2008-08-09 Richard Guenther <rguenther@suse.de>
[official-gcc.git] / gcc / gimple.c
blob6e8971f4ec17a27eba524dd4aee2af38832b6d99
1 /* Gimple IR support functions.
3 Copyright 2007, 2008 Free Software Foundation, Inc.
4 Contributed by Aldy Hernandez <aldyh@redhat.com>
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "tm.h"
26 #include "tree.h"
27 #include "ggc.h"
28 #include "errors.h"
29 #include "hard-reg-set.h"
30 #include "basic-block.h"
31 #include "gimple.h"
32 #include "diagnostic.h"
33 #include "tree-flow.h"
34 #include "value-prof.h"
35 #include "flags.h"
37 #define DEFGSCODE(SYM, NAME, STRUCT) NAME,
38 const char *const gimple_code_name[] = {
39 #include "gimple.def"
41 #undef DEFGSCODE
43 /* All the tuples have their operand vector at the very bottom
44 of the structure. Therefore, the offset required to find the
45 operands vector the size of the structure minus the size of the 1
46 element tree array at the end (see gimple_ops). */
47 #define DEFGSCODE(SYM, NAME, STRUCT) (sizeof (STRUCT) - sizeof (tree)),
48 const size_t gimple_ops_offset_[] = {
49 #include "gimple.def"
51 #undef DEFGSCODE
53 #ifdef GATHER_STATISTICS
54 /* Gimple stats. */
56 int gimple_alloc_counts[(int) gimple_alloc_kind_all];
57 int gimple_alloc_sizes[(int) gimple_alloc_kind_all];
59 /* Keep in sync with gimple.h:enum gimple_alloc_kind. */
60 static const char * const gimple_alloc_kind_names[] = {
61 "assignments",
62 "phi nodes",
63 "conditionals",
64 "sequences",
65 "everything else"
68 #endif /* GATHER_STATISTICS */
70 /* A cache of gimple_seq objects. Sequences are created and destroyed
71 fairly often during gimplification. */
72 static GTY ((deletable)) struct gimple_seq_d *gimple_seq_cache;
74 /* Private API manipulation functions shared only with some
75 other files. */
76 extern void gimple_set_stored_syms (gimple, bitmap, bitmap_obstack *);
77 extern void gimple_set_loaded_syms (gimple, bitmap, bitmap_obstack *);
79 /* Gimple tuple constructors.
80 Note: Any constructor taking a ``gimple_seq'' as a parameter, can
81 be passed a NULL to start with an empty sequence. */
83 /* Set the code for statement G to CODE. */
85 static inline void
86 gimple_set_code (gimple g, enum gimple_code code)
88 g->gsbase.code = code;
92 /* Return the GSS_* identifier for the given GIMPLE statement CODE. */
94 static enum gimple_statement_structure_enum
95 gss_for_code (enum gimple_code code)
97 switch (code)
99 case GIMPLE_ASSIGN:
100 case GIMPLE_CALL:
101 case GIMPLE_RETURN: return GSS_WITH_MEM_OPS;
102 case GIMPLE_COND:
103 case GIMPLE_GOTO:
104 case GIMPLE_LABEL:
105 case GIMPLE_CHANGE_DYNAMIC_TYPE:
106 case GIMPLE_SWITCH: return GSS_WITH_OPS;
107 case GIMPLE_ASM: return GSS_ASM;
108 case GIMPLE_BIND: return GSS_BIND;
109 case GIMPLE_CATCH: return GSS_CATCH;
110 case GIMPLE_EH_FILTER: return GSS_EH_FILTER;
111 case GIMPLE_NOP: return GSS_BASE;
112 case GIMPLE_PHI: return GSS_PHI;
113 case GIMPLE_RESX: return GSS_RESX;
114 case GIMPLE_TRY: return GSS_TRY;
115 case GIMPLE_WITH_CLEANUP_EXPR: return GSS_WCE;
116 case GIMPLE_OMP_CRITICAL: return GSS_OMP_CRITICAL;
117 case GIMPLE_OMP_FOR: return GSS_OMP_FOR;
118 case GIMPLE_OMP_MASTER:
119 case GIMPLE_OMP_ORDERED:
120 case GIMPLE_OMP_SECTION: return GSS_OMP;
121 case GIMPLE_OMP_RETURN:
122 case GIMPLE_OMP_SECTIONS_SWITCH: return GSS_BASE;
123 case GIMPLE_OMP_CONTINUE: return GSS_OMP_CONTINUE;
124 case GIMPLE_OMP_PARALLEL: return GSS_OMP_PARALLEL;
125 case GIMPLE_OMP_TASK: return GSS_OMP_TASK;
126 case GIMPLE_OMP_SECTIONS: return GSS_OMP_SECTIONS;
127 case GIMPLE_OMP_SINGLE: return GSS_OMP_SINGLE;
128 case GIMPLE_OMP_ATOMIC_LOAD: return GSS_OMP_ATOMIC_LOAD;
129 case GIMPLE_OMP_ATOMIC_STORE: return GSS_OMP_ATOMIC_STORE;
130 case GIMPLE_PREDICT: return GSS_BASE;
131 default: gcc_unreachable ();
136 /* Return the number of bytes needed to hold a GIMPLE statement with
137 code CODE. */
139 static size_t
140 gimple_size (enum gimple_code code)
142 enum gimple_statement_structure_enum gss = gss_for_code (code);
144 if (gss == GSS_WITH_OPS)
145 return sizeof (struct gimple_statement_with_ops);
146 else if (gss == GSS_WITH_MEM_OPS)
147 return sizeof (struct gimple_statement_with_memory_ops);
149 switch (code)
151 case GIMPLE_ASM:
152 return sizeof (struct gimple_statement_asm);
153 case GIMPLE_NOP:
154 return sizeof (struct gimple_statement_base);
155 case GIMPLE_BIND:
156 return sizeof (struct gimple_statement_bind);
157 case GIMPLE_CATCH:
158 return sizeof (struct gimple_statement_catch);
159 case GIMPLE_EH_FILTER:
160 return sizeof (struct gimple_statement_eh_filter);
161 case GIMPLE_TRY:
162 return sizeof (struct gimple_statement_try);
163 case GIMPLE_RESX:
164 return sizeof (struct gimple_statement_resx);
165 case GIMPLE_OMP_CRITICAL:
166 return sizeof (struct gimple_statement_omp_critical);
167 case GIMPLE_OMP_FOR:
168 return sizeof (struct gimple_statement_omp_for);
169 case GIMPLE_OMP_PARALLEL:
170 return sizeof (struct gimple_statement_omp_parallel);
171 case GIMPLE_OMP_TASK:
172 return sizeof (struct gimple_statement_omp_task);
173 case GIMPLE_OMP_SECTION:
174 case GIMPLE_OMP_MASTER:
175 case GIMPLE_OMP_ORDERED:
176 return sizeof (struct gimple_statement_omp);
177 case GIMPLE_OMP_RETURN:
178 return sizeof (struct gimple_statement_base);
179 case GIMPLE_OMP_CONTINUE:
180 return sizeof (struct gimple_statement_omp_continue);
181 case GIMPLE_OMP_SECTIONS:
182 return sizeof (struct gimple_statement_omp_sections);
183 case GIMPLE_OMP_SECTIONS_SWITCH:
184 return sizeof (struct gimple_statement_base);
185 case GIMPLE_OMP_SINGLE:
186 return sizeof (struct gimple_statement_omp_single);
187 case GIMPLE_OMP_ATOMIC_LOAD:
188 return sizeof (struct gimple_statement_omp_atomic_load);
189 case GIMPLE_OMP_ATOMIC_STORE:
190 return sizeof (struct gimple_statement_omp_atomic_store);
191 case GIMPLE_WITH_CLEANUP_EXPR:
192 return sizeof (struct gimple_statement_wce);
193 case GIMPLE_CHANGE_DYNAMIC_TYPE:
194 return sizeof (struct gimple_statement_with_ops);
195 case GIMPLE_PREDICT:
196 return sizeof (struct gimple_statement_base);
197 default:
198 break;
201 gcc_unreachable ();
205 /* Allocate memory for a GIMPLE statement with code CODE and NUM_OPS
206 operands. */
208 #define gimple_alloc(c, n) gimple_alloc_stat (c, n MEM_STAT_INFO)
209 static gimple
210 gimple_alloc_stat (enum gimple_code code, unsigned num_ops MEM_STAT_DECL)
212 size_t size;
213 gimple stmt;
215 size = gimple_size (code);
216 if (num_ops > 0)
217 size += sizeof (tree) * (num_ops - 1);
219 #ifdef GATHER_STATISTICS
221 enum gimple_alloc_kind kind = gimple_alloc_kind (code);
222 gimple_alloc_counts[(int) kind]++;
223 gimple_alloc_sizes[(int) kind] += size;
225 #endif
227 stmt = (gimple) ggc_alloc_cleared_stat (size PASS_MEM_STAT);
228 gimple_set_code (stmt, code);
229 gimple_set_num_ops (stmt, num_ops);
231 /* Do not call gimple_set_modified here as it has other side
232 effects and this tuple is still not completely built. */
233 stmt->gsbase.modified = 1;
235 return stmt;
238 /* Set SUBCODE to be the code of the expression computed by statement G. */
240 static inline void
241 gimple_set_subcode (gimple g, unsigned subcode)
243 /* We only have 16 bits for the RHS code. Assert that we are not
244 overflowing it. */
245 gcc_assert (subcode < (1 << 16));
246 g->gsbase.subcode = subcode;
251 /* Build a tuple with operands. CODE is the statement to build (which
252 must be one of the GIMPLE_WITH_OPS tuples). SUBCODE is the sub-code
253 for the new tuple. NUM_OPS is the number of operands to allocate. */
255 #define gimple_build_with_ops(c, s, n) \
256 gimple_build_with_ops_stat (c, s, n MEM_STAT_INFO)
258 static gimple
259 gimple_build_with_ops_stat (enum gimple_code code, enum tree_code subcode,
260 unsigned num_ops MEM_STAT_DECL)
262 gimple s = gimple_alloc_stat (code, num_ops PASS_MEM_STAT);
263 gimple_set_subcode (s, subcode);
265 return s;
269 /* Build a GIMPLE_RETURN statement returning RETVAL. */
271 gimple
272 gimple_build_return (tree retval)
274 gimple s = gimple_build_with_ops (GIMPLE_RETURN, 0, 1);
275 if (retval)
276 gimple_return_set_retval (s, retval);
277 return s;
280 /* Helper for gimple_build_call, gimple_build_call_vec and
281 gimple_build_call_from_tree. Build the basic components of a
282 GIMPLE_CALL statement to function FN with NARGS arguments. */
284 static inline gimple
285 gimple_build_call_1 (tree fn, unsigned nargs)
287 gimple s = gimple_build_with_ops (GIMPLE_CALL, 0, nargs + 3);
288 if (TREE_CODE (fn) == FUNCTION_DECL)
289 fn = build_fold_addr_expr (fn);
290 gimple_set_op (s, 1, fn);
291 return s;
295 /* Build a GIMPLE_CALL statement to function FN with the arguments
296 specified in vector ARGS. */
298 gimple
299 gimple_build_call_vec (tree fn, VEC(tree, heap) *args)
301 unsigned i;
302 unsigned nargs = VEC_length (tree, args);
303 gimple call = gimple_build_call_1 (fn, nargs);
305 for (i = 0; i < nargs; i++)
306 gimple_call_set_arg (call, i, VEC_index (tree, args, i));
308 return call;
312 /* Build a GIMPLE_CALL statement to function FN. NARGS is the number of
313 arguments. The ... are the arguments. */
315 gimple
316 gimple_build_call (tree fn, unsigned nargs, ...)
318 va_list ap;
319 gimple call;
320 unsigned i;
322 gcc_assert (TREE_CODE (fn) == FUNCTION_DECL || is_gimple_call_addr (fn));
324 call = gimple_build_call_1 (fn, nargs);
326 va_start (ap, nargs);
327 for (i = 0; i < nargs; i++)
328 gimple_call_set_arg (call, i, va_arg (ap, tree));
329 va_end (ap);
331 return call;
335 /* Build a GIMPLE_CALL statement from CALL_EXPR T. Note that T is
336 assumed to be in GIMPLE form already. Minimal checking is done of
337 this fact. */
339 gimple
340 gimple_build_call_from_tree (tree t)
342 unsigned i, nargs;
343 gimple call;
344 tree fndecl = get_callee_fndecl (t);
346 gcc_assert (TREE_CODE (t) == CALL_EXPR);
348 nargs = call_expr_nargs (t);
349 call = gimple_build_call_1 (fndecl ? fndecl : CALL_EXPR_FN (t), nargs);
351 for (i = 0; i < nargs; i++)
352 gimple_call_set_arg (call, i, CALL_EXPR_ARG (t, i));
354 gimple_set_block (call, TREE_BLOCK (t));
356 /* Carry all the CALL_EXPR flags to the new GIMPLE_CALL. */
357 gimple_call_set_chain (call, CALL_EXPR_STATIC_CHAIN (t));
358 gimple_call_set_tail (call, CALL_EXPR_TAILCALL (t));
359 gimple_call_set_cannot_inline (call, CALL_CANNOT_INLINE_P (t));
360 gimple_call_set_return_slot_opt (call, CALL_EXPR_RETURN_SLOT_OPT (t));
361 gimple_call_set_from_thunk (call, CALL_FROM_THUNK_P (t));
362 gimple_call_set_va_arg_pack (call, CALL_EXPR_VA_ARG_PACK (t));
364 return call;
368 /* Extract the operands and code for expression EXPR into *SUBCODE_P,
369 *OP1_P and *OP2_P respectively. */
371 void
372 extract_ops_from_tree (tree expr, enum tree_code *subcode_p, tree *op1_p,
373 tree *op2_p)
375 enum gimple_rhs_class grhs_class;
377 *subcode_p = TREE_CODE (expr);
378 grhs_class = get_gimple_rhs_class (*subcode_p);
380 if (grhs_class == GIMPLE_BINARY_RHS)
382 *op1_p = TREE_OPERAND (expr, 0);
383 *op2_p = TREE_OPERAND (expr, 1);
385 else if (grhs_class == GIMPLE_UNARY_RHS)
387 *op1_p = TREE_OPERAND (expr, 0);
388 *op2_p = NULL_TREE;
390 else if (grhs_class == GIMPLE_SINGLE_RHS)
392 *op1_p = expr;
393 *op2_p = NULL_TREE;
395 else
396 gcc_unreachable ();
400 /* Build a GIMPLE_ASSIGN statement.
