Merged r158229 through r158464 into branch.
[official-gcc.git] / gcc / config / s390 / s390.h
blob5acdd5860581b02df2535e5c48437ee8bfcde350
1 /* Definitions of target machine for GNU compiler, for IBM S/390
2 Copyright (C) 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006,
3 2007, 2008, 2009 Free Software Foundation, Inc.
4 Contributed by Hartmut Penner (hpenner@de.ibm.com) and
5 Ulrich Weigand (uweigand@de.ibm.com).
6 Andreas Krebbel (Andreas.Krebbel@de.ibm.com)
8 This file is part of GCC.
10 GCC is free software; you can redistribute it and/or modify it under
11 the terms of the GNU General Public License as published by the Free
12 Software Foundation; either version 3, or (at your option) any later
13 version.
15 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
16 WARRANTY; without even the implied warranty of MERCHANTABILITY or
17 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
18 for more details.
20 You should have received a copy of the GNU General Public License
21 along with GCC; see the file COPYING3. If not see
22 <http://www.gnu.org/licenses/>. */
24 #ifndef _S390_H
25 #define _S390_H
27 /* Which processor to generate code or schedule for. The cpu attribute
28 defines a list that mirrors this list, so changes to s390.md must be
29 made at the same time. */
31 enum processor_type
33 PROCESSOR_9672_G5,
34 PROCESSOR_9672_G6,
35 PROCESSOR_2064_Z900,
36 PROCESSOR_2084_Z990,
37 PROCESSOR_2094_Z9_109,
38 PROCESSOR_2097_Z10,
39 PROCESSOR_max
42 /* Optional architectural facilities supported by the processor. */
44 enum processor_flags
46 PF_IEEE_FLOAT = 1,
47 PF_ZARCH = 2,
48 PF_LONG_DISPLACEMENT = 4,
49 PF_EXTIMM = 8,
50 PF_DFP = 16,
51 PF_Z10 = 32
54 extern enum processor_type s390_tune;
55 extern int s390_tune_flags;
57 /* This is necessary to avoid a warning about comparing different enum
58 types. */
59 #define s390_tune_attr ((enum attr_cpu)s390_tune)
61 extern enum processor_type s390_arch;
62 extern int s390_arch_flags;
64 /* These flags indicate that the generated code should run on a cpu
65 providing the respective hardware facility regardless of the
66 current cpu mode (ESA or z/Architecture). */
68 #define TARGET_CPU_IEEE_FLOAT \
69 (s390_arch_flags & PF_IEEE_FLOAT)
70 #define TARGET_CPU_ZARCH \
71 (s390_arch_flags & PF_ZARCH)
72 #define TARGET_CPU_LONG_DISPLACEMENT \
73 (s390_arch_flags & PF_LONG_DISPLACEMENT)
74 #define TARGET_CPU_EXTIMM \
75 (s390_arch_flags & PF_EXTIMM)
76 #define TARGET_CPU_DFP \
77 (s390_arch_flags & PF_DFP)
78 #define TARGET_CPU_Z10 \
79 (s390_arch_flags & PF_Z10)
81 /* These flags indicate that the generated code should run on a cpu
82 providing the respective hardware facility when run in
83 z/Architecture mode. */
85 #define TARGET_LONG_DISPLACEMENT \
86 (TARGET_ZARCH && TARGET_CPU_LONG_DISPLACEMENT)
87 #define TARGET_EXTIMM \
88 (TARGET_ZARCH && TARGET_CPU_EXTIMM)
89 #define TARGET_DFP \
90 (TARGET_ZARCH && TARGET_CPU_DFP && TARGET_HARD_FLOAT)
91 #define TARGET_Z10 \
92 (TARGET_ZARCH && TARGET_CPU_Z10)
94 /* Run-time target specification. */
96 /* Defaults for option flags defined only on some subtargets. */
97 #ifndef TARGET_TPF_PROFILING
98 #define TARGET_TPF_PROFILING 0
99 #endif
101 /* This will be overridden by OS headers. */
102 #define TARGET_TPF 0
104 /* Target CPU builtins. */
105 #define TARGET_CPU_CPP_BUILTINS() \
106 do \
108 builtin_assert ("cpu=s390"); \
109 builtin_assert ("machine=s390"); \
110 builtin_define ("__s390__"); \
111 if (TARGET_ZARCH) \
112 builtin_define ("__zarch__"); \
113 if (TARGET_64BIT) \
114 builtin_define ("__s390x__"); \
115 if (TARGET_LONG_DOUBLE_128) \
116 builtin_define ("__LONG_DOUBLE_128__"); \
118 while (0)
120 #ifdef DEFAULT_TARGET_64BIT
121 #define TARGET_DEFAULT (MASK_64BIT | MASK_ZARCH | MASK_HARD_DFP)
122 #else
123 #define TARGET_DEFAULT 0
124 #endif
126 /* Support for configure-time defaults. */
127 #define OPTION_DEFAULT_SPECS \
128 { "mode", "%{!mesa:%{!mzarch:-m%(VALUE)}}" }, \
129 { "arch", "%{!march=*:-march=%(VALUE)}" }, \
130 { "tune", "%{!mtune=*:-mtune=%(VALUE)}" }
132 /* Defaulting rules. */
133 #ifdef DEFAULT_TARGET_64BIT
134 #define DRIVER_SELF_SPECS \
