1 //===-- tsan_interceptors.cc ----------------------------------------------===//
3 // This file is distributed under the University of Illinois Open Source
4 // License. See LICENSE.TXT for details.
6 //===----------------------------------------------------------------------===//
8 // This file is a part of ThreadSanitizer (TSan), a race detector.
10 // FIXME: move as many interceptors as possible into
11 // sanitizer_common/sanitizer_common_interceptors.inc
12 //===----------------------------------------------------------------------===//
14 #include "sanitizer_common/sanitizer_atomic.h"
15 #include "sanitizer_common/sanitizer_errno.h"
16 #include "sanitizer_common/sanitizer_libc.h"
17 #include "sanitizer_common/sanitizer_linux.h"
18 #include "sanitizer_common/sanitizer_platform_limits_netbsd.h"
19 #include "sanitizer_common/sanitizer_platform_limits_posix.h"
20 #include "sanitizer_common/sanitizer_placement_new.h"
21 #include "sanitizer_common/sanitizer_posix.h"
22 #include "sanitizer_common/sanitizer_stacktrace.h"
23 #include "sanitizer_common/sanitizer_tls_get_addr.h"
24 #include "interception/interception.h"
25 #include "tsan_interceptors.h"
26 #include "tsan_interface.h"
27 #include "tsan_platform.h"
28 #include "tsan_suppressions.h"
30 #include "tsan_mman.h"
34 using namespace __tsan
; // NOLINT
36 #if SANITIZER_FREEBSD || SANITIZER_MAC
37 #define stdout __stdoutp
38 #define stderr __stderrp
42 #define dirfd(dirp) (*(int *)(dirp))
43 #define fileno_unlocked fileno
44 #define stdout __sF[1]
45 #define stderr __sF[2]
53 const int kSigCount
= 129;
55 const int kSigCount
= 65;
59 // The size is determined by looking at sizeof of real siginfo_t on linux.
60 u64 opaque
[128 / sizeof(u64
)];
65 u64 opaque
[768 / sizeof(u64
) + 1];
69 // The size is determined by looking at sizeof of real ucontext_t on linux.
70 u64 opaque
[936 / sizeof(u64
) + 1];
74 #if defined(__x86_64__) || defined(__mips__) || SANITIZER_PPC64V1
75 #define PTHREAD_ABI_BASE "GLIBC_2.3.2"
76 #elif defined(__aarch64__) || SANITIZER_PPC64V2
77 #define PTHREAD_ABI_BASE "GLIBC_2.17"
80 extern "C" int pthread_attr_init(void *attr
);
81 extern "C" int pthread_attr_destroy(void *attr
);
82 DECLARE_REAL(int, pthread_attr_getdetachstate
, void *, void *)
83 extern "C" int pthread_attr_setstacksize(void *attr
, uptr stacksize
);
84 extern "C" int pthread_key_create(unsigned *key
, void (*destructor
)(void* v
));
85 extern "C" int pthread_setspecific(unsigned key
, const void *v
);
86 DECLARE_REAL(int, pthread_mutexattr_gettype
, void *, void *)
87 DECLARE_REAL(int, fflush
, __sanitizer_FILE
*fp
)
88 DECLARE_REAL_AND_INTERCEPTOR(void *, malloc
, uptr size
)
89 DECLARE_REAL_AND_INTERCEPTOR(void, free
, void *ptr
)
90 extern "C" void *pthread_self();
91 extern "C" void _exit(int status
);
92 extern "C" int fileno_unlocked(void *stream
);
94 extern "C" int dirfd(void *dirp
);
96 #if !SANITIZER_FREEBSD && !SANITIZER_ANDROID && !SANITIZER_NETBSD
97 extern "C" int mallopt(int param
, int value
);
100 extern __sanitizer_FILE
**__sF
;
102 extern __sanitizer_FILE
*stdout
, *stderr
;
104 #if !SANITIZER_FREEBSD && !SANITIZER_MAC && !SANITIZER_NETBSD
105 const int PTHREAD_MUTEX_RECURSIVE
= 1;
106 const int PTHREAD_MUTEX_RECURSIVE_NP
= 1;
108 const int PTHREAD_MUTEX_RECURSIVE
= 2;
109 const int PTHREAD_MUTEX_RECURSIVE_NP
= 2;
111 #if !SANITIZER_FREEBSD && !SANITIZER_MAC && !SANITIZER_NETBSD
112 const int EPOLL_CTL_ADD
= 1;
114 const int SIGILL
= 4;
115 const int SIGABRT
= 6;
116 const int SIGFPE
= 8;
117 const int SIGSEGV
= 11;
118 const int SIGPIPE
= 13;
119 const int SIGTERM
= 15;
120 #if defined(__mips__) || SANITIZER_FREEBSD || SANITIZER_MAC || SANITIZER_NETBSD
121 const int SIGBUS
= 10;
122 const int SIGSYS
= 12;
124 const int SIGBUS
= 7;
125 const int SIGSYS
= 31;
127 void *const MAP_FAILED
= (void*)-1;
129 const int PTHREAD_BARRIER_SERIAL_THREAD
= 1234567;
131 const int PTHREAD_BARRIER_SERIAL_THREAD
= -1;
133 const int MAP_FIXED
= 0x10;
134 typedef long long_t
; // NOLINT
136 // From /usr/include/unistd.h
137 # define F_ULOCK 0 /* Unlock a previously locked region. */
138 # define F_LOCK 1 /* Lock a region for exclusive use. */
139 # define F_TLOCK 2 /* Test and lock a region for exclusive use. */
140 # define F_TEST 3 /* Test a region for other processes locks. */
142 typedef void (*sighandler_t
)(int sig
);
143 typedef void (*sigactionhandler_t
)(int sig
, my_siginfo_t
*siginfo
, void *uctx
);
145 #if SANITIZER_ANDROID
149 sighandler_t sa_handler
;
150 sigactionhandler_t sa_sigaction
;
152 __sanitizer_sigset_t sa_mask
;
153 void (*sa_restorer
)();
155 #elif SANITIZER_NETBSD
158 sighandler_t sa_handler
;
159 sigactionhandler_t sa_sigaction
;
161 __sanitizer_sigset_t sa_mask
;
170 sighandler_t sa_handler
;
171 sigactionhandler_t sa_sigaction
;
173 #if SANITIZER_FREEBSD
175 __sanitizer_sigset_t sa_mask
;
177 __sanitizer_sigset_t sa_mask
;
180 __sanitizer_sigset_t sa_mask
;
184 void (*sa_restorer
)();
189 const sighandler_t SIG_DFL
= (sighandler_t
)0;
190 const sighandler_t SIG_IGN
= (sighandler_t
)1;
191 const sighandler_t SIG_ERR
= (sighandler_t
)-1;
192 #if SANITIZER_FREEBSD || SANITIZER_MAC || SANITIZER_NETBSD
193 const int SA_SIGINFO
= 0x40;
194 const int SIG_SETMASK
= 3;
195 #elif defined(__mips__)
196 const int SA_SIGINFO
= 8;
197 const int SIG_SETMASK
= 3;
199 const int SA_SIGINFO
= 4;
200 const int SIG_SETMASK
= 2;
203 #define COMMON_INTERCEPTOR_NOTHING_IS_INITIALIZED \
204 (!cur_thread()->is_inited)
206 static sigaction_t sigactions
[kSigCount
];
212 my_siginfo_t siginfo
;
216 struct ThreadSignalContext
{
218 atomic_uintptr_t in_blocking_func
;
219 atomic_uintptr_t have_pending_signals
;
220 SignalDesc pending_signals
[kSigCount
];
221 // emptyset and oldset are too big for stack.
222 __sanitizer_sigset_t emptyset
;
223 __sanitizer_sigset_t oldset
;
226 // The object is 64-byte aligned, because we want hot data to be located in
227 // a single cache line if possible (it's accessed in every interceptor).
228 static ALIGNED(64) char libignore_placeholder
[sizeof(LibIgnore
)];
229 LibIgnore
*libignore() {
230 return reinterpret_cast<LibIgnore
*>(&libignore_placeholder
[0]);
233 void InitializeLibIgnore() {
234 const SuppressionContext
&supp
= *Suppressions();
235 const uptr n
= supp
.SuppressionCount();
236 for (uptr i
= 0; i
< n
; i
++) {
237 const Suppression
*s
= supp
.SuppressionAt(i
);
238 if (0 == internal_strcmp(s
->type
, kSuppressionLib
))
239 libignore()->AddIgnoredLibrary(s
->templ
);
241 if (flags()->ignore_noninstrumented_modules
)
242 libignore()->IgnoreNoninstrumentedModules(true);
243 libignore()->OnLibraryLoaded(0);
246 } // namespace __tsan
248 static ThreadSignalContext
*SigCtx(ThreadState
*thr
) {
249 ThreadSignalContext
*ctx
= (ThreadSignalContext
*)thr
->signal_ctx
;
250 if (ctx
== 0 && !thr
->is_dead
) {
251 ctx
= (ThreadSignalContext
*)MmapOrDie(sizeof(*ctx
), "ThreadSignalContext");
252 MemoryResetRange(thr
, (uptr
)&SigCtx
, (uptr
)ctx
, sizeof(*ctx
));
253 thr
->signal_ctx
= ctx
;
259 static unsigned g_thread_finalize_key
;
262 ScopedInterceptor::ScopedInterceptor(ThreadState
*thr
, const char *fname
,
264 : thr_(thr
), pc_(pc
), in_ignored_lib_(false), ignoring_(false) {
266 if (!thr_
->is_inited
) return;
267 if (!thr_
->ignore_interceptors
) FuncEntry(thr
, pc
);
268 DPrintf("#%d: intercept %s()\n", thr_
->tid
, fname
);
270 !thr_
->in_ignored_lib
&& (flags()->ignore_interceptors_accesses
||
271 libignore()->IsIgnored(pc
, &in_ignored_lib_
));
275 ScopedInterceptor::~ScopedInterceptor() {
276 if (!thr_
->is_inited
) return;
278 if (!thr_
->ignore_interceptors
) {
279 ProcessPendingSignals(thr_
);
285 void ScopedInterceptor::EnableIgnores() {
287 ThreadIgnoreBegin(thr_
, pc_
, /*save_stack=*/false);
288 if (flags()->ignore_noninstrumented_modules
) thr_
->suppress_reports
++;
289 if (in_ignored_lib_
) {
290 DCHECK(!thr_
->in_ignored_lib
);
291 thr_
->in_ignored_lib
= true;
296 void ScopedInterceptor::DisableIgnores() {
298 ThreadIgnoreEnd(thr_
, pc_
);
299 if (flags()->ignore_noninstrumented_modules
) thr_
->suppress_reports
--;
300 if (in_ignored_lib_
) {
301 DCHECK(thr_
->in_ignored_lib
);
302 thr_
->in_ignored_lib
= false;
307 #define TSAN_INTERCEPT(func) INTERCEPT_FUNCTION(func)
308 #if SANITIZER_FREEBSD || SANITIZER_NETBSD
309 # define TSAN_INTERCEPT_VER(func, ver) INTERCEPT_FUNCTION(func)
311 # define TSAN_INTERCEPT_VER(func, ver) INTERCEPT_FUNCTION_VER(func, ver)
314 #define READ_STRING_OF_LEN(thr, pc, s, len, n) \
315 MemoryAccessRange((thr), (pc), (uptr)(s), \
316 common_flags()->strict_string_checks ? (len) + 1 : (n), false)
318 #define READ_STRING(thr, pc, s, n) \
319 READ_STRING_OF_LEN((thr), (pc), (s), internal_strlen(s), (n))
321 #define BLOCK_REAL(name) (BlockingCall(thr), REAL(name))
323 struct BlockingCall
{
324 explicit BlockingCall(ThreadState
*thr
)
328 atomic_store(&ctx
->in_blocking_func
, 1, memory_order_relaxed
);
329 if (atomic_load(&ctx
->have_pending_signals
, memory_order_relaxed
) == 0)
331 atomic_store(&ctx
->in_blocking_func
, 0, memory_order_relaxed
);
332 ProcessPendingSignals(thr
);
334 // When we are in a "blocking call", we process signals asynchronously
335 // (right when they arrive). In this context we do not expect to be
336 // executing any user/runtime code. The known interceptor sequence when
337 // this is not true is: pthread_join -> munmap(stack). It's fine
338 // to ignore munmap in this case -- we handle stack shadow separately.
339 thr
->ignore_interceptors
++;
343 thr
->ignore_interceptors
--;
344 atomic_store(&ctx
->in_blocking_func
, 0, memory_order_relaxed
);
348 ThreadSignalContext
*ctx
;
351 TSAN_INTERCEPTOR(unsigned, sleep
, unsigned sec
) {
352 SCOPED_TSAN_INTERCEPTOR(sleep
, sec
);
353 unsigned res
= BLOCK_REAL(sleep
)(sec
);
358 TSAN_INTERCEPTOR(int, usleep
, long_t usec
) {
359 SCOPED_TSAN_INTERCEPTOR(usleep
, usec
);
360 int res
= BLOCK_REAL(usleep
)(usec
);
365 TSAN_INTERCEPTOR(int, nanosleep
, void *req
, void *rem
) {
366 SCOPED_TSAN_INTERCEPTOR(nanosleep
, req
, rem
);
367 int res
= BLOCK_REAL(nanosleep
)(req
, rem
);
372 TSAN_INTERCEPTOR(int, pause
) {
373 SCOPED_TSAN_INTERCEPTOR(pause
);
374 return BLOCK_REAL(pause
)();
377 // The sole reason tsan wraps atexit callbacks is to establish synchronization
378 // between callback setup and callback execution.
