1 /* Emit RTL for the GCC expander.
2 Copyright (C) 1987-2018 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
21 /* Middle-to-low level generation of rtx code and insns.
23 This file contains support functions for creating rtl expressions
24 and manipulating them in the doubly-linked chain of insns.
26 The patterns of the insns are created by machine-dependent
27 routines in insn-emit.c, which is generated automatically from
28 the machine description. These routines make the individual rtx's
29 of the pattern with `gen_rtx_fmt_ee' and others in genrtl.[ch],
30 which are automatically generated from rtl.def; what is machine
31 dependent is the kind of rtx's they make and what arguments they
36 #include "coretypes.h"
44 #include "stringpool.h"
45 #include "insn-config.h"
49 #include "diagnostic-core.h"
51 #include "fold-const.h"
60 #include "stor-layout.h"
63 #include "rtx-vector-builder.h"
65 struct target_rtl default_target_rtl
;
67 struct target_rtl
*this_target_rtl
= &default_target_rtl
;
70 #define initial_regno_reg_rtx (this_target_rtl->x_initial_regno_reg_rtx)
72 /* Commonly used modes. */
74 scalar_int_mode byte_mode
; /* Mode whose width is BITS_PER_UNIT. */
75 scalar_int_mode word_mode
; /* Mode whose width is BITS_PER_WORD. */
76 scalar_int_mode ptr_mode
; /* Mode whose width is POINTER_SIZE. */
78 /* Datastructures maintained for currently processed function in RTL form. */
80 struct rtl_data x_rtl
;
82 /* Indexed by pseudo register number, gives the rtx for that pseudo.
83 Allocated in parallel with regno_pointer_align.
84 FIXME: We could put it into emit_status struct, but gengtype is not able to deal
85 with length attribute nested in top level structures. */
89 /* This is *not* reset after each function. It gives each CODE_LABEL
90 in the entire compilation a unique label number. */
92 static GTY(()) int label_num
= 1;
94 /* We record floating-point CONST_DOUBLEs in each floating-point mode for
95 the values of 0, 1, and 2. For the integer entries and VOIDmode, we
96 record a copy of const[012]_rtx and constm1_rtx. CONSTM1_RTX
97 is set only for MODE_INT and MODE_VECTOR_INT modes. */
99 rtx const_tiny_rtx
[4][(int) MAX_MACHINE_MODE
];
103 REAL_VALUE_TYPE dconst0
;
104 REAL_VALUE_TYPE dconst1
;
105 REAL_VALUE_TYPE dconst2
;
106 REAL_VALUE_TYPE dconstm1
;
107 REAL_VALUE_TYPE dconsthalf
;
109 /* Record fixed-point constant 0 and 1. */
110 FIXED_VALUE_TYPE fconst0
[MAX_FCONST0
];
111 FIXED_VALUE_TYPE fconst1
[MAX_FCONST1
];
113 /* We make one copy of (const_int C) where C is in
114 [- MAX_SAVED_CONST_INT, MAX_SAVED_CONST_INT]
115 to save space during the compilation and simplify comparisons of
118 rtx const_int_rtx
[MAX_SAVED_CONST_INT
* 2 + 1];
120 /* Standard pieces of rtx, to be substituted directly into things. */
123 rtx simple_return_rtx
;
126 /* Marker used for denoting an INSN, which should never be accessed (i.e.,
127 this pointer should normally never be dereferenced), but is required to be
128 distinct from NULL_RTX. Currently used by peephole2 pass. */
129 rtx_insn
*invalid_insn_rtx
;
131 /* A hash table storing CONST_INTs whose absolute value is greater
