* bb-reorder.c, c-pch.c, c-pragma.c, c.opt, cfghooks.c, cfgloop.c,
[official-gcc.git] / gcc / dwarf2out.c
blobe7c4adb5cdc760bd8bf4350e73cea3640321217d
1 /* Output Dwarf2 format symbol table information from GCC.
2 Copyright (C) 1992, 1993, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002,
3 2003, 2004, 2005 Free Software Foundation, Inc.
4 Contributed by Gary Funck (gary@intrepid.com).
5 Derived from DWARF 1 implementation of Ron Guilmette (rfg@monkeys.com).
6 Extensively modified by Jason Merrill (jason@cygnus.com).
8 This file is part of GCC.
10 GCC is free software; you can redistribute it and/or modify it under
11 the terms of the GNU General Public License as published by the Free
12 Software Foundation; either version 2, or (at your option) any later
13 version.
15 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
16 WARRANTY; without even the implied warranty of MERCHANTABILITY or
17 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
18 for more details.
20 You should have received a copy of the GNU General Public License
21 along with GCC; see the file COPYING. If not, write to the Free
22 Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
23 02110-1301, USA. */
25 /* TODO: Emit .debug_line header even when there are no functions, since
26 the file numbers are used by .debug_info. Alternately, leave
27 out locations for types and decls.
28 Avoid talking about ctors and op= for PODs.
29 Factor out common prologue sequences into multiple CIEs. */
31 /* The first part of this file deals with the DWARF 2 frame unwind
32 information, which is also used by the GCC efficient exception handling
33 mechanism. The second part, controlled only by an #ifdef
34 DWARF2_DEBUGGING_INFO, deals with the other DWARF 2 debugging
35 information. */
37 #include "config.h"
38 #include "system.h"
39 #include "coretypes.h"
40 #include "tm.h"
41 #include "tree.h"
42 #include "version.h"
43 #include "flags.h"
44 #include "real.h"
45 #include "rtl.h"
46 #include "hard-reg-set.h"
47 #include "regs.h"
48 #include "insn-config.h"
49 #include "reload.h"
50 #include "function.h"
51 #include "output.h"
52 #include "expr.h"
53 #include "libfuncs.h"
54 #include "except.h"
55 #include "dwarf2.h"
56 #include "dwarf2out.h"
57 #include "dwarf2asm.h"
58 #include "toplev.h"
59 #include "varray.h"
60 #include "ggc.h"
61 #include "md5.h"
62 #include "tm_p.h"
63 #include "diagnostic.h"
64 #include "debug.h"
65 #include "target.h"
66 #include "langhooks.h"
67 #include "hashtab.h"
68 #include "cgraph.h"
69 #include "input.h"
71 #ifdef DWARF2_DEBUGGING_INFO
72 static void dwarf2out_source_line (unsigned int, const char *);
73 #endif
75 /* DWARF2 Abbreviation Glossary:
76 CFA = Canonical Frame Address
77 a fixed address on the stack which identifies a call frame.
78 We define it to be the value of SP just before the call insn.
79 The CFA register and offset, which may change during the course
80 of the function, are used to calculate its value at runtime.
81 CFI = Call Frame Instruction
82 an instruction for the DWARF2 abstract machine
83 CIE = Common Information Entry
84 information describing information common to one or more FDEs
85 DIE = Debugging Information Entry
86 FDE = Frame Description Entry
87 information describing the stack call frame, in particular,
88 how to restore registers
90 DW_CFA_... = DWARF2 CFA call frame instruction
91 DW_TAG_... = DWARF2 DIE tag */
93 /* Decide whether we want to emit frame unwind information for the current
94 translation unit. */
96 int
97 dwarf2out_do_frame (void)
99 return (write_symbols == DWARF2_DEBUG
100 || write_symbols == VMS_AND_DWARF2_DEBUG
101 #ifdef DWARF2_FRAME_INFO
102 || DWARF2_FRAME_INFO
103 #endif
104 #ifdef DWARF2_UNWIND_INFO
105 || flag_unwind_tables
106 || (flag_exceptions && ! USING_SJLJ_EXCEPTIONS)
107 #endif
111 /* The size of the target's pointer type. */
112 #ifndef PTR_SIZE
113 #define PTR_SIZE (POINTER_SIZE / BITS_PER_UNIT)
114 #endif
116 /* Various versions of targetm.eh_frame_section. Note these must appear
117 outside the DWARF2_DEBUGGING_INFO || DWARF2_UNWIND_INFO macro guards. */
119 /* Version of targetm.eh_frame_section for systems with named sections. */
120 void
121 named_section_eh_frame_section (void)
123 #ifdef EH_FRAME_SECTION_NAME
124 int flags;
126 if (EH_TABLES_CAN_BE_READ_ONLY)
128 int fde_encoding;
129 int per_encoding;
130 int lsda_encoding;
132 fde_encoding = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/1, /*global=*/0);
133 per_encoding = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/2, /*global=*/1);
134 lsda_encoding = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/0, /*global=*/0);
135 flags = (! flag_pic
136 || ((fde_encoding & 0x70) != DW_EH_PE_absptr
137 && (fde_encoding & 0x70) != DW_EH_PE_aligned
138 && (per_encoding & 0x70) != DW_EH_PE_absptr
139 && (per_encoding & 0x70) != DW_EH_PE_aligned
140 && (lsda_encoding & 0x70) != DW_EH_PE_absptr
141 && (lsda_encoding & 0x70) != DW_EH_PE_aligned))
142 ? 0 : SECTION_WRITE;
144 else
145 flags = SECTION_WRITE;
146 named_section_flags (EH_FRAME_SECTION_NAME, flags);
147 #endif
150 /* Version of targetm.eh_frame_section for systems using collect2. */
151 void
152 collect2_eh_frame_section (void)
154 tree label = get_file_function_name ('F');
156 data_section ();
157 ASM_OUTPUT_ALIGN (asm_out_file, floor_log2 (PTR_SIZE));
158 targetm.asm_out.globalize_label (asm_out_file, IDENTIFIER_POINTER (label));
159 ASM_OUTPUT_LABEL (asm_out_file, IDENTIFIER_POINTER (label));
162 /* Default version of targetm.eh_frame_section. */
163 void
164 default_eh_frame_section (void)
166 #ifdef EH_FRAME_SECTION_NAME
167 named_section_eh_frame_section ();
168 #else
169 collect2_eh_frame_section ();
170 #endif
173 DEF_VEC_P(rtx);
174 DEF_VEC_ALLOC_P(rtx,gc);
176 /* Array of RTXes referenced by the debugging information, which therefore
177 must be kept around forever. */
178 static GTY(()) VEC(rtx,gc) *used_rtx_array;
180 /* A pointer to the base of a list of incomplete types which might be
181 completed at some later time. incomplete_types_list needs to be a
182 VEC(tree,gc) because we want to tell the garbage collector about
183 it. */
184 static GTY(()) VEC(tree,gc) *incomplete_types;
186 /* A pointer to the base of a table of references to declaration
187 scopes. This table is a display which tracks the nesting
188 of declaration scopes at the current scope and containing
189 scopes. This table is used to find the proper place to
190 define type declaration DIE's. */
191 static GTY(()) VEC(tree,gc) *decl_scope_table;
193 /* How to start an assembler comment. */
194 #ifndef ASM_COMMENT_START
195 #define ASM_COMMENT_START ";#"
196 #endif
198 typedef struct dw_cfi_struct *dw_cfi_ref;
199 typedef struct dw_fde_struct *dw_fde_ref;
200 typedef union dw_cfi_oprnd_struct *dw_cfi_oprnd_ref;
202 /* Call frames are described using a sequence of Call Frame
203 Information instructions. The register number, offset
204 and address fields are provided as possible operands;
205 their use is selected by the opcode field. */
207 enum dw_cfi_oprnd_type {
208 dw_cfi_oprnd_unused,
209 dw_cfi_oprnd_reg_num,
210 dw_cfi_oprnd_offset,
211 dw_cfi_oprnd_addr,
212 dw_cfi_oprnd_loc
215 typedef union dw_cfi_oprnd_struct GTY(())
217 unsigned long GTY ((tag ("dw_cfi_oprnd_reg_num"))) dw_cfi_reg_num;
218 HOST_WIDE_INT GTY ((tag ("dw_cfi_oprnd_offset"))) dw_cfi_offset;
219 const char * GTY ((tag ("dw_cfi_oprnd_addr"))) dw_cfi_addr;
220 struct dw_loc_descr_struct * GTY ((tag ("dw_cfi_oprnd_loc"))) dw_cfi_loc;
222 dw_cfi_oprnd;
224 typedef struct dw_cfi_struct GTY(())
226 dw_cfi_ref dw_cfi_next;
227 enum dwarf_call_frame_info dw_cfi_opc;
228 dw_cfi_oprnd GTY ((desc ("dw_cfi_oprnd1_desc (%1.dw_cfi_opc)")))
229 dw_cfi_oprnd1;
230 dw_cfi_oprnd GTY ((desc ("dw_cfi_oprnd2_desc (%1.dw_cfi_opc)")))
231 dw_cfi_oprnd2;
233 dw_cfi_node;
235 /* This is how we define the location of the CFA. We use to handle it
236 as REG + OFFSET all the time, but now it can be more complex.
237 It can now be either REG + CFA_OFFSET or *(REG + BASE_OFFSET) + CFA_OFFSET.
238 Instead of passing around REG and OFFSET, we pass a copy
239 of this structure. */
240 typedef struct cfa_loc GTY(())
242 unsigned long reg;
243 HOST_WIDE_INT offset;
244 HOST_WIDE_INT base_offset;
245 int indirect; /* 1 if CFA is accessed via a dereference. */
246 } dw_cfa_location;
248 /* All call frame descriptions (FDE's) in the GCC generated DWARF
249 refer to a single Common Information Entry (CIE), defined at
250 the beginning of the .debug_frame section. This use of a single
251 CIE obviates the need to keep track of multiple CIE's
252 in the DWARF generation routines below. */
254 typedef struct dw_fde_struct GTY(())
256 tree decl;
257 const char *dw_fde_begin;
258 const char *dw_fde_current_label;
259 const char *dw_fde_end;
260 const char *dw_fde_hot_section_label;
261 const char *dw_fde_hot_section_end_label;
262 const char *dw_fde_unlikely_section_label;
263 const char *dw_fde_unlikely_section_end_label;
264 bool dw_fde_switched_sections;
265 dw_cfi_ref dw_fde_cfi;
266 unsigned funcdef_number;
267 unsigned all_throwers_are_sibcalls : 1;
268 unsigned nothrow : 1;
269 unsigned uses_eh_lsda : 1;
271 dw_fde_node;
273 /* Maximum size (in bytes) of an artificially generated label. */
274 #define MAX_ARTIFICIAL_LABEL_BYTES 30
276 /* The size of addresses as they appear in the Dwarf 2 data.
277 Some architectures use word addresses to refer to code locations,
278 but Dwarf 2 info always uses byte addresses. On such machines,
279 Dwarf 2 addresses need to be larger than the architecture's
280 pointers. */
281 #ifndef DWARF2_ADDR_SIZE
282 #define DWARF2_ADDR_SIZE (POINTER_SIZE / BITS_PER_UNIT)
283 #endif
285 /* The size in bytes of a DWARF field indicating an offset or length
286 relative to a debug info section, specified to be 4 bytes in the
287 DWARF-2 specification. The SGI/MIPS ABI defines it to be the same
288 as PTR_SIZE. */
290 #ifndef DWARF_OFFSET_SIZE
291 #define DWARF_OFFSET_SIZE 4
292 #endif
294 /* According to the (draft) DWARF 3 specification, the initial length
295 should either be 4 or 12 bytes. When it's 12 bytes, the first 4
296 bytes are 0xffffffff, followed by the length stored in the next 8
297 bytes.
299 However, the SGI/MIPS ABI uses an initial length which is equal to
300 DWARF_OFFSET_SIZE. It is defined (elsewhere) accordingly. */
302 #ifndef DWARF_INITIAL_LENGTH_SIZE
303 #define DWARF_INITIAL_LENGTH_SIZE (DWARF_OFFSET_SIZE == 4 ? 4 : 12)
304 #endif
306 #define DWARF_VERSION 2
308 /* Round SIZE up to the nearest BOUNDARY. */
309 #define DWARF_ROUND(SIZE,BOUNDARY) \
310 ((((SIZE) + (BOUNDARY) - 1) / (BOUNDARY)) * (BOUNDARY))
312 /* Offsets recorded in opcodes are a multiple of this alignment factor. */
313 #ifndef DWARF_CIE_DATA_ALIGNMENT
314 #ifdef STACK_GROWS_DOWNWARD
315 #define DWARF_CIE_DATA_ALIGNMENT (-((int) UNITS_PER_WORD))
316 #else
317 #define DWARF_CIE_DATA_ALIGNMENT ((int) UNITS_PER_WORD)
318 #endif
319 #endif
321 /* A pointer to the base of a table that contains frame description
322 information for each routine. */
323 static GTY((length ("fde_table_allocated"))) dw_fde_ref fde_table;
325 /* Number of elements currently allocated for fde_table. */
326 static GTY(()) unsigned fde_table_allocated;
328 /* Number of elements in fde_table currently in use. */
329 static GTY(()) unsigned fde_table_in_use;
331 /* Size (in elements) of increments by which we may expand the
332 fde_table. */
333 #define FDE_TABLE_INCREMENT 256
335 /* A list of call frame insns for the CIE. */
336 static GTY(()) dw_cfi_ref cie_cfi_head;
338 #if defined (DWARF2_DEBUGGING_INFO) || defined (DWARF2_UNWIND_INFO)
339 /* Some DWARF extensions (e.g., MIPS/SGI) implement a subprogram
340 attribute that accelerates the lookup of the FDE associated
341 with the subprogram. This variable holds the table index of the FDE
342 associated with the current function (body) definition. */
343 static unsigned current_funcdef_fde;
344 #endif
346 struct indirect_string_node GTY(())
348 const char *str;
349 unsigned int refcount;
350 unsigned int form;
351 char *label;
354 static GTY ((param_is (struct indirect_string_node))) htab_t debug_str_hash;
356 static GTY(()) int dw2_string_counter;
357 static GTY(()) unsigned long dwarf2out_cfi_label_num;
359 #if defined (DWARF2_DEBUGGING_INFO) || defined (DWARF2_UNWIND_INFO)
361 /* Forward declarations for functions defined in this file. */
363 static char *stripattributes (const char *);
364 static const char *dwarf_cfi_name (unsigned);
365 static dw_cfi_ref new_cfi (void);
366 static void add_cfi (dw_cfi_ref *, dw_cfi_ref);
367 static void add_fde_cfi (const char *, dw_cfi_ref);
368 static void lookup_cfa_1 (dw_cfi_ref, dw_cfa_location *);
369 static void lookup_cfa (dw_cfa_location *);
370 static void reg_save (const char *, unsigned, unsigned, HOST_WIDE_INT);
371 static void initial_return_save (rtx);
372 static HOST_WIDE_INT stack_adjust_offset (rtx);
373 static void output_cfi (dw_cfi_ref, dw_fde_ref, int);
374 static void output_call_frame_info (int);
375 static void dwarf2out_stack_adjust (rtx, bool);
376 static void flush_queued_reg_saves (void);
377 static bool clobbers_queued_reg_save (rtx);
378 static void dwarf2out_frame_debug_expr (rtx, const char *);
380 /* Support for complex CFA locations. */
381 static void output_cfa_loc (dw_cfi_ref);
382 static void get_cfa_from_loc_descr (dw_cfa_location *,
383 struct dw_loc_descr_struct *);
384 static struct dw_loc_descr_struct *build_cfa_loc
385 (dw_cfa_location *);
386 static void def_cfa_1 (const char *, dw_cfa_location *);
388 /* How to start an assembler comment. */
389 #ifndef ASM_COMMENT_START
390 #define ASM_COMMENT_START ";#"
391 #endif
393 /* Data and reference forms for relocatable data. */
394 #define DW_FORM_data (DWARF_OFFSET_SIZE == 8 ? DW_FORM_data8 : DW_FORM_data4)
395 #define DW_FORM_ref (DWARF_OFFSET_SIZE == 8 ? DW_FORM_ref8 : DW_FORM_ref4)
397 #ifndef DEBUG_FRAME_SECTION
398 #define DEBUG_FRAME_SECTION ".debug_frame"
399 #endif
401 #ifndef FUNC_BEGIN_LABEL
402 #define FUNC_BEGIN_LABEL "LFB"
403 #endif
405 #ifndef FUNC_END_LABEL
406 #define FUNC_END_LABEL "LFE"
407 #endif
409 #ifndef FRAME_BEGIN_LABEL
410 #define FRAME_BEGIN_LABEL "Lframe"
411 #endif
412 #define CIE_AFTER_SIZE_LABEL "LSCIE"
413 #define CIE_END_LABEL "LECIE"
414 #define FDE_LABEL "LSFDE"
415 #define FDE_AFTER_SIZE_LABEL "LASFDE"
416 #define FDE_END_LABEL "LEFDE"
417 #define LINE_NUMBER_BEGIN_LABEL "LSLT"
418 #define LINE_NUMBER_END_LABEL "LELT"
419 #define LN_PROLOG_AS_LABEL "LASLTP"
420 #define LN_PROLOG_END_LABEL "LELTP"
421 #define DIE_LABEL_PREFIX "DW"
423 /* The DWARF 2 CFA column which tracks the return address. Normally this
424 is the column for PC, or the first column after all of the hard
425 registers. */
426 #ifndef DWARF_FRAME_RETURN_COLUMN
427 #ifdef PC_REGNUM
428 #define DWARF_FRAME_RETURN_COLUMN DWARF_FRAME_REGNUM (PC_REGNUM)
429 #else
430 #define DWARF_FRAME_RETURN_COLUMN DWARF_FRAME_REGISTERS
431 #endif
432 #endif
434 /* The mapping from gcc register number to DWARF 2 CFA column number. By
435 default, we just provide columns for all registers. */
436 #ifndef DWARF_FRAME_REGNUM
437 #define DWARF_FRAME_REGNUM(REG) DBX_REGISTER_NUMBER (REG)
438 #endif
440 /* The offset from the incoming value of %sp to the top of the stack frame
441 for the current function. */
442 #ifndef INCOMING_FRAME_SP_OFFSET
443 #define INCOMING_FRAME_SP_OFFSET 0
444 #endif
446 /* Hook used by __throw. */
449 expand_builtin_dwarf_sp_column (void)
451 return GEN_INT (DWARF_FRAME_REGNUM (STACK_POINTER_REGNUM));
454 /* Return a pointer to a copy of the section string name S with all
455 attributes stripped off, and an asterisk prepended (for assemble_name). */
457 static inline char *
458 stripattributes (const char *s)
460 char *stripped = xmalloc (strlen (s) + 2);
461 char *p = stripped;
463 *p++ = '*';
465 while (*s && *s != ',')
466 *p++ = *s++;
468 *p = '\0';
469 return stripped;
472 /* Generate code to initialize the register size table. */
474 void
475 expand_builtin_init_dwarf_reg_sizes (tree address)
477 int i;
478 enum machine_mode mode = TYPE_MODE (char_type_node);
479 rtx addr = expand_expr (address, NULL_RTX, VOIDmode, 0);
480 rtx mem = gen_rtx_MEM (BLKmode, addr);
481 bool wrote_return_column = false;
483 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
484 if (DWARF_FRAME_REGNUM (i) < DWARF_FRAME_REGISTERS)
486 HOST_WIDE_INT offset = DWARF_FRAME_REGNUM (i) * GET_MODE_SIZE (mode);
487 enum machine_mode save_mode = reg_raw_mode[i];
488 HOST_WIDE_INT size;
490 if (HARD_REGNO_CALL_PART_CLOBBERED (i, save_mode))
491 save_mode = choose_hard_reg_mode (i, 1, true);
492 if (DWARF_FRAME_REGNUM (i) == DWARF_FRAME_RETURN_COLUMN)
494 if (save_mode == VOIDmode)
495 continue;
496 wrote_return_column = true;
498 size = GET_MODE_SIZE (save_mode);
499 if (offset < 0)
500 continue;
502 emit_move_insn (adjust_address (mem, mode, offset),
503 gen_int_mode (size, mode));
506 #ifdef DWARF_ALT_FRAME_RETURN_COLUMN
507 gcc_assert (wrote_return_column);
508 i = DWARF_ALT_FRAME_RETURN_COLUMN;
509 wrote_return_column = false;
510 #else
511 i = DWARF_FRAME_RETURN_COLUMN;
512 #endif
514 if (! wrote_return_column)
516 enum machine_mode save_mode = Pmode;
517 HOST_WIDE_INT offset = i * GET_MODE_SIZE (mode);
518 HOST_WIDE_INT size = GET_MODE_SIZE (save_mode);
519 emit_move_insn (adjust_address (mem, mode, offset), GEN_INT (size));
523 /* Convert a DWARF call frame info. operation to its string name */
525 static const char *
526 dwarf_cfi_name (unsigned int cfi_opc)
528 switch (cfi_opc)
530 case DW_CFA_advance_loc:
531 return "DW_CFA_advance_loc";
532 case DW_CFA_offset:
533 return "DW_CFA_offset";
534 case DW_CFA_restore:
535 return "DW_CFA_restore";
536 case DW_CFA_nop:
537 return "DW_CFA_nop";
538 case DW_CFA_set_loc:
539 return "DW_CFA_set_loc";
540 case DW_CFA_advance_loc1:
541 return "DW_CFA_advance_loc1";
542 case DW_CFA_advance_loc2:
543 return "DW_CFA_advance_loc2";
544 case DW_CFA_advance_loc4:
545 return "DW_CFA_advance_loc4";
546 case DW_CFA_offset_extended:
547 return "DW_CFA_offset_extended";
548 case DW_CFA_restore_extended:
549 return "DW_CFA_restore_extended";
550 case DW_CFA_undefined:
551 return "DW_CFA_undefined";
552 case DW_CFA_same_value:
553 return "DW_CFA_same_value";
554 case DW_CFA_register:
555 return "DW_CFA_register";
556 case DW_CFA_remember_state:
557 return "DW_CFA_remember_state";
558 case DW_CFA_restore_state:
559 return "DW_CFA_restore_state";
560 case DW_CFA_def_cfa:
561 return "DW_CFA_def_cfa";
562 case DW_CFA_def_cfa_register:
563 return "DW_CFA_def_cfa_register";
564 case DW_CFA_def_cfa_offset:
565 return "DW_CFA_def_cfa_offset";
567 /* DWARF 3 */
568 case DW_CFA_def_cfa_expression:
569 return "DW_CFA_def_cfa_expression";
570 case DW_CFA_expression:
571 return "DW_CFA_expression";
572 case DW_CFA_offset_extended_sf:
573 return "DW_CFA_offset_extended_sf";
574 case DW_CFA_def_cfa_sf:
575 return "DW_CFA_def_cfa_sf";
576 case DW_CFA_def_cfa_offset_sf:
577 return "DW_CFA_def_cfa_offset_sf";
579 /* SGI/MIPS specific */
580 case DW_CFA_MIPS_advance_loc8:
581 return "DW_CFA_MIPS_advance_loc8";
583 /* GNU extensions */
584 case DW_CFA_GNU_window_save:
585 return "DW_CFA_GNU_window_save";
586 case DW_CFA_GNU_args_size:
587 return "DW_CFA_GNU_args_size";
588 case DW_CFA_GNU_negative_offset_extended:
589 return "DW_CFA_GNU_negative_offset_extended";
591 default:
592 return "DW_CFA_<unknown>";
596 /* Return a pointer to a newly allocated Call Frame Instruction. */
598 static inline dw_cfi_ref
599 new_cfi (void)
601 dw_cfi_ref cfi = ggc_alloc (sizeof (dw_cfi_node));
603 cfi->dw_cfi_next = NULL;
604 cfi->dw_cfi_oprnd1.dw_cfi_reg_num = 0;
605 cfi->dw_cfi_oprnd2.dw_cfi_reg_num = 0;
607 return cfi;
610 /* Add a Call Frame Instruction to list of instructions. */
612 static inline void
613 add_cfi (dw_cfi_ref *list_head, dw_cfi_ref cfi)
615 dw_cfi_ref *p;
617 /* Find the end of the chain. */
618 for (p = list_head; (*p) != NULL; p = &(*p)->dw_cfi_next)
621 *p = cfi;
624 /* Generate a new label for the CFI info to refer to. */
626 char *
627 dwarf2out_cfi_label (void)
629 static char label[20];
631 ASM_GENERATE_INTERNAL_LABEL (label, "LCFI", dwarf2out_cfi_label_num++);
632 ASM_OUTPUT_LABEL (asm_out_file, label);
633 return label;
636 /* Add CFI to the current fde at the PC value indicated by LABEL if specified,
637 or to the CIE if LABEL is NULL. */
639 static void
640 add_fde_cfi (const char *label, dw_cfi_ref cfi)
642 if (label)
644 dw_fde_ref fde = &fde_table[fde_table_in_use - 1];
646 if (*label == 0)
647 label = dwarf2out_cfi_label ();
649 if (fde->dw_fde_current_label == NULL
650 || strcmp (label, fde->dw_fde_current_label) != 0)
652 dw_cfi_ref xcfi;
654 fde->dw_fde_current_label = label = xstrdup (label);
656 /* Set the location counter to the new label. */
657 xcfi = new_cfi ();
658 xcfi->dw_cfi_opc = DW_CFA_advance_loc4;
659 xcfi->dw_cfi_oprnd1.dw_cfi_addr = label;
660 add_cfi (&fde->dw_fde_cfi, xcfi);
663 add_cfi (&fde->dw_fde_cfi, cfi);
666 else
667 add_cfi (&cie_cfi_head, cfi);
670 /* Subroutine of lookup_cfa. */
672 static inline void
673 lookup_cfa_1 (dw_cfi_ref cfi, dw_cfa_location *loc)
675 switch (cfi->dw_cfi_opc)
677 case DW_CFA_def_cfa_offset:
678 loc->offset = cfi->dw_cfi_oprnd1.dw_cfi_offset;
679 break;
680 case DW_CFA_def_cfa_register:
681 loc->reg = cfi->dw_cfi_oprnd1.dw_cfi_reg_num;
682 break;
683 case DW_CFA_def_cfa:
684 loc->reg = cfi->dw_cfi_oprnd1.dw_cfi_reg_num;
685 loc->offset = cfi->dw_cfi_oprnd2.dw_cfi_offset;
686 break;
687 case DW_CFA_def_cfa_expression:
688 get_cfa_from_loc_descr (loc, cfi->dw_cfi_oprnd1.dw_cfi_loc);
689 break;
690 default:
691 break;
695 /* Find the previous value for the CFA. */
697 static void
698 lookup_cfa (dw_cfa_location *loc)
700 dw_cfi_ref cfi;
702 loc->reg = (unsigned long) -1;
703 loc->offset = 0;
704 loc->indirect = 0;
705 loc->base_offset = 0;
707 for (cfi = cie_cfi_head; cfi; cfi = cfi->dw_cfi_next)
708 lookup_cfa_1 (cfi, loc);
710 if (fde_table_in_use)
712 dw_fde_ref fde = &fde_table[fde_table_in_use - 1];
713 for (cfi = fde->dw_fde_cfi; cfi; cfi = cfi->dw_cfi_next)
714 lookup_cfa_1 (cfi, loc);
718 /* The current rule for calculating the DWARF2 canonical frame address. */
719 static dw_cfa_location cfa;
721 /* The register used for saving registers to the stack, and its offset
722 from the CFA. */
723 static dw_cfa_location cfa_store;
725 /* The running total of the size of arguments pushed onto the stack. */
726 static HOST_WIDE_INT args_size;
728 /* The last args_size we actually output. */
729 static HOST_WIDE_INT old_args_size;
731 /* Entry point to update the canonical frame address (CFA).
732 LABEL is passed to add_fde_cfi. The value of CFA is now to be
733 calculated from REG+OFFSET. */
735 void
736 dwarf2out_def_cfa (const char *label, unsigned int reg, HOST_WIDE_INT offset)
738 dw_cfa_location loc;
739 loc.indirect = 0;
740 loc.base_offset = 0;
741 loc.reg = reg;
742 loc.offset = offset;
743 def_cfa_1 (label, &loc);
746 /* This routine does the actual work. The CFA is now calculated from
747 the dw_cfa_location structure. */
749 static void
750 def_cfa_1 (const char *label, dw_cfa_location *loc_p)
752 dw_cfi_ref cfi;
753 dw_cfa_location old_cfa, loc;
755 cfa = *loc_p;
756 loc = *loc_p;
758 if (cfa_store.reg == loc.reg && loc.indirect == 0)
759 cfa_store.offset = loc.offset;
761 loc.reg = DWARF_FRAME_REGNUM (loc.reg);
762 lookup_cfa (&old_cfa);
764 /* If nothing changed, no need to issue any call frame instructions. */
765 if (loc.reg == old_cfa.reg && loc.offset == old_cfa.offset
766 && loc.indirect == old_cfa.indirect
767 && (loc.indirect == 0 || loc.base_offset == old_cfa.base_offset))
768 return;
770 cfi = new_cfi ();
772 if (loc.reg == old_cfa.reg && !loc.indirect)
774 /* Construct a "DW_CFA_def_cfa_offset <offset>" instruction,
775 indicating the CFA register did not change but the offset
776 did. */
777 cfi->dw_cfi_opc = DW_CFA_def_cfa_offset;
778 cfi->dw_cfi_oprnd1.dw_cfi_offset = loc.offset;
781 #ifndef MIPS_DEBUGGING_INFO /* SGI dbx thinks this means no offset. */
782 else if (loc.offset == old_cfa.offset && old_cfa.reg != (unsigned long) -1
783 && !loc.indirect)
785 /* Construct a "DW_CFA_def_cfa_register <register>" instruction,
786 indicating the CFA register has changed to <register> but the
787 offset has not changed. */
788 cfi->dw_cfi_opc = DW_CFA_def_cfa_register;
789 cfi->dw_cfi_oprnd1.dw_cfi_reg_num = loc.reg;
791 #endif
793 else if (loc.indirect == 0)
795 /* Construct a "DW_CFA_def_cfa <register> <offset>" instruction,
796 indicating the CFA register has changed to <register> with
797 the specified offset. */
798 cfi->dw_cfi_opc = DW_CFA_def_cfa;
799 cfi->dw_cfi_oprnd1.dw_cfi_reg_num = loc.reg;
800 cfi->dw_cfi_oprnd2.dw_cfi_offset = loc.offset;
802 else
804 /* Construct a DW_CFA_def_cfa_expression instruction to
805 calculate the CFA using a full location expression since no
806 register-offset pair is available. */
807 struct dw_loc_descr_struct *loc_list;
809 cfi->dw_cfi_opc = DW_CFA_def_cfa_expression;
810 loc_list = build_cfa_loc (&loc);
811 cfi->dw_cfi_oprnd1.dw_cfi_loc = loc_list;
814 add_fde_cfi (label, cfi);
817 /* Add the CFI for saving a register. REG is the CFA column number.
818 LABEL is passed to add_fde_cfi.
819 If SREG is -1, the register is saved at OFFSET from the CFA;
820 otherwise it is saved in SREG. */
822 static void
823 reg_save (const char *label, unsigned int reg, unsigned int sreg, HOST_WIDE_INT offset)
825 dw_cfi_ref cfi = new_cfi ();
827 cfi->dw_cfi_oprnd1.dw_cfi_reg_num = reg;
829 if (sreg == INVALID_REGNUM)
831 if (reg & ~0x3f)
832 /* The register number won't fit in 6 bits, so we have to use
833 the long form. */
834 cfi->dw_cfi_opc = DW_CFA_offset_extended;
835 else
836 cfi->dw_cfi_opc = DW_CFA_offset;
838 #ifdef ENABLE_CHECKING
840 /* If we get an offset that is not a multiple of
841 DWARF_CIE_DATA_ALIGNMENT, there is either a bug in the
842 definition of DWARF_CIE_DATA_ALIGNMENT, or a bug in the machine
843 description. */
844 HOST_WIDE_INT check_offset = offset / DWARF_CIE_DATA_ALIGNMENT;
846 gcc_assert (check_offset * DWARF_CIE_DATA_ALIGNMENT == offset);
848 #endif
849 offset /= DWARF_CIE_DATA_ALIGNMENT;
850 if (offset < 0)
851 cfi->dw_cfi_opc = DW_CFA_offset_extended_sf;
853 cfi->dw_cfi_oprnd2.dw_cfi_offset = offset;
855 else if (sreg == reg)
856 cfi->dw_cfi_opc = DW_CFA_same_value;
857 else
859 cfi->dw_cfi_opc = DW_CFA_register;
860 cfi->dw_cfi_oprnd2.dw_cfi_reg_num = sreg;
863 add_fde_cfi (label, cfi);
866 /* Add the CFI for saving a register window. LABEL is passed to reg_save.
867 This CFI tells the unwinder that it needs to restore the window registers
868 from the previous frame's window save area.
870 ??? Perhaps we should note in the CIE where windows are saved (instead of
871 assuming 0(cfa)) and what registers are in the window. */
873 void
874 dwarf2out_window_save (const char *label)
876 dw_cfi_ref cfi = new_cfi ();
878 cfi->dw_cfi_opc = DW_CFA_GNU_window_save;
879 add_fde_cfi (label, cfi);
882 /* Add a CFI to update the running total of the size of arguments
883 pushed onto the stack. */
885 void
886 dwarf2out_args_size (const char *label, HOST_WIDE_INT size)
888 dw_cfi_ref cfi;
890 if (size == old_args_size)
891 return;
893 old_args_size = size;
895 cfi = new_cfi ();
896 cfi->dw_cfi_opc = DW_CFA_GNU_args_size;
897 cfi->dw_cfi_oprnd1.dw_cfi_offset = size;
898 add_fde_cfi (label, cfi);
901 /* Entry point for saving a register to the stack. REG is the GCC register
902 number. LABEL and OFFSET are passed to reg_save. */
904 void
905 dwarf2out_reg_save (const char *label, unsigned int reg, HOST_WIDE_INT offset)
907 reg_save (label, DWARF_FRAME_REGNUM (reg), INVALID_REGNUM, offset);
910 /* Entry point for saving the return address in the stack.
911 LABEL and OFFSET are passed to reg_save. */
913 void
914 dwarf2out_return_save (const char *label, HOST_WIDE_INT offset)
916 reg_save (label, DWARF_FRAME_RETURN_COLUMN, INVALID_REGNUM, offset);
919 /* Entry point for saving the return address in a register.
920 LABEL and SREG are passed to reg_save. */
922 void
923 dwarf2out_return_reg (const char *label, unsigned int sreg)
925 reg_save (label, DWARF_FRAME_RETURN_COLUMN, DWARF_FRAME_REGNUM (sreg), 0);
928 /* Record the initial position of the return address. RTL is
929 INCOMING_RETURN_ADDR_RTX. */
931 static void
932 initial_return_save (rtx rtl)
934 unsigned int reg = INVALID_REGNUM;
935 HOST_WIDE_INT offset = 0;
937 switch (GET_CODE (rtl))
939 case REG:
940 /* RA is in a register. */
941 reg = DWARF_FRAME_REGNUM (REGNO (rtl));
942 break;
944 case MEM:
945 /* RA is on the stack. */
946 rtl = XEXP (rtl, 0);
947 switch (GET_CODE (rtl))
949 case REG:
950 gcc_assert (REGNO (rtl) == STACK_POINTER_REGNUM);
951 offset = 0;
952 break;
954 case PLUS:
955 gcc_assert (REGNO (XEXP (rtl, 0)) == STACK_POINTER_REGNUM);
956 offset = INTVAL (XEXP (rtl, 1));
957 break;
959 case MINUS:
960 gcc_assert (REGNO (XEXP (rtl, 0)) == STACK_POINTER_REGNUM);
961 offset = -INTVAL (XEXP (rtl, 1));
962 break;
964 default:
965 gcc_unreachable ();
968 break;
970 case PLUS:
971 /* The return address is at some offset from any value we can
972 actually load. For instance, on the SPARC it is in %i7+8. Just
973 ignore the offset for now; it doesn't matter for unwinding frames. */
974 gcc_assert (GET_CODE (XEXP (rtl, 1)) == CONST_INT);
975 initial_return_save (XEXP (rtl, 0));
976 return;
978 default:
979 gcc_unreachable ();
982 if (reg != DWARF_FRAME_RETURN_COLUMN)
983 reg_save (NULL, DWARF_FRAME_RETURN_COLUMN, reg, offset - cfa.offset);
986 /* Given a SET, calculate the amount of stack adjustment it
987 contains. */
989 static HOST_WIDE_INT
990 stack_adjust_offset (rtx pattern)
992 rtx src = SET_SRC (pattern);
993 rtx dest = SET_DEST (pattern);
994 HOST_WIDE_INT offset = 0;
995 enum rtx_code code;
997 if (dest == stack_pointer_rtx)
999 /* (set (reg sp) (plus (reg sp) (const_int))) */
1000 code = GET_CODE (src);
1001 if (! (code == PLUS || code == MINUS)
1002 || XEXP (src, 0) != stack_pointer_rtx
1003 || GET_CODE (XEXP (src, 1)) != CONST_INT)
1004 return 0;
1006 offset = INTVAL (XEXP (src, 1));
1007 if (code == PLUS)
1008 offset = -offset;
1010 else if (MEM_P (dest))
1012 /* (set (mem (pre_dec (reg sp))) (foo)) */
1013 src = XEXP (dest, 0);
1014 code = GET_CODE (src);
1016 switch (code)
1018 case PRE_MODIFY:
1019 case POST_MODIFY:
1020 if (XEXP (src, 0) == stack_pointer_rtx)
1022 rtx val = XEXP (XEXP (src, 1), 1);
1023 /* We handle only adjustments by constant amount. */
1024 gcc_assert (GET_CODE (XEXP (src, 1)) == PLUS
1025 && GET_CODE (val) == CONST_INT);
1026 offset = -INTVAL (val);
1027 break;
1029 return 0;
1031 case PRE_DEC:
1032 case POST_DEC:
1033 if (XEXP (src, 0) == stack_pointer_rtx)
1035 offset = GET_MODE_SIZE (GET_MODE (dest));
1036 break;
1038 return 0;
1040 case PRE_INC:
1041 case POST_INC:
1042 if (XEXP (src, 0) == stack_pointer_rtx)
1044 offset = -GET_MODE_SIZE (GET_MODE (dest));
1045 break;
1047 return 0;
1049 default:
1050 return 0;
1053 else
1054 return 0;
1056 return offset;
1059 /* Check INSN to see if it looks like a push or a stack adjustment, and
1060 make a note of it if it does. EH uses this information to find out how
1061 much extra space it needs to pop off the stack. */
1063 static void
1064 dwarf2out_stack_adjust (rtx insn, bool after_p)
1066 HOST_WIDE_INT offset;
1067 const char *label;
1068 int i;
1070 /* Don't handle epilogues at all. Certainly it would be wrong to do so
1071 with this function. Proper support would require all frame-related
1072 insns to be marked, and to be able to handle saving state around
1073 epilogues textually in the middle of the function. */
1074 if (prologue_epilogue_contains (insn) || sibcall_epilogue_contains (insn))
1075 return;
1077 /* If only calls can throw, and we have a frame pointer,
1078 save up adjustments until we see the CALL_INSN. */
1079 if (!flag_asynchronous_unwind_tables && cfa.reg != STACK_POINTER_REGNUM)
1081 if (CALL_P (insn) && !after_p)
1083 /* Extract the size of the args from the CALL rtx itself. */
1084 insn = PATTERN (insn);
1085 if (GET_CODE (insn) == PARALLEL)
1086 insn = XVECEXP (insn, 0, 0);
1087 if (GET_CODE (insn) == SET)
1088 insn = SET_SRC (insn);
1089 gcc_assert (GET_CODE (insn) == CALL);
1090 dwarf2out_args_size ("", INTVAL (XEXP (insn, 1)));
1092 return;
1095 if (CALL_P (insn) && !after_p)
1097 if (!flag_asynchronous_unwind_tables)
1098 dwarf2out_args_size ("", args_size);
1099 return;
1101 else if (BARRIER_P (insn))
1103 /* When we see a BARRIER, we know to reset args_size to 0. Usually
1104 the compiler will have already emitted a stack adjustment, but
1105 doesn't bother for calls to noreturn functions. */
1106 #ifdef STACK_GROWS_DOWNWARD
1107 offset = -args_size;
1108 #else
1109 offset = args_size;
1110 #endif
1112 else if (GET_CODE (PATTERN (insn)) == SET)
1113 offset = stack_adjust_offset (PATTERN (insn));
1114 else if (GET_CODE (PATTERN (insn)) == PARALLEL
1115 || GET_CODE (PATTERN (insn)) == SEQUENCE)
1117 /* There may be stack adjustments inside compound insns. Search
1118 for them. */
1119 for (offset = 0, i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
1120 if (GET_CODE (XVECEXP (PATTERN (insn), 0, i)) == SET)
1121 offset += stack_adjust_offset (XVECEXP (PATTERN (insn), 0, i));
1123 else
1124 return;
1126 if (offset == 0)
1127 return;
1129 if (cfa.reg == STACK_POINTER_REGNUM)
1130 cfa.offset += offset;
1132 #ifndef STACK_GROWS_DOWNWARD
1133 offset = -offset;
1134 #endif
1136 args_size += offset;
1137 if (args_size < 0)
1138 args_size = 0;
1140 label = dwarf2out_cfi_label ();
1141 def_cfa_1 (label, &cfa);
1142 if (flag_asynchronous_unwind_tables)
1143 dwarf2out_args_size (label, args_size);
1146 #endif
1148 /* We delay emitting a register save until either (a) we reach the end
1149 of the prologue or (b) the register is clobbered. This clusters
1150 register saves so that there are fewer pc advances. */
1152 struct queued_reg_save GTY(())
1154 struct queued_reg_save *next;
1155 rtx reg;
1156 HOST_WIDE_INT cfa_offset;
1157 rtx saved_reg;
1160 static GTY(()) struct queued_reg_save *queued_reg_saves;
1162 /* The caller's ORIG_REG is saved in SAVED_IN_REG. */
1163 struct reg_saved_in_data GTY(()) {
1164 rtx orig_reg;
1165 rtx saved_in_reg;
1168 /* A list of registers saved in other registers.
1169 The list intentionally has a small maximum capacity of 4; if your
1170 port needs more than that, you might consider implementing a
1171 more efficient data structure. */
1172 static GTY(()) struct reg_saved_in_data regs_saved_in_regs[4];
1173 static GTY(()) size_t num_regs_saved_in_regs;
1175 #if defined (DWARF2_DEBUGGING_INFO) || defined (DWARF2_UNWIND_INFO)
1176 static const char *last_reg_save_label;
1178 /* Add an entry to QUEUED_REG_SAVES saying that REG is now saved at
1179 SREG, or if SREG is NULL then it is saved at OFFSET to the CFA. */
1181 static void
1182 queue_reg_save (const char *label, rtx reg, rtx sreg, HOST_WIDE_INT offset)
1184 struct queued_reg_save *q;
1186 /* Duplicates waste space, but it's also necessary to remove them
1187 for correctness, since the queue gets output in reverse
1188 order. */
1189 for (q = queued_reg_saves; q != NULL; q = q->next)
1190 if (REGNO (q->reg) == REGNO (reg))
1191 break;
1193 if (q == NULL)
1195 q = ggc_alloc (sizeof (*q));
1196 q->next = queued_reg_saves;
1197 queued_reg_saves = q;
1200 q->reg = reg;
1201 q->cfa_offset = offset;
1202 q->saved_reg = sreg;
1204 last_reg_save_label = label;
1207 /* Output all the entries in QUEUED_REG_SAVES. */
1209 static void
1210 flush_queued_reg_saves (void)
1212 struct queued_reg_save *q;
1214 for (q = queued_reg_saves; q; q = q->next)
1216 size_t i;
1217 unsigned int reg, sreg;
1219 for (i = 0; i < num_regs_saved_in_regs; i++)
1220 if (REGNO (regs_saved_in_regs[i].orig_reg) == REGNO (q->reg))
1221 break;
1222 if (q->saved_reg && i == num_regs_saved_in_regs)
1224 gcc_assert (i != ARRAY_SIZE (regs_saved_in_regs));
1225 num_regs_saved_in_regs++;
1227 if (i != num_regs_saved_in_regs)
1229 regs_saved_in_regs[i].orig_reg = q->reg;
1230 regs_saved_in_regs[i].saved_in_reg = q->saved_reg;
1233 reg = DWARF_FRAME_REGNUM (REGNO (q->reg));
1234 if (q->saved_reg)
1235 sreg = DWARF_FRAME_REGNUM (REGNO (q->saved_reg));
1236 else
1237 sreg = INVALID_REGNUM;
1238 reg_save (last_reg_save_label, reg, sreg, q->cfa_offset);
1241 queued_reg_saves = NULL;
1242 last_reg_save_label = NULL;
1245 /* Does INSN clobber any register which QUEUED_REG_SAVES lists a saved
1246 location for? Or, does it clobber a register which we've previously
1247 said that some other register is saved in, and for which we now
1248 have a new location for? */
1250 static bool
1251 clobbers_queued_reg_save (rtx insn)
1253 struct queued_reg_save *q;
1255 for (q = queued_reg_saves; q; q = q->next)
1257 size_t i;
1258 if (modified_in_p (q->reg, insn))
1259 return true;
1260 for (i = 0; i < num_regs_saved_in_regs; i++)
1261 if (REGNO (q->reg) == REGNO (regs_saved_in_regs[i].orig_reg)
1262 && modified_in_p (regs_saved_in_regs[i].saved_in_reg, insn))
1263 return true;
1266 return false;
1269 /* What register, if any, is currently saved in REG? */
1271 static rtx
1272 reg_saved_in (rtx reg)
1274 unsigned int regn = REGNO (reg);
1275 size_t i;
1276 struct queued_reg_save *q;
1278 for (q = queued_reg_saves; q; q = q->next)
1279 if (q->saved_reg && regn == REGNO (q->saved_reg))
1280 return q->reg;
1282 for (i = 0; i < num_regs_saved_in_regs; i++)
1283 if (regs_saved_in_regs[i].saved_in_reg
1284 && regn == REGNO (regs_saved_in_regs[i].saved_in_reg))
1285 return regs_saved_in_regs[i].orig_reg;
1287 return NULL_RTX;
1291 /* A temporary register holding an integral value used in adjusting SP
1292 or setting up the store_reg. The "offset" field holds the integer
1293 value, not an offset. */
1294 static dw_cfa_location cfa_temp;
1296 /* Record call frame debugging information for an expression EXPR,
1297 which either sets SP or FP (adjusting how we calculate the frame
1298 address) or saves a register to the stack or another register.
1299 LABEL indicates the address of EXPR.
1301 This function encodes a state machine mapping rtxes to actions on
1302 cfa, cfa_store, and cfa_temp.reg. We describe these rules so
1303 users need not read the source code.
1305 The High-Level Picture
1307 Changes in the register we use to calculate the CFA: Currently we
1308 assume that if you copy the CFA register into another register, we
1309 should take the other one as the new CFA register; this seems to
1310 work pretty well. If it's wrong for some target, it's simple
1311 enough not to set RTX_FRAME_RELATED_P on the insn in question.
1313 Changes in the register we use for saving registers to the stack:
1314 This is usually SP, but not always. Again, we deduce that if you
1315 copy SP into another register (and SP is not the CFA register),
1316 then the new register is the one we will be using for register
1317 saves. This also seems to work.
1319 Register saves: There's not much guesswork about this one; if
1320 RTX_FRAME_RELATED_P is set on an insn which modifies memory, it's a
1321 register save, and the register used to calculate the destination
1322 had better be the one we think we're using for this purpose.
1323 It's also assumed that a copy from a call-saved register to another
1324 register is saving that register if RTX_FRAME_RELATED_P is set on
1325 that instruction. If the copy is from a call-saved register to
1326 the *same* register, that means that the register is now the same
1327 value as in the caller.
1329 Except: If the register being saved is the CFA register, and the
1330 offset is nonzero, we are saving the CFA, so we assume we have to
1331 use DW_CFA_def_cfa_expression. If the offset is 0, we assume that
1332 the intent is to save the value of SP from the previous frame.
1334 In addition, if a register has previously been saved to a different
1335 register,
1337 Invariants / Summaries of Rules
1339 cfa current rule for calculating the CFA. It usually
1340 consists of a register and an offset.
1341 cfa_store register used by prologue code to save things to the stack
1342 cfa_store.offset is the offset from the value of
1343 cfa_store.reg to the actual CFA
1344 cfa_temp register holding an integral value. cfa_temp.offset
1345 stores the value, which will be used to adjust the
1346 stack pointer. cfa_temp is also used like cfa_store,
1347 to track stores to the stack via fp or a temp reg.
1349 Rules 1- 4: Setting a register's value to cfa.reg or an expression
1350 with cfa.reg as the first operand changes the cfa.reg and its
1351 cfa.offset. Rule 1 and 4 also set cfa_temp.reg and
1352 cfa_temp.offset.
1354 Rules 6- 9: Set a non-cfa.reg register value to a constant or an
1355 expression yielding a constant. This sets cfa_temp.reg
1356 and cfa_temp.offset.
1358 Rule 5: Create a new register cfa_store used to save items to the
1359 stack.
1361 Rules 10-14: Save a register to the stack. Define offset as the
1362 difference of the original location and cfa_store's
1363 location (or cfa_temp's location if cfa_temp is used).
1365 The Rules
1367 "{a,b}" indicates a choice of a xor b.
1368 "<reg>:cfa.reg" indicates that <reg> must equal cfa.reg.
1370 Rule 1:
1371 (set <reg1> <reg2>:cfa.reg)
1372 effects: cfa.reg = <reg1>
1373 cfa.offset unchanged
1374 cfa_temp.reg = <reg1>
1375 cfa_temp.offset = cfa.offset
1377 Rule 2:
1378 (set sp ({minus,plus,losum} {sp,fp}:cfa.reg
1379 {<const_int>,<reg>:cfa_temp.reg}))
1380 effects: cfa.reg = sp if fp used
1381 cfa.offset += {+/- <const_int>, cfa_temp.offset} if cfa.reg==sp
1382 cfa_store.offset += {+/- <const_int>, cfa_temp.offset}
1383 if cfa_store.reg==sp
1385 Rule 3:
1386 (set fp ({minus,plus,losum} <reg>:cfa.reg <const_int>))
1387 effects: cfa.reg = fp
1388 cfa_offset += +/- <const_int>
1390 Rule 4:
1391 (set <reg1> ({plus,losum} <reg2>:cfa.reg <const_int>))
1392 constraints: <reg1> != fp
1393 <reg1> != sp
1394 effects: cfa.reg = <reg1>
1395 cfa_temp.reg = <reg1>
1396 cfa_temp.offset = cfa.offset
1398 Rule 5:
1399 (set <reg1> (plus <reg2>:cfa_temp.reg sp:cfa.reg))
1400 constraints: <reg1> != fp
1401 <reg1> != sp
1402 effects: cfa_store.reg = <reg1>
1403 cfa_store.offset = cfa.offset - cfa_temp.offset
1405 Rule 6:
1406 (set <reg> <const_int>)
1407 effects: cfa_temp.reg = <reg>
1408 cfa_temp.offset = <const_int>
1410 Rule 7:
1411 (set <reg1>:cfa_temp.reg (ior <reg2>:cfa_temp.reg <const_int>))
1412 effects: cfa_temp.reg = <reg1>
1413 cfa_temp.offset |= <const_int>
1415 Rule 8:
1416 (set <reg> (high <exp>))
1417 effects: none
1419 Rule 9:
1420 (set <reg> (lo_sum <exp> <const_int>))
1421 effects: cfa_temp.reg = <reg>
1422 cfa_temp.offset = <const_int>
1424 Rule 10:
1425 (set (mem (pre_modify sp:cfa_store (???? <reg1> <const_int>))) <reg2>)
1426 effects: cfa_store.offset -= <const_int>
1427 cfa.offset = cfa_store.offset if cfa.reg == sp
1428 cfa.reg = sp
1429 cfa.base_offset = -cfa_store.offset
1431 Rule 11:
1432 (set (mem ({pre_inc,pre_dec} sp:cfa_store.reg)) <reg>)
1433 effects: cfa_store.offset += -/+ mode_size(mem)
1434 cfa.offset = cfa_store.offset if cfa.reg == sp
1435 cfa.reg = sp
1436 cfa.base_offset = -cfa_store.offset
1438 Rule 12:
1439 (set (mem ({minus,plus,losum} <reg1>:{cfa_store,cfa_temp} <const_int>))
1441 <reg2>)
1442 effects: cfa.reg = <reg1>
1443 cfa.base_offset = -/+ <const_int> - {cfa_store,cfa_temp}.offset
1445 Rule 13:
1446 (set (mem <reg1>:{cfa_store,cfa_temp}) <reg2>)
1447 effects: cfa.reg = <reg1>
1448 cfa.base_offset = -{cfa_store,cfa_temp}.offset
1450 Rule 14:
1451 (set (mem (postinc <reg1>:cfa_temp <const_int>)) <reg2>)
1452 effects: cfa.reg = <reg1>
1453 cfa.base_offset = -cfa_temp.offset
1454 cfa_temp.offset -= mode_size(mem)
1456   Rule 15:
1457   (set <reg> {unspec, unspec_volatile})
1458   effects: target-dependent */
1460 static void
1461 dwarf2out_frame_debug_expr (rtx expr, const char *label)
1463 rtx src, dest;
1464 HOST_WIDE_INT offset;
1466 /* If RTX_FRAME_RELATED_P is set on a PARALLEL, process each member of
1467 the PARALLEL independently. The first element is always processed if
1468 it is a SET. This is for backward compatibility. Other elements
1469 are processed only if they are SETs and the RTX_FRAME_RELATED_P
1470 flag is set in them. */
1471 if (GET_CODE (expr) == PARALLEL || GET_CODE (expr) == SEQUENCE)
1473 int par_index;
1474 int limit = XVECLEN (expr, 0);
1476 for (par_index = 0; par_index < limit; par_index++)
1477 if (GET_CODE (XVECEXP (expr, 0, par_index)) == SET
1478 && (RTX_FRAME_RELATED_P (XVECEXP (expr, 0, par_index))
1479 || par_index == 0))
1480 dwarf2out_frame_debug_expr (XVECEXP (expr, 0, par_index), label);
1482 return;
1485 gcc_assert (GET_CODE (expr) == SET);
1487 src = SET_SRC (expr);
1488 dest = SET_DEST (expr);
1490 if (REG_P (src))
1492 rtx rsi = reg_saved_in (src);
1493 if (rsi)
1494 src = rsi;
1497 switch (GET_CODE (dest))
1499 case REG:
1500 switch (GET_CODE (src))
1502 /* Setting FP from SP. */
1503 case REG:
1504 if (cfa.reg == (unsigned) REGNO (src))
1506 /* Rule 1 */
1507 /* Update the CFA rule wrt SP or FP. Make sure src is
1508 relative to the current CFA register.
1510 We used to require that dest be either SP or FP, but the
1511 ARM copies SP to a temporary register, and from there to
1512 FP. So we just rely on the backends to only set
1513 RTX_FRAME_RELATED_P on appropriate insns. */
1514 cfa.reg = REGNO (dest);
1515 cfa_temp.reg = cfa.reg;
1516 cfa_temp.offset = cfa.offset;
1518 else
1520 /* Saving a register in a register. */
1521 gcc_assert (call_used_regs [REGNO (dest)]
1522 && (!fixed_regs [REGNO (dest)]
1523 /* For the SPARC and its register window. */
1524 || DWARF_FRAME_REGNUM (REGNO (src))
1525 == DWARF_FRAME_RETURN_COLUMN));
1526 queue_reg_save (label, src, dest, 0);
1528 break;
1530 case PLUS:
1531 case MINUS:
1532 case LO_SUM:
1533 if (dest == stack_pointer_rtx)
1535 /* Rule 2 */
1536 /* Adjusting SP. */
1537 switch (GET_CODE (XEXP (src, 1)))
1539 case CONST_INT:
1540 offset = INTVAL (XEXP (src, 1));
1541 break;
1542 case REG:
1543 gcc_assert ((unsigned) REGNO (XEXP (src, 1))
1544 == cfa_temp.reg);
1545 offset = cfa_temp.offset;
1546 break;
1547 default:
1548 gcc_unreachable ();
1551 if (XEXP (src, 0) == hard_frame_pointer_rtx)
1553 /* Restoring SP from FP in the epilogue. */
1554 gcc_assert (cfa.reg == (unsigned) HARD_FRAME_POINTER_REGNUM);
1555 cfa.reg = STACK_POINTER_REGNUM;
1557 else if (GET_CODE (src) == LO_SUM)
1558 /* Assume we've set the source reg of the LO_SUM from sp. */
1560 else
1561 gcc_assert (XEXP (src, 0) == stack_pointer_rtx);
1563 if (GET_CODE (src) != MINUS)
1564 offset = -offset;
1565 if (cfa.reg == STACK_POINTER_REGNUM)
1566 cfa.offset += offset;
1567 if (cfa_store.reg == STACK_POINTER_REGNUM)
1568 cfa_store.offset += offset;
1570 else if (dest == hard_frame_pointer_rtx)
1572 /* Rule 3 */
1573 /* Either setting the FP from an offset of the SP,
1574 or adjusting the FP */
1575 gcc_assert (frame_pointer_needed);
1577 gcc_assert (REG_P (XEXP (src, 0))
1578 && (unsigned) REGNO (XEXP (src, 0)) == cfa.reg
1579 && GET_CODE (XEXP (src, 1)) == CONST_INT);
1580 offset = INTVAL (XEXP (src, 1));
1581 if (GET_CODE (src) != MINUS)
1582 offset = -offset;
1583 cfa.offset += offset;
1584 cfa.reg = HARD_FRAME_POINTER_REGNUM;
1586 else
1588 gcc_assert (GET_CODE (src) != MINUS);
1590 /* Rule 4 */
1591 if (REG_P (XEXP (src, 0))
1592 && REGNO (XEXP (src, 0)) == cfa.reg
1593 && GET_CODE (XEXP (src, 1)) == CONST_INT)
1595 /* Setting a temporary CFA register that will be copied
1596 into the FP later on. */
1597 offset = - INTVAL (XEXP (src, 1));
1598 cfa.offset += offset;
1599 cfa.reg = REGNO (dest);
1600 /* Or used to save regs to the stack. */
1601 cfa_temp.reg = cfa.reg;
1602 cfa_temp.offset = cfa.offset;
1605 /* Rule 5 */
1606 else if (REG_P (XEXP (src, 0))
1607 && REGNO (XEXP (src, 0)) == cfa_temp.reg
1608 && XEXP (src, 1) == stack_pointer_rtx)
1610 /* Setting a scratch register that we will use instead
1611 of SP for saving registers to the stack. */
1612 gcc_assert (cfa.reg == STACK_POINTER_REGNUM);
1613 cfa_store.reg = REGNO (dest);
1614 cfa_store.offset = cfa.offset - cfa_temp.offset;
1617 /* Rule 9 */
1618 else if (GET_CODE (src) == LO_SUM
1619 && GET_CODE (XEXP (src, 1)) == CONST_INT)
1621 cfa_temp.reg = REGNO (dest);
1622 cfa_temp.offset = INTVAL (XEXP (src, 1));
1624 else
1625 gcc_unreachable ();
1627 break;
1629 /* Rule 6 */
1630 case CONST_INT:
1631 cfa_temp.reg = REGNO (dest);
1632 cfa_temp.offset = INTVAL (src);
1633 break;
1635 /* Rule 7 */
1636 case IOR:
1637 gcc_assert (REG_P (XEXP (src, 0))
1638 && (unsigned) REGNO (XEXP (src, 0)) == cfa_temp.reg
1639 && GET_CODE (XEXP (src, 1)) == CONST_INT);
1641 if ((unsigned) REGNO (dest) != cfa_temp.reg)
1642 cfa_temp.reg = REGNO (dest);
1643 cfa_temp.offset |= INTVAL (XEXP (src, 1));
1644 break;
1646 /* Skip over HIGH, assuming it will be followed by a LO_SUM,
1647 which will fill in all of the bits. */
1648 /* Rule 8 */
1649 case HIGH:
1650 break;
1652 /* Rule 15 */
1653 case UNSPEC:
1654 case UNSPEC_VOLATILE:
1655 gcc_assert (targetm.dwarf_handle_frame_unspec);
1656 targetm.dwarf_handle_frame_unspec (label, expr, XINT (src, 1));
1657 break;
1659 default:
1660 gcc_unreachable ();
1663 def_cfa_1 (label, &cfa);
1664 break;
1666 case MEM:
1667 gcc_assert (REG_P (src));
1669 /* Saving a register to the stack. Make sure dest is relative to the
1670 CFA register. */
1671 switch (GET_CODE (XEXP (dest, 0)))
1673 /* Rule 10 */
1674 /* With a push. */
1675 case PRE_MODIFY:
1676 /* We can't handle variable size modifications. */
1677 gcc_assert (GET_CODE (XEXP (XEXP (XEXP (dest, 0), 1), 1))
1678 == CONST_INT);
1679 offset = -INTVAL (XEXP (XEXP (XEXP (dest, 0), 1), 1));
1681 gcc_assert (REGNO (XEXP (XEXP (dest, 0), 0)) == STACK_POINTER_REGNUM
1682 && cfa_store.reg == STACK_POINTER_REGNUM);
1684 cfa_store.offset += offset;
1685 if (cfa.reg == STACK_POINTER_REGNUM)
1686 cfa.offset = cfa_store.offset;
1688 offset = -cfa_store.offset;
1689 break;
1691 /* Rule 11 */
1692 case PRE_INC:
1693 case PRE_DEC:
1694 offset = GET_MODE_SIZE (GET_MODE (dest));
1695 if (GET_CODE (XEXP (dest, 0)) == PRE_INC)
1696 offset = -offset;
1698 gcc_assert (REGNO (XEXP (XEXP (dest, 0), 0)) == STACK_POINTER_REGNUM
1699 && cfa_store.reg == STACK_POINTER_REGNUM);
1701 cfa_store.offset += offset;
1702 if (cfa.reg == STACK_POINTER_REGNUM)
1703 cfa.offset = cfa_store.offset;
1705 offset = -cfa_store.offset;
1706 break;
1708 /* Rule 12 */
1709 /* With an offset. */
1710 case PLUS:
1711 case MINUS:
1712 case LO_SUM:
1714 int regno;
1716 gcc_assert (GET_CODE (XEXP (XEXP (dest, 0), 1)) == CONST_INT);
1717 offset = INTVAL (XEXP (XEXP (dest, 0), 1));
1718 if (GET_CODE (XEXP (dest, 0)) == MINUS)
1719 offset = -offset;
1721 regno = REGNO (XEXP (XEXP (dest, 0), 0));
1723 if (cfa_store.reg == (unsigned) regno)
1724 offset -= cfa_store.offset;
1725 else
1727 gcc_assert (cfa_temp.reg == (unsigned) regno);
1728 offset -= cfa_temp.offset;
1731 break;
1733 /* Rule 13 */
1734 /* Without an offset. */
1735 case REG:
1737 int regno = REGNO (XEXP (dest, 0));
1739 if (cfa_store.reg == (unsigned) regno)
1740 offset = -cfa_store.offset;
1741 else
1743 gcc_assert (cfa_temp.reg == (unsigned) regno);
1744 offset = -cfa_temp.offset;
1747 break;
1749 /* Rule 14 */
1750 case POST_INC:
1751 gcc_assert (cfa_temp.reg
1752 == (unsigned) REGNO (XEXP (XEXP (dest, 0), 0)));
1753 offset = -cfa_temp.offset;
1754 cfa_temp.offset -= GET_MODE_SIZE (GET_MODE (dest));
1755 break;
1757 default:
1758 gcc_unreachable ();
1761 if (REGNO (src) != STACK_POINTER_REGNUM
1762 && REGNO (src) != HARD_FRAME_POINTER_REGNUM
1763 && (unsigned) REGNO (src) == cfa.reg)
1765 /* We're storing the current CFA reg into the stack. */
1767 if (cfa.offset == 0)
1769 /* If the source register is exactly the CFA, assume
1770 we're saving SP like any other register; this happens
1771 on the ARM. */
1772 def_cfa_1 (label, &cfa);
1773 queue_reg_save (label, stack_pointer_rtx, NULL_RTX, offset);
1774 break;
1776 else
1778 /* Otherwise, we'll need to look in the stack to
1779 calculate the CFA. */
1780 rtx x = XEXP (dest, 0);
1782 if (!REG_P (x))
1783 x = XEXP (x, 0);
1784 gcc_assert (REG_P (x));
1786 cfa.reg = REGNO (x);
1787 cfa.base_offset = offset;
1788 cfa.indirect = 1;
1789 def_cfa_1 (label, &cfa);
1790 break;
1794 def_cfa_1 (label, &cfa);
1795 queue_reg_save (label, src, NULL_RTX, offset);
1796 break;
1798 default:
1799 gcc_unreachable ();
1803 /* Record call frame debugging information for INSN, which either
1804 sets SP or FP (adjusting how we calculate the frame address) or saves a
1805 register to the stack. If INSN is NULL_RTX, initialize our state.