384 static void at_exit_wrapper(void *arg
) {
385 ThreadState
*thr
= cur_thread();
387 Acquire(thr
, pc
, (uptr
)arg
);
388 AtExitCtx
*ctx
= (AtExitCtx
*)arg
;
389 ((void(*)(void *arg
))ctx
->f
)(ctx
->arg
);
393 static int setup_at_exit_wrapper(ThreadState
*thr
, uptr pc
, void(*f
)(),
394 void *arg
, void *dso
);
396 #if !SANITIZER_ANDROID
397 TSAN_INTERCEPTOR(int, atexit
, void (*f
)()) {
398 if (cur_thread()->in_symbolizer
)
400 // We want to setup the atexit callback even if we are in ignored lib
402 SCOPED_INTERCEPTOR_RAW(atexit
, f
);
403 return setup_at_exit_wrapper(thr
, pc
, (void(*)())f
, 0, 0);
407 TSAN_INTERCEPTOR(int, __cxa_atexit
, void (*f
)(void *a
), void *arg
, void *dso
) {
408 if (cur_thread()->in_symbolizer
)
410 SCOPED_TSAN_INTERCEPTOR(__cxa_atexit
, f
, arg
, dso
);
411 return setup_at_exit_wrapper(thr
, pc
, (void(*)())f
, arg
, dso
);
414 static int setup_at_exit_wrapper(ThreadState
*thr
, uptr pc
, void(*f
)(),
415 void *arg
, void *dso
) {
416 AtExitCtx
*ctx
= (AtExitCtx
*)InternalAlloc(sizeof(AtExitCtx
));
419 Release(thr
, pc
, (uptr
)ctx
);
420 // Memory allocation in __cxa_atexit will race with free during exit,
421 // because we do not see synchronization around atexit callback list.
422 ThreadIgnoreBegin(thr
, pc
);
423 int res
= REAL(__cxa_atexit
)(at_exit_wrapper
, ctx
, dso
);
424 ThreadIgnoreEnd(thr
, pc
);
429 static void on_exit_wrapper(int status
, void *arg
) {
430 ThreadState
*thr
= cur_thread();
432 Acquire(thr
, pc
, (uptr
)arg
);
433 AtExitCtx
*ctx
= (AtExitCtx
*)arg
;
434 ((void(*)(int status
, void *arg
))ctx
->f
)(status
, ctx
->arg
);
438 TSAN_INTERCEPTOR(int, on_exit
, void(*f
)(int, void*), void *arg
) {
439 if (cur_thread()->in_symbolizer
)
441 SCOPED_TSAN_INTERCEPTOR(on_exit
, f
, arg
);
442 AtExitCtx
*ctx
= (AtExitCtx
*)InternalAlloc(sizeof(AtExitCtx
));
443 ctx
->f
= (void(*)())f
;
445 Release(thr
, pc
, (uptr
)ctx
);
446 // Memory allocation in __cxa_atexit will race with free during exit,
447 // because we do not see synchronization around atexit callback list.
448 ThreadIgnoreBegin(thr
, pc
);
449 int res
= REAL(on_exit
)(on_exit_wrapper
, ctx
);
450 ThreadIgnoreEnd(thr
, pc
);
456 static void JmpBufGarbageCollect(ThreadState
*thr
, uptr sp
) {
457 for (uptr i
= 0; i
< thr
->jmp_bufs
.Size(); i
++) {
458 JmpBuf
*buf
= &thr
->jmp_bufs
[i
];
460 uptr sz
= thr
->jmp_bufs
.Size();
461 internal_memcpy(buf
, &thr
->jmp_bufs
[sz
- 1], sizeof(*buf
));
462 thr
->jmp_bufs
.PopBack();
468 static void SetJmp(ThreadState
*thr
, uptr sp
, uptr mangled_sp
) {
469 if (!thr
->is_inited
) // called from libc guts during bootstrap
472 JmpBufGarbageCollect(thr
, sp
);
474 JmpBuf
*buf
= thr
->jmp_bufs
.PushBack();
476 buf
->mangled_sp
= mangled_sp
;
477 buf
->shadow_stack_pos
= thr
->shadow_stack_pos
;
478 ThreadSignalContext
*sctx
= SigCtx(thr
);
479 buf
->int_signal_send
= sctx
? sctx
->int_signal_send
: 0;
480 buf
->in_blocking_func
= sctx
?
481 atomic_load(&sctx
->in_blocking_func
, memory_order_relaxed
) :
483 buf
->in_signal_handler
= atomic_load(&thr
->in_signal_handler
,
484 memory_order_relaxed
);
487 static void LongJmp(ThreadState
*thr
, uptr
*env
) {
489 uptr mangled_sp
= env
[0];
490 #elif SANITIZER_FREEBSD || SANITIZER_NETBSD
491 uptr mangled_sp
= env
[2];
494 uptr mangled_sp
= env
[13];
496 uptr mangled_sp
= env
[2];
498 #elif defined(SANITIZER_LINUX)
500 uptr mangled_sp
= env
[13];
501 # elif defined(__mips64)
502 uptr mangled_sp
= env
[1];
504 uptr mangled_sp
= env
[6];
507 // Find the saved buf by mangled_sp.
508 for (uptr i
= 0; i
< thr
->jmp_bufs
.Size(); i
++) {
509 JmpBuf
*buf
= &thr
->jmp_bufs
[i
];
510 if (buf
->mangled_sp
== mangled_sp
) {
511 CHECK_GE(thr
->shadow_stack_pos
, buf
->shadow_stack_pos
);
513 while (thr
->shadow_stack_pos
> buf
->shadow_stack_pos
)
515 ThreadSignalContext
*sctx
= SigCtx(thr
);
517 sctx
->int_signal_send
= buf
->int_signal_send
;
518 atomic_store(&sctx
->in_blocking_func
, buf
->in_blocking_func
,
519 memory_order_relaxed
);
521 atomic_store(&thr
->in_signal_handler
, buf
->in_signal_handler
,
522 memory_order_relaxed
);
523 JmpBufGarbageCollect(thr
, buf
->sp
- 1); // do not collect buf->sp
527 Printf("ThreadSanitizer: can't find longjmp buf\n");
531 // FIXME: put everything below into a common extern "C" block?
532 extern "C" void __tsan_setjmp(uptr sp
, uptr mangled_sp
) {
533 SetJmp(cur_thread(), sp
, mangled_sp
);
537 TSAN_INTERCEPTOR(int, setjmp
, void *env
);
538 TSAN_INTERCEPTOR(int, _setjmp
, void *env
);
539 TSAN_INTERCEPTOR(int, sigsetjmp
, void *env
);
540 #else // SANITIZER_MAC
541 // Not called. Merely to satisfy TSAN_INTERCEPT().
542 extern "C" SANITIZER_INTERFACE_ATTRIBUTE
543 int __interceptor_setjmp(void *env
);
544 extern "C" int __interceptor_setjmp(void *env
) {
549 // FIXME: any reason to have a separate declaration?
550 extern "C" SANITIZER_INTERFACE_ATTRIBUTE
551 int __interceptor__setjmp(void *env
);
552 extern "C" int __interceptor__setjmp(void *env
) {
557 extern "C" SANITIZER_INTERFACE_ATTRIBUTE
558 int __interceptor_sigsetjmp(void *env
);
559 extern "C" int __interceptor_sigsetjmp(void *env
) {
564 extern "C" SANITIZER_INTERFACE_ATTRIBUTE
565 int __interceptor___sigsetjmp(void *env
);
566 extern "C" int __interceptor___sigsetjmp(void *env
) {
571 extern "C" int setjmp(void *env
);
572 extern "C" int _setjmp(void *env
);
573 extern "C" int sigsetjmp(void *env
);
574 extern "C" int __sigsetjmp(void *env
);
575 DEFINE_REAL(int, setjmp
, void *env
)
576 DEFINE_REAL(int, _setjmp
, void *env
)
577 DEFINE_REAL(int, sigsetjmp
, void *env
)
578 DEFINE_REAL(int, __sigsetjmp
, void *env
)
579 #endif // SANITIZER_MAC
581 TSAN_INTERCEPTOR(void, longjmp
, uptr
*env
, int val
) {
582 // Note: if we call REAL(longjmp) in the context of ScopedInterceptor,
583 // bad things will happen. We will jump over ScopedInterceptor dtor and can
584 // leave thr->in_ignored_lib set.
586 SCOPED_INTERCEPTOR_RAW(longjmp
, env
, val
);
588 LongJmp(cur_thread(), env
);
589 REAL(longjmp
)(env
, val
);
592 TSAN_INTERCEPTOR(void, siglongjmp
, uptr
*env
, int val
) {
594 SCOPED_INTERCEPTOR_RAW(siglongjmp
, env
, val
);
596 LongJmp(cur_thread(), env
);
597 REAL(siglongjmp
)(env
, val
);
601 TSAN_INTERCEPTOR(void*, malloc
, uptr size
) {
602 if (cur_thread()->in_symbolizer
)
603 return InternalAlloc(size
);
606 SCOPED_INTERCEPTOR_RAW(malloc
, size
);
607 p
= user_alloc(thr
, pc
, size
);
609 invoke_malloc_hook(p
, size
);
613 TSAN_INTERCEPTOR(void*, __libc_memalign
, uptr align
, uptr sz
) {
614 SCOPED_TSAN_INTERCEPTOR(__libc_memalign
, align
, sz
);
615 return user_memalign(thr
, pc
, align
, sz
);
618 TSAN_INTERCEPTOR(void*, calloc
, uptr size
, uptr n
) {
619 if (cur_thread()->in_symbolizer
)
620 return InternalCalloc(size
, n
);
623 SCOPED_INTERCEPTOR_RAW(calloc
, size
, n
);
624 p
= user_calloc(thr
, pc
, size
, n
);
626 invoke_malloc_hook(p
, n
* size
);
630 TSAN_INTERCEPTOR(void*, realloc
, void *p
, uptr size
) {
631 if (cur_thread()->in_symbolizer
)
632 return InternalRealloc(p
, size
);
636 SCOPED_INTERCEPTOR_RAW(realloc
, p
, size
);
637 p
= user_realloc(thr
, pc
, p
, size
);
639 invoke_malloc_hook(p
, size
);
643 TSAN_INTERCEPTOR(void, free
, void *p
) {
646 if (cur_thread()->in_symbolizer
)
647 return InternalFree(p
);
649 SCOPED_INTERCEPTOR_RAW(free
, p
);
650 user_free(thr
, pc
, p
);
653 TSAN_INTERCEPTOR(void, cfree
, void *p
) {
656 if (cur_thread()->in_symbolizer
)
657 return InternalFree(p
);
659 SCOPED_INTERCEPTOR_RAW(cfree
, p
);
660 user_free(thr
, pc
, p
);
663 TSAN_INTERCEPTOR(uptr
, malloc_usable_size
, void *p
) {
664 SCOPED_INTERCEPTOR_RAW(malloc_usable_size
, p
);
665 return user_alloc_usable_size(p
);
669 TSAN_INTERCEPTOR(char*, strcpy
, char *dst
, const char *src
) { // NOLINT
670 SCOPED_TSAN_INTERCEPTOR(strcpy
, dst
, src
); // NOLINT
671 uptr srclen
= internal_strlen(src
);
672 MemoryAccessRange(thr
, pc
, (uptr
)dst
, srclen
+ 1, true);
673 MemoryAccessRange(thr
, pc
, (uptr
)src
, srclen
+ 1, false);
674 return REAL(strcpy
)(dst
, src
); // NOLINT
677 TSAN_INTERCEPTOR(char*, strncpy
, char *dst
, char *src
, uptr n
) {
678 SCOPED_TSAN_INTERCEPTOR(strncpy
, dst
, src
, n
);
679 uptr srclen
= internal_strnlen(src
, n
);
680 MemoryAccessRange(thr
, pc
, (uptr
)dst
, n
, true);
681 MemoryAccessRange(thr
, pc
, (uptr
)src
, min(srclen
+ 1, n
), false);
682 return REAL(strncpy
)(dst
, src
, n
);
685 TSAN_INTERCEPTOR(char*, strdup
, const char *str
) {
686 SCOPED_TSAN_INTERCEPTOR(strdup
, str
);
687 // strdup will call malloc, so no instrumentation is required here.
688 return REAL(strdup
)(str
);
691 static bool fix_mmap_addr(void **addr
, long_t sz
, int flags
) {
693 if (!IsAppMem((uptr
)*addr
) || !IsAppMem((uptr
)*addr
+ sz
- 1)) {
694 if (flags
& MAP_FIXED
) {
695 errno
= errno_EINVAL
;
705 TSAN_INTERCEPTOR(void *, mmap
, void *addr
, SIZE_T sz
, int prot
, int flags
,
707 SCOPED_TSAN_INTERCEPTOR(mmap
, addr
, sz
, prot
, flags
, fd
, off
);
708 if (!fix_mmap_addr(&addr
, sz
, flags
))
710 void *res
= REAL(mmap
)(addr
, sz
, prot
, flags
, fd
, off
);
711 if (res
!= MAP_FAILED
) {
713 FdAccess(thr
, pc
, fd
);
715 if (thr
->ignore_reads_and_writes
== 0)
716 MemoryRangeImitateWrite(thr
, pc
, (uptr
)res
, sz
);
718 MemoryResetRange(thr
, pc
, (uptr
)res
, sz
);
724 TSAN_INTERCEPTOR(void *, mmap64
, void *addr
, SIZE_T sz
, int prot
, int flags
,
725 int fd
, OFF64_T off
) {
726 SCOPED_TSAN_INTERCEPTOR(mmap64
, addr
, sz
, prot
, flags
, fd
, off
);
727 if (!fix_mmap_addr(&addr
, sz
, flags
))
729 void *res
= REAL(mmap64
)(addr
, sz
, prot
, flags
, fd
, off
);
730 if (res
!= MAP_FAILED
) {
732 FdAccess(thr
, pc
, fd
);
734 if (thr
->ignore_reads_and_writes
== 0)
735 MemoryRangeImitateWrite(thr
, pc
, (uptr
)res
, sz
);
737 MemoryResetRange(thr
, pc
, (uptr
)res
, sz
);
741 #define TSAN_MAYBE_INTERCEPT_MMAP64 TSAN_INTERCEPT(mmap64)
743 #define TSAN_MAYBE_INTERCEPT_MMAP64
746 TSAN_INTERCEPTOR(int, munmap
, void *addr
, long_t sz
) {
747 SCOPED_TSAN_INTERCEPTOR(munmap
, addr
, sz
);
749 // If sz == 0, munmap will return EINVAL and don't unmap any memory.
