_gimple_reg_type (TREE_TYPE (gimple_get_lhs (stmt
))))
405 tree lhs
= gimple_get_lhs (stmt
);
406 tree tmp
= create_tmp_var (TREE_TYPE (lhs
), NULL
);
407 gimple s
= gimple_build_assign (lhs
, tmp
);
408 gimple_set_location (s
, gimple_location (stmt
));
409 gimple_set_block (s
, gimple_block (stmt
));
410 gimple_set_lhs (stmt
, tmp
);
411 if (TREE_CODE (TREE_TYPE (tmp
)) == COMPLEX_TYPE
412 || TREE_CODE (TREE_TYPE (tmp
)) == VECTOR_TYPE
)
413 DECL_GIMPLE_REG_P (tmp
) = 1;
414 gsi_insert_after (&i
, s
, GSI_SAME_STMT
);
416 start_new_block
= true;
420 first_stmt_of_seq
= false;
425 /* Create and return a new empty basic block after bb AFTER. */
428 create_bb (void *h
, void *e
, basic_block after
)
434 /* Create and initialize a new basic block. Since alloc_block uses
435 GC allocation that clears memory to allocate a basic block, we do
436 not have to clear the newly allocated basic block here. */
439 bb
->index
= last_basic_block
;
441 bb
->il
.gimple
= ggc_alloc_cleared_gimple_bb_info ();
442 set_bb_seq (bb
, h
? (gimple_seq
) h
: gimple_seq_alloc ());
444 /* Add the new block to the linked list of blocks. */
445 link_block (bb
, after
);
447 /* Grow the basic block array if needed. */
448 if ((size_t) last_basic_block
== VEC_length (basic_block
, basic_block_info
))
450 size_t new_size
= last_basic_block
+ (last_basic_block
+ 3) / 4;
451 VEC_safe_grow_cleared (basic_block
, gc
, basic_block_info
, new_size
);
454 /* Add the newly created block to the array. */
455 SET_BASIC_BLOCK (last_basic_block
, bb
);
464 /*---------------------------------------------------------------------------
466 ---------------------------------------------------------------------------*/
468 /* Fold COND_EXPR_COND of each COND_EXPR. */
471 fold_cond_expr_cond (void)
477 gimple stmt
= last_stmt (bb
);
479 if (stmt
&& gimple_code (stmt
) == GIMPLE_COND
)
481 location_t loc
= gimple_location (stmt
);
485 fold_defer_overflow_warnings ();
486 cond
= fold_binary_loc (loc
, gimple_cond_code (stmt
), boolean_type_node
,
487 gimple_cond_lhs (stmt
), gimple_cond_rhs (stmt
));
490 zerop
= integer_zerop (cond
);
491 onep
= integer_onep (cond
);
494 zerop
= onep
= false;
496 fold_undefer_overflow_warnings (zerop
|| onep
,
498 WARN_STRICT_OVERFLOW_CONDITIONAL
);
500 gimple_cond_make_false (stmt
);
502 gimple_cond_make_true (stmt
);
507 /* Join all the blocks in the flowgraph. */
513 struct omp_region
*cur_region
= NULL
;
515 /* Create an edge from entry to the first block with executable
517 make_edge (ENTRY_BLOCK_PTR
, BASIC_BLOCK (NUM_FIXED_BLOCKS
), EDGE_FALLTHRU
);
519 /* Traverse the basic block array placing edges. */
522 gimple last
= last_stmt (bb
);
527 enum gimple_code code
= gimple_code (last
);
531 make_goto_expr_edges (bb
);
535 make_edge (bb
, EXIT_BLOCK_PTR
, 0);
539 make_cond_expr_edges (bb
);
543 make_gimple_switch_edges (bb
);
547 make_eh_edges (last
);
550 case GIMPLE_EH_DISPATCH
:
551 fallthru
= make_eh_dispatch_edges (last
);
555 /* If this function receives a nonlocal goto, then we need to
556 make edges from this call site to all the nonlocal goto
558 if (stmt_can_make_abnormal_goto (last
))
559 make_abnormal_goto_edges (bb
, true);
561 /* If this statement has reachable exception handlers, then
562 create abnormal edges to them. */
563 make_eh_edges (last
);
565 /* BUILTIN_RETURN is really a return statement. */
566 if (gimple_call_builtin_p (last
, BUILT_IN_RETURN
))
567 make_edge (bb
, EXIT_BLOCK_PTR
, 0), fallthru
= false;
568 /* Some calls are known not to return. */
570 fallthru
= !(gimple_call_flags (last
) & ECF_NORETURN
);
574 /* A GIMPLE_ASSIGN may throw internally and thus be considered
576 if (is_ctrl_altering_stmt (last
))
577 make_eh_edges (last
);
582 make_gimple_asm_edges (bb
);
586 case GIMPLE_OMP_PARALLEL
:
587 case GIMPLE_OMP_TASK
:
589 case GIMPLE_OMP_SINGLE
:
590 case GIMPLE_OMP_MASTER
:
591 case GIMPLE_OMP_ORDERED
:
592 case GIMPLE_OMP_CRITICAL
:
593 case GIMPLE_OMP_SECTION
:
594 cur_region
= new_omp_region (bb
, code
, cur_region
);
598 case GIMPLE_OMP_SECTIONS
:
599 cur_region
= new_omp_region (bb
, code
, cur_region
);
603 case GIMPLE_OMP_SECTIONS_SWITCH
:
607 case GIMPLE_OMP_ATOMIC_LOAD
:
608 case GIMPLE_OMP_ATOMIC_STORE
:
612 case GIMPLE_OMP_RETURN
:
613 /* In the case of a GIMPLE_OMP_SECTION, the edge will go
614 somewhere other than the next block. This will be
616 cur_region
->exit
= bb
;
617 fallthru
= cur_region
->type
!= GIMPLE_OMP_SECTION
;
618 cur_region
= cur_region
->outer
;
621 case GIMPLE_OMP_CONTINUE
:
622 cur_region
->cont
= bb
;
623 switch (cur_region
->type
)
626 /* Mark all GIMPLE_OMP_FOR and GIMPLE_OMP_CONTINUE
627 succs edges as abnormal to prevent splitting
629 single_succ_edge (cur_region
->entry
)->flags
|= EDGE_ABNORMAL
;
630 /* Make the loopback edge. */
631 make_edge (bb
, single_succ (cur_region
->entry
),
634 /* Create an edge from GIMPLE_OMP_FOR to exit, which
635 corresponds to the case that the body of the loop
636 is not executed at all. */
637 make_edge (cur_region
->entry
, bb
->next_bb
, EDGE_ABNORMAL
);
638 make_edge (bb
, bb
->next_bb
, EDGE_FALLTHRU
| EDGE_ABNORMAL
);
642 case GIMPLE_OMP_SECTIONS
:
643 /* Wire up the edges into and out of the nested sections. */
645 basic_block switch_bb
= single_succ (cur_region
->entry
);
647 struct omp_region
*i
;
648 for (i
= cur_region
->inner
; i
; i
= i
->next
)
650 gcc_assert (i
->type
== GIMPLE_OMP_SECTION
);
651 make_edge (switch_bb
, i
->entry
, 0);
652 make_edge (i
->exit
, bb
, EDGE_FALLTHRU
);
655 /* Make the loopback edge to the block with
656 GIMPLE_OMP_SECTIONS_SWITCH. */
657 make_edge (bb
, switch_bb
, 0);
659 /* Make the edge from the switch to exit. */
660 make_edge (switch_bb
, bb
->next_bb
, 0);
671 gcc_assert (!stmt_ends_bb_p (last
));
680 make_edge (bb
, bb
->next_bb
, EDGE_FALLTHRU
);
682 assign_discriminator (gimple_location (last
), bb
->next_bb
);
689 /* Fold COND_EXPR_COND of each COND_EXPR. */
690 fold_cond_expr_cond ();
693 /* Trivial hash function for a location_t. ITEM is a pointer to
694 a hash table entry that maps a location_t to a discriminator. */
697 locus_map_hash (const void *item
)
699 return ((const struct locus_discrim_map
*) item
)->locus
;
702 /* Equality function for the locus-to-discriminator map. VA and VB
703 point to the two hash table entries to compare. */
706 locus_map_eq (const void *va
, const void *vb
)
708 const struct locus_discrim_map
*a
= (const struct locus_discrim_map
*) va
;
709 const struct locus_discrim_map
*b
= (const struct locus_discrim_map
*) vb
;
710 return a
->locus
== b
->locus
;
713 /* Find the next available discriminator value for LOCUS. The
714 discriminator distinguishes among several basic blocks that
715 share a common locus, allowing for more accurate sample-based
719 next_discriminator_for_locus (location_t locus
)
721 struct locus_discrim_map item
;
722 struct locus_discrim_map
**slot
;
725 item
.discriminator
= 0;
726 slot
= (struct locus_discrim_map
**)
727 htab_find_slot_with_hash (discriminator_per_locus
, (void *) &item
,
728 (hashval_t
) locus
, INSERT
);
730 if (*slot
== HTAB_EMPTY_ENTRY
)
732 *slot
= XNEW (struct locus_discrim_map
);
734 (*slot
)->locus
= locus
;
735 (*slot
)->discriminator
= 0;
737 (*slot
)->discriminator
++;
738 return (*slot
)->discriminator
;
741 /* Return TRUE if LOCUS1 and LOCUS2 refer to the same source line. */
744 same_line_p (location_t locus1
, location_t locus2
)
746 expanded_location from
, to
;
748 if (locus1
== locus2
)
751 from
= expand_location (locus1
);
752 to
= expand_location (locus2
);
754 if (from
.line
!= to
.line
)
756 if (from
.file
== to
.file
)
758 return (from
.file
!= NULL
760 && filename_cmp (from
.file
, to
.file
) == 0);
763 /* Assign a unique discriminator value to block BB if it begins at the same
764 LOCUS as its predecessor block. */
767 assign_discriminator (location_t locus
, basic_block bb
)
769 gimple first_in_to_bb
, last_in_to_bb
;
771 if (locus
== 0 || bb
->discriminator
!= 0)
774 first_in_to_bb
= first_non_label_stmt (bb
);
775 last_in_to_bb
= last_stmt (bb
);
776 if ((first_in_to_bb
&& same_line_p (locus
, gimple_location (first_in_to_bb
)))
777 || (last_in_to_bb
&& same_line_p (locus
, gimple_location (last_in_to_bb
))))
778 bb
->discriminator
= next_discriminator_for_locus (locus
);
781 /* Create the edges for a GIMPLE_COND starting at block BB. */
784 make_cond_expr_edges (basic_block bb
)
786 gimple entry
= last_stmt (bb
);
787 gimple then_stmt
, else_stmt
;
788 basic_block then_bb
, else_bb
;
789 tree then_label
, else_label
;
791 location_t entry_locus
;
794 gcc_assert (gimple_code (entry
) == GIMPLE_COND
);
796 entry_locus
= gimple_location (entry
);
798 /* Entry basic blocks for each component. */
799 then_label
= gimple_cond_true_label (entry
);
800 else_label
= gimple_cond_false_label (entry
);
801 then_bb
= label_to_block (then_label
);
802 else_bb
= label_to_block (else_label
);
803 then_stmt
= first_stmt (then_bb
);
804 else_stmt
= first_stmt (else_bb
);
806 e
= make_edge (bb
, then_bb
, EDGE_TRUE_VALUE
);
807 assign_discriminator (entry_locus
, then_bb
);
808 e
->goto_locus
= gimple_location (then_stmt
);
810 e
->goto_block
= gimple_block (then_stmt
);
811 e
= make_edge (bb
, else_bb
, EDGE_FALSE_VALUE
);
814 assign_discriminator (entry_locus
, else_bb
);
815 e
->goto_locus
= gimple_location (else_stmt
);
817 e
->goto_block
= gimple_block (else_stmt
);
820 /* We do not need the labels anymore. */
821 gimple_cond_set_true_label (entry
, NULL_TREE
);
822 gimple_cond_set_false_label (entry
, NULL_TREE
);
826 /* Called for each element in the hash table (P) as we delete the
827 edge to cases hash table.
829 Clear all the TREE_CHAINs to prevent problems with copying of
830 SWITCH_EXPRs and structure sharing rules, then free the hash table
834 edge_to_cases_cleanup (const void *key ATTRIBUTE_UNUSED
, void **value
,
835 void *data ATTRIBUTE_UNUSED
)
839 for (t
= (tree
) *value
; t
; t
= next
)
841 next
= CASE_CHAIN (t
);
842 CASE_CHAIN (t
) = NULL
;
849 /* Start recording information mapping edges to case labels. */
852 start_recording_case_labels (void)
854 gcc_assert (edge_to_cases
== NULL
);
855 edge_to_cases
= pointer_map_create ();
856 touched_switch_bbs
= BITMAP_ALLOC (NULL
);
859 /* Return nonzero if we are recording information for case labels. */
862 recording_case_labels_p (void)
864 return (edge_to_cases
!= NULL
);
867 /* Stop recording information mapping edges to case labels and
868 remove any information we have recorded. */
870 end_recording_case_labels (void)
874 pointer_map_traverse (edge_to_cases
, edge_to_cases_cleanup
, NULL
);
875 pointer_map_destroy (edge_to_cases
);
876 edge_to_cases
= NULL
;
877 EXECUTE_IF_SET_IN_BITMAP (touched_switch_bbs
, 0, i
, bi
)
879 basic_block bb
= BASIC_BLOCK (i
);
882 gimple stmt
= last_stmt (bb
);
883 if (stmt
&& gimple_code (stmt
) == GIMPLE_SWITCH
)
884 group_case_labels_stmt (stmt
);
887 BITMAP_FREE (touched_switch_bbs
);
890 /* If we are inside a {start,end}_recording_cases block, then return
891 a chain of CASE_LABEL_EXPRs from T which reference E.
893 Otherwise return NULL. */
896 get_cases_for_edge (edge e
, gimple t
)
901 /* If we are not recording cases, then we do not have CASE_LABEL_EXPR
902 chains available. Return NULL so the caller can detect this case. */
903 if (!recording_case_labels_p ())
906 slot
= pointer_map_contains (edge_to_cases
, e
);
910 /* If we did not find E in the hash table, then this must be the first
911 time we have been queried for information about E & T. Add all the
912 elements from T to the hash table then perform the query again. */
914 n
= gimple_switch_num_labels (t
);
915 for (i
= 0; i
< n
; i
++)
917 tree elt
= gimple_switch_label (t
, i
);
918 tree lab
= CASE_LABEL (elt
);
919 basic_block label_bb
= label_to_block (lab
);
920 edge this_edge
= find_edge (e
->src
, label_bb
);
922 /* Add it to the chain of CASE_LABEL_EXPRs referencing E, or create
924 slot
= pointer_map_insert (edge_to_cases
, this_edge
);
925 CASE_CHAIN (elt
) = (tree
) *slot
;
929 return (tree
) *pointer_map_contains (edge_to_cases
, e
);
932 /* Create the edges for a GIMPLE_SWITCH starting at block BB. */
935 make_gimple_switch_edges (basic_block bb
)
937 gimple entry
= last_stmt (bb
);
938 location_t entry_locus
;
941 entry_locus
= gimple_location (entry
);
943 n
= gimple_switch_num_labels (entry
);
945 for (i
= 0; i
< n
; ++i
)
947 tree lab
= CASE_LABEL (gimple_switch_label (entry
, i
));
948 basic_block label_bb
= label_to_block (lab
);
949 make_edge (bb
, label_bb
, 0);
950 assign_discriminator (entry_locus
, label_bb
);
955 /* Return the basic block holding label DEST. */
958 label_to_block_fn (struct function
*ifun
, tree dest
)
960 int uid
= LABEL_DECL_UID (dest
);
962 /* We would die hard when faced by an undefined label. Emit a label to
963 the very first basic block. This will hopefully make even the dataflow
964 and undefined variable warnings quite right. */
965 if (seen_error () && uid
< 0)
967 gimple_stmt_iterator gsi
= gsi_start_bb (BASIC_BLOCK (NUM_FIXED_BLOCKS
));
970 stmt
= gimple_build_label (dest
);
971 gsi_insert_before (&gsi
, stmt
, GSI_NEW_STMT
);
972 uid
= LABEL_DECL_UID (dest
);
974 if (VEC_length (basic_block
, ifun
->cfg
->x_label_to_block_map
)
975 <= (unsigned int) uid
)
977 return VEC_index (basic_block
, ifun
->cfg
->x_label_to_block_map
, uid
);
980 /* Create edges for an abnormal goto statement at block BB. If FOR_CALL
981 is true, the source statement is a CALL_EXPR instead of a GOTO_EXPR. */
984 make_abnormal_goto_edges (basic_block bb
, bool for_call
)
986 basic_block target_bb
;
987 gimple_stmt_iterator gsi
;
989 FOR_EACH_BB (target_bb
)
990 for (gsi
= gsi_start_bb (target_bb
); !gsi_end_p (gsi
); gsi_next (&gsi
))
992 gimple label_stmt
= gsi_stmt (gsi
);
995 if (gimple_code (label_stmt
) != GIMPLE_LABEL
)
998 target
= gimple_label_label (label_stmt
);
1000 /* Make an edge to every label block that has been marked as a
1001 potential target for a computed goto or a non-local goto. */
1002 if ((FORCED_LABEL (target
) && !for_call
)
1003 || (DECL_NONLOCAL (target
) && for_call
))
1005 make_edge (bb
, target_bb
, EDGE_ABNORMAL
);
1011 /* Create edges for a goto statement at block BB. */
1014 make_goto_expr_edges (basic_block bb
)
1016 gimple_stmt_iterator last
= gsi_last_bb (bb
);
1017 gimple goto_t
= gsi_stmt (last
);
1019 /* A simple GOTO creates normal edges. */
1020 if (simple_goto_p (goto_t
))
1022 tree dest
= gimple_goto_dest (goto_t
);
1023 basic_block label_bb
= label_to_block (dest
);
1024 edge e
= make_edge (bb
, label_bb
, EDGE_FALLTHRU
);
1025 e
->goto_locus
= gimple_location (goto_t
);
1026 assign_discriminator (e
->goto_locus
, label_bb
);
1028 e
->goto_block
= gimple_block (goto_t
);
1029 gsi_remove (&last
, true);
1033 /* A computed GOTO creates abnormal edges. */
1034 make_abnormal_goto_edges (bb
, false);
1037 /* Create edges for an asm statement with labels at block BB. */
1040 make_gimple_asm_edges (basic_block bb
)
1042 gimple stmt
= last_stmt (bb
);
1043 location_t stmt_loc
= gimple_location (stmt
);
1044 int i
, n
= gimple_asm_nlabels (stmt
);
1046 for (i
= 0; i
< n
; ++i
)
1048 tree label
= TREE_VALUE (gimple_asm_label_op (stmt
, i
));
1049 basic_block label_bb
= label_to_block (label
);
1050 make_edge (bb
, label_bb
, 0);
1051 assign_discriminator (stmt_loc
, label_bb
);
1055 /*---------------------------------------------------------------------------
1057 ---------------------------------------------------------------------------*/
1059 /* Cleanup useless labels in basic blocks. This is something we wish
1060 to do early because it allows us to group case labels before creating
1061 the edges for the CFG, and it speeds up block statement iterators in
1062 all passes later on.
1063 We rerun this pass after CFG is created, to get rid of the labels that
1064 are no longer referenced. After then we do not run it any more, since
1065 (almost) no new labels should be created. */
1067 /* A map from basic block index to the leading label of that block. */
1068 static struct label_record
1073 /* True if the label is referenced from somewhere. */
1077 /* Given LABEL return the first label in the same basic block. */
1080 main_block_label (tree label
)
1082 basic_block bb
= label_to_block (label
);
1083 tree main_label
= label_for_bb
[bb
->index
].label
;
1085 /* label_to_block possibly inserted undefined label into the chain. */
1088 label_for_bb
[bb
->index
].label
= label
;
1092 label_for_bb
[bb
->index
].used
= true;
1096 /* Clean up redundant labels within the exception tree. */
1099 cleanup_dead_labels_eh (void)
1106 if (cfun
->eh
== NULL
)
1109 for (i
= 1; VEC_iterate (eh_landing_pad
, cfun
->eh
->lp_array
, i
, lp
); ++i
)
1110 if (lp
&& lp
->post_landing_pad
)
1112 lab
= main_block_label (lp
->post_landing_pad
);
1113 if (lab
!= lp
->post_landing_pad
)
1115 EH_LANDING_PAD_NR (lp
->post_landing_pad
) = 0;
1116 EH_LANDING_PAD_NR (lab
) = lp
->index
;
1120 FOR_ALL_EH_REGION (r
)
1124 case ERT_MUST_NOT_THROW
:
1130 for (c
= r
->u
.eh_try
.first_catch
; c
; c
= c
->next_catch
)
1134 c
->label
= main_block_label (lab
);
1139 case ERT_ALLOWED_EXCEPTIONS
:
1140 lab
= r
->u
.allowed
.label
;
1142 r
->u
.allowed
.label
= main_block_label (lab
);
1148 /* Cleanup redundant labels. This is a three-step process:
1149 1) Find the leading label for each block.
1150 2) Redirect all references to labels to the leading labels.
1151 3) Cleanup all useless labels. */
1154 cleanup_dead_labels (void)
1157 label_for_bb
= XCNEWVEC (struct label_record
, last_basic_block
);
1159 /* Find a suitable label for each block. We use the first user-defined
1160 label if there is one, or otherwise just the first label we see. */
1163 gimple_stmt_iterator i
;
1165 for (i
= gsi_start_bb (bb
); !gsi_end_p (i
); gsi_next (&i
))
1168 gimple stmt
= gsi_stmt (i
);
1170 if (gimple_code (stmt
) != GIMPLE_LABEL
)
1173 label
= gimple_label_label (stmt
);
1175 /* If we have not yet seen a label for the current block,
1176 remember this one and see if there are more labels. */
1177 if (!label_for_bb
[bb
->index
].label
)
1179 label_for_bb
[bb
->index
].label
= label
;
1183 /* If we did see a label for the current block already, but it
1184 is an artificially created label, replace it if the current
1185 label is a user defined label. */
1186 if (!DECL_ARTIFICIAL (label
)
1187 && DECL_ARTIFICIAL (label_for_bb
[bb
->index
].label
))
1189 label_for_bb
[bb
->index
].label
= label
;
1195 /* Now redirect all jumps/branches to the selected label.
1196 First do so for each block ending in a control statement. */
1199 gimple stmt
= last_stmt (bb
);
1203 switch (gimple_code (stmt
))
1207 tree true_label
= gimple_cond_true_label (stmt
);
1208 tree false_label
= gimple_cond_false_label (stmt
);
1211 gimple_cond_set_true_label (stmt
, main_block_label (true_label
));
1213 gimple_cond_set_false_label (stmt
, main_block_label (false_label
));
1219 size_t i
, n
= gimple_switch_num_labels (stmt
);
1221 /* Replace all destination labels. */
1222 for (i
= 0; i
< n
; ++i
)
1224 tree case_label
= gimple_switch_label (stmt
, i
);
1225 tree label
= main_block_label (CASE_LABEL (case_label
));
1226 CASE_LABEL (case_label
) = label
;
1233 int i
, n
= gimple_asm_nlabels (stmt
);
1235 for (i
= 0; i
< n
; ++i
)
1237 tree cons
= gimple_asm_label_op (stmt
, i
);
1238 tree label
= main_block_label (TREE_VALUE (cons
));
1239 TREE_VALUE (cons
) = label
;
1244 /* We have to handle gotos until they're removed, and we don't
1245 remove them until after we've created the CFG edges. */
1247 if (!computed_goto_p (stmt
))
1249 tree new_dest
= main_block_label (gimple_goto_dest (stmt
));
1250 gimple_goto_set_dest (stmt
, new_dest
);
1259 /* Do the same for the exception region tree labels. */
1260 cleanup_dead_labels_eh ();
1262 /* Finally, purge dead labels. All user-defined labels and labels that
1263 can be the target of non-local gotos and labels which have their
1264 address taken are preserved. */
1267 gimple_stmt_iterator i
;
1268 tree label_for_this_bb
= label_for_bb
[bb
->index
].label
;
1270 if (!label_for_this_bb
)
1273 /* If the main label of the block is unused, we may still remove it. */
1274 if (!label_for_bb
[bb
->index
].used
)
1275 label_for_this_bb
= NULL
;
1277 for (i
= gsi_start_bb (bb
); !gsi_end_p (i
); )
1280 gimple stmt
= gsi_stmt (i
);
1282 if (gimple_code (stmt
) != GIMPLE_LABEL
)
1285 label
= gimple_label_label (stmt
);
1287 if (label
== label_for_this_bb
1288 || !DECL_ARTIFICIAL (label
)
1289 || DECL_NONLOCAL (label
)
1290 || FORCED_LABEL (label
))
1293 gsi_remove (&i
, true);
1297 free (label_for_bb
);
1300 /* Scan the sorted vector of cases in STMT (a GIMPLE_SWITCH) and combine
1301 the ones jumping to the same label.
1302 Eg. three separate entries 1: 2: 3: become one entry 1..3: */
1305 group_case_labels_stmt (gimple stmt
)
1307 int old_size
= gimple_switch_num_labels (stmt
);
1308 int i
, j
, new_size
= old_size
;
1309 tree default_case
= NULL_TREE
;
1310 tree default_label
= NULL_TREE
;
1313 /* The default label is always the first case in a switch
1314 statement after gimplification if it was not optimized
1316 if (!CASE_LOW (gimple_switch_default_label (stmt
))
1317 && !CASE_HIGH (gimple_switch_default_label (stmt
)))
1319 default_case
= gimple_switch_default_label (stmt
);
1320 default_label
= CASE_LABEL (default_case
);
1324 has_default
= false;
1326 /* Look for possible opportunities to merge cases. */
1331 while (i
< old_size
)
1333 tree base_case
, base_label
, base_high
;
1334 base_case
= gimple_switch_label (stmt
, i
);
1336 gcc_assert (base_case
);
1337 base_label
= CASE_LABEL (base_case
);
1339 /* Discard cases that have the same destination as the
1341 if (base_label
== default_label
)
1343 gimple_switch_set_label (stmt
, i
, NULL_TREE
);
1349 base_high
= CASE_HIGH (base_case
)
1350 ? CASE_HIGH (base_case
)
1351 : CASE_LOW (base_case
);
1354 /* Try to merge case labels. Break out when we reach the end
1355 of the label vector or when we cannot merge the next case
1356 label with the current one. */
1357 while (i
< old_size
)
1359 tree merge_case
= gimple_switch_label (stmt
, i
);
1360 tree merge_label
= CASE_LABEL (merge_case
);
1361 double_int bhp1
= double_int_add (tree_to_double_int (base_high
),
1364 /* Merge the cases if they jump to the same place,
1365 and their ranges are consecutive. */
1366 if (merge_label
== base_label
1367 && double_int_equal_p (tree_to_double_int (CASE_LOW (merge_case
)),
1370 base_high
= CASE_HIGH (merge_case
) ?
