RISC-V: Adjust scalar_to_vec cost
[official-gcc.git] / gcc / ifcvt.cc
blob58ed42673e5b655705db552315cfcf9dfb87120e
1 /* If-conversion support.
2 Copyright (C) 2000-2024 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it
7 under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3, or (at your option)
9 any later version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
13 or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
14 License for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "backend.h"
24 #include "target.h"
25 #include "rtl.h"
26 #include "tree.h"
27 #include "cfghooks.h"
28 #include "df.h"
29 #include "memmodel.h"
30 #include "tm_p.h"
31 #include "expmed.h"
32 #include "optabs.h"
33 #include "regs.h"
34 #include "emit-rtl.h"
35 #include "recog.h"
37 #include "cfgrtl.h"
38 #include "cfganal.h"
39 #include "cfgcleanup.h"
40 #include "expr.h"
41 #include "output.h"
42 #include "cfgloop.h"
43 #include "tree-pass.h"
44 #include "dbgcnt.h"
45 #include "shrink-wrap.h"
46 #include "rtl-iter.h"
47 #include "ifcvt.h"
49 #ifndef MAX_CONDITIONAL_EXECUTE
50 #define MAX_CONDITIONAL_EXECUTE \
51 (BRANCH_COST (optimize_function_for_speed_p (cfun), false) \
52 + 1)
53 #endif
55 #define IFCVT_MULTIPLE_DUMPS 1
57 #define NULL_BLOCK ((basic_block) NULL)
59 /* True if after combine pass. */
60 static bool ifcvt_after_combine;
62 /* True if the target has the cbranchcc4 optab. */
63 static bool have_cbranchcc4;
65 /* # of IF-THEN or IF-THEN-ELSE blocks we looked at */
66 static int num_possible_if_blocks;
68 /* # of IF-THEN or IF-THEN-ELSE blocks were converted to conditional
69 execution. */
70 static int num_updated_if_blocks;
72 /* # of changes made. */
73 static int num_true_changes;
75 /* Whether conditional execution changes were made. */
76 static bool cond_exec_changed_p;
78 /* Forward references. */
79 static int count_bb_insns (const_basic_block);
80 static bool cheap_bb_rtx_cost_p (const_basic_block, profile_probability, int);
81 static rtx_insn *first_active_insn (basic_block);
82 static rtx_insn *last_active_insn (basic_block, bool);
83 static rtx_insn *find_active_insn_before (basic_block, rtx_insn *);
84 static rtx_insn *find_active_insn_after (basic_block, rtx_insn *);
85 static basic_block block_fallthru (basic_block);
86 static rtx cond_exec_get_condition (rtx_insn *, bool);
87 static rtx noce_get_condition (rtx_insn *, rtx_insn **, bool);
88 static bool noce_operand_ok (const_rtx);
89 static void merge_if_block (ce_if_block *);
90 static bool find_cond_trap (basic_block, edge, edge);
91 static basic_block find_if_header (basic_block, int);
92 static int block_jumps_and_fallthru (basic_block, basic_block);
93 static bool noce_find_if_block (basic_block, edge, edge, int);
94 static bool cond_exec_find_if_block (ce_if_block *);
95 static bool find_if_case_1 (basic_block, edge, edge);
96 static bool find_if_case_2 (basic_block, edge, edge);
97 static bool dead_or_predicable (basic_block, basic_block, basic_block,
98 edge, bool);
99 static void noce_emit_move_insn (rtx, rtx);
100 static rtx_insn *block_has_only_trap (basic_block);
101 static void need_cmov_or_rewire (basic_block, hash_set<rtx_insn *> *,
102 hash_map<rtx_insn *, int> *);
103 static bool noce_convert_multiple_sets_1 (struct noce_if_info *,
104 hash_set<rtx_insn *> *,
105 hash_map<rtx_insn *, int> *,
106 auto_vec<rtx> *,
107 auto_vec<rtx> *,
108 auto_vec<rtx_insn *> *, int *);
110 /* Count the number of non-jump active insns in BB. */
112 static int
113 count_bb_insns (const_basic_block bb)
115 int count = 0;
116 rtx_insn *insn = BB_HEAD (bb);
118 while (1)
120 if (active_insn_p (insn) && !JUMP_P (insn))
121 count++;
123 if (insn == BB_END (bb))
124 break;
125 insn = NEXT_INSN (insn);
128 return count;
131 /* Determine whether the total insn_cost on non-jump insns in
132 basic block BB is less than MAX_COST. This function returns
133 false if the cost of any instruction could not be estimated.
135 The cost of the non-jump insns in BB is scaled by REG_BR_PROB_BASE
136 as those insns are being speculated. MAX_COST is scaled with SCALE
137 plus a small fudge factor. */
139 static bool
140 cheap_bb_rtx_cost_p (const_basic_block bb,
141 profile_probability prob, int max_cost)
143 int count = 0;
144 rtx_insn *insn = BB_HEAD (bb);
145 bool speed = optimize_bb_for_speed_p (bb);
146 int scale = prob.initialized_p () ? prob.to_reg_br_prob_base ()
147 : REG_BR_PROB_BASE;
149 /* Set scale to REG_BR_PROB_BASE to void the identical scaling
150 applied to insn_cost when optimizing for size. Only do
151 this after combine because if-conversion might interfere with
152 passes before combine.
154 Use optimize_function_for_speed_p instead of the pre-defined
155 variable speed to make sure it is set to same value for all
156 basic blocks in one if-conversion transformation. */
157 if (!optimize_function_for_speed_p (cfun) && ifcvt_after_combine)
158 scale = REG_BR_PROB_BASE;
159 /* Our branch probability/scaling factors are just estimates and don't
160 account for cases where we can get speculation for free and other
161 secondary benefits. So we fudge the scale factor to make speculating
162 appear a little more profitable when optimizing for performance. */
163 else
164 scale += REG_BR_PROB_BASE / 8;
167 max_cost *= scale;
169 while (1)
171 if (NONJUMP_INSN_P (insn))
173 int cost = insn_cost (insn, speed) * REG_BR_PROB_BASE;
174 if (cost == 0)
175 return false;
177 /* If this instruction is the load or set of a "stack" register,
178 such as a floating point register on x87, then the cost of
179 speculatively executing this insn may need to include
180 the additional cost of popping its result off of the
181 register stack. Unfortunately, correctly recognizing and
182 accounting for this additional overhead is tricky, so for
183 now we simply prohibit such speculative execution. */
184 #ifdef STACK_REGS
186 rtx set = single_set (insn);
187 if (set && STACK_REG_P (SET_DEST (set)))
188 return false;
190 #endif
192 count += cost;
193 if (count >= max_cost)
194 return false;
196 else if (CALL_P (insn))
197 return false;
199 if (insn == BB_END (bb))
200 break;
201 insn = NEXT_INSN (insn);
204 return true;
207 /* Return the first non-jump active insn in the basic block. */
209 static rtx_insn *
210 first_active_insn (basic_block bb)
212 rtx_insn *insn = BB_HEAD (bb);
214 if (LABEL_P (insn))
216 if (insn == BB_END (bb))
217 return NULL;
218 insn = NEXT_INSN (insn);
221 while (NOTE_P (insn) || DEBUG_INSN_P (insn))
223 if (insn == BB_END (bb))
224 return NULL;
225 insn = NEXT_INSN (insn);
228 if (JUMP_P (insn))
229 return NULL;
231 return insn;
234 /* Return the last non-jump active (non-jump) insn in the basic block. */
236 static rtx_insn *
237 last_active_insn (basic_block bb, bool skip_use_p)
239 rtx_insn *insn = BB_END (bb);
240 rtx_insn *head = BB_HEAD (bb);
242 while (NOTE_P (insn)
243 || JUMP_P (insn)
244 || DEBUG_INSN_P (insn)
245 || (skip_use_p
246 && NONJUMP_INSN_P (insn)
247 && GET_CODE (PATTERN (insn)) == USE))
249 if (insn == head)
250 return NULL;
251 insn = PREV_INSN (insn);
254 if (LABEL_P (insn))
255 return NULL;
257 return insn;
260 /* Return the active insn before INSN inside basic block CURR_BB. */
262 static rtx_insn *
263 find_active_insn_before (basic_block curr_bb, rtx_insn *insn)
265 if (!insn || insn == BB_HEAD (curr_bb))
266 return NULL;
268 while ((insn = PREV_INSN (insn)) != NULL_RTX)
270 if (NONJUMP_INSN_P (insn) || JUMP_P (insn) || CALL_P (insn))
271 break;
273 /* No other active insn all the way to the start of the basic block. */
274 if (insn == BB_HEAD (curr_bb))
275 return NULL;
278 return insn;
281 /* Return the active insn after INSN inside basic block CURR_BB. */
283 static rtx_insn *
284 find_active_insn_after (basic_block curr_bb, rtx_insn *insn)
286 if (!insn || insn == BB_END (curr_bb))
287 return NULL;
289 while ((insn = NEXT_INSN (insn)) != NULL_RTX)
291 if (NONJUMP_INSN_P (insn) || JUMP_P (insn) || CALL_P (insn))
292 break;
294 /* No other active insn all the way to the end of the basic block. */
295 if (insn == BB_END (curr_bb))
296 return NULL;
299 return insn;
302 /* Return the basic block reached by falling though the basic block BB. */
304 static basic_block
305 block_fallthru (basic_block bb)
307 edge e = find_fallthru_edge (bb->succs);
309 return (e) ? e->dest : NULL_BLOCK;
312 /* Return true if RTXs A and B can be safely interchanged. */
314 static bool
315 rtx_interchangeable_p (const_rtx a, const_rtx b)
317 if (!rtx_equal_p (a, b))
318 return false;
320 if (GET_CODE (a) != MEM)
321 return true;
323 /* A dead type-unsafe memory reference is legal, but a live type-unsafe memory
324 reference is not. Interchanging a dead type-unsafe memory reference with
325 a live type-safe one creates a live type-unsafe memory reference, in other
326 words, it makes the program illegal.
327 We check here conservatively whether the two memory references have equal
328 memory attributes. */
330 return mem_attrs_eq_p (get_mem_attrs (a), get_mem_attrs (b));
334 /* Go through a bunch of insns, converting them to conditional
335 execution format if possible. Return TRUE if all of the non-note
336 insns were processed. */
338 static bool
339 cond_exec_process_insns (ce_if_block *ce_info ATTRIBUTE_UNUSED,
340 /* if block information */rtx_insn *start,
341 /* first insn to look at */rtx end,
342 /* last insn to look at */rtx test,
343 /* conditional execution test */profile_probability
344 prob_val,
345 /* probability of branch taken. */bool mod_ok)
347 bool must_be_last = false;
348 rtx_insn *insn;
349 rtx xtest;
350 rtx pattern;
352 if (!start || !end)
353 return false;
355 for (insn = start; ; insn = NEXT_INSN (insn))
357 /* dwarf2out can't cope with conditional prologues. */
358 if (NOTE_P (insn) && NOTE_KIND (insn) == NOTE_INSN_PROLOGUE_END)
359 return false;
361 if (NOTE_P (insn) || DEBUG_INSN_P (insn))
362 goto insn_done;
364 gcc_assert (NONJUMP_INSN_P (insn) || CALL_P (insn));
366 /* dwarf2out can't cope with conditional unwind info. */
367 if (RTX_FRAME_RELATED_P (insn))
368 return false;
370 /* Remove USE insns that get in the way. */
371 if (reload_completed && GET_CODE (PATTERN (insn)) == USE)
373 /* ??? Ug. Actually unlinking the thing is problematic,
374 given what we'd have to coordinate with our callers. */
375 SET_INSN_DELETED (insn);
376 goto insn_done;
379 /* Last insn wasn't last? */
380 if (must_be_last)
381 return false;
383 if (modified_in_p (test, insn))
385 if (!mod_ok)
386 return false;
387 must_be_last = true;
390 /* Now build the conditional form of the instruction. */
391 pattern = PATTERN (insn);
392 xtest = copy_rtx (test);
394 /* If this is already a COND_EXEC, rewrite the test to be an AND of the
395 two conditions. */
396 if (GET_CODE (pattern) == COND_EXEC)
398 if (GET_MODE (xtest) != GET_MODE (COND_EXEC_TEST (pattern)))
399 return false;
401 xtest = gen_rtx_AND (GET_MODE (xtest), xtest,
402 COND_EXEC_TEST (pattern));
403 pattern = COND_EXEC_CODE (pattern);
406 pattern = gen_rtx_COND_EXEC (VOIDmode, xtest, pattern);
408 /* If the machine needs to modify the insn being conditionally executed,
409 say for example to force a constant integer operand into a temp
410 register, do so here. */
411 #ifdef IFCVT_MODIFY_INSN
412 IFCVT_MODIFY_INSN (ce_info, pattern, insn);
413 if (! pattern)
414 return false;
415 #endif
417 validate_change (insn, &PATTERN (insn), pattern, 1);
419 if (CALL_P (insn) && prob_val.initialized_p ())
420 validate_change (insn, &REG_NOTES (insn),
421 gen_rtx_INT_LIST ((machine_mode) REG_BR_PROB,
422 prob_val.to_reg_br_prob_note (),
423 REG_NOTES (insn)), 1);
425 insn_done:
426 if (insn == end)
427 break;
430 return true;
433 /* Return the condition for a jump. Do not do any special processing. */
435 static rtx
436 cond_exec_get_condition (rtx_insn *jump, bool get_reversed = false)
438 rtx test_if, cond;
440 if (any_condjump_p (jump))
441 test_if = SET_SRC (pc_set (jump));
442 else
443 return NULL_RTX;
444 cond = XEXP (test_if, 0);
446 /* If this branches to JUMP_LABEL when the condition is false,
447 reverse the condition. */
448 if (get_reversed
449 || (GET_CODE (XEXP (test_if, 2)) == LABEL_REF
450 && label_ref_label (XEXP (test_if, 2))
451 == JUMP_LABEL (jump)))
453 enum rtx_code rev = reversed_comparison_code (cond, jump);
454 if (rev == UNKNOWN)
455 return NULL_RTX;
457 cond = gen_rtx_fmt_ee (rev, GET_MODE (cond), XEXP (cond, 0),
458 XEXP (cond, 1));
461 return cond;
464 /* Given a simple IF-THEN or IF-THEN-ELSE block, attempt to convert it
465 to conditional execution. Return TRUE if we were successful at
466 converting the block. */
468 static bool
469 cond_exec_process_if_block (ce_if_block * ce_info,
470 /* if block information */bool do_multiple_p)
472 basic_block test_bb = ce_info->test_bb; /* last test block */
473 basic_block then_bb = ce_info->then_bb; /* THEN */
474 basic_block else_bb = ce_info->else_bb; /* ELSE or NULL */
475 rtx test_expr; /* expression in IF_THEN_ELSE that is tested */
476 rtx_insn *then_start; /* first insn in THEN block */
477 rtx_insn *then_end; /* last insn + 1 in THEN block */
478 rtx_insn *else_start = NULL; /* first insn in ELSE block or NULL */
479 rtx_insn *else_end = NULL; /* last insn + 1 in ELSE block */
480 int max; /* max # of insns to convert. */
481 bool then_mod_ok; /* whether conditional mods are ok in THEN */
482 rtx true_expr; /* test for else block insns */
483 rtx false_expr; /* test for then block insns */
484 profile_probability true_prob_val;/* probability of else block */
485 profile_probability false_prob_val;/* probability of then block */
486 rtx_insn *then_last_head = NULL; /* Last match at the head of THEN */
487 rtx_insn *else_last_head = NULL; /* Last match at the head of ELSE */
488 rtx_insn *then_first_tail = NULL; /* First match at the tail of THEN */
489 rtx_insn *else_first_tail = NULL; /* First match at the tail of ELSE */
490 int then_n_insns, else_n_insns, n_insns;
491 enum rtx_code false_code;
492 rtx note;
494 /* If test is comprised of && or || elements, and we've failed at handling
495 all of them together, just use the last test if it is the special case of
496 && elements without an ELSE block. */
497 if (!do_multiple_p && ce_info->num_multiple_test_blocks)
499 if (else_bb || ! ce_info->and_and_p)
500 return false;
502 ce_info->test_bb = test_bb = ce_info->last_test_bb;
503 ce_info->num_multiple_test_blocks = 0;
504 ce_info->num_and_and_blocks = 0;
505 ce_info->num_or_or_blocks = 0;
508 /* Find the conditional jump to the ELSE or JOIN part, and isolate
509 the test. */
510 test_expr = cond_exec_get_condition (BB_END (test_bb));
511 if (! test_expr)
512 return false;
514 /* If the conditional jump is more than just a conditional jump,
515 then we cannot do conditional execution conversion on this block. */
516 if (! onlyjump_p (BB_END (test_bb)))
517 return false;
519 /* Collect the bounds of where we're to search, skipping any labels, jumps
520 and notes at the beginning and end of the block. Then count the total
521 number of insns and see if it is small enough to convert. */
522 then_start = first_active_insn (then_bb);
523 then_end = last_active_insn (then_bb, true);
524 then_n_insns = ce_info->num_then_insns = count_bb_insns (then_bb);
525 n_insns = then_n_insns;
526 max = MAX_CONDITIONAL_EXECUTE;
528 if (else_bb)
530 int n_matching;
532 max *= 2;
533 else_start = first_active_insn (else_bb);
534 else_end = last_active_insn (else_bb, true);
535 else_n_insns = ce_info->num_else_insns = count_bb_insns (else_bb);
536 n_insns += else_n_insns;
538 /* Look for matching sequences at the head and tail of the two blocks,
539 and limit the range of insns to be converted if possible. */
540 n_matching = flow_find_cross_jump (then_bb, else_bb,
541 &then_first_tail, &else_first_tail,
542 NULL);
543 if (then_first_tail == BB_HEAD (then_bb))
544 then_start = then_end = NULL;
545 if (else_first_tail == BB_HEAD (else_bb))
546 else_start = else_end = NULL;
548 if (n_matching > 0)
550 if (then_end)
551 then_end = find_active_insn_before (then_bb, then_first_tail);
552 if (else_end)
553 else_end = find_active_insn_before (else_bb, else_first_tail);
554 n_insns -= 2 * n_matching;
557 if (then_start
558 && else_start
559 && then_n_insns > n_matching
560 && else_n_insns > n_matching)
562 int longest_match = MIN (then_n_insns - n_matching,
563 else_n_insns - n_matching);
564 n_matching
565 = flow_find_head_matching_sequence (then_bb, else_bb,
566 &then_last_head,
567 &else_last_head,
568 longest_match);
570 if (n_matching > 0)
572 rtx_insn *insn;
574 /* We won't pass the insns in the head sequence to
575 cond_exec_process_insns, so we need to test them here
576 to make sure that they don't clobber the condition. */
577 for (insn = BB_HEAD (then_bb);
578 insn != NEXT_INSN (then_last_head);
579 insn = NEXT_INSN (insn))
580 if (!LABEL_P (insn) && !NOTE_P (insn)
581 && !DEBUG_INSN_P (insn)
582 && modified_in_p (test_expr, insn))
583 return false;
586 if (then_last_head == then_end)
587 then_start = then_end = NULL;
588 if (else_last_head == else_end)
589 else_start = else_end = NULL;
591 if (n_matching > 0)
593 if (then_start)
594 then_start = find_active_insn_after (then_bb, then_last_head);
595 if (else_start)
596 else_start = find_active_insn_after (else_bb, else_last_head);
597 n_insns -= 2 * n_matching;
602 if (n_insns > max)
603 return false;
605 /* Map test_expr/test_jump into the appropriate MD tests to use on
606 the conditionally executed code. */
608 true_expr = test_expr;
610 false_code = reversed_comparison_code (true_expr, BB_END (test_bb));
611 if (false_code != UNKNOWN)
612 false_expr = gen_rtx_fmt_ee (false_code, GET_MODE (true_expr),
613 XEXP (true_expr, 0), XEXP (true_expr, 1));
614 else
615 false_expr = NULL_RTX;
617 #ifdef IFCVT_MODIFY_TESTS
618 /* If the machine description needs to modify the tests, such as setting a
619 conditional execution register from a comparison, it can do so here. */
620 IFCVT_MODIFY_TESTS (ce_info, true_expr, false_expr);
622 /* See if the conversion failed. */
623 if (!true_expr || !false_expr)
624 goto fail;
625 #endif
627 note = find_reg_note (BB_END (test_bb), REG_BR_PROB, NULL_RTX);
628 if (note)
630 true_prob_val = profile_probability::from_reg_br_prob_note (XINT (note, 0));
631 false_prob_val = true_prob_val.invert ();
633 else
635 true_prob_val = profile_probability::uninitialized ();
636 false_prob_val = profile_probability::uninitialized ();
639 /* If we have && or || tests, do them here. These tests are in the adjacent
640 blocks after the first block containing the test. */
641 if (ce_info->num_multiple_test_blocks > 0)
643 basic_block bb = test_bb;
644 basic_block last_test_bb = ce_info->last_test_bb;
646 if (! false_expr)
647 goto fail;
651 rtx_insn *start, *end;
652 rtx t, f;
653 enum rtx_code f_code;
655 bb = block_fallthru (bb);
656 start = first_active_insn (bb);
657 end = last_active_insn (bb, true);
658 if (start
659 && ! cond_exec_process_insns (ce_info, start, end, false_expr,
660 false_prob_val, false))
661 goto fail;
663 /* If the conditional jump is more than just a conditional jump, then
664 we cannot do conditional execution conversion on this block. */
665 if (! onlyjump_p (BB_END (bb)))
666 goto fail;
668 /* Find the conditional jump and isolate the test. */
669 t = cond_exec_get_condition (BB_END (bb));
670 if (! t)
671 goto fail;
673 f_code = reversed_comparison_code (t, BB_END (bb));
674 if (f_code == UNKNOWN)
675 goto fail;
677 f = gen_rtx_fmt_ee (f_code, GET_MODE (t), XEXP (t, 0), XEXP (t, 1));
678 if (ce_info->and_and_p)
680 t = gen_rtx_AND (GET_MODE (t), true_expr, t);
681 f = gen_rtx_IOR (GET_MODE (t), false_expr, f);
683 else
685 t = gen_rtx_IOR (GET_MODE (t), true_expr, t);
686 f = gen_rtx_AND (GET_MODE (t), false_expr, f);
689 /* If the machine description needs to modify the tests, such as
690 setting a conditional execution register from a comparison, it can
691 do so here. */
692 #ifdef IFCVT_MODIFY_MULTIPLE_TESTS
693 IFCVT_MODIFY_MULTIPLE_TESTS (ce_info, bb, t, f);
695 /* See if the conversion failed. */
696 if (!t || !f)
697 goto fail;
698 #endif
700 true_expr = t;
701 false_expr = f;
703 while (bb != last_test_bb);
706 /* For IF-THEN-ELSE blocks, we don't allow modifications of the test
707 on then THEN block. */
708 then_mod_ok = (else_bb == NULL_BLOCK);
710 /* Go through the THEN and ELSE blocks converting the insns if possible
711 to conditional execution. */
713 if (then_end
714 && (! false_expr
715 || ! cond_exec_process_insns (ce_info, then_start, then_end,
716 false_expr, false_prob_val,
717 then_mod_ok)))
718 goto fail;
720 if (else_bb && else_end
721 && ! cond_exec_process_insns (ce_info, else_start, else_end,
722 true_expr, true_prob_val, true))
723 goto fail;
725 /* If we cannot apply the changes, fail. Do not go through the normal fail
726 processing, since apply_change_group will call cancel_changes. */
727 if (! apply_change_group ())
729 #ifdef IFCVT_MODIFY_CANCEL
730 /* Cancel any machine dependent changes. */
731 IFCVT_MODIFY_CANCEL (ce_info);
732 #endif
733 return false;
736 #ifdef IFCVT_MODIFY_FINAL
737 /* Do any machine dependent final modifications. */
738 IFCVT_MODIFY_FINAL (ce_info);
739 #endif
741 /* Conversion succeeded. */
742 if (dump_file)
743 fprintf (dump_file, "%d insn%s converted to conditional execution.\n",
744 n_insns, (n_insns == 1) ? " was" : "s were");
746 /* Merge the blocks! If we had matching sequences, make sure to delete one
747 copy at the appropriate location first: delete the copy in the THEN branch
748 for a tail sequence so that the remaining one is executed last for both
749 branches, and delete the copy in the ELSE branch for a head sequence so
750 that the remaining one is executed first for both branches. */
751 if (then_first_tail)
753 rtx_insn *from = then_first_tail;
754 if (!INSN_P (from))
755 from = find_active_insn_after (then_bb, from);
756 delete_insn_chain (from, get_last_bb_insn (then_bb), false);
758 if (else_last_head)
759 delete_insn_chain (first_active_insn (else_bb), else_last_head, false);
761 merge_if_block (ce_info);
762 cond_exec_changed_p = true;
763 return true;
765 fail:
766 #ifdef IFCVT_MODIFY_CANCEL
767 /* Cancel any machine dependent changes. */
768 IFCVT_MODIFY_CANCEL (ce_info);
769 #endif
771 cancel_changes (0);
772 return false;
775 static rtx noce_emit_store_flag (struct noce_if_info *, rtx, bool, int);
776 static bool noce_try_move (struct noce_if_info *);
777 static bool noce_try_ifelse_collapse (struct noce_if_info *);
778 static bool noce_try_store_flag (struct noce_if_info *);
779 static bool noce_try_addcc (struct noce_if_info *);
780 static bool noce_try_store_flag_constants (struct noce_if_info *);
781 static bool noce_try_store_flag_mask (struct noce_if_info *);
782 static rtx noce_emit_cmove (struct noce_if_info *, rtx, enum rtx_code, rtx,
783 rtx, rtx, rtx, rtx = NULL, rtx = NULL);
784 static bool noce_try_cmove (struct noce_if_info *);
785 static bool noce_try_cmove_arith (struct noce_if_info *);
786 static rtx noce_get_alt_condition (struct noce_if_info *, rtx, rtx_insn **);
787 static bool noce_try_minmax (struct noce_if_info *);
788 static bool noce_try_abs (struct noce_if_info *);
789 static bool noce_try_sign_mask (struct noce_if_info *);
790 static int noce_try_cond_zero_arith (struct noce_if_info *);
792 /* Return the comparison code for reversed condition for IF_INFO,
793 or UNKNOWN if reversing the condition is not possible. */
795 static inline enum rtx_code
796 noce_reversed_cond_code (struct noce_if_info *if_info)
798 if (if_info->rev_cond)
799 return GET_CODE (if_info->rev_cond);
800 return reversed_comparison_code (if_info->cond, if_info->jump);
803 /* Return true if SEQ is a good candidate as a replacement for the
804 if-convertible sequence described in IF_INFO.