750 DontNeedShadowFor((uptr
)addr
, sz
);
751 ScopedGlobalProcessor sgp
;
752 ctx
->metamap
.ResetRange(thr
->proc(), (uptr
)addr
, (uptr
)sz
);
754 int res
= REAL(munmap
)(addr
, sz
);
759 TSAN_INTERCEPTOR(void*, memalign
, uptr align
, uptr sz
) {
760 SCOPED_INTERCEPTOR_RAW(memalign
, align
, sz
);
761 return user_memalign(thr
, pc
, align
, sz
);
763 #define TSAN_MAYBE_INTERCEPT_MEMALIGN TSAN_INTERCEPT(memalign)
765 #define TSAN_MAYBE_INTERCEPT_MEMALIGN
769 TSAN_INTERCEPTOR(void*, aligned_alloc
, uptr align
, uptr sz
) {
770 SCOPED_INTERCEPTOR_RAW(aligned_alloc
, align
, sz
);
771 return user_aligned_alloc(thr
, pc
, align
, sz
);
774 TSAN_INTERCEPTOR(void*, valloc
, uptr sz
) {
775 SCOPED_INTERCEPTOR_RAW(valloc
, sz
);
776 return user_valloc(thr
, pc
, sz
);
781 TSAN_INTERCEPTOR(void*, pvalloc
, uptr sz
) {
782 SCOPED_INTERCEPTOR_RAW(pvalloc
, sz
);
783 return user_pvalloc(thr
, pc
, sz
);
785 #define TSAN_MAYBE_INTERCEPT_PVALLOC TSAN_INTERCEPT(pvalloc)
787 #define TSAN_MAYBE_INTERCEPT_PVALLOC
791 TSAN_INTERCEPTOR(int, posix_memalign
, void **memptr
, uptr align
, uptr sz
) {
792 SCOPED_INTERCEPTOR_RAW(posix_memalign
, memptr
, align
, sz
);
793 return user_posix_memalign(thr
, pc
, memptr
, align
, sz
);
797 // __cxa_guard_acquire and friends need to be intercepted in a special way -
798 // regular interceptors will break statically-linked libstdc++. Linux
799 // interceptors are especially defined as weak functions (so that they don't
800 // cause link errors when user defines them as well). So they silently
801 // auto-disable themselves when such symbol is already present in the binary. If
802 // we link libstdc++ statically, it will bring own __cxa_guard_acquire which
803 // will silently replace our interceptor. That's why on Linux we simply export
804 // these interceptors with INTERFACE_ATTRIBUTE.
805 // On OS X, we don't support statically linking, so we just use a regular
808 #define STDCXX_INTERCEPTOR TSAN_INTERCEPTOR
810 #define STDCXX_INTERCEPTOR(rettype, name, ...) \
811 extern "C" rettype INTERFACE_ATTRIBUTE name(__VA_ARGS__)
814 // Used in thread-safe function static initialization.
815 STDCXX_INTERCEPTOR(int, __cxa_guard_acquire
, atomic_uint32_t
*g
) {
816 SCOPED_INTERCEPTOR_RAW(__cxa_guard_acquire
, g
);
818 u32 cmp
= atomic_load(g
, memory_order_acquire
);
820 if (atomic_compare_exchange_strong(g
, &cmp
, 1<<16, memory_order_relaxed
))
822 } else if (cmp
== 1) {
823 Acquire(thr
, pc
, (uptr
)g
);
826 internal_sched_yield();
831 STDCXX_INTERCEPTOR(void, __cxa_guard_release
, atomic_uint32_t
*g
) {
832 SCOPED_INTERCEPTOR_RAW(__cxa_guard_release
, g
);
833 Release(thr
, pc
, (uptr
)g
);
834 atomic_store(g
, 1, memory_order_release
);
837 STDCXX_INTERCEPTOR(void, __cxa_guard_abort
, atomic_uint32_t
*g
) {
838 SCOPED_INTERCEPTOR_RAW(__cxa_guard_abort
, g
);
839 atomic_store(g
, 0, memory_order_relaxed
);
843 void DestroyThreadState() {
844 ThreadState
*thr
= cur_thread();
845 Processor
*proc
= thr
->proc();
847 ProcUnwire(proc
, thr
);
849 ThreadSignalContext
*sctx
= thr
->signal_ctx
;
852 UnmapOrDie(sctx
, sizeof(*sctx
));
855 cur_thread_finalize();
857 } // namespace __tsan
860 static void thread_finalize(void *v
) {
863 if (pthread_setspecific(g_thread_finalize_key
, (void*)(iter
- 1))) {
864 Printf("ThreadSanitizer: failed to set thread key\n");
869 DestroyThreadState();
875 void* (*callback
)(void *arg
);
877 atomic_uintptr_t tid
;
880 extern "C" void *__tsan_thread_start_func(void *arg
) {
881 ThreadParam
*p
= (ThreadParam
*)arg
;
882 void* (*callback
)(void *arg
) = p
->callback
;
883 void *param
= p
->param
;
886 ThreadState
*thr
= cur_thread();
887 // Thread-local state is not initialized yet.
888 ScopedIgnoreInterceptors ignore
;
890 ThreadIgnoreBegin(thr
, 0);
891 if (pthread_setspecific(g_thread_finalize_key
,
892 (void *)GetPthreadDestructorIterations())) {
893 Printf("ThreadSanitizer: failed to set thread key\n");
896 ThreadIgnoreEnd(thr
, 0);
898 while ((tid
= atomic_load(&p
->tid
, memory_order_acquire
)) == 0)
899 internal_sched_yield();
900 Processor
*proc
= ProcCreate();
902 ThreadStart(thr
, tid
, GetTid(), /*workerthread*/ false);
903 atomic_store(&p
->tid
, 0, memory_order_release
);
905 void *res
= callback(param
);
906 // Prevent the callback from being tail called,
907 // it mixes up stack traces.
908 volatile int foo
= 42;
913 TSAN_INTERCEPTOR(int, pthread_create
,
914 void *th
, void *attr
, void *(*callback
)(void*), void * param
) {
915 SCOPED_INTERCEPTOR_RAW(pthread_create
, th
, attr
, callback
, param
);
916 if (ctx
->after_multithreaded_fork
) {
917 if (flags()->die_after_fork
) {
918 Report("ThreadSanitizer: starting new threads after multi-threaded "
919 "fork is not supported. Dying (set die_after_fork=0 to override)\n");
922 VPrintf(1, "ThreadSanitizer: starting new threads after multi-threaded "
923 "fork is not supported (pid %d). Continuing because of "
924 "die_after_fork=0, but you are on your own\n", internal_getpid());
927 __sanitizer_pthread_attr_t myattr
;
929 pthread_attr_init(&myattr
);
933 REAL(pthread_attr_getdetachstate
)(attr
, &detached
);
934 AdjustStackSize(attr
);
937 p
.callback
= callback
;
939 atomic_store(&p
.tid
, 0, memory_order_relaxed
);
942 // Otherwise we see false positives in pthread stack manipulation.
943 ScopedIgnoreInterceptors ignore
;
944 ThreadIgnoreBegin(thr
, pc
);
945 res
= REAL(pthread_create
)(th
, attr
, __tsan_thread_start_func
, &p
);
946 ThreadIgnoreEnd(thr
, pc
);
949 int tid
= ThreadCreate(thr
, pc
, *(uptr
*)th
, IsStateDetached(detached
));
951 // Synchronization on p.tid serves two purposes:
952 // 1. ThreadCreate must finish before the new thread starts.
953 // Otherwise the new thread can call pthread_detach, but the pthread_t
954 // identifier is not yet registered in ThreadRegistry by ThreadCreate.
955 // 2. ThreadStart must finish before this thread continues.
956 // Otherwise, this thread can call pthread_detach and reset thr->sync
957 // before the new thread got a chance to acquire from it in ThreadStart.
958 atomic_store(&p
.tid
, tid
, memory_order_release
);
959 while (atomic_load(&p
.tid
, memory_order_acquire
) != 0)
960 internal_sched_yield();
963 pthread_attr_destroy(&myattr
);
967 TSAN_INTERCEPTOR(int, pthread_join
, void *th
, void **ret
) {
968 SCOPED_INTERCEPTOR_RAW(pthread_join
, th
, ret
);
969 int tid
= ThreadTid(thr
, pc
, (uptr
)th
);
970 ThreadIgnoreBegin(thr
, pc
);
971 int res
= BLOCK_REAL(pthread_join
)(th
, ret
);
972 ThreadIgnoreEnd(thr
, pc
);
974 ThreadJoin(thr
, pc
, tid
);
979 DEFINE_REAL_PTHREAD_FUNCTIONS
981 TSAN_INTERCEPTOR(int, pthread_detach
, void *th
) {
982 SCOPED_TSAN_INTERCEPTOR(pthread_detach
, th
);
983 int tid
= ThreadTid(thr
, pc
, (uptr
)th
);
984 int res
= REAL(pthread_detach
)(th
);
986 ThreadDetach(thr
, pc
, tid
);
992 // NPTL implementation of pthread_cond has 2 versions (2.2.5 and 2.3.2).
993 // pthread_cond_t has different size in the different versions.
994 // If call new REAL functions for old pthread_cond_t, they will corrupt memory
995 // after pthread_cond_t (old cond is smaller).
996 // If we call old REAL functions for new pthread_cond_t, we will lose some
997 // functionality (e.g. old functions do not support waiting against
999 // Proper handling would require to have 2 versions of interceptors as well.
1000 // But this is messy, in particular requires linker scripts when sanitizer
1001 // runtime is linked into a shared library.
1002 // Instead we assume we don't have dynamic libraries built against old
1003 // pthread (2.2.5 is dated by 2002). And provide legacy_pthread_cond flag
1004 // that allows to work with old libraries (but this mode does not support
1005 // some features, e.g. pthread_condattr_getpshared).
1006 static void *init_cond(void *c
, bool force
= false) {
1007 // sizeof(pthread_cond_t) >= sizeof(uptr) in both versions.
1008 // So we allocate additional memory on the side large enough to hold
1009 // any pthread_cond_t object. Always call new REAL functions, but pass
1010 // the aux object to them.
1011 // Note: the code assumes that PTHREAD_COND_INITIALIZER initializes
1012 // first word of pthread_cond_t to zero.
1013 // It's all relevant only for linux.
1014 if (!common_flags()->legacy_pthread_cond
)
1016 atomic_uintptr_t
*p
= (atomic_uintptr_t
*)c
;
1017 uptr cond
= atomic_load(p
, memory_order_acquire
);
1018 if (!force
&& cond
!= 0)
1020 void *newcond
= WRAP(malloc
)(pthread_cond_t_sz
);
1021 internal_memset(newcond
, 0, pthread_cond_t_sz
);
1022 if (atomic_compare_exchange_strong(p
, &cond
, (uptr
)newcond
,
1023 memory_order_acq_rel
))
1025 WRAP(free
)(newcond
);
1029 struct CondMutexUnlockCtx
{
1030 ScopedInterceptor
*si
;
1036 static void cond_mutex_unlock(CondMutexUnlockCtx
*arg
) {
1037 // pthread_cond_wait interceptor has enabled async signal delivery
1038 // (see BlockingCall below). Disable async signals since we are running
1039 // tsan code. Also ScopedInterceptor and BlockingCall destructors won't run
1040 // since the thread is cancelled, so we have to manually execute them
1041 // (the thread still can run some user code due to pthread_cleanup_push).
1042 ThreadSignalContext
*ctx
= SigCtx(arg
->thr
);
1043 CHECK_EQ(atomic_load(&ctx
->in_blocking_func
, memory_order_relaxed
), 1);
1044 atomic_store(&ctx
->in_blocking_func
, 0, memory_order_relaxed
);
1045 MutexPostLock(arg
->thr
, arg
->pc
, (uptr
)arg
->m
, MutexFlagDoPreLockOnPostLock
);
1046 // Undo BlockingCall ctor effects.
1047 arg
->thr
->ignore_interceptors
--;
1048 arg
->si
->~ScopedInterceptor();
1051 INTERCEPTOR(int, pthread_cond_init
, void *c
, void *a
) {
1052 void *cond
= init_cond(c
, true);
1053 SCOPED_TSAN_INTERCEPTOR(pthread_cond_init
, cond
, a
);
1054 MemoryAccessRange(thr
, pc
, (uptr
)c
, sizeof(uptr
), true);
1055 return REAL(pthread_cond_init
)(cond
, a
);
1058 static int cond_wait(ThreadState
*thr
, uptr pc
, ScopedInterceptor
*si
,
1059 int (*fn
)(void *c
, void *m
, void *abstime
), void *c
,
1061 MemoryAccessRange(thr
, pc
, (uptr
)c
, sizeof(uptr
), false);
1062 MutexUnlock(thr
, pc
, (uptr
)m
);
1063 CondMutexUnlockCtx arg
= {si
, thr
, pc
, m
};
1065 // This ensures that we handle mutex lock even in case of pthread_cancel.
1066 // See test/tsan/cond_cancel.cc.
1068 // Enable signal delivery while the thread is blocked.
