PR tree-optimization/54321
[official-gcc.git] / gcc / fwprop.c
blobd1cba8810ef873ad4623ebc2529b856b673ccae4
1 /* RTL-based forward propagation pass for GNU compiler.
2 Copyright (C) 2005, 2006, 2007, 2008, 2009, 2010, 2011
3 Free Software Foundation, Inc.
4 Contributed by Paolo Bonzini and Steven Bosscher.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "tm.h"
26 #include "diagnostic-core.h"
28 #include "sparseset.h"
29 #include "rtl.h"
30 #include "tm_p.h"
31 #include "insn-config.h"
32 #include "recog.h"
33 #include "flags.h"
34 #include "obstack.h"
35 #include "basic-block.h"
36 #include "df.h"
37 #include "target.h"
38 #include "cfgloop.h"
39 #include "tree-pass.h"
40 #include "domwalk.h"
41 #include "emit-rtl.h"
44 /* This pass does simple forward propagation and simplification when an
45 operand of an insn can only come from a single def. This pass uses
46 df.c, so it is global. However, we only do limited analysis of
47 available expressions.
49 1) The pass tries to propagate the source of the def into the use,
50 and checks if the result is independent of the substituted value.
51 For example, the high word of a (zero_extend:DI (reg:SI M)) is always
52 zero, independent of the source register.
54 In particular, we propagate constants into the use site. Sometimes
55 RTL expansion did not put the constant in the same insn on purpose,
56 to satisfy a predicate, and the result will fail to be recognized;
57 but this happens rarely and in this case we can still create a
58 REG_EQUAL note. For multi-word operations, this
60 (set (subreg:SI (reg:DI 120) 0) (const_int 0))
61 (set (subreg:SI (reg:DI 120) 4) (const_int -1))
62 (set (subreg:SI (reg:DI 122) 0)
63 (ior:SI (subreg:SI (reg:DI 119) 0) (subreg:SI (reg:DI 120) 0)))
64 (set (subreg:SI (reg:DI 122) 4)
65 (ior:SI (subreg:SI (reg:DI 119) 4) (subreg:SI (reg:DI 120) 4)))
67 can be simplified to the much simpler
69 (set (subreg:SI (reg:DI 122) 0) (subreg:SI (reg:DI 119)))
70 (set (subreg:SI (reg:DI 122) 4) (const_int -1))
72 This particular propagation is also effective at putting together
73 complex addressing modes. We are more aggressive inside MEMs, in
74 that all definitions are propagated if the use is in a MEM; if the
75 result is a valid memory address we check address_cost to decide
76 whether the substitution is worthwhile.
78 2) The pass propagates register copies. This is not as effective as
79 the copy propagation done by CSE's canon_reg, which works by walking
80 the instruction chain, it can help the other transformations.
82 We should consider removing this optimization, and instead reorder the
83 RTL passes, because GCSE does this transformation too. With some luck,
84 the CSE pass at the end of rest_of_handle_gcse could also go away.
86 3) The pass looks for paradoxical subregs that are actually unnecessary.
87 Things like this:
89 (set (reg:QI 120) (subreg:QI (reg:SI 118) 0))
90 (set (reg:QI 121) (subreg:QI (reg:SI 119) 0))
91 (set (reg:SI 122) (plus:SI (subreg:SI (reg:QI 120) 0)
92 (subreg:SI (reg:QI 121) 0)))
94 are very common on machines that can only do word-sized operations.
95 For each use of a paradoxical subreg (subreg:WIDER (reg:NARROW N) 0),
96 if it has a single def and it is (subreg:NARROW (reg:WIDE M) 0),
97 we can replace the paradoxical subreg with simply (reg:WIDE M). The
98 above will simplify this to
100 (set (reg:QI 120) (subreg:QI (reg:SI 118) 0))
101 (set (reg:QI 121) (subreg:QI (reg:SI 119) 0))
102 (set (reg:SI 122) (plus:SI (reg:SI 118) (reg:SI 119)))
104 where the first two insns are now dead.
106 We used to use reaching definitions to find which uses have a
107 single reaching definition (sounds obvious...), but this is too
108 complex a problem in nasty testcases like PR33928. Now we use the
109 multiple definitions problem in df-problems.c. The similarity
110 between that problem and SSA form creation is taken further, in
111 that fwprop does a dominator walk to create its chains; however,
112 instead of creating a PHI function where multiple definitions meet
113 I just punt and record only singleton use-def chains, which is
114 all that is needed by fwprop. */
117 static int num_changes;
119 DEF_VEC_P(df_ref);
120 DEF_VEC_ALLOC_P(df_ref,heap);
121 static VEC(df_ref,heap) *use_def_ref;
122 static VEC(df_ref,heap) *reg_defs;
123 static VEC(df_ref,heap) *reg_defs_stack;
125 /* The MD bitmaps are trimmed to include only live registers to cut
126 memory usage on testcases like insn-recog.c. Track live registers
127 in the basic block and do not perform forward propagation if the
128 destination is a dead pseudo occurring in a note. */
129 static bitmap local_md;
130 static bitmap local_lr;
132 /* Return the only def in USE's use-def chain, or NULL if there is
133 more than one def in the chain. */
135 static inline df_ref
136 get_def_for_use (df_ref use)
138 return VEC_index (df_ref, use_def_ref, DF_REF_ID (use));
142 /* Update the reg_defs vector with non-partial definitions in DEF_REC.
143 TOP_FLAG says which artificials uses should be used, when DEF_REC
144 is an artificial def vector. LOCAL_MD is modified as after a
145 df_md_simulate_* function; we do more or less the same processing
146 done there, so we do not use those functions. */
148 #define DF_MD_GEN_FLAGS \
149 (DF_REF_PARTIAL | DF_REF_CONDITIONAL | DF_REF_MAY_CLOBBER)
151 static void
152 process_defs (df_ref *def_rec, int top_flag)
154 df_ref def;
155 while ((def = *def_rec++) != NULL)
157 df_ref curr_def = VEC_index (df_ref, reg_defs, DF_REF_REGNO (def));
158 unsigned int dregno;
160 if ((DF_REF_FLAGS (def) & DF_REF_AT_TOP) != top_flag)
161 continue;
163 dregno = DF_REF_REGNO (def);
164 if (curr_def)
165 VEC_safe_push (df_ref, heap, reg_defs_stack, curr_def);
166 else
168 /* Do not store anything if "transitioning" from NULL to NULL. But
169 otherwise, push a special entry on the stack to tell the
170 leave_block callback that the entry in reg_defs was NULL. */
171 if (DF_REF_FLAGS (def) & DF_MD_GEN_FLAGS)
173 else
174 VEC_safe_push (df_ref, heap, reg_defs_stack, def);
177 if (DF_REF_FLAGS (def) & DF_MD_GEN_FLAGS)
179 bitmap_set_bit (local_md, dregno);
180 VEC_replace (df_ref, reg_defs, dregno, NULL);
182 else
184 bitmap_clear_bit (local_md, dregno);
185 VEC_replace (df_ref, reg_defs, dregno, def);
191 /* Fill the use_def_ref vector with values for the uses in USE_REC,
192 taking reaching definitions info from LOCAL_MD and REG_DEFS.