1371 CASE_HIGH (merge_case
) : CASE_LOW (merge_case
);
1372 CASE_HIGH (base_case
) = base_high
;
1373 gimple_switch_set_label (stmt
, i
, NULL_TREE
);
1382 /* Compress the case labels in the label vector, and adjust the
1383 length of the vector. */
1384 for (i
= 0, j
= 0; i
< new_size
; i
++)
1386 while (! gimple_switch_label (stmt
, j
))
1388 gimple_switch_set_label (stmt
, i
,
1389 gimple_switch_label (stmt
, j
++));
1392 gcc_assert (new_size
<= old_size
);
1393 gimple_switch_set_num_labels (stmt
, new_size
);
1396 /* Look for blocks ending in a multiway branch (a GIMPLE_SWITCH),
1397 and scan the sorted vector of cases. Combine the ones jumping to the
1401 group_case_labels (void)
1407 gimple stmt
= last_stmt (bb
);
1408 if (stmt
&& gimple_code (stmt
) == GIMPLE_SWITCH
)
1409 group_case_labels_stmt (stmt
);
1413 /* Checks whether we can merge block B into block A. */
1416 gimple_can_merge_blocks_p (basic_block a
, basic_block b
)
1419 gimple_stmt_iterator gsi
;
1422 if (!single_succ_p (a
))
1425 if (single_succ_edge (a
)->flags
& (EDGE_ABNORMAL
| EDGE_EH
))
1428 if (single_succ (a
) != b
)
1431 if (!single_pred_p (b
))
1434 if (b
== EXIT_BLOCK_PTR
)
1437 /* If A ends by a statement causing exceptions or something similar, we
1438 cannot merge the blocks. */
1439 stmt
= last_stmt (a
);
1440 if (stmt
&& stmt_ends_bb_p (stmt
))
1443 /* Do not allow a block with only a non-local label to be merged. */
1445 && gimple_code (stmt
) == GIMPLE_LABEL
1446 && DECL_NONLOCAL (gimple_label_label (stmt
)))
1449 /* Examine the labels at the beginning of B. */
1450 for (gsi
= gsi_start_bb (b
); !gsi_end_p (gsi
); gsi_next (&gsi
))
1453 stmt
= gsi_stmt (gsi
);
1454 if (gimple_code (stmt
) != GIMPLE_LABEL
)
1456 lab
= gimple_label_label (stmt
);
1458 /* Do not remove user labels. */
1459 if (!DECL_ARTIFICIAL (lab
))
1463 /* Protect the loop latches. */
1464 if (current_loops
&& b
->loop_father
->latch
== b
)
1467 /* It must be possible to eliminate all phi nodes in B. If ssa form
1468 is not up-to-date and a name-mapping is registered, we cannot eliminate
1469 any phis. Symbols marked for renaming are never a problem though. */
1470 phis
= phi_nodes (b
);
1471 if (!gimple_seq_empty_p (phis
)
1472 && name_mappings_registered_p ())
1475 /* When not optimizing, don't merge if we'd lose goto_locus. */
1477 && single_succ_edge (a
)->goto_locus
!= UNKNOWN_LOCATION
)
1479 location_t goto_locus
= single_succ_edge (a
)->goto_locus
;
1480 gimple_stmt_iterator prev
, next
;
1481 prev
= gsi_last_nondebug_bb (a
);
1482 next
= gsi_after_labels (b
);
1483 if (!gsi_end_p (next
) && is_gimple_debug (gsi_stmt (next
)))
1484 gsi_next_nondebug (&next
);
1485 if ((gsi_end_p (prev
)
1486 || gimple_location (gsi_stmt (prev
)) != goto_locus
)
1487 && (gsi_end_p (next
)
1488 || gimple_location (gsi_stmt (next
)) != goto_locus
))
1495 /* Return true if the var whose chain of uses starts at PTR has no
1498 has_zero_uses_1 (const ssa_use_operand_t
*head
)
1500 const ssa_use_operand_t
*ptr
;
1502 for (ptr
= head
->next
; ptr
!= head
; ptr
= ptr
->next
)
1503 if (!is_gimple_debug (USE_STMT (ptr
)))
1509 /* Return true if the var whose chain of uses starts at PTR has a
1510 single nondebug use. Set USE_P and STMT to that single nondebug
1511 use, if so, or to NULL otherwise. */
1513 single_imm_use_1 (const ssa_use_operand_t
*head
,
1514 use_operand_p
*use_p
, gimple
*stmt
)
1516 ssa_use_operand_t
*ptr
, *single_use
= 0;
1518 for (ptr
= head
->next
; ptr
!= head
; ptr
= ptr
->next
)
1519 if (!is_gimple_debug (USE_STMT (ptr
)))
1530 *use_p
= single_use
;
1533 *stmt
= single_use
? single_use
->loc
.stmt
: NULL
;
1535 return !!single_use
;
1538 /* Replaces all uses of NAME by VAL. */
1541 replace_uses_by (tree name
, tree val
)
1543 imm_use_iterator imm_iter
;
1548 FOR_EACH_IMM_USE_STMT (stmt
, imm_iter
, name
)
1550 FOR_EACH_IMM_USE_ON_STMT (use
, imm_iter
)
1552 replace_exp (use
, val
);
1554 if (gimple_code (stmt
) == GIMPLE_PHI
)
1556 e
= gimple_phi_arg_edge (stmt
, PHI_ARG_INDEX_FROM_USE (use
));
1557 if (e
->flags
& EDGE_ABNORMAL
)
1559 /* This can only occur for virtual operands, since
1560 for the real ones SSA_NAME_OCCURS_IN_ABNORMAL_PHI (name))
1561 would prevent replacement. */
1562 gcc_assert (!is_gimple_reg (name
));
1563 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (val
) = 1;
1568 if (gimple_code (stmt
) != GIMPLE_PHI
)
1572 fold_stmt_inplace (stmt
);
1573 if (cfgcleanup_altered_bbs
&& !is_gimple_debug (stmt
))
1574 bitmap_set_bit (cfgcleanup_altered_bbs
, gimple_bb (stmt
)->index
);
1576 /* FIXME. This should go in update_stmt. */
1577 for (i
= 0; i
< gimple_num_ops (stmt
); i
++)
1579 tree op
= gimple_op (stmt
, i
);
1580 /* Operands may be empty here. For example, the labels
1581 of a GIMPLE_COND are nulled out following the creation
1582 of the corresponding CFG edges. */
1583 if (op
&& TREE_CODE (op
) == ADDR_EXPR
)
1584 recompute_tree_invariant_for_addr_expr (op
);
1587 maybe_clean_or_replace_eh_stmt (stmt
, stmt
);
1592 gcc_assert (has_zero_uses (name
));
1594 /* Also update the trees stored in loop structures. */
1600 FOR_EACH_LOOP (li
, loop
, 0)
1602 substitute_in_loop_info (loop
, name
, val
);
1607 /* Merge block B into block A. */
1610 gimple_merge_blocks (basic_block a
, basic_block b
)
1612 gimple_stmt_iterator last
, gsi
, psi
;
1613 gimple_seq phis
= phi_nodes (b
);
1616 fprintf (dump_file
, "Merging blocks %d and %d\n", a
->index
, b
->index
);
1618 /* Remove all single-valued PHI nodes from block B of the form
1619 V_i = PHI <V_j> by propagating V_j to all the uses of V_i. */
1620 gsi
= gsi_last_bb (a
);
1621 for (psi
= gsi_start (phis
); !gsi_end_p (psi
); )
1623 gimple phi
= gsi_stmt (psi
);
1624 tree def
= gimple_phi_result (phi
), use
= gimple_phi_arg_def (phi
, 0);
1626 bool may_replace_uses
= !is_gimple_reg (def
)
1627 || may_propagate_copy (def
, use
);
1629 /* In case we maintain loop closed ssa form, do not propagate arguments
1630 of loop exit phi nodes. */
1632 && loops_state_satisfies_p (LOOP_CLOSED_SSA
)
1633 && is_gimple_reg (def
)
1634 && TREE_CODE (use
) == SSA_NAME
1635 && a
->loop_father
!= b
->loop_father
)
1636 may_replace_uses
= false;
1638 if (!may_replace_uses
)
1640 gcc_assert (is_gimple_reg (def
));
1642 /* Note that just emitting the copies is fine -- there is no problem
1643 with ordering of phi nodes. This is because A is the single
1644 predecessor of B, therefore results of the phi nodes cannot
1645 appear as arguments of the phi nodes. */
1646 copy
= gimple_build_assign (def
, use
);
1647 gsi_insert_after (&gsi
, copy
, GSI_NEW_STMT
);
1648 remove_phi_node (&psi
, false);
1652 /* If we deal with a PHI for virtual operands, we can simply
1653 propagate these without fussing with folding or updating
1655 if (!is_gimple_reg (def
))
1657 imm_use_iterator iter
;
1658 use_operand_p use_p
;
1661 FOR_EACH_IMM_USE_STMT (stmt
, iter
, def
)
1662 FOR_EACH_IMM_USE_ON_STMT (use_p
, iter
)
1663 SET_USE (use_p
, use
);
1665 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (def
))
1666 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (use
) = 1;
1669 replace_uses_by (def
, use
);
1671 remove_phi_node (&psi
, true);
1675 /* Ensure that B follows A. */
1676 move_block_after (b
, a
);
1678 gcc_assert (single_succ_edge (a
)->flags
& EDGE_FALLTHRU
);
1679 gcc_assert (!last_stmt (a
) || !stmt_ends_bb_p (last_stmt (a
)));
1681 /* Remove labels from B and set gimple_bb to A for other statements. */
1682 for (gsi
= gsi_start_bb (b
); !gsi_end_p (gsi
);)
1684 gimple stmt
= gsi_stmt (gsi
);
1685 if (gimple_code (stmt
) == GIMPLE_LABEL
)
1687 tree label
= gimple_label_label (stmt
);
1690 gsi_remove (&gsi
, false);
1692 /* Now that we can thread computed gotos, we might have
1693 a situation where we have a forced label in block B
1694 However, the label at the start of block B might still be
1695 used in other ways (think about the runtime checking for
1696 Fortran assigned gotos). So we can not just delete the
1697 label. Instead we move the label to the start of block A. */
1698 if (FORCED_LABEL (label
))
1700 gimple_stmt_iterator dest_gsi
= gsi_start_bb (a
);
1701 gsi_insert_before (&dest_gsi
, stmt
, GSI_NEW_STMT
);
1704 lp_nr
= EH_LANDING_PAD_NR (label
);
1707 eh_landing_pad lp
= get_eh_landing_pad_from_number (lp_nr
);
1708 lp
->post_landing_pad
= NULL
;
1713 gimple_set_bb (stmt
, a
);
1718 /* Merge the sequences. */
1719 last
= gsi_last_bb (a
);
1720 gsi_insert_seq_after (&last
, bb_seq (b
), GSI_NEW_STMT
);
1721 set_bb_seq (b
, NULL
);
1723 if (cfgcleanup_altered_bbs
)
1724 bitmap_set_bit (cfgcleanup_altered_bbs
, a
->index
);
1728 /* Return the one of two successors of BB that is not reachable by a
1729 complex edge, if there is one. Else, return BB. We use
1730 this in optimizations that use post-dominators for their heuristics,
1731 to catch the cases in C++ where function calls are involved. */
1734 single_noncomplex_succ (basic_block bb
)
1737 if (EDGE_COUNT (bb
->succs
) != 2)
1740 e0
= EDGE_SUCC (bb
, 0);
1741 e1
= EDGE_SUCC (bb
, 1);
1742 if (e0
->flags
& EDGE_COMPLEX
)
1744 if (e1
->flags
& EDGE_COMPLEX
)
1750 /* T is CALL_EXPR. Set current_function_calls_* flags. */
1753 notice_special_calls (gimple call
)
1755 int flags
= gimple_call_flags (call
);
1757 if (flags
& ECF_MAY_BE_ALLOCA
)
1758 cfun
->calls_alloca
= true;
1759 if (flags
& ECF_RETURNS_TWICE
)
1760 cfun
->calls_setjmp
= true;
1764 /* Clear flags set by notice_special_calls. Used by dead code removal
1765 to update the flags. */
1768 clear_special_calls (void)
1770 cfun
->calls_alloca
= false;
1771 cfun
->calls_setjmp
= false;
1774 /* Remove PHI nodes associated with basic block BB and all edges out of BB. */
1777 remove_phi_nodes_and_edges_for_unreachable_block (basic_block bb
)
1779 /* Since this block is no longer reachable, we can just delete all
1780 of its PHI nodes. */
1781 remove_phi_nodes (bb
);
1783 /* Remove edges to BB's successors. */
1784 while (EDGE_COUNT (bb
->succs
) > 0)
1785 remove_edge (EDGE_SUCC (bb
, 0));
1789 /* Remove statements of basic block BB. */
1792 remove_bb (basic_block bb
)
1794 gimple_stmt_iterator i
;
1798 fprintf (dump_file
, "Removing basic block %d\n", bb
->index
);
1799 if (dump_flags
& TDF_DETAILS
)
1801 dump_bb (bb
, dump_file
, 0);
1802 fprintf (dump_file
, "\n");
1808 struct loop
*loop
= bb
->loop_father
;
1810 /* If a loop gets removed, clean up the information associated
1812 if (loop
->latch
== bb
1813 || loop
->header
== bb
)
1814 free_numbers_of_iterations_estimates_loop (loop
);
1817 /* Remove all the instructions in the block. */
1818 if (bb_seq (bb
) != NULL
)
1820 /* Walk backwards so as to get a chance to substitute all
1821 released DEFs into debug stmts. See
1822 eliminate_unnecessary_stmts() in tree-ssa-dce.c for more
1824 for (i
= gsi_last_bb (bb
); !gsi_end_p (i
);)
1826 gimple stmt
= gsi_stmt (i
);
1827 if (gimple_code (stmt
) == GIMPLE_LABEL
1828 && (FORCED_LABEL (gimple_label_label (stmt
))
1829 || DECL_NONLOCAL (gimple_label_label (stmt
))))
1832 gimple_stmt_iterator new_gsi
;
1834 /* A non-reachable non-local label may still be referenced.
1835 But it no longer needs to carry the extra semantics of
1837 if (DECL_NONLOCAL (gimple_label_label (stmt
)))
1839 DECL_NONLOCAL (gimple_label_label (stmt
)) = 0;
1840 FORCED_LABEL (gimple_label_label (stmt
)) = 1;
1843 new_bb
= bb
->prev_bb
;
1844 new_gsi
= gsi_start_bb (new_bb
);
1845 gsi_remove (&i
, false);
1846 gsi_insert_before (&new_gsi
, stmt
, GSI_NEW_STMT
);
1850 /* Release SSA definitions if we are in SSA. Note that we
1851 may be called when not in SSA. For example,
1852 final_cleanup calls this function via
1853 cleanup_tree_cfg. */
1854 if (gimple_in_ssa_p (cfun
))
1855 release_defs (stmt
);
1857 gsi_remove (&i
, true);
1861 i
= gsi_last_bb (bb
);
1867 remove_phi_nodes_and_edges_for_unreachable_block (bb
);
1868 bb
->il
.gimple
= NULL
;
1872 /* Given a basic block BB ending with COND_EXPR or SWITCH_EXPR, and a
1873 predicate VAL, return the edge that will be taken out of the block.
1874 If VAL does not match a unique edge, NULL is returned. */
1877 find_taken_edge (basic_block bb
, tree val
)
1881 stmt
= last_stmt (bb
);
1884 gcc_assert (is_ctrl_stmt (stmt
));
1889 if (!is_gimple_min_invariant (val
))
1892 if (gimple_code (stmt
) == GIMPLE_COND
)
1893 return find_taken_edge_cond_expr (bb
, val
);
1895 if (gimple_code (stmt
) == GIMPLE_SWITCH
)
1896 return find_taken_edge_switch_expr (bb
, val
);
1898 if (computed_goto_p (stmt
))
1900 /* Only optimize if the argument is a label, if the argument is
1901 not a label then we can not construct a proper CFG.
1903 It may be the case that we only need to allow the LABEL_REF to
1904 appear inside an ADDR_EXPR, but we also allow the LABEL_REF to
1905 appear inside a LABEL_EXPR just to be safe. */
1906 if ((TREE_CODE (val
) == ADDR_EXPR
|| TREE_CODE (val
) == LABEL_EXPR
)
1907 && TREE_CODE (TREE_OPERAND (val
, 0)) == LABEL_DECL
)
1908 return find_taken_edge_computed_goto (bb
, TREE_OPERAND (val
, 0));
1915 /* Given a constant value VAL and the entry block BB to a GOTO_EXPR
1916 statement, determine which of the outgoing edges will be taken out of the
1917 block. Return NULL if either edge may be taken. */
1920 find_taken_edge_computed_goto (basic_block bb
, tree val
)
1925 dest
= label_to_block (val
);
1928 e
= find_edge (bb
, dest
);
1929 gcc_assert (e
!= NULL
);
1935 /* Given a constant value VAL and the entry block BB to a COND_EXPR
1936 statement, determine which of the two edges will be taken out of the
1937 block. Return NULL if either edge may be taken. */
1940 find_taken_edge_cond_expr (basic_block bb
, tree val
)
1942 edge true_edge
, false_edge
;
1944 extract_true_false_edges_from_block (bb
, &true_edge
, &false_edge
);
1946 gcc_assert (TREE_CODE (val
) == INTEGER_CST
);
1947 return (integer_zerop (val
) ? false_edge
: true_edge
);
1950 /* Given an INTEGER_CST VAL and the entry block BB to a SWITCH_EXPR
1951 statement, determine which edge will be taken out of the block. Return
1952 NULL if any edge may be taken. */
1955 find_taken_edge_switch_expr (basic_block bb
, tree val
)
1957 basic_block dest_bb
;
1962 switch_stmt
= last_stmt (bb
);
1963 taken_case
= find_case_label_for_value (switch_stmt
, val
);
1964 dest_bb
= label_to_block (CASE_LABEL (taken_case
));
1966 e
= find_edge (bb
, dest_bb
);
1972 /* Return the CASE_LABEL_EXPR that SWITCH_STMT will take for VAL.
1973 We can make optimal use here of the fact that the case labels are
1974 sorted: We can do a binary search for a case matching VAL. */
1977 find_case_label_for_value (gimple switch_stmt
, tree val
)
1979 size_t low
, high
, n
= gimple_switch_num_labels (switch_stmt
);
1980 tree default_case
= gimple_switch_default_label (switch_stmt
);
1982 for (low
= 0, high
= n
; high
- low
> 1; )
1984 size_t i
= (high
+ low
) / 2;
1985 tree t
= gimple_switch_label (switch_stmt
, i
);
1988 /* Cache the result of comparing CASE_LOW and val. */
1989 cmp
= tree_int_cst_compare (CASE_LOW (t
), val
);
1996 if (CASE_HIGH (t
) == NULL
)
1998 /* A singe-valued case label. */
2004 /* A case range. We can only handle integer ranges. */
2005 if (cmp
<= 0 && tree_int_cst_compare (CASE_HIGH (t
), val
) >= 0)
2010 return default_case
;
2014 /* Dump a basic block on stderr. */
2017 gimple_debug_bb (basic_block bb
)
2019 gimple_dump_bb (bb
, stderr
, 0, TDF_VOPS
|TDF_MEMSYMS
);
2023 /* Dump basic block with index N on stderr. */
2026 gimple_debug_bb_n (int n
)
2028 gimple_debug_bb (BASIC_BLOCK (n
));
2029 return BASIC_BLOCK (n
);
2033 /* Dump the CFG on stderr.
2035 FLAGS are the same used by the tree dumping functions
2036 (see TDF_* in tree-pass.h). */
2039 gimple_debug_cfg (int flags
)
2041 gimple_dump_cfg (stderr
, flags
);
2045 /* Dump the program showing basic block boundaries on the given FILE.
2047 FLAGS are the same used by the tree dumping functions (see TDF_* in
2051 gimple_dump_cfg (FILE *file
, int flags
)
2053 if (flags
& TDF_DETAILS
)
2055 dump_function_header (file
, current_function_decl
, flags
);
2056 fprintf (file
, ";; \n%d basic blocks, %d edges, last basic block %d.\n\n",
2057 n_basic_blocks
, n_edges
, last_basic_block
);
2059 brief_dump_cfg (file
);
2060 fprintf (file
, "\n");
2063 if (flags
& TDF_STATS
)
2064 dump_cfg_stats (file
);
2066 dump_function_to_file (current_function_decl
, file
, flags
| TDF_BLOCKS
);
2070 /* Dump CFG statistics on FILE. */
2073 dump_cfg_stats (FILE *file
)
2075 static long max_num_merged_labels
= 0;
2076 unsigned long size
, total
= 0;
2079 const char * const fmt_str
= "%-30s%-13s%12s\n";
2080 const char * const fmt_str_1
= "%-30s%13d%11lu%c\n";
2081 const char * const fmt_str_2
= "%-30s%13ld%11lu%c\n";
2082 const char * const fmt_str_3
= "%-43s%11lu%c\n";
2083 const char *funcname
2084 = lang_hooks
.decl_printable_name (current_function_decl
, 2);
2087 fprintf (file
, "\nCFG Statistics for %s\n\n", funcname
);
2089 fprintf (file
, "---------------------------------------------------------\n");
2090 fprintf (file
, fmt_str
, "", " Number of ", "Memory");
2091 fprintf (file
, fmt_str
, "", " instances ", "used ");
2092 fprintf (file
, "---------------------------------------------------------\n");
2094 size
= n_basic_blocks
* sizeof (struct basic_block_def
);
2096 fprintf (file
, fmt_str_1
, "Basic blocks", n_basic_blocks
,
2097 SCALE (size
), LABEL (size
));
2101 num_edges
+= EDGE_COUNT (bb
->succs
);
2102 size
= num_edges
* sizeof (struct edge_def
);
2104 fprintf (file
, fmt_str_2
, "Edges", num_edges
, SCALE (size
), LABEL (size
));
2106 fprintf (file
, "---------------------------------------------------------\n");
2107 fprintf (file
, fmt_str_3
, "Total memory used by CFG data", SCALE (total
),
2109 fprintf (file
, "---------------------------------------------------------\n");
2110 fprintf (file
, "\n");
2112 if (cfg_stats
.num_merged_labels
> max_num_merged_labels
)
2113 max_num_merged_labels
= cfg_stats
.num_merged_labels
;
2115 fprintf (file
, "Coalesced label blocks: %ld (Max so far: %ld)\n",
2116 cfg_stats
.num_merged_labels
, max_num_merged_labels
);
2118 fprintf (file
, "\n");
2122 /* Dump CFG statistics on stderr. Keep extern so that it's always
2123 linked in the final executable. */
2126 debug_cfg_stats (void)
2128 dump_cfg_stats (stderr
);
2132 /* Dump the flowgraph to a .vcg FILE. */
2135 gimple_cfg2vcg (FILE *file
)
2140 const char *funcname
2141 = lang_hooks
.decl_printable_name (current_function_decl
, 2);
2143 /* Write the file header. */
2144 fprintf (file
, "graph: { title: \"%s\"\n", funcname
);
2145 fprintf (file
, "node: { title: \"ENTRY\" label: \"ENTRY\" }\n");
2146 fprintf (file
, "node: { title: \"EXIT\" label: \"EXIT\" }\n");
2148 /* Write blocks and edges. */
2149 FOR_EACH_EDGE (e
, ei
, ENTRY_BLOCK_PTR
->succs
)
2151 fprintf (file
, "edge: { sourcename: \"ENTRY\" targetname: \"%d\"",
2154 if (e
->flags
& EDGE_FAKE
)
2155 fprintf (file
, " linestyle: dotted priority: 10");
2157 fprintf (file
, " linestyle: solid priority: 100");
2159 fprintf (file
, " }\n");
2165 enum gimple_code head_code
, end_code
;
2166 const char *head_name
, *end_name
;
2169 gimple first
= first_stmt (bb
);
2170 gimple last
= last_stmt (bb
);
2174 head_code
= gimple_code (first
);
2175 head_name
= gimple_code_name
[head_code
];
2176 head_line
= get_lineno (first
);
2179 head_name
= "no-statement";
2183 end_code
= gimple_code (last
);
2184 end_name
= gimple_code_name
[end_code
];
2185 end_line
= get_lineno (last
);
2188 end_name
= "no-statement";
2190 fprintf (file
, "node: { title: \"%d\" label: \"#%d\\n%s (%d)\\n%s (%d)\"}\n",
2191 bb
->index
, bb
->index
, head_name
, head_line
, end_name
,
2194 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
2196 if (e
->dest
== EXIT_BLOCK_PTR
)
2197 fprintf (file
, "edge: { sourcename: \"%d\" targetname: \"EXIT\"", bb
->index
);
2199 fprintf (file
, "edge: { sourcename: \"%d\" targetname: \"%d\"", bb
->index
, e
->dest
->index
);
2201 if (e
->flags
& EDGE_FAKE
)
2202 fprintf (file
, " priority: 10 linestyle: dotted");
2204 fprintf (file
, " priority: 100 linestyle: solid");
2206 fprintf (file
, " }\n");
2209 if (bb
->next_bb
!= EXIT_BLOCK_PTR
)
2213 fputs ("}\n\n", file
);
2218 /*---------------------------------------------------------------------------
2219 Miscellaneous helpers
2220 ---------------------------------------------------------------------------*/
2222 /* Return true if T represents a stmt that always transfers control. */
2225 is_ctrl_stmt (gimple t
)
2227 switch (gimple_code (t
))
2241 /* Return true if T is a statement that may alter the flow of control
2242 (e.g., a call to a non-returning function). */
2245 is_ctrl_altering_stmt (gimple t
)
2249 switch (gimple_code (t
))
2253 int flags
= gimple_call_flags (t
);
2255 /* A non-pure/const call alters flow control if the current
2256 function has nonlocal labels. */
2257 if (!(flags
& (ECF_CONST
| ECF_PURE
| ECF_LEAF
))
2258 && cfun
->has_nonlocal_label
)
2261 /* A call also alters control flow if it does not return. */
2262 if (flags
& ECF_NORETURN
)
2265 /* BUILT_IN_RETURN call is same as return statement. */
2266 if (gimple_call_builtin_p (t
, BUILT_IN_RETURN
))
2271 case GIMPLE_EH_DISPATCH
:
2272 /* EH_DISPATCH branches to the individual catch handlers at
2273 this level of a try or allowed-exceptions region. It can
2274 fallthru to the next statement as well. */
2278 if (gimple_asm_nlabels (t
) > 0)
2283 /* OpenMP directives alter control flow. */
2290 /* If a statement can throw, it alters control flow. */
2291 return stmt_can_throw_internal (t
);
2295 /* Return true if T is a simple local goto. */
2298 simple_goto_p (gimple t
)
2300 return (gimple_code (t
) == GIMPLE_GOTO
2301 && TREE_CODE (gimple_goto_dest (t
)) == LABEL_DECL
);
2305 /* Return true if T can make an abnormal transfer of control flow.