402 LHS of the assignment.
403 RHS of the assignment which can be unary or binary. */
405 gimple
406 gimple_build_assign_stat (tree lhs, tree rhs MEM_STAT_DECL)
408 enum tree_code subcode;
409 tree op1, op2;
411 extract_ops_from_tree (rhs, &subcode, &op1, &op2);
412 return gimple_build_assign_with_ops_stat (subcode, lhs, op1, op2
413 PASS_MEM_STAT);
417 /* Build a GIMPLE_ASSIGN statement with sub-code SUBCODE and operands
418 OP1 and OP2. If OP2 is NULL then SUBCODE must be of class
419 GIMPLE_UNARY_RHS or GIMPLE_SINGLE_RHS. */
421 gimple
422 gimple_build_assign_with_ops_stat (enum tree_code subcode, tree lhs, tree op1,
423 tree op2 MEM_STAT_DECL)
425 unsigned num_ops;
426 gimple p;
428 /* Need 1 operand for LHS and 1 or 2 for the RHS (depending on the
429 code). */
430 num_ops = get_gimple_rhs_num_ops (subcode) + 1;
432 p = gimple_build_with_ops_stat (GIMPLE_ASSIGN, subcode, num_ops
433 PASS_MEM_STAT);
434 gimple_assign_set_lhs (p, lhs);
435 gimple_assign_set_rhs1 (p, op1);
436 if (op2)
438 gcc_assert (num_ops > 2);
439 gimple_assign_set_rhs2 (p, op2);
442 return p;
446 /* Build a new GIMPLE_ASSIGN tuple and append it to the end of *SEQ_P.
448 DST/SRC are the destination and source respectively. You can pass
449 ungimplified trees in DST or SRC, in which case they will be
450 converted to a gimple operand if necessary.
452 This function returns the newly created GIMPLE_ASSIGN tuple. */
454 inline gimple
455 gimplify_assign (tree dst, tree src, gimple_seq *seq_p)
457 tree t = build2 (MODIFY_EXPR, TREE_TYPE (dst), dst, src);
458 gimplify_and_add (t, seq_p);
459 ggc_free (t);
460 return gimple_seq_last_stmt (*seq_p);
464 /* Build a GIMPLE_COND statement.
466 PRED is the condition used to compare LHS and the RHS.
467 T_LABEL is the label to jump to if the condition is true.
468 F_LABEL is the label to jump to otherwise. */
470 gimple
471 gimple_build_cond (enum tree_code pred_code, tree lhs, tree rhs,
472 tree t_label, tree f_label)
474 gimple p;
476 gcc_assert (TREE_CODE_CLASS (pred_code) == tcc_comparison);
477 p = gimple_build_with_ops (GIMPLE_COND, pred_code, 4);
478 gimple_cond_set_lhs (p, lhs);
479 gimple_cond_set_rhs (p, rhs);
480 gimple_cond_set_true_label (p, t_label);
481 gimple_cond_set_false_label (p, f_label);
482 return p;
486 /* Extract operands for a GIMPLE_COND statement out of COND_EXPR tree COND. */
488 void
489 gimple_cond_get_ops_from_tree (tree cond, enum tree_code *code_p,
490 tree *lhs_p, tree *rhs_p)
492 gcc_assert (TREE_CODE_CLASS (TREE_CODE (cond)) == tcc_comparison
493 || TREE_CODE (cond) == TRUTH_NOT_EXPR
494 || is_gimple_min_invariant (cond)
495 || SSA_VAR_P (cond));
497 extract_ops_from_tree (cond, code_p, lhs_p, rhs_p);
499 /* Canonicalize conditionals of the form 'if (!VAL)'. */
500 if (*code_p == TRUTH_NOT_EXPR)
502 *code_p = EQ_EXPR;
503 gcc_assert (*lhs_p && *rhs_p == NULL_TREE);
504 *rhs_p = fold_convert (TREE_TYPE (*lhs_p), integer_zero_node);
506 /* Canonicalize conditionals of the form 'if (VAL)' */
507 else if (TREE_CODE_CLASS (*code_p) != tcc_comparison)
509 *code_p = NE_EXPR;
510 gcc_assert (*lhs_p && *rhs_p == NULL_TREE);
511 *rhs_p = fold_convert (TREE_TYPE (*lhs_p), integer_zero_node);
516 /* Build a GIMPLE_COND statement from the conditional expression tree
517 COND. T_LABEL and F_LABEL are as in gimple_build_cond. */
519 gimple
520 gimple_build_cond_from_tree (tree cond, tree t_label, tree f_label)
522 enum tree_code code;
523 tree lhs, rhs;
525 gimple_cond_get_ops_from_tree (cond, &code, &lhs, &rhs);
526 return gimple_build_cond (code, lhs, rhs, t_label, f_label);
529 /* Set code, lhs, and rhs of a GIMPLE_COND from a suitable
530 boolean expression tree COND. */
532 void
533 gimple_cond_set_condition_from_tree (gimple stmt, tree cond)
535 enum tree_code code;
536 tree lhs, rhs;
538 gimple_cond_get_ops_from_tree (cond, &code, &lhs, &rhs);
539 gimple_cond_set_condition (stmt, code, lhs, rhs);
542 /* Build a GIMPLE_LABEL statement for LABEL. */
544 gimple
545 gimple_build_label (tree label)
547 gimple p = gimple_build_with_ops (GIMPLE_LABEL, 0, 1);
548 gimple_label_set_label (p, label);
549 return p;
552 /* Build a GIMPLE_GOTO statement to label DEST. */
554 gimple
555 gimple_build_goto (tree dest)
557 gimple p = gimple_build_with_ops (GIMPLE_GOTO, 0, 1);
558 gimple_goto_set_dest (p, dest);
559 return p;
563 /* Build a GIMPLE_NOP statement. */
565 gimple
566 gimple_build_nop (void)
568 return gimple_alloc (GIMPLE_NOP, 0);
572 /* Build a GIMPLE_BIND statement.
573 VARS are the variables in BODY.
574 BLOCK is the containing block. */
576 gimple
577 gimple_build_bind (tree vars, gimple_seq body, tree block)
579 gimple p = gimple_alloc (GIMPLE_BIND, 0);
580 gimple_bind_set_vars (p, vars);
581 if (body)
582 gimple_bind_set_body (p, body);
583 if (block)
584 gimple_bind_set_block (p, block);
585 return p;
588 /* Helper function to set the simple fields of a asm stmt.
590 STRING is a pointer to a string that is the asm blocks assembly code.
591 NINPUT is the number of register inputs.
592 NOUTPUT is the number of register outputs.
593 NCLOBBERS is the number of clobbered registers.
596 static inline gimple
597 gimple_build_asm_1 (const char *string, unsigned ninputs, unsigned noutputs,
598 unsigned nclobbers)
600 gimple p;
601 int size = strlen (string);
603 p = gimple_build_with_ops (GIMPLE_ASM, 0, ninputs + noutputs + nclobbers);
605 p->gimple_asm.ni = ninputs;
606 p->gimple_asm.no = noutputs;
607 p->gimple_asm.nc = nclobbers;
608 p->gimple_asm.string = ggc_alloc_string (string, size);
610 #ifdef GATHER_STATISTICS
611 gimple_alloc_sizes[(int) gimple_alloc_kind (GIMPLE_ASM)] += size;
612 #endif
614 return p;
617 /* Build a GIMPLE_ASM statement.
619 STRING is the assembly code.
620 NINPUT is the number of register inputs.
621 NOUTPUT is the number of register outputs.
622 NCLOBBERS is the number of clobbered registers.
623 INPUTS is a vector of the input register parameters.
624 OUTPUTS is a vector of the output register parameters.
625 CLOBBERS is a vector of the clobbered register parameters. */
627 gimple
628 gimple_build_asm_vec (const char *string, VEC(tree,gc)* inputs,
629 VEC(tree,gc)* outputs, VEC(tree,gc)* clobbers)
631 gimple p;
632 unsigned i;
634 p = gimple_build_asm_1 (string,
635 VEC_length (tree, inputs),
636 VEC_length (tree, outputs),
637 VEC_length (tree, clobbers));
639 for (i = 0; i < VEC_length (tree, inputs); i++)
640 gimple_asm_set_input_op (p, i, VEC_index (tree, inputs, i));
642 for (i = 0; i < VEC_length (tree, outputs); i++)
643 gimple_asm_set_output_op (p, i, VEC_index (tree, outputs, i));
645 for (i = 0; i < VEC_length (tree, clobbers); i++)
646 gimple_asm_set_clobber_op (p, i, VEC_index (tree, clobbers, i));
648 return p;
651 /* Build a GIMPLE_ASM statement.
653 STRING is the assembly code.
654 NINPUT is the number of register inputs.
655 NOUTPUT is the number of register outputs.
656 NCLOBBERS is the number of clobbered registers.
657 ... are trees for each input, output and clobbered register. */
659 gimple
660 gimple_build_asm (const char *string, unsigned ninputs, unsigned noutputs,
661 unsigned nclobbers, ...)
663 gimple p;
664 unsigned i;
665 va_list ap;
667 p = gimple_build_asm_1 (string, ninputs, noutputs, nclobbers);
669 va_start (ap, nclobbers);
671 for (i = 0; i < ninputs; i++)
672 gimple_asm_set_input_op (p, i, va_arg (ap, tree));
674 for (i = 0; i < noutputs; i++)
675 gimple_asm_set_output_op (p, i, va_arg (ap, tree));
677 for (i = 0; i < nclobbers; i++)
678 gimple_asm_set_clobber_op (p, i, va_arg (ap, tree));
680 va_end (ap);
682 return p;
685 /* Build a GIMPLE_CATCH statement.
687 TYPES are the catch types.
688 HANDLER is the exception handler. */
690 gimple
691 gimple_build_catch (tree types, gimple_seq handler)
693 gimple p = gimple_alloc (GIMPLE_CATCH, 0);
694 gimple_catch_set_types (p, types);
695 if (handler)
696 gimple_catch_set_handler (p, handler);
698 return p;
701 /* Build a GIMPLE_EH_FILTER statement.
703 TYPES are the filter's types.
704 FAILURE is the filter's failure action. */
706 gimple
707 gimple_build_eh_filter (tree types, gimple_seq failure)
709 gimple p = gimple_alloc (GIMPLE_EH_FILTER, 0);
710 gimple_eh_filter_set_types (p, types);
711 if (failure)
712 gimple_eh_filter_set_failure (p, failure);
714 return p;
717 /* Build a GIMPLE_TRY statement.
719 EVAL is the expression to evaluate.
720 CLEANUP is the cleanup expression.
721 KIND is either GIMPLE_TRY_CATCH or GIMPLE_TRY_FINALLY depending on
722 whether this is a try/catch or a try/finally respectively. */
724 gimple
725 gimple_build_try (gimple_seq eval, gimple_seq cleanup,
726 enum gimple_try_flags kind)
728 gimple p;
730 gcc_assert (kind == GIMPLE_TRY_CATCH || kind == GIMPLE_TRY_FINALLY);
731 p = gimple_alloc (GIMPLE_TRY, 0);
732 gimple_set_subcode (p, kind);
733 if (eval)
734 gimple_try_set_eval (p, eval);
735 if (cleanup)
736 gimple_try_set_cleanup (p, cleanup);
738 return p;
741 /* Construct a GIMPLE_WITH_CLEANUP_EXPR statement.
743 CLEANUP is the cleanup expression. */
745 gimple
746 gimple_build_wce (gimple_seq cleanup)
748 gimple p = gimple_alloc (GIMPLE_WITH_CLEANUP_EXPR, 0);
749 if (cleanup)
750 gimple_wce_set_cleanup (p, cleanup);
752 return p;
756 /* Build a GIMPLE_RESX statement.
758 REGION is the region number from which this resx causes control flow to
759 leave. */
761 gimple
762 gimple_build_resx (int region)
764 gimple p = gimple_alloc (GIMPLE_RESX, 0);
765 gimple_resx_set_region (p, region);
766 return p;
770 /* The helper for constructing a gimple switch statement.
771 INDEX is the switch's index.
772 NLABELS is the number of labels in the switch excluding the default.
773 DEFAULT_LABEL is the default label for the switch statement. */
775 static inline gimple
776 gimple_build_switch_1 (unsigned nlabels, tree index, tree default_label)
778 /* nlabels + 1 default label + 1 index. */
779 gimple p = gimple_build_with_ops (GIMPLE_SWITCH, 0, nlabels + 1 + 1);
780 gimple_switch_set_index (p, index);
781 gimple_switch_set_default_label (p, default_label);
782 return p;
786 /* Build a GIMPLE_SWITCH statement.