193 TOP_FLAG says which artificials uses should be used, when USE_REC
194 is an artificial use vector. */
196 static void
197 process_uses (df_ref *use_rec, int top_flag)
199 df_ref use;
200 while ((use = *use_rec++) != NULL)
201 if ((DF_REF_FLAGS (use) & DF_REF_AT_TOP) == top_flag)
203 unsigned int uregno = DF_REF_REGNO (use);
204 if (VEC_index (df_ref, reg_defs, uregno)
205 && !bitmap_bit_p (local_md, uregno)
206 && bitmap_bit_p (local_lr, uregno))
207 VEC_replace (df_ref, use_def_ref, DF_REF_ID (use),
208 VEC_index (df_ref, reg_defs, uregno));
213 static void
214 single_def_use_enter_block (struct dom_walk_data *walk_data ATTRIBUTE_UNUSED,
215 basic_block bb)
217 int bb_index = bb->index;
218 struct df_md_bb_info *md_bb_info = df_md_get_bb_info (bb_index);
219 struct df_lr_bb_info *lr_bb_info = df_lr_get_bb_info (bb_index);
220 rtx insn;
222 bitmap_copy (local_md, &md_bb_info->in);
223 bitmap_copy (local_lr, &lr_bb_info->in);
225 /* Push a marker for the leave_block callback. */
226 VEC_safe_push (df_ref, heap, reg_defs_stack, (df_ref) NULL);
228 process_uses (df_get_artificial_uses (bb_index), DF_REF_AT_TOP);
229 process_defs (df_get_artificial_defs (bb_index), DF_REF_AT_TOP);
231 /* We don't call df_simulate_initialize_forwards, as it may overestimate
232 the live registers if there are unused artificial defs. We prefer
233 liveness to be underestimated. */
235 FOR_BB_INSNS (bb, insn)
236 if (INSN_P (insn))
238 unsigned int uid = INSN_UID (insn);
239 process_uses (DF_INSN_UID_USES (uid), 0);
240 process_uses (DF_INSN_UID_EQ_USES (uid), 0);
241 process_defs (DF_INSN_UID_DEFS (uid), 0);
242 df_simulate_one_insn_forwards (bb, insn, local_lr);
245 process_uses (df_get_artificial_uses (bb_index), 0);
246 process_defs (df_get_artificial_defs (bb_index), 0);
249 /* Pop the definitions created in this basic block when leaving its
250 dominated parts. */
252 static void
253 single_def_use_leave_block (struct dom_walk_data *walk_data ATTRIBUTE_UNUSED,
254 basic_block bb ATTRIBUTE_UNUSED)
256 df_ref saved_def;
257 while ((saved_def = VEC_pop (df_ref, reg_defs_stack)) != NULL)
259 unsigned int dregno = DF_REF_REGNO (saved_def);
261 /* See also process_defs. */
262 if (saved_def == VEC_index (df_ref, reg_defs, dregno))
263 VEC_replace (df_ref, reg_defs, dregno, NULL);
264 else
265 VEC_replace (df_ref, reg_defs, dregno, saved_def);
270 /* Build a vector holding the reaching definitions of uses reached by a
271 single dominating definition. */
273 static void
274 build_single_def_use_links (void)
276 struct dom_walk_data walk_data;
278 /* We use the multiple definitions problem to compute our restricted
279 use-def chains. */
280 df_set_flags (DF_EQ_NOTES);
281 df_md_add_problem ();
282 df_note_add_problem ();
283 df_analyze ();
284 df_maybe_reorganize_use_refs (DF_REF_ORDER_BY_INSN_WITH_NOTES);
286 use_def_ref = VEC_alloc (df_ref, heap, DF_USES_TABLE_SIZE ());
287 VEC_safe_grow_cleared (df_ref, heap, use_def_ref, DF_USES_TABLE_SIZE ());
289 reg_defs = VEC_alloc (df_ref, heap, max_reg_num ());
290 VEC_safe_grow_cleared (df_ref, heap, reg_defs, max_reg_num ());
292 reg_defs_stack = VEC_alloc (df_ref, heap, n_basic_blocks * 10);
293 local_md = BITMAP_ALLOC (NULL);
294 local_lr = BITMAP_ALLOC (NULL);
296 /* Walk the dominator tree looking for single reaching definitions
297 dominating the uses. This is similar to how SSA form is built. */
298 walk_data.dom_direction = CDI_DOMINATORS;
299 walk_data.initialize_block_local_data = NULL;
300 walk_data.before_dom_children = single_def_use_enter_block;
301 walk_data.after_dom_children = single_def_use_leave_block;
303 init_walk_dominator_tree (&walk_data);
304 walk_dominator_tree (&walk_data, ENTRY_BLOCK_PTR);
305 fini_walk_dominator_tree (&walk_data);
307 BITMAP_FREE (local_lr);
308 BITMAP_FREE (local_md);
309 VEC_free (df_ref, heap, reg_defs);
310 VEC_free (df_ref, heap, reg_defs_stack);
314 /* Do not try to replace constant addresses or addresses of local and
315 argument slots. These MEM expressions are made only once and inserted
316 in many instructions, as well as being used to control symbol table
317 output. It is not safe to clobber them.
319 There are some uncommon cases where the address is already in a register
320 for some reason, but we cannot take advantage of that because we have
321 no easy way to unshare the MEM. In addition, looking up all stack
322 addresses is costly. */
324 static bool
325 can_simplify_addr (rtx addr)
327 rtx reg;
329 if (CONSTANT_ADDRESS_P (addr))
330 return false;
332 if (GET_CODE (addr) == PLUS)
333 reg = XEXP (addr, 0);
334 else
335 reg = addr;
337 return (!REG_P (reg)
338 || (REGNO (reg) != FRAME_POINTER_REGNUM
339 && REGNO (reg) != HARD_FRAME_POINTER_REGNUM
340 && REGNO (reg) != ARG_POINTER_REGNUM));
343 /* Returns a canonical version of X for the address, from the point of view,
344 that all multiplications are represented as MULT instead of the multiply
345 by a power of 2 being represented as ASHIFT.