805 This is the default implementation that targets can override
806 through a target hook. */
808 bool
809 default_noce_conversion_profitable_p (rtx_insn *seq,
810 struct noce_if_info *if_info)
812 bool speed_p = if_info->speed_p;
814 /* Cost up the new sequence. */
815 unsigned int cost = seq_cost (seq, speed_p);
817 if (cost <= if_info->original_cost)
818 return true;
820 /* When compiling for size, we can make a reasonably accurately guess
821 at the size growth. When compiling for speed, use the maximum. */
822 return speed_p && cost <= if_info->max_seq_cost;
825 /* Helper function for noce_try_store_flag*. */
827 static rtx
828 noce_emit_store_flag (struct noce_if_info *if_info, rtx x, bool reversep,
829 int normalize)
831 rtx cond = if_info->cond;
832 bool cond_complex;
833 enum rtx_code code;
835 cond_complex = (! general_operand (XEXP (cond, 0), VOIDmode)
836 || ! general_operand (XEXP (cond, 1), VOIDmode));
838 /* If earliest == jump, or when the condition is complex, try to
839 build the store_flag insn directly. */
841 if (cond_complex)
843 rtx set = pc_set (if_info->jump);
844 cond = XEXP (SET_SRC (set), 0);
845 if (GET_CODE (XEXP (SET_SRC (set), 2)) == LABEL_REF
846 && label_ref_label (XEXP (SET_SRC (set), 2)) == JUMP_LABEL (if_info->jump))
847 reversep = !reversep;
848 if (if_info->then_else_reversed)
849 reversep = !reversep;
851 else if (reversep
852 && if_info->rev_cond
853 && general_operand (XEXP (if_info->rev_cond, 0), VOIDmode)
854 && general_operand (XEXP (if_info->rev_cond, 1), VOIDmode))
856 cond = if_info->rev_cond;
857 reversep = false;
860 if (reversep)
861 code = reversed_comparison_code (cond, if_info->jump);
862 else
863 code = GET_CODE (cond);
865 if ((if_info->cond_earliest == if_info->jump || cond_complex)
866 && (normalize == 0 || STORE_FLAG_VALUE == normalize))
868 rtx src = gen_rtx_fmt_ee (code, GET_MODE (x), XEXP (cond, 0),
869 XEXP (cond, 1));
870 rtx set = gen_rtx_SET (x, src);
872 start_sequence ();
873 rtx_insn *insn = emit_insn (set);
875 if (recog_memoized (insn) >= 0)
877 rtx_insn *seq = get_insns ();
878 end_sequence ();
879 emit_insn (seq);
881 if_info->cond_earliest = if_info->jump;
883 return x;
886 end_sequence ();
889 /* Don't even try if the comparison operands or the mode of X are weird. */
890 if (cond_complex || !SCALAR_INT_MODE_P (GET_MODE (x)))
891 return NULL_RTX;
893 return emit_store_flag (x, code, XEXP (cond, 0),
894 XEXP (cond, 1), VOIDmode,
895 (code == LTU || code == LEU
896 || code == GEU || code == GTU), normalize);
899 /* Return true if X can be safely forced into a register by copy_to_mode_reg
900 / force_operand. */
902 static bool
903 noce_can_force_operand (rtx x)
905 if (general_operand (x, VOIDmode))
906 return true;
907 if (SUBREG_P (x))
909 if (!noce_can_force_operand (SUBREG_REG (x)))
910 return false;
911 return true;
913 if (ARITHMETIC_P (x))
915 if (!noce_can_force_operand (XEXP (x, 0))
916 || !noce_can_force_operand (XEXP (x, 1)))
917 return false;
918 switch (GET_CODE (x))
920 case MULT:
921 case DIV:
922 case MOD:
923 case UDIV:
924 case UMOD:
925 return true;
926 default:
927 return code_to_optab (GET_CODE (x));
930 if (UNARY_P (x))
932 if (!noce_can_force_operand (XEXP (x, 0)))
933 return false;
934 switch (GET_CODE (x))
936 case ZERO_EXTEND:
937 case SIGN_EXTEND:
938 case TRUNCATE:
939 case FLOAT_EXTEND:
940 case FLOAT_TRUNCATE:
941 case FIX:
942 case UNSIGNED_FIX:
943 case FLOAT:
944 case UNSIGNED_FLOAT:
945 return true;
946 default:
947 return code_to_optab (GET_CODE (x));
950 return false;
953 /* Emit instruction to move an rtx, possibly into STRICT_LOW_PART.
954 X is the destination/target and Y is the value to copy. */
956 static void
957 noce_emit_move_insn (rtx x, rtx y)
959 machine_mode outmode;
960 rtx outer, inner;
961 poly_int64 bitpos;
963 if (GET_CODE (x) != STRICT_LOW_PART)
965 rtx_insn *seq, *insn;
966 rtx target;
967 optab ot;
969 start_sequence ();
970 /* Check that the SET_SRC is reasonable before calling emit_move_insn,
971 otherwise construct a suitable SET pattern ourselves. */
972 insn = (OBJECT_P (y) || CONSTANT_P (y) || GET_CODE (y) == SUBREG)
973 ? emit_move_insn (x, y)
974 : emit_insn (gen_rtx_SET (x, y));
975 seq = get_insns ();
976 end_sequence ();
978 if (recog_memoized (insn) <= 0)
980 if (GET_CODE (x) == ZERO_EXTRACT)
982 rtx op = XEXP (x, 0);
983 unsigned HOST_WIDE_INT size = INTVAL (XEXP (x, 1));
984 unsigned HOST_WIDE_INT start = INTVAL (XEXP (x, 2));
986 /* store_bit_field expects START to be relative to
987 BYTES_BIG_ENDIAN and adjusts this value for machines with
988 BITS_BIG_ENDIAN != BYTES_BIG_ENDIAN. In order to be able to
989 invoke store_bit_field again it is necessary to have the START
990 value from the first call. */
991 if (BITS_BIG_ENDIAN != BYTES_BIG_ENDIAN)
993 if (MEM_P (op))
994 start = BITS_PER_UNIT - start - size;
995 else
997 gcc_assert (REG_P (op));
998 start = BITS_PER_WORD - start - size;
1002 gcc_assert (start < (MEM_P (op) ? BITS_PER_UNIT : BITS_PER_WORD));
1003 store_bit_field (op, size, start, 0, 0, GET_MODE (x), y, false,
1004 false);
1005 return;
1008 switch (GET_RTX_CLASS (GET_CODE (y)))
1010 case RTX_UNARY:
1011 ot = code_to_optab (GET_CODE (y));
1012 if (ot && noce_can_force_operand (XEXP (y, 0)))
1014 start_sequence ();
1015 target = expand_unop (GET_MODE (y), ot, XEXP (y, 0), x, 0);
1016 if (target != NULL_RTX)
1018 if (target != x)
1019 emit_move_insn (x, target);
1020 seq = get_insns ();
1022 end_sequence ();
1024 break;
1026 case RTX_BIN_ARITH:
1027 case RTX_COMM_ARITH:
1028 ot = code_to_optab (GET_CODE (y));
1029 if (ot
1030 && noce_can_force_operand (XEXP (y, 0))
1031 && noce_can_force_operand (XEXP (y, 1)))
1033 start_sequence ();
1034 target = expand_binop (GET_MODE (y), ot,
1035 XEXP (y, 0), XEXP (y, 1),
1036 x, 0, OPTAB_DIRECT);
1037 if (target != NULL_RTX)
1039 if (target != x)
1040 emit_move_insn (x, target);
1041 seq = get_insns ();
1043 end_sequence ();
1045 break;
1047 default:
1048 break;
1052 emit_insn (seq);
1053 return;
1056 outer = XEXP (x, 0);
1057 inner = XEXP (outer, 0);
1058 outmode = GET_MODE (outer);
1059 bitpos = SUBREG_BYTE (outer) * BITS_PER_UNIT;
1060 store_bit_field (inner, GET_MODE_BITSIZE (outmode), bitpos,
1061 0, 0, outmode, y, false, false);
1064 /* Return the CC reg if it is used in COND. */
1066 static rtx
1067 cc_in_cond (rtx cond)
1069 if (have_cbranchcc4 && cond
1070 && GET_MODE_CLASS (GET_MODE (XEXP (cond, 0))) == MODE_CC)
1071 return XEXP (cond, 0);
1073 return NULL_RTX;
1076 /* Return sequence of instructions generated by if conversion. This
1077 function calls end_sequence() to end the current stream, ensures
1078 that the instructions are unshared, recognizable non-jump insns.
1079 On failure, this function returns a NULL_RTX. */
1081 static rtx_insn *
1082 end_ifcvt_sequence (struct noce_if_info *if_info)
1084 rtx_insn *insn;
1085 rtx_insn *seq = get_insns ();
1086 rtx cc = cc_in_cond (if_info->cond);
1088 set_used_flags (if_info->x);
1089 set_used_flags (if_info->cond);
1090 set_used_flags (if_info->a);
1091 set_used_flags (if_info->b);
1093 for (insn = seq; insn; insn = NEXT_INSN (insn))
1094 set_used_flags (insn);
1096 unshare_all_rtl_in_chain (seq);
1097 end_sequence ();
1099 /* Make sure that all of the instructions emitted are recognizable,
1100 and that we haven't introduced a new jump instruction.
1101 As an exercise for the reader, build a general mechanism that
1102 allows proper placement of required clobbers. */
1103 for (insn = seq; insn; insn = NEXT_INSN (insn))
1104 if (JUMP_P (insn)
1105 || recog_memoized (insn) == -1
1106 /* Make sure new generated code does not clobber CC. */
1107 || (cc && set_of (cc, insn)))
1108 return NULL;
1110 return seq;
1113 /* Return true iff the then and else basic block (if it exists)
1114 consist of a single simple set instruction. */
1116 static bool
1117 noce_simple_bbs (struct noce_if_info *if_info)
1119 if (!if_info->then_simple)
1120 return false;
1122 if (if_info->else_bb)
1123 return if_info->else_simple;
1125 return true;
1128 /* Convert "if (a != b) x = a; else x = b" into "x = a" and
1129 "if (a == b) x = a; else x = b" into "x = b". */
1131 static bool
1132 noce_try_move (struct noce_if_info *if_info)
1134 rtx cond = if_info->cond;
1135 enum rtx_code code = GET_CODE (cond);
1136 rtx y;
1137 rtx_insn *seq;
1139 if (code != NE && code != EQ)
1140 return false;
1142 if (!noce_simple_bbs (if_info))
1143 return false;
1145 /* This optimization isn't valid if either A or B could be a NaN
1146 or a signed zero. */
1147 if (HONOR_NANS (if_info->x)
1148 || HONOR_SIGNED_ZEROS (if_info->x))
1149 return false;
1151 /* Check whether the operands of the comparison are A and in
1152 either order. */
1153 if ((rtx_equal_p (if_info->a, XEXP (cond, 0))
1154 && rtx_equal_p (if_info->b, XEXP (cond, 1)))
1155 || (rtx_equal_p (if_info->a, XEXP (cond, 1))
1156 && rtx_equal_p (if_info->b, XEXP (cond, 0))))
1158 if (!rtx_interchangeable_p (if_info->a, if_info->b))
1159 return false;
1161 y = (code == EQ) ? if_info->a : if_info->b;
1163 /* Avoid generating the move if the source is the destination. */
1164 if (! rtx_equal_p (if_info->x, y))
1166 start_sequence ();
1167 noce_emit_move_insn (if_info->x, y);
1168 seq = end_ifcvt_sequence (if_info);
1169 if (!seq)
1170 return false;
1172 emit_insn_before_setloc (seq, if_info->jump,
1173 INSN_LOCATION (if_info->insn_a));
1175 if_info->transform_name = "noce_try_move";
1176 return true;
1178 return false;
1181 /* Try forming an IF_THEN_ELSE (cond, b, a) and collapsing that
1182 through simplify_rtx. Sometimes that can eliminate the IF_THEN_ELSE.
1183 If that is the case, emit the result into x. */
1185 static bool
1186 noce_try_ifelse_collapse (struct noce_if_info * if_info)
1188 if (!noce_simple_bbs (if_info))
1189 return false;
1191 machine_mode mode = GET_MODE (if_info->x);
1192 rtx if_then_else = simplify_gen_ternary (IF_THEN_ELSE, mode, mode,
1193 if_info->cond, if_info->b,
1194 if_info->a);
1196 if (GET_CODE (if_then_else) == IF_THEN_ELSE)
1197 return false;
1199 rtx_insn *seq;
1200 start_sequence ();
1201 noce_emit_move_insn (if_info->x, if_then_else);
1202 seq = end_ifcvt_sequence (if_info);
1203 if (!seq)
1204 return false;
1206 emit_insn_before_setloc (seq, if_info->jump,
1207 INSN_LOCATION (if_info->insn_a));
1209 if_info->transform_name = "noce_try_ifelse_collapse";
1210 return true;
1214 /* Convert "if (test) x = 1; else x = 0".
1216 Only try 0 and STORE_FLAG_VALUE here. Other combinations will be
1217 tried in noce_try_store_flag_constants after noce_try_cmove has had
1218 a go at the conversion. */
1220 static bool
1221 noce_try_store_flag (struct noce_if_info *if_info)
1223 bool reversep;
1224 rtx target;
1225 rtx_insn *seq;
1227 if (!noce_simple_bbs (if_info))
1228 return false;
1230 if (CONST_INT_P (if_info->b)
1231 && INTVAL (if_info->b) == STORE_FLAG_VALUE
1232 && if_info->a == const0_rtx)
1233 reversep = false;
1234 else if (if_info->b == const0_rtx
1235 && CONST_INT_P (if_info->a)
1236 && INTVAL (if_info->a) == STORE_FLAG_VALUE
1237 && noce_reversed_cond_code (if_info) != UNKNOWN)
1238 reversep = true;
1239 else
1240 return false;
1242 start_sequence ();
1244 target = noce_emit_store_flag (if_info, if_info->x, reversep, 0);
1245 if (target)
1247 if (target != if_info->x)
1248 noce_emit_move_insn (if_info->x, target);
1250 seq = end_ifcvt_sequence (if_info);
1251 if (! seq)
1252 return false;
1254 emit_insn_before_setloc (seq, if_info->jump,
1255 INSN_LOCATION (if_info->insn_a));
1256 if_info->transform_name = "noce_try_store_flag";
1257 return true;
1259 else
1261 end_sequence ();
1262 return false;
1267 /* Convert "if (test) x = -A; else x = A" into
1268 x = A; if (test) x = -x if the machine can do the
1269 conditional negate form of this cheaply.
1270 Try this before noce_try_cmove that will just load the
1271 immediates into two registers and do a conditional select
1272 between them. If the target has a conditional negate or
1273 conditional invert operation we can save a potentially
1274 expensive constant synthesis. */
1276 static bool
1277 noce_try_inverse_constants (struct noce_if_info *if_info)
1279 if (!noce_simple_bbs (if_info))
1280 return false;
1282 if (!CONST_INT_P (if_info->a)
1283 || !CONST_INT_P (if_info->b)
1284 || !REG_P (if_info->x))
1285 return false;
1287 machine_mode mode = GET_MODE (if_info->x);
1289 HOST_WIDE_INT val_a = INTVAL (if_info->a);
1290 HOST_WIDE_INT val_b = INTVAL (if_info->b);
1292 rtx cond = if_info->cond;
1294 rtx x = if_info->x;
1295 rtx target;
1297 start_sequence ();
1299 rtx_code code;
1300 if (val_b != HOST_WIDE_INT_MIN && val_a == -val_b)
1301 code = NEG;
1302 else if (val_a == ~val_b)
1303 code = NOT;
1304 else
1306 end_sequence ();
1307 return false;
1310 rtx tmp = gen_reg_rtx (mode);
1311 noce_emit_move_insn (tmp, if_info->a);
1313 target = emit_conditional_neg_or_complement (x, code, mode, cond, tmp, tmp);
1315 if (target)
1317 rtx_insn *seq = get_insns ();
1319 if (!seq)
1321 end_sequence ();
1322 return false;
1325 if (target != if_info->x)
1326 noce_emit_move_insn (if_info->x, target);
1328 seq = end_ifcvt_sequence (if_info);
1330 if (!seq)
1331 return false;
1333 emit_insn_before_setloc (seq, if_info->jump,
1334 INSN_LOCATION (if_info->insn_a));
1335 if_info->transform_name = "noce_try_inverse_constants";
1336 return true;
1339 end_sequence ();
1340 return false;
1344 /* Convert "if (test) x = a; else x = b", for A and B constant.
1345 Also allow A = y + c1, B = y + c2, with a common y between A
1346 and B. */
1348 static bool
1349 noce_try_store_flag_constants (struct noce_if_info *if_info)
1351 rtx target;
1352 rtx_insn *seq;
1353 bool reversep;
1354 HOST_WIDE_INT itrue, ifalse, diff, tmp;
1355 int normalize;
1356 bool can_reverse;
1357 machine_mode mode = GET_MODE (if_info->x);
1358 rtx common = NULL_RTX;
1360 rtx a = if_info->a;
1361 rtx b = if_info->b;
1363 /* Handle cases like x := test ? y + 3 : y + 4. */
1364 if (GET_CODE (a) == PLUS
1365 && GET_CODE (b) == PLUS
1366 && CONST_INT_P (XEXP (a, 1))
1367 && CONST_INT_P (XEXP (b, 1))
1368 && rtx_equal_p (XEXP (a, 0), XEXP (b, 0))
1369 /* Allow expressions that are not using the result or plain
1370 registers where we handle overlap below. */
1371 && (REG_P (XEXP (a, 0))
1372 || (noce_operand_ok (XEXP (a, 0))
1373 && ! reg_overlap_mentioned_p (if_info->x, XEXP (a, 0)))))
1375 common = XEXP (a, 0);
1376 a = XEXP (a, 1);
1377 b = XEXP (b, 1);
1380 if (!noce_simple_bbs (if_info))
1381 return false;
1383 if (CONST_INT_P (a)
1384 && CONST_INT_P (b))
1386 ifalse = INTVAL (a);
1387 itrue = INTVAL (b);
1388 bool subtract_flag_p = false;
1390 diff = (unsigned HOST_WIDE_INT) itrue - ifalse;
1391 /* Make sure we can represent the difference between the two values. */
1392 if ((diff > 0)
1393 != ((ifalse < 0) != (itrue < 0) ? ifalse < 0 : ifalse < itrue))
1394 return false;
1396 diff = trunc_int_for_mode (diff, mode);
1398 can_reverse = noce_reversed_cond_code (if_info) != UNKNOWN;
1399 reversep = false;
1400 if (diff == STORE_FLAG_VALUE || diff == -STORE_FLAG_VALUE)
1402 normalize = 0;
1403 /* We could collapse these cases but it is easier to follow the
1404 diff/STORE_FLAG_VALUE combinations when they are listed
1405 explicitly. */
1407 /* test ? 3 : 4
1408 => 4 + (test != 0). */
1409 if (diff < 0 && STORE_FLAG_VALUE < 0)
1410 reversep = false;
1411 /* test ? 4 : 3
1412 => can_reverse | 4 + (test == 0)
1413 !can_reverse | 3 - (test != 0). */
1414 else if (diff > 0 && STORE_FLAG_VALUE < 0)
1416 reversep = can_reverse;
1417 subtract_flag_p = !can_reverse;
1418 /* If we need to subtract the flag and we have PLUS-immediate
1419 A and B then it is unlikely to be beneficial to play tricks
1420 here. */
1421 if (subtract_flag_p && common)
1422 return false;
1424 /* test ? 3 : 4
1425 => can_reverse | 3 + (test == 0)
1426 !can_reverse | 4 - (test != 0). */
1427 else if (diff < 0 && STORE_FLAG_VALUE > 0)
1429 reversep = can_reverse;
1430 subtract_flag_p = !can_reverse;
1431 /* If we need to subtract the flag and we have PLUS-immediate
1432 A and B then it is unlikely to be beneficial to play tricks
1433 here. */
1434 if (subtract_flag_p && common)
1435 return false;
1437 /* test ? 4 : 3
1438 => 4 + (test != 0). */
1439 else if (diff > 0 && STORE_FLAG_VALUE > 0)
1440 reversep = false;
1441 else
1442 gcc_unreachable ();
1444 /* Is this (cond) ? 2^n : 0? */
1445 else if (ifalse == 0 && pow2p_hwi (itrue)
1446 && STORE_FLAG_VALUE == 1)
1447 normalize = 1;
1448 /* Is this (cond) ? 0 : 2^n? */
1449 else if (itrue == 0 && pow2p_hwi (ifalse) && can_reverse
1450 && STORE_FLAG_VALUE == 1)
1452 normalize = 1;
1453 reversep = true;
1455 /* Is this (cond) ? -1 : x? */
1456 else if (itrue == -1
1457 && STORE_FLAG_VALUE == -1)
1458 normalize = -1;
1459 /* Is this (cond) ? x : -1? */
1460 else if (ifalse == -1 && can_reverse
1461 && STORE_FLAG_VALUE == -1)
1463 normalize = -1;
1464 reversep = true;
1466 else
1467 return false;
1469 if (reversep)
1471 std::swap (itrue, ifalse);
1472 diff = trunc_int_for_mode (-(unsigned HOST_WIDE_INT) diff, mode);
1475 start_sequence ();
1477 /* If we have x := test ? x + 3 : x + 4 then move the original
1478 x out of the way while we store flags. */
1479 if (common && rtx_equal_p (common, if_info->x))
1481 common = gen_reg_rtx (mode);
1482 noce_emit_move_insn (common, if_info->x);
1485 target = noce_emit_store_flag (if_info, if_info->x, reversep, normalize);
1486 if (! target)
1488 end_sequence ();
1489 return false;
1492 /* if (test) x = 3; else x = 4;
1493 => x = 3 + (test == 0); */
1494 if (diff == STORE_FLAG_VALUE || diff == -STORE_FLAG_VALUE)
1496 /* Add the common part now. This may allow combine to merge this
1497 with the store flag operation earlier into some sort of conditional
1498 increment/decrement if the target allows it. */
1499 if (common)
1500 target = expand_simple_binop (mode, PLUS,
1501 target, common,
1502 target, 0, OPTAB_WIDEN);
1504 /* Always use ifalse here. It should have been swapped with itrue
1505 when appropriate when reversep is true. */
1506 target = expand_simple_binop (mode, subtract_flag_p ? MINUS : PLUS,
1507 gen_int_mode (ifalse, mode), target,
1508 if_info->x, 0, OPTAB_WIDEN);
1510 /* Other cases are not beneficial when the original A and B are PLUS
1511 expressions. */
1512 else if (common)
1514 end_sequence ();
1515 return false;
1517 /* if (test) x = 8; else x = 0;
1518 => x = (test != 0) << 3; */
1519 else if (ifalse == 0 && (tmp = exact_log2 (itrue)) >= 0)
1521 target = expand_simple_binop (mode, ASHIFT,
1522 target, GEN_INT (tmp), if_info->x, 0,
1523 OPTAB_WIDEN);
1526 /* if (test) x = -1; else x = b;
1527 => x = -(test != 0) | b; */
1528 else if (itrue == -1)
1530 target = expand_simple_binop (mode, IOR,
1531 target, gen_int_mode (ifalse, mode),
1532 if_info->x, 0, OPTAB_WIDEN);
1534 else
1536 end_sequence ();
1537 return false;
1540 if (! target)
1542 end_sequence ();
1543 return false;
1546 if (target != if_info->x)
1547 noce_emit_move_insn (if_info->x, target);
1549 seq = end_ifcvt_sequence (if_info);
1550 if (!seq || !targetm.noce_conversion_profitable_p (seq, if_info))
1551 return false;
1553 emit_insn_before_setloc (seq, if_info->jump,
1554 INSN_LOCATION (if_info->insn_a));
1555 if_info->transform_name = "noce_try_store_flag_constants";
1557 return true;
1560 return false;
1563 /* Convert "if (test) foo++" into "foo += (test != 0)", and
1564 similarly for "foo--". */
1566 static bool
1567 noce_try_addcc (struct noce_if_info *if_info)
1569 rtx target;
1570 rtx_insn *seq;
1571 bool subtract;
1572 int normalize;
1574 if (!noce_simple_bbs (if_info))
1575 return false;
1577 if (GET_CODE (if_info->a) == PLUS
1578 && rtx_equal_p (XEXP (if_info->a, 0), if_info->b)
1579 && noce_reversed_cond_code (if_info) != UNKNOWN)
1581 rtx cond = if_info->rev_cond;
1582 enum rtx_code code;
1584 if (cond == NULL_RTX)
1586 cond = if_info->cond;
1587 code = reversed_comparison_code (cond, if_info->jump);
1589 else
1590 code = GET_CODE (cond);
1592 /* First try to use addcc pattern. */
1593 if (general_operand (XEXP (cond, 0), VOIDmode)
1594 && general_operand (XEXP (cond, 1), VOIDmode))
1596 start_sequence ();
1597 target = emit_conditional_add (if_info->x, code,
1598 XEXP (cond, 0),
1599 XEXP (cond, 1),
1600 VOIDmode,
1601 if_info->b,
1602 XEXP (if_info->a, 1),
1603 GET_MODE (if_info->x),
1604 (code == LTU || code == GEU
1605 || code == LEU || code == GTU));
1606 if (target)
1608 if (target != if_info->x)
1609 noce_emit_move_insn (if_info->x, target);
1611 seq = end_ifcvt_sequence (if_info);
1612 if (!seq || !targetm.noce_conversion_profitable_p (seq, if_info))
1613 return false;
1615 emit_insn_before_setloc (seq, if_info->jump,
1616 INSN_LOCATION (if_info->insn_a));
1617 if_info->transform_name = "noce_try_addcc";
1619 return true;
1621 end_sequence ();
1624 /* If that fails, construct conditional increment or decrement using
1625 setcc. We're changing a branch and an increment to a comparison and
1626 an ADD/SUB. */
1627 if (XEXP (if_info->a, 1) == const1_rtx
1628 || XEXP (if_info->a, 1) == constm1_rtx)
1630 start_sequence ();
1631 if (STORE_FLAG_VALUE == INTVAL (XEXP (if_info->a, 1)))
1632 subtract = false, normalize = 0;
1633 else if (-STORE_FLAG_VALUE == INTVAL (XEXP (if_info->a, 1)))
1634 subtract = true, normalize = 0;
1635 else
1636 subtract = false, normalize = INTVAL (XEXP (if_info->a, 1));
1639 target = noce_emit_store_flag (if_info,
1640 gen_reg_rtx (GET_MODE (if_info->x)),
1641 true, normalize);
1643 if (target)
1644 target = expand_simple_binop (GET_MODE (if_info->x),
1645 subtract ? MINUS : PLUS,
1646 if_info->b, target, if_info->x,
1647 0, OPTAB_WIDEN);
1648 if (target)
1650 if (target != if_info->x)
1651 noce_emit_move_insn (if_info->x, target);
1653 seq = end_ifcvt_sequence (if_info);
1654 if (!seq || !targetm.noce_conversion_profitable_p (seq, if_info))
1655 return false;
1657 emit_insn_before_setloc (seq, if_info->jump,
1658 INSN_LOCATION (if_info->insn_a));
1659 if_info->transform_name = "noce_try_addcc";
1660 return true;
1662 end_sequence ();
1666 return false;
1669 /* Convert "if (test) x = 0;" to "x &= -(test == 0);" */
1671 static bool
1672 noce_try_store_flag_mask (struct noce_if_info *if_info)
1674 rtx target;
1675 rtx_insn *seq;
1676 bool reversep;
1678 if (!noce_simple_bbs (if_info))
1679 return false;
1681 reversep = false;
1683 if ((if_info->a == const0_rtx
1684 && (REG_P (if_info->b) || rtx_equal_p (if_info->b, if_info->x)))
1685 || ((reversep = (noce_reversed_cond_code (if_info) != UNKNOWN))
1686 && if_info->b == const0_rtx
1687 && (REG_P (if_info->a) || rtx_equal_p (if_info->a, if_info->x))))
1689 start_sequence ();
1690 target = noce_emit_store_flag (if_info,
1691 gen_reg_rtx (GET_MODE (if_info->x)),
1692 reversep, -1);
1693 if (target)
1694 target = expand_simple_binop (GET_MODE (if_info->x), AND,
1695 reversep ? if_info->a : if_info->b,
1696 target, if_info->x, 0,
1697 OPTAB_WIDEN);
1699 if (target)
1701 if (target != if_info->x)
1702 noce_emit_move_insn (if_info->x, target);
1704 seq = end_ifcvt_sequence (if_info);
1705 if (!seq || !targetm.noce_conversion_profitable_p (seq, if_info))
1706 return false;
1708 emit_insn_before_setloc (seq, if_info->jump,
1709 INSN_LOCATION (if_info->insn_a));
1710 if_info->transform_name = "noce_try_store_flag_mask";
1712 return true;
1715 end_sequence ();
1718 return false;
1721 /* Helper function for noce_try_cmove and noce_try_cmove_arith. */
1723 static rtx
1724 noce_emit_cmove (struct noce_if_info *if_info, rtx x, enum rtx_code code,
1725 rtx cmp_a, rtx cmp_b, rtx vfalse, rtx vtrue, rtx cc_cmp,
1726 rtx rev_cc_cmp)
1728 rtx target ATTRIBUTE_UNUSED;
1729 bool unsignedp ATTRIBUTE_UNUSED;
1731 /* If earliest == jump, try to build the cmove insn directly.