2306 Transfers of control flow associated with EH are excluded. */
2309 stmt_can_make_abnormal_goto (gimple t
)
2311 if (computed_goto_p (t
))
2313 if (is_gimple_call (t
))
2314 return (gimple_has_side_effects (t
) && cfun
->has_nonlocal_label
2315 && !(gimple_call_flags (t
) & ECF_LEAF
));
2320 /* Return true if STMT should start a new basic block. PREV_STMT is
2321 the statement preceding STMT. It is used when STMT is a label or a
2322 case label. Labels should only start a new basic block if their
2323 previous statement wasn't a label. Otherwise, sequence of labels
2324 would generate unnecessary basic blocks that only contain a single
2328 stmt_starts_bb_p (gimple stmt
, gimple prev_stmt
)
2333 /* Labels start a new basic block only if the preceding statement
2334 wasn't a label of the same type. This prevents the creation of
2335 consecutive blocks that have nothing but a single label. */
2336 if (gimple_code (stmt
) == GIMPLE_LABEL
)
2338 /* Nonlocal and computed GOTO targets always start a new block. */
2339 if (DECL_NONLOCAL (gimple_label_label (stmt
))
2340 || FORCED_LABEL (gimple_label_label (stmt
)))
2343 if (prev_stmt
&& gimple_code (prev_stmt
) == GIMPLE_LABEL
)
2345 if (DECL_NONLOCAL (gimple_label_label (prev_stmt
)))
2348 cfg_stats
.num_merged_labels
++;
2359 /* Return true if T should end a basic block. */
2362 stmt_ends_bb_p (gimple t
)
2364 return is_ctrl_stmt (t
) || is_ctrl_altering_stmt (t
);
2367 /* Remove block annotations and other data structures. */
2370 delete_tree_cfg_annotations (void)
2372 label_to_block_map
= NULL
;
2376 /* Return the first statement in basic block BB. */
2379 first_stmt (basic_block bb
)
2381 gimple_stmt_iterator i
= gsi_start_bb (bb
);
2384 while (!gsi_end_p (i
) && is_gimple_debug ((stmt
= gsi_stmt (i
))))
2392 /* Return the first non-label statement in basic block BB. */
2395 first_non_label_stmt (basic_block bb
)
2397 gimple_stmt_iterator i
= gsi_start_bb (bb
);
2398 while (!gsi_end_p (i
) && gimple_code (gsi_stmt (i
)) == GIMPLE_LABEL
)
2400 return !gsi_end_p (i
) ? gsi_stmt (i
) : NULL
;
2403 /* Return the last statement in basic block BB. */
2406 last_stmt (basic_block bb
)
2408 gimple_stmt_iterator i
= gsi_last_bb (bb
);
2411 while (!gsi_end_p (i
) && is_gimple_debug ((stmt
= gsi_stmt (i
))))
2419 /* Return the last statement of an otherwise empty block. Return NULL
2420 if the block is totally empty, or if it contains more than one
2424 last_and_only_stmt (basic_block bb
)
2426 gimple_stmt_iterator i
= gsi_last_nondebug_bb (bb
);
2432 last
= gsi_stmt (i
);
2433 gsi_prev_nondebug (&i
);
2437 /* Empty statements should no longer appear in the instruction stream.
2438 Everything that might have appeared before should be deleted by
2439 remove_useless_stmts, and the optimizers should just gsi_remove
2440 instead of smashing with build_empty_stmt.
2442 Thus the only thing that should appear here in a block containing
2443 one executable statement is a label. */
2444 prev
= gsi_stmt (i
);
2445 if (gimple_code (prev
) == GIMPLE_LABEL
)
2451 /* Reinstall those PHI arguments queued in OLD_EDGE to NEW_EDGE. */
2454 reinstall_phi_args (edge new_edge
, edge old_edge
)
2456 edge_var_map_vector v
;
2459 gimple_stmt_iterator phis
;
2461 v
= redirect_edge_var_map_vector (old_edge
);
2465 for (i
= 0, phis
= gsi_start_phis (new_edge
->dest
);
2466 VEC_iterate (edge_var_map
, v
, i
, vm
) && !gsi_end_p (phis
);
2467 i
++, gsi_next (&phis
))
2469 gimple phi
= gsi_stmt (phis
);
2470 tree result
= redirect_edge_var_map_result (vm
);
2471 tree arg
= redirect_edge_var_map_def (vm
);
2473 gcc_assert (result
== gimple_phi_result (phi
));
2475 add_phi_arg (phi
, arg
, new_edge
, redirect_edge_var_map_location (vm
));
2478 redirect_edge_var_map_clear (old_edge
);
2481 /* Returns the basic block after which the new basic block created
2482 by splitting edge EDGE_IN should be placed. Tries to keep the new block
2483 near its "logical" location. This is of most help to humans looking
2484 at debugging dumps. */
2487 split_edge_bb_loc (edge edge_in
)
2489 basic_block dest
= edge_in
->dest
;
2490 basic_block dest_prev
= dest
->prev_bb
;
2494 edge e
= find_edge (dest_prev
, dest
);
2495 if (e
&& !(e
->flags
& EDGE_COMPLEX
))
2496 return edge_in
->src
;
2501 /* Split a (typically critical) edge EDGE_IN. Return the new block.
2502 Abort on abnormal edges. */
2505 gimple_split_edge (edge edge_in
)
2507 basic_block new_bb
, after_bb
, dest
;
2510 /* Abnormal edges cannot be split. */
2511 gcc_assert (!(edge_in
->flags
& EDGE_ABNORMAL
));
2513 dest
= edge_in
->dest
;
2515 after_bb
= split_edge_bb_loc (edge_in
);
2517 new_bb
= create_empty_bb (after_bb
);
2518 new_bb
->frequency
= EDGE_FREQUENCY (edge_in
);
2519 new_bb
->count
= edge_in
->count
;
2520 new_edge
= make_edge (new_bb
, dest
, EDGE_FALLTHRU
);
2521 new_edge
->probability
= REG_BR_PROB_BASE
;
2522 new_edge
->count
= edge_in
->count
;
2524 e
= redirect_edge_and_branch (edge_in
, new_bb
);
2525 gcc_assert (e
== edge_in
);
2526 reinstall_phi_args (new_edge
, e
);
2532 /* Verify properties of the address expression T with base object BASE. */
2535 verify_address (tree t
, tree base
)
2538 bool old_side_effects
;
2540 bool new_side_effects
;
2542 old_constant
= TREE_CONSTANT (t
);
2543 old_side_effects
= TREE_SIDE_EFFECTS (t
);
2545 recompute_tree_invariant_for_addr_expr (t
);
2546 new_side_effects
= TREE_SIDE_EFFECTS (t
);
2547 new_constant
= TREE_CONSTANT (t
);
2549 if (old_constant
!= new_constant
)
2551 error ("constant not recomputed when ADDR_EXPR changed");
2554 if (old_side_effects
!= new_side_effects
)
2556 error ("side effects not recomputed when ADDR_EXPR changed");
2560 if (!(TREE_CODE (base
) == VAR_DECL
2561 || TREE_CODE (base
) == PARM_DECL
2562 || TREE_CODE (base
) == RESULT_DECL
))
2565 if (DECL_GIMPLE_REG_P (base
))
2567 error ("DECL_GIMPLE_REG_P set on a variable with address taken");
2574 /* Callback for walk_tree, check that all elements with address taken are
2575 properly noticed as such. The DATA is an int* that is 1 if TP was seen
2576 inside a PHI node. */
2579 verify_expr (tree
*tp
, int *walk_subtrees
, void *data ATTRIBUTE_UNUSED
)
2586 /* Check operand N for being valid GIMPLE and give error MSG if not. */
2587 #define CHECK_OP(N, MSG) \
2588 do { if (!is_gimple_val (TREE_OPERAND (t, N))) \
2589 { error (MSG); return TREE_OPERAND (t, N); }} while (0)
2591 switch (TREE_CODE (t
))
2594 if (SSA_NAME_IN_FREE_LIST (t
))
2596 error ("SSA name in freelist but still referenced");
2602 error ("INDIRECT_REF in gimple IL");
2606 x
= TREE_OPERAND (t
, 0);
2607 if (!POINTER_TYPE_P (TREE_TYPE (x
))
2608 || !is_gimple_mem_ref_addr (x
))
2610 error ("invalid first operand of MEM_REF");
2613 if (TREE_CODE (TREE_OPERAND (t
, 1)) != INTEGER_CST
2614 || !POINTER_TYPE_P (TREE_TYPE (TREE_OPERAND (t
, 1))))
2616 error ("invalid offset operand of MEM_REF");
2617 return TREE_OPERAND (t
, 1);
2619 if (TREE_CODE (x
) == ADDR_EXPR
2620 && (x
= verify_address (x
, TREE_OPERAND (x
, 0))))
2626 x
= fold (ASSERT_EXPR_COND (t
));
2627 if (x
== boolean_false_node
)
2629 error ("ASSERT_EXPR with an always-false condition");
2635 error ("MODIFY_EXPR not expected while having tuples");
2642 gcc_assert (is_gimple_address (t
));
2644 /* Skip any references (they will be checked when we recurse down the
2645 tree) and ensure that any variable used as a prefix is marked
2647 for (x
= TREE_OPERAND (t
, 0);
2648 handled_component_p (x
);
2649 x
= TREE_OPERAND (x
, 0))
2652 if ((tem
= verify_address (t
, x
)))
2655 if (!(TREE_CODE (x
) == VAR_DECL
2656 || TREE_CODE (x
) == PARM_DECL
2657 || TREE_CODE (x
) == RESULT_DECL
))
2660 if (!TREE_ADDRESSABLE (x
))
2662 error ("address taken, but ADDRESSABLE bit not set");
2670 x
= COND_EXPR_COND (t
);
2671 if (!INTEGRAL_TYPE_P (TREE_TYPE (x
)))
2673 error ("non-integral used in condition");
2676 if (!is_gimple_condexpr (x
))
2678 error ("invalid conditional operand");
2683 case NON_LVALUE_EXPR
:
2687 case FIX_TRUNC_EXPR
:
2692 case TRUTH_NOT_EXPR
:
2693 CHECK_OP (0, "invalid operand to unary operator");
2700 case ARRAY_RANGE_REF
:
2702 case VIEW_CONVERT_EXPR
:
2703 /* We have a nest of references. Verify that each of the operands
2704 that determine where to reference is either a constant or a variable,
2705 verify that the base is valid, and then show we've already checked
2707 while (handled_component_p (t
))
2709 if (TREE_CODE (t
) == COMPONENT_REF
&& TREE_OPERAND (t
, 2))
2710 CHECK_OP (2, "invalid COMPONENT_REF offset operator");
2711 else if (TREE_CODE (t
) == ARRAY_REF
2712 || TREE_CODE (t
) == ARRAY_RANGE_REF
)
2714 CHECK_OP (1, "invalid array index");
2715 if (TREE_OPERAND (t
, 2))
2716 CHECK_OP (2, "invalid array lower bound");
2717 if (TREE_OPERAND (t
, 3))
2718 CHECK_OP (3, "invalid array stride");
2720 else if (TREE_CODE (t
) == BIT_FIELD_REF
)
2722 if (!host_integerp (TREE_OPERAND (t
, 1), 1)
2723 || !host_integerp (TREE_OPERAND (t
, 2), 1))
2725 error ("invalid position or size operand to BIT_FIELD_REF");
2728 else if (INTEGRAL_TYPE_P (TREE_TYPE (t
))
2729 && (TYPE_PRECISION (TREE_TYPE (t
))
2730 != TREE_INT_CST_LOW (TREE_OPERAND (t
, 1))))
2732 error ("integral result type precision does not match "
2733 "field size of BIT_FIELD_REF");
2736 if (!INTEGRAL_TYPE_P (TREE_TYPE (t
))
2737 && (GET_MODE_PRECISION (TYPE_MODE (TREE_TYPE (t
)))
2738 != TREE_INT_CST_LOW (TREE_OPERAND (t
, 1))))
2740 error ("mode precision of non-integral result does not "
2741 "match field size of BIT_FIELD_REF");
2746 t
= TREE_OPERAND (t
, 0);
2749 if (!is_gimple_min_invariant (t
) && !is_gimple_lvalue (t
))
2751 error ("invalid reference prefix");
2758 /* PLUS_EXPR and MINUS_EXPR don't work on pointers, they should be done using
2759 POINTER_PLUS_EXPR. */
2760 if (POINTER_TYPE_P (TREE_TYPE (t
)))
2762 error ("invalid operand to plus/minus, type is a pointer");
2765 CHECK_OP (0, "invalid operand to binary operator");
2766 CHECK_OP (1, "invalid operand to binary operator");
2769 case POINTER_PLUS_EXPR
:
2770 /* Check to make sure the first operand is a pointer or reference type. */
2771 if (!POINTER_TYPE_P (TREE_TYPE (TREE_OPERAND (t
, 0))))
2773 error ("invalid operand to pointer plus, first operand is not a pointer");
2776 /* Check to make sure the second operand is an integer with type of
2778 if (!useless_type_conversion_p (sizetype
,
2779 TREE_TYPE (TREE_OPERAND (t
, 1))))
2781 error ("invalid operand to pointer plus, second operand is not an "
2782 "integer with type of sizetype");
2792 case UNORDERED_EXPR
:
2801 case TRUNC_DIV_EXPR
:
2803 case FLOOR_DIV_EXPR
:
2804 case ROUND_DIV_EXPR
:
2805 case TRUNC_MOD_EXPR
:
2807 case FLOOR_MOD_EXPR
:
2808 case ROUND_MOD_EXPR
:
2810 case EXACT_DIV_EXPR
:
2820 CHECK_OP (0, "invalid operand to binary operator");
2821 CHECK_OP (1, "invalid operand to binary operator");
2825 if (TREE_CONSTANT (t
) && TREE_CODE (TREE_TYPE (t
)) == VECTOR_TYPE
)
2829 case CASE_LABEL_EXPR
:
2832 error ("invalid CASE_CHAIN");
2846 /* Verify if EXPR is either a GIMPLE ID or a GIMPLE indirect reference.
2847 Returns true if there is an error, otherwise false. */
2850 verify_types_in_gimple_min_lval (tree expr
)
2854 if (is_gimple_id (expr
))
2857 if (TREE_CODE (expr
) != TARGET_MEM_REF
2858 && TREE_CODE (expr
) != MEM_REF
)
2860 error ("invalid expression for min lvalue");
2864 /* TARGET_MEM_REFs are strange beasts. */
2865 if (TREE_CODE (expr
) == TARGET_MEM_REF
)
2868 op
= TREE_OPERAND (expr
, 0);
2869 if (!is_gimple_val (op
))
2871 error ("invalid operand in indirect reference");
2872 debug_generic_stmt (op
);
2875 /* Memory references now generally can involve a value conversion. */
2880 /* Verify if EXPR is a valid GIMPLE reference expression. If
2881 REQUIRE_LVALUE is true verifies it is an lvalue. Returns true
2882 if there is an error, otherwise false. */
2885 verify_types_in_gimple_reference (tree expr
, bool require_lvalue
)
2887 while (handled_component_p (expr
))
2889 tree op
= TREE_OPERAND (expr
, 0);
2891 if (TREE_CODE (expr
) == ARRAY_REF
2892 || TREE_CODE (expr
) == ARRAY_RANGE_REF
)
2894 if (!is_gimple_val (TREE_OPERAND (expr
, 1))
2895 || (TREE_OPERAND (expr
, 2)
2896 && !is_gimple_val (TREE_OPERAND (expr
, 2)))
2897 || (TREE_OPERAND (expr
, 3)
2898 && !is_gimple_val (TREE_OPERAND (expr
, 3))))
2900 error ("invalid operands to array reference");
2901 debug_generic_stmt (expr
);
2906 /* Verify if the reference array element types are compatible. */
2907 if (TREE_CODE (expr
) == ARRAY_REF
2908 && !useless_type_conversion_p (TREE_TYPE (expr
),
2909 TREE_TYPE (TREE_TYPE (op
))))
2911 error ("type mismatch in array reference");
2912 debug_generic_stmt (TREE_TYPE (expr
));
2913 debug_generic_stmt (TREE_TYPE (TREE_TYPE (op
)));
2916 if (TREE_CODE (expr
) == ARRAY_RANGE_REF
2917 && !useless_type_conversion_p (TREE_TYPE (TREE_TYPE (expr
)),
2918 TREE_TYPE (TREE_TYPE (op
))))
2920 error ("type mismatch in array range reference");
2921 debug_generic_stmt (TREE_TYPE (TREE_TYPE (expr
)));
2922 debug_generic_stmt (TREE_TYPE (TREE_TYPE (op
)));
2926 if ((TREE_CODE (expr
) == REALPART_EXPR
2927 || TREE_CODE (expr
) == IMAGPART_EXPR
)
2928 && !useless_type_conversion_p (TREE_TYPE (expr
),
2929 TREE_TYPE (TREE_TYPE (op
))))
2931 error ("type mismatch in real/imagpart reference");
2932 debug_generic_stmt (TREE_TYPE (expr
));
2933 debug_generic_stmt (TREE_TYPE (TREE_TYPE (op
)));
2937 if (TREE_CODE (expr
) == COMPONENT_REF
2938 && !useless_type_conversion_p (TREE_TYPE (expr
),
2939 TREE_TYPE (TREE_OPERAND (expr
, 1))))
2941 error ("type mismatch in component reference");
2942 debug_generic_stmt (TREE_TYPE (expr
));
2943 debug_generic_stmt (TREE_TYPE (TREE_OPERAND (expr
, 1)));
2947 if (TREE_CODE (expr
) == VIEW_CONVERT_EXPR
)
2949 /* For VIEW_CONVERT_EXPRs which are allowed here too, we only check
2950 that their operand is not an SSA name or an invariant when
2951 requiring an lvalue (this usually means there is a SRA or IPA-SRA
2952 bug). Otherwise there is nothing to verify, gross mismatches at
2953 most invoke undefined behavior. */
2955 && (TREE_CODE (op
) == SSA_NAME
2956 || is_gimple_min_invariant (op
)))
2958 error ("conversion of an SSA_NAME on the left hand side");
2959 debug_generic_stmt (expr
);
2962 else if (TREE_CODE (op
) == SSA_NAME
2963 && TYPE_SIZE (TREE_TYPE (expr
)) != TYPE_SIZE (TREE_TYPE (op
)))
2965 error ("conversion of register to a different size");
2966 debug_generic_stmt (expr
);
2969 else if (!handled_component_p (op
))
2976 if (TREE_CODE (expr
) == MEM_REF
)
2978 if (!is_gimple_mem_ref_addr (TREE_OPERAND (expr
, 0)))
2980 error ("invalid address operand in MEM_REF");
2981 debug_generic_stmt (expr
);
2984 if (TREE_CODE (TREE_OPERAND (expr
, 1)) != INTEGER_CST
2985 || !POINTER_TYPE_P (TREE_TYPE (TREE_OPERAND (expr
, 1))))
2987 error ("invalid offset operand in MEM_REF");
2988 debug_generic_stmt (expr
);
2992 else if (TREE_CODE (expr
) == TARGET_MEM_REF
)
2994 if (!TMR_BASE (expr
)
2995 || !is_gimple_mem_ref_addr (TMR_BASE (expr
)))
2997 error ("invalid address operand in TARGET_MEM_REF");
3000 if (!TMR_OFFSET (expr
)
3001 || TREE_CODE (TMR_OFFSET (expr
)) != INTEGER_CST
3002 || !POINTER_TYPE_P (TREE_TYPE (TMR_OFFSET (expr
))))
3004 error ("invalid offset operand in TARGET_MEM_REF");
3005 debug_generic_stmt (expr
);
3010 return ((require_lvalue
|| !is_gimple_min_invariant (expr
))
3011 && verify_types_in_gimple_min_lval (expr
));
3014 /* Returns true if there is one pointer type in TYPE_POINTER_TO (SRC_OBJ)
3015 list of pointer-to types that is trivially convertible to DEST. */
3018 one_pointer_to_useless_type_conversion_p (tree dest
, tree src_obj
)
3022 if (!TYPE_POINTER_TO (src_obj
))
3025 for (src
= TYPE_POINTER_TO (src_obj
); src
; src
= TYPE_NEXT_PTR_TO (src
))
3026 if (useless_type_conversion_p (dest
, src
))
3032 /* Return true if TYPE1 is a fixed-point type and if conversions to and
3033 from TYPE2 can be handled by FIXED_CONVERT_EXPR. */
3036 valid_fixed_convert_types_p (tree type1
, tree type2
)
3038 return (FIXED_POINT_TYPE_P (type1
)
3039 && (INTEGRAL_TYPE_P (type2
)
3040 || SCALAR_FLOAT_TYPE_P (type2
)
3041 || FIXED_POINT_TYPE_P (type2
)));
3044 /* Verify the contents of a GIMPLE_CALL STMT. Returns true when there
3045 is a problem, otherwise false. */
3048 verify_gimple_call (gimple stmt
)
3050 tree fn
= gimple_call_fn (stmt
);
3051 tree fntype
, fndecl
;
3054 if (gimple_call_internal_p (stmt
))
3058 error ("gimple call has two targets");
3059 debug_generic_stmt (fn
);
3067 error ("gimple call has no target");
3072 if (fn
&& !is_gimple_call_addr (fn
))
3074 error ("invalid function in gimple call");
3075 debug_generic_stmt (fn
);
3080 && (!POINTER_TYPE_P (TREE_TYPE (fn
))
3081 || (TREE_CODE (TREE_TYPE (TREE_TYPE (fn
))) != FUNCTION_TYPE
3082 && TREE_CODE (TREE_TYPE (TREE_TYPE (fn
))) != METHOD_TYPE
)))
3084 error ("non-function in gimple call");
3088 fndecl
= gimple_call_fndecl (stmt
);
3090 && TREE_CODE (fndecl
) == FUNCTION_DECL
3091 && DECL_LOOPING_CONST_OR_PURE_P (fndecl
)
3092 && !DECL_PURE_P (fndecl
)
3093 && !TREE_READONLY (fndecl
))
3095 error ("invalid pure const state for function");
3099 if (gimple_call_lhs (stmt
)
3100 && (!is_gimple_lvalue (gimple_call_lhs (stmt
))
3101 || verify_types_in_gimple_reference (gimple_call_lhs (stmt
), true)))
3103 error ("invalid LHS in gimple call");
3107 if (gimple_call_lhs (stmt
) && gimple_call_noreturn_p (stmt
))
3109 error ("LHS in noreturn call");
3113 fntype
= gimple_call_fntype (stmt
);
3115 && gimple_call_lhs (stmt
)
3116 && !useless_type_conversion_p (TREE_TYPE (gimple_call_lhs (stmt
)),
3118 /* ??? At least C++ misses conversions at assignments from
3119 void * call results.
3120 ??? Java is completely off. Especially with functions
3121 returning java.lang.Object.
3122 For now simply allow arbitrary pointer type conversions. */
3123 && !(POINTER_TYPE_P (TREE_TYPE (gimple_call_lhs (stmt
)))
3124 && POINTER_TYPE_P (TREE_TYPE (fntype
))))
3126 error ("invalid conversion in gimple call");
3127 debug_generic_stmt (TREE_TYPE (gimple_call_lhs (stmt
)));
3128 debug_generic_stmt (TREE_TYPE (fntype
));
3132 if (gimple_call_chain (stmt
)
3133 && !is_gimple_val (gimple_call_chain (stmt
)))
3135 error ("invalid static chain in gimple call");
3136 debug_generic_stmt (gimple_call_chain (stmt
));
3140 /* If there is a static chain argument, this should not be an indirect
3141 call, and the decl should have DECL_STATIC_CHAIN set. */
3142 if (gimple_call_chain (stmt
))
3144 if (!gimple_call_fndecl (stmt
))
3146 error ("static chain in indirect gimple call");
3149 fn
= TREE_OPERAND (fn
, 0);
3151 if (!DECL_STATIC_CHAIN (fn
))
3153 error ("static chain with function that doesn%'t use one");
3158 /* ??? The C frontend passes unpromoted arguments in case it
3159 didn't see a function declaration before the call. So for now
3160 leave the call arguments mostly unverified. Once we gimplify
3161 unit-at-a-time we have a chance to fix this. */
3163 for (i
= 0; i
< gimple_call_num_args (stmt
); ++i
)
3165 tree arg
= gimple_call_arg (stmt
, i
);
3166 if ((is_gimple_reg_type (TREE_TYPE (arg
))
3167 && !is_gimple_val (arg
))
3168 || (!is_gimple_reg_type (TREE_TYPE (arg
))
3169 && !is_gimple_lvalue (arg
)))
3171 error ("invalid argument to gimple call");
3172 debug_generic_expr (arg
);
3180 /* Verifies the gimple comparison with the result type TYPE and
3181 the operands OP0 and OP1. */
3184 verify_gimple_comparison (tree type
, tree op0
, tree op1
)
3186 tree op0_type
= TREE_TYPE (op0
);
3187 tree op1_type
= TREE_TYPE (op1
);
3189 if (!is_gimple_val (op0
) || !is_gimple_val (op1
))
3191 error ("invalid operands in gimple comparison");
3195 /* For comparisons we do not have the operations type as the
3196 effective type the comparison is carried out in. Instead
3197 we require that either the first operand is trivially
3198 convertible into the second, or the other way around.