135 "%{!m31:%{!m64:-m64}}", \
136 "%{!mesa:%{!mzarch:%{m31:-mesa}%{m64:-mzarch}}}", \
137 "%{!march=*:%{mesa:-march=g5}%{mzarch:-march=z900}}"
138 #else
139 #define DRIVER_SELF_SPECS \
140 "%{!m31:%{!m64:-m31}}", \
141 "%{!mesa:%{!mzarch:%{m31:-mesa}%{m64:-mzarch}}}", \
142 "%{!march=*:%{mesa:-march=g5}%{mzarch:-march=z900}}"
143 #endif
145 /* Target version string. Overridden by the OS header. */
146 #ifdef DEFAULT_TARGET_64BIT
147 #define TARGET_VERSION fprintf (stderr, " (zSeries)");
148 #else
149 #define TARGET_VERSION fprintf (stderr, " (S/390)");
150 #endif
152 /* Hooks to override options. */
153 #define OPTIMIZATION_OPTIONS(LEVEL, SIZE) optimization_options(LEVEL, SIZE)
154 #define OVERRIDE_OPTIONS override_options ()
156 /* Frame pointer is not used for debugging. */
157 #define CAN_DEBUG_WITHOUT_FP
159 /* Constants needed to control the TEST DATA CLASS (TDC) instruction. */
160 #define S390_TDC_POSITIVE_ZERO (1 << 11)
161 #define S390_TDC_NEGATIVE_ZERO (1 << 10)
162 #define S390_TDC_POSITIVE_NORMALIZED_BFP_NUMBER (1 << 9)
163 #define S390_TDC_NEGATIVE_NORMALIZED_BFP_NUMBER (1 << 8)
164 #define S390_TDC_POSITIVE_DENORMALIZED_BFP_NUMBER (1 << 7)
165 #define S390_TDC_NEGATIVE_DENORMALIZED_BFP_NUMBER (1 << 6)
166 #define S390_TDC_POSITIVE_INFINITY (1 << 5)
167 #define S390_TDC_NEGATIVE_INFINITY (1 << 4)
168 #define S390_TDC_POSITIVE_QUIET_NAN (1 << 3)
169 #define S390_TDC_NEGATIVE_QUIET_NAN (1 << 2)
170 #define S390_TDC_POSITIVE_SIGNALING_NAN (1 << 1)
171 #define S390_TDC_NEGATIVE_SIGNALING_NAN (1 << 0)
173 /* The following values are different for DFP. */
174 #define S390_TDC_POSITIVE_DENORMALIZED_DFP_NUMBER (1 << 9)
175 #define S390_TDC_NEGATIVE_DENORMALIZED_DFP_NUMBER (1 << 8)
176 #define S390_TDC_POSITIVE_NORMALIZED_DFP_NUMBER (1 << 7)
177 #define S390_TDC_NEGATIVE_NORMALIZED_DFP_NUMBER (1 << 6)
179 /* For signbit, the BFP-DFP-difference makes no difference. */
180 #define S390_TDC_SIGNBIT_SET (S390_TDC_NEGATIVE_ZERO \
181 | S390_TDC_NEGATIVE_NORMALIZED_BFP_NUMBER \
182 | S390_TDC_NEGATIVE_DENORMALIZED_BFP_NUMBER\
183 | S390_TDC_NEGATIVE_INFINITY \
184 | S390_TDC_NEGATIVE_QUIET_NAN \
185 | S390_TDC_NEGATIVE_SIGNALING_NAN )
187 #define S390_TDC_INFINITY (S390_TDC_POSITIVE_INFINITY \
188 | S390_TDC_NEGATIVE_INFINITY )
190 /* Target machine storage layout. */
192 /* Everything is big-endian. */
193 #define BITS_BIG_ENDIAN 1
194 #define BYTES_BIG_ENDIAN 1
195 #define WORDS_BIG_ENDIAN 1
197 #define STACK_SIZE_MODE (Pmode)
199 #ifndef IN_LIBGCC2
201 /* Width of a word, in units (bytes). */
202 #define UNITS_PER_WORD (TARGET_ZARCH ? 8 : 4)
204 /* Width of a pointer. To be used instead of UNITS_PER_WORD in
205 ABI-relevant contexts. This always matches
206 GET_MODE_SIZE (Pmode). */
207 #define UNITS_PER_LONG (TARGET_64BIT ? 8 : 4)
208 #define MIN_UNITS_PER_WORD 4
209 #define MAX_BITS_PER_WORD 64
210 #else
212 /* In libgcc, UNITS_PER_WORD has ABI-relevant effects, e.g. whether
213 the library should export TImode functions or not. Thus, we have
214 to redefine UNITS_PER_WORD depending on __s390x__ for libgcc. */
215 #ifdef __s390x__
216 #define UNITS_PER_WORD 8
217 #else
218 #define UNITS_PER_WORD 4
219 #endif
220 #endif
222 /* Width of a pointer, in bits. */
223 #define POINTER_SIZE (TARGET_64BIT ? 64 : 32)
225 /* Allocation boundary (in *bits*) for storing arguments in argument list. */
226 #define PARM_BOUNDARY (TARGET_64BIT ? 64 : 32)
228 /* Boundary (in *bits*) on which stack pointer should be aligned. */
229 #define STACK_BOUNDARY 64
231 /* Allocation boundary (in *bits*) for the code of a function. */
232 #define FUNCTION_BOUNDARY 32
234 /* There is no point aligning anything to a rounder boundary than this. */
235 #define BIGGEST_ALIGNMENT 64
237 /* Alignment of field after `int : 0' in a structure. */
238 #define EMPTY_FIELD_BOUNDARY 32
240 /* Alignment on even addresses for LARL instruction. */
241 #define CONSTANT_ALIGNMENT(EXP, ALIGN) (ALIGN) < 16 ? 16 : (ALIGN)
242 #define DATA_ALIGNMENT(TYPE, ALIGN) (ALIGN) < 16 ? 16 : (ALIGN)
244 /* Alignment is not required by the hardware. */
245 #define STRICT_ALIGNMENT 0
247 /* Mode of stack savearea.