1732 This is helpful when combine has created some complex condition
1733 (like for alpha's cmovlbs) that we can't hope to regenerate
1734 through the normal interface. */
1736 if (if_info->cond_earliest == if_info->jump)
1738 rtx cond = gen_rtx_fmt_ee (code, GET_MODE (if_info->cond), cmp_a, cmp_b);
1739 rtx if_then_else = gen_rtx_IF_THEN_ELSE (GET_MODE (x),
1740 cond, vtrue, vfalse);
1741 rtx set = gen_rtx_SET (x, if_then_else);
1743 start_sequence ();
1744 rtx_insn *insn = emit_insn (set);
1746 if (recog_memoized (insn) >= 0)
1748 rtx_insn *seq = get_insns ();
1749 end_sequence ();
1750 emit_insn (seq);
1752 return x;
1755 end_sequence ();
1758 unsignedp = (code == LTU || code == GEU
1759 || code == LEU || code == GTU);
1761 if (cc_cmp != NULL_RTX && rev_cc_cmp != NULL_RTX)
1762 target = emit_conditional_move (x, cc_cmp, rev_cc_cmp,
1763 vtrue, vfalse, GET_MODE (x));
1764 else
1766 /* Don't even try if the comparison operands are weird
1767 except that the target supports cbranchcc4. */
1768 if (! general_operand (cmp_a, GET_MODE (cmp_a))
1769 || ! general_operand (cmp_b, GET_MODE (cmp_b)))
1771 if (!have_cbranchcc4
1772 || GET_MODE_CLASS (GET_MODE (cmp_a)) != MODE_CC
1773 || cmp_b != const0_rtx)
1774 return NULL_RTX;
1777 target = emit_conditional_move (x, { code, cmp_a, cmp_b, VOIDmode },
1778 vtrue, vfalse, GET_MODE (x),
1779 unsignedp);
1782 if (target)
1783 return target;
1785 /* We might be faced with a situation like:
1787 x = (reg:M TARGET)
1788 vtrue = (subreg:M (reg:N VTRUE) BYTE)
1789 vfalse = (subreg:M (reg:N VFALSE) BYTE)
1791 We can't do a conditional move in mode M, but it's possible that we
1792 could do a conditional move in mode N instead and take a subreg of
1793 the result.
1795 If we can't create new pseudos, though, don't bother. */
1796 if (reload_completed)
1797 return NULL_RTX;
1799 if (GET_CODE (vtrue) == SUBREG && GET_CODE (vfalse) == SUBREG)
1801 rtx reg_vtrue = SUBREG_REG (vtrue);
1802 rtx reg_vfalse = SUBREG_REG (vfalse);
1803 poly_uint64 byte_vtrue = SUBREG_BYTE (vtrue);
1804 poly_uint64 byte_vfalse = SUBREG_BYTE (vfalse);
1805 rtx promoted_target;
1807 if (GET_MODE (reg_vtrue) != GET_MODE (reg_vfalse)
1808 || maybe_ne (byte_vtrue, byte_vfalse)
1809 || (SUBREG_PROMOTED_VAR_P (vtrue)
1810 != SUBREG_PROMOTED_VAR_P (vfalse))
1811 || (SUBREG_PROMOTED_GET (vtrue)
1812 != SUBREG_PROMOTED_GET (vfalse)))
1813 return NULL_RTX;
1815 promoted_target = gen_reg_rtx (GET_MODE (reg_vtrue));
1817 target = emit_conditional_move (promoted_target,
1818 { code, cmp_a, cmp_b, VOIDmode },
1819 reg_vtrue, reg_vfalse,
1820 GET_MODE (reg_vtrue), unsignedp);
1821 /* Nope, couldn't do it in that mode either. */
1822 if (!target)
1823 return NULL_RTX;
1825 target = gen_rtx_SUBREG (GET_MODE (vtrue), promoted_target, byte_vtrue);
1826 SUBREG_PROMOTED_VAR_P (target) = SUBREG_PROMOTED_VAR_P (vtrue);
1827 SUBREG_PROMOTED_SET (target, SUBREG_PROMOTED_GET (vtrue));
1828 emit_move_insn (x, target);
1829 return x;
1831 else
1832 return NULL_RTX;
1835 /* Emit a conditional zero, returning TARGET or NULL_RTX upon failure.
1836 IF_INFO describes the if-conversion scenario under consideration.
1837 CZERO_CODE selects the condition (EQ/NE).
1838 NON_ZERO_OP is the nonzero operand of the conditional move
1839 TARGET is the desired output register. */
1841 static rtx
1842 noce_emit_czero (struct noce_if_info *if_info, enum rtx_code czero_code,
1843 rtx non_zero_op, rtx target)
1845 machine_mode mode = GET_MODE (target);
1846 rtx cond_op0 = XEXP (if_info->cond, 0);
1847 rtx czero_cond
1848 = gen_rtx_fmt_ee (czero_code, GET_MODE (cond_op0), cond_op0, const0_rtx);
1849 rtx if_then_else
1850 = gen_rtx_IF_THEN_ELSE (mode, czero_cond, const0_rtx, non_zero_op);
1851 rtx set = gen_rtx_SET (target, if_then_else);
1853 rtx_insn *insn = make_insn_raw (set);
1855 if (recog_memoized (insn) >= 0)
1857 add_insn (insn);
1858 return target;
1861 return NULL_RTX;
1864 /* Try only simple constants and registers here. More complex cases
1865 are handled in noce_try_cmove_arith after noce_try_store_flag_arith
1866 has had a go at it. */
1868 static bool
1869 noce_try_cmove (struct noce_if_info *if_info)
1871 enum rtx_code code;
1872 rtx target;
1873 rtx_insn *seq;
1875 if (!noce_simple_bbs (if_info))
1876 return false;
1878 if ((CONSTANT_P (if_info->a) || register_operand (if_info->a, VOIDmode))
1879 && (CONSTANT_P (if_info->b) || register_operand (if_info->b, VOIDmode)))
1881 start_sequence ();
1883 code = GET_CODE (if_info->cond);
1884 target = noce_emit_cmove (if_info, if_info->x, code,
1885 XEXP (if_info->cond, 0),
1886 XEXP (if_info->cond, 1),
1887 if_info->a, if_info->b);
1889 if (target)
1891 if (target != if_info->x)
1892 noce_emit_move_insn (if_info->x, target);
1894 seq = end_ifcvt_sequence (if_info);
1895 if (!seq || !targetm.noce_conversion_profitable_p (seq, if_info))
1896 return false;
1898 emit_insn_before_setloc (seq, if_info->jump,
1899 INSN_LOCATION (if_info->insn_a));
1900 if_info->transform_name = "noce_try_cmove";
1902 return true;
1904 /* If both a and b are constants try a last-ditch transformation:
1905 if (test) x = a; else x = b;
1906 => x = (-(test != 0) & (b - a)) + a;
1907 Try this only if the target-specific expansion above has failed.
1908 The target-specific expander may want to generate sequences that
1909 we don't know about, so give them a chance before trying this
1910 approach. */
1911 else if (!targetm.have_conditional_execution ()
1912 && CONST_INT_P (if_info->a) && CONST_INT_P (if_info->b))
1914 machine_mode mode = GET_MODE (if_info->x);
1915 HOST_WIDE_INT ifalse = INTVAL (if_info->a);
1916 HOST_WIDE_INT itrue = INTVAL (if_info->b);
1917 rtx target = noce_emit_store_flag (if_info, if_info->x, false, -1);
1918 if (!target)
1920 end_sequence ();
1921 return false;
1924 HOST_WIDE_INT diff = (unsigned HOST_WIDE_INT) itrue - ifalse;
1925 /* Make sure we can represent the difference
1926 between the two values. */
1927 if ((diff > 0)
1928 != ((ifalse < 0) != (itrue < 0) ? ifalse < 0 : ifalse < itrue))
1930 end_sequence ();
1931 return false;
1934 diff = trunc_int_for_mode (diff, mode);
1935 target = expand_simple_binop (mode, AND,
1936 target, gen_int_mode (diff, mode),
1937 if_info->x, 0, OPTAB_WIDEN);
1938 if (target)
1939 target = expand_simple_binop (mode, PLUS,
1940 target, gen_int_mode (ifalse, mode),
1941 if_info->x, 0, OPTAB_WIDEN);
1942 if (target)
1944 if (target != if_info->x)
1945 noce_emit_move_insn (if_info->x, target);
1947 seq = end_ifcvt_sequence (if_info);
1948 if (!seq || !targetm.noce_conversion_profitable_p (seq, if_info))
1949 return false;
1951 emit_insn_before_setloc (seq, if_info->jump,
1952 INSN_LOCATION (if_info->insn_a));
1953 if_info->transform_name = "noce_try_cmove";
1954 return true;
1956 else
1958 end_sequence ();
1959 return false;
1962 else
1963 end_sequence ();
1966 return false;
1969 /* Return true if X contains a conditional code mode rtx. */
1971 static bool
1972 contains_ccmode_rtx_p (rtx x)
1974 subrtx_iterator::array_type array;
1975 FOR_EACH_SUBRTX (iter, array, x, ALL)
1976 if (GET_MODE_CLASS (GET_MODE (*iter)) == MODE_CC)
1977 return true;
1979 return false;
1982 /* Helper for bb_valid_for_noce_process_p. Validate that
1983 the rtx insn INSN is a single set that does not set
1984 the conditional register CC and is in general valid for
1985 if-conversion. */
1987 static bool
1988 insn_valid_noce_process_p (rtx_insn *insn, rtx cc)
1990 if (!insn
1991 || !NONJUMP_INSN_P (insn)
1992 || (cc && set_of (cc, insn)))
1993 return false;
1995 rtx sset = single_set (insn);
1997 /* Currently support only simple single sets in test_bb. */
1998 if (!sset
1999 || !noce_operand_ok (SET_DEST (sset))
2000 || contains_ccmode_rtx_p (SET_DEST (sset))
2001 || !noce_operand_ok (SET_SRC (sset)))
2002 return false;
2004 return true;
2008 /* Return true iff the registers that the insns in BB_A set do not get
2009 used in BB_B. If TO_RENAME is non-NULL then it is a location that will be
2010 renamed later by the caller and so conflicts on it should be ignored
2011 in this function. */
2013 static bool
2014 bbs_ok_for_cmove_arith (basic_block bb_a, basic_block bb_b, rtx to_rename)
2016 rtx_insn *a_insn;
2017 bitmap bba_sets = BITMAP_ALLOC (&reg_obstack);
2019 df_ref def;
2020 df_ref use;
2022 FOR_BB_INSNS (bb_a, a_insn)
2024 if (!active_insn_p (a_insn))
2025 continue;
2027 rtx sset_a = single_set (a_insn);
2029 if (!sset_a)
2031 BITMAP_FREE (bba_sets);
2032 return false;
2034 /* Record all registers that BB_A sets. */
2035 FOR_EACH_INSN_DEF (def, a_insn)
2036 if (!(to_rename && DF_REF_REG (def) == to_rename))
2037 bitmap_set_bit (bba_sets, DF_REF_REGNO (def));
2040 rtx_insn *b_insn;
2042 FOR_BB_INSNS (bb_b, b_insn)
2044 if (!active_insn_p (b_insn))
2045 continue;
2047 rtx sset_b = single_set (b_insn);
2049 if (!sset_b)
2051 BITMAP_FREE (bba_sets);
2052 return false;
2055 /* Make sure this is a REG and not some instance
2056 of ZERO_EXTRACT or non-paradoxical SUBREG or other dangerous stuff.
2057 If we have a memory destination then we have a pair of simple
2058 basic blocks performing an operation of the form [addr] = c ? a : b.
2059 bb_valid_for_noce_process_p will have ensured that these are
2060 the only stores present. In that case [addr] should be the location
2061 to be renamed. Assert that the callers set this up properly. */
2062 if (MEM_P (SET_DEST (sset_b)))
2063 gcc_assert (rtx_equal_p (SET_DEST (sset_b), to_rename));
2064 else if (!REG_P (SET_DEST (sset_b))
2065 && !paradoxical_subreg_p (SET_DEST (sset_b)))
2067 BITMAP_FREE (bba_sets);
2068 return false;
2071 /* If the insn uses a reg set in BB_A return false. */
2072 FOR_EACH_INSN_USE (use, b_insn)
2074 if (bitmap_bit_p (bba_sets, DF_REF_REGNO (use)))
2076 BITMAP_FREE (bba_sets);
2077 return false;
2083 BITMAP_FREE (bba_sets);
2084 return true;
2087 /* Emit copies of all the active instructions in BB except the last.
2088 This is a helper for noce_try_cmove_arith. */
2090 static void
2091 noce_emit_all_but_last (basic_block bb)
2093 rtx_insn *last = last_active_insn (bb, false);
2094 rtx_insn *insn;
2095 FOR_BB_INSNS (bb, insn)
2097 if (insn != last && active_insn_p (insn))
2099 rtx_insn *to_emit = as_a <rtx_insn *> (copy_rtx (insn));
2101 emit_insn (PATTERN (to_emit));
2106 /* Helper for noce_try_cmove_arith. Emit the pattern TO_EMIT and return
2107 the resulting insn or NULL if it's not a valid insn. */
2109 static rtx_insn *
2110 noce_emit_insn (rtx to_emit)
2112 gcc_assert (to_emit);
2113 rtx_insn *insn = emit_insn (to_emit);
2115 if (recog_memoized (insn) < 0)
2116 return NULL;
2118 return insn;
2121 /* Helper for noce_try_cmove_arith. Emit a copy of the insns up to
2122 and including the penultimate one in BB if it is not simple
2123 (as indicated by SIMPLE). Then emit LAST_INSN as the last
2124 insn in the block. The reason for that is that LAST_INSN may
2125 have been modified by the preparation in noce_try_cmove_arith. */
2127 static bool
2128 noce_emit_bb (rtx last_insn, basic_block bb, bool simple)
2130 if (bb && !simple)
2131 noce_emit_all_but_last (bb);
2133 if (last_insn && !noce_emit_insn (last_insn))
2134 return false;
2136 return true;
2139 /* Try more complex cases involving conditional_move. */
2141 static bool
2142 noce_try_cmove_arith (struct noce_if_info *if_info)
2144 rtx a = if_info->a;
2145 rtx b = if_info->b;
2146 rtx x = if_info->x;
2147 rtx orig_a, orig_b;
2148 rtx_insn *insn_a, *insn_b;
2149 bool a_simple = if_info->then_simple;
2150 bool b_simple = if_info->else_simple;
2151 basic_block then_bb = if_info->then_bb;
2152 basic_block else_bb = if_info->else_bb;
2153 rtx target;
2154 bool is_mem = false;
2155 enum rtx_code code;
2156 rtx cond = if_info->cond;
2157 rtx_insn *ifcvt_seq;
2159 /* A conditional move from two memory sources is equivalent to a
2160 conditional on their addresses followed by a load. Don't do this
2161 early because it'll screw alias analysis. Note that we've
2162 already checked for no side effects. */
2163 if (cse_not_expected
2164 && MEM_P (a) && MEM_P (b)
2165 && MEM_ADDR_SPACE (a) == MEM_ADDR_SPACE (b))
2167 machine_mode address_mode = get_address_mode (a);
2169 a = XEXP (a, 0);
2170 b = XEXP (b, 0);
2171 x = gen_reg_rtx (address_mode);
2172 is_mem = true;
2175 /* ??? We could handle this if we knew that a load from A or B could
2176 not trap or fault. This is also true if we've already loaded
2177 from the address along the path from ENTRY. */
2178 else if (may_trap_or_fault_p (a) || may_trap_or_fault_p (b))
2179 return false;
2181 /* if (test) x = a + b; else x = c - d;
2182 => y = a + b;
2183 x = c - d;
2184 if (test)
2185 x = y;
2188 code = GET_CODE (cond);
2189 insn_a = if_info->insn_a;
2190 insn_b = if_info->insn_b;
2192 machine_mode x_mode = GET_MODE (x);
2194 if (!can_conditionally_move_p (x_mode))
2195 return false;
2197 /* Possibly rearrange operands to make things come out more natural. */
2198 if (noce_reversed_cond_code (if_info) != UNKNOWN)
2200 bool reversep = false;
2201 if (rtx_equal_p (b, x))
2202 reversep = true;
2203 else if (general_operand (b, GET_MODE (b)))
2204 reversep = true;
2206 if (reversep)
2208 if (if_info->rev_cond)
2210 cond = if_info->rev_cond;
2211 code = GET_CODE (cond);
2213 else
2214 code = reversed_comparison_code (cond, if_info->jump);
2215 std::swap (a, b);
2216 std::swap (insn_a, insn_b);
2217 std::swap (a_simple, b_simple);
2218 std::swap (then_bb, else_bb);
2222 if (then_bb && else_bb
2223 && (!bbs_ok_for_cmove_arith (then_bb, else_bb, if_info->orig_x)
2224 || !bbs_ok_for_cmove_arith (else_bb, then_bb, if_info->orig_x)))
2225 return false;
2227 start_sequence ();
2229 /* If one of the blocks is empty then the corresponding B or A value
2230 came from the test block. The non-empty complex block that we will
2231 emit might clobber the register used by B or A, so move it to a pseudo
2232 first. */
2234 rtx tmp_a = NULL_RTX;
2235 rtx tmp_b = NULL_RTX;
2237 if (b_simple || !else_bb)
2238 tmp_b = gen_reg_rtx (x_mode);
2240 if (a_simple || !then_bb)
2241 tmp_a = gen_reg_rtx (x_mode);
2243 orig_a = a;
2244 orig_b = b;
2246 rtx emit_a = NULL_RTX;
2247 rtx emit_b = NULL_RTX;
2248 rtx_insn *tmp_insn = NULL;
2249 bool modified_in_a = false;
2250 bool modified_in_b = false;
2251 /* If either operand is complex, load it into a register first.
2252 The best way to do this is to copy the original insn. In this
2253 way we preserve any clobbers etc that the insn may have had.
2254 This is of course not possible in the IS_MEM case. */
2256 if (! general_operand (a, GET_MODE (a)) || tmp_a)
2259 if (is_mem)
2261 rtx reg = gen_reg_rtx (GET_MODE (a));
2262 emit_a = gen_rtx_SET (reg, a);
2264 else
2266 if (insn_a)
2268 a = tmp_a ? tmp_a : gen_reg_rtx (GET_MODE (a));
2270 rtx_insn *copy_of_a = as_a <rtx_insn *> (copy_rtx (insn_a));
2271 rtx set = single_set (copy_of_a);
2272 SET_DEST (set) = a;
2274 emit_a = PATTERN (copy_of_a);
2276 else
2278 rtx tmp_reg = tmp_a ? tmp_a : gen_reg_rtx (GET_MODE (a));
2279 emit_a = gen_rtx_SET (tmp_reg, a);
2280 a = tmp_reg;
2285 if (! general_operand (b, GET_MODE (b)) || tmp_b)
2287 if (is_mem)
2289 rtx reg = gen_reg_rtx (GET_MODE (b));
2290 emit_b = gen_rtx_SET (reg, b);
2292 else
2294 if (insn_b)
2296 b = tmp_b ? tmp_b : gen_reg_rtx (GET_MODE (b));
2297 rtx_insn *copy_of_b = as_a <rtx_insn *> (copy_rtx (insn_b));
2298 rtx set = single_set (copy_of_b);
2300 SET_DEST (set) = b;
2301 emit_b = PATTERN (copy_of_b);
2303 else
2305 rtx tmp_reg = tmp_b ? tmp_b : gen_reg_rtx (GET_MODE (b));
2306 emit_b = gen_rtx_SET (tmp_reg, b);
2307 b = tmp_reg;
2312 modified_in_a = emit_a != NULL_RTX && modified_in_p (orig_b, emit_a);
2313 if (tmp_b && then_bb)
2315 FOR_BB_INSNS (then_bb, tmp_insn)
2316 /* Don't check inside insn_a. We will have changed it to emit_a
2317 with a destination that doesn't conflict. */
2318 if (!(insn_a && tmp_insn == insn_a)
2319 && modified_in_p (orig_b, tmp_insn))
2321 modified_in_a = true;
2322 break;
2327 modified_in_b = emit_b != NULL_RTX && modified_in_p (orig_a, emit_b);
2328 if (tmp_a && else_bb)
2330 FOR_BB_INSNS (else_bb, tmp_insn)
2331 /* Don't check inside insn_b. We will have changed it to emit_b
2332 with a destination that doesn't conflict. */
2333 if (!(insn_b && tmp_insn == insn_b)
2334 && modified_in_p (orig_a, tmp_insn))
2336 modified_in_b = true;
2337 break;
2341 /* If insn to set up A clobbers any registers B depends on, try to
2342 swap insn that sets up A with the one that sets up B. If even
2343 that doesn't help, punt. */
2344 if (modified_in_a && !modified_in_b)
2346 if (!noce_emit_bb (emit_b, else_bb, b_simple))
2347 goto end_seq_and_fail;
2349 if (!noce_emit_bb (emit_a, then_bb, a_simple))
2350 goto end_seq_and_fail;
2352 else if (!modified_in_a)
2354 if (!noce_emit_bb (emit_a, then_bb, a_simple))
2355 goto end_seq_and_fail;
2357 if (!noce_emit_bb (emit_b, else_bb, b_simple))
2358 goto end_seq_and_fail;
2360 else
2361 goto end_seq_and_fail;
2363 target = noce_emit_cmove (if_info, x, code, XEXP (cond, 0), XEXP (cond, 1),
2364 a, b);
2366 if (! target)
2367 goto end_seq_and_fail;
2369 /* If we're handling a memory for above, emit the load now. */
2370 if (is_mem)
2372 rtx mem = gen_rtx_MEM (GET_MODE (if_info->x), target);
2374 /* Copy over flags as appropriate. */
2375 if (MEM_VOLATILE_P (if_info->a) || MEM_VOLATILE_P (if_info->b))
2376 MEM_VOLATILE_P (mem) = 1;
2377 if (MEM_ALIAS_SET (if_info->a) == MEM_ALIAS_SET (if_info->b))
2378 set_mem_alias_set (mem, MEM_ALIAS_SET (if_info->a));
2379 set_mem_align (mem,
2380 MIN (MEM_ALIGN (if_info->a), MEM_ALIGN (if_info->b)));
2382 gcc_assert (MEM_ADDR_SPACE (if_info->a) == MEM_ADDR_SPACE (if_info->b));
2383 set_mem_addr_space (mem, MEM_ADDR_SPACE (if_info->a));
2385 noce_emit_move_insn (if_info->x, mem);
2387 else if (target != x)
2388 noce_emit_move_insn (x, target);
2390 ifcvt_seq = end_ifcvt_sequence (if_info);
2391 if (!ifcvt_seq || !targetm.noce_conversion_profitable_p (ifcvt_seq, if_info))
2392 return false;
2394 emit_insn_before_setloc (ifcvt_seq, if_info->jump,
2395 INSN_LOCATION (if_info->insn_a));
2396 if_info->transform_name = "noce_try_cmove_arith";
2397 return true;
2399 end_seq_and_fail:
2400 end_sequence ();
2401 return false;
2404 /* For most cases, the simplified condition we found is the best
2405 choice, but this is not the case for the min/max/abs transforms.