347 Every ASHIFT we find has been made by simplify_gen_binary and was not
348 there before, so it is not shared. So we can do this in place. */
350 static void
351 canonicalize_address (rtx x)
353 for (;;)
354 switch (GET_CODE (x))
356 case ASHIFT:
357 if (CONST_INT_P (XEXP (x, 1))
358 && INTVAL (XEXP (x, 1)) < GET_MODE_BITSIZE (GET_MODE (x))
359 && INTVAL (XEXP (x, 1)) >= 0)
361 HOST_WIDE_INT shift = INTVAL (XEXP (x, 1));
362 PUT_CODE (x, MULT);
363 XEXP (x, 1) = gen_int_mode ((HOST_WIDE_INT) 1 << shift,
364 GET_MODE (x));
367 x = XEXP (x, 0);
368 break;
370 case PLUS:
371 if (GET_CODE (XEXP (x, 0)) == PLUS
372 || GET_CODE (XEXP (x, 0)) == ASHIFT
373 || GET_CODE (XEXP (x, 0)) == CONST)
374 canonicalize_address (XEXP (x, 0));
376 x = XEXP (x, 1);
377 break;
379 case CONST:
380 x = XEXP (x, 0);
381 break;
383 default:
384 return;
388 /* OLD is a memory address. Return whether it is good to use NEW instead,
389 for a memory access in the given MODE. */
391 static bool
392 should_replace_address (rtx old_rtx, rtx new_rtx, enum machine_mode mode,
393 addr_space_t as, bool speed)
395 int gain;
397 if (rtx_equal_p (old_rtx, new_rtx)
398 || !memory_address_addr_space_p (mode, new_rtx, as))
399 return false;
401 /* Copy propagation is always ok. */
402 if (REG_P (old_rtx) && REG_P (new_rtx))
403 return true;
405 /* Prefer the new address if it is less expensive. */
406 gain = (address_cost (old_rtx, mode, as, speed)
407 - address_cost (new_rtx, mode, as, speed));
409 /* If the addresses have equivalent cost, prefer the new address
410 if it has the highest `set_src_cost'. That has the potential of
411 eliminating the most insns without additional costs, and it
412 is the same that cse.c used to do. */
413 if (gain == 0)
414 gain = set_src_cost (new_rtx, speed) - set_src_cost (old_rtx, speed);
416 return (gain > 0);
420 /* Flags for the last parameter of propagate_rtx_1. */
422 enum {
423 /* If PR_CAN_APPEAR is true, propagate_rtx_1 always returns true;
424 if it is false, propagate_rtx_1 returns false if, for at least
425 one occurrence OLD, it failed to collapse the result to a constant.
426 For example, (mult:M (reg:M A) (minus:M (reg:M B) (reg:M A))) may
427 collapse to zero if replacing (reg:M B) with (reg:M A).
429 PR_CAN_APPEAR is disregarded inside MEMs: in that case,
430 propagate_rtx_1 just tries to make cheaper and valid memory
431 addresses. */
432 PR_CAN_APPEAR = 1,
434 /* If PR_HANDLE_MEM is not set, propagate_rtx_1 won't attempt any replacement
435 outside memory addresses. This is needed because propagate_rtx_1 does
436 not do any analysis on memory; thus it is very conservative and in general
437 it will fail if non-read-only MEMs are found in the source expression.
439 PR_HANDLE_MEM is set when the source of the propagation was not
440 another MEM. Then, it is safe not to treat non-read-only MEMs as
441 ``opaque'' objects. */
442 PR_HANDLE_MEM = 2,
444 /* Set when costs should be optimized for speed. */
445 PR_OPTIMIZE_FOR_SPEED = 4
449 /* Replace all occurrences of OLD in *PX with NEW and try to simplify the
450 resulting expression. Replace *PX with a new RTL expression if an
451 occurrence of OLD was found.
453 This is only a wrapper around simplify-rtx.c: do not add any pattern
454 matching code here. (The sole exception is the handling of LO_SUM, but
455 that is because there is no simplify_gen_* function for LO_SUM). */
457 static bool
458 propagate_rtx_1 (rtx *px, rtx old_rtx, rtx new_rtx, int flags)
460 rtx x = *px, tem = NULL_RTX, op0, op1, op2;
461 enum rtx_code code = GET_CODE (x);
462 enum machine_mode mode = GET_MODE (x);
463 enum machine_mode op_mode;
464 bool can_appear = (flags & PR_CAN_APPEAR) != 0;
465 bool valid_ops = true;
467 if (!(flags & PR_HANDLE_MEM) && MEM_P (x) && !MEM_READONLY_P (x))
469 /* If unsafe, change MEMs to CLOBBERs or SCRATCHes (to preserve whether
470 they have side effects or not). */
471 *px = (side_effects_p (x)
472 ? gen_rtx_CLOBBER (GET_MODE (x), const0_rtx)
473 : gen_rtx_SCRATCH (GET_MODE (x)));
474 return false;
477 /* If X is OLD_RTX, return NEW_RTX. But not if replacing only within an
478 address, and we are *not* inside one. */
479 if (x == old_rtx)
481 *px = new_rtx;
482 return can_appear;
485 /* If this is an expression, try recursive substitution. */
486 switch (GET_RTX_CLASS (code))
488 case RTX_UNARY:
489 op0 = XEXP (x, 0);
490 op_mode = GET_MODE (op0);
491 valid_ops &= propagate_rtx_1 (&op0, old_rtx, new_rtx, flags);
492 if (op0 == XEXP (x, 0))
493 return true;
494 tem = simplify_gen_unary (code, mode, op0, op_mode);
495 break;
497 case RTX_BIN_ARITH:
498 case RTX_COMM_ARITH:
499 op0 = XEXP (x, 0);
500 op1 = XEXP (x, 1);
501 valid_ops &= propagate_rtx_1 (&op0, old_rtx, new_rtx, flags);
502 valid_ops &= propagate_rtx_1 (&op1, old_rtx, new_rtx, flags);
503 if (op0 == XEXP (x, 0) && op1 == XEXP (x, 1))
504 return true;
505 tem = simplify_gen_binary (code, mode, op0, op1);
506 break;
508 case RTX_COMPARE:
509 case RTX_COMM_COMPARE:
510 op0 = XEXP (x, 0);
511 op1 = XEXP (x, 1);
512 op_mode = GET_MODE (op0) != VOIDmode ? GET_MODE (op0) : GET_MODE (op1);
513 valid_ops &= propagate_rtx_1 (&op0, old_rtx, new_rtx, flags);
514 valid_ops &= propagate_rtx_1 (&op1, old_rtx, new_rtx, flags);
515 if (op0 == XEXP (x, 0) && op1 == XEXP (x, 1))
516 return true;
517 tem = simplify_gen_relational (code, mode, op_mode, op0, op1);
518 break;
520 case RTX_TERNARY:
521 case RTX_BITFIELD_OPS:
522 op0 = XEXP (x, 0);
523 op1 = XEXP (x, 1);
524 op2 = XEXP (x, 2);
525 op_mode = GET_MODE (op0);
526 valid_ops &= propagate_rtx_1 (&op0, old_rtx, new_rtx, flags);
527 valid_ops &= propagate_rtx_1 (&op1, old_rtx, new_rtx, flags);
528 valid_ops &= propagate_rtx_1 (&op2, old_rtx, new_rtx, flags);
529 if (op0 == XEXP (x, 0) && op1 == XEXP (x, 1) && op2 == XEXP (x, 2))
530 return true;
531 if (op_mode == VOIDmode)
532 op_mode = GET_MODE (op0);
533 tem = simplify_gen_ternary (code, mode, op_mode, op0, op1, op2);
534 break;
536 case RTX_EXTRA:
537 /* The only case we try to handle is a SUBREG. */
538 if (code == SUBREG)