1807 If AFTER_P is false, we're being called before the insn is emitted,
1808 otherwise after. Call instructions get invoked twice. */
1810 void
1811 dwarf2out_frame_debug (rtx insn, bool after_p)
1813 const char *label;
1814 rtx src;
1816 if (insn == NULL_RTX)
1818 size_t i;
1820 /* Flush any queued register saves. */
1821 flush_queued_reg_saves ();
1823 /* Set up state for generating call frame debug info. */
1824 lookup_cfa (&cfa);
1825 gcc_assert (cfa.reg
1826 == (unsigned long)DWARF_FRAME_REGNUM (STACK_POINTER_REGNUM));
1828 cfa.reg = STACK_POINTER_REGNUM;
1829 cfa_store = cfa;
1830 cfa_temp.reg = -1;
1831 cfa_temp.offset = 0;
1833 for (i = 0; i < num_regs_saved_in_regs; i++)
1835 regs_saved_in_regs[i].orig_reg = NULL_RTX;
1836 regs_saved_in_regs[i].saved_in_reg = NULL_RTX;
1838 num_regs_saved_in_regs = 0;
1839 return;
1842 if (!NONJUMP_INSN_P (insn) || clobbers_queued_reg_save (insn))
1843 flush_queued_reg_saves ();
1845 if (! RTX_FRAME_RELATED_P (insn))
1847 if (!ACCUMULATE_OUTGOING_ARGS)
1848 dwarf2out_stack_adjust (insn, after_p);
1849 return;
1852 label = dwarf2out_cfi_label ();
1853 src = find_reg_note (insn, REG_FRAME_RELATED_EXPR, NULL_RTX);
1854 if (src)
1855 insn = XEXP (src, 0);
1856 else
1857 insn = PATTERN (insn);
1859 dwarf2out_frame_debug_expr (insn, label);
1862 #endif
1864 /* Describe for the GTY machinery what parts of dw_cfi_oprnd1 are used. */
1865 static enum dw_cfi_oprnd_type dw_cfi_oprnd1_desc
1866 (enum dwarf_call_frame_info cfi);
1868 static enum dw_cfi_oprnd_type
1869 dw_cfi_oprnd1_desc (enum dwarf_call_frame_info cfi)
1871 switch (cfi)
1873 case DW_CFA_nop:
1874 case DW_CFA_GNU_window_save:
1875 return dw_cfi_oprnd_unused;
1877 case DW_CFA_set_loc:
1878 case DW_CFA_advance_loc1:
1879 case DW_CFA_advance_loc2:
1880 case DW_CFA_advance_loc4:
1881 case DW_CFA_MIPS_advance_loc8:
1882 return dw_cfi_oprnd_addr;
1884 case DW_CFA_offset:
1885 case DW_CFA_offset_extended:
1886 case DW_CFA_def_cfa:
1887 case DW_CFA_offset_extended_sf:
1888 case DW_CFA_def_cfa_sf:
1889 case DW_CFA_restore_extended:
1890 case DW_CFA_undefined:
1891 case DW_CFA_same_value:
1892 case DW_CFA_def_cfa_register:
1893 case DW_CFA_register:
1894 return dw_cfi_oprnd_reg_num;
1896 case DW_CFA_def_cfa_offset:
1897 case DW_CFA_GNU_args_size:
1898 case DW_CFA_def_cfa_offset_sf:
1899 return dw_cfi_oprnd_offset;
1901 case DW_CFA_def_cfa_expression:
1902 case DW_CFA_expression:
1903 return dw_cfi_oprnd_loc;
1905 default:
1906 gcc_unreachable ();
1910 /* Describe for the GTY machinery what parts of dw_cfi_oprnd2 are used. */
1911 static enum dw_cfi_oprnd_type dw_cfi_oprnd2_desc
1912 (enum dwarf_call_frame_info cfi);
1914 static enum dw_cfi_oprnd_type
1915 dw_cfi_oprnd2_desc (enum dwarf_call_frame_info cfi)
1917 switch (cfi)
1919 case DW_CFA_def_cfa:
1920 case DW_CFA_def_cfa_sf:
1921 case DW_CFA_offset:
1922 case DW_CFA_offset_extended_sf:
1923 case DW_CFA_offset_extended:
1924 return dw_cfi_oprnd_offset;
1926 case DW_CFA_register:
1927 return dw_cfi_oprnd_reg_num;
1929 default:
1930 return dw_cfi_oprnd_unused;
1934 #if defined (DWARF2_DEBUGGING_INFO) || defined (DWARF2_UNWIND_INFO)
1936 /* Map register numbers held in the call frame info that gcc has
1937 collected using DWARF_FRAME_REGNUM to those that should be output in
1938 .debug_frame and .eh_frame. */
1939 #ifndef DWARF2_FRAME_REG_OUT
1940 #define DWARF2_FRAME_REG_OUT(REGNO, FOR_EH) (REGNO)
1941 #endif
1943 /* Output a Call Frame Information opcode and its operand(s). */
1945 static void
1946 output_cfi (dw_cfi_ref cfi, dw_fde_ref fde, int for_eh)
1948 unsigned long r;
1949 if (cfi->dw_cfi_opc == DW_CFA_advance_loc)
1950 dw2_asm_output_data (1, (cfi->dw_cfi_opc
1951 | (cfi->dw_cfi_oprnd1.dw_cfi_offset & 0x3f)),
1952 "DW_CFA_advance_loc " HOST_WIDE_INT_PRINT_HEX,
1953 cfi->dw_cfi_oprnd1.dw_cfi_offset);
1954 else if (cfi->dw_cfi_opc == DW_CFA_offset)
1956 r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, for_eh);
1957 dw2_asm_output_data (1, (cfi->dw_cfi_opc | (r & 0x3f)),
1958 "DW_CFA_offset, column 0x%lx", r);
1959 dw2_asm_output_data_uleb128 (cfi->dw_cfi_oprnd2.dw_cfi_offset, NULL);
1961 else if (cfi->dw_cfi_opc == DW_CFA_restore)
1963 r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, for_eh);
1964 dw2_asm_output_data (1, (cfi->dw_cfi_opc | (r & 0x3f)),
1965 "DW_CFA_restore, column 0x%lx", r);
1967 else
1969 dw2_asm_output_data (1, cfi->dw_cfi_opc,
1970 "%s", dwarf_cfi_name (cfi->dw_cfi_opc));
1972 switch (cfi->dw_cfi_opc)
1974 case DW_CFA_set_loc:
1975 if (for_eh)
1976 dw2_asm_output_encoded_addr_rtx (
1977 ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/1, /*global=*/0),
1978 gen_rtx_SYMBOL_REF (Pmode, cfi->dw_cfi_oprnd1.dw_cfi_addr),
1979 NULL);
1980 else
1981 dw2_asm_output_addr (DWARF2_ADDR_SIZE,
1982 cfi->dw_cfi_oprnd1.dw_cfi_addr, NULL);
1983 break;
1985 case DW_CFA_advance_loc1:
1986 dw2_asm_output_delta (1, cfi->dw_cfi_oprnd1.dw_cfi_addr,
1987 fde->dw_fde_current_label, NULL);
1988 fde->dw_fde_current_label = cfi->dw_cfi_oprnd1.dw_cfi_addr;
1989 break;
1991 case DW_CFA_advance_loc2:
1992 dw2_asm_output_delta (2, cfi->dw_cfi_oprnd1.dw_cfi_addr,
1993 fde->dw_fde_current_label, NULL);
1994 fde->dw_fde_current_label = cfi->dw_cfi_oprnd1.dw_cfi_addr;
1995 break;
1997 case DW_CFA_advance_loc4:
1998 dw2_asm_output_delta (4, cfi->dw_cfi_oprnd1.dw_cfi_addr,
1999 fde->dw_fde_current_label, NULL);
2000 fde->dw_fde_current_label = cfi->dw_cfi_oprnd1.dw_cfi_addr;
2001 break;
2003 case DW_CFA_MIPS_advance_loc8:
2004 dw2_asm_output_delta (8, cfi->dw_cfi_oprnd1.dw_cfi_addr,
2005 fde->dw_fde_current_label, NULL);
2006 fde->dw_fde_current_label = cfi->dw_cfi_oprnd1.dw_cfi_addr;
2007 break;
2009 case DW_CFA_offset_extended:
2010 case DW_CFA_def_cfa:
2011 r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, for_eh);
2012 dw2_asm_output_data_uleb128 (r, NULL);
2013 dw2_asm_output_data_uleb128 (cfi->dw_cfi_oprnd2.dw_cfi_offset, NULL);
2014 break;
2016 case DW_CFA_offset_extended_sf:
2017 case DW_CFA_def_cfa_sf:
2018 r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, for_eh);
2019 dw2_asm_output_data_uleb128 (r, NULL);
2020 dw2_asm_output_data_sleb128 (cfi->dw_cfi_oprnd2.dw_cfi_offset, NULL);
2021 break;
2023 case DW_CFA_restore_extended:
2024 case DW_CFA_undefined:
2025 case DW_CFA_same_value:
2026 case DW_CFA_def_cfa_register:
2027 r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, for_eh);
2028 dw2_asm_output_data_uleb128 (r, NULL);
2029 break;
2031 case DW_CFA_register:
2032 r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd1.dw_cfi_reg_num, for_eh);
2033 dw2_asm_output_data_uleb128 (r, NULL);
2034 r = DWARF2_FRAME_REG_OUT (cfi->dw_cfi_oprnd2.dw_cfi_reg_num, for_eh);
2035 dw2_asm_output_data_uleb128 (r, NULL);
2036 break;
2038 case DW_CFA_def_cfa_offset:
2039 case DW_CFA_GNU_args_size:
2040 dw2_asm_output_data_uleb128 (cfi->dw_cfi_oprnd1.dw_cfi_offset, NULL);
2041 break;
2043 case DW_CFA_def_cfa_offset_sf:
2044 dw2_asm_output_data_sleb128 (cfi->dw_cfi_oprnd1.dw_cfi_offset, NULL);
2045 break;
2047 case DW_CFA_GNU_window_save:
2048 break;
2050 case DW_CFA_def_cfa_expression:
2051 case DW_CFA_expression:
2052 output_cfa_loc (cfi);
2053 break;
2055 case DW_CFA_GNU_negative_offset_extended:
2056 /* Obsoleted by DW_CFA_offset_extended_sf. */
2057 gcc_unreachable ();
2059 default:
2060 break;
2065 /* Output the call frame information used to record information
2066 that relates to calculating the frame pointer, and records the
2067 location of saved registers. */
2069 static void
2070 output_call_frame_info (int for_eh)
2072 unsigned int i;
2073 dw_fde_ref fde;
2074 dw_cfi_ref cfi;
2075 char l1[20], l2[20], section_start_label[20];
2076 bool any_lsda_needed = false;
2077 char augmentation[6];
2078 int augmentation_size;
2079 int fde_encoding = DW_EH_PE_absptr;
2080 int per_encoding = DW_EH_PE_absptr;
2081 int lsda_encoding = DW_EH_PE_absptr;
2082 int return_reg;
2084 /* Don't emit a CIE if there won't be any FDEs. */
2085 if (fde_table_in_use == 0)
2086 return;
2088 /* If we make FDEs linkonce, we may have to emit an empty label for
2089 an FDE that wouldn't otherwise be emitted. We want to avoid
2090 having an FDE kept around when the function it refers to is
2091 discarded. Example where this matters: a primary function
2092 template in C++ requires EH information, but an explicit
2093 specialization doesn't. */
2094 if (TARGET_USES_WEAK_UNWIND_INFO
2095 && ! flag_asynchronous_unwind_tables
2096 && for_eh)
2097 for (i = 0; i < fde_table_in_use; i++)
2098 if ((fde_table[i].nothrow || fde_table[i].all_throwers_are_sibcalls)
2099 && !fde_table[i].uses_eh_lsda
2100 && ! DECL_WEAK (fde_table[i].decl))
2101 targetm.asm_out.unwind_label (asm_out_file, fde_table[i].decl,
2102 for_eh, /* empty */ 1);
2104 /* If we don't have any functions we'll want to unwind out of, don't
2105 emit any EH unwind information. Note that if exceptions aren't
2106 enabled, we won't have collected nothrow information, and if we
2107 asked for asynchronous tables, we always want this info. */
2108 if (for_eh)
2110 bool any_eh_needed = !flag_exceptions || flag_asynchronous_unwind_tables;
2112 for (i = 0; i < fde_table_in_use; i++)
2113 if (fde_table[i].uses_eh_lsda)
2114 any_eh_needed = any_lsda_needed = true;
2115 else if (TARGET_USES_WEAK_UNWIND_INFO && DECL_WEAK (fde_table[i].decl))
2116 any_eh_needed = true;
2117 else if (! fde_table[i].nothrow
2118 && ! fde_table[i].all_throwers_are_sibcalls)
2119 any_eh_needed = true;
2121 if (! any_eh_needed)
2122 return;
2125 /* We're going to be generating comments, so turn on app. */
2126 if (flag_debug_asm)
2127 app_enable ();
2129 if (for_eh)
2130 targetm.asm_out.eh_frame_section ();
2131 else
2132 named_section_flags (DEBUG_FRAME_SECTION, SECTION_DEBUG);
2134 ASM_GENERATE_INTERNAL_LABEL (section_start_label, FRAME_BEGIN_LABEL, for_eh);
2135 ASM_OUTPUT_LABEL (asm_out_file, section_start_label);
2137 /* Output the CIE. */
2138 ASM_GENERATE_INTERNAL_LABEL (l1, CIE_AFTER_SIZE_LABEL, for_eh);
2139 ASM_GENERATE_INTERNAL_LABEL (l2, CIE_END_LABEL, for_eh);
2140 dw2_asm_output_delta (for_eh ? 4 : DWARF_OFFSET_SIZE, l2, l1,
2141 "Length of Common Information Entry");
2142 ASM_OUTPUT_LABEL (asm_out_file, l1);
2144 /* Now that the CIE pointer is PC-relative for EH,
2145 use 0 to identify the CIE. */
2146 dw2_asm_output_data ((for_eh ? 4 : DWARF_OFFSET_SIZE),
2147 (for_eh ? 0 : DW_CIE_ID),
2148 "CIE Identifier Tag");
2150 dw2_asm_output_data (1, DW_CIE_VERSION, "CIE Version");
2152 augmentation[0] = 0;
2153 augmentation_size = 0;
2154 if (for_eh)
2156 char *p;
2158 /* Augmentation:
2159 z Indicates that a uleb128 is present to size the
2160 augmentation section.
2161 L Indicates the encoding (and thus presence) of
2162 an LSDA pointer in the FDE augmentation.
2163 R Indicates a non-default pointer encoding for
2164 FDE code pointers.
2165 P Indicates the presence of an encoding + language
2166 personality routine in the CIE augmentation. */
2168 fde_encoding = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/1, /*global=*/0);
2169 per_encoding = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/2, /*global=*/1);
2170 lsda_encoding = ASM_PREFERRED_EH_DATA_FORMAT (/*code=*/0, /*global=*/0);
2172 p = augmentation + 1;
2173 if (eh_personality_libfunc)
2175 *p++ = 'P';
2176 augmentation_size += 1 + size_of_encoded_value (per_encoding);
2178 if (any_lsda_needed)
2180 *p++ = 'L';
2181 augmentation_size += 1;
2183 if (fde_encoding != DW_EH_PE_absptr)
2185 *p++ = 'R';
2186 augmentation_size += 1;
2188 if (p > augmentation + 1)
2190 augmentation[0] = 'z';
2191 *p = '\0';
2194 /* Ug. Some platforms can't do unaligned dynamic relocations at all. */
2195 if (eh_personality_libfunc && per_encoding == DW_EH_PE_aligned)
2197 int offset = ( 4 /* Length */
2198 + 4 /* CIE Id */
2199 + 1 /* CIE version */
2200 + strlen (augmentation) + 1 /* Augmentation */
2201 + size_of_uleb128 (1) /* Code alignment */
2202 + size_of_sleb128 (DWARF_CIE_DATA_ALIGNMENT)
2203 + 1 /* RA column */
2204 + 1 /* Augmentation size */
2205 + 1 /* Personality encoding */ );
2206 int pad = -offset & (PTR_SIZE - 1);
2208 augmentation_size += pad;
2210 /* Augmentations should be small, so there's scarce need to
2211 iterate for a solution. Die if we exceed one uleb128 byte. */
2212 gcc_assert (size_of_uleb128 (augmentation_size) == 1);
2216 dw2_asm_output_nstring (augmentation, -1, "CIE Augmentation");
2217 dw2_asm_output_data_uleb128 (1, "CIE Code Alignment Factor");
2218 dw2_asm_output_data_sleb128 (DWARF_CIE_DATA_ALIGNMENT,
2219 "CIE Data Alignment Factor");
2221 return_reg = DWARF2_FRAME_REG_OUT (DWARF_FRAME_RETURN_COLUMN, for_eh);
2222 if (DW_CIE_VERSION == 1)
2223 dw2_asm_output_data (1, return_reg, "CIE RA Column");
2224 else
2225 dw2_asm_output_data_uleb128 (return_reg, "CIE RA Column");
2227 if (augmentation[0])
2229 dw2_asm_output_data_uleb128 (augmentation_size, "Augmentation size");
2230 if (eh_personality_libfunc)
2232 dw2_asm_output_data (1, per_encoding, "Personality (%s)",
2233 eh_data_format_name (per_encoding));
2234 dw2_asm_output_encoded_addr_rtx (per_encoding,
2235 eh_personality_libfunc, NULL);
2238 if (any_lsda_needed)
2239 dw2_asm_output_data (1, lsda_encoding, "LSDA Encoding (%s)",
2240 eh_data_format_name (lsda_encoding));
2242 if (fde_encoding != DW_EH_PE_absptr)
2243 dw2_asm_output_data (1, fde_encoding, "FDE Encoding (%s)",
2244 eh_data_format_name (fde_encoding));
2247 for (cfi = cie_cfi_head; cfi != NULL; cfi = cfi->dw_cfi_next)
2248 output_cfi (cfi, NULL, for_eh);
2250 /* Pad the CIE out to an address sized boundary. */
2251 ASM_OUTPUT_ALIGN (asm_out_file,
2252 floor_log2 (for_eh ? PTR_SIZE : DWARF2_ADDR_SIZE));
2253 ASM_OUTPUT_LABEL (asm_out_file, l2);
2255 /* Loop through all of the FDE's. */
2256 for (i = 0; i < fde_table_in_use; i++)
2258 fde = &fde_table[i];
2260 /* Don't emit EH unwind info for leaf functions that don't need it. */
2261 if (for_eh && !flag_asynchronous_unwind_tables && flag_exceptions
2262 && (fde->nothrow || fde->all_throwers_are_sibcalls)
2263 && ! (TARGET_USES_WEAK_UNWIND_INFO && DECL_WEAK (fde_table[i].decl))
2264 && !fde->uses_eh_lsda)
2265 continue;
2267 targetm.asm_out.unwind_label (asm_out_file, fde->decl, for_eh, /* empty */ 0);
2268 targetm.asm_out.internal_label (asm_out_file, FDE_LABEL, for_eh + i * 2);
2269 ASM_GENERATE_INTERNAL_LABEL (l1, FDE_AFTER_SIZE_LABEL, for_eh + i * 2);
2270 ASM_GENERATE_INTERNAL_LABEL (l2, FDE_END_LABEL, for_eh + i * 2);
2271 dw2_asm_output_delta (for_eh ? 4 : DWARF_OFFSET_SIZE, l2, l1,
2272 "FDE Length");
2273 ASM_OUTPUT_LABEL (asm_out_file, l1);
2275 if (for_eh)
2276 dw2_asm_output_delta (4, l1, section_start_label, "FDE CIE offset");
2277 else
2278 dw2_asm_output_offset (DWARF_OFFSET_SIZE, section_start_label,
2279 "FDE CIE offset");
2281 if (for_eh)
2283 rtx sym_ref = gen_rtx_SYMBOL_REF (Pmode, fde->dw_fde_begin);
2284 SYMBOL_REF_FLAGS (sym_ref) |= SYMBOL_FLAG_LOCAL;
2285 dw2_asm_output_encoded_addr_rtx (fde_encoding,
2286 sym_ref,
2287 "FDE initial location");
2288 if (fde->dw_fde_switched_sections)
2290 rtx sym_ref2 = gen_rtx_SYMBOL_REF (Pmode,
2291 fde->dw_fde_unlikely_section_label);
2292 rtx sym_ref3= gen_rtx_SYMBOL_REF (Pmode,
2293 fde->dw_fde_hot_section_label);
2294 SYMBOL_REF_FLAGS (sym_ref2) |= SYMBOL_FLAG_LOCAL;
2295 SYMBOL_REF_FLAGS (sym_ref3) |= SYMBOL_FLAG_LOCAL;
2296 dw2_asm_output_encoded_addr_rtx (fde_encoding, sym_ref3,
2297 "FDE initial location");
2298 dw2_asm_output_delta (size_of_encoded_value (fde_encoding),
2299 fde->dw_fde_hot_section_end_label,
2300 fde->dw_fde_hot_section_label,
2301 "FDE address range");
2302 dw2_asm_output_encoded_addr_rtx (fde_encoding, sym_ref2,
2303 "FDE initial location");
2304 dw2_asm_output_delta (size_of_encoded_value (fde_encoding),
2305 fde->dw_fde_unlikely_section_end_label,
2306 fde->dw_fde_unlikely_section_label,
2307 "FDE address range");
2309 else
2310 dw2_asm_output_delta (size_of_encoded_value (fde_encoding),
2311 fde->dw_fde_end, fde->dw_fde_begin,
2312 "FDE address range");
2314 else
2316 dw2_asm_output_addr (DWARF2_ADDR_SIZE, fde->dw_fde_begin,
2317 "FDE initial location");
2318 if (fde->dw_fde_switched_sections)
2320 dw2_asm_output_addr (DWARF2_ADDR_SIZE,
2321 fde->dw_fde_hot_section_label,
2322 "FDE initial location");
2323 dw2_asm_output_delta (DWARF2_ADDR_SIZE,
2324 fde->dw_fde_hot_section_end_label,
2325 fde->dw_fde_hot_section_label,
2326 "FDE address range");
2327 dw2_asm_output_addr (DWARF2_ADDR_SIZE,
2328 fde->dw_fde_unlikely_section_label,
2329 "FDE initial location");
2330 dw2_asm_output_delta (DWARF2_ADDR_SIZE,
2331 fde->dw_fde_unlikely_section_end_label,
2332 fde->dw_fde_unlikely_section_label,
2333 "FDE address range");
2335 else
2336 dw2_asm_output_delta (DWARF2_ADDR_SIZE,
2337 fde->dw_fde_end, fde->dw_fde_begin,
2338 "FDE address range");
2341 if (augmentation[0])
2343 if (any_lsda_needed)
2345 int size = size_of_encoded_value (lsda_encoding);
2347 if (lsda_encoding == DW_EH_PE_aligned)
2349 int offset = ( 4 /* Length */
2350 + 4 /* CIE offset */
2351 + 2 * size_of_encoded_value (fde_encoding)
2352 + 1 /* Augmentation size */ );
2353 int pad = -offset & (PTR_SIZE - 1);
2355 size += pad;
2356 gcc_assert (size_of_uleb128 (size) == 1);
2359 dw2_asm_output_data_uleb128 (size, "Augmentation size");
2361 if (fde->uses_eh_lsda)
2363 ASM_GENERATE_INTERNAL_LABEL (l1, "LLSDA",
2364 fde->funcdef_number);
2365 dw2_asm_output_encoded_addr_rtx (
2366 lsda_encoding, gen_rtx_SYMBOL_REF (Pmode, l1),
2367 "Language Specific Data Area");
2369 else
2371 if (lsda_encoding == DW_EH_PE_aligned)
2372 ASM_OUTPUT_ALIGN (asm_out_file, floor_log2 (PTR_SIZE));
2373 dw2_asm_output_data
2374 (size_of_encoded_value (lsda_encoding), 0,
2375 "Language Specific Data Area (none)");
2378 else
2379 dw2_asm_output_data_uleb128 (0, "Augmentation size");
2382 /* Loop through the Call Frame Instructions associated with
2383 this FDE. */
2384 fde->dw_fde_current_label = fde->dw_fde_begin;
2385 for (cfi = fde->dw_fde_cfi; cfi != NULL; cfi = cfi->dw_cfi_next)
2386 output_cfi (cfi, fde, for_eh);
2388 /* Pad the FDE out to an address sized boundary. */
2389 ASM_OUTPUT_ALIGN (asm_out_file,
2390 floor_log2 ((for_eh ? PTR_SIZE : DWARF2_ADDR_SIZE)));
2391 ASM_OUTPUT_LABEL (asm_out_file, l2);
2394 if (for_eh && targetm.terminate_dw2_eh_frame_info)
2395 dw2_asm_output_data (4, 0, "End of Table");
2396 #ifdef MIPS_DEBUGGING_INFO
2397 /* Work around Irix 6 assembler bug whereby labels at the end of a section
2398 get a value of 0. Putting .align 0 after the label fixes it. */
2399 ASM_OUTPUT_ALIGN (asm_out_file, 0);
2400 #endif
2402 /* Turn off app to make assembly quicker. */
2403 if (flag_debug_asm)
2404 app_disable ();
2407 /* Output a marker (i.e. a label) for the beginning of a function, before
2408 the prologue. */
2410 void
2411 dwarf2out_begin_prologue (unsigned int line ATTRIBUTE_UNUSED,
2412 const char *file ATTRIBUTE_UNUSED)
2414 char label[MAX_ARTIFICIAL_LABEL_BYTES];
2415 char * dup_label;
2416 dw_fde_ref fde;
2418 current_function_func_begin_label = NULL;
2420 #ifdef TARGET_UNWIND_INFO
2421 /* ??? current_function_func_begin_label is also used by except.c
2422 for call-site information. We must emit this label if it might
2423 be used. */
2424 if ((! flag_exceptions || USING_SJLJ_EXCEPTIONS)
2425 && ! dwarf2out_do_frame ())
2426 return;
2427 #else
2428 if (! dwarf2out_do_frame ())
2429 return;
2430 #endif
2432 function_section (current_function_decl);
2433 ASM_GENERATE_INTERNAL_LABEL (label, FUNC_BEGIN_LABEL,
2434 current_function_funcdef_no);
2435 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, FUNC_BEGIN_LABEL,
2436 current_function_funcdef_no);
2437 dup_label = xstrdup (label);
2438 current_function_func_begin_label = dup_label;
2440 #ifdef TARGET_UNWIND_INFO
2441 /* We can elide the fde allocation if we're not emitting debug info. */
2442 if (! dwarf2out_do_frame ())
2443 return;
2444 #endif
2446 /* Expand the fde table if necessary. */
2447 if (fde_table_in_use == fde_table_allocated)
2449 fde_table_allocated += FDE_TABLE_INCREMENT;
2450 fde_table = ggc_realloc (fde_table,
2451 fde_table_allocated * sizeof (dw_fde_node));
2452 memset (fde_table + fde_table_in_use, 0,
2453 FDE_TABLE_INCREMENT * sizeof (dw_fde_node));
2456 /* Record the FDE associated with this function. */
2457 current_funcdef_fde = fde_table_in_use;
2459 /* Add the new FDE at the end of the fde_table. */
2460 fde = &fde_table[fde_table_in_use++];
2461 fde->decl = current_function_decl;
2462 fde->dw_fde_begin = dup_label;
2463 fde->dw_fde_current_label = NULL;
2464 fde->dw_fde_hot_section_label = NULL;
2465 fde->dw_fde_hot_section_end_label = NULL;
2466 fde->dw_fde_unlikely_section_label = NULL;
2467 fde->dw_fde_unlikely_section_end_label = NULL;
2468 fde->dw_fde_switched_sections = false;
2469 fde->dw_fde_end = NULL;
2470 fde->dw_fde_cfi = NULL;
2471 fde->funcdef_number = current_function_funcdef_no;
2472 fde->nothrow = TREE_NOTHROW (current_function_decl);
2473 fde->uses_eh_lsda = cfun->uses_eh_lsda;
2474 fde->all_throwers_are_sibcalls = cfun->all_throwers_are_sibcalls;
2476 args_size = old_args_size = 0;
2478 /* We only want to output line number information for the genuine dwarf2
2479 prologue case, not the eh frame case. */
2480 #ifdef DWARF2_DEBUGGING_INFO
2481 if (file)
2482 dwarf2out_source_line (line, file);
2483 #endif
2486 /* Output a marker (i.e. a label) for the absolute end of the generated code
2487 for a function definition. This gets called *after* the epilogue code has
2488 been generated. */
2490 void
2491 dwarf2out_end_epilogue (unsigned int line ATTRIBUTE_UNUSED,
2492 const char *file ATTRIBUTE_UNUSED)
2494 dw_fde_ref fde;
2495 char label[MAX_ARTIFICIAL_LABEL_BYTES];
2497 /* Output a label to mark the endpoint of the code generated for this
2498 function. */
2499 ASM_GENERATE_INTERNAL_LABEL (label, FUNC_END_LABEL,
2500 current_function_funcdef_no);
2501 ASM_OUTPUT_LABEL (asm_out_file, label);
2502 fde = &fde_table[fde_table_in_use - 1];
2503 fde->dw_fde_end = xstrdup (label);
2506 void
2507 dwarf2out_frame_init (void)
2509 /* Allocate the initial hunk of the fde_table. */
2510 fde_table = ggc_alloc_cleared (FDE_TABLE_INCREMENT * sizeof (dw_fde_node));
2511 fde_table_allocated = FDE_TABLE_INCREMENT;
2512 fde_table_in_use = 0;
2514 /* Generate the CFA instructions common to all FDE's. Do it now for the
2515 sake of lookup_cfa. */
2517 #ifdef DWARF2_UNWIND_INFO
2518 /* On entry, the Canonical Frame Address is at SP. */
2519 dwarf2out_def_cfa (NULL, STACK_POINTER_REGNUM, INCOMING_FRAME_SP_OFFSET);
2520 initial_return_save (INCOMING_RETURN_ADDR_RTX);
2521 #endif
2524 void
2525 dwarf2out_frame_finish (void)
2527 /* Output call frame information. */
2528 if (write_symbols == DWARF2_DEBUG
2529 || write_symbols == VMS_AND_DWARF2_DEBUG
2530 #ifdef DWARF2_FRAME_INFO
2531 || DWARF2_FRAME_INFO
2532 #endif
2534 output_call_frame_info (0);
2536 #ifndef TARGET_UNWIND_INFO
2537 /* Output another copy for the unwinder. */
2538 if (! USING_SJLJ_EXCEPTIONS && (flag_unwind_tables || flag_exceptions))
2539 output_call_frame_info (1);
2540 #endif
2542 #endif
2544 /* And now, the subset of the debugging information support code necessary
2545 for emitting location expressions. */
2547 /* We need some way to distinguish DW_OP_addr with a direct symbol
2548 relocation from DW_OP_addr with a dtp-relative symbol relocation. */
2549 #define INTERNAL_DW_OP_tls_addr (0x100 + DW_OP_addr)
2552 typedef struct dw_val_struct *dw_val_ref;
2553 typedef struct die_struct *dw_die_ref;
2554 typedef struct dw_loc_descr_struct *dw_loc_descr_ref;
2555 typedef struct dw_loc_list_struct *dw_loc_list_ref;
2557 /* Each DIE may have a series of attribute/value pairs. Values
2558 can take on several forms. The forms that are used in this
2559 implementation are listed below. */
2561 enum dw_val_class
2563 dw_val_class_addr,
2564 dw_val_class_offset,
2565 dw_val_class_loc,
2566 dw_val_class_loc_list,
2567 dw_val_class_range_list,
2568 dw_val_class_const,
2569 dw_val_class_unsigned_const,
2570 dw_val_class_long_long,
2571 dw_val_class_vec,
2572 dw_val_class_flag,
2573 dw_val_class_die_ref,
2574 dw_val_class_fde_ref,
2575 dw_val_class_lbl_id,
2576 dw_val_class_lbl_offset,
2577 dw_val_class_str
2580 /* Describe a double word constant value. */
2581 /* ??? Every instance of long_long in the code really means CONST_DOUBLE. */
2583 typedef struct dw_long_long_struct GTY(())
2585 unsigned long hi;
2586 unsigned long low;
2588 dw_long_long_const;
2590 /* Describe a floating point constant value, or a vector constant value. */
2592 typedef struct dw_vec_struct GTY(())
2594 unsigned char * GTY((length ("%h.length"))) array;
2595 unsigned length;
2596 unsigned elt_size;
2598 dw_vec_const;
2600 /* The dw_val_node describes an attribute's value, as it is
2601 represented internally. */
2603 typedef struct dw_val_struct GTY(())
2605 enum dw_val_class val_class;
2606 union dw_val_struct_union
2608 rtx GTY ((tag ("dw_val_class_addr"))) val_addr;
2609 unsigned HOST_WIDE_INT GTY ((tag ("dw_val_class_offset"))) val_offset;
2610 dw_loc_list_ref GTY ((tag ("dw_val_class_loc_list"))) val_loc_list;
2611 dw_loc_descr_ref GTY ((tag ("dw_val_class_loc"))) val_loc;
2612 HOST_WIDE_INT GTY ((default)) val_int;
2613 unsigned HOST_WIDE_INT GTY ((tag ("dw_val_class_unsigned_const"))) val_unsigned;
2614 dw_long_long_const GTY ((tag ("dw_val_class_long_long"))) val_long_long;
2615 dw_vec_const GTY ((tag ("dw_val_class_vec"))) val_vec;
2616 struct dw_val_die_union
2618 dw_die_ref die;
2619 int external;
2620 } GTY ((tag ("dw_val_class_die_ref"))) val_die_ref;
2621 unsigned GTY ((tag ("dw_val_class_fde_ref"))) val_fde_index;
2622 struct indirect_string_node * GTY ((tag ("dw_val_class_str"))) val_str;
2623 char * GTY ((tag ("dw_val_class_lbl_id"))) val_lbl_id;
2624 unsigned char GTY ((tag ("dw_val_class_flag"))) val_flag;
2626 GTY ((desc ("%1.val_class"))) v;
2628 dw_val_node;
2630 /* Locations in memory are described using a sequence of stack machine
2631 operations. */
2633 typedef struct dw_loc_descr_struct GTY(())
2635 dw_loc_descr_ref dw_loc_next;
2636 enum dwarf_location_atom dw_loc_opc;
2637 dw_val_node dw_loc_oprnd1;
2638 dw_val_node dw_loc_oprnd2;
2639 int dw_loc_addr;
2641 dw_loc_descr_node;
2643 /* Location lists are ranges + location descriptions for that range,
2644 so you can track variables that are in different places over
2645 their entire life. */
2646 typedef struct dw_loc_list_struct GTY(())
2648 dw_loc_list_ref dw_loc_next;
2649 const char *begin; /* Label for begin address of range */
2650 const char *end; /* Label for end address of range */
2651 char *ll_symbol; /* Label for beginning of location list.
2652 Only on head of list */
2653 const char *section; /* Section this loclist is relative to */
2654 dw_loc_descr_ref expr;
2655 } dw_loc_list_node;
2657 #if defined (DWARF2_DEBUGGING_INFO) || defined (DWARF2_UNWIND_INFO)
2659 static const char *dwarf_stack_op_name (unsigned);
2660 static dw_loc_descr_ref new_loc_descr (enum dwarf_location_atom,
2661 unsigned HOST_WIDE_INT, unsigned HOST_WIDE_INT);
2662 static void add_loc_descr (dw_loc_descr_ref *, dw_loc_descr_ref);
2663 static unsigned long size_of_loc_descr (dw_loc_descr_ref);
2664 static unsigned long size_of_locs (dw_loc_descr_ref);
2665 static void output_loc_operands (dw_loc_descr_ref);
2666 static void output_loc_sequence (dw_loc_descr_ref);
2668 /* Convert a DWARF stack opcode into its string name. */
2670 static const char *
2671 dwarf_stack_op_name (unsigned int op)
2673 switch (op)
2675 case DW_OP_addr:
2676 case INTERNAL_DW_OP_tls_addr:
2677 return "DW_OP_addr";
2678 case DW_OP_deref:
2679 return "DW_OP_deref";
2680 case DW_OP_const1u:
2681 return "DW_OP_const1u";
2682 case DW_OP_const1s:
2683 return "DW_OP_const1s";
2684 case DW_OP_const2u:
2685 return "DW_OP_const2u";
2686 case DW_OP_const2s:
2687 return "DW_OP_const2s";
2688 case DW_OP_const4u:
2689 return "DW_OP_const4u";
2690 case DW_OP_const4s:
2691 return "DW_OP_const4s";
2692 case DW_OP_const8u:
2693 return "DW_OP_const8u";
2694 case DW_OP_const8s:
2695 return "DW_OP_const8s";
2696 case DW_OP_constu:
2697 return "DW_OP_constu";
2698 case DW_OP_consts:
2699 return "DW_OP_consts";
2700 case DW_OP_dup:
2701 return "DW_OP_dup";
2702 case DW_OP_drop:
2703 return "DW_OP_drop";
2704 case DW_OP_over:
2705 return "DW_OP_over";
2706 case DW_OP_pick:
2707 return "DW_OP_pick";
2708 case DW_OP_swap:
2709 return "DW_OP_swap";
2710 case DW_OP_rot:
2711 return "DW_OP_rot";
2712 case DW_OP_xderef:
2713 return "DW_OP_xderef";
2714 case DW_OP_abs:
2715 return "DW_OP_abs";
2716 case DW_OP_and:
2717 return "DW_OP_and";
2718 case DW_OP_div:
2719 return "DW_OP_div";
2720 case DW_OP_minus:
2721 return "DW_OP_minus";
2722 case DW_OP_mod:
2723 return "DW_OP_mod";
2724 case DW_OP_mul:
2725 return "DW_OP_mul";
2726 case DW_OP_neg:
2727 return "DW_OP_neg";
2728 case DW_OP_not:
2729 return "DW_OP_not";
2730 case DW_OP_or:
2731 return "DW_OP_or";
2732 case DW_OP_plus:
2733 return "DW_OP_plus";
2734 case DW_OP_plus_uconst:
2735 return "DW_OP_plus_uconst";
2736 case DW_OP_shl:
2737 return "DW_OP_shl";
2738 case DW_OP_shr:
2739 return "DW_OP_shr";
2740 case DW_OP_shra:
2741 return "DW_OP_shra";
2742 case DW_OP_xor:
2743 return "DW_OP_xor";
2744 case DW_OP_bra:
2745 return "DW_OP_bra";
2746 case DW_OP_eq:
2747 return "DW_OP_eq";
2748 case DW_OP_ge:
2749 return "DW_OP_ge";
2750 case DW_OP_gt:
2751 return "DW_OP_gt";
2752 case DW_OP_le:
2753 return "DW_OP_le";
2754 case DW_OP_lt:
2755 return "DW_OP_lt";
2756 case DW_OP_ne:
2757 return "DW_OP_ne";
2758 case DW_OP_skip:
2759 return "DW_OP_skip";
2760 case DW_OP_lit0:
2761 return "DW_OP_lit0";
2762 case DW_OP_lit1:
2763 return "DW_OP_lit1";
2764 case DW_OP_lit2:
2765 return "DW_OP_lit2";
2766 case DW_OP_lit3:
2767 return "DW_OP_lit3";
2768 case DW_OP_lit4:
2769 return "DW_OP_lit4";
2770 case DW_OP_lit5:
2771 return "DW_OP_lit5";
2772 case DW_OP_lit6:
2773 return "DW_OP_lit6";
2774 case DW_OP_lit7:
2775 return "DW_OP_lit7";
2776 case DW_OP_lit8:
2777 return "DW_OP_lit8";
2778 case DW_OP_lit9:
2779 return "DW_OP_lit9";
2780 case DW_OP_lit10:
2781 return "DW_OP_lit10";
2782 case DW_OP_lit11:
2783 return "DW_OP_lit11";
2784 case DW_OP_lit12:
2785 return "DW_OP_lit12";
2786 case DW_OP_lit13:
2787 return "DW_OP_lit13";
2788 case DW_OP_lit14:
2789 return "DW_OP_lit14";
2790 case DW_OP_lit15:
2791 return "DW_OP_lit15";
2792 case DW_OP_lit16:
2793 return "DW_OP_lit16";
2794 case DW_OP_lit17:
2795 return "DW_OP_lit17";
2796 case DW_OP_lit18:
2797 return "DW_OP_lit18";
2798 case DW_OP_lit19:
2799 return "DW_OP_lit19";
2800 case DW_OP_lit20:
2801 return "DW_OP_lit20";
2802 case DW_OP_lit21:
2803 return "DW_OP_lit21";
2804 case DW_OP_lit22:
2805 return "DW_OP_lit22";
2806 case DW_OP_lit23:
2807 return "DW_OP_lit23";
2808 case DW_OP_lit24:
2809 return "DW_OP_lit24";
2810 case DW_OP_lit25:
2811 return "DW_OP_lit25";
2812 case DW_OP_lit26:
2813 return "DW_OP_lit26";
2814 case DW_OP_lit27:
2815 return "DW_OP_lit27";
2816 case DW_OP_lit28:
2817 return "DW_OP_lit28";
2818 case DW_OP_lit29:
2819 return "DW_OP_lit29";
2820 case DW_OP_lit30:
2821 return "DW_OP_lit30";
2822 case DW_OP_lit31:
2823 return "DW_OP_lit31";
2824 case DW_OP_reg0:
2825 return "DW_OP_reg0";
2826 case DW_OP_reg1:
2827 return "DW_OP_reg1";
2828 case DW_OP_reg2:
2829 return "DW_OP_reg2";
2830 case DW_OP_reg3:
2831 return "DW_OP_reg3";
2832 case DW_OP_reg4:
2833 return "DW_OP_reg4";
2834 case DW_OP_reg5:
2835 return "DW_OP_reg5";
2836 case DW_OP_reg6:
2837 return "DW_OP_reg6";
2838 case DW_OP_reg7:
2839 return "DW_OP_reg7";
2840 case DW_OP_reg8:
2841 return "DW_OP_reg8";
2842 case DW_OP_reg9:
2843 return "DW_OP_reg9";
2844 case DW_OP_reg10:
2845 return "DW_OP_reg10";
2846 case DW_OP_reg11:
2847 return "DW_OP_reg11";
2848 case DW_OP_reg12:
2849 return "DW_OP_reg12";
2850 case DW_OP_reg13:
2851 return "DW_OP_reg13";
2852 case DW_OP_reg14:
2853 return "DW_OP_reg14";
2854 case DW_OP_reg15:
2855 return "DW_OP_reg15";
2856 case DW_OP_reg16:
2857 return "DW_OP_reg16";
2858 case DW_OP_reg17:
2859 return "DW_OP_reg17";
2860 case DW_OP_reg18:
2861 return "DW_OP_reg18";
2862 case DW_OP_reg19:
2863 return "DW_OP_reg19";
2864 case DW_OP_reg20:
2865 return "DW_OP_reg20";
2866 case DW_OP_reg21:
2867 return "DW_OP_reg21";
2868 case DW_OP_reg22:
2869 return "DW_OP_reg22";
2870 case DW_OP_reg23:
2871 return "DW_OP_reg23";
2872 case DW_OP_reg24:
2873 return "DW_OP_reg24";
2874 case DW_OP_reg25:
2875 return "DW_OP_reg25";
2876 case DW_OP_reg26:
2877 return "DW_OP_reg26";
2878 case DW_OP_reg27:
2879 return "DW_OP_reg27";
2880 case DW_OP_reg28:
2881 return "DW_OP_reg28";
2882 case DW_OP_reg29:
2883 return "DW_OP_reg29";
2884 case DW_OP_reg30:
2885 return "DW_OP_reg30";
2886 case DW_OP_reg31:
2887 return "DW_OP_reg31";
2888 case DW_OP_breg0:
2889 return "DW_OP_breg0";
2890 case DW_OP_breg1:
2891 return "DW_OP_breg1";
2892 case DW_OP_breg2:
2893 return "DW_OP_breg2";
2894 case DW_OP_breg3:
2895 return "DW_OP_breg3";
2896 case DW_OP_breg4:
2897 return "DW_OP_breg4";
2898 case DW_OP_breg5:
2899 return "DW_OP_breg5";
2900 case DW_OP_breg6:
2901 return "DW_OP_breg6";
2902 case DW_OP_breg7:
2903 return "DW_OP_breg7";
2904 case DW_OP_breg8:
2905 return "DW_OP_breg8";
2906 case DW_OP_breg9:
2907 return "DW_OP_breg9";
2908 case DW_OP_breg10:
2909 return "DW_OP_breg10";
2910 case DW_OP_breg11:
2911 return "DW_OP_breg11";
2912 case DW_OP_breg12:
2913 return "DW_OP_breg12";
2914 case DW_OP_breg13:
2915 return "DW_OP_breg13";
2916 case DW_OP_breg14:
2917 return "DW_OP_breg14";
2918 case DW_OP_breg15:
2919 return "DW_OP_breg15";
2920 case DW_OP_breg16:
2921 return "DW_OP_breg16";
2922 case DW_OP_breg17:
2923 return "DW_OP_breg17";
2924 case DW_OP_breg18:
2925 return "DW_OP_breg18";
2926 case DW_OP_breg19:
2927 return "DW_OP_breg19";
2928 case DW_OP_breg20:
2929 return "DW_OP_breg20";
2930 case DW_OP_breg21:
2931 return "DW_OP_breg21";
2932 case DW_OP_breg22:
2933 return "DW_OP_breg22";
2934 case DW_OP_breg23:
2935 return "DW_OP_breg23";
2936 case DW_OP_breg24:
2937 return "DW_OP_breg24";
2938 case DW_OP_breg25:
2939 return "DW_OP_breg25";
2940 case DW_OP_breg26:
2941 return "DW_OP_breg26";
2942 case DW_OP_breg27:
2943 return "DW_OP_breg27";
2944 case DW_OP_breg28:
2945 return "DW_OP_breg28";
2946 case DW_OP_breg29:
2947 return "DW_OP_breg29";
2948 case DW_OP_breg30:
2949 return "DW_OP_breg30";
2950 case DW_OP_breg31:
2951 return "DW_OP_breg31";
2952 case DW_OP_regx:
2953 return "DW_OP_regx";
2954 case DW_OP_fbreg:
2955 return "DW_OP_fbreg";
2956 case DW_OP_bregx:
2957 return "DW_OP_bregx";
2958 case DW_OP_piece:
2959 return "DW_OP_piece";
2960 case DW_OP_deref_size:
2961 return "DW_OP_deref_size";
2962 case DW_OP_xderef_size:
2963 return "DW_OP_xderef_size";
2964 case DW_OP_nop:
2965 return "DW_OP_nop";
2966 case DW_OP_push_object_address:
2967 return "DW_OP_push_object_address";
2968 case DW_OP_call2:
2969 return "DW_OP_call2";
2970 case DW_OP_call4:
2971 return "DW_OP_call4";
2972 case DW_OP_call_ref:
2973 return "DW_OP_call_ref";
2974 case DW_OP_GNU_push_tls_address:
2975 return "DW_OP_GNU_push_tls_address";
2976 default:
2977 return "OP_<unknown>";
2981 /* Return a pointer to a newly allocated location description. Location
2982 descriptions are simple expression terms that can be strung
2983 together to form more complicated location (address) descriptions. */
2985 static inline dw_loc_descr_ref
2986 new_loc_descr (enum dwarf_location_atom op, unsigned HOST_WIDE_INT oprnd1,
2987 unsigned HOST_WIDE_INT oprnd2)
2989 dw_loc_descr_ref descr = ggc_alloc_cleared (sizeof (dw_loc_descr_node));
2991 descr->dw_loc_opc = op;
2992 descr->dw_loc_oprnd1.val_class = dw_val_class_unsigned_const;
2993 descr->dw_loc_oprnd1.v.val_unsigned = oprnd1;
2994 descr->dw_loc_oprnd2.val_class = dw_val_class_unsigned_const;
2995 descr->dw_loc_oprnd2.v.val_unsigned = oprnd2;
2997 return descr;
3000 /* Add a location description term to a location description expression. */
3002 static inline void
3003 add_loc_descr (dw_loc_descr_ref *list_head, dw_loc_descr_ref descr)
3005 dw_loc_descr_ref *d;
3007 /* Find the end of the chain. */
3008 for (d = list_head; (*d) != NULL; d = &(*d)->dw_loc_next)
3011 *d = descr;
3014 /* Return the size of a location descriptor. */
3016 static unsigned long
3017 size_of_loc_descr (dw_loc_descr_ref loc)
3019 unsigned long size = 1;
3021 switch (loc->dw_loc_opc)
3023 case DW_OP_addr:
3024 case INTERNAL_DW_OP_tls_addr:
3025 size += DWARF2_ADDR_SIZE;
3026 break;
3027 case DW_OP_const1u:
3028 case DW_OP_const1s:
3029 size += 1;
3030 break;
3031 case DW_OP_const2u:
3032 case DW_OP_const2s:
3033 size += 2;
3034 break;
3035 case DW_OP_const4u:
3036 case DW_OP_const4s:
3037 size += 4;
3038 break;
3039 case DW_OP_const8u:
3040 case DW_OP_const8s:
3041 size += 8;
3042 break;
3043 case DW_OP_constu:
3044 size += size_of_uleb128 (loc->dw_loc_oprnd1.v.val_unsigned);
3045 break;
3046 case DW_OP_consts:
3047 size += size_of_sleb128 (loc->dw_loc_oprnd1.v.val_int);
3048 break;
3049 case DW_OP_pick:
3050 size += 1;
3051 break;
3052 case DW_OP_plus_uconst:
3053 size += size_of_uleb128 (loc->dw_loc_oprnd1.v.val_unsigned);
3054 break;
3055 case DW_OP_skip:
3056 case DW_OP_bra:
3057 size += 2;
3058 break;
3059 case DW_OP_breg0:
3060 case DW_OP_breg1:
3061 case DW_OP_breg2:
3062 case DW_OP_breg3:
3063 case DW_OP_breg4:
3064 case DW_OP_breg5:
3065 case DW_OP_breg6:
3066 case DW_OP_breg7:
3067 case DW_OP_breg8:
3068 case DW_OP_breg9:
3069 case DW_OP_breg10:
3070 case DW_OP_breg11:
3071 case DW_OP_breg12:
3072 case DW_OP_breg13:
3073 case DW_OP_breg14:
3074 case DW_OP_breg15:
3075 case DW_OP_breg16:
3076 case DW_OP_breg17:
3077 case DW_OP_breg18:
3078 case DW_OP_breg19:
3079 case DW_OP_breg20:
3080 case DW_OP_breg21:
3081 case DW_OP_breg22:
3082 case DW_OP_breg23:
3083 case DW_OP_breg24:
3084 case DW_OP_breg25:
3085 case DW_OP_breg26:
3086 case DW_OP_breg27:
3087 case DW_OP_breg28:
3088 case DW_OP_breg29:
3089 case DW_OP_breg30:
3090 case DW_OP_breg31:
3091 size += size_of_sleb128 (loc->dw_loc_oprnd1.v.val_int);
3092 break;
3093 case DW_OP_regx:
3094 size += size_of_uleb128 (loc->dw_loc_oprnd1.v.val_unsigned);
3095 break;
3096 case DW_OP_fbreg:
3097 size += size_of_sleb128 (loc->dw_loc_oprnd1.v.val_int);
3098 break;
3099 case DW_OP_bregx:
3100 size += size_of_uleb128 (loc->dw_loc_oprnd1.v.val_unsigned);
3101 size += size_of_sleb128 (loc->dw_loc_oprnd2.v.val_int);
3102 break;
3103 case DW_OP_piece:
3104 size += size_of_uleb128 (loc->dw_loc_oprnd1.v.val_unsigned);
3105 break;
3106 case DW_OP_deref_size:
3107 case DW_OP_xderef_size:
3108 size += 1;
3109 break;
3110 case DW_OP_call2:
3111 size += 2;
3112 break;
3113 case DW_OP_call4:
3114 size += 4;
3115 break;
3116 case DW_OP_call_ref:
3117 size += DWARF2_ADDR_SIZE;
3118 break;
3119 default:
3120 break;
3123 return size;
3126 /* Return the size of a series of location descriptors. */
3128 static unsigned long
3129 size_of_locs (dw_loc_descr_ref loc)
3131 unsigned long size;
3133 for (size = 0; loc != NULL; loc = loc->dw_loc_next)
3135 loc->dw_loc_addr = size;
3136 size += size_of_loc_descr (loc);
3139 return size;
3142 /* Output location description stack opcode's operands (if any). */
3144 static void
3145 output_loc_operands (dw_loc_descr_ref loc)
3147 dw_val_ref val1 = &loc->dw_loc_oprnd1;
3148 dw_val_ref val2 = &loc->dw_loc_oprnd2;
3150 switch (loc->dw_loc_opc)
3152 #ifdef DWARF2_DEBUGGING_INFO
3153 case DW_OP_addr:
3154 dw2_asm_output_addr_rtx (DWARF2_ADDR_SIZE, val1->v.val_addr, NULL);
3155 break;
3156 case DW_OP_const2u:
3157 case DW_OP_const2s:
3158 dw2_asm_output_data (2, val1->v.val_int, NULL);
3159 break;
3160 case DW_OP_const4u:
3161 case DW_OP_const4s:
3162 dw2_asm_output_data (4, val1->v.val_int, NULL);
3163 break;
3164 case DW_OP_const8u:
3165 case DW_OP_const8s:
3166 gcc_assert (HOST_BITS_PER_LONG >= 64);
3167 dw2_asm_output_data (8, val1->v.val_int, NULL);
3168 break;
3169 case DW_OP_skip:
3170 case DW_OP_bra:
3172 int offset;
3174 gcc_assert (val1->val_class == dw_val_class_loc);
3175 offset = val1->v.val_loc->dw_loc_addr - (loc->dw_loc_addr + 3);
3177 dw2_asm_output_data (2, offset, NULL);
3179 break;
3180 #else
3181 case DW_OP_addr:
3182 case DW_OP_const2u:
3183 case DW_OP_const2s:
3184 case DW_OP_const4u:
3185 case DW_OP_const4s:
3186 case DW_OP_const8u:
3187 case DW_OP_const8s:
3188 case DW_OP_skip:
3189 case DW_OP_bra:
3190 /* We currently don't make any attempt to make sure these are
3191 aligned properly like we do for the main unwind info, so
3192 don't support emitting things larger than a byte if we're
3193 only doing unwinding. */
3194 gcc_unreachable ();
3195 #endif
3196 case DW_OP_const1u:
3197 case DW_OP_const1s:
3198 dw2_asm_output_data (1, val1->v.val_int, NULL);
3199 break;
3200 case DW_OP_constu:
3201 dw2_asm_output_data_uleb128 (val1->v.val_unsigned, NULL);
3202 break;
3203 case DW_OP_consts:
3204 dw2_asm_output_data_sleb128 (val1->v.val_int, NULL);
3205 break;
3206 case DW_OP_pick:
3207 dw2_asm_output_data (1, val1->v.val_int, NULL);
3208 break;
3209 case DW_OP_plus_uconst:
3210 dw2_asm_output_data_uleb128 (val1->v.val_unsigned, NULL);
3211 break;
3212 case DW_OP_breg0:
3213 case DW_OP_breg1:
3214 case DW_OP_breg2:
3215 case DW_OP_breg3:
3216 case DW_OP_breg4:
3217 case DW_OP_breg5:
3218 case DW_OP_breg6:
3219 case DW_OP_breg7:
3220 case DW_OP_breg8:
3221 case DW_OP_breg9:
3222 case DW_OP_breg10:
3223 case DW_OP_breg11:
3224 case DW_OP_breg12:
3225 case DW_OP_breg13:
3226 case DW_OP_breg14:
3227 case DW_OP_breg15:
3228 case DW_OP_breg16:
3229 case DW_OP_breg17:
3230 case DW_OP_breg18:
3231 case DW_OP_breg19:
3232 case DW_OP_breg20:
3233 case DW_OP_breg21:
3234 case DW_OP_breg22:
3235 case DW_OP_breg23:
3236 case DW_OP_breg24:
3237 case DW_OP_breg25:
3238 case DW_OP_breg26:
3239 case DW_OP_breg27:
3240 case DW_OP_breg28:
3241 case DW_OP_breg29:
3242 case DW_OP_breg30:
3243 case DW_OP_breg31:
3244 dw2_asm_output_data_sleb128 (val1->v.val_int, NULL);
3245 break;
3246 case DW_OP_regx:
3247 dw2_asm_output_data_uleb128 (val1->v.val_unsigned, NULL);
3248 break;
3249 case DW_OP_fbreg:
3250 dw2_asm_output_data_sleb128 (val1->v.val_int, NULL);
3251 break;
3252 case DW_OP_bregx:
3253 dw2_asm_output_data_uleb128 (val1->v.val_unsigned, NULL);
3254 dw2_asm_output_data_sleb128 (val2->v.val_int, NULL);
3255 break;
3256 case DW_OP_piece:
3257 dw2_asm_output_data_uleb128 (val1->v.val_unsigned, NULL);
3258 break;
3259 case DW_OP_deref_size:
3260 case DW_OP_xderef_size:
3261 dw2_asm_output_data (1, val1->v.val_int, NULL);
3262 break;
3264 case INTERNAL_DW_OP_tls_addr:
3265 if (targetm.asm_out.output_dwarf_dtprel)
3267 targetm.asm_out.output_dwarf_dtprel (asm_out_file,
3268 DWARF2_ADDR_SIZE,
3269 val1->v.val_addr);
3270 fputc ('\n', asm_out_file);
3272 else
3273 gcc_unreachable ();
3274 break;
3276 default:
3277 /* Other codes have no operands. */
3278 break;
3282 /* Output a sequence of location operations. */
3284 static void
3285 output_loc_sequence (dw_loc_descr_ref loc)
3287 for (; loc != NULL; loc = loc->dw_loc_next)
3289 /* Output the opcode. */
3290 dw2_asm_output_data (1, loc->dw_loc_opc,
3291 "%s", dwarf_stack_op_name (loc->dw_loc_opc));
3293 /* Output the operand(s) (if any). */
3294 output_loc_operands (loc);
3298 /* This routine will generate the correct assembly data for a location
3299 description based on a cfi entry with a complex address. */
3301 static void
3302 output_cfa_loc (dw_cfi_ref cfi)
3304 dw_loc_descr_ref loc;
3305 unsigned long size;
3307 /* Output the size of the block. */
3308 loc = cfi->dw_cfi_oprnd1.dw_cfi_loc;
3309 size = size_of_locs (loc);
3310 dw2_asm_output_data_uleb128 (size, NULL);
3312 /* Now output the operations themselves. */
3313 output_loc_sequence (loc);
3316 /* This function builds a dwarf location descriptor sequence from
3317 a dw_cfa_location. */
3319 static struct dw_loc_descr_struct *
3320 build_cfa_loc (dw_cfa_location *cfa)
3322 struct dw_loc_descr_struct *head, *tmp;
3324 gcc_assert (cfa->indirect);
3326 if (cfa->base_offset)
3328 if (cfa->reg <= 31)
3329 head = new_loc_descr (DW_OP_breg0 + cfa->reg, cfa->base_offset, 0);
3330 else
3331 head = new_loc_descr (DW_OP_bregx, cfa->reg, cfa->base_offset);
3333 else if (cfa->reg <= 31)
3334 head = new_loc_descr (DW_OP_reg0 + cfa->reg, 0, 0);
3335 else
3336 head = new_loc_descr (DW_OP_regx, cfa->reg, 0);
3338 head->dw_loc_oprnd1.val_class = dw_val_class_const;
3339 tmp = new_loc_descr (DW_OP_deref, 0, 0);
3340 add_loc_descr (&head, tmp);
3341 if (cfa->offset != 0)
3343 tmp = new_loc_descr (DW_OP_plus_uconst, cfa->offset, 0);
3344 add_loc_descr (&head, tmp);
3347 return head;
3350 /* This function fills in aa dw_cfa_location structure from a dwarf location
3351 descriptor sequence. */
3353 static void
3354 get_cfa_from_loc_descr (dw_cfa_location *cfa, struct dw_loc_descr_struct *loc)
3356 struct dw_loc_descr_struct *ptr;
3357 cfa->offset = 0;
3358 cfa->base_offset = 0;
3359 cfa->indirect = 0;
3360 cfa->reg = -1;
3362 for (ptr = loc; ptr != NULL; ptr = ptr->dw_loc_next)
3364 enum dwarf_location_atom op = ptr->dw_loc_opc;
3366 switch (op)
3368 case DW_OP_reg0:
3369 case DW_OP_reg1:
3370 case DW_OP_reg2:
3371 case DW_OP_reg3:
3372 case DW_OP_reg4:
3373 case DW_OP_reg5:
3374 case DW_OP_reg6:
3375 case DW_OP_reg7:
3376 case DW_OP_reg8:
3377 case DW_OP_reg9:
3378 case DW_OP_reg10:
3379 case DW_OP_reg11:
3380 case DW_OP_reg12:
3381 case DW_OP_reg13:
3382 case DW_OP_reg14:
3383 case DW_OP_reg15:
3384 case DW_OP_reg16:
3385 case DW_OP_reg17:
3386 case DW_OP_reg18:
3387 case DW_OP_reg19:
3388 case DW_OP_reg20:
3389 case DW_OP_reg21:
3390 case DW_OP_reg22:
3391 case DW_OP_reg23:
3392 case DW_OP_reg24:
3393 case DW_OP_reg25:
3394 case DW_OP_reg26:
3395 case DW_OP_reg27:
3396 case DW_OP_reg28:
3397 case DW_OP_reg29:
3398 case DW_OP_reg30:
3399 case DW_OP_reg31:
3400 cfa->reg = op - DW_OP_reg0;
3401 break;
3402 case DW_OP_regx:
3403 cfa->reg = ptr->dw_loc_oprnd1.v.val_int;
3404 break;
3405 case DW_OP_breg0:
3406 case DW_OP_breg1:
3407 case DW_OP_breg2:
3408 case DW_OP_breg3:
3409 case DW_OP_breg4:
3410 case DW_OP_breg5:
3411 case DW_OP_breg6:
3412 case DW_OP_breg7:
3413 case DW_OP_breg8:
3414 case DW_OP_breg9:
3415 case DW_OP_breg10:
3416 case DW_OP_breg11:
3417 case DW_OP_breg12:
3418 case DW_OP_breg13:
3419 case DW_OP_breg14:
3420 case DW_OP_breg15:
3421 case DW_OP_breg16:
3422 case DW_OP_breg17:
3423 case DW_OP_breg18:
3424 case DW_OP_breg19:
3425 case DW_OP_breg20:
3426 case DW_OP_breg21:
3427 case DW_OP_breg22:
3428 case DW_OP_breg23:
3429 case DW_OP_breg24:
3430 case DW_OP_breg25:
3431 case DW_OP_breg26:
3432 case DW_OP_breg27:
3433 case DW_OP_breg28:
3434 case DW_OP_breg29:
3435 case DW_OP_breg30:
3436 case DW_OP_breg31:
3437 cfa->reg = op - DW_OP_breg0;
3438 cfa->base_offset = ptr->dw_loc_oprnd1.v.val_int;
3439 break;
3440 case DW_OP_bregx:
3441 cfa->reg = ptr->dw_loc_oprnd1.v.val_int;
3442 cfa->base_offset = ptr->dw_loc_oprnd2.v.val_int;
3443 break;
3444 case DW_OP_deref:
3445 cfa->indirect = 1;
3446 break;
3447 case DW_OP_plus_uconst:
3448 cfa->offset = ptr->dw_loc_oprnd1.v.val_unsigned;
3449 break;
3450 default:
3451 internal_error ("DW_LOC_OP %s not implemented",
3452 dwarf_stack_op_name (ptr->dw_loc_opc));
3456 #endif /* .debug_frame support */
3458 /* And now, the support for symbolic debugging information. */
3459 #ifdef DWARF2_DEBUGGING_INFO
3461 /* .debug_str support. */
3462 static int output_indirect_string (void **, void *);
3464 static void dwarf2out_init (const char *);
3465 static void dwarf2out_finish (const char *);
3466 static void dwarf2out_define (unsigned int, const char *);
3467 static void dwarf2out_undef (unsigned int, const char *);
3468 static void dwarf2out_start_source_file (unsigned, const char *);
3469 static void dwarf2out_end_source_file (unsigned);
3470 static void dwarf2out_begin_block (unsigned, unsigned);
3471 static void dwarf2out_end_block (unsigned, unsigned);
3472 static bool dwarf2out_ignore_block (tree);
3473 static void dwarf2out_global_decl (tree);
3474 static void dwarf2out_type_decl (tree, int);
3475 static void dwarf2out_imported_module_or_decl (tree, tree);
3476 static void dwarf2out_abstract_function (tree);
3477 static void dwarf2out_var_location (rtx);
3478 static void dwarf2out_begin_function (tree);
3479 static void dwarf2out_switch_text_section (void);
3481 /* The debug hooks structure. */
3483 const struct gcc_debug_hooks dwarf2_debug_hooks =
3485 dwarf2out_init,
3486 dwarf2out_finish,
3487 dwarf2out_define,
3488 dwarf2out_undef,
3489 dwarf2out_start_source_file,
3490 dwarf2out_end_source_file,
3491 dwarf2out_begin_block,
3492 dwarf2out_end_block,
3493 dwarf2out_ignore_block,
3494 dwarf2out_source_line,
3495 dwarf2out_begin_prologue,
3496 debug_nothing_int_charstar, /* end_prologue */
3497 dwarf2out_end_epilogue,
3498 dwarf2out_begin_function,
3499 debug_nothing_int, /* end_function */
3500 dwarf2out_decl, /* function_decl */
3501 dwarf2out_global_decl,
3502 dwarf2out_type_decl, /* type_decl */
3503 dwarf2out_imported_module_or_decl,
3504 debug_nothing_tree, /* deferred_inline_function */
3505 /* The DWARF 2 backend tries to reduce debugging bloat by not
3506 emitting the abstract description of inline functions until
3507 something tries to reference them. */
3508 dwarf2out_abstract_function, /* outlining_inline_function */
3509 debug_nothing_rtx, /* label */
3510 debug_nothing_int, /* handle_pch */
3511 dwarf2out_var_location,
3512 dwarf2out_switch_text_section,
3513 1 /* start_end_main_source_file */
3515 #endif
3517 /* NOTE: In the comments in this file, many references are made to
3518 "Debugging Information Entries". This term is abbreviated as `DIE'
3519 throughout the remainder of this file. */
3521 /* An internal representation of the DWARF output is built, and then
3522 walked to generate the DWARF debugging info. The walk of the internal
3523 representation is done after the entire program has been compiled.