3199 The resulting type of a comparison may be any integral type.
3200 Because we special-case pointers to void we allow
3201 comparisons of pointers with the same mode as well. */
3202 if ((!useless_type_conversion_p (op0_type
, op1_type
)
3203 && !useless_type_conversion_p (op1_type
, op0_type
)
3204 && (!POINTER_TYPE_P (op0_type
)
3205 || !POINTER_TYPE_P (op1_type
)
3206 || TYPE_MODE (op0_type
) != TYPE_MODE (op1_type
)))
3207 || !INTEGRAL_TYPE_P (type
))
3209 error ("type mismatch in comparison expression");
3210 debug_generic_expr (type
);
3211 debug_generic_expr (op0_type
);
3212 debug_generic_expr (op1_type
);
3219 /* Verify a gimple assignment statement STMT with an unary rhs.
3220 Returns true if anything is wrong. */
3223 verify_gimple_assign_unary (gimple stmt
)
3225 enum tree_code rhs_code
= gimple_assign_rhs_code (stmt
);
3226 tree lhs
= gimple_assign_lhs (stmt
);
3227 tree lhs_type
= TREE_TYPE (lhs
);
3228 tree rhs1
= gimple_assign_rhs1 (stmt
);
3229 tree rhs1_type
= TREE_TYPE (rhs1
);
3231 if (!is_gimple_reg (lhs
))
3233 error ("non-register as LHS of unary operation");
3237 if (!is_gimple_val (rhs1
))
3239 error ("invalid operand in unary operation");
3243 /* First handle conversions. */
3248 /* Allow conversions between integral types and pointers only if
3249 there is no sign or zero extension involved.
3250 For targets were the precision of sizetype doesn't match that
3251 of pointers we need to allow arbitrary conversions from and
3253 if ((POINTER_TYPE_P (lhs_type
)
3254 && INTEGRAL_TYPE_P (rhs1_type
)
3255 && (TYPE_PRECISION (lhs_type
) >= TYPE_PRECISION (rhs1_type
)
3256 || rhs1_type
== sizetype
))
3257 || (POINTER_TYPE_P (rhs1_type
)
3258 && INTEGRAL_TYPE_P (lhs_type
)
3259 && (TYPE_PRECISION (rhs1_type
) >= TYPE_PRECISION (lhs_type
)
3260 || lhs_type
== sizetype
)))
3263 /* Allow conversion from integer to offset type and vice versa. */
3264 if ((TREE_CODE (lhs_type
) == OFFSET_TYPE
3265 && TREE_CODE (rhs1_type
) == INTEGER_TYPE
)
3266 || (TREE_CODE (lhs_type
) == INTEGER_TYPE
3267 && TREE_CODE (rhs1_type
) == OFFSET_TYPE
))
3270 /* Otherwise assert we are converting between types of the
3272 if (INTEGRAL_TYPE_P (lhs_type
) != INTEGRAL_TYPE_P (rhs1_type
))
3274 error ("invalid types in nop conversion");
3275 debug_generic_expr (lhs_type
);
3276 debug_generic_expr (rhs1_type
);
3283 case ADDR_SPACE_CONVERT_EXPR
:
3285 if (!POINTER_TYPE_P (rhs1_type
) || !POINTER_TYPE_P (lhs_type
)
3286 || (TYPE_ADDR_SPACE (TREE_TYPE (rhs1_type
))
3287 == TYPE_ADDR_SPACE (TREE_TYPE (lhs_type
))))
3289 error ("invalid types in address space conversion");
3290 debug_generic_expr (lhs_type
);
3291 debug_generic_expr (rhs1_type
);
3298 case FIXED_CONVERT_EXPR
:
3300 if (!valid_fixed_convert_types_p (lhs_type
, rhs1_type
)
3301 && !valid_fixed_convert_types_p (rhs1_type
, lhs_type
))
3303 error ("invalid types in fixed-point conversion");
3304 debug_generic_expr (lhs_type
);
3305 debug_generic_expr (rhs1_type
);
3314 if (!INTEGRAL_TYPE_P (rhs1_type
) || !SCALAR_FLOAT_TYPE_P (lhs_type
))
3316 error ("invalid types in conversion to floating point");
3317 debug_generic_expr (lhs_type
);
3318 debug_generic_expr (rhs1_type
);
3325 case FIX_TRUNC_EXPR
:
3327 if (!INTEGRAL_TYPE_P (lhs_type
) || !SCALAR_FLOAT_TYPE_P (rhs1_type
))
3329 error ("invalid types in conversion to integer");
3330 debug_generic_expr (lhs_type
);
3331 debug_generic_expr (rhs1_type
);
3338 case VEC_UNPACK_HI_EXPR
:
3339 case VEC_UNPACK_LO_EXPR
:
3340 case REDUC_MAX_EXPR
:
3341 case REDUC_MIN_EXPR
:
3342 case REDUC_PLUS_EXPR
:
3343 case VEC_UNPACK_FLOAT_HI_EXPR
:
3344 case VEC_UNPACK_FLOAT_LO_EXPR
:
3348 case TRUTH_NOT_EXPR
:
3349 /* We require two-valued operand types. */
3350 if (!(TREE_CODE (rhs1_type
) == BOOLEAN_TYPE
3351 || (INTEGRAL_TYPE_P (rhs1_type
)
3352 && TYPE_PRECISION (rhs1_type
) == 1)))
3354 error ("invalid types in truth not");
3355 debug_generic_expr (lhs_type
);
3356 debug_generic_expr (rhs1_type
);
3365 case NON_LVALUE_EXPR
:
3373 /* For the remaining codes assert there is no conversion involved. */
3374 if (!useless_type_conversion_p (lhs_type
, rhs1_type
))
3376 error ("non-trivial conversion in unary operation");
3377 debug_generic_expr (lhs_type
);
3378 debug_generic_expr (rhs1_type
);
3385 /* Verify a gimple assignment statement STMT with a binary rhs.
3386 Returns true if anything is wrong. */
3389 verify_gimple_assign_binary (gimple stmt
)
3391 enum tree_code rhs_code
= gimple_assign_rhs_code (stmt
);
3392 tree lhs
= gimple_assign_lhs (stmt
);
3393 tree lhs_type
= TREE_TYPE (lhs
);
3394 tree rhs1
= gimple_assign_rhs1 (stmt
);
3395 tree rhs1_type
= TREE_TYPE (rhs1
);
3396 tree rhs2
= gimple_assign_rhs2 (stmt
);
3397 tree rhs2_type
= TREE_TYPE (rhs2
);
3399 if (!is_gimple_reg (lhs
))
3401 error ("non-register as LHS of binary operation");
3405 if (!is_gimple_val (rhs1
)
3406 || !is_gimple_val (rhs2
))
3408 error ("invalid operands in binary operation");
3412 /* First handle operations that involve different types. */
3417 if (TREE_CODE (lhs_type
) != COMPLEX_TYPE
3418 || !(INTEGRAL_TYPE_P (rhs1_type
)
3419 || SCALAR_FLOAT_TYPE_P (rhs1_type
))
3420 || !(INTEGRAL_TYPE_P (rhs2_type
)
3421 || SCALAR_FLOAT_TYPE_P (rhs2_type
)))
3423 error ("type mismatch in complex expression");
3424 debug_generic_expr (lhs_type
);
3425 debug_generic_expr (rhs1_type
);
3426 debug_generic_expr (rhs2_type
);
3438 /* Shifts and rotates are ok on integral types, fixed point
3439 types and integer vector types. */
3440 if ((!INTEGRAL_TYPE_P (rhs1_type
)
3441 && !FIXED_POINT_TYPE_P (rhs1_type
)
3442 && !(TREE_CODE (rhs1_type
) == VECTOR_TYPE
3443 && INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type
))))
3444 || (!INTEGRAL_TYPE_P (rhs2_type
)
3445 /* Vector shifts of vectors are also ok. */
3446 && !(TREE_CODE (rhs1_type
) == VECTOR_TYPE
3447 && INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type
))
3448 && TREE_CODE (rhs2_type
) == VECTOR_TYPE
3449 && INTEGRAL_TYPE_P (TREE_TYPE (rhs2_type
))))
3450 || !useless_type_conversion_p (lhs_type
, rhs1_type
))
3452 error ("type mismatch in shift expression");
3453 debug_generic_expr (lhs_type
);
3454 debug_generic_expr (rhs1_type
);
3455 debug_generic_expr (rhs2_type
);
3462 case VEC_LSHIFT_EXPR
:
3463 case VEC_RSHIFT_EXPR
:
3465 if (TREE_CODE (rhs1_type
) != VECTOR_TYPE
3466 || !(INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type
))
3467 || POINTER_TYPE_P (TREE_TYPE (rhs1_type
))
3468 || FIXED_POINT_TYPE_P (TREE_TYPE (rhs1_type
))
3469 || SCALAR_FLOAT_TYPE_P (TREE_TYPE (rhs1_type
)))
3470 || (!INTEGRAL_TYPE_P (rhs2_type
)
3471 && (TREE_CODE (rhs2_type
) != VECTOR_TYPE
3472 || !INTEGRAL_TYPE_P (TREE_TYPE (rhs2_type
))))
3473 || !useless_type_conversion_p (lhs_type
, rhs1_type
))
3475 error ("type mismatch in vector shift expression");
3476 debug_generic_expr (lhs_type
);
3477 debug_generic_expr (rhs1_type
);
3478 debug_generic_expr (rhs2_type
);
3481 /* For shifting a vector of non-integral components we
3482 only allow shifting by a constant multiple of the element size. */
3483 if (!INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type
))
3484 && (TREE_CODE (rhs2
) != INTEGER_CST
3485 || !div_if_zero_remainder (EXACT_DIV_EXPR
, rhs2
,
3486 TYPE_SIZE (TREE_TYPE (rhs1_type
)))))
3488 error ("non-element sized vector shift of floating point vector");
3498 /* We use regular PLUS_EXPR and MINUS_EXPR for vectors.
3499 ??? This just makes the checker happy and may not be what is
3501 if (TREE_CODE (lhs_type
) == VECTOR_TYPE
3502 && POINTER_TYPE_P (TREE_TYPE (lhs_type
)))
3504 if (TREE_CODE (rhs1_type
) != VECTOR_TYPE
3505 || TREE_CODE (rhs2_type
) != VECTOR_TYPE
)
3507 error ("invalid non-vector operands to vector valued plus");
3510 lhs_type
= TREE_TYPE (lhs_type
);
3511 rhs1_type
= TREE_TYPE (rhs1_type
);
3512 rhs2_type
= TREE_TYPE (rhs2_type
);
3513 /* PLUS_EXPR is commutative, so we might end up canonicalizing
3514 the pointer to 2nd place. */
3515 if (POINTER_TYPE_P (rhs2_type
))
3517 tree tem
= rhs1_type
;
3518 rhs1_type
= rhs2_type
;
3521 goto do_pointer_plus_expr_check
;
3523 if (POINTER_TYPE_P (lhs_type
)
3524 || POINTER_TYPE_P (rhs1_type
)
3525 || POINTER_TYPE_P (rhs2_type
))
3527 error ("invalid (pointer) operands to plus/minus");
3531 /* Continue with generic binary expression handling. */
3535 case POINTER_PLUS_EXPR
:
3537 do_pointer_plus_expr_check
:
3538 if (!POINTER_TYPE_P (rhs1_type
)
3539 || !useless_type_conversion_p (lhs_type
, rhs1_type
)
3540 || !useless_type_conversion_p (sizetype
, rhs2_type
))
3542 error ("type mismatch in pointer plus expression");
3543 debug_generic_stmt (lhs_type
);
3544 debug_generic_stmt (rhs1_type
);
3545 debug_generic_stmt (rhs2_type
);
3552 case TRUTH_ANDIF_EXPR
:
3553 case TRUTH_ORIF_EXPR
:
3554 case TRUTH_AND_EXPR
:
3556 case TRUTH_XOR_EXPR
:
3566 case UNORDERED_EXPR
:
3574 /* Comparisons are also binary, but the result type is not
3575 connected to the operand types. */
3576 return verify_gimple_comparison (lhs_type
, rhs1
, rhs2
);
3578 case WIDEN_MULT_EXPR
:
3579 if (TREE_CODE (lhs_type
) != INTEGER_TYPE
)
3581 return ((2 * TYPE_PRECISION (rhs1_type
) != TYPE_PRECISION (lhs_type
))
3582 || (TYPE_PRECISION (rhs1_type
) != TYPE_PRECISION (rhs2_type
)));
3584 case WIDEN_SUM_EXPR
:
3585 case VEC_WIDEN_MULT_HI_EXPR
:
3586 case VEC_WIDEN_MULT_LO_EXPR
:
3587 case VEC_PACK_TRUNC_EXPR
:
3588 case VEC_PACK_SAT_EXPR
:
3589 case VEC_PACK_FIX_TRUNC_EXPR
:
3590 case VEC_EXTRACT_EVEN_EXPR
:
3591 case VEC_EXTRACT_ODD_EXPR
:
3592 case VEC_INTERLEAVE_HIGH_EXPR
:
3593 case VEC_INTERLEAVE_LOW_EXPR
:
3598 case TRUNC_DIV_EXPR
:
3600 case FLOOR_DIV_EXPR
:
3601 case ROUND_DIV_EXPR
:
3602 case TRUNC_MOD_EXPR
:
3604 case FLOOR_MOD_EXPR
:
3605 case ROUND_MOD_EXPR
:
3607 case EXACT_DIV_EXPR
:
3613 /* Continue with generic binary expression handling. */
3620 if (!useless_type_conversion_p (lhs_type
, rhs1_type
)
3621 || !useless_type_conversion_p (lhs_type
, rhs2_type
))
3623 error ("type mismatch in binary expression");
3624 debug_generic_stmt (lhs_type
);
3625 debug_generic_stmt (rhs1_type
);
3626 debug_generic_stmt (rhs2_type
);
3633 /* Verify a gimple assignment statement STMT with a ternary rhs.
3634 Returns true if anything is wrong. */
3637 verify_gimple_assign_ternary (gimple stmt
)
3639 enum tree_code rhs_code
= gimple_assign_rhs_code (stmt
);
3640 tree lhs
= gimple_assign_lhs (stmt
);
3641 tree lhs_type
= TREE_TYPE (lhs
);
3642 tree rhs1
= gimple_assign_rhs1 (stmt
);
3643 tree rhs1_type
= TREE_TYPE (rhs1
);
3644 tree rhs2
= gimple_assign_rhs2 (stmt
);
3645 tree rhs2_type
= TREE_TYPE (rhs2
);
3646 tree rhs3
= gimple_assign_rhs3 (stmt
);
3647 tree rhs3_type
= TREE_TYPE (rhs3
);
3649 if (!is_gimple_reg (lhs
))
3651 error ("non-register as LHS of ternary operation");
3655 if (!is_gimple_val (rhs1
)
3656 || !is_gimple_val (rhs2
)
3657 || !is_gimple_val (rhs3
))
3659 error ("invalid operands in ternary operation");
3663 /* First handle operations that involve different types. */
3666 case WIDEN_MULT_PLUS_EXPR
:
3667 case WIDEN_MULT_MINUS_EXPR
:
3668 if ((!INTEGRAL_TYPE_P (rhs1_type
)
3669 && !FIXED_POINT_TYPE_P (rhs1_type
))
3670 || !useless_type_conversion_p (rhs1_type
, rhs2_type
)
3671 || !useless_type_conversion_p (lhs_type
, rhs3_type
)
3672 || 2 * TYPE_PRECISION (rhs1_type
) != TYPE_PRECISION (lhs_type
)
3673 || TYPE_PRECISION (rhs1_type
) != TYPE_PRECISION (rhs2_type
))
3675 error ("type mismatch in widening multiply-accumulate expression");
3676 debug_generic_expr (lhs_type
);
3677 debug_generic_expr (rhs1_type
);
3678 debug_generic_expr (rhs2_type
);
3679 debug_generic_expr (rhs3_type
);
3685 if (!useless_type_conversion_p (lhs_type
, rhs1_type
)
3686 || !useless_type_conversion_p (lhs_type
, rhs2_type
)
3687 || !useless_type_conversion_p (lhs_type
, rhs3_type
))
3689 error ("type mismatch in fused multiply-add expression");
3690 debug_generic_expr (lhs_type
);
3691 debug_generic_expr (rhs1_type
);
3692 debug_generic_expr (rhs2_type
);
3693 debug_generic_expr (rhs3_type
);
3699 case REALIGN_LOAD_EXPR
:
3709 /* Verify a gimple assignment statement STMT with a single rhs.
3710 Returns true if anything is wrong. */
3713 verify_gimple_assign_single (gimple stmt
)
3715 enum tree_code rhs_code
= gimple_assign_rhs_code (stmt
);
3716 tree lhs
= gimple_assign_lhs (stmt
);
3717 tree lhs_type
= TREE_TYPE (lhs
);
3718 tree rhs1
= gimple_assign_rhs1 (stmt
);
3719 tree rhs1_type
= TREE_TYPE (rhs1
);
3722 if (!useless_type_conversion_p (lhs_type
, rhs1_type
))
3724 error ("non-trivial conversion at assignment");
3725 debug_generic_expr (lhs_type
);
3726 debug_generic_expr (rhs1_type
);
3730 if (handled_component_p (lhs
))
3731 res
|= verify_types_in_gimple_reference (lhs
, true);
3733 /* Special codes we cannot handle via their class. */
3738 tree op
= TREE_OPERAND (rhs1
, 0);
3739 if (!is_gimple_addressable (op
))
3741 error ("invalid operand in unary expression");
3745 /* Technically there is no longer a need for matching types, but
3746 gimple hygiene asks for this check. In LTO we can end up
3747 combining incompatible units and thus end up with addresses
3748 of globals that change their type to a common one. */
3750 && !types_compatible_p (TREE_TYPE (op
),
3751 TREE_TYPE (TREE_TYPE (rhs1
)))
3752 && !one_pointer_to_useless_type_conversion_p (TREE_TYPE (rhs1
),
3755 error ("type mismatch in address expression");
3756 debug_generic_stmt (TREE_TYPE (rhs1
));
3757 debug_generic_stmt (TREE_TYPE (op
));
3761 return verify_types_in_gimple_reference (op
, true);
3766 error ("INDIRECT_REF in gimple IL");
3772 case ARRAY_RANGE_REF
:
3773 case VIEW_CONVERT_EXPR
:
3776 case TARGET_MEM_REF
:
3778 if (!is_gimple_reg (lhs
)
3779 && is_gimple_reg_type (TREE_TYPE (lhs
)))
3781 error ("invalid rhs for gimple memory store");
3782 debug_generic_stmt (lhs
);
3783 debug_generic_stmt (rhs1
);
3786 return res
|| verify_types_in_gimple_reference (rhs1
, false);
3798 /* tcc_declaration */
3803 if (!is_gimple_reg (lhs
)
3804 && !is_gimple_reg (rhs1
)
3805 && is_gimple_reg_type (TREE_TYPE (lhs
)))
3807 error ("invalid rhs for gimple memory store");
3808 debug_generic_stmt (lhs
);
3809 debug_generic_stmt (rhs1
);
3815 if (!is_gimple_reg (lhs
)
3816 || (!is_gimple_reg (TREE_OPERAND (rhs1
, 0))
3817 && !COMPARISON_CLASS_P (TREE_OPERAND (rhs1
, 0)))
3818 || (!is_gimple_reg (TREE_OPERAND (rhs1
, 1))
3819 && !is_gimple_min_invariant (TREE_OPERAND (rhs1
, 1)))
3820 || (!is_gimple_reg (TREE_OPERAND (rhs1
, 2))
3821 && !is_gimple_min_invariant (TREE_OPERAND (rhs1
, 2))))
3823 error ("invalid COND_EXPR in gimple assignment");
3824 debug_generic_stmt (rhs1
);
3832 case WITH_SIZE_EXPR
:
3843 /* Verify the contents of a GIMPLE_ASSIGN STMT. Returns true when there
3844 is a problem, otherwise false. */
3847 verify_gimple_assign (gimple stmt
)
3849 switch (gimple_assign_rhs_class (stmt
))
3851 case GIMPLE_SINGLE_RHS
:
3852 return verify_gimple_assign_single (stmt
);
3854 case GIMPLE_UNARY_RHS
:
3855 return verify_gimple_assign_unary (stmt
);
3857 case GIMPLE_BINARY_RHS
:
3858 return verify_gimple_assign_binary (stmt
);
3860 case GIMPLE_TERNARY_RHS
:
3861 return verify_gimple_assign_ternary (stmt
);
3868 /* Verify the contents of a GIMPLE_RETURN STMT. Returns true when there
3869 is a problem, otherwise false. */
3872 verify_gimple_return (gimple stmt
)
3874 tree op
= gimple_return_retval (stmt
);
3875 tree restype
= TREE_TYPE (TREE_TYPE (cfun
->decl
));
3877 /* We cannot test for present return values as we do not fix up missing
3878 return values from the original source. */
3882 if (!is_gimple_val (op
)
3883 && TREE_CODE (op
) != RESULT_DECL
)
3885 error ("invalid operand in return statement");
3886 debug_generic_stmt (op
);
3890 if ((TREE_CODE (op
) == RESULT_DECL
3891 && DECL_BY_REFERENCE (op
))
3892 || (TREE_CODE (op
) == SSA_NAME
3893 && TREE_CODE (SSA_NAME_VAR (op
)) == RESULT_DECL
3894 && DECL_BY_REFERENCE (SSA_NAME_VAR (op
))))
3895 op
= TREE_TYPE (op
);
3897 if (!useless_type_conversion_p (restype
, TREE_TYPE (op
)))
3899 error ("invalid conversion in return statement");
3900 debug_generic_stmt (restype
);
3901 debug_generic_stmt (TREE_TYPE (op
));
3909 /* Verify the contents of a GIMPLE_GOTO STMT. Returns true when there
3910 is a problem, otherwise false. */
3913 verify_gimple_goto (gimple stmt
)
3915 tree dest
= gimple_goto_dest (stmt
);
3917 /* ??? We have two canonical forms of direct goto destinations, a
3918 bare LABEL_DECL and an ADDR_EXPR of a LABEL_DECL. */
3919 if (TREE_CODE (dest
) != LABEL_DECL
3920 && (!is_gimple_val (dest
)
3921 || !POINTER_TYPE_P (TREE_TYPE (dest
))))
3923 error ("goto destination is neither a label nor a pointer");
3930 /* Verify the contents of a GIMPLE_SWITCH STMT. Returns true when there
3931 is a problem, otherwise false. */
3934 verify_gimple_switch (gimple stmt
)
3936 if (!is_gimple_val (gimple_switch_index (stmt
)))
3938 error ("invalid operand to switch statement");
3939 debug_generic_stmt (gimple_switch_index (stmt
));
3947 /* Verify a gimple debug statement STMT.
3948 Returns true if anything is wrong. */
3951 verify_gimple_debug (gimple stmt ATTRIBUTE_UNUSED
)
3953 /* There isn't much that could be wrong in a gimple debug stmt. A
3954 gimple debug bind stmt, for example, maps a tree, that's usually
3955 a VAR_DECL or a PARM_DECL, but that could also be some scalarized
3956 component or member of an aggregate type, to another tree, that
3957 can be an arbitrary expression. These stmts expand into debug
3958 insns, and are converted to debug notes by var-tracking.c. */
3962 /* Verify a gimple label statement STMT.