540 op0 = XEXP (x, 0);
541 valid_ops &= propagate_rtx_1 (&op0, old_rtx, new_rtx, flags);
542 if (op0 == XEXP (x, 0))
543 return true;
544 tem = simplify_gen_subreg (mode, op0, GET_MODE (SUBREG_REG (x)),
545 SUBREG_BYTE (x));
547 break;
549 case RTX_OBJ:
550 if (code == MEM && x != new_rtx)
552 rtx new_op0;
553 op0 = XEXP (x, 0);
555 /* There are some addresses that we cannot work on. */
556 if (!can_simplify_addr (op0))
557 return true;
559 op0 = new_op0 = targetm.delegitimize_address (op0);
560 valid_ops &= propagate_rtx_1 (&new_op0, old_rtx, new_rtx,
561 flags | PR_CAN_APPEAR);
563 /* Dismiss transformation that we do not want to carry on. */
564 if (!valid_ops
565 || new_op0 == op0
566 || !(GET_MODE (new_op0) == GET_MODE (op0)
567 || GET_MODE (new_op0) == VOIDmode))
568 return true;
570 canonicalize_address (new_op0);
572 /* Copy propagations are always ok. Otherwise check the costs. */
573 if (!(REG_P (old_rtx) && REG_P (new_rtx))
574 && !should_replace_address (op0, new_op0, GET_MODE (x),
575 MEM_ADDR_SPACE (x),
576 flags & PR_OPTIMIZE_FOR_SPEED))
577 return true;
579 tem = replace_equiv_address_nv (x, new_op0);
582 else if (code == LO_SUM)
584 op0 = XEXP (x, 0);
585 op1 = XEXP (x, 1);
587 /* The only simplification we do attempts to remove references to op0
588 or make it constant -- in both cases, op0's invalidity will not
589 make the result invalid. */
590 propagate_rtx_1 (&op0, old_rtx, new_rtx, flags | PR_CAN_APPEAR);
591 valid_ops &= propagate_rtx_1 (&op1, old_rtx, new_rtx, flags);
592 if (op0 == XEXP (x, 0) && op1 == XEXP (x, 1))
593 return true;
595 /* (lo_sum (high x) x) -> x */
596 if (GET_CODE (op0) == HIGH && rtx_equal_p (XEXP (op0, 0), op1))
597 tem = op1;
598 else
599 tem = gen_rtx_LO_SUM (mode, op0, op1);
601 /* OP1 is likely not a legitimate address, otherwise there would have
602 been no LO_SUM. We want it to disappear if it is invalid, return
603 false in that case. */
604 return memory_address_p (mode, tem);
607 else if (code == REG)
609 if (rtx_equal_p (x, old_rtx))
611 *px = new_rtx;
612 return can_appear;
615 break;
617 default:
618 break;
621 /* No change, no trouble. */
622 if (tem == NULL_RTX)
623 return true;
625 *px = tem;
627 /* The replacement we made so far is valid, if all of the recursive
628 replacements were valid, or we could simplify everything to
629 a constant. */
630 return valid_ops || can_appear || CONSTANT_P (tem);
634 /* for_each_rtx traversal function that returns 1 if BODY points to
635 a non-constant mem. */
637 static int
638 varying_mem_p (rtx *body, void *data ATTRIBUTE_UNUSED)
640 rtx x = *body;
641 return MEM_P (x) && !MEM_READONLY_P (x);
645 /* Replace all occurrences of OLD in X with NEW and try to simplify the
646 resulting expression (in mode MODE). Return a new expression if it is
647 a constant, otherwise X.
649 Simplifications where occurrences of NEW collapse to a constant are always
650 accepted. All simplifications are accepted if NEW is a pseudo too.
651 Otherwise, we accept simplifications that have a lower or equal cost. */
653 static rtx
654 propagate_rtx (rtx x, enum machine_mode mode, rtx old_rtx, rtx new_rtx,
655 bool speed)
657 rtx tem;
658 bool collapsed;
659 int flags;
661 if (REG_P (new_rtx) && REGNO (new_rtx) < FIRST_PSEUDO_REGISTER)
662 return NULL_RTX;
664 flags = 0;
665 if (REG_P (new_rtx)
666 || CONSTANT_P (new_rtx)
667 || (GET_CODE (new_rtx) == SUBREG
668 && REG_P (SUBREG_REG (new_rtx))
669 && (GET_MODE_SIZE (mode)
670 <= GET_MODE_SIZE (GET_MODE (SUBREG_REG (new_rtx))))))
671 flags |= PR_CAN_APPEAR;
672 if (!for_each_rtx (&new_rtx, varying_mem_p, NULL))
673 flags |= PR_HANDLE_MEM;
675 if (speed)
676 flags |= PR_OPTIMIZE_FOR_SPEED;
678 tem = x;
679 collapsed = propagate_rtx_1 (&tem, old_rtx, copy_rtx (new_rtx), flags);
680 if (tem == x || !collapsed)
681 return NULL_RTX;
683 /* gen_lowpart_common will not be able to process VOIDmode entities other
684 than CONST_INTs. */
685 if (GET_MODE (tem) == VOIDmode && !CONST_INT_P (tem))
686 return NULL_RTX;
688 if (GET_MODE (tem) == VOIDmode)
689 tem = rtl_hooks.gen_lowpart_no_emit (mode, tem);
690 else
691 gcc_assert (GET_MODE (tem) == mode);
693 return tem;
699 /* Return true if the register from reference REF is killed
700 between FROM to (but not including) TO. */
702 static bool
703 local_ref_killed_between_p (df_ref ref, rtx from, rtx to)
705 rtx insn;
707 for (insn = from; insn != to; insn = NEXT_INSN (insn))
709 df_ref *def_rec;
710 if (!INSN_P (insn))
711 continue;
713 for (def_rec = DF_INSN_DEFS (insn); *def_rec; def_rec++)
715 df_ref def = *def_rec;
716 if (DF_REF_REGNO (ref) == DF_REF_REGNO (def))
717 return true;
720 return false;
724 /* Check if the given DEF is available in INSN. This would require full
725 computation of available expressions; we check only restricted conditions:
726 - if DEF is the sole definition of its register, go ahead;
727 - in the same basic block, we check for no definitions killing the
728 definition of DEF_INSN;
729 - if USE's basic block has DEF's basic block as the sole predecessor,
730 we check if the definition is killed after DEF_INSN or before
731 TARGET_INSN insn, in their respective basic blocks. */
732 static bool
733 use_killed_between (df_ref use, rtx def_insn, rtx target_insn)
735 basic_block def_bb = BLOCK_FOR_INSN (def_insn);
736 basic_block target_bb = BLOCK_FOR_INSN (target_insn);
737 int regno;
738 df_ref def;
740 /* We used to have a def reaching a use that is _before_ the def,
741 with the def not dominating the use even though the use and def
742 are in the same basic block, when a register may be used
743 uninitialized in a loop. This should not happen anymore since
744 we do not use reaching definitions, but still we test for such
745 cases and assume that DEF is not available. */
746 if (def_bb == target_bb
747 ? DF_INSN_LUID (def_insn) >= DF_INSN_LUID (target_insn)
748 : !dominated_by_p (CDI_DOMINATORS, target_bb, def_bb))
749 return true;
751 /* Check if the reg in USE has only one definition. We already
752 know that this definition reaches use, or we wouldn't be here.