3524 The types below are used to describe the internal representation. */
3526 /* Various DIE's use offsets relative to the beginning of the
3527 .debug_info section to refer to each other. */
3529 typedef long int dw_offset;
3531 /* Define typedefs here to avoid circular dependencies. */
3533 typedef struct dw_attr_struct *dw_attr_ref;
3534 typedef struct dw_line_info_struct *dw_line_info_ref;
3535 typedef struct dw_separate_line_info_struct *dw_separate_line_info_ref;
3536 typedef struct pubname_struct *pubname_ref;
3537 typedef struct dw_ranges_struct *dw_ranges_ref;
3539 /* Each entry in the line_info_table maintains the file and
3540 line number associated with the label generated for that
3541 entry. The label gives the PC value associated with
3542 the line number entry. */
3544 typedef struct dw_line_info_struct GTY(())
3546 unsigned long dw_file_num;
3547 unsigned long dw_line_num;
3549 dw_line_info_entry;
3551 /* Line information for functions in separate sections; each one gets its
3552 own sequence. */
3553 typedef struct dw_separate_line_info_struct GTY(())
3555 unsigned long dw_file_num;
3556 unsigned long dw_line_num;
3557 unsigned long function;
3559 dw_separate_line_info_entry;
3561 /* Each DIE attribute has a field specifying the attribute kind,
3562 a link to the next attribute in the chain, and an attribute value.
3563 Attributes are typically linked below the DIE they modify. */
3565 typedef struct dw_attr_struct GTY(())
3567 enum dwarf_attribute dw_attr;
3568 dw_attr_ref dw_attr_next;
3569 dw_val_node dw_attr_val;
3571 dw_attr_node;
3573 /* The Debugging Information Entry (DIE) structure */
3575 typedef struct die_struct GTY(())
3577 enum dwarf_tag die_tag;
3578 char *die_symbol;
3579 dw_attr_ref die_attr;
3580 dw_die_ref die_parent;
3581 dw_die_ref die_child;
3582 dw_die_ref die_sib;
3583 dw_die_ref die_definition; /* ref from a specification to its definition */
3584 dw_offset die_offset;
3585 unsigned long die_abbrev;
3586 int die_mark;
3587 unsigned int decl_id;
3589 die_node;
3591 /* The pubname structure */
3593 typedef struct pubname_struct GTY(())
3595 dw_die_ref die;
3596 char *name;
3598 pubname_entry;
3600 struct dw_ranges_struct GTY(())
3602 int block_num;
3605 /* The limbo die list structure. */
3606 typedef struct limbo_die_struct GTY(())
3608 dw_die_ref die;
3609 tree created_for;
3610 struct limbo_die_struct *next;
3612 limbo_die_node;
3614 /* How to start an assembler comment. */
3615 #ifndef ASM_COMMENT_START
3616 #define ASM_COMMENT_START ";#"
3617 #endif
3619 /* Define a macro which returns nonzero for a TYPE_DECL which was
3620 implicitly generated for a tagged type.
3622 Note that unlike the gcc front end (which generates a NULL named
3623 TYPE_DECL node for each complete tagged type, each array type, and
3624 each function type node created) the g++ front end generates a
3625 _named_ TYPE_DECL node for each tagged type node created.
3626 These TYPE_DECLs have DECL_ARTIFICIAL set, so we know not to
3627 generate a DW_TAG_typedef DIE for them. */
3629 #define TYPE_DECL_IS_STUB(decl) \
3630 (DECL_NAME (decl) == NULL_TREE \
3631 || (DECL_ARTIFICIAL (decl) \
3632 && is_tagged_type (TREE_TYPE (decl)) \
3633 && ((decl == TYPE_STUB_DECL (TREE_TYPE (decl))) \
3634 /* This is necessary for stub decls that \
3635 appear in nested inline functions. */ \
3636 || (DECL_ABSTRACT_ORIGIN (decl) != NULL_TREE \
3637 && (decl_ultimate_origin (decl) \
3638 == TYPE_STUB_DECL (TREE_TYPE (decl)))))))
3640 /* Information concerning the compilation unit's programming
3641 language, and compiler version. */
3643 /* Fixed size portion of the DWARF compilation unit header. */
3644 #define DWARF_COMPILE_UNIT_HEADER_SIZE \
3645 (DWARF_INITIAL_LENGTH_SIZE + DWARF_OFFSET_SIZE + 3)
3647 /* Fixed size portion of public names info. */
3648 #define DWARF_PUBNAMES_HEADER_SIZE (2 * DWARF_OFFSET_SIZE + 2)
3650 /* Fixed size portion of the address range info. */
3651 #define DWARF_ARANGES_HEADER_SIZE \
3652 (DWARF_ROUND (DWARF_INITIAL_LENGTH_SIZE + DWARF_OFFSET_SIZE + 4, \
3653 DWARF2_ADDR_SIZE * 2) \
3654 - DWARF_INITIAL_LENGTH_SIZE)
3656 /* Size of padding portion in the address range info. It must be
3657 aligned to twice the pointer size. */
3658 #define DWARF_ARANGES_PAD_SIZE \
3659 (DWARF_ROUND (DWARF_INITIAL_LENGTH_SIZE + DWARF_OFFSET_SIZE + 4, \
3660 DWARF2_ADDR_SIZE * 2) \
3661 - (DWARF_INITIAL_LENGTH_SIZE + DWARF_OFFSET_SIZE + 4))
3663 /* Use assembler line directives if available. */
3664 #ifndef DWARF2_ASM_LINE_DEBUG_INFO
3665 #ifdef HAVE_AS_DWARF2_DEBUG_LINE
3666 #define DWARF2_ASM_LINE_DEBUG_INFO 1
3667 #else
3668 #define DWARF2_ASM_LINE_DEBUG_INFO 0
3669 #endif
3670 #endif
3672 /* Minimum line offset in a special line info. opcode.
3673 This value was chosen to give a reasonable range of values. */
3674 #define DWARF_LINE_BASE -10
3676 /* First special line opcode - leave room for the standard opcodes. */
3677 #define DWARF_LINE_OPCODE_BASE 10
3679 /* Range of line offsets in a special line info. opcode. */
3680 #define DWARF_LINE_RANGE (254-DWARF_LINE_OPCODE_BASE+1)
3682 /* Flag that indicates the initial value of the is_stmt_start flag.
3683 In the present implementation, we do not mark any lines as
3684 the beginning of a source statement, because that information
3685 is not made available by the GCC front-end. */
3686 #define DWARF_LINE_DEFAULT_IS_STMT_START 1
3688 #ifdef DWARF2_DEBUGGING_INFO
3689 /* This location is used by calc_die_sizes() to keep track
3690 the offset of each DIE within the .debug_info section. */
3691 static unsigned long next_die_offset;
3692 #endif
3694 /* Record the root of the DIE's built for the current compilation unit. */
3695 static GTY(()) dw_die_ref comp_unit_die;
3697 /* A list of DIEs with a NULL parent waiting to be relocated. */
3698 static GTY(()) limbo_die_node *limbo_die_list;
3700 /* Filenames referenced by this compilation unit. */
3701 static GTY(()) varray_type file_table;
3702 static GTY(()) varray_type file_table_emitted;
3703 static GTY(()) size_t file_table_last_lookup_index;
3705 /* A hash table of references to DIE's that describe declarations.
3706 The key is a DECL_UID() which is a unique number identifying each decl. */
3707 static GTY ((param_is (struct die_struct))) htab_t decl_die_table;
3709 /* Node of the variable location list. */
3710 struct var_loc_node GTY ((chain_next ("%h.next")))
3712 rtx GTY (()) var_loc_note;
3713 const char * GTY (()) label;
3714 const char * GTY (()) section_label;
3715 struct var_loc_node * GTY (()) next;
3718 /* Variable location list. */
3719 struct var_loc_list_def GTY (())
3721 struct var_loc_node * GTY (()) first;
3723 /* Do not mark the last element of the chained list because
3724 it is marked through the chain. */
3725 struct var_loc_node * GTY ((skip ("%h"))) last;
3727 /* DECL_UID of the variable decl. */
3728 unsigned int decl_id;
3730 typedef struct var_loc_list_def var_loc_list;
3733 /* Table of decl location linked lists. */
3734 static GTY ((param_is (var_loc_list))) htab_t decl_loc_table;
3736 /* A pointer to the base of a list of references to DIE's that
3737 are uniquely identified by their tag, presence/absence of
3738 children DIE's, and list of attribute/value pairs. */
3739 static GTY((length ("abbrev_die_table_allocated")))
3740 dw_die_ref *abbrev_die_table;
3742 /* Number of elements currently allocated for abbrev_die_table. */
3743 static GTY(()) unsigned abbrev_die_table_allocated;
3745 /* Number of elements in type_die_table currently in use. */
3746 static GTY(()) unsigned abbrev_die_table_in_use;
3748 /* Size (in elements) of increments by which we may expand the
3749 abbrev_die_table. */
3750 #define ABBREV_DIE_TABLE_INCREMENT 256
3752 /* A pointer to the base of a table that contains line information
3753 for each source code line in .text in the compilation unit. */
3754 static GTY((length ("line_info_table_allocated")))
3755 dw_line_info_ref line_info_table;
3757 /* Number of elements currently allocated for line_info_table. */
3758 static GTY(()) unsigned line_info_table_allocated;
3760 /* Number of elements in line_info_table currently in use. */
3761 static GTY(()) unsigned line_info_table_in_use;
3763 /* A pointer to the base of a table that contains line information
3764 for each source code line outside of .text in the compilation unit. */
3765 static GTY ((length ("separate_line_info_table_allocated")))
3766 dw_separate_line_info_ref separate_line_info_table;
3768 /* Number of elements currently allocated for separate_line_info_table. */
3769 static GTY(()) unsigned separate_line_info_table_allocated;
3771 /* Number of elements in separate_line_info_table currently in use. */
3772 static GTY(()) unsigned separate_line_info_table_in_use;
3774 /* Size (in elements) of increments by which we may expand the
3775 line_info_table. */
3776 #define LINE_INFO_TABLE_INCREMENT 1024
3778 /* A pointer to the base of a table that contains a list of publicly
3779 accessible names. */
3780 static GTY ((length ("pubname_table_allocated"))) pubname_ref pubname_table;
3782 /* Number of elements currently allocated for pubname_table. */
3783 static GTY(()) unsigned pubname_table_allocated;
3785 /* Number of elements in pubname_table currently in use. */
3786 static GTY(()) unsigned pubname_table_in_use;
3788 /* Size (in elements) of increments by which we may expand the
3789 pubname_table. */
3790 #define PUBNAME_TABLE_INCREMENT 64
3792 /* Array of dies for which we should generate .debug_arange info. */
3793 static GTY((length ("arange_table_allocated"))) dw_die_ref *arange_table;
3795 /* Number of elements currently allocated for arange_table. */
3796 static GTY(()) unsigned arange_table_allocated;
3798 /* Number of elements in arange_table currently in use. */
3799 static GTY(()) unsigned arange_table_in_use;
3801 /* Size (in elements) of increments by which we may expand the
3802 arange_table. */
3803 #define ARANGE_TABLE_INCREMENT 64
3805 /* Array of dies for which we should generate .debug_ranges info. */
3806 static GTY ((length ("ranges_table_allocated"))) dw_ranges_ref ranges_table;
3808 /* Number of elements currently allocated for ranges_table. */
3809 static GTY(()) unsigned ranges_table_allocated;
3811 /* Number of elements in ranges_table currently in use. */
3812 static GTY(()) unsigned ranges_table_in_use;
3814 /* Size (in elements) of increments by which we may expand the
3815 ranges_table. */
3816 #define RANGES_TABLE_INCREMENT 64
3818 /* Whether we have location lists that need outputting */
3819 static GTY(()) unsigned have_location_lists;
3821 /* Unique label counter. */
3822 static GTY(()) unsigned int loclabel_num;
3824 #ifdef DWARF2_DEBUGGING_INFO
3825 /* Record whether the function being analyzed contains inlined functions. */
3826 static int current_function_has_inlines;
3827 #endif
3828 #if 0 && defined (MIPS_DEBUGGING_INFO)
3829 static int comp_unit_has_inlines;
3830 #endif
3832 /* Number of file tables emitted in maybe_emit_file(). */
3833 static GTY(()) int emitcount = 0;
3835 /* Number of internal labels generated by gen_internal_sym(). */
3836 static GTY(()) int label_num;
3838 #ifdef DWARF2_DEBUGGING_INFO
3840 /* Forward declarations for functions defined in this file. */
3842 static int is_pseudo_reg (rtx);
3843 static tree type_main_variant (tree);
3844 static int is_tagged_type (tree);
3845 static const char *dwarf_tag_name (unsigned);
3846 static const char *dwarf_attr_name (unsigned);
3847 static const char *dwarf_form_name (unsigned);
3848 static tree decl_ultimate_origin (tree);
3849 static tree block_ultimate_origin (tree);
3850 static tree decl_class_context (tree);
3851 static void add_dwarf_attr (dw_die_ref, dw_attr_ref);
3852 static inline enum dw_val_class AT_class (dw_attr_ref);
3853 static void add_AT_flag (dw_die_ref, enum dwarf_attribute, unsigned);
3854 static inline unsigned AT_flag (dw_attr_ref);
3855 static void add_AT_int (dw_die_ref, enum dwarf_attribute, HOST_WIDE_INT);
3856 static inline HOST_WIDE_INT AT_int (dw_attr_ref);
3857 static void add_AT_unsigned (dw_die_ref, enum dwarf_attribute, unsigned HOST_WIDE_INT);
3858 static inline unsigned HOST_WIDE_INT AT_unsigned (dw_attr_ref);
3859 static void add_AT_long_long (dw_die_ref, enum dwarf_attribute, unsigned long,
3860 unsigned long);
3861 static inline void add_AT_vec (dw_die_ref, enum dwarf_attribute, unsigned int,
3862 unsigned int, unsigned char *);
3863 static hashval_t debug_str_do_hash (const void *);
3864 static int debug_str_eq (const void *, const void *);
3865 static void add_AT_string (dw_die_ref, enum dwarf_attribute, const char *);
3866 static inline const char *AT_string (dw_attr_ref);
3867 static int AT_string_form (dw_attr_ref);
3868 static void add_AT_die_ref (dw_die_ref, enum dwarf_attribute, dw_die_ref);
3869 static void add_AT_specification (dw_die_ref, dw_die_ref);
3870 static inline dw_die_ref AT_ref (dw_attr_ref);
3871 static inline int AT_ref_external (dw_attr_ref);
3872 static inline void set_AT_ref_external (dw_attr_ref, int);
3873 static void add_AT_fde_ref (dw_die_ref, enum dwarf_attribute, unsigned);
3874 static void add_AT_loc (dw_die_ref, enum dwarf_attribute, dw_loc_descr_ref);
3875 static inline dw_loc_descr_ref AT_loc (dw_attr_ref);
3876 static void add_AT_loc_list (dw_die_ref, enum dwarf_attribute,
3877 dw_loc_list_ref);
3878 static inline dw_loc_list_ref AT_loc_list (dw_attr_ref);
3879 static void add_AT_addr (dw_die_ref, enum dwarf_attribute, rtx);
3880 static inline rtx AT_addr (dw_attr_ref);
3881 static void add_AT_lbl_id (dw_die_ref, enum dwarf_attribute, const char *);
3882 static void add_AT_lbl_offset (dw_die_ref, enum dwarf_attribute, const char *);
3883 static void add_AT_offset (dw_die_ref, enum dwarf_attribute,
3884 unsigned HOST_WIDE_INT);
3885 static void add_AT_range_list (dw_die_ref, enum dwarf_attribute,
3886 unsigned long);
3887 static inline const char *AT_lbl (dw_attr_ref);
3888 static dw_attr_ref get_AT (dw_die_ref, enum dwarf_attribute);
3889 static const char *get_AT_low_pc (dw_die_ref);
3890 static const char *get_AT_hi_pc (dw_die_ref);
3891 static const char *get_AT_string (dw_die_ref, enum dwarf_attribute);
3892 static int get_AT_flag (dw_die_ref, enum dwarf_attribute);
3893 static unsigned get_AT_unsigned (dw_die_ref, enum dwarf_attribute);
3894 static inline dw_die_ref get_AT_ref (dw_die_ref, enum dwarf_attribute);
3895 static bool is_c_family (void);
3896 static bool is_cxx (void);
3897 static bool is_java (void);
3898 static bool is_fortran (void);
3899 static bool is_ada (void);
3900 static void remove_AT (dw_die_ref, enum dwarf_attribute);
3901 static void remove_child_TAG (dw_die_ref, enum dwarf_tag);
3902 static inline void free_die (dw_die_ref);
3903 static void remove_children (dw_die_ref);
3904 static void add_child_die (dw_die_ref, dw_die_ref);
3905 static dw_die_ref new_die (enum dwarf_tag, dw_die_ref, tree);
3906 static dw_die_ref lookup_type_die (tree);
3907 static void equate_type_number_to_die (tree, dw_die_ref);
3908 static hashval_t decl_die_table_hash (const void *);
3909 static int decl_die_table_eq (const void *, const void *);
3910 static dw_die_ref lookup_decl_die (tree);
3911 static hashval_t decl_loc_table_hash (const void *);
3912 static int decl_loc_table_eq (const void *, const void *);
3913 static var_loc_list *lookup_decl_loc (tree);
3914 static void equate_decl_number_to_die (tree, dw_die_ref);
3915 static void add_var_loc_to_decl (tree, struct var_loc_node *);
3916 static void print_spaces (FILE *);
3917 static void print_die (dw_die_ref, FILE *);
3918 static void print_dwarf_line_table (FILE *);
3919 static void reverse_die_lists (dw_die_ref);
3920 static void reverse_all_dies (dw_die_ref);
3921 static dw_die_ref push_new_compile_unit (dw_die_ref, dw_die_ref);
3922 static dw_die_ref pop_compile_unit (dw_die_ref);
3923 static void loc_checksum (dw_loc_descr_ref, struct md5_ctx *);
3924 static void attr_checksum (dw_attr_ref, struct md5_ctx *, int *);
3925 static void die_checksum (dw_die_ref, struct md5_ctx *, int *);
3926 static int same_loc_p (dw_loc_descr_ref, dw_loc_descr_ref, int *);
3927 static int same_dw_val_p (dw_val_node *, dw_val_node *, int *);
3928 static int same_attr_p (dw_attr_ref, dw_attr_ref, int *);
3929 static int same_die_p (dw_die_ref, dw_die_ref, int *);
3930 static int same_die_p_wrap (dw_die_ref, dw_die_ref);
3931 static void compute_section_prefix (dw_die_ref);
3932 static int is_type_die (dw_die_ref);
3933 static int is_comdat_die (dw_die_ref);
3934 static int is_symbol_die (dw_die_ref);
3935 static void assign_symbol_names (dw_die_ref);
3936 static void break_out_includes (dw_die_ref);
3937 static hashval_t htab_cu_hash (const void *);
3938 static int htab_cu_eq (const void *, const void *);
3939 static void htab_cu_del (void *);
3940 static int check_duplicate_cu (dw_die_ref, htab_t, unsigned *);
3941 static void record_comdat_symbol_number (dw_die_ref, htab_t, unsigned);
3942 static void add_sibling_attributes (dw_die_ref);
3943 static void build_abbrev_table (dw_die_ref);
3944 static void output_location_lists (dw_die_ref);
3945 static int constant_size (long unsigned);
3946 static unsigned long size_of_die (dw_die_ref);
3947 static void calc_die_sizes (dw_die_ref);
3948 static void mark_dies (dw_die_ref);
3949 static void unmark_dies (dw_die_ref);
3950 static void unmark_all_dies (dw_die_ref);
3951 static unsigned long size_of_pubnames (void);
3952 static unsigned long size_of_aranges (void);
3953 static enum dwarf_form value_format (dw_attr_ref);
3954 static void output_value_format (dw_attr_ref);
3955 static void output_abbrev_section (void);
3956 static void output_die_symbol (dw_die_ref);
3957 static void output_die (dw_die_ref);
3958 static void output_compilation_unit_header (void);
3959 static void output_comp_unit (dw_die_ref, int);
3960 static const char *dwarf2_name (tree, int);
3961 static void add_pubname (tree, dw_die_ref);
3962 static void output_pubnames (void);
3963 static void add_arange (tree, dw_die_ref);
3964 static void output_aranges (void);
3965 static unsigned int add_ranges (tree);
3966 static void output_ranges (void);
3967 static void output_line_info (void);
3968 static void output_file_names (void);
3969 static dw_die_ref base_type_die (tree);
3970 static tree root_type (tree);
3971 static int is_base_type (tree);
3972 static bool is_subrange_type (tree);
3973 static dw_die_ref subrange_type_die (tree, dw_die_ref);
3974 static dw_die_ref modified_type_die (tree, int, int, dw_die_ref);
3975 static int type_is_enum (tree);
3976 static unsigned int dbx_reg_number (rtx);
3977 static void add_loc_descr_op_piece (dw_loc_descr_ref *, int);
3978 static dw_loc_descr_ref reg_loc_descriptor (rtx);
3979 static dw_loc_descr_ref one_reg_loc_descriptor (unsigned int);
3980 static dw_loc_descr_ref multiple_reg_loc_descriptor (rtx, rtx);
3981 static dw_loc_descr_ref int_loc_descriptor (HOST_WIDE_INT);
3982 static dw_loc_descr_ref based_loc_descr (unsigned, HOST_WIDE_INT, bool);
3983 static int is_based_loc (rtx);
3984 static dw_loc_descr_ref mem_loc_descriptor (rtx, enum machine_mode mode, bool);
3985 static dw_loc_descr_ref concat_loc_descriptor (rtx, rtx);
3986 static dw_loc_descr_ref loc_descriptor (rtx, bool);
3987 static dw_loc_descr_ref loc_descriptor_from_tree_1 (tree, int);
3988 static dw_loc_descr_ref loc_descriptor_from_tree (tree);
3989 static HOST_WIDE_INT ceiling (HOST_WIDE_INT, unsigned int);
3990 static tree field_type (tree);
3991 static unsigned int simple_type_align_in_bits (tree);
3992 static unsigned int simple_decl_align_in_bits (tree);
3993 static unsigned HOST_WIDE_INT simple_type_size_in_bits (tree);
3994 static HOST_WIDE_INT field_byte_offset (tree);
3995 static void add_AT_location_description (dw_die_ref, enum dwarf_attribute,
3996 dw_loc_descr_ref);
3997 static void add_data_member_location_attribute (dw_die_ref, tree);
3998 static void add_const_value_attribute (dw_die_ref, rtx);
3999 static void insert_int (HOST_WIDE_INT, unsigned, unsigned char *);
4000 static HOST_WIDE_INT extract_int (const unsigned char *, unsigned);
4001 static void insert_float (rtx, unsigned char *);
4002 static rtx rtl_for_decl_location (tree);
4003 static void add_location_or_const_value_attribute (dw_die_ref, tree,
4004 enum dwarf_attribute);
4005 static void tree_add_const_value_attribute (dw_die_ref, tree);
4006 static void add_name_attribute (dw_die_ref, const char *);
4007 static void add_comp_dir_attribute (dw_die_ref);
4008 static void add_bound_info (dw_die_ref, enum dwarf_attribute, tree);
4009 static void add_subscript_info (dw_die_ref, tree);
4010 static void add_byte_size_attribute (dw_die_ref, tree);
4011 static void add_bit_offset_attribute (dw_die_ref, tree);
4012 static void add_bit_size_attribute (dw_die_ref, tree);
4013 static void add_prototyped_attribute (dw_die_ref, tree);
4014 static void add_abstract_origin_attribute (dw_die_ref, tree);
4015 static void add_pure_or_virtual_attribute (dw_die_ref, tree);
4016 static void add_src_coords_attributes (dw_die_ref, tree);
4017 static void add_name_and_src_coords_attributes (dw_die_ref, tree);
4018 static void push_decl_scope (tree);
4019 static void pop_decl_scope (void);
4020 static dw_die_ref scope_die_for (tree, dw_die_ref);
4021 static inline int local_scope_p (dw_die_ref);
4022 static inline int class_or_namespace_scope_p (dw_die_ref);
4023 static void add_type_attribute (dw_die_ref, tree, int, int, dw_die_ref);
4024 static void add_calling_convention_attribute (dw_die_ref, tree);
4025 static const char *type_tag (tree);
4026 static tree member_declared_type (tree);
4027 #if 0
4028 static const char *decl_start_label (tree);
4029 #endif
4030 static void gen_array_type_die (tree, dw_die_ref);
4031 #if 0
4032 static void gen_entry_point_die (tree, dw_die_ref);
4033 #endif
4034 static void gen_inlined_enumeration_type_die (tree, dw_die_ref);
4035 static void gen_inlined_structure_type_die (tree, dw_die_ref);
4036 static void gen_inlined_union_type_die (tree, dw_die_ref);
4037 static dw_die_ref gen_enumeration_type_die (tree, dw_die_ref);
4038 static dw_die_ref gen_formal_parameter_die (tree, dw_die_ref);
4039 static void gen_unspecified_parameters_die (tree, dw_die_ref);
4040 static void gen_formal_types_die (tree, dw_die_ref);
4041 static void gen_subprogram_die (tree, dw_die_ref);
4042 static void gen_variable_die (tree, dw_die_ref);
4043 static void gen_label_die (tree, dw_die_ref);
4044 static void gen_lexical_block_die (tree, dw_die_ref, int);
4045 static void gen_inlined_subroutine_die (tree, dw_die_ref, int);
4046 static void gen_field_die (tree, dw_die_ref);
4047 static void gen_ptr_to_mbr_type_die (tree, dw_die_ref);
4048 static dw_die_ref gen_compile_unit_die (const char *);
4049 static void gen_string_type_die (tree, dw_die_ref);
4050 static void gen_inheritance_die (tree, tree, dw_die_ref);
4051 static void gen_member_die (tree, dw_die_ref);
4052 static void gen_struct_or_union_type_die (tree, dw_die_ref);
4053 static void gen_subroutine_type_die (tree, dw_die_ref);
4054 static void gen_typedef_die (tree, dw_die_ref);
4055 static void gen_type_die (tree, dw_die_ref);
4056 static void gen_tagged_type_instantiation_die (tree, dw_die_ref);
4057 static void gen_block_die (tree, dw_die_ref, int);
4058 static void decls_for_scope (tree, dw_die_ref, int);
4059 static int is_redundant_typedef (tree);
4060 static void gen_namespace_die (tree);
4061 static void gen_decl_die (tree, dw_die_ref);
4062 static dw_die_ref force_decl_die (tree);
4063 static dw_die_ref force_type_die (tree);
4064 static dw_die_ref setup_namespace_context (tree, dw_die_ref);
4065 static void declare_in_namespace (tree, dw_die_ref);
4066 static unsigned lookup_filename (const char *);
4067 static void init_file_table (void);
4068 static void retry_incomplete_types (void);
4069 static void gen_type_die_for_member (tree, tree, dw_die_ref);
4070 static void splice_child_die (dw_die_ref, dw_die_ref);
4071 static int file_info_cmp (const void *, const void *);
4072 static dw_loc_list_ref new_loc_list (dw_loc_descr_ref, const char *,
4073 const char *, const char *, unsigned);
4074 static void add_loc_descr_to_loc_list (dw_loc_list_ref *, dw_loc_descr_ref,
4075 const char *, const char *,
4076 const char *);
4077 static void output_loc_list (dw_loc_list_ref);
4078 static char *gen_internal_sym (const char *);
4080 static void prune_unmark_dies (dw_die_ref);
4081 static void prune_unused_types_mark (dw_die_ref, int);
4082 static void prune_unused_types_walk (dw_die_ref);
4083 static void prune_unused_types_walk_attribs (dw_die_ref);
4084 static void prune_unused_types_prune (dw_die_ref);
4085 static void prune_unused_types (void);
4086 static int maybe_emit_file (int);
4088 /* Section names used to hold DWARF debugging information. */
4089 #ifndef DEBUG_INFO_SECTION
4090 #define DEBUG_INFO_SECTION ".debug_info"
4091 #endif
4092 #ifndef DEBUG_ABBREV_SECTION
4093 #define DEBUG_ABBREV_SECTION ".debug_abbrev"
4094 #endif
4095 #ifndef DEBUG_ARANGES_SECTION
4096 #define DEBUG_ARANGES_SECTION ".debug_aranges"
4097 #endif
4098 #ifndef DEBUG_MACINFO_SECTION
4099 #define DEBUG_MACINFO_SECTION ".debug_macinfo"
4100 #endif
4101 #ifndef DEBUG_LINE_SECTION
4102 #define DEBUG_LINE_SECTION ".debug_line"
4103 #endif
4104 #ifndef DEBUG_LOC_SECTION
4105 #define DEBUG_LOC_SECTION ".debug_loc"
4106 #endif
4107 #ifndef DEBUG_PUBNAMES_SECTION
4108 #define DEBUG_PUBNAMES_SECTION ".debug_pubnames"
4109 #endif
4110 #ifndef DEBUG_STR_SECTION
4111 #define DEBUG_STR_SECTION ".debug_str"
4112 #endif
4113 #ifndef DEBUG_RANGES_SECTION
4114 #define DEBUG_RANGES_SECTION ".debug_ranges"
4115 #endif
4117 /* Standard ELF section names for compiled code and data. */
4118 #ifndef TEXT_SECTION_NAME
4119 #define TEXT_SECTION_NAME ".text"
4120 #endif
4122 /* Section flags for .debug_str section. */
4123 #define DEBUG_STR_SECTION_FLAGS \
4124 (HAVE_GAS_SHF_MERGE && flag_merge_constants \
4125 ? SECTION_DEBUG | SECTION_MERGE | SECTION_STRINGS | 1 \
4126 : SECTION_DEBUG)
4128 /* Labels we insert at beginning sections we can reference instead of
4129 the section names themselves. */
4131 #ifndef TEXT_SECTION_LABEL
4132 #define TEXT_SECTION_LABEL "Ltext"
4133 #endif
4134 #ifndef COLD_TEXT_SECTION_LABEL
4135 #define COLD_TEXT_SECTION_LABEL "Ltext_cold"
4136 #endif
4137 #ifndef DEBUG_LINE_SECTION_LABEL
4138 #define DEBUG_LINE_SECTION_LABEL "Ldebug_line"
4139 #endif
4140 #ifndef DEBUG_INFO_SECTION_LABEL
4141 #define DEBUG_INFO_SECTION_LABEL "Ldebug_info"
4142 #endif
4143 #ifndef DEBUG_ABBREV_SECTION_LABEL
4144 #define DEBUG_ABBREV_SECTION_LABEL "Ldebug_abbrev"
4145 #endif
4146 #ifndef DEBUG_LOC_SECTION_LABEL
4147 #define DEBUG_LOC_SECTION_LABEL "Ldebug_loc"
4148 #endif
4149 #ifndef DEBUG_RANGES_SECTION_LABEL
4150 #define DEBUG_RANGES_SECTION_LABEL "Ldebug_ranges"
4151 #endif
4152 #ifndef DEBUG_MACINFO_SECTION_LABEL
4153 #define DEBUG_MACINFO_SECTION_LABEL "Ldebug_macinfo"
4154 #endif
4156 /* Definitions of defaults for formats and names of various special
4157 (artificial) labels which may be generated within this file (when the -g
4158 options is used and DWARF2_DEBUGGING_INFO is in effect.
4159 If necessary, these may be overridden from within the tm.h file, but
4160 typically, overriding these defaults is unnecessary. */
4162 static char text_end_label[MAX_ARTIFICIAL_LABEL_BYTES];
4163 static char text_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
4164 static char cold_text_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
4165 static char cold_end_label[MAX_ARTIFICIAL_LABEL_BYTES];
4166 static char abbrev_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
4167 static char debug_info_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
4168 static char debug_line_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
4169 static char macinfo_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
4170 static char loc_section_label[MAX_ARTIFICIAL_LABEL_BYTES];
4171 static char ranges_section_label[2 * MAX_ARTIFICIAL_LABEL_BYTES];
4173 #ifndef TEXT_END_LABEL
4174 #define TEXT_END_LABEL "Letext"
4175 #endif
4176 #ifndef COLD_END_LABEL
4177 #define COLD_END_LABEL "Letext_cold"
4178 #endif
4179 #ifndef BLOCK_BEGIN_LABEL
4180 #define BLOCK_BEGIN_LABEL "LBB"
4181 #endif
4182 #ifndef BLOCK_END_LABEL
4183 #define BLOCK_END_LABEL "LBE"
4184 #endif
4185 #ifndef LINE_CODE_LABEL
4186 #define LINE_CODE_LABEL "LM"
4187 #endif
4188 #ifndef SEPARATE_LINE_CODE_LABEL
4189 #define SEPARATE_LINE_CODE_LABEL "LSM"
4190 #endif
4192 /* We allow a language front-end to designate a function that is to be
4193 called to "demangle" any name before it is put into a DIE. */
4195 static const char *(*demangle_name_func) (const char *);
4197 void
4198 dwarf2out_set_demangle_name_func (const char *(*func) (const char *))
4200 demangle_name_func = func;
4203 /* Test if rtl node points to a pseudo register. */
4205 static inline int
4206 is_pseudo_reg (rtx rtl)
4208 return ((REG_P (rtl) && REGNO (rtl) >= FIRST_PSEUDO_REGISTER)
4209 || (GET_CODE (rtl) == SUBREG
4210 && REGNO (SUBREG_REG (rtl)) >= FIRST_PSEUDO_REGISTER));
4213 /* Return a reference to a type, with its const and volatile qualifiers
4214 removed. */
4216 static inline tree
4217 type_main_variant (tree type)
4219 type = TYPE_MAIN_VARIANT (type);
4221 /* ??? There really should be only one main variant among any group of
4222 variants of a given type (and all of the MAIN_VARIANT values for all
4223 members of the group should point to that one type) but sometimes the C
4224 front-end messes this up for array types, so we work around that bug
4225 here. */
4226 if (TREE_CODE (type) == ARRAY_TYPE)
4227 while (type != TYPE_MAIN_VARIANT (type))
4228 type = TYPE_MAIN_VARIANT (type);
4230 return type;
4233 /* Return nonzero if the given type node represents a tagged type. */
4235 static inline int
4236 is_tagged_type (tree type)
4238 enum tree_code code = TREE_CODE (type);
4240 return (code == RECORD_TYPE || code == UNION_TYPE
4241 || code == QUAL_UNION_TYPE || code == ENUMERAL_TYPE);
4244 /* Convert a DIE tag into its string name. */
4246 static const char *
4247 dwarf_tag_name (unsigned int tag)
4249 switch (tag)
4251 case DW_TAG_padding:
4252 return "DW_TAG_padding";
4253 case DW_TAG_array_type:
4254 return "DW_TAG_array_type";
4255 case DW_TAG_class_type:
4256 return "DW_TAG_class_type";
4257 case DW_TAG_entry_point:
4258 return "DW_TAG_entry_point";
4259 case DW_TAG_enumeration_type:
4260 return "DW_TAG_enumeration_type";
4261 case DW_TAG_formal_parameter:
4262 return "DW_TAG_formal_parameter";
4263 case DW_TAG_imported_declaration:
4264 return "DW_TAG_imported_declaration";
4265 case DW_TAG_label:
4266 return "DW_TAG_label";
4267 case DW_TAG_lexical_block:
4268 return "DW_TAG_lexical_block";
4269 case DW_TAG_member:
4270 return "DW_TAG_member";
4271 case DW_TAG_pointer_type:
4272 return "DW_TAG_pointer_type";
4273 case DW_TAG_reference_type:
4274 return "DW_TAG_reference_type";
4275 case DW_TAG_compile_unit:
4276 return "DW_TAG_compile_unit";
4277 case DW_TAG_string_type:
4278 return "DW_TAG_string_type";
4279 case DW_TAG_structure_type:
4280 return "DW_TAG_structure_type";
4281 case DW_TAG_subroutine_type:
4282 return "DW_TAG_subroutine_type";
4283 case DW_TAG_typedef:
4284 return "DW_TAG_typedef";
4285 case DW_TAG_union_type:
4286 return "DW_TAG_union_type";
4287 case DW_TAG_unspecified_parameters:
4288 return "DW_TAG_unspecified_parameters";
4289 case DW_TAG_variant:
4290 return "DW_TAG_variant";
4291 case DW_TAG_common_block:
4292 return "DW_TAG_common_block";
4293 case DW_TAG_common_inclusion:
4294 return "DW_TAG_common_inclusion";
4295 case DW_TAG_inheritance:
4296 return "DW_TAG_inheritance";
4297 case DW_TAG_inlined_subroutine:
4298 return "DW_TAG_inlined_subroutine";
4299 case DW_TAG_module:
4300 return "DW_TAG_module";
4301 case DW_TAG_ptr_to_member_type:
4302 return "DW_TAG_ptr_to_member_type";
4303 case DW_TAG_set_type:
4304 return "DW_TAG_set_type";
4305 case DW_TAG_subrange_type:
4306 return "DW_TAG_subrange_type";
4307 case DW_TAG_with_stmt:
4308 return "DW_TAG_with_stmt";
4309 case DW_TAG_access_declaration:
4310 return "DW_TAG_access_declaration";
4311 case DW_TAG_base_type:
4312 return "DW_TAG_base_type";
4313 case DW_TAG_catch_block:
4314 return "DW_TAG_catch_block";
4315 case DW_TAG_const_type:
4316 return "DW_TAG_const_type";
4317 case DW_TAG_constant:
4318 return "DW_TAG_constant";
4319 case DW_TAG_enumerator:
4320 return "DW_TAG_enumerator";
4321 case DW_TAG_file_type:
4322 return "DW_TAG_file_type";
4323 case DW_TAG_friend:
4324 return "DW_TAG_friend";
4325 case DW_TAG_namelist:
4326 return "DW_TAG_namelist";
4327 case DW_TAG_namelist_item:
4328 return "DW_TAG_namelist_item";
4329 case DW_TAG_namespace:
4330 return "DW_TAG_namespace";
4331 case DW_TAG_packed_type:
4332 return "DW_TAG_packed_type";
4333 case DW_TAG_subprogram:
4334 return "DW_TAG_subprogram";
4335 case DW_TAG_template_type_param:
4336 return "DW_TAG_template_type_param";
4337 case DW_TAG_template_value_param:
4338 return "DW_TAG_template_value_param";
4339 case DW_TAG_thrown_type:
4340 return "DW_TAG_thrown_type";
4341 case DW_TAG_try_block:
4342 return "DW_TAG_try_block";
4343 case DW_TAG_variant_part:
4344 return "DW_TAG_variant_part";
4345 case DW_TAG_variable:
4346 return "DW_TAG_variable";
4347 case DW_TAG_volatile_type:
4348 return "DW_TAG_volatile_type";
4349 case DW_TAG_imported_module:
4350 return "DW_TAG_imported_module";
4351 case DW_TAG_MIPS_loop:
4352 return "DW_TAG_MIPS_loop";
4353 case DW_TAG_format_label:
4354 return "DW_TAG_format_label";
4355 case DW_TAG_function_template:
4356 return "DW_TAG_function_template";
4357 case DW_TAG_class_template:
4358 return "DW_TAG_class_template";
4359 case DW_TAG_GNU_BINCL:
4360 return "DW_TAG_GNU_BINCL";
4361 case DW_TAG_GNU_EINCL:
4362 return "DW_TAG_GNU_EINCL";
4363 default:
4364 return "DW_TAG_<unknown>";
4368 /* Convert a DWARF attribute code into its string name. */
4370 static const char *
4371 dwarf_attr_name (unsigned int attr)
4373 switch (attr)
4375 case DW_AT_sibling:
4376 return "DW_AT_sibling";
4377 case DW_AT_location:
4378 return "DW_AT_location";
4379 case DW_AT_name:
4380 return "DW_AT_name";
4381 case DW_AT_ordering:
4382 return "DW_AT_ordering";
4383 case DW_AT_subscr_data:
4384 return "DW_AT_subscr_data";
4385 case DW_AT_byte_size:
4386 return "DW_AT_byte_size";
4387 case DW_AT_bit_offset:
4388 return "DW_AT_bit_offset";
4389 case DW_AT_bit_size:
4390 return "DW_AT_bit_size";
4391 case DW_AT_element_list:
4392 return "DW_AT_element_list";
4393 case DW_AT_stmt_list:
4394 return "DW_AT_stmt_list";
4395 case DW_AT_low_pc:
4396 return "DW_AT_low_pc";
4397 case DW_AT_high_pc:
4398 return "DW_AT_high_pc";
4399 case DW_AT_language:
4400 return "DW_AT_language";
4401 case DW_AT_member:
4402 return "DW_AT_member";
4403 case DW_AT_discr:
4404 return "DW_AT_discr";
4405 case DW_AT_discr_value:
4406 return "DW_AT_discr_value";
4407 case DW_AT_visibility:
4408 return "DW_AT_visibility";
4409 case DW_AT_import:
4410 return "DW_AT_import";
4411 case DW_AT_string_length:
4412 return "DW_AT_string_length";
4413 case DW_AT_common_reference:
4414 return "DW_AT_common_reference";
4415 case DW_AT_comp_dir:
4416 return "DW_AT_comp_dir";
4417 case DW_AT_const_value:
4418 return "DW_AT_const_value";
4419 case DW_AT_containing_type:
4420 return "DW_AT_containing_type";
4421 case DW_AT_default_value:
4422 return "DW_AT_default_value";
4423 case DW_AT_inline:
4424 return "DW_AT_inline";
4425 case DW_AT_is_optional:
4426 return "DW_AT_is_optional";
4427 case DW_AT_lower_bound:
4428 return "DW_AT_lower_bound";
4429 case DW_AT_producer:
4430 return "DW_AT_producer";
4431 case DW_AT_prototyped:
4432 return "DW_AT_prototyped";
4433 case DW_AT_return_addr:
4434 return "DW_AT_return_addr";
4435 case DW_AT_start_scope:
4436 return "DW_AT_start_scope";
4437 case DW_AT_stride_size:
4438 return "DW_AT_stride_size";
4439 case DW_AT_upper_bound:
4440 return "DW_AT_upper_bound";
4441 case DW_AT_abstract_origin:
4442 return "DW_AT_abstract_origin";
4443 case DW_AT_accessibility:
4444 return "DW_AT_accessibility";
4445 case DW_AT_address_class:
4446 return "DW_AT_address_class";
4447 case DW_AT_artificial:
4448 return "DW_AT_artificial";
4449 case DW_AT_base_types:
4450 return "DW_AT_base_types";
4451 case DW_AT_calling_convention:
4452 return "DW_AT_calling_convention";
4453 case DW_AT_count:
4454 return "DW_AT_count";
4455 case DW_AT_data_member_location:
4456 return "DW_AT_data_member_location";
4457 case DW_AT_decl_column:
4458 return "DW_AT_decl_column";
4459 case DW_AT_decl_file:
4460 return "DW_AT_decl_file";
4461 case DW_AT_decl_line:
4462 return "DW_AT_decl_line";
4463 case DW_AT_declaration:
4464 return "DW_AT_declaration";
4465 case DW_AT_discr_list:
4466 return "DW_AT_discr_list";
4467 case DW_AT_encoding:
4468 return "DW_AT_encoding";
4469 case DW_AT_external:
4470 return "DW_AT_external";
4471 case DW_AT_frame_base:
4472 return "DW_AT_frame_base";
4473 case DW_AT_friend:
4474 return "DW_AT_friend";
4475 case DW_AT_identifier_case:
4476 return "DW_AT_identifier_case";
4477 case DW_AT_macro_info:
4478 return "DW_AT_macro_info";
4479 case DW_AT_namelist_items:
4480 return "DW_AT_namelist_items";
4481 case DW_AT_priority:
4482 return "DW_AT_priority";
4483 case DW_AT_segment:
4484 return "DW_AT_segment";
4485 case DW_AT_specification:
4486 return "DW_AT_specification";
4487 case DW_AT_static_link:
4488 return "DW_AT_static_link";
4489 case DW_AT_type:
4490 return "DW_AT_type";
4491 case DW_AT_use_location:
4492 return "DW_AT_use_location";
4493 case DW_AT_variable_parameter:
4494 return "DW_AT_variable_parameter";
4495 case DW_AT_virtuality:
4496 return "DW_AT_virtuality";
4497 case DW_AT_vtable_elem_location:
4498 return "DW_AT_vtable_elem_location";
4500 case DW_AT_allocated:
4501 return "DW_AT_allocated";
4502 case DW_AT_associated:
4503 return "DW_AT_associated";
4504 case DW_AT_data_location:
4505 return "DW_AT_data_location";
4506 case DW_AT_stride:
4507 return "DW_AT_stride";
4508 case DW_AT_entry_pc:
4509 return "DW_AT_entry_pc";
4510 case DW_AT_use_UTF8:
4511 return "DW_AT_use_UTF8";
4512 case DW_AT_extension:
4513 return "DW_AT_extension";
4514 case DW_AT_ranges:
4515 return "DW_AT_ranges";
4516 case DW_AT_trampoline:
4517 return "DW_AT_trampoline";
4518 case DW_AT_call_column:
4519 return "DW_AT_call_column";
4520 case DW_AT_call_file:
4521 return "DW_AT_call_file";
4522 case DW_AT_call_line:
4523 return "DW_AT_call_line";
4525 case DW_AT_MIPS_fde:
4526 return "DW_AT_MIPS_fde";
4527 case DW_AT_MIPS_loop_begin:
4528 return "DW_AT_MIPS_loop_begin";
4529 case DW_AT_MIPS_tail_loop_begin:
4530 return "DW_AT_MIPS_tail_loop_begin";
4531 case DW_AT_MIPS_epilog_begin:
4532 return "DW_AT_MIPS_epilog_begin";
4533 case DW_AT_MIPS_loop_unroll_factor:
4534 return "DW_AT_MIPS_loop_unroll_factor";
4535 case DW_AT_MIPS_software_pipeline_depth:
4536 return "DW_AT_MIPS_software_pipeline_depth";
4537 case DW_AT_MIPS_linkage_name:
4538 return "DW_AT_MIPS_linkage_name";
4539 case DW_AT_MIPS_stride:
4540 return "DW_AT_MIPS_stride";
4541 case DW_AT_MIPS_abstract_name:
4542 return "DW_AT_MIPS_abstract_name";
4543 case DW_AT_MIPS_clone_origin:
4544 return "DW_AT_MIPS_clone_origin";
4545 case DW_AT_MIPS_has_inlines:
4546 return "DW_AT_MIPS_has_inlines";
4548 case DW_AT_sf_names:
4549 return "DW_AT_sf_names";
4550 case DW_AT_src_info:
4551 return "DW_AT_src_info";
4552 case DW_AT_mac_info:
4553 return "DW_AT_mac_info";
4554 case DW_AT_src_coords:
4555 return "DW_AT_src_coords";
4556 case DW_AT_body_begin:
4557 return "DW_AT_body_begin";
4558 case DW_AT_body_end:
4559 return "DW_AT_body_end";
4560 case DW_AT_GNU_vector:
4561 return "DW_AT_GNU_vector";
4563 case DW_AT_VMS_rtnbeg_pd_address:
4564 return "DW_AT_VMS_rtnbeg_pd_address";
4566 default:
4567 return "DW_AT_<unknown>";
4571 /* Convert a DWARF value form code into its string name. */
4573 static const char *
4574 dwarf_form_name (unsigned int form)
4576 switch (form)
4578 case DW_FORM_addr:
4579 return "DW_FORM_addr";
4580 case DW_FORM_block2:
4581 return "DW_FORM_block2";
4582 case DW_FORM_block4:
4583 return "DW_FORM_block4";
4584 case DW_FORM_data2:
4585 return "DW_FORM_data2";
4586 case DW_FORM_data4:
4587 return "DW_FORM_data4";
4588 case DW_FORM_data8:
4589 return "DW_FORM_data8";
4590 case DW_FORM_string:
4591 return "DW_FORM_string";
4592 case DW_FORM_block:
4593 return "DW_FORM_block";
4594 case DW_FORM_block1:
4595 return "DW_FORM_block1";
4596 case DW_FORM_data1:
4597 return "DW_FORM_data1";
4598 case DW_FORM_flag:
4599 return "DW_FORM_flag";
4600 case DW_FORM_sdata:
4601 return "DW_FORM_sdata";
4602 case DW_FORM_strp:
4603 return "DW_FORM_strp";
4604 case DW_FORM_udata:
4605 return "DW_FORM_udata";
4606 case DW_FORM_ref_addr:
4607 return "DW_FORM_ref_addr";
4608 case DW_FORM_ref1:
4609 return "DW_FORM_ref1";
4610 case DW_FORM_ref2:
4611 return "DW_FORM_ref2";
4612 case DW_FORM_ref4:
4613 return "DW_FORM_ref4";
4614 case DW_FORM_ref8:
4615 return "DW_FORM_ref8";
4616 case DW_FORM_ref_udata:
4617 return "DW_FORM_ref_udata";
4618 case DW_FORM_indirect:
4619 return "DW_FORM_indirect";
4620 default:
4621 return "DW_FORM_<unknown>";
4625 /* Determine the "ultimate origin" of a decl. The decl may be an inlined
4626 instance of an inlined instance of a decl which is local to an inline
4627 function, so we have to trace all of the way back through the origin chain
4628 to find out what sort of node actually served as the original seed for the
4629 given block. */
4631 static tree
4632 decl_ultimate_origin (tree decl)
4634 /* output_inline_function sets DECL_ABSTRACT_ORIGIN for all the
4635 nodes in the function to point to themselves; ignore that if
4636 we're trying to output the abstract instance of this function. */
4637 if (DECL_ABSTRACT (decl) && DECL_ABSTRACT_ORIGIN (decl) == decl)
4638 return NULL_TREE;
4640 /* Since the DECL_ABSTRACT_ORIGIN for a DECL is supposed to be the
4641 most distant ancestor, this should never happen. */
4642 gcc_assert (!DECL_FROM_INLINE (DECL_ORIGIN (decl)));
4644 return DECL_ABSTRACT_ORIGIN (decl);
4647 /* Determine the "ultimate origin" of a block. The block may be an inlined
4648 instance of an inlined instance of a block which is local to an inline
4649 function, so we have to trace all of the way back through the origin chain
4650 to find out what sort of node actually served as the original seed for the
4651 given block. */
4653 static tree
4654 block_ultimate_origin (tree block)
4656 tree immediate_origin = BLOCK_ABSTRACT_ORIGIN (block);
4658 /* output_inline_function sets BLOCK_ABSTRACT_ORIGIN for all the
4659 nodes in the function to point to themselves; ignore that if
4660 we're trying to output the abstract instance of this function. */
4661 if (BLOCK_ABSTRACT (block) && immediate_origin == block)
4662 return NULL_TREE;
4664 if (immediate_origin == NULL_TREE)
4665 return NULL_TREE;
4666 else
4668 tree ret_val;
4669 tree lookahead = immediate_origin;
4673 ret_val = lookahead;
4674 lookahead = (TREE_CODE (ret_val) == BLOCK
4675 ? BLOCK_ABSTRACT_ORIGIN (ret_val) : NULL);
4677 while (lookahead != NULL && lookahead != ret_val);
4679 /* The block's abstract origin chain may not be the *ultimate* origin of
4680 the block. It could lead to a DECL that has an abstract origin set.