788 INDEX is the switch's index.
789 NLABELS is the number of labels in the switch excluding the DEFAULT_LABEL.
790 ... are the labels excluding the default. */
792 gimple
793 gimple_build_switch (unsigned nlabels, tree index, tree default_label, ...)
795 va_list al;
796 unsigned i;
797 gimple p;
799 p = gimple_build_switch_1 (nlabels, index, default_label);
801 /* Store the rest of the labels. */
802 va_start (al, default_label);
803 for (i = 1; i <= nlabels; i++)
804 gimple_switch_set_label (p, i, va_arg (al, tree));
805 va_end (al);
807 return p;
811 /* Build a GIMPLE_SWITCH statement.
813 INDEX is the switch's index.
814 DEFAULT_LABEL is the default label
815 ARGS is a vector of labels excluding the default. */
817 gimple
818 gimple_build_switch_vec (tree index, tree default_label, VEC(tree, heap) *args)
820 unsigned i;
821 unsigned nlabels = VEC_length (tree, args);
822 gimple p = gimple_build_switch_1 (nlabels, index, default_label);
824 /* Put labels in labels[1 - (nlabels + 1)].
825 Default label is in labels[0]. */
826 for (i = 1; i <= nlabels; i++)
827 gimple_switch_set_label (p, i, VEC_index (tree, args, i - 1));
829 return p;
833 /* Build a GIMPLE_OMP_CRITICAL statement.
835 BODY is the sequence of statements for which only one thread can execute.
836 NAME is optional identifier for this critical block. */
838 gimple
839 gimple_build_omp_critical (gimple_seq body, tree name)
841 gimple p = gimple_alloc (GIMPLE_OMP_CRITICAL, 0);
842 gimple_omp_critical_set_name (p, name);
843 if (body)
844 gimple_omp_set_body (p, body);
846 return p;
849 /* Build a GIMPLE_OMP_FOR statement.
851 BODY is sequence of statements inside the for loop.
852 CLAUSES, are any of the OMP loop construct's clauses: private, firstprivate,
853 lastprivate, reductions, ordered, schedule, and nowait.
854 COLLAPSE is the collapse count.
855 PRE_BODY is the sequence of statements that are loop invariant. */
857 gimple
858 gimple_build_omp_for (gimple_seq body, tree clauses, size_t collapse,
859 gimple_seq pre_body)
861 gimple p = gimple_alloc (GIMPLE_OMP_FOR, 0);
862 if (body)
863 gimple_omp_set_body (p, body);
864 gimple_omp_for_set_clauses (p, clauses);
865 p->gimple_omp_for.collapse = collapse;
866 p->gimple_omp_for.iter = GGC_CNEWVEC (struct gimple_omp_for_iter, collapse);
867 if (pre_body)
868 gimple_omp_for_set_pre_body (p, pre_body);
870 return p;
874 /* Build a GIMPLE_OMP_PARALLEL statement.
876 BODY is sequence of statements which are executed in parallel.
877 CLAUSES, are the OMP parallel construct's clauses.
878 CHILD_FN is the function created for the parallel threads to execute.
879 DATA_ARG are the shared data argument(s). */
881 gimple
882 gimple_build_omp_parallel (gimple_seq body, tree clauses, tree child_fn,
883 tree data_arg)
885 gimple p = gimple_alloc (GIMPLE_OMP_PARALLEL, 0);
886 if (body)
887 gimple_omp_set_body (p, body);
888 gimple_omp_parallel_set_clauses (p, clauses);
889 gimple_omp_parallel_set_child_fn (p, child_fn);
890 gimple_omp_parallel_set_data_arg (p, data_arg);
892 return p;
896 /* Build a GIMPLE_OMP_TASK statement.
898 BODY is sequence of statements which are executed by the explicit task.
899 CLAUSES, are the OMP parallel construct's clauses.
900 CHILD_FN is the function created for the parallel threads to execute.
901 DATA_ARG are the shared data argument(s).
902 COPY_FN is the optional function for firstprivate initialization.
903 ARG_SIZE and ARG_ALIGN are size and alignment of the data block. */
905 gimple
906 gimple_build_omp_task (gimple_seq body, tree clauses, tree child_fn,
907 tree data_arg, tree copy_fn, tree arg_size,
908 tree arg_align)
910 gimple p = gimple_alloc (GIMPLE_OMP_TASK, 0);
911 if (body)
912 gimple_omp_set_body (p, body);
913 gimple_omp_task_set_clauses (p, clauses);
914 gimple_omp_task_set_child_fn (p, child_fn);
915 gimple_omp_task_set_data_arg (p, data_arg);
916 gimple_omp_task_set_copy_fn (p, copy_fn);
917 gimple_omp_task_set_arg_size (p, arg_size);
918 gimple_omp_task_set_arg_align (p, arg_align);
920 return p;
924 /* Build a GIMPLE_OMP_SECTION statement for a sections statement.
926 BODY is the sequence of statements in the section. */
928 gimple
929 gimple_build_omp_section (gimple_seq body)
931 gimple p = gimple_alloc (GIMPLE_OMP_SECTION, 0);
932 if (body)
933 gimple_omp_set_body (p, body);
935 return p;
939 /* Build a GIMPLE_OMP_MASTER statement.
941 BODY is the sequence of statements to be executed by just the master. */
943 gimple
944 gimple_build_omp_master (gimple_seq body)
946 gimple p = gimple_alloc (GIMPLE_OMP_MASTER, 0);
947 if (body)
948 gimple_omp_set_body (p, body);
950 return p;
954 /* Build a GIMPLE_OMP_CONTINUE statement.
956 CONTROL_DEF is the definition of the control variable.
957 CONTROL_USE is the use of the control variable. */
959 gimple
960 gimple_build_omp_continue (tree control_def, tree control_use)
962 gimple p = gimple_alloc (GIMPLE_OMP_CONTINUE, 0);
963 gimple_omp_continue_set_control_def (p, control_def);
964 gimple_omp_continue_set_control_use (p, control_use);
965 return p;
968 /* Build a GIMPLE_OMP_ORDERED statement.
970 BODY is the sequence of statements inside a loop that will executed in
971 sequence. */
973 gimple
974 gimple_build_omp_ordered (gimple_seq body)
976 gimple p = gimple_alloc (GIMPLE_OMP_ORDERED, 0);
977 if (body)
978 gimple_omp_set_body (p, body);
980 return p;
984 /* Build a GIMPLE_OMP_RETURN statement.
985 WAIT_P is true if this is a non-waiting return. */
987 gimple
988 gimple_build_omp_return (bool wait_p)
990 gimple p = gimple_alloc (GIMPLE_OMP_RETURN, 0);
991 if (wait_p)
992 gimple_omp_return_set_nowait (p);
994 return p;
998 /* Build a GIMPLE_OMP_SECTIONS statement.
1000 BODY is a sequence of section statements.
1001 CLAUSES are any of the OMP sections contsruct's clauses: private,
1002 firstprivate, lastprivate, reduction, and nowait. */
1004 gimple
1005 gimple_build_omp_sections (gimple_seq body, tree clauses)
1007 gimple p = gimple_alloc (GIMPLE_OMP_SECTIONS, 0);
1008 if (body)
1009 gimple_omp_set_body (p, body);
1010 gimple_omp_sections_set_clauses (p, clauses);
1012 return p;
1016 /* Build a GIMPLE_OMP_SECTIONS_SWITCH. */
1018 gimple
1019 gimple_build_omp_sections_switch (void)
1021 return gimple_alloc (GIMPLE_OMP_SECTIONS_SWITCH, 0);
1025 /* Build a GIMPLE_OMP_SINGLE statement.
1027 BODY is the sequence of statements that will be executed once.
1028 CLAUSES are any of the OMP single construct's clauses: private, firstprivate,
1029 copyprivate, nowait. */
1031 gimple
1032 gimple_build_omp_single (gimple_seq body, tree clauses)
1034 gimple p = gimple_alloc (GIMPLE_OMP_SINGLE, 0);
1035 if (body)
1036 gimple_omp_set_body (p, body);
1037 gimple_omp_single_set_clauses (p, clauses);
1039 return p;
1043 /* Build a GIMPLE_CHANGE_DYNAMIC_TYPE statement. TYPE is the new type
1044 for the location PTR. */
1046 gimple
1047 gimple_build_cdt (tree type, tree ptr)
1049 gimple p = gimple_build_with_ops (GIMPLE_CHANGE_DYNAMIC_TYPE, 0, 2);
1050 gimple_cdt_set_new_type (p, type);
1051 gimple_cdt_set_location (p, ptr);
1053 return p;
1057 /* Build a GIMPLE_OMP_ATOMIC_LOAD statement. */
1059 gimple
1060 gimple_build_omp_atomic_load (tree lhs, tree rhs)
1062 gimple p = gimple_alloc (GIMPLE_OMP_ATOMIC_LOAD, 0);
1063 gimple_omp_atomic_load_set_lhs (p, lhs);
1064 gimple_omp_atomic_load_set_rhs (p, rhs);
1065 return p;
1068 /* Build a GIMPLE_OMP_ATOMIC_STORE statement.
1070 VAL is the value we are storing. */
1072 gimple
1073 gimple_build_omp_atomic_store (tree val)
1075 gimple p = gimple_alloc (GIMPLE_OMP_ATOMIC_STORE, 0);
1076 gimple_omp_atomic_store_set_val (p, val);
1077 return p;
1080 /* Build a GIMPLE_PREDICT statement. PREDICT is one of the predictors from
1081 predict.def, OUTCOME is NOT_TAKEN or TAKEN. */
1083 gimple
1084 gimple_build_predict (enum br_predictor predictor, enum prediction outcome)
1086 gimple p = gimple_alloc (GIMPLE_PREDICT, 0);
1087 /* Ensure all the predictors fit into the lower bits of the subcode. */
1088 gcc_assert (END_PREDICTORS <= GF_PREDICT_TAKEN);
1089 gimple_predict_set_predictor (p, predictor);
1090 gimple_predict_set_outcome (p, outcome);
1091 return p;
1094 /* Return which gimple structure is used by T. The enums here are defined
1095 in gsstruct.def. */
1097 enum gimple_statement_structure_enum
1098 gimple_statement_structure (gimple gs)
1100 return gss_for_code (gimple_code (gs));
1103 #if defined ENABLE_GIMPLE_CHECKING && (GCC_VERSION >= 2007)
1104 /* Complain of a gimple type mismatch and die. */
1106 void
1107 gimple_check_failed (const_gimple gs, const char *file, int line,
1108 const char *function, enum gimple_code code,
1109 enum tree_code subcode)
1111 internal_error ("gimple check: expected %s(%s), have %s(%s) in %s, at %s:%d",
1112 gimple_code_name[code],
1113 tree_code_name[subcode],
1114 gimple_code_name[gimple_code (gs)],
1115 gs->gsbase.subcode > 0
1116 ? tree_code_name[gs->gsbase.subcode]
1117 : "",
1118 function, trim_filename (file), line);
1122 /* Similar to gimple_check_failed, except that instead of specifying a
1123 dozen codes, use the knowledge that they're all sequential. */
1125 void
1126 gimple_range_check_failed (const_gimple gs, const char *file, int line,
1127 const char *function, enum gimple_code c1,
1128 enum gimple_code c2)
1130 char *buffer;
1131 unsigned length = 0;
1132 enum gimple_code c;
1134 for (c = c1; c <= c2; ++c)
1135 length += 4 + strlen (gimple_code_name[c]);
1137 length += strlen ("expected ");
1138 buffer = XALLOCAVAR (char, length);
1139 length = 0;
1141 for (c = c1; c <= c2; ++c)
1143 const char *prefix = length ? " or " : "expected ";
1145 strcpy (buffer + length, prefix);
1146 length += strlen (prefix);
1147 strcpy (buffer + length, gimple_code_name[c]);
1148 length += strlen (gimple_code_name[c]);
1151 internal_error ("gimple check: %s, have %s in %s, at %s:%d",
1152 buffer, gimple_code_name[gimple_code (gs)],
1153 function, trim_filename (file), line);
1155 #endif /* ENABLE_GIMPLE_CHECKING */
1158 /* Allocate a new GIMPLE sequence in GC memory and return it. If
1159 there are free sequences in GIMPLE_SEQ_CACHE return one of those
1160 instead. */
1162 gimple_seq
1163 gimple_seq_alloc (void)
1165 gimple_seq seq = gimple_seq_cache;
1166 if (seq)
1168 gimple_seq_cache = gimple_seq_cache->next_free;
1169 gcc_assert (gimple_seq_cache != seq);
1170 memset (seq, 0, sizeof (*seq));
1172 else
1174 seq = (gimple_seq) ggc_alloc_cleared (sizeof (*seq));
1175 #ifdef GATHER_STATISTICS
1176 gimple_alloc_counts[(int) gimple_alloc_kind_seq]++;
1177 gimple_alloc_sizes[(int) gimple_alloc_kind_seq] += sizeof (*seq);
1178 #endif
1181 return seq;
1184 /* Return SEQ to the free pool of GIMPLE sequences. */
1186 void
1187 gimple_seq_free (gimple_seq seq)
1189 if (seq == NULL)
1190 return;
1192 gcc_assert (gimple_seq_first (seq) == NULL);
1193 gcc_assert (gimple_seq_last (seq) == NULL);
1195 /* If this triggers, it's a sign that the same list is being freed
1196 twice. */
1197 gcc_assert (seq != gimple_seq_cache || gimple_seq_cache == NULL);
1199 /* Add SEQ to the pool of free sequences. */
1200 seq->next_free = gimple_seq_cache;
1201 gimple_seq_cache = seq;
1205 /* Link gimple statement GS to the end of the sequence *SEQ_P. If
1206 *SEQ_P is NULL, a new sequence is allocated. */
1208 void
1209 gimple_seq_add_stmt (gimple_seq *seq_p, gimple gs)
1211 gimple_stmt_iterator si;
1213 if (gs == NULL)
1214 return;
1216 if (*seq_p == NULL)
1217 *seq_p = gimple_seq_alloc ();
1219 si = gsi_last (*seq_p);
1220 gsi_insert_after (&si, gs, GSI_NEW_STMT);
1224 /* Append sequence SRC to the end of sequence *DST_P. If *DST_P is
1225 NULL, a new sequence is allocated. */
1227 void
1228 gimple_seq_add_seq (gimple_seq *dst_p, gimple_seq src)
1230 gimple_stmt_iterator si;
1232 if (src == NULL)
1233 return;
1235 if (*dst_p == NULL)
1236 *dst_p = gimple_seq_alloc ();
1238 si = gsi_last (*dst_p);
1239 gsi_insert_seq_after (&si, src, GSI_NEW_STMT);
1243 /* Helper function of empty_body_p. Return true if STMT is an empty
1244 statement. */
1246 static bool
1247 empty_stmt_p (gimple stmt)
1249 if (gimple_code (stmt) == GIMPLE_NOP)
1250 return true;
1251 if (gimple_code (stmt) == GIMPLE_BIND)
1252 return empty_body_p (gimple_bind_body (stmt));
1253 return false;
1257 /* Return true if BODY contains nothing but empty statements. */
1259 bool
1260 empty_body_p (gimple_seq body)
1262 gimple_stmt_iterator i;
1265 if (gimple_seq_empty_p (body))
1266 return true;
1267 for (i = gsi_start (body); !gsi_end_p (i); gsi_next (&i))
1268 if (!empty_stmt_p (gsi_stmt (i)))
1269 return false;
1271 return true;
1275 /* Perform a deep copy of sequence SRC and return the result. */
1277 gimple_seq
1278 gimple_seq_copy (gimple_seq src)
1280 gimple_stmt_iterator gsi;
1281 gimple_seq new_seq = gimple_seq_alloc ();
1282 gimple stmt;
1284 for (gsi = gsi_start (src); !gsi_end_p (gsi); gsi_next (&gsi))
1286 stmt = gimple_copy (gsi_stmt (gsi));
1287 gimple_seq_add_stmt (&new_seq, stmt);
1290 return new_seq;
1294 /* Walk all the statements in the sequence SEQ calling walk_gimple_stmt
1295 on each one. WI is as in walk_gimple_stmt.