248 FUNCTION is VOIDmode because calling convention maintains SP.
249 BLOCK needs Pmode for SP.
250 NONLOCAL needs twice Pmode to maintain both backchain and SP. */
251 #define STACK_SAVEAREA_MODE(LEVEL) \
252 (LEVEL == SAVE_FUNCTION ? VOIDmode \
253 : LEVEL == SAVE_NONLOCAL ? (TARGET_64BIT ? OImode : TImode) : Pmode)
256 /* Type layout. */
258 /* Sizes in bits of the source language data types. */
259 #define SHORT_TYPE_SIZE 16
260 #define INT_TYPE_SIZE 32
261 #define LONG_TYPE_SIZE (TARGET_64BIT ? 64 : 32)
262 #define LONG_LONG_TYPE_SIZE 64
263 #define FLOAT_TYPE_SIZE 32
264 #define DOUBLE_TYPE_SIZE 64
265 #define LONG_DOUBLE_TYPE_SIZE (TARGET_LONG_DOUBLE_128 ? 128 : 64)
267 /* Define this to set long double type size to use in libgcc2.c, which can
268 not depend on target_flags. */
269 #ifdef __LONG_DOUBLE_128__
270 #define LIBGCC2_LONG_DOUBLE_TYPE_SIZE 128
271 #else
272 #define LIBGCC2_LONG_DOUBLE_TYPE_SIZE 64
273 #endif
275 /* Work around target_flags dependency in ada/targtyps.c. */
276 #define WIDEST_HARDWARE_FP_SIZE 64
278 /* We use "unsigned char" as default. */
279 #define DEFAULT_SIGNED_CHAR 0
282 /* Register usage. */
284 /* We have 16 general purpose registers (registers 0-15),
285 and 16 floating point registers (registers 16-31).
286 (On non-IEEE machines, we have only 4 fp registers.)
288 Amongst the general purpose registers, some are used
289 for specific purposes:
290 GPR 11: Hard frame pointer (if needed)
291 GPR 12: Global offset table pointer (if needed)
292 GPR 13: Literal pool base register
293 GPR 14: Return address register
294 GPR 15: Stack pointer
296 Registers 32-35 are 'fake' hard registers that do not
297 correspond to actual hardware:
298 Reg 32: Argument pointer
299 Reg 33: Condition code
300 Reg 34: Frame pointer
301 Reg 35: Return address pointer
303 Registers 36 and 37 are mapped to access registers
304 0 and 1, used to implement thread-local storage. */
306 #define FIRST_PSEUDO_REGISTER 38
308 /* Standard register usage. */
309 #define GENERAL_REGNO_P(N) ((int)(N) >= 0 && (N) < 16)
310 #define ADDR_REGNO_P(N) ((N) >= 1 && (N) < 16)
311 #define FP_REGNO_P(N) ((N) >= 16 && (N) < 32)
312 #define CC_REGNO_P(N) ((N) == 33)
313 #define FRAME_REGNO_P(N) ((N) == 32 || (N) == 34 || (N) == 35)
314 #define ACCESS_REGNO_P(N) ((N) == 36 || (N) == 37)
316 #define GENERAL_REG_P(X) (REG_P (X) && GENERAL_REGNO_P (REGNO (X)))
317 #define ADDR_REG_P(X) (REG_P (X) && ADDR_REGNO_P (REGNO (X)))
318 #define FP_REG_P(X) (REG_P (X) && FP_REGNO_P (REGNO (X)))
319 #define CC_REG_P(X) (REG_P (X) && CC_REGNO_P (REGNO (X)))
320 #define FRAME_REG_P(X) (REG_P (X) && FRAME_REGNO_P (REGNO (X)))
321 #define ACCESS_REG_P(X) (REG_P (X) && ACCESS_REGNO_P (REGNO (X)))
323 /* Set up fixed registers and calling convention:
325 GPRs 0-5 are always call-clobbered,
326 GPRs 6-15 are always call-saved.
327 GPR 12 is fixed if used as GOT pointer.
328 GPR 13 is always fixed (as literal pool pointer).
329 GPR 14 is always fixed on S/390 machines (as return address).
330 GPR 15 is always fixed (as stack pointer).
331 The 'fake' hard registers are call-clobbered and fixed.
332 The access registers are call-saved and fixed.
334 On 31-bit, FPRs 18-19 are call-clobbered;
335 on 64-bit, FPRs 24-31 are call-clobbered.
336 The remaining FPRs are call-saved. */
338 #define FIXED_REGISTERS \
339 { 0, 0, 0, 0, \
340 0, 0, 0, 0, \
341 0, 0, 0, 0, \
342 0, 1, 1, 1, \
343 0, 0, 0, 0, \
344 0, 0, 0, 0, \
345 0, 0, 0, 0, \
346 0, 0, 0, 0, \
347 1, 1, 1, 1, \
348 1, 1 }
350 #define CALL_USED_REGISTERS \
351 { 1, 1, 1, 1, \
352 1, 1, 0, 0, \
353 0, 0, 0, 0, \
354 0, 1, 1, 1, \
355 1, 1, 1, 1, \
356 1, 1, 1, 1, \
357 1, 1, 1, 1, \
358 1, 1, 1, 1, \
359 1, 1, 1, 1, \
360 1, 1 }
362 #define CALL_REALLY_USED_REGISTERS \
363 { 1, 1, 1, 1, \
364 1, 1, 0, 0, \
365 0, 0, 0, 0, \
366 0, 0, 0, 0, \
367 1, 1, 1, 1, \
368 1, 1, 1, 1, \
369 1, 1, 1, 1, \
370 1, 1, 1, 1, \
371 1, 1, 1, 1, \
372 0, 0 }
374 #define CONDITIONAL_REGISTER_USAGE s390_conditional_register_usage ()
376 /* Preferred register allocation order. */
377 #define REG_ALLOC_ORDER \
378 { 1, 2, 3, 4, 5, 0, 12, 11, 10, 9, 8, 7, 6, 14, 13, \
379 16, 17, 18, 19, 20, 21, 22, 23, \
380 24, 25, 26, 27, 28, 29, 30, 31, \
381 15, 32, 33, 34, 35, 36, 37 }
384 /* Fitting values into registers. */
386 /* Integer modes <= word size fit into any GPR.