4681 If so, we want that DECL's abstract origin (which is what DECL_ORIGIN
4682 will give us if it has one). Note that DECL's abstract origins are
4683 supposed to be the most distant ancestor (or so decl_ultimate_origin
4684 claims), so we don't need to loop following the DECL origins. */
4685 if (DECL_P (ret_val))
4686 return DECL_ORIGIN (ret_val);
4688 return ret_val;
4692 /* Get the class to which DECL belongs, if any. In g++, the DECL_CONTEXT
4693 of a virtual function may refer to a base class, so we check the 'this'
4694 parameter. */
4696 static tree
4697 decl_class_context (tree decl)
4699 tree context = NULL_TREE;
4701 if (TREE_CODE (decl) != FUNCTION_DECL || ! DECL_VINDEX (decl))
4702 context = DECL_CONTEXT (decl);
4703 else
4704 context = TYPE_MAIN_VARIANT
4705 (TREE_TYPE (TREE_VALUE (TYPE_ARG_TYPES (TREE_TYPE (decl)))));
4707 if (context && !TYPE_P (context))
4708 context = NULL_TREE;
4710 return context;
4713 /* Add an attribute/value pair to a DIE. We build the lists up in reverse
4714 addition order, and correct that in reverse_all_dies. */
4716 static inline void
4717 add_dwarf_attr (dw_die_ref die, dw_attr_ref attr)
4719 if (die != NULL && attr != NULL)
4721 attr->dw_attr_next = die->die_attr;
4722 die->die_attr = attr;
4726 static inline enum dw_val_class
4727 AT_class (dw_attr_ref a)
4729 return a->dw_attr_val.val_class;
4732 /* Add a flag value attribute to a DIE. */
4734 static inline void
4735 add_AT_flag (dw_die_ref die, enum dwarf_attribute attr_kind, unsigned int flag)
4737 dw_attr_ref attr = ggc_alloc (sizeof (dw_attr_node));
4739 attr->dw_attr_next = NULL;
4740 attr->dw_attr = attr_kind;
4741 attr->dw_attr_val.val_class = dw_val_class_flag;
4742 attr->dw_attr_val.v.val_flag = flag;
4743 add_dwarf_attr (die, attr);
4746 static inline unsigned
4747 AT_flag (dw_attr_ref a)
4749 gcc_assert (a && AT_class (a) == dw_val_class_flag);
4750 return a->dw_attr_val.v.val_flag;
4753 /* Add a signed integer attribute value to a DIE. */
4755 static inline void
4756 add_AT_int (dw_die_ref die, enum dwarf_attribute attr_kind, HOST_WIDE_INT int_val)
4758 dw_attr_ref attr = ggc_alloc (sizeof (dw_attr_node));
4760 attr->dw_attr_next = NULL;
4761 attr->dw_attr = attr_kind;
4762 attr->dw_attr_val.val_class = dw_val_class_const;
4763 attr->dw_attr_val.v.val_int = int_val;
4764 add_dwarf_attr (die, attr);
4767 static inline HOST_WIDE_INT
4768 AT_int (dw_attr_ref a)
4770 gcc_assert (a && AT_class (a) == dw_val_class_const);
4771 return a->dw_attr_val.v.val_int;
4774 /* Add an unsigned integer attribute value to a DIE. */
4776 static inline void
4777 add_AT_unsigned (dw_die_ref die, enum dwarf_attribute attr_kind,
4778 unsigned HOST_WIDE_INT unsigned_val)
4780 dw_attr_ref attr = ggc_alloc (sizeof (dw_attr_node));
4782 attr->dw_attr_next = NULL;
4783 attr->dw_attr = attr_kind;
4784 attr->dw_attr_val.val_class = dw_val_class_unsigned_const;
4785 attr->dw_attr_val.v.val_unsigned = unsigned_val;
4786 add_dwarf_attr (die, attr);
4789 static inline unsigned HOST_WIDE_INT
4790 AT_unsigned (dw_attr_ref a)
4792 gcc_assert (a && AT_class (a) == dw_val_class_unsigned_const);
4793 return a->dw_attr_val.v.val_unsigned;
4796 /* Add an unsigned double integer attribute value to a DIE. */
4798 static inline void
4799 add_AT_long_long (dw_die_ref die, enum dwarf_attribute attr_kind,
4800 long unsigned int val_hi, long unsigned int val_low)
4802 dw_attr_ref attr = ggc_alloc (sizeof (dw_attr_node));
4804 attr->dw_attr_next = NULL;
4805 attr->dw_attr = attr_kind;
4806 attr->dw_attr_val.val_class = dw_val_class_long_long;
4807 attr->dw_attr_val.v.val_long_long.hi = val_hi;
4808 attr->dw_attr_val.v.val_long_long.low = val_low;
4809 add_dwarf_attr (die, attr);
4812 /* Add a floating point attribute value to a DIE and return it. */
4814 static inline void
4815 add_AT_vec (dw_die_ref die, enum dwarf_attribute attr_kind,
4816 unsigned int length, unsigned int elt_size, unsigned char *array)
4818 dw_attr_ref attr = ggc_alloc (sizeof (dw_attr_node));
4820 attr->dw_attr_next = NULL;
4821 attr->dw_attr = attr_kind;
4822 attr->dw_attr_val.val_class = dw_val_class_vec;
4823 attr->dw_attr_val.v.val_vec.length = length;
4824 attr->dw_attr_val.v.val_vec.elt_size = elt_size;
4825 attr->dw_attr_val.v.val_vec.array = array;
4826 add_dwarf_attr (die, attr);
4829 /* Hash and equality functions for debug_str_hash. */
4831 static hashval_t
4832 debug_str_do_hash (const void *x)
4834 return htab_hash_string (((const struct indirect_string_node *)x)->str);
4837 static int
4838 debug_str_eq (const void *x1, const void *x2)
4840 return strcmp ((((const struct indirect_string_node *)x1)->str),
4841 (const char *)x2) == 0;
4844 /* Add a string attribute value to a DIE. */
4846 static inline void
4847 add_AT_string (dw_die_ref die, enum dwarf_attribute attr_kind, const char *str)
4849 dw_attr_ref attr = ggc_alloc (sizeof (dw_attr_node));
4850 struct indirect_string_node *node;
4851 void **slot;
4853 if (! debug_str_hash)
4854 debug_str_hash = htab_create_ggc (10, debug_str_do_hash,
4855 debug_str_eq, NULL);
4857 slot = htab_find_slot_with_hash (debug_str_hash, str,
4858 htab_hash_string (str), INSERT);
4859 if (*slot == NULL)
4860 *slot = ggc_alloc_cleared (sizeof (struct indirect_string_node));
4861 node = (struct indirect_string_node *) *slot;
4862 node->str = ggc_strdup (str);
4863 node->refcount++;
4865 attr->dw_attr_next = NULL;
4866 attr->dw_attr = attr_kind;
4867 attr->dw_attr_val.val_class = dw_val_class_str;
4868 attr->dw_attr_val.v.val_str = node;
4869 add_dwarf_attr (die, attr);
4872 static inline const char *
4873 AT_string (dw_attr_ref a)
4875 gcc_assert (a && AT_class (a) == dw_val_class_str);
4876 return a->dw_attr_val.v.val_str->str;
4879 /* Find out whether a string should be output inline in DIE
4880 or out-of-line in .debug_str section. */
4882 static int
4883 AT_string_form (dw_attr_ref a)
4885 struct indirect_string_node *node;
4886 unsigned int len;
4887 char label[32];
4889 gcc_assert (a && AT_class (a) == dw_val_class_str);
4891 node = a->dw_attr_val.v.val_str;
4892 if (node->form)
4893 return node->form;
4895 len = strlen (node->str) + 1;
4897 /* If the string is shorter or equal to the size of the reference, it is
4898 always better to put it inline. */
4899 if (len <= DWARF_OFFSET_SIZE || node->refcount == 0)
4900 return node->form = DW_FORM_string;
4902 /* If we cannot expect the linker to merge strings in .debug_str
4903 section, only put it into .debug_str if it is worth even in this
4904 single module. */
4905 if ((DEBUG_STR_SECTION_FLAGS & SECTION_MERGE) == 0
4906 && (len - DWARF_OFFSET_SIZE) * node->refcount <= len)
4907 return node->form = DW_FORM_string;
4909 ASM_GENERATE_INTERNAL_LABEL (label, "LASF", dw2_string_counter);
4910 ++dw2_string_counter;
4911 node->label = xstrdup (label);
4913 return node->form = DW_FORM_strp;
4916 /* Add a DIE reference attribute value to a DIE. */
4918 static inline void
4919 add_AT_die_ref (dw_die_ref die, enum dwarf_attribute attr_kind, dw_die_ref targ_die)
4921 dw_attr_ref attr = ggc_alloc (sizeof (dw_attr_node));
4923 attr->dw_attr_next = NULL;
4924 attr->dw_attr = attr_kind;
4925 attr->dw_attr_val.val_class = dw_val_class_die_ref;
4926 attr->dw_attr_val.v.val_die_ref.die = targ_die;
4927 attr->dw_attr_val.v.val_die_ref.external = 0;
4928 add_dwarf_attr (die, attr);
4931 /* Add an AT_specification attribute to a DIE, and also make the back
4932 pointer from the specification to the definition. */
4934 static inline void
4935 add_AT_specification (dw_die_ref die, dw_die_ref targ_die)
4937 add_AT_die_ref (die, DW_AT_specification, targ_die);
4938 gcc_assert (!targ_die->die_definition);
4939 targ_die->die_definition = die;
4942 static inline dw_die_ref
4943 AT_ref (dw_attr_ref a)
4945 gcc_assert (a && AT_class (a) == dw_val_class_die_ref);
4946 return a->dw_attr_val.v.val_die_ref.die;
4949 static inline int
4950 AT_ref_external (dw_attr_ref a)
4952 if (a && AT_class (a) == dw_val_class_die_ref)
4953 return a->dw_attr_val.v.val_die_ref.external;
4955 return 0;
4958 static inline void
4959 set_AT_ref_external (dw_attr_ref a, int i)
4961 gcc_assert (a && AT_class (a) == dw_val_class_die_ref);
4962 a->dw_attr_val.v.val_die_ref.external = i;
4965 /* Add an FDE reference attribute value to a DIE. */
4967 static inline void
4968 add_AT_fde_ref (dw_die_ref die, enum dwarf_attribute attr_kind, unsigned int targ_fde)
4970 dw_attr_ref attr = ggc_alloc (sizeof (dw_attr_node));
4972 attr->dw_attr_next = NULL;
4973 attr->dw_attr = attr_kind;
4974 attr->dw_attr_val.val_class = dw_val_class_fde_ref;
4975 attr->dw_attr_val.v.val_fde_index = targ_fde;
4976 add_dwarf_attr (die, attr);
4979 /* Add a location description attribute value to a DIE. */
4981 static inline void
4982 add_AT_loc (dw_die_ref die, enum dwarf_attribute attr_kind, dw_loc_descr_ref loc)
4984 dw_attr_ref attr = ggc_alloc (sizeof (dw_attr_node));
4986 attr->dw_attr_next = NULL;
4987 attr->dw_attr = attr_kind;
4988 attr->dw_attr_val.val_class = dw_val_class_loc;
4989 attr->dw_attr_val.v.val_loc = loc;
4990 add_dwarf_attr (die, attr);
4993 static inline dw_loc_descr_ref
4994 AT_loc (dw_attr_ref a)
4996 gcc_assert (a && AT_class (a) == dw_val_class_loc);
4997 return a->dw_attr_val.v.val_loc;
5000 static inline void
5001 add_AT_loc_list (dw_die_ref die, enum dwarf_attribute attr_kind, dw_loc_list_ref loc_list)
5003 dw_attr_ref attr = ggc_alloc (sizeof (dw_attr_node));
5005 attr->dw_attr_next = NULL;
5006 attr->dw_attr = attr_kind;
5007 attr->dw_attr_val.val_class = dw_val_class_loc_list;
5008 attr->dw_attr_val.v.val_loc_list = loc_list;
5009 add_dwarf_attr (die, attr);
5010 have_location_lists = 1;
5013 static inline dw_loc_list_ref
5014 AT_loc_list (dw_attr_ref a)
5016 gcc_assert (a && AT_class (a) == dw_val_class_loc_list);
5017 return a->dw_attr_val.v.val_loc_list;
5020 /* Add an address constant attribute value to a DIE. */
5022 static inline void
5023 add_AT_addr (dw_die_ref die, enum dwarf_attribute attr_kind, rtx addr)
5025 dw_attr_ref attr = ggc_alloc (sizeof (dw_attr_node));
5027 attr->dw_attr_next = NULL;
5028 attr->dw_attr = attr_kind;
5029 attr->dw_attr_val.val_class = dw_val_class_addr;
5030 attr->dw_attr_val.v.val_addr = addr;
5031 add_dwarf_attr (die, attr);
5034 static inline rtx
5035 AT_addr (dw_attr_ref a)
5037 gcc_assert (a && AT_class (a) == dw_val_class_addr);
5038 return a->dw_attr_val.v.val_addr;
5041 /* Add a label identifier attribute value to a DIE. */
5043 static inline void
5044 add_AT_lbl_id (dw_die_ref die, enum dwarf_attribute attr_kind, const char *lbl_id)
5046 dw_attr_ref attr = ggc_alloc (sizeof (dw_attr_node));
5048 attr->dw_attr_next = NULL;
5049 attr->dw_attr = attr_kind;
5050 attr->dw_attr_val.val_class = dw_val_class_lbl_id;
5051 attr->dw_attr_val.v.val_lbl_id = xstrdup (lbl_id);
5052 add_dwarf_attr (die, attr);
5055 /* Add a section offset attribute value to a DIE. */
5057 static inline void
5058 add_AT_lbl_offset (dw_die_ref die, enum dwarf_attribute attr_kind, const char *label)
5060 dw_attr_ref attr = ggc_alloc (sizeof (dw_attr_node));
5062 attr->dw_attr_next = NULL;
5063 attr->dw_attr = attr_kind;
5064 attr->dw_attr_val.val_class = dw_val_class_lbl_offset;
5065 attr->dw_attr_val.v.val_lbl_id = xstrdup (label);
5066 add_dwarf_attr (die, attr);
5069 /* Add an offset attribute value to a DIE. */
5071 static inline void
5072 add_AT_offset (dw_die_ref die, enum dwarf_attribute attr_kind,
5073 unsigned HOST_WIDE_INT offset)
5075 dw_attr_ref attr = ggc_alloc (sizeof (dw_attr_node));
5077 attr->dw_attr_next = NULL;
5078 attr->dw_attr = attr_kind;
5079 attr->dw_attr_val.val_class = dw_val_class_offset;
5080 attr->dw_attr_val.v.val_offset = offset;
5081 add_dwarf_attr (die, attr);
5084 /* Add an range_list attribute value to a DIE. */
5086 static void
5087 add_AT_range_list (dw_die_ref die, enum dwarf_attribute attr_kind,
5088 long unsigned int offset)
5090 dw_attr_ref attr = ggc_alloc (sizeof (dw_attr_node));
5092 attr->dw_attr_next = NULL;
5093 attr->dw_attr = attr_kind;
5094 attr->dw_attr_val.val_class = dw_val_class_range_list;
5095 attr->dw_attr_val.v.val_offset = offset;
5096 add_dwarf_attr (die, attr);
5099 static inline const char *
5100 AT_lbl (dw_attr_ref a)
5102 gcc_assert (a && (AT_class (a) == dw_val_class_lbl_id
5103 || AT_class (a) == dw_val_class_lbl_offset));
5104 return a->dw_attr_val.v.val_lbl_id;
5107 /* Get the attribute of type attr_kind. */
5109 static dw_attr_ref
5110 get_AT (dw_die_ref die, enum dwarf_attribute attr_kind)
5112 dw_attr_ref a;
5113 dw_die_ref spec = NULL;
5115 if (die != NULL)
5117 for (a = die->die_attr; a != NULL; a = a->dw_attr_next)
5118 if (a->dw_attr == attr_kind)
5119 return a;
5120 else if (a->dw_attr == DW_AT_specification
5121 || a->dw_attr == DW_AT_abstract_origin)
5122 spec = AT_ref (a);
5124 if (spec)
5125 return get_AT (spec, attr_kind);
5128 return NULL;
5131 /* Return the "low pc" attribute value, typically associated with a subprogram
5132 DIE. Return null if the "low pc" attribute is either not present, or if it
5133 cannot be represented as an assembler label identifier. */
5135 static inline const char *
5136 get_AT_low_pc (dw_die_ref die)
5138 dw_attr_ref a = get_AT (die, DW_AT_low_pc);
5140 return a ? AT_lbl (a) : NULL;
5143 /* Return the "high pc" attribute value, typically associated with a subprogram
5144 DIE. Return null if the "high pc" attribute is either not present, or if it
5145 cannot be represented as an assembler label identifier. */
5147 static inline const char *
5148 get_AT_hi_pc (dw_die_ref die)
5150 dw_attr_ref a = get_AT (die, DW_AT_high_pc);
5152 return a ? AT_lbl (a) : NULL;
5155 /* Return the value of the string attribute designated by ATTR_KIND, or
5156 NULL if it is not present. */
5158 static inline const char *
5159 get_AT_string (dw_die_ref die, enum dwarf_attribute attr_kind)
5161 dw_attr_ref a = get_AT (die, attr_kind);
5163 return a ? AT_string (a) : NULL;
5166 /* Return the value of the flag attribute designated by ATTR_KIND, or -1
5167 if it is not present. */
5169 static inline int
5170 get_AT_flag (dw_die_ref die, enum dwarf_attribute attr_kind)
5172 dw_attr_ref a = get_AT (die, attr_kind);
5174 return a ? AT_flag (a) : 0;
5177 /* Return the value of the unsigned attribute designated by ATTR_KIND, or 0
5178 if it is not present. */
5180 static inline unsigned
5181 get_AT_unsigned (dw_die_ref die, enum dwarf_attribute attr_kind)
5183 dw_attr_ref a = get_AT (die, attr_kind);
5185 return a ? AT_unsigned (a) : 0;
5188 static inline dw_die_ref
5189 get_AT_ref (dw_die_ref die, enum dwarf_attribute attr_kind)
5191 dw_attr_ref a = get_AT (die, attr_kind);
5193 return a ? AT_ref (a) : NULL;
5196 /* Return TRUE if the language is C or C++. */
5198 static inline bool
5199 is_c_family (void)
5201 unsigned int lang = get_AT_unsigned (comp_unit_die, DW_AT_language);
5203 return (lang == DW_LANG_C || lang == DW_LANG_C89
5204 || lang == DW_LANG_C_plus_plus);
5207 /* Return TRUE if the language is C++. */
5209 static inline bool
5210 is_cxx (void)
5212 return (get_AT_unsigned (comp_unit_die, DW_AT_language)
5213 == DW_LANG_C_plus_plus);
5216 /* Return TRUE if the language is Fortran. */
5218 static inline bool
5219 is_fortran (void)
5221 unsigned int lang = get_AT_unsigned (comp_unit_die, DW_AT_language);
5223 return (lang == DW_LANG_Fortran77
5224 || lang == DW_LANG_Fortran90
5225 || lang == DW_LANG_Fortran95);
5228 /* Return TRUE if the language is Java. */
5230 static inline bool
5231 is_java (void)
5233 unsigned int lang = get_AT_unsigned (comp_unit_die, DW_AT_language);
5235 return lang == DW_LANG_Java;
5238 /* Return TRUE if the language is Ada. */
5240 static inline bool
5241 is_ada (void)
5243 unsigned int lang = get_AT_unsigned (comp_unit_die, DW_AT_language);
5245 return lang == DW_LANG_Ada95 || lang == DW_LANG_Ada83;
5248 /* Free up the memory used by A. */
5250 static inline void free_AT (dw_attr_ref);
5251 static inline void
5252 free_AT (dw_attr_ref a)
5254 if (AT_class (a) == dw_val_class_str)
5255 if (a->dw_attr_val.v.val_str->refcount)
5256 a->dw_attr_val.v.val_str->refcount--;
5259 /* Remove the specified attribute if present. */
5261 static void
5262 remove_AT (dw_die_ref die, enum dwarf_attribute attr_kind)
5264 dw_attr_ref *p;
5265 dw_attr_ref removed = NULL;
5267 if (die != NULL)
5269 for (p = &(die->die_attr); *p; p = &((*p)->dw_attr_next))
5270 if ((*p)->dw_attr == attr_kind)
5272 removed = *p;
5273 *p = (*p)->dw_attr_next;
5274 break;
5277 if (removed != 0)
5278 free_AT (removed);
5282 /* Remove child die whose die_tag is specified tag. */
5284 static void
5285 remove_child_TAG (dw_die_ref die, enum dwarf_tag tag)
5287 dw_die_ref current, prev, next;
5288 current = die->die_child;
5289 prev = NULL;
5290 while (current != NULL)
5292 if (current->die_tag == tag)
5294 next = current->die_sib;
5295 if (prev == NULL)
5296 die->die_child = next;
5297 else
5298 prev->die_sib = next;
5299 free_die (current);
5300 current = next;
5302 else
5304 prev = current;
5305 current = current->die_sib;
5310 /* Free up the memory used by DIE. */
5312 static inline void
5313 free_die (dw_die_ref die)
5315 remove_children (die);
5318 /* Discard the children of this DIE. */
5320 static void
5321 remove_children (dw_die_ref die)
5323 dw_die_ref child_die = die->die_child;
5325 die->die_child = NULL;
5327 while (child_die != NULL)
5329 dw_die_ref tmp_die = child_die;
5330 dw_attr_ref a;
5332 child_die = child_die->die_sib;
5334 for (a = tmp_die->die_attr; a != NULL;)
5336 dw_attr_ref tmp_a = a;
5338 a = a->dw_attr_next;
5339 free_AT (tmp_a);
5342 free_die (tmp_die);
5346 /* Add a child DIE below its parent. We build the lists up in reverse
5347 addition order, and correct that in reverse_all_dies. */
5349 static inline void
5350 add_child_die (dw_die_ref die, dw_die_ref child_die)
5352 if (die != NULL && child_die != NULL)
5354 gcc_assert (die != child_die);
5356 child_die->die_parent = die;
5357 child_die->die_sib = die->die_child;
5358 die->die_child = child_die;
5362 /* Move CHILD, which must be a child of PARENT or the DIE for which PARENT
5363 is the specification, to the front of PARENT's list of children. */
5365 static void
5366 splice_child_die (dw_die_ref parent, dw_die_ref child)
5368 dw_die_ref *p;
5370 /* We want the declaration DIE from inside the class, not the
5371 specification DIE at toplevel. */
5372 if (child->die_parent != parent)
5374 dw_die_ref tmp = get_AT_ref (child, DW_AT_specification);
5376 if (tmp)
5377 child = tmp;
5380 gcc_assert (child->die_parent == parent
5381 || (child->die_parent
5382 == get_AT_ref (parent, DW_AT_specification)));
5384 for (p = &(child->die_parent->die_child); *p; p = &((*p)->die_sib))
5385 if (*p == child)
5387 *p = child->die_sib;
5388 break;
5391 child->die_parent = parent;
5392 child->die_sib = parent->die_child;
5393 parent->die_child = child;
5396 /* Return a pointer to a newly created DIE node. */
5398 static inline dw_die_ref
5399 new_die (enum dwarf_tag tag_value, dw_die_ref parent_die, tree t)
5401 dw_die_ref die = ggc_alloc_cleared (sizeof (die_node));
5403 die->die_tag = tag_value;
5405 if (parent_die != NULL)
5406 add_child_die (parent_die, die);
5407 else
5409 limbo_die_node *limbo_node;
5411 limbo_node = ggc_alloc_cleared (sizeof (limbo_die_node));
5412 limbo_node->die = die;
5413 limbo_node->created_for = t;
5414 limbo_node->next = limbo_die_list;
5415 limbo_die_list = limbo_node;
5418 return die;
5421 /* Return the DIE associated with the given type specifier. */
5423 static inline dw_die_ref
5424 lookup_type_die (tree type)
5426 return TYPE_SYMTAB_DIE (type);
5429 /* Equate a DIE to a given type specifier. */
5431 static inline void
5432 equate_type_number_to_die (tree type, dw_die_ref type_die)
5434 TYPE_SYMTAB_DIE (type) = type_die;
5437 /* Returns a hash value for X (which really is a die_struct). */
5439 static hashval_t
5440 decl_die_table_hash (const void *x)
5442 return (hashval_t) ((const dw_die_ref) x)->decl_id;
5445 /* Return nonzero if decl_id of die_struct X is the same as UID of decl *Y. */
5447 static int
5448 decl_die_table_eq (const void *x, const void *y)
5450 return (((const dw_die_ref) x)->decl_id == DECL_UID ((const tree) y));
5453 /* Return the DIE associated with a given declaration. */
5455 static inline dw_die_ref
5456 lookup_decl_die (tree decl)
5458 return htab_find_with_hash (decl_die_table, decl, DECL_UID (decl));
5461 /* Returns a hash value for X (which really is a var_loc_list). */
5463 static hashval_t
5464 decl_loc_table_hash (const void *x)
5466 return (hashval_t) ((const var_loc_list *) x)->decl_id;
5469 /* Return nonzero if decl_id of var_loc_list X is the same as
5470 UID of decl *Y. */
5472 static int
5473 decl_loc_table_eq (const void *x, const void *y)
5475 return (((const var_loc_list *) x)->decl_id == DECL_UID ((const tree) y));
5478 /* Return the var_loc list associated with a given declaration. */
5480 static inline var_loc_list *
5481 lookup_decl_loc (tree decl)
5483 return htab_find_with_hash (decl_loc_table, decl, DECL_UID (decl));
5486 /* Equate a DIE to a particular declaration. */
5488 static void
5489 equate_decl_number_to_die (tree decl, dw_die_ref decl_die)
5491 unsigned int decl_id = DECL_UID (decl);
5492 void **slot;
5494 slot = htab_find_slot_with_hash (decl_die_table, decl, decl_id, INSERT);
5495 *slot = decl_die;
5496 decl_die->decl_id = decl_id;
5499 /* Add a variable location node to the linked list for DECL. */
5501 static void
5502 add_var_loc_to_decl (tree decl, struct var_loc_node *loc)
5504 unsigned int decl_id = DECL_UID (decl);
5505 var_loc_list *temp;
5506 void **slot;
5508 slot = htab_find_slot_with_hash (decl_loc_table, decl, decl_id, INSERT);
5509 if (*slot == NULL)
5511 temp = ggc_alloc_cleared (sizeof (var_loc_list));
5512 temp->decl_id = decl_id;
5513 *slot = temp;
5515 else
5516 temp = *slot;
5518 if (temp->last)
5520 /* If the current location is the same as the end of the list,
5521 we have nothing to do. */
5522 if (!rtx_equal_p (NOTE_VAR_LOCATION_LOC (temp->last->var_loc_note),
5523 NOTE_VAR_LOCATION_LOC (loc->var_loc_note)))
5525 /* Add LOC to the end of list and update LAST. */
5526 temp->last->next = loc;
5527 temp->last = loc;
5530 /* Do not add empty location to the beginning of the list. */
5531 else if (NOTE_VAR_LOCATION_LOC (loc->var_loc_note) != NULL_RTX)
5533 temp->first = loc;
5534 temp->last = loc;
5538 /* Keep track of the number of spaces used to indent the
5539 output of the debugging routines that print the structure of
5540 the DIE internal representation. */
5541 static int print_indent;
5543 /* Indent the line the number of spaces given by print_indent. */
5545 static inline void
5546 print_spaces (FILE *outfile)
5548 fprintf (outfile, "%*s", print_indent, "");
5551 /* Print the information associated with a given DIE, and its children.
5552 This routine is a debugging aid only. */
5554 static void
5555 print_die (dw_die_ref die, FILE *outfile)
5557 dw_attr_ref a;
5558 dw_die_ref c;
5560 print_spaces (outfile);
5561 fprintf (outfile, "DIE %4lu: %s\n",
5562 die->die_offset, dwarf_tag_name (die->die_tag));
5563 print_spaces (outfile);
5564 fprintf (outfile, " abbrev id: %lu", die->die_abbrev);
5565 fprintf (outfile, " offset: %lu\n", die->die_offset);
5567 for (a = die->die_attr; a != NULL; a = a->dw_attr_next)
5569 print_spaces (outfile);
5570 fprintf (outfile, " %s: ", dwarf_attr_name (a->dw_attr));
5572 switch (AT_class (a))
5574 case dw_val_class_addr:
5575 fprintf (outfile, "address");
5576 break;
5577 case dw_val_class_offset:
5578 fprintf (outfile, "offset");
5579 break;
5580 case dw_val_class_loc:
5581 fprintf (outfile, "location descriptor");
5582 break;
5583 case dw_val_class_loc_list:
5584 fprintf (outfile, "location list -> label:%s",
5585 AT_loc_list (a)->ll_symbol);
5586 break;
5587 case dw_val_class_range_list:
5588 fprintf (outfile, "range list");
5589 break;
5590 case dw_val_class_const:
5591 fprintf (outfile, HOST_WIDE_INT_PRINT_DEC, AT_int (a));
5592 break;
5593 case dw_val_class_unsigned_const:
5594 fprintf (outfile, HOST_WIDE_INT_PRINT_UNSIGNED, AT_unsigned (a));
5595 break;
5596 case dw_val_class_long_long:
5597 fprintf (outfile, "constant (%lu,%lu)",
5598 a->dw_attr_val.v.val_long_long.hi,
5599 a->dw_attr_val.v.val_long_long.low);
5600 break;
5601 case dw_val_class_vec:
5602 fprintf (outfile, "floating-point or vector constant");
5603 break;
5604 case dw_val_class_flag:
5605 fprintf (outfile, "%u", AT_flag (a));
5606 break;
5607 case dw_val_class_die_ref:
5608 if (AT_ref (a) != NULL)
5610 if (AT_ref (a)->die_symbol)
5611 fprintf (outfile, "die -> label: %s", AT_ref (a)->die_symbol);
5612 else
5613 fprintf (outfile, "die -> %lu", AT_ref (a)->die_offset);
5615 else
5616 fprintf (outfile, "die -> <null>");
5617 break;
5618 case dw_val_class_lbl_id:
5619 case dw_val_class_lbl_offset:
5620 fprintf (outfile, "label: %s", AT_lbl (a));
5621 break;
5622 case dw_val_class_str:
5623 if (AT_string (a) != NULL)
5624 fprintf (outfile, "\"%s\"", AT_string (a));
5625 else
5626 fprintf (outfile, "<null>");
5627 break;
5628 default:
5629 break;
5632 fprintf (outfile, "\n");
5635 if (die->die_child != NULL)
5637 print_indent += 4;
5638 for (c = die->die_child; c != NULL; c = c->die_sib)
5639 print_die (c, outfile);
5641 print_indent -= 4;
5643 if (print_indent == 0)
5644 fprintf (outfile, "\n");
5647 /* Print the contents of the source code line number correspondence table.
5648 This routine is a debugging aid only. */
5650 static void
5651 print_dwarf_line_table (FILE *outfile)
5653 unsigned i;
5654 dw_line_info_ref line_info;
5656 fprintf (outfile, "\n\nDWARF source line information\n");
5657 for (i = 1; i < line_info_table_in_use; i++)
5659 line_info = &line_info_table[i];
5660 fprintf (outfile, "%5d: ", i);
5661 fprintf (outfile, "%-20s",
5662 VARRAY_CHAR_PTR (file_table, line_info->dw_file_num));
5663 fprintf (outfile, "%6ld", line_info->dw_line_num);
5664 fprintf (outfile, "\n");
5667 fprintf (outfile, "\n\n");
5670 /* Print the information collected for a given DIE. */
5672 void
5673 debug_dwarf_die (dw_die_ref die)
5675 print_die (die, stderr);
5678 /* Print all DWARF information collected for the compilation unit.
5679 This routine is a debugging aid only. */
5681 void
5682 debug_dwarf (void)
5684 print_indent = 0;
5685 print_die (comp_unit_die, stderr);
5686 if (! DWARF2_ASM_LINE_DEBUG_INFO)
5687 print_dwarf_line_table (stderr);
5690 /* We build up the lists of children and attributes by pushing new ones
5691 onto the beginning of the list. Reverse the lists for DIE so that
5692 they are in order of addition. */
5694 static void
5695 reverse_die_lists (dw_die_ref die)
5697 dw_die_ref c, cp, cn;
5698 dw_attr_ref a, ap, an;
5700 for (a = die->die_attr, ap = 0; a; a = an)
5702 an = a->dw_attr_next;
5703 a->dw_attr_next = ap;
5704 ap = a;
5707 die->die_attr = ap;
5709 for (c = die->die_child, cp = 0; c; c = cn)
5711 cn = c->die_sib;
5712 c->die_sib = cp;
5713 cp = c;
5716 die->die_child = cp;
5719 /* reverse_die_lists only reverses the single die you pass it. Since we used to
5720 reverse all dies in add_sibling_attributes, which runs through all the dies,
5721 it would reverse all the dies. Now, however, since we don't call
5722 reverse_die_lists in add_sibling_attributes, we need a routine to
5723 recursively reverse all the dies. This is that routine. */
5725 static void
5726 reverse_all_dies (dw_die_ref die)
5728 dw_die_ref c;
5730 reverse_die_lists (die);
5732 for (c = die->die_child; c; c = c->die_sib)
5733 reverse_all_dies (c);
5736 /* Start a new compilation unit DIE for an include file. OLD_UNIT is the CU
5737 for the enclosing include file, if any. BINCL_DIE is the DW_TAG_GNU_BINCL
5738 DIE that marks the start of the DIEs for this include file. */
5740 static dw_die_ref
5741 push_new_compile_unit (dw_die_ref old_unit, dw_die_ref bincl_die)
5743 const char *filename = get_AT_string (bincl_die, DW_AT_name);
5744 dw_die_ref new_unit = gen_compile_unit_die (filename);
5746 new_unit->die_sib = old_unit;
5747 return new_unit;
5750 /* Close an include-file CU and reopen the enclosing one. */
5752 static dw_die_ref
5753 pop_compile_unit (dw_die_ref old_unit)
5755 dw_die_ref new_unit = old_unit->die_sib;
5757 old_unit->die_sib = NULL;
5758 return new_unit;
5761 #define CHECKSUM(FOO) md5_process_bytes (&(FOO), sizeof (FOO), ctx)
5762 #define CHECKSUM_STRING(FOO) md5_process_bytes ((FOO), strlen (FOO), ctx)
5764 /* Calculate the checksum of a location expression. */
5766 static inline void
5767 loc_checksum (dw_loc_descr_ref loc, struct md5_ctx *ctx)
5769 CHECKSUM (loc->dw_loc_opc);
5770 CHECKSUM (loc->dw_loc_oprnd1);
5771 CHECKSUM (loc->dw_loc_oprnd2);
5774 /* Calculate the checksum of an attribute. */
5776 static void
5777 attr_checksum (dw_attr_ref at, struct md5_ctx *ctx, int *mark)
5779 dw_loc_descr_ref loc;
5780 rtx r;
5782 CHECKSUM (at->dw_attr);
5784 /* We don't care about differences in file numbering. */
5785 if (at->dw_attr == DW_AT_decl_file
5786 /* Or that this was compiled with a different compiler snapshot; if
5787 the output is the same, that's what matters. */
5788 || at->dw_attr == DW_AT_producer)
5789 return;
5791 switch (AT_class (at))
5793 case dw_val_class_const:
5794 CHECKSUM (at->dw_attr_val.v.val_int);
5795 break;
5796 case dw_val_class_unsigned_const:
5797 CHECKSUM (at->dw_attr_val.v.val_unsigned);
5798 break;
5799 case dw_val_class_long_long:
5800 CHECKSUM (at->dw_attr_val.v.val_long_long);
5801 break;
5802 case dw_val_class_vec:
5803 CHECKSUM (at->dw_attr_val.v.val_vec);
5804 break;
5805 case dw_val_class_flag:
5806 CHECKSUM (at->dw_attr_val.v.val_flag);
5807 break;
5808 case dw_val_class_str:
5809 CHECKSUM_STRING (AT_string (at));
5810 break;
5812 case dw_val_class_addr:
5813 r = AT_addr (at);
5814 gcc_assert (GET_CODE (r) == SYMBOL_REF);
5815 CHECKSUM_STRING (XSTR (r, 0));
5816 break;
5818 case dw_val_class_offset:
5819 CHECKSUM (at->dw_attr_val.v.val_offset);
5820 break;
5822 case dw_val_class_loc:
5823 for (loc = AT_loc (at); loc; loc = loc->dw_loc_next)
5824 loc_checksum (loc, ctx);
5825 break;
5827 case dw_val_class_die_ref:
5828 die_checksum (AT_ref (at), ctx, mark);
5829 break;
5831 case dw_val_class_fde_ref:
5832 case dw_val_class_lbl_id:
5833 case dw_val_class_lbl_offset:
5834 break;
5836 default:
5837 break;
5841 /* Calculate the checksum of a DIE. */
5843 static void
5844 die_checksum (dw_die_ref die, struct md5_ctx *ctx, int *mark)
5846 dw_die_ref c;
5847 dw_attr_ref a;
5849 /* To avoid infinite recursion. */
5850 if (die->die_mark)
5852 CHECKSUM (die->die_mark);
5853 return;
5855 die->die_mark = ++(*mark);
5857 CHECKSUM (die->die_tag);
5859 for (a = die->die_attr; a; a = a->dw_attr_next)
5860 attr_checksum (a, ctx, mark);
5862 for (c = die->die_child; c; c = c->die_sib)
5863 die_checksum (c, ctx, mark);
5866 #undef CHECKSUM
5867 #undef CHECKSUM_STRING
5869 /* Do the location expressions look same? */
5870 static inline int
5871 same_loc_p (dw_loc_descr_ref loc1, dw_loc_descr_ref loc2, int *mark)
5873 return loc1->dw_loc_opc == loc2->dw_loc_opc
5874 && same_dw_val_p (&loc1->dw_loc_oprnd1, &loc2->dw_loc_oprnd1, mark)
5875 && same_dw_val_p (&loc1->dw_loc_oprnd2, &loc2->dw_loc_oprnd2, mark);
5878 /* Do the values look the same? */
5879 static int
5880 same_dw_val_p (dw_val_node *v1, dw_val_node *v2, int *mark)
5882 dw_loc_descr_ref loc1, loc2;
5883 rtx r1, r2;
5885 if (v1->val_class != v2->val_class)
5886 return 0;
5888 switch (v1->val_class)
5890 case dw_val_class_const:
5891 return v1->v.val_int == v2->v.val_int;
5892 case dw_val_class_unsigned_const:
5893 return v1->v.val_unsigned == v2->v.val_unsigned;
5894 case dw_val_class_long_long:
5895 return v1->v.val_long_long.hi == v2->v.val_long_long.hi
5896 && v1->v.val_long_long.low == v2->v.val_long_long.low;
5897 case dw_val_class_vec:
5898 if (v1->v.val_vec.length != v2->v.val_vec.length
5899 || v1->v.val_vec.elt_size != v2->v.val_vec.elt_size)
5900 return 0;
5901 if (memcmp (v1->v.val_vec.array, v2->v.val_vec.array,
5902 v1->v.val_vec.length * v1->v.val_vec.elt_size))
5903 return 0;
5904 return 1;
5905 case dw_val_class_flag:
5906 return v1->v.val_flag == v2->v.val_flag;
5907 case dw_val_class_str:
5908 return !strcmp(v1->v.val_str->str, v2->v.val_str->str);
5910 case dw_val_class_addr:
5911 r1 = v1->v.val_addr;
5912 r2 = v2->v.val_addr;
5913 if (GET_CODE (r1) != GET_CODE (r2))
5914 return 0;
5915 gcc_assert (GET_CODE (r1) == SYMBOL_REF);
5916 return !strcmp (XSTR (r1, 0), XSTR (r2, 0));
5918 case dw_val_class_offset:
5919 return v1->v.val_offset == v2->v.val_offset;
5921 case dw_val_class_loc:
5922 for (loc1 = v1->v.val_loc, loc2 = v2->v.val_loc;
5923 loc1 && loc2;
5924 loc1 = loc1->dw_loc_next, loc2 = loc2->dw_loc_next)
5925 if (!same_loc_p (loc1, loc2, mark))
5926 return 0;
5927 return !loc1 && !loc2;
5929 case dw_val_class_die_ref:
5930 return same_die_p (v1->v.val_die_ref.die, v2->v.val_die_ref.die, mark);
5932 case dw_val_class_fde_ref:
5933 case dw_val_class_lbl_id:
5934 case dw_val_class_lbl_offset:
5935 return 1;
5937 default:
5938 return 1;
5942 /* Do the attributes look the same? */
5944 static int
5945 same_attr_p (dw_attr_ref at1, dw_attr_ref at2, int *mark)
5947 if (at1->dw_attr != at2->dw_attr)
5948 return 0;
5950 /* We don't care about differences in file numbering. */
5951 if (at1->dw_attr == DW_AT_decl_file
5952 /* Or that this was compiled with a different compiler snapshot; if
5953 the output is the same, that's what matters. */
5954 || at1->dw_attr == DW_AT_producer)
5955 return 1;
5957 return same_dw_val_p (&at1->dw_attr_val, &at2->dw_attr_val, mark);
5960 /* Do the dies look the same? */
5962 static int
5963 same_die_p (dw_die_ref die1, dw_die_ref die2, int *mark)
5965 dw_die_ref c1, c2;
5966 dw_attr_ref a1, a2;
5968 /* To avoid infinite recursion. */
5969 if (die1->die_mark)
5970 return die1->die_mark == die2->die_mark;
5971 die1->die_mark = die2->die_mark = ++(*mark);
5973 if (die1->die_tag != die2->die_tag)
5974 return 0;
5976 for (a1 = die1->die_attr, a2 = die2->die_attr;
5977 a1 && a2;
5978 a1 = a1->dw_attr_next, a2 = a2->dw_attr_next)
5979 if (!same_attr_p (a1, a2, mark))
5980 return 0;
5981 if (a1 || a2)
5982 return 0;
5984 for (c1 = die1->die_child, c2 = die2->die_child;
5985 c1 && c2;
5986 c1 = c1->die_sib, c2 = c2->die_sib)
5987 if (!same_die_p (c1, c2, mark))
5988 return 0;
5989 if (c1 || c2)
5990 return 0;
5992 return 1;
5995 /* Do the dies look the same? Wrapper around same_die_p. */
5997 static int
5998 same_die_p_wrap (dw_die_ref die1, dw_die_ref die2)
6000 int mark = 0;
6001 int ret = same_die_p (die1, die2, &mark);
6003 unmark_all_dies (die1);
6004 unmark_all_dies (die2);
6006 return ret;
6009 /* The prefix to attach to symbols on DIEs in the current comdat debug
6010 info section. */
6011 static char *comdat_symbol_id;
6013 /* The index of the current symbol within the current comdat CU. */
6014 static unsigned int comdat_symbol_number;
6016 /* Calculate the MD5 checksum of the compilation unit DIE UNIT_DIE and its
6017 children, and set comdat_symbol_id accordingly. */
6019 static void
6020 compute_section_prefix (dw_die_ref unit_die)
6022 const char *die_name = get_AT_string (unit_die, DW_AT_name);
6023 const char *base = die_name ? lbasename (die_name) : "anonymous";
6024 char *name = alloca (strlen (base) + 64);
6025 char *p;
6026 int i, mark;
6027 unsigned char checksum[16];
6028 struct md5_ctx ctx;
6030 /* Compute the checksum of the DIE, then append part of it as hex digits to
6031 the name filename of the unit. */
6033 md5_init_ctx (&ctx);
6034 mark = 0;
6035 die_checksum (unit_die, &ctx, &mark);
6036 unmark_all_dies (unit_die);
6037 md5_finish_ctx (&ctx, checksum);
6039 sprintf (name, "%s.", base);
6040 clean_symbol_name (name);
6042 p = name + strlen (name);
6043 for (i = 0; i < 4; i++)
6045 sprintf (p, "%.2x", checksum[i]);
6046 p += 2;
6049 comdat_symbol_id = unit_die->die_symbol = xstrdup (name);
6050 comdat_symbol_number = 0;
6053 /* Returns nonzero if DIE represents a type, in the sense of TYPE_P. */
6055 static int
6056 is_type_die (dw_die_ref die)
6058 switch (die->die_tag)
6060 case DW_TAG_array_type:
6061 case DW_TAG_class_type:
6062 case DW_TAG_enumeration_type:
6063 case DW_TAG_pointer_type:
6064 case DW_TAG_reference_type:
6065 case DW_TAG_string_type:
6066 case DW_TAG_structure_type:
6067 case DW_TAG_subroutine_type:
6068 case DW_TAG_union_type:
6069 case DW_TAG_ptr_to_member_type:
6070 case DW_TAG_set_type:
6071 case DW_TAG_subrange_type:
6072 case DW_TAG_base_type:
6073 case DW_TAG_const_type:
6074 case DW_TAG_file_type:
6075 case DW_TAG_packed_type:
6076 case DW_TAG_volatile_type:
6077 case DW_TAG_typedef:
6078 return 1;
6079 default:
6080 return 0;
6084 /* Returns 1 iff C is the sort of DIE that should go into a COMDAT CU.
6085 Basically, we want to choose the bits that are likely to be shared between
6086 compilations (types) and leave out the bits that are specific to individual
6087 compilations (functions). */
6089 static int
6090 is_comdat_die (dw_die_ref c)
6092 /* I think we want to leave base types and __vtbl_ptr_type in the main CU, as
6093 we do for stabs. The advantage is a greater likelihood of sharing between
6094 objects that don't include headers in the same order (and therefore would
6095 put the base types in a different comdat). jason 8/28/00 */
6097 if (c->die_tag == DW_TAG_base_type)
6098 return 0;
6100 if (c->die_tag == DW_TAG_pointer_type
6101 || c->die_tag == DW_TAG_reference_type
6102 || c->die_tag == DW_TAG_const_type
6103 || c->die_tag == DW_TAG_volatile_type)
6105 dw_die_ref t = get_AT_ref (c, DW_AT_type);
6107 return t ? is_comdat_die (t) : 0;
6110 return is_type_die (c);
6113 /* Returns 1 iff C is the sort of DIE that might be referred to from another
6114 compilation unit. */
6116 static int
6117 is_symbol_die (dw_die_ref c)
6119 return (is_type_die (c)
6120 || (get_AT (c, DW_AT_declaration)
6121 && !get_AT (c, DW_AT_specification)));
6124 static char *
6125 gen_internal_sym (const char *prefix)
6127 char buf[256];
6129 ASM_GENERATE_INTERNAL_LABEL (buf, prefix, label_num++);
6130 return xstrdup (buf);
6133 /* Assign symbols to all worthy DIEs under DIE. */
6135 static void
6136 assign_symbol_names (dw_die_ref die)
6138 dw_die_ref c;
6140 if (is_symbol_die (die))
6142 if (comdat_symbol_id)
6144 char *p = alloca (strlen (comdat_symbol_id) + 64);
6146 sprintf (p, "%s.%s.%x", DIE_LABEL_PREFIX,
6147 comdat_symbol_id, comdat_symbol_number++);
6148 die->die_symbol = xstrdup (p);
6150 else
6151 die->die_symbol = gen_internal_sym ("LDIE");
6154 for (c = die->die_child; c != NULL; c = c->die_sib)
6155 assign_symbol_names (c);
6158 struct cu_hash_table_entry
6160 dw_die_ref cu;
6161 unsigned min_comdat_num, max_comdat_num;
6162 struct cu_hash_table_entry *next;
6165 /* Routines to manipulate hash table of CUs. */
6166 static hashval_t
6167 htab_cu_hash (const void *of)
6169 const struct cu_hash_table_entry *entry = of;
6171 return htab_hash_string (entry->cu->die_symbol);
6174 static int
6175 htab_cu_eq (const void *of1, const void *of2)
6177 const struct cu_hash_table_entry *entry1 = of1;
6178 const struct die_struct *entry2 = of2;
6180 return !strcmp (entry1->cu->die_symbol, entry2->die_symbol);
6183 static void
6184 htab_cu_del (void *what)
6186 struct cu_hash_table_entry *next, *entry = what;
6188 while (entry)
6190 next = entry->next;
6191 free (entry);
6192 entry = next;
6196 /* Check whether we have already seen this CU and set up SYM_NUM
6197 accordingly. */
6198 static int
6199 check_duplicate_cu (dw_die_ref cu, htab_t htable, unsigned int *sym_num)
6201 struct cu_hash_table_entry dummy;
6202 struct cu_hash_table_entry **slot, *entry, *last = &dummy;
6204 dummy.max_comdat_num = 0;
6206 slot = (struct cu_hash_table_entry **)
6207 htab_find_slot_with_hash (htable, cu, htab_hash_string (cu->die_symbol),
6208 INSERT);
6209 entry = *slot;
6211 for (; entry; last = entry, entry = entry->next)
6213 if (same_die_p_wrap (cu, entry->cu))
6214 break;
6217 if (entry)
6219 *sym_num = entry->min_comdat_num;
6220 return 1;
6223 entry = xcalloc (1, sizeof (struct cu_hash_table_entry));
6224 entry->cu = cu;
6225 entry->min_comdat_num = *sym_num = last->max_comdat_num;
6226 entry->next = *slot;
6227 *slot = entry;
6229 return 0;
6232 /* Record SYM_NUM to record of CU in HTABLE. */
6233 static void
6234 record_comdat_symbol_number (dw_die_ref cu, htab_t htable, unsigned int sym_num)
6236 struct cu_hash_table_entry **slot, *entry;
6238 slot = (struct cu_hash_table_entry **)
6239 htab_find_slot_with_hash (htable, cu, htab_hash_string (cu->die_symbol),
6240 NO_INSERT);
6241 entry = *slot;
6243 entry->max_comdat_num = sym_num;
6246 /* Traverse the DIE (which is always comp_unit_die), and set up
6247 additional compilation units for each of the include files we see
6248 bracketed by BINCL/EINCL. */
6250 static void
6251 break_out_includes (dw_die_ref die)
6253 dw_die_ref *ptr;
6254 dw_die_ref unit = NULL;
6255 limbo_die_node *node, **pnode;
6256 htab_t cu_hash_table;
6258 for (ptr = &(die->die_child); *ptr;)
6260 dw_die_ref c = *ptr;
6262 if (c->die_tag == DW_TAG_GNU_BINCL || c->die_tag == DW_TAG_GNU_EINCL
6263 || (unit && is_comdat_die (c)))
6265 /* This DIE is for a secondary CU; remove it from the main one. */
6266 *ptr = c->die_sib;
6268 if (c->die_tag == DW_TAG_GNU_BINCL)
6270 unit = push_new_compile_unit (unit, c);
6271 free_die (c);
6273 else if (c->die_tag == DW_TAG_GNU_EINCL)
6275 unit = pop_compile_unit (unit);
6276 free_die (c);
6278 else
6279 add_child_die (unit, c);
6281 else
6283 /* Leave this DIE in the main CU. */
6284 ptr = &(c->die_sib);
6285 continue;
6289 #if 0
6290 /* We can only use this in debugging, since the frontend doesn't check
6291 to make sure that we leave every include file we enter. */
6292 gcc_assert (!unit);
6293 #endif
6295 assign_symbol_names (die);
6296 cu_hash_table = htab_create (10, htab_cu_hash, htab_cu_eq, htab_cu_del);
6297 for (node = limbo_die_list, pnode = &limbo_die_list;
6298 node;
6299 node = node->next)
6301 int is_dupl;
6303 compute_section_prefix (node->die);
6304 is_dupl = check_duplicate_cu (node->die, cu_hash_table,
6305 &comdat_symbol_number);
6306 assign_symbol_names (node->die);
6307 if (is_dupl)
6308 *pnode = node->next;
6309 else
6311 pnode = &node->next;
6312 record_comdat_symbol_number (node->die, cu_hash_table,
6313 comdat_symbol_number);
6316 htab_delete (cu_hash_table);
6319 /* Traverse the DIE and add a sibling attribute if it may have the
6320 effect of speeding up access to siblings. To save some space,
6321 avoid generating sibling attributes for DIE's without children. */
6323 static void
6324 add_sibling_attributes (dw_die_ref die)
6326 dw_die_ref c;
6328 if (die->die_tag != DW_TAG_compile_unit
6329 && die->die_sib && die->die_child != NULL)
6330 /* Add the sibling link to the front of the attribute list. */
6331 add_AT_die_ref (die, DW_AT_sibling, die->die_sib);
6333 for (c = die->die_child; c != NULL; c = c->die_sib)
6334 add_sibling_attributes (c);
6337 /* Output all location lists for the DIE and its children. */
6339 static void
6340 output_location_lists (dw_die_ref die)
6342 dw_die_ref c;
6343 dw_attr_ref d_attr;
6345 for (d_attr = die->die_attr; d_attr; d_attr = d_attr->dw_attr_next)
6346 if (AT_class (d_attr) == dw_val_class_loc_list)
6347 output_loc_list (AT_loc_list (d_attr));
6349 for (c = die->die_child; c != NULL; c = c->die_sib)
6350 output_location_lists (c);
6354 /* The format of each DIE (and its attribute value pairs) is encoded in an
6355 abbreviation table. This routine builds the abbreviation table and assigns
6356 a unique abbreviation id for each abbreviation entry. The children of each
6357 die are visited recursively. */
6359 static void
6360 build_abbrev_table (dw_die_ref die)
6362 unsigned long abbrev_id;
6363 unsigned int n_alloc;
6364 dw_die_ref c;
6365 dw_attr_ref d_attr, a_attr;
6367 /* Scan the DIE references, and mark as external any that refer to
6368 DIEs from other CUs (i.e. those which are not marked). */
6369 for (d_attr = die->die_attr; d_attr; d_attr = d_attr->dw_attr_next)
6370 if (AT_class (d_attr) == dw_val_class_die_ref
6371 && AT_ref (d_attr)->die_mark == 0)
6373 gcc_assert (AT_ref (d_attr)->die_symbol);
6375 set_AT_ref_external (d_attr, 1);
6378 for (abbrev_id = 1; abbrev_id < abbrev_die_table_in_use; ++abbrev_id)
6380 dw_die_ref abbrev = abbrev_die_table[abbrev_id];
6382 if (abbrev->die_tag == die->die_tag)
6384 if ((abbrev->die_child != NULL) == (die->die_child != NULL))
6386 a_attr = abbrev->die_attr;
6387 d_attr = die->die_attr;
6389 while (a_attr != NULL && d_attr != NULL)
6391 if ((a_attr->dw_attr != d_attr->dw_attr)
6392 || (value_format (a_attr) != value_format (d_attr)))
6393 break;
6395 a_attr = a_attr->dw_attr_next;
6396 d_attr = d_attr->dw_attr_next;
6399 if (a_attr == NULL && d_attr == NULL)
6400 break;
6405 if (abbrev_id >= abbrev_die_table_in_use)
6407 if (abbrev_die_table_in_use >= abbrev_die_table_allocated)
6409 n_alloc = abbrev_die_table_allocated + ABBREV_DIE_TABLE_INCREMENT;
6410 abbrev_die_table = ggc_realloc (abbrev_die_table,
6411 sizeof (dw_die_ref) * n_alloc);
6413 memset (&abbrev_die_table[abbrev_die_table_allocated], 0,
6414 (n_alloc - abbrev_die_table_allocated) * sizeof (dw_die_ref));
6415 abbrev_die_table_allocated = n_alloc;
6418 ++abbrev_die_table_in_use;
6419 abbrev_die_table[abbrev_id] = die;
6422 die->die_abbrev = abbrev_id;
6423 for (c = die->die_child; c != NULL; c = c->die_sib)
6424 build_abbrev_table (c);
6427 /* Return the power-of-two number of bytes necessary to represent VALUE. */
6429 static int
6430 constant_size (long unsigned int value)
6432 int log;
6434 if (value == 0)
6435 log = 0;
6436 else
6437 log = floor_log2 (value);
6439 log = log / 8;
6440 log = 1 << (floor_log2 (log) + 1);
6442 return log;
6445 /* Return the size of a DIE as it is represented in the
6446 .debug_info section. */
6448 static unsigned long
6449 size_of_die (dw_die_ref die)
6451 unsigned long size = 0;
6452 dw_attr_ref a;
6454 size += size_of_uleb128 (die->die_abbrev);
6455 for (a = die->die_attr; a != NULL; a = a->dw_attr_next)
6457 switch (AT_class (a))
6459 case dw_val_class_addr:
6460 size += DWARF2_ADDR_SIZE;
6461 break;
6462 case dw_val_class_offset:
6463 size += DWARF_OFFSET_SIZE;
6464 break;
6465 case dw_val_class_loc:
6467 unsigned long lsize = size_of_locs (AT_loc (a));
6469 /* Block length. */
6470 size += constant_size (lsize);
6471 size += lsize;
6473 break;
6474 case dw_val_class_loc_list:
6475 size += DWARF_OFFSET_SIZE;
6476 break;
6477 case dw_val_class_range_list:
6478 size += DWARF_OFFSET_SIZE;
6479 break;
6480 case dw_val_class_const:
6481 size += size_of_sleb128 (AT_int (a));
6482 break;
6483 case dw_val_class_unsigned_const:
6484 size += constant_size (AT_unsigned (a));
6485 break;
6486 case dw_val_class_long_long:
6487 size += 1 + 2*HOST_BITS_PER_LONG/HOST_BITS_PER_CHAR; /* block */
6488 break;
6489 case dw_val_class_vec:
6490 size += 1 + (a->dw_attr_val.v.val_vec.length
6491 * a->dw_attr_val.v.val_vec.elt_size); /* block */
6492 break;
6493 case dw_val_class_flag:
6494 size += 1;
6495 break;
6496 case dw_val_class_die_ref:
6497 if (AT_ref_external (a))
6498 size += DWARF2_ADDR_SIZE;
6499 else
6500 size += DWARF_OFFSET_SIZE;
6501 break;
6502 case dw_val_class_fde_ref:
6503 size += DWARF_OFFSET_SIZE;
6504 break;
6505 case dw_val_class_lbl_id:
6506 size += DWARF2_ADDR_SIZE;
6507 break;
6508 case dw_val_class_lbl_offset:
6509 size += DWARF_OFFSET_SIZE;
6510 break;
6511 case dw_val_class_str:
6512 if (AT_string_form (a) == DW_FORM_strp)
6513 size += DWARF_OFFSET_SIZE;
6514 else
6515 size += strlen (a->dw_attr_val.v.val_str->str) + 1;
6516 break;
6517 default:
6518 gcc_unreachable ();
6522 return size;
6525 /* Size the debugging information associated with a given DIE. Visits the
6526 DIE's children recursively. Updates the global variable next_die_offset, on
6527 each time through. Uses the current value of next_die_offset to update the
6528 die_offset field in each DIE. */
6530 static void
6531 calc_die_sizes (dw_die_ref die)
6533 dw_die_ref c;
6535 die->die_offset = next_die_offset;
6536 next_die_offset += size_of_die (die);
6538 for (c = die->die_child; c != NULL; c = c->die_sib)
6539 calc_die_sizes (c);
6541 if (die->die_child != NULL)
6542 /* Count the null byte used to terminate sibling lists. */
6543 next_die_offset += 1;
6546 /* Set the marks for a die and its children. We do this so
6547 that we know whether or not a reference needs to use FORM_ref_addr; only
6548 DIEs in the same CU will be marked. We used to clear out the offset
6549 and use that as the flag, but ran into ordering problems. */
6551 static void
6552 mark_dies (dw_die_ref die)
6554 dw_die_ref c;
6556 gcc_assert (!die->die_mark);
6558 die->die_mark = 1;
6559 for (c = die->die_child; c; c = c->die_sib)
6560 mark_dies (c);
6563 /* Clear the marks for a die and its children. */
6565 static void
6566 unmark_dies (dw_die_ref die)
6568 dw_die_ref c;
6570 gcc_assert (die->die_mark);
6572 die->die_mark = 0;
6573 for (c = die->die_child; c; c = c->die_sib)
6574 unmark_dies (c);
6577 /* Clear the marks for a die, its children and referred dies. */
6579 static void
6580 unmark_all_dies (dw_die_ref die)
6582 dw_die_ref c;
6583 dw_attr_ref a;
6585 if (!die->die_mark)
6586 return;
6587 die->die_mark = 0;
6589 for (c = die->die_child; c; c = c->die_sib)
6590 unmark_all_dies (c);
6592 for (a = die->die_attr; a; a = a->dw_attr_next)
6593 if (AT_class (a) == dw_val_class_die_ref)
6594 unmark_all_dies (AT_ref (a));
6597 /* Return the size of the .debug_pubnames table generated for the
6598 compilation unit. */
6600 static unsigned long
6601 size_of_pubnames (void)
6603 unsigned long size;
6604 unsigned i;
6606 size = DWARF_PUBNAMES_HEADER_SIZE;
6607 for (i = 0; i < pubname_table_in_use; i++)
6609 pubname_ref p = &pubname_table[i];
6610 size += DWARF_OFFSET_SIZE + strlen (p->name) + 1;
6613 size += DWARF_OFFSET_SIZE;
6614 return size;
6617 /* Return the size of the information in the .debug_aranges section. */
6619 static unsigned long
6620 size_of_aranges (void)
6622 unsigned long size;
6624 size = DWARF_ARANGES_HEADER_SIZE;
6626 /* Count the address/length pair for this compilation unit. */
6627 size += 2 * DWARF2_ADDR_SIZE;
6628 size += 2 * DWARF2_ADDR_SIZE * arange_table_in_use;
6630 /* Count the two zero words used to terminated the address range table. */
6631 size += 2 * DWARF2_ADDR_SIZE;
6632 return size;
6635 /* Select the encoding of an attribute value. */
6637 static enum dwarf_form
6638 value_format (dw_attr_ref a)
6640 switch (a->dw_attr_val.val_class)
6642 case dw_val_class_addr:
6643 return DW_FORM_addr;
6644 case dw_val_class_range_list:
6645 case dw_val_class_offset:
6646 switch (DWARF_OFFSET_SIZE)
6648 case 4:
6649 return DW_FORM_data4;
6650 case 8:
6651 return DW_FORM_data8;
6652 default:
6653 gcc_unreachable ();
6655 case dw_val_class_loc_list:
6656 /* FIXME: Could be DW_FORM_data8, with a > 32 bit size
6657 .debug_loc section */
6658 return DW_FORM_data4;
6659 case dw_val_class_loc:
6660 switch (constant_size (size_of_locs (AT_loc (a))))
6662 case 1:
6663 return DW_FORM_block1;
6664 case 2:
6665 return DW_FORM_block2;
6666 default:
6667 gcc_unreachable ();
6669 case dw_val_class_const:
6670 return DW_FORM_sdata;
6671 case dw_val_class_unsigned_const:
6672 switch (constant_size (AT_unsigned (a)))
6674 case 1:
6675 return DW_FORM_data1;
6676 case 2:
6677 return DW_FORM_data2;
6678 case 4:
6679 return DW_FORM_data4;
6680 case 8:
6681 return DW_FORM_data8;
6682 default:
6683 gcc_unreachable ();
6685 case dw_val_class_long_long:
6686 return DW_FORM_block1;
6687 case dw_val_class_vec:
6688 return DW_FORM_block1;
6689 case dw_val_class_flag:
6690 return DW_FORM_flag;
6691 case dw_val_class_die_ref:
6692 if (AT_ref_external (a))
6693 return DW_FORM_ref_addr;
6694 else
6695 return DW_FORM_ref;
6696 case dw_val_class_fde_ref:
6697 return DW_FORM_data;
6698 case dw_val_class_lbl_id:
6699 return DW_FORM_addr;
6700 case dw_val_class_lbl_offset:
6701 return DW_FORM_data;
6702 case dw_val_class_str:
6703 return AT_string_form (a);
6705 default:
6706 gcc_unreachable ();
6710 /* Output the encoding of an attribute value. */
6712 static void
6713 output_value_format (dw_attr_ref a)
6715 enum dwarf_form form = value_format (a);
6717 dw2_asm_output_data_uleb128 (form, "(%s)", dwarf_form_name (form));
6720 /* Output the .debug_abbrev section which defines the DIE abbreviation
6721 table. */
6723 static void
6724 output_abbrev_section (void)
6726 unsigned long abbrev_id;
6728 dw_attr_ref a_attr;
6730 for (abbrev_id = 1; abbrev_id < abbrev_die_table_in_use; ++abbrev_id)
6732 dw_die_ref abbrev = abbrev_die_table[abbrev_id];
6734 dw2_asm_output_data_uleb128 (abbrev_id, "(abbrev code)");
6735 dw2_asm_output_data_uleb128 (abbrev->die_tag, "(TAG: %s)",
6736 dwarf_tag_name (abbrev->die_tag));
6738 if (abbrev->die_child != NULL)
6739 dw2_asm_output_data (1, DW_children_yes, "DW_children_yes");
6740 else
6741 dw2_asm_output_data (1, DW_children_no, "DW_children_no");
6743 for (a_attr = abbrev->die_attr; a_attr != NULL;
6744 a_attr = a_attr->dw_attr_next)
6746 dw2_asm_output_data_uleb128 (a_attr->dw_attr, "(%s)",
6747 dwarf_attr_name (a_attr->dw_attr));
6748 output_value_format (a_attr);
6751 dw2_asm_output_data (1, 0, NULL);
6752 dw2_asm_output_data (1, 0, NULL);
6755 /* Terminate the table. */
6756 dw2_asm_output_data (1, 0, NULL);
6759 /* Output a symbol we can use to refer to this DIE from another CU. */
6761 static inline void
6762 output_die_symbol (dw_die_ref die)
6764 char *sym = die->die_symbol;
6766 if (sym == 0)
6767 return;
6769 if (strncmp (sym, DIE_LABEL_PREFIX, sizeof (DIE_LABEL_PREFIX) - 1) == 0)
6770 /* We make these global, not weak; if the target doesn't support
6771 .linkonce, it doesn't support combining the sections, so debugging
6772 will break. */
6773 targetm.asm_out.globalize_label (asm_out_file, sym);
6775 ASM_OUTPUT_LABEL (asm_out_file, sym);
6778 /* Return a new location list, given the begin and end range, and the
6779 expression. gensym tells us whether to generate a new internal symbol for
6780 this location list node, which is done for the head of the list only. */
6782 static inline dw_loc_list_ref
6783 new_loc_list (dw_loc_descr_ref expr, const char *begin, const char *end,
6784 const char *section, unsigned int gensym)
6786 dw_loc_list_ref retlist = ggc_alloc_cleared (sizeof (dw_loc_list_node));
6788 retlist->begin = begin;
6789 retlist->end = end;
6790 retlist->expr = expr;
6791 retlist->section = section;
6792 if (gensym)
6793 retlist->ll_symbol = gen_internal_sym ("LLST");
6795 return retlist;
6798 /* Add a location description expression to a location list. */
6800 static inline void
6801 add_loc_descr_to_loc_list (dw_loc_list_ref *list_head, dw_loc_descr_ref descr,
6802 const char *begin, const char *end,
6803 const char *section)
6805 dw_loc_list_ref *d;
6807 /* Find the end of the chain. */
6808 for (d = list_head; (*d) != NULL; d = &(*d)->dw_loc_next)
6811 /* Add a new location list node to the list. */
6812 *d = new_loc_list (descr, begin, end, section, 0);
6815 static void
6816 dwarf2out_switch_text_section (void)
6818 dw_fde_ref fde;
6820 gcc_assert (cfun);
6822 fde = &fde_table[fde_table_in_use - 1];
6823 fde->dw_fde_switched_sections = true;
6824 fde->dw_fde_hot_section_label = cfun->hot_section_label;
6825 fde->dw_fde_hot_section_end_label = cfun->hot_section_end_label;
6826 fde->dw_fde_unlikely_section_label = cfun->cold_section_label;
6827 fde->dw_fde_unlikely_section_end_label = cfun->cold_section_end_label;
6828 separate_line_info_table_in_use++;
6831 /* Output the location list given to us. */
6833 static void
6834 output_loc_list (dw_loc_list_ref list_head)
6836 dw_loc_list_ref curr = list_head;
6838 ASM_OUTPUT_LABEL (asm_out_file, list_head->ll_symbol);
6840 /* Walk the location list, and output each range + expression. */
6841 for (curr = list_head; curr != NULL; curr = curr->dw_loc_next)
6843 unsigned long size;
6844 if (separate_line_info_table_in_use == 0)
6846 dw2_asm_output_delta (DWARF2_ADDR_SIZE, curr->begin, curr->section,
6847 "Location list begin address (%s)",
6848 list_head->ll_symbol);
6849 dw2_asm_output_delta (DWARF2_ADDR_SIZE, curr->end, curr->section,
6850 "Location list end address (%s)",
6851 list_head->ll_symbol);
6853 else
6855 dw2_asm_output_addr (DWARF2_ADDR_SIZE, curr->begin,
6856 "Location list begin address (%s)",
6857 list_head->ll_symbol);
6858 dw2_asm_output_addr (DWARF2_ADDR_SIZE, curr->end,
6859 "Location list end address (%s)",
6860 list_head->ll_symbol);
6862 size = size_of_locs (curr->expr);
6864 /* Output the block length for this list of location operations. */
6865 gcc_assert (size <= 0xffff);
6866 dw2_asm_output_data (2, size, "%s", "Location expression size");
6868 output_loc_sequence (curr->expr);
6871 dw2_asm_output_data (DWARF2_ADDR_SIZE, 0,
6872 "Location list terminator begin (%s)",
6873 list_head->ll_symbol);
6874 dw2_asm_output_data (DWARF2_ADDR_SIZE, 0,
6875 "Location list terminator end (%s)",
6876 list_head->ll_symbol);
6879 /* Output the DIE and its attributes. Called recursively to generate
6880 the definitions of each child DIE. */
6882 static void
6883 output_die (dw_die_ref die)
6885 dw_attr_ref a;
6886 dw_die_ref c;
6887 unsigned long size;
6889 /* If someone in another CU might refer to us, set up a symbol for
6890 them to point to. */
6891 if (die->die_symbol)
6892 output_die_symbol (die);
6894 dw2_asm_output_data_uleb128 (die->die_abbrev, "(DIE (0x%lx) %s)",
6895 die->die_offset, dwarf_tag_name (die->die_tag));
6897 for (a = die->die_attr; a != NULL; a = a->dw_attr_next)
6899 const char *name = dwarf_attr_name (a->dw_attr);
6901 switch (AT_class (a))
6903 case dw_val_class_addr:
6904 dw2_asm_output_addr_rtx (DWARF2_ADDR_SIZE, AT_addr (a), "%s", name);
6905 break;
6907 case dw_val_class_offset:
6908 dw2_asm_output_data (DWARF_OFFSET_SIZE, a->dw_attr_val.v.val_offset,
6909 "%s", name);
6910 break;
6912 case dw_val_class_range_list:
6914 char *p = strchr (ranges_section_label, '\0');
6916 sprintf (p, "+" HOST_WIDE_INT_PRINT_HEX,
6917 a->dw_attr_val.v.val_offset);
6918 dw2_asm_output_offset (DWARF_OFFSET_SIZE, ranges_section_label,
6919 "%s", name);
6920 *p = '\0';
6922 break;
6924 case dw_val_class_loc:
6925 size = size_of_locs (AT_loc (a));
6927 /* Output the block length for this list of location operations. */
6928 dw2_asm_output_data (constant_size (size), size, "%s", name);
6930 output_loc_sequence (AT_loc (a));
6931 break;
6933 case dw_val_class_const:
6934 /* ??? It would be slightly more efficient to use a scheme like is
6935 used for unsigned constants below, but gdb 4.x does not sign
6936 extend. Gdb 5.x does sign extend. */
6937 dw2_asm_output_data_sleb128 (AT_int (a), "%s", name);
6938 break;
6940 case dw_val_class_unsigned_const:
6941 dw2_asm_output_data (constant_size (AT_unsigned (a)),
6942 AT_unsigned (a), "%s", name);
6943 break;
6945 case dw_val_class_long_long:
6947 unsigned HOST_WIDE_INT first, second;
6949 dw2_asm_output_data (1,
6950 2 * HOST_BITS_PER_LONG / HOST_BITS_PER_CHAR,
6951 "%s", name);
6953 if (WORDS_BIG_ENDIAN)
6955 first = a->dw_attr_val.v.val_long_long.hi;
6956 second = a->dw_attr_val.v.val_long_long.low;
6958 else
6960 first = a->dw_attr_val.v.val_long_long.low;
6961 second = a->dw_attr_val.v.val_long_long.hi;
6964 dw2_asm_output_data (HOST_BITS_PER_LONG / HOST_BITS_PER_CHAR,
6965 first, "long long constant");
6966 dw2_asm_output_data (HOST_BITS_PER_LONG / HOST_BITS_PER_CHAR,
6967 second, NULL);
6969 break;
6971 case dw_val_class_vec:
6973 unsigned int elt_size = a->dw_attr_val.v.val_vec.elt_size;
6974 unsigned int len = a->dw_attr_val.v.val_vec.length;
6975 unsigned int i;
6976 unsigned char *p;
6978 dw2_asm_output_data (1, len * elt_size, "%s", name);
6979 if (elt_size > sizeof (HOST_WIDE_INT))
6981 elt_size /= 2;
6982 len *= 2;
6984 for (i = 0, p = a->dw_attr_val.v.val_vec.array;
6985 i < len;
6986 i++, p += elt_size)
6987 dw2_asm_output_data (elt_size, extract_int (p, elt_size),
6988 "fp or vector constant word %u", i);
6989 break;
6992 case dw_val_class_flag:
6993 dw2_asm_output_data (1, AT_flag (a), "%s", name);
6994 break;
6996 case dw_val_class_loc_list:
6998 char *sym = AT_loc_list (a)->ll_symbol;
7000 gcc_assert (sym);
7001 dw2_asm_output_offset (DWARF_OFFSET_SIZE, sym, "%s", name);
7003 break;
7005 case dw_val_class_die_ref:
7006 if (AT_ref_external (a))
7008 char *sym = AT_ref (a)->die_symbol;
7010 gcc_assert (sym);
7011 dw2_asm_output_offset (DWARF2_ADDR_SIZE, sym, "%s", name);
7013 else
7015 gcc_assert (AT_ref (a)->die_offset);
7016 dw2_asm_output_data (DWARF_OFFSET_SIZE, AT_ref (a)->die_offset,
7017 "%s", name);
7019 break;
7021 case dw_val_class_fde_ref:
7023 char l1[20];
7025 ASM_GENERATE_INTERNAL_LABEL (l1, FDE_LABEL,
7026 a->dw_attr_val.v.val_fde_index * 2);
7027 dw2_asm_output_offset (DWARF_OFFSET_SIZE, l1, "%s", name);
7029 break;
7031 case dw_val_class_lbl_id:
7032 dw2_asm_output_addr (DWARF2_ADDR_SIZE, AT_lbl (a), "%s", name);
7033 break;
7035 case dw_val_class_lbl_offset:
7036 dw2_asm_output_offset (DWARF_OFFSET_SIZE, AT_lbl (a), "%s", name);
7037 break;
7039 case dw_val_class_str:
7040 if (AT_string_form (a) == DW_FORM_strp)
7041 dw2_asm_output_offset (DWARF_OFFSET_SIZE,
7042 a->dw_attr_val.v.val_str->label,
7043 "%s: \"%s\"", name, AT_string (a));
7044 else
7045 dw2_asm_output_nstring (AT_string (a), -1, "%s", name);
7046 break;
7048 default:
7049 gcc_unreachable ();
7053 for (c = die->die_child; c != NULL; c = c->die_sib)
7054 output_die (c);
7056 /* Add null byte to terminate sibling list. */
7057 if (die->die_child != NULL)
7058 dw2_asm_output_data (1, 0, "end of children of DIE 0x%lx",
7059 die->die_offset);
7062 /* Output the compilation unit that appears at the beginning of the
7063 .debug_info section, and precedes the DIE descriptions. */
7065 static void
7066 output_compilation_unit_header (void)
7068 if (DWARF_INITIAL_LENGTH_SIZE - DWARF_OFFSET_SIZE == 4)
7069 dw2_asm_output_data (4, 0xffffffff,
7070 "Initial length escape value indicating 64-bit DWARF extension");
7071 dw2_asm_output_data (DWARF_OFFSET_SIZE,
7072 next_die_offset - DWARF_INITIAL_LENGTH_SIZE,
7073 "Length of Compilation Unit Info");
7074 dw2_asm_output_data (2, DWARF_VERSION, "DWARF version number");
7075 dw2_asm_output_offset (DWARF_OFFSET_SIZE, abbrev_section_label,
7076 "Offset Into Abbrev. Section");
7077 dw2_asm_output_data (1, DWARF2_ADDR_SIZE, "Pointer Size (in bytes)");
7080 /* Output the compilation unit DIE and its children. */
7082 static void
7083 output_comp_unit (dw_die_ref die, int output_if_empty)
7085 const char *secname;
7086 char *oldsym, *tmp;
7088 /* Unless we are outputting main CU, we may throw away empty ones. */
7089 if (!output_if_empty && die->die_child == NULL)
7090 return;
7092 /* Even if there are no children of this DIE, we must output the information
7093 about the compilation unit. Otherwise, on an empty translation unit, we
7094 will generate a present, but empty, .debug_info section. IRIX 6.5 `nm'
7095 will then complain when examining the file. First mark all the DIEs in
7096 this CU so we know which get local refs. */
7097 mark_dies (die);
7099 build_abbrev_table (die);
7101 /* Initialize the beginning DIE offset - and calculate sizes/offsets. */
7102 next_die_offset = DWARF_COMPILE_UNIT_HEADER_SIZE;
7103 calc_die_sizes (die);
7105 oldsym = die->die_symbol;
7106 if (oldsym)
7108 tmp = alloca (strlen (oldsym) + 24);
7110 sprintf (tmp, ".gnu.linkonce.wi.%s", oldsym);
7111 secname = tmp;
7112 die->die_symbol = NULL;
7114 else
7115 secname = (const char *) DEBUG_INFO_SECTION;
7117 /* Output debugging information. */
7118 named_section_flags (secname, SECTION_DEBUG);
7119 output_compilation_unit_header ();
7120 output_die (die);
7122 /* Leave the marks on the main CU, so we can check them in
7123 output_pubnames. */
7124 if (oldsym)
7126 unmark_dies (die);
7127 die->die_symbol = oldsym;
7131 /* The DWARF2 pubname for a nested thingy looks like "A::f". The
7132 output of lang_hooks.decl_printable_name for C++ looks like
7133 "A::f(int)". Let's drop the argument list, and maybe the scope. */
7135 static const char *
7136 dwarf2_name (tree decl, int scope)
7138 return lang_hooks.decl_printable_name (decl, scope ? 1 : 0);
7141 /* Add a new entry to .debug_pubnames if appropriate. */
7143 static void
7144 add_pubname (tree decl, dw_die_ref die)
7146 pubname_ref p;
7148 if (! TREE_PUBLIC (decl))
7149 return;
7151 if (pubname_table_in_use == pubname_table_allocated)
7153 pubname_table_allocated += PUBNAME_TABLE_INCREMENT;
7154 pubname_table
7155 = ggc_realloc (pubname_table,
7156 (pubname_table_allocated * sizeof (pubname_entry)));
7157 memset (pubname_table + pubname_table_in_use, 0,
7158 PUBNAME_TABLE_INCREMENT * sizeof (pubname_entry));
7161 p = &pubname_table[pubname_table_in_use++];
7162 p->die = die;
7163 p->name = xstrdup (dwarf2_name (decl, 1));
7166 /* Output the public names table used to speed up access to externally
7167 visible names. For now, only generate entries for externally
7168 visible procedures. */
7170 static void
7171 output_pubnames (void)
7173 unsigned i;
7174 unsigned long pubnames_length = size_of_pubnames ();
7176 if (DWARF_INITIAL_LENGTH_SIZE - DWARF_OFFSET_SIZE == 4)
7177 dw2_asm_output_data (4, 0xffffffff,
7178 "Initial length escape value indicating 64-bit DWARF extension");
7179 dw2_asm_output_data (DWARF_OFFSET_SIZE, pubnames_length,
7180 "Length of Public Names Info");
7181 dw2_asm_output_data (2, DWARF_VERSION, "DWARF Version");
7182 dw2_asm_output_offset (DWARF_OFFSET_SIZE, debug_info_section_label,
7183 "Offset of Compilation Unit Info");
7184 dw2_asm_output_data (DWARF_OFFSET_SIZE, next_die_offset,
7185 "Compilation Unit Length");
7187 for (i = 0; i < pubname_table_in_use; i++)
7189 pubname_ref pub = &pubname_table[i];
7191 /* We shouldn't see pubnames for DIEs outside of the main CU. */
7192 gcc_assert (pub->die->die_mark);
7194 dw2_asm_output_data (DWARF_OFFSET_SIZE, pub->die->die_offset,
7195 "DIE offset");
7197 dw2_asm_output_nstring (pub->name, -1, "external name");
7200 dw2_asm_output_data (DWARF_OFFSET_SIZE, 0, NULL);
7203 /* Add a new entry to .debug_aranges if appropriate. */
7205 static void
7206 add_arange (tree decl, dw_die_ref die)
7208 if (! DECL_SECTION_NAME (decl))
7209 return;
7211 if (arange_table_in_use == arange_table_allocated)
7213 arange_table_allocated += ARANGE_TABLE_INCREMENT;
7214 arange_table = ggc_realloc (arange_table,
7215 (arange_table_allocated
7216 * sizeof (dw_die_ref)));
7217 memset (arange_table + arange_table_in_use, 0,
7218 ARANGE_TABLE_INCREMENT * sizeof (dw_die_ref));
7221 arange_table[arange_table_in_use++] = die;
7224 /* Output the information that goes into the .debug_aranges table.