1297 If walk_gimple_stmt returns non-NULL, the walk is stopped, the
1298 value is stored in WI->CALLBACK_RESULT and the statement that
1299 produced the value is returned.
1301 Otherwise, all the statements are walked and NULL returned. */
1303 gimple
1304 walk_gimple_seq (gimple_seq seq, walk_stmt_fn callback_stmt,
1305 walk_tree_fn callback_op, struct walk_stmt_info *wi)
1307 gimple_stmt_iterator gsi;
1309 for (gsi = gsi_start (seq); !gsi_end_p (gsi); gsi_next (&gsi))
1311 tree ret = walk_gimple_stmt (&gsi, callback_stmt, callback_op, wi);
1312 if (ret)
1314 /* If CALLBACK_STMT or CALLBACK_OP return a value, WI must exist
1315 to hold it. */
1316 gcc_assert (wi);
1317 wi->callback_result = ret;
1318 return gsi_stmt (gsi);
1322 if (wi)
1323 wi->callback_result = NULL_TREE;
1325 return NULL;
1329 /* Helper function for walk_gimple_stmt. Walk operands of a GIMPLE_ASM. */
1331 static tree
1332 walk_gimple_asm (gimple stmt, walk_tree_fn callback_op,
1333 struct walk_stmt_info *wi)
1335 tree ret;
1336 unsigned noutputs;
1337 const char **oconstraints;
1338 unsigned i;
1339 const char *constraint;
1340 bool allows_mem, allows_reg, is_inout;
1342 noutputs = gimple_asm_noutputs (stmt);
1343 oconstraints = (const char **) alloca ((noutputs) * sizeof (const char *));
1345 if (wi)
1346 wi->is_lhs = true;
1348 for (i = 0; i < noutputs; i++)
1350 tree op = gimple_asm_output_op (stmt, i);
1351 constraint = TREE_STRING_POINTER (TREE_VALUE (TREE_PURPOSE (op)));
1352 oconstraints[i] = constraint;
1353 parse_output_constraint (&constraint, i, 0, 0, &allows_mem, &allows_reg,
1354 &is_inout);
1355 if (wi)
1356 wi->val_only = (allows_reg || !allows_mem);
1357 ret = walk_tree (&TREE_VALUE (op), callback_op, wi, NULL);
1358 if (ret)
1359 return ret;
1362 for (i = 0; i < gimple_asm_ninputs (stmt); i++)
1364 tree op = gimple_asm_input_op (stmt, i);
1365 constraint = TREE_STRING_POINTER (TREE_VALUE (TREE_PURPOSE (op)));
1366 parse_input_constraint (&constraint, 0, 0, noutputs, 0,
1367 oconstraints, &allows_mem, &allows_reg);
1368 if (wi)
1369 wi->val_only = (allows_reg || !allows_mem);
1371 /* Although input "m" is not really a LHS, we need a lvalue. */
1372 if (wi)
1373 wi->is_lhs = !wi->val_only;
1374 ret = walk_tree (&TREE_VALUE (op), callback_op, wi, NULL);
1375 if (ret)
1376 return ret;
1379 if (wi)
1381 wi->is_lhs = false;
1382 wi->val_only = true;
1385 return NULL_TREE;
1389 /* Helper function of WALK_GIMPLE_STMT. Walk every tree operand in
1390 STMT. CALLBACK_OP and WI are as in WALK_GIMPLE_STMT.
1392 CALLBACK_OP is called on each operand of STMT via walk_tree.
1393 Additional parameters to walk_tree must be stored in WI. For each operand
1394 OP, walk_tree is called as:
1396 walk_tree (&OP, CALLBACK_OP, WI, WI->PSET)
1398 If CALLBACK_OP returns non-NULL for an operand, the remaining
1399 operands are not scanned.
1401 The return value is that returned by the last call to walk_tree, or
1402 NULL_TREE if no CALLBACK_OP is specified. */
1404 inline tree
1405 walk_gimple_op (gimple stmt, walk_tree_fn callback_op,
1406 struct walk_stmt_info *wi)
1408 struct pointer_set_t *pset = (wi) ? wi->pset : NULL;
1409 unsigned i;
1410 tree ret = NULL_TREE;
1412 switch (gimple_code (stmt))
1414 case GIMPLE_ASSIGN:
1415 /* Walk the RHS operands. A formal temporary LHS may use a
1416 COMPONENT_REF RHS. */
1417 if (wi)
1418 wi->val_only = !is_gimple_formal_tmp_var (gimple_assign_lhs (stmt));
1420 for (i = 1; i < gimple_num_ops (stmt); i++)
1422 ret = walk_tree (gimple_op_ptr (stmt, i), callback_op, wi,
1423 pset);
1424 if (ret)
1425 return ret;
1428 /* Walk the LHS. If the RHS is appropriate for a memory, we
1429 may use a COMPONENT_REF on the LHS. */
1430 if (wi)
1432 /* If the RHS has more than 1 operand, it is not appropriate
1433 for the memory. */
1434 wi->val_only = !is_gimple_mem_rhs (gimple_assign_rhs1 (stmt))
1435 || !gimple_assign_single_p (stmt);
1436 wi->is_lhs = true;
1439 ret = walk_tree (gimple_op_ptr (stmt, 0), callback_op, wi, pset);
1440 if (ret)
1441 return ret;
1443 if (wi)
1445 wi->val_only = true;
1446 wi->is_lhs = false;
1448 break;
1450 case GIMPLE_CALL:
1451 if (wi)
1452 wi->is_lhs = false;
1454 ret = walk_tree (gimple_call_chain_ptr (stmt), callback_op, wi, pset);
1455 if (ret)
1456 return ret;
1458 ret = walk_tree (gimple_call_fn_ptr (stmt), callback_op, wi, pset);
1459 if (ret)
1460 return ret;
1462 for (i = 0; i < gimple_call_num_args (stmt); i++)
1464 ret = walk_tree (gimple_call_arg_ptr (stmt, i), callback_op, wi,
1465 pset);
1466 if (ret)
1467 return ret;
1470 if (wi)
1471 wi->is_lhs = true;
1473 ret = walk_tree (gimple_call_lhs_ptr (stmt), callback_op, wi, pset);
1474 if (ret)
1475 return ret;
1477 if (wi)
1478 wi->is_lhs = false;
1479 break;
1481 case GIMPLE_CATCH:
1482 ret = walk_tree (gimple_catch_types_ptr (stmt), callback_op, wi,
1483 pset);
1484 if (ret)
1485 return ret;
1486 break;
1488 case GIMPLE_EH_FILTER:
1489 ret = walk_tree (gimple_eh_filter_types_ptr (stmt), callback_op, wi,
1490 pset);
1491 if (ret)
1492 return ret;
1493 break;
1495 case GIMPLE_CHANGE_DYNAMIC_TYPE:
1496 ret = walk_tree (gimple_cdt_location_ptr (stmt), callback_op, wi, pset);
1497 if (ret)
1498 return ret;
1500 ret = walk_tree (gimple_cdt_new_type_ptr (stmt), callback_op, wi, pset);
1501 if (ret)
1502 return ret;
1503 break;
1505 case GIMPLE_ASM:
1506 ret = walk_gimple_asm (stmt, callback_op, wi);
1507 if (ret)
1508 return ret;
1509 break;
1511 case GIMPLE_OMP_CONTINUE:
1512 ret = walk_tree (gimple_omp_continue_control_def_ptr (stmt),
1513 callback_op, wi, pset);
1514 if (ret)
1515 return ret;
1517 ret = walk_tree (gimple_omp_continue_control_use_ptr (stmt),
1518 callback_op, wi, pset);
1519 if (ret)
1520 return ret;
1521 break;
1523 case GIMPLE_OMP_CRITICAL:
1524 ret = walk_tree (gimple_omp_critical_name_ptr (stmt), callback_op, wi,
1525 pset);
1526 if (ret)
1527 return ret;
1528 break;
1530 case GIMPLE_OMP_FOR:
1531 ret = walk_tree (gimple_omp_for_clauses_ptr (stmt), callback_op, wi,
1532 pset);
1533 if (ret)
1534 return ret;
1535 for (i = 0; i < gimple_omp_for_collapse (stmt); i++)
1537 ret = walk_tree (gimple_omp_for_index_ptr (stmt, i), callback_op,
1538 wi, pset);
1539 if (ret)
1540 return ret;
1541 ret = walk_tree (gimple_omp_for_initial_ptr (stmt, i), callback_op,
1542 wi, pset);
1543 if (ret)
1544 return ret;
1545 ret = walk_tree (gimple_omp_for_final_ptr (stmt, i), callback_op,
1546 wi, pset);
1547 if (ret)
1548 return ret;
1549 ret = walk_tree (gimple_omp_for_incr_ptr (stmt, i), callback_op,
1550 wi, pset);
1552 if (ret)
1553 return ret;
1554 break;
1556 case GIMPLE_OMP_PARALLEL:
1557 ret = walk_tree (gimple_omp_parallel_clauses_ptr (stmt), callback_op,
1558 wi, pset);
1559 if (ret)
1560 return ret;
1561 ret = walk_tree (gimple_omp_parallel_child_fn_ptr (stmt), callback_op,
1562 wi, pset);
1563 if (ret)
1564 return ret;
1565 ret = walk_tree (gimple_omp_parallel_data_arg_ptr (stmt), callback_op,
1566 wi, pset);
1567 if (ret)
1568 return ret;
1569 break;
1571 case GIMPLE_OMP_TASK:
1572 ret = walk_tree (gimple_omp_task_clauses_ptr (stmt), callback_op,
1573 wi, pset);
1574 if (ret)
1575 return ret;
1576 ret = walk_tree (gimple_omp_task_child_fn_ptr (stmt), callback_op,
1577 wi, pset);
1578 if (ret)
1579 return ret;
1580 ret = walk_tree (gimple_omp_task_data_arg_ptr (stmt), callback_op,
1581 wi, pset);
1582 if (ret)
1583 return ret;
1584 ret = walk_tree (gimple_omp_task_copy_fn_ptr (stmt), callback_op,
1585 wi, pset);
1586 if (ret)
1587 return ret;
1588 ret = walk_tree (gimple_omp_task_arg_size_ptr (stmt), callback_op,
1589 wi, pset);
1590 if (ret)
1591 return ret;
1592 ret = walk_tree (gimple_omp_task_arg_align_ptr (stmt), callback_op,
1593 wi, pset);
1594 if (ret)
1595 return ret;
1596 break;
1598 case GIMPLE_OMP_SECTIONS:
1599 ret = walk_tree (gimple_omp_sections_clauses_ptr (stmt), callback_op,
1600 wi, pset);
1601 if (ret)
1602 return ret;
1604 ret = walk_tree (gimple_omp_sections_control_ptr (stmt), callback_op,
1605 wi, pset);
1606 if (ret)
1607 return ret;
1609 break;
1611 case GIMPLE_OMP_SINGLE:
1612 ret = walk_tree (gimple_omp_single_clauses_ptr (stmt), callback_op, wi,
1613 pset);
1614 if (ret)
1615 return ret;
1616 break;
1618 case GIMPLE_OMP_ATOMIC_LOAD:
1619 ret = walk_tree (gimple_omp_atomic_load_lhs_ptr (stmt), callback_op, wi,
1620 pset);
1621 if (ret)
1622 return ret;
1624 ret = walk_tree (gimple_omp_atomic_load_rhs_ptr (stmt), callback_op, wi,
1625 pset);
1626 if (ret)
1627 return ret;
1628 break;
1630 case GIMPLE_OMP_ATOMIC_STORE:
1631 ret = walk_tree (gimple_omp_atomic_store_val_ptr (stmt), callback_op,
1632 wi, pset);
1633 if (ret)
1634 return ret;
1635 break;
1637 /* Tuples that do not have operands. */
1638 case GIMPLE_NOP:
1639 case GIMPLE_RESX:
1640 case GIMPLE_OMP_RETURN:
1641 case GIMPLE_PREDICT:
1642 break;
1644 default:
1646 enum gimple_statement_structure_enum gss;
1647 gss = gimple_statement_structure (stmt);
1648 if (gss == GSS_WITH_OPS || gss == GSS_WITH_MEM_OPS)
1649 for (i = 0; i < gimple_num_ops (stmt); i++)
1651 ret = walk_tree (gimple_op_ptr (stmt, i), callback_op, wi, pset);
1652 if (ret)
1653 return ret;
1656 break;
1659 return NULL_TREE;
1663 /* Walk the current statement in GSI (optionally using traversal state
1664 stored in WI). If WI is NULL, no state is kept during traversal.