2406 For these we wish to know that it is A or B in the condition. */
2408 static rtx
2409 noce_get_alt_condition (struct noce_if_info *if_info, rtx target,
2410 rtx_insn **earliest)
2412 rtx cond, set;
2413 rtx_insn *insn;
2414 bool reverse;
2416 /* If target is already mentioned in the known condition, return it. */
2417 if (reg_mentioned_p (target, if_info->cond))
2419 *earliest = if_info->cond_earliest;
2420 return if_info->cond;
2423 set = pc_set (if_info->jump);
2424 cond = XEXP (SET_SRC (set), 0);
2425 reverse
2426 = GET_CODE (XEXP (SET_SRC (set), 2)) == LABEL_REF
2427 && label_ref_label (XEXP (SET_SRC (set), 2)) == JUMP_LABEL (if_info->jump);
2428 if (if_info->then_else_reversed)
2429 reverse = !reverse;
2431 /* If we're looking for a constant, try to make the conditional
2432 have that constant in it. There are two reasons why it may
2433 not have the constant we want:
2435 1. GCC may have needed to put the constant in a register, because
2436 the target can't compare directly against that constant. For
2437 this case, we look for a SET immediately before the comparison
2438 that puts a constant in that register.
2440 2. GCC may have canonicalized the conditional, for example
2441 replacing "if x < 4" with "if x <= 3". We can undo that (or
2442 make equivalent types of changes) to get the constants we need
2443 if they're off by one in the right direction. */
2445 if (CONST_INT_P (target))
2447 enum rtx_code code = GET_CODE (if_info->cond);
2448 rtx op_a = XEXP (if_info->cond, 0);
2449 rtx op_b = XEXP (if_info->cond, 1);
2450 rtx_insn *prev_insn;
2452 /* First, look to see if we put a constant in a register. */
2453 prev_insn = prev_nonnote_nondebug_insn (if_info->cond_earliest);
2454 if (prev_insn
2455 && BLOCK_FOR_INSN (prev_insn)
2456 == BLOCK_FOR_INSN (if_info->cond_earliest)
2457 && INSN_P (prev_insn)
2458 && GET_CODE (PATTERN (prev_insn)) == SET)
2460 rtx src = find_reg_equal_equiv_note (prev_insn);
2461 if (!src)
2462 src = SET_SRC (PATTERN (prev_insn));
2463 if (CONST_INT_P (src))
2465 if (rtx_equal_p (op_a, SET_DEST (PATTERN (prev_insn))))
2466 op_a = src;
2467 else if (rtx_equal_p (op_b, SET_DEST (PATTERN (prev_insn))))
2468 op_b = src;
2470 if (CONST_INT_P (op_a))
2472 std::swap (op_a, op_b);
2473 code = swap_condition (code);
2478 /* Now, look to see if we can get the right constant by
2479 adjusting the conditional. */
2480 if (CONST_INT_P (op_b))
2482 HOST_WIDE_INT desired_val = INTVAL (target);
2483 HOST_WIDE_INT actual_val = INTVAL (op_b);
2485 switch (code)
2487 case LT:
2488 if (desired_val != HOST_WIDE_INT_MAX
2489 && actual_val == desired_val + 1)
2491 code = LE;
2492 op_b = GEN_INT (desired_val);
2494 break;
2495 case LE:
2496 if (desired_val != HOST_WIDE_INT_MIN
2497 && actual_val == desired_val - 1)
2499 code = LT;
2500 op_b = GEN_INT (desired_val);
2502 break;
2503 case GT:
2504 if (desired_val != HOST_WIDE_INT_MIN
2505 && actual_val == desired_val - 1)
2507 code = GE;
2508 op_b = GEN_INT (desired_val);
2510 break;
2511 case GE:
2512 if (desired_val != HOST_WIDE_INT_MAX
2513 && actual_val == desired_val + 1)
2515 code = GT;
2516 op_b = GEN_INT (desired_val);
2518 break;
2519 default:
2520 break;
2524 /* If we made any changes, generate a new conditional that is
2525 equivalent to what we started with, but has the right
2526 constants in it. */
2527 if (code != GET_CODE (if_info->cond)
2528 || op_a != XEXP (if_info->cond, 0)
2529 || op_b != XEXP (if_info->cond, 1))
2531 cond = gen_rtx_fmt_ee (code, GET_MODE (cond), op_a, op_b);
2532 *earliest = if_info->cond_earliest;
2533 return cond;
2537 cond = canonicalize_condition (if_info->jump, cond, reverse,
2538 earliest, target, have_cbranchcc4, true);
2539 if (! cond || ! reg_mentioned_p (target, cond))
2540 return NULL;
2542 /* We almost certainly searched back to a different place.
2543 Need to re-verify correct lifetimes. */
2545 /* X may not be mentioned in the range (cond_earliest, jump]. */
2546 for (insn = if_info->jump; insn != *earliest; insn = PREV_INSN (insn))
2547 if (INSN_P (insn) && reg_overlap_mentioned_p (if_info->x, PATTERN (insn)))
2548 return NULL;
2550 /* A and B may not be modified in the range [cond_earliest, jump). */
2551 for (insn = *earliest; insn != if_info->jump; insn = NEXT_INSN (insn))
2552 if (INSN_P (insn)
2553 && (modified_in_p (if_info->a, insn)
2554 || modified_in_p (if_info->b, insn)))
2555 return NULL;
2557 return cond;
2560 /* Convert "if (a < b) x = a; else x = b;" to "x = min(a, b);", etc. */
2562 static bool
2563 noce_try_minmax (struct noce_if_info *if_info)
2565 rtx cond, target;
2566 rtx_insn *earliest, *seq;
2567 enum rtx_code code, op;
2568 bool unsignedp;
2570 if (!noce_simple_bbs (if_info))
2571 return false;
2573 /* ??? Reject modes with NaNs or signed zeros since we don't know how
2574 they will be resolved with an SMIN/SMAX. It wouldn't be too hard
2575 to get the target to tell us... */
2576 if (HONOR_SIGNED_ZEROS (if_info->x)
2577 || HONOR_NANS (if_info->x))
2578 return false;
2580 cond = noce_get_alt_condition (if_info, if_info->a, &earliest);
2581 if (!cond)
2582 return false;
2584 /* Verify the condition is of the form we expect, and canonicalize
2585 the comparison code. */
2586 code = GET_CODE (cond);
2587 if (rtx_equal_p (XEXP (cond, 0), if_info->a))
2589 if (! rtx_equal_p (XEXP (cond, 1), if_info->b))
2590 return false;
2592 else if (rtx_equal_p (XEXP (cond, 1), if_info->a))
2594 if (! rtx_equal_p (XEXP (cond, 0), if_info->b))
2595 return false;
2596 code = swap_condition (code);
2598 else
2599 return false;
2601 /* Determine what sort of operation this is. Note that the code is for
2602 a taken branch, so the code->operation mapping appears backwards. */
2603 switch (code)
2605 case LT:
2606 case LE:
2607 case UNLT:
2608 case UNLE:
2609 op = SMAX;
2610 unsignedp = false;
2611 break;
2612 case GT:
2613 case GE:
2614 case UNGT:
2615 case UNGE:
2616 op = SMIN;
2617 unsignedp = false;
2618 break;
2619 case LTU:
2620 case LEU:
2621 op = UMAX;
2622 unsignedp = true;
2623 break;
2624 case GTU:
2625 case GEU:
2626 op = UMIN;
2627 unsignedp = true;
2628 break;
2629 default:
2630 return false;
2633 start_sequence ();
2635 target = expand_simple_binop (GET_MODE (if_info->x), op,
2636 if_info->a, if_info->b,
2637 if_info->x, unsignedp, OPTAB_WIDEN);
2638 if (! target)
2640 end_sequence ();
2641 return false;
2643 if (target != if_info->x)
2644 noce_emit_move_insn (if_info->x, target);
2646 seq = end_ifcvt_sequence (if_info);
2647 if (!seq)
2648 return false;
2650 emit_insn_before_setloc (seq, if_info->jump, INSN_LOCATION (if_info->insn_a));
2651 if_info->cond = cond;
2652 if_info->cond_earliest = earliest;
2653 if_info->rev_cond = NULL_RTX;
2654 if_info->transform_name = "noce_try_minmax";
2656 return true;
2659 /* Convert "if (a < 0) x = -a; else x = a;" to "x = abs(a);",
2660 "if (a < 0) x = ~a; else x = a;" to "x = one_cmpl_abs(a);",
2661 etc. */
2663 static bool
2664 noce_try_abs (struct noce_if_info *if_info)
2666 rtx cond, target, a, b, c;
2667 rtx_insn *earliest, *seq;
2668 bool negate;
2669 bool one_cmpl = false;
2671 if (!noce_simple_bbs (if_info))
2672 return false;
2674 /* Reject modes with signed zeros. */
2675 if (HONOR_SIGNED_ZEROS (if_info->x))
2676 return false;
2678 /* Recognize A and B as constituting an ABS or NABS. The canonical
2679 form is a branch around the negation, taken when the object is the
2680 first operand of a comparison against 0 that evaluates to true. */
2681 a = if_info->a;
2682 b = if_info->b;
2683 if (GET_CODE (a) == NEG && rtx_equal_p (XEXP (a, 0), b))
2684 negate = false;
2685 else if (GET_CODE (b) == NEG && rtx_equal_p (XEXP (b, 0), a))
2687 std::swap (a, b);
2688 negate = true;
2690 else if (GET_CODE (a) == NOT && rtx_equal_p (XEXP (a, 0), b))
2692 negate = false;
2693 one_cmpl = true;
2695 else if (GET_CODE (b) == NOT && rtx_equal_p (XEXP (b, 0), a))
2697 std::swap (a, b);
2698 negate = true;
2699 one_cmpl = true;
2701 else
2702 return false;
2704 cond = noce_get_alt_condition (if_info, b, &earliest);
2705 if (!cond)
2706 return false;
2708 /* Verify the condition is of the form we expect. */
2709 if (rtx_equal_p (XEXP (cond, 0), b))
2710 c = XEXP (cond, 1);
2711 else if (rtx_equal_p (XEXP (cond, 1), b))
2713 c = XEXP (cond, 0);
2714 negate = !negate;
2716 else
2717 return false;
2719 /* Verify that C is zero. Search one step backward for a
2720 REG_EQUAL note or a simple source if necessary. */
2721 if (REG_P (c))
2723 rtx set;
2724 rtx_insn *insn = prev_nonnote_nondebug_insn (earliest);
2725 if (insn
2726 && BLOCK_FOR_INSN (insn) == BLOCK_FOR_INSN (earliest)
2727 && (set = single_set (insn))
2728 && rtx_equal_p (SET_DEST (set), c))
2730 rtx note = find_reg_equal_equiv_note (insn);
2731 if (note)
2732 c = XEXP (note, 0);
2733 else
2734 c = SET_SRC (set);
2736 else
2737 return false;
2739 if (MEM_P (c)
2740 && GET_CODE (XEXP (c, 0)) == SYMBOL_REF
2741 && CONSTANT_POOL_ADDRESS_P (XEXP (c, 0)))
2742 c = get_pool_constant (XEXP (c, 0));
2744 /* Work around funny ideas get_condition has wrt canonicalization.
2745 Note that these rtx constants are known to be CONST_INT, and
2746 therefore imply integer comparisons.
2747 The one_cmpl case is more complicated, as we want to handle
2748 only x < 0 ? ~x : x or x >= 0 ? x : ~x to one_cmpl_abs (x)
2749 and x < 0 ? x : ~x or x >= 0 ? ~x : x to ~one_cmpl_abs (x),
2750 but not other cases (x > -1 is equivalent of x >= 0). */
2751 if (c == constm1_rtx && GET_CODE (cond) == GT)
2753 else if (c == const1_rtx && GET_CODE (cond) == LT)
2755 if (one_cmpl)
2756 return false;
2758 else if (c == CONST0_RTX (GET_MODE (b)))
2760 if (one_cmpl
2761 && GET_CODE (cond) != GE
2762 && GET_CODE (cond) != LT)
2763 return false;
2765 else
2766 return false;
2768 /* Determine what sort of operation this is. */
2769 switch (GET_CODE (cond))
2771 case LT:
2772 case LE:
2773 case UNLT:
2774 case UNLE:
2775 negate = !negate;
2776 break;
2777 case GT:
2778 case GE:
2779 case UNGT:
2780 case UNGE:
2781 break;
2782 default:
2783 return false;
2786 start_sequence ();
2787 if (one_cmpl)
2788 target = expand_one_cmpl_abs_nojump (GET_MODE (if_info->x), b,
2789 if_info->x);
2790 else
2791 target = expand_abs_nojump (GET_MODE (if_info->x), b, if_info->x, 1);
2793 /* ??? It's a quandary whether cmove would be better here, especially
2794 for integers. Perhaps combine will clean things up. */
2795 if (target && negate)
2797 if (one_cmpl)
2798 target = expand_simple_unop (GET_MODE (target), NOT, target,
2799 if_info->x, 0);
2800 else
2801 target = expand_simple_unop (GET_MODE (target), NEG, target,
2802 if_info->x, 0);
2805 if (! target)
2807 end_sequence ();
2808 return false;
2811 if (target != if_info->x)
2812 noce_emit_move_insn (if_info->x, target);
2814 seq = end_ifcvt_sequence (if_info);
2815 if (!seq)
2816 return false;
2818 emit_insn_before_setloc (seq, if_info->jump, INSN_LOCATION (if_info->insn_a));
2819 if_info->cond = cond;
2820 if_info->cond_earliest = earliest;
2821 if_info->rev_cond = NULL_RTX;
2822 if_info->transform_name = "noce_try_abs";
2824 return true;
2827 /* Convert "if (m < 0) x = b; else x = 0;" to "x = (m >> C) & b;". */
2829 static bool
2830 noce_try_sign_mask (struct noce_if_info *if_info)
2832 rtx cond, t, m, c;
2833 rtx_insn *seq;
2834 machine_mode mode;
2835 enum rtx_code code;
2836 bool t_unconditional;
2838 if (!noce_simple_bbs (if_info))
2839 return false;
2841 cond = if_info->cond;
2842 code = GET_CODE (cond);
2843 m = XEXP (cond, 0);
2844 c = XEXP (cond, 1);
2846 t = NULL_RTX;
2847 if (if_info->a == const0_rtx)
2849 if ((code == LT && c == const0_rtx)
2850 || (code == LE && c == constm1_rtx))
2851 t = if_info->b;
2853 else if (if_info->b == const0_rtx)
2855 if ((code == GE && c == const0_rtx)
2856 || (code == GT && c == constm1_rtx))
2857 t = if_info->a;
2860 if (! t || side_effects_p (t))
2861 return false;
2863 /* We currently don't handle different modes. */
2864 mode = GET_MODE (t);
2865 if (GET_MODE (m) != mode)
2866 return false;
2868 /* This is only profitable if T is unconditionally executed/evaluated in the
2869 original insn sequence or T is cheap and can't trap or fault. The former
2870 happens if B is the non-zero (T) value and if INSN_B was taken from
2871 TEST_BB, or there was no INSN_B which can happen for e.g. conditional
2872 stores to memory. For the cost computation use the block TEST_BB where
2873 the evaluation will end up after the transformation. */
2874 t_unconditional
2875 = (t == if_info->b
2876 && (if_info->insn_b == NULL_RTX
2877 || BLOCK_FOR_INSN (if_info->insn_b) == if_info->test_bb));
2878 if (!(t_unconditional
2879 || ((set_src_cost (t, mode, if_info->speed_p)
2880 < COSTS_N_INSNS (2))
2881 && !may_trap_or_fault_p (t))))
2882 return false;
2884 if (!noce_can_force_operand (t))
2885 return false;
2887 start_sequence ();
2888 /* Use emit_store_flag to generate "m < 0 ? -1 : 0" instead of expanding
2889 "(signed) m >> 31" directly. This benefits targets with specialized
2890 insns to obtain the signmask, but still uses ashr_optab otherwise. */
2891 m = emit_store_flag (gen_reg_rtx (mode), LT, m, const0_rtx, mode, 0, -1);
2892 t = m ? expand_binop (mode, and_optab, m, t, NULL_RTX, 0, OPTAB_DIRECT)
2893 : NULL_RTX;
2895 if (!t)
2897 end_sequence ();
2898 return false;
2901 noce_emit_move_insn (if_info->x, t);
2903 seq = end_ifcvt_sequence (if_info);
2904 if (!seq)
2905 return false;
2907 emit_insn_before_setloc (seq, if_info->jump, INSN_LOCATION (if_info->insn_a));
2908 if_info->transform_name = "noce_try_sign_mask";
2910 return true;
2913 /* Check if OP is supported by conditional zero based if conversion,
2914 returning TRUE if satisfied otherwise FALSE.
2916 OP is the operation to check. */
2918 static bool
2919 noce_cond_zero_binary_op_supported (rtx op)
2921 enum rtx_code opcode = GET_CODE (op);
2923 if (opcode == PLUS || opcode == MINUS || opcode == IOR || opcode == XOR
2924 || opcode == ASHIFT || opcode == ASHIFTRT || opcode == LSHIFTRT
2925 || opcode == ROTATE || opcode == ROTATERT || opcode == AND)
2926 return true;
2928 return false;
2931 /* Helper function to return REG itself,
2932 otherwise NULL_RTX for other RTX_CODE. */
2934 static rtx
2935 get_base_reg (rtx exp)
2937 if (REG_P (exp))
2938 return exp;
2940 return NULL_RTX;
2943 /* Check if IF-BB and THEN-BB satisfy the condition for conditional zero
2944 based if conversion, returning TRUE if satisfied otherwise FALSE.
2946 IF_INFO describes the if-conversion scenario under consideration.
2947 COMMON_PTR points to the common REG of canonicalized IF_INFO->A and
2948 IF_INFO->B.
2949 CZERO_CODE_PTR points to the comparison code to use in czero RTX.
2950 A_PTR points to the A expression of canonicalized IF_INFO->A.
2951 TO_REPLACE points to the RTX to be replaced by czero RTX destnation. */
2953 static bool
2954 noce_bbs_ok_for_cond_zero_arith (struct noce_if_info *if_info, rtx *common_ptr,
2955 rtx *bin_exp_ptr,
2956 enum rtx_code *czero_code_ptr, rtx *a_ptr,
2957 rtx **to_replace)
2959 rtx common = NULL_RTX;
2960 rtx cond = if_info->cond;
2961 rtx a = copy_rtx (if_info->a);
2962 rtx b = copy_rtx (if_info->b);
2963 rtx bin_op1 = NULL_RTX;
2964 enum rtx_code czero_code = UNKNOWN;
2965 bool reverse = false;
2966 rtx op0, op1, bin_exp;
2968 if (!noce_simple_bbs (if_info))
2969 return false;
2971 /* COND must be EQ or NE comparision of a reg and 0. */
2972 if (GET_CODE (cond) != NE && GET_CODE (cond) != EQ)
2973 return false;
2974 if (!REG_P (XEXP (cond, 0)) || !rtx_equal_p (XEXP (cond, 1), const0_rtx))
2975 return false;
2977 /* Canonicalize x = y : (y op z) to x = (y op z) : y. */
2978 if (REG_P (a) && noce_cond_zero_binary_op_supported (b))
2980 std::swap (a, b);
2981 reverse = !reverse;
2984 /* Check if x = (y op z) : y is supported by czero based ifcvt. */
2985 if (!(noce_cond_zero_binary_op_supported (a) && REG_P (b)))
2986 return false;
2988 bin_exp = a;
2990 /* Canonicalize x = (z op y) : y to x = (y op z) : y */
2991 op1 = get_base_reg (XEXP (bin_exp, 1));
2992 if (op1 && rtx_equal_p (op1, b) && COMMUTATIVE_ARITH_P (bin_exp))
2993 std::swap (XEXP (bin_exp, 0), XEXP (bin_exp, 1));
2995 op0 = get_base_reg (XEXP (bin_exp, 0));
2996 if (op0 && rtx_equal_p (op0, b))
2998 common = b;
2999 bin_op1 = XEXP (bin_exp, 1);
3000 czero_code = (reverse ^ (GET_CODE (bin_exp) == AND))
3001 ? noce_reversed_cond_code (if_info)
3002 : GET_CODE (cond);
3004 else
3005 return false;
3007 if (czero_code == UNKNOWN)
3008 return false;
3010 if (REG_P (bin_op1))
3011 *to_replace = &XEXP (bin_exp, 1);
3012 else
3013 return false;
3015 *common_ptr = common;
3016 *bin_exp_ptr = bin_exp;
3017 *czero_code_ptr = czero_code;
3018 *a_ptr = a;
3020 return true;
3023 /* Try to covert if-then-else with conditional zero,
3024 returning TURE on success or FALSE on failure.
3025 IF_INFO describes the if-conversion scenario under consideration. */
3027 static int
3028 noce_try_cond_zero_arith (struct noce_if_info *if_info)
3030 rtx target, rtmp, a;
3031 rtx_insn *seq;
3032 machine_mode mode = GET_MODE (if_info->x);
3033 rtx common = NULL_RTX;
3034 enum rtx_code czero_code = UNKNOWN;
3035 rtx bin_exp = NULL_RTX;
3036 enum rtx_code bin_code = UNKNOWN;
3037 rtx non_zero_op = NULL_RTX;
3038 rtx *to_replace = NULL;
3040 if (!noce_bbs_ok_for_cond_zero_arith (if_info, &common, &bin_exp, &czero_code,
3041 &a, &to_replace))
3042 return false;
3044 start_sequence ();
3046 bin_code = GET_CODE (bin_exp);
3048 if (bin_code == AND)
3050 rtmp = gen_reg_rtx (mode);
3051 noce_emit_move_insn (rtmp, a);
3053 target = noce_emit_czero (if_info, czero_code, common, if_info->x);
3054 if (!target)
3056 end_sequence ();
3057 return false;
3060 target = expand_simple_binop (mode, IOR, rtmp, target, if_info->x, 0,
3061 OPTAB_WIDEN);
3062 if (!target)
3064 end_sequence ();
3065 return false;
3068 if (target != if_info->x)
3069 noce_emit_move_insn (if_info->x, target);
3071 else
3073 non_zero_op = *to_replace;
3074 /* If x is used in both input and out like x = c ? x + z : x,
3075 use a new reg to avoid modifying x */
3076 if (common && rtx_equal_p (common, if_info->x))
3077 target = gen_reg_rtx (mode);
3078 else
3079 target = if_info->x;
3081 target = noce_emit_czero (if_info, czero_code, non_zero_op, target);
3082 if (!target || !to_replace)
3084 end_sequence ();
3085 return false;
3088 *to_replace = target;
3089 noce_emit_move_insn (if_info->x, a);
3092 seq = end_ifcvt_sequence (if_info);
3093 if (!seq || !targetm.noce_conversion_profitable_p (seq, if_info))
3094 return false;
3096 emit_insn_before_setloc (seq, if_info->jump, INSN_LOCATION (if_info->insn_a));
3097 if_info->transform_name = "noce_try_cond_zero_arith";
3098 return true;
3101 /* Optimize away "if (x & C) x |= C" and similar bit manipulation
3102 transformations. */
3104 static bool
3105 noce_try_bitop (struct noce_if_info *if_info)
3107 rtx cond, x, a, result;
3108 rtx_insn *seq;
3109 scalar_int_mode mode;
3110 enum rtx_code code;
3111 int bitnum;
3113 x = if_info->x;
3114 cond = if_info->cond;
3115 code = GET_CODE (cond);
3117 /* Check for an integer operation. */
3118 if (!is_a <scalar_int_mode> (GET_MODE (x), &mode))
3119 return false;
3121 if (!noce_simple_bbs (if_info))
3122 return false;
3124 /* Check for no else condition. */
3125 if (! rtx_equal_p (x, if_info->b))
3126 return false;
3128 /* Check for a suitable condition. */
3129 if (code != NE && code != EQ)
3130 return false;
3131 if (XEXP (cond, 1) != const0_rtx)
3132 return false;
3133 cond = XEXP (cond, 0);
3135 /* ??? We could also handle AND here. */
3136 if (GET_CODE (cond) == ZERO_EXTRACT)
3138 if (XEXP (cond, 1) != const1_rtx
3139 || !CONST_INT_P (XEXP (cond, 2))
3140 || ! rtx_equal_p (x, XEXP (cond, 0)))
3141 return false;
3142 bitnum = INTVAL (XEXP (cond, 2));
3143 if (BITS_BIG_ENDIAN)
3144 bitnum = GET_MODE_BITSIZE (mode) - 1 - bitnum;
3145 if (bitnum < 0 || bitnum >= HOST_BITS_PER_WIDE_INT)
3146 return false;
3148 else
3149 return false;
3151 a = if_info->a;
3152 if (GET_CODE (a) == IOR || GET_CODE (a) == XOR)
3154 /* Check for "if (X & C) x = x op C". */
3155 if (! rtx_equal_p (x, XEXP (a, 0))
3156 || !CONST_INT_P (XEXP (a, 1))
3157 || (INTVAL (XEXP (a, 1)) & GET_MODE_MASK (mode))
3158 != HOST_WIDE_INT_1U << bitnum)
3159 return false;
3161 /* if ((x & C) == 0) x |= C; is transformed to x |= C. */
3162 /* if ((x & C) != 0) x |= C; is transformed to nothing. */
3163 if (GET_CODE (a) == IOR)
3164 result = (code == NE) ? a : NULL_RTX;
3165 else if (code == NE)
3167 /* if ((x & C) == 0) x ^= C; is transformed to x |= C. */
3168 result = gen_int_mode (HOST_WIDE_INT_1 << bitnum, mode);
3169 result = simplify_gen_binary (IOR, mode, x, result);
3171 else
3173 /* if ((x & C) != 0) x ^= C; is transformed to x &= ~C. */
3174 result = gen_int_mode (~(HOST_WIDE_INT_1 << bitnum), mode);
3175 result = simplify_gen_binary (AND, mode, x, result);
3178 else if (GET_CODE (a) == AND)
3180 /* Check for "if (X & C) x &= ~C". */
3181 if (! rtx_equal_p (x, XEXP (a, 0))
3182 || !CONST_INT_P (XEXP (a, 1))
3183 || (INTVAL (XEXP (a, 1)) & GET_MODE_MASK (mode))
3184 != (~(HOST_WIDE_INT_1 << bitnum) & GET_MODE_MASK (mode)))
3185 return false;
3187 /* if ((x & C) == 0) x &= ~C; is transformed to nothing. */
3188 /* if ((x & C) != 0) x &= ~C; is transformed to x &= ~C. */
3189 result = (code == EQ) ? a : NULL_RTX;
3191 else
3192 return false;
3194 if (result)
3196 start_sequence ();
3197 noce_emit_move_insn (x, result);
3198 seq = end_ifcvt_sequence (if_info);
3199 if (!seq)
3200 return false;
3202 emit_insn_before_setloc (seq, if_info->jump,
3203 INSN_LOCATION (if_info->insn_a));
3205 if_info->transform_name = "noce_try_bitop";
3206 return true;
3210 /* Similar to get_condition, only the resulting condition must be
3211 valid at JUMP, instead of at EARLIEST.