387 Integer modes > word size fit into successive GPRs, starting with
388 an even-numbered register.
389 SImode and DImode fit into FPRs as well.
391 Floating point modes <= word size fit into any FPR or GPR.
392 Floating point modes > word size (i.e. DFmode on 32-bit) fit
393 into any FPR, or an even-odd GPR pair.
394 TFmode fits only into an even-odd FPR pair.
396 Complex floating point modes fit either into two FPRs, or into
397 successive GPRs (again starting with an even number).
398 TCmode fits only into two successive even-odd FPR pairs.
400 Condition code modes fit only into the CC register. */
402 /* Because all registers in a class have the same size HARD_REGNO_NREGS
403 is equivalent to CLASS_MAX_NREGS. */
404 #define HARD_REGNO_NREGS(REGNO, MODE) \
405 s390_class_max_nregs (REGNO_REG_CLASS (REGNO), (MODE))
407 #define HARD_REGNO_MODE_OK(REGNO, MODE) \
408 s390_hard_regno_mode_ok ((REGNO), (MODE))
410 #define HARD_REGNO_RENAME_OK(FROM, TO) \
411 s390_hard_regno_rename_ok (FROM, TO)
413 #define MODES_TIEABLE_P(MODE1, MODE2) \
414 (((MODE1) == SFmode || (MODE1) == DFmode) \
415 == ((MODE2) == SFmode || (MODE2) == DFmode))
417 /* When generating code that runs in z/Architecture mode,
418 but conforms to the 31-bit ABI, GPRs can hold 8 bytes;
419 the ABI guarantees only that the lower 4 bytes are
420 saved across calls, however. */
421 #define HARD_REGNO_CALL_PART_CLOBBERED(REGNO, MODE) \
422 (!TARGET_64BIT && TARGET_ZARCH \
423 && GET_MODE_SIZE (MODE) > 4 \
424 && (((REGNO) >= 6 && (REGNO) <= 15) || (REGNO) == 32))
426 /* Maximum number of registers to represent a value of mode MODE
427 in a register of class CLASS. */
428 #define CLASS_MAX_NREGS(CLASS, MODE) \
429 s390_class_max_nregs ((CLASS), (MODE))
431 /* If a 4-byte value is loaded into a FPR, it is placed into the
432 *upper* half of the register, not the lower. Therefore, we
433 cannot use SUBREGs to switch between modes in FP registers.
434 Likewise for access registers, since they have only half the
435 word size on 64-bit. */
436 #define CANNOT_CHANGE_MODE_CLASS(FROM, TO, CLASS) \
437 (GET_MODE_SIZE (FROM) != GET_MODE_SIZE (TO) \
438 ? ((reg_classes_intersect_p (FP_REGS, CLASS) \
439 && (GET_MODE_SIZE (FROM) < 8 || GET_MODE_SIZE (TO) < 8)) \
440 || reg_classes_intersect_p (ACCESS_REGS, CLASS)) : 0)
442 /* Register classes. */
444 /* We use the following register classes:
445 GENERAL_REGS All general purpose registers
446 ADDR_REGS All general purpose registers except %r0
447 (These registers can be used in address generation)
448 FP_REGS All floating point registers
449 CC_REGS The condition code register
450 ACCESS_REGS The access registers
452 GENERAL_FP_REGS Union of GENERAL_REGS and FP_REGS
453 ADDR_FP_REGS Union of ADDR_REGS and FP_REGS
454 GENERAL_CC_REGS Union of GENERAL_REGS and CC_REGS
455 ADDR_CC_REGS Union of ADDR_REGS and CC_REGS
457 NO_REGS No registers
458 ALL_REGS All registers
460 Note that the 'fake' frame pointer and argument pointer registers
461 are included amongst the address registers here. */
463 enum reg_class
465 NO_REGS, CC_REGS, ADDR_REGS, GENERAL_REGS, ACCESS_REGS,
466 ADDR_CC_REGS, GENERAL_CC_REGS,
467 FP_REGS, ADDR_FP_REGS, GENERAL_FP_REGS,
468 ALL_REGS, LIM_REG_CLASSES
470 #define N_REG_CLASSES (int) LIM_REG_CLASSES
472 #define REG_CLASS_NAMES \
473 { "NO_REGS", "CC_REGS", "ADDR_REGS", "GENERAL_REGS", "ACCESS_REGS", \
474 "ADDR_CC_REGS", "GENERAL_CC_REGS", \
475 "FP_REGS", "ADDR_FP_REGS", "GENERAL_FP_REGS", "ALL_REGS" }
477 /* Class -> register mapping. */
478 #define REG_CLASS_CONTENTS \
480 { 0x00000000, 0x00000000 }, /* NO_REGS */ \
481 { 0x00000000, 0x00000002 }, /* CC_REGS */ \
482 { 0x0000fffe, 0x0000000d }, /* ADDR_REGS */ \
483 { 0x0000ffff, 0x0000000d }, /* GENERAL_REGS */ \
484 { 0x00000000, 0x00000030 }, /* ACCESS_REGS */ \
485 { 0x0000fffe, 0x0000000f }, /* ADDR_CC_REGS */ \
486 { 0x0000ffff, 0x0000000f }, /* GENERAL_CC_REGS */ \
487 { 0xffff0000, 0x00000000 }, /* FP_REGS */ \
488 { 0xfffffffe, 0x0000000d }, /* ADDR_FP_REGS */ \
489 { 0xffffffff, 0x0000000d }, /* GENERAL_FP_REGS */ \
490 { 0xffffffff, 0x0000003f }, /* ALL_REGS */ \
493 /* The following macro defines cover classes for Integrated Register
494 Allocator. Cover classes is a set of non-intersected register
495 classes covering all hard registers used for register allocation
496 purpose. Any move between two registers of a cover class should be
497 cheaper than load or store of the registers. The macro value is
498 array of register classes with LIM_REG_CLASSES used as the end
499 marker. */
501 #define IRA_COVER_CLASSES \
503 GENERAL_REGS, FP_REGS, CC_REGS, ACCESS_REGS, LIM_REG_CLASSES \
506 /* In some case register allocation order is not enough for IRA to
507 generate a good code. The following macro (if defined) increases
508 cost of REGNO for a pseudo approximately by pseudo usage frequency
509 multiplied by the macro value.