1665 The callback CALLBACK_STMT is called. If CALLBACK_STMT indicates
1666 that it has handled all the operands of the statement, its return
1667 value is returned. Otherwise, the return value from CALLBACK_STMT
1668 is discarded and its operands are scanned.
1670 If CALLBACK_STMT is NULL or it didn't handle the operands,
1671 CALLBACK_OP is called on each operand of the statement via
1672 walk_gimple_op. If walk_gimple_op returns non-NULL for any
1673 operand, the remaining operands are not scanned. In this case, the
1674 return value from CALLBACK_OP is returned.
1676 In any other case, NULL_TREE is returned. */
1678 tree
1679 walk_gimple_stmt (gimple_stmt_iterator *gsi, walk_stmt_fn callback_stmt,
1680 walk_tree_fn callback_op, struct walk_stmt_info *wi)
1682 gimple ret;
1683 tree tree_ret;
1684 gimple stmt = gsi_stmt (*gsi);
1686 if (wi)
1687 wi->gsi = *gsi;
1689 if (wi && wi->want_locations && gimple_has_location (stmt))
1690 input_location = gimple_location (stmt);
1692 ret = NULL;
1694 /* Invoke the statement callback. Return if the callback handled
1695 all of STMT operands by itself. */
1696 if (callback_stmt)
1698 bool handled_ops = false;
1699 tree_ret = callback_stmt (gsi, &handled_ops, wi);
1700 if (handled_ops)
1701 return tree_ret;
1703 /* If CALLBACK_STMT did not handle operands, it should not have
1704 a value to return. */
1705 gcc_assert (tree_ret == NULL);
1707 /* Re-read stmt in case the callback changed it. */
1708 stmt = gsi_stmt (*gsi);
1711 /* If CALLBACK_OP is defined, invoke it on every operand of STMT. */
1712 if (callback_op)
1714 tree_ret = walk_gimple_op (stmt, callback_op, wi);
1715 if (tree_ret)
1716 return tree_ret;
1719 /* If STMT can have statements inside (e.g. GIMPLE_BIND), walk them. */
1720 switch (gimple_code (stmt))
1722 case GIMPLE_BIND:
1723 ret = walk_gimple_seq (gimple_bind_body (stmt), callback_stmt,
1724 callback_op, wi);
1725 if (ret)
1726 return wi->callback_result;
1727 break;
1729 case GIMPLE_CATCH:
1730 ret = walk_gimple_seq (gimple_catch_handler (stmt), callback_stmt,
1731 callback_op, wi);
1732 if (ret)
1733 return wi->callback_result;
1734 break;
1736 case GIMPLE_EH_FILTER:
1737 ret = walk_gimple_seq (gimple_eh_filter_failure (stmt), callback_stmt,
1738 callback_op, wi);
1739 if (ret)
1740 return wi->callback_result;
1741 break;
1743 case GIMPLE_TRY:
1744 ret = walk_gimple_seq (gimple_try_eval (stmt), callback_stmt, callback_op,
1745 wi);
1746 if (ret)
1747 return wi->callback_result;
1749 ret = walk_gimple_seq (gimple_try_cleanup (stmt), callback_stmt,
1750 callback_op, wi);
1751 if (ret)
1752 return wi->callback_result;
1753 break;
1755 case GIMPLE_OMP_FOR:
1756 ret = walk_gimple_seq (gimple_omp_for_pre_body (stmt), callback_stmt,
1757 callback_op, wi);
1758 if (ret)
1759 return wi->callback_result;
1761 /* FALL THROUGH. */
1762 case GIMPLE_OMP_CRITICAL:
1763 case GIMPLE_OMP_MASTER:
1764 case GIMPLE_OMP_ORDERED:
1765 case GIMPLE_OMP_SECTION:
1766 case GIMPLE_OMP_PARALLEL:
1767 case GIMPLE_OMP_TASK:
1768 case GIMPLE_OMP_SECTIONS:
1769 case GIMPLE_OMP_SINGLE:
1770 ret = walk_gimple_seq (gimple_omp_body (stmt), callback_stmt, callback_op,
1771 wi);
1772 if (ret)
1773 return wi->callback_result;
1774 break;
1776 case GIMPLE_WITH_CLEANUP_EXPR:
1777 ret = walk_gimple_seq (gimple_wce_cleanup (stmt), callback_stmt,
1778 callback_op, wi);
1779 if (ret)
1780 return wi->callback_result;
1781 break;
1783 default:
1784 gcc_assert (!gimple_has_substatements (stmt));
1785 break;
1788 return NULL;
1792 /* Set sequence SEQ to be the GIMPLE body for function FN. */
1794 void
1795 gimple_set_body (tree fndecl, gimple_seq seq)
1797 struct function *fn = DECL_STRUCT_FUNCTION (fndecl);
1798 if (fn == NULL)
1800 /* If FNDECL still does not have a function structure associated
1801 with it, then it does not make sense for it to receive a
1802 GIMPLE body. */
1803 gcc_assert (seq == NULL);
1805 else
1806 fn->gimple_body = seq;
1810 /* Return the body of GIMPLE statements for function FN. */
1812 gimple_seq
1813 gimple_body (tree fndecl)
1815 struct function *fn = DECL_STRUCT_FUNCTION (fndecl);
1816 return fn ? fn->gimple_body : NULL;
1820 /* Detect flags from a GIMPLE_CALL. This is just like
1821 call_expr_flags, but for gimple tuples. */
1824 gimple_call_flags (const_gimple stmt)
1826 int flags;
1827 tree decl = gimple_call_fndecl (stmt);
1828 tree t;
1830 if (decl)
1831 flags = flags_from_decl_or_type (decl);
1832 else
1834 t = TREE_TYPE (gimple_call_fn (stmt));
1835 if (t && TREE_CODE (t) == POINTER_TYPE)
1836 flags = flags_from_decl_or_type (TREE_TYPE (t));
1837 else
1838 flags = 0;
1841 return flags;
1845 /* Return true if GS is a copy assignment. */
1847 bool
1848 gimple_assign_copy_p (gimple gs)
1850 return gimple_code (gs) == GIMPLE_ASSIGN
1851 && get_gimple_rhs_class (gimple_assign_rhs_code (gs))
1852 == GIMPLE_SINGLE_RHS
1853 && is_gimple_val (gimple_op (gs, 1));
1857 /* Return true if GS is a SSA_NAME copy assignment. */
1859 bool
1860 gimple_assign_ssa_name_copy_p (gimple gs)
1862 return (gimple_code (gs) == GIMPLE_ASSIGN
1863 && (get_gimple_rhs_class (gimple_assign_rhs_code (gs))
1864 == GIMPLE_SINGLE_RHS)
1865 && TREE_CODE (gimple_assign_lhs (gs)) == SSA_NAME
1866 && TREE_CODE (gimple_assign_rhs1 (gs)) == SSA_NAME);
1870 /* Return true if GS is an assignment with a singleton RHS, i.e.,
1871 there is no operator associated with the assignment itself.
1872 Unlike gimple_assign_copy_p, this predicate returns true for
1873 any RHS operand, including those that perform an operation
1874 and do not have the semantics of a copy, such as COND_EXPR. */
1876 bool
1877 gimple_assign_single_p (gimple gs)
1879 return (gimple_code (gs) == GIMPLE_ASSIGN
1880 && get_gimple_rhs_class (gimple_assign_rhs_code (gs))
1881 == GIMPLE_SINGLE_RHS);
1884 /* Return true if GS is an assignment with a unary RHS, but the
1885 operator has no effect on the assigned value. The logic is adapted
1886 from STRIP_NOPS. This predicate is intended to be used in tuplifying
1887 instances in which STRIP_NOPS was previously applied to the RHS of
1888 an assignment.
1890 NOTE: In the use cases that led to the creation of this function
1891 and of gimple_assign_single_p, it is typical to test for either
1892 condition and to proceed in the same manner. In each case, the
1893 assigned value is represented by the single RHS operand of the
1894 assignment. I suspect there may be cases where gimple_assign_copy_p,
1895 gimple_assign_single_p, or equivalent logic is used where a similar
1896 treatment of unary NOPs is appropriate. */
1898 bool
1899 gimple_assign_unary_nop_p (gimple gs)
1901 return (gimple_code (gs) == GIMPLE_ASSIGN
1902 && (gimple_assign_rhs_code (gs) == NOP_EXPR
1903 || gimple_assign_rhs_code (gs) == CONVERT_EXPR
1904 || gimple_assign_rhs_code (gs) == NON_LVALUE_EXPR)
1905 && gimple_assign_rhs1 (gs) != error_mark_node
1906 && (TYPE_MODE (TREE_TYPE (gimple_assign_lhs (gs)))
1907 == TYPE_MODE (TREE_TYPE (gimple_assign_rhs1 (gs)))));
1910 /* Set BB to be the basic block holding G. */
1912 void
1913 gimple_set_bb (gimple stmt, basic_block bb)
1915 stmt->gsbase.bb = bb;
1917 /* If the statement is a label, add the label to block-to-labels map
1918 so that we can speed up edge creation for GIMPLE_GOTOs. */
1919 if (cfun->cfg && gimple_code (stmt) == GIMPLE_LABEL)
1921 tree t;
1922 int uid;
1924 t = gimple_label_label (stmt);
1925 uid = LABEL_DECL_UID (t);
1926 if (uid == -1)
1928 unsigned old_len = VEC_length (basic_block, label_to_block_map);
1929 LABEL_DECL_UID (t) = uid = cfun->cfg->last_label_uid++;
1930 if (old_len <= (unsigned) uid)
1932 unsigned new_len = 3 * uid / 2;
1934 VEC_safe_grow_cleared (basic_block, gc, label_to_block_map,
1935 new_len);
1939 VEC_replace (basic_block, label_to_block_map, uid, bb);
1944 /* Fold the expression computed by STMT. If the expression can be
1945 folded, return the folded result, otherwise return NULL. STMT is
1946 not modified. */
1948 tree
1949 gimple_fold (const_gimple stmt)
1951 switch (gimple_code (stmt))
1953 case GIMPLE_COND:
1954 return fold_binary (gimple_cond_code (stmt),
1955 boolean_type_node,
1956 gimple_cond_lhs (stmt),
1957 gimple_cond_rhs (stmt));
1959 case GIMPLE_ASSIGN:
1960 switch (get_gimple_rhs_class (gimple_assign_rhs_code (stmt)))
1962 case GIMPLE_UNARY_RHS:
1963 return fold_unary (gimple_assign_rhs_code (stmt),
1964 TREE_TYPE (gimple_assign_lhs (stmt)),
1965 gimple_assign_rhs1 (stmt));
1966 case GIMPLE_BINARY_RHS:
1967 return fold_binary (gimple_assign_rhs_code (stmt),
1968 TREE_TYPE (gimple_assign_lhs (stmt)),
1969 gimple_assign_rhs1 (stmt),
1970 gimple_assign_rhs2 (stmt));
1971 case GIMPLE_SINGLE_RHS:
1972 return fold (gimple_assign_rhs1 (stmt));
1973 default:;
1975 break;
1977 case GIMPLE_SWITCH:
1978 return gimple_switch_index (stmt);
1980 case GIMPLE_CALL:
1981 return NULL_TREE;
1983 default:
1984 break;
1987 gcc_unreachable ();
1991 /* Modify the RHS of the assignment pointed-to by GSI using the
1992 operands in the expression tree EXPR.