7225 Namely, define the beginning and ending address range of the
7226 text section generated for this compilation unit. */
7228 static void
7229 output_aranges (void)
7231 unsigned i;
7232 unsigned long aranges_length = size_of_aranges ();
7234 if (DWARF_INITIAL_LENGTH_SIZE - DWARF_OFFSET_SIZE == 4)
7235 dw2_asm_output_data (4, 0xffffffff,
7236 "Initial length escape value indicating 64-bit DWARF extension");
7237 dw2_asm_output_data (DWARF_OFFSET_SIZE, aranges_length,
7238 "Length of Address Ranges Info");
7239 dw2_asm_output_data (2, DWARF_VERSION, "DWARF Version");
7240 dw2_asm_output_offset (DWARF_OFFSET_SIZE, debug_info_section_label,
7241 "Offset of Compilation Unit Info");
7242 dw2_asm_output_data (1, DWARF2_ADDR_SIZE, "Size of Address");
7243 dw2_asm_output_data (1, 0, "Size of Segment Descriptor");
7245 /* We need to align to twice the pointer size here. */
7246 if (DWARF_ARANGES_PAD_SIZE)
7248 /* Pad using a 2 byte words so that padding is correct for any
7249 pointer size. */
7250 dw2_asm_output_data (2, 0, "Pad to %d byte boundary",
7251 2 * DWARF2_ADDR_SIZE);
7252 for (i = 2; i < (unsigned) DWARF_ARANGES_PAD_SIZE; i += 2)
7253 dw2_asm_output_data (2, 0, NULL);
7256 dw2_asm_output_addr (DWARF2_ADDR_SIZE, text_section_label, "Address");
7257 dw2_asm_output_delta (DWARF2_ADDR_SIZE, text_end_label,
7258 text_section_label, "Length");
7259 if (flag_reorder_blocks_and_partition)
7261 dw2_asm_output_addr (DWARF2_ADDR_SIZE, cold_text_section_label,
7262 "Address");
7263 dw2_asm_output_delta (DWARF2_ADDR_SIZE, cold_end_label,
7264 cold_text_section_label, "Length");
7267 for (i = 0; i < arange_table_in_use; i++)
7269 dw_die_ref die = arange_table[i];
7271 /* We shouldn't see aranges for DIEs outside of the main CU. */
7272 gcc_assert (die->die_mark);
7274 if (die->die_tag == DW_TAG_subprogram)
7276 dw2_asm_output_addr (DWARF2_ADDR_SIZE, get_AT_low_pc (die),
7277 "Address");
7278 dw2_asm_output_delta (DWARF2_ADDR_SIZE, get_AT_hi_pc (die),
7279 get_AT_low_pc (die), "Length");
7281 else
7283 /* A static variable; extract the symbol from DW_AT_location.
7284 Note that this code isn't currently hit, as we only emit
7285 aranges for functions (jason 9/23/99). */
7286 dw_attr_ref a = get_AT (die, DW_AT_location);
7287 dw_loc_descr_ref loc;
7289 gcc_assert (a && AT_class (a) == dw_val_class_loc);
7291 loc = AT_loc (a);
7292 gcc_assert (loc->dw_loc_opc == DW_OP_addr);
7294 dw2_asm_output_addr_rtx (DWARF2_ADDR_SIZE,
7295 loc->dw_loc_oprnd1.v.val_addr, "Address");
7296 dw2_asm_output_data (DWARF2_ADDR_SIZE,
7297 get_AT_unsigned (die, DW_AT_byte_size),
7298 "Length");
7302 /* Output the terminator words. */
7303 dw2_asm_output_data (DWARF2_ADDR_SIZE, 0, NULL);
7304 dw2_asm_output_data (DWARF2_ADDR_SIZE, 0, NULL);
7307 /* Add a new entry to .debug_ranges. Return the offset at which it
7308 was placed. */
7310 static unsigned int
7311 add_ranges (tree block)
7313 unsigned int in_use = ranges_table_in_use;
7315 if (in_use == ranges_table_allocated)
7317 ranges_table_allocated += RANGES_TABLE_INCREMENT;
7318 ranges_table
7319 = ggc_realloc (ranges_table, (ranges_table_allocated
7320 * sizeof (struct dw_ranges_struct)));
7321 memset (ranges_table + ranges_table_in_use, 0,
7322 RANGES_TABLE_INCREMENT * sizeof (struct dw_ranges_struct));
7325 ranges_table[in_use].block_num = (block ? BLOCK_NUMBER (block) : 0);
7326 ranges_table_in_use = in_use + 1;
7328 return in_use * 2 * DWARF2_ADDR_SIZE;
7331 static void
7332 output_ranges (void)
7334 unsigned i;
7335 static const char *const start_fmt = "Offset 0x%x";
7336 const char *fmt = start_fmt;
7338 for (i = 0; i < ranges_table_in_use; i++)
7340 int block_num = ranges_table[i].block_num;
7342 if (block_num)
7344 char blabel[MAX_ARTIFICIAL_LABEL_BYTES];
7345 char elabel[MAX_ARTIFICIAL_LABEL_BYTES];
7347 ASM_GENERATE_INTERNAL_LABEL (blabel, BLOCK_BEGIN_LABEL, block_num);
7348 ASM_GENERATE_INTERNAL_LABEL (elabel, BLOCK_END_LABEL, block_num);
7350 /* If all code is in the text section, then the compilation
7351 unit base address defaults to DW_AT_low_pc, which is the
7352 base of the text section. */
7353 if (separate_line_info_table_in_use == 0)
7355 dw2_asm_output_delta (DWARF2_ADDR_SIZE, blabel,
7356 text_section_label,
7357 fmt, i * 2 * DWARF2_ADDR_SIZE);
7358 dw2_asm_output_delta (DWARF2_ADDR_SIZE, elabel,
7359 text_section_label, NULL);
7362 /* Otherwise, we add a DW_AT_entry_pc attribute to force the
7363 compilation unit base address to zero, which allows us to
7364 use absolute addresses, and not worry about whether the
7365 target supports cross-section arithmetic. */
7366 else
7368 dw2_asm_output_addr (DWARF2_ADDR_SIZE, blabel,
7369 fmt, i * 2 * DWARF2_ADDR_SIZE);
7370 dw2_asm_output_addr (DWARF2_ADDR_SIZE, elabel, NULL);
7373 fmt = NULL;
7375 else
7377 dw2_asm_output_data (DWARF2_ADDR_SIZE, 0, NULL);
7378 dw2_asm_output_data (DWARF2_ADDR_SIZE, 0, NULL);
7379 fmt = start_fmt;
7384 /* Data structure containing information about input files. */
7385 struct file_info
7387 char *path; /* Complete file name. */
7388 char *fname; /* File name part. */
7389 int length; /* Length of entire string. */
7390 int file_idx; /* Index in input file table. */
7391 int dir_idx; /* Index in directory table. */
7394 /* Data structure containing information about directories with source
7395 files. */
7396 struct dir_info
7398 char *path; /* Path including directory name. */
7399 int length; /* Path length. */
7400 int prefix; /* Index of directory entry which is a prefix. */
7401 int count; /* Number of files in this directory. */
7402 int dir_idx; /* Index of directory used as base. */
7403 int used; /* Used in the end? */
7406 /* Callback function for file_info comparison. We sort by looking at
7407 the directories in the path. */
7409 static int
7410 file_info_cmp (const void *p1, const void *p2)
7412 const struct file_info *s1 = p1;
7413 const struct file_info *s2 = p2;
7414 unsigned char *cp1;
7415 unsigned char *cp2;
7417 /* Take care of file names without directories. We need to make sure that
7418 we return consistent values to qsort since some will get confused if
7419 we return the same value when identical operands are passed in opposite
7420 orders. So if neither has a directory, return 0 and otherwise return
7421 1 or -1 depending on which one has the directory. */
7422 if ((s1->path == s1->fname || s2->path == s2->fname))
7423 return (s2->path == s2->fname) - (s1->path == s1->fname);
7425 cp1 = (unsigned char *) s1->path;
7426 cp2 = (unsigned char *) s2->path;
7428 while (1)
7430 ++cp1;
7431 ++cp2;
7432 /* Reached the end of the first path? If so, handle like above. */
7433 if ((cp1 == (unsigned char *) s1->fname)
7434 || (cp2 == (unsigned char *) s2->fname))
7435 return ((cp2 == (unsigned char *) s2->fname)
7436 - (cp1 == (unsigned char *) s1->fname));
7438 /* Character of current path component the same? */
7439 else if (*cp1 != *cp2)
7440 return *cp1 - *cp2;
7444 /* Output the directory table and the file name table. We try to minimize
7445 the total amount of memory needed. A heuristic is used to avoid large
7446 slowdowns with many input files. */
7448 static void
7449 output_file_names (void)
7451 struct file_info *files;
7452 struct dir_info *dirs;
7453 int *saved;
7454 int *savehere;
7455 int *backmap;
7456 size_t ndirs;
7457 int idx_offset;
7458 size_t i;
7459 int idx;
7461 /* Handle the case where file_table is empty. */
7462 if (VARRAY_ACTIVE_SIZE (file_table) <= 1)
7464 dw2_asm_output_data (1, 0, "End directory table");
7465 dw2_asm_output_data (1, 0, "End file name table");
7466 return;
7469 /* Allocate the various arrays we need. */
7470 files = alloca (VARRAY_ACTIVE_SIZE (file_table) * sizeof (struct file_info));
7471 dirs = alloca (VARRAY_ACTIVE_SIZE (file_table) * sizeof (struct dir_info));
7473 /* Sort the file names. */
7474 for (i = 1; i < VARRAY_ACTIVE_SIZE (file_table); i++)
7476 char *f;
7478 /* Skip all leading "./". */
7479 f = VARRAY_CHAR_PTR (file_table, i);
7480 while (f[0] == '.' && f[1] == '/')
7481 f += 2;
7483 /* Create a new array entry. */
7484 files[i].path = f;
7485 files[i].length = strlen (f);
7486 files[i].file_idx = i;
7488 /* Search for the file name part. */
7489 f = strrchr (f, '/');
7490 files[i].fname = f == NULL ? files[i].path : f + 1;
7493 qsort (files + 1, VARRAY_ACTIVE_SIZE (file_table) - 1,
7494 sizeof (files[0]), file_info_cmp);
7496 /* Find all the different directories used. */
7497 dirs[0].path = files[1].path;
7498 dirs[0].length = files[1].fname - files[1].path;
7499 dirs[0].prefix = -1;
7500 dirs[0].count = 1;
7501 dirs[0].dir_idx = 0;
7502 dirs[0].used = 0;
7503 files[1].dir_idx = 0;
7504 ndirs = 1;
7506 for (i = 2; i < VARRAY_ACTIVE_SIZE (file_table); i++)
7507 if (files[i].fname - files[i].path == dirs[ndirs - 1].length
7508 && memcmp (dirs[ndirs - 1].path, files[i].path,
7509 dirs[ndirs - 1].length) == 0)
7511 /* Same directory as last entry. */
7512 files[i].dir_idx = ndirs - 1;
7513 ++dirs[ndirs - 1].count;
7515 else
7517 size_t j;
7519 /* This is a new directory. */
7520 dirs[ndirs].path = files[i].path;
7521 dirs[ndirs].length = files[i].fname - files[i].path;
7522 dirs[ndirs].count = 1;
7523 dirs[ndirs].dir_idx = ndirs;
7524 dirs[ndirs].used = 0;
7525 files[i].dir_idx = ndirs;
7527 /* Search for a prefix. */
7528 dirs[ndirs].prefix = -1;
7529 for (j = 0; j < ndirs; j++)
7530 if (dirs[j].length < dirs[ndirs].length
7531 && dirs[j].length > 1
7532 && (dirs[ndirs].prefix == -1
7533 || dirs[j].length > dirs[dirs[ndirs].prefix].length)
7534 && memcmp (dirs[j].path, dirs[ndirs].path, dirs[j].length) == 0)
7535 dirs[ndirs].prefix = j;
7537 ++ndirs;
7540 /* Now to the actual work. We have to find a subset of the directories which
7541 allow expressing the file name using references to the directory table
7542 with the least amount of characters. We do not do an exhaustive search
7543 where we would have to check out every combination of every single
7544 possible prefix. Instead we use a heuristic which provides nearly optimal
7545 results in most cases and never is much off. */
7546 saved = alloca (ndirs * sizeof (int));
7547 savehere = alloca (ndirs * sizeof (int));
7549 memset (saved, '\0', ndirs * sizeof (saved[0]));
7550 for (i = 0; i < ndirs; i++)
7552 size_t j;
7553 int total;
7555 /* We can always save some space for the current directory. But this
7556 does not mean it will be enough to justify adding the directory. */
7557 savehere[i] = dirs[i].length;
7558 total = (savehere[i] - saved[i]) * dirs[i].count;
7560 for (j = i + 1; j < ndirs; j++)
7562 savehere[j] = 0;
7563 if (saved[j] < dirs[i].length)
7565 /* Determine whether the dirs[i] path is a prefix of the
7566 dirs[j] path. */
7567 int k;
7569 k = dirs[j].prefix;
7570 while (k != -1 && k != (int) i)
7571 k = dirs[k].prefix;
7573 if (k == (int) i)
7575 /* Yes it is. We can possibly safe some memory but
7576 writing the filenames in dirs[j] relative to
7577 dirs[i]. */
7578 savehere[j] = dirs[i].length;
7579 total += (savehere[j] - saved[j]) * dirs[j].count;
7584 /* Check whether we can safe enough to justify adding the dirs[i]
7585 directory. */
7586 if (total > dirs[i].length + 1)
7588 /* It's worthwhile adding. */
7589 for (j = i; j < ndirs; j++)
7590 if (savehere[j] > 0)
7592 /* Remember how much we saved for this directory so far. */
7593 saved[j] = savehere[j];
7595 /* Remember the prefix directory. */
7596 dirs[j].dir_idx = i;
7601 /* We have to emit them in the order they appear in the file_table array
7602 since the index is used in the debug info generation. To do this
7603 efficiently we generate a back-mapping of the indices first. */
7604 backmap = alloca (VARRAY_ACTIVE_SIZE (file_table) * sizeof (int));
7605 for (i = 1; i < VARRAY_ACTIVE_SIZE (file_table); i++)
7607 backmap[files[i].file_idx] = i;
7609 /* Mark this directory as used. */
7610 dirs[dirs[files[i].dir_idx].dir_idx].used = 1;
7613 /* That was it. We are ready to emit the information. First emit the
7614 directory name table. We have to make sure the first actually emitted
7615 directory name has index one; zero is reserved for the current working
7616 directory. Make sure we do not confuse these indices with the one for the
7617 constructed table (even though most of the time they are identical). */
7618 idx = 1;
7619 idx_offset = dirs[0].length > 0 ? 1 : 0;
7620 for (i = 1 - idx_offset; i < ndirs; i++)
7621 if (dirs[i].used != 0)
7623 dirs[i].used = idx++;
7624 dw2_asm_output_nstring (dirs[i].path, dirs[i].length - 1,
7625 "Directory Entry: 0x%x", dirs[i].used);
7628 dw2_asm_output_data (1, 0, "End directory table");
7630 /* Correct the index for the current working directory entry if it
7631 exists. */
7632 if (idx_offset == 0)
7633 dirs[0].used = 0;
7635 /* Now write all the file names. */
7636 for (i = 1; i < VARRAY_ACTIVE_SIZE (file_table); i++)
7638 int file_idx = backmap[i];
7639 int dir_idx = dirs[files[file_idx].dir_idx].dir_idx;
7641 dw2_asm_output_nstring (files[file_idx].path + dirs[dir_idx].length, -1,
7642 "File Entry: 0x%lx", (unsigned long) i);
7644 /* Include directory index. */
7645 dw2_asm_output_data_uleb128 (dirs[dir_idx].used, NULL);
7647 /* Modification time. */
7648 dw2_asm_output_data_uleb128 (0, NULL);
7650 /* File length in bytes. */
7651 dw2_asm_output_data_uleb128 (0, NULL);
7654 dw2_asm_output_data (1, 0, "End file name table");
7658 /* Output the source line number correspondence information. This
7659 information goes into the .debug_line section. */
7661 static void
7662 output_line_info (void)
7664 char l1[20], l2[20], p1[20], p2[20];
7665 char line_label[MAX_ARTIFICIAL_LABEL_BYTES];
7666 char prev_line_label[MAX_ARTIFICIAL_LABEL_BYTES];
7667 unsigned opc;
7668 unsigned n_op_args;
7669 unsigned long lt_index;
7670 unsigned long current_line;
7671 long line_offset;
7672 long line_delta;
7673 unsigned long current_file;
7674 unsigned long function;
7676 ASM_GENERATE_INTERNAL_LABEL (l1, LINE_NUMBER_BEGIN_LABEL, 0);
7677 ASM_GENERATE_INTERNAL_LABEL (l2, LINE_NUMBER_END_LABEL, 0);
7678 ASM_GENERATE_INTERNAL_LABEL (p1, LN_PROLOG_AS_LABEL, 0);
7679 ASM_GENERATE_INTERNAL_LABEL (p2, LN_PROLOG_END_LABEL, 0);
7681 if (DWARF_INITIAL_LENGTH_SIZE - DWARF_OFFSET_SIZE == 4)
7682 dw2_asm_output_data (4, 0xffffffff,
7683 "Initial length escape value indicating 64-bit DWARF extension");
7684 dw2_asm_output_delta (DWARF_OFFSET_SIZE, l2, l1,
7685 "Length of Source Line Info");
7686 ASM_OUTPUT_LABEL (asm_out_file, l1);
7688 dw2_asm_output_data (2, DWARF_VERSION, "DWARF Version");
7689 dw2_asm_output_delta (DWARF_OFFSET_SIZE, p2, p1, "Prolog Length");
7690 ASM_OUTPUT_LABEL (asm_out_file, p1);
7692 /* Define the architecture-dependent minimum instruction length (in
7693 bytes). In this implementation of DWARF, this field is used for
7694 information purposes only. Since GCC generates assembly language,
7695 we have no a priori knowledge of how many instruction bytes are
7696 generated for each source line, and therefore can use only the
7697 DW_LNE_set_address and DW_LNS_fixed_advance_pc line information
7698 commands. Accordingly, we fix this as `1', which is "correct
7699 enough" for all architectures, and don't let the target override. */
7700 dw2_asm_output_data (1, 1,
7701 "Minimum Instruction Length");
7703 dw2_asm_output_data (1, DWARF_LINE_DEFAULT_IS_STMT_START,
7704 "Default is_stmt_start flag");
7705 dw2_asm_output_data (1, DWARF_LINE_BASE,
7706 "Line Base Value (Special Opcodes)");
7707 dw2_asm_output_data (1, DWARF_LINE_RANGE,
7708 "Line Range Value (Special Opcodes)");
7709 dw2_asm_output_data (1, DWARF_LINE_OPCODE_BASE,
7710 "Special Opcode Base");
7712 for (opc = 1; opc < DWARF_LINE_OPCODE_BASE; opc++)
7714 switch (opc)
7716 case DW_LNS_advance_pc:
7717 case DW_LNS_advance_line:
7718 case DW_LNS_set_file:
7719 case DW_LNS_set_column:
7720 case DW_LNS_fixed_advance_pc:
7721 n_op_args = 1;
7722 break;
7723 default:
7724 n_op_args = 0;
7725 break;
7728 dw2_asm_output_data (1, n_op_args, "opcode: 0x%x has %d args",
7729 opc, n_op_args);
7732 /* Write out the information about the files we use. */
7733 output_file_names ();
7734 ASM_OUTPUT_LABEL (asm_out_file, p2);
7736 /* We used to set the address register to the first location in the text
7737 section here, but that didn't accomplish anything since we already
7738 have a line note for the opening brace of the first function. */
7740 /* Generate the line number to PC correspondence table, encoded as
7741 a series of state machine operations. */
7742 current_file = 1;
7743 current_line = 1;
7745 if (cfun
7746 && (last_text_section == in_unlikely_executed_text
7747 || (last_text_section == in_named
7748 && last_text_section_name == cfun->unlikely_text_section_name)))
7749 strcpy (prev_line_label, cfun->cold_section_label);
7750 else
7751 strcpy (prev_line_label, text_section_label);
7752 for (lt_index = 1; lt_index < line_info_table_in_use; ++lt_index)
7754 dw_line_info_ref line_info = &line_info_table[lt_index];
7756 #if 0
7757 /* Disable this optimization for now; GDB wants to see two line notes
7758 at the beginning of a function so it can find the end of the
7759 prologue. */
7761 /* Don't emit anything for redundant notes. Just updating the
7762 address doesn't accomplish anything, because we already assume
7763 that anything after the last address is this line. */
7764 if (line_info->dw_line_num == current_line
7765 && line_info->dw_file_num == current_file)
7766 continue;
7767 #endif
7769 /* Emit debug info for the address of the current line.
7771 Unfortunately, we have little choice here currently, and must always
7772 use the most general form. GCC does not know the address delta
7773 itself, so we can't use DW_LNS_advance_pc. Many ports do have length
7774 attributes which will give an upper bound on the address range. We
7775 could perhaps use length attributes to determine when it is safe to
7776 use DW_LNS_fixed_advance_pc. */
7778 ASM_GENERATE_INTERNAL_LABEL (line_label, LINE_CODE_LABEL, lt_index);
7779 if (0)
7781 /* This can handle deltas up to 0xffff. This takes 3 bytes. */
7782 dw2_asm_output_data (1, DW_LNS_fixed_advance_pc,
7783 "DW_LNS_fixed_advance_pc");
7784 dw2_asm_output_delta (2, line_label, prev_line_label, NULL);
7786 else
7788 /* This can handle any delta. This takes
7789 4+DWARF2_ADDR_SIZE bytes. */
7790 dw2_asm_output_data (1, 0, "DW_LNE_set_address");
7791 dw2_asm_output_data_uleb128 (1 + DWARF2_ADDR_SIZE, NULL);
7792 dw2_asm_output_data (1, DW_LNE_set_address, NULL);
7793 dw2_asm_output_addr (DWARF2_ADDR_SIZE, line_label, NULL);
7796 strcpy (prev_line_label, line_label);
7798 /* Emit debug info for the source file of the current line, if
7799 different from the previous line. */
7800 if (line_info->dw_file_num != current_file)
7802 current_file = line_info->dw_file_num;
7803 dw2_asm_output_data (1, DW_LNS_set_file, "DW_LNS_set_file");
7804 dw2_asm_output_data_uleb128 (current_file, "(\"%s\")",
7805 VARRAY_CHAR_PTR (file_table,
7806 current_file));
7809 /* Emit debug info for the current line number, choosing the encoding
7810 that uses the least amount of space. */
7811 if (line_info->dw_line_num != current_line)
7813 line_offset = line_info->dw_line_num - current_line;
7814 line_delta = line_offset - DWARF_LINE_BASE;
7815 current_line = line_info->dw_line_num;
7816 if (line_delta >= 0 && line_delta < (DWARF_LINE_RANGE - 1))
7817 /* This can handle deltas from -10 to 234, using the current
7818 definitions of DWARF_LINE_BASE and DWARF_LINE_RANGE. This
7819 takes 1 byte. */
7820 dw2_asm_output_data (1, DWARF_LINE_OPCODE_BASE + line_delta,
7821 "line %lu", current_line);
7822 else
7824 /* This can handle any delta. This takes at least 4 bytes,
7825 depending on the value being encoded. */
7826 dw2_asm_output_data (1, DW_LNS_advance_line,
7827 "advance to line %lu", current_line);
7828 dw2_asm_output_data_sleb128 (line_offset, NULL);
7829 dw2_asm_output_data (1, DW_LNS_copy, "DW_LNS_copy");
7832 else
7833 /* We still need to start a new row, so output a copy insn. */
7834 dw2_asm_output_data (1, DW_LNS_copy, "DW_LNS_copy");
7837 /* Emit debug info for the address of the end of the function. */
7838 if (0)
7840 dw2_asm_output_data (1, DW_LNS_fixed_advance_pc,
7841 "DW_LNS_fixed_advance_pc");
7842 dw2_asm_output_delta (2, text_end_label, prev_line_label, NULL);
7844 else
7846 dw2_asm_output_data (1, 0, "DW_LNE_set_address");
7847 dw2_asm_output_data_uleb128 (1 + DWARF2_ADDR_SIZE, NULL);
7848 dw2_asm_output_data (1, DW_LNE_set_address, NULL);
7849 dw2_asm_output_addr (DWARF2_ADDR_SIZE, text_end_label, NULL);
7852 dw2_asm_output_data (1, 0, "DW_LNE_end_sequence");
7853 dw2_asm_output_data_uleb128 (1, NULL);
7854 dw2_asm_output_data (1, DW_LNE_end_sequence, NULL);
7856 function = 0;
7857 current_file = 1;
7858 current_line = 1;
7859 for (lt_index = 0; lt_index < separate_line_info_table_in_use;)
7861 dw_separate_line_info_ref line_info
7862 = &separate_line_info_table[lt_index];
7864 #if 0
7865 /* Don't emit anything for redundant notes. */
7866 if (line_info->dw_line_num == current_line
7867 && line_info->dw_file_num == current_file
7868 && line_info->function == function)
7869 goto cont;
7870 #endif
7872 /* Emit debug info for the address of the current line. If this is
7873 a new function, or the first line of a function, then we need
7874 to handle it differently. */
7875 ASM_GENERATE_INTERNAL_LABEL (line_label, SEPARATE_LINE_CODE_LABEL,
7876 lt_index);
7877 if (function != line_info->function)
7879 function = line_info->function;
7881 /* Set the address register to the first line in the function. */
7882 dw2_asm_output_data (1, 0, "DW_LNE_set_address");
7883 dw2_asm_output_data_uleb128 (1 + DWARF2_ADDR_SIZE, NULL);
7884 dw2_asm_output_data (1, DW_LNE_set_address, NULL);
7885 dw2_asm_output_addr (DWARF2_ADDR_SIZE, line_label, NULL);
7887 else
7889 /* ??? See the DW_LNS_advance_pc comment above. */
7890 if (0)
7892 dw2_asm_output_data (1, DW_LNS_fixed_advance_pc,
7893 "DW_LNS_fixed_advance_pc");
7894 dw2_asm_output_delta (2, line_label, prev_line_label, NULL);
7896 else
7898 dw2_asm_output_data (1, 0, "DW_LNE_set_address");
7899 dw2_asm_output_data_uleb128 (1 + DWARF2_ADDR_SIZE, NULL);
7900 dw2_asm_output_data (1, DW_LNE_set_address, NULL);
7901 dw2_asm_output_addr (DWARF2_ADDR_SIZE, line_label, NULL);
7905 strcpy (prev_line_label, line_label);
7907 /* Emit debug info for the source file of the current line, if
7908 different from the previous line. */
7909 if (line_info->dw_file_num != current_file)
7911 current_file = line_info->dw_file_num;
7912 dw2_asm_output_data (1, DW_LNS_set_file, "DW_LNS_set_file");
7913 dw2_asm_output_data_uleb128 (current_file, "(\"%s\")",
7914 VARRAY_CHAR_PTR (file_table,
7915 current_file));
7918 /* Emit debug info for the current line number, choosing the encoding
7919 that uses the least amount of space. */
7920 if (line_info->dw_line_num != current_line)
7922 line_offset = line_info->dw_line_num - current_line;
7923 line_delta = line_offset - DWARF_LINE_BASE;
7924 current_line = line_info->dw_line_num;
7925 if (line_delta >= 0 && line_delta < (DWARF_LINE_RANGE - 1))
7926 dw2_asm_output_data (1, DWARF_LINE_OPCODE_BASE + line_delta,
7927 "line %lu", current_line);
7928 else
7930 dw2_asm_output_data (1, DW_LNS_advance_line,
7931 "advance to line %lu", current_line);
7932 dw2_asm_output_data_sleb128 (line_offset, NULL);
7933 dw2_asm_output_data (1, DW_LNS_copy, "DW_LNS_copy");
7936 else
7937 dw2_asm_output_data (1, DW_LNS_copy, "DW_LNS_copy");
7939 #if 0
7940 cont:
7941 #endif
7943 lt_index++;
7945 /* If we're done with a function, end its sequence. */
7946 if (lt_index == separate_line_info_table_in_use
7947 || separate_line_info_table[lt_index].function != function)
7949 current_file = 1;
7950 current_line = 1;
7952 /* Emit debug info for the address of the end of the function. */
7953 ASM_GENERATE_INTERNAL_LABEL (line_label, FUNC_END_LABEL, function);
7954 if (0)
7956 dw2_asm_output_data (1, DW_LNS_fixed_advance_pc,
7957 "DW_LNS_fixed_advance_pc");
7958 dw2_asm_output_delta (2, line_label, prev_line_label, NULL);
7960 else
7962 dw2_asm_output_data (1, 0, "DW_LNE_set_address");
7963 dw2_asm_output_data_uleb128 (1 + DWARF2_ADDR_SIZE, NULL);
7964 dw2_asm_output_data (1, DW_LNE_set_address, NULL);
7965 dw2_asm_output_addr (DWARF2_ADDR_SIZE, line_label, NULL);
7968 /* Output the marker for the end of this sequence. */
7969 dw2_asm_output_data (1, 0, "DW_LNE_end_sequence");
7970 dw2_asm_output_data_uleb128 (1, NULL);
7971 dw2_asm_output_data (1, DW_LNE_end_sequence, NULL);
7975 /* Output the marker for the end of the line number info. */
7976 ASM_OUTPUT_LABEL (asm_out_file, l2);
7979 /* Given a pointer to a tree node for some base type, return a pointer to
7980 a DIE that describes the given type.
7982 This routine must only be called for GCC type nodes that correspond to
7983 Dwarf base (fundamental) types. */
7985 static dw_die_ref
7986 base_type_die (tree type)
7988 dw_die_ref base_type_result;
7989 const char *type_name;
7990 enum dwarf_type encoding;
7991 tree name = TYPE_NAME (type);
7993 if (TREE_CODE (type) == ERROR_MARK || TREE_CODE (type) == VOID_TYPE)
7994 return 0;
7996 if (name)
7998 if (TREE_CODE (name) == TYPE_DECL)
7999 name = DECL_NAME (name);
8001 type_name = IDENTIFIER_POINTER (name);
8003 else
8004 type_name = "__unknown__";
8006 switch (TREE_CODE (type))
8008 case INTEGER_TYPE:
8009 /* Carefully distinguish the C character types, without messing
8010 up if the language is not C. Note that we check only for the names
8011 that contain spaces; other names might occur by coincidence in other
8012 languages. */
8013 if (! (TYPE_PRECISION (type) == CHAR_TYPE_SIZE
8014 && (type == char_type_node
8015 || ! strcmp (type_name, "signed char")
8016 || ! strcmp (type_name, "unsigned char"))))
8018 if (TYPE_UNSIGNED (type))
8019 encoding = DW_ATE_unsigned;
8020 else
8021 encoding = DW_ATE_signed;
8022 break;
8024 /* else fall through. */
8026 case CHAR_TYPE:
8027 /* GNU Pascal/Ada CHAR type. Not used in C. */
8028 if (TYPE_UNSIGNED (type))
8029 encoding = DW_ATE_unsigned_char;
8030 else
8031 encoding = DW_ATE_signed_char;
8032 break;
8034 case REAL_TYPE:
8035 encoding = DW_ATE_float;
8036 break;
8038 /* Dwarf2 doesn't know anything about complex ints, so use
8039 a user defined type for it. */
8040 case COMPLEX_TYPE:
8041 if (TREE_CODE (TREE_TYPE (type)) == REAL_TYPE)
8042 encoding = DW_ATE_complex_float;
8043 else
8044 encoding = DW_ATE_lo_user;
8045 break;
8047 case BOOLEAN_TYPE:
8048 /* GNU FORTRAN/Ada/C++ BOOLEAN type. */
8049 encoding = DW_ATE_boolean;
8050 break;
8052 default:
8053 /* No other TREE_CODEs are Dwarf fundamental types. */
8054 gcc_unreachable ();
8057 base_type_result = new_die (DW_TAG_base_type, comp_unit_die, type);
8058 if (demangle_name_func)
8059 type_name = (*demangle_name_func) (type_name);
8061 add_AT_string (base_type_result, DW_AT_name, type_name);
8062 add_AT_unsigned (base_type_result, DW_AT_byte_size,
8063 int_size_in_bytes (type));
8064 add_AT_unsigned (base_type_result, DW_AT_encoding, encoding);
8066 return base_type_result;
8069 /* Given a pointer to an arbitrary ..._TYPE tree node, return a pointer to
8070 the Dwarf "root" type for the given input type. The Dwarf "root" type of
8071 a given type is generally the same as the given type, except that if the
8072 given type is a pointer or reference type, then the root type of the given
8073 type is the root type of the "basis" type for the pointer or reference
8074 type. (This definition of the "root" type is recursive.) Also, the root
8075 type of a `const' qualified type or a `volatile' qualified type is the
8076 root type of the given type without the qualifiers. */
8078 static tree
8079 root_type (tree type)
8081 if (TREE_CODE (type) == ERROR_MARK)
8082 return error_mark_node;
8084 switch (TREE_CODE (type))
8086 case ERROR_MARK:
8087 return error_mark_node;
8089 case POINTER_TYPE:
8090 case REFERENCE_TYPE:
8091 return type_main_variant (root_type (TREE_TYPE (type)));
8093 default:
8094 return type_main_variant (type);
8098 /* Given a pointer to an arbitrary ..._TYPE tree node, return nonzero if the
8099 given input type is a Dwarf "fundamental" type. Otherwise return null. */
8101 static inline int
8102 is_base_type (tree type)
8104 switch (TREE_CODE (type))
8106 case ERROR_MARK:
8107 case VOID_TYPE:
8108 case INTEGER_TYPE:
8109 case REAL_TYPE:
8110 case COMPLEX_TYPE:
8111 case BOOLEAN_TYPE:
8112 case CHAR_TYPE:
8113 return 1;
8115 case ARRAY_TYPE:
8116 case RECORD_TYPE:
8117 case UNION_TYPE:
8118 case QUAL_UNION_TYPE:
8119 case ENUMERAL_TYPE:
8120 case FUNCTION_TYPE:
8121 case METHOD_TYPE:
8122 case POINTER_TYPE:
8123 case REFERENCE_TYPE:
8124 case OFFSET_TYPE:
8125 case LANG_TYPE:
8126 case VECTOR_TYPE:
8127 return 0;
8129 default:
8130 gcc_unreachable ();
8133 return 0;
8136 /* Given a pointer to a tree node, assumed to be some kind of a ..._TYPE
8137 node, return the size in bits for the type if it is a constant, or else
8138 return the alignment for the type if the type's size is not constant, or
8139 else return BITS_PER_WORD if the type actually turns out to be an
8140 ERROR_MARK node. */
8142 static inline unsigned HOST_WIDE_INT
8143 simple_type_size_in_bits (tree type)
8145 if (TREE_CODE (type) == ERROR_MARK)
8146 return BITS_PER_WORD;
8147 else if (TYPE_SIZE (type) == NULL_TREE)
8148 return 0;
8149 else if (host_integerp (TYPE_SIZE (type), 1))
8150 return tree_low_cst (TYPE_SIZE (type), 1);
8151 else
8152 return TYPE_ALIGN (type);
8155 /* Return true if the debug information for the given type should be
8156 emitted as a subrange type. */
8158 static inline bool
8159 is_subrange_type (tree type)
8161 tree subtype = TREE_TYPE (type);
8163 /* Subrange types are identified by the fact that they are integer
8164 types, and that they have a subtype which is either an integer type
8165 or an enumeral type. */
8167 if (TREE_CODE (type) != INTEGER_TYPE
8168 || subtype == NULL_TREE)
8169 return false;
8171 if (TREE_CODE (subtype) != INTEGER_TYPE
8172 && TREE_CODE (subtype) != ENUMERAL_TYPE)
8173 return false;
8175 if (TREE_CODE (type) == TREE_CODE (subtype)
8176 && int_size_in_bytes (type) == int_size_in_bytes (subtype)
8177 && TYPE_MIN_VALUE (type) != NULL
8178 && TYPE_MIN_VALUE (subtype) != NULL
8179 && tree_int_cst_equal (TYPE_MIN_VALUE (type), TYPE_MIN_VALUE (subtype))
8180 && TYPE_MAX_VALUE (type) != NULL
8181 && TYPE_MAX_VALUE (subtype) != NULL
8182 && tree_int_cst_equal (TYPE_MAX_VALUE (type), TYPE_MAX_VALUE (subtype)))
8184 /* The type and its subtype have the same representation. If in
8185 addition the two types also have the same name, then the given
8186 type is not a subrange type, but rather a plain base type. */
8187 /* FIXME: brobecker/2004-03-22:
8188 Sizetype INTEGER_CSTs nodes are canonicalized. It should
8189 therefore be sufficient to check the TYPE_SIZE node pointers
8190 rather than checking the actual size. Unfortunately, we have
8191 found some cases, such as in the Ada "integer" type, where
8192 this is not the case. Until this problem is solved, we need to
8193 keep checking the actual size. */
8194 tree type_name = TYPE_NAME (type);
8195 tree subtype_name = TYPE_NAME (subtype);
8197 if (type_name != NULL && TREE_CODE (type_name) == TYPE_DECL)
8198 type_name = DECL_NAME (type_name);
8200 if (subtype_name != NULL && TREE_CODE (subtype_name) == TYPE_DECL)
8201 subtype_name = DECL_NAME (subtype_name);
8203 if (type_name == subtype_name)
8204 return false;
8207 return true;
8210 /* Given a pointer to a tree node for a subrange type, return a pointer
8211 to a DIE that describes the given type. */
8213 static dw_die_ref
8214 subrange_type_die (tree type, dw_die_ref context_die)
8216 dw_die_ref subtype_die;
8217 dw_die_ref subrange_die;
8218 tree name = TYPE_NAME (type);
8219 const HOST_WIDE_INT size_in_bytes = int_size_in_bytes (type);
8220 tree subtype = TREE_TYPE (type);
8222 if (context_die == NULL)
8223 context_die = comp_unit_die;
8225 if (TREE_CODE (subtype) == ENUMERAL_TYPE)
8226 subtype_die = gen_enumeration_type_die (subtype, context_die);
8227 else
8228 subtype_die = base_type_die (subtype);
8230 subrange_die = new_die (DW_TAG_subrange_type, context_die, type);
8232 if (name != NULL)
8234 if (TREE_CODE (name) == TYPE_DECL)
8235 name = DECL_NAME (name);
8236 add_name_attribute (subrange_die, IDENTIFIER_POINTER (name));
8239 if (int_size_in_bytes (subtype) != size_in_bytes)
8241 /* The size of the subrange type and its base type do not match,
8242 so we need to generate a size attribute for the subrange type. */
8243 add_AT_unsigned (subrange_die, DW_AT_byte_size, size_in_bytes);
8246 if (TYPE_MIN_VALUE (type) != NULL)
8247 add_bound_info (subrange_die, DW_AT_lower_bound,
8248 TYPE_MIN_VALUE (type));
8249 if (TYPE_MAX_VALUE (type) != NULL)
8250 add_bound_info (subrange_die, DW_AT_upper_bound,
8251 TYPE_MAX_VALUE (type));
8252 add_AT_die_ref (subrange_die, DW_AT_type, subtype_die);
8254 return subrange_die;
8257 /* Given a pointer to an arbitrary ..._TYPE tree node, return a debugging
8258 entry that chains various modifiers in front of the given type. */
8260 static dw_die_ref
8261 modified_type_die (tree type, int is_const_type, int is_volatile_type,
8262 dw_die_ref context_die)
8264 enum tree_code code = TREE_CODE (type);
8265 dw_die_ref mod_type_die = NULL;
8266 dw_die_ref sub_die = NULL;
8267 tree item_type = NULL;
8269 if (code != ERROR_MARK)
8271 tree qualified_type;
8273 /* See if we already have the appropriately qualified variant of
8274 this type. */
8275 qualified_type
8276 = get_qualified_type (type,
8277 ((is_const_type ? TYPE_QUAL_CONST : 0)
8278 | (is_volatile_type
8279 ? TYPE_QUAL_VOLATILE : 0)));
8281 /* If we do, then we can just use its DIE, if it exists. */
8282 if (qualified_type)
8284 mod_type_die = lookup_type_die (qualified_type);
8285 if (mod_type_die)
8286 return mod_type_die;
8289 /* Handle C typedef types. */
8290 if (qualified_type && TYPE_NAME (qualified_type)
8291 && TREE_CODE (TYPE_NAME (qualified_type)) == TYPE_DECL
8292 && DECL_ORIGINAL_TYPE (TYPE_NAME (qualified_type)))
8294 tree type_name = TYPE_NAME (qualified_type);
8295 tree dtype = TREE_TYPE (type_name);
8297 if (qualified_type == dtype)
8299 /* For a named type, use the typedef. */
8300 gen_type_die (qualified_type, context_die);
8301 mod_type_die = lookup_type_die (qualified_type);
8303 else if (is_const_type < TYPE_READONLY (dtype)
8304 || is_volatile_type < TYPE_VOLATILE (dtype))
8305 /* cv-unqualified version of named type. Just use the unnamed
8306 type to which it refers. */
8307 mod_type_die
8308 = modified_type_die (DECL_ORIGINAL_TYPE (type_name),
8309 is_const_type, is_volatile_type,
8310 context_die);
8312 /* Else cv-qualified version of named type; fall through. */
8315 if (mod_type_die)
8316 /* OK. */
8318 else if (is_const_type)
8320 mod_type_die = new_die (DW_TAG_const_type, comp_unit_die, type);
8321 sub_die = modified_type_die (type, 0, is_volatile_type, context_die);
8323 else if (is_volatile_type)
8325 mod_type_die = new_die (DW_TAG_volatile_type, comp_unit_die, type);
8326 sub_die = modified_type_die (type, 0, 0, context_die);
8328 else if (code == POINTER_TYPE)
8330 mod_type_die = new_die (DW_TAG_pointer_type, comp_unit_die, type);
8331 add_AT_unsigned (mod_type_die, DW_AT_byte_size,
8332 simple_type_size_in_bits (type) / BITS_PER_UNIT);
8333 #if 0
8334 add_AT_unsigned (mod_type_die, DW_AT_address_class, 0);
8335 #endif
8336 item_type = TREE_TYPE (type);
8338 else if (code == REFERENCE_TYPE)
8340 mod_type_die = new_die (DW_TAG_reference_type, comp_unit_die, type);
8341 add_AT_unsigned (mod_type_die, DW_AT_byte_size,
8342 simple_type_size_in_bits (type) / BITS_PER_UNIT);
8343 #if 0
8344 add_AT_unsigned (mod_type_die, DW_AT_address_class, 0);
8345 #endif
8346 item_type = TREE_TYPE (type);
8348 else if (is_subrange_type (type))
8349 mod_type_die = subrange_type_die (type, context_die);
8350 else if (is_base_type (type))
8351 mod_type_die = base_type_die (type);
8352 else
8354 gen_type_die (type, context_die);
8356 /* We have to get the type_main_variant here (and pass that to the
8357 `lookup_type_die' routine) because the ..._TYPE node we have
8358 might simply be a *copy* of some original type node (where the
8359 copy was created to help us keep track of typedef names) and
8360 that copy might have a different TYPE_UID from the original
8361 ..._TYPE node. */
8362 if (TREE_CODE (type) != VECTOR_TYPE)
8363 mod_type_die = lookup_type_die (type_main_variant (type));
8364 else
8365 /* Vectors have the debugging information in the type,
8366 not the main variant. */
8367 mod_type_die = lookup_type_die (type);
8368 gcc_assert (mod_type_die);
8371 /* We want to equate the qualified type to the die below. */
8372 type = qualified_type;
8375 if (type)
8376 equate_type_number_to_die (type, mod_type_die);
8377 if (item_type)
8378 /* We must do this after the equate_type_number_to_die call, in case
8379 this is a recursive type. This ensures that the modified_type_die
8380 recursion will terminate even if the type is recursive. Recursive
8381 types are possible in Ada. */
8382 sub_die = modified_type_die (item_type,
8383 TYPE_READONLY (item_type),
8384 TYPE_VOLATILE (item_type),
8385 context_die);
8387 if (sub_die != NULL)
8388 add_AT_die_ref (mod_type_die, DW_AT_type, sub_die);
8390 return mod_type_die;
8393 /* Given a pointer to an arbitrary ..._TYPE tree node, return true if it is
8394 an enumerated type. */
8396 static inline int
8397 type_is_enum (tree type)
8399 return TREE_CODE (type) == ENUMERAL_TYPE;
8402 /* Return the DBX register number described by a given RTL node. */
8404 static unsigned int
8405 dbx_reg_number (rtx rtl)
8407 unsigned regno = REGNO (rtl);
8409 gcc_assert (regno < FIRST_PSEUDO_REGISTER);
8411 return DBX_REGISTER_NUMBER (regno);
8414 /* Optionally add a DW_OP_piece term to a location description expression.
8415 DW_OP_piece is only added if the location description expression already
8416 doesn't end with DW_OP_piece. */
8418 static void
8419 add_loc_descr_op_piece (dw_loc_descr_ref *list_head, int size)
8421 dw_loc_descr_ref loc;
8423 if (*list_head != NULL)
8425 /* Find the end of the chain. */
8426 for (loc = *list_head; loc->dw_loc_next != NULL; loc = loc->dw_loc_next)
8429 if (loc->dw_loc_opc != DW_OP_piece)
8430 loc->dw_loc_next = new_loc_descr (DW_OP_piece, size, 0);
8434 /* Return a location descriptor that designates a machine register or
8435 zero if there is none. */
8437 static dw_loc_descr_ref
8438 reg_loc_descriptor (rtx rtl)
8440 unsigned reg;
8441 rtx regs;
8443 if (REGNO (rtl) >= FIRST_PSEUDO_REGISTER)
8444 return 0;
8446 reg = dbx_reg_number (rtl);
8447 regs = targetm.dwarf_register_span (rtl);
8449 if (hard_regno_nregs[REGNO (rtl)][GET_MODE (rtl)] > 1
8450 || regs)
8451 return multiple_reg_loc_descriptor (rtl, regs);
8452 else
8453 return one_reg_loc_descriptor (reg);
8456 /* Return a location descriptor that designates a machine register for
8457 a given hard register number. */
8459 static dw_loc_descr_ref
8460 one_reg_loc_descriptor (unsigned int regno)
8462 if (regno <= 31)
8463 return new_loc_descr (DW_OP_reg0 + regno, 0, 0);
8464 else
8465 return new_loc_descr (DW_OP_regx, regno, 0);
8468 /* Given an RTL of a register, return a location descriptor that
8469 designates a value that spans more than one register. */
8471 static dw_loc_descr_ref
8472 multiple_reg_loc_descriptor (rtx rtl, rtx regs)
8474 int nregs, size, i;
8475 unsigned reg;
8476 dw_loc_descr_ref loc_result = NULL;
8478 reg = dbx_reg_number (rtl);
8479 nregs = hard_regno_nregs[REGNO (rtl)][GET_MODE (rtl)];
8481 /* Simple, contiguous registers. */
8482 if (regs == NULL_RTX)
8484 size = GET_MODE_SIZE (GET_MODE (rtl)) / nregs;
8486 loc_result = NULL;
8487 while (nregs--)
8489 dw_loc_descr_ref t;
8491 t = one_reg_loc_descriptor (reg);
8492 add_loc_descr (&loc_result, t);
8493 add_loc_descr_op_piece (&loc_result, size);
8494 ++reg;
8496 return loc_result;
8499 /* Now onto stupid register sets in non contiguous locations. */
8501 gcc_assert (GET_CODE (regs) == PARALLEL);
8503 size = GET_MODE_SIZE (GET_MODE (XVECEXP (regs, 0, 0)));
8504 loc_result = NULL;
8506 for (i = 0; i < XVECLEN (regs, 0); ++i)
8508 dw_loc_descr_ref t;
8510 t = one_reg_loc_descriptor (REGNO (XVECEXP (regs, 0, i)));
8511 add_loc_descr (&loc_result, t);
8512 size = GET_MODE_SIZE (GET_MODE (XVECEXP (regs, 0, 0)));
8513 add_loc_descr_op_piece (&loc_result, size);
8515 return loc_result;
8518 /* Return a location descriptor that designates a constant. */
8520 static dw_loc_descr_ref
8521 int_loc_descriptor (HOST_WIDE_INT i)
8523 enum dwarf_location_atom op;
8525 /* Pick the smallest representation of a constant, rather than just
8526 defaulting to the LEB encoding. */
8527 if (i >= 0)
8529 if (i <= 31)
8530 op = DW_OP_lit0 + i;
8531 else if (i <= 0xff)
8532 op = DW_OP_const1u;
8533 else if (i <= 0xffff)
8534 op = DW_OP_const2u;
8535 else if (HOST_BITS_PER_WIDE_INT == 32
8536 || i <= 0xffffffff)
8537 op = DW_OP_const4u;
8538 else
8539 op = DW_OP_constu;
8541 else
8543 if (i >= -0x80)
8544 op = DW_OP_const1s;
8545 else if (i >= -0x8000)
8546 op = DW_OP_const2s;
8547 else if (HOST_BITS_PER_WIDE_INT == 32
8548 || i >= -0x80000000)
8549 op = DW_OP_const4s;
8550 else
8551 op = DW_OP_consts;
8554 return new_loc_descr (op, i, 0);
8557 /* Return a location descriptor that designates a base+offset location. */
8559 static dw_loc_descr_ref
8560 based_loc_descr (unsigned int reg, HOST_WIDE_INT offset, bool can_use_fbreg)
8562 dw_loc_descr_ref loc_result;
8563 /* For the "frame base", we use the frame pointer or stack pointer
8564 registers, since the RTL for local variables is relative to one of
8565 them. */
8566 unsigned fp_reg = DBX_REGISTER_NUMBER (frame_pointer_needed
8567 ? HARD_FRAME_POINTER_REGNUM
8568 : STACK_POINTER_REGNUM);
8570 if (reg == fp_reg && can_use_fbreg)
8571 loc_result = new_loc_descr (DW_OP_fbreg, offset, 0);
8572 else if (reg <= 31)
8573 loc_result = new_loc_descr (DW_OP_breg0 + reg, offset, 0);
8574 else
8575 loc_result = new_loc_descr (DW_OP_bregx, reg, offset);
8577 return loc_result;
8580 /* Return true if this RTL expression describes a base+offset calculation. */
8582 static inline int
8583 is_based_loc (rtx rtl)
8585 return (GET_CODE (rtl) == PLUS
8586 && ((REG_P (XEXP (rtl, 0))
8587 && REGNO (XEXP (rtl, 0)) < FIRST_PSEUDO_REGISTER
8588 && GET_CODE (XEXP (rtl, 1)) == CONST_INT)));
8591 /* The following routine converts the RTL for a variable or parameter
8592 (resident in memory) into an equivalent Dwarf representation of a
8593 mechanism for getting the address of that same variable onto the top of a
8594 hypothetical "address evaluation" stack.
8596 When creating memory location descriptors, we are effectively transforming
8597 the RTL for a memory-resident object into its Dwarf postfix expression
8598 equivalent. This routine recursively descends an RTL tree, turning
8599 it into Dwarf postfix code as it goes.
8601 MODE is the mode of the memory reference, needed to handle some
8602 autoincrement addressing modes.
8604 CAN_USE_FBREG is a flag whether we can use DW_AT_frame_base in the location
8605 list for RTL. We can't use it when we are emitting location list for
8606 virtual variable frame_base_decl (i.e. a location list for DW_AT_frame_base)
8607 which describes how frame base changes when !frame_pointer_needed.
8609 Return 0 if we can't represent the location. */
8611 static dw_loc_descr_ref
8612 mem_loc_descriptor (rtx rtl, enum machine_mode mode, bool can_use_fbreg)
8614 dw_loc_descr_ref mem_loc_result = NULL;
8615 enum dwarf_location_atom op;
8617 /* Note that for a dynamically sized array, the location we will generate a
8618 description of here will be the lowest numbered location which is
8619 actually within the array. That's *not* necessarily the same as the
8620 zeroth element of the array. */
8622 rtl = targetm.delegitimize_address (rtl);
8624 switch (GET_CODE (rtl))
8626 case POST_INC:
8627 case POST_DEC:
8628 case POST_MODIFY:
8629 /* POST_INC and POST_DEC can be handled just like a SUBREG. So we
8630 just fall into the SUBREG code. */
8632 /* ... fall through ... */
8634 case SUBREG:
8635 /* The case of a subreg may arise when we have a local (register)
8636 variable or a formal (register) parameter which doesn't quite fill
8637 up an entire register. For now, just assume that it is
8638 legitimate to make the Dwarf info refer to the whole register which
8639 contains the given subreg. */
8640 rtl = SUBREG_REG (rtl);
8642 /* ... fall through ... */
8644 case REG:
8645 /* Whenever a register number forms a part of the description of the
8646 method for calculating the (dynamic) address of a memory resident
8647 object, DWARF rules require the register number be referred to as
8648 a "base register". This distinction is not based in any way upon
8649 what category of register the hardware believes the given register
8650 belongs to. This is strictly DWARF terminology we're dealing with
8651 here. Note that in cases where the location of a memory-resident
8652 data object could be expressed as: OP_ADD (OP_BASEREG (basereg),
8653 OP_CONST (0)) the actual DWARF location descriptor that we generate
8654 may just be OP_BASEREG (basereg). This may look deceptively like
8655 the object in question was allocated to a register (rather than in
8656 memory) so DWARF consumers need to be aware of the subtle
8657 distinction between OP_REG and OP_BASEREG. */
8658 if (REGNO (rtl) < FIRST_PSEUDO_REGISTER)
8659 mem_loc_result = based_loc_descr (dbx_reg_number (rtl), 0,
8660 can_use_fbreg);
8661 break;
8663 case MEM:
8664 mem_loc_result = mem_loc_descriptor (XEXP (rtl, 0), GET_MODE (rtl),
8665 can_use_fbreg);
8666 if (mem_loc_result != 0)
8667 add_loc_descr (&mem_loc_result, new_loc_descr (DW_OP_deref, 0, 0));
8668 break;
8670 case LO_SUM:
8671 rtl = XEXP (rtl, 1);
8673 /* ... fall through ... */
8675 case LABEL_REF:
8676 /* Some ports can transform a symbol ref into a label ref, because
8677 the symbol ref is too far away and has to be dumped into a constant
8678 pool. */
8679 case CONST:
8680 case SYMBOL_REF:
8681 /* Alternatively, the symbol in the constant pool might be referenced
8682 by a different symbol. */
8683 if (GET_CODE (rtl) == SYMBOL_REF && CONSTANT_POOL_ADDRESS_P (rtl))
8685 bool marked;
8686 rtx tmp = get_pool_constant_mark (rtl, &marked);
8688 if (GET_CODE (tmp) == SYMBOL_REF)
8690 rtl = tmp;
8691 if (CONSTANT_POOL_ADDRESS_P (tmp))
8692 get_pool_constant_mark (tmp, &marked);
8693 else
8694 marked = true;
8697 /* If all references to this pool constant were optimized away,
8698 it was not output and thus we can't represent it.
8699 FIXME: might try to use DW_OP_const_value here, though
8700 DW_OP_piece complicates it. */
8701 if (!marked)
8702 return 0;
8705 mem_loc_result = new_loc_descr (DW_OP_addr, 0, 0);
8706 mem_loc_result->dw_loc_oprnd1.val_class = dw_val_class_addr;
8707 mem_loc_result->dw_loc_oprnd1.v.val_addr = rtl;
8708 VEC_safe_push (rtx, gc, used_rtx_array, rtl);
8709 break;
8711 case PRE_MODIFY:
8712 /* Extract the PLUS expression nested inside and fall into
8713 PLUS code below. */
8714 rtl = XEXP (rtl, 1);
8715 goto plus;
8717 case PRE_INC:
8718 case PRE_DEC:
8719 /* Turn these into a PLUS expression and fall into the PLUS code
8720 below. */
8721 rtl = gen_rtx_PLUS (word_mode, XEXP (rtl, 0),
8722 GEN_INT (GET_CODE (rtl) == PRE_INC
8723 ? GET_MODE_UNIT_SIZE (mode)
8724 : -GET_MODE_UNIT_SIZE (mode)));
8726 /* ... fall through ... */
8728 case PLUS:
8729 plus:
8730 if (is_based_loc (rtl))
8731 mem_loc_result = based_loc_descr (dbx_reg_number (XEXP (rtl, 0)),
8732 INTVAL (XEXP (rtl, 1)),
8733 can_use_fbreg);
8734 else
8736 mem_loc_result = mem_loc_descriptor (XEXP (rtl, 0), mode,
8737 can_use_fbreg);
8738 if (mem_loc_result == 0)
8739 break;
8741 if (GET_CODE (XEXP (rtl, 1)) == CONST_INT
8742 && INTVAL (XEXP (rtl, 1)) >= 0)
8743 add_loc_descr (&mem_loc_result,
8744 new_loc_descr (DW_OP_plus_uconst,
8745 INTVAL (XEXP (rtl, 1)), 0));
8746 else
8748 add_loc_descr (&mem_loc_result,
8749 mem_loc_descriptor (XEXP (rtl, 1), mode,
8750 can_use_fbreg));
8751 add_loc_descr (&mem_loc_result,
8752 new_loc_descr (DW_OP_plus, 0, 0));
8755 break;
8757 /* If a pseudo-reg is optimized away, it is possible for it to
8758 be replaced with a MEM containing a multiply or shift. */
8759 case MULT:
8760 op = DW_OP_mul;
8761 goto do_binop;
8763 case ASHIFT:
8764 op = DW_OP_shl;
8765 goto do_binop;
8767 case ASHIFTRT:
8768 op = DW_OP_shra;
8769 goto do_binop;
8771 case LSHIFTRT:
8772 op = DW_OP_shr;
8773 goto do_binop;
8775 do_binop:
8777 dw_loc_descr_ref op0 = mem_loc_descriptor (XEXP (rtl, 0), mode,
8778 can_use_fbreg);
8779 dw_loc_descr_ref op1 = mem_loc_descriptor (XEXP (rtl, 1), mode,
8780 can_use_fbreg);
8782 if (op0 == 0 || op1 == 0)
8783 break;
8785 mem_loc_result = op0;
8786 add_loc_descr (&mem_loc_result, op1);
8787 add_loc_descr (&mem_loc_result, new_loc_descr (op, 0, 0));
8788 break;
8791 case CONST_INT:
8792 mem_loc_result = int_loc_descriptor (INTVAL (rtl));
8793 break;
8795 default:
8796 gcc_unreachable ();
8799 return mem_loc_result;
8802 /* Return a descriptor that describes the concatenation of two locations.