3213 If THEN_ELSE_REVERSED is true, the fallthrough does not go to the
3214 THEN block of the caller, and we have to reverse the condition. */
3216 static rtx
3217 noce_get_condition (rtx_insn *jump, rtx_insn **earliest,
3218 bool then_else_reversed)
3220 rtx cond, set, tmp;
3221 bool reverse;
3223 if (! any_condjump_p (jump))
3224 return NULL_RTX;
3226 set = pc_set (jump);
3228 /* If this branches to JUMP_LABEL when the condition is false,
3229 reverse the condition. */
3230 reverse = (GET_CODE (XEXP (SET_SRC (set), 2)) == LABEL_REF
3231 && label_ref_label (XEXP (SET_SRC (set), 2)) == JUMP_LABEL (jump));
3233 /* We may have to reverse because the caller's if block is not canonical,
3234 i.e. the THEN block isn't the fallthrough block for the TEST block
3235 (see find_if_header). */
3236 if (then_else_reversed)
3237 reverse = !reverse;
3239 /* If the condition variable is a register and is MODE_INT, accept it. */
3241 cond = XEXP (SET_SRC (set), 0);
3242 tmp = XEXP (cond, 0);
3243 if (REG_P (tmp) && GET_MODE_CLASS (GET_MODE (tmp)) == MODE_INT
3244 && (GET_MODE (tmp) != BImode
3245 || !targetm.small_register_classes_for_mode_p (BImode)))
3247 *earliest = jump;
3249 if (reverse)
3250 cond = gen_rtx_fmt_ee (reverse_condition (GET_CODE (cond)),
3251 GET_MODE (cond), tmp, XEXP (cond, 1));
3252 return cond;
3255 /* Otherwise, fall back on canonicalize_condition to do the dirty
3256 work of manipulating MODE_CC values and COMPARE rtx codes. */
3257 tmp = canonicalize_condition (jump, cond, reverse, earliest,
3258 NULL_RTX, have_cbranchcc4, true);
3260 /* We don't handle side-effects in the condition, like handling
3261 REG_INC notes and making sure no duplicate conditions are emitted. */
3262 if (tmp != NULL_RTX && side_effects_p (tmp))
3263 return NULL_RTX;
3265 return tmp;
3268 /* Return true if OP is ok for if-then-else processing. */
3270 static bool
3271 noce_operand_ok (const_rtx op)
3273 if (side_effects_p (op))
3274 return false;
3276 /* We special-case memories, so handle any of them with
3277 no address side effects. */
3278 if (MEM_P (op))
3279 return ! side_effects_p (XEXP (op, 0));
3281 return ! may_trap_p (op);
3284 /* Return true iff basic block TEST_BB is valid for noce if-conversion.
3285 The condition used in this if-conversion is in COND.
3286 In practice, check that TEST_BB ends with a single set
3287 x := a and all previous computations
3288 in TEST_BB don't produce any values that are live after TEST_BB.
3289 In other words, all the insns in TEST_BB are there only
3290 to compute a value for x. Add the rtx cost of the insns
3291 in TEST_BB to COST. Record whether TEST_BB is a single simple
3292 set instruction in SIMPLE_P. */
3294 static bool
3295 bb_valid_for_noce_process_p (basic_block test_bb, rtx cond,
3296 unsigned int *cost, bool *simple_p)
3298 if (!test_bb)
3299 return false;
3301 rtx_insn *last_insn = last_active_insn (test_bb, false);
3302 rtx last_set = NULL_RTX;
3304 rtx cc = cc_in_cond (cond);
3306 if (!insn_valid_noce_process_p (last_insn, cc))
3307 return false;
3309 /* Punt on blocks ending with asm goto or jumps with other side-effects,
3310 last_active_insn ignores JUMP_INSNs. */
3311 if (JUMP_P (BB_END (test_bb)) && !onlyjump_p (BB_END (test_bb)))
3312 return false;
3314 last_set = single_set (last_insn);
3316 rtx x = SET_DEST (last_set);
3317 rtx_insn *first_insn = first_active_insn (test_bb);
3318 rtx first_set = single_set (first_insn);
3320 if (!first_set)
3321 return false;
3323 /* We have a single simple set, that's okay. */
3324 bool speed_p = optimize_bb_for_speed_p (test_bb);
3326 if (first_insn == last_insn)
3328 *simple_p = noce_operand_ok (SET_DEST (first_set));
3329 *cost += pattern_cost (first_set, speed_p);
3330 return *simple_p;
3333 rtx_insn *prev_last_insn = PREV_INSN (last_insn);
3334 gcc_assert (prev_last_insn);
3336 /* For now, disallow setting x multiple times in test_bb. */
3337 if (REG_P (x) && reg_set_between_p (x, first_insn, prev_last_insn))
3338 return false;
3340 bitmap test_bb_temps = BITMAP_ALLOC (&reg_obstack);
3342 /* The regs that are live out of test_bb. */
3343 bitmap test_bb_live_out = df_get_live_out (test_bb);
3345 int potential_cost = pattern_cost (last_set, speed_p);
3346 rtx_insn *insn;
3347 FOR_BB_INSNS (test_bb, insn)
3349 if (insn != last_insn)
3351 if (!active_insn_p (insn))
3352 continue;
3354 if (!insn_valid_noce_process_p (insn, cc))
3355 goto free_bitmap_and_fail;
3357 rtx sset = single_set (insn);
3358 gcc_assert (sset);
3359 rtx dest = SET_DEST (sset);
3360 if (SUBREG_P (dest))
3361 dest = SUBREG_REG (dest);
3363 if (contains_mem_rtx_p (SET_SRC (sset))
3364 || !REG_P (dest)
3365 || reg_overlap_mentioned_p (dest, cond))
3366 goto free_bitmap_and_fail;
3368 potential_cost += pattern_cost (sset, speed_p);
3369 bitmap_set_bit (test_bb_temps, REGNO (dest));
3373 /* If any of the intermediate results in test_bb are live after test_bb
3374 then fail. */
3375 if (bitmap_intersect_p (test_bb_live_out, test_bb_temps))
3376 goto free_bitmap_and_fail;
3378 BITMAP_FREE (test_bb_temps);
3379 *cost += potential_cost;
3380 *simple_p = false;
3381 return true;
3383 free_bitmap_and_fail:
3384 BITMAP_FREE (test_bb_temps);
3385 return false;
3388 /* Helper function to emit a cmov sequence encapsulated in
3389 start_sequence () and end_sequence (). If NEED_CMOV is true
3390 we call noce_emit_cmove to create a cmove sequence. Otherwise emit
3391 a simple move. If successful, store the first instruction of the
3392 sequence in TEMP_DEST and the sequence costs in SEQ_COST. */
3394 static rtx_insn*
3395 try_emit_cmove_seq (struct noce_if_info *if_info, rtx temp,
3396 rtx cond, rtx new_val, rtx old_val, bool need_cmov,
3397 unsigned *cost, rtx *temp_dest,
3398 rtx cc_cmp = NULL, rtx rev_cc_cmp = NULL)
3400 rtx_insn *seq = NULL;
3401 *cost = 0;
3403 rtx x = XEXP (cond, 0);
3404 rtx y = XEXP (cond, 1);
3405 rtx_code cond_code = GET_CODE (cond);
3407 start_sequence ();
3409 if (need_cmov)
3410 *temp_dest = noce_emit_cmove (if_info, temp, cond_code,
3411 x, y, new_val, old_val, cc_cmp, rev_cc_cmp);
3412 else
3414 *temp_dest = temp;
3415 if (if_info->then_else_reversed)
3416 noce_emit_move_insn (temp, old_val);
3417 else
3418 noce_emit_move_insn (temp, new_val);
3421 if (*temp_dest != NULL_RTX)
3423 seq = get_insns ();
3424 *cost = seq_cost (seq, if_info->speed_p);
3427 end_sequence ();
3429 return seq;
3432 /* We have something like:
3434 if (x > y)
3435 { i = a; j = b; k = c; }
3437 Make it:
3439 tmp_i = (x > y) ? a : i;
3440 tmp_j = (x > y) ? b : j;
3441 tmp_k = (x > y) ? c : k;
3442 i = tmp_i;
3443 j = tmp_j;
3444 k = tmp_k;
3446 Subsequent passes are expected to clean up the extra moves.
3448 Look for special cases such as writes to one register which are
3449 read back in another SET, as might occur in a swap idiom or
3450 similar.
3452 These look like:
3454 if (x > y)
3455 i = a;
3456 j = i;
3458 Which we want to rewrite to:
3460 tmp_i = (x > y) ? a : i;
3461 tmp_j = (x > y) ? tmp_i : j;
3462 i = tmp_i;
3463 j = tmp_j;
3465 We can catch these when looking at (SET x y) by keeping a list of the
3466 registers we would have targeted before if-conversion and looking back
3467 through it for an overlap with Y. If we find one, we rewire the
3468 conditional set to use the temporary we introduced earlier.
3470 IF_INFO contains the useful information about the block structure and
3471 jump instructions. */
3473 static bool
3474 noce_convert_multiple_sets (struct noce_if_info *if_info)
3476 basic_block test_bb = if_info->test_bb;
3477 basic_block then_bb = if_info->then_bb;
3478 basic_block join_bb = if_info->join_bb;
3479 rtx_insn *jump = if_info->jump;
3480 rtx_insn *cond_earliest;
3481 rtx_insn *insn;
3483 start_sequence ();
3485 /* Decompose the condition attached to the jump. */
3486 rtx cond = noce_get_condition (jump, &cond_earliest, false);
3487 rtx x = XEXP (cond, 0);
3488 rtx y = XEXP (cond, 1);
3490 /* The true targets for a conditional move. */
3491 auto_vec<rtx> targets;
3492 /* The temporaries introduced to allow us to not consider register
3493 overlap. */
3494 auto_vec<rtx> temporaries;
3495 /* The insns we've emitted. */
3496 auto_vec<rtx_insn *> unmodified_insns;
3498 hash_set<rtx_insn *> need_no_cmov;
3499 hash_map<rtx_insn *, int> rewired_src;
3501 need_cmov_or_rewire (then_bb, &need_no_cmov, &rewired_src);
3503 int last_needs_comparison = -1;
3505 bool ok = noce_convert_multiple_sets_1
3506 (if_info, &need_no_cmov, &rewired_src, &targets, &temporaries,
3507 &unmodified_insns, &last_needs_comparison);
3508 if (!ok)
3509 return false;
3511 /* If there are insns that overwrite part of the initial
3512 comparison, we can still omit creating temporaries for
3513 the last of them.
3514 As the second try will always create a less expensive,
3515 valid sequence, we do not need to compare and can discard
3516 the first one. */
3517 if (last_needs_comparison != -1)
3519 end_sequence ();
3520 start_sequence ();
3521 ok = noce_convert_multiple_sets_1
3522 (if_info, &need_no_cmov, &rewired_src, &targets, &temporaries,
3523 &unmodified_insns, &last_needs_comparison);
3524 /* Actually we should not fail anymore if we reached here,
3525 but better still check. */
3526 if (!ok)
3527 return false;
3530 /* We must have seen some sort of insn to insert, otherwise we were
3531 given an empty BB to convert, and we can't handle that. */
3532 gcc_assert (!unmodified_insns.is_empty ());
3534 /* Now fixup the assignments. */
3535 for (unsigned i = 0; i < targets.length (); i++)
3536 if (targets[i] != temporaries[i])
3537 noce_emit_move_insn (targets[i], temporaries[i]);
3539 /* Actually emit the sequence if it isn't too expensive. */
3540 rtx_insn *seq = get_insns ();
3542 if (!targetm.noce_conversion_profitable_p (seq, if_info))
3544 end_sequence ();
3545 return false;
3548 for (insn = seq; insn; insn = NEXT_INSN (insn))
3549 set_used_flags (insn);
3551 /* Mark all our temporaries and targets as used. */
3552 for (unsigned i = 0; i < targets.length (); i++)
3554 set_used_flags (temporaries[i]);
3555 set_used_flags (targets[i]);
3558 set_used_flags (cond);
3559 set_used_flags (x);
3560 set_used_flags (y);
3562 unshare_all_rtl_in_chain (seq);
3563 end_sequence ();
3565 if (!seq)
3566 return false;
3568 for (insn = seq; insn; insn = NEXT_INSN (insn))
3569 if (JUMP_P (insn)
3570 || recog_memoized (insn) == -1)
3571 return false;
3573 emit_insn_before_setloc (seq, if_info->jump,
3574 INSN_LOCATION (unmodified_insns.last ()));
3576 /* Clean up THEN_BB and the edges in and out of it. */
3577 remove_edge (find_edge (test_bb, join_bb));
3578 remove_edge (find_edge (then_bb, join_bb));
3579 redirect_edge_and_branch_force (single_succ_edge (test_bb), join_bb);
3580 delete_basic_block (then_bb);
3581 num_true_changes++;
3583 /* Maybe merge blocks now the jump is simple enough. */
3584 if (can_merge_blocks_p (test_bb, join_bb))
3586 merge_blocks (test_bb, join_bb);
3587 num_true_changes++;
3590 num_updated_if_blocks++;
3591 if_info->transform_name = "noce_convert_multiple_sets";
3592 return true;
3595 /* Helper function for noce_convert_multiple_sets_1. If store to
3596 DEST can affect P[0] or P[1], clear P[0]. Called via note_stores. */
3598 static void
3599 check_for_cc_cmp_clobbers (rtx dest, const_rtx, void *p0)
3601 rtx *p = (rtx *) p0;
3602 if (p[0] == NULL_RTX)
3603 return;
3604 if (reg_overlap_mentioned_p (dest, p[0])
3605 || (p[1] && reg_overlap_mentioned_p (dest, p[1])))
3606 p[0] = NULL_RTX;
3609 /* This goes through all relevant insns of IF_INFO->then_bb and tries to
3610 create conditional moves. In case a simple move sufficis the insn
3611 should be listed in NEED_NO_CMOV. The rewired-src cases should be
3612 specified via REWIRED_SRC. TARGETS, TEMPORARIES and UNMODIFIED_INSNS
3613 are specified and used in noce_convert_multiple_sets and should be passed
3614 to this function.. */
3616 static bool
3617 noce_convert_multiple_sets_1 (struct noce_if_info *if_info,
3618 hash_set<rtx_insn *> *need_no_cmov,
3619 hash_map<rtx_insn *, int> *rewired_src,
3620 auto_vec<rtx> *targets,
3621 auto_vec<rtx> *temporaries,
3622 auto_vec<rtx_insn *> *unmodified_insns,
3623 int *last_needs_comparison)
3625 basic_block then_bb = if_info->then_bb;
3626 rtx_insn *jump = if_info->jump;
3627 rtx_insn *cond_earliest;
3629 /* Decompose the condition attached to the jump. */
3630 rtx cond = noce_get_condition (jump, &cond_earliest, false);
3632 rtx cc_cmp = cond_exec_get_condition (jump);
3633 if (cc_cmp)
3634 cc_cmp = copy_rtx (cc_cmp);
3635 rtx rev_cc_cmp = cond_exec_get_condition (jump, /* get_reversed */ true);
3636 if (rev_cc_cmp)
3637 rev_cc_cmp = copy_rtx (rev_cc_cmp);
3639 rtx_insn *insn;
3640 int count = 0;
3642 targets->truncate (0);
3643 temporaries->truncate (0);
3644 unmodified_insns->truncate (0);
3646 bool second_try = *last_needs_comparison != -1;
3648 FOR_BB_INSNS (then_bb, insn)
3650 /* Skip over non-insns. */
3651 if (!active_insn_p (insn))
3652 continue;
3654 rtx set = single_set (insn);
3655 gcc_checking_assert (set);
3657 rtx target = SET_DEST (set);
3658 rtx temp;
3660 rtx new_val = SET_SRC (set);
3661 if (int *ii = rewired_src->get (insn))
3662 new_val = simplify_replace_rtx (new_val, (*targets)[*ii],
3663 (*temporaries)[*ii]);
3664 rtx old_val = target;
3666 /* As we are transforming
3667 if (x > y)
3669 a = b;
3670 c = d;
3672 into
3673 a = (x > y) ...
3674 c = (x > y) ...
3676 we potentially check x > y before every set.
3677 Even though the check might be removed by subsequent passes, this means
3678 that we cannot transform
3679 if (x > y)
3681 x = y;
3684 into
3685 x = (x > y) ...
3687 since this would invalidate x and the following to-be-removed checks.
3688 Therefore we introduce a temporary every time we are about to
3689 overwrite a variable used in the check. Costing of a sequence with
3690 these is going to be inaccurate so only use temporaries when
3691 needed.
3693 If performing a second try, we know how many insns require a
3694 temporary. For the last of these, we can omit creating one. */
3695 if (reg_overlap_mentioned_p (target, cond)
3696 && (!second_try || count < *last_needs_comparison))
3697 temp = gen_reg_rtx (GET_MODE (target));
3698 else
3699 temp = target;
3701 /* We have identified swap-style idioms before. A normal
3702 set will need to be a cmov while the first instruction of a swap-style
3703 idiom can be a regular move. This helps with costing. */
3704 bool need_cmov = !need_no_cmov->contains (insn);
3706 /* If we had a non-canonical conditional jump (i.e. one where
3707 the fallthrough is to the "else" case) we need to reverse
3708 the conditional select. */
3709 if (if_info->then_else_reversed)
3710 std::swap (old_val, new_val);
3712 /* Try emitting a conditional move passing the backend the
3713 canonicalized comparison. The backend is then able to
3714 recognize expressions like
3716 if (x > y)
3717 y = x;
3719 as min/max and emit an insn, accordingly. */
3720 unsigned cost1 = 0, cost2 = 0;
3721 rtx_insn *seq, *seq1, *seq2 = NULL;
3722 rtx temp_dest = NULL_RTX, temp_dest1 = NULL_RTX, temp_dest2 = NULL_RTX;
3723 bool read_comparison = false;
3725 seq1 = try_emit_cmove_seq (if_info, temp, cond,
3726 new_val, old_val, need_cmov,
3727 &cost1, &temp_dest1);
3729 /* Here, we try to pass the backend a non-canonicalized cc comparison
3730 as well. This allows the backend to emit a cmov directly without
3731 creating an additional compare for each. If successful, costing
3732 is easier and this sequence is usually preferred. */
3733 if (cc_cmp)
3734 seq2 = try_emit_cmove_seq (if_info, temp, cond,
3735 new_val, old_val, need_cmov,
3736 &cost2, &temp_dest2, cc_cmp, rev_cc_cmp);
3738 /* The backend might have created a sequence that uses the
3739 condition. Check this. */
3740 rtx_insn *walk = seq2;
3741 while (walk)
3743 rtx set = single_set (walk);
3745 if (!set || !SET_SRC (set))
3747 walk = NEXT_INSN (walk);
3748 continue;
3751 rtx src = SET_SRC (set);
3753 if (XEXP (set, 1) && GET_CODE (XEXP (set, 1)) == IF_THEN_ELSE)
3754 ; /* We assume that this is the cmove created by the backend that
3755 naturally uses the condition. Therefore we ignore it. */
3756 else
3758 if (reg_mentioned_p (XEXP (cond, 0), src)
3759 || reg_mentioned_p (XEXP (cond, 1), src))
3761 read_comparison = true;
3762 break;
3766 walk = NEXT_INSN (walk);
3769 /* Check which version is less expensive. */
3770 if (seq1 != NULL_RTX && (cost1 <= cost2 || seq2 == NULL_RTX))
3772 seq = seq1;
3773 temp_dest = temp_dest1;
3774 if (!second_try)
3775 *last_needs_comparison = count;
3777 else if (seq2 != NULL_RTX)
3779 seq = seq2;
3780 temp_dest = temp_dest2;
3781 if (!second_try && read_comparison)
3782 *last_needs_comparison = count;
3784 else
3786 /* Nothing worked, bail out. */
3787 end_sequence ();
3788 return false;
3791 if (cc_cmp)
3793 /* Check if SEQ can clobber registers mentioned in
3794 cc_cmp and/or rev_cc_cmp. If yes, we need to use
3795 only seq1 from that point on. */
3796 rtx cc_cmp_pair[2] = { cc_cmp, rev_cc_cmp };
3797 for (walk = seq; walk; walk = NEXT_INSN (walk))
3799 note_stores (walk, check_for_cc_cmp_clobbers, cc_cmp_pair);
3800 if (cc_cmp_pair[0] == NULL_RTX)
3802 cc_cmp = NULL_RTX;
3803 rev_cc_cmp = NULL_RTX;
3804 break;
3809 /* End the sub sequence and emit to the main sequence. */
3810 emit_insn (seq);
3812 /* Bookkeeping. */
3813 count++;
3814 targets->safe_push (target);
3815 temporaries->safe_push (temp_dest);
3816 unmodified_insns->safe_push (insn);
3819 /* Even if we did not actually need the comparison, we want to make sure
3820 to try a second time in order to get rid of the temporaries. */
3821 if (*last_needs_comparison == -1)
3822 *last_needs_comparison = 0;
3825 return true;
3830 /* Return true iff basic block TEST_BB is comprised of only
3831 (SET (REG) (REG)) insns suitable for conversion to a series
3832 of conditional moves. Also check that we have more than one set
3833 (other routines can handle a single set better than we would), and
3834 fewer than PARAM_MAX_RTL_IF_CONVERSION_INSNS sets. While going
3835 through the insns store the sum of their potential costs in COST. */
3837 static bool
3838 bb_ok_for_noce_convert_multiple_sets (basic_block test_bb, unsigned *cost)
3840 rtx_insn *insn;
3841 unsigned count = 0;
3842 unsigned param = param_max_rtl_if_conversion_insns;
3843 bool speed_p = optimize_bb_for_speed_p (test_bb);
3844 unsigned potential_cost = 0;
3846 FOR_BB_INSNS (test_bb, insn)
3848 /* Skip over notes etc. */
3849 if (!active_insn_p (insn))
3850 continue;
3852 /* We only handle SET insns. */
3853 rtx set = single_set (insn);
3854 if (set == NULL_RTX)
3855 return false;
3857 rtx dest = SET_DEST (set);
3858 rtx src = SET_SRC (set);
3860 /* We can possibly relax this, but for now only handle REG to REG
3861 (including subreg) moves. This avoids any issues that might come
3862 from introducing loads/stores that might violate data-race-freedom
3863 guarantees. */
3864 if (!REG_P (dest))
3865 return false;
3867 if (!((REG_P (src) || CONSTANT_P (src))
3868 || (GET_CODE (src) == SUBREG && REG_P (SUBREG_REG (src))
3869 && subreg_lowpart_p (src))))
3870 return false;
3872 /* Destination must be appropriate for a conditional write. */
3873 if (!noce_operand_ok (dest))
3874 return false;
3876 /* We must be able to conditionally move in this mode. */
3877 if (!can_conditionally_move_p (GET_MODE (dest)))
3878 return false;
3880 potential_cost += insn_cost (insn, speed_p);
3882 count++;
3885 *cost += potential_cost;
3887 /* If we would only put out one conditional move, the other strategies
3888 this pass tries are better optimized and will be more appropriate.
3889 Some targets want to strictly limit the number of conditional moves
3890 that are emitted, they set this through PARAM, we need to respect
3891 that. */
3892 return count > 1 && count <= param;
3895 /* Compute average of two given costs weighted by relative probabilities
3896 of respective basic blocks in an IF-THEN-ELSE. E is the IF-THEN edge.
3897 With P as the probability to take the IF-THEN branch, return
3898 P * THEN_COST + (1 - P) * ELSE_COST. */
3899 static unsigned
3900 average_cost (unsigned then_cost, unsigned else_cost, edge e)
3902 return else_cost + e->probability.apply ((signed) (then_cost - else_cost));
3905 /* Given a simple IF-THEN-JOIN or IF-THEN-ELSE-JOIN block, attempt to convert
3906 it without using conditional execution. Return TRUE if we were successful
3907 at converting the block. */
3909 static bool
3910 noce_process_if_block (struct noce_if_info *if_info)
3912 basic_block test_bb = if_info->test_bb; /* test block */
3913 basic_block then_bb = if_info->then_bb; /* THEN */
3914 basic_block else_bb = if_info->else_bb; /* ELSE or NULL */
3915 basic_block join_bb = if_info->join_bb; /* JOIN */
3916 rtx_insn *jump = if_info->jump;
3917 rtx cond = if_info->cond;
3918 rtx_insn *insn_a, *insn_b;
3919 rtx set_a, set_b;
3920 rtx orig_x, x, a, b;
3922 /* We're looking for patterns of the form
3924 (1) if (...) x = a; else x = b;
3925 (2) x = b; if (...) x = a;
3926 (3) if (...) x = a; // as if with an initial x = x.
3927 (4) if (...) { x = a; y = b; z = c; } // Like 3, for multiple SETS.
3928 The later patterns require jumps to be more expensive.
3929 For the if (...) x = a; else x = b; case we allow multiple insns
3930 inside the then and else blocks as long as their only effect is
3931 to calculate a value for x.
3932 ??? For future expansion, further expand the "multiple X" rules. */
3934 /* First look for multiple SETS. The original costs already include
3935 a base cost of COSTS_N_INSNS (2): one instruction for the compare
3936 (which we will be needing either way) and one instruction for the
3937 branch. When comparing costs we want to use the branch instruction
3938 cost and the sets vs. the cmovs generated here. Therefore subtract
3939 the costs of the compare before checking.