1994 NOTE: The statement pointed-to by GSI may be reallocated if it
1995 did not have enough operand slots.
1997 This function is useful to convert an existing tree expression into
1998 the flat representation used for the RHS of a GIMPLE assignment.
1999 It will reallocate memory as needed to expand or shrink the number
2000 of operand slots needed to represent EXPR.
2002 NOTE: If you find yourself building a tree and then calling this
2003 function, you are most certainly doing it the slow way. It is much
2004 better to build a new assignment or to use the function
2005 gimple_assign_set_rhs_with_ops, which does not require an
2006 expression tree to be built. */
2008 void
2009 gimple_assign_set_rhs_from_tree (gimple_stmt_iterator *gsi, tree expr)
2011 enum tree_code subcode;
2012 tree op1, op2;
2014 extract_ops_from_tree (expr, &subcode, &op1, &op2);
2015 gimple_assign_set_rhs_with_ops (gsi, subcode, op1, op2);
2019 /* Set the RHS of assignment statement pointed-to by GSI to CODE with
2020 operands OP1 and OP2.
2022 NOTE: The statement pointed-to by GSI may be reallocated if it
2023 did not have enough operand slots. */
2025 void
2026 gimple_assign_set_rhs_with_ops (gimple_stmt_iterator *gsi, enum tree_code code,
2027 tree op1, tree op2)
2029 unsigned new_rhs_ops = get_gimple_rhs_num_ops (code);
2030 gimple stmt = gsi_stmt (*gsi);
2032 /* If the new CODE needs more operands, allocate a new statement. */
2033 if (gimple_num_ops (stmt) < new_rhs_ops + 1)
2035 tree lhs = gimple_assign_lhs (stmt);
2036 gimple new_stmt = gimple_alloc (gimple_code (stmt), new_rhs_ops + 1);
2037 memcpy (new_stmt, stmt, gimple_size (gimple_code (stmt)));
2038 gsi_replace (gsi, new_stmt, true);
2039 stmt = new_stmt;
2041 /* The LHS needs to be reset as this also changes the SSA name
2042 on the LHS. */
2043 gimple_assign_set_lhs (stmt, lhs);
2046 gimple_set_num_ops (stmt, new_rhs_ops + 1);
2047 gimple_set_subcode (stmt, code);
2048 gimple_assign_set_rhs1 (stmt, op1);
2049 if (new_rhs_ops > 1)
2050 gimple_assign_set_rhs2 (stmt, op2);
2054 /* Return the LHS of a statement that performs an assignment,
2055 either a GIMPLE_ASSIGN or a GIMPLE_CALL. Returns NULL_TREE
2056 for a call to a function that returns no value, or for a
2057 statement other than an assignment or a call. */
2059 tree
2060 gimple_get_lhs (const_gimple stmt)
2062 enum tree_code code = gimple_code (stmt);
2064 if (code == GIMPLE_ASSIGN)
2065 return gimple_assign_lhs (stmt);
2066 else if (code == GIMPLE_CALL)
2067 return gimple_call_lhs (stmt);
2068 else
2069 return NULL_TREE;
2073 /* Set the LHS of a statement that performs an assignment,
2074 either a GIMPLE_ASSIGN or a GIMPLE_CALL. */
2076 void
2077 gimple_set_lhs (gimple stmt, tree lhs)
2079 enum tree_code code = gimple_code (stmt);
2081 if (code == GIMPLE_ASSIGN)
2082 gimple_assign_set_lhs (stmt, lhs);
2083 else if (code == GIMPLE_CALL)
2084 gimple_call_set_lhs (stmt, lhs);
2085 else
2086 gcc_unreachable();
2090 /* Return a deep copy of statement STMT. All the operands from STMT
2091 are reallocated and copied using unshare_expr. The DEF, USE, VDEF
2092 and VUSE operand arrays are set to empty in the new copy. */
2094 gimple
2095 gimple_copy (gimple stmt)
2097 enum gimple_code code = gimple_code (stmt);
2098 unsigned num_ops = gimple_num_ops (stmt);
2099 gimple copy = gimple_alloc (code, num_ops);
2100 unsigned i;
2102 /* Shallow copy all the fields from STMT. */
2103 memcpy (copy, stmt, gimple_size (code));
2105 /* If STMT has sub-statements, deep-copy them as well. */
2106 if (gimple_has_substatements (stmt))
2108 gimple_seq new_seq;
2109 tree t;
2111 switch (gimple_code (stmt))
2113 case GIMPLE_BIND:
2114 new_seq = gimple_seq_copy (gimple_bind_body (stmt));
2115 gimple_bind_set_body (copy, new_seq);
2116 gimple_bind_set_vars (copy, unshare_expr (gimple_bind_vars (stmt)));
2117 gimple_bind_set_block (copy, gimple_bind_block (stmt));
2118 break;
2120 case GIMPLE_CATCH:
2121 new_seq = gimple_seq_copy (gimple_catch_handler (stmt));
2122 gimple_catch_set_handler (copy, new_seq);
2123 t = unshare_expr (gimple_catch_types (stmt));
2124 gimple_catch_set_types (copy, t);
2125 break;
2127 case GIMPLE_EH_FILTER:
2128 new_seq = gimple_seq_copy (gimple_eh_filter_failure (stmt));
2129 gimple_eh_filter_set_failure (copy, new_seq);
2130 t = unshare_expr (gimple_eh_filter_types (stmt));
2131 gimple_eh_filter_set_types (copy, t);
2132 break;
2134 case GIMPLE_TRY:
2135 new_seq = gimple_seq_copy (gimple_try_eval (stmt));
2136 gimple_try_set_eval (copy, new_seq);
2137 new_seq = gimple_seq_copy (gimple_try_cleanup (stmt));
2138 gimple_try_set_cleanup (copy, new_seq);
2139 break;
2141 case GIMPLE_OMP_FOR:
2142 new_seq = gimple_seq_copy (gimple_omp_for_pre_body (stmt));
2143 gimple_omp_for_set_pre_body (copy, new_seq);
2144 t = unshare_expr (gimple_omp_for_clauses (stmt));
2145 gimple_omp_for_set_clauses (copy, t);
2146 copy->gimple_omp_for.iter
2147 = GGC_NEWVEC (struct gimple_omp_for_iter,
2148 gimple_omp_for_collapse (stmt));
2149 for (i = 0; i < gimple_omp_for_collapse (stmt); i++)
2151 gimple_omp_for_set_cond (copy, i,
2152 gimple_omp_for_cond (stmt, i));
2153 gimple_omp_for_set_index (copy, i,
2154 gimple_omp_for_index (stmt, i));
2155 t = unshare_expr (gimple_omp_for_initial (stmt, i));
2156 gimple_omp_for_set_initial (copy, i, t);
2157 t = unshare_expr (gimple_omp_for_final (stmt, i));
2158 gimple_omp_for_set_final (copy, i, t);
2159 t = unshare_expr (gimple_omp_for_incr (stmt, i));
2160 gimple_omp_for_set_incr (copy, i, t);
2162 goto copy_omp_body;
2164 case GIMPLE_OMP_PARALLEL:
2165 t = unshare_expr (gimple_omp_parallel_clauses (stmt));
2166 gimple_omp_parallel_set_clauses (copy, t);
2167 t = unshare_expr (gimple_omp_parallel_child_fn (stmt));
2168 gimple_omp_parallel_set_child_fn (copy, t);
2169 t = unshare_expr (gimple_omp_parallel_data_arg (stmt));
2170 gimple_omp_parallel_set_data_arg (copy, t);
2171 goto copy_omp_body;
2173 case GIMPLE_OMP_TASK:
2174 t = unshare_expr (gimple_omp_task_clauses (stmt));
2175 gimple_omp_task_set_clauses (copy, t);
2176 t = unshare_expr (gimple_omp_task_child_fn (stmt));
2177 gimple_omp_task_set_child_fn (copy, t);
2178 t = unshare_expr (gimple_omp_task_data_arg (stmt));
2179 gimple_omp_task_set_data_arg (copy, t);
2180 t = unshare_expr (gimple_omp_task_copy_fn (stmt));
2181 gimple_omp_task_set_copy_fn (copy, t);
2182 t = unshare_expr (gimple_omp_task_arg_size (stmt));
2183 gimple_omp_task_set_arg_size (copy, t);
2184 t = unshare_expr (gimple_omp_task_arg_align (stmt));
2185 gimple_omp_task_set_arg_align (copy, t);
2186 goto copy_omp_body;
2188 case GIMPLE_OMP_CRITICAL:
2189 t = unshare_expr (gimple_omp_critical_name (stmt));
2190 gimple_omp_critical_set_name (copy, t);
2191 goto copy_omp_body;
2193 case GIMPLE_OMP_SECTIONS:
2194 t = unshare_expr (gimple_omp_sections_clauses (stmt));
2195 gimple_omp_sections_set_clauses (copy, t);
2196 t = unshare_expr (gimple_omp_sections_control (stmt));
2197 gimple_omp_sections_set_control (copy, t);
2198 /* FALLTHRU */
2200 case GIMPLE_OMP_SINGLE:
2201 case GIMPLE_OMP_SECTION:
2202 case GIMPLE_OMP_MASTER:
2203 case GIMPLE_OMP_ORDERED:
2204 copy_omp_body:
2205 new_seq = gimple_seq_copy (gimple_omp_body (stmt));
2206 gimple_omp_set_body (copy, new_seq);
2207 break;
2209 case GIMPLE_WITH_CLEANUP_EXPR:
2210 new_seq = gimple_seq_copy (gimple_wce_cleanup (stmt));
2211 gimple_wce_set_cleanup (copy, new_seq);
2212 break;
2214 default:
2215 gcc_unreachable ();
2219 /* Make copy of operands. */
2220 if (num_ops > 0)
2222 for (i = 0; i < num_ops; i++)
2223 gimple_set_op (copy, i, unshare_expr (gimple_op (stmt, i)));
2225 /* Clear out SSA operand vectors on COPY. Note that we cannot
2226 call the API functions for setting addresses_taken, stores
2227 and loads. These functions free the previous values, and we
2228 cannot do that on COPY as it will affect the original
2229 statement. */
2230 if (gimple_has_ops (stmt))
2232 gimple_set_def_ops (copy, NULL);
2233 gimple_set_use_ops (copy, NULL);
2234 copy->gsops.opbase.addresses_taken = NULL;
2237 if (gimple_has_mem_ops (stmt))
2239 gimple_set_vdef_ops (copy, NULL);
2240 gimple_set_vuse_ops (copy, NULL);
2241 copy->gsmem.membase.stores = NULL;
2242 copy->gsmem.membase.loads = NULL;
2245 update_stmt (copy);
2248 return copy;
2252 /* Set the MODIFIED flag to MODIFIEDP, iff the gimple statement G has
2253 a MODIFIED field. */
2255 void
2256 gimple_set_modified (gimple s, bool modifiedp)
2258 if (gimple_has_ops (s))
2260 s->gsbase.modified = (unsigned) modifiedp;
2262 if (modifiedp
2263 && cfun->gimple_df
2264 && is_gimple_call (s)
2265 && gimple_call_noreturn_p (s))
2266 VEC_safe_push (gimple, gc, MODIFIED_NORETURN_CALLS (cfun), s);
2271 /* Return true if statement S has side-effects. We consider a
2272 statement to have side effects if:
2274 - It is a GIMPLE_CALL not marked with ECF_PURE or ECF_CONST.
2275 - Any of its operands are marked TREE_THIS_VOLATILE or TREE_SIDE_EFFECTS. */
2277 bool
2278 gimple_has_side_effects (const_gimple s)
2280 unsigned i;
2282 /* We don't have to scan the arguments to check for
2283 volatile arguments, though, at present, we still
2284 do a scan to check for TREE_SIDE_EFFECTS. */
2285 if (gimple_has_volatile_ops (s))
2286 return true;
2288 if (is_gimple_call (s))
2290 unsigned nargs = gimple_call_num_args (s);
2292 if (!(gimple_call_flags (s) & (ECF_CONST | ECF_PURE)))
2293 return true;
2294 else if (gimple_call_flags (s) & ECF_LOOPING_CONST_OR_PURE)
2295 /* An infinite loop is considered a side effect. */
2296 return true;
2298 if (gimple_call_lhs (s)
2299 && TREE_SIDE_EFFECTS (gimple_call_lhs (s)))
2301 gcc_assert (gimple_has_volatile_ops (s));
2302 return true;
2305 if (TREE_SIDE_EFFECTS (gimple_call_fn (s)))
2306 return true;
2308 for (i = 0; i < nargs; i++)
2309 if (TREE_SIDE_EFFECTS (gimple_call_arg (s, i)))
2311 gcc_assert (gimple_has_volatile_ops (s));
2312 return true;
2315 return false;
2317 else
2319 for (i = 0; i < gimple_num_ops (s); i++)
2320 if (TREE_SIDE_EFFECTS (gimple_op (s, i)))
2322 gcc_assert (gimple_has_volatile_ops (s));
2323 return true;
2327 return false;
2330 /* Return true if the RHS of statement S has side effects.