1069 BlockingCall
bc(thr
);
1070 res
= call_pthread_cancel_with_cleanup(
1071 fn
, c
, m
, t
, (void (*)(void *arg
))cond_mutex_unlock
, &arg
);
1073 if (res
== errno_EOWNERDEAD
) MutexRepair(thr
, pc
, (uptr
)m
);
1074 MutexPostLock(thr
, pc
, (uptr
)m
, MutexFlagDoPreLockOnPostLock
);
1078 INTERCEPTOR(int, pthread_cond_wait
, void *c
, void *m
) {
1079 void *cond
= init_cond(c
);
1080 SCOPED_TSAN_INTERCEPTOR(pthread_cond_wait
, cond
, m
);
1081 return cond_wait(thr
, pc
, &si
, (int (*)(void *c
, void *m
, void *abstime
))REAL(
1086 INTERCEPTOR(int, pthread_cond_timedwait
, void *c
, void *m
, void *abstime
) {
1087 void *cond
= init_cond(c
);
1088 SCOPED_TSAN_INTERCEPTOR(pthread_cond_timedwait
, cond
, m
, abstime
);
1089 return cond_wait(thr
, pc
, &si
, REAL(pthread_cond_timedwait
), cond
, m
,
1094 INTERCEPTOR(int, pthread_cond_timedwait_relative_np
, void *c
, void *m
,
1096 void *cond
= init_cond(c
);
1097 SCOPED_TSAN_INTERCEPTOR(pthread_cond_timedwait_relative_np
, cond
, m
, reltime
);
1098 return cond_wait(thr
, pc
, &si
, REAL(pthread_cond_timedwait_relative_np
), cond
,
1103 INTERCEPTOR(int, pthread_cond_signal
, void *c
) {
1104 void *cond
= init_cond(c
);
1105 SCOPED_TSAN_INTERCEPTOR(pthread_cond_signal
, cond
);
1106 MemoryAccessRange(thr
, pc
, (uptr
)c
, sizeof(uptr
), false);
1107 return REAL(pthread_cond_signal
)(cond
);
1110 INTERCEPTOR(int, pthread_cond_broadcast
, void *c
) {
1111 void *cond
= init_cond(c
);
1112 SCOPED_TSAN_INTERCEPTOR(pthread_cond_broadcast
, cond
);
1113 MemoryAccessRange(thr
, pc
, (uptr
)c
, sizeof(uptr
), false);
1114 return REAL(pthread_cond_broadcast
)(cond
);
1117 INTERCEPTOR(int, pthread_cond_destroy
, void *c
) {
1118 void *cond
= init_cond(c
);
1119 SCOPED_TSAN_INTERCEPTOR(pthread_cond_destroy
, cond
);
1120 MemoryAccessRange(thr
, pc
, (uptr
)c
, sizeof(uptr
), true);
1121 int res
= REAL(pthread_cond_destroy
)(cond
);
1122 if (common_flags()->legacy_pthread_cond
) {
1123 // Free our aux cond and zero the pointer to not leave dangling pointers.
1125 atomic_store((atomic_uintptr_t
*)c
, 0, memory_order_relaxed
);
1130 TSAN_INTERCEPTOR(int, pthread_mutex_init
, void *m
, void *a
) {
1131 SCOPED_TSAN_INTERCEPTOR(pthread_mutex_init
, m
, a
);
1132 int res
= REAL(pthread_mutex_init
)(m
, a
);
1137 if (REAL(pthread_mutexattr_gettype
)(a
, &type
) == 0)
1138 if (type
== PTHREAD_MUTEX_RECURSIVE
||
1139 type
== PTHREAD_MUTEX_RECURSIVE_NP
)
1140 flagz
|= MutexFlagWriteReentrant
;
1142 MutexCreate(thr
, pc
, (uptr
)m
, flagz
);
1147 TSAN_INTERCEPTOR(int, pthread_mutex_destroy
, void *m
) {
1148 SCOPED_TSAN_INTERCEPTOR(pthread_mutex_destroy
, m
);
1149 int res
= REAL(pthread_mutex_destroy
)(m
);
1150 if (res
== 0 || res
== errno_EBUSY
) {
1151 MutexDestroy(thr
, pc
, (uptr
)m
);
1156 TSAN_INTERCEPTOR(int, pthread_mutex_trylock
, void *m
) {
1157 SCOPED_TSAN_INTERCEPTOR(pthread_mutex_trylock
, m
);
1158 int res
= REAL(pthread_mutex_trylock
)(m
);
1159 if (res
== errno_EOWNERDEAD
)
1160 MutexRepair(thr
, pc
, (uptr
)m
);
1161 if (res
== 0 || res
== errno_EOWNERDEAD
)
1162 MutexPostLock(thr
, pc
, (uptr
)m
, MutexFlagTryLock
);
1167 TSAN_INTERCEPTOR(int, pthread_mutex_timedlock
, void *m
, void *abstime
) {
1168 SCOPED_TSAN_INTERCEPTOR(pthread_mutex_timedlock
, m
, abstime
);
1169 int res
= REAL(pthread_mutex_timedlock
)(m
, abstime
);
1171 MutexPostLock(thr
, pc
, (uptr
)m
, MutexFlagTryLock
);
1178 TSAN_INTERCEPTOR(int, pthread_spin_init
, void *m
, int pshared
) {
1179 SCOPED_TSAN_INTERCEPTOR(pthread_spin_init
, m
, pshared
);
1180 int res
= REAL(pthread_spin_init
)(m
, pshared
);
1182 MutexCreate(thr
, pc
, (uptr
)m
);
1187 TSAN_INTERCEPTOR(int, pthread_spin_destroy
, void *m
) {
1188 SCOPED_TSAN_INTERCEPTOR(pthread_spin_destroy
, m
);
1189 int res
= REAL(pthread_spin_destroy
)(m
);
1191 MutexDestroy(thr
, pc
, (uptr
)m
);
1196 TSAN_INTERCEPTOR(int, pthread_spin_lock
, void *m
) {
1197 SCOPED_TSAN_INTERCEPTOR(pthread_spin_lock
, m
);
1198 MutexPreLock(thr
, pc
, (uptr
)m
);
1199 int res
= REAL(pthread_spin_lock
)(m
);
1201 MutexPostLock(thr
, pc
, (uptr
)m
);
1206 TSAN_INTERCEPTOR(int, pthread_spin_trylock
, void *m
) {
1207 SCOPED_TSAN_INTERCEPTOR(pthread_spin_trylock
, m
);
1208 int res
= REAL(pthread_spin_trylock
)(m
);
1210 MutexPostLock(thr
, pc
, (uptr
)m
, MutexFlagTryLock
);
1215 TSAN_INTERCEPTOR(int, pthread_spin_unlock
, void *m
) {
1216 SCOPED_TSAN_INTERCEPTOR(pthread_spin_unlock
, m
);
1217 MutexUnlock(thr
, pc
, (uptr
)m
);
1218 int res
= REAL(pthread_spin_unlock
)(m
);
1223 TSAN_INTERCEPTOR(int, pthread_rwlock_init
, void *m
, void *a
) {
1224 SCOPED_TSAN_INTERCEPTOR(pthread_rwlock_init
, m
, a
);
1225 int res
= REAL(pthread_rwlock_init
)(m
, a
);
1227 MutexCreate(thr
, pc
, (uptr
)m
);
1232 TSAN_INTERCEPTOR(int, pthread_rwlock_destroy
, void *m
) {
1233 SCOPED_TSAN_INTERCEPTOR(pthread_rwlock_destroy
, m
);
1234 int res
= REAL(pthread_rwlock_destroy
)(m
);
1236 MutexDestroy(thr
, pc
, (uptr
)m
);
1241 TSAN_INTERCEPTOR(int, pthread_rwlock_rdlock
, void *m
) {
1242 SCOPED_TSAN_INTERCEPTOR(pthread_rwlock_rdlock
, m
);
1243 MutexPreReadLock(thr
, pc
, (uptr
)m
);
1244 int res
= REAL(pthread_rwlock_rdlock
)(m
);
1246 MutexPostReadLock(thr
, pc
, (uptr
)m
);
1251 TSAN_INTERCEPTOR(int, pthread_rwlock_tryrdlock
, void *m
) {
1252 SCOPED_TSAN_INTERCEPTOR(pthread_rwlock_tryrdlock
, m
);
1253 int res
= REAL(pthread_rwlock_tryrdlock
)(m
);
1255 MutexPostReadLock(thr
, pc
, (uptr
)m
, MutexFlagTryLock
);
1261 TSAN_INTERCEPTOR(int, pthread_rwlock_timedrdlock
, void *m
, void *abstime
) {
1262 SCOPED_TSAN_INTERCEPTOR(pthread_rwlock_timedrdlock
, m
, abstime
);
1263 int res
= REAL(pthread_rwlock_timedrdlock
)(m
, abstime
);
1265 MutexPostReadLock(thr
, pc
, (uptr
)m
);
1271 TSAN_INTERCEPTOR(int, pthread_rwlock_wrlock
, void *m
) {
1272 SCOPED_TSAN_INTERCEPTOR(pthread_rwlock_wrlock
, m
);
1273 MutexPreLock(thr
, pc
, (uptr
)m
);
1274 int res
= REAL(pthread_rwlock_wrlock
)(m
);
1276 MutexPostLock(thr
, pc
, (uptr
)m
);
1281 TSAN_INTERCEPTOR(int, pthread_rwlock_trywrlock
, void *m
) {
1282 SCOPED_TSAN_INTERCEPTOR(pthread_rwlock_trywrlock
, m
);
1283 int res
= REAL(pthread_rwlock_trywrlock
)(m
);
1285 MutexPostLock(thr
, pc
, (uptr
)m
, MutexFlagTryLock
);
1291 TSAN_INTERCEPTOR(int, pthread_rwlock_timedwrlock
, void *m
, void *abstime
) {
1292 SCOPED_TSAN_INTERCEPTOR(pthread_rwlock_timedwrlock
, m
, abstime
);
1293 int res
= REAL(pthread_rwlock_timedwrlock
)(m
, abstime
);
1295 MutexPostLock(thr
, pc
, (uptr
)m
, MutexFlagTryLock
);
1301 TSAN_INTERCEPTOR(int, pthread_rwlock_unlock
, void *m
) {
1302 SCOPED_TSAN_INTERCEPTOR(pthread_rwlock_unlock
, m
);
1303 MutexReadOrWriteUnlock(thr
, pc
, (uptr
)m
);
1304 int res
= REAL(pthread_rwlock_unlock
)(m
);
1309 TSAN_INTERCEPTOR(int, pthread_barrier_init
, void *b
, void *a
, unsigned count
) {
1310 SCOPED_TSAN_INTERCEPTOR(pthread_barrier_init
, b
, a
, count
);
1311 MemoryWrite(thr
, pc
, (uptr
)b
, kSizeLog1
);
1312 int res
= REAL(pthread_barrier_init
)(b
, a
, count
);
1316 TSAN_INTERCEPTOR(int, pthread_barrier_destroy
, void *b
) {
1317 SCOPED_TSAN_INTERCEPTOR(pthread_barrier_destroy
, b
);
1318 MemoryWrite(thr
, pc
, (uptr
)b
, kSizeLog1
);
1319 int res
= REAL(pthread_barrier_destroy
)(b
);
1323 TSAN_INTERCEPTOR(int, pthread_barrier_wait
, void *b
) {
1324 SCOPED_TSAN_INTERCEPTOR(pthread_barrier_wait
, b
);
1325 Release(thr
, pc
, (uptr
)b
);
1326 MemoryRead(thr
, pc
, (uptr
)b
, kSizeLog1
);
1327 int res
= REAL(pthread_barrier_wait
)(b
);
1328 MemoryRead(thr
, pc
, (uptr
)b
, kSizeLog1
);
1329 if (res
== 0 || res
== PTHREAD_BARRIER_SERIAL_THREAD
) {
1330 Acquire(thr
, pc
, (uptr
)b
);
1336 TSAN_INTERCEPTOR(int, pthread_once
, void *o
, void (*f
)()) {
1337 SCOPED_INTERCEPTOR_RAW(pthread_once
, o
, f
);
1338 if (o
== 0 || f
== 0)
1339 return errno_EINVAL
;
1342 a
= static_cast<atomic_uint32_t
*>(o
);
1343 else // On OS X, pthread_once_t has a header with a long-sized signature.