3940 ??? Actually, instead of the branch instruction costs we might want
3941 to use COSTS_N_INSNS (BRANCH_COST ()) as in other places. */
3943 unsigned potential_cost = if_info->original_cost - COSTS_N_INSNS (1);
3944 unsigned old_cost = if_info->original_cost;
3945 if (!else_bb
3946 && HAVE_conditional_move
3947 && bb_ok_for_noce_convert_multiple_sets (then_bb, &potential_cost))
3949 /* Temporarily set the original costs to what we estimated so
3950 we can determine if the transformation is worth it. */
3951 if_info->original_cost = potential_cost;
3952 if (noce_convert_multiple_sets (if_info))
3954 if (dump_file && if_info->transform_name)
3955 fprintf (dump_file, "if-conversion succeeded through %s\n",
3956 if_info->transform_name);
3957 return true;
3960 /* Restore the original costs. */
3961 if_info->original_cost = old_cost;
3964 bool speed_p = optimize_bb_for_speed_p (test_bb);
3965 unsigned int then_cost = 0, else_cost = 0;
3966 if (!bb_valid_for_noce_process_p (then_bb, cond, &then_cost,
3967 &if_info->then_simple))
3968 return false;
3970 if (else_bb
3971 && !bb_valid_for_noce_process_p (else_bb, cond, &else_cost,
3972 &if_info->else_simple))
3973 return false;
3975 if (speed_p)
3976 if_info->original_cost += average_cost (then_cost, else_cost,
3977 find_edge (test_bb, then_bb));
3978 else
3979 if_info->original_cost += then_cost + else_cost;
3981 insn_a = last_active_insn (then_bb, false);
3982 set_a = single_set (insn_a);
3983 gcc_assert (set_a);
3985 x = SET_DEST (set_a);
3986 a = SET_SRC (set_a);
3988 /* Look for the other potential set. Make sure we've got equivalent
3989 destinations. */
3990 /* ??? This is overconservative. Storing to two different mems is
3991 as easy as conditionally computing the address. Storing to a
3992 single mem merely requires a scratch memory to use as one of the
3993 destination addresses; often the memory immediately below the
3994 stack pointer is available for this. */
3995 set_b = NULL_RTX;
3996 if (else_bb)
3998 insn_b = last_active_insn (else_bb, false);
3999 set_b = single_set (insn_b);
4000 gcc_assert (set_b);
4002 if (!rtx_interchangeable_p (x, SET_DEST (set_b)))
4003 return false;
4005 else
4007 insn_b = if_info->cond_earliest;
4009 insn_b = prev_nonnote_nondebug_insn (insn_b);
4010 while (insn_b
4011 && (BLOCK_FOR_INSN (insn_b)
4012 == BLOCK_FOR_INSN (if_info->cond_earliest))
4013 && !modified_in_p (x, insn_b));
4015 /* We're going to be moving the evaluation of B down from above
4016 COND_EARLIEST to JUMP. Make sure the relevant data is still
4017 intact. */
4018 if (! insn_b
4019 || BLOCK_FOR_INSN (insn_b) != BLOCK_FOR_INSN (if_info->cond_earliest)
4020 || !NONJUMP_INSN_P (insn_b)
4021 || (set_b = single_set (insn_b)) == NULL_RTX
4022 || ! rtx_interchangeable_p (x, SET_DEST (set_b))
4023 || ! noce_operand_ok (SET_SRC (set_b))
4024 || reg_overlap_mentioned_p (x, SET_SRC (set_b))
4025 || modified_between_p (SET_SRC (set_b), insn_b, jump)
4026 /* Avoid extending the lifetime of hard registers on small
4027 register class machines. */
4028 || (REG_P (SET_SRC (set_b))
4029 && HARD_REGISTER_P (SET_SRC (set_b))
4030 && targetm.small_register_classes_for_mode_p
4031 (GET_MODE (SET_SRC (set_b))))
4032 /* Likewise with X. In particular this can happen when
4033 noce_get_condition looks farther back in the instruction
4034 stream than one might expect. */
4035 || reg_overlap_mentioned_p (x, cond)
4036 || reg_overlap_mentioned_p (x, a)
4037 || modified_between_p (x, insn_b, jump))
4039 insn_b = NULL;
4040 set_b = NULL_RTX;
4044 /* If x has side effects then only the if-then-else form is safe to
4045 convert. But even in that case we would need to restore any notes
4046 (such as REG_INC) at then end. That can be tricky if
4047 noce_emit_move_insn expands to more than one insn, so disable the
4048 optimization entirely for now if there are side effects. */
4049 if (side_effects_p (x))
4050 return false;
4052 b = (set_b ? SET_SRC (set_b) : x);
4054 /* Only operate on register destinations, and even then avoid extending
4055 the lifetime of hard registers on small register class machines. */
4056 orig_x = x;
4057 if_info->orig_x = orig_x;
4058 if (!REG_P (x)
4059 || (HARD_REGISTER_P (x)
4060 && targetm.small_register_classes_for_mode_p (GET_MODE (x))))
4062 if (GET_MODE (x) == BLKmode)
4063 return false;
4065 if (GET_CODE (x) == ZERO_EXTRACT
4066 && (!CONST_INT_P (XEXP (x, 1))
4067 || !CONST_INT_P (XEXP (x, 2))))
4068 return false;
4070 x = gen_reg_rtx (GET_MODE (GET_CODE (x) == STRICT_LOW_PART
4071 ? XEXP (x, 0) : x));
4074 /* Don't operate on sources that may trap or are volatile. */
4075 if (! noce_operand_ok (a) || ! noce_operand_ok (b))
4076 return false;
4078 retry:
4079 /* Set up the info block for our subroutines. */
4080 if_info->insn_a = insn_a;
4081 if_info->insn_b = insn_b;
4082 if_info->x = x;
4083 if_info->a = a;
4084 if_info->b = b;
4086 /* Try optimizations in some approximation of a useful order. */
4087 /* ??? Should first look to see if X is live incoming at all. If it
4088 isn't, we don't need anything but an unconditional set. */
4090 /* Look and see if A and B are really the same. Avoid creating silly
4091 cmove constructs that no one will fix up later. */
4092 if (noce_simple_bbs (if_info)
4093 && rtx_interchangeable_p (a, b))
4095 /* If we have an INSN_B, we don't have to create any new rtl. Just
4096 move the instruction that we already have. If we don't have an
4097 INSN_B, that means that A == X, and we've got a noop move. In
4098 that case don't do anything and let the code below delete INSN_A. */
4099 if (insn_b && else_bb)
4101 rtx note;
4103 if (else_bb && insn_b == BB_END (else_bb))
4104 BB_END (else_bb) = PREV_INSN (insn_b);
4105 reorder_insns (insn_b, insn_b, PREV_INSN (jump));
4107 /* If there was a REG_EQUAL note, delete it since it may have been
4108 true due to this insn being after a jump. */
4109 if ((note = find_reg_note (insn_b, REG_EQUAL, NULL_RTX)) != 0)
4110 remove_note (insn_b, note);
4112 insn_b = NULL;
4114 /* If we have "x = b; if (...) x = a;", and x has side-effects, then
4115 x must be executed twice. */
4116 else if (insn_b && side_effects_p (orig_x))
4117 return false;
4119 x = orig_x;
4120 goto success;
4123 if (!set_b && MEM_P (orig_x))
4124 /* We want to avoid store speculation to avoid cases like
4125 if (pthread_mutex_trylock(mutex))
4126 ++global_variable;
4127 Rather than go to much effort here, we rely on the SSA optimizers,
4128 which do a good enough job these days. */
4129 return false;
4131 if (noce_try_move (if_info))
4132 goto success;
4133 if (noce_try_ifelse_collapse (if_info))
4134 goto success;
4135 if (noce_try_store_flag (if_info))
4136 goto success;
4137 if (noce_try_bitop (if_info))
4138 goto success;
4139 if (noce_try_minmax (if_info))
4140 goto success;
4141 if (noce_try_abs (if_info))
4142 goto success;
4143 if (noce_try_inverse_constants (if_info))
4144 goto success;
4145 if (!targetm.have_conditional_execution ()
4146 && noce_try_store_flag_constants (if_info))
4147 goto success;
4148 if (HAVE_conditional_move
4149 && noce_try_cmove (if_info))
4150 goto success;
4151 if (! targetm.have_conditional_execution ())
4153 if (noce_try_addcc (if_info))
4154 goto success;
4155 if (noce_try_store_flag_mask (if_info))
4156 goto success;
4157 if (HAVE_conditional_move
4158 && noce_try_cond_zero_arith (if_info))
4159 goto success;
4160 if (HAVE_conditional_move
4161 && noce_try_cmove_arith (if_info))
4162 goto success;
4163 if (noce_try_sign_mask (if_info))
4164 goto success;
4167 if (!else_bb && set_b)
4169 insn_b = NULL;
4170 set_b = NULL_RTX;
4171 b = orig_x;
4172 goto retry;
4175 return false;
4177 success:
4178 if (dump_file && if_info->transform_name)
4179 fprintf (dump_file, "if-conversion succeeded through %s\n",
4180 if_info->transform_name);
4182 /* If we used a temporary, fix it up now. */
4183 if (orig_x != x)
4185 rtx_insn *seq;
4187 start_sequence ();
4188 noce_emit_move_insn (orig_x, x);
4189 seq = get_insns ();
4190 set_used_flags (orig_x);
4191 unshare_all_rtl_in_chain (seq);
4192 end_sequence ();
4194 emit_insn_before_setloc (seq, BB_END (test_bb), INSN_LOCATION (insn_a));
4197 /* The original THEN and ELSE blocks may now be removed. The test block
4198 must now jump to the join block. If the test block and the join block
4199 can be merged, do so. */
4200 if (else_bb)
4202 delete_basic_block (else_bb);
4203 num_true_changes++;
4205 else
4206 remove_edge (find_edge (test_bb, join_bb));
4208 remove_edge (find_edge (then_bb, join_bb));
4209 redirect_edge_and_branch_force (single_succ_edge (test_bb), join_bb);
4210 delete_basic_block (then_bb);
4211 num_true_changes++;
4213 if (can_merge_blocks_p (test_bb, join_bb))
4215 merge_blocks (test_bb, join_bb);
4216 num_true_changes++;
4219 num_updated_if_blocks++;
4220 return true;
4223 /* Check whether a block is suitable for conditional move conversion.
4224 Every insn must be a simple set of a register to a constant or a
4225 register. For each assignment, store the value in the pointer map
4226 VALS, keyed indexed by register pointer, then store the register
4227 pointer in REGS. COND is the condition we will test. */
4229 static bool
4230 check_cond_move_block (basic_block bb,
4231 hash_map<rtx, rtx> *vals,
4232 vec<rtx> *regs,
4233 rtx cond)
4235 rtx_insn *insn;
4236 rtx cc = cc_in_cond (cond);
4238 /* We can only handle simple jumps at the end of the basic block.
4239 It is almost impossible to update the CFG otherwise. */
4240 insn = BB_END (bb);
4241 if (JUMP_P (insn) && !onlyjump_p (insn))
4242 return false;
4244 FOR_BB_INSNS (bb, insn)
4246 rtx set, dest, src;
4248 if (!NONDEBUG_INSN_P (insn) || JUMP_P (insn))
4249 continue;
4250 set = single_set (insn);
4251 if (!set)
4252 return false;
4254 dest = SET_DEST (set);
4255 src = SET_SRC (set);
4256 if (!REG_P (dest)
4257 || (HARD_REGISTER_P (dest)
4258 && targetm.small_register_classes_for_mode_p (GET_MODE (dest))))
4259 return false;
4261 if (!CONSTANT_P (src) && !register_operand (src, VOIDmode))
4262 return false;
4264 if (side_effects_p (src) || side_effects_p (dest))
4265 return false;
4267 if (may_trap_p (src) || may_trap_p (dest))
4268 return false;
4270 /* Don't try to handle this if the source register was
4271 modified earlier in the block. */
4272 if ((REG_P (src)
4273 && vals->get (src))
4274 || (GET_CODE (src) == SUBREG && REG_P (SUBREG_REG (src))
4275 && vals->get (SUBREG_REG (src))))
4276 return false;
4278 /* Don't try to handle this if the destination register was
4279 modified earlier in the block. */
4280 if (vals->get (dest))
4281 return false;
4283 /* Don't try to handle this if the condition uses the
4284 destination register. */
4285 if (reg_overlap_mentioned_p (dest, cond))
4286 return false;
4288 /* Don't try to handle this if the source register is modified
4289 later in the block. */
4290 if (!CONSTANT_P (src)
4291 && modified_between_p (src, insn, NEXT_INSN (BB_END (bb))))
4292 return false;
4294 /* Skip it if the instruction to be moved might clobber CC. */
4295 if (cc && set_of (cc, insn))
4296 return false;
4298 vals->put (dest, src);
4300 regs->safe_push (dest);
4303 return true;
4306 /* Find local swap-style idioms in BB and mark the first insn (1)
4307 that is only a temporary as not needing a conditional move as
4308 it is going to be dead afterwards anyway.
4310 (1) int tmp = a;
4311 a = b;
4312 b = tmp;
4314 ifcvt
4317 tmp = a;
4318 a = cond ? b : a_old;
4319 b = cond ? tmp : b_old;
4321 Additionally, store the index of insns like (2) when a subsequent
4322 SET reads from their destination.
4324 (2) int c = a;
4325 int d = c;
4327 ifcvt
4330 c = cond ? a : c_old;
4331 d = cond ? d : c; // Need to use c rather than c_old here.
4334 static void
4335 need_cmov_or_rewire (basic_block bb,
4336 hash_set<rtx_insn *> *need_no_cmov,
4337 hash_map<rtx_insn *, int> *rewired_src)
4339 rtx_insn *insn;
4340 int count = 0;
4341 auto_vec<rtx_insn *> insns;
4342 auto_vec<rtx> dests;
4344 /* Iterate over all SETs, storing the destinations
4345 in DEST.
4346 - If we hit a SET that reads from a destination
4347 that we have seen before and the corresponding register
4348 is dead afterwards, the register does not need to be
4349 moved conditionally.
4350 - If we encounter a previously changed register,
4351 rewire the read to the original source. */
4352 FOR_BB_INSNS (bb, insn)
4354 rtx set, src, dest;
4356 if (!active_insn_p (insn))
4357 continue;
4359 set = single_set (insn);
4360 if (set == NULL_RTX)
4361 continue;
4363 src = SET_SRC (set);
4364 if (SUBREG_P (src))
4365 src = SUBREG_REG (src);
4366 dest = SET_DEST (set);
4368 /* Check if the current SET's source is the same
4369 as any previously seen destination.
4370 This is quadratic but the number of insns in BB
4371 is bounded by PARAM_MAX_RTL_IF_CONVERSION_INSNS. */
4372 if (REG_P (src))
4373 for (int i = count - 1; i >= 0; --i)
4374 if (reg_overlap_mentioned_p (src, dests[i]))
4376 if (find_reg_note (insn, REG_DEAD, src) != NULL_RTX)
4377 need_no_cmov->add (insns[i]);
4378 else
4379 rewired_src->put (insn, i);
4382 insns.safe_push (insn);
4383 dests.safe_push (dest);
4385 count++;
4389 /* Given a basic block BB suitable for conditional move conversion,
4390 a condition COND, and pointer maps THEN_VALS and ELSE_VALS containing
4391 the register values depending on COND, emit the insns in the block as
4392 conditional moves. If ELSE_BLOCK is true, THEN_BB was already
4393 processed. The caller has started a sequence for the conversion.
4394 Return true if successful, false if something goes wrong. */
4396 static bool
4397 cond_move_convert_if_block (struct noce_if_info *if_infop,
4398 basic_block bb, rtx cond,
4399 hash_map<rtx, rtx> *then_vals,
4400 hash_map<rtx, rtx> *else_vals,
4401 bool else_block_p)
4403 enum rtx_code code;
4404 rtx_insn *insn;
4405 rtx cond_arg0, cond_arg1;
4407 code = GET_CODE (cond);
4408 cond_arg0 = XEXP (cond, 0);
4409 cond_arg1 = XEXP (cond, 1);
4411 FOR_BB_INSNS (bb, insn)
4413 rtx set, target, dest, t, e;
4415 /* ??? Maybe emit conditional debug insn? */
4416 if (!NONDEBUG_INSN_P (insn) || JUMP_P (insn))
4417 continue;
4418 set = single_set (insn);
4419 gcc_assert (set && REG_P (SET_DEST (set)));
4421 dest = SET_DEST (set);
4423 rtx *then_slot = then_vals->get (dest);
4424 rtx *else_slot = else_vals->get (dest);
4425 t = then_slot ? *then_slot : NULL_RTX;
4426 e = else_slot ? *else_slot : NULL_RTX;
4428 if (else_block_p)
4430 /* If this register was set in the then block, we already
4431 handled this case there. */
4432 if (t)
4433 continue;
4434 t = dest;
4435 gcc_assert (e);
4437 else
4439 gcc_assert (t);
4440 if (!e)
4441 e = dest;
4444 if (if_infop->cond_inverted)
4445 std::swap (t, e);
4447 target = noce_emit_cmove (if_infop, dest, code, cond_arg0, cond_arg1,
4448 t, e);
4449 if (!target)
4450 return false;
4452 if (target != dest)
4453 noce_emit_move_insn (dest, target);
4456 return true;
4459 /* Given a simple IF-THEN-JOIN or IF-THEN-ELSE-JOIN block, attempt to convert
4460 it using only conditional moves. Return TRUE if we were successful at
4461 converting the block. */
4463 static bool
4464 cond_move_process_if_block (struct noce_if_info *if_info)
4466 basic_block test_bb = if_info->test_bb;
4467 basic_block then_bb = if_info->then_bb;
4468 basic_block else_bb = if_info->else_bb;
4469 basic_block join_bb = if_info->join_bb;
4470 rtx_insn *jump = if_info->jump;
4471 rtx cond = if_info->cond;
4472 rtx_insn *seq, *loc_insn;
4473 int c;
4474 vec<rtx> then_regs = vNULL;
4475 vec<rtx> else_regs = vNULL;
4476 bool success_p = false;
4477 int limit = param_max_rtl_if_conversion_insns;
4479 /* Build a mapping for each block to the value used for each
4480 register. */
4481 hash_map<rtx, rtx> then_vals;
4482 hash_map<rtx, rtx> else_vals;
4484 /* Make sure the blocks are suitable. */
4485 if (!check_cond_move_block (then_bb, &then_vals, &then_regs, cond)
4486 || (else_bb
4487 && !check_cond_move_block (else_bb, &else_vals, &else_regs, cond)))
4488 goto done;
4490 /* Make sure the blocks can be used together. If the same register
4491 is set in both blocks, and is not set to a constant in both
4492 cases, then both blocks must set it to the same register. We
4493 have already verified that if it is set to a register, that the
4494 source register does not change after the assignment. Also count
4495 the number of registers set in only one of the blocks. */
4496 c = 0;
4497 for (rtx reg : then_regs)
4499 rtx *then_slot = then_vals.get (reg);
4500 rtx *else_slot = else_vals.get (reg);
4502 gcc_checking_assert (then_slot);
4503 if (!else_slot)
4504 ++c;
4505 else
4507 rtx then_val = *then_slot;
4508 rtx else_val = *else_slot;
4509 if (!CONSTANT_P (then_val) && !CONSTANT_P (else_val)
4510 && !rtx_equal_p (then_val, else_val))
4511 goto done;
4515 /* Finish off c for MAX_CONDITIONAL_EXECUTE. */
4516 for (rtx reg : else_regs)
4518 gcc_checking_assert (else_vals.get (reg));
4519 if (!then_vals.get (reg))
4520 ++c;
4523 /* Make sure it is reasonable to convert this block. What matters
4524 is the number of assignments currently made in only one of the
4525 branches, since if we convert we are going to always execute
4526 them. */
4527 if (c > MAX_CONDITIONAL_EXECUTE
4528 || c > limit)
4529 goto done;
4531 /* Try to emit the conditional moves. First do the then block,
4532 then do anything left in the else blocks. */
4533 start_sequence ();
4534 if (!cond_move_convert_if_block (if_info, then_bb, cond,
4535 &then_vals, &else_vals, false)
4536 || (else_bb
4537 && !cond_move_convert_if_block (if_info, else_bb, cond,
4538 &then_vals, &else_vals, true)))
4540 end_sequence ();
4541 goto done;
4543 seq = end_ifcvt_sequence (if_info);
4544 if (!seq || !targetm.noce_conversion_profitable_p (seq, if_info))
4545 goto done;
4547 loc_insn = first_active_insn (then_bb);
4548 if (!loc_insn)
4550 loc_insn = first_active_insn (else_bb);
4551 gcc_assert (loc_insn);
4553 emit_insn_before_setloc (seq, jump, INSN_LOCATION (loc_insn));
4555 if (else_bb)
4557 delete_basic_block (else_bb);
4558 num_true_changes++;
4560 else
4561 remove_edge (find_edge (test_bb, join_bb));
4563 remove_edge (find_edge (then_bb, join_bb));
4564 redirect_edge_and_branch_force (single_succ_edge (test_bb), join_bb);
4565 delete_basic_block (then_bb);
4566 num_true_changes++;
4568 if (can_merge_blocks_p (test_bb, join_bb))
4570 merge_blocks (test_bb, join_bb);
4571 num_true_changes++;
4574 num_updated_if_blocks++;
4575 success_p = true;
4577 done:
4578 then_regs.release ();
4579 else_regs.release ();
4580 return success_p;
4584 /* Determine if a given basic block heads a simple IF-THEN-JOIN or an
4585 IF-THEN-ELSE-JOIN block.
4587 If so, we'll try to convert the insns to not require the branch,
4588 using only transformations that do not require conditional execution.
4590 Return TRUE if we were successful at converting the block. */
4592 static bool
4593 noce_find_if_block (basic_block test_bb, edge then_edge, edge else_edge,
4594 int pass)
4596 basic_block then_bb, else_bb, join_bb;
4597 bool then_else_reversed = false;
4598 rtx_insn *jump;
4599 rtx_insn *cond_earliest;
4600 struct noce_if_info if_info;
4601 bool speed_p = optimize_bb_for_speed_p (test_bb);
4603 /* We only ever should get here before reload. */
4604 gcc_assert (!reload_completed);
4606 /* Recognize an IF-THEN-ELSE-JOIN block. */
4607 if (single_pred_p (then_edge->dest)
4608 && single_succ_p (then_edge->dest)
4609 && single_pred_p (else_edge->dest)
4610 && single_succ_p (else_edge->dest)
4611 && single_succ (then_edge->dest) == single_succ (else_edge->dest))
4613 then_bb = then_edge->dest;
4614 else_bb = else_edge->dest;
4615 join_bb = single_succ (then_bb);
4617 /* Recognize an IF-THEN-JOIN block. */
4618 else if (single_pred_p (then_edge->dest)
4619 && single_succ_p (then_edge->dest)
4620 && single_succ (then_edge->dest) == else_edge->dest)
4622 then_bb = then_edge->dest;
4623 else_bb = NULL_BLOCK;
4624 join_bb = else_edge->dest;
4626 /* Recognize an IF-ELSE-JOIN block. We can have those because the order
4627 of basic blocks in cfglayout mode does not matter, so the fallthrough
4628 edge can go to any basic block (and not just to bb->next_bb, like in
4629 cfgrtl mode). */
4630 else if (single_pred_p (else_edge->dest)
4631 && single_succ_p (else_edge->dest)
4632 && single_succ (else_edge->dest) == then_edge->dest)
4634 /* The noce transformations do not apply to IF-ELSE-JOIN blocks.
4635 To make this work, we have to invert the THEN and ELSE blocks
4636 and reverse the jump condition. */
4637 then_bb = else_edge->dest;
4638 else_bb = NULL_BLOCK;
4639 join_bb = single_succ (then_bb);
4640 then_else_reversed = true;
4642 else
4643 /* Not a form we can handle. */
4644 return false;
4646 /* The edges of the THEN and ELSE blocks cannot have complex edges. */
4647 if (single_succ_edge (then_bb)->flags & EDGE_COMPLEX)
4648 return false;
4649 if (else_bb
4650 && single_succ_edge (else_bb)->flags & EDGE_COMPLEX)
4651 return false;
4653 num_possible_if_blocks++;
4655 if (dump_file)
4657 fprintf (dump_file,
4658 "\nIF-THEN%s-JOIN block found, pass %d, test %d, then %d",
4659 (else_bb) ? "-ELSE" : "",
4660 pass, test_bb->index, then_bb->index);
4662 if (else_bb)
4663 fprintf (dump_file, ", else %d", else_bb->index);
4665 fprintf (dump_file, ", join %d\n", join_bb->index);
4668 /* If the conditional jump is more than just a conditional
4669 jump, then we cannot do if-conversion on this block. */
4670 jump = BB_END (test_bb);
4671 if (! onlyjump_p (jump))
4672 return false;
4674 /* Initialize an IF_INFO struct to pass around. */
4675 memset (&if_info, 0, sizeof if_info);
4676 if_info.test_bb = test_bb;
4677 if_info.then_bb = then_bb;
4678 if_info.else_bb = else_bb;
4679 if_info.join_bb = join_bb;
4680 if_info.cond = noce_get_condition (jump, &cond_earliest,
4681 then_else_reversed);
4682 rtx_insn *rev_cond_earliest;
4683 if_info.rev_cond = noce_get_condition (jump, &rev_cond_earliest,
4684 !then_else_reversed);
4685 if (!if_info.cond && !if_info.rev_cond)
4686 return false;
4687 if (!if_info.cond)
4689 std::swap (if_info.cond, if_info.rev_cond);
4690 std::swap (cond_earliest, rev_cond_earliest);
4691 if_info.cond_inverted = true;
4693 /* We must be comparing objects whose modes imply the size. */
4694 if (GET_MODE (XEXP (if_info.cond, 0)) == BLKmode)
4695 return false;
4696 gcc_assert (if_info.rev_cond == NULL_RTX
4697 || rev_cond_earliest == cond_earliest);
4698 if_info.cond_earliest = cond_earliest;
4699 if_info.jump = jump;
4700 if_info.then_else_reversed = then_else_reversed;
4701 if_info.speed_p = speed_p;
4702 if_info.max_seq_cost
4703 = targetm.max_noce_ifcvt_seq_cost (then_edge);
4704 /* We'll add in the cost of THEN_BB and ELSE_BB later, when we check
4705 that they are valid to transform. We can't easily get back to the insn
4706 for COND (and it may not exist if we had to canonicalize to get COND),
4707 and jump_insns are always given a cost of 1 by seq_cost, so treat
4708 both instructions as having cost COSTS_N_INSNS (1). */
4709 if_info.original_cost = COSTS_N_INSNS (2);
4712 /* Do the real work. */
4714 /* ??? noce_process_if_block has not yet been updated to handle
4715 inverted conditions. */
4716 if (!if_info.cond_inverted && noce_process_if_block (&if_info))
4717 return true;
4719 if (HAVE_conditional_move
4720 && cond_move_process_if_block (&if_info))
4721 return true;
4723 return false;
4727 /* Merge the blocks and mark for local life update. */
4729 static void
4730 merge_if_block (struct ce_if_block * ce_info)
4732 basic_block test_bb = ce_info->test_bb; /* last test block */
4733 basic_block then_bb = ce_info->then_bb; /* THEN */
4734 basic_block else_bb = ce_info->else_bb; /* ELSE or NULL */
4735 basic_block join_bb = ce_info->join_bb; /* join block */
4736 basic_block combo_bb;
4738 /* All block merging is done into the lower block numbers. */
4740 combo_bb = test_bb;
4741 df_set_bb_dirty (test_bb);
4743 /* Merge any basic blocks to handle && and || subtests. Each of
4744 the blocks are on the fallthru path from the predecessor block. */
4745 if (ce_info->num_multiple_test_blocks > 0)
4747 basic_block bb = test_bb;
4748 basic_block last_test_bb = ce_info->last_test_bb;
4749 basic_block fallthru = block_fallthru (bb);
4753 bb = fallthru;
4754 fallthru = block_fallthru (bb);
4755 merge_blocks (combo_bb, bb);
4756 num_true_changes++;
4758 while (bb != last_test_bb);
4761 /* Merge TEST block into THEN block. Normally the THEN block won't have a
4762 label, but it might if there were || tests. That label's count should be
4763 zero, and it normally should be removed. */
4765 if (then_bb)
4767 /* If THEN_BB has no successors, then there's a BARRIER after it.