753 However, this is invalid for hard registers because if they are
754 live at the beginning of the function it does not mean that we
755 have an uninitialized access. */
756 regno = DF_REF_REGNO (use);
757 def = DF_REG_DEF_CHAIN (regno);
758 if (def
759 && DF_REF_NEXT_REG (def) == NULL
760 && regno >= FIRST_PSEUDO_REGISTER)
761 return false;
763 /* Check locally if we are in the same basic block. */
764 if (def_bb == target_bb)
765 return local_ref_killed_between_p (use, def_insn, target_insn);
767 /* Finally, if DEF_BB is the sole predecessor of TARGET_BB. */
768 if (single_pred_p (target_bb)
769 && single_pred (target_bb) == def_bb)
771 df_ref x;
773 /* See if USE is killed between DEF_INSN and the last insn in the
774 basic block containing DEF_INSN. */
775 x = df_bb_regno_last_def_find (def_bb, regno);
776 if (x && DF_INSN_LUID (DF_REF_INSN (x)) >= DF_INSN_LUID (def_insn))
777 return true;
779 /* See if USE is killed between TARGET_INSN and the first insn in the
780 basic block containing TARGET_INSN. */
781 x = df_bb_regno_first_def_find (target_bb, regno);
782 if (x && DF_INSN_LUID (DF_REF_INSN (x)) < DF_INSN_LUID (target_insn))
783 return true;
785 return false;
788 /* Otherwise assume the worst case. */
789 return true;
793 /* Check if all uses in DEF_INSN can be used in TARGET_INSN. This
794 would require full computation of available expressions;
795 we check only restricted conditions, see use_killed_between. */
796 static bool
797 all_uses_available_at (rtx def_insn, rtx target_insn)
799 df_ref *use_rec;
800 struct df_insn_info *insn_info = DF_INSN_INFO_GET (def_insn);
801 rtx def_set = single_set (def_insn);
803 gcc_assert (def_set);
805 /* If target_insn comes right after def_insn, which is very common
806 for addresses, we can use a quicker test. */
807 if (NEXT_INSN (def_insn) == target_insn
808 && REG_P (SET_DEST (def_set)))
810 rtx def_reg = SET_DEST (def_set);
812 /* If the insn uses the reg that it defines, the substitution is
813 invalid. */
814 for (use_rec = DF_INSN_INFO_USES (insn_info); *use_rec; use_rec++)
816 df_ref use = *use_rec;
817 if (rtx_equal_p (DF_REF_REG (use), def_reg))
818 return false;
820 for (use_rec = DF_INSN_INFO_EQ_USES (insn_info); *use_rec; use_rec++)
822 df_ref use = *use_rec;
823 if (rtx_equal_p (DF_REF_REG (use), def_reg))
824 return false;
827 else
829 rtx def_reg = REG_P (SET_DEST (def_set)) ? SET_DEST (def_set) : NULL_RTX;
831 /* Look at all the uses of DEF_INSN, and see if they are not
832 killed between DEF_INSN and TARGET_INSN. */
833 for (use_rec = DF_INSN_INFO_USES (insn_info); *use_rec; use_rec++)
835 df_ref use = *use_rec;
836 if (def_reg && rtx_equal_p (DF_REF_REG (use), def_reg))
837 return false;
838 if (use_killed_between (use, def_insn, target_insn))
839 return false;
841 for (use_rec = DF_INSN_INFO_EQ_USES (insn_info); *use_rec; use_rec++)
843 df_ref use = *use_rec;
844 if (def_reg && rtx_equal_p (DF_REF_REG (use), def_reg))
845 return false;
846 if (use_killed_between (use, def_insn, target_insn))
847 return false;
851 return true;
855 static df_ref *active_defs;
856 #ifdef ENABLE_CHECKING
857 static sparseset active_defs_check;
858 #endif
860 /* Fill the ACTIVE_DEFS array with the use->def link for the registers
861 mentioned in USE_REC. Register the valid entries in ACTIVE_DEFS_CHECK
862 too, for checking purposes. */
864 static void
865 register_active_defs (df_ref *use_rec)
867 while (*use_rec)
869 df_ref use = *use_rec++;
870 df_ref def = get_def_for_use (use);
871 int regno = DF_REF_REGNO (use);
873 #ifdef ENABLE_CHECKING
874 sparseset_set_bit (active_defs_check, regno);
875 #endif
876 active_defs[regno] = def;
881 /* Build the use->def links that we use to update the dataflow info
882 for new uses. Note that building the links is very cheap and if
883 it were done earlier, they could be used to rule out invalid
884 propagations (in addition to what is done in all_uses_available_at).
885 I'm not doing this yet, though. */
887 static void
888 update_df_init (rtx def_insn, rtx insn)
890 #ifdef ENABLE_CHECKING
891 sparseset_clear (active_defs_check);
892 #endif
893 register_active_defs (DF_INSN_USES (def_insn));
894 register_active_defs (DF_INSN_USES (insn));
895 register_active_defs (DF_INSN_EQ_USES (insn));
899 /* Update the USE_DEF_REF array for the given use, using the active definitions
900 in the ACTIVE_DEFS array to match pseudos to their def. */
902 static inline void
903 update_uses (df_ref *use_rec)
905 while (*use_rec)
907 df_ref use = *use_rec++;
908 int regno = DF_REF_REGNO (use);
910 /* Set up the use-def chain. */
911 if (DF_REF_ID (use) >= (int) VEC_length (df_ref, use_def_ref))
912 VEC_safe_grow_cleared (df_ref, heap, use_def_ref,
913 DF_REF_ID (use) + 1);
915 #ifdef ENABLE_CHECKING
916 gcc_assert (sparseset_bit_p (active_defs_check, regno));
917 #endif
918 VEC_replace (df_ref, use_def_ref, DF_REF_ID (use), active_defs[regno]);
923 /* Update the USE_DEF_REF array for the uses in INSN. Only update note
924 uses if NOTES_ONLY is true. */
926 static void
927 update_df (rtx insn, rtx note)
929 struct df_insn_info *insn_info = DF_INSN_INFO_GET (insn);
931 if (note)
933 df_uses_create (&XEXP (note, 0), insn, DF_REF_IN_NOTE);