3963 Returns true if anything is wrong. */
3966 verify_gimple_label (gimple stmt
)
3968 tree decl
= gimple_label_label (stmt
);
3972 if (TREE_CODE (decl
) != LABEL_DECL
)
3975 uid
= LABEL_DECL_UID (decl
);
3978 || VEC_index (basic_block
,
3979 label_to_block_map
, uid
) != gimple_bb (stmt
)))
3981 error ("incorrect entry in label_to_block_map");
3985 uid
= EH_LANDING_PAD_NR (decl
);
3988 eh_landing_pad lp
= get_eh_landing_pad_from_number (uid
);
3989 if (decl
!= lp
->post_landing_pad
)
3991 error ("incorrect setting of landing pad number");
3999 /* Verify the GIMPLE statement STMT. Returns true if there is an
4000 error, otherwise false. */
4003 verify_gimple_stmt (gimple stmt
)
4005 switch (gimple_code (stmt
))
4008 return verify_gimple_assign (stmt
);
4011 return verify_gimple_label (stmt
);
4014 return verify_gimple_call (stmt
);
4017 if (TREE_CODE_CLASS (gimple_cond_code (stmt
)) != tcc_comparison
)
4019 error ("invalid comparison code in gimple cond");
4022 if (!(!gimple_cond_true_label (stmt
)
4023 || TREE_CODE (gimple_cond_true_label (stmt
)) == LABEL_DECL
)
4024 || !(!gimple_cond_false_label (stmt
)
4025 || TREE_CODE (gimple_cond_false_label (stmt
)) == LABEL_DECL
))
4027 error ("invalid labels in gimple cond");
4031 return verify_gimple_comparison (boolean_type_node
,
4032 gimple_cond_lhs (stmt
),
4033 gimple_cond_rhs (stmt
));
4036 return verify_gimple_goto (stmt
);
4039 return verify_gimple_switch (stmt
);
4042 return verify_gimple_return (stmt
);
4047 /* Tuples that do not have tree operands. */
4049 case GIMPLE_PREDICT
:
4051 case GIMPLE_EH_DISPATCH
:
4052 case GIMPLE_EH_MUST_NOT_THROW
:
4056 /* OpenMP directives are validated by the FE and never operated
4057 on by the optimizers. Furthermore, GIMPLE_OMP_FOR may contain
4058 non-gimple expressions when the main index variable has had
4059 its address taken. This does not affect the loop itself
4060 because the header of an GIMPLE_OMP_FOR is merely used to determine
4061 how to setup the parallel iteration. */
4065 return verify_gimple_debug (stmt
);
4072 /* Verify the contents of a GIMPLE_PHI. Returns true if there is a problem,
4073 and false otherwise. */
4076 verify_gimple_phi (gimple phi
)
4080 tree phi_result
= gimple_phi_result (phi
);
4085 error ("invalid PHI result");
4089 virtual_p
= !is_gimple_reg (phi_result
);
4090 if (TREE_CODE (phi_result
) != SSA_NAME
4092 && SSA_NAME_VAR (phi_result
) != gimple_vop (cfun
)))
4094 error ("invalid PHI result");
4098 for (i
= 0; i
< gimple_phi_num_args (phi
); i
++)
4100 tree t
= gimple_phi_arg_def (phi
, i
);
4104 error ("missing PHI def");
4108 /* Addressable variables do have SSA_NAMEs but they
4109 are not considered gimple values. */
4110 else if ((TREE_CODE (t
) == SSA_NAME
4111 && virtual_p
!= !is_gimple_reg (t
))
4113 && (TREE_CODE (t
) != SSA_NAME
4114 || SSA_NAME_VAR (t
) != gimple_vop (cfun
)))
4116 && !is_gimple_val (t
)))
4118 error ("invalid PHI argument");
4119 debug_generic_expr (t
);
4122 #ifdef ENABLE_TYPES_CHECKING
4123 if (!useless_type_conversion_p (TREE_TYPE (phi_result
), TREE_TYPE (t
)))
4125 error ("incompatible types in PHI argument %u", i
);
4126 debug_generic_stmt (TREE_TYPE (phi_result
));
4127 debug_generic_stmt (TREE_TYPE (t
));
4136 /* Verify the GIMPLE statements inside the sequence STMTS. */
4139 verify_gimple_in_seq_2 (gimple_seq stmts
)
4141 gimple_stmt_iterator ittr
;
4144 for (ittr
= gsi_start (stmts
); !gsi_end_p (ittr
); gsi_next (&ittr
))
4146 gimple stmt
= gsi_stmt (ittr
);
4148 switch (gimple_code (stmt
))
4151 err
|= verify_gimple_in_seq_2 (gimple_bind_body (stmt
));
4155 err
|= verify_gimple_in_seq_2 (gimple_try_eval (stmt
));
4156 err
|= verify_gimple_in_seq_2 (gimple_try_cleanup (stmt
));
4159 case GIMPLE_EH_FILTER
:
4160 err
|= verify_gimple_in_seq_2 (gimple_eh_filter_failure (stmt
));
4164 err
|= verify_gimple_in_seq_2 (gimple_catch_handler (stmt
));
4169 bool err2
= verify_gimple_stmt (stmt
);
4171 debug_gimple_stmt (stmt
);
4181 /* Verify the GIMPLE statements inside the statement list STMTS. */
4184 verify_gimple_in_seq (gimple_seq stmts
)
4186 timevar_push (TV_TREE_STMT_VERIFY
);
4187 if (verify_gimple_in_seq_2 (stmts
))
4188 internal_error ("verify_gimple failed");
4189 timevar_pop (TV_TREE_STMT_VERIFY
);
4192 /* Return true when the T can be shared. */
4195 tree_node_can_be_shared (tree t
)
4197 if (IS_TYPE_OR_DECL_P (t
)
4198 || is_gimple_min_invariant (t
)
4199 || TREE_CODE (t
) == SSA_NAME
4200 || t
== error_mark_node
4201 || TREE_CODE (t
) == IDENTIFIER_NODE
)
4204 if (TREE_CODE (t
) == CASE_LABEL_EXPR
)
4207 while (((TREE_CODE (t
) == ARRAY_REF
|| TREE_CODE (t
) == ARRAY_RANGE_REF
)
4208 && is_gimple_min_invariant (TREE_OPERAND (t
, 1)))
4209 || TREE_CODE (t
) == COMPONENT_REF
4210 || TREE_CODE (t
) == REALPART_EXPR
4211 || TREE_CODE (t
) == IMAGPART_EXPR
)
4212 t
= TREE_OPERAND (t
, 0);
4220 /* Called via walk_gimple_stmt. Verify tree sharing. */
4223 verify_node_sharing (tree
*tp
, int *walk_subtrees
, void *data
)
4225 struct walk_stmt_info
*wi
= (struct walk_stmt_info
*) data
;
4226 struct pointer_set_t
*visited
= (struct pointer_set_t
*) wi
->info
;
4228 if (tree_node_can_be_shared (*tp
))
4230 *walk_subtrees
= false;
4234 if (pointer_set_insert (visited
, *tp
))
4240 static bool eh_error_found
;
4242 verify_eh_throw_stmt_node (void **slot
, void *data
)
4244 struct throw_stmt_node
*node
= (struct throw_stmt_node
*)*slot
;
4245 struct pointer_set_t
*visited
= (struct pointer_set_t
*) data
;
4247 if (!pointer_set_contains (visited
, node
->stmt
))
4249 error ("dead STMT in EH table");
4250 debug_gimple_stmt (node
->stmt
);
4251 eh_error_found
= true;
4256 /* Verify the GIMPLE statements in the CFG of FN. */
4259 verify_gimple_in_cfg (struct function
*fn
)
4263 struct pointer_set_t
*visited
, *visited_stmts
;
4265 timevar_push (TV_TREE_STMT_VERIFY
);
4266 visited
= pointer_set_create ();
4267 visited_stmts
= pointer_set_create ();
4269 FOR_EACH_BB_FN (bb
, fn
)
4271 gimple_stmt_iterator gsi
;
4273 for (gsi
= gsi_start_phis (bb
); !gsi_end_p (gsi
); gsi_next (&gsi
))
4275 gimple phi
= gsi_stmt (gsi
);
4279 pointer_set_insert (visited_stmts
, phi
);
4281 if (gimple_bb (phi
) != bb
)
4283 error ("gimple_bb (phi) is set to a wrong basic block");
4287 err2
|= verify_gimple_phi (phi
);
4289 for (i
= 0; i
< gimple_phi_num_args (phi
); i
++)
4291 tree arg
= gimple_phi_arg_def (phi
, i
);
4292 tree addr
= walk_tree (&arg
, verify_node_sharing
, visited
, NULL
);
4295 error ("incorrect sharing of tree nodes");
4296 debug_generic_expr (addr
);
4302 debug_gimple_stmt (phi
);
4306 for (gsi
= gsi_start_bb (bb
); !gsi_end_p (gsi
); gsi_next (&gsi
))
4308 gimple stmt
= gsi_stmt (gsi
);
4310 struct walk_stmt_info wi
;
4314 pointer_set_insert (visited_stmts
, stmt
);
4316 if (gimple_bb (stmt
) != bb
)
4318 error ("gimple_bb (stmt) is set to a wrong basic block");
4322 err2
|= verify_gimple_stmt (stmt
);
4324 memset (&wi
, 0, sizeof (wi
));
4325 wi
.info
= (void *) visited
;
4326 addr
= walk_gimple_op (stmt
, verify_node_sharing
, &wi
);
4329 error ("incorrect sharing of tree nodes");
4330 debug_generic_expr (addr
);
4334 /* ??? Instead of not checking these stmts at all the walker
4335 should know its context via wi. */
4336 if (!is_gimple_debug (stmt
)
4337 && !is_gimple_omp (stmt
))
4339 memset (&wi
, 0, sizeof (wi
));
4340 addr
= walk_gimple_op (stmt
, verify_expr
, &wi
);
4343 debug_generic_expr (addr
);
4344 inform (gimple_location (stmt
), "in statement");
4349 /* If the statement is marked as part of an EH region, then it is
4350 expected that the statement could throw. Verify that when we
4351 have optimizations that simplify statements such that we prove
4352 that they cannot throw, that we update other data structures
4354 lp_nr
= lookup_stmt_eh_lp (stmt
);
4357 if (!stmt_could_throw_p (stmt
))
4359 error ("statement marked for throw, but doesn%'t");
4363 && !gsi_one_before_end_p (gsi
)
4364 && stmt_can_throw_internal (stmt
))
4366 error ("statement marked for throw in middle of block");
4372 debug_gimple_stmt (stmt
);
4377 eh_error_found
= false;
4378 if (get_eh_throw_stmt_table (cfun
))
4379 htab_traverse (get_eh_throw_stmt_table (cfun
),
4380 verify_eh_throw_stmt_node
,
4383 if (err
|| eh_error_found
)
4384 internal_error ("verify_gimple failed");
4386 pointer_set_destroy (visited
);
4387 pointer_set_destroy (visited_stmts
);
4388 verify_histograms ();
4389 timevar_pop (TV_TREE_STMT_VERIFY
);
4393 /* Verifies that the flow information is OK. */
4396 gimple_verify_flow_info (void)
4400 gimple_stmt_iterator gsi
;
4405 if (ENTRY_BLOCK_PTR
->il
.gimple
)
4407 error ("ENTRY_BLOCK has IL associated with it");
4411 if (EXIT_BLOCK_PTR
->il
.gimple
)
4413 error ("EXIT_BLOCK has IL associated with it");
4417 FOR_EACH_EDGE (e
, ei
, EXIT_BLOCK_PTR
->preds
)
4418 if (e
->flags
& EDGE_FALLTHRU
)
4420 error ("fallthru to exit from bb %d", e
->src
->index
);
4426 bool found_ctrl_stmt
= false;
4430 /* Skip labels on the start of basic block. */
4431 for (gsi
= gsi_start_bb (bb
); !gsi_end_p (gsi
); gsi_next (&gsi
))
4434 gimple prev_stmt
= stmt
;
4436 stmt
= gsi_stmt (gsi
);
4438 if (gimple_code (stmt
) != GIMPLE_LABEL
)
4441 label
= gimple_label_label (stmt
);
4442 if (prev_stmt
&& DECL_NONLOCAL (label
))
4444 error ("nonlocal label ");
4445 print_generic_expr (stderr
, label
, 0);
4446 fprintf (stderr
, " is not first in a sequence of labels in bb %d",
4451 if (prev_stmt
&& EH_LANDING_PAD_NR (label
) != 0)
4453 error ("EH landing pad label ");
4454 print_generic_expr (stderr
, label
, 0);
4455 fprintf (stderr
, " is not first in a sequence of labels in bb %d",
4460 if (label_to_block (label
) != bb
)
4463 print_generic_expr (stderr
, label
, 0);
4464 fprintf (stderr
, " to block does not match in bb %d",
4469 if (decl_function_context (label
) != current_function_decl
)
4472 print_generic_expr (stderr
, label
, 0);
4473 fprintf (stderr
, " has incorrect context in bb %d",
4479 /* Verify that body of basic block BB is free of control flow. */
4480 for (; !gsi_end_p (gsi
); gsi_next (&gsi
))
4482 gimple stmt
= gsi_stmt (gsi
);
4484 if (found_ctrl_stmt
)
4486 error ("control flow in the middle of basic block %d",
4491 if (stmt_ends_bb_p (stmt
))
4492 found_ctrl_stmt
= true;
4494 if (gimple_code (stmt
) == GIMPLE_LABEL
)
4497 print_generic_expr (stderr
, gimple_label_label (stmt
), 0);
4498 fprintf (stderr
, " in the middle of basic block %d", bb
->index
);
4503 gsi
= gsi_last_bb (bb
);
4504 if (gsi_end_p (gsi
))
4507 stmt
= gsi_stmt (gsi
);
4509 if (gimple_code (stmt
) == GIMPLE_LABEL
)
4512 err
|= verify_eh_edges (stmt
);
4514 if (is_ctrl_stmt (stmt
))
4516 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
4517 if (e
->flags
& EDGE_FALLTHRU
)
4519 error ("fallthru edge after a control statement in bb %d",
4525 if (gimple_code (stmt
) != GIMPLE_COND
)
4527 /* Verify that there are no edges with EDGE_TRUE/FALSE_FLAG set
4528 after anything else but if statement. */
4529 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
4530 if (e
->flags
& (EDGE_TRUE_VALUE
| EDGE_FALSE_VALUE
))
4532 error ("true/false edge after a non-GIMPLE_COND in bb %d",
4538 switch (gimple_code (stmt
))
4545 extract_true_false_edges_from_block (bb
, &true_edge
, &false_edge
);
4549 || !(true_edge
->flags
& EDGE_TRUE_VALUE
)
4550 || !(false_edge
->flags
& EDGE_FALSE_VALUE
)
4551 || (true_edge
->flags
& (EDGE_FALLTHRU
| EDGE_ABNORMAL
))
4552 || (false_edge
->flags
& (EDGE_FALLTHRU
| EDGE_ABNORMAL
))
4553 || EDGE_COUNT (bb
->succs
) >= 3)
4555 error ("wrong outgoing edge flags at end of bb %d",
4563 if (simple_goto_p (stmt
))
4565 error ("explicit goto at end of bb %d", bb
->index
);
4570 /* FIXME. We should double check that the labels in the
4571 destination blocks have their address taken. */
4572 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
4573 if ((e
->flags
& (EDGE_FALLTHRU
| EDGE_TRUE_VALUE
4574 | EDGE_FALSE_VALUE
))
4575 || !(e
->flags
& EDGE_ABNORMAL
))
4577 error ("wrong outgoing edge flags at end of bb %d",
4585 if (!gimple_call_builtin_p (stmt
, BUILT_IN_RETURN
))
4587 /* ... fallthru ... */
4589 if (!single_succ_p (bb
)
4590 || (single_succ_edge (bb
)->flags
4591 & (EDGE_FALLTHRU
| EDGE_ABNORMAL
4592 | EDGE_TRUE_VALUE
| EDGE_FALSE_VALUE
)))
4594 error ("wrong outgoing edge flags at end of bb %d", bb
->index
);
4597 if (single_succ (bb
) != EXIT_BLOCK_PTR
)
4599 error ("return edge does not point to exit in bb %d",
4611 n
= gimple_switch_num_labels (stmt
);
4613 /* Mark all the destination basic blocks. */
4614 for (i
= 0; i
< n
; ++i
)
4616 tree lab
= CASE_LABEL (gimple_switch_label (stmt
, i
));
4617 basic_block label_bb
= label_to_block (lab
);
4618 gcc_assert (!label_bb
->aux
|| label_bb
->aux
== (void *)1);
4619 label_bb
->aux
= (void *)1;
4622 /* Verify that the case labels are sorted. */
4623 prev
= gimple_switch_label (stmt
, 0);
4624 for (i
= 1; i
< n
; ++i
)
4626 tree c
= gimple_switch_label (stmt
, i
);
4629 error ("found default case not at the start of "
4635 && !tree_int_cst_lt (CASE_LOW (prev
), CASE_LOW (c
)))
4637 error ("case labels not sorted: ");
4638 print_generic_expr (stderr
, prev
, 0);
4639 fprintf (stderr
," is greater than ");
4640 print_generic_expr (stderr
, c
, 0);
4641 fprintf (stderr
," but comes before it.\n");
4646 /* VRP will remove the default case if it can prove it will
4647 never be executed. So do not verify there always exists
4648 a default case here. */
4650 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
4654 error ("extra outgoing edge %d->%d",
4655 bb
->index
, e
->dest
->index
);
4659 e
->dest
->aux
= (void *)2;
4660 if ((e
->flags
& (EDGE_FALLTHRU
| EDGE_ABNORMAL
4661 | EDGE_TRUE_VALUE
| EDGE_FALSE_VALUE
)))
4663 error ("wrong outgoing edge flags at end of bb %d",
4669 /* Check that we have all of them. */
4670 for (i
= 0; i
< n
; ++i
)
4672 tree lab
= CASE_LABEL (gimple_switch_label (stmt
, i
));
4673 basic_block label_bb
= label_to_block (lab
);
4675 if (label_bb
->aux
!= (void *)2)
4677 error ("missing edge %i->%i", bb
->index
, label_bb
->index
);
4682 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
4683 e
->dest
->aux
= (void *)0;
4687 case GIMPLE_EH_DISPATCH
:
4688 err
|= verify_eh_dispatch_edge (stmt
);
4696 if (dom_info_state (CDI_DOMINATORS
) >= DOM_NO_FAST_QUERY
)
4697 verify_dominators (CDI_DOMINATORS
);
4703 /* Updates phi nodes after creating a forwarder block joined
4704 by edge FALLTHRU. */
4707 gimple_make_forwarder_block (edge fallthru
)
4711 basic_block dummy
, bb
;
4713 gimple_stmt_iterator gsi
;
4715 dummy
= fallthru
->src
;
4716 bb
= fallthru
->dest
;
4718 if (single_pred_p (bb
))
4721 /* If we redirected a branch we must create new PHI nodes at the
4723 for (gsi
= gsi_start_phis (dummy
); !gsi_end_p (gsi
); gsi_next (&gsi
))
4725 gimple phi
, new_phi
;
4727 phi
= gsi_stmt (gsi
);
4728 var
= gimple_phi_result (phi
);
4729 new_phi
= create_phi_node (var
, bb
);
4730 SSA_NAME_DEF_STMT (var
) = new_phi
;
4731 gimple_phi_set_result (phi
, make_ssa_name (SSA_NAME_VAR (var
), phi
));
4732 add_phi_arg (new_phi
, gimple_phi_result (phi
), fallthru
,
4736 /* Add the arguments we have stored on edges. */
4737 FOR_EACH_EDGE (e
, ei
, bb
->preds
)
4742 flush_pending_stmts (e
);
4747 /* Return a non-special label in the head of basic block BLOCK.
4748 Create one if it doesn't exist. */
4751 gimple_block_label (basic_block bb
)
4753 gimple_stmt_iterator i
, s
= gsi_start_bb (bb
);
4758 for (i
= s
; !gsi_end_p (i
); first
= false, gsi_next (&i
))
4760 stmt
= gsi_stmt (i
);
4761 if (gimple_code (stmt
) != GIMPLE_LABEL
)
4763 label
= gimple_label_label (stmt
);
4764 if (!DECL_NONLOCAL (label
))
4767 gsi_move_before (&i
, &s
);
4772 label
= create_artificial_label (UNKNOWN_LOCATION
);
4773 stmt
= gimple_build_label (label
);
4774 gsi_insert_before (&s
, stmt
, GSI_NEW_STMT
);
4779 /* Attempt to perform edge redirection by replacing a possibly complex
4780 jump instruction by a goto or by removing the jump completely.
4781 This can apply only if all edges now point to the same block. The
4782 parameters and return values are equivalent to
4783 redirect_edge_and_branch. */
4786 gimple_try_redirect_by_replacing_jump (edge e
, basic_block target
)
4788 basic_block src
= e
->src
;
4789 gimple_stmt_iterator i
;
4792 /* We can replace or remove a complex jump only when we have exactly
4794 if (EDGE_COUNT (src
->succs
) != 2
4795 /* Verify that all targets will be TARGET. Specifically, the
4796 edge that is not E must also go to TARGET. */
4797 || EDGE_SUCC (src
, EDGE_SUCC (src
, 0) == e
)->dest
!= target
)
4800 i
= gsi_last_bb (src
);
4804 stmt
= gsi_stmt (i
);
4806 if (gimple_code (stmt
) == GIMPLE_COND
|| gimple_code (stmt
) == GIMPLE_SWITCH
)
4808 gsi_remove (&i
, true);
4809 e
= ssa_redirect_edge (e
, target
);
4810 e
->flags
= EDGE_FALLTHRU
;
4818 /* Redirect E to DEST. Return NULL on failure. Otherwise, return the
4819 edge representing the redirected branch. */
4822 gimple_redirect_edge_and_branch (edge e
, basic_block dest
)
4824 basic_block bb
= e
->src
;
4825 gimple_stmt_iterator gsi
;
4829 if (e
->flags
& EDGE_ABNORMAL
)
4832 if (e
->dest
== dest
)
4835 if (e
->flags
& EDGE_EH
)
4836 return redirect_eh_edge (e
, dest
);
4838 if (e
->src
!= ENTRY_BLOCK_PTR
)
4840 ret
= gimple_try_redirect_by_replacing_jump (e
, dest
);
4845 gsi
= gsi_last_bb (bb
);
4846 stmt
= gsi_end_p (gsi
) ? NULL
: gsi_stmt (gsi
);
4848 switch (stmt
? gimple_code (stmt
) : GIMPLE_ERROR_MARK
)
4851 /* For COND_EXPR, we only need to redirect the edge. */
4855 /* No non-abnormal edges should lead from a non-simple goto, and
4856 simple ones should be represented implicitly. */
4861 tree label
= gimple_block_label (dest
);
4862 tree cases
= get_cases_for_edge (e
, stmt
);
4864 /* If we have a list of cases associated with E, then use it
4865 as it's a lot faster than walking the entire case vector. */
4868 edge e2
= find_edge (e
->src
, dest
);
4875 CASE_LABEL (cases
) = label
;
4876 cases
= CASE_CHAIN (cases
);
4879 /* If there was already an edge in the CFG, then we need
4880 to move all the cases associated with E to E2. */
4883 tree cases2
= get_cases_for_edge (e2
, stmt
);
4885 CASE_CHAIN (last
) = CASE_CHAIN (cases2
);
4886 CASE_CHAIN (cases2
) = first
;
4888 bitmap_set_bit (touched_switch_bbs
, gimple_bb (stmt
)->index
);
4892 size_t i
, n
= gimple_switch_num_labels (stmt
);
4894 for (i
= 0; i
< n
; i
++)
4896 tree elt
= gimple_switch_label (stmt
, i
);
4897 if (label_to_block (CASE_LABEL (elt
)) == e
->dest
)
4898 CASE_LABEL (elt
) = label
;
4906 int i
, n
= gimple_asm_nlabels (stmt
);
4909 for (i
= 0; i
< n
; ++i
)
4911 tree cons
= gimple_asm_label_op (stmt
, i
);
4912 if (label_to_block (TREE_VALUE (cons
)) == e
->dest
)
4915 label
= gimple_block_label (dest
);
4916 TREE_VALUE (cons
) = label
;
4920 /* If we didn't find any label matching the former edge in the
4921 asm labels, we must be redirecting the fallthrough
4923 gcc_assert (label
|| (e
->flags
& EDGE_FALLTHRU
));
4928 gsi_remove (&gsi
, true);
4929 e
->flags
|= EDGE_FALLTHRU
;
4932 case GIMPLE_OMP_RETURN
:
4933 case GIMPLE_OMP_CONTINUE
:
4934 case GIMPLE_OMP_SECTIONS_SWITCH
:
4935 case GIMPLE_OMP_FOR
:
4936 /* The edges from OMP constructs can be simply redirected. */
4939 case GIMPLE_EH_DISPATCH
:
4940 if (!(e
->flags
& EDGE_FALLTHRU
))
4941 redirect_eh_dispatch_edge (stmt
, e
, dest
);
4945 /* Otherwise it must be a fallthru edge, and we don't need to
4946 do anything besides redirecting it. */
4947 gcc_assert (e
->flags
& EDGE_FALLTHRU
);
4951 /* Update/insert PHI nodes as necessary. */
4953 /* Now update the edges in the CFG. */
4954 e
= ssa_redirect_edge (e
, dest
);
4959 /* Returns true if it is possible to remove edge E by redirecting
4960 it to the destination of the other edge from E->src. */
4963 gimple_can_remove_branch_p (const_edge e
)
4965 if (e
->flags
& (EDGE_ABNORMAL
| EDGE_EH
))
4971 /* Simple wrapper, as we can always redirect fallthru edges. */
4974 gimple_redirect_edge_and_branch_force (edge e
, basic_block dest
)
4976 e
= gimple_redirect_edge_and_branch (e
, dest
);
4983 /* Splits basic block BB after statement STMT (but at least after the
4984 labels). If STMT is NULL, BB is split just after the labels. */
4987 gimple_split_block (basic_block bb
, void *stmt
)
4989 gimple_stmt_iterator gsi
;
4990 gimple_stmt_iterator gsi_tgt
;
4997 new_bb
= create_empty_bb (bb
);
4999 /* Redirect the outgoing edges. */
5000 new_bb
->succs
= bb
->succs
;
5002 FOR_EACH_EDGE (e
, ei
, new_bb
->succs
)
5005 if (stmt
&& gimple_code ((gimple
) stmt
) == GIMPLE_LABEL
)
5008 /* Move everything from GSI to the new basic block. */
5009 for (gsi
= gsi_start_bb (bb
); !gsi_end_p (gsi
); gsi_next (&gsi
))
5011 act
= gsi_stmt (gsi
);
5012 if (gimple_code (act
) == GIMPLE_LABEL
)
5025 if (gsi_end_p (gsi
))
5028 /* Split the statement list - avoid re-creating new containers as this
5029 brings ugly quadratic memory consumption in the inliner.
5030 (We are still quadratic since we need to update stmt BB pointers,
5032 list
= gsi_split_seq_before (&gsi
);
5033 set_bb_seq (new_bb
, list
);
5034 for (gsi_tgt
= gsi_start (list
);
5035 !gsi_end_p (gsi_tgt
); gsi_next (&gsi_tgt
))
5036 gimple_set_bb (gsi_stmt (gsi_tgt
), new_bb
);
5042 /* Moves basic block BB after block AFTER. */
5045 gimple_move_block_after (basic_block bb
, basic_block after
)
5047 if (bb
->prev_bb
== after
)
5051 link_block (bb
, after
);
5057 /* Return true if basic_block can be duplicated. */
5060 gimple_can_duplicate_bb_p (const_basic_block bb ATTRIBUTE_UNUSED
)
5065 /* Create a duplicate of the basic block BB. NOTE: This does not
5066 preserve SSA form. */
5069 gimple_duplicate_bb (basic_block bb
)
5072 gimple_stmt_iterator gsi
, gsi_tgt
;
5073 gimple_seq phis
= phi_nodes (bb
);
5074 gimple phi
, stmt
, copy
;
5076 new_bb
= create_empty_bb (EXIT_BLOCK_PTR
->prev_bb
);
5078 /* Copy the PHI nodes. We ignore PHI node arguments here because
5079 the incoming edges have not been setup yet. */
5080 for (gsi
= gsi_start (phis
); !gsi_end_p (gsi
); gsi_next (&gsi
))
5082 phi
= gsi_stmt (gsi
);
5083 copy
= create_phi_node (gimple_phi_result (phi
), new_bb
);
5084 create_new_def_for (gimple_phi_result (copy
), copy
,
5085 gimple_phi_result_ptr (copy
));
5088 gsi_tgt
= gsi_start_bb (new_bb
);
5089 for (gsi
= gsi_start_bb (bb
); !gsi_end_p (gsi
); gsi_next (&gsi
))
5091 def_operand_p def_p
;
5092 ssa_op_iter op_iter
;
5094 stmt
= gsi_stmt (gsi
);
5095 if (gimple_code (stmt
) == GIMPLE_LABEL
)
5098 /* Create a new copy of STMT and duplicate STMT's virtual
5100 copy
= gimple_copy (stmt
);
5101 gsi_insert_after (&gsi_tgt
, copy
, GSI_NEW_STMT
);
5103 maybe_duplicate_eh_stmt (copy
, stmt
);
5104 gimple_duplicate_stmt_histograms (cfun
, copy
, cfun
, stmt
);
5106 /* Create new names for all the definitions created by COPY and
5107 add replacement mappings for each new name. */
5108 FOR_EACH_SSA_DEF_OPERAND (def_p
, copy
, op_iter
, SSA_OP_ALL_DEFS
)
5109 create_new_def_for (DEF_FROM_PTR (def_p
), copy
, def_p
);
5115 /* Adds phi node arguments for edge E_COPY after basic block duplication. */
5118 add_phi_args_after_copy_edge (edge e_copy
)
5120 basic_block bb
, bb_copy
= e_copy
->src
, dest
;
5123 gimple phi
, phi_copy
;
5125 gimple_stmt_iterator psi
, psi_copy
;
5127 if (gimple_seq_empty_p (phi_nodes (e_copy
->dest
)))
5130 bb
= bb_copy
->flags
& BB_DUPLICATED
? get_bb_original (bb_copy
) : bb_copy
;
5132 if (e_copy
->dest
->flags
& BB_DUPLICATED
)
5133 dest
= get_bb_original (e_copy
->dest
);
5135 dest
= e_copy
->dest
;
5137 e
= find_edge (bb
, dest
);
5140 /* During loop unrolling the target of the latch edge is copied.