4768 If COMBO_BB has more than one successor (THEN_BB), then that BARRIER
4769 is no longer needed, and in fact it is incorrect to leave it in
4770 the insn stream. */
4771 if (EDGE_COUNT (then_bb->succs) == 0
4772 && EDGE_COUNT (combo_bb->succs) > 1)
4774 rtx_insn *end = NEXT_INSN (BB_END (then_bb));
4775 while (end && NOTE_P (end) && !NOTE_INSN_BASIC_BLOCK_P (end))
4776 end = NEXT_INSN (end);
4778 if (end && BARRIER_P (end))
4779 delete_insn (end);
4781 merge_blocks (combo_bb, then_bb);
4782 num_true_changes++;
4785 /* The ELSE block, if it existed, had a label. That label count
4786 will almost always be zero, but odd things can happen when labels
4787 get their addresses taken. */
4788 if (else_bb)
4790 /* If ELSE_BB has no successors, then there's a BARRIER after it.
4791 If COMBO_BB has more than one successor (ELSE_BB), then that BARRIER
4792 is no longer needed, and in fact it is incorrect to leave it in
4793 the insn stream. */
4794 if (EDGE_COUNT (else_bb->succs) == 0
4795 && EDGE_COUNT (combo_bb->succs) > 1)
4797 rtx_insn *end = NEXT_INSN (BB_END (else_bb));
4798 while (end && NOTE_P (end) && !NOTE_INSN_BASIC_BLOCK_P (end))
4799 end = NEXT_INSN (end);
4801 if (end && BARRIER_P (end))
4802 delete_insn (end);
4804 merge_blocks (combo_bb, else_bb);
4805 num_true_changes++;
4808 /* If there was no join block reported, that means it was not adjacent
4809 to the others, and so we cannot merge them. */
4811 if (! join_bb)
4813 rtx_insn *last = BB_END (combo_bb);
4815 /* The outgoing edge for the current COMBO block should already
4816 be correct. Verify this. */
4817 if (EDGE_COUNT (combo_bb->succs) == 0)
4818 gcc_assert (find_reg_note (last, REG_NORETURN, NULL)
4819 || (NONJUMP_INSN_P (last)
4820 && GET_CODE (PATTERN (last)) == TRAP_IF
4821 && (TRAP_CONDITION (PATTERN (last))
4822 == const_true_rtx)));
4824 else
4825 /* There should still be something at the end of the THEN or ELSE
4826 blocks taking us to our final destination. */
4827 gcc_assert (JUMP_P (last)
4828 || (EDGE_SUCC (combo_bb, 0)->dest
4829 == EXIT_BLOCK_PTR_FOR_FN (cfun)
4830 && CALL_P (last)
4831 && SIBLING_CALL_P (last))
4832 || ((EDGE_SUCC (combo_bb, 0)->flags & EDGE_EH)
4833 && can_throw_internal (last)));
4836 /* The JOIN block may have had quite a number of other predecessors too.
4837 Since we've already merged the TEST, THEN and ELSE blocks, we should
4838 have only one remaining edge from our if-then-else diamond. If there
4839 is more than one remaining edge, it must come from elsewhere. There
4840 may be zero incoming edges if the THEN block didn't actually join
4841 back up (as with a call to a non-return function). */
4842 else if (EDGE_COUNT (join_bb->preds) < 2
4843 && join_bb != EXIT_BLOCK_PTR_FOR_FN (cfun))
4845 /* We can merge the JOIN cleanly and update the dataflow try
4846 again on this pass.*/
4847 merge_blocks (combo_bb, join_bb);
4848 num_true_changes++;
4850 else
4852 /* We cannot merge the JOIN. */
4854 /* The outgoing edge for the current COMBO block should already
4855 be correct. Verify this. */
4856 gcc_assert (single_succ_p (combo_bb)
4857 && single_succ (combo_bb) == join_bb);
4859 /* Remove the jump and cruft from the end of the COMBO block. */
4860 if (join_bb != EXIT_BLOCK_PTR_FOR_FN (cfun))
4861 tidy_fallthru_edge (single_succ_edge (combo_bb));
4864 num_updated_if_blocks++;
4867 /* Find a block ending in a simple IF condition and try to transform it
4868 in some way. When converting a multi-block condition, put the new code
4869 in the first such block and delete the rest. Return a pointer to this
4870 first block if some transformation was done. Return NULL otherwise. */
4872 static basic_block
4873 find_if_header (basic_block test_bb, int pass)
4875 ce_if_block ce_info;
4876 edge then_edge;
4877 edge else_edge;
4879 /* The kind of block we're looking for has exactly two successors. */
4880 if (EDGE_COUNT (test_bb->succs) != 2)
4881 return NULL;
4883 then_edge = EDGE_SUCC (test_bb, 0);
4884 else_edge = EDGE_SUCC (test_bb, 1);
4886 if (df_get_bb_dirty (then_edge->dest))
4887 return NULL;
4888 if (df_get_bb_dirty (else_edge->dest))
4889 return NULL;
4891 /* Neither edge should be abnormal. */
4892 if ((then_edge->flags & EDGE_COMPLEX)
4893 || (else_edge->flags & EDGE_COMPLEX))
4894 return NULL;
4896 /* Nor exit the loop. */
4897 if ((then_edge->flags & EDGE_LOOP_EXIT)
4898 || (else_edge->flags & EDGE_LOOP_EXIT))
4899 return NULL;
4901 /* The THEN edge is canonically the one that falls through. */
4902 if (then_edge->flags & EDGE_FALLTHRU)
4904 else if (else_edge->flags & EDGE_FALLTHRU)
4905 std::swap (then_edge, else_edge);
4906 else
4907 /* Otherwise this must be a multiway branch of some sort. */
4908 return NULL;
4910 memset (&ce_info, 0, sizeof (ce_info));
4911 ce_info.test_bb = test_bb;
4912 ce_info.then_bb = then_edge->dest;
4913 ce_info.else_bb = else_edge->dest;
4914 ce_info.pass = pass;
4916 #ifdef IFCVT_MACHDEP_INIT
4917 IFCVT_MACHDEP_INIT (&ce_info);
4918 #endif
4920 if (!reload_completed
4921 && noce_find_if_block (test_bb, then_edge, else_edge, pass))
4922 goto success;
4924 if (reload_completed
4925 && targetm.have_conditional_execution ()
4926 && cond_exec_find_if_block (&ce_info))
4927 goto success;
4929 if (targetm.have_trap ()
4930 && optab_handler (ctrap_optab, word_mode) != CODE_FOR_nothing
4931 && find_cond_trap (test_bb, then_edge, else_edge))
4932 goto success;
4934 if (dom_info_state (CDI_POST_DOMINATORS) >= DOM_NO_FAST_QUERY
4935 && (reload_completed || !targetm.have_conditional_execution ()))
4937 if (find_if_case_1 (test_bb, then_edge, else_edge))
4938 goto success;
4939 if (find_if_case_2 (test_bb, then_edge, else_edge))
4940 goto success;
4943 return NULL;
4945 success:
4946 if (dump_file)
4947 fprintf (dump_file, "Conversion succeeded on pass %d.\n", pass);
4948 /* Set this so we continue looking. */
4949 cond_exec_changed_p = true;
4950 return ce_info.test_bb;
4953 /* Return true if a block has two edges, one of which falls through to the next
4954 block, and the other jumps to a specific block, so that we can tell if the
4955 block is part of an && test or an || test. Returns either -1 or the number
4956 of non-note, non-jump, non-USE/CLOBBER insns in the block. */
4958 static int
4959 block_jumps_and_fallthru (basic_block cur_bb, basic_block target_bb)
4961 edge cur_edge;
4962 bool fallthru_p = false;
4963 bool jump_p = false;
4964 rtx_insn *insn;
4965 rtx_insn *end;
4966 int n_insns = 0;
4967 edge_iterator ei;
4969 if (!cur_bb || !target_bb)
4970 return -1;
4972 /* If no edges, obviously it doesn't jump or fallthru. */
4973 if (EDGE_COUNT (cur_bb->succs) == 0)
4974 return 0;
4976 FOR_EACH_EDGE (cur_edge, ei, cur_bb->succs)
4978 if (cur_edge->flags & EDGE_COMPLEX)
4979 /* Anything complex isn't what we want. */
4980 return -1;
4982 else if (cur_edge->flags & EDGE_FALLTHRU)
4983 fallthru_p = true;
4985 else if (cur_edge->dest == target_bb)
4986 jump_p = true;
4988 else
4989 return -1;
4992 if ((jump_p & fallthru_p) == 0)
4993 return -1;
4995 /* Don't allow calls in the block, since this is used to group && and ||
4996 together for conditional execution support. ??? we should support
4997 conditional execution support across calls for IA-64 some day, but
4998 for now it makes the code simpler. */
4999 end = BB_END (cur_bb);
5000 insn = BB_HEAD (cur_bb);
5002 while (insn != NULL_RTX)
5004 if (CALL_P (insn))
5005 return -1;
5007 if (INSN_P (insn)
5008 && !JUMP_P (insn)
5009 && !DEBUG_INSN_P (insn)
5010 && GET_CODE (PATTERN (insn)) != USE
5011 && GET_CODE (PATTERN (insn)) != CLOBBER)
5012 n_insns++;
5014 if (insn == end)
5015 break;
5017 insn = NEXT_INSN (insn);
5020 return n_insns;
5023 /* Determine if a given basic block heads a simple IF-THEN or IF-THEN-ELSE
5024 block. If so, we'll try to convert the insns to not require the branch.
5025 Return TRUE if we were successful at converting the block. */
5027 static bool
5028 cond_exec_find_if_block (struct ce_if_block * ce_info)
5030 basic_block test_bb = ce_info->test_bb;
5031 basic_block then_bb = ce_info->then_bb;
5032 basic_block else_bb = ce_info->else_bb;
5033 basic_block join_bb = NULL_BLOCK;
5034 edge cur_edge;
5035 basic_block next;
5036 edge_iterator ei;
5038 ce_info->last_test_bb = test_bb;
5040 /* We only ever should get here after reload,
5041 and if we have conditional execution. */
5042 gcc_assert (reload_completed && targetm.have_conditional_execution ());
5044 /* Discover if any fall through predecessors of the current test basic block
5045 were && tests (which jump to the else block) or || tests (which jump to
5046 the then block). */
5047 if (single_pred_p (test_bb)
5048 && single_pred_edge (test_bb)->flags == EDGE_FALLTHRU)
5050 basic_block bb = single_pred (test_bb);
5051 basic_block target_bb;
5052 int max_insns = MAX_CONDITIONAL_EXECUTE;
5053 int n_insns;
5055 /* Determine if the preceding block is an && or || block. */
5056 if ((n_insns = block_jumps_and_fallthru (bb, else_bb)) >= 0)
5058 ce_info->and_and_p = true;
5059 target_bb = else_bb;
5061 else if ((n_insns = block_jumps_and_fallthru (bb, then_bb)) >= 0)
5063 ce_info->and_and_p = false;
5064 target_bb = then_bb;
5066 else
5067 target_bb = NULL_BLOCK;
5069 if (target_bb && n_insns <= max_insns)
5071 int total_insns = 0;
5072 int blocks = 0;
5074 ce_info->last_test_bb = test_bb;
5076 /* Found at least one && or || block, look for more. */
5079 ce_info->test_bb = test_bb = bb;
5080 total_insns += n_insns;
5081 blocks++;
5083 if (!single_pred_p (bb))
5084 break;
5086 bb = single_pred (bb);
5087 n_insns = block_jumps_and_fallthru (bb, target_bb);
5089 while (n_insns >= 0 && (total_insns + n_insns) <= max_insns);
5091 ce_info->num_multiple_test_blocks = blocks;
5092 ce_info->num_multiple_test_insns = total_insns;
5094 if (ce_info->and_and_p)
5095 ce_info->num_and_and_blocks = blocks;
5096 else
5097 ce_info->num_or_or_blocks = blocks;
5101 /* The THEN block of an IF-THEN combo must have exactly one predecessor,
5102 other than any || blocks which jump to the THEN block. */
5103 if ((EDGE_COUNT (then_bb->preds) - ce_info->num_or_or_blocks) != 1)
5104 return false;
5106 /* The edges of the THEN and ELSE blocks cannot have complex edges. */
5107 FOR_EACH_EDGE (cur_edge, ei, then_bb->preds)
5109 if (cur_edge->flags & EDGE_COMPLEX)
5110 return false;
5113 FOR_EACH_EDGE (cur_edge, ei, else_bb->preds)
5115 if (cur_edge->flags & EDGE_COMPLEX)
5116 return false;
5119 /* The THEN block of an IF-THEN combo must have zero or one successors. */
5120 if (EDGE_COUNT (then_bb->succs) > 0
5121 && (!single_succ_p (then_bb)
5122 || (single_succ_edge (then_bb)->flags & EDGE_COMPLEX)
5123 || (epilogue_completed
5124 && tablejump_p (BB_END (then_bb), NULL, NULL))))
5125 return false;
5127 /* If the THEN block has no successors, conditional execution can still
5128 make a conditional call. Don't do this unless the ELSE block has
5129 only one incoming edge -- the CFG manipulation is too ugly otherwise.
5130 Check for the last insn of the THEN block being an indirect jump, which
5131 is listed as not having any successors, but confuses the rest of the CE
5132 code processing. ??? we should fix this in the future. */
5133 if (EDGE_COUNT (then_bb->succs) == 0)
5135 if (single_pred_p (else_bb) && else_bb != EXIT_BLOCK_PTR_FOR_FN (cfun))
5137 rtx_insn *last_insn = BB_END (then_bb);
5139 while (last_insn
5140 && NOTE_P (last_insn)
5141 && last_insn != BB_HEAD (then_bb))
5142 last_insn = PREV_INSN (last_insn);
5144 if (last_insn
5145 && JUMP_P (last_insn)
5146 && ! simplejump_p (last_insn))
5147 return false;
5149 join_bb = else_bb;
5150 else_bb = NULL_BLOCK;
5152 else
5153 return false;
5156 /* If the THEN block's successor is the other edge out of the TEST block,
5157 then we have an IF-THEN combo without an ELSE. */
5158 else if (single_succ (then_bb) == else_bb)
5160 join_bb = else_bb;
5161 else_bb = NULL_BLOCK;
5164 /* If the THEN and ELSE block meet in a subsequent block, and the ELSE
5165 has exactly one predecessor and one successor, and the outgoing edge
5166 is not complex, then we have an IF-THEN-ELSE combo. */
5167 else if (single_succ_p (else_bb)
5168 && single_succ (then_bb) == single_succ (else_bb)
5169 && single_pred_p (else_bb)
5170 && !(single_succ_edge (else_bb)->flags & EDGE_COMPLEX)
5171 && !(epilogue_completed
5172 && tablejump_p (BB_END (else_bb), NULL, NULL)))
5173 join_bb = single_succ (else_bb);
5175 /* Otherwise it is not an IF-THEN or IF-THEN-ELSE combination. */
5176 else
5177 return false;
5179 num_possible_if_blocks++;
5181 if (dump_file)
5183 fprintf (dump_file,
5184 "\nIF-THEN%s block found, pass %d, start block %d "
5185 "[insn %d], then %d [%d]",
5186 (else_bb) ? "-ELSE" : "",
5187 ce_info->pass,
5188 test_bb->index,
5189 BB_HEAD (test_bb) ? (int)INSN_UID (BB_HEAD (test_bb)) : -1,
5190 then_bb->index,
5191 BB_HEAD (then_bb) ? (int)INSN_UID (BB_HEAD (then_bb)) : -1);
5193 if (else_bb)
5194 fprintf (dump_file, ", else %d [%d]",
5195 else_bb->index,
5196 BB_HEAD (else_bb) ? (int)INSN_UID (BB_HEAD (else_bb)) : -1);
5198 fprintf (dump_file, ", join %d [%d]",
5199 join_bb->index,
5200 BB_HEAD (join_bb) ? (int)INSN_UID (BB_HEAD (join_bb)) : -1);
5202 if (ce_info->num_multiple_test_blocks > 0)
5203 fprintf (dump_file, ", %d %s block%s last test %d [%d]",
5204 ce_info->num_multiple_test_blocks,
5205 (ce_info->and_and_p) ? "&&" : "||",
5206 (ce_info->num_multiple_test_blocks == 1) ? "" : "s",
5207 ce_info->last_test_bb->index,
5208 ((BB_HEAD (ce_info->last_test_bb))
5209 ? (int)INSN_UID (BB_HEAD (ce_info->last_test_bb))
5210 : -1));
5212 fputc ('\n', dump_file);
5215 /* Make sure IF, THEN, and ELSE, blocks are adjacent. Actually, we get the
5216 first condition for free, since we've already asserted that there's a
5217 fallthru edge from IF to THEN. Likewise for the && and || blocks, since
5218 we checked the FALLTHRU flag, those are already adjacent to the last IF
5219 block. */
5220 /* ??? As an enhancement, move the ELSE block. Have to deal with
5221 BLOCK notes, if by no other means than backing out the merge if they
5222 exist. Sticky enough I don't want to think about it now. */
5223 next = then_bb;
5224 if (else_bb && (next = next->next_bb) != else_bb)
5225 return false;
5226 if ((next = next->next_bb) != join_bb
5227 && join_bb != EXIT_BLOCK_PTR_FOR_FN (cfun))
5229 if (else_bb)
5230 join_bb = NULL;
5231 else
5232 return false;
5235 /* Do the real work. */
5237 ce_info->else_bb = else_bb;
5238 ce_info->join_bb = join_bb;
5240 /* If we have && and || tests, try to first handle combining the && and ||
5241 tests into the conditional code, and if that fails, go back and handle
5242 it without the && and ||, which at present handles the && case if there
5243 was no ELSE block. */
5244 if (cond_exec_process_if_block (ce_info, true))
5245 return true;
5247 if (ce_info->num_multiple_test_blocks)
5249 cancel_changes (0);
5251 if (cond_exec_process_if_block (ce_info, false))
5252 return true;
5255 return false;
5258 /* Convert a branch over a trap, or a branch
5259 to a trap, into a conditional trap. */
5261 static bool
5262 find_cond_trap (basic_block test_bb, edge then_edge, edge else_edge)
5264 basic_block then_bb = then_edge->dest;
5265 basic_block else_bb = else_edge->dest;
5266 basic_block other_bb, trap_bb;
5267 rtx_insn *trap, *jump;
5268 rtx cond;
5269 rtx_insn *cond_earliest;
5271 /* Locate the block with the trap instruction. */
5272 /* ??? While we look for no successors, we really ought to allow
5273 EH successors. Need to fix merge_if_block for that to work. */
5274 if ((trap = block_has_only_trap (then_bb)) != NULL)
5275 trap_bb = then_bb, other_bb = else_bb;
5276 else if ((trap = block_has_only_trap (else_bb)) != NULL)
5277 trap_bb = else_bb, other_bb = then_bb;
5278 else
5279 return false;
5281 if (dump_file)
5283 fprintf (dump_file, "\nTRAP-IF block found, start %d, trap %d\n",
5284 test_bb->index, trap_bb->index);
5287 /* If this is not a standard conditional jump, we can't parse it. */
5288 jump = BB_END (test_bb);
5289 cond = noce_get_condition (jump, &cond_earliest, then_bb == trap_bb);
5290 if (! cond)
5291 return false;
5293 /* If the conditional jump is more than just a conditional jump, then
5294 we cannot do if-conversion on this block. Give up for returnjump_p,
5295 changing a conditional return followed by unconditional trap for
5296 conditional trap followed by unconditional return is likely not
5297 beneficial and harder to handle. */
5298 if (! onlyjump_p (jump) || returnjump_p (jump))
5299 return false;
5301 /* We must be comparing objects whose modes imply the size. */
5302 if (GET_MODE (XEXP (cond, 0)) == BLKmode)
5303 return false;
5305 /* Attempt to generate the conditional trap. */
5306 rtx_insn *seq = gen_cond_trap (GET_CODE (cond), copy_rtx (XEXP (cond, 0)),
5307 copy_rtx (XEXP (cond, 1)),
5308 TRAP_CODE (PATTERN (trap)));
5309 if (seq == NULL)
5310 return false;
5312 /* If that results in an invalid insn, back out. */
5313 for (rtx_insn *x = seq; x; x = NEXT_INSN (x))
5314 if (reload_completed
5315 ? !valid_insn_p (x)
5316 : recog_memoized (x) < 0)
5317 return false;
5319 /* Emit the new insns before cond_earliest. */
5320 emit_insn_before_setloc (seq, cond_earliest, INSN_LOCATION (trap));
5322 /* Delete the trap block if possible. */
5323 remove_edge (trap_bb == then_bb ? then_edge : else_edge);
5324 df_set_bb_dirty (test_bb);
5325 df_set_bb_dirty (then_bb);
5326 df_set_bb_dirty (else_bb);
5328 if (EDGE_COUNT (trap_bb->preds) == 0)
5330 delete_basic_block (trap_bb);
5331 num_true_changes++;
5334 /* Wire together the blocks again. */
5335 if (current_ir_type () == IR_RTL_CFGLAYOUT)
5336 single_succ_edge (test_bb)->flags |= EDGE_FALLTHRU;
5337 else if (trap_bb == then_bb)
5339 rtx lab = JUMP_LABEL (jump);
5340 rtx_insn *seq = targetm.gen_jump (lab);
5341 rtx_jump_insn *newjump = emit_jump_insn_after (seq, jump);
5342 LABEL_NUSES (lab) += 1;
5343 JUMP_LABEL (newjump) = lab;
5344 emit_barrier_after (newjump);
5346 delete_insn (jump);
5348 if (can_merge_blocks_p (test_bb, other_bb))
5350 merge_blocks (test_bb, other_bb);
5351 num_true_changes++;
5354 num_updated_if_blocks++;
5355 return true;
5358 /* Subroutine of find_cond_trap: if BB contains only a trap insn,
5359 return it. */
5361 static rtx_insn *
5362 block_has_only_trap (basic_block bb)
5364 rtx_insn *trap;
5366 /* We're not the exit block. */
5367 if (bb == EXIT_BLOCK_PTR_FOR_FN (cfun))
5368 return NULL;
5370 /* The block must have no successors. */
5371 if (EDGE_COUNT (bb->succs) > 0)
5372 return NULL;
5374 /* The only instruction in the THEN block must be the trap. */
5375 trap = first_active_insn (bb);
5376 if (! (trap == BB_END (bb)
5377 && GET_CODE (PATTERN (trap)) == TRAP_IF
5378 && TRAP_CONDITION (PATTERN (trap)) == const_true_rtx))
5379 return NULL;
5381 return trap;
5384 /* Look for IF-THEN-ELSE cases in which one of THEN or ELSE is
5385 transformable, but not necessarily the other. There need be no
5386 JOIN block.
5388 Return TRUE if we were successful at converting the block.
5390 Cases we'd like to look at:
5393 if (test) goto over; // x not live
5394 x = a;
5395 goto label;
5396 over:
5398 becomes
5400 x = a;
5401 if (! test) goto label;
5404 if (test) goto E; // x not live
5405 x = big();
5406 goto L;
5408 x = b;
5409 goto M;
5411 becomes
5413 x = b;
5414 if (test) goto M;
5415 x = big();
5416 goto L;
5418 (3) // This one's really only interesting for targets that can do
5419 // multiway branching, e.g. IA-64 BBB bundles. For other targets
5420 // it results in multiple branches on a cache line, which often
5421 // does not sit well with predictors.
5423 if (test1) goto E; // predicted not taken
5424 x = a;
5425 if (test2) goto F;
5428 x = b;
5431 becomes
5433 x = a;
5434 if (test1) goto E;
5435 if (test2) goto F;
5437 Notes:
5439 (A) Don't do (2) if the branch is predicted against the block we're
5440 eliminating. Do it anyway if we can eliminate a branch; this requires
5441 that the sole successor of the eliminated block postdominate the other
5442 side of the if.
5444 (B) With CE, on (3) we can steal from both sides of the if, creating
5446 if (test1) x = a;
5447 if (!test1) x = b;
5448 if (test1) goto J;
5449 if (test2) goto F;
5453 Again, this is most useful if J postdominates.
5455 (C) CE substitutes for helpful life information.
5457 (D) These heuristics need a lot of work. */
5459 /* Tests for case 1 above. */
5461 static bool
5462 find_if_case_1 (basic_block test_bb, edge then_edge, edge else_edge)
5464 basic_block then_bb = then_edge->dest;
5465 basic_block else_bb = else_edge->dest;
5466 basic_block new_bb;
5467 int then_bb_index;
5468 profile_probability then_prob;
5469 rtx else_target = NULL_RTX;
5471 /* If we are partitioning hot/cold basic blocks, we don't want to
5472 mess up unconditional or indirect jumps that cross between hot
5473 and cold sections.