934 df_notes_rescan (insn);
936 else
938 df_uses_create (&PATTERN (insn), insn, 0);
939 df_insn_rescan (insn);
940 update_uses (DF_INSN_INFO_USES (insn_info));
943 update_uses (DF_INSN_INFO_EQ_USES (insn_info));
947 /* Try substituting NEW into LOC, which originated from forward propagation
948 of USE's value from DEF_INSN. SET_REG_EQUAL says whether we are
949 substituting the whole SET_SRC, so we can set a REG_EQUAL note if the
950 new insn is not recognized. Return whether the substitution was
951 performed. */
953 static bool
954 try_fwprop_subst (df_ref use, rtx *loc, rtx new_rtx, rtx def_insn, bool set_reg_equal)
956 rtx insn = DF_REF_INSN (use);
957 rtx set = single_set (insn);
958 rtx note = NULL_RTX;
959 bool speed = optimize_bb_for_speed_p (BLOCK_FOR_INSN (insn));
960 int old_cost = 0;
961 bool ok;
963 update_df_init (def_insn, insn);
965 /* forward_propagate_subreg may be operating on an instruction with
966 multiple sets. If so, assume the cost of the new instruction is
967 not greater than the old one. */
968 if (set)
969 old_cost = set_src_cost (SET_SRC (set), speed);
970 if (dump_file)
972 fprintf (dump_file, "\nIn insn %d, replacing\n ", INSN_UID (insn));
973 print_inline_rtx (dump_file, *loc, 2);
974 fprintf (dump_file, "\n with ");
975 print_inline_rtx (dump_file, new_rtx, 2);
976 fprintf (dump_file, "\n");
979 validate_unshare_change (insn, loc, new_rtx, true);
980 if (!verify_changes (0))
982 if (dump_file)
983 fprintf (dump_file, "Changes to insn %d not recognized\n",
984 INSN_UID (insn));
985 ok = false;
988 else if (DF_REF_TYPE (use) == DF_REF_REG_USE
989 && set
990 && set_src_cost (SET_SRC (set), speed) > old_cost)
992 if (dump_file)
993 fprintf (dump_file, "Changes to insn %d not profitable\n",
994 INSN_UID (insn));
995 ok = false;
998 else
1000 if (dump_file)
1001 fprintf (dump_file, "Changed insn %d\n", INSN_UID (insn));
1002 ok = true;
1005 if (ok)
1007 confirm_change_group ();
1008 num_changes++;
1010 else
1012 cancel_changes (0);
1014 /* Can also record a simplified value in a REG_EQUAL note,
1015 making a new one if one does not already exist. */
1016 if (set_reg_equal)
1018 if (dump_file)
1019 fprintf (dump_file, " Setting REG_EQUAL note\n");
1021 note = set_unique_reg_note (insn, REG_EQUAL, copy_rtx (new_rtx));
1025 if ((ok || note) && !CONSTANT_P (new_rtx))
1026 update_df (insn, note);
1028 return ok;
1031 /* For the given single_set INSN, containing SRC known to be a
1032 ZERO_EXTEND or SIGN_EXTEND of a register, return true if INSN
1033 is redundant due to the register being set by a LOAD_EXTEND_OP
1034 load from memory. */
1036 static bool
1037 free_load_extend (rtx src, rtx insn)
1039 rtx reg;
1040 df_ref *use_vec;
1041 df_ref use = 0, def;
1043 reg = XEXP (src, 0);
1044 #ifdef LOAD_EXTEND_OP
1045 if (LOAD_EXTEND_OP (GET_MODE (reg)) != GET_CODE (src))
1046 #endif
1047 return false;
1049 for (use_vec = DF_INSN_USES (insn); *use_vec; use_vec++)
1051 use = *use_vec;
1053 if (!DF_REF_IS_ARTIFICIAL (use)
1054 && DF_REF_TYPE (use) == DF_REF_REG_USE
1055 && DF_REF_REG (use) == reg)
1056 break;
1058 if (!use)
1059 return false;
1061 def = get_def_for_use (use);
1062 if (!def)
1063 return false;
1065 if (DF_REF_IS_ARTIFICIAL (def))
1066 return false;
1068 if (NONJUMP_INSN_P (DF_REF_INSN (def)))
1070 rtx patt = PATTERN (DF_REF_INSN (def));
1072 if (GET_CODE (patt) == SET
1073 && GET_CODE (SET_SRC (patt)) == MEM
1074 && rtx_equal_p (SET_DEST (patt), reg))
1075 return true;
1077 return false;
1080 /* If USE is a subreg, see if it can be replaced by a pseudo. */
1082 static bool
1083 forward_propagate_subreg (df_ref use, rtx def_insn, rtx def_set)
1085 rtx use_reg = DF_REF_REG (use);
1086 rtx use_insn, src;
1088 /* Only consider subregs... */
1089 enum machine_mode use_mode = GET_MODE (use_reg);
1090 if (GET_CODE (use_reg) != SUBREG
1091 || !REG_P (SET_DEST (def_set)))
1092 return false;
1094 /* If this is a paradoxical SUBREG... */
1095 if (GET_MODE_SIZE (use_mode)
1096 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (use_reg))))
1098 /* If this is a paradoxical SUBREG, we have no idea what value the
1099 extra bits would have. However, if the operand is equivalent to
1100 a SUBREG whose operand is the same as our mode, and all the modes
1101 are within a word, we can just use the inner operand because
1102 these SUBREGs just say how to treat the register. */
1103 use_insn = DF_REF_INSN (use);
1104 src = SET_SRC (def_set);
1105 if (GET_CODE (src) == SUBREG
1106 && REG_P (SUBREG_REG (src))
1107 && REGNO (SUBREG_REG (src)) >= FIRST_PSEUDO_REGISTER
1108 && GET_MODE (SUBREG_REG (src)) == use_mode
1109 && subreg_lowpart_p (src)
1110 && all_uses_available_at (def_insn, use_insn))
1111 return try_fwprop_subst (use, DF_REF_LOC (use), SUBREG_REG (src),
1112 def_insn, false);
1115 /* If this is a SUBREG of a ZERO_EXTEND or SIGN_EXTEND, and the SUBREG
1116 is the low part of the reg being extended then just use the inner
1117 operand. Don't do this if the ZERO_EXTEND or SIGN_EXTEND insn will
1118 be removed due to it matching a LOAD_EXTEND_OP load from memory,
1119 or due to the operation being a no-op when applied to registers.