2331 We may use it to determine if it is admissable to replace
2332 an assignment or call with a copy of a previously-computed
2333 value. In such cases, side-effects due the the LHS are
2334 preserved. */
2336 bool
2337 gimple_rhs_has_side_effects (const_gimple s)
2339 unsigned i;
2341 if (is_gimple_call (s))
2343 unsigned nargs = gimple_call_num_args (s);
2345 if (!(gimple_call_flags (s) & (ECF_CONST | ECF_PURE)))
2346 return true;
2348 /* We cannot use gimple_has_volatile_ops here,
2349 because we must ignore a volatile LHS. */
2350 if (TREE_SIDE_EFFECTS (gimple_call_fn (s))
2351 || TREE_THIS_VOLATILE (gimple_call_fn (s)))
2353 gcc_assert (gimple_has_volatile_ops (s));
2354 return true;
2357 for (i = 0; i < nargs; i++)
2358 if (TREE_SIDE_EFFECTS (gimple_call_arg (s, i))
2359 || TREE_THIS_VOLATILE (gimple_call_arg (s, i)))
2360 return true;
2362 return false;
2364 else if (is_gimple_assign (s))
2366 /* Skip the first operand, the LHS. */
2367 for (i = 1; i < gimple_num_ops (s); i++)
2368 if (TREE_SIDE_EFFECTS (gimple_op (s, i))
2369 || TREE_THIS_VOLATILE (gimple_op (s, i)))
2371 gcc_assert (gimple_has_volatile_ops (s));
2372 return true;
2375 else
2377 /* For statements without an LHS, examine all arguments. */
2378 for (i = 0; i < gimple_num_ops (s); i++)
2379 if (TREE_SIDE_EFFECTS (gimple_op (s, i))
2380 || TREE_THIS_VOLATILE (gimple_op (s, i)))
2382 gcc_assert (gimple_has_volatile_ops (s));
2383 return true;
2387 return false;
2391 /* Helper for gimple_could_trap_p and gimple_assign_rhs_could_trap_p.
2392 Return true if S can trap. If INCLUDE_LHS is true and S is a
2393 GIMPLE_ASSIGN, the LHS of the assignment is also checked.
2394 Otherwise, only the RHS of the assignment is checked. */
2396 static bool
2397 gimple_could_trap_p_1 (gimple s, bool include_lhs)
2399 unsigned i, start;
2400 tree t, div = NULL_TREE;
2401 enum tree_code op;
2403 start = (is_gimple_assign (s) && !include_lhs) ? 1 : 0;
2405 for (i = start; i < gimple_num_ops (s); i++)
2406 if (tree_could_trap_p (gimple_op (s, i)))
2407 return true;
2409 switch (gimple_code (s))
2411 case GIMPLE_ASM:
2412 return gimple_asm_volatile_p (s);
2414 case GIMPLE_CALL:
2415 t = gimple_call_fndecl (s);
2416 /* Assume that calls to weak functions may trap. */
2417 if (!t || !DECL_P (t) || DECL_WEAK (t))
2418 return true;
2419 return false;
2421 case GIMPLE_ASSIGN:
2422 t = gimple_expr_type (s);
2423 op = gimple_assign_rhs_code (s);
2424 if (get_gimple_rhs_class (op) == GIMPLE_BINARY_RHS)
2425 div = gimple_assign_rhs2 (s);
2426 return (operation_could_trap_p (op, FLOAT_TYPE_P (t),
2427 (INTEGRAL_TYPE_P (t)
2428 && TYPE_OVERFLOW_TRAPS (t)),
2429 div));
2431 default:
2432 break;
2435 return false;
2440 /* Return true if statement S can trap. */
2442 bool
2443 gimple_could_trap_p (gimple s)
2445 return gimple_could_trap_p_1 (s, true);
2449 /* Return true if RHS of a GIMPLE_ASSIGN S can trap. */
2451 bool
2452 gimple_assign_rhs_could_trap_p (gimple s)
2454 gcc_assert (is_gimple_assign (s));
2455 return gimple_could_trap_p_1 (s, false);
2459 /* Print debugging information for gimple stmts generated. */
2461 void
2462 dump_gimple_statistics (void)
2464 #ifdef GATHER_STATISTICS
2465 int i, total_tuples = 0, total_bytes = 0;
2467 fprintf (stderr, "\nGIMPLE statements\n");
2468 fprintf (stderr, "Kind Stmts Bytes\n");
2469 fprintf (stderr, "---------------------------------------\n");
2470 for (i = 0; i < (int) gimple_alloc_kind_all; ++i)
2472 fprintf (stderr, "%-20s %7d %10d\n", gimple_alloc_kind_names[i],
2473 gimple_alloc_counts[i], gimple_alloc_sizes[i]);
2474 total_tuples += gimple_alloc_counts[i];
2475 total_bytes += gimple_alloc_sizes[i];
2477 fprintf (stderr, "---------------------------------------\n");
2478 fprintf (stderr, "%-20s %7d %10d\n", "Total", total_tuples, total_bytes);
2479 fprintf (stderr, "---------------------------------------\n");
2480 #else
2481 fprintf (stderr, "No gimple statistics\n");
2482 #endif
2486 /* Deep copy SYMS into the set of symbols stored by STMT. If SYMS is
2487 NULL or empty, the storage used is freed up. */
2489 void
2490 gimple_set_stored_syms (gimple stmt, bitmap syms, bitmap_obstack *obs)
2492 gcc_assert (gimple_has_mem_ops (stmt));
2494 if (syms == NULL || bitmap_empty_p (syms))
2495 BITMAP_FREE (stmt->gsmem.membase.stores);
2496 else
2498 if (stmt->gsmem.membase.stores == NULL)
2499 stmt->gsmem.membase.stores = BITMAP_ALLOC (obs);
2501 bitmap_copy (stmt->gsmem.membase.stores, syms);
2506 /* Deep copy SYMS into the set of symbols loaded by STMT. If SYMS is
2507 NULL or empty, the storage used is freed up. */
2509 void
2510 gimple_set_loaded_syms (gimple stmt, bitmap syms, bitmap_obstack *obs)
2512 gcc_assert (gimple_has_mem_ops (stmt));
2514 if (syms == NULL || bitmap_empty_p (syms))
2515 BITMAP_FREE (stmt->gsmem.membase.loads);
2516 else
2518 if (stmt->gsmem.membase.loads == NULL)
2519 stmt->gsmem.membase.loads = BITMAP_ALLOC (obs);
2521 bitmap_copy (stmt->gsmem.membase.loads, syms);
2526 /* Return the number of operands needed on the RHS of a GIMPLE
2527 assignment for an expression with tree code CODE. */
2529 unsigned
2530 get_gimple_rhs_num_ops (enum tree_code code)
2532 enum gimple_rhs_class rhs_class = get_gimple_rhs_class (code);
2534 if (rhs_class == GIMPLE_UNARY_RHS || rhs_class == GIMPLE_SINGLE_RHS)
2535 return 1;
2536 else if (rhs_class == GIMPLE_BINARY_RHS)
2537 return 2;
2538 else
2539 gcc_unreachable ();
2542 #define DEFTREECODE(SYM, STRING, TYPE, NARGS) \
2543 (unsigned char) \
2544 ((TYPE) == tcc_unary ? GIMPLE_UNARY_RHS \
2545 : ((TYPE) == tcc_binary \
2546 || (TYPE) == tcc_comparison) ? GIMPLE_BINARY_RHS \
2547 : ((TYPE) == tcc_constant \
2548 || (TYPE) == tcc_declaration \
2549 || (TYPE) == tcc_reference) ? GIMPLE_SINGLE_RHS \
2550 : ((SYM) == TRUTH_AND_EXPR \
2551 || (SYM) == TRUTH_OR_EXPR \
2552 || (SYM) == TRUTH_XOR_EXPR) ? GIMPLE_BINARY_RHS \
2553 : (SYM) == TRUTH_NOT_EXPR ? GIMPLE_UNARY_RHS \
2554 : ((SYM) == COND_EXPR \
2555 || (SYM) == CONSTRUCTOR \
2556 || (SYM) == OBJ_TYPE_REF \
2557 || (SYM) == ASSERT_EXPR \
2558 || (SYM) == ADDR_EXPR \
2559 || (SYM) == WITH_SIZE_EXPR \
2560 || (SYM) == EXC_PTR_EXPR \
2561 || (SYM) == SSA_NAME \
2562 || (SYM) == FILTER_EXPR \
2563 || (SYM) == POLYNOMIAL_CHREC \
2564 || (SYM) == DOT_PROD_EXPR \
2565 || (SYM) == VEC_COND_EXPR \
2566 || (SYM) == REALIGN_LOAD_EXPR) ? GIMPLE_SINGLE_RHS \
2567 : GIMPLE_INVALID_RHS),
2568 #define END_OF_BASE_TREE_CODES (unsigned char) GIMPLE_INVALID_RHS,
2570 const unsigned char gimple_rhs_class_table[] = {
2571 #include "all-tree.def"
2574 #undef DEFTREECODE
2575 #undef END_OF_BASE_TREE_CODES
2577 /* For the definitive definition of GIMPLE, see doc/tree-ssa.texi. */
2579 /* Validation of GIMPLE expressions. */
2581 /* Return true if OP is an acceptable tree node to be used as a GIMPLE
2582 operand. */
2584 bool
2585 is_gimple_operand (const_tree op)
2587 return op && get_gimple_rhs_class (TREE_CODE (op)) == GIMPLE_SINGLE_RHS;
2591 /* Return true if T is a GIMPLE RHS for an assignment to a temporary. */
2593 bool
2594 is_gimple_formal_tmp_rhs (tree t)
2596 if (is_gimple_lvalue (t) || is_gimple_val (t))
2597 return true;
2599 return get_gimple_rhs_class (TREE_CODE (t)) != GIMPLE_INVALID_RHS;
2602 /* Returns true iff T is a valid RHS for an assignment to a renamed
2603 user -- or front-end generated artificial -- variable. */
2605 bool
2606 is_gimple_reg_rhs (tree t)
2608 /* If the RHS of the MODIFY_EXPR may throw or make a nonlocal goto
2609 and the LHS is a user variable, then we need to introduce a formal
2610 temporary. This way the optimizers can determine that the user
2611 variable is only modified if evaluation of the RHS does not throw.