511 We avoid usage of BASE_REGNUM by nonzero macro value because the
512 reload can decide not to use the hard register because some
513 constant was forced to be in memory. */
514 #define IRA_HARD_REGNO_ADD_COST_MULTIPLIER(regno) \
515 (regno == BASE_REGNUM ? 0.0 : 0.5)
517 /* Register -> class mapping. */
518 extern const enum reg_class regclass_map[FIRST_PSEUDO_REGISTER];
519 #define REGNO_REG_CLASS(REGNO) (regclass_map[REGNO])
521 /* ADDR_REGS can be used as base or index register. */
522 #define INDEX_REG_CLASS ADDR_REGS
523 #define BASE_REG_CLASS ADDR_REGS
525 /* Check whether REGNO is a hard register of the suitable class
526 or a pseudo register currently allocated to one such. */
527 #define REGNO_OK_FOR_INDEX_P(REGNO) \
528 (((REGNO) < FIRST_PSEUDO_REGISTER \
529 && REGNO_REG_CLASS ((REGNO)) == ADDR_REGS) \
530 || ADDR_REGNO_P (reg_renumber[REGNO]))
531 #define REGNO_OK_FOR_BASE_P(REGNO) REGNO_OK_FOR_INDEX_P (REGNO)
534 /* Given an rtx X being reloaded into a reg required to be in class CLASS,
535 return the class of reg to actually use. */
536 #define PREFERRED_RELOAD_CLASS(X, CLASS) \
537 s390_preferred_reload_class ((X), (CLASS))
539 /* We need secondary memory to move data between GPRs and FPRs. With
540 DFP the ldgr lgdr instructions are available. But these
541 instructions do not handle GPR pairs so it is not possible for 31
542 bit. */
543 #define SECONDARY_MEMORY_NEEDED(CLASS1, CLASS2, MODE) \
544 ((CLASS1) != (CLASS2) \
545 && ((CLASS1) == FP_REGS || (CLASS2) == FP_REGS) \
546 && (!TARGET_DFP || !TARGET_64BIT || GET_MODE_SIZE (MODE) != 8))
548 /* Get_secondary_mem widens its argument to BITS_PER_WORD which loses on 64bit
549 because the movsi and movsf patterns don't handle r/f moves. */
550 #define SECONDARY_MEMORY_NEEDED_MODE(MODE) \
551 (GET_MODE_BITSIZE (MODE) < 32 \
552 ? mode_for_size (32, GET_MODE_CLASS (MODE), 0) \
553 : MODE)
556 /* Stack layout and calling conventions. */
558 /* Our stack grows from higher to lower addresses. However, local variables
559 are accessed by positive offsets, and function arguments are stored at
560 increasing addresses. */
561 #define STACK_GROWS_DOWNWARD
562 #define FRAME_GROWS_DOWNWARD 1
563 /* #undef ARGS_GROW_DOWNWARD */
565 /* The basic stack layout looks like this: the stack pointer points
566 to the register save area for called functions. Above that area
567 is the location to place outgoing arguments. Above those follow
568 dynamic allocations (alloca), and finally the local variables. */
570 /* Offset from stack-pointer to first location of outgoing args. */
571 #define STACK_POINTER_OFFSET (TARGET_64BIT ? 160 : 96)
573 /* Offset within stack frame to start allocating local variables at. */
574 #define STARTING_FRAME_OFFSET 0
576 /* Offset from the stack pointer register to an item dynamically
577 allocated on the stack, e.g., by `alloca'. */
578 #define STACK_DYNAMIC_OFFSET(FUNDECL) \
579 (STACK_POINTER_OFFSET + crtl->outgoing_args_size)
581 /* Offset of first parameter from the argument pointer register value.
582 We have a fake argument pointer register that points directly to
583 the argument area. */
584 #define FIRST_PARM_OFFSET(FNDECL) 0
586 /* Defining this macro makes __builtin_frame_address(0) and
587 __builtin_return_address(0) work with -fomit-frame-pointer. */
588 #define INITIAL_FRAME_ADDRESS_RTX \
589 (plus_constant (arg_pointer_rtx, -STACK_POINTER_OFFSET))
591 /* The return address of the current frame is retrieved
592 from the initial value of register RETURN_REGNUM.