5141 In this case we are not looking for edge to dest, but to
5142 duplicated block whose original was dest. */
5143 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
5145 if ((e
->dest
->flags
& BB_DUPLICATED
)
5146 && get_bb_original (e
->dest
) == dest
)
5150 gcc_assert (e
!= NULL
);
5153 for (psi
= gsi_start_phis (e
->dest
),
5154 psi_copy
= gsi_start_phis (e_copy
->dest
);
5156 gsi_next (&psi
), gsi_next (&psi_copy
))
5158 phi
= gsi_stmt (psi
);
5159 phi_copy
= gsi_stmt (psi_copy
);
5160 def
= PHI_ARG_DEF_FROM_EDGE (phi
, e
);
5161 add_phi_arg (phi_copy
, def
, e_copy
,
5162 gimple_phi_arg_location_from_edge (phi
, e
));
5167 /* Basic block BB_COPY was created by code duplication. Add phi node
5168 arguments for edges going out of BB_COPY. The blocks that were
5169 duplicated have BB_DUPLICATED set. */
5172 add_phi_args_after_copy_bb (basic_block bb_copy
)
5177 FOR_EACH_EDGE (e_copy
, ei
, bb_copy
->succs
)
5179 add_phi_args_after_copy_edge (e_copy
);
5183 /* Blocks in REGION_COPY array of length N_REGION were created by
5184 duplication of basic blocks. Add phi node arguments for edges
5185 going from these blocks. If E_COPY is not NULL, also add
5186 phi node arguments for its destination.*/
5189 add_phi_args_after_copy (basic_block
*region_copy
, unsigned n_region
,
5194 for (i
= 0; i
< n_region
; i
++)
5195 region_copy
[i
]->flags
|= BB_DUPLICATED
;
5197 for (i
= 0; i
< n_region
; i
++)
5198 add_phi_args_after_copy_bb (region_copy
[i
]);
5200 add_phi_args_after_copy_edge (e_copy
);
5202 for (i
= 0; i
< n_region
; i
++)
5203 region_copy
[i
]->flags
&= ~BB_DUPLICATED
;
5206 /* Duplicates a REGION (set of N_REGION basic blocks) with just a single
5207 important exit edge EXIT. By important we mean that no SSA name defined
5208 inside region is live over the other exit edges of the region. All entry
5209 edges to the region must go to ENTRY->dest. The edge ENTRY is redirected
5210 to the duplicate of the region. SSA form, dominance and loop information
5211 is updated. The new basic blocks are stored to REGION_COPY in the same
5212 order as they had in REGION, provided that REGION_COPY is not NULL.
5213 The function returns false if it is unable to copy the region,
5217 gimple_duplicate_sese_region (edge entry
, edge exit
,
5218 basic_block
*region
, unsigned n_region
,
5219 basic_block
*region_copy
)
5222 bool free_region_copy
= false, copying_header
= false;
5223 struct loop
*loop
= entry
->dest
->loop_father
;
5225 VEC (basic_block
, heap
) *doms
;
5227 int total_freq
= 0, entry_freq
= 0;
5228 gcov_type total_count
= 0, entry_count
= 0;
5230 if (!can_copy_bbs_p (region
, n_region
))
5233 /* Some sanity checking. Note that we do not check for all possible
5234 missuses of the functions. I.e. if you ask to copy something weird,
5235 it will work, but the state of structures probably will not be
5237 for (i
= 0; i
< n_region
; i
++)
5239 /* We do not handle subloops, i.e. all the blocks must belong to the
5241 if (region
[i
]->loop_father
!= loop
)
5244 if (region
[i
] != entry
->dest
5245 && region
[i
] == loop
->header
)
5249 set_loop_copy (loop
, loop
);
5251 /* In case the function is used for loop header copying (which is the primary
5252 use), ensure that EXIT and its copy will be new latch and entry edges. */
5253 if (loop
->header
== entry
->dest
)
5255 copying_header
= true;
5256 set_loop_copy (loop
, loop_outer (loop
));
5258 if (!dominated_by_p (CDI_DOMINATORS
, loop
->latch
, exit
->src
))
5261 for (i
= 0; i
< n_region
; i
++)
5262 if (region
[i
] != exit
->src
5263 && dominated_by_p (CDI_DOMINATORS
, region
[i
], exit
->src
))
5269 region_copy
= XNEWVEC (basic_block
, n_region
);
5270 free_region_copy
= true;
5273 gcc_assert (!need_ssa_update_p (cfun
));
5275 /* Record blocks outside the region that are dominated by something
5278 initialize_original_copy_tables ();
5280 doms
= get_dominated_by_region (CDI_DOMINATORS
, region
, n_region
);
5282 if (entry
->dest
->count
)
5284 total_count
= entry
->dest
->count
;
5285 entry_count
= entry
->count
;
5286 /* Fix up corner cases, to avoid division by zero or creation of negative
5288 if (entry_count
> total_count
)
5289 entry_count
= total_count
;
5293 total_freq
= entry
->dest
->frequency
;
5294 entry_freq
= EDGE_FREQUENCY (entry
);
5295 /* Fix up corner cases, to avoid division by zero or creation of negative
5297 if (total_freq
== 0)
5299 else if (entry_freq
> total_freq
)
5300 entry_freq
= total_freq
;
5303 copy_bbs (region
, n_region
, region_copy
, &exit
, 1, &exit_copy
, loop
,
5304 split_edge_bb_loc (entry
));
5307 scale_bbs_frequencies_gcov_type (region
, n_region
,
5308 total_count
- entry_count
,
5310 scale_bbs_frequencies_gcov_type (region_copy
, n_region
, entry_count
,
5315 scale_bbs_frequencies_int (region
, n_region
, total_freq
- entry_freq
,
5317 scale_bbs_frequencies_int (region_copy
, n_region
, entry_freq
, total_freq
);
5322 loop
->header
= exit
->dest
;
5323 loop
->latch
= exit
->src
;
5326 /* Redirect the entry and add the phi node arguments. */
5327 redirected
= redirect_edge_and_branch (entry
, get_bb_copy (entry
->dest
));
5328 gcc_assert (redirected
!= NULL
);
5329 flush_pending_stmts (entry
);
5331 /* Concerning updating of dominators: We must recount dominators
5332 for entry block and its copy. Anything that is outside of the
5333 region, but was dominated by something inside needs recounting as
5335 set_immediate_dominator (CDI_DOMINATORS
, entry
->dest
, entry
->src
);
5336 VEC_safe_push (basic_block
, heap
, doms
, get_bb_original (entry
->dest
));
5337 iterate_fix_dominators (CDI_DOMINATORS
, doms
, false);
5338 VEC_free (basic_block
, heap
, doms
);
5340 /* Add the other PHI node arguments. */
5341 add_phi_args_after_copy (region_copy
, n_region
, NULL
);
5343 /* Update the SSA web. */
5344 update_ssa (TODO_update_ssa
);
5346 if (free_region_copy
)
5349 free_original_copy_tables ();
5353 /* Duplicates REGION consisting of N_REGION blocks. The new blocks
5354 are stored to REGION_COPY in the same order in that they appear
5355 in REGION, if REGION_COPY is not NULL. ENTRY is the entry to
5356 the region, EXIT an exit from it. The condition guarding EXIT
5357 is moved to ENTRY. Returns true if duplication succeeds, false
5383 gimple_duplicate_sese_tail (edge entry ATTRIBUTE_UNUSED
, edge exit ATTRIBUTE_UNUSED
,
5384 basic_block
*region ATTRIBUTE_UNUSED
, unsigned n_region ATTRIBUTE_UNUSED
,
5385 basic_block
*region_copy ATTRIBUTE_UNUSED
)
5388 bool free_region_copy
= false;
5389 struct loop
*loop
= exit
->dest
->loop_father
;
5390 struct loop
*orig_loop
= entry
->dest
->loop_father
;
5391 basic_block switch_bb
, entry_bb
, nentry_bb
;
5392 VEC (basic_block
, heap
) *doms
;
5393 int total_freq
= 0, exit_freq
= 0;
5394 gcov_type total_count
= 0, exit_count
= 0;
5395 edge exits
[2], nexits
[2], e
;
5396 gimple_stmt_iterator gsi
,gsi1
;
5399 basic_block exit_bb
;
5400 basic_block iters_bb
;
5402 gimple_stmt_iterator psi
;
5406 gcc_assert (EDGE_COUNT (exit
->src
->succs
) == 2);
5408 exits
[1] = EDGE_SUCC (exit
->src
, EDGE_SUCC (exit
->src
, 0) == exit
);
5410 if (!can_copy_bbs_p (region
, n_region
))
5413 initialize_original_copy_tables ();
5414 set_loop_copy (orig_loop
, loop
);
5415 duplicate_subloops (orig_loop
, loop
);
5419 region_copy
= XNEWVEC (basic_block
, n_region
);
5420 free_region_copy
= true;
5423 gcc_assert (!need_ssa_update_p (cfun
));
5425 /* Record blocks outside the region that are dominated by something
5427 doms
= get_dominated_by_region (CDI_DOMINATORS
, region
, n_region
);
5429 if (exit
->src
->count
)
5431 total_count
= exit
->src
->count
;
5432 exit_count
= exit
->count
;
5433 /* Fix up corner cases, to avoid division by zero or creation of negative
5435 if (exit_count
> total_count
)
5436 exit_count
= total_count
;
5440 total_freq
= exit
->src
->frequency
;
5441 exit_freq
= EDGE_FREQUENCY (exit
);
5442 /* Fix up corner cases, to avoid division by zero or creation of negative
5444 if (total_freq
== 0)
5446 if (exit_freq
> total_freq
)
5447 exit_freq
= total_freq
;
5450 copy_bbs (region
, n_region
, region_copy
, exits
, 2, nexits
, orig_loop
,
5451 split_edge_bb_loc (exit
));
5454 scale_bbs_frequencies_gcov_type (region
, n_region
,
5455 total_count
- exit_count
,
5457 scale_bbs_frequencies_gcov_type (region_copy
, n_region
, exit_count
,
5462 scale_bbs_frequencies_int (region
, n_region
, total_freq
- exit_freq
,
5464 scale_bbs_frequencies_int (region_copy
, n_region
, exit_freq
, total_freq
);
5467 /* Create the switch block, and put the exit condition to it. */
5468 entry_bb
= entry
->dest
;
5469 nentry_bb
= get_bb_copy (entry_bb
);
5470 if (!last_stmt (entry
->src
)
5471 || !stmt_ends_bb_p (last_stmt (entry
->src
)))
5472 switch_bb
= entry
->src
;
5474 switch_bb
= split_edge (entry
);
5475 set_immediate_dominator (CDI_DOMINATORS
, nentry_bb
, switch_bb
);
5477 gsi
= gsi_last_bb (switch_bb
);
5478 cond_stmt
= last_stmt (exit
->src
);
5479 gcc_assert (gimple_code (cond_stmt
) == GIMPLE_COND
);
5480 cond_stmt
= gimple_copy (cond_stmt
);
5482 /* If the block consisting of the exit condition has the latch as
5483 successor, then the body of the loop is executed before
5484 the exit condition is tested. In such case, moving the
5485 condition to the entry, causes that the loop will iterate
5486 one less iteration (which is the wanted outcome, since we
5487 peel out the last iteration). If the body is executed after
5488 the condition, moving the condition to the entry requires
5489 decrementing one iteration. */
5490 if (exits
[1]->dest
== orig_loop
->latch
)
5491 new_rhs
= gimple_cond_rhs (cond_stmt
);
5494 new_rhs
= fold_build2 (MINUS_EXPR
, TREE_TYPE (gimple_cond_rhs (cond_stmt
)),
5495 gimple_cond_rhs (cond_stmt
),
5496 build_int_cst (TREE_TYPE (gimple_cond_rhs (cond_stmt
)), 1));
5498 if (TREE_CODE (gimple_cond_rhs (cond_stmt
)) == SSA_NAME
)
5500 iters_bb
= gimple_bb (SSA_NAME_DEF_STMT (gimple_cond_rhs (cond_stmt
)));
5501 for (gsi1
= gsi_start_bb (iters_bb
); !gsi_end_p (gsi1
); gsi_next (&gsi1
))
5502 if (gsi_stmt (gsi1
) == SSA_NAME_DEF_STMT (gimple_cond_rhs (cond_stmt
)))
5505 new_rhs
= force_gimple_operand_gsi (&gsi1
, new_rhs
, true,
5506 NULL_TREE
,false,GSI_CONTINUE_LINKING
);
5509 gimple_cond_set_rhs (cond_stmt
, unshare_expr (new_rhs
));
5510 gimple_cond_set_lhs (cond_stmt
, unshare_expr (gimple_cond_lhs (cond_stmt
)));
5511 gsi_insert_after (&gsi
, cond_stmt
, GSI_NEW_STMT
);
5513 sorig
= single_succ_edge (switch_bb
);
5514 sorig
->flags
= exits
[1]->flags
;
5515 snew
= make_edge (switch_bb
, nentry_bb
, exits
[0]->flags
);
5517 /* Register the new edge from SWITCH_BB in loop exit lists. */
5518 rescan_loop_exit (snew
, true, false);
5520 /* Add the PHI node arguments. */
5521 add_phi_args_after_copy (region_copy
, n_region
, snew
);
5523 /* Get rid of now superfluous conditions and associated edges (and phi node
5525 exit_bb
= exit
->dest
;
5527 e
= redirect_edge_and_branch (exits
[0], exits
[1]->dest
);
5528 PENDING_STMT (e
) = NULL
;
5530 /* The latch of ORIG_LOOP was copied, and so was the backedge
5531 to the original header. We redirect this backedge to EXIT_BB. */
5532 for (i
= 0; i
< n_region
; i
++)
5533 if (get_bb_original (region_copy
[i
]) == orig_loop
->latch
)
5535 gcc_assert (single_succ_edge (region_copy
[i
]));
5536 e
= redirect_edge_and_branch (single_succ_edge (region_copy
[i
]), exit_bb
);
5537 PENDING_STMT (e
) = NULL
;
5538 for (psi
= gsi_start_phis (exit_bb
);
5542 phi
= gsi_stmt (psi
);
5543 def
= PHI_ARG_DEF (phi
, nexits
[0]->dest_idx
);
5544 add_phi_arg (phi
, def
, e
, gimple_phi_arg_location_from_edge (phi
, e
));
5547 e
= redirect_edge_and_branch (nexits
[0], nexits
[1]->dest
);
5548 PENDING_STMT (e
) = NULL
;
5550 /* Anything that is outside of the region, but was dominated by something
5551 inside needs to update dominance info. */
5552 iterate_fix_dominators (CDI_DOMINATORS
, doms
, false);
5553 VEC_free (basic_block
, heap
, doms
);
5554 /* Update the SSA web. */
5555 update_ssa (TODO_update_ssa
);
5557 if (free_region_copy
)
5560 free_original_copy_tables ();
5564 /* Add all the blocks dominated by ENTRY to the array BBS_P. Stop
5565 adding blocks when the dominator traversal reaches EXIT. This
5566 function silently assumes that ENTRY strictly dominates EXIT. */
5569 gather_blocks_in_sese_region (basic_block entry
, basic_block exit
,
5570 VEC(basic_block
,heap
) **bbs_p
)
5574 for (son
= first_dom_son (CDI_DOMINATORS
, entry
);
5576 son
= next_dom_son (CDI_DOMINATORS
, son
))
5578 VEC_safe_push (basic_block
, heap
, *bbs_p
, son
);
5580 gather_blocks_in_sese_region (son
, exit
, bbs_p
);
5584 /* Replaces *TP with a duplicate (belonging to function TO_CONTEXT).
5585 The duplicates are recorded in VARS_MAP. */
5588 replace_by_duplicate_decl (tree
*tp
, struct pointer_map_t
*vars_map
,
5591 tree t
= *tp
, new_t
;
5592 struct function
*f
= DECL_STRUCT_FUNCTION (to_context
);
5595 if (DECL_CONTEXT (t
) == to_context
)
5598 loc
= pointer_map_contains (vars_map
, t
);
5602 loc
= pointer_map_insert (vars_map
, t
);
5606 new_t
= copy_var_decl (t
, DECL_NAME (t
), TREE_TYPE (t
));
5607 add_local_decl (f
, new_t
);
5611 gcc_assert (TREE_CODE (t
) == CONST_DECL
);
5612 new_t
= copy_node (t
);
5614 DECL_CONTEXT (new_t
) = to_context
;
5619 new_t
= (tree
) *loc
;
5625 /* Creates an ssa name in TO_CONTEXT equivalent to NAME.
5626 VARS_MAP maps old ssa names and var_decls to the new ones. */
5629 replace_ssa_name (tree name
, struct pointer_map_t
*vars_map
,
5633 tree new_name
, decl
= SSA_NAME_VAR (name
);
5635 gcc_assert (is_gimple_reg (name
));
5637 loc
= pointer_map_contains (vars_map
, name
);
5641 replace_by_duplicate_decl (&decl
, vars_map
, to_context
);
5643 push_cfun (DECL_STRUCT_FUNCTION (to_context
));
5644 if (gimple_in_ssa_p (cfun
))
5645 add_referenced_var (decl
);
5647 new_name
= make_ssa_name (decl
, SSA_NAME_DEF_STMT (name
));
5648 if (SSA_NAME_IS_DEFAULT_DEF (name
))
5649 set_default_def (decl
, new_name
);
5652 loc
= pointer_map_insert (vars_map
, name
);
5656 new_name
= (tree
) *loc
;
5667 struct pointer_map_t
*vars_map
;
5668 htab_t new_label_map
;
5669 struct pointer_map_t
*eh_map
;
5673 /* Helper for move_block_to_fn. Set TREE_BLOCK in every expression
5674 contained in *TP if it has been ORIG_BLOCK previously and change the
5675 DECL_CONTEXT of every local variable referenced in *TP. */
5678 move_stmt_op (tree
*tp
, int *walk_subtrees
, void *data
)
5680 struct walk_stmt_info
*wi
= (struct walk_stmt_info
*) data
;
5681 struct move_stmt_d
*p
= (struct move_stmt_d
*) wi
->info
;
5685 /* We should never have TREE_BLOCK set on non-statements. */
5686 gcc_assert (!TREE_BLOCK (t
));
5688 else if (DECL_P (t
) || TREE_CODE (t
) == SSA_NAME
)
5690 if (TREE_CODE (t
) == SSA_NAME
)
5691 *tp
= replace_ssa_name (t
, p
->vars_map
, p
->to_context
);
5692 else if (TREE_CODE (t
) == LABEL_DECL
)
5694 if (p
->new_label_map
)
5696 struct tree_map in
, *out
;
5698 out
= (struct tree_map
*)
5699 htab_find_with_hash (p
->new_label_map
, &in
, DECL_UID (t
));
5704 DECL_CONTEXT (t
) = p
->to_context
;
5706 else if (p
->remap_decls_p
)
5708 /* Replace T with its duplicate. T should no longer appear in the
5709 parent function, so this looks wasteful; however, it may appear
5710 in referenced_vars, and more importantly, as virtual operands of
5711 statements, and in alias lists of other variables. It would be
5712 quite difficult to expunge it from all those places. ??? It might
5713 suffice to do this for addressable variables. */
5714 if ((TREE_CODE (t
) == VAR_DECL
5715 && !is_global_var (t
))
5716 || TREE_CODE (t
) == CONST_DECL
)
5717 replace_by_duplicate_decl (tp
, p
->vars_map
, p
->to_context
);
5720 && gimple_in_ssa_p (cfun
))
5722 push_cfun (DECL_STRUCT_FUNCTION (p
->to_context
));
5723 add_referenced_var (*tp
);
5729 else if (TYPE_P (t
))
5735 /* Helper for move_stmt_r. Given an EH region number for the source
5736 function, map that to the duplicate EH regio number in the dest. */
5739 move_stmt_eh_region_nr (int old_nr
, struct move_stmt_d
*p
)
5741 eh_region old_r
, new_r
;
5744 old_r
= get_eh_region_from_number (old_nr
);
5745 slot
= pointer_map_contains (p
->eh_map
, old_r
);
5746 new_r
= (eh_region
) *slot
;
5748 return new_r
->index
;
5751 /* Similar, but operate on INTEGER_CSTs. */
5754 move_stmt_eh_region_tree_nr (tree old_t_nr
, struct move_stmt_d
*p
)
5758 old_nr
= tree_low_cst (old_t_nr
, 0);
5759 new_nr
= move_stmt_eh_region_nr (old_nr
, p
);
5761 return build_int_cst (integer_type_node
, new_nr
);
5764 /* Like move_stmt_op, but for gimple statements.
5766 Helper for move_block_to_fn. Set GIMPLE_BLOCK in every expression
5767 contained in the current statement in *GSI_P and change the
5768 DECL_CONTEXT of every local variable referenced in the current
5772 move_stmt_r (gimple_stmt_iterator
*gsi_p
, bool *handled_ops_p
,
5773 struct walk_stmt_info
*wi
)
5775 struct move_stmt_d
*p
= (struct move_stmt_d
*) wi
->info
;
5776 gimple stmt
= gsi_stmt (*gsi_p
);
5777 tree block
= gimple_block (stmt
);
5779 if (p
->orig_block
== NULL_TREE
5780 || block
== p
->orig_block
5781 || block
== NULL_TREE
)
5782 gimple_set_block (stmt
, p
->new_block
);
5783 #ifdef ENABLE_CHECKING
5784 else if (block
!= p
->new_block
)
5786 while (block
&& block
!= p
->orig_block
)
5787 block
= BLOCK_SUPERCONTEXT (block
);
5792 switch (gimple_code (stmt
))
5795 /* Remap the region numbers for __builtin_eh_{pointer,filter}. */
5797 tree r
, fndecl
= gimple_call_fndecl (stmt
);
5798 if (fndecl
&& DECL_BUILT_IN_CLASS (fndecl
) == BUILT_IN_NORMAL
)
5799 switch (DECL_FUNCTION_CODE (fndecl
))
5801 case BUILT_IN_EH_COPY_VALUES
:
5802 r
= gimple_call_arg (stmt
, 1);
5803 r
= move_stmt_eh_region_tree_nr (r
, p
);
5804 gimple_call_set_arg (stmt
, 1, r
);
5807 case BUILT_IN_EH_POINTER
:
5808 case BUILT_IN_EH_FILTER
:
5809 r
= gimple_call_arg (stmt
, 0);
5810 r
= move_stmt_eh_region_tree_nr (r
, p
);
5811 gimple_call_set_arg (stmt
, 0, r
);
5822 int r
= gimple_resx_region (stmt
);
5823 r
= move_stmt_eh_region_nr (r
, p
);
5824 gimple_resx_set_region (stmt
, r
);
5828 case GIMPLE_EH_DISPATCH
:
5830 int r
= gimple_eh_dispatch_region (stmt
);
5831 r
= move_stmt_eh_region_nr (r
, p
);
5832 gimple_eh_dispatch_set_region (stmt
, r
);
5836 case GIMPLE_OMP_RETURN
:
5837 case GIMPLE_OMP_CONTINUE
:
5840 if (is_gimple_omp (stmt
))
5842 /* Do not remap variables inside OMP directives. Variables
5843 referenced in clauses and directive header belong to the
5844 parent function and should not be moved into the child
5846 bool save_remap_decls_p
= p
->remap_decls_p
;
5847 p
->remap_decls_p
= false;
5848 *handled_ops_p
= true;
5850 walk_gimple_seq (gimple_omp_body (stmt
), move_stmt_r
,
5853 p
->remap_decls_p
= save_remap_decls_p
;
5861 /* Move basic block BB from function CFUN to function DEST_FN. The
5862 block is moved out of the original linked list and placed after
5863 block AFTER in the new list. Also, the block is removed from the
5864 original array of blocks and placed in DEST_FN's array of blocks.
5865 If UPDATE_EDGE_COUNT_P is true, the edge counts on both CFGs is
5866 updated to reflect the moved edges.