132 than MAX_SAVED_CONST_INT. */
134 struct const_int_hasher
: ggc_cache_ptr_hash
<rtx_def
>
136 typedef HOST_WIDE_INT compare_type
;
138 static hashval_t
hash (rtx i
);
139 static bool equal (rtx i
, HOST_WIDE_INT h
);
142 static GTY ((cache
)) hash_table
<const_int_hasher
> *const_int_htab
;
144 struct const_wide_int_hasher
: ggc_cache_ptr_hash
<rtx_def
>
146 static hashval_t
hash (rtx x
);
147 static bool equal (rtx x
, rtx y
);
150 static GTY ((cache
)) hash_table
<const_wide_int_hasher
> *const_wide_int_htab
;
152 struct const_poly_int_hasher
: ggc_cache_ptr_hash
<rtx_def
>
154 typedef std::pair
<machine_mode
, poly_wide_int_ref
> compare_type
;
156 static hashval_t
hash (rtx x
);
157 static bool equal (rtx x
, const compare_type
&y
);
160 static GTY ((cache
)) hash_table
<const_poly_int_hasher
> *const_poly_int_htab
;
162 /* A hash table storing register attribute structures. */
163 struct reg_attr_hasher
: ggc_cache_ptr_hash
<reg_attrs
>
165 static hashval_t
hash (reg_attrs
*x
);
166 static bool equal (reg_attrs
*a
, reg_attrs
*b
);
169 static GTY ((cache
)) hash_table
<reg_attr_hasher
> *reg_attrs_htab
;
171 /* A hash table storing all CONST_DOUBLEs. */
172 struct const_double_hasher
: ggc_cache_ptr_hash
<rtx_def
>
174 static hashval_t
hash (rtx x
);
175 static bool equal (rtx x
, rtx y
);
178 static GTY ((cache
)) hash_table
<const_double_hasher
> *const_double_htab
;
180 /* A hash table storing all CONST_FIXEDs. */
181 struct const_fixed_hasher
: ggc_cache_ptr_hash
<rtx_def
>
183 static hashval_t
hash (rtx x
);
184 static bool equal (rtx x
, rtx y
);
187 static GTY ((cache
)) hash_table
<const_fixed_hasher
> *const_fixed_htab
;
189 #define cur_insn_uid (crtl->emit.x_cur_insn_uid)
190 #define cur_debug_insn_uid (crtl->emit.x_cur_debug_insn_uid)
191 #define first_label_num (crtl->emit.x_first_label_num)
193 static void set_used_decls (tree
);
194 static void mark_label_nuses (rtx
);
195 #if TARGET_SUPPORTS_WIDE_INT
196 static rtx
lookup_const_wide_int (rtx
);
198 static rtx
lookup_const_double (rtx
);
199 static rtx
lookup_const_fixed (rtx
);
200 static rtx
gen_const_vector (machine_mode
, int);
201 static void copy_rtx_if_shared_1 (rtx
*orig
);
203 /* Probability of the conditional branch currently proceeded by try_split. */
204 profile_probability split_branch_probability
;
206 /* Returns a hash code for X (which is a really a CONST_INT). */
209 const_int_hasher::hash (rtx x
)
211 return (hashval_t
) INTVAL (x
);
214 /* Returns nonzero if the value represented by X (which is really a
215 CONST_INT) is the same as that given by Y (which is really a
219 const_int_hasher::equal (rtx x
, HOST_WIDE_INT y
)
221 return (INTVAL (x
) == y
);
224 #if TARGET_SUPPORTS_WIDE_INT
225 /* Returns a hash code for X (which is a really a CONST_WIDE_INT). */
228 const_wide_int_hasher::hash (rtx x
)
231 unsigned HOST_WIDE_INT hash
= 0;
234 for (i
= 0; i
< CONST_WIDE_INT_NUNITS (xr
); i
++)
235 hash
+= CONST_WIDE_INT_ELT (xr
, i
);
237 return (hashval_t
) hash
;
240 /* Returns nonzero if the value represented by X (which is really a
241 CONST_WIDE_INT) is the same as that given by Y (which is really a