593 For frames farther back, we use the stack slot where
594 the corresponding RETURN_REGNUM register was saved. */
595 #define DYNAMIC_CHAIN_ADDRESS(FRAME) \
596 (TARGET_PACKED_STACK ? \
597 plus_constant ((FRAME), STACK_POINTER_OFFSET - UNITS_PER_LONG) : (FRAME))
599 /* For -mpacked-stack this adds 160 - 8 (96 - 4) to the output of
600 builtin_frame_address. Otherwise arg pointer -
601 STACK_POINTER_OFFSET would be returned for
602 __builtin_frame_address(0) what might result in an address pointing
603 somewhere into the middle of the local variables since the packed
604 stack layout generally does not need all the bytes in the register
605 save area. */
606 #define FRAME_ADDR_RTX(FRAME) \
607 DYNAMIC_CHAIN_ADDRESS ((FRAME))
609 #define RETURN_ADDR_RTX(COUNT, FRAME) \
610 s390_return_addr_rtx ((COUNT), DYNAMIC_CHAIN_ADDRESS ((FRAME)))
612 /* In 31-bit mode, we need to mask off the high bit of return addresses. */
613 #define MASK_RETURN_ADDR (TARGET_64BIT ? constm1_rtx : GEN_INT (0x7fffffff))
616 /* Exception handling. */
618 /* Describe calling conventions for DWARF-2 exception handling. */
619 #define INCOMING_RETURN_ADDR_RTX gen_rtx_REG (Pmode, RETURN_REGNUM)
620 #define INCOMING_FRAME_SP_OFFSET STACK_POINTER_OFFSET
621 #define DWARF_FRAME_RETURN_COLUMN 14
623 /* Describe how we implement __builtin_eh_return. */
624 #define EH_RETURN_DATA_REGNO(N) ((N) < 4 ? (N) + 6 : INVALID_REGNUM)
625 #define EH_RETURN_HANDLER_RTX gen_rtx_MEM (Pmode, return_address_pointer_rtx)
627 /* Select a format to encode pointers in exception handling data. */
628 #define ASM_PREFERRED_EH_DATA_FORMAT(CODE, GLOBAL) \
629 (flag_pic \
630 ? ((GLOBAL) ? DW_EH_PE_indirect : 0) | DW_EH_PE_pcrel | DW_EH_PE_sdata4 \
631 : DW_EH_PE_absptr)
633 /* Register save slot alignment. */
634 #define DWARF_CIE_DATA_ALIGNMENT (-UNITS_PER_LONG)
637 /* Frame registers. */
639 #define STACK_POINTER_REGNUM 15
640 #define FRAME_POINTER_REGNUM 34
641 #define HARD_FRAME_POINTER_REGNUM 11
642 #define ARG_POINTER_REGNUM 32
643 #define RETURN_ADDRESS_POINTER_REGNUM 35
645 /* The static chain must be call-clobbered, but not used for
646 function argument passing. As register 1 is clobbered by
647 the trampoline code, we only have one option. */
648 #define STATIC_CHAIN_REGNUM 0
650 /* Number of hardware registers that go into the DWARF-2 unwind info.
651 To avoid ABI incompatibility, this number must not change even as
652 'fake' hard registers are added or removed. */
653 #define DWARF_FRAME_REGISTERS 34
656 /* Frame pointer and argument pointer elimination. */
658 #define ELIMINABLE_REGS \
659 {{ FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM }, \
660 { FRAME_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM }, \
661 { ARG_POINTER_REGNUM, STACK_POINTER_REGNUM }, \
662 { ARG_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM }, \
663 { RETURN_ADDRESS_POINTER_REGNUM, STACK_POINTER_REGNUM }, \
664 { RETURN_ADDRESS_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM }, \
665 { BASE_REGNUM, BASE_REGNUM }}
667 #define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
668 (OFFSET) = s390_initial_elimination_offset ((FROM), (TO))
671 /* Stack arguments. */
673 /* We need current_function_outgoing_args to be valid. */
674 #define ACCUMULATE_OUTGOING_ARGS 1
676 /* Return doesn't modify the stack. */
677 #define RETURN_POPS_ARGS(FUNDECL, FUNTYPE, SIZE) 0
680 /* Register arguments. */
682 typedef struct s390_arg_structure
684 int gprs; /* gpr so far */
685 int fprs; /* fpr so far */
687 CUMULATIVE_ARGS;
689 #define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, NN, N_NAMED_ARGS) \
690 ((CUM).gprs=0, (CUM).fprs=0)
692 #define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
693 s390_function_arg_advance (&CUM, MODE, TYPE, NAMED)
695 #define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
696 s390_function_arg (&CUM, MODE, TYPE, NAMED)
698 /* Arguments can be placed in general registers 2 to 6, or in floating
699 point registers 0 and 2 for 31 bit and fprs 0, 2, 4 and 6 for 64
700 bit. */
701 #define FUNCTION_ARG_REGNO_P(N) (((N) >=2 && (N) <7) || \
702 (N) == 16 || (N) == 17 || (TARGET_64BIT && ((N) == 18 || (N) == 19)))
705 /* Scalar return values. */
707 #define FUNCTION_VALUE(VALTYPE, FUNC) \
708 s390_function_value ((VALTYPE), (FUNC), VOIDmode)
710 #define LIBCALL_VALUE(MODE) \
711 s390_function_value (NULL, NULL, (MODE))
713 /* Only gpr 2 and fpr 0 are ever used as return registers. */
714 #define FUNCTION_VALUE_REGNO_P(N) ((N) == 2 || (N) == 16)
717 /* Function entry and exit. */
719 /* When returning from a function, the stack pointer does not matter. */
720 #define EXIT_IGNORE_STACK 1
723 /* Profiling. */
725 #define FUNCTION_PROFILER(FILE, LABELNO) \
726 s390_function_profiler ((FILE), ((LABELNO)))
728 #define PROFILE_BEFORE_PROLOGUE 1
731 /* Trampolines for nested functions. */
733 #define TRAMPOLINE_SIZE (TARGET_64BIT ? 32 : 16)
734 #define TRAMPOLINE_ALIGNMENT BITS_PER_WORD
736 /* Addressing modes, and classification of registers for them. */
738 /* Recognize any constant value that is a valid address. */
739 #define CONSTANT_ADDRESS_P(X) 0
741 /* Maximum number of registers that can appear in a valid memory address. */
742 #define MAX_REGS_PER_ADDRESS 2
744 /* This definition replaces the formerly used 'm' constraint with a
745 different constraint letter in order to avoid changing semantics of
746 the 'm' constraint when accepting new address formats in
747 TARGET_LEGITIMATE_ADDRESS_P. The constraint letter defined here
748 must not be used in insn definitions or inline assemblies. */
749 #define TARGET_MEM_CONSTRAINT 'e'
751 /* Try a machine-dependent way of reloading an illegitimate address
752 operand. If we find one, push the reload and jump to WIN. This
753 macro is used in only one place: `find_reloads_address' in reload.c. */
754 #define LEGITIMIZE_RELOAD_ADDRESS(AD, MODE, OPNUM, TYPE, IND, WIN) \
755 do { \
756 rtx new_rtx = legitimize_reload_address (AD, MODE, OPNUM, (int)(TYPE)); \
757 if (new_rtx) \
759 (AD) = new_rtx; \
760 goto WIN; \
762 } while (0)
764 /* Nonzero if the constant value X is a legitimate general operand.