8803 This is typically a complex variable. */
8805 static dw_loc_descr_ref
8806 concat_loc_descriptor (rtx x0, rtx x1)
8808 dw_loc_descr_ref cc_loc_result = NULL;
8809 dw_loc_descr_ref x0_ref = loc_descriptor (x0, false);
8810 dw_loc_descr_ref x1_ref = loc_descriptor (x1, false);
8812 if (x0_ref == 0 || x1_ref == 0)
8813 return 0;
8815 cc_loc_result = x0_ref;
8816 add_loc_descr_op_piece (&cc_loc_result, GET_MODE_SIZE (GET_MODE (x0)));
8818 add_loc_descr (&cc_loc_result, x1_ref);
8819 add_loc_descr_op_piece (&cc_loc_result, GET_MODE_SIZE (GET_MODE (x1)));
8821 return cc_loc_result;
8824 /* Output a proper Dwarf location descriptor for a variable or parameter
8825 which is either allocated in a register or in a memory location. For a
8826 register, we just generate an OP_REG and the register number. For a
8827 memory location we provide a Dwarf postfix expression describing how to
8828 generate the (dynamic) address of the object onto the address stack.
8830 If we don't know how to describe it, return 0. */
8832 static dw_loc_descr_ref
8833 loc_descriptor (rtx rtl, bool can_use_fbreg)
8835 dw_loc_descr_ref loc_result = NULL;
8837 switch (GET_CODE (rtl))
8839 case SUBREG:
8840 /* The case of a subreg may arise when we have a local (register)
8841 variable or a formal (register) parameter which doesn't quite fill
8842 up an entire register. For now, just assume that it is
8843 legitimate to make the Dwarf info refer to the whole register which
8844 contains the given subreg. */
8845 rtl = SUBREG_REG (rtl);
8847 /* ... fall through ... */
8849 case REG:
8850 loc_result = reg_loc_descriptor (rtl);
8851 break;
8853 case MEM:
8854 loc_result = mem_loc_descriptor (XEXP (rtl, 0), GET_MODE (rtl),
8855 can_use_fbreg);
8856 break;
8858 case CONCAT:
8859 loc_result = concat_loc_descriptor (XEXP (rtl, 0), XEXP (rtl, 1));
8860 break;
8862 case VAR_LOCATION:
8863 /* Single part. */
8864 if (GET_CODE (XEXP (rtl, 1)) != PARALLEL)
8866 loc_result = loc_descriptor (XEXP (XEXP (rtl, 1), 0), can_use_fbreg);
8867 break;
8870 rtl = XEXP (rtl, 1);
8871 /* FALLTHRU */
8873 case PARALLEL:
8875 rtvec par_elems = XVEC (rtl, 0);
8876 int num_elem = GET_NUM_ELEM (par_elems);
8877 enum machine_mode mode;
8878 int i;
8880 /* Create the first one, so we have something to add to. */
8881 loc_result = loc_descriptor (XEXP (RTVEC_ELT (par_elems, 0), 0),
8882 can_use_fbreg);
8883 mode = GET_MODE (XEXP (RTVEC_ELT (par_elems, 0), 0));
8884 add_loc_descr_op_piece (&loc_result, GET_MODE_SIZE (mode));
8885 for (i = 1; i < num_elem; i++)
8887 dw_loc_descr_ref temp;
8889 temp = loc_descriptor (XEXP (RTVEC_ELT (par_elems, i), 0),
8890 can_use_fbreg);
8891 add_loc_descr (&loc_result, temp);
8892 mode = GET_MODE (XEXP (RTVEC_ELT (par_elems, i), 0));
8893 add_loc_descr_op_piece (&loc_result, GET_MODE_SIZE (mode));
8896 break;
8898 default:
8899 gcc_unreachable ();
8902 return loc_result;
8905 /* Similar, but generate the descriptor from trees instead of rtl. This comes
8906 up particularly with variable length arrays. WANT_ADDRESS is 2 if this is
8907 a top-level invocation of loc_descriptor_from_tree; is 1 if this is not a
8908 top-level invocation, and we require the address of LOC; is 0 if we require
8909 the value of LOC. */
8911 static dw_loc_descr_ref
8912 loc_descriptor_from_tree_1 (tree loc, int want_address)
8914 dw_loc_descr_ref ret, ret1;
8915 int have_address = 0;
8916 int unsignedp = TYPE_UNSIGNED (TREE_TYPE (loc));
8917 enum dwarf_location_atom op;
8919 /* ??? Most of the time we do not take proper care for sign/zero
8920 extending the values properly. Hopefully this won't be a real
8921 problem... */
8923 switch (TREE_CODE (loc))
8925 case ERROR_MARK:
8926 return 0;
8928 case PLACEHOLDER_EXPR:
8929 /* This case involves extracting fields from an object to determine the
8930 position of other fields. We don't try to encode this here. The
8931 only user of this is Ada, which encodes the needed information using
8932 the names of types. */
8933 return 0;
8935 case CALL_EXPR:
8936 return 0;
8938 case PREINCREMENT_EXPR:
8939 case PREDECREMENT_EXPR:
8940 case POSTINCREMENT_EXPR:
8941 case POSTDECREMENT_EXPR:
8942 /* There are no opcodes for these operations. */
8943 return 0;
8945 case ADDR_EXPR:
8946 /* If we already want an address, there's nothing we can do. */
8947 if (want_address)
8948 return 0;
8950 /* Otherwise, process the argument and look for the address. */
8951 return loc_descriptor_from_tree_1 (TREE_OPERAND (loc, 0), 1);
8953 case VAR_DECL:
8954 if (DECL_THREAD_LOCAL_P (loc))
8956 rtx rtl;
8958 /* If this is not defined, we have no way to emit the data. */
8959 if (!targetm.asm_out.output_dwarf_dtprel)
8960 return 0;
8962 /* The way DW_OP_GNU_push_tls_address is specified, we can only
8963 look up addresses of objects in the current module. */
8964 if (DECL_EXTERNAL (loc))
8965 return 0;
8967 rtl = rtl_for_decl_location (loc);
8968 if (rtl == NULL_RTX)
8969 return 0;
8971 if (!MEM_P (rtl))
8972 return 0;
8973 rtl = XEXP (rtl, 0);
8974 if (! CONSTANT_P (rtl))
8975 return 0;
8977 ret = new_loc_descr (INTERNAL_DW_OP_tls_addr, 0, 0);
8978 ret->dw_loc_oprnd1.val_class = dw_val_class_addr;
8979 ret->dw_loc_oprnd1.v.val_addr = rtl;
8981 ret1 = new_loc_descr (DW_OP_GNU_push_tls_address, 0, 0);
8982 add_loc_descr (&ret, ret1);
8984 have_address = 1;
8985 break;
8987 /* FALLTHRU */
8989 case PARM_DECL:
8990 if (DECL_HAS_VALUE_EXPR_P (loc))
8991 return loc_descriptor_from_tree_1 (DECL_VALUE_EXPR (loc),
8992 want_address);
8993 /* FALLTHRU */
8995 case RESULT_DECL:
8997 rtx rtl = rtl_for_decl_location (loc);
8999 if (rtl == NULL_RTX)
9000 return 0;
9001 else if (GET_CODE (rtl) == CONST_INT)
9003 HOST_WIDE_INT val = INTVAL (rtl);
9004 if (TYPE_UNSIGNED (TREE_TYPE (loc)))
9005 val &= GET_MODE_MASK (DECL_MODE (loc));
9006 ret = int_loc_descriptor (val);
9008 else if (GET_CODE (rtl) == CONST_STRING)
9009 return 0;
9010 else if (CONSTANT_P (rtl))
9012 ret = new_loc_descr (DW_OP_addr, 0, 0);
9013 ret->dw_loc_oprnd1.val_class = dw_val_class_addr;
9014 ret->dw_loc_oprnd1.v.val_addr = rtl;
9016 else
9018 enum machine_mode mode;
9020 /* Certain constructs can only be represented at top-level. */
9021 if (want_address == 2)
9022 return loc_descriptor (rtl, false);
9024 mode = GET_MODE (rtl);
9025 if (MEM_P (rtl))
9027 rtl = XEXP (rtl, 0);
9028 have_address = 1;
9030 ret = mem_loc_descriptor (rtl, mode, false);
9033 break;
9035 case INDIRECT_REF:
9036 ret = loc_descriptor_from_tree_1 (TREE_OPERAND (loc, 0), 0);
9037 have_address = 1;
9038 break;
9040 case COMPOUND_EXPR:
9041 return loc_descriptor_from_tree_1 (TREE_OPERAND (loc, 1), want_address);
9043 case NOP_EXPR:
9044 case CONVERT_EXPR:
9045 case NON_LVALUE_EXPR:
9046 case VIEW_CONVERT_EXPR:
9047 case SAVE_EXPR:
9048 case MODIFY_EXPR:
9049 return loc_descriptor_from_tree_1 (TREE_OPERAND (loc, 0), want_address);
9051 case COMPONENT_REF:
9052 case BIT_FIELD_REF:
9053 case ARRAY_REF:
9054 case ARRAY_RANGE_REF:
9056 tree obj, offset;
9057 HOST_WIDE_INT bitsize, bitpos, bytepos;
9058 enum machine_mode mode;
9059 int volatilep;
9061 obj = get_inner_reference (loc, &bitsize, &bitpos, &offset, &mode,
9062 &unsignedp, &volatilep, false);
9064 if (obj == loc)
9065 return 0;
9067 ret = loc_descriptor_from_tree_1 (obj, 1);
9068 if (ret == 0
9069 || bitpos % BITS_PER_UNIT != 0 || bitsize % BITS_PER_UNIT != 0)
9070 return 0;
9072 if (offset != NULL_TREE)
9074 /* Variable offset. */
9075 add_loc_descr (&ret, loc_descriptor_from_tree_1 (offset, 0));
9076 add_loc_descr (&ret, new_loc_descr (DW_OP_plus, 0, 0));
9079 bytepos = bitpos / BITS_PER_UNIT;
9080 if (bytepos > 0)
9081 add_loc_descr (&ret, new_loc_descr (DW_OP_plus_uconst, bytepos, 0));
9082 else if (bytepos < 0)
9084 add_loc_descr (&ret, int_loc_descriptor (bytepos));
9085 add_loc_descr (&ret, new_loc_descr (DW_OP_plus, 0, 0));
9088 have_address = 1;
9089 break;
9092 case INTEGER_CST:
9093 if (host_integerp (loc, 0))
9094 ret = int_loc_descriptor (tree_low_cst (loc, 0));
9095 else
9096 return 0;
9097 break;
9099 case CONSTRUCTOR:
9101 /* Get an RTL for this, if something has been emitted. */
9102 rtx rtl = lookup_constant_def (loc);
9103 enum machine_mode mode;
9105 if (!rtl || !MEM_P (rtl))
9106 return 0;
9107 mode = GET_MODE (rtl);
9108 rtl = XEXP (rtl, 0);
9109 ret = mem_loc_descriptor (rtl, mode, false);
9110 have_address = 1;
9111 break;
9114 case TRUTH_AND_EXPR:
9115 case TRUTH_ANDIF_EXPR:
9116 case BIT_AND_EXPR:
9117 op = DW_OP_and;
9118 goto do_binop;
9120 case TRUTH_XOR_EXPR:
9121 case BIT_XOR_EXPR:
9122 op = DW_OP_xor;
9123 goto do_binop;
9125 case TRUTH_OR_EXPR:
9126 case TRUTH_ORIF_EXPR:
9127 case BIT_IOR_EXPR:
9128 op = DW_OP_or;
9129 goto do_binop;
9131 case FLOOR_DIV_EXPR:
9132 case CEIL_DIV_EXPR:
9133 case ROUND_DIV_EXPR:
9134 case TRUNC_DIV_EXPR:
9135 op = DW_OP_div;
9136 goto do_binop;
9138 case MINUS_EXPR:
9139 op = DW_OP_minus;
9140 goto do_binop;
9142 case FLOOR_MOD_EXPR:
9143 case CEIL_MOD_EXPR:
9144 case ROUND_MOD_EXPR:
9145 case TRUNC_MOD_EXPR:
9146 op = DW_OP_mod;
9147 goto do_binop;
9149 case MULT_EXPR:
9150 op = DW_OP_mul;
9151 goto do_binop;
9153 case LSHIFT_EXPR:
9154 op = DW_OP_shl;
9155 goto do_binop;
9157 case RSHIFT_EXPR:
9158 op = (unsignedp ? DW_OP_shr : DW_OP_shra);
9159 goto do_binop;
9161 case PLUS_EXPR:
9162 if (TREE_CODE (TREE_OPERAND (loc, 1)) == INTEGER_CST
9163 && host_integerp (TREE_OPERAND (loc, 1), 0))
9165 ret = loc_descriptor_from_tree_1 (TREE_OPERAND (loc, 0), 0);
9166 if (ret == 0)
9167 return 0;
9169 add_loc_descr (&ret,
9170 new_loc_descr (DW_OP_plus_uconst,
9171 tree_low_cst (TREE_OPERAND (loc, 1),
9173 0));
9174 break;
9177 op = DW_OP_plus;
9178 goto do_binop;
9180 case LE_EXPR:
9181 if (TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (loc, 0))))
9182 return 0;
9184 op = DW_OP_le;
9185 goto do_binop;
9187 case GE_EXPR:
9188 if (TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (loc, 0))))
9189 return 0;
9191 op = DW_OP_ge;
9192 goto do_binop;
9194 case LT_EXPR:
9195 if (TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (loc, 0))))
9196 return 0;
9198 op = DW_OP_lt;
9199 goto do_binop;
9201 case GT_EXPR:
9202 if (TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (loc, 0))))
9203 return 0;
9205 op = DW_OP_gt;
9206 goto do_binop;
9208 case EQ_EXPR:
9209 op = DW_OP_eq;
9210 goto do_binop;
9212 case NE_EXPR:
9213 op = DW_OP_ne;
9214 goto do_binop;
9216 do_binop:
9217 ret = loc_descriptor_from_tree_1 (TREE_OPERAND (loc, 0), 0);
9218 ret1 = loc_descriptor_from_tree_1 (TREE_OPERAND (loc, 1), 0);
9219 if (ret == 0 || ret1 == 0)
9220 return 0;
9222 add_loc_descr (&ret, ret1);
9223 add_loc_descr (&ret, new_loc_descr (op, 0, 0));
9224 break;
9226 case TRUTH_NOT_EXPR:
9227 case BIT_NOT_EXPR:
9228 op = DW_OP_not;
9229 goto do_unop;
9231 case ABS_EXPR:
9232 op = DW_OP_abs;
9233 goto do_unop;
9235 case NEGATE_EXPR:
9236 op = DW_OP_neg;
9237 goto do_unop;
9239 do_unop:
9240 ret = loc_descriptor_from_tree_1 (TREE_OPERAND (loc, 0), 0);
9241 if (ret == 0)
9242 return 0;
9244 add_loc_descr (&ret, new_loc_descr (op, 0, 0));
9245 break;
9247 case MIN_EXPR:
9248 case MAX_EXPR:
9250 const enum tree_code code =
9251 TREE_CODE (loc) == MIN_EXPR ? GT_EXPR : LT_EXPR;
9253 loc = build3 (COND_EXPR, TREE_TYPE (loc),
9254 build2 (code, integer_type_node,
9255 TREE_OPERAND (loc, 0), TREE_OPERAND (loc, 1)),
9256 TREE_OPERAND (loc, 1), TREE_OPERAND (loc, 0));
9259 /* ... fall through ... */
9261 case COND_EXPR:
9263 dw_loc_descr_ref lhs
9264 = loc_descriptor_from_tree_1 (TREE_OPERAND (loc, 1), 0);
9265 dw_loc_descr_ref rhs
9266 = loc_descriptor_from_tree_1 (TREE_OPERAND (loc, 2), 0);
9267 dw_loc_descr_ref bra_node, jump_node, tmp;
9269 ret = loc_descriptor_from_tree_1 (TREE_OPERAND (loc, 0), 0);
9270 if (ret == 0 || lhs == 0 || rhs == 0)
9271 return 0;
9273 bra_node = new_loc_descr (DW_OP_bra, 0, 0);
9274 add_loc_descr (&ret, bra_node);
9276 add_loc_descr (&ret, rhs);
9277 jump_node = new_loc_descr (DW_OP_skip, 0, 0);
9278 add_loc_descr (&ret, jump_node);
9280 add_loc_descr (&ret, lhs);
9281 bra_node->dw_loc_oprnd1.val_class = dw_val_class_loc;
9282 bra_node->dw_loc_oprnd1.v.val_loc = lhs;
9284 /* ??? Need a node to point the skip at. Use a nop. */
9285 tmp = new_loc_descr (DW_OP_nop, 0, 0);
9286 add_loc_descr (&ret, tmp);
9287 jump_node->dw_loc_oprnd1.val_class = dw_val_class_loc;
9288 jump_node->dw_loc_oprnd1.v.val_loc = tmp;
9290 break;
9292 case FIX_TRUNC_EXPR:
9293 case FIX_CEIL_EXPR:
9294 case FIX_FLOOR_EXPR:
9295 case FIX_ROUND_EXPR:
9296 return 0;
9298 default:
9299 /* Leave front-end specific codes as simply unknown. This comes
9300 up, for instance, with the C STMT_EXPR. */
9301 if ((unsigned int) TREE_CODE (loc)
9302 >= (unsigned int) LAST_AND_UNUSED_TREE_CODE)
9303 return 0;
9305 #ifdef ENABLE_CHECKING
9306 /* Otherwise this is a generic code; we should just lists all of
9307 these explicitly. We forgot one. */
9308 gcc_unreachable ();
9309 #else
9310 /* In a release build, we want to degrade gracefully: better to
9311 generate incomplete debugging information than to crash. */
9312 return NULL;
9313 #endif
9316 /* Show if we can't fill the request for an address. */
9317 if (want_address && !have_address)
9318 return 0;
9320 /* If we've got an address and don't want one, dereference. */
9321 if (!want_address && have_address)
9323 HOST_WIDE_INT size = int_size_in_bytes (TREE_TYPE (loc));
9325 if (size > DWARF2_ADDR_SIZE || size == -1)
9326 return 0;
9327 else if (size == DWARF2_ADDR_SIZE)
9328 op = DW_OP_deref;
9329 else
9330 op = DW_OP_deref_size;
9332 add_loc_descr (&ret, new_loc_descr (op, size, 0));
9335 return ret;
9338 static inline dw_loc_descr_ref
9339 loc_descriptor_from_tree (tree loc)
9341 return loc_descriptor_from_tree_1 (loc, 2);
9344 /* Given a value, round it up to the lowest multiple of `boundary'
9345 which is not less than the value itself. */
9347 static inline HOST_WIDE_INT
9348 ceiling (HOST_WIDE_INT value, unsigned int boundary)
9350 return (((value + boundary - 1) / boundary) * boundary);
9353 /* Given a pointer to what is assumed to be a FIELD_DECL node, return a
9354 pointer to the declared type for the relevant field variable, or return
9355 `integer_type_node' if the given node turns out to be an
9356 ERROR_MARK node. */
9358 static inline tree
9359 field_type (tree decl)
9361 tree type;
9363 if (TREE_CODE (decl) == ERROR_MARK)
9364 return integer_type_node;
9366 type = DECL_BIT_FIELD_TYPE (decl);
9367 if (type == NULL_TREE)
9368 type = TREE_TYPE (decl);
9370 return type;
9373 /* Given a pointer to a tree node, return the alignment in bits for
9374 it, or else return BITS_PER_WORD if the node actually turns out to
9375 be an ERROR_MARK node. */
9377 static inline unsigned
9378 simple_type_align_in_bits (tree type)
9380 return (TREE_CODE (type) != ERROR_MARK) ? TYPE_ALIGN (type) : BITS_PER_WORD;
9383 static inline unsigned
9384 simple_decl_align_in_bits (tree decl)
9386 return (TREE_CODE (decl) != ERROR_MARK) ? DECL_ALIGN (decl) : BITS_PER_WORD;
9389 /* Given a pointer to a FIELD_DECL, compute and return the byte offset of the
9390 lowest addressed byte of the "containing object" for the given FIELD_DECL,
9391 or return 0 if we are unable to determine what that offset is, either
9392 because the argument turns out to be a pointer to an ERROR_MARK node, or
9393 because the offset is actually variable. (We can't handle the latter case
9394 just yet). */
9396 static HOST_WIDE_INT
9397 field_byte_offset (tree decl)
9399 unsigned int type_align_in_bits;
9400 unsigned int decl_align_in_bits;
9401 unsigned HOST_WIDE_INT type_size_in_bits;
9402 HOST_WIDE_INT object_offset_in_bits;
9403 tree type;
9404 tree field_size_tree;
9405 HOST_WIDE_INT bitpos_int;
9406 HOST_WIDE_INT deepest_bitpos;
9407 unsigned HOST_WIDE_INT field_size_in_bits;
9409 if (TREE_CODE (decl) == ERROR_MARK)
9410 return 0;
9412 gcc_assert (TREE_CODE (decl) == FIELD_DECL);
9414 type = field_type (decl);
9415 field_size_tree = DECL_SIZE (decl);
9417 /* The size could be unspecified if there was an error, or for
9418 a flexible array member. */
9419 if (! field_size_tree)
9420 field_size_tree = bitsize_zero_node;
9422 /* We cannot yet cope with fields whose positions are variable, so
9423 for now, when we see such things, we simply return 0. Someday, we may
9424 be able to handle such cases, but it will be damn difficult. */
9425 if (! host_integerp (bit_position (decl), 0))
9426 return 0;
9428 bitpos_int = int_bit_position (decl);
9430 /* If we don't know the size of the field, pretend it's a full word. */
9431 if (host_integerp (field_size_tree, 1))
9432 field_size_in_bits = tree_low_cst (field_size_tree, 1);
9433 else
9434 field_size_in_bits = BITS_PER_WORD;
9436 type_size_in_bits = simple_type_size_in_bits (type);
9437 type_align_in_bits = simple_type_align_in_bits (type);
9438 decl_align_in_bits = simple_decl_align_in_bits (decl);
9440 /* The GCC front-end doesn't make any attempt to keep track of the starting
9441 bit offset (relative to the start of the containing structure type) of the
9442 hypothetical "containing object" for a bit-field. Thus, when computing
9443 the byte offset value for the start of the "containing object" of a
9444 bit-field, we must deduce this information on our own. This can be rather
9445 tricky to do in some cases. For example, handling the following structure
9446 type definition when compiling for an i386/i486 target (which only aligns
9447 long long's to 32-bit boundaries) can be very tricky:
9449 struct S { int field1; long long field2:31; };
9451 Fortunately, there is a simple rule-of-thumb which can be used in such
9452 cases. When compiling for an i386/i486, GCC will allocate 8 bytes for the
9453 structure shown above. It decides to do this based upon one simple rule
9454 for bit-field allocation. GCC allocates each "containing object" for each
9455 bit-field at the first (i.e. lowest addressed) legitimate alignment
9456 boundary (based upon the required minimum alignment for the declared type
9457 of the field) which it can possibly use, subject to the condition that
9458 there is still enough available space remaining in the containing object
9459 (when allocated at the selected point) to fully accommodate all of the
9460 bits of the bit-field itself.
9462 This simple rule makes it obvious why GCC allocates 8 bytes for each
9463 object of the structure type shown above. When looking for a place to
9464 allocate the "containing object" for `field2', the compiler simply tries
9465 to allocate a 64-bit "containing object" at each successive 32-bit
9466 boundary (starting at zero) until it finds a place to allocate that 64-
9467 bit field such that at least 31 contiguous (and previously unallocated)
9468 bits remain within that selected 64 bit field. (As it turns out, for the
9469 example above, the compiler finds it is OK to allocate the "containing
9470 object" 64-bit field at bit-offset zero within the structure type.)
9472 Here we attempt to work backwards from the limited set of facts we're
9473 given, and we try to deduce from those facts, where GCC must have believed
9474 that the containing object started (within the structure type). The value
9475 we deduce is then used (by the callers of this routine) to generate
9476 DW_AT_location and DW_AT_bit_offset attributes for fields (both bit-fields
9477 and, in the case of DW_AT_location, regular fields as well). */
9479 /* Figure out the bit-distance from the start of the structure to the
9480 "deepest" bit of the bit-field. */
9481 deepest_bitpos = bitpos_int + field_size_in_bits;
9483 /* This is the tricky part. Use some fancy footwork to deduce where the
9484 lowest addressed bit of the containing object must be. */
9485 object_offset_in_bits = deepest_bitpos - type_size_in_bits;
9487 /* Round up to type_align by default. This works best for bitfields. */
9488 object_offset_in_bits += type_align_in_bits - 1;
9489 object_offset_in_bits /= type_align_in_bits;
9490 object_offset_in_bits *= type_align_in_bits;
9492 if (object_offset_in_bits > bitpos_int)
9494 /* Sigh, the decl must be packed. */
9495 object_offset_in_bits = deepest_bitpos - type_size_in_bits;
9497 /* Round up to decl_align instead. */
9498 object_offset_in_bits += decl_align_in_bits - 1;
9499 object_offset_in_bits /= decl_align_in_bits;
9500 object_offset_in_bits *= decl_align_in_bits;
9503 return object_offset_in_bits / BITS_PER_UNIT;
9506 /* The following routines define various Dwarf attributes and any data
9507 associated with them. */
9509 /* Add a location description attribute value to a DIE.
9511 This emits location attributes suitable for whole variables and
9512 whole parameters. Note that the location attributes for struct fields are
9513 generated by the routine `data_member_location_attribute' below. */
9515 static inline void
9516 add_AT_location_description (dw_die_ref die, enum dwarf_attribute attr_kind,
9517 dw_loc_descr_ref descr)
9519 if (descr != 0)
9520 add_AT_loc (die, attr_kind, descr);
9523 /* Attach the specialized form of location attribute used for data members of
9524 struct and union types. In the special case of a FIELD_DECL node which
9525 represents a bit-field, the "offset" part of this special location
9526 descriptor must indicate the distance in bytes from the lowest-addressed
9527 byte of the containing struct or union type to the lowest-addressed byte of
9528 the "containing object" for the bit-field. (See the `field_byte_offset'
9529 function above).
9531 For any given bit-field, the "containing object" is a hypothetical object
9532 (of some integral or enum type) within which the given bit-field lives. The
9533 type of this hypothetical "containing object" is always the same as the
9534 declared type of the individual bit-field itself (for GCC anyway... the
9535 DWARF spec doesn't actually mandate this). Note that it is the size (in
9536 bytes) of the hypothetical "containing object" which will be given in the
9537 DW_AT_byte_size attribute for this bit-field. (See the
9538 `byte_size_attribute' function below.) It is also used when calculating the
9539 value of the DW_AT_bit_offset attribute. (See the `bit_offset_attribute'
9540 function below.) */
9542 static void
9543 add_data_member_location_attribute (dw_die_ref die, tree decl)
9545 HOST_WIDE_INT offset;
9546 dw_loc_descr_ref loc_descr = 0;
9548 if (TREE_CODE (decl) == TREE_BINFO)
9550 /* We're working on the TAG_inheritance for a base class. */
9551 if (BINFO_VIRTUAL_P (decl) && is_cxx ())
9553 /* For C++ virtual bases we can't just use BINFO_OFFSET, as they
9554 aren't at a fixed offset from all (sub)objects of the same
9555 type. We need to extract the appropriate offset from our
9556 vtable. The following dwarf expression means
9558 BaseAddr = ObAddr + *((*ObAddr) - Offset)
9560 This is specific to the V3 ABI, of course. */
9562 dw_loc_descr_ref tmp;
9564 /* Make a copy of the object address. */
9565 tmp = new_loc_descr (DW_OP_dup, 0, 0);
9566 add_loc_descr (&loc_descr, tmp);
9568 /* Extract the vtable address. */
9569 tmp = new_loc_descr (DW_OP_deref, 0, 0);
9570 add_loc_descr (&loc_descr, tmp);
9572 /* Calculate the address of the offset. */
9573 offset = tree_low_cst (BINFO_VPTR_FIELD (decl), 0);
9574 gcc_assert (offset < 0);
9576 tmp = int_loc_descriptor (-offset);
9577 add_loc_descr (&loc_descr, tmp);
9578 tmp = new_loc_descr (DW_OP_minus, 0, 0);
9579 add_loc_descr (&loc_descr, tmp);
9581 /* Extract the offset. */
9582 tmp = new_loc_descr (DW_OP_deref, 0, 0);
9583 add_loc_descr (&loc_descr, tmp);
9585 /* Add it to the object address. */
9586 tmp = new_loc_descr (DW_OP_plus, 0, 0);
9587 add_loc_descr (&loc_descr, tmp);
9589 else
9590 offset = tree_low_cst (BINFO_OFFSET (decl), 0);
9592 else
9593 offset = field_byte_offset (decl);
9595 if (! loc_descr)
9597 enum dwarf_location_atom op;
9599 /* The DWARF2 standard says that we should assume that the structure
9600 address is already on the stack, so we can specify a structure field
9601 address by using DW_OP_plus_uconst. */
9603 #ifdef MIPS_DEBUGGING_INFO
9604 /* ??? The SGI dwarf reader does not handle the DW_OP_plus_uconst
9605 operator correctly. It works only if we leave the offset on the
9606 stack. */
9607 op = DW_OP_constu;
9608 #else
9609 op = DW_OP_plus_uconst;
9610 #endif
9612 loc_descr = new_loc_descr (op, offset, 0);
9615 add_AT_loc (die, DW_AT_data_member_location, loc_descr);
9618 /* Writes integer values to dw_vec_const array. */
9620 static void
9621 insert_int (HOST_WIDE_INT val, unsigned int size, unsigned char *dest)
9623 while (size != 0)
9625 *dest++ = val & 0xff;
9626 val >>= 8;
9627 --size;
9631 /* Reads integers from dw_vec_const array. Inverse of insert_int. */
9633 static HOST_WIDE_INT
9634 extract_int (const unsigned char *src, unsigned int size)
9636 HOST_WIDE_INT val = 0;
9638 src += size;
9639 while (size != 0)
9641 val <<= 8;
9642 val |= *--src & 0xff;
9643 --size;
9645 return val;
9648 /* Writes floating point values to dw_vec_const array. */
9650 static void
9651 insert_float (rtx rtl, unsigned char *array)
9653 REAL_VALUE_TYPE rv;
9654 long val[4];
9655 int i;
9657 REAL_VALUE_FROM_CONST_DOUBLE (rv, rtl);
9658 real_to_target (val, &rv, GET_MODE (rtl));
9660 /* real_to_target puts 32-bit pieces in each long. Pack them. */
9661 for (i = 0; i < GET_MODE_SIZE (GET_MODE (rtl)) / 4; i++)
9663 insert_int (val[i], 4, array);
9664 array += 4;
9668 /* Attach a DW_AT_const_value attribute for a variable or a parameter which
9669 does not have a "location" either in memory or in a register. These
9670 things can arise in GNU C when a constant is passed as an actual parameter
9671 to an inlined function. They can also arise in C++ where declared
9672 constants do not necessarily get memory "homes". */
9674 static void
9675 add_const_value_attribute (dw_die_ref die, rtx rtl)
9677 switch (GET_CODE (rtl))
9679 case CONST_INT:
9681 HOST_WIDE_INT val = INTVAL (rtl);
9683 if (val < 0)
9684 add_AT_int (die, DW_AT_const_value, val);
9685 else
9686 add_AT_unsigned (die, DW_AT_const_value, (unsigned HOST_WIDE_INT) val);
9688 break;
9690 case CONST_DOUBLE:
9691 /* Note that a CONST_DOUBLE rtx could represent either an integer or a
9692 floating-point constant. A CONST_DOUBLE is used whenever the
9693 constant requires more than one word in order to be adequately
9694 represented. We output CONST_DOUBLEs as blocks. */
9696 enum machine_mode mode = GET_MODE (rtl);
9698 if (GET_MODE_CLASS (mode) == MODE_FLOAT)
9700 unsigned int length = GET_MODE_SIZE (mode);
9701 unsigned char *array = ggc_alloc (length);
9703 insert_float (rtl, array);
9704 add_AT_vec (die, DW_AT_const_value, length / 4, 4, array);
9706 else
9708 /* ??? We really should be using HOST_WIDE_INT throughout. */
9709 gcc_assert (HOST_BITS_PER_LONG == HOST_BITS_PER_WIDE_INT);
9711 add_AT_long_long (die, DW_AT_const_value,
9712 CONST_DOUBLE_HIGH (rtl), CONST_DOUBLE_LOW (rtl));
9715 break;
9717 case CONST_VECTOR:
9719 enum machine_mode mode = GET_MODE (rtl);
9720 unsigned int elt_size = GET_MODE_UNIT_SIZE (mode);
9721 unsigned int length = CONST_VECTOR_NUNITS (rtl);
9722 unsigned char *array = ggc_alloc (length * elt_size);
9723 unsigned int i;
9724 unsigned char *p;
9726 switch (GET_MODE_CLASS (mode))
9728 case MODE_VECTOR_INT:
9729 for (i = 0, p = array; i < length; i++, p += elt_size)
9731 rtx elt = CONST_VECTOR_ELT (rtl, i);
9732 HOST_WIDE_INT lo, hi;
9734 switch (GET_CODE (elt))
9736 case CONST_INT:
9737 lo = INTVAL (elt);
9738 hi = -(lo < 0);
9739 break;
9741 case CONST_DOUBLE:
9742 lo = CONST_DOUBLE_LOW (elt);
9743 hi = CONST_DOUBLE_HIGH (elt);
9744 break;
9746 default:
9747 gcc_unreachable ();
9750 if (elt_size <= sizeof (HOST_WIDE_INT))
9751 insert_int (lo, elt_size, p);
9752 else
9754 unsigned char *p0 = p;
9755 unsigned char *p1 = p + sizeof (HOST_WIDE_INT);
9757 gcc_assert (elt_size == 2 * sizeof (HOST_WIDE_INT));
9758 if (WORDS_BIG_ENDIAN)
9760 p0 = p1;
9761 p1 = p;
9763 insert_int (lo, sizeof (HOST_WIDE_INT), p0);
9764 insert_int (hi, sizeof (HOST_WIDE_INT), p1);
9767 break;
9769 case MODE_VECTOR_FLOAT:
9770 for (i = 0, p = array; i < length; i++, p += elt_size)
9772 rtx elt = CONST_VECTOR_ELT (rtl, i);
9773 insert_float (elt, p);
9775 break;
9777 default:
9778 gcc_unreachable ();
9781 add_AT_vec (die, DW_AT_const_value, length, elt_size, array);
9783 break;
9785 case CONST_STRING:
9786 add_AT_string (die, DW_AT_const_value, XSTR (rtl, 0));
9787 break;
9789 case SYMBOL_REF:
9790 case LABEL_REF:
9791 case CONST:
9792 add_AT_addr (die, DW_AT_const_value, rtl);
9793 VEC_safe_push (rtx, gc, used_rtx_array, rtl);
9794 break;
9796 case PLUS:
9797 /* In cases where an inlined instance of an inline function is passed
9798 the address of an `auto' variable (which is local to the caller) we
9799 can get a situation where the DECL_RTL of the artificial local
9800 variable (for the inlining) which acts as a stand-in for the
9801 corresponding formal parameter (of the inline function) will look
9802 like (plus:SI (reg:SI FRAME_PTR) (const_int ...)). This is not
9803 exactly a compile-time constant expression, but it isn't the address
9804 of the (artificial) local variable either. Rather, it represents the
9805 *value* which the artificial local variable always has during its
9806 lifetime. We currently have no way to represent such quasi-constant
9807 values in Dwarf, so for now we just punt and generate nothing. */
9808 break;
9810 default:
9811 /* No other kinds of rtx should be possible here. */
9812 gcc_unreachable ();
9817 /* Generate an RTL constant from a decl initializer INIT with decl type TYPE,
9818 for use in a later add_const_value_attribute call. */
9820 static rtx
9821 rtl_for_decl_init (tree init, tree type)
9823 rtx rtl = NULL_RTX;
9825 /* If a variable is initialized with a string constant without embedded
9826 zeros, build CONST_STRING. */
9827 if (TREE_CODE (init) == STRING_CST && TREE_CODE (type) == ARRAY_TYPE)
9829 tree enttype = TREE_TYPE (type);
9830 tree domain = TYPE_DOMAIN (type);
9831 enum machine_mode mode = TYPE_MODE (enttype);
9833 if (GET_MODE_CLASS (mode) == MODE_INT && GET_MODE_SIZE (mode) == 1
9834 && domain
9835 && integer_zerop (TYPE_MIN_VALUE (domain))
9836 && compare_tree_int (TYPE_MAX_VALUE (domain),
9837 TREE_STRING_LENGTH (init) - 1) == 0
9838 && ((size_t) TREE_STRING_LENGTH (init)
9839 == strlen (TREE_STRING_POINTER (init)) + 1))
9840 rtl = gen_rtx_CONST_STRING (VOIDmode,
9841 ggc_strdup (TREE_STRING_POINTER (init)));
9843 /* If the initializer is something that we know will expand into an
9844 immediate RTL constant, expand it now. Expanding anything else
9845 tends to produce unresolved symbols; see debug/5770 and c++/6381. */
9846 /* Aggregate, vector, and complex types may contain constructors that may
9847 result in code being generated when expand_expr is called, so we can't
9848 handle them here. Integer and float are useful and safe types to handle
9849 here. */
9850 else if ((INTEGRAL_TYPE_P (type) || SCALAR_FLOAT_TYPE_P (type))
9851 && initializer_constant_valid_p (init, type) == null_pointer_node)
9853 rtl = expand_expr (init, NULL_RTX, VOIDmode, EXPAND_INITIALIZER);
9855 /* If expand_expr returns a MEM, it wasn't immediate. */
9856 gcc_assert (!rtl || !MEM_P (rtl));
9859 return rtl;
9862 /* Generate RTL for the variable DECL to represent its location. */
9864 static rtx
9865 rtl_for_decl_location (tree decl)
9867 rtx rtl;
9869 /* Here we have to decide where we are going to say the parameter "lives"
9870 (as far as the debugger is concerned). We only have a couple of
9871 choices. GCC provides us with DECL_RTL and with DECL_INCOMING_RTL.
9873 DECL_RTL normally indicates where the parameter lives during most of the
9874 activation of the function. If optimization is enabled however, this
9875 could be either NULL or else a pseudo-reg. Both of those cases indicate
9876 that the parameter doesn't really live anywhere (as far as the code
9877 generation parts of GCC are concerned) during most of the function's
9878 activation. That will happen (for example) if the parameter is never
9879 referenced within the function.
9881 We could just generate a location descriptor here for all non-NULL
9882 non-pseudo values of DECL_RTL and ignore all of the rest, but we can be
9883 a little nicer than that if we also consider DECL_INCOMING_RTL in cases
9884 where DECL_RTL is NULL or is a pseudo-reg.
9886 Note however that we can only get away with using DECL_INCOMING_RTL as
9887 a backup substitute for DECL_RTL in certain limited cases. In cases
9888 where DECL_ARG_TYPE (decl) indicates the same type as TREE_TYPE (decl),
9889 we can be sure that the parameter was passed using the same type as it is
9890 declared to have within the function, and that its DECL_INCOMING_RTL
9891 points us to a place where a value of that type is passed.
9893 In cases where DECL_ARG_TYPE (decl) and TREE_TYPE (decl) are different,
9894 we cannot (in general) use DECL_INCOMING_RTL as a substitute for DECL_RTL
9895 because in these cases DECL_INCOMING_RTL points us to a value of some
9896 type which is *different* from the type of the parameter itself. Thus,
9897 if we tried to use DECL_INCOMING_RTL to generate a location attribute in
9898 such cases, the debugger would end up (for example) trying to fetch a
9899 `float' from a place which actually contains the first part of a
9900 `double'. That would lead to really incorrect and confusing
9901 output at debug-time.
9903 So, in general, we *do not* use DECL_INCOMING_RTL as a backup for DECL_RTL
9904 in cases where DECL_ARG_TYPE (decl) != TREE_TYPE (decl). There
9905 are a couple of exceptions however. On little-endian machines we can
9906 get away with using DECL_INCOMING_RTL even when DECL_ARG_TYPE (decl) is
9907 not the same as TREE_TYPE (decl), but only when DECL_ARG_TYPE (decl) is
9908 an integral type that is smaller than TREE_TYPE (decl). These cases arise
9909 when (on a little-endian machine) a non-prototyped function has a
9910 parameter declared to be of type `short' or `char'. In such cases,
9911 TREE_TYPE (decl) will be `short' or `char', DECL_ARG_TYPE (decl) will
9912 be `int', and DECL_INCOMING_RTL will point to the lowest-order byte of the
9913 passed `int' value. If the debugger then uses that address to fetch
9914 a `short' or a `char' (on a little-endian machine) the result will be
9915 the correct data, so we allow for such exceptional cases below.
9917 Note that our goal here is to describe the place where the given formal
9918 parameter lives during most of the function's activation (i.e. between the
9919 end of the prologue and the start of the epilogue). We'll do that as best
9920 as we can. Note however that if the given formal parameter is modified
9921 sometime during the execution of the function, then a stack backtrace (at
9922 debug-time) will show the function as having been called with the *new*
9923 value rather than the value which was originally passed in. This happens
9924 rarely enough that it is not a major problem, but it *is* a problem, and
9925 I'd like to fix it.
9927 A future version of dwarf2out.c may generate two additional attributes for
9928 any given DW_TAG_formal_parameter DIE which will describe the "passed
9929 type" and the "passed location" for the given formal parameter in addition
9930 to the attributes we now generate to indicate the "declared type" and the
9931 "active location" for each parameter. This additional set of attributes
9932 could be used by debuggers for stack backtraces. Separately, note that
9933 sometimes DECL_RTL can be NULL and DECL_INCOMING_RTL can be NULL also.
9934 This happens (for example) for inlined-instances of inline function formal
9935 parameters which are never referenced. This really shouldn't be
9936 happening. All PARM_DECL nodes should get valid non-NULL
9937 DECL_INCOMING_RTL values. FIXME. */
9939 /* Use DECL_RTL as the "location" unless we find something better. */
9940 rtl = DECL_RTL_IF_SET (decl);
9942 /* When generating abstract instances, ignore everything except
9943 constants, symbols living in memory, and symbols living in
9944 fixed registers. */
9945 if (! reload_completed)
9947 if (rtl
9948 && (CONSTANT_P (rtl)
9949 || (MEM_P (rtl)
9950 && CONSTANT_P (XEXP (rtl, 0)))
9951 || (REG_P (rtl)
9952 && TREE_CODE (decl) == VAR_DECL
9953 && TREE_STATIC (decl))))
9955 rtl = targetm.delegitimize_address (rtl);
9956 return rtl;
9958 rtl = NULL_RTX;
9960 else if (TREE_CODE (decl) == PARM_DECL)
9962 if (rtl == NULL_RTX || is_pseudo_reg (rtl))
9964 tree declared_type = TREE_TYPE (decl);
9965 tree passed_type = DECL_ARG_TYPE (decl);
9966 enum machine_mode dmode = TYPE_MODE (declared_type);
9967 enum machine_mode pmode = TYPE_MODE (passed_type);
9969 /* This decl represents a formal parameter which was optimized out.
9970 Note that DECL_INCOMING_RTL may be NULL in here, but we handle
9971 all cases where (rtl == NULL_RTX) just below. */
9972 if (dmode == pmode)
9973 rtl = DECL_INCOMING_RTL (decl);
9974 else if (SCALAR_INT_MODE_P (dmode)
9975 && GET_MODE_SIZE (dmode) <= GET_MODE_SIZE (pmode)
9976 && DECL_INCOMING_RTL (decl))
9978 rtx inc = DECL_INCOMING_RTL (decl);
9979 if (REG_P (inc))
9980 rtl = inc;
9981 else if (MEM_P (inc))
9983 if (BYTES_BIG_ENDIAN)
9984 rtl = adjust_address_nv (inc, dmode,
9985 GET_MODE_SIZE (pmode)
9986 - GET_MODE_SIZE (dmode));
9987 else
9988 rtl = inc;
9993 /* If the parm was passed in registers, but lives on the stack, then
9994 make a big endian correction if the mode of the type of the
9995 parameter is not the same as the mode of the rtl. */
9996 /* ??? This is the same series of checks that are made in dbxout.c before
9997 we reach the big endian correction code there. It isn't clear if all
9998 of these checks are necessary here, but keeping them all is the safe
9999 thing to do. */
10000 else if (MEM_P (rtl)
10001 && XEXP (rtl, 0) != const0_rtx
10002 && ! CONSTANT_P (XEXP (rtl, 0))
10003 /* Not passed in memory. */
10004 && !MEM_P (DECL_INCOMING_RTL (decl))
10005 /* Not passed by invisible reference. */
10006 && (!REG_P (XEXP (rtl, 0))
10007 || REGNO (XEXP (rtl, 0)) == HARD_FRAME_POINTER_REGNUM
10008 || REGNO (XEXP (rtl, 0)) == STACK_POINTER_REGNUM
10009 #if ARG_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
10010 || REGNO (XEXP (rtl, 0)) == ARG_POINTER_REGNUM
10011 #endif
10013 /* Big endian correction check. */
10014 && BYTES_BIG_ENDIAN
10015 && TYPE_MODE (TREE_TYPE (decl)) != GET_MODE (rtl)
10016 && (GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (decl)))
10017 < UNITS_PER_WORD))
10019 int offset = (UNITS_PER_WORD
10020 - GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (decl))));
10022 rtl = gen_rtx_MEM (TYPE_MODE (TREE_TYPE (decl)),
10023 plus_constant (XEXP (rtl, 0), offset));
10026 else if (TREE_CODE (decl) == VAR_DECL
10027 && rtl
10028 && MEM_P (rtl)
10029 && GET_MODE (rtl) != TYPE_MODE (TREE_TYPE (decl))
10030 && BYTES_BIG_ENDIAN)
10032 int rsize = GET_MODE_SIZE (GET_MODE (rtl));
10033 int dsize = GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (decl)));
10035 /* If a variable is declared "register" yet is smaller than
10036 a register, then if we store the variable to memory, it
10037 looks like we're storing a register-sized value, when in
10038 fact we are not. We need to adjust the offset of the
10039 storage location to reflect the actual value's bytes,
10040 else gdb will not be able to display it. */
10041 if (rsize > dsize)
10042 rtl = gen_rtx_MEM (TYPE_MODE (TREE_TYPE (decl)),
10043 plus_constant (XEXP (rtl, 0), rsize-dsize));
10046 if (rtl != NULL_RTX)
10048 rtl = eliminate_regs (rtl, 0, NULL_RTX);
10049 #ifdef LEAF_REG_REMAP
10050 if (current_function_uses_only_leaf_regs)
10051 leaf_renumber_regs_insn (rtl);
10052 #endif
10055 /* A variable with no DECL_RTL but a DECL_INITIAL is a compile-time constant,
10056 and will have been substituted directly into all expressions that use it.
10057 C does not have such a concept, but C++ and other languages do. */
10058 else if (TREE_CODE (decl) == VAR_DECL && DECL_INITIAL (decl))
10059 rtl = rtl_for_decl_init (DECL_INITIAL (decl), TREE_TYPE (decl));
10061 if (rtl)
10062 rtl = targetm.delegitimize_address (rtl);
10064 /* If we don't look past the constant pool, we risk emitting a
10065 reference to a constant pool entry that isn't referenced from
10066 code, and thus is not emitted. */
10067 if (rtl)
10068 rtl = avoid_constant_pool_reference (rtl);
10070 return rtl;
10073 /* Return true if DECL's containing function has a frame base attribute.
10074 Return false otherwise. */
10076 static bool
10077 containing_function_has_frame_base (tree decl)
10079 tree declcontext = decl_function_context (decl);
10080 dw_die_ref context;
10081 dw_attr_ref attr;
10083 if (!declcontext)
10084 return false;
10086 context = lookup_decl_die (declcontext);
10087 if (!context)
10088 return false;
10090 for (attr = context->die_attr; attr; attr = attr->dw_attr_next)
10091 if (attr->dw_attr == DW_AT_frame_base)
10092 return true;
10093 return false;
10096 /* Generate *either* a DW_AT_location attribute or else a DW_AT_const_value
10097 data attribute for a variable or a parameter. We generate the
10098 DW_AT_const_value attribute only in those cases where the given variable
10099 or parameter does not have a true "location" either in memory or in a
10100 register. This can happen (for example) when a constant is passed as an
10101 actual argument in a call to an inline function. (It's possible that
10102 these things can crop up in other ways also.) Note that one type of
10103 constant value which can be passed into an inlined function is a constant
10104 pointer. This can happen for example if an actual argument in an inlined
10105 function call evaluates to a compile-time constant address. */
10107 static void
10108 add_location_or_const_value_attribute (dw_die_ref die, tree decl,
10109 enum dwarf_attribute attr)
10111 rtx rtl;
10112 dw_loc_descr_ref descr;
10113 var_loc_list *loc_list;
10114 bool can_use_fb;
10115 struct var_loc_node *node;
10116 if (TREE_CODE (decl) == ERROR_MARK)
10117 return;
10119 gcc_assert (TREE_CODE (decl) == VAR_DECL || TREE_CODE (decl) == PARM_DECL
10120 || TREE_CODE (decl) == RESULT_DECL);
10122 can_use_fb = containing_function_has_frame_base (decl);
10124 /* See if we possibly have multiple locations for this variable. */
10125 loc_list = lookup_decl_loc (decl);
10127 /* If it truly has multiple locations, the first and last node will
10128 differ. */
10129 if (loc_list && loc_list->first != loc_list->last)
10131 const char *secname;
10132 const char *endname;
10133 dw_loc_list_ref list;
10134 rtx varloc;
10136 /* We need to figure out what section we should use as the base
10137 for the address ranges where a given location is valid.
10138 1. If this particular DECL has a section associated with it,
10139 use that.
10140 2. If this function has a section associated with it, use
10141 that.
10142 3. Otherwise, use the text section.
10143 XXX: If you split a variable across multiple sections, this
10144 won't notice. */
10146 if (DECL_SECTION_NAME (decl))
10148 tree sectree = DECL_SECTION_NAME (decl);
10149 secname = TREE_STRING_POINTER (sectree);
10151 else if (current_function_decl
10152 && DECL_SECTION_NAME (current_function_decl))
10154 tree sectree = DECL_SECTION_NAME (current_function_decl);
10155 secname = TREE_STRING_POINTER (sectree);
10157 else if (cfun
10158 && (last_text_section == in_unlikely_executed_text
10159 || (last_text_section == in_named
10160 && last_text_section_name ==
10161 cfun->unlikely_text_section_name)))
10162 secname = cfun->cold_section_label;
10163 else
10164 secname = text_section_label;
10166 /* Now that we know what section we are using for a base,
10167 actually construct the list of locations.
10168 The first location information is what is passed to the
10169 function that creates the location list, and the remaining
10170 locations just get added on to that list.
10171 Note that we only know the start address for a location
10172 (IE location changes), so to build the range, we use
10173 the range [current location start, next location start].
10174 This means we have to special case the last node, and generate
10175 a range of [last location start, end of function label]. */
10177 node = loc_list->first;
10178 varloc = NOTE_VAR_LOCATION (node->var_loc_note);
10179 list = new_loc_list (loc_descriptor (varloc, can_use_fb),
10180 node->label, node->next->label, secname, 1);
10181 node = node->next;
10183 for (; node->next; node = node->next)
10184 if (NOTE_VAR_LOCATION_LOC (node->var_loc_note) != NULL_RTX)
10186 /* The variable has a location between NODE->LABEL and
10187 NODE->NEXT->LABEL. */
10188 varloc = NOTE_VAR_LOCATION (node->var_loc_note);
10189 add_loc_descr_to_loc_list (&list,
10190 loc_descriptor (varloc,
10191 can_use_fb),
10192 node->label, node->next->label, secname);
10195 /* If the variable has a location at the last label
10196 it keeps its location until the end of function. */
10197 if (NOTE_VAR_LOCATION_LOC (node->var_loc_note) != NULL_RTX)
10199 char label_id[MAX_ARTIFICIAL_LABEL_BYTES];
10201 varloc = NOTE_VAR_LOCATION (node->var_loc_note);
10202 if (!current_function_decl)
10203 endname = text_end_label;
10204 else
10206 ASM_GENERATE_INTERNAL_LABEL (label_id, FUNC_END_LABEL,
10207 current_function_funcdef_no);
10208 endname = ggc_strdup (label_id);
10210 add_loc_descr_to_loc_list (&list,
10211 loc_descriptor (varloc,
10212 can_use_fb),
10213 node->label, endname, secname);
10216 /* Finally, add the location list to the DIE, and we are done. */
10217 add_AT_loc_list (die, attr, list);
10218 return;
10221 /* Try to get some constant RTL for this decl, and use that as the value of
10222 the location. */
10224 rtl = rtl_for_decl_location (decl);
10225 if (rtl && (CONSTANT_P (rtl) || GET_CODE (rtl) == CONST_STRING))
10227 add_const_value_attribute (die, rtl);
10228 return;
10231 /* We couldn't get any rtl, and we had no >1 element location list, so try
10232 directly generating the location description from the tree. */
10233 descr = loc_descriptor_from_tree (decl);
10234 if (descr)
10236 add_AT_location_description (die, attr, descr);
10237 return;
10240 /* Lastly, if we have tried to generate the location otherwise, and it
10241 didn't work out (we wouldn't be here if we did), and we have a one entry
10242 location list, try generating a location from that. */
10243 if (loc_list && loc_list->first)
10245 node = loc_list->first;
10246 descr = loc_descriptor (NOTE_VAR_LOCATION (node->var_loc_note),
10247 can_use_fb);
10248 if (descr)
10249 add_AT_location_description (die, attr, descr);
10253 /* If we don't have a copy of this variable in memory for some reason (such
10254 as a C++ member constant that doesn't have an out-of-line definition),
10255 we should tell the debugger about the constant value. */
10257 static void
10258 tree_add_const_value_attribute (dw_die_ref var_die, tree decl)
10260 tree init = DECL_INITIAL (decl);
10261 tree type = TREE_TYPE (decl);
10262 rtx rtl;
10264 if (TREE_READONLY (decl) && ! TREE_THIS_VOLATILE (decl) && init)
10265 /* OK */;
10266 else
10267 return;
10269 rtl = rtl_for_decl_init (init, type);
10270 if (rtl)
10271 add_const_value_attribute (var_die, rtl);
10274 /* Generate a DW_AT_name attribute given some string value to be included as
10275 the value of the attribute. */
10277 static void
10278 add_name_attribute (dw_die_ref die, const char *name_string)
10280 if (name_string != NULL && *name_string != 0)
10282 if (demangle_name_func)
10283 name_string = (*demangle_name_func) (name_string);
10285 add_AT_string (die, DW_AT_name, name_string);
10289 /* Generate a DW_AT_comp_dir attribute for DIE. */
10291 static void
10292 add_comp_dir_attribute (dw_die_ref die)
10294 const char *wd = get_src_pwd ();
10295 if (wd != NULL)
10296 add_AT_string (die, DW_AT_comp_dir, wd);
10299 /* Given a tree node describing an array bound (either lower or upper) output
10300 a representation for that bound. */
10302 static void
10303 add_bound_info (dw_die_ref subrange_die, enum dwarf_attribute bound_attr, tree bound)
10305 switch (TREE_CODE (bound))
10307 case ERROR_MARK:
10308 return;
10310 /* All fixed-bounds are represented by INTEGER_CST nodes. */
10311 case INTEGER_CST:
10312 if (! host_integerp (bound, 0)
10313 || (bound_attr == DW_AT_lower_bound
10314 && (((is_c_family () || is_java ()) && integer_zerop (bound))
10315 || (is_fortran () && integer_onep (bound)))))
10316 /* Use the default. */
10318 else
10319 add_AT_unsigned (subrange_die, bound_attr, tree_low_cst (bound, 0));
10320 break;
10322 case CONVERT_EXPR:
10323 case NOP_EXPR:
10324 case NON_LVALUE_EXPR:
10325 case VIEW_CONVERT_EXPR:
10326 add_bound_info (subrange_die, bound_attr, TREE_OPERAND (bound, 0));
10327 break;
10329 case SAVE_EXPR:
10330 break;
10332 case VAR_DECL:
10333 case PARM_DECL:
10334 case RESULT_DECL:
10336 dw_die_ref decl_die = lookup_decl_die (bound);
10338 /* ??? Can this happen, or should the variable have been bound
10339 first? Probably it can, since I imagine that we try to create
10340 the types of parameters in the order in which they exist in
10341 the list, and won't have created a forward reference to a
10342 later parameter. */
10343 if (decl_die != NULL)
10344 add_AT_die_ref (subrange_die, bound_attr, decl_die);
10345 break;
10348 default:
10350 /* Otherwise try to create a stack operation procedure to
10351 evaluate the value of the array bound. */
10353 dw_die_ref ctx, decl_die;
10354 dw_loc_descr_ref loc;
10356 loc = loc_descriptor_from_tree (bound);
10357 if (loc == NULL)
10358 break;
10360 if (current_function_decl == 0)
10361 ctx = comp_unit_die;
10362 else
10363 ctx = lookup_decl_die (current_function_decl);
10365 decl_die = new_die (DW_TAG_variable, ctx, bound);
10366 add_AT_flag (decl_die, DW_AT_artificial, 1);
10367 add_type_attribute (decl_die, TREE_TYPE (bound), 1, 0, ctx);
10368 add_AT_loc (decl_die, DW_AT_location, loc);
10370 add_AT_die_ref (subrange_die, bound_attr, decl_die);
10371 break;
10376 /* Note that the block of subscript information for an array type also
10377 includes information about the element type of type given array type. */
10379 static void
10380 add_subscript_info (dw_die_ref type_die, tree type)
10382 #ifndef MIPS_DEBUGGING_INFO
10383 unsigned dimension_number;
10384 #endif
10385 tree lower, upper;
10386 dw_die_ref subrange_die;
10388 /* The GNU compilers represent multidimensional array types as sequences of
10389 one dimensional array types whose element types are themselves array
10390 types. Here we squish that down, so that each multidimensional array
10391 type gets only one array_type DIE in the Dwarf debugging info. The draft
10392 Dwarf specification say that we are allowed to do this kind of
10393 compression in C (because there is no difference between an array or
10394 arrays and a multidimensional array in C) but for other source languages
10395 (e.g. Ada) we probably shouldn't do this. */
10397 /* ??? The SGI dwarf reader fails for multidimensional arrays with a
10398 const enum type. E.g. const enum machine_mode insn_operand_mode[2][10].
10399 We work around this by disabling this feature. See also
10400 gen_array_type_die. */
10401 #ifndef MIPS_DEBUGGING_INFO
10402 for (dimension_number = 0;
10403 TREE_CODE (type) == ARRAY_TYPE;
10404 type = TREE_TYPE (type), dimension_number++)
10405 #endif
10407 tree domain = TYPE_DOMAIN (type);
10409 /* Arrays come in three flavors: Unspecified bounds, fixed bounds,
10410 and (in GNU C only) variable bounds. Handle all three forms
10411 here. */
10412 subrange_die = new_die (DW_TAG_subrange_type, type_die, NULL);
10413 if (domain)
10415 /* We have an array type with specified bounds. */
10416 lower = TYPE_MIN_VALUE (domain);
10417 upper = TYPE_MAX_VALUE (domain);
10419 /* Define the index type. */
10420 if (TREE_TYPE (domain))
10422 /* ??? This is probably an Ada unnamed subrange type. Ignore the
10423 TREE_TYPE field. We can't emit debug info for this
10424 because it is an unnamed integral type. */
10425 if (TREE_CODE (domain) == INTEGER_TYPE
10426 && TYPE_NAME (domain) == NULL_TREE
10427 && TREE_CODE (TREE_TYPE (domain)) == INTEGER_TYPE
10428 && TYPE_NAME (TREE_TYPE (domain)) == NULL_TREE)
10430 else
10431 add_type_attribute (subrange_die, TREE_TYPE (domain), 0, 0,
10432 type_die);
10435 /* ??? If upper is NULL, the array has unspecified length,
10436 but it does have a lower bound. This happens with Fortran
10437 dimension arr(N:*)
10438 Since the debugger is definitely going to need to know N
10439 to produce useful results, go ahead and output the lower
10440 bound solo, and hope the debugger can cope. */
10442 add_bound_info (subrange_die, DW_AT_lower_bound, lower);
10443 if (upper)
10444 add_bound_info (subrange_die, DW_AT_upper_bound, upper);
10447 /* Otherwise we have an array type with an unspecified length. The
10448 DWARF-2 spec does not say how to handle this; let's just leave out the
10449 bounds. */
10453 static void
10454 add_byte_size_attribute (dw_die_ref die, tree tree_node)
10456 unsigned size;
10458 switch (TREE_CODE (tree_node))
10460 case ERROR_MARK:
10461 size = 0;
10462 break;
10463 case ENUMERAL_TYPE:
10464 case RECORD_TYPE:
10465 case UNION_TYPE:
10466 case QUAL_UNION_TYPE:
10467 size = int_size_in_bytes (tree_node);
10468 break;
10469 case FIELD_DECL:
10470 /* For a data member of a struct or union, the DW_AT_byte_size is
10471 generally given as the number of bytes normally allocated for an
10472 object of the *declared* type of the member itself. This is true
10473 even for bit-fields. */
10474 size = simple_type_size_in_bits (field_type (tree_node)) / BITS_PER_UNIT;
10475 break;
10476 default:
10477 gcc_unreachable ();
10480 /* Note that `size' might be -1 when we get to this point. If it is, that
10481 indicates that the byte size of the entity in question is variable. We
10482 have no good way of expressing this fact in Dwarf at the present time,
10483 so just let the -1 pass on through. */
10484 add_AT_unsigned (die, DW_AT_byte_size, size);
10487 /* For a FIELD_DECL node which represents a bit-field, output an attribute
10488 which specifies the distance in bits from the highest order bit of the
10489 "containing object" for the bit-field to the highest order bit of the
10490 bit-field itself.
10492 For any given bit-field, the "containing object" is a hypothetical object
10493 (of some integral or enum type) within which the given bit-field lives. The
10494 type of this hypothetical "containing object" is always the same as the
10495 declared type of the individual bit-field itself. The determination of the
10496 exact location of the "containing object" for a bit-field is rather
10497 complicated. It's handled by the `field_byte_offset' function (above).
10499 Note that it is the size (in bytes) of the hypothetical "containing object"
10500 which will be given in the DW_AT_byte_size attribute for this bit-field.