1120 For example, if we have:
1122 A: (set (reg:DI X) (sign_extend:DI (reg:SI Y)))
1123 B: (... (subreg:SI (reg:DI X)) ...)
1125 and mode_rep_extended says that Y is already sign-extended,
1126 the backend will typically allow A to be combined with the
1127 definition of Y or, failing that, allow A to be deleted after
1128 reload through register tying. Introducing more uses of Y
1129 prevents both optimisations. */
1130 else if (subreg_lowpart_p (use_reg))
1132 use_insn = DF_REF_INSN (use);
1133 src = SET_SRC (def_set);
1134 if ((GET_CODE (src) == ZERO_EXTEND
1135 || GET_CODE (src) == SIGN_EXTEND)
1136 && REG_P (XEXP (src, 0))
1137 && REGNO (XEXP (src, 0)) >= FIRST_PSEUDO_REGISTER
1138 && GET_MODE (XEXP (src, 0)) == use_mode
1139 && !free_load_extend (src, def_insn)
1140 && (targetm.mode_rep_extended (use_mode, GET_MODE (src))
1141 != (int) GET_CODE (src))
1142 && all_uses_available_at (def_insn, use_insn))
1143 return try_fwprop_subst (use, DF_REF_LOC (use), XEXP (src, 0),
1144 def_insn, false);
1147 return false;
1150 /* Try to replace USE with SRC (defined in DEF_INSN) in __asm. */
1152 static bool
1153 forward_propagate_asm (df_ref use, rtx def_insn, rtx def_set, rtx reg)
1155 rtx use_insn = DF_REF_INSN (use), src, use_pat, asm_operands, new_rtx, *loc;
1156 int speed_p, i;
1157 df_ref *use_vec;
1159 gcc_assert ((DF_REF_FLAGS (use) & DF_REF_IN_NOTE) == 0);
1161 src = SET_SRC (def_set);
1162 use_pat = PATTERN (use_insn);
1164 /* In __asm don't replace if src might need more registers than
1165 reg, as that could increase register pressure on the __asm. */
1166 use_vec = DF_INSN_USES (def_insn);
1167 if (use_vec[0] && use_vec[1])
1168 return false;
1170 update_df_init (def_insn, use_insn);
1171 speed_p = optimize_bb_for_speed_p (BLOCK_FOR_INSN (use_insn));
1172 asm_operands = NULL_RTX;
1173 switch (GET_CODE (use_pat))
1175 case ASM_OPERANDS:
1176 asm_operands = use_pat;
1177 break;
1178 case SET:
1179 if (MEM_P (SET_DEST (use_pat)))
1181 loc = &SET_DEST (use_pat);
1182 new_rtx = propagate_rtx (*loc, GET_MODE (*loc), reg, src, speed_p);
1183 if (new_rtx)
1184 validate_unshare_change (use_insn, loc, new_rtx, true);
1186 asm_operands = SET_SRC (use_pat);
1187 break;
1188 case PARALLEL:
1189 for (i = 0; i < XVECLEN (use_pat, 0); i++)
1190 if (GET_CODE (XVECEXP (use_pat, 0, i)) == SET)
1192 if (MEM_P (SET_DEST (XVECEXP (use_pat, 0, i))))
1194 loc = &SET_DEST (XVECEXP (use_pat, 0, i));
1195 new_rtx = propagate_rtx (*loc, GET_MODE (*loc), reg,
1196 src, speed_p);
1197 if (new_rtx)
1198 validate_unshare_change (use_insn, loc, new_rtx, true);
1200 asm_operands = SET_SRC (XVECEXP (use_pat, 0, i));
1202 else if (GET_CODE (XVECEXP (use_pat, 0, i)) == ASM_OPERANDS)
1203 asm_operands = XVECEXP (use_pat, 0, i);
1204 break;
1205 default:
1206 gcc_unreachable ();
1209 gcc_assert (asm_operands && GET_CODE (asm_operands) == ASM_OPERANDS);
1210 for (i = 0; i < ASM_OPERANDS_INPUT_LENGTH (asm_operands); i++)
1212 loc = &ASM_OPERANDS_INPUT (asm_operands, i);
1213 new_rtx = propagate_rtx (*loc, GET_MODE (*loc), reg, src, speed_p);
1214 if (new_rtx)
1215 validate_unshare_change (use_insn, loc, new_rtx, true);
1218 if (num_changes_pending () == 0 || !apply_change_group ())
1219 return false;
1221 update_df (use_insn, NULL);
1222 num_changes++;
1223 return true;
1226 /* Try to replace USE with SRC (defined in DEF_INSN) and simplify the
1227 result. */
1229 static bool
1230 forward_propagate_and_simplify (df_ref use, rtx def_insn, rtx def_set)
1232 rtx use_insn = DF_REF_INSN (use);
1233 rtx use_set = single_set (use_insn);
1234 rtx src, reg, new_rtx, *loc;
1235 bool set_reg_equal;
1236 enum machine_mode mode;
1237 int asm_use = -1;
1239 if (INSN_CODE (use_insn) < 0)
1240 asm_use = asm_noperands (PATTERN (use_insn));
1242 if (!use_set && asm_use < 0 && !DEBUG_INSN_P (use_insn))
1243 return false;
1245 /* Do not propagate into PC, CC0, etc. */
1246 if (use_set && GET_MODE (SET_DEST (use_set)) == VOIDmode)
1247 return false;
1249 /* If def and use are subreg, check if they match. */
1250 reg = DF_REF_REG (use);
1251 if (GET_CODE (reg) == SUBREG && GET_CODE (SET_DEST (def_set)) == SUBREG)
1253 if (SUBREG_BYTE (SET_DEST (def_set)) != SUBREG_BYTE (reg))
1254 return false;
1256 /* Check if the def had a subreg, but the use has the whole reg. */
1257 else if (REG_P (reg) && GET_CODE (SET_DEST (def_set)) == SUBREG)
1258 return false;
1259 /* Check if the use has a subreg, but the def had the whole reg. Unlike the
1260 previous case, the optimization is possible and often useful indeed. */
1261 else if (GET_CODE (reg) == SUBREG && REG_P (SET_DEST (def_set)))
1262 reg = SUBREG_REG (reg);
1264 /* Make sure that we can treat REG as having the same mode as the
1265 source of DEF_SET. */
1266 if (GET_MODE (SET_DEST (def_set)) != GET_MODE (reg))
1267 return false;
1269 /* Check if the substitution is valid (last, because it's the most
1270 expensive check!). */
1271 src = SET_SRC (def_set);
1272 if (!CONSTANT_P (src) && !all_uses_available_at (def_insn, use_insn))
1273 return false;
1275 /* Check if the def is loading something from the constant pool; in this
1276 case we would undo optimization such as compress_float_constant.
1277 Still, we can set a REG_EQUAL note. */
1278 if (MEM_P (src) && MEM_READONLY_P (src))
1280 rtx x = avoid_constant_pool_reference (src);
1281 if (x != src && use_set)
1283 rtx note = find_reg_note (use_insn, REG_EQUAL, NULL_RTX);
1284 rtx old_rtx = note ? XEXP (note, 0) : SET_SRC (use_set);
1285 rtx new_rtx = simplify_replace_rtx (old_rtx, src, x);
1286 if (old_rtx != new_rtx)
1287 set_unique_reg_note (use_insn, REG_EQUAL, copy_rtx (new_rtx));
1289 return false;
1292 if (asm_use >= 0)
1293 return forward_propagate_asm (use, def_insn, def_set, reg);
1295 /* Else try simplifying. */
1297 if (DF_REF_TYPE (use) == DF_REF_REG_MEM_STORE)
1299 loc = &SET_DEST (use_set);
1300 set_reg_equal = false;
1302 else if (!use_set)
1304 loc = &INSN_VAR_LOCATION_LOC (use_insn);
1305 set_reg_equal = false;
1307 else
1309 rtx note = find_reg_note (use_insn, REG_EQUAL, NULL_RTX);
1310 if (DF_REF_FLAGS (use) & DF_REF_IN_NOTE)
1311 loc = &XEXP (note, 0);
1312 else
1313 loc = &SET_SRC (use_set);
1315 /* Do not replace an existing REG_EQUAL note if the insn is not
1316 recognized. Either we're already replacing in the note, or we'll
1317 separately try plugging the definition in the note and simplifying.