765 It is given that X satisfies CONSTANT_P or is a CONST_DOUBLE. */
766 #define LEGITIMATE_CONSTANT_P(X) \
767 legitimate_constant_p (X)
769 /* Helper macro for s390.c and s390.md to check for symbolic constants. */
770 #define SYMBOLIC_CONST(X) \
771 (GET_CODE (X) == SYMBOL_REF \
772 || GET_CODE (X) == LABEL_REF \
773 || (GET_CODE (X) == CONST && symbolic_reference_mentioned_p (X)))
775 #define TLS_SYMBOLIC_CONST(X) \
776 ((GET_CODE (X) == SYMBOL_REF && tls_symbolic_operand (X)) \
777 || (GET_CODE (X) == CONST && tls_symbolic_reference_mentioned_p (X)))
780 /* Condition codes. */
782 /* Given a comparison code (EQ, NE, etc.) and the first operand of a COMPARE,
783 return the mode to be used for the comparison. */
784 #define SELECT_CC_MODE(OP, X, Y) s390_select_ccmode ((OP), (X), (Y))
786 /* Canonicalize a comparison from one we don't have to one we do have. */
787 #define CANONICALIZE_COMPARISON(CODE, OP0, OP1) \
788 s390_canonicalize_comparison (&(CODE), &(OP0), &(OP1))
790 /* Relative costs of operations. */
792 /* On s390, copy between fprs and gprs is expensive. */
793 #define REGISTER_MOVE_COST(MODE, CLASS1, CLASS2) \
794 (( ( reg_classes_intersect_p ((CLASS1), GENERAL_REGS) \
795 && reg_classes_intersect_p ((CLASS2), FP_REGS)) \
796 || ( reg_classes_intersect_p ((CLASS1), FP_REGS) \
797 && reg_classes_intersect_p ((CLASS2), GENERAL_REGS))) ? 10 : 1)
799 /* A C expression for the cost of moving data of mode M between a
800 register and memory. A value of 2 is the default; this cost is
801 relative to those in `REGISTER_MOVE_COST'. */
802 #define MEMORY_MOVE_COST(M, C, I) 1
804 /* A C expression for the cost of a branch instruction. A value of 1
805 is the default; other values are interpreted relative to that. */
806 #define BRANCH_COST(speed_p, predictable_p) 1
808 /* Nonzero if access to memory by bytes is slow and undesirable. */
809 #define SLOW_BYTE_ACCESS 1
811 /* An integer expression for the size in bits of the largest integer machine
812 mode that should actually be used. We allow pairs of registers. */
813 #define MAX_FIXED_MODE_SIZE GET_MODE_BITSIZE (TARGET_64BIT ? TImode : DImode)
815 /* The maximum number of bytes that a single instruction can move quickly
816 between memory and registers or between two memory locations. */
817 #define MOVE_MAX (TARGET_ZARCH ? 16 : 8)
818 #define MOVE_MAX_PIECES (TARGET_ZARCH ? 8 : 4)
819 #define MAX_MOVE_MAX 16
821 /* Determine whether to use move_by_pieces or block move insn. */
822 #define MOVE_BY_PIECES_P(SIZE, ALIGN) \
823 ( (SIZE) == 1 || (SIZE) == 2 || (SIZE) == 4 \
824 || (TARGET_ZARCH && (SIZE) == 8) )
826 /* Determine whether to use clear_by_pieces or block clear insn. */
827 #define CLEAR_BY_PIECES_P(SIZE, ALIGN) \
828 ( (SIZE) == 1 || (SIZE) == 2 || (SIZE) == 4 \
829 || (TARGET_ZARCH && (SIZE) == 8) )
831 /* This macro is used to determine whether store_by_pieces should be
832 called to "memcpy" storage when the source is a constant string. */
833 #define STORE_BY_PIECES_P(SIZE, ALIGN) MOVE_BY_PIECES_P (SIZE, ALIGN)
835 /* Likewise to decide whether to "memset" storage with byte values
836 other than zero. */
837 #define SET_BY_PIECES_P(SIZE, ALIGN) STORE_BY_PIECES_P (SIZE, ALIGN)
839 /* Don't perform CSE on function addresses. */
840 #define NO_FUNCTION_CSE
842 /* This value is used in tree-sra to decide whether it might benefical
843 to split a struct move into several word-size moves. For S/390
844 only small values make sense here since struct moves are relatively
845 cheap thanks to mvc so the small default value choosen for archs
846 with memmove patterns should be ok. But this value is multiplied
847 in tree-sra with UNITS_PER_WORD to make a decision so we adjust it
848 here to compensate for that factor since mvc costs exactly the same
849 on 31 and 64 bit. */
850 #define MOVE_RATIO(speed) (TARGET_64BIT? 2 : 4)
853 /* Sections. */
855 /* Output before read-only data. */
856 #define TEXT_SECTION_ASM_OP ".text"
858 /* Output before writable (initialized) data. */
859 #define DATA_SECTION_ASM_OP ".data"
861 /* Output before writable (uninitialized) data. */
862 #define BSS_SECTION_ASM_OP ".bss"
864 /* S/390 constant pool breaks the devices in crtstuff.c to control section
865 in where code resides. We have to write it as asm code. */
866 #ifndef __s390x__
867 #define CRT_CALL_STATIC_FUNCTION(SECTION_OP, FUNC) \
868 asm (SECTION_OP "\n\
869 bras\t%r2,1f\n\
870 0: .long\t" USER_LABEL_PREFIX #FUNC " - 0b\n\
871 1: l\t%r3,0(%r2)\n\
872 bas\t%r14,0(%r3,%r2)\n\
873 .previous");
874 #endif
877 /* Position independent code. */
879 extern int flag_pic;
881 #define PIC_OFFSET_TABLE_REGNUM (flag_pic ? 12 : INVALID_REGNUM)
883 #define LEGITIMATE_PIC_OPERAND_P(X) legitimate_pic_operand_p (X)
886 /* Assembler file format. */
888 /* Character to start a comment. */
889 #define ASM_COMMENT_START "#"
891 /* Declare an uninitialized external linkage data object. */
892 #define ASM_OUTPUT_ALIGNED_BSS(FILE, DECL, NAME, SIZE, ALIGN) \
893 asm_output_aligned_bss (FILE, DECL, NAME, SIZE, ALIGN)
895 /* Globalizing directive for a label. */
896 #define GLOBAL_ASM_OP ".globl "
898 /* Advance the location counter to a multiple of 2**LOG bytes. */
899 #define ASM_OUTPUT_ALIGN(FILE, LOG) \
900 if ((LOG)) fprintf ((FILE), "\t.align\t%d\n", 1 << (LOG))
902 /* Advance the location counter by SIZE bytes. */
903 #define ASM_OUTPUT_SKIP(FILE, SIZE) \
904 fprintf ((FILE), "\t.set\t.,.+"HOST_WIDE_INT_PRINT_UNSIGNED"\n", (SIZE))
906 /* The LOCAL_LABEL_PREFIX variable is used by dbxelf.h. */
907 #define LOCAL_LABEL_PREFIX "."