5868 The local variables are remapped to new instances, VARS_MAP is used
5869 to record the mapping. */
5872 move_block_to_fn (struct function
*dest_cfun
, basic_block bb
,
5873 basic_block after
, bool update_edge_count_p
,
5874 struct move_stmt_d
*d
)
5876 struct control_flow_graph
*cfg
;
5879 gimple_stmt_iterator si
;
5880 unsigned old_len
, new_len
;
5882 /* Remove BB from dominance structures. */
5883 delete_from_dominance_info (CDI_DOMINATORS
, bb
);
5885 remove_bb_from_loops (bb
);
5887 /* Link BB to the new linked list. */
5888 move_block_after (bb
, after
);
5890 /* Update the edge count in the corresponding flowgraphs. */
5891 if (update_edge_count_p
)
5892 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
5894 cfun
->cfg
->x_n_edges
--;
5895 dest_cfun
->cfg
->x_n_edges
++;
5898 /* Remove BB from the original basic block array. */
5899 VEC_replace (basic_block
, cfun
->cfg
->x_basic_block_info
, bb
->index
, NULL
);
5900 cfun
->cfg
->x_n_basic_blocks
--;
5902 /* Grow DEST_CFUN's basic block array if needed. */
5903 cfg
= dest_cfun
->cfg
;
5904 cfg
->x_n_basic_blocks
++;
5905 if (bb
->index
>= cfg
->x_last_basic_block
)
5906 cfg
->x_last_basic_block
= bb
->index
+ 1;
5908 old_len
= VEC_length (basic_block
, cfg
->x_basic_block_info
);
5909 if ((unsigned) cfg
->x_last_basic_block
>= old_len
)
5911 new_len
= cfg
->x_last_basic_block
+ (cfg
->x_last_basic_block
+ 3) / 4;
5912 VEC_safe_grow_cleared (basic_block
, gc
, cfg
->x_basic_block_info
,
5916 VEC_replace (basic_block
, cfg
->x_basic_block_info
,
5919 /* Remap the variables in phi nodes. */
5920 for (si
= gsi_start_phis (bb
); !gsi_end_p (si
); )
5922 gimple phi
= gsi_stmt (si
);
5924 tree op
= PHI_RESULT (phi
);
5927 if (!is_gimple_reg (op
))
5929 /* Remove the phi nodes for virtual operands (alias analysis will be
5930 run for the new function, anyway). */
5931 remove_phi_node (&si
, true);
5935 SET_PHI_RESULT (phi
,
5936 replace_ssa_name (op
, d
->vars_map
, dest_cfun
->decl
));
5937 FOR_EACH_PHI_ARG (use
, phi
, oi
, SSA_OP_USE
)
5939 op
= USE_FROM_PTR (use
);
5940 if (TREE_CODE (op
) == SSA_NAME
)
5941 SET_USE (use
, replace_ssa_name (op
, d
->vars_map
, dest_cfun
->decl
));
5947 for (si
= gsi_start_bb (bb
); !gsi_end_p (si
); gsi_next (&si
))
5949 gimple stmt
= gsi_stmt (si
);
5950 struct walk_stmt_info wi
;
5952 memset (&wi
, 0, sizeof (wi
));
5954 walk_gimple_stmt (&si
, move_stmt_r
, move_stmt_op
, &wi
);
5956 if (gimple_code (stmt
) == GIMPLE_LABEL
)
5958 tree label
= gimple_label_label (stmt
);
5959 int uid
= LABEL_DECL_UID (label
);
5961 gcc_assert (uid
> -1);
5963 old_len
= VEC_length (basic_block
, cfg
->x_label_to_block_map
);
5964 if (old_len
<= (unsigned) uid
)
5966 new_len
= 3 * uid
/ 2 + 1;
5967 VEC_safe_grow_cleared (basic_block
, gc
,
5968 cfg
->x_label_to_block_map
, new_len
);
5971 VEC_replace (basic_block
, cfg
->x_label_to_block_map
, uid
, bb
);
5972 VEC_replace (basic_block
, cfun
->cfg
->x_label_to_block_map
, uid
, NULL
);
5974 gcc_assert (DECL_CONTEXT (label
) == dest_cfun
->decl
);
5976 if (uid
>= dest_cfun
->cfg
->last_label_uid
)
5977 dest_cfun
->cfg
->last_label_uid
= uid
+ 1;
5980 maybe_duplicate_eh_stmt_fn (dest_cfun
, stmt
, cfun
, stmt
, d
->eh_map
, 0);
5981 remove_stmt_from_eh_lp_fn (cfun
, stmt
);
5983 gimple_duplicate_stmt_histograms (dest_cfun
, stmt
, cfun
, stmt
);
5984 gimple_remove_stmt_histograms (cfun
, stmt
);
5986 /* We cannot leave any operands allocated from the operand caches of
5987 the current function. */
5988 free_stmt_operands (stmt
);
5989 push_cfun (dest_cfun
);
5994 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
5997 tree block
= e
->goto_block
;
5998 if (d
->orig_block
== NULL_TREE
5999 || block
== d
->orig_block
)
6000 e
->goto_block
= d
->new_block
;
6001 #ifdef ENABLE_CHECKING
6002 else if (block
!= d
->new_block
)
6004 while (block
&& block
!= d
->orig_block
)
6005 block
= BLOCK_SUPERCONTEXT (block
);
6012 /* Examine the statements in BB (which is in SRC_CFUN); find and return
6013 the outermost EH region. Use REGION as the incoming base EH region. */
6016 find_outermost_region_in_block (struct function
*src_cfun
,
6017 basic_block bb
, eh_region region
)
6019 gimple_stmt_iterator si
;
6021 for (si
= gsi_start_bb (bb
); !gsi_end_p (si
); gsi_next (&si
))
6023 gimple stmt
= gsi_stmt (si
);
6024 eh_region stmt_region
;
6027 lp_nr
= lookup_stmt_eh_lp_fn (src_cfun
, stmt
);
6028 stmt_region
= get_eh_region_from_lp_number_fn (src_cfun
, lp_nr
);
6032 region
= stmt_region
;
6033 else if (stmt_region
!= region
)
6035 region
= eh_region_outermost (src_cfun
, stmt_region
, region
);
6036 gcc_assert (region
!= NULL
);
6045 new_label_mapper (tree decl
, void *data
)
6047 htab_t hash
= (htab_t
) data
;
6051 gcc_assert (TREE_CODE (decl
) == LABEL_DECL
);
6053 m
= XNEW (struct tree_map
);
6054 m
->hash
= DECL_UID (decl
);
6055 m
->base
.from
= decl
;
6056 m
->to
= create_artificial_label (UNKNOWN_LOCATION
);
6057 LABEL_DECL_UID (m
->to
) = LABEL_DECL_UID (decl
);
6058 if (LABEL_DECL_UID (m
->to
) >= cfun
->cfg
->last_label_uid
)
6059 cfun
->cfg
->last_label_uid
= LABEL_DECL_UID (m
->to
) + 1;
6061 slot
= htab_find_slot_with_hash (hash
, m
, m
->hash
, INSERT
);
6062 gcc_assert (*slot
== NULL
);
6069 /* Change DECL_CONTEXT of all BLOCK_VARS in block, including
6073 replace_block_vars_by_duplicates (tree block
, struct pointer_map_t
*vars_map
,
6078 for (tp
= &BLOCK_VARS (block
); *tp
; tp
= &DECL_CHAIN (*tp
))
6081 if (TREE_CODE (t
) != VAR_DECL
&& TREE_CODE (t
) != CONST_DECL
)
6083 replace_by_duplicate_decl (&t
, vars_map
, to_context
);
6086 if (TREE_CODE (*tp
) == VAR_DECL
&& DECL_HAS_VALUE_EXPR_P (*tp
))
6088 SET_DECL_VALUE_EXPR (t
, DECL_VALUE_EXPR (*tp
));
6089 DECL_HAS_VALUE_EXPR_P (t
) = 1;
6091 DECL_CHAIN (t
) = DECL_CHAIN (*tp
);
6096 for (block
= BLOCK_SUBBLOCKS (block
); block
; block
= BLOCK_CHAIN (block
))
6097 replace_block_vars_by_duplicates (block
, vars_map
, to_context
);
6100 /* Move a single-entry, single-exit region delimited by ENTRY_BB and
6101 EXIT_BB to function DEST_CFUN. The whole region is replaced by a
6102 single basic block in the original CFG and the new basic block is
6103 returned. DEST_CFUN must not have a CFG yet.
6105 Note that the region need not be a pure SESE region. Blocks inside
6106 the region may contain calls to abort/exit. The only restriction
6107 is that ENTRY_BB should be the only entry point and it must
6110 Change TREE_BLOCK of all statements in ORIG_BLOCK to the new
6111 functions outermost BLOCK, move all subblocks of ORIG_BLOCK
6112 to the new function.
6114 All local variables referenced in the region are assumed to be in
6115 the corresponding BLOCK_VARS and unexpanded variable lists
6116 associated with DEST_CFUN. */
6119 move_sese_region_to_fn (struct function
*dest_cfun
, basic_block entry_bb
,
6120 basic_block exit_bb
, tree orig_block
)
6122 VEC(basic_block
,heap
) *bbs
, *dom_bbs
;
6123 basic_block dom_entry
= get_immediate_dominator (CDI_DOMINATORS
, entry_bb
);
6124 basic_block after
, bb
, *entry_pred
, *exit_succ
, abb
;
6125 struct function
*saved_cfun
= cfun
;
6126 int *entry_flag
, *exit_flag
;
6127 unsigned *entry_prob
, *exit_prob
;
6128 unsigned i
, num_entry_edges
, num_exit_edges
;
6131 htab_t new_label_map
;
6132 struct pointer_map_t
*vars_map
, *eh_map
;
6133 struct loop
*loop
= entry_bb
->loop_father
;
6134 struct move_stmt_d d
;
6136 /* If ENTRY does not strictly dominate EXIT, this cannot be an SESE
6138 gcc_assert (entry_bb
!= exit_bb
6140 || dominated_by_p (CDI_DOMINATORS
, exit_bb
, entry_bb
)));
6142 /* Collect all the blocks in the region. Manually add ENTRY_BB
6143 because it won't be added by dfs_enumerate_from. */
6145 VEC_safe_push (basic_block
, heap
, bbs
, entry_bb
);
6146 gather_blocks_in_sese_region (entry_bb
, exit_bb
, &bbs
);
6148 /* The blocks that used to be dominated by something in BBS will now be
6149 dominated by the new block. */
6150 dom_bbs
= get_dominated_by_region (CDI_DOMINATORS
,
6151 VEC_address (basic_block
, bbs
),
6152 VEC_length (basic_block
, bbs
));
6154 /* Detach ENTRY_BB and EXIT_BB from CFUN->CFG. We need to remember
6155 the predecessor edges to ENTRY_BB and the successor edges to
6156 EXIT_BB so that we can re-attach them to the new basic block that
6157 will replace the region. */
6158 num_entry_edges
= EDGE_COUNT (entry_bb
->preds
);
6159 entry_pred
= (basic_block
*) xcalloc (num_entry_edges
, sizeof (basic_block
));
6160 entry_flag
= (int *) xcalloc (num_entry_edges
, sizeof (int));
6161 entry_prob
= XNEWVEC (unsigned, num_entry_edges
);
6163 for (ei
= ei_start (entry_bb
->preds
); (e
= ei_safe_edge (ei
)) != NULL
;)
6165 entry_prob
[i
] = e
->probability
;
6166 entry_flag
[i
] = e
->flags
;
6167 entry_pred
[i
++] = e
->src
;
6173 num_exit_edges
= EDGE_COUNT (exit_bb
->succs
);
6174 exit_succ
= (basic_block
*) xcalloc (num_exit_edges
,
6175 sizeof (basic_block
));
6176 exit_flag
= (int *) xcalloc (num_exit_edges
, sizeof (int));
6177 exit_prob
= XNEWVEC (unsigned, num_exit_edges
);
6179 for (ei
= ei_start (exit_bb
->succs
); (e
= ei_safe_edge (ei
)) != NULL
;)
6181 exit_prob
[i
] = e
->probability
;
6182 exit_flag
[i
] = e
->flags
;
6183 exit_succ
[i
++] = e
->dest
;
6195 /* Switch context to the child function to initialize DEST_FN's CFG. */
6196 gcc_assert (dest_cfun
->cfg
== NULL
);
6197 push_cfun (dest_cfun
);
6199 init_empty_tree_cfg ();
6201 /* Initialize EH information for the new function. */
6203 new_label_map
= NULL
;
6206 eh_region region
= NULL
;
6208 FOR_EACH_VEC_ELT (basic_block
, bbs
, i
, bb
)
6209 region
= find_outermost_region_in_block (saved_cfun
, bb
, region
);
6211 init_eh_for_function ();
6214 new_label_map
= htab_create (17, tree_map_hash
, tree_map_eq
, free
);
6215 eh_map
= duplicate_eh_regions (saved_cfun
, region
, 0,
6216 new_label_mapper
, new_label_map
);
6222 /* Move blocks from BBS into DEST_CFUN. */
6223 gcc_assert (VEC_length (basic_block
, bbs
) >= 2);
6224 after
= dest_cfun
->cfg
->x_entry_block_ptr
;
6225 vars_map
= pointer_map_create ();
6227 memset (&d
, 0, sizeof (d
));
6228 d
.orig_block
= orig_block
;
6229 d
.new_block
= DECL_INITIAL (dest_cfun
->decl
);
6230 d
.from_context
= cfun
->decl
;
6231 d
.to_context
= dest_cfun
->decl
;
6232 d
.vars_map
= vars_map
;
6233 d
.new_label_map
= new_label_map
;
6235 d
.remap_decls_p
= true;
6237 FOR_EACH_VEC_ELT (basic_block
, bbs
, i
, bb
)
6239 /* No need to update edge counts on the last block. It has
6240 already been updated earlier when we detached the region from
6241 the original CFG. */
6242 move_block_to_fn (dest_cfun
, bb
, after
, bb
!= exit_bb
, &d
);
6246 /* Rewire BLOCK_SUBBLOCKS of orig_block. */
6250 gcc_assert (BLOCK_SUBBLOCKS (DECL_INITIAL (dest_cfun
->decl
))
6252 BLOCK_SUBBLOCKS (DECL_INITIAL (dest_cfun
->decl
))
6253 = BLOCK_SUBBLOCKS (orig_block
);
6254 for (block
= BLOCK_SUBBLOCKS (orig_block
);
6255 block
; block
= BLOCK_CHAIN (block
))
6256 BLOCK_SUPERCONTEXT (block
) = DECL_INITIAL (dest_cfun
->decl
);
6257 BLOCK_SUBBLOCKS (orig_block
) = NULL_TREE
;
6260 replace_block_vars_by_duplicates (DECL_INITIAL (dest_cfun
->decl
),
6261 vars_map
, dest_cfun
->decl
);
6264 htab_delete (new_label_map
);
6266 pointer_map_destroy (eh_map
);
6267 pointer_map_destroy (vars_map
);
6269 /* Rewire the entry and exit blocks. The successor to the entry
6270 block turns into the successor of DEST_FN's ENTRY_BLOCK_PTR in
6271 the child function. Similarly, the predecessor of DEST_FN's
6272 EXIT_BLOCK_PTR turns into the predecessor of EXIT_BLOCK_PTR. We
6273 need to switch CFUN between DEST_CFUN and SAVED_CFUN so that the
6274 various CFG manipulation function get to the right CFG.
6276 FIXME, this is silly. The CFG ought to become a parameter to
6278 push_cfun (dest_cfun
);
6279 make_edge (ENTRY_BLOCK_PTR
, entry_bb
, EDGE_FALLTHRU
);
6281 make_edge (exit_bb
, EXIT_BLOCK_PTR
, 0);
6284 /* Back in the original function, the SESE region has disappeared,
6285 create a new basic block in its place. */
6286 bb
= create_empty_bb (entry_pred
[0]);
6288 add_bb_to_loop (bb
, loop
);
6289 for (i
= 0; i
< num_entry_edges
; i
++)
6291 e
= make_edge (entry_pred
[i
], bb
, entry_flag
[i
]);
6292 e
->probability
= entry_prob
[i
];
6295 for (i
= 0; i
< num_exit_edges
; i
++)
6297 e
= make_edge (bb
, exit_succ
[i
], exit_flag
[i
]);
6298 e
->probability
= exit_prob
[i
];
6301 set_immediate_dominator (CDI_DOMINATORS
, bb
, dom_entry
);
6302 FOR_EACH_VEC_ELT (basic_block
, dom_bbs
, i
, abb
)
6303 set_immediate_dominator (CDI_DOMINATORS
, abb
, bb
);
6304 VEC_free (basic_block
, heap
, dom_bbs
);
6315 VEC_free (basic_block
, heap
, bbs
);
6321 /* Dump FUNCTION_DECL FN to file FILE using FLAGS (see TDF_* in tree-pass.h)
6325 dump_function_to_file (tree fn
, FILE *file
, int flags
)
6328 struct function
*dsf
;
6329 bool ignore_topmost_bind
= false, any_var
= false;
6333 fprintf (file
, "%s (", lang_hooks
.decl_printable_name (fn
, 2));
6335 arg
= DECL_ARGUMENTS (fn
);
6338 print_generic_expr (file
, TREE_TYPE (arg
), dump_flags
);
6339 fprintf (file
, " ");
6340 print_generic_expr (file
, arg
, dump_flags
);
6341 if (flags
& TDF_VERBOSE
)
6342 print_node (file
, "", arg
, 4);
6343 if (DECL_CHAIN (arg
))
6344 fprintf (file
, ", ");
6345 arg
= DECL_CHAIN (arg
);
6347 fprintf (file
, ")\n");
6349 if (flags
& TDF_VERBOSE
)
6350 print_node (file
, "", fn
, 2);
6352 dsf
= DECL_STRUCT_FUNCTION (fn
);
6353 if (dsf
&& (flags
& TDF_EH
))
6354 dump_eh_tree (file
, dsf
);
6356 if (flags
& TDF_RAW
&& !gimple_has_body_p (fn
))
6358 dump_node (fn
, TDF_SLIM
| flags
, file
);
6362 /* Switch CFUN to point to FN. */
6363 push_cfun (DECL_STRUCT_FUNCTION (fn
));
6365 /* When GIMPLE is lowered, the variables are no longer available in
6366 BIND_EXPRs, so display them separately. */
6367 if (cfun
&& cfun
->decl
== fn
&& !VEC_empty (tree
, cfun
->local_decls
))
6370 ignore_topmost_bind
= true;
6372 fprintf (file
, "{\n");
6373 FOR_EACH_LOCAL_DECL (cfun
, ix
, var
)
6375 print_generic_decl (file
, var
, flags
);
6376 if (flags
& TDF_VERBOSE
)
6377 print_node (file
, "", var
, 4);
6378 fprintf (file
, "\n");
6384 if (cfun
&& cfun
->decl
== fn
&& cfun
->cfg
&& basic_block_info
)
6386 /* If the CFG has been built, emit a CFG-based dump. */
6387 check_bb_profile (ENTRY_BLOCK_PTR
, file
);
6388 if (!ignore_topmost_bind
)
6389 fprintf (file
, "{\n");
6391 if (any_var
&& n_basic_blocks
)
6392 fprintf (file
, "\n");
6395 gimple_dump_bb (bb
, file
, 2, flags
);
6397 fprintf (file
, "}\n");
6398 check_bb_profile (EXIT_BLOCK_PTR
, file
);
6400 else if (DECL_SAVED_TREE (fn
) == NULL
)
6402 /* The function is now in GIMPLE form but the CFG has not been
6403 built yet. Emit the single sequence of GIMPLE statements
6404 that make up its body. */
6405 gimple_seq body
= gimple_body (fn
);
6407 if (gimple_seq_first_stmt (body
)
6408 && gimple_seq_first_stmt (body
) == gimple_seq_last_stmt (body
)
6409 && gimple_code (gimple_seq_first_stmt (body
)) == GIMPLE_BIND
)
6410 print_gimple_seq (file
, body
, 0, flags
);
6413 if (!ignore_topmost_bind
)
6414 fprintf (file
, "{\n");
6417 fprintf (file
, "\n");
6419 print_gimple_seq (file
, body
, 2, flags
);
6420 fprintf (file
, "}\n");
6427 /* Make a tree based dump. */
6428 chain
= DECL_SAVED_TREE (fn
);
6430 if (chain
&& TREE_CODE (chain
) == BIND_EXPR
)
6432 if (ignore_topmost_bind
)
6434 chain
= BIND_EXPR_BODY (chain
);
6442 if (!ignore_topmost_bind
)
6443 fprintf (file
, "{\n");
6448 fprintf (file
, "\n");
6450 print_generic_stmt_indented (file
, chain
, flags
, indent
);
6451 if (ignore_topmost_bind
)
6452 fprintf (file
, "}\n");
6455 if (flags
& TDF_ENUMERATE_LOCALS
)
6456 dump_enumerated_decls (file
, flags
);
6457 fprintf (file
, "\n\n");
6464 /* Dump FUNCTION_DECL FN to stderr using FLAGS (see TDF_* in tree.h) */
6467 debug_function (tree fn
, int flags
)
6469 dump_function_to_file (fn
, stderr
, flags
);
6473 /* Print on FILE the indexes for the predecessors of basic_block BB. */
6476 print_pred_bbs (FILE *file
, basic_block bb
)
6481 FOR_EACH_EDGE (e
, ei
, bb
->preds
)
6482 fprintf (file
, "bb_%d ", e
->src
->index
);
6486 /* Print on FILE the indexes for the successors of basic_block BB. */
6489 print_succ_bbs (FILE *file
, basic_block bb
)
6494 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
6495 fprintf (file
, "bb_%d ", e
->dest
->index
);
6498 /* Print to FILE the basic block BB following the VERBOSITY level. */
6501 print_loops_bb (FILE *file
, basic_block bb
, int indent
, int verbosity
)
6503 char *s_indent
= (char *) alloca ((size_t) indent
+ 1);
6504 memset ((void *) s_indent
, ' ', (size_t) indent
);
6505 s_indent
[indent
] = '\0';
6507 /* Print basic_block's header. */
6510 fprintf (file
, "%s bb_%d (preds = {", s_indent
, bb
->index
);
6511 print_pred_bbs (file
, bb
);
6512 fprintf (file
, "}, succs = {");
6513 print_succ_bbs (file
, bb
);
6514 fprintf (file
, "})\n");
6517 /* Print basic_block's body. */
6520 fprintf (file
, "%s {\n", s_indent
);
6521 gimple_dump_bb (bb
, file
, indent
+ 4, TDF_VOPS
|TDF_MEMSYMS
);
6522 fprintf (file
, "%s }\n", s_indent
);
6526 static void print_loop_and_siblings (FILE *, struct loop
*, int, int);
6528 /* Pretty print LOOP on FILE, indented INDENT spaces. Following
6529 VERBOSITY level this outputs the contents of the loop, or just its
6533 print_loop (FILE *file
, struct loop
*loop
, int indent
, int verbosity
)
6541 s_indent
= (char *) alloca ((size_t) indent
+ 1);
6542 memset ((void *) s_indent
, ' ', (size_t) indent
);
6543 s_indent
[indent
] = '\0';
6545 /* Print loop's header. */
6546 fprintf (file
, "%sloop_%d (header = %d, latch = %d", s_indent
,
6547 loop
->num
, loop
->header
->index
, loop
->latch
->index
);
6548 fprintf (file
, ", niter = ");
6549 print_generic_expr (file
, loop
->nb_iterations
, 0);
6551 if (loop
->any_upper_bound
)
6553 fprintf (file
, ", upper_bound = ");
6554 dump_double_int (file
, loop
->nb_iterations_upper_bound
, true);
6557 if (loop
->any_estimate
)
6559 fprintf (file
, ", estimate = ");
6560 dump_double_int (file
, loop
->nb_iterations_estimate
, true);
6562 fprintf (file
, ")\n");
6564 /* Print loop's body. */
6567 fprintf (file
, "%s{\n", s_indent
);
6569 if (bb
->loop_father
== loop
)
6570 print_loops_bb (file
, bb
, indent
, verbosity
);
6572 print_loop_and_siblings (file
, loop
->inner
, indent
+ 2, verbosity
);
6573 fprintf (file
, "%s}\n", s_indent
);
6577 /* Print the LOOP and its sibling loops on FILE, indented INDENT
6578 spaces. Following VERBOSITY level this outputs the contents of the
6579 loop, or just its structure. */
6582 print_loop_and_siblings (FILE *file
, struct loop
*loop
, int indent
, int verbosity
)
6587 print_loop (file
, loop
, indent
, verbosity
);
6588 print_loop_and_siblings (file
, loop
->next
, indent
, verbosity
);
6591 /* Follow a CFG edge from the entry point of the program, and on entry
6592 of a loop, pretty print the loop structure on FILE. */
6595 print_loops (FILE *file
, int verbosity
)
6599 bb
= ENTRY_BLOCK_PTR
;
6600 if (bb
&& bb
->loop_father
)
6601 print_loop_and_siblings (file
, bb
->loop_father
, 0, verbosity
);
6605 /* Debugging loops structure at tree level, at some VERBOSITY level. */
6608 debug_loops (int verbosity
)
6610 print_loops (stderr
, verbosity
);
6613 /* Print on stderr the code of LOOP, at some VERBOSITY level. */
6616 debug_loop (struct loop
*loop
, int verbosity
)
6618 print_loop (stderr
, loop
, 0, verbosity
);
6621 /* Print on stderr the code of loop number NUM, at some VERBOSITY
6625 debug_loop_num (unsigned num
, int verbosity
)
6627 debug_loop (get_loop (num
), verbosity
);
6630 /* Return true if BB ends with a call, possibly followed by some
6631 instructions that must stay with the call. Return false,
6635 gimple_block_ends_with_call_p (basic_block bb
)
6637 gimple_stmt_iterator gsi
= gsi_last_nondebug_bb (bb
);
6638 return !gsi_end_p (gsi
) && is_gimple_call (gsi_stmt (gsi
));
6642 /* Return true if BB ends with a conditional branch. Return false,
6646 gimple_block_ends_with_condjump_p (const_basic_block bb
)
6648 gimple stmt
= last_stmt (CONST_CAST_BB (bb
));
6649 return (stmt
&& gimple_code (stmt
) == GIMPLE_COND
);
6653 /* Return true if we need to add fake edge to exit at statement T.
6654 Helper function for gimple_flow_call_edges_add. */
6657 need_fake_edge_p (gimple t
)
6659 tree fndecl
= NULL_TREE
;
6662 /* NORETURN and LONGJMP calls already have an edge to exit.