5475 Basic block partitioning may result in some jumps that appear to
5476 be optimizable (or blocks that appear to be mergeable), but which really
5477 must be left untouched (they are required to make it safely across
5478 partition boundaries). See the comments at the top of
5479 bb-reorder.cc:partition_hot_cold_basic_blocks for complete details. */
5481 if ((BB_END (then_bb)
5482 && JUMP_P (BB_END (then_bb))
5483 && CROSSING_JUMP_P (BB_END (then_bb)))
5484 || (JUMP_P (BB_END (test_bb))
5485 && CROSSING_JUMP_P (BB_END (test_bb)))
5486 || (BB_END (else_bb)
5487 && JUMP_P (BB_END (else_bb))
5488 && CROSSING_JUMP_P (BB_END (else_bb))))
5489 return false;
5491 /* Verify test_bb ends in a conditional jump with no other side-effects. */
5492 if (!onlyjump_p (BB_END (test_bb)))
5493 return false;
5495 /* THEN has one successor. */
5496 if (!single_succ_p (then_bb))
5497 return false;
5499 /* THEN does not fall through, but is not strange either. */
5500 if (single_succ_edge (then_bb)->flags & (EDGE_COMPLEX | EDGE_FALLTHRU))
5501 return false;
5503 /* THEN has one predecessor. */
5504 if (!single_pred_p (then_bb))
5505 return false;
5507 /* THEN must do something. */
5508 if (forwarder_block_p (then_bb))
5509 return false;
5511 num_possible_if_blocks++;
5512 if (dump_file)
5513 fprintf (dump_file,
5514 "\nIF-CASE-1 found, start %d, then %d\n",
5515 test_bb->index, then_bb->index);
5517 then_prob = then_edge->probability.invert ();
5519 /* We're speculating from the THEN path, we want to make sure the cost
5520 of speculation is within reason. */
5521 if (! cheap_bb_rtx_cost_p (then_bb, then_prob,
5522 COSTS_N_INSNS (BRANCH_COST (optimize_bb_for_speed_p (then_edge->src),
5523 predictable_edge_p (then_edge)))))
5524 return false;
5526 if (else_bb == EXIT_BLOCK_PTR_FOR_FN (cfun))
5528 rtx_insn *jump = BB_END (else_edge->src);
5529 gcc_assert (JUMP_P (jump));
5530 else_target = JUMP_LABEL (jump);
5533 /* Registers set are dead, or are predicable. */
5534 if (! dead_or_predicable (test_bb, then_bb, else_bb,
5535 single_succ_edge (then_bb), true))
5536 return false;
5538 /* Conversion went ok, including moving the insns and fixing up the
5539 jump. Adjust the CFG to match. */
5541 /* We can avoid creating a new basic block if then_bb is immediately
5542 followed by else_bb, i.e. deleting then_bb allows test_bb to fall
5543 through to else_bb. */
5545 if (then_bb->next_bb == else_bb
5546 && then_bb->prev_bb == test_bb
5547 && else_bb != EXIT_BLOCK_PTR_FOR_FN (cfun))
5549 redirect_edge_succ (FALLTHRU_EDGE (test_bb), else_bb);
5550 new_bb = 0;
5552 else if (else_bb == EXIT_BLOCK_PTR_FOR_FN (cfun))
5553 new_bb = force_nonfallthru_and_redirect (FALLTHRU_EDGE (test_bb),
5554 else_bb, else_target);
5555 else
5556 new_bb = redirect_edge_and_branch_force (FALLTHRU_EDGE (test_bb),
5557 else_bb);
5559 df_set_bb_dirty (test_bb);
5560 df_set_bb_dirty (else_bb);
5562 then_bb_index = then_bb->index;
5563 delete_basic_block (then_bb);
5565 /* Make rest of code believe that the newly created block is the THEN_BB
5566 block we removed. */
5567 if (new_bb)
5569 df_bb_replace (then_bb_index, new_bb);
5570 /* This should have been done above via force_nonfallthru_and_redirect
5571 (possibly called from redirect_edge_and_branch_force). */
5572 gcc_checking_assert (BB_PARTITION (new_bb) == BB_PARTITION (test_bb));
5575 num_true_changes++;
5576 num_updated_if_blocks++;
5577 return true;
5580 /* Test for case 2 above. */
5582 static bool
5583 find_if_case_2 (basic_block test_bb, edge then_edge, edge else_edge)
5585 basic_block then_bb = then_edge->dest;
5586 basic_block else_bb = else_edge->dest;
5587 edge else_succ;
5588 profile_probability then_prob, else_prob;
5590 /* We do not want to speculate (empty) loop latches. */
5591 if (current_loops
5592 && else_bb->loop_father->latch == else_bb)
5593 return false;
5595 /* If we are partitioning hot/cold basic blocks, we don't want to
5596 mess up unconditional or indirect jumps that cross between hot
5597 and cold sections.
5599 Basic block partitioning may result in some jumps that appear to
5600 be optimizable (or blocks that appear to be mergeable), but which really
5601 must be left untouched (they are required to make it safely across
5602 partition boundaries). See the comments at the top of
5603 bb-reorder.cc:partition_hot_cold_basic_blocks for complete details. */
5605 if ((BB_END (then_bb)
5606 && JUMP_P (BB_END (then_bb))
5607 && CROSSING_JUMP_P (BB_END (then_bb)))
5608 || (JUMP_P (BB_END (test_bb))
5609 && CROSSING_JUMP_P (BB_END (test_bb)))
5610 || (BB_END (else_bb)
5611 && JUMP_P (BB_END (else_bb))
5612 && CROSSING_JUMP_P (BB_END (else_bb))))
5613 return false;
5615 /* Verify test_bb ends in a conditional jump with no other side-effects. */
5616 if (!onlyjump_p (BB_END (test_bb)))
5617 return false;
5619 /* ELSE has one successor. */
5620 if (!single_succ_p (else_bb))
5621 return false;
5622 else
5623 else_succ = single_succ_edge (else_bb);
5625 /* ELSE outgoing edge is not complex. */
5626 if (else_succ->flags & EDGE_COMPLEX)
5627 return false;
5629 /* ELSE has one predecessor. */
5630 if (!single_pred_p (else_bb))
5631 return false;
5633 /* THEN is not EXIT. */
5634 if (then_bb->index < NUM_FIXED_BLOCKS)
5635 return false;
5637 else_prob = else_edge->probability;
5638 then_prob = else_prob.invert ();
5640 /* ELSE is predicted or SUCC(ELSE) postdominates THEN. */
5641 if (else_prob > then_prob)
5643 else if (else_succ->dest->index < NUM_FIXED_BLOCKS
5644 || dominated_by_p (CDI_POST_DOMINATORS, then_bb,
5645 else_succ->dest))
5647 else
5648 return false;
5650 num_possible_if_blocks++;
5651 if (dump_file)
5652 fprintf (dump_file,
5653 "\nIF-CASE-2 found, start %d, else %d\n",
5654 test_bb->index, else_bb->index);
5656 /* We're speculating from the ELSE path, we want to make sure the cost
5657 of speculation is within reason. */
5658 if (! cheap_bb_rtx_cost_p (else_bb, else_prob,
5659 COSTS_N_INSNS (BRANCH_COST (optimize_bb_for_speed_p (else_edge->src),
5660 predictable_edge_p (else_edge)))))
5661 return false;
5663 /* Registers set are dead, or are predicable. */
5664 if (! dead_or_predicable (test_bb, else_bb, then_bb, else_succ, false))
5665 return false;
5667 /* Conversion went ok, including moving the insns and fixing up the
5668 jump. Adjust the CFG to match. */
5670 df_set_bb_dirty (test_bb);
5671 df_set_bb_dirty (then_bb);
5672 delete_basic_block (else_bb);
5674 num_true_changes++;
5675 num_updated_if_blocks++;
5677 /* ??? We may now fallthru from one of THEN's successors into a join
5678 block. Rerun cleanup_cfg? Examine things manually? Wait? */
5680 return true;
5683 /* Used by the code above to perform the actual rtl transformations.
5684 Return TRUE if successful.
5686 TEST_BB is the block containing the conditional branch. MERGE_BB
5687 is the block containing the code to manipulate. DEST_EDGE is an
5688 edge representing a jump to the join block; after the conversion,
5689 TEST_BB should be branching to its destination.
5690 REVERSEP is true if the sense of the branch should be reversed. */
5692 static bool
5693 dead_or_predicable (basic_block test_bb, basic_block merge_bb,
5694 basic_block other_bb, edge dest_edge, bool reversep)
5696 basic_block new_dest = dest_edge->dest;
5697 rtx_insn *head, *end, *jump;
5698 rtx_insn *earliest = NULL;
5699 rtx old_dest;
5700 bitmap merge_set = NULL;
5701 /* Number of pending changes. */
5702 int n_validated_changes = 0;
5703 rtx new_dest_label = NULL_RTX;
5705 jump = BB_END (test_bb);
5707 /* Find the extent of the real code in the merge block. */
5708 head = BB_HEAD (merge_bb);
5709 end = BB_END (merge_bb);
5711 while (DEBUG_INSN_P (end) && end != head)
5712 end = PREV_INSN (end);
5714 /* If merge_bb ends with a tablejump, predicating/moving insn's
5715 into test_bb and then deleting merge_bb will result in the jumptable
5716 that follows merge_bb being removed along with merge_bb and then we
5717 get an unresolved reference to the jumptable. */
5718 if (tablejump_p (end, NULL, NULL))
5719 return false;
5721 if (LABEL_P (head))
5722 head = NEXT_INSN (head);
5723 while (DEBUG_INSN_P (head) && head != end)
5724 head = NEXT_INSN (head);
5725 if (NOTE_P (head))
5727 if (head == end)
5729 head = end = NULL;
5730 goto no_body;
5732 head = NEXT_INSN (head);
5733 while (DEBUG_INSN_P (head) && head != end)
5734 head = NEXT_INSN (head);
5737 if (JUMP_P (end))
5739 if (!onlyjump_p (end))
5740 return false;
5741 if (head == end)
5743 head = end = NULL;
5744 goto no_body;
5746 end = PREV_INSN (end);
5747 while (DEBUG_INSN_P (end) && end != head)
5748 end = PREV_INSN (end);
5751 /* Don't move frame-related insn across the conditional branch. This
5752 can lead to one of the paths of the branch having wrong unwind info. */
5753 if (epilogue_completed)
5755 rtx_insn *insn = head;
5756 while (1)
5758 if (INSN_P (insn) && RTX_FRAME_RELATED_P (insn))
5759 return false;
5760 if (insn == end)
5761 break;
5762 insn = NEXT_INSN (insn);
5766 /* Disable handling dead code by conditional execution if the machine needs
5767 to do anything funny with the tests, etc. */
5768 #ifndef IFCVT_MODIFY_TESTS
5769 if (targetm.have_conditional_execution ())
5771 /* In the conditional execution case, we have things easy. We know
5772 the condition is reversible. We don't have to check life info
5773 because we're going to conditionally execute the code anyway.
5774 All that's left is making sure the insns involved can actually
5775 be predicated. */
5777 rtx cond;
5779 /* If the conditional jump is more than just a conditional jump,
5780 then we cannot do conditional execution conversion on this block. */
5781 if (!onlyjump_p (jump))
5782 goto nce;
5784 cond = cond_exec_get_condition (jump);
5785 if (! cond)
5786 goto nce;
5788 rtx note = find_reg_note (jump, REG_BR_PROB, NULL_RTX);
5789 profile_probability prob_val
5790 = (note ? profile_probability::from_reg_br_prob_note (XINT (note, 0))
5791 : profile_probability::uninitialized ());
5793 if (reversep)
5795 enum rtx_code rev = reversed_comparison_code (cond, jump);
5796 if (rev == UNKNOWN)
5797 return false;
5798 cond = gen_rtx_fmt_ee (rev, GET_MODE (cond), XEXP (cond, 0),
5799 XEXP (cond, 1));
5800 prob_val = prob_val.invert ();
5803 if (cond_exec_process_insns (NULL, head, end, cond, prob_val, false)
5804 && verify_changes (0))
5805 n_validated_changes = num_validated_changes ();
5806 else
5807 cancel_changes (0);
5809 earliest = jump;
5811 nce:
5812 #endif
5814 /* If we allocated new pseudos (e.g. in the conditional move
5815 expander called from noce_emit_cmove), we must resize the
5816 array first. */
5817 if (max_regno < max_reg_num ())
5818 max_regno = max_reg_num ();
5820 /* Try the NCE path if the CE path did not result in any changes. */
5821 if (n_validated_changes == 0)
5823 rtx cond;
5824 rtx_insn *insn;
5825 regset live;
5826 bool success;
5828 /* In the non-conditional execution case, we have to verify that there
5829 are no trapping operations, no calls, no references to memory, and
5830 that any registers modified are dead at the branch site. */
5832 if (!any_condjump_p (jump))
5833 return false;
5835 /* Find the extent of the conditional. */
5836 cond = noce_get_condition (jump, &earliest, false);
5837 if (!cond)
5838 return false;
5840 live = BITMAP_ALLOC (&reg_obstack);
5841 simulate_backwards_to_point (merge_bb, live, end);
5842 success = can_move_insns_across (head, end, earliest, jump,
5843 merge_bb, live,
5844 df_get_live_in (other_bb), NULL);
5845 BITMAP_FREE (live);
5846 if (!success)
5847 return false;
5849 /* Collect the set of registers set in MERGE_BB. */
5850 merge_set = BITMAP_ALLOC (&reg_obstack);
5852 FOR_BB_INSNS (merge_bb, insn)
5853 if (NONDEBUG_INSN_P (insn))
5854 df_simulate_find_defs (insn, merge_set);
5856 /* If shrink-wrapping, disable this optimization when test_bb is
5857 the first basic block and merge_bb exits. The idea is to not
5858 move code setting up a return register as that may clobber a
5859 register used to pass function parameters, which then must be
5860 saved in caller-saved regs. A caller-saved reg requires the
5861 prologue, killing a shrink-wrap opportunity. */
5862 if ((SHRINK_WRAPPING_ENABLED && !epilogue_completed)
5863 && ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb == test_bb
5864 && single_succ_p (new_dest)
5865 && single_succ (new_dest) == EXIT_BLOCK_PTR_FOR_FN (cfun)
5866 && bitmap_intersect_p (df_get_live_in (new_dest), merge_set))
5868 regset return_regs;
5869 unsigned int i;
5871 return_regs = BITMAP_ALLOC (&reg_obstack);
5873 /* Start off with the intersection of regs used to pass
5874 params and regs used to return values. */
5875 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
5876 if (FUNCTION_ARG_REGNO_P (i)
5877 && targetm.calls.function_value_regno_p (i))
5878 bitmap_set_bit (return_regs, INCOMING_REGNO (i));
5880 bitmap_and_into (return_regs,
5881 df_get_live_out (ENTRY_BLOCK_PTR_FOR_FN (cfun)));
5882 bitmap_and_into (return_regs,
5883 df_get_live_in (EXIT_BLOCK_PTR_FOR_FN (cfun)));
5884 if (!bitmap_empty_p (return_regs))
5886 FOR_BB_INSNS_REVERSE (new_dest, insn)
5887 if (NONDEBUG_INSN_P (insn))
5889 df_ref def;
5891 /* If this insn sets any reg in return_regs, add all
5892 reg uses to the set of regs we're interested in. */
5893 FOR_EACH_INSN_DEF (def, insn)
5894 if (bitmap_bit_p (return_regs, DF_REF_REGNO (def)))
5896 df_simulate_uses (insn, return_regs);
5897 break;
5900 if (bitmap_intersect_p (merge_set, return_regs))
5902 BITMAP_FREE (return_regs);
5903 BITMAP_FREE (merge_set);
5904 return false;
5907 BITMAP_FREE (return_regs);
5911 no_body:
5912 /* We don't want to use normal invert_jump or redirect_jump because
5913 we don't want to delete_insn called. Also, we want to do our own
5914 change group management. */
5916 old_dest = JUMP_LABEL (jump);
5917 if (other_bb != new_dest)
5919 if (!any_condjump_p (jump))
5920 goto cancel;
5922 if (JUMP_P (BB_END (dest_edge->src)))
5923 new_dest_label = JUMP_LABEL (BB_END (dest_edge->src));
5924 else if (new_dest == EXIT_BLOCK_PTR_FOR_FN (cfun))
5925 new_dest_label = ret_rtx;
5926 else
5927 new_dest_label = block_label (new_dest);
5929 rtx_jump_insn *jump_insn = as_a <rtx_jump_insn *> (jump);
5930 if (reversep
5931 ? ! invert_jump_1 (jump_insn, new_dest_label)
5932 : ! redirect_jump_1 (jump_insn, new_dest_label))
5933 goto cancel;
5936 if (verify_changes (n_validated_changes))
5937 confirm_change_group ();
5938 else
5939 goto cancel;
5941 if (other_bb != new_dest)
5943 redirect_jump_2 (as_a <rtx_jump_insn *> (jump), old_dest, new_dest_label,
5944 0, reversep);
5946 redirect_edge_succ (BRANCH_EDGE (test_bb), new_dest);
5947 if (reversep)
5949 std::swap (BRANCH_EDGE (test_bb)->probability,
5950 FALLTHRU_EDGE (test_bb)->probability);
5951 update_br_prob_note (test_bb);
5955 /* Move the insns out of MERGE_BB to before the branch. */
5956 if (head != NULL)
5958 rtx_insn *insn;
5960 if (end == BB_END (merge_bb))
5961 BB_END (merge_bb) = PREV_INSN (head);
5963 /* PR 21767: when moving insns above a conditional branch, the REG_EQUAL
5964 notes being moved might become invalid. */
5965 insn = head;
5968 rtx note;
5970 if (! INSN_P (insn))
5971 continue;
5972 note = find_reg_note (insn, REG_EQUAL, NULL_RTX);
5973 if (! note)
5974 continue;
5975 remove_note (insn, note);
5976 } while (insn != end && (insn = NEXT_INSN (insn)));
5978 /* PR46315: when moving insns above a conditional branch, the REG_EQUAL
5979 notes referring to the registers being set might become invalid. */
5980 if (merge_set)
5982 unsigned i;
5983 bitmap_iterator bi;
5985 EXECUTE_IF_SET_IN_BITMAP (merge_set, 0, i, bi)
5986 remove_reg_equal_equiv_notes_for_regno (i);
5988 BITMAP_FREE (merge_set);
5991 reorder_insns (head, end, PREV_INSN (earliest));
5994 /* Remove the jump and edge if we can. */
5995 if (other_bb == new_dest)
5997 delete_insn (jump);
5998 remove_edge (BRANCH_EDGE (test_bb));
5999 /* ??? Can't merge blocks here, as then_bb is still in use.
6000 At minimum, the merge will get done just before bb-reorder. */
6003 return true;
6005 cancel:
6006 cancel_changes (0);
6008 if (merge_set)
6009 BITMAP_FREE (merge_set);
6011 return false;
6014 /* Main entry point for all if-conversion. AFTER_COMBINE is true if
6015 we are after combine pass. */
6017 static void
6018 if_convert (bool after_combine)
6020 basic_block bb;
6021 int pass;
6023 if (optimize == 1)
6025 df_live_add_problem ();
6026 df_live_set_all_dirty ();
6029 /* Record whether we are after combine pass. */
6030 ifcvt_after_combine = after_combine;
6031 have_cbranchcc4 = (direct_optab_handler (cbranch_optab, CCmode)
6032 != CODE_FOR_nothing);
6033 num_possible_if_blocks = 0;
6034 num_updated_if_blocks = 0;
6035 num_true_changes = 0;
6037 loop_optimizer_init (AVOID_CFG_MODIFICATIONS);
6038 mark_loop_exit_edges ();
6039 loop_optimizer_finalize ();
6040 free_dominance_info (CDI_DOMINATORS);
6042 /* Compute postdominators. */
6043 calculate_dominance_info (CDI_POST_DOMINATORS);
6045 df_set_flags (DF_LR_RUN_DCE);
6047 /* Go through each of the basic blocks looking for things to convert. If we
6048 have conditional execution, we make multiple passes to allow us to handle
6049 IF-THEN{-ELSE} blocks within other IF-THEN{-ELSE} blocks. */
6050 pass = 0;
6053 df_analyze ();
6054 /* Only need to do dce on the first pass. */
6055 df_clear_flags (DF_LR_RUN_DCE);
6056 cond_exec_changed_p = false;
6057 pass++;
6059 #ifdef IFCVT_MULTIPLE_DUMPS
6060 if (dump_file && pass > 1)
6061 fprintf (dump_file, "\n\n========== Pass %d ==========\n", pass);
6062 #endif
6064 FOR_EACH_BB_FN (bb, cfun)
6066 basic_block new_bb;
6067 while (!df_get_bb_dirty (bb)
6068 && (new_bb = find_if_header (bb, pass)) != NULL)
6069 bb = new_bb;
6072 #ifdef IFCVT_MULTIPLE_DUMPS
6073 if (dump_file && cond_exec_changed_p)
6074 print_rtl_with_bb (dump_file, get_insns (), dump_flags);
6075 #endif
6077 while (cond_exec_changed_p);
6079 #ifdef IFCVT_MULTIPLE_DUMPS
6080 if (dump_file)
6081 fprintf (dump_file, "\n\n========== no more changes\n");
6082 #endif
6084 free_dominance_info (CDI_POST_DOMINATORS);
6086 if (dump_file)
6087 fflush (dump_file);
6089 clear_aux_for_blocks ();
6091 /* If we allocated new pseudos, we must resize the array for sched1. */
6092 if (max_regno < max_reg_num ())
6093 max_regno = max_reg_num ();
6095 /* Write the final stats. */
6096 if (dump_file && num_possible_if_blocks > 0)
6098 fprintf (dump_file,
6099 "\n%d possible IF blocks searched.\n",
6100 num_possible_if_blocks);
6101 fprintf (dump_file,
6102 "%d IF blocks converted.\n",
6103 num_updated_if_blocks);
6104 fprintf (dump_file,
6105 "%d true changes made.\n\n\n",
6106 num_true_changes);
6109 if (optimize == 1)
6110 df_remove_problem (df_live);
6112 /* Some non-cold blocks may now be only reachable from cold blocks.
6113 Fix that up. */
6114 fixup_partitions ();
6116 checking_verify_flow_info ();
6119 /* If-conversion and CFG cleanup. */
6120 static void
6121 rest_of_handle_if_conversion (void)
6123 int flags = 0;
6125 if (flag_if_conversion)
6127 if (dump_file)
6129 dump_reg_info (dump_file);
6130 dump_flow_info (dump_file, dump_flags);
6132 cleanup_cfg (CLEANUP_EXPENSIVE);
6133 if_convert (false);
6134 if (num_updated_if_blocks)
6135 /* Get rid of any dead CC-related instructions. */
6136 flags |= CLEANUP_FORCE_FAST_DCE;
6139 cleanup_cfg (flags);
6142 namespace {
6144 const pass_data pass_data_rtl_ifcvt =
6146 RTL_PASS, /* type */
6147 "ce1", /* name */
6148 OPTGROUP_NONE, /* optinfo_flags */
6149 TV_IFCVT, /* tv_id */
6150 0, /* properties_required */
6151 0, /* properties_provided */
6152 0, /* properties_destroyed */
6153 0, /* todo_flags_start */
6154 TODO_df_finish, /* todo_flags_finish */
6157 class pass_rtl_ifcvt : public rtl_opt_pass
6159 public:
6160 pass_rtl_ifcvt (gcc::context *ctxt)
6161 : rtl_opt_pass (pass_data_rtl_ifcvt, ctxt)
6164 /* opt_pass methods: */
6165 bool gate (function *) final override
6167 return (optimize > 0) && dbg_cnt (if_conversion);
6170 unsigned int execute (function *) final override
6172 rest_of_handle_if_conversion ();
6173 return 0;
6176 }; // class pass_rtl_ifcvt
6178 } // anon namespace
6180 rtl_opt_pass *
6181 make_pass_rtl_ifcvt (gcc::context *ctxt)
6183 return new pass_rtl_ifcvt (ctxt);
6187 /* Rerun if-conversion, as combine may have simplified things enough
6188 to now meet sequence length restrictions. */
6190 namespace {
6192 const pass_data pass_data_if_after_combine =
6194 RTL_PASS, /* type */
6195 "ce2", /* name */
6196 OPTGROUP_NONE, /* optinfo_flags */
6197 TV_IFCVT, /* tv_id */
6198 0, /* properties_required */
6199 0, /* properties_provided */
6200 0, /* properties_destroyed */
6201 0, /* todo_flags_start */
6202 TODO_df_finish, /* todo_flags_finish */
6205 class pass_if_after_combine : public rtl_opt_pass
6207 public:
6208 pass_if_after_combine (gcc::context *ctxt)
6209 : rtl_opt_pass (pass_data_if_after_combine, ctxt)
6212 /* opt_pass methods: */
6213 bool gate (function *) final override
6215 return optimize > 0 && flag_if_conversion
6216 && dbg_cnt (if_after_combine);
6219 unsigned int execute (function *) final override
6221 if_convert (true);
6222 return 0;
6225 }; // class pass_if_after_combine
6227 } // anon namespace
6229 rtl_opt_pass *
6230 make_pass_if_after_combine (gcc::context *ctxt)
6232 return new pass_if_after_combine (ctxt);
6236 namespace {
6238 const pass_data pass_data_if_after_reload =
6240 RTL_PASS, /* type */
6241 "ce3", /* name */
6242 OPTGROUP_NONE, /* optinfo_flags */
6243 TV_IFCVT2, /* tv_id */
6244 0, /* properties_required */
6245 0, /* properties_provided */
6246 0, /* properties_destroyed */
6247 0, /* todo_flags_start */
6248 TODO_df_finish, /* todo_flags_finish */
6251 class pass_if_after_reload : public rtl_opt_pass
6253 public:
6254 pass_if_after_reload (gcc::context *ctxt)
6255 : rtl_opt_pass (pass_data_if_after_reload, ctxt)
6258 /* opt_pass methods: */
6259 bool gate (function *) final override
6261 return optimize > 0 && flag_if_conversion2
6262 && dbg_cnt (if_after_reload);
6265 unsigned int execute (function *) final override
6267 if_convert (true);
6268 return 0;
6271 }; // class pass_if_after_reload
6273 } // anon namespace
6275 rtl_opt_pass *
6276 make_pass_if_after_reload (gcc::context *ctxt)
6278 return new pass_if_after_reload (ctxt);