909 /* How to refer to registers in assembler output. This sequence is
910 indexed by compiler's hard-register-number (see above). */
911 #define REGISTER_NAMES \
912 { "%r0", "%r1", "%r2", "%r3", "%r4", "%r5", "%r6", "%r7", \
913 "%r8", "%r9", "%r10", "%r11", "%r12", "%r13", "%r14", "%r15", \
914 "%f0", "%f2", "%f4", "%f6", "%f1", "%f3", "%f5", "%f7", \
915 "%f8", "%f10", "%f12", "%f14", "%f9", "%f11", "%f13", "%f15", \
916 "%ap", "%cc", "%fp", "%rp", "%a0", "%a1" \
919 /* Print operand X (an rtx) in assembler syntax to file FILE. */
920 #define PRINT_OPERAND(FILE, X, CODE) print_operand (FILE, X, CODE)
921 #define PRINT_OPERAND_ADDRESS(FILE, ADDR) print_operand_address (FILE, ADDR)
923 /* Output machine-dependent UNSPECs in address constants. */
924 #define OUTPUT_ADDR_CONST_EXTRA(FILE, X, FAIL) \
925 do { \
926 if (!s390_output_addr_const_extra (FILE, (X))) \
927 goto FAIL; \
928 } while (0);
930 /* Output an element of a case-vector that is absolute. */
931 #define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \
932 do { \
933 char buf[32]; \
934 fputs (integer_asm_op (UNITS_PER_LONG, TRUE), (FILE)); \
935 ASM_GENERATE_INTERNAL_LABEL (buf, "L", (VALUE)); \
936 assemble_name ((FILE), buf); \
937 fputc ('\n', (FILE)); \
938 } while (0)
940 /* Output an element of a case-vector that is relative. */
941 #define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \
942 do { \
943 char buf[32]; \
944 fputs (integer_asm_op (UNITS_PER_LONG, TRUE), (FILE)); \
945 ASM_GENERATE_INTERNAL_LABEL (buf, "L", (VALUE)); \
946 assemble_name ((FILE), buf); \
947 fputc ('-', (FILE)); \
948 ASM_GENERATE_INTERNAL_LABEL (buf, "L", (REL)); \
949 assemble_name ((FILE), buf); \
950 fputc ('\n', (FILE)); \
951 } while (0)
954 /* Miscellaneous parameters. */
956 /* Specify the machine mode that this machine uses for the index in the
957 tablejump instruction. */
958 #define CASE_VECTOR_MODE (TARGET_64BIT ? DImode : SImode)
960 /* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
961 is done just by pretending it is already truncated. */
962 #define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
964 /* Specify the machine mode that pointers have.
965 After generation of rtl, the compiler makes no further distinction
966 between pointers and any other objects of this machine mode. */
967 #define Pmode ((enum machine_mode) (TARGET_64BIT ? DImode : SImode))
969 /* This is -1 for "pointer mode" extend. See ptr_extend in s390.md. */
970 #define POINTERS_EXTEND_UNSIGNED -1
972 /* A function address in a call instruction is a byte address (for
973 indexing purposes) so give the MEM rtx a byte's mode. */
974 #define FUNCTION_MODE QImode
976 /* Specify the value which is used when clz operand is zero. */
977 #define CLZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) ((VALUE) = 64, 1)
979 /* Machine-specific symbol_ref flags. */
980 #define SYMBOL_FLAG_ALIGN1 (SYMBOL_FLAG_MACH_DEP << 0)
981 #define SYMBOL_REF_ALIGN1_P(X) \
982 ((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_ALIGN1))
983 #define SYMBOL_FLAG_NOT_NATURALLY_ALIGNED (SYMBOL_FLAG_MACH_DEP << 1)
984 #define SYMBOL_REF_NOT_NATURALLY_ALIGNED_P(X) \
985 ((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_NOT_NATURALLY_ALIGNED))
987 /* Check whether integer displacement is in range. */
988 #define DISP_IN_RANGE(d) \
989 (TARGET_LONG_DISPLACEMENT? ((d) >= -524288 && (d) <= 524287) \
990 : ((d) >= 0 && (d) <= 4095))
992 #endif