10501 (See `byte_size_attribute' above). */
10503 static inline void
10504 add_bit_offset_attribute (dw_die_ref die, tree decl)
10506 HOST_WIDE_INT object_offset_in_bytes = field_byte_offset (decl);
10507 tree type = DECL_BIT_FIELD_TYPE (decl);
10508 HOST_WIDE_INT bitpos_int;
10509 HOST_WIDE_INT highest_order_object_bit_offset;
10510 HOST_WIDE_INT highest_order_field_bit_offset;
10511 HOST_WIDE_INT unsigned bit_offset;
10513 /* Must be a field and a bit field. */
10514 gcc_assert (type && TREE_CODE (decl) == FIELD_DECL);
10516 /* We can't yet handle bit-fields whose offsets are variable, so if we
10517 encounter such things, just return without generating any attribute
10518 whatsoever. Likewise for variable or too large size. */
10519 if (! host_integerp (bit_position (decl), 0)
10520 || ! host_integerp (DECL_SIZE (decl), 1))
10521 return;
10523 bitpos_int = int_bit_position (decl);
10525 /* Note that the bit offset is always the distance (in bits) from the
10526 highest-order bit of the "containing object" to the highest-order bit of
10527 the bit-field itself. Since the "high-order end" of any object or field
10528 is different on big-endian and little-endian machines, the computation
10529 below must take account of these differences. */
10530 highest_order_object_bit_offset = object_offset_in_bytes * BITS_PER_UNIT;
10531 highest_order_field_bit_offset = bitpos_int;
10533 if (! BYTES_BIG_ENDIAN)
10535 highest_order_field_bit_offset += tree_low_cst (DECL_SIZE (decl), 0);
10536 highest_order_object_bit_offset += simple_type_size_in_bits (type);
10539 bit_offset
10540 = (! BYTES_BIG_ENDIAN
10541 ? highest_order_object_bit_offset - highest_order_field_bit_offset
10542 : highest_order_field_bit_offset - highest_order_object_bit_offset);
10544 add_AT_unsigned (die, DW_AT_bit_offset, bit_offset);
10547 /* For a FIELD_DECL node which represents a bit field, output an attribute
10548 which specifies the length in bits of the given field. */
10550 static inline void
10551 add_bit_size_attribute (dw_die_ref die, tree decl)
10553 /* Must be a field and a bit field. */
10554 gcc_assert (TREE_CODE (decl) == FIELD_DECL
10555 && DECL_BIT_FIELD_TYPE (decl));
10557 if (host_integerp (DECL_SIZE (decl), 1))
10558 add_AT_unsigned (die, DW_AT_bit_size, tree_low_cst (DECL_SIZE (decl), 1));
10561 /* If the compiled language is ANSI C, then add a 'prototyped'
10562 attribute, if arg types are given for the parameters of a function. */
10564 static inline void
10565 add_prototyped_attribute (dw_die_ref die, tree func_type)
10567 if (get_AT_unsigned (comp_unit_die, DW_AT_language) == DW_LANG_C89
10568 && TYPE_ARG_TYPES (func_type) != NULL)
10569 add_AT_flag (die, DW_AT_prototyped, 1);
10572 /* Add an 'abstract_origin' attribute below a given DIE. The DIE is found
10573 by looking in either the type declaration or object declaration
10574 equate table. */
10576 static inline void
10577 add_abstract_origin_attribute (dw_die_ref die, tree origin)
10579 dw_die_ref origin_die = NULL;
10581 if (TREE_CODE (origin) != FUNCTION_DECL)
10583 /* We may have gotten separated from the block for the inlined
10584 function, if we're in an exception handler or some such; make
10585 sure that the abstract function has been written out.
10587 Doing this for nested functions is wrong, however; functions are
10588 distinct units, and our context might not even be inline. */
10589 tree fn = origin;
10591 if (TYPE_P (fn))
10592 fn = TYPE_STUB_DECL (fn);
10594 fn = decl_function_context (fn);
10595 if (fn)
10596 dwarf2out_abstract_function (fn);
10599 if (DECL_P (origin))
10600 origin_die = lookup_decl_die (origin);
10601 else if (TYPE_P (origin))
10602 origin_die = lookup_type_die (origin);
10604 /* XXX: Functions that are never lowered don't always have correct block
10605 trees (in the case of java, they simply have no block tree, in some other
10606 languages). For these functions, there is nothing we can really do to
10607 output correct debug info for inlined functions in all cases. Rather
10608 than die, we'll just produce deficient debug info now, in that we will
10609 have variables without a proper abstract origin. In the future, when all
10610 functions are lowered, we should re-add a gcc_assert (origin_die)
10611 here. */
10613 if (origin_die)
10614 add_AT_die_ref (die, DW_AT_abstract_origin, origin_die);
10617 /* We do not currently support the pure_virtual attribute. */
10619 static inline void
10620 add_pure_or_virtual_attribute (dw_die_ref die, tree func_decl)
10622 if (DECL_VINDEX (func_decl))
10624 add_AT_unsigned (die, DW_AT_virtuality, DW_VIRTUALITY_virtual);
10626 if (host_integerp (DECL_VINDEX (func_decl), 0))
10627 add_AT_loc (die, DW_AT_vtable_elem_location,
10628 new_loc_descr (DW_OP_constu,
10629 tree_low_cst (DECL_VINDEX (func_decl), 0),
10630 0));
10632 /* GNU extension: Record what type this method came from originally. */
10633 if (debug_info_level > DINFO_LEVEL_TERSE)
10634 add_AT_die_ref (die, DW_AT_containing_type,
10635 lookup_type_die (DECL_CONTEXT (func_decl)));
10639 /* Add source coordinate attributes for the given decl. */
10641 static void
10642 add_src_coords_attributes (dw_die_ref die, tree decl)
10644 expanded_location s = expand_location (DECL_SOURCE_LOCATION (decl));
10645 unsigned file_index = lookup_filename (s.file);
10647 add_AT_unsigned (die, DW_AT_decl_file, file_index);
10648 add_AT_unsigned (die, DW_AT_decl_line, s.line);
10651 /* Add a DW_AT_name attribute and source coordinate attribute for the
10652 given decl, but only if it actually has a name. */
10654 static void
10655 add_name_and_src_coords_attributes (dw_die_ref die, tree decl)
10657 tree decl_name;
10659 decl_name = DECL_NAME (decl);
10660 if (decl_name != NULL && IDENTIFIER_POINTER (decl_name) != NULL)
10662 add_name_attribute (die, dwarf2_name (decl, 0));
10663 if (! DECL_ARTIFICIAL (decl))
10664 add_src_coords_attributes (die, decl);
10666 if ((TREE_CODE (decl) == FUNCTION_DECL || TREE_CODE (decl) == VAR_DECL)
10667 && TREE_PUBLIC (decl)
10668 && DECL_ASSEMBLER_NAME (decl) != DECL_NAME (decl)
10669 && !DECL_ABSTRACT (decl))
10670 add_AT_string (die, DW_AT_MIPS_linkage_name,
10671 IDENTIFIER_POINTER (DECL_ASSEMBLER_NAME (decl)));
10674 #ifdef VMS_DEBUGGING_INFO
10675 /* Get the function's name, as described by its RTL. This may be different
10676 from the DECL_NAME name used in the source file. */
10677 if (TREE_CODE (decl) == FUNCTION_DECL && TREE_ASM_WRITTEN (decl))
10679 add_AT_addr (die, DW_AT_VMS_rtnbeg_pd_address,
10680 XEXP (DECL_RTL (decl), 0));
10681 VEC_safe_push (tree, gc, used_rtx_array, XEXP (DECL_RTL (decl), 0));
10683 #endif
10686 /* Push a new declaration scope. */
10688 static void
10689 push_decl_scope (tree scope)
10691 VEC_safe_push (tree, gc, decl_scope_table, scope);
10694 /* Pop a declaration scope. */
10696 static inline void
10697 pop_decl_scope (void)
10699 VEC_pop (tree, decl_scope_table);
10702 /* Return the DIE for the scope that immediately contains this type.
10703 Non-named types get global scope. Named types nested in other
10704 types get their containing scope if it's open, or global scope
10705 otherwise. All other types (i.e. function-local named types) get
10706 the current active scope. */
10708 static dw_die_ref
10709 scope_die_for (tree t, dw_die_ref context_die)
10711 dw_die_ref scope_die = NULL;
10712 tree containing_scope;
10713 int i;
10715 /* Non-types always go in the current scope. */
10716 gcc_assert (TYPE_P (t));
10718 containing_scope = TYPE_CONTEXT (t);
10720 /* Use the containing namespace if it was passed in (for a declaration). */
10721 if (containing_scope && TREE_CODE (containing_scope) == NAMESPACE_DECL)
10723 if (context_die == lookup_decl_die (containing_scope))
10724 /* OK */;
10725 else
10726 containing_scope = NULL_TREE;
10729 /* Ignore function type "scopes" from the C frontend. They mean that
10730 a tagged type is local to a parmlist of a function declarator, but
10731 that isn't useful to DWARF. */
10732 if (containing_scope && TREE_CODE (containing_scope) == FUNCTION_TYPE)
10733 containing_scope = NULL_TREE;
10735 if (containing_scope == NULL_TREE)
10736 scope_die = comp_unit_die;
10737 else if (TYPE_P (containing_scope))
10739 /* For types, we can just look up the appropriate DIE. But
10740 first we check to see if we're in the middle of emitting it
10741 so we know where the new DIE should go. */
10742 for (i = VEC_length (tree, decl_scope_table) - 1; i >= 0; --i)
10743 if (VEC_index (tree, decl_scope_table, i) == containing_scope)
10744 break;
10746 if (i < 0)
10748 gcc_assert (debug_info_level <= DINFO_LEVEL_TERSE
10749 || TREE_ASM_WRITTEN (containing_scope));
10751 /* If none of the current dies are suitable, we get file scope. */
10752 scope_die = comp_unit_die;
10754 else
10755 scope_die = lookup_type_die (containing_scope);
10757 else
10758 scope_die = context_die;
10760 return scope_die;
10763 /* Returns nonzero if CONTEXT_DIE is internal to a function. */
10765 static inline int
10766 local_scope_p (dw_die_ref context_die)
10768 for (; context_die; context_die = context_die->die_parent)
10769 if (context_die->die_tag == DW_TAG_inlined_subroutine
10770 || context_die->die_tag == DW_TAG_subprogram)
10771 return 1;
10773 return 0;
10776 /* Returns nonzero if CONTEXT_DIE is a class or namespace, for deciding
10777 whether or not to treat a DIE in this context as a declaration. */
10779 static inline int
10780 class_or_namespace_scope_p (dw_die_ref context_die)
10782 return (context_die
10783 && (context_die->die_tag == DW_TAG_structure_type
10784 || context_die->die_tag == DW_TAG_union_type
10785 || context_die->die_tag == DW_TAG_namespace));
10788 /* Many forms of DIEs require a "type description" attribute. This
10789 routine locates the proper "type descriptor" die for the type given
10790 by 'type', and adds a DW_AT_type attribute below the given die. */
10792 static void
10793 add_type_attribute (dw_die_ref object_die, tree type, int decl_const,
10794 int decl_volatile, dw_die_ref context_die)
10796 enum tree_code code = TREE_CODE (type);
10797 dw_die_ref type_die = NULL;
10799 /* ??? If this type is an unnamed subrange type of an integral or
10800 floating-point type, use the inner type. This is because we have no
10801 support for unnamed types in base_type_die. This can happen if this is
10802 an Ada subrange type. Correct solution is emit a subrange type die. */
10803 if ((code == INTEGER_TYPE || code == REAL_TYPE)
10804 && TREE_TYPE (type) != 0 && TYPE_NAME (type) == 0)
10805 type = TREE_TYPE (type), code = TREE_CODE (type);
10807 if (code == ERROR_MARK
10808 /* Handle a special case. For functions whose return type is void, we
10809 generate *no* type attribute. (Note that no object may have type
10810 `void', so this only applies to function return types). */
10811 || code == VOID_TYPE)
10812 return;
10814 type_die = modified_type_die (type,
10815 decl_const || TYPE_READONLY (type),
10816 decl_volatile || TYPE_VOLATILE (type),
10817 context_die);
10819 if (type_die != NULL)
10820 add_AT_die_ref (object_die, DW_AT_type, type_die);
10823 /* Given an object die, add the calling convention attribute for the
10824 function call type. */
10825 static void
10826 add_calling_convention_attribute (dw_die_ref subr_die, tree type)
10828 enum dwarf_calling_convention value = DW_CC_normal;
10830 value = targetm.dwarf_calling_convention (type);
10832 /* Only add the attribute if the backend requests it, and
10833 is not DW_CC_normal. */
10834 if (value && (value != DW_CC_normal))
10835 add_AT_unsigned (subr_die, DW_AT_calling_convention, value);
10838 /* Given a tree pointer to a struct, class, union, or enum type node, return
10839 a pointer to the (string) tag name for the given type, or zero if the type
10840 was declared without a tag. */
10842 static const char *
10843 type_tag (tree type)
10845 const char *name = 0;
10847 if (TYPE_NAME (type) != 0)
10849 tree t = 0;
10851 /* Find the IDENTIFIER_NODE for the type name. */
10852 if (TREE_CODE (TYPE_NAME (type)) == IDENTIFIER_NODE)
10853 t = TYPE_NAME (type);
10855 /* The g++ front end makes the TYPE_NAME of *each* tagged type point to
10856 a TYPE_DECL node, regardless of whether or not a `typedef' was
10857 involved. */
10858 else if (TREE_CODE (TYPE_NAME (type)) == TYPE_DECL
10859 && ! DECL_IGNORED_P (TYPE_NAME (type)))
10860 t = DECL_NAME (TYPE_NAME (type));
10862 /* Now get the name as a string, or invent one. */
10863 if (t != 0)
10864 name = IDENTIFIER_POINTER (t);
10867 return (name == 0 || *name == '\0') ? 0 : name;
10870 /* Return the type associated with a data member, make a special check
10871 for bit field types. */
10873 static inline tree
10874 member_declared_type (tree member)
10876 return (DECL_BIT_FIELD_TYPE (member)
10877 ? DECL_BIT_FIELD_TYPE (member) : TREE_TYPE (member));
10880 /* Get the decl's label, as described by its RTL. This may be different
10881 from the DECL_NAME name used in the source file. */
10883 #if 0
10884 static const char *
10885 decl_start_label (tree decl)
10887 rtx x;
10888 const char *fnname;
10890 x = DECL_RTL (decl);
10891 gcc_assert (MEM_P (x));
10893 x = XEXP (x, 0);
10894 gcc_assert (GET_CODE (x) == SYMBOL_REF);
10896 fnname = XSTR (x, 0);
10897 return fnname;
10899 #endif
10901 /* These routines generate the internal representation of the DIE's for
10902 the compilation unit. Debugging information is collected by walking
10903 the declaration trees passed in from dwarf2out_decl(). */
10905 static void
10906 gen_array_type_die (tree type, dw_die_ref context_die)
10908 dw_die_ref scope_die = scope_die_for (type, context_die);
10909 dw_die_ref array_die;
10910 tree element_type;
10912 /* ??? The SGI dwarf reader fails for array of array of enum types unless
10913 the inner array type comes before the outer array type. Thus we must
10914 call gen_type_die before we call new_die. See below also. */
10915 #ifdef MIPS_DEBUGGING_INFO
10916 gen_type_die (TREE_TYPE (type), context_die);
10917 #endif
10919 array_die = new_die (DW_TAG_array_type, scope_die, type);
10920 add_name_attribute (array_die, type_tag (type));
10921 equate_type_number_to_die (type, array_die);
10923 if (TREE_CODE (type) == VECTOR_TYPE)
10925 /* The frontend feeds us a representation for the vector as a struct
10926 containing an array. Pull out the array type. */
10927 type = TREE_TYPE (TYPE_FIELDS (TYPE_DEBUG_REPRESENTATION_TYPE (type)));
10928 add_AT_flag (array_die, DW_AT_GNU_vector, 1);
10931 #if 0
10932 /* We default the array ordering. SDB will probably do
10933 the right things even if DW_AT_ordering is not present. It's not even
10934 an issue until we start to get into multidimensional arrays anyway. If
10935 SDB is ever caught doing the Wrong Thing for multi-dimensional arrays,
10936 then we'll have to put the DW_AT_ordering attribute back in. (But if
10937 and when we find out that we need to put these in, we will only do so
10938 for multidimensional arrays. */
10939 add_AT_unsigned (array_die, DW_AT_ordering, DW_ORD_row_major);
10940 #endif
10942 #ifdef MIPS_DEBUGGING_INFO
10943 /* The SGI compilers handle arrays of unknown bound by setting
10944 AT_declaration and not emitting any subrange DIEs. */
10945 if (! TYPE_DOMAIN (type))
10946 add_AT_flag (array_die, DW_AT_declaration, 1);
10947 else
10948 #endif
10949 add_subscript_info (array_die, type);
10951 /* Add representation of the type of the elements of this array type. */
10952 element_type = TREE_TYPE (type);
10954 /* ??? The SGI dwarf reader fails for multidimensional arrays with a
10955 const enum type. E.g. const enum machine_mode insn_operand_mode[2][10].
10956 We work around this by disabling this feature. See also
10957 add_subscript_info. */
10958 #ifndef MIPS_DEBUGGING_INFO
10959 while (TREE_CODE (element_type) == ARRAY_TYPE)
10960 element_type = TREE_TYPE (element_type);
10962 gen_type_die (element_type, context_die);
10963 #endif
10965 add_type_attribute (array_die, element_type, 0, 0, context_die);
10968 #if 0
10969 static void
10970 gen_entry_point_die (tree decl, dw_die_ref context_die)
10972 tree origin = decl_ultimate_origin (decl);
10973 dw_die_ref decl_die = new_die (DW_TAG_entry_point, context_die, decl);
10975 if (origin != NULL)
10976 add_abstract_origin_attribute (decl_die, origin);
10977 else
10979 add_name_and_src_coords_attributes (decl_die, decl);
10980 add_type_attribute (decl_die, TREE_TYPE (TREE_TYPE (decl)),
10981 0, 0, context_die);
10984 if (DECL_ABSTRACT (decl))
10985 equate_decl_number_to_die (decl, decl_die);
10986 else
10987 add_AT_lbl_id (decl_die, DW_AT_low_pc, decl_start_label (decl));
10989 #endif
10991 /* Walk through the list of incomplete types again, trying once more to
10992 emit full debugging info for them. */
10994 static void
10995 retry_incomplete_types (void)
10997 int i;
10999 for (i = VEC_length (tree, incomplete_types) - 1; i >= 0; i--)
11000 gen_type_die (VEC_index (tree, incomplete_types, i), comp_unit_die);
11003 /* Generate a DIE to represent an inlined instance of an enumeration type. */
11005 static void
11006 gen_inlined_enumeration_type_die (tree type, dw_die_ref context_die)
11008 dw_die_ref type_die = new_die (DW_TAG_enumeration_type, context_die, type);
11010 /* We do not check for TREE_ASM_WRITTEN (type) being set, as the type may
11011 be incomplete and such types are not marked. */
11012 add_abstract_origin_attribute (type_die, type);
11015 /* Generate a DIE to represent an inlined instance of a structure type. */
11017 static void
11018 gen_inlined_structure_type_die (tree type, dw_die_ref context_die)
11020 dw_die_ref type_die = new_die (DW_TAG_structure_type, context_die, type);
11022 /* We do not check for TREE_ASM_WRITTEN (type) being set, as the type may
11023 be incomplete and such types are not marked. */
11024 add_abstract_origin_attribute (type_die, type);
11027 /* Generate a DIE to represent an inlined instance of a union type. */
11029 static void
11030 gen_inlined_union_type_die (tree type, dw_die_ref context_die)
11032 dw_die_ref type_die = new_die (DW_TAG_union_type, context_die, type);
11034 /* We do not check for TREE_ASM_WRITTEN (type) being set, as the type may
11035 be incomplete and such types are not marked. */
11036 add_abstract_origin_attribute (type_die, type);
11039 /* Generate a DIE to represent an enumeration type. Note that these DIEs
11040 include all of the information about the enumeration values also. Each
11041 enumerated type name/value is listed as a child of the enumerated type
11042 DIE. */
11044 static dw_die_ref
11045 gen_enumeration_type_die (tree type, dw_die_ref context_die)
11047 dw_die_ref type_die = lookup_type_die (type);
11049 if (type_die == NULL)
11051 type_die = new_die (DW_TAG_enumeration_type,
11052 scope_die_for (type, context_die), type);
11053 equate_type_number_to_die (type, type_die);
11054 add_name_attribute (type_die, type_tag (type));
11056 else if (! TYPE_SIZE (type))
11057 return type_die;
11058 else
11059 remove_AT (type_die, DW_AT_declaration);
11061 /* Handle a GNU C/C++ extension, i.e. incomplete enum types. If the
11062 given enum type is incomplete, do not generate the DW_AT_byte_size
11063 attribute or the DW_AT_element_list attribute. */
11064 if (TYPE_SIZE (type))
11066 tree link;
11068 TREE_ASM_WRITTEN (type) = 1;
11069 add_byte_size_attribute (type_die, type);
11070 if (TYPE_STUB_DECL (type) != NULL_TREE)
11071 add_src_coords_attributes (type_die, TYPE_STUB_DECL (type));
11073 /* If the first reference to this type was as the return type of an
11074 inline function, then it may not have a parent. Fix this now. */
11075 if (type_die->die_parent == NULL)
11076 add_child_die (scope_die_for (type, context_die), type_die);
11078 for (link = TYPE_VALUES (type);
11079 link != NULL; link = TREE_CHAIN (link))
11081 dw_die_ref enum_die = new_die (DW_TAG_enumerator, type_die, link);
11082 tree value = TREE_VALUE (link);
11084 add_name_attribute (enum_die,
11085 IDENTIFIER_POINTER (TREE_PURPOSE (link)));
11087 if (host_integerp (value, TYPE_UNSIGNED (TREE_TYPE (value))))
11088 /* DWARF2 does not provide a way of indicating whether or
11089 not enumeration constants are signed or unsigned. GDB
11090 always assumes the values are signed, so we output all
11091 values as if they were signed. That means that
11092 enumeration constants with very large unsigned values
11093 will appear to have negative values in the debugger. */
11094 add_AT_int (enum_die, DW_AT_const_value,
11095 tree_low_cst (value, tree_int_cst_sgn (value) > 0));
11098 else
11099 add_AT_flag (type_die, DW_AT_declaration, 1);
11101 return type_die;
11104 /* Generate a DIE to represent either a real live formal parameter decl or to
11105 represent just the type of some formal parameter position in some function
11106 type.
11108 Note that this routine is a bit unusual because its argument may be a
11109 ..._DECL node (i.e. either a PARM_DECL or perhaps a VAR_DECL which
11110 represents an inlining of some PARM_DECL) or else some sort of a ..._TYPE
11111 node. If it's the former then this function is being called to output a
11112 DIE to represent a formal parameter object (or some inlining thereof). If
11113 it's the latter, then this function is only being called to output a
11114 DW_TAG_formal_parameter DIE to stand as a placeholder for some formal
11115 argument type of some subprogram type. */
11117 static dw_die_ref
11118 gen_formal_parameter_die (tree node, dw_die_ref context_die)
11120 dw_die_ref parm_die
11121 = new_die (DW_TAG_formal_parameter, context_die, node);
11122 tree origin;
11124 switch (TREE_CODE_CLASS (TREE_CODE (node)))
11126 case tcc_declaration:
11127 origin = decl_ultimate_origin (node);
11128 if (origin != NULL)
11129 add_abstract_origin_attribute (parm_die, origin);
11130 else
11132 add_name_and_src_coords_attributes (parm_die, node);
11133 add_type_attribute (parm_die, TREE_TYPE (node),
11134 TREE_READONLY (node),
11135 TREE_THIS_VOLATILE (node),
11136 context_die);
11137 if (DECL_ARTIFICIAL (node))
11138 add_AT_flag (parm_die, DW_AT_artificial, 1);
11141 equate_decl_number_to_die (node, parm_die);
11142 if (! DECL_ABSTRACT (node))
11143 add_location_or_const_value_attribute (parm_die, node, DW_AT_location);
11145 break;
11147 case tcc_type:
11148 /* We were called with some kind of a ..._TYPE node. */
11149 add_type_attribute (parm_die, node, 0, 0, context_die);
11150 break;
11152 default:
11153 gcc_unreachable ();
11156 return parm_die;
11159 /* Generate a special type of DIE used as a stand-in for a trailing ellipsis
11160 at the end of an (ANSI prototyped) formal parameters list. */
11162 static void
11163 gen_unspecified_parameters_die (tree decl_or_type, dw_die_ref context_die)
11165 new_die (DW_TAG_unspecified_parameters, context_die, decl_or_type);
11168 /* Generate a list of nameless DW_TAG_formal_parameter DIEs (and perhaps a
11169 DW_TAG_unspecified_parameters DIE) to represent the types of the formal
11170 parameters as specified in some function type specification (except for
11171 those which appear as part of a function *definition*). */
11173 static void
11174 gen_formal_types_die (tree function_or_method_type, dw_die_ref context_die)
11176 tree link;
11177 tree formal_type = NULL;
11178 tree first_parm_type;
11179 tree arg;
11181 if (TREE_CODE (function_or_method_type) == FUNCTION_DECL)
11183 arg = DECL_ARGUMENTS (function_or_method_type);
11184 function_or_method_type = TREE_TYPE (function_or_method_type);
11186 else
11187 arg = NULL_TREE;
11189 first_parm_type = TYPE_ARG_TYPES (function_or_method_type);
11191 /* Make our first pass over the list of formal parameter types and output a
11192 DW_TAG_formal_parameter DIE for each one. */
11193 for (link = first_parm_type; link; )
11195 dw_die_ref parm_die;
11197 formal_type = TREE_VALUE (link);
11198 if (formal_type == void_type_node)
11199 break;
11201 /* Output a (nameless) DIE to represent the formal parameter itself. */
11202 parm_die = gen_formal_parameter_die (formal_type, context_die);
11203 if ((TREE_CODE (function_or_method_type) == METHOD_TYPE
11204 && link == first_parm_type)
11205 || (arg && DECL_ARTIFICIAL (arg)))
11206 add_AT_flag (parm_die, DW_AT_artificial, 1);
11208 link = TREE_CHAIN (link);
11209 if (arg)
11210 arg = TREE_CHAIN (arg);
11213 /* If this function type has an ellipsis, add a
11214 DW_TAG_unspecified_parameters DIE to the end of the parameter list. */
11215 if (formal_type != void_type_node)
11216 gen_unspecified_parameters_die (function_or_method_type, context_die);
11218 /* Make our second (and final) pass over the list of formal parameter types
11219 and output DIEs to represent those types (as necessary). */
11220 for (link = TYPE_ARG_TYPES (function_or_method_type);
11221 link && TREE_VALUE (link);
11222 link = TREE_CHAIN (link))
11223 gen_type_die (TREE_VALUE (link), context_die);
11226 /* We want to generate the DIE for TYPE so that we can generate the
11227 die for MEMBER, which has been defined; we will need to refer back
11228 to the member declaration nested within TYPE. If we're trying to
11229 generate minimal debug info for TYPE, processing TYPE won't do the
11230 trick; we need to attach the member declaration by hand. */
11232 static void
11233 gen_type_die_for_member (tree type, tree member, dw_die_ref context_die)
11235 gen_type_die (type, context_die);
11237 /* If we're trying to avoid duplicate debug info, we may not have
11238 emitted the member decl for this function. Emit it now. */
11239 if (TYPE_DECL_SUPPRESS_DEBUG (TYPE_STUB_DECL (type))
11240 && ! lookup_decl_die (member))
11242 dw_die_ref type_die;
11243 gcc_assert (!decl_ultimate_origin (member));
11245 push_decl_scope (type);
11246 type_die = lookup_type_die (type);
11247 if (TREE_CODE (member) == FUNCTION_DECL)
11248 gen_subprogram_die (member, type_die);
11249 else if (TREE_CODE (member) == FIELD_DECL)
11251 /* Ignore the nameless fields that are used to skip bits but handle
11252 C++ anonymous unions and structs. */
11253 if (DECL_NAME (member) != NULL_TREE
11254 || TREE_CODE (TREE_TYPE (member)) == UNION_TYPE
11255 || TREE_CODE (TREE_TYPE (member)) == RECORD_TYPE)
11257 gen_type_die (member_declared_type (member), type_die);
11258 gen_field_die (member, type_die);
11261 else
11262 gen_variable_die (member, type_die);
11264 pop_decl_scope ();
11268 /* Generate the DWARF2 info for the "abstract" instance of a function which we
11269 may later generate inlined and/or out-of-line instances of. */
11271 static void
11272 dwarf2out_abstract_function (tree decl)
11274 dw_die_ref old_die;
11275 tree save_fn;
11276 tree context;
11277 int was_abstract = DECL_ABSTRACT (decl);
11279 /* Make sure we have the actual abstract inline, not a clone. */
11280 decl = DECL_ORIGIN (decl);
11282 old_die = lookup_decl_die (decl);
11283 if (old_die && get_AT (old_die, DW_AT_inline))
11284 /* We've already generated the abstract instance. */
11285 return;
11287 /* Be sure we've emitted the in-class declaration DIE (if any) first, so
11288 we don't get confused by DECL_ABSTRACT. */
11289 if (debug_info_level > DINFO_LEVEL_TERSE)
11291 context = decl_class_context (decl);
11292 if (context)
11293 gen_type_die_for_member
11294 (context, decl, decl_function_context (decl) ? NULL : comp_unit_die);
11297 /* Pretend we've just finished compiling this function. */
11298 save_fn = current_function_decl;
11299 current_function_decl = decl;
11301 set_decl_abstract_flags (decl, 1);
11302 dwarf2out_decl (decl);
11303 if (! was_abstract)
11304 set_decl_abstract_flags (decl, 0);
11306 current_function_decl = save_fn;
11309 /* Generate a DIE to represent a declared function (either file-scope or
11310 block-local). */
11312 static void
11313 gen_subprogram_die (tree decl, dw_die_ref context_die)
11315 char label_id[MAX_ARTIFICIAL_LABEL_BYTES];
11316 tree origin = decl_ultimate_origin (decl);
11317 dw_die_ref subr_die;
11318 rtx fp_reg;
11319 tree fn_arg_types;
11320 tree outer_scope;
11321 dw_die_ref old_die = lookup_decl_die (decl);
11322 int declaration = (current_function_decl != decl
11323 || class_or_namespace_scope_p (context_die));
11325 /* It is possible to have both DECL_ABSTRACT and DECLARATION be true if we
11326 started to generate the abstract instance of an inline, decided to output
11327 its containing class, and proceeded to emit the declaration of the inline
11328 from the member list for the class. If so, DECLARATION takes priority;
11329 we'll get back to the abstract instance when done with the class. */
11331 /* The class-scope declaration DIE must be the primary DIE. */
11332 if (origin && declaration && class_or_namespace_scope_p (context_die))
11334 origin = NULL;
11335 gcc_assert (!old_die);
11338 if (origin != NULL)
11340 gcc_assert (!declaration || local_scope_p (context_die));
11342 /* Fixup die_parent for the abstract instance of a nested
11343 inline function. */
11344 if (old_die && old_die->die_parent == NULL)
11345 add_child_die (context_die, old_die);
11347 subr_die = new_die (DW_TAG_subprogram, context_die, decl);
11348 add_abstract_origin_attribute (subr_die, origin);
11350 else if (old_die)
11352 expanded_location s = expand_location (DECL_SOURCE_LOCATION (decl));
11353 unsigned file_index = lookup_filename (s.file);
11355 if (!get_AT_flag (old_die, DW_AT_declaration)
11356 /* We can have a normal definition following an inline one in the
11357 case of redefinition of GNU C extern inlines.
11358 It seems reasonable to use AT_specification in this case. */
11359 && !get_AT (old_die, DW_AT_inline))
11361 /* Detect and ignore this case, where we are trying to output
11362 something we have already output. */
11363 return;
11366 /* If the definition comes from the same place as the declaration,
11367 maybe use the old DIE. We always want the DIE for this function
11368 that has the *_pc attributes to be under comp_unit_die so the
11369 debugger can find it. We also need to do this for abstract
11370 instances of inlines, since the spec requires the out-of-line copy
11371 to have the same parent. For local class methods, this doesn't
11372 apply; we just use the old DIE. */
11373 if ((old_die->die_parent == comp_unit_die || context_die == NULL)
11374 && (DECL_ARTIFICIAL (decl)
11375 || (get_AT_unsigned (old_die, DW_AT_decl_file) == file_index
11376 && (get_AT_unsigned (old_die, DW_AT_decl_line)
11377 == (unsigned) s.line))))
11379 subr_die = old_die;
11381 /* Clear out the declaration attribute and the formal parameters.
11382 Do not remove all children, because it is possible that this
11383 declaration die was forced using force_decl_die(). In such
11384 cases die that forced declaration die (e.g. TAG_imported_module)
11385 is one of the children that we do not want to remove. */
11386 remove_AT (subr_die, DW_AT_declaration);
11387 remove_child_TAG (subr_die, DW_TAG_formal_parameter);
11389 else
11391 subr_die = new_die (DW_TAG_subprogram, context_die, decl);
11392 add_AT_specification (subr_die, old_die);
11393 if (get_AT_unsigned (old_die, DW_AT_decl_file) != file_index)
11394 add_AT_unsigned (subr_die, DW_AT_decl_file, file_index);
11395 if (get_AT_unsigned (old_die, DW_AT_decl_line)
11396 != (unsigned) s.line)
11397 add_AT_unsigned
11398 (subr_die, DW_AT_decl_line, s.line);
11401 else
11403 subr_die = new_die (DW_TAG_subprogram, context_die, decl);
11405 if (TREE_PUBLIC (decl))
11406 add_AT_flag (subr_die, DW_AT_external, 1);
11408 add_name_and_src_coords_attributes (subr_die, decl);
11409 if (debug_info_level > DINFO_LEVEL_TERSE)
11411 add_prototyped_attribute (subr_die, TREE_TYPE (decl));
11412 add_type_attribute (subr_die, TREE_TYPE (TREE_TYPE (decl)),
11413 0, 0, context_die);
11416 add_pure_or_virtual_attribute (subr_die, decl);
11417 if (DECL_ARTIFICIAL (decl))
11418 add_AT_flag (subr_die, DW_AT_artificial, 1);
11420 if (TREE_PROTECTED (decl))
11421 add_AT_unsigned (subr_die, DW_AT_accessibility, DW_ACCESS_protected);
11422 else if (TREE_PRIVATE (decl))
11423 add_AT_unsigned (subr_die, DW_AT_accessibility, DW_ACCESS_private);
11426 if (declaration)
11428 if (!old_die || !get_AT (old_die, DW_AT_inline))
11430 add_AT_flag (subr_die, DW_AT_declaration, 1);
11432 /* The first time we see a member function, it is in the context of
11433 the class to which it belongs. We make sure of this by emitting
11434 the class first. The next time is the definition, which is
11435 handled above. The two may come from the same source text.
11437 Note that force_decl_die() forces function declaration die. It is
11438 later reused to represent definition. */
11439 equate_decl_number_to_die (decl, subr_die);
11442 else if (DECL_ABSTRACT (decl))
11444 if (DECL_DECLARED_INLINE_P (decl))
11446 if (cgraph_function_possibly_inlined_p (decl))
11447 add_AT_unsigned (subr_die, DW_AT_inline, DW_INL_declared_inlined);
11448 else
11449 add_AT_unsigned (subr_die, DW_AT_inline, DW_INL_declared_not_inlined);
11451 else
11453 if (cgraph_function_possibly_inlined_p (decl))
11454 add_AT_unsigned (subr_die, DW_AT_inline, DW_INL_inlined);
11455 else
11456 add_AT_unsigned (subr_die, DW_AT_inline, DW_INL_not_inlined);
11459 equate_decl_number_to_die (decl, subr_die);
11461 else if (!DECL_EXTERNAL (decl))
11463 if (!old_die || !get_AT (old_die, DW_AT_inline))
11464 equate_decl_number_to_die (decl, subr_die);
11466 if (!flag_reorder_blocks_and_partition)
11468 ASM_GENERATE_INTERNAL_LABEL (label_id, FUNC_BEGIN_LABEL,
11469 current_function_funcdef_no);
11470 add_AT_lbl_id (subr_die, DW_AT_low_pc, label_id);
11471 ASM_GENERATE_INTERNAL_LABEL (label_id, FUNC_END_LABEL,
11472 current_function_funcdef_no);
11473 add_AT_lbl_id (subr_die, DW_AT_high_pc, label_id);
11475 add_pubname (decl, subr_die);
11476 add_arange (decl, subr_die);
11478 else
11479 { /* Do nothing for now; maybe need to duplicate die, one for
11480 hot section and ond for cold section, then use the hot/cold
11481 section begin/end labels to generate the aranges... */
11483 add_AT_lbl_id (subr_die, DW_AT_low_pc, hot_section_label);
11484 add_AT_lbl_id (subr_die, DW_AT_high_pc, hot_section_end_label);
11485 add_AT_lbl_id (subr_die, DW_AT_lo_user, unlikely_section_label);
11486 add_AT_lbl_id (subr_die, DW_AT_hi_user, cold_section_end_label);
11488 add_pubname (decl, subr_die);
11489 add_arange (decl, subr_die);
11490 add_arange (decl, subr_die);
11494 #ifdef MIPS_DEBUGGING_INFO
11495 /* Add a reference to the FDE for this routine. */
11496 add_AT_fde_ref (subr_die, DW_AT_MIPS_fde, current_funcdef_fde);
11497 #endif
11499 /* Define the "frame base" location for this routine. We use the
11500 frame pointer or stack pointer registers, since the RTL for local
11501 variables is relative to one of them. */
11502 if (frame_base_decl && lookup_decl_loc (frame_base_decl) != NULL)
11504 add_location_or_const_value_attribute (subr_die, frame_base_decl,
11505 DW_AT_frame_base);
11507 else
11509 fp_reg
11510 = frame_pointer_needed ? hard_frame_pointer_rtx : stack_pointer_rtx;
11511 add_AT_loc (subr_die, DW_AT_frame_base, reg_loc_descriptor (fp_reg));
11514 if (cfun->static_chain_decl)
11515 add_AT_location_description (subr_die, DW_AT_static_link,
11516 loc_descriptor_from_tree (cfun->static_chain_decl));
11519 /* Now output descriptions of the arguments for this function. This gets
11520 (unnecessarily?) complex because of the fact that the DECL_ARGUMENT list
11521 for a FUNCTION_DECL doesn't indicate cases where there was a trailing
11522 `...' at the end of the formal parameter list. In order to find out if
11523 there was a trailing ellipsis or not, we must instead look at the type
11524 associated with the FUNCTION_DECL. This will be a node of type
11525 FUNCTION_TYPE. If the chain of type nodes hanging off of this
11526 FUNCTION_TYPE node ends with a void_type_node then there should *not* be
11527 an ellipsis at the end. */
11529 /* In the case where we are describing a mere function declaration, all we
11530 need to do here (and all we *can* do here) is to describe the *types* of
11531 its formal parameters. */
11532 if (debug_info_level <= DINFO_LEVEL_TERSE)
11534 else if (declaration)
11535 gen_formal_types_die (decl, subr_die);
11536 else
11538 /* Generate DIEs to represent all known formal parameters. */
11539 tree arg_decls = DECL_ARGUMENTS (decl);
11540 tree parm;
11542 /* When generating DIEs, generate the unspecified_parameters DIE
11543 instead if we come across the arg "__builtin_va_alist" */
11544 for (parm = arg_decls; parm; parm = TREE_CHAIN (parm))
11545 if (TREE_CODE (parm) == PARM_DECL)
11547 if (DECL_NAME (parm)
11548 && !strcmp (IDENTIFIER_POINTER (DECL_NAME (parm)),
11549 "__builtin_va_alist"))
11550 gen_unspecified_parameters_die (parm, subr_die);
11551 else
11552 gen_decl_die (parm, subr_die);
11555 /* Decide whether we need an unspecified_parameters DIE at the end.
11556 There are 2 more cases to do this for: 1) the ansi ... declaration -
11557 this is detectable when the end of the arg list is not a
11558 void_type_node 2) an unprototyped function declaration (not a
11559 definition). This just means that we have no info about the
11560 parameters at all. */
11561 fn_arg_types = TYPE_ARG_TYPES (TREE_TYPE (decl));
11562 if (fn_arg_types != NULL)
11564 /* This is the prototyped case, check for.... */
11565 if (TREE_VALUE (tree_last (fn_arg_types)) != void_type_node)
11566 gen_unspecified_parameters_die (decl, subr_die);
11568 else if (DECL_INITIAL (decl) == NULL_TREE)
11569 gen_unspecified_parameters_die (decl, subr_die);
11572 /* Output Dwarf info for all of the stuff within the body of the function
11573 (if it has one - it may be just a declaration). */
11574 outer_scope = DECL_INITIAL (decl);
11576 /* OUTER_SCOPE is a pointer to the outermost BLOCK node created to represent
11577 a function. This BLOCK actually represents the outermost binding contour
11578 for the function, i.e. the contour in which the function's formal
11579 parameters and labels get declared. Curiously, it appears that the front
11580 end doesn't actually put the PARM_DECL nodes for the current function onto
11581 the BLOCK_VARS list for this outer scope, but are strung off of the
11582 DECL_ARGUMENTS list for the function instead.
11584 The BLOCK_VARS list for the `outer_scope' does provide us with a list of
11585 the LABEL_DECL nodes for the function however, and we output DWARF info
11586 for those in decls_for_scope. Just within the `outer_scope' there will be
11587 a BLOCK node representing the function's outermost pair of curly braces,
11588 and any blocks used for the base and member initializers of a C++
11589 constructor function. */
11590 if (! declaration && TREE_CODE (outer_scope) != ERROR_MARK)
11592 /* Emit a DW_TAG_variable DIE for a named return value. */
11593 if (DECL_NAME (DECL_RESULT (decl)))
11594 gen_decl_die (DECL_RESULT (decl), subr_die);
11596 current_function_has_inlines = 0;
11597 decls_for_scope (outer_scope, subr_die, 0);
11599 #if 0 && defined (MIPS_DEBUGGING_INFO)
11600 if (current_function_has_inlines)
11602 add_AT_flag (subr_die, DW_AT_MIPS_has_inlines, 1);
11603 if (! comp_unit_has_inlines)
11605 add_AT_flag (comp_unit_die, DW_AT_MIPS_has_inlines, 1);
11606 comp_unit_has_inlines = 1;
11609 #endif
11611 /* Add the calling convention attribute if requested. */
11612 add_calling_convention_attribute (subr_die, TREE_TYPE (decl));
11616 /* Generate a DIE to represent a declared data object. */
11618 static void
11619 gen_variable_die (tree decl, dw_die_ref context_die)
11621 tree origin = decl_ultimate_origin (decl);
11622 dw_die_ref var_die = new_die (DW_TAG_variable, context_die, decl);
11624 dw_die_ref old_die = lookup_decl_die (decl);
11625 int declaration = (DECL_EXTERNAL (decl)
11626 || class_or_namespace_scope_p (context_die));
11628 if (origin != NULL)
11629 add_abstract_origin_attribute (var_die, origin);
11631 /* Loop unrolling can create multiple blocks that refer to the same
11632 static variable, so we must test for the DW_AT_declaration flag.
11634 ??? Loop unrolling/reorder_blocks should perhaps be rewritten to
11635 copy decls and set the DECL_ABSTRACT flag on them instead of
11636 sharing them.
11638 ??? Duplicated blocks have been rewritten to use .debug_ranges.
11640 ??? The declare_in_namespace support causes us to get two DIEs for one
11641 variable, both of which are declarations. We want to avoid considering
11642 one to be a specification, so we must test that this DIE is not a
11643 declaration. */
11644 else if (old_die && TREE_STATIC (decl) && ! declaration
11645 && get_AT_flag (old_die, DW_AT_declaration) == 1)
11647 /* This is a definition of a C++ class level static. */
11648 add_AT_specification (var_die, old_die);
11649 if (DECL_NAME (decl))
11651 expanded_location s = expand_location (DECL_SOURCE_LOCATION (decl));
11652 unsigned file_index = lookup_filename (s.file);
11654 if (get_AT_unsigned (old_die, DW_AT_decl_file) != file_index)
11655 add_AT_unsigned (var_die, DW_AT_decl_file, file_index);
11657 if (get_AT_unsigned (old_die, DW_AT_decl_line)
11658 != (unsigned) s.line)
11660 add_AT_unsigned (var_die, DW_AT_decl_line, s.line);
11663 else
11665 add_name_and_src_coords_attributes (var_die, decl);
11666 add_type_attribute (var_die, TREE_TYPE (decl), TREE_READONLY (decl),
11667 TREE_THIS_VOLATILE (decl), context_die);
11669 if (TREE_PUBLIC (decl))
11670 add_AT_flag (var_die, DW_AT_external, 1);
11672 if (DECL_ARTIFICIAL (decl))
11673 add_AT_flag (var_die, DW_AT_artificial, 1);
11675 if (TREE_PROTECTED (decl))
11676 add_AT_unsigned (var_die, DW_AT_accessibility, DW_ACCESS_protected);
11677 else if (TREE_PRIVATE (decl))
11678 add_AT_unsigned (var_die, DW_AT_accessibility, DW_ACCESS_private);
11681 if (declaration)
11682 add_AT_flag (var_die, DW_AT_declaration, 1);
11684 if (DECL_ABSTRACT (decl) || declaration)
11685 equate_decl_number_to_die (decl, var_die);
11687 if (! declaration && ! DECL_ABSTRACT (decl))
11689 add_location_or_const_value_attribute (var_die, decl, DW_AT_location);
11690 add_pubname (decl, var_die);
11692 else
11693 tree_add_const_value_attribute (var_die, decl);
11696 /* Generate a DIE to represent a label identifier. */
11698 static void
11699 gen_label_die (tree decl, dw_die_ref context_die)
11701 tree origin = decl_ultimate_origin (decl);
11702 dw_die_ref lbl_die = new_die (DW_TAG_label, context_die, decl);
11703 rtx insn;
11704 char label[MAX_ARTIFICIAL_LABEL_BYTES];
11706 if (origin != NULL)
11707 add_abstract_origin_attribute (lbl_die, origin);
11708 else
11709 add_name_and_src_coords_attributes (lbl_die, decl);
11711 if (DECL_ABSTRACT (decl))
11712 equate_decl_number_to_die (decl, lbl_die);
11713 else
11715 insn = DECL_RTL_IF_SET (decl);
11717 /* Deleted labels are programmer specified labels which have been
11718 eliminated because of various optimizations. We still emit them
11719 here so that it is possible to put breakpoints on them. */
11720 if (insn
11721 && (LABEL_P (insn)
11722 || ((NOTE_P (insn)
11723 && NOTE_LINE_NUMBER (insn) == NOTE_INSN_DELETED_LABEL))))
11725 /* When optimization is enabled (via -O) some parts of the compiler
11726 (e.g. jump.c and cse.c) may try to delete CODE_LABEL insns which
11727 represent source-level labels which were explicitly declared by
11728 the user. This really shouldn't be happening though, so catch
11729 it if it ever does happen. */
11730 gcc_assert (!INSN_DELETED_P (insn));
11732 ASM_GENERATE_INTERNAL_LABEL (label, "L", CODE_LABEL_NUMBER (insn));
11733 add_AT_lbl_id (lbl_die, DW_AT_low_pc, label);
11738 /* A helper function for gen_lexical_block_die and gen_inlined_subroutine_die.
11739 Add low_pc and high_pc attributes to the DIE for a block STMT. */
11741 static inline void
11742 add_high_low_attributes (tree stmt, dw_die_ref die)
11744 char label[MAX_ARTIFICIAL_LABEL_BYTES];
11746 if (BLOCK_FRAGMENT_CHAIN (stmt))
11748 tree chain;
11750 add_AT_range_list (die, DW_AT_ranges, add_ranges (stmt));
11752 chain = BLOCK_FRAGMENT_CHAIN (stmt);
11755 add_ranges (chain);
11756 chain = BLOCK_FRAGMENT_CHAIN (chain);
11758 while (chain);
11759 add_ranges (NULL);
11761 else
11763 ASM_GENERATE_INTERNAL_LABEL (label, BLOCK_BEGIN_LABEL,
11764 BLOCK_NUMBER (stmt));
11765 add_AT_lbl_id (die, DW_AT_low_pc, label);
11766 ASM_GENERATE_INTERNAL_LABEL (label, BLOCK_END_LABEL,
11767 BLOCK_NUMBER (stmt));
11768 add_AT_lbl_id (die, DW_AT_high_pc, label);
11772 /* Generate a DIE for a lexical block. */
11774 static void
11775 gen_lexical_block_die (tree stmt, dw_die_ref context_die, int depth)
11777 dw_die_ref stmt_die = new_die (DW_TAG_lexical_block, context_die, stmt);
11779 if (! BLOCK_ABSTRACT (stmt))
11780 add_high_low_attributes (stmt, stmt_die);
11782 decls_for_scope (stmt, stmt_die, depth);
11785 /* Generate a DIE for an inlined subprogram. */
11787 static void
11788 gen_inlined_subroutine_die (tree stmt, dw_die_ref context_die, int depth)
11790 tree decl = block_ultimate_origin (stmt);
11792 /* Emit info for the abstract instance first, if we haven't yet. We
11793 must emit this even if the block is abstract, otherwise when we
11794 emit the block below (or elsewhere), we may end up trying to emit
11795 a die whose origin die hasn't been emitted, and crashing. */
11796 dwarf2out_abstract_function (decl);
11798 if (! BLOCK_ABSTRACT (stmt))
11800 dw_die_ref subr_die
11801 = new_die (DW_TAG_inlined_subroutine, context_die, stmt);
11803 add_abstract_origin_attribute (subr_die, decl);
11804 add_high_low_attributes (stmt, subr_die);
11806 decls_for_scope (stmt, subr_die, depth);
11807 current_function_has_inlines = 1;
11809 else
11810 /* We may get here if we're the outer block of function A that was
11811 inlined into function B that was inlined into function C. When
11812 generating debugging info for C, dwarf2out_abstract_function(B)
11813 would mark all inlined blocks as abstract, including this one.
11814 So, we wouldn't (and shouldn't) expect labels to be generated
11815 for this one. Instead, just emit debugging info for
11816 declarations within the block. This is particularly important
11817 in the case of initializers of arguments passed from B to us:
11818 if they're statement expressions containing declarations, we
11819 wouldn't generate dies for their abstract variables, and then,
11820 when generating dies for the real variables, we'd die (pun
11821 intended :-) */
11822 gen_lexical_block_die (stmt, context_die, depth);
11825 /* Generate a DIE for a field in a record, or structure. */
11827 static void
11828 gen_field_die (tree decl, dw_die_ref context_die)
11830 dw_die_ref decl_die;
11832 if (TREE_TYPE (decl) == error_mark_node)
11833 return;
11835 decl_die = new_die (DW_TAG_member, context_die, decl);
11836 add_name_and_src_coords_attributes (decl_die, decl);
11837 add_type_attribute (decl_die, member_declared_type (decl),
11838 TREE_READONLY (decl), TREE_THIS_VOLATILE (decl),
11839 context_die);
11841 if (DECL_BIT_FIELD_TYPE (decl))
11843 add_byte_size_attribute (decl_die, decl);
11844 add_bit_size_attribute (decl_die, decl);
11845 add_bit_offset_attribute (decl_die, decl);
11848 if (TREE_CODE (DECL_FIELD_CONTEXT (decl)) != UNION_TYPE)
11849 add_data_member_location_attribute (decl_die, decl);
11851 if (DECL_ARTIFICIAL (decl))
11852 add_AT_flag (decl_die, DW_AT_artificial, 1);
11854 if (TREE_PROTECTED (decl))
11855 add_AT_unsigned (decl_die, DW_AT_accessibility, DW_ACCESS_protected);
11856 else if (TREE_PRIVATE (decl))
11857 add_AT_unsigned (decl_die, DW_AT_accessibility, DW_ACCESS_private);
11859 /* Equate decl number to die, so that we can look up this decl later on. */
11860 equate_decl_number_to_die (decl, decl_die);
11863 #if 0
11864 /* Don't generate either pointer_type DIEs or reference_type DIEs here.
11865 Use modified_type_die instead.
11866 We keep this code here just in case these types of DIEs may be needed to
11867 represent certain things in other languages (e.g. Pascal) someday. */
11869 static void
11870 gen_pointer_type_die (tree type, dw_die_ref context_die)
11872 dw_die_ref ptr_die
11873 = new_die (DW_TAG_pointer_type, scope_die_for (type, context_die), type);
11875 equate_type_number_to_die (type, ptr_die);
11876 add_type_attribute (ptr_die, TREE_TYPE (type), 0, 0, context_die);
11877 add_AT_unsigned (mod_type_die, DW_AT_byte_size, PTR_SIZE);
11880 /* Don't generate either pointer_type DIEs or reference_type DIEs here.
11881 Use modified_type_die instead.
11882 We keep this code here just in case these types of DIEs may be needed to
11883 represent certain things in other languages (e.g. Pascal) someday. */
11885 static void
11886 gen_reference_type_die (tree type, dw_die_ref context_die)
11888 dw_die_ref ref_die
11889 = new_die (DW_TAG_reference_type, scope_die_for (type, context_die), type);
11891 equate_type_number_to_die (type, ref_die);
11892 add_type_attribute (ref_die, TREE_TYPE (type), 0, 0, context_die);
11893 add_AT_unsigned (mod_type_die, DW_AT_byte_size, PTR_SIZE);
11895 #endif
11897 /* Generate a DIE for a pointer to a member type. */
11899 static void
11900 gen_ptr_to_mbr_type_die (tree type, dw_die_ref context_die)
11902 dw_die_ref ptr_die
11903 = new_die (DW_TAG_ptr_to_member_type,
11904 scope_die_for (type, context_die), type);
11906 equate_type_number_to_die (type, ptr_die);
11907 add_AT_die_ref (ptr_die, DW_AT_containing_type,
11908 lookup_type_die (TYPE_OFFSET_BASETYPE (type)));
11909 add_type_attribute (ptr_die, TREE_TYPE (type), 0, 0, context_die);
11912 /* Generate the DIE for the compilation unit. */
11914 static dw_die_ref
11915 gen_compile_unit_die (const char *filename)
11917 dw_die_ref die;
11918 char producer[250];
11919 const char *language_string = lang_hooks.name;
11920 int language;
11922 die = new_die (DW_TAG_compile_unit, NULL, NULL);
11924 if (filename)
11926 add_name_attribute (die, filename);
11927 /* Don't add cwd for <built-in>. */
11928 if (filename[0] != DIR_SEPARATOR && filename[0] != '<')
11929 add_comp_dir_attribute (die);
11932 sprintf (producer, "%s %s", language_string, version_string);
11934 #ifdef MIPS_DEBUGGING_INFO
11935 /* The MIPS/SGI compilers place the 'cc' command line options in the producer
11936 string. The SGI debugger looks for -g, -g1, -g2, or -g3; if they do
11937 not appear in the producer string, the debugger reaches the conclusion
11938 that the object file is stripped and has no debugging information.
11939 To get the MIPS/SGI debugger to believe that there is debugging
11940 information in the object file, we add a -g to the producer string. */
11941 if (debug_info_level > DINFO_LEVEL_TERSE)
11942 strcat (producer, " -g");
11943 #endif
11945 add_AT_string (die, DW_AT_producer, producer);
11947 if (strcmp (language_string, "GNU C++") == 0)
11948 language = DW_LANG_C_plus_plus;
11949 else if (strcmp (language_string, "GNU Ada") == 0)
11950 language = DW_LANG_Ada95;
11951 else if (strcmp (language_string, "GNU F77") == 0)
11952 language = DW_LANG_Fortran77;
11953 else if (strcmp (language_string, "GNU F95") == 0)
11954 language = DW_LANG_Fortran95;
11955 else if (strcmp (language_string, "GNU Pascal") == 0)
11956 language = DW_LANG_Pascal83;
11957 else if (strcmp (language_string, "GNU Java") == 0)
11958 language = DW_LANG_Java;
11959 else
11960 language = DW_LANG_C89;
11962 add_AT_unsigned (die, DW_AT_language, language);
11963 return die;
11966 /* Generate a DIE for a string type. */
11968 static void
11969 gen_string_type_die (tree type, dw_die_ref context_die)
11971 dw_die_ref type_die
11972 = new_die (DW_TAG_string_type, scope_die_for (type, context_die), type);
11974 equate_type_number_to_die (type, type_die);
11976 /* ??? Fudge the string length attribute for now.
11977 TODO: add string length info. */
11978 #if 0
11979 string_length_attribute (TYPE_MAX_VALUE (TYPE_DOMAIN (type)));
11980 bound_representation (upper_bound, 0, 'u');
11981 #endif
11984 /* Generate the DIE for a base class. */
11986 static void
11987 gen_inheritance_die (tree binfo, tree access, dw_die_ref context_die)
11989 dw_die_ref die = new_die (DW_TAG_inheritance, context_die, binfo);
11991 add_type_attribute (die, BINFO_TYPE (binfo), 0, 0, context_die);
11992 add_data_member_location_attribute (die, binfo);
11994 if (BINFO_VIRTUAL_P (binfo))
11995 add_AT_unsigned (die, DW_AT_virtuality, DW_VIRTUALITY_virtual);
11997 if (access == access_public_node)
11998 add_AT_unsigned (die, DW_AT_accessibility, DW_ACCESS_public);
11999 else if (access == access_protected_node)
12000 add_AT_unsigned (die, DW_AT_accessibility, DW_ACCESS_protected);
12003 /* Generate a DIE for a class member. */
12005 static void
12006 gen_member_die (tree type, dw_die_ref context_die)
12008 tree member;
12009 tree binfo = TYPE_BINFO (type);
12010 dw_die_ref child;
12012 /* If this is not an incomplete type, output descriptions of each of its
12013 members. Note that as we output the DIEs necessary to represent the
12014 members of this record or union type, we will also be trying to output
12015 DIEs to represent the *types* of those members. However the `type'
12016 function (above) will specifically avoid generating type DIEs for member
12017 types *within* the list of member DIEs for this (containing) type except
12018 for those types (of members) which are explicitly marked as also being
12019 members of this (containing) type themselves. The g++ front- end can
12020 force any given type to be treated as a member of some other (containing)
12021 type by setting the TYPE_CONTEXT of the given (member) type to point to
12022 the TREE node representing the appropriate (containing) type. */
12024 /* First output info about the base classes. */
12025 if (binfo)
12027 VEC(tree,gc) *accesses = BINFO_BASE_ACCESSES (binfo);
12028 int i;
12029 tree base;
12031 for (i = 0; BINFO_BASE_ITERATE (binfo, i, base); i++)
12032 gen_inheritance_die (base,
12033 (accesses ? VEC_index (tree, accesses, i)
12034 : access_public_node), context_die);
12037 /* Now output info about the data members and type members. */
12038 for (member = TYPE_FIELDS (type); member; member = TREE_CHAIN (member))
12040 /* If we thought we were generating minimal debug info for TYPE
12041 and then changed our minds, some of the member declarations
12042 may have already been defined. Don't define them again, but
12043 do put them in the right order. */
12045 child = lookup_decl_die (member);
12046 if (child)
12047 splice_child_die (context_die, child);
12048 else
12049 gen_decl_die (member, context_die);
12052 /* Now output info about the function members (if any). */
12053 for (member = TYPE_METHODS (type); member; member = TREE_CHAIN (member))
12055 /* Don't include clones in the member list. */
12056 if (DECL_ABSTRACT_ORIGIN (member))
12057 continue;
12059 child = lookup_decl_die (member);
12060 if (child)
12061 splice_child_die (context_die, child);
12062 else
12063 gen_decl_die (member, context_die);
12067 /* Generate a DIE for a structure or union type. If TYPE_DECL_SUPPRESS_DEBUG
12068 is set, we pretend that the type was never defined, so we only get the
12069 member DIEs needed by later specification DIEs. */
12071 static void
12072 gen_struct_or_union_type_die (tree type, dw_die_ref context_die)
12074 dw_die_ref type_die = lookup_type_die (type);
12075 dw_die_ref scope_die = 0;
12076 int nested = 0;
12077 int complete = (TYPE_SIZE (type)
12078 && (! TYPE_STUB_DECL (type)
12079 || ! TYPE_DECL_SUPPRESS_DEBUG (TYPE_STUB_DECL (type))));
12080 int ns_decl = (context_die && context_die->die_tag == DW_TAG_namespace);
12082 if (type_die && ! complete)
12083 return;
12085 if (TYPE_CONTEXT (type) != NULL_TREE
12086 && (AGGREGATE_TYPE_P (TYPE_CONTEXT (type))
12087 || TREE_CODE (TYPE_CONTEXT (type)) == NAMESPACE_DECL))
12088 nested = 1;
12090 scope_die = scope_die_for (type, context_die);
12092 if (! type_die || (nested && scope_die == comp_unit_die))
12093 /* First occurrence of type or toplevel definition of nested class. */
12095 dw_die_ref old_die = type_die;
12097 type_die = new_die (TREE_CODE (type) == RECORD_TYPE
12098 ? DW_TAG_structure_type : DW_TAG_union_type,
12099 scope_die, type);
12100 equate_type_number_to_die (type, type_die);
12101 if (old_die)
12102 add_AT_specification (type_die, old_die);
12103 else
12104 add_name_attribute (type_die, type_tag (type));
12106 else
12107 remove_AT (type_die, DW_AT_declaration);
12109 /* If this type has been completed, then give it a byte_size attribute and
12110 then give a list of members. */
12111 if (complete && !ns_decl)
12113 /* Prevent infinite recursion in cases where the type of some member of
12114 this type is expressed in terms of this type itself. */
12115 TREE_ASM_WRITTEN (type) = 1;
12116 add_byte_size_attribute (type_die, type);
12117 if (TYPE_STUB_DECL (type) != NULL_TREE)
12118 add_src_coords_attributes (type_die, TYPE_STUB_DECL (type));
12120 /* If the first reference to this type was as the return type of an
12121 inline function, then it may not have a parent. Fix this now. */
12122 if (type_die->die_parent == NULL)
12123 add_child_die (scope_die, type_die);
12125 push_decl_scope (type);
12126 gen_member_die (type, type_die);
12127 pop_decl_scope ();
12129 /* GNU extension: Record what type our vtable lives in. */
12130 if (TYPE_VFIELD (type))
12132 tree vtype = DECL_FCONTEXT (TYPE_VFIELD (type));
12134 gen_type_die (vtype, context_die);
12135 add_AT_die_ref (type_die, DW_AT_containing_type,
12136 lookup_type_die (vtype));
12139 else
12141 add_AT_flag (type_die, DW_AT_declaration, 1);
12143 /* We don't need to do this for function-local types. */
12144 if (TYPE_STUB_DECL (type)
12145 && ! decl_function_context (TYPE_STUB_DECL (type)))
12146 VEC_safe_push (tree, gc, incomplete_types, type);
12150 /* Generate a DIE for a subroutine _type_. */
12152 static void
12153 gen_subroutine_type_die (tree type, dw_die_ref context_die)
12155 tree return_type = TREE_TYPE (type);
12156 dw_die_ref subr_die
12157 = new_die (DW_TAG_subroutine_type,
12158 scope_die_for (type, context_die), type);
12160 equate_type_number_to_die (type, subr_die);
12161 add_prototyped_attribute (subr_die, type);
12162 add_type_attribute (subr_die, return_type, 0, 0, context_die);
12163 gen_formal_types_die (type, subr_die);
12166 /* Generate a DIE for a type definition. */
12168 static void
12169 gen_typedef_die (tree decl, dw_die_ref context_die)
12171 dw_die_ref type_die;
12172 tree origin;
12174 if (TREE_ASM_WRITTEN (decl))
12175 return;
12177 TREE_ASM_WRITTEN (decl) = 1;
12178 type_die = new_die (DW_TAG_typedef, context_die, decl);
12179 origin = decl_ultimate_origin (decl);
12180 if (origin != NULL)
12181 add_abstract_origin_attribute (type_die, origin);
12182 else
12184 tree type;
12186 add_name_and_src_coords_attributes (type_die, decl);
12187 if (DECL_ORIGINAL_TYPE (decl))
12189 type = DECL_ORIGINAL_TYPE (decl);
12191 gcc_assert (type != TREE_TYPE (decl));
12192 equate_type_number_to_die (TREE_TYPE (decl), type_die);
12194 else
12195 type = TREE_TYPE (decl);
12197 add_type_attribute (type_die, type, TREE_READONLY (decl),
12198 TREE_THIS_VOLATILE (decl), context_die);
12201 if (DECL_ABSTRACT (decl))
12202 equate_decl_number_to_die (decl, type_die);
12205 /* Generate a type description DIE. */
12207 static void
12208 gen_type_die (tree type, dw_die_ref context_die)
12210 int need_pop;
12212 if (type == NULL_TREE || type == error_mark_node)
12213 return;
12215 if (TYPE_NAME (type) && TREE_CODE (TYPE_NAME (type)) == TYPE_DECL
12216 && DECL_ORIGINAL_TYPE (TYPE_NAME (type)))
12218 if (TREE_ASM_WRITTEN (type))
12219 return;
12221 /* Prevent broken recursion; we can't hand off to the same type. */
12222 gcc_assert (DECL_ORIGINAL_TYPE (TYPE_NAME (type)) != type);
12224 TREE_ASM_WRITTEN (type) = 1;
12225 gen_decl_die (TYPE_NAME (type), context_die);
12226 return;
12229 /* We are going to output a DIE to represent the unqualified version
12230 of this type (i.e. without any const or volatile qualifiers) so
12231 get the main variant (i.e. the unqualified version) of this type
12232 now. (Vectors are special because the debugging info is in the
12233 cloned type itself). */
12234 if (TREE_CODE (type) != VECTOR_TYPE)
12235 type = type_main_variant (type);
12237 if (TREE_ASM_WRITTEN (type))
12238 return;
12240 switch (TREE_CODE (type))
12242 case ERROR_MARK:
12243 break;
12245 case POINTER_TYPE:
12246 case REFERENCE_TYPE:
12247 /* We must set TREE_ASM_WRITTEN in case this is a recursive type. This
12248 ensures that the gen_type_die recursion will terminate even if the
12249 type is recursive. Recursive types are possible in Ada. */
12250 /* ??? We could perhaps do this for all types before the switch
12251 statement. */
12252 TREE_ASM_WRITTEN (type) = 1;
12254 /* For these types, all that is required is that we output a DIE (or a
12255 set of DIEs) to represent the "basis" type. */
12256 gen_type_die (TREE_TYPE (type), context_die);
12257 break;
12259 case OFFSET_TYPE:
12260 /* This code is used for C++ pointer-to-data-member types.