1318 And only install a REQ_EQUAL note when the destination is a REG,
1319 as the note would be invalid otherwise. */
1320 set_reg_equal = (note == NULL_RTX && REG_P (SET_DEST (use_set)));
1323 if (GET_MODE (*loc) == VOIDmode)
1324 mode = GET_MODE (SET_DEST (use_set));
1325 else
1326 mode = GET_MODE (*loc);
1328 new_rtx = propagate_rtx (*loc, mode, reg, src,
1329 optimize_bb_for_speed_p (BLOCK_FOR_INSN (use_insn)));
1331 if (!new_rtx)
1332 return false;
1334 return try_fwprop_subst (use, loc, new_rtx, def_insn, set_reg_equal);
1338 /* Given a use USE of an insn, if it has a single reaching
1339 definition, try to forward propagate it into that insn.
1340 Return true if cfg cleanup will be needed. */
1342 static bool
1343 forward_propagate_into (df_ref use)
1345 df_ref def;
1346 rtx def_insn, def_set, use_insn;
1347 rtx parent;
1349 if (DF_REF_FLAGS (use) & DF_REF_READ_WRITE)
1350 return false;
1351 if (DF_REF_IS_ARTIFICIAL (use))
1352 return false;
1354 /* Only consider uses that have a single definition. */
1355 def = get_def_for_use (use);
1356 if (!def)
1357 return false;
1358 if (DF_REF_FLAGS (def) & DF_REF_READ_WRITE)
1359 return false;
1360 if (DF_REF_IS_ARTIFICIAL (def))
1361 return false;
1363 /* Do not propagate loop invariant definitions inside the loop. */
1364 if (DF_REF_BB (def)->loop_father != DF_REF_BB (use)->loop_father)
1365 return false;
1367 /* Check if the use is still present in the insn! */
1368 use_insn = DF_REF_INSN (use);
1369 if (DF_REF_FLAGS (use) & DF_REF_IN_NOTE)
1370 parent = find_reg_note (use_insn, REG_EQUAL, NULL_RTX);
1371 else
1372 parent = PATTERN (use_insn);
1374 if (!reg_mentioned_p (DF_REF_REG (use), parent))
1375 return false;
1377 def_insn = DF_REF_INSN (def);
1378 if (multiple_sets (def_insn))
1379 return false;
1380 def_set = single_set (def_insn);
1381 if (!def_set)
1382 return false;
1384 /* Only try one kind of propagation. If two are possible, we'll
1385 do it on the following iterations. */
1386 if (forward_propagate_and_simplify (use, def_insn, def_set)
1387 || forward_propagate_subreg (use, def_insn, def_set))
1389 if (cfun->can_throw_non_call_exceptions
1390 && find_reg_note (use_insn, REG_EH_REGION, NULL_RTX)
1391 && purge_dead_edges (DF_REF_BB (use)))
1392 return true;
1394 return false;
1398 static void
1399 fwprop_init (void)
1401 num_changes = 0;
1402 calculate_dominance_info (CDI_DOMINATORS);
1404 /* We do not always want to propagate into loops, so we have to find
1405 loops and be careful about them. But we have to call flow_loops_find
1406 before df_analyze, because flow_loops_find may introduce new jump
1407 insns (sadly) if we are not working in cfglayout mode. */
1408 loop_optimizer_init (0);
1410 build_single_def_use_links ();
1411 df_set_flags (DF_DEFER_INSN_RESCAN);
1413 active_defs = XNEWVEC (df_ref, max_reg_num ());
1414 #ifdef ENABLE_CHECKING
1415 active_defs_check = sparseset_alloc (max_reg_num ());
1416 #endif
1419 static void
1420 fwprop_done (void)
1422 loop_optimizer_finalize ();
1424 VEC_free (df_ref, heap, use_def_ref);
1425 free (active_defs);
1426 #ifdef ENABLE_CHECKING
1427 sparseset_free (active_defs_check);
1428 #endif
1430 free_dominance_info (CDI_DOMINATORS);
1431 cleanup_cfg (0);
1432 delete_trivially_dead_insns (get_insns (), max_reg_num ());
1434 if (dump_file)
1435 fprintf (dump_file,
1436 "\nNumber of successful forward propagations: %d\n\n",
1437 num_changes);
1441 /* Main entry point. */
1443 static bool
1444 gate_fwprop (void)
1446 return optimize > 0 && flag_forward_propagate;
1449 static unsigned int
1450 fwprop (void)
1452 unsigned i;
1453 bool need_cleanup = false;
1455 fwprop_init ();
1457 /* Go through all the uses. df_uses_create will create new ones at the
1458 end, and we'll go through them as well.
1460 Do not forward propagate addresses into loops until after unrolling.
1461 CSE did so because it was able to fix its own mess, but we are not. */
1463 for (i = 0; i < DF_USES_TABLE_SIZE (); i++)
1465 df_ref use = DF_USES_GET (i);
1466 if (use)
1467 if (DF_REF_TYPE (use) == DF_REF_REG_USE
1468 || DF_REF_BB (use)->loop_father == NULL
1469 /* The outer most loop is not really a loop. */
1470 || loop_outer (DF_REF_BB (use)->loop_father) == NULL)
1471 need_cleanup |= forward_propagate_into (use);
1474 fwprop_done ();
1475 if (need_cleanup)
1476 cleanup_cfg (0);
1477 return 0;
1480 struct rtl_opt_pass pass_rtl_fwprop =
1483 RTL_PASS,
1484 "fwprop1", /* name */
1485 gate_fwprop, /* gate */
1486 fwprop, /* execute */
1487 NULL, /* sub */
1488 NULL, /* next */
1489 0, /* static_pass_number */
1490 TV_FWPROP, /* tv_id */
1491 0, /* properties_required */
1492 0, /* properties_provided */
1493 0, /* properties_destroyed */
1494 0, /* todo_flags_start */
1495 TODO_df_finish
1496 | TODO_verify_flow
1497 | TODO_verify_rtl_sharing /* todo_flags_finish */
1501 static unsigned int
1502 fwprop_addr (void)
1504 unsigned i;
1505 bool need_cleanup = false;
1507 fwprop_init ();
1509 /* Go through all the uses. df_uses_create will create new ones at the
1510 end, and we'll go through them as well. */
1511 for (i = 0; i < DF_USES_TABLE_SIZE (); i++)
1513 df_ref use = DF_USES_GET (i);
1514 if (use)
1515 if (DF_REF_TYPE (use) != DF_REF_REG_USE
1516 && DF_REF_BB (use)->loop_father != NULL
1517 /* The outer most loop is not really a loop. */
1518 && loop_outer (DF_REF_BB (use)->loop_father) != NULL)
1519 need_cleanup |= forward_propagate_into (use);
1522 fwprop_done ();
1524 if (need_cleanup)
1525 cleanup_cfg (0);
1526 return 0;
1529 struct rtl_opt_pass pass_rtl_fwprop_addr =
1532 RTL_PASS,
1533 "fwprop2", /* name */
1534 gate_fwprop, /* gate */
1535 fwprop_addr, /* execute */
1536 NULL, /* sub */
1537 NULL, /* next */
1538 0, /* static_pass_number */
1539 TV_FWPROP, /* tv_id */
1540 0, /* properties_required */
1541 0, /* properties_provided */
1542 0, /* properties_destroyed */
1543 0, /* todo_flags_start */
1544 TODO_df_finish | TODO_verify_rtl_sharing /* todo_flags_finish */