2613 Don't force a temp of a non-renamable type; the copy could be
2614 arbitrarily expensive. Instead we will generate a VDEF for
2615 the assignment. */
2617 if (is_gimple_reg_type (TREE_TYPE (t)) && tree_could_throw_p (t))
2618 return false;
2620 return is_gimple_formal_tmp_rhs (t);
2623 /* Returns true iff T is a valid RHS for an assignment to an un-renamed
2624 LHS, or for a call argument. */
2626 bool
2627 is_gimple_mem_rhs (tree t)
2629 /* If we're dealing with a renamable type, either source or dest must be
2630 a renamed variable. */
2631 if (is_gimple_reg_type (TREE_TYPE (t)))
2632 return is_gimple_val (t);
2633 else
2634 return is_gimple_formal_tmp_rhs (t);
2637 /* Return true if T is a valid LHS for a GIMPLE assignment expression. */
2639 bool
2640 is_gimple_lvalue (tree t)
2642 return (is_gimple_addressable (t)
2643 || TREE_CODE (t) == WITH_SIZE_EXPR
2644 /* These are complex lvalues, but don't have addresses, so they
2645 go here. */
2646 || TREE_CODE (t) == BIT_FIELD_REF);
2649 /* Return true if T is a GIMPLE condition. */
2651 bool
2652 is_gimple_condexpr (tree t)
2654 return (is_gimple_val (t) || (COMPARISON_CLASS_P (t)
2655 && !tree_could_trap_p (t)
2656 && is_gimple_val (TREE_OPERAND (t, 0))
2657 && is_gimple_val (TREE_OPERAND (t, 1))));
2660 /* Return true if T is something whose address can be taken. */
2662 bool
2663 is_gimple_addressable (tree t)
2665 return (is_gimple_id (t) || handled_component_p (t) || INDIRECT_REF_P (t));
2668 /* Return true if T is a valid gimple constant. */
2670 bool
2671 is_gimple_constant (const_tree t)
2673 switch (TREE_CODE (t))
2675 case INTEGER_CST:
2676 case REAL_CST:
2677 case FIXED_CST:
2678 case STRING_CST:
2679 case COMPLEX_CST:
2680 case VECTOR_CST:
2681 return true;
2683 /* Vector constant constructors are gimple invariant. */
2684 case CONSTRUCTOR:
2685 if (TREE_TYPE (t) && TREE_CODE (TREE_TYPE (t)) == VECTOR_TYPE)
2686 return TREE_CONSTANT (t);
2687 else
2688 return false;
2690 default:
2691 return false;
2695 /* Return true if T is a gimple address. */
2697 bool
2698 is_gimple_address (const_tree t)
2700 tree op;
2702 if (TREE_CODE (t) != ADDR_EXPR)
2703 return false;
2705 op = TREE_OPERAND (t, 0);
2706 while (handled_component_p (op))
2708 if ((TREE_CODE (op) == ARRAY_REF
2709 || TREE_CODE (op) == ARRAY_RANGE_REF)
2710 && !is_gimple_val (TREE_OPERAND (op, 1)))
2711 return false;
2713 op = TREE_OPERAND (op, 0);
2716 if (CONSTANT_CLASS_P (op) || INDIRECT_REF_P (op))
2717 return true;
2719 switch (TREE_CODE (op))
2721 case PARM_DECL:
2722 case RESULT_DECL:
2723 case LABEL_DECL:
2724 case FUNCTION_DECL:
2725 case VAR_DECL:
2726 case CONST_DECL:
2727 return true;
2729 default:
2730 return false;
2734 /* Return true if T is a gimple invariant address. */
2736 bool
2737 is_gimple_invariant_address (const_tree t)
2739 tree op;
2741 if (TREE_CODE (t) != ADDR_EXPR)
2742 return false;
2744 op = TREE_OPERAND (t, 0);
2745 while (handled_component_p (op))
2747 switch (TREE_CODE (op))
2749 case ARRAY_REF:
2750 case ARRAY_RANGE_REF:
2751 if (!is_gimple_constant (TREE_OPERAND (op, 1))
2752 || TREE_OPERAND (op, 2) != NULL_TREE
2753 || TREE_OPERAND (op, 3) != NULL_TREE)
2754 return false;
2755 break;
2757 case COMPONENT_REF:
2758 if (TREE_OPERAND (op, 2) != NULL_TREE)
2759 return false;
2760 break;
2762 default:;
2764 op = TREE_OPERAND (op, 0);
2767 return CONSTANT_CLASS_P (op) || decl_address_invariant_p (op);
2770 /* Return true if T is a GIMPLE minimal invariant. It's a restricted
2771 form of function invariant. */
2773 bool
2774 is_gimple_min_invariant (const_tree t)
2776 if (TREE_CODE (t) == ADDR_EXPR)
2777 return is_gimple_invariant_address (t);
2779 return is_gimple_constant (t);
2782 /* Return true if T looks like a valid GIMPLE statement. */
2784 bool
2785 is_gimple_stmt (tree t)
2787 const enum tree_code code = TREE_CODE (t);
2789 switch (code)
2791 case NOP_EXPR:
2792 /* The only valid NOP_EXPR is the empty statement. */
2793 return IS_EMPTY_STMT (t);
2795 case BIND_EXPR:
2796 case COND_EXPR:
2797 /* These are only valid if they're void. */
2798 return TREE_TYPE (t) == NULL || VOID_TYPE_P (TREE_TYPE (t));
2800 case SWITCH_EXPR:
2801 case GOTO_EXPR:
2802 case RETURN_EXPR:
2803 case LABEL_EXPR:
2804 case CASE_LABEL_EXPR:
2805 case TRY_CATCH_EXPR:
2806 case TRY_FINALLY_EXPR:
2807 case EH_FILTER_EXPR:
2808 case CATCH_EXPR:
2809 case CHANGE_DYNAMIC_TYPE_EXPR:
2810 case ASM_EXPR:
2811 case RESX_EXPR:
2812 case STATEMENT_LIST:
2813 case OMP_PARALLEL:
2814 case OMP_FOR:
2815 case OMP_SECTIONS:
2816 case OMP_SECTION:
2817 case OMP_SINGLE:
2818 case OMP_MASTER:
2819 case OMP_ORDERED:
2820 case OMP_CRITICAL:
2821 case OMP_TASK:
2822 /* These are always void. */
2823 return true;
2825 case CALL_EXPR:
2826 case MODIFY_EXPR:
2827 case PREDICT_EXPR:
2828 /* These are valid regardless of their type. */
2829 return true;
2831 default:
2832 return false;
2836 /* Return true if T is a variable. */
2838 bool
2839 is_gimple_variable (tree t)
2841 return (TREE_CODE (t) == VAR_DECL
2842 || TREE_CODE (t) == PARM_DECL
2843 || TREE_CODE (t) == RESULT_DECL
2844 || TREE_CODE (t) == SSA_NAME);
2847 /* Return true if T is a GIMPLE identifier (something with an address). */
2849 bool
2850 is_gimple_id (tree t)
2852 return (is_gimple_variable (t)
2853 || TREE_CODE (t) == FUNCTION_DECL
2854 || TREE_CODE (t) == LABEL_DECL
2855 || TREE_CODE (t) == CONST_DECL
2856 /* Allow string constants, since they are addressable. */
2857 || TREE_CODE (t) == STRING_CST);
2860 /* Return true if TYPE is a suitable type for a scalar register variable. */
2862 bool
2863 is_gimple_reg_type (tree type)
2865 /* In addition to aggregate types, we also exclude complex types if not
2866 optimizing because they can be subject to partial stores in GNU C by
2867 means of the __real__ and __imag__ operators and we cannot promote
2868 them to total stores (see gimplify_modify_expr_complex_part). */
2869 return !(AGGREGATE_TYPE_P (type)
2870 || (TREE_CODE (type) == COMPLEX_TYPE && !optimize));
2874 /* Return true if T is a non-aggregate register variable. */
2876 bool
2877 is_gimple_reg (tree t)
2879 if (TREE_CODE (t) == SSA_NAME)
2880 t = SSA_NAME_VAR (t);
2882 if (MTAG_P (t))
2883 return false;
2885 if (!is_gimple_variable (t))
2886 return false;
2888 if (!is_gimple_reg_type (TREE_TYPE (t)))
2889 return false;
2891 /* A volatile decl is not acceptable because we can't reuse it as
2892 needed. We need to copy it into a temp first. */
2893 if (TREE_THIS_VOLATILE (t))
2894 return false;
2896 /* We define "registers" as things that can be renamed as needed,
2897 which with our infrastructure does not apply to memory. */
2898 if (needs_to_live_in_memory (t))
2899 return false;
2901 /* Hard register variables are an interesting case. For those that
2902 are call-clobbered, we don't know where all the calls are, since
2903 we don't (want to) take into account which operations will turn
2904 into libcalls at the rtl level. For those that are call-saved,
2905 we don't currently model the fact that calls may in fact change
2906 global hard registers, nor do we examine ASM_CLOBBERS at the tree
2907 level, and so miss variable changes that might imply. All around,
2908 it seems safest to not do too much optimization with these at the
2909 tree level at all. We'll have to rely on the rtl optimizers to
2910 clean this up, as there we've got all the appropriate bits exposed. */
2911 if (TREE_CODE (t) == VAR_DECL && DECL_HARD_REGISTER (t))
2912 return false;
2914 /* Complex and vector values must have been put into SSA-like form.
2915 That is, no assignments to the individual components. */
2916 if (TREE_CODE (TREE_TYPE (t)) == COMPLEX_TYPE
2917 || TREE_CODE (TREE_TYPE (t)) == VECTOR_TYPE)
2918 return DECL_GIMPLE_REG_P (t);
2920 return true;
2924 /* Returns true if T is a GIMPLE formal temporary variable. */
2926 bool
2927 is_gimple_formal_tmp_var (tree t)
2929 if (TREE_CODE (t) == SSA_NAME)
2930 return true;
2932 return TREE_CODE (t) == VAR_DECL && DECL_GIMPLE_FORMAL_TEMP_P (t);
2935 /* Returns true if T is a GIMPLE formal temporary register variable. */
2937 bool
2938 is_gimple_formal_tmp_reg (tree t)
2940 /* The intent of this is to get hold of a value that won't change.
2941 An SSA_NAME qualifies no matter if its of a user variable or not. */
2942 if (TREE_CODE (t) == SSA_NAME)
2943 return true;
2945 /* We don't know the lifetime characteristics of user variables. */
2946 if (!is_gimple_formal_tmp_var (t))
2947 return false;
2949 /* Finally, it must be capable of being placed in a register. */
2950 return is_gimple_reg (t);
2953 /* Return true if T is a GIMPLE variable whose address is not needed. */
2955 bool
2956 is_gimple_non_addressable (tree t)
2958 if (TREE_CODE (t) == SSA_NAME)
2959 t = SSA_NAME_VAR (t);
2961 return (is_gimple_variable (t) && ! needs_to_live_in_memory (t));
2964 /* Return true if T is a GIMPLE rvalue, i.e. an identifier or a constant. */
2966 bool
2967 is_gimple_val (tree t)
2969 /* Make loads from volatiles and memory vars explicit. */
2970 if (is_gimple_variable (t)
2971 && is_gimple_reg_type (TREE_TYPE (t))
2972 && !is_gimple_reg (t))
2973 return false;
2975 /* FIXME make these decls. That can happen only when we expose the
2976 entire landing-pad construct at the tree level. */
2977 if (TREE_CODE (t) == EXC_PTR_EXPR || TREE_CODE (t) == FILTER_EXPR)
2978 return true;
2980 return (is_gimple_variable (t) || is_gimple_min_invariant (t));
2983 /* Similarly, but accept hard registers as inputs to asm statements. */
2985 bool
2986 is_gimple_asm_val (tree t)
2988 if (TREE_CODE (t) == VAR_DECL && DECL_HARD_REGISTER (t))
2989 return true;
2991 return is_gimple_val (t);
2994 /* Return true if T is a GIMPLE minimal lvalue. */
2996 bool
2997 is_gimple_min_lval (tree t)
2999 return (is_gimple_id (t) || TREE_CODE (t) == INDIRECT_REF);
3002 /* Return true if T is a typecast operation. */
3004 bool
3005 is_gimple_cast (tree t)
3007 return (CONVERT_EXPR_P (t)
3008 || TREE_CODE (t) == FIX_TRUNC_EXPR);
3011 /* Return true if T is a valid function operand of a CALL_EXPR. */
3013 bool
3014 is_gimple_call_addr (tree t)
3016 return (TREE_CODE (t) == OBJ_TYPE_REF || is_gimple_val (t));
3019 /* If T makes a function call, return the corresponding CALL_EXPR operand.
3020 Otherwise, return NULL_TREE. */
3022 tree
3023 get_call_expr_in (tree t)
3025 if (TREE_CODE (t) == MODIFY_EXPR)
3026 t = TREE_OPERAND (t, 1);
3027 if (TREE_CODE (t) == WITH_SIZE_EXPR)
3028 t = TREE_OPERAND (t, 0);
3029 if (TREE_CODE (t) == CALL_EXPR)
3030 return t;
3031 return NULL_TREE;
3035 /* Given a memory reference expression T, return its base address.
3036 The base address of a memory reference expression is the main
3037 object being referenced. For instance, the base address for
3038 'array[i].fld[j]' is 'array'. You can think of this as stripping
3039 away the offset part from a memory address.
3041 This function calls handled_component_p to strip away all the inner
3042 parts of the memory reference until it reaches the base object. */
3044 tree
3045 get_base_address (tree t)
3047 while (handled_component_p (t))
3048 t = TREE_OPERAND (t, 0);
3050 if (SSA_VAR_P (t)
3051 || TREE_CODE (t) == STRING_CST
3052 || TREE_CODE (t) == CONSTRUCTOR
3053 || INDIRECT_REF_P (t))
3054 return t;
3055 else
3056 return NULL_TREE;
3059 void
3060 recalculate_side_effects (tree t)
3062 enum tree_code code = TREE_CODE (t);
3063 int len = TREE_OPERAND_LENGTH (t);
3064 int i;
3066 switch (TREE_CODE_CLASS (code))
3068 case tcc_expression:
3069 switch (code)
3071 case INIT_EXPR:
3072 case MODIFY_EXPR:
3073 case VA_ARG_EXPR:
3074 case PREDECREMENT_EXPR:
3075 case PREINCREMENT_EXPR:
3076 case POSTDECREMENT_EXPR:
3077 case POSTINCREMENT_EXPR:
3078 /* All of these have side-effects, no matter what their
3079 operands are. */
3080 return;
3082 default:
3083 break;
3085 /* Fall through. */
3087 case tcc_comparison: /* a comparison expression */
3088 case tcc_unary: /* a unary arithmetic expression */
3089 case tcc_binary: /* a binary arithmetic expression */
3090 case tcc_reference: /* a reference */
3091 case tcc_vl_exp: /* a function call */
3092 TREE_SIDE_EFFECTS (t) = TREE_THIS_VOLATILE (t);
3093 for (i = 0; i < len; ++i)
3095 tree op = TREE_OPERAND (t, i);
3096 if (op && TREE_SIDE_EFFECTS (op))
3097 TREE_SIDE_EFFECTS (t) = 1;
3099 break;
3101 default:
3102 /* Can never be used with non-expressions. */
3103 gcc_unreachable ();
3107 /* Canonicalize a tree T for use in a COND_EXPR as conditional. Returns
3108 a canonicalized tree that is valid for a COND_EXPR or NULL_TREE, if
3109 we failed to create one. */
3111 tree
3112 canonicalize_cond_expr_cond (tree t)
3114 /* For (bool)x use x != 0. */
3115 if (TREE_CODE (t) == NOP_EXPR
3116 && TREE_TYPE (t) == boolean_type_node)
3118 tree top0 = TREE_OPERAND (t, 0);
3119 t = build2 (NE_EXPR, TREE_TYPE (t),
3120 top0, build_int_cst (TREE_TYPE (top0), 0));
3122 /* For !x use x == 0. */
3123 else if (TREE_CODE (t) == TRUTH_NOT_EXPR)
3125 tree top0 = TREE_OPERAND (t, 0);
3126 t = build2 (EQ_EXPR, TREE_TYPE (t),
3127 top0, build_int_cst (TREE_TYPE (top0), 0));
3129 /* For cmp ? 1 : 0 use cmp. */
3130 else if (TREE_CODE (t) == COND_EXPR
3131 && COMPARISON_CLASS_P (TREE_OPERAND (t, 0))
3132 && integer_onep (TREE_OPERAND (t, 1))
3133 && integer_zerop (TREE_OPERAND (t, 2)))
3135 tree top0 = TREE_OPERAND (t, 0);
3136 t = build2 (TREE_CODE (top0), TREE_TYPE (t),
3137 TREE_OPERAND (top0, 0), TREE_OPERAND (top0, 1));
3140 if (is_gimple_condexpr (t))
3141 return t;
3143 return NULL_TREE;
3146 #include "gt-gimple.h"