1344 a
= static_cast<atomic_uint32_t
*>((void *)((char *)o
+ sizeof(long_t
)));
1345 u32 v
= atomic_load(a
, memory_order_acquire
);
1346 if (v
== 0 && atomic_compare_exchange_strong(a
, &v
, 1,
1347 memory_order_relaxed
)) {
1349 if (!thr
->in_ignored_lib
)
1350 Release(thr
, pc
, (uptr
)o
);
1351 atomic_store(a
, 2, memory_order_release
);
1354 internal_sched_yield();
1355 v
= atomic_load(a
, memory_order_acquire
);
1357 if (!thr
->in_ignored_lib
)
1358 Acquire(thr
, pc
, (uptr
)o
);
1363 #if SANITIZER_LINUX && !SANITIZER_ANDROID
1364 TSAN_INTERCEPTOR(int, __fxstat
, int version
, int fd
, void *buf
) {
1365 SCOPED_TSAN_INTERCEPTOR(__fxstat
, version
, fd
, buf
);
1367 FdAccess(thr
, pc
, fd
);
1368 return REAL(__fxstat
)(version
, fd
, buf
);
1370 #define TSAN_MAYBE_INTERCEPT___FXSTAT TSAN_INTERCEPT(__fxstat)
1372 #define TSAN_MAYBE_INTERCEPT___FXSTAT
1375 TSAN_INTERCEPTOR(int, fstat
, int fd
, void *buf
) {
1376 #if SANITIZER_FREEBSD || SANITIZER_MAC || SANITIZER_ANDROID || SANITIZER_NETBSD
1377 SCOPED_TSAN_INTERCEPTOR(fstat
, fd
, buf
);
1379 FdAccess(thr
, pc
, fd
);
1380 return REAL(fstat
)(fd
, buf
);
1382 SCOPED_TSAN_INTERCEPTOR(__fxstat
, 0, fd
, buf
);
1384 FdAccess(thr
, pc
, fd
);
1385 return REAL(__fxstat
)(0, fd
, buf
);
1389 #if SANITIZER_LINUX && !SANITIZER_ANDROID
1390 TSAN_INTERCEPTOR(int, __fxstat64
, int version
, int fd
, void *buf
) {
1391 SCOPED_TSAN_INTERCEPTOR(__fxstat64
, version
, fd
, buf
);
1393 FdAccess(thr
, pc
, fd
);
1394 return REAL(__fxstat64
)(version
, fd
, buf
);
1396 #define TSAN_MAYBE_INTERCEPT___FXSTAT64 TSAN_INTERCEPT(__fxstat64)
1398 #define TSAN_MAYBE_INTERCEPT___FXSTAT64
1401 #if SANITIZER_LINUX && !SANITIZER_ANDROID
1402 TSAN_INTERCEPTOR(int, fstat64
, int fd
, void *buf
) {
1403 SCOPED_TSAN_INTERCEPTOR(__fxstat64
, 0, fd
, buf
);
1405 FdAccess(thr
, pc
, fd
);
1406 return REAL(__fxstat64
)(0, fd
, buf
);
1408 #define TSAN_MAYBE_INTERCEPT_FSTAT64 TSAN_INTERCEPT(fstat64)
1410 #define TSAN_MAYBE_INTERCEPT_FSTAT64
1413 TSAN_INTERCEPTOR(int, open
, const char *name
, int flags
, int mode
) {
1414 SCOPED_TSAN_INTERCEPTOR(open
, name
, flags
, mode
);
1415 READ_STRING(thr
, pc
, name
, 0);
1416 int fd
= REAL(open
)(name
, flags
, mode
);
1418 FdFileCreate(thr
, pc
, fd
);
1423 TSAN_INTERCEPTOR(int, open64
, const char *name
, int flags
, int mode
) {
1424 SCOPED_TSAN_INTERCEPTOR(open64
, name
, flags
, mode
);
1425 READ_STRING(thr
, pc
, name
, 0);
1426 int fd
= REAL(open64
)(name
, flags
, mode
);
1428 FdFileCreate(thr
, pc
, fd
);
1431 #define TSAN_MAYBE_INTERCEPT_OPEN64 TSAN_INTERCEPT(open64)
1433 #define TSAN_MAYBE_INTERCEPT_OPEN64
1436 TSAN_INTERCEPTOR(int, creat
, const char *name
, int mode
) {
1437 SCOPED_TSAN_INTERCEPTOR(creat
, name
, mode
);
1438 READ_STRING(thr
, pc
, name
, 0);
1439 int fd
= REAL(creat
)(name
, mode
);
1441 FdFileCreate(thr
, pc
, fd
);
1446 TSAN_INTERCEPTOR(int, creat64
, const char *name
, int mode
) {
1447 SCOPED_TSAN_INTERCEPTOR(creat64
, name
, mode
);
1448 READ_STRING(thr
, pc
, name
, 0);
1449 int fd
= REAL(creat64
)(name
, mode
);
1451 FdFileCreate(thr
, pc
, fd
);
1454 #define TSAN_MAYBE_INTERCEPT_CREAT64 TSAN_INTERCEPT(creat64)
1456 #define TSAN_MAYBE_INTERCEPT_CREAT64
1459 TSAN_INTERCEPTOR(int, dup
, int oldfd
) {
1460 SCOPED_TSAN_INTERCEPTOR(dup
, oldfd
);
1461 int newfd
= REAL(dup
)(oldfd
);
1462 if (oldfd
>= 0 && newfd
>= 0 && newfd
!= oldfd
)
1463 FdDup(thr
, pc
, oldfd
, newfd
, true);
1467 TSAN_INTERCEPTOR(int, dup2
, int oldfd
, int newfd
) {
1468 SCOPED_TSAN_INTERCEPTOR(dup2
, oldfd
, newfd
);
1469 int newfd2
= REAL(dup2
)(oldfd
, newfd
);
1470 if (oldfd
>= 0 && newfd2
>= 0 && newfd2
!= oldfd
)
1471 FdDup(thr
, pc
, oldfd
, newfd2
, false);
1476 TSAN_INTERCEPTOR(int, dup3
, int oldfd
, int newfd
, int flags
) {
1477 SCOPED_TSAN_INTERCEPTOR(dup3
, oldfd
, newfd
, flags
);
1478 int newfd2
= REAL(dup3
)(oldfd
, newfd
, flags
);
1479 if (oldfd
>= 0 && newfd2
>= 0 && newfd2
!= oldfd
)
1480 FdDup(thr
, pc
, oldfd
, newfd2
, false);
1486 TSAN_INTERCEPTOR(int, eventfd
, unsigned initval
, int flags
) {
1487 SCOPED_TSAN_INTERCEPTOR(eventfd
, initval
, flags
);
1488 int fd
= REAL(eventfd
)(initval
, flags
);
1490 FdEventCreate(thr
, pc
, fd
);
1493 #define TSAN_MAYBE_INTERCEPT_EVENTFD TSAN_INTERCEPT(eventfd)
1495 #define TSAN_MAYBE_INTERCEPT_EVENTFD
1499 TSAN_INTERCEPTOR(int, signalfd
, int fd
, void *mask
, int flags
) {
1500 SCOPED_TSAN_INTERCEPTOR(signalfd
, fd
, mask
, flags
);
1502 FdClose(thr
, pc
, fd
);
1503 fd
= REAL(signalfd
)(fd
, mask
, flags
);
1505 FdSignalCreate(thr
, pc
, fd
);
1508 #define TSAN_MAYBE_INTERCEPT_SIGNALFD TSAN_INTERCEPT(signalfd)
1510 #define TSAN_MAYBE_INTERCEPT_SIGNALFD
1514 TSAN_INTERCEPTOR(int, inotify_init
, int fake
) {
1515 SCOPED_TSAN_INTERCEPTOR(inotify_init
, fake
);
1516 int fd
= REAL(inotify_init
)(fake
);
1518 FdInotifyCreate(thr
, pc
, fd
);
1521 #define TSAN_MAYBE_INTERCEPT_INOTIFY_INIT TSAN_INTERCEPT(inotify_init)
1523 #define TSAN_MAYBE_INTERCEPT_INOTIFY_INIT
1527 TSAN_INTERCEPTOR(int, inotify_init1
, int flags
) {
1528 SCOPED_TSAN_INTERCEPTOR(inotify_init1
, flags
);
1529 int fd
= REAL(inotify_init1
)(flags
);
1531 FdInotifyCreate(thr
, pc
, fd
);
1534 #define TSAN_MAYBE_INTERCEPT_INOTIFY_INIT1 TSAN_INTERCEPT(inotify_init1)
1536 #define TSAN_MAYBE_INTERCEPT_INOTIFY_INIT1
1539 TSAN_INTERCEPTOR(int, socket
, int domain
, int type
, int protocol
) {
1540 SCOPED_TSAN_INTERCEPTOR(socket
, domain
, type
, protocol
);
1541 int fd
= REAL(socket
)(domain
, type
, protocol
);
1543 FdSocketCreate(thr
, pc
, fd
);
1547 TSAN_INTERCEPTOR(int, socketpair
, int domain
, int type
, int protocol
, int *fd
) {
1548 SCOPED_TSAN_INTERCEPTOR(socketpair
, domain
, type
, protocol
, fd
);
1549 int res
= REAL(socketpair
)(domain
, type
, protocol
, fd
);
1550 if (res
== 0 && fd
[0] >= 0 && fd
[1] >= 0)
1551 FdPipeCreate(thr
, pc
, fd
[0], fd
[1]);
1555 TSAN_INTERCEPTOR(int, connect
, int fd
, void *addr
, unsigned addrlen
) {
1556 SCOPED_TSAN_INTERCEPTOR(connect
, fd
, addr
, addrlen
);
1557 FdSocketConnecting(thr
, pc
, fd
);
1558 int res
= REAL(connect
)(fd
, addr
, addrlen
);
1559 if (res
== 0 && fd
>= 0)
1560 FdSocketConnect(thr
, pc
, fd
);
1564 TSAN_INTERCEPTOR(int, bind
, int fd
, void *addr
, unsigned addrlen
) {
1565 SCOPED_TSAN_INTERCEPTOR(bind
, fd
, addr
, addrlen
);
1566 int res
= REAL(bind
)(fd
, addr
, addrlen
);
1567 if (fd
> 0 && res
== 0)
1568 FdAccess(thr
, pc
, fd
);
1572 TSAN_INTERCEPTOR(int, listen
, int fd
, int backlog
) {
1573 SCOPED_TSAN_INTERCEPTOR(listen
, fd
, backlog
);
1574 int res
= REAL(listen
)(fd
, backlog
);
1575 if (fd
> 0 && res
== 0)
1576 FdAccess(thr
, pc
, fd
);
1580 TSAN_INTERCEPTOR(int, close
, int fd
) {
1581 SCOPED_TSAN_INTERCEPTOR(close
, fd
);
1583 FdClose(thr
, pc
, fd
);
1584 return REAL(close
)(fd
);
1588 TSAN_INTERCEPTOR(int, __close
, int fd
) {
1589 SCOPED_TSAN_INTERCEPTOR(__close
, fd
);
1591 FdClose(thr
, pc
, fd
);
1592 return REAL(__close
)(fd
);
1594 #define TSAN_MAYBE_INTERCEPT___CLOSE TSAN_INTERCEPT(__close)
1596 #define TSAN_MAYBE_INTERCEPT___CLOSE
1600 #if SANITIZER_LINUX && !SANITIZER_ANDROID
1601 TSAN_INTERCEPTOR(void, __res_iclose
, void *state
, bool free_addr
) {
1602 SCOPED_TSAN_INTERCEPTOR(__res_iclose
, state
, free_addr
);
1604 int cnt
= ExtractResolvFDs(state
, fds
, ARRAY_SIZE(fds
));
1605 for (int i
= 0; i
< cnt
; i
++) {
1607 FdClose(thr
, pc
, fds
[i
]);
1609 REAL(__res_iclose
)(state
, free_addr
);
1611 #define TSAN_MAYBE_INTERCEPT___RES_ICLOSE TSAN_INTERCEPT(__res_iclose)
1613 #define TSAN_MAYBE_INTERCEPT___RES_ICLOSE
1616 TSAN_INTERCEPTOR(int, pipe
, int *pipefd
) {
1617 SCOPED_TSAN_INTERCEPTOR(pipe
, pipefd
);
1618 int res
= REAL(pipe
)(pipefd
);
1619 if (res
== 0 && pipefd
[0] >= 0 && pipefd
[1] >= 0)
1620 FdPipeCreate(thr
, pc
, pipefd
[0], pipefd
[1]);
1625 TSAN_INTERCEPTOR(int, pipe2
, int *pipefd
, int flags
) {
1626 SCOPED_TSAN_INTERCEPTOR(pipe2
, pipefd
, flags
);
1627 int res
= REAL(pipe2
)(pipefd
, flags
);
1628 if (res
== 0 && pipefd
[0] >= 0 && pipefd
[1] >= 0)
1629 FdPipeCreate(thr
, pc
, pipefd
[0], pipefd
[1]);
1634 TSAN_INTERCEPTOR(int, unlink
, char *path
) {
1635 SCOPED_TSAN_INTERCEPTOR(unlink
, path
);
1636 Release(thr
, pc
, File2addr(path
));
1637 int res
= REAL(unlink
)(path
);
1641 TSAN_INTERCEPTOR(void*, tmpfile
, int fake
) {
1642 SCOPED_TSAN_INTERCEPTOR(tmpfile
, fake
);
1643 void *res
= REAL(tmpfile
)(fake
);
1645 int fd
= fileno_unlocked(res
);
1647 FdFileCreate(thr
, pc
, fd
);
1653 TSAN_INTERCEPTOR(void*, tmpfile64
, int fake
) {
1654 SCOPED_TSAN_INTERCEPTOR(tmpfile64
, fake
);
1655 void *res
= REAL(tmpfile64
)(fake
);
1657 int fd
= fileno_unlocked(res
);
1659 FdFileCreate(thr
, pc
, fd
);
1663 #define TSAN_MAYBE_INTERCEPT_TMPFILE64 TSAN_INTERCEPT(tmpfile64)
1665 #define TSAN_MAYBE_INTERCEPT_TMPFILE64
1668 static void FlushStreams() {
1669 // Flushing all the streams here may freeze the process if a child thread is
1670 // performing file stream operations at the same time.
1671 REAL(fflush
)(stdout
);
1672 REAL(fflush
)(stderr
);
1675 TSAN_INTERCEPTOR(void, abort
, int fake
) {
1676 SCOPED_TSAN_INTERCEPTOR(abort
, fake
);
1681 TSAN_INTERCEPTOR(int, puts
, const char *s
) {
1682 SCOPED_TSAN_INTERCEPTOR(puts
, s
);
1683 MemoryAccessRange(thr
, pc
, (uptr
)s
, internal_strlen(s
), false);
1684 return REAL(puts
)(s
);
1687 TSAN_INTERCEPTOR(int, rmdir
, char *path
) {
1688 SCOPED_TSAN_INTERCEPTOR(rmdir
, path
);
1689 Release(thr
, pc
, Dir2addr(path
));
1690 int res
= REAL(rmdir
)(path
);
1694 TSAN_INTERCEPTOR(int, closedir
, void *dirp
) {
1695 SCOPED_TSAN_INTERCEPTOR(closedir
, dirp
);
1697 int fd
= dirfd(dirp
);
1698 FdClose(thr
, pc
, fd
);
1700 return REAL(closedir
)(dirp
);
1704 TSAN_INTERCEPTOR(int, epoll_create
, int size
) {
1705 SCOPED_TSAN_INTERCEPTOR(epoll_create
, size
);
1706 int fd
= REAL(epoll_create
)(size
);
1708 FdPollCreate(thr
, pc
, fd
);
1712 TSAN_INTERCEPTOR(int, epoll_create1
, int flags
) {
1713 SCOPED_TSAN_INTERCEPTOR(epoll_create1
, flags
);
1714 int fd
= REAL(epoll_create1
)(flags
);
1716 FdPollCreate(thr
, pc
, fd
);
1720 TSAN_INTERCEPTOR(int, epoll_ctl
, int epfd
, int op
, int fd
, void *ev
) {
1721 SCOPED_TSAN_INTERCEPTOR(epoll_ctl
, epfd
, op
, fd
, ev
);
1723 FdAccess(thr
, pc
, epfd
);
1724 if (epfd
>= 0 && fd
>= 0)
1725 FdAccess(thr
, pc
, fd
);
1726 if (op
== EPOLL_CTL_ADD
&& epfd
>= 0)
1727 FdRelease(thr
, pc
, epfd
);
1728 int res
= REAL(epoll_ctl
)(epfd
, op
, fd
, ev
);
1732 TSAN_INTERCEPTOR(int, epoll_wait
, int epfd
, void *ev
, int cnt
, int timeout
) {
1733 SCOPED_TSAN_INTERCEPTOR(epoll_wait
, epfd
, ev
, cnt
, timeout
);
1735 FdAccess(thr
, pc
, epfd
);
1736 int res
= BLOCK_REAL(epoll_wait
)(epfd
, ev
, cnt
, timeout
);
1737 if (res
> 0 && epfd
>= 0)
1738 FdAcquire(thr
, pc
, epfd
);
1742 TSAN_INTERCEPTOR(int, epoll_pwait
, int epfd
, void *ev
, int cnt
, int timeout
,
1744 SCOPED_TSAN_INTERCEPTOR(epoll_pwait
, epfd
, ev
, cnt
, timeout
, sigmask
);
1746 FdAccess(thr
, pc
, epfd
);
1747 int res
= BLOCK_REAL(epoll_pwait
)(epfd
, ev
, cnt
, timeout
, sigmask
);
1748 if (res
> 0 && epfd
>= 0)
1749 FdAcquire(thr
, pc
, epfd
);
1753 #define TSAN_MAYBE_INTERCEPT_EPOLL \
1754 TSAN_INTERCEPT(epoll_create); \
1755 TSAN_INTERCEPT(epoll_create1); \
1756 TSAN_INTERCEPT(epoll_ctl); \
1757 TSAN_INTERCEPT(epoll_wait); \
1758 TSAN_INTERCEPT(epoll_pwait)
1760 #define TSAN_MAYBE_INTERCEPT_EPOLL
1763 // The following functions are intercepted merely to process pending signals.