12261 Output a description of the relevant class type. */
12262 gen_type_die (TYPE_OFFSET_BASETYPE (type), context_die);
12264 /* Output a description of the type of the object pointed to. */
12265 gen_type_die (TREE_TYPE (type), context_die);
12267 /* Now output a DIE to represent this pointer-to-data-member type
12268 itself. */
12269 gen_ptr_to_mbr_type_die (type, context_die);
12270 break;
12272 case FUNCTION_TYPE:
12273 /* Force out return type (in case it wasn't forced out already). */
12274 gen_type_die (TREE_TYPE (type), context_die);
12275 gen_subroutine_type_die (type, context_die);
12276 break;
12278 case METHOD_TYPE:
12279 /* Force out return type (in case it wasn't forced out already). */
12280 gen_type_die (TREE_TYPE (type), context_die);
12281 gen_subroutine_type_die (type, context_die);
12282 break;
12284 case ARRAY_TYPE:
12285 if (TYPE_STRING_FLAG (type) && TREE_CODE (TREE_TYPE (type)) == CHAR_TYPE)
12287 gen_type_die (TREE_TYPE (type), context_die);
12288 gen_string_type_die (type, context_die);
12290 else
12291 gen_array_type_die (type, context_die);
12292 break;
12294 case VECTOR_TYPE:
12295 gen_array_type_die (type, context_die);
12296 break;
12298 case ENUMERAL_TYPE:
12299 case RECORD_TYPE:
12300 case UNION_TYPE:
12301 case QUAL_UNION_TYPE:
12302 /* If this is a nested type whose containing class hasn't been written
12303 out yet, writing it out will cover this one, too. This does not apply
12304 to instantiations of member class templates; they need to be added to
12305 the containing class as they are generated. FIXME: This hurts the
12306 idea of combining type decls from multiple TUs, since we can't predict
12307 what set of template instantiations we'll get. */
12308 if (TYPE_CONTEXT (type)
12309 && AGGREGATE_TYPE_P (TYPE_CONTEXT (type))
12310 && ! TREE_ASM_WRITTEN (TYPE_CONTEXT (type)))
12312 gen_type_die (TYPE_CONTEXT (type), context_die);
12314 if (TREE_ASM_WRITTEN (type))
12315 return;
12317 /* If that failed, attach ourselves to the stub. */
12318 push_decl_scope (TYPE_CONTEXT (type));
12319 context_die = lookup_type_die (TYPE_CONTEXT (type));
12320 need_pop = 1;
12322 else
12324 declare_in_namespace (type, context_die);
12325 need_pop = 0;
12328 if (TREE_CODE (type) == ENUMERAL_TYPE)
12329 gen_enumeration_type_die (type, context_die);
12330 else
12331 gen_struct_or_union_type_die (type, context_die);
12333 if (need_pop)
12334 pop_decl_scope ();
12336 /* Don't set TREE_ASM_WRITTEN on an incomplete struct; we want to fix
12337 it up if it is ever completed. gen_*_type_die will set it for us
12338 when appropriate. */
12339 return;
12341 case VOID_TYPE:
12342 case INTEGER_TYPE:
12343 case REAL_TYPE:
12344 case COMPLEX_TYPE:
12345 case BOOLEAN_TYPE:
12346 case CHAR_TYPE:
12347 /* No DIEs needed for fundamental types. */
12348 break;
12350 case LANG_TYPE:
12351 /* No Dwarf representation currently defined. */
12352 break;
12354 default:
12355 gcc_unreachable ();
12358 TREE_ASM_WRITTEN (type) = 1;
12361 /* Generate a DIE for a tagged type instantiation. */
12363 static void
12364 gen_tagged_type_instantiation_die (tree type, dw_die_ref context_die)
12366 if (type == NULL_TREE || type == error_mark_node)
12367 return;
12369 /* We are going to output a DIE to represent the unqualified version of
12370 this type (i.e. without any const or volatile qualifiers) so make sure
12371 that we have the main variant (i.e. the unqualified version) of this
12372 type now. */
12373 gcc_assert (type == type_main_variant (type));
12375 /* Do not check TREE_ASM_WRITTEN (type) as it may not be set if this is
12376 an instance of an unresolved type. */
12378 switch (TREE_CODE (type))
12380 case ERROR_MARK:
12381 break;
12383 case ENUMERAL_TYPE:
12384 gen_inlined_enumeration_type_die (type, context_die);
12385 break;
12387 case RECORD_TYPE:
12388 gen_inlined_structure_type_die (type, context_die);
12389 break;
12391 case UNION_TYPE:
12392 case QUAL_UNION_TYPE:
12393 gen_inlined_union_type_die (type, context_die);
12394 break;
12396 default:
12397 gcc_unreachable ();
12401 /* Generate a DW_TAG_lexical_block DIE followed by DIEs to represent all of the
12402 things which are local to the given block. */
12404 static void
12405 gen_block_die (tree stmt, dw_die_ref context_die, int depth)
12407 int must_output_die = 0;
12408 tree origin;
12409 tree decl;
12410 enum tree_code origin_code;
12412 /* Ignore blocks that are NULL. */
12413 if (stmt == NULL_TREE)
12414 return;
12416 /* If the block is one fragment of a non-contiguous block, do not
12417 process the variables, since they will have been done by the
12418 origin block. Do process subblocks. */
12419 if (BLOCK_FRAGMENT_ORIGIN (stmt))
12421 tree sub;
12423 for (sub = BLOCK_SUBBLOCKS (stmt); sub; sub = BLOCK_CHAIN (sub))
12424 gen_block_die (sub, context_die, depth + 1);
12426 return;
12429 /* Determine the "ultimate origin" of this block. This block may be an
12430 inlined instance of an inlined instance of inline function, so we have
12431 to trace all of the way back through the origin chain to find out what
12432 sort of node actually served as the original seed for the creation of
12433 the current block. */
12434 origin = block_ultimate_origin (stmt);
12435 origin_code = (origin != NULL) ? TREE_CODE (origin) : ERROR_MARK;
12437 /* Determine if we need to output any Dwarf DIEs at all to represent this
12438 block. */
12439 if (origin_code == FUNCTION_DECL)
12440 /* The outer scopes for inlinings *must* always be represented. We
12441 generate DW_TAG_inlined_subroutine DIEs for them. (See below.) */
12442 must_output_die = 1;
12443 else
12445 /* In the case where the current block represents an inlining of the
12446 "body block" of an inline function, we must *NOT* output any DIE for
12447 this block because we have already output a DIE to represent the whole
12448 inlined function scope and the "body block" of any function doesn't
12449 really represent a different scope according to ANSI C rules. So we
12450 check here to make sure that this block does not represent a "body
12451 block inlining" before trying to set the MUST_OUTPUT_DIE flag. */
12452 if (! is_body_block (origin ? origin : stmt))
12454 /* Determine if this block directly contains any "significant"
12455 local declarations which we will need to output DIEs for. */
12456 if (debug_info_level > DINFO_LEVEL_TERSE)
12457 /* We are not in terse mode so *any* local declaration counts
12458 as being a "significant" one. */
12459 must_output_die = (BLOCK_VARS (stmt) != NULL
12460 && (TREE_USED (stmt)
12461 || TREE_ASM_WRITTEN (stmt)
12462 || BLOCK_ABSTRACT (stmt)));
12463 else
12464 /* We are in terse mode, so only local (nested) function
12465 definitions count as "significant" local declarations. */
12466 for (decl = BLOCK_VARS (stmt);
12467 decl != NULL; decl = TREE_CHAIN (decl))
12468 if (TREE_CODE (decl) == FUNCTION_DECL
12469 && DECL_INITIAL (decl))
12471 must_output_die = 1;
12472 break;
12477 /* It would be a waste of space to generate a Dwarf DW_TAG_lexical_block
12478 DIE for any block which contains no significant local declarations at
12479 all. Rather, in such cases we just call `decls_for_scope' so that any
12480 needed Dwarf info for any sub-blocks will get properly generated. Note
12481 that in terse mode, our definition of what constitutes a "significant"
12482 local declaration gets restricted to include only inlined function
12483 instances and local (nested) function definitions. */
12484 if (must_output_die)
12486 if (origin_code == FUNCTION_DECL)
12487 gen_inlined_subroutine_die (stmt, context_die, depth);
12488 else
12489 gen_lexical_block_die (stmt, context_die, depth);
12491 else
12492 decls_for_scope (stmt, context_die, depth);
12495 /* Generate all of the decls declared within a given scope and (recursively)
12496 all of its sub-blocks. */
12498 static void
12499 decls_for_scope (tree stmt, dw_die_ref context_die, int depth)
12501 tree decl;
12502 tree subblocks;
12504 /* Ignore NULL blocks. */
12505 if (stmt == NULL_TREE)
12506 return;
12508 if (TREE_USED (stmt))
12510 /* Output the DIEs to represent all of the data objects and typedefs
12511 declared directly within this block but not within any nested
12512 sub-blocks. Also, nested function and tag DIEs have been
12513 generated with a parent of NULL; fix that up now. */
12514 for (decl = BLOCK_VARS (stmt); decl != NULL; decl = TREE_CHAIN (decl))
12516 dw_die_ref die;
12518 if (TREE_CODE (decl) == FUNCTION_DECL)
12519 die = lookup_decl_die (decl);
12520 else if (TREE_CODE (decl) == TYPE_DECL && TYPE_DECL_IS_STUB (decl))
12521 die = lookup_type_die (TREE_TYPE (decl));
12522 else
12523 die = NULL;
12525 if (die != NULL && die->die_parent == NULL)
12526 add_child_die (context_die, die);
12527 /* Do not produce debug information for static variables since
12528 these might be optimized out. We are called for these later
12529 in cgraph_varpool_analyze_pending_decls. */
12530 if (TREE_CODE (decl) == VAR_DECL && TREE_STATIC (decl))
12532 else
12533 gen_decl_die (decl, context_die);
12537 /* If we're at -g1, we're not interested in subblocks. */
12538 if (debug_info_level <= DINFO_LEVEL_TERSE)
12539 return;
12541 /* Output the DIEs to represent all sub-blocks (and the items declared
12542 therein) of this block. */
12543 for (subblocks = BLOCK_SUBBLOCKS (stmt);
12544 subblocks != NULL;
12545 subblocks = BLOCK_CHAIN (subblocks))
12546 gen_block_die (subblocks, context_die, depth + 1);
12549 /* Is this a typedef we can avoid emitting? */
12551 static inline int
12552 is_redundant_typedef (tree decl)
12554 if (TYPE_DECL_IS_STUB (decl))
12555 return 1;
12557 if (DECL_ARTIFICIAL (decl)
12558 && DECL_CONTEXT (decl)
12559 && is_tagged_type (DECL_CONTEXT (decl))
12560 && TREE_CODE (TYPE_NAME (DECL_CONTEXT (decl))) == TYPE_DECL
12561 && DECL_NAME (decl) == DECL_NAME (TYPE_NAME (DECL_CONTEXT (decl))))
12562 /* Also ignore the artificial member typedef for the class name. */
12563 return 1;
12565 return 0;
12568 /* Returns the DIE for decl. A DIE will always be returned. */
12570 static dw_die_ref
12571 force_decl_die (tree decl)
12573 dw_die_ref decl_die;
12574 unsigned saved_external_flag;
12575 tree save_fn = NULL_TREE;
12576 decl_die = lookup_decl_die (decl);
12577 if (!decl_die)
12579 dw_die_ref context_die;
12580 tree decl_context = DECL_CONTEXT (decl);
12581 if (decl_context)
12583 /* Find die that represents this context. */
12584 if (TYPE_P (decl_context))
12585 context_die = force_type_die (decl_context);
12586 else
12587 context_die = force_decl_die (decl_context);
12589 else
12590 context_die = comp_unit_die;
12592 switch (TREE_CODE (decl))
12594 case FUNCTION_DECL:
12595 /* Clear current_function_decl, so that gen_subprogram_die thinks
12596 that this is a declaration. At this point, we just want to force
12597 declaration die. */
12598 save_fn = current_function_decl;
12599 current_function_decl = NULL_TREE;
12600 gen_subprogram_die (decl, context_die);
12601 current_function_decl = save_fn;
12602 break;
12604 case VAR_DECL:
12605 /* Set external flag to force declaration die. Restore it after
12606 gen_decl_die() call. */
12607 saved_external_flag = DECL_EXTERNAL (decl);
12608 DECL_EXTERNAL (decl) = 1;
12609 gen_decl_die (decl, context_die);
12610 DECL_EXTERNAL (decl) = saved_external_flag;
12611 break;
12613 case NAMESPACE_DECL:
12614 dwarf2out_decl (decl);
12615 break;
12617 default:
12618 gcc_unreachable ();
12621 /* We should be able to find the DIE now. */
12622 if (!decl_die)
12623 decl_die = lookup_decl_die (decl);
12624 gcc_assert (decl_die);
12627 return decl_die;
12630 /* Returns the DIE for TYPE. A DIE is always returned. */
12632 static dw_die_ref
12633 force_type_die (tree type)
12635 dw_die_ref type_die;
12637 type_die = lookup_type_die (type);
12638 if (!type_die)
12640 dw_die_ref context_die;
12641 if (TYPE_CONTEXT (type))
12642 if (TYPE_P (TYPE_CONTEXT (type)))
12643 context_die = force_type_die (TYPE_CONTEXT (type));
12644 else
12645 context_die = force_decl_die (TYPE_CONTEXT (type));
12646 else
12647 context_die = comp_unit_die;
12649 gen_type_die (type, context_die);
12650 type_die = lookup_type_die (type);
12651 gcc_assert (type_die);
12653 return type_die;
12656 /* Force out any required namespaces to be able to output DECL,
12657 and return the new context_die for it, if it's changed. */
12659 static dw_die_ref
12660 setup_namespace_context (tree thing, dw_die_ref context_die)
12662 tree context = (DECL_P (thing)
12663 ? DECL_CONTEXT (thing) : TYPE_CONTEXT (thing));
12664 if (context && TREE_CODE (context) == NAMESPACE_DECL)
12665 /* Force out the namespace. */
12666 context_die = force_decl_die (context);
12668 return context_die;
12671 /* Emit a declaration DIE for THING (which is either a DECL or a tagged
12672 type) within its namespace, if appropriate.
12674 For compatibility with older debuggers, namespace DIEs only contain
12675 declarations; all definitions are emitted at CU scope. */
12677 static void
12678 declare_in_namespace (tree thing, dw_die_ref context_die)
12680 dw_die_ref ns_context;
12682 if (debug_info_level <= DINFO_LEVEL_TERSE)
12683 return;
12685 /* If this decl is from an inlined function, then don't try to emit it in its
12686 namespace, as we will get confused. It would have already been emitted
12687 when the abstract instance of the inline function was emitted anyways. */
12688 if (DECL_P (thing) && DECL_ABSTRACT_ORIGIN (thing))
12689 return;
12691 ns_context = setup_namespace_context (thing, context_die);
12693 if (ns_context != context_die)
12695 if (DECL_P (thing))
12696 gen_decl_die (thing, ns_context);
12697 else
12698 gen_type_die (thing, ns_context);
12702 /* Generate a DIE for a namespace or namespace alias. */
12704 static void
12705 gen_namespace_die (tree decl)
12707 dw_die_ref context_die = setup_namespace_context (decl, comp_unit_die);
12709 /* Namespace aliases have a DECL_ABSTRACT_ORIGIN of the namespace
12710 they are an alias of. */
12711 if (DECL_ABSTRACT_ORIGIN (decl) == NULL)
12713 /* Output a real namespace. */
12714 dw_die_ref namespace_die
12715 = new_die (DW_TAG_namespace, context_die, decl);
12716 add_name_and_src_coords_attributes (namespace_die, decl);
12717 equate_decl_number_to_die (decl, namespace_die);
12719 else
12721 /* Output a namespace alias. */
12723 /* Force out the namespace we are an alias of, if necessary. */
12724 dw_die_ref origin_die
12725 = force_decl_die (DECL_ABSTRACT_ORIGIN (decl));
12727 /* Now create the namespace alias DIE. */
12728 dw_die_ref namespace_die
12729 = new_die (DW_TAG_imported_declaration, context_die, decl);
12730 add_name_and_src_coords_attributes (namespace_die, decl);
12731 add_AT_die_ref (namespace_die, DW_AT_import, origin_die);
12732 equate_decl_number_to_die (decl, namespace_die);
12736 /* Generate Dwarf debug information for a decl described by DECL. */
12738 static void
12739 gen_decl_die (tree decl, dw_die_ref context_die)
12741 tree origin;
12743 if (DECL_P (decl) && DECL_IGNORED_P (decl))
12744 return;
12746 switch (TREE_CODE (decl))
12748 case ERROR_MARK:
12749 break;
12751 case CONST_DECL:
12752 /* The individual enumerators of an enum type get output when we output
12753 the Dwarf representation of the relevant enum type itself. */
12754 break;
12756 case FUNCTION_DECL:
12757 /* Don't output any DIEs to represent mere function declarations,
12758 unless they are class members or explicit block externs. */
12759 if (DECL_INITIAL (decl) == NULL_TREE && DECL_CONTEXT (decl) == NULL_TREE
12760 && (current_function_decl == NULL_TREE || DECL_ARTIFICIAL (decl)))
12761 break;
12763 #if 0
12764 /* FIXME */
12765 /* This doesn't work because the C frontend sets DECL_ABSTRACT_ORIGIN
12766 on local redeclarations of global functions. That seems broken. */
12767 if (current_function_decl != decl)
12768 /* This is only a declaration. */;
12769 #endif
12771 /* If we're emitting a clone, emit info for the abstract instance. */
12772 if (DECL_ORIGIN (decl) != decl)
12773 dwarf2out_abstract_function (DECL_ABSTRACT_ORIGIN (decl));
12775 /* If we're emitting an out-of-line copy of an inline function,
12776 emit info for the abstract instance and set up to refer to it. */
12777 else if (cgraph_function_possibly_inlined_p (decl)
12778 && ! DECL_ABSTRACT (decl)
12779 && ! class_or_namespace_scope_p (context_die)
12780 /* dwarf2out_abstract_function won't emit a die if this is just
12781 a declaration. We must avoid setting DECL_ABSTRACT_ORIGIN in
12782 that case, because that works only if we have a die. */
12783 && DECL_INITIAL (decl) != NULL_TREE)
12785 dwarf2out_abstract_function (decl);
12786 set_decl_origin_self (decl);
12789 /* Otherwise we're emitting the primary DIE for this decl. */
12790 else if (debug_info_level > DINFO_LEVEL_TERSE)
12792 /* Before we describe the FUNCTION_DECL itself, make sure that we
12793 have described its return type. */
12794 gen_type_die (TREE_TYPE (TREE_TYPE (decl)), context_die);
12796 /* And its virtual context. */
12797 if (DECL_VINDEX (decl) != NULL_TREE)
12798 gen_type_die (DECL_CONTEXT (decl), context_die);
12800 /* And its containing type. */
12801 origin = decl_class_context (decl);
12802 if (origin != NULL_TREE)
12803 gen_type_die_for_member (origin, decl, context_die);
12805 /* And its containing namespace. */
12806 declare_in_namespace (decl, context_die);
12809 /* Now output a DIE to represent the function itself. */
12810 gen_subprogram_die (decl, context_die);
12811 break;
12813 case TYPE_DECL:
12814 /* If we are in terse mode, don't generate any DIEs to represent any
12815 actual typedefs. */
12816 if (debug_info_level <= DINFO_LEVEL_TERSE)
12817 break;
12819 /* In the special case of a TYPE_DECL node representing the declaration
12820 of some type tag, if the given TYPE_DECL is marked as having been
12821 instantiated from some other (original) TYPE_DECL node (e.g. one which
12822 was generated within the original definition of an inline function) we
12823 have to generate a special (abbreviated) DW_TAG_structure_type,
12824 DW_TAG_union_type, or DW_TAG_enumeration_type DIE here. */
12825 if (TYPE_DECL_IS_STUB (decl) && decl_ultimate_origin (decl) != NULL_TREE)
12827 gen_tagged_type_instantiation_die (TREE_TYPE (decl), context_die);
12828 break;
12831 if (is_redundant_typedef (decl))
12832 gen_type_die (TREE_TYPE (decl), context_die);
12833 else
12834 /* Output a DIE to represent the typedef itself. */
12835 gen_typedef_die (decl, context_die);
12836 break;
12838 case LABEL_DECL:
12839 if (debug_info_level >= DINFO_LEVEL_NORMAL)
12840 gen_label_die (decl, context_die);
12841 break;
12843 case VAR_DECL:
12844 case RESULT_DECL:
12845 /* If we are in terse mode, don't generate any DIEs to represent any
12846 variable declarations or definitions. */
12847 if (debug_info_level <= DINFO_LEVEL_TERSE)
12848 break;
12850 /* Output any DIEs that are needed to specify the type of this data
12851 object. */
12852 gen_type_die (TREE_TYPE (decl), context_die);
12854 /* And its containing type. */
12855 origin = decl_class_context (decl);
12856 if (origin != NULL_TREE)
12857 gen_type_die_for_member (origin, decl, context_die);
12859 /* And its containing namespace. */
12860 declare_in_namespace (decl, context_die);
12862 /* Now output the DIE to represent the data object itself. This gets
12863 complicated because of the possibility that the VAR_DECL really
12864 represents an inlined instance of a formal parameter for an inline
12865 function. */
12866 origin = decl_ultimate_origin (decl);
12867 if (origin != NULL_TREE && TREE_CODE (origin) == PARM_DECL)
12868 gen_formal_parameter_die (decl, context_die);
12869 else
12870 gen_variable_die (decl, context_die);
12871 break;
12873 case FIELD_DECL:
12874 /* Ignore the nameless fields that are used to skip bits but handle C++
12875 anonymous unions and structs. */
12876 if (DECL_NAME (decl) != NULL_TREE
12877 || TREE_CODE (TREE_TYPE (decl)) == UNION_TYPE
12878 || TREE_CODE (TREE_TYPE (decl)) == RECORD_TYPE)
12880 gen_type_die (member_declared_type (decl), context_die);
12881 gen_field_die (decl, context_die);
12883 break;
12885 case PARM_DECL:
12886 gen_type_die (TREE_TYPE (decl), context_die);
12887 gen_formal_parameter_die (decl, context_die);
12888 break;
12890 case NAMESPACE_DECL:
12891 gen_namespace_die (decl);
12892 break;
12894 default:
12895 /* Probably some frontend-internal decl. Assume we don't care. */
12896 gcc_assert ((int)TREE_CODE (decl) > NUM_TREE_CODES);
12897 break;
12901 /* Add Ada "use" clause information for SGI Workshop debugger. */
12903 void
12904 dwarf2out_add_library_unit_info (const char *filename, const char *context_list)
12906 unsigned int file_index;
12908 if (filename != NULL)
12910 dw_die_ref unit_die = new_die (DW_TAG_module, comp_unit_die, NULL);
12911 tree context_list_decl
12912 = build_decl (LABEL_DECL, get_identifier (context_list),
12913 void_type_node);
12915 TREE_PUBLIC (context_list_decl) = TRUE;
12916 add_name_attribute (unit_die, context_list);
12917 file_index = lookup_filename (filename);
12918 add_AT_unsigned (unit_die, DW_AT_decl_file, file_index);
12919 add_pubname (context_list_decl, unit_die);
12923 /* Output debug information for global decl DECL. Called from toplev.c after
12924 compilation proper has finished. */
12926 static void
12927 dwarf2out_global_decl (tree decl)
12929 /* Output DWARF2 information for file-scope tentative data object
12930 declarations, file-scope (extern) function declarations (which had no
12931 corresponding body) and file-scope tagged type declarations and
12932 definitions which have not yet been forced out. */
12933 if (TREE_CODE (decl) != FUNCTION_DECL || !DECL_INITIAL (decl))
12934 dwarf2out_decl (decl);
12937 /* Output debug information for type decl DECL. Called from toplev.c
12938 and from language front ends (to record built-in types). */
12939 static void
12940 dwarf2out_type_decl (tree decl, int local)
12942 if (!local)
12943 dwarf2out_decl (decl);
12946 /* Output debug information for imported module or decl. */
12948 static void
12949 dwarf2out_imported_module_or_decl (tree decl, tree context)
12951 dw_die_ref imported_die, at_import_die;
12952 dw_die_ref scope_die;
12953 unsigned file_index;
12954 expanded_location xloc;
12956 if (debug_info_level <= DINFO_LEVEL_TERSE)
12957 return;
12959 gcc_assert (decl);
12961 /* To emit DW_TAG_imported_module or DW_TAG_imported_decl, we need two DIEs.
12962 We need decl DIE for reference and scope die. First, get DIE for the decl
12963 itself. */
12965 /* Get the scope die for decl context. Use comp_unit_die for global module
12966 or decl. If die is not found for non globals, force new die. */
12967 if (!context)
12968 scope_die = comp_unit_die;
12969 else if (TYPE_P (context))
12970 scope_die = force_type_die (context);
12971 else
12972 scope_die = force_decl_die (context);
12974 /* For TYPE_DECL or CONST_DECL, lookup TREE_TYPE. */
12975 if (TREE_CODE (decl) == TYPE_DECL || TREE_CODE (decl) == CONST_DECL)
12976 at_import_die = force_type_die (TREE_TYPE (decl));
12977 else
12979 at_import_die = lookup_decl_die (decl);
12980 if (!at_import_die)
12982 /* If we're trying to avoid duplicate debug info, we may not have
12983 emitted the member decl for this field. Emit it now. */
12984 if (TREE_CODE (decl) == FIELD_DECL)
12986 tree type = DECL_CONTEXT (decl);
12987 dw_die_ref type_context_die;
12989 if (TYPE_CONTEXT (type))
12990 if (TYPE_P (TYPE_CONTEXT (type)))
12991 type_context_die = force_type_die (TYPE_CONTEXT (type));
12992 else
12993 type_context_die = force_decl_die (TYPE_CONTEXT (type));
12994 else
12995 type_context_die = comp_unit_die;
12996 gen_type_die_for_member (type, decl, type_context_die);
12998 at_import_die = force_decl_die (decl);
13002 /* OK, now we have DIEs for decl as well as scope. Emit imported die. */
13003 if (TREE_CODE (decl) == NAMESPACE_DECL)
13004 imported_die = new_die (DW_TAG_imported_module, scope_die, context);
13005 else
13006 imported_die = new_die (DW_TAG_imported_declaration, scope_die, context);
13008 xloc = expand_location (input_location);
13009 file_index = lookup_filename (xloc.file);
13010 add_AT_unsigned (imported_die, DW_AT_decl_file, file_index);
13011 add_AT_unsigned (imported_die, DW_AT_decl_line, xloc.line);
13012 add_AT_die_ref (imported_die, DW_AT_import, at_import_die);
13015 /* Write the debugging output for DECL. */
13017 void
13018 dwarf2out_decl (tree decl)
13020 dw_die_ref context_die = comp_unit_die;
13022 switch (TREE_CODE (decl))
13024 case ERROR_MARK:
13025 return;
13027 case FUNCTION_DECL:
13028 /* What we would really like to do here is to filter out all mere
13029 file-scope declarations of file-scope functions which are never
13030 referenced later within this translation unit (and keep all of ones
13031 that *are* referenced later on) but we aren't clairvoyant, so we have
13032 no idea which functions will be referenced in the future (i.e. later
13033 on within the current translation unit). So here we just ignore all
13034 file-scope function declarations which are not also definitions. If
13035 and when the debugger needs to know something about these functions,
13036 it will have to hunt around and find the DWARF information associated
13037 with the definition of the function.
13039 We can't just check DECL_EXTERNAL to find out which FUNCTION_DECL
13040 nodes represent definitions and which ones represent mere
13041 declarations. We have to check DECL_INITIAL instead. That's because
13042 the C front-end supports some weird semantics for "extern inline"
13043 function definitions. These can get inlined within the current
13044 translation unit (an thus, we need to generate Dwarf info for their
13045 abstract instances so that the Dwarf info for the concrete inlined
13046 instances can have something to refer to) but the compiler never
13047 generates any out-of-lines instances of such things (despite the fact
13048 that they *are* definitions).
13050 The important point is that the C front-end marks these "extern
13051 inline" functions as DECL_EXTERNAL, but we need to generate DWARF for
13052 them anyway. Note that the C++ front-end also plays some similar games
13053 for inline function definitions appearing within include files which
13054 also contain `#pragma interface' pragmas. */
13055 if (DECL_INITIAL (decl) == NULL_TREE)
13056 return;
13058 /* If we're a nested function, initially use a parent of NULL; if we're
13059 a plain function, this will be fixed up in decls_for_scope. If
13060 we're a method, it will be ignored, since we already have a DIE. */
13061 if (decl_function_context (decl)
13062 /* But if we're in terse mode, we don't care about scope. */
13063 && debug_info_level > DINFO_LEVEL_TERSE)
13064 context_die = NULL;
13065 break;
13067 case VAR_DECL:
13068 /* Ignore this VAR_DECL if it refers to a file-scope extern data object
13069 declaration and if the declaration was never even referenced from
13070 within this entire compilation unit. We suppress these DIEs in
13071 order to save space in the .debug section (by eliminating entries
13072 which are probably useless). Note that we must not suppress
13073 block-local extern declarations (whether used or not) because that
13074 would screw-up the debugger's name lookup mechanism and cause it to
13075 miss things which really ought to be in scope at a given point. */
13076 if (DECL_EXTERNAL (decl) && !TREE_USED (decl))
13077 return;
13079 /* For local statics lookup proper context die. */
13080 if (TREE_STATIC (decl) && decl_function_context (decl))
13081 context_die = lookup_decl_die (DECL_CONTEXT (decl));
13083 /* If we are in terse mode, don't generate any DIEs to represent any
13084 variable declarations or definitions. */
13085 if (debug_info_level <= DINFO_LEVEL_TERSE)
13086 return;
13087 break;
13089 case NAMESPACE_DECL:
13090 if (debug_info_level <= DINFO_LEVEL_TERSE)
13091 return;
13092 if (lookup_decl_die (decl) != NULL)
13093 return;
13094 break;
13096 case TYPE_DECL:
13097 /* Don't emit stubs for types unless they are needed by other DIEs. */
13098 if (TYPE_DECL_SUPPRESS_DEBUG (decl))
13099 return;
13101 /* Don't bother trying to generate any DIEs to represent any of the
13102 normal built-in types for the language we are compiling. */
13103 if (DECL_IS_BUILTIN (decl))
13105 /* OK, we need to generate one for `bool' so GDB knows what type
13106 comparisons have. */
13107 if ((get_AT_unsigned (comp_unit_die, DW_AT_language)
13108 == DW_LANG_C_plus_plus)
13109 && TREE_CODE (TREE_TYPE (decl)) == BOOLEAN_TYPE
13110 && ! DECL_IGNORED_P (decl))
13111 modified_type_die (TREE_TYPE (decl), 0, 0, NULL);
13113 return;
13116 /* If we are in terse mode, don't generate any DIEs for types. */
13117 if (debug_info_level <= DINFO_LEVEL_TERSE)
13118 return;
13120 /* If we're a function-scope tag, initially use a parent of NULL;
13121 this will be fixed up in decls_for_scope. */
13122 if (decl_function_context (decl))
13123 context_die = NULL;
13125 break;
13127 default:
13128 return;
13131 gen_decl_die (decl, context_die);
13134 /* Output a marker (i.e. a label) for the beginning of the generated code for
13135 a lexical block. */
13137 static void
13138 dwarf2out_begin_block (unsigned int line ATTRIBUTE_UNUSED,
13139 unsigned int blocknum)
13141 current_function_section (current_function_decl);
13142 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, BLOCK_BEGIN_LABEL, blocknum);
13145 /* Output a marker (i.e. a label) for the end of the generated code for a
13146 lexical block. */
13148 static void
13149 dwarf2out_end_block (unsigned int line ATTRIBUTE_UNUSED, unsigned int blocknum)
13151 current_function_section (current_function_decl);
13152 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, BLOCK_END_LABEL, blocknum);
13155 /* Returns nonzero if it is appropriate not to emit any debugging
13156 information for BLOCK, because it doesn't contain any instructions.
13158 Don't allow this for blocks with nested functions or local classes
13159 as we would end up with orphans, and in the presence of scheduling
13160 we may end up calling them anyway. */
13162 static bool
13163 dwarf2out_ignore_block (tree block)
13165 tree decl;
13167 for (decl = BLOCK_VARS (block); decl; decl = TREE_CHAIN (decl))
13168 if (TREE_CODE (decl) == FUNCTION_DECL
13169 || (TREE_CODE (decl) == TYPE_DECL && TYPE_DECL_IS_STUB (decl)))
13170 return 0;
13172 return 1;
13175 /* Lookup FILE_NAME (in the list of filenames that we know about here in
13176 dwarf2out.c) and return its "index". The index of each (known) filename is
13177 just a unique number which is associated with only that one filename. We
13178 need such numbers for the sake of generating labels (in the .debug_sfnames
13179 section) and references to those files numbers (in the .debug_srcinfo
13180 and.debug_macinfo sections). If the filename given as an argument is not
13181 found in our current list, add it to the list and assign it the next
13182 available unique index number. In order to speed up searches, we remember
13183 the index of the filename was looked up last. This handles the majority of
13184 all searches. */
13186 static unsigned
13187 lookup_filename (const char *file_name)
13189 size_t i, n;
13190 char *save_file_name;
13192 /* Check to see if the file name that was searched on the previous
13193 call matches this file name. If so, return the index. */
13194 if (file_table_last_lookup_index != 0)
13196 const char *last
13197 = VARRAY_CHAR_PTR (file_table, file_table_last_lookup_index);
13198 if (strcmp (file_name, last) == 0)
13199 return file_table_last_lookup_index;
13202 /* Didn't match the previous lookup, search the table. */
13203 n = VARRAY_ACTIVE_SIZE (file_table);
13204 for (i = 1; i < n; i++)
13205 if (strcmp (file_name, VARRAY_CHAR_PTR (file_table, i)) == 0)
13207 file_table_last_lookup_index = i;
13208 return i;
13211 /* Add the new entry to the end of the filename table. */
13212 file_table_last_lookup_index = n;
13213 save_file_name = (char *) ggc_strdup (file_name);
13214 VARRAY_PUSH_CHAR_PTR (file_table, save_file_name);
13215 VARRAY_PUSH_UINT (file_table_emitted, 0);
13217 /* If the assembler is emitting the file table, and we aren't eliminating
13218 unused debug types, then we must emit .file here. If we are eliminating
13219 unused debug types, then this will be done by the maybe_emit_file call in
13220 prune_unused_types_walk_attribs. */
13222 if (DWARF2_ASM_LINE_DEBUG_INFO && ! flag_eliminate_unused_debug_types)
13223 maybe_emit_file (i);
13225 return i;
13228 static int
13229 maybe_emit_file (int fileno)
13231 if (DWARF2_ASM_LINE_DEBUG_INFO && fileno > 0)
13233 if (!VARRAY_UINT (file_table_emitted, fileno))
13235 VARRAY_UINT (file_table_emitted, fileno) = ++emitcount;
13236 fprintf (asm_out_file, "\t.file %u ",
13237 VARRAY_UINT (file_table_emitted, fileno));
13238 output_quoted_string (asm_out_file,
13239 VARRAY_CHAR_PTR (file_table, fileno));
13240 fputc ('\n', asm_out_file);
13242 return VARRAY_UINT (file_table_emitted, fileno);
13244 else
13245 return fileno;
13248 static void
13249 init_file_table (void)
13251 /* Allocate the initial hunk of the file_table. */
13252 VARRAY_CHAR_PTR_INIT (file_table, 64, "file_table");
13253 VARRAY_UINT_INIT (file_table_emitted, 64, "file_table_emitted");
13255 /* Skip the first entry - file numbers begin at 1. */
13256 VARRAY_PUSH_CHAR_PTR (file_table, NULL);
13257 VARRAY_PUSH_UINT (file_table_emitted, 0);
13258 file_table_last_lookup_index = 0;
13261 /* Called by the final INSN scan whenever we see a var location. We
13262 use it to drop labels in the right places, and throw the location in
13263 our lookup table. */
13265 static void
13266 dwarf2out_var_location (rtx loc_note)
13268 char loclabel[MAX_ARTIFICIAL_LABEL_BYTES];
13269 struct var_loc_node *newloc;
13270 rtx prev_insn;
13271 static rtx last_insn;
13272 static const char *last_label;
13273 tree decl;
13275 if (!DECL_P (NOTE_VAR_LOCATION_DECL (loc_note)))
13276 return;
13277 prev_insn = PREV_INSN (loc_note);
13279 newloc = ggc_alloc_cleared (sizeof (struct var_loc_node));
13280 /* If the insn we processed last time is the previous insn
13281 and it is also a var location note, use the label we emitted
13282 last time. */
13283 if (last_insn != NULL_RTX
13284 && last_insn == prev_insn
13285 && NOTE_P (prev_insn)
13286 && NOTE_LINE_NUMBER (prev_insn) == NOTE_INSN_VAR_LOCATION)
13288 newloc->label = last_label;
13290 else
13292 ASM_GENERATE_INTERNAL_LABEL (loclabel, "LVL", loclabel_num);
13293 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, "LVL", loclabel_num);
13294 loclabel_num++;
13295 newloc->label = ggc_strdup (loclabel);
13297 newloc->var_loc_note = loc_note;
13298 newloc->next = NULL;
13300 if (cfun
13301 && (last_text_section == in_unlikely_executed_text
13302 || (last_text_section == in_named
13303 && last_text_section_name == cfun->unlikely_text_section_name)))
13304 newloc->section_label = cfun->cold_section_label;
13305 else
13306 newloc->section_label = text_section_label;
13308 last_insn = loc_note;
13309 last_label = newloc->label;
13310 decl = NOTE_VAR_LOCATION_DECL (loc_note);
13311 if (DECL_DEBUG_EXPR_IS_FROM (decl) && DECL_DEBUG_EXPR (decl)
13312 && DECL_P (DECL_DEBUG_EXPR (decl)))
13313 decl = DECL_DEBUG_EXPR (decl);
13314 add_var_loc_to_decl (decl, newloc);
13317 /* We need to reset the locations at the beginning of each
13318 function. We can't do this in the end_function hook, because the
13319 declarations that use the locations won't have been outputted when
13320 that hook is called. */
13322 static void
13323 dwarf2out_begin_function (tree unused ATTRIBUTE_UNUSED)
13325 htab_empty (decl_loc_table);
13328 /* Output a label to mark the beginning of a source code line entry
13329 and record information relating to this source line, in
13330 'line_info_table' for later output of the .debug_line section. */
13332 static void
13333 dwarf2out_source_line (unsigned int line, const char *filename)
13335 if (debug_info_level >= DINFO_LEVEL_NORMAL
13336 && line != 0)
13338 current_function_section (current_function_decl);
13340 /* If requested, emit something human-readable. */
13341 if (flag_debug_asm)
13342 fprintf (asm_out_file, "\t%s %s:%d\n", ASM_COMMENT_START,
13343 filename, line);
13345 if (DWARF2_ASM_LINE_DEBUG_INFO)
13347 unsigned file_num = lookup_filename (filename);
13349 file_num = maybe_emit_file (file_num);
13351 /* Emit the .loc directive understood by GNU as. */
13352 fprintf (asm_out_file, "\t.loc %d %d 0\n", file_num, line);
13354 /* Indicate that line number info exists. */
13355 line_info_table_in_use++;
13357 /* Indicate that multiple line number tables exist. */
13358 if (DECL_SECTION_NAME (current_function_decl))
13359 separate_line_info_table_in_use++;
13361 else if (DECL_SECTION_NAME (current_function_decl))
13363 dw_separate_line_info_ref line_info;
13364 targetm.asm_out.internal_label (asm_out_file, SEPARATE_LINE_CODE_LABEL,
13365 separate_line_info_table_in_use);
13367 /* Expand the line info table if necessary. */
13368 if (separate_line_info_table_in_use
13369 == separate_line_info_table_allocated)
13371 separate_line_info_table_allocated += LINE_INFO_TABLE_INCREMENT;
13372 separate_line_info_table
13373 = ggc_realloc (separate_line_info_table,
13374 separate_line_info_table_allocated
13375 * sizeof (dw_separate_line_info_entry));
13376 memset (separate_line_info_table
13377 + separate_line_info_table_in_use,
13379 (LINE_INFO_TABLE_INCREMENT
13380 * sizeof (dw_separate_line_info_entry)));
13383 /* Add the new entry at the end of the line_info_table. */
13384 line_info
13385 = &separate_line_info_table[separate_line_info_table_in_use++];
13386 line_info->dw_file_num = lookup_filename (filename);
13387 line_info->dw_line_num = line;
13388 line_info->function = current_function_funcdef_no;
13390 else
13392 dw_line_info_ref line_info;
13394 targetm.asm_out.internal_label (asm_out_file, LINE_CODE_LABEL,
13395 line_info_table_in_use);
13397 /* Expand the line info table if necessary. */
13398 if (line_info_table_in_use == line_info_table_allocated)
13400 line_info_table_allocated += LINE_INFO_TABLE_INCREMENT;
13401 line_info_table
13402 = ggc_realloc (line_info_table,
13403 (line_info_table_allocated
13404 * sizeof (dw_line_info_entry)));
13405 memset (line_info_table + line_info_table_in_use, 0,
13406 LINE_INFO_TABLE_INCREMENT * sizeof (dw_line_info_entry));
13409 /* Add the new entry at the end of the line_info_table. */
13410 line_info = &line_info_table[line_info_table_in_use++];
13411 line_info->dw_file_num = lookup_filename (filename);
13412 line_info->dw_line_num = line;
13417 /* Record the beginning of a new source file. */
13419 static void
13420 dwarf2out_start_source_file (unsigned int lineno, const char *filename)
13422 if (flag_eliminate_dwarf2_dups)
13424 /* Record the beginning of the file for break_out_includes. */
13425 dw_die_ref bincl_die;
13427 bincl_die = new_die (DW_TAG_GNU_BINCL, comp_unit_die, NULL);
13428 add_AT_string (bincl_die, DW_AT_name, filename);
13431 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
13433 named_section_flags (DEBUG_MACINFO_SECTION, SECTION_DEBUG);
13434 dw2_asm_output_data (1, DW_MACINFO_start_file, "Start new file");
13435 dw2_asm_output_data_uleb128 (lineno, "Included from line number %d",
13436 lineno);
13437 maybe_emit_file (lookup_filename (filename));
13438 dw2_asm_output_data_uleb128 (lookup_filename (filename),
13439 "Filename we just started");
13443 /* Record the end of a source file. */
13445 static void
13446 dwarf2out_end_source_file (unsigned int lineno ATTRIBUTE_UNUSED)
13448 if (flag_eliminate_dwarf2_dups)
13449 /* Record the end of the file for break_out_includes. */
13450 new_die (DW_TAG_GNU_EINCL, comp_unit_die, NULL);
13452 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
13454 named_section_flags (DEBUG_MACINFO_SECTION, SECTION_DEBUG);
13455 dw2_asm_output_data (1, DW_MACINFO_end_file, "End file");
13459 /* Called from debug_define in toplev.c. The `buffer' parameter contains
13460 the tail part of the directive line, i.e. the part which is past the
13461 initial whitespace, #, whitespace, directive-name, whitespace part. */
13463 static void
13464 dwarf2out_define (unsigned int lineno ATTRIBUTE_UNUSED,
13465 const char *buffer ATTRIBUTE_UNUSED)
13467 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
13469 named_section_flags (DEBUG_MACINFO_SECTION, SECTION_DEBUG);
13470 dw2_asm_output_data (1, DW_MACINFO_define, "Define macro");
13471 dw2_asm_output_data_uleb128 (lineno, "At line number %d", lineno);
13472 dw2_asm_output_nstring (buffer, -1, "The macro");
13476 /* Called from debug_undef in toplev.c. The `buffer' parameter contains
13477 the tail part of the directive line, i.e. the part which is past the
13478 initial whitespace, #, whitespace, directive-name, whitespace part. */
13480 static void
13481 dwarf2out_undef (unsigned int lineno ATTRIBUTE_UNUSED,
13482 const char *buffer ATTRIBUTE_UNUSED)
13484 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
13486 named_section_flags (DEBUG_MACINFO_SECTION, SECTION_DEBUG);
13487 dw2_asm_output_data (1, DW_MACINFO_undef, "Undefine macro");
13488 dw2_asm_output_data_uleb128 (lineno, "At line number %d", lineno);
13489 dw2_asm_output_nstring (buffer, -1, "The macro");
13493 /* Set up for Dwarf output at the start of compilation. */
13495 static void
13496 dwarf2out_init (const char *filename ATTRIBUTE_UNUSED)
13498 init_file_table ();
13500 /* Allocate the decl_die_table. */
13501 decl_die_table = htab_create_ggc (10, decl_die_table_hash,
13502 decl_die_table_eq, NULL);
13504 /* Allocate the decl_loc_table. */
13505 decl_loc_table = htab_create_ggc (10, decl_loc_table_hash,
13506 decl_loc_table_eq, NULL);
13508 /* Allocate the initial hunk of the decl_scope_table. */
13509 decl_scope_table = VEC_alloc (tree, gc, 256);
13511 /* Allocate the initial hunk of the abbrev_die_table. */
13512 abbrev_die_table = ggc_alloc_cleared (ABBREV_DIE_TABLE_INCREMENT
13513 * sizeof (dw_die_ref));
13514 abbrev_die_table_allocated = ABBREV_DIE_TABLE_INCREMENT;
13515 /* Zero-th entry is allocated, but unused. */
13516 abbrev_die_table_in_use = 1;
13518 /* Allocate the initial hunk of the line_info_table. */
13519 line_info_table = ggc_alloc_cleared (LINE_INFO_TABLE_INCREMENT
13520 * sizeof (dw_line_info_entry));
13521 line_info_table_allocated = LINE_INFO_TABLE_INCREMENT;
13523 /* Zero-th entry is allocated, but unused. */
13524 line_info_table_in_use = 1;
13526 /* Generate the initial DIE for the .debug section. Note that the (string)
13527 value given in the DW_AT_name attribute of the DW_TAG_compile_unit DIE
13528 will (typically) be a relative pathname and that this pathname should be
13529 taken as being relative to the directory from which the compiler was
13530 invoked when the given (base) source file was compiled. We will fill
13531 in this value in dwarf2out_finish. */
13532 comp_unit_die = gen_compile_unit_die (NULL);
13534 incomplete_types = VEC_alloc (tree, gc, 64);
13536 used_rtx_array = VEC_alloc (rtx, gc, 32);
13538 ASM_GENERATE_INTERNAL_LABEL (text_end_label, TEXT_END_LABEL, 0);
13539 ASM_GENERATE_INTERNAL_LABEL (abbrev_section_label,
13540 DEBUG_ABBREV_SECTION_LABEL, 0);
13541 ASM_GENERATE_INTERNAL_LABEL (text_section_label, TEXT_SECTION_LABEL, 0);
13542 ASM_GENERATE_INTERNAL_LABEL (cold_text_section_label,
13543 COLD_TEXT_SECTION_LABEL, 0);
13544 ASM_GENERATE_INTERNAL_LABEL (cold_end_label, COLD_END_LABEL, 0);
13546 ASM_GENERATE_INTERNAL_LABEL (debug_info_section_label,
13547 DEBUG_INFO_SECTION_LABEL, 0);
13548 ASM_GENERATE_INTERNAL_LABEL (debug_line_section_label,
13549 DEBUG_LINE_SECTION_LABEL, 0);
13550 ASM_GENERATE_INTERNAL_LABEL (ranges_section_label,
13551 DEBUG_RANGES_SECTION_LABEL, 0);
13552 named_section_flags (DEBUG_ABBREV_SECTION, SECTION_DEBUG);
13553 ASM_OUTPUT_LABEL (asm_out_file, abbrev_section_label);
13554 named_section_flags (DEBUG_INFO_SECTION, SECTION_DEBUG);
13555 ASM_OUTPUT_LABEL (asm_out_file, debug_info_section_label);
13556 named_section_flags (DEBUG_LINE_SECTION, SECTION_DEBUG);
13557 ASM_OUTPUT_LABEL (asm_out_file, debug_line_section_label);
13559 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
13561 named_section_flags (DEBUG_MACINFO_SECTION, SECTION_DEBUG);
13562 ASM_GENERATE_INTERNAL_LABEL (macinfo_section_label,
13563 DEBUG_MACINFO_SECTION_LABEL, 0);
13564 ASM_OUTPUT_LABEL (asm_out_file, macinfo_section_label);
13567 text_section ();
13568 ASM_OUTPUT_LABEL (asm_out_file, text_section_label);
13569 if (flag_reorder_blocks_and_partition)
13571 unlikely_text_section ();
13572 ASM_OUTPUT_LABEL (asm_out_file, cold_text_section_label);
13576 /* A helper function for dwarf2out_finish called through
13577 ht_forall. Emit one queued .debug_str string. */
13579 static int
13580 output_indirect_string (void **h, void *v ATTRIBUTE_UNUSED)
13582 struct indirect_string_node *node = (struct indirect_string_node *) *h;
13584 if (node->form == DW_FORM_strp)
13586 named_section_flags (DEBUG_STR_SECTION, DEBUG_STR_SECTION_FLAGS);
13587 ASM_OUTPUT_LABEL (asm_out_file, node->label);
13588 assemble_string (node->str, strlen (node->str) + 1);
13591 return 1;
13596 /* Clear the marks for a die and its children.
13597 Be cool if the mark isn't set. */
13599 static void
13600 prune_unmark_dies (dw_die_ref die)
13602 dw_die_ref c;
13603 die->die_mark = 0;
13604 for (c = die->die_child; c; c = c->die_sib)
13605 prune_unmark_dies (c);
13609 /* Given DIE that we're marking as used, find any other dies
13610 it references as attributes and mark them as used. */
13612 static void
13613 prune_unused_types_walk_attribs (dw_die_ref die)
13615 dw_attr_ref a;
13617 for (a = die->die_attr; a != NULL; a = a->dw_attr_next)
13619 if (a->dw_attr_val.val_class == dw_val_class_die_ref)
13621 /* A reference to another DIE.
13622 Make sure that it will get emitted. */
13623 prune_unused_types_mark (a->dw_attr_val.v.val_die_ref.die, 1);
13625 else if (a->dw_attr == DW_AT_decl_file)
13627 /* A reference to a file. Make sure the file name is emitted. */
13628 a->dw_attr_val.v.val_unsigned =
13629 maybe_emit_file (a->dw_attr_val.v.val_unsigned);
13635 /* Mark DIE as being used. If DOKIDS is true, then walk down
13636 to DIE's children. */
13638 static void
13639 prune_unused_types_mark (dw_die_ref die, int dokids)
13641 dw_die_ref c;
13643 if (die->die_mark == 0)
13645 /* We haven't done this node yet. Mark it as used. */
13646 die->die_mark = 1;
13648 /* We also have to mark its parents as used.
13649 (But we don't want to mark our parents' kids due to this.) */
13650 if (die->die_parent)
13651 prune_unused_types_mark (die->die_parent, 0);
13653 /* Mark any referenced nodes. */
13654 prune_unused_types_walk_attribs (die);
13656 /* If this node is a specification,
13657 also mark the definition, if it exists. */
13658 if (get_AT_flag (die, DW_AT_declaration) && die->die_definition)
13659 prune_unused_types_mark (die->die_definition, 1);
13662 if (dokids && die->die_mark != 2)
13664 /* We need to walk the children, but haven't done so yet.
13665 Remember that we've walked the kids. */
13666 die->die_mark = 2;
13668 /* Walk them. */
13669 for (c = die->die_child; c; c = c->die_sib)
13671 /* If this is an array type, we need to make sure our
13672 kids get marked, even if they're types. */
13673 if (die->die_tag == DW_TAG_array_type)
13674 prune_unused_types_mark (c, 1);
13675 else
13676 prune_unused_types_walk (c);
13682 /* Walk the tree DIE and mark types that we actually use. */
13684 static void
13685 prune_unused_types_walk (dw_die_ref die)
13687 dw_die_ref c;
13689 /* Don't do anything if this node is already marked. */
13690 if (die->die_mark)
13691 return;
13693 switch (die->die_tag) {
13694 case DW_TAG_const_type:
13695 case DW_TAG_packed_type:
13696 case DW_TAG_pointer_type:
13697 case DW_TAG_reference_type:
13698 case DW_TAG_volatile_type:
13699 case DW_TAG_typedef:
13700 case DW_TAG_array_type:
13701 case DW_TAG_structure_type:
13702 case DW_TAG_union_type:
13703 case DW_TAG_class_type:
13704 case DW_TAG_friend:
13705 case DW_TAG_variant_part:
13706 case DW_TAG_enumeration_type:
13707 case DW_TAG_subroutine_type:
13708 case DW_TAG_string_type:
13709 case DW_TAG_set_type:
13710 case DW_TAG_subrange_type:
13711 case DW_TAG_ptr_to_member_type:
13712 case DW_TAG_file_type:
13713 /* It's a type node --- don't mark it. */
13714 return;
13716 default:
13717 /* Mark everything else. */
13718 break;
13721 die->die_mark = 1;
13723 /* Now, mark any dies referenced from here. */
13724 prune_unused_types_walk_attribs (die);
13726 /* Mark children. */
13727 for (c = die->die_child; c; c = c->die_sib)
13728 prune_unused_types_walk (c);
13732 /* Remove from the tree DIE any dies that aren't marked. */
13734 static void
13735 prune_unused_types_prune (dw_die_ref die)
13737 dw_die_ref c, p, n;
13739 gcc_assert (die->die_mark);
13741 p = NULL;
13742 for (c = die->die_child; c; c = n)
13744 n = c->die_sib;
13745 if (c->die_mark)
13747 prune_unused_types_prune (c);
13748 p = c;
13750 else
13752 if (p)
13753 p->die_sib = n;
13754 else
13755 die->die_child = n;
13756 free_die (c);
13762 /* Remove dies representing declarations that we never use. */
13764 static void
13765 prune_unused_types (void)
13767 unsigned int i;
13768 limbo_die_node *node;
13770 /* Clear all the marks. */
13771 prune_unmark_dies (comp_unit_die);
13772 for (node = limbo_die_list; node; node = node->next)
13773 prune_unmark_dies (node->die);
13775 /* Set the mark on nodes that are actually used. */
13776 prune_unused_types_walk (comp_unit_die);
13777 for (node = limbo_die_list; node; node = node->next)
13778 prune_unused_types_walk (node->die);
13780 /* Also set the mark on nodes referenced from the
13781 pubname_table or arange_table. */
13782 for (i = 0; i < pubname_table_in_use; i++)
13783 prune_unused_types_mark (pubname_table[i].die, 1);
13784 for (i = 0; i < arange_table_in_use; i++)
13785 prune_unused_types_mark (arange_table[i], 1);
13787 /* Get rid of nodes that aren't marked. */
13788 prune_unused_types_prune (comp_unit_die);
13789 for (node = limbo_die_list; node; node = node->next)
13790 prune_unused_types_prune (node->die);
13792 /* Leave the marks clear. */
13793 prune_unmark_dies (comp_unit_die);
13794 for (node = limbo_die_list; node; node = node->next)
13795 prune_unmark_dies (node->die);
13798 /* Output stuff that dwarf requires at the end of every file,
13799 and generate the DWARF-2 debugging info. */
13801 static void
13802 dwarf2out_finish (const char *filename)
13804 limbo_die_node *node, *next_node;
13805 dw_die_ref die = 0;
13807 /* Add the name for the main input file now. We delayed this from
13808 dwarf2out_init to avoid complications with PCH. */
13809 add_name_attribute (comp_unit_die, filename);
13810 if (filename[0] != DIR_SEPARATOR)
13811 add_comp_dir_attribute (comp_unit_die);
13812 else if (get_AT (comp_unit_die, DW_AT_comp_dir) == NULL)
13814 size_t i;
13815 for (i = 1; i < VARRAY_ACTIVE_SIZE (file_table); i++)
13816 if (VARRAY_CHAR_PTR (file_table, i)[0] != DIR_SEPARATOR
13817 /* Don't add cwd for <built-in>. */
13818 && VARRAY_CHAR_PTR (file_table, i)[0] != '<')
13820 add_comp_dir_attribute (comp_unit_die);
13821 break;
13825 /* Traverse the limbo die list, and add parent/child links. The only
13826 dies without parents that should be here are concrete instances of
13827 inline functions, and the comp_unit_die. We can ignore the comp_unit_die.
13828 For concrete instances, we can get the parent die from the abstract
13829 instance. */
13830 for (node = limbo_die_list; node; node = next_node)
13832 next_node = node->next;
13833 die = node->die;
13835 if (die->die_parent == NULL)
13837 dw_die_ref origin = get_AT_ref (die, DW_AT_abstract_origin);
13839 if (origin)
13840 add_child_die (origin->die_parent, die);
13841 else if (die == comp_unit_die)
13843 else if (errorcount > 0 || sorrycount > 0)
13844 /* It's OK to be confused by errors in the input. */
13845 add_child_die (comp_unit_die, die);
13846 else
13848 /* In certain situations, the lexical block containing a
13849 nested function can be optimized away, which results
13850 in the nested function die being orphaned. Likewise
13851 with the return type of that nested function. Force
13852 this to be a child of the containing function.
13854 It may happen that even the containing function got fully
13855 inlined and optimized out. In that case we are lost and
13856 assign the empty child. This should not be big issue as
13857 the function is likely unreachable too. */
13858 tree context = NULL_TREE;
13860 gcc_assert (node->created_for);
13862 if (DECL_P (node->created_for))
13863 context = DECL_CONTEXT (node->created_for);
13864 else if (TYPE_P (node->created_for))
13865 context = TYPE_CONTEXT (node->created_for);
13867 gcc_assert (context && TREE_CODE (context) == FUNCTION_DECL);
13869 origin = lookup_decl_die (context);
13870 if (origin)
13871 add_child_die (origin, die);
13872 else
13873 add_child_die (comp_unit_die, die);
13878 limbo_die_list = NULL;
13880 /* Walk through the list of incomplete types again, trying once more to
13881 emit full debugging info for them. */
13882 retry_incomplete_types ();
13884 /* We need to reverse all the dies before break_out_includes, or
13885 we'll see the end of an include file before the beginning. */
13886 reverse_all_dies (comp_unit_die);
13888 if (flag_eliminate_unused_debug_types)
13889 prune_unused_types ();
13891 /* Generate separate CUs for each of the include files we've seen.
13892 They will go into limbo_die_list. */
13893 if (flag_eliminate_dwarf2_dups)
13894 break_out_includes (comp_unit_die);
13896 /* Traverse the DIE's and add add sibling attributes to those DIE's
13897 that have children. */
13898 add_sibling_attributes (comp_unit_die);
13899 for (node = limbo_die_list; node; node = node->next)
13900 add_sibling_attributes (node->die);
13902 /* Output a terminator label for the .text section. */
13903 text_section ();
13904 targetm.asm_out.internal_label (asm_out_file, TEXT_END_LABEL, 0);
13905 if (flag_reorder_blocks_and_partition)
13907 unlikely_text_section ();
13908 targetm.asm_out.internal_label (asm_out_file, COLD_END_LABEL, 0);
13911 /* Output the source line correspondence table. We must do this
13912 even if there is no line information. Otherwise, on an empty
13913 translation unit, we will generate a present, but empty,
13914 .debug_info section. IRIX 6.5 `nm' will then complain when
13915 examining the file. */
13916 if (! DWARF2_ASM_LINE_DEBUG_INFO)
13918 named_section_flags (DEBUG_LINE_SECTION, SECTION_DEBUG);
13919 output_line_info ();
13922 /* Output location list section if necessary. */
13923 if (have_location_lists)
13925 /* Output the location lists info. */
13926 named_section_flags (DEBUG_LOC_SECTION, SECTION_DEBUG);
13927 ASM_GENERATE_INTERNAL_LABEL (loc_section_label,
13928 DEBUG_LOC_SECTION_LABEL, 0);
13929 ASM_OUTPUT_LABEL (asm_out_file, loc_section_label);
13930 output_location_lists (die);
13931 have_location_lists = 0;
13934 /* We can only use the low/high_pc attributes if all of the code was
13935 in .text. */
13936 if (separate_line_info_table_in_use == 0)
13938 add_AT_lbl_id (comp_unit_die, DW_AT_low_pc, text_section_label);
13939 add_AT_lbl_id (comp_unit_die, DW_AT_high_pc, text_end_label);
13942 /* If it wasn't, we need to give .debug_loc and .debug_ranges an appropriate
13943 "base address". Use zero so that these addresses become absolute. */
13944 else if (have_location_lists || ranges_table_in_use)
13945 add_AT_addr (comp_unit_die, DW_AT_entry_pc, const0_rtx);
13947 if (debug_info_level >= DINFO_LEVEL_NORMAL)
13948 add_AT_lbl_offset (comp_unit_die, DW_AT_stmt_list,
13949 debug_line_section_label);
13951 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
13952 add_AT_lbl_offset (comp_unit_die, DW_AT_macro_info, macinfo_section_label);
13954 /* Output all of the compilation units. We put the main one last so that
13955 the offsets are available to output_pubnames. */
13956 for (node = limbo_die_list; node; node = node->next)
13957 output_comp_unit (node->die, 0);
13959 output_comp_unit (comp_unit_die, 0);
13961 /* Output the abbreviation table. */
13962 named_section_flags (DEBUG_ABBREV_SECTION, SECTION_DEBUG);
13963 output_abbrev_section ();
13965 /* Output public names table if necessary. */
13966 if (pubname_table_in_use)
13968 named_section_flags (DEBUG_PUBNAMES_SECTION, SECTION_DEBUG);
13969 output_pubnames ();
13972 /* Output the address range information. We only put functions in the arange
13973 table, so don't write it out if we don't have any. */
13974 if (fde_table_in_use)
13976 named_section_flags (DEBUG_ARANGES_SECTION, SECTION_DEBUG);
13977 output_aranges ();
13980 /* Output ranges section if necessary. */
13981 if (ranges_table_in_use)
13983 named_section_flags (DEBUG_RANGES_SECTION, SECTION_DEBUG);
13984 ASM_OUTPUT_LABEL (asm_out_file, ranges_section_label);
13985 output_ranges ();
13988 /* Have to end the macro section. */
13989 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
13991 named_section_flags (DEBUG_MACINFO_SECTION, SECTION_DEBUG);
13992 dw2_asm_output_data (1, 0, "End compilation unit");
13995 /* If we emitted any DW_FORM_strp form attribute, output the string
13996 table too. */
13997 if (debug_str_hash)
13998 htab_traverse (debug_str_hash, output_indirect_string, NULL);
14000 #else
14002 /* This should never be used, but its address is needed for comparisons. */
14003 const struct gcc_debug_hooks dwarf2_debug_hooks;
14005 #endif /* DWARF2_DEBUGGING_INFO */
14007 #include "gt-dwarf2out.h"