6663 CONST and PURE calls do not need one.
6664 We don't currently check for CONST and PURE here, although
6665 it would be a good idea, because those attributes are
6666 figured out from the RTL in mark_constant_function, and
6667 the counter incrementation code from -fprofile-arcs
6668 leads to different results from -fbranch-probabilities. */
6669 if (is_gimple_call (t
))
6671 fndecl
= gimple_call_fndecl (t
);
6672 call_flags
= gimple_call_flags (t
);
6675 if (is_gimple_call (t
)
6677 && DECL_BUILT_IN (fndecl
)
6678 && (call_flags
& ECF_NOTHROW
)
6679 && !(call_flags
& ECF_RETURNS_TWICE
)
6680 /* fork() doesn't really return twice, but the effect of
6681 wrapping it in __gcov_fork() which calls __gcov_flush()
6682 and clears the counters before forking has the same
6683 effect as returning twice. Force a fake edge. */
6684 && !(DECL_BUILT_IN_CLASS (fndecl
) == BUILT_IN_NORMAL
6685 && DECL_FUNCTION_CODE (fndecl
) == BUILT_IN_FORK
))
6688 if (is_gimple_call (t
)
6689 && !(call_flags
& ECF_NORETURN
))
6692 if (gimple_code (t
) == GIMPLE_ASM
6693 && (gimple_asm_volatile_p (t
) || gimple_asm_input_p (t
)))
6700 /* Add fake edges to the function exit for any non constant and non
6701 noreturn calls, volatile inline assembly in the bitmap of blocks
6702 specified by BLOCKS or to the whole CFG if BLOCKS is zero. Return
6703 the number of blocks that were split.
6705 The goal is to expose cases in which entering a basic block does
6706 not imply that all subsequent instructions must be executed. */
6709 gimple_flow_call_edges_add (sbitmap blocks
)
6712 int blocks_split
= 0;
6713 int last_bb
= last_basic_block
;
6714 bool check_last_block
= false;
6716 if (n_basic_blocks
== NUM_FIXED_BLOCKS
)
6720 check_last_block
= true;
6722 check_last_block
= TEST_BIT (blocks
, EXIT_BLOCK_PTR
->prev_bb
->index
);
6724 /* In the last basic block, before epilogue generation, there will be
6725 a fallthru edge to EXIT. Special care is required if the last insn
6726 of the last basic block is a call because make_edge folds duplicate
6727 edges, which would result in the fallthru edge also being marked
6728 fake, which would result in the fallthru edge being removed by
6729 remove_fake_edges, which would result in an invalid CFG.
6731 Moreover, we can't elide the outgoing fake edge, since the block
6732 profiler needs to take this into account in order to solve the minimal
6733 spanning tree in the case that the call doesn't return.
6735 Handle this by adding a dummy instruction in a new last basic block. */
6736 if (check_last_block
)
6738 basic_block bb
= EXIT_BLOCK_PTR
->prev_bb
;
6739 gimple_stmt_iterator gsi
= gsi_last_nondebug_bb (bb
);
6742 if (!gsi_end_p (gsi
))
6745 if (t
&& need_fake_edge_p (t
))
6749 e
= find_edge (bb
, EXIT_BLOCK_PTR
);
6752 gsi_insert_on_edge (e
, gimple_build_nop ());
6753 gsi_commit_edge_inserts ();
6758 /* Now add fake edges to the function exit for any non constant
6759 calls since there is no way that we can determine if they will
6761 for (i
= 0; i
< last_bb
; i
++)
6763 basic_block bb
= BASIC_BLOCK (i
);
6764 gimple_stmt_iterator gsi
;
6765 gimple stmt
, last_stmt
;
6770 if (blocks
&& !TEST_BIT (blocks
, i
))
6773 gsi
= gsi_last_nondebug_bb (bb
);
6774 if (!gsi_end_p (gsi
))
6776 last_stmt
= gsi_stmt (gsi
);
6779 stmt
= gsi_stmt (gsi
);
6780 if (need_fake_edge_p (stmt
))
6784 /* The handling above of the final block before the
6785 epilogue should be enough to verify that there is
6786 no edge to the exit block in CFG already.
6787 Calling make_edge in such case would cause us to
6788 mark that edge as fake and remove it later. */
6789 #ifdef ENABLE_CHECKING
6790 if (stmt
== last_stmt
)
6792 e
= find_edge (bb
, EXIT_BLOCK_PTR
);
6793 gcc_assert (e
== NULL
);
6797 /* Note that the following may create a new basic block
6798 and renumber the existing basic blocks. */
6799 if (stmt
!= last_stmt
)
6801 e
= split_block (bb
, stmt
);
6805 make_edge (bb
, EXIT_BLOCK_PTR
, EDGE_FAKE
);
6809 while (!gsi_end_p (gsi
));
6814 verify_flow_info ();
6816 return blocks_split
;
6819 /* Removes edge E and all the blocks dominated by it, and updates dominance
6820 information. The IL in E->src needs to be updated separately.
6821 If dominance info is not available, only the edge E is removed.*/
6824 remove_edge_and_dominated_blocks (edge e
)
6826 VEC (basic_block
, heap
) *bbs_to_remove
= NULL
;
6827 VEC (basic_block
, heap
) *bbs_to_fix_dom
= NULL
;
6831 bool none_removed
= false;
6833 basic_block bb
, dbb
;
6836 if (!dom_info_available_p (CDI_DOMINATORS
))
6842 /* No updating is needed for edges to exit. */
6843 if (e
->dest
== EXIT_BLOCK_PTR
)
6845 if (cfgcleanup_altered_bbs
)
6846 bitmap_set_bit (cfgcleanup_altered_bbs
, e
->src
->index
);
6851 /* First, we find the basic blocks to remove. If E->dest has a predecessor
6852 that is not dominated by E->dest, then this set is empty. Otherwise,
6853 all the basic blocks dominated by E->dest are removed.
6855 Also, to DF_IDOM we store the immediate dominators of the blocks in
6856 the dominance frontier of E (i.e., of the successors of the
6857 removed blocks, if there are any, and of E->dest otherwise). */
6858 FOR_EACH_EDGE (f
, ei
, e
->dest
->preds
)
6863 if (!dominated_by_p (CDI_DOMINATORS
, f
->src
, e
->dest
))
6865 none_removed
= true;
6870 df
= BITMAP_ALLOC (NULL
);
6871 df_idom
= BITMAP_ALLOC (NULL
);
6874 bitmap_set_bit (df_idom
,
6875 get_immediate_dominator (CDI_DOMINATORS
, e
->dest
)->index
);
6878 bbs_to_remove
= get_all_dominated_blocks (CDI_DOMINATORS
, e
->dest
);
6879 FOR_EACH_VEC_ELT (basic_block
, bbs_to_remove
, i
, bb
)
6881 FOR_EACH_EDGE (f
, ei
, bb
->succs
)
6883 if (f
->dest
!= EXIT_BLOCK_PTR
)
6884 bitmap_set_bit (df
, f
->dest
->index
);
6887 FOR_EACH_VEC_ELT (basic_block
, bbs_to_remove
, i
, bb
)
6888 bitmap_clear_bit (df
, bb
->index
);
6890 EXECUTE_IF_SET_IN_BITMAP (df
, 0, i
, bi
)
6892 bb
= BASIC_BLOCK (i
);
6893 bitmap_set_bit (df_idom
,
6894 get_immediate_dominator (CDI_DOMINATORS
, bb
)->index
);
6898 if (cfgcleanup_altered_bbs
)
6900 /* Record the set of the altered basic blocks. */
6901 bitmap_set_bit (cfgcleanup_altered_bbs
, e
->src
->index
);
6902 bitmap_ior_into (cfgcleanup_altered_bbs
, df
);
6905 /* Remove E and the cancelled blocks. */
6910 /* Walk backwards so as to get a chance to substitute all
6911 released DEFs into debug stmts. See
6912 eliminate_unnecessary_stmts() in tree-ssa-dce.c for more
6914 for (i
= VEC_length (basic_block
, bbs_to_remove
); i
-- > 0; )
6915 delete_basic_block (VEC_index (basic_block
, bbs_to_remove
, i
));
6918 /* Update the dominance information. The immediate dominator may change only
6919 for blocks whose immediate dominator belongs to DF_IDOM:
6921 Suppose that idom(X) = Y before removal of E and idom(X) != Y after the
6922 removal. Let Z the arbitrary block such that idom(Z) = Y and
6923 Z dominates X after the removal. Before removal, there exists a path P
6924 from Y to X that avoids Z. Let F be the last edge on P that is
6925 removed, and let W = F->dest. Before removal, idom(W) = Y (since Y
6926 dominates W, and because of P, Z does not dominate W), and W belongs to
6927 the dominance frontier of E. Therefore, Y belongs to DF_IDOM. */
6928 EXECUTE_IF_SET_IN_BITMAP (df_idom
, 0, i
, bi
)
6930 bb
= BASIC_BLOCK (i
);
6931 for (dbb
= first_dom_son (CDI_DOMINATORS
, bb
);
6933 dbb
= next_dom_son (CDI_DOMINATORS
, dbb
))
6934 VEC_safe_push (basic_block
, heap
, bbs_to_fix_dom
, dbb
);
6937 iterate_fix_dominators (CDI_DOMINATORS
, bbs_to_fix_dom
, true);
6940 BITMAP_FREE (df_idom
);
6941 VEC_free (basic_block
, heap
, bbs_to_remove
);
6942 VEC_free (basic_block
, heap
, bbs_to_fix_dom
);
6945 /* Purge dead EH edges from basic block BB. */
6948 gimple_purge_dead_eh_edges (basic_block bb
)
6950 bool changed
= false;
6953 gimple stmt
= last_stmt (bb
);
6955 if (stmt
&& stmt_can_throw_internal (stmt
))
6958 for (ei
= ei_start (bb
->succs
); (e
= ei_safe_edge (ei
)); )
6960 if (e
->flags
& EDGE_EH
)
6962 remove_edge_and_dominated_blocks (e
);
6972 /* Purge dead EH edges from basic block listed in BLOCKS. */
6975 gimple_purge_all_dead_eh_edges (const_bitmap blocks
)
6977 bool changed
= false;
6981 EXECUTE_IF_SET_IN_BITMAP (blocks
, 0, i
, bi
)
6983 basic_block bb
= BASIC_BLOCK (i
);
6985 /* Earlier gimple_purge_dead_eh_edges could have removed
6986 this basic block already. */
6987 gcc_assert (bb
|| changed
);
6989 changed
|= gimple_purge_dead_eh_edges (bb
);
6995 /* Purge dead abnormal call edges from basic block BB. */
6998 gimple_purge_dead_abnormal_call_edges (basic_block bb
)
7000 bool changed
= false;
7003 gimple stmt
= last_stmt (bb
);
7005 if (!cfun
->has_nonlocal_label
)
7008 if (stmt
&& stmt_can_make_abnormal_goto (stmt
))
7011 for (ei
= ei_start (bb
->succs
); (e
= ei_safe_edge (ei
)); )
7013 if (e
->flags
& EDGE_ABNORMAL
)
7015 remove_edge_and_dominated_blocks (e
);
7025 /* Purge dead abnormal call edges from basic block listed in BLOCKS. */
7028 gimple_purge_all_dead_abnormal_call_edges (const_bitmap blocks
)
7030 bool changed
= false;
7034 EXECUTE_IF_SET_IN_BITMAP (blocks
, 0, i
, bi
)
7036 basic_block bb
= BASIC_BLOCK (i
);
7038 /* Earlier gimple_purge_dead_abnormal_call_edges could have removed
7039 this basic block already. */
7040 gcc_assert (bb
|| changed
);
7042 changed
|= gimple_purge_dead_abnormal_call_edges (bb
);
7048 /* This function is called whenever a new edge is created or
7052 gimple_execute_on_growing_pred (edge e
)
7054 basic_block bb
= e
->dest
;
7056 if (!gimple_seq_empty_p (phi_nodes (bb
)))
7057 reserve_phi_args_for_new_edge (bb
);
7060 /* This function is called immediately before edge E is removed from
7061 the edge vector E->dest->preds. */
7064 gimple_execute_on_shrinking_pred (edge e
)
7066 if (!gimple_seq_empty_p (phi_nodes (e
->dest
)))
7067 remove_phi_args (e
);
7070 /*---------------------------------------------------------------------------
7071 Helper functions for Loop versioning
7072 ---------------------------------------------------------------------------*/
7074 /* Adjust phi nodes for 'first' basic block. 'second' basic block is a copy
7075 of 'first'. Both of them are dominated by 'new_head' basic block. When
7076 'new_head' was created by 'second's incoming edge it received phi arguments
7077 on the edge by split_edge(). Later, additional edge 'e' was created to
7078 connect 'new_head' and 'first'. Now this routine adds phi args on this
7079 additional edge 'e' that new_head to second edge received as part of edge
7083 gimple_lv_adjust_loop_header_phi (basic_block first
, basic_block second
,
7084 basic_block new_head
, edge e
)
7087 gimple_stmt_iterator psi1
, psi2
;
7089 edge e2
= find_edge (new_head
, second
);
7091 /* Because NEW_HEAD has been created by splitting SECOND's incoming
7092 edge, we should always have an edge from NEW_HEAD to SECOND. */
7093 gcc_assert (e2
!= NULL
);
7095 /* Browse all 'second' basic block phi nodes and add phi args to
7096 edge 'e' for 'first' head. PHI args are always in correct order. */
7098 for (psi2
= gsi_start_phis (second
),
7099 psi1
= gsi_start_phis (first
);
7100 !gsi_end_p (psi2
) && !gsi_end_p (psi1
);
7101 gsi_next (&psi2
), gsi_next (&psi1
))
7103 phi1
= gsi_stmt (psi1
);
7104 phi2
= gsi_stmt (psi2
);
7105 def
= PHI_ARG_DEF (phi2
, e2
->dest_idx
);
7106 add_phi_arg (phi1
, def
, e
, gimple_phi_arg_location_from_edge (phi2
, e2
));
7111 /* Adds a if else statement to COND_BB with condition COND_EXPR.
7112 SECOND_HEAD is the destination of the THEN and FIRST_HEAD is
7113 the destination of the ELSE part. */
7116 gimple_lv_add_condition_to_bb (basic_block first_head ATTRIBUTE_UNUSED
,
7117 basic_block second_head ATTRIBUTE_UNUSED
,
7118 basic_block cond_bb
, void *cond_e
)
7120 gimple_stmt_iterator gsi
;
7121 gimple new_cond_expr
;
7122 tree cond_expr
= (tree
) cond_e
;
7125 /* Build new conditional expr */
7126 new_cond_expr
= gimple_build_cond_from_tree (cond_expr
,
7127 NULL_TREE
, NULL_TREE
);
7129 /* Add new cond in cond_bb. */
7130 gsi
= gsi_last_bb (cond_bb
);
7131 gsi_insert_after (&gsi
, new_cond_expr
, GSI_NEW_STMT
);
7133 /* Adjust edges appropriately to connect new head with first head
7134 as well as second head. */
7135 e0
= single_succ_edge (cond_bb
);
7136 e0
->flags
&= ~EDGE_FALLTHRU
;
7137 e0
->flags
|= EDGE_FALSE_VALUE
;
7140 struct cfg_hooks gimple_cfg_hooks
= {
7142 gimple_verify_flow_info
,
7143 gimple_dump_bb
, /* dump_bb */
7144 create_bb
, /* create_basic_block */
7145 gimple_redirect_edge_and_branch
, /* redirect_edge_and_branch */
7146 gimple_redirect_edge_and_branch_force
, /* redirect_edge_and_branch_force */
7147 gimple_can_remove_branch_p
, /* can_remove_branch_p */
7148 remove_bb
, /* delete_basic_block */
7149 gimple_split_block
, /* split_block */
7150 gimple_move_block_after
, /* move_block_after */
7151 gimple_can_merge_blocks_p
, /* can_merge_blocks_p */
7152 gimple_merge_blocks
, /* merge_blocks */
7153 gimple_predict_edge
, /* predict_edge */
7154 gimple_predicted_by_p
, /* predicted_by_p */
7155 gimple_can_duplicate_bb_p
, /* can_duplicate_block_p */
7156 gimple_duplicate_bb
, /* duplicate_block */
7157 gimple_split_edge
, /* split_edge */
7158 gimple_make_forwarder_block
, /* make_forward_block */
7159 NULL
, /* tidy_fallthru_edge */
7160 NULL
, /* force_nonfallthru */
7161 gimple_block_ends_with_call_p
,/* block_ends_with_call_p */
7162 gimple_block_ends_with_condjump_p
, /* block_ends_with_condjump_p */
7163 gimple_flow_call_edges_add
, /* flow_call_edges_add */
7164 gimple_execute_on_growing_pred
, /* execute_on_growing_pred */
7165 gimple_execute_on_shrinking_pred
, /* execute_on_shrinking_pred */
7166 gimple_duplicate_loop_to_header_edge
, /* duplicate loop for trees */
7167 gimple_lv_add_condition_to_bb
, /* lv_add_condition_to_bb */
7168 gimple_lv_adjust_loop_header_phi
, /* lv_adjust_loop_header_phi*/
7169 extract_true_false_edges_from_block
, /* extract_cond_bb_edges */
7170 flush_pending_stmts
/* flush_pending_stmts */
7174 /* Split all critical edges. */
7177 split_critical_edges (void)
7183 /* split_edge can redirect edges out of SWITCH_EXPRs, which can get
7184 expensive. So we want to enable recording of edge to CASE_LABEL_EXPR
7185 mappings around the calls to split_edge. */
7186 start_recording_case_labels ();
7189 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
7191 if (EDGE_CRITICAL_P (e
) && !(e
->flags
& EDGE_ABNORMAL
))
7193 /* PRE inserts statements to edges and expects that
7194 since split_critical_edges was done beforehand, committing edge
7195 insertions will not split more edges. In addition to critical
7196 edges we must split edges that have multiple successors and
7197 end by control flow statements, such as RESX.
7198 Go ahead and split them too. This matches the logic in
7199 gimple_find_edge_insert_loc. */
7200 else if ((!single_pred_p (e
->dest
)
7201 || !gimple_seq_empty_p (phi_nodes (e
->dest
))
7202 || e
->dest
== EXIT_BLOCK_PTR
)
7203 && e
->src
!= ENTRY_BLOCK_PTR
7204 && !(e
->flags
& EDGE_ABNORMAL
))
7206 gimple_stmt_iterator gsi
;
7208 gsi
= gsi_last_bb (e
->src
);
7209 if (!gsi_end_p (gsi
)
7210 && stmt_ends_bb_p (gsi_stmt (gsi
))
7211 && (gimple_code (gsi_stmt (gsi
)) != GIMPLE_RETURN
7212 && !gimple_call_builtin_p (gsi_stmt (gsi
),
7218 end_recording_case_labels ();
7222 struct gimple_opt_pass pass_split_crit_edges
=
7226 "crited", /* name */
7228 split_critical_edges
, /* execute */
7231 0, /* static_pass_number */
7232 TV_TREE_SPLIT_EDGES
, /* tv_id */
7233 PROP_cfg
, /* properties required */
7234 PROP_no_crit_edges
, /* properties_provided */
7235 0, /* properties_destroyed */
7236 0, /* todo_flags_start */
7237 TODO_dump_func
| TODO_verify_flow
/* todo_flags_finish */
7242 /* Build a ternary operation and gimplify it. Emit code before GSI.
7243 Return the gimple_val holding the result. */
7246 gimplify_build3 (gimple_stmt_iterator
*gsi
, enum tree_code code
,
7247 tree type
, tree a
, tree b
, tree c
)
7250 location_t loc
= gimple_location (gsi_stmt (*gsi
));
7252 ret
= fold_build3_loc (loc
, code
, type
, a
, b
, c
);
7255 return force_gimple_operand_gsi (gsi
, ret
, true, NULL
, true,
7259 /* Build a binary operation and gimplify it. Emit code before GSI.
7260 Return the gimple_val holding the result. */
7263 gimplify_build2 (gimple_stmt_iterator
*gsi
, enum tree_code code
,
7264 tree type
, tree a
, tree b
)
7268 ret
= fold_build2_loc (gimple_location (gsi_stmt (*gsi
)), code
, type
, a
, b
);
7271 return force_gimple_operand_gsi (gsi
, ret
, true, NULL
, true,
7275 /* Build a unary operation and gimplify it. Emit code before GSI.
7276 Return the gimple_val holding the result. */
7279 gimplify_build1 (gimple_stmt_iterator
*gsi
, enum tree_code code
, tree type
,
7284 ret
= fold_build1_loc (gimple_location (gsi_stmt (*gsi
)), code
, type
, a
);
7287 return force_gimple_operand_gsi (gsi
, ret
, true, NULL
, true,
7293 /* Emit return warnings. */
7296 execute_warn_function_return (void)
7298 source_location location
;
7303 /* If we have a path to EXIT, then we do return. */
7304 if (TREE_THIS_VOLATILE (cfun
->decl
)
7305 && EDGE_COUNT (EXIT_BLOCK_PTR
->preds
) > 0)
7307 location
= UNKNOWN_LOCATION
;
7308 FOR_EACH_EDGE (e
, ei
, EXIT_BLOCK_PTR
->preds
)
7310 last
= last_stmt (e
->src
);
7311 if ((gimple_code (last
) == GIMPLE_RETURN
7312 || gimple_call_builtin_p (last
, BUILT_IN_RETURN
))
7313 && (location
= gimple_location (last
)) != UNKNOWN_LOCATION
)
7316 if (location
== UNKNOWN_LOCATION
)
7317 location
= cfun
->function_end_locus
;
7318 warning_at (location
, 0, "%<noreturn%> function does return");
7321 /* If we see "return;" in some basic block, then we do reach the end
7322 without returning a value. */
7323 else if (warn_return_type
7324 && !TREE_NO_WARNING (cfun
->decl
)
7325 && EDGE_COUNT (EXIT_BLOCK_PTR
->preds
) > 0
7326 && !VOID_TYPE_P (TREE_TYPE (TREE_TYPE (cfun
->decl
))))
7328 FOR_EACH_EDGE (e
, ei
, EXIT_BLOCK_PTR
->preds
)
7330 gimple last
= last_stmt (e
->src
);
7331 if (gimple_code (last
) == GIMPLE_RETURN
7332 && gimple_return_retval (last
) == NULL
7333 && !gimple_no_warning_p (last
))
7335 location
= gimple_location (last
);
7336 if (location
== UNKNOWN_LOCATION
)
7337 location
= cfun
->function_end_locus
;
7338 warning_at (location
, OPT_Wreturn_type
, "control reaches end of non-void function");
7339 TREE_NO_WARNING (cfun
->decl
) = 1;
7348 /* Given a basic block B which ends with a conditional and has
7349 precisely two successors, determine which of the edges is taken if
7350 the conditional is true and which is taken if the conditional is
7351 false. Set TRUE_EDGE and FALSE_EDGE appropriately. */
7354 extract_true_false_edges_from_block (basic_block b
,
7358 edge e
= EDGE_SUCC (b
, 0);
7360 if (e
->flags
& EDGE_TRUE_VALUE
)
7363 *false_edge
= EDGE_SUCC (b
, 1);
7368 *true_edge
= EDGE_SUCC (b
, 1);
7372 struct gimple_opt_pass pass_warn_function_return
=
7376 "*warn_function_return", /* name */
7378 execute_warn_function_return
, /* execute */
7381 0, /* static_pass_number */
7382 TV_NONE
, /* tv_id */
7383 PROP_cfg
, /* properties_required */
7384 0, /* properties_provided */
7385 0, /* properties_destroyed */
7386 0, /* todo_flags_start */
7387 0 /* todo_flags_finish */
7391 /* Emit noreturn warnings. */
7394 execute_warn_function_noreturn (void)
7396 if (!TREE_THIS_VOLATILE (current_function_decl
)
7397 && EDGE_COUNT (EXIT_BLOCK_PTR
->preds
) == 0)
7398 warn_function_noreturn (current_function_decl
);
7403 gate_warn_function_noreturn (void)
7405 return warn_suggest_attribute_noreturn
;
7408 struct gimple_opt_pass pass_warn_function_noreturn
=
7412 "*warn_function_noreturn", /* name */
7413 gate_warn_function_noreturn
, /* gate */
7414 execute_warn_function_noreturn
, /* execute */
7417 0, /* static_pass_number */
7418 TV_NONE
, /* tv_id */
7419 PROP_cfg
, /* properties_required */
7420 0, /* properties_provided */
7421 0, /* properties_destroyed */
7422 0, /* todo_flags_start */
7423 0 /* todo_flags_finish */
7428 /* Walk a gimplified function and warn for functions whose return value is
7429 ignored and attribute((warn_unused_result)) is set. This is done before
7430 inlining, so we don't have to worry about that. */
7433 do_warn_unused_result (gimple_seq seq
)
7436 gimple_stmt_iterator i
;
7438 for (i
= gsi_start (seq
); !gsi_end_p (i
); gsi_next (&i
))
7440 gimple g
= gsi_stmt (i
);
7442 switch (gimple_code (g
))
7445 do_warn_unused_result (gimple_bind_body (g
));
7448 do_warn_unused_result (gimple_try_eval (g
));
7449 do_warn_unused_result (gimple_try_cleanup (g
));
7452 do_warn_unused_result (gimple_catch_handler (g
));
7454 case GIMPLE_EH_FILTER
:
7455 do_warn_unused_result (gimple_eh_filter_failure (g
));
7459 if (gimple_call_lhs (g
))
7461 if (gimple_call_internal_p (g
))
7464 /* This is a naked call, as opposed to a GIMPLE_CALL with an
7465 LHS. All calls whose value is ignored should be
7466 represented like this. Look for the attribute. */
7467 fdecl
= gimple_call_fndecl (g
);
7468 ftype
= gimple_call_fntype (g
);
7470 if (lookup_attribute ("warn_unused_result", TYPE_ATTRIBUTES (ftype
)))
7472 location_t loc
= gimple_location (g
);
7475 warning_at (loc
, OPT_Wunused_result
,
7476 "ignoring return value of %qD, "
7477 "declared with attribute warn_unused_result",
7480 warning_at (loc
, OPT_Wunused_result
,
7481 "ignoring return value of function "
7482 "declared with attribute warn_unused_result");
7487 /* Not a container, not a call, or a call whose value is used. */
7494 run_warn_unused_result (void)
7496 do_warn_unused_result (gimple_body (current_function_decl
));
7501 gate_warn_unused_result (void)
7503 return flag_warn_unused_result
;
7506 struct gimple_opt_pass pass_warn_unused_result
=
7510 "*warn_unused_result", /* name */
7511 gate_warn_unused_result
, /* gate */
7512 run_warn_unused_result
, /* execute */
7515 0, /* static_pass_number */
7516 TV_NONE
, /* tv_id */
7517 PROP_gimple_any
, /* properties_required */
7518 0, /* properties_provided */
7519 0, /* properties_destroyed */
7520 0, /* todo_flags_start */
7521 0, /* todo_flags_finish */