1764 // If program blocks signal X, we must deliver the signal before the function
1765 // returns. Similarly, if program unblocks a signal (or returns from sigsuspend)
1766 // it's better to deliver the signal straight away.
1767 TSAN_INTERCEPTOR(int, sigsuspend
, const __sanitizer_sigset_t
*mask
) {
1768 SCOPED_TSAN_INTERCEPTOR(sigsuspend
, mask
);
1769 return REAL(sigsuspend
)(mask
);
1772 TSAN_INTERCEPTOR(int, sigblock
, int mask
) {
1773 SCOPED_TSAN_INTERCEPTOR(sigblock
, mask
);
1774 return REAL(sigblock
)(mask
);
1777 TSAN_INTERCEPTOR(int, sigsetmask
, int mask
) {
1778 SCOPED_TSAN_INTERCEPTOR(sigsetmask
, mask
);
1779 return REAL(sigsetmask
)(mask
);
1782 TSAN_INTERCEPTOR(int, pthread_sigmask
, int how
, const __sanitizer_sigset_t
*set
,
1783 __sanitizer_sigset_t
*oldset
) {
1784 SCOPED_TSAN_INTERCEPTOR(pthread_sigmask
, how
, set
, oldset
);
1785 return REAL(pthread_sigmask
)(how
, set
, oldset
);
1790 static void CallUserSignalHandler(ThreadState
*thr
, bool sync
, bool acquire
,
1791 bool sigact
, int sig
, my_siginfo_t
*info
, void *uctx
) {
1793 Acquire(thr
, 0, (uptr
)&sigactions
[sig
]);
1794 // Signals are generally asynchronous, so if we receive a signals when
1795 // ignores are enabled we should disable ignores. This is critical for sync
1796 // and interceptors, because otherwise we can miss syncronization and report
1798 int ignore_reads_and_writes
= thr
->ignore_reads_and_writes
;
1799 int ignore_interceptors
= thr
->ignore_interceptors
;
1800 int ignore_sync
= thr
->ignore_sync
;
1801 if (!ctx
->after_multithreaded_fork
) {
1802 thr
->ignore_reads_and_writes
= 0;
1803 thr
->fast_state
.ClearIgnoreBit();
1804 thr
->ignore_interceptors
= 0;
1805 thr
->ignore_sync
= 0;
1807 // Ensure that the handler does not spoil errno.
1808 const int saved_errno
= errno
;
1810 // This code races with sigaction. Be careful to not read sa_sigaction twice.
1811 // Also need to remember pc for reporting before the call,
1812 // because the handler can reset it.
1813 volatile uptr pc
= sigact
?
1814 (uptr
)sigactions
[sig
].sa_sigaction
:
1815 (uptr
)sigactions
[sig
].sa_handler
;
1816 if (pc
!= (uptr
)SIG_DFL
&& pc
!= (uptr
)SIG_IGN
) {
1818 ((sigactionhandler_t
)pc
)(sig
, info
, uctx
);
1820 ((sighandler_t
)pc
)(sig
);
1822 if (!ctx
->after_multithreaded_fork
) {
1823 thr
->ignore_reads_and_writes
= ignore_reads_and_writes
;
1824 if (ignore_reads_and_writes
)
1825 thr
->fast_state
.SetIgnoreBit();
1826 thr
->ignore_interceptors
= ignore_interceptors
;
1827 thr
->ignore_sync
= ignore_sync
;
1829 // We do not detect errno spoiling for SIGTERM,
1830 // because some SIGTERM handlers do spoil errno but reraise SIGTERM,
1831 // tsan reports false positive in such case.
1832 // It's difficult to properly detect this situation (reraise),
1833 // because in async signal processing case (when handler is called directly
1834 // from rtl_generic_sighandler) we have not yet received the reraised
1835 // signal; and it looks too fragile to intercept all ways to reraise a signal.
1836 if (flags()->report_bugs
&& !sync
&& sig
!= SIGTERM
&& errno
!= 99) {
1837 VarSizeStackTrace stack
;
1838 // StackTrace::GetNestInstructionPc(pc) is used because return address is
1839 // expected, OutputReport() will undo this.
1840 ObtainCurrentStack(thr
, StackTrace::GetNextInstructionPc(pc
), &stack
);
1841 ThreadRegistryLock
l(ctx
->thread_registry
);
1842 ScopedReport
rep(ReportTypeErrnoInSignal
);
1843 if (!IsFiredSuppression(ctx
, ReportTypeErrnoInSignal
, stack
)) {
1844 rep
.AddStack(stack
, true);
1845 OutputReport(thr
, rep
);
1848 errno
= saved_errno
;
1851 void ProcessPendingSignals(ThreadState
*thr
) {
1852 ThreadSignalContext
*sctx
= SigCtx(thr
);
1854 atomic_load(&sctx
->have_pending_signals
, memory_order_relaxed
) == 0)
1856 atomic_store(&sctx
->have_pending_signals
, 0, memory_order_relaxed
);
1857 atomic_fetch_add(&thr
->in_signal_handler
, 1, memory_order_relaxed
);
1858 internal_sigfillset(&sctx
->emptyset
);
1859 int res
= REAL(pthread_sigmask
)(SIG_SETMASK
, &sctx
->emptyset
, &sctx
->oldset
);
1861 for (int sig
= 0; sig
< kSigCount
; sig
++) {
1862 SignalDesc
*signal
= &sctx
->pending_signals
[sig
];
1863 if (signal
->armed
) {
1864 signal
->armed
= false;
1865 CallUserSignalHandler(thr
, false, true, signal
->sigaction
, sig
,
1866 &signal
->siginfo
, &signal
->ctx
);
1869 res
= REAL(pthread_sigmask
)(SIG_SETMASK
, &sctx
->oldset
, 0);
1871 atomic_fetch_add(&thr
->in_signal_handler
, -1, memory_order_relaxed
);
1874 } // namespace __tsan
1876 static bool is_sync_signal(ThreadSignalContext
*sctx
, int sig
) {
1877 return sig
== SIGSEGV
|| sig
== SIGBUS
|| sig
== SIGILL
||
1878 sig
== SIGABRT
|| sig
== SIGFPE
|| sig
== SIGPIPE
|| sig
== SIGSYS
||
1879 // If we are sending signal to ourselves, we must process it now.
1880 (sctx
&& sig
== sctx
->int_signal_send
);
1883 void ALWAYS_INLINE
rtl_generic_sighandler(bool sigact
, int sig
,
1884 my_siginfo_t
*info
, void *ctx
) {
1885 ThreadState
*thr
= cur_thread();
1886 ThreadSignalContext
*sctx
= SigCtx(thr
);
1887 if (sig
< 0 || sig
>= kSigCount
) {
1888 VPrintf(1, "ThreadSanitizer: ignoring signal %d\n", sig
);
1891 // Don't mess with synchronous signals.
1892 const bool sync
= is_sync_signal(sctx
, sig
);
1894 // If we are in blocking function, we can safely process it now
1895 // (but check if we are in a recursive interceptor,
1896 // i.e. pthread_join()->munmap()).
1897 (sctx
&& atomic_load(&sctx
->in_blocking_func
, memory_order_relaxed
))) {
1898 atomic_fetch_add(&thr
->in_signal_handler
, 1, memory_order_relaxed
);
1899 if (sctx
&& atomic_load(&sctx
->in_blocking_func
, memory_order_relaxed
)) {
1900 atomic_store(&sctx
->in_blocking_func
, 0, memory_order_relaxed
);
1901 CallUserSignalHandler(thr
, sync
, true, sigact
, sig
, info
, ctx
);
1902 atomic_store(&sctx
->in_blocking_func
, 1, memory_order_relaxed
);
1904 // Be very conservative with when we do acquire in this case.
1905 // It's unsafe to do acquire in async handlers, because ThreadState
1906 // can be in inconsistent state.
1907 // SIGSYS looks relatively safe -- it's synchronous and can actually
1908 // need some global state.
1909 bool acq
= (sig
== SIGSYS
);
1910 CallUserSignalHandler(thr
, sync
, acq
, sigact
, sig
, info
, ctx
);
1912 atomic_fetch_add(&thr
->in_signal_handler
, -1, memory_order_relaxed
);
1918 SignalDesc
*signal
= &sctx
->pending_signals
[sig
];
1919 if (signal
->armed
== false) {
1920 signal
->armed
= true;
1921 signal
->sigaction
= sigact
;
1923 internal_memcpy(&signal
->siginfo
, info
, sizeof(*info
));
1925 internal_memcpy(&signal
->ctx
, ctx
, sizeof(signal
->ctx
));
1926 atomic_store(&sctx
->have_pending_signals
, 1, memory_order_relaxed
);
1930 static void rtl_sighandler(int sig
) {
1931 rtl_generic_sighandler(false, sig
, 0, 0);
1934 static void rtl_sigaction(int sig
, my_siginfo_t
*info
, void *ctx
) {
1935 rtl_generic_sighandler(true, sig
, info
, ctx
);
1938 TSAN_INTERCEPTOR(int, sigaction
, int sig
, sigaction_t
*act
, sigaction_t
*old
) {
1939 // Note: if we call REAL(sigaction) directly for any reason without proxying
1940 // the signal handler through rtl_sigaction, very bad things will happen.
1941 // The handler will run synchronously and corrupt tsan per-thread state.
1942 SCOPED_INTERCEPTOR_RAW(sigaction
, sig
, act
, old
);
1944 internal_memcpy(old
, &sigactions
[sig
], sizeof(*old
));
1947 // Copy act into sigactions[sig].
1948 // Can't use struct copy, because compiler can emit call to memcpy.
1949 // Can't use internal_memcpy, because it copies byte-by-byte,
1950 // and signal handler reads the sa_handler concurrently. It it can read
1951 // some bytes from old value and some bytes from new value.
1952 // Use volatile to prevent insertion of memcpy.
1953 sigactions
[sig
].sa_handler
= *(volatile sighandler_t
*)&act
->sa_handler
;
1954 sigactions
[sig
].sa_flags
= *(volatile int*)&act
->sa_flags
;
1955 internal_memcpy(&sigactions
[sig
].sa_mask
, &act
->sa_mask
,
1956 sizeof(sigactions
[sig
].sa_mask
));
1957 #if !SANITIZER_FREEBSD && !SANITIZER_MAC && !SANITIZER_NETBSD
1958 sigactions
[sig
].sa_restorer
= act
->sa_restorer
;
1961 internal_memcpy(&newact
, act
, sizeof(newact
));
1962 internal_sigfillset(&newact
.sa_mask
);
1963 if (act
->sa_handler
!= SIG_IGN
&& act
->sa_handler
!= SIG_DFL
) {
1964 if (newact
.sa_flags
& SA_SIGINFO
)
1965 newact
.sa_sigaction
= rtl_sigaction
;
1967 newact
.sa_handler
= rtl_sighandler
;
1969 ReleaseStore(thr
, pc
, (uptr
)&sigactions
[sig
]);
1970 int res
= REAL(sigaction
)(sig
, &newact
, 0);
1974 TSAN_INTERCEPTOR(sighandler_t
, signal
, int sig
, sighandler_t h
) {
1977 internal_memset(&act
.sa_mask
, -1, sizeof(act
.sa_mask
));
1980 int res
= sigaction(sig
, &act
, &old
);
1983 return old
.sa_handler
;
1986 TSAN_INTERCEPTOR(int, raise
, int sig
) {
1987 SCOPED_TSAN_INTERCEPTOR(raise
, sig
);
1988 ThreadSignalContext
*sctx
= SigCtx(thr
);
1990 int prev
= sctx
->int_signal_send
;
1991 sctx
->int_signal_send
= sig
;
1992 int res
= REAL(raise
)(sig
);
1993 CHECK_EQ(sctx
->int_signal_send
, sig
);
1994 sctx
->int_signal_send
= prev
;
1998 TSAN_INTERCEPTOR(int, kill
, int pid
, int sig
) {
1999 SCOPED_TSAN_INTERCEPTOR(kill
, pid
, sig
);
2000 ThreadSignalContext
*sctx
= SigCtx(thr
);
2002 int prev
= sctx
->int_signal_send
;
2003 if (pid
== (int)internal_getpid()) {
2004 sctx
->int_signal_send
= sig
;
2006 int res
= REAL(kill
)(pid
, sig
);
2007 if (pid
== (int)internal_getpid()) {
2008 CHECK_EQ(sctx
->int_signal_send
, sig
);
2009 sctx
->int_signal_send
= prev
;
2014 TSAN_INTERCEPTOR(int, pthread_kill
, void *tid
, int sig
) {
2015 SCOPED_TSAN_INTERCEPTOR(pthread_kill
, tid
, sig
);
2016 ThreadSignalContext
*sctx
= SigCtx(thr
);
2018 int prev
= sctx
->int_signal_send
;
2019 if (tid
== pthread_self()) {
2020 sctx
->int_signal_send
= sig
;
2022 int res
= REAL(pthread_kill
)(tid
, sig
);
2023 if (tid
== pthread_self()) {
2024 CHECK_EQ(sctx
->int_signal_send
, sig
);
2025 sctx
->int_signal_send
= prev
;
2030 TSAN_INTERCEPTOR(int, gettimeofday
, void *tv
, void *tz
) {
2031 SCOPED_TSAN_INTERCEPTOR(gettimeofday
, tv
, tz
);
2032 // It's intercepted merely to process pending signals.
2033 return REAL(gettimeofday
)(tv
, tz
);
2036 TSAN_INTERCEPTOR(int, getaddrinfo
, void *node
, void *service
,
2037 void *hints
, void *rv
) {
2038 SCOPED_TSAN_INTERCEPTOR(getaddrinfo
, node
, service
, hints
, rv
);
2039 // We miss atomic synchronization in getaddrinfo,
2040 // and can report false race between malloc and free
2041 // inside of getaddrinfo. So ignore memory accesses.
2042 ThreadIgnoreBegin(thr
, pc
);
2043 int res
= REAL(getaddrinfo
)(node
, service
, hints
, rv
);
2044 ThreadIgnoreEnd(thr
, pc
);
2048 TSAN_INTERCEPTOR(int, fork
, int fake
) {
2049 if (cur_thread()->in_symbolizer
)
2050 return REAL(fork
)(fake
);
2051 SCOPED_INTERCEPTOR_RAW(fork
, fake
);
2052 ForkBefore(thr
, pc
);
2055 // On OS X, REAL(fork) can call intercepted functions (OSSpinLockLock), and
2056 // we'll assert in CheckNoLocks() unless we ignore interceptors.
2057 ScopedIgnoreInterceptors ignore
;
2058 pid
= REAL(fork
)(fake
);
2062 ForkChildAfter(thr
, pc
);
2064 } else if (pid
> 0) {
2066 ForkParentAfter(thr
, pc
);
2069 ForkParentAfter(thr
, pc
);
2074 TSAN_INTERCEPTOR(int, vfork
, int fake
) {
2075 // Some programs (e.g. openjdk) call close for all file descriptors
2076 // in the child process. Under tsan it leads to false positives, because
2077 // address space is shared, so the parent process also thinks that
2078 // the descriptors are closed (while they are actually not).
2079 // This leads to false positives due to missed synchronization.
2080 // Strictly saying this is undefined behavior, because vfork child is not
2081 // allowed to call any functions other than exec/exit. But this is what
2082 // openjdk does, so we want to handle it.
2083 // We could disable interceptors in the child process. But it's not possible
2084 // to simply intercept and wrap vfork, because vfork child is not allowed
2085 // to return from the function that calls vfork, and that's exactly what
2086 // we would do. So this would require some assembly trickery as well.
2087 // Instead we simply turn vfork into fork.
2088 return WRAP(fork
)(fake
);
2091 #if !SANITIZER_MAC && !SANITIZER_ANDROID
2092 typedef int (*dl_iterate_phdr_cb_t
)(__sanitizer_dl_phdr_info
*info
, SIZE_T size
,
2094 struct dl_iterate_phdr_data
{
2097 dl_iterate_phdr_cb_t cb
;
2101 static bool IsAppNotRodata(uptr addr
) {
2102 return IsAppMem(addr
) && *(u64
*)MemToShadow(addr
) != kShadowRodata
;
2105 static int dl_iterate_phdr_cb(__sanitizer_dl_phdr_info
*info
, SIZE_T size
,
2107 dl_iterate_phdr_data
*cbdata
= (dl_iterate_phdr_data
*)data
;
2108 // dlopen/dlclose allocate/free dynamic-linker-internal memory, which is later
2109 // accessible in dl_iterate_phdr callback. But we don't see synchronization
2110 // inside of dynamic linker, so we "unpoison" it here in order to not
2111 // produce false reports. Ignoring malloc/free in dlopen/dlclose is not enough
2112 // because some libc functions call __libc_dlopen.
2113 if (info
&& IsAppNotRodata((uptr
)info
->dlpi_name
))
2114 MemoryResetRange(cbdata
->thr
, cbdata
->pc
, (uptr
)info
->dlpi_name
,
2115 internal_strlen(info
->dlpi_name
));
2116 int res
= cbdata
->cb(info
, size
, cbdata
->data
);
2117 // Perform the check one more time in case info->dlpi_name was overwritten
2118 // by user callback.
2119 if (info
&& IsAppNotRodata((uptr
)info
->dlpi_name
))
2120 MemoryResetRange(cbdata
->thr
, cbdata
->pc
, (uptr
)info
->dlpi_name
,
2121 internal_strlen(info
->dlpi_name
));
2125 TSAN_INTERCEPTOR(int, dl_iterate_phdr
, dl_iterate_phdr_cb_t cb
, void *data
) {
2126 SCOPED_TSAN_INTERCEPTOR(dl_iterate_phdr
, cb
, data
);
2127 dl_iterate_phdr_data cbdata
;
2132 int res
= REAL(dl_iterate_phdr
)(dl_iterate_phdr_cb
, &cbdata
);
2137 static int OnExit(ThreadState
*thr
) {
2138 int status
= Finalize(thr
);
2143 struct TsanInterceptorContext
{
2145 const uptr caller_pc
;
2150 static void HandleRecvmsg(ThreadState
*thr
, uptr pc
,
2151 __sanitizer_msghdr
*msg
) {
2153 int cnt
= ExtractRecvmsgFDs(msg
, fds
, ARRAY_SIZE(fds
));
2154 for (int i
= 0; i
< cnt
; i
++)
2155 FdEventCreate(thr
, pc
, fds
[i
]);
2159 #include "sanitizer_common/sanitizer_platform_interceptors.h"
2160 // Causes interceptor recursion (getaddrinfo() and fopen())
2161 #undef SANITIZER_INTERCEPT_GETADDRINFO
2162 // There interceptors do not seem to be strictly necessary for tsan.
2163 // But we see cases where the interceptors consume 70% of execution time.
2164 // Memory blocks passed to fgetgrent_r are "written to" by tsan several times.
2165 // First, there is some recursion (getgrnam_r calls fgetgrent_r), and each
2166 // function "writes to" the buffer. Then, the same memory is "written to"
2167 // twice, first as buf and then as pwbufp (both of them refer to the same
2169 #undef SANITIZER_INTERCEPT_GETPWENT
2170 #undef SANITIZER_INTERCEPT_GETPWENT_R
2171 #undef SANITIZER_INTERCEPT_FGETPWENT
2172 #undef SANITIZER_INTERCEPT_GETPWNAM_AND_FRIENDS
2173 #undef SANITIZER_INTERCEPT_GETPWNAM_R_AND_FRIENDS
2174 // We define our own.
2175 #if SANITIZER_INTERCEPT_TLS_GET_ADDR
2176 #define NEED_TLS_GET_ADDR
2178 #undef SANITIZER_INTERCEPT_TLS_GET_ADDR
2180 #define COMMON_INTERCEPT_FUNCTION(name) INTERCEPT_FUNCTION(name)
2181 #define COMMON_INTERCEPT_FUNCTION_VER(name, ver) \
2182 INTERCEPT_FUNCTION_VER(name, ver)
2184 #define COMMON_INTERCEPTOR_WRITE_RANGE(ctx, ptr, size) \
2185 MemoryAccessRange(((TsanInterceptorContext *)ctx)->thr, \
2186 ((TsanInterceptorContext *)ctx)->pc, (uptr)ptr, size, \
2189 #define COMMON_INTERCEPTOR_READ_RANGE(ctx, ptr, size) \
2190 MemoryAccessRange(((TsanInterceptorContext *) ctx)->thr, \
2191 ((TsanInterceptorContext *) ctx)->pc, (uptr) ptr, size, \
2194 #define COMMON_INTERCEPTOR_ENTER(ctx, func, ...) \
2195 SCOPED_TSAN_INTERCEPTOR(func, __VA_ARGS__); \
2196 TsanInterceptorContext _ctx = {thr, caller_pc, pc}; \
2197 ctx = (void *)&_ctx; \
2200 #define COMMON_INTERCEPTOR_ENTER_NOIGNORE(ctx, func, ...) \
2201 SCOPED_INTERCEPTOR_RAW(func, __VA_ARGS__); \
2202 TsanInterceptorContext _ctx = {thr, caller_pc, pc}; \
2203 ctx = (void *)&_ctx; \
2206 #define COMMON_INTERCEPTOR_FILE_OPEN(ctx, file, path) \
2207 Acquire(thr, pc, File2addr(path)); \
2209 int fd = fileno_unlocked(file); \
2210 if (fd >= 0) FdFileCreate(thr, pc, fd); \
2213 #define COMMON_INTERCEPTOR_FILE_CLOSE(ctx, file) \
2215 int fd = fileno_unlocked(file); \
2216 if (fd >= 0) FdClose(thr, pc, fd); \
2219 #define COMMON_INTERCEPTOR_LIBRARY_LOADED(filename, handle) \
2220 libignore()->OnLibraryLoaded(filename)
2222 #define COMMON_INTERCEPTOR_LIBRARY_UNLOADED() \
2223 libignore()->OnLibraryUnloaded()
2225 #define COMMON_INTERCEPTOR_ACQUIRE(ctx, u) \
2226 Acquire(((TsanInterceptorContext *) ctx)->thr, pc, u)
2228 #define COMMON_INTERCEPTOR_RELEASE(ctx, u) \
2229 Release(((TsanInterceptorContext *) ctx)->thr, pc, u)
2231 #define COMMON_INTERCEPTOR_DIR_ACQUIRE(ctx, path) \
2232 Acquire(((TsanInterceptorContext *) ctx)->thr, pc, Dir2addr(path))
2234 #define COMMON_INTERCEPTOR_FD_ACQUIRE(ctx, fd) \
2235 FdAcquire(((TsanInterceptorContext *) ctx)->thr, pc, fd)
2237 #define COMMON_INTERCEPTOR_FD_RELEASE(ctx, fd) \
2238 FdRelease(((TsanInterceptorContext *) ctx)->thr, pc, fd)
2240 #define COMMON_INTERCEPTOR_FD_ACCESS(ctx, fd) \
2241 FdAccess(((TsanInterceptorContext *) ctx)->thr, pc, fd)
2243 #define COMMON_INTERCEPTOR_FD_SOCKET_ACCEPT(ctx, fd, newfd) \
2244 FdSocketAccept(((TsanInterceptorContext *) ctx)->thr, pc, fd, newfd)
2246 #define COMMON_INTERCEPTOR_SET_THREAD_NAME(ctx, name) \
2247 ThreadSetName(((TsanInterceptorContext *) ctx)->thr, name)
2249 #define COMMON_INTERCEPTOR_SET_PTHREAD_NAME(ctx, thread, name) \
2250 __tsan::ctx->thread_registry->SetThreadNameByUserId(thread, name)
2252 #define COMMON_INTERCEPTOR_BLOCK_REAL(name) BLOCK_REAL(name)
2254 #define COMMON_INTERCEPTOR_ON_EXIT(ctx) \
2255 OnExit(((TsanInterceptorContext *) ctx)->thr)
2257 #define COMMON_INTERCEPTOR_MUTEX_PRE_LOCK(ctx, m) \
2258 MutexPreLock(((TsanInterceptorContext *)ctx)->thr, \
2259 ((TsanInterceptorContext *)ctx)->pc, (uptr)m)
2261 #define COMMON_INTERCEPTOR_MUTEX_POST_LOCK(ctx, m) \
2262 MutexPostLock(((TsanInterceptorContext *)ctx)->thr, \
2263 ((TsanInterceptorContext *)ctx)->pc, (uptr)m)
2265 #define COMMON_INTERCEPTOR_MUTEX_UNLOCK(ctx, m) \
2266 MutexUnlock(((TsanInterceptorContext *)ctx)->thr, \
2267 ((TsanInterceptorContext *)ctx)->pc, (uptr)m)
2269 #define COMMON_INTERCEPTOR_MUTEX_REPAIR(ctx, m) \
2270 MutexRepair(((TsanInterceptorContext *)ctx)->thr, \
2271 ((TsanInterceptorContext *)ctx)->pc, (uptr)m)
2273 #define COMMON_INTERCEPTOR_MUTEX_INVALID(ctx, m) \
2274 MutexInvalidAccess(((TsanInterceptorContext *)ctx)->thr, \
2275 ((TsanInterceptorContext *)ctx)->pc, (uptr)m)
2278 #define COMMON_INTERCEPTOR_HANDLE_RECVMSG(ctx, msg) \
2279 HandleRecvmsg(((TsanInterceptorContext *)ctx)->thr, \
2280 ((TsanInterceptorContext *)ctx)->pc, msg)
2283 #define COMMON_INTERCEPTOR_GET_TLS_RANGE(begin, end) \
2284 if (TsanThread *t = GetCurrentThread()) { \
2285 *begin = t->tls_begin(); \
2286 *end = t->tls_end(); \
2288 *begin = *end = 0; \
2291 #define COMMON_INTERCEPTOR_USER_CALLBACK_START() \
2292 SCOPED_TSAN_INTERCEPTOR_USER_CALLBACK_START()
2294 #define COMMON_INTERCEPTOR_USER_CALLBACK_END() \
2295 SCOPED_TSAN_INTERCEPTOR_USER_CALLBACK_END()
2297 #include "sanitizer_common/sanitizer_common_interceptors.inc"
2299 #define TSAN_SYSCALL() \
2300 ThreadState *thr = cur_thread(); \
2301 if (thr->ignore_interceptors) \
2303 ScopedSyscall scoped_syscall(thr) \
2306 struct ScopedSyscall
{
2309 explicit ScopedSyscall(ThreadState
*thr
)
2315 ProcessPendingSignals(thr
);
2319 #if !SANITIZER_FREEBSD && !SANITIZER_MAC && !SANITIZER_NETBSD
2320 static void syscall_access_range(uptr pc
, uptr p
, uptr s
, bool write
) {
2322 MemoryAccessRange(thr
, pc
, p
, s
, write
);
2325 static void syscall_acquire(uptr pc
, uptr addr
) {
2327 Acquire(thr
, pc
, addr
);
2328 DPrintf("syscall_acquire(%p)\n", addr
);
2331 static void syscall_release(uptr pc
, uptr addr
) {
2333 DPrintf("syscall_release(%p)\n", addr
);
2334 Release(thr
, pc
, addr
);
2337 static void syscall_fd_close(uptr pc
, int fd
) {
2339 FdClose(thr
, pc
, fd
);
2342 static USED
void syscall_fd_acquire(uptr pc
, int fd
) {
2344 FdAcquire(thr
, pc
, fd
);
2345 DPrintf("syscall_fd_acquire(%p)\n", fd
);
2348 static USED
void syscall_fd_release(uptr pc
, int fd
) {
2350 DPrintf("syscall_fd_release(%p)\n", fd
);
2351 FdRelease(thr
, pc
, fd
);
2354 static void syscall_pre_fork(uptr pc
) {
2356 ForkBefore(thr
, pc
);
2359 static void syscall_post_fork(uptr pc
, int pid
) {
2363 ForkChildAfter(thr
, pc
);
2365 } else if (pid
> 0) {
2367 ForkParentAfter(thr
, pc
);
2370 ForkParentAfter(thr
, pc
);
2375 #define COMMON_SYSCALL_PRE_READ_RANGE(p, s) \
2376 syscall_access_range(GET_CALLER_PC(), (uptr)(p), (uptr)(s), false)
2378 #define COMMON_SYSCALL_PRE_WRITE_RANGE(p, s) \
2379 syscall_access_range(GET_CALLER_PC(), (uptr)(p), (uptr)(s), true)
2381 #define COMMON_SYSCALL_POST_READ_RANGE(p, s) \
2387 #define COMMON_SYSCALL_POST_WRITE_RANGE(p, s) \
2393 #define COMMON_SYSCALL_ACQUIRE(addr) \
2394 syscall_acquire(GET_CALLER_PC(), (uptr)(addr))
2396 #define COMMON_SYSCALL_RELEASE(addr) \
2397 syscall_release(GET_CALLER_PC(), (uptr)(addr))
2399 #define COMMON_SYSCALL_FD_CLOSE(fd) syscall_fd_close(GET_CALLER_PC(), fd)
2401 #define COMMON_SYSCALL_FD_ACQUIRE(fd) syscall_fd_acquire(GET_CALLER_PC(), fd)
2403 #define COMMON_SYSCALL_FD_RELEASE(fd) syscall_fd_release(GET_CALLER_PC(), fd)
2405 #define COMMON_SYSCALL_PRE_FORK() \
2406 syscall_pre_fork(GET_CALLER_PC())
2408 #define COMMON_SYSCALL_POST_FORK(res) \
2409 syscall_post_fork(GET_CALLER_PC(), res)
2411 #include "sanitizer_common/sanitizer_common_syscalls.inc"
2413 #ifdef NEED_TLS_GET_ADDR
2414 // Define own interceptor instead of sanitizer_common's for three reasons:
2415 // 1. It must not process pending signals.
2416 // Signal handlers may contain MOVDQA instruction (see below).
2417 // 2. It must be as simple as possible to not contain MOVDQA.
2418 // 3. Sanitizer_common version uses COMMON_INTERCEPTOR_INITIALIZE_RANGE which
2419 // is empty for tsan (meant only for msan).
2420 // Note: __tls_get_addr can be called with mis-aligned stack due to:
2421 // https://gcc.gnu.org/bugzilla/show_bug.cgi?id=58066
2422 // So the interceptor must work with mis-aligned stack, in particular, does not
2423 // execute MOVDQA with stack addresses.
2424 TSAN_INTERCEPTOR(void *, __tls_get_addr
, void *arg
) {
2425 void *res
= REAL(__tls_get_addr
)(arg
);
2426 ThreadState
*thr
= cur_thread();
2429 DTLS::DTV
*dtv
= DTLS_on_tls_get_addr(arg
, res
, thr
->tls_addr
, thr
->tls_size
);
2432 // New DTLS block has been allocated.
2433 MemoryResetRange(thr
, 0, dtv
->beg
, dtv
->size
);
2440 static void finalize(void *arg
) {
2441 ThreadState
*thr
= cur_thread();
2442 int status
= Finalize(thr
);
2443 // Make sure the output is not lost.
2449 #if !SANITIZER_MAC && !SANITIZER_ANDROID
2450 static void unreachable() {
2451 Report("FATAL: ThreadSanitizer: unreachable called\n");
2456 void InitializeInterceptors() {
2458 // We need to setup it early, because functions like dlsym() can call it.
2459 REAL(memset
) = internal_memset
;
2460 REAL(memcpy
) = internal_memcpy
;
2463 // Instruct libc malloc to consume less memory.
2465 mallopt(1, 0); // M_MXFAST
2466 mallopt(-3, 32*1024); // M_MMAP_THRESHOLD
2469 InitializeCommonInterceptors();
2472 // We can not use TSAN_INTERCEPT to get setjmp addr,
2473 // because it does &setjmp and setjmp is not present in some versions of libc.
2474 using __interception::GetRealFunctionAddress
;
2475 GetRealFunctionAddress("setjmp", (uptr
*)&REAL(setjmp
), 0, 0);
2476 GetRealFunctionAddress("_setjmp", (uptr
*)&REAL(_setjmp
), 0, 0);
2477 GetRealFunctionAddress("sigsetjmp", (uptr
*)&REAL(sigsetjmp
), 0, 0);
2478 GetRealFunctionAddress("__sigsetjmp", (uptr
*)&REAL(__sigsetjmp
), 0, 0);
2481 TSAN_INTERCEPT(longjmp
);
2482 TSAN_INTERCEPT(siglongjmp
);
2484 TSAN_INTERCEPT(malloc
);
2485 TSAN_INTERCEPT(__libc_memalign
);
2486 TSAN_INTERCEPT(calloc
);
2487 TSAN_INTERCEPT(realloc
);
2488 TSAN_INTERCEPT(free
);
2489 TSAN_INTERCEPT(cfree
);
2490 TSAN_INTERCEPT(mmap
);
2491 TSAN_MAYBE_INTERCEPT_MMAP64
;
2492 TSAN_INTERCEPT(munmap
);
2493 TSAN_MAYBE_INTERCEPT_MEMALIGN
;
2494 TSAN_INTERCEPT(valloc
);
2495 TSAN_MAYBE_INTERCEPT_PVALLOC
;
2496 TSAN_INTERCEPT(posix_memalign
);
2498 TSAN_INTERCEPT(strcpy
); // NOLINT
2499 TSAN_INTERCEPT(strncpy
);
2500 TSAN_INTERCEPT(strdup
);
2502 TSAN_INTERCEPT(pthread_create
);
2503 TSAN_INTERCEPT(pthread_join
);
2504 TSAN_INTERCEPT(pthread_detach
);
2506 TSAN_INTERCEPT_VER(pthread_cond_init
, PTHREAD_ABI_BASE
);
2507 TSAN_INTERCEPT_VER(pthread_cond_signal
, PTHREAD_ABI_BASE
);
2508 TSAN_INTERCEPT_VER(pthread_cond_broadcast
, PTHREAD_ABI_BASE
);
2509 TSAN_INTERCEPT_VER(pthread_cond_wait
, PTHREAD_ABI_BASE
);
2510 TSAN_INTERCEPT_VER(pthread_cond_timedwait
, PTHREAD_ABI_BASE
);
2511 TSAN_INTERCEPT_VER(pthread_cond_destroy
, PTHREAD_ABI_BASE
);
2513 TSAN_INTERCEPT(pthread_mutex_init
);
2514 TSAN_INTERCEPT(pthread_mutex_destroy
);
2515 TSAN_INTERCEPT(pthread_mutex_trylock
);
2516 TSAN_INTERCEPT(pthread_mutex_timedlock
);
2518 TSAN_INTERCEPT(pthread_spin_init
);
2519 TSAN_INTERCEPT(pthread_spin_destroy
);
2520 TSAN_INTERCEPT(pthread_spin_lock
);
2521 TSAN_INTERCEPT(pthread_spin_trylock
);
2522 TSAN_INTERCEPT(pthread_spin_unlock
);
2524 TSAN_INTERCEPT(pthread_rwlock_init
);
2525 TSAN_INTERCEPT(pthread_rwlock_destroy
);
2526 TSAN_INTERCEPT(pthread_rwlock_rdlock
);
2527 TSAN_INTERCEPT(pthread_rwlock_tryrdlock
);
2528 TSAN_INTERCEPT(pthread_rwlock_timedrdlock
);
2529 TSAN_INTERCEPT(pthread_rwlock_wrlock
);
2530 TSAN_INTERCEPT(pthread_rwlock_trywrlock
);
2531 TSAN_INTERCEPT(pthread_rwlock_timedwrlock
);
2532 TSAN_INTERCEPT(pthread_rwlock_unlock
);
2534 TSAN_INTERCEPT(pthread_barrier_init
);
2535 TSAN_INTERCEPT(pthread_barrier_destroy
);
2536 TSAN_INTERCEPT(pthread_barrier_wait
);
2538 TSAN_INTERCEPT(pthread_once
);
2540 TSAN_INTERCEPT(fstat
);
2541 TSAN_MAYBE_INTERCEPT___FXSTAT
;
2542 TSAN_MAYBE_INTERCEPT_FSTAT64
;
2543 TSAN_MAYBE_INTERCEPT___FXSTAT64
;
2544 TSAN_INTERCEPT(open
);
2545 TSAN_MAYBE_INTERCEPT_OPEN64
;
2546 TSAN_INTERCEPT(creat
);
2547 TSAN_MAYBE_INTERCEPT_CREAT64
;
2548 TSAN_INTERCEPT(dup
);
2549 TSAN_INTERCEPT(dup2
);
2550 TSAN_INTERCEPT(dup3
);
2551 TSAN_MAYBE_INTERCEPT_EVENTFD
;
2552 TSAN_MAYBE_INTERCEPT_SIGNALFD
;
2553 TSAN_MAYBE_INTERCEPT_INOTIFY_INIT
;
2554 TSAN_MAYBE_INTERCEPT_INOTIFY_INIT1
;
2555 TSAN_INTERCEPT(socket
);
2556 TSAN_INTERCEPT(socketpair
);
2557 TSAN_INTERCEPT(connect
);
2558 TSAN_INTERCEPT(bind
);
2559 TSAN_INTERCEPT(listen
);
2560 TSAN_MAYBE_INTERCEPT_EPOLL
;
2561 TSAN_INTERCEPT(close
);
2562 TSAN_MAYBE_INTERCEPT___CLOSE
;
2563 TSAN_MAYBE_INTERCEPT___RES_ICLOSE
;
2564 TSAN_INTERCEPT(pipe
);
2565 TSAN_INTERCEPT(pipe2
);
2567 TSAN_INTERCEPT(unlink
);
2568 TSAN_INTERCEPT(tmpfile
);
2569 TSAN_MAYBE_INTERCEPT_TMPFILE64
;
2570 TSAN_INTERCEPT(fread
);
2571 TSAN_INTERCEPT(fwrite
);
2572 TSAN_INTERCEPT(abort
);
2573 TSAN_INTERCEPT(puts
);
2574 TSAN_INTERCEPT(rmdir
);
2575 TSAN_INTERCEPT(closedir
);
2577 TSAN_INTERCEPT(sigaction
);
2578 TSAN_INTERCEPT(signal
);
2579 TSAN_INTERCEPT(sigsuspend
);
2580 TSAN_INTERCEPT(sigblock
);
2581 TSAN_INTERCEPT(sigsetmask
);
2582 TSAN_INTERCEPT(pthread_sigmask
);
2583 TSAN_INTERCEPT(raise
);
2584 TSAN_INTERCEPT(kill
);
2585 TSAN_INTERCEPT(pthread_kill
);
2586 TSAN_INTERCEPT(sleep
);
2587 TSAN_INTERCEPT(usleep
);
2588 TSAN_INTERCEPT(nanosleep
);
2589 TSAN_INTERCEPT(pause
);
2590 TSAN_INTERCEPT(gettimeofday
);
2591 TSAN_INTERCEPT(getaddrinfo
);
2593 TSAN_INTERCEPT(fork
);
2594 TSAN_INTERCEPT(vfork
);
2595 #if !SANITIZER_ANDROID
2596 TSAN_INTERCEPT(dl_iterate_phdr
);
2598 TSAN_INTERCEPT(on_exit
);
2599 TSAN_INTERCEPT(__cxa_atexit
);
2600 TSAN_INTERCEPT(_exit
);
2602 #ifdef NEED_TLS_GET_ADDR
2603 TSAN_INTERCEPT(__tls_get_addr
);
2606 #if !SANITIZER_MAC && !SANITIZER_ANDROID
2607 // Need to setup it, because interceptors check that the function is resolved.
2608 // But atexit is emitted directly into the module, so can't be resolved.
2609 REAL(atexit
) = (int(*)(void(*)()))unreachable
;
2612 if (REAL(__cxa_atexit
)(&finalize
, 0, 0)) {
2613 Printf("ThreadSanitizer: failed to setup atexit callback\n");
2618 if (pthread_key_create(&g_thread_finalize_key
, &thread_finalize
)) {
2619 Printf("ThreadSanitizer: failed to create thread key\n");
2627 } // namespace __tsan
2629 // Invisible barrier for tests.
2630 // There were several unsuccessful iterations for this functionality:
2631 // 1. Initially it was implemented in user code using
2632 // REAL(pthread_barrier_wait). But pthread_barrier_wait is not supported on
2633 // MacOS. Futexes are linux-specific for this matter.
2634 // 2. Then we switched to atomics+usleep(10). But usleep produced parasitic
2635 // "as-if synchronized via sleep" messages in reports which failed some
2637 // 3. Then we switched to atomics+sched_yield. But this produced tons of tsan-
2638 // visible events, which lead to "failed to restore stack trace" failures.
2639 // Note that no_sanitize_thread attribute does not turn off atomic interception
2640 // so attaching it to the function defined in user code does not help.
2641 // That's why we now have what we have.
2642 extern "C" SANITIZER_INTERFACE_ATTRIBUTE
2643 void __tsan_testonly_barrier_init(u64
*barrier
, u32 count
) {
2644 if (count
>= (1 << 8)) {
2645 Printf("barrier_init: count is too large (%d)\n", count
);
2648 // 8 lsb is thread count, the remaining are count of entered threads.
2652 extern "C" SANITIZER_INTERFACE_ATTRIBUTE
2653 void __tsan_testonly_barrier_wait(u64
*barrier
) {
2654 unsigned old
= __atomic_fetch_add(barrier
, 1 << 8, __ATOMIC_RELAXED
);
2655 unsigned old_epoch
= (old
>> 8) / (old
& 0xff);
2657 unsigned cur
= __atomic_load_n(barrier
, __ATOMIC_RELAXED
);
2658 unsigned cur_epoch
= (cur
>> 8) / (cur
& 0xff);
2659 if (cur_epoch
!= old_epoch
)
2661 internal_sched_yield();