245 const_wide_int_hasher::equal (rtx x
, rtx y
)
250 if (CONST_WIDE_INT_NUNITS (xr
) != CONST_WIDE_INT_NUNITS (yr
))
253 for (i
= 0; i
< CONST_WIDE_INT_NUNITS (xr
); i
++)
254 if (CONST_WIDE_INT_ELT (xr
, i
) != CONST_WIDE_INT_ELT (yr
, i
))
261 /* Returns a hash code for CONST_POLY_INT X. */
264 const_poly_int_hasher::hash (rtx x
)
267 h
.add_int (GET_MODE (x
));
268 for (unsigned int i
= 0; i
< NUM_POLY_INT_COEFFS
; ++i
)
269 h
.add_wide_int (CONST_POLY_INT_COEFFS (x
)[i
]);
273 /* Returns nonzero if CONST_POLY_INT X is an rtx representation of Y. */
276 const_poly_int_hasher::equal (rtx x
, const compare_type
&y
)
278 if (GET_MODE (x
) != y
.first
)
280 for (unsigned int i
= 0; i
< NUM_POLY_INT_COEFFS
; ++i
)
281 if (CONST_POLY_INT_COEFFS (x
)[i
] != y
.second
.coeffs
[i
])
286 /* Returns a hash code for X (which is really a CONST_DOUBLE). */
288 const_double_hasher::hash (rtx x
)
290 const_rtx
const value
= x
;
293 if (TARGET_SUPPORTS_WIDE_INT
== 0 && GET_MODE (value
) == VOIDmode
)
294 h
= CONST_DOUBLE_LOW (value
) ^ CONST_DOUBLE_HIGH (value
);
297 h
= real_hash (CONST_DOUBLE_REAL_VALUE (value
));
298 /* MODE is used in the comparison, so it should be in the hash. */
299 h
^= GET_MODE (value
);
304 /* Returns nonzero if the value represented by X (really a ...)
305 is the same as that represented by Y (really a ...) */
307 const_double_hasher::equal (rtx x
, rtx y
)
309 const_rtx
const a
= x
, b
= y
;
311 if (GET_MODE (a
) != GET_MODE (b
))
313 if (TARGET_SUPPORTS_WIDE_INT
== 0 && GET_MODE (a
) == VOIDmode
)
314 return (CONST_DOUBLE_LOW (a
) == CONST_DOUBLE_LOW (b
)
315 && CONST_DOUBLE_HIGH (a
) == CONST_DOUBLE_HIGH (b
));
317 return real_identical (CONST_DOUBLE_REAL_VALUE (a
),
318 CONST_DOUBLE_REAL_VALUE (b
));
321 /* Returns a hash code for X (which is really a CONST_FIXED). */
324 const_fixed_hasher::hash (rtx x
)
326 const_rtx
const value
= x
;
329 h
= fixed_hash (CONST_FIXED_VALUE (value
));
330 /* MODE is used in the comparison, so it should be in the hash. */
331 h
^= GET_MODE (value
);
335 /* Returns nonzero if the value represented by X is the same as that
339 const_fixed_hasher::equal (rtx x
, rtx y
)
341 const_rtx
const a
= x
, b
= y
;
343 if (GET_MODE (a
) != GET_MODE (b
))
345 return fixed_identical (CONST_FIXED_VALUE (a
), CONST_FIXED_VALUE (b
));
348 /* Return true if the given memory attributes are equal. */
351 mem_attrs_eq_p (const struct mem_attrs
*p
, const struct mem_attrs
*q
)
357 return (p
->alias
== q
->alias
358 && p
->offset_known_p
== q
->offset_known_p
359 && (!p
->offset_known_p
|| known_eq (p
->offset
, q
->offset
))
360 && p
->size_known_p
== q
->size_known_p
361 && (!p
->size_known_p
|| known_eq (p
->size
, q
->size
))
362 && p
->align
== q
->align
363 && p
->addrspace
== q
->addrspace
364 && (p
->expr
== q
->expr
365 || (p
->expr
!= NULL_TREE
&& q
->expr
!= NULL_TREE
366 && operand_equal_p (p
->expr
, q
->expr
, 0))));
369 /* Set MEM's memory attributes so that they are the same as ATTRS. */
372 set_mem_attrs (rtx mem
, mem_attrs
*attrs
)
374 /* If everything is the default, we can just clear the attributes. */
375 if (mem_attrs_eq_p (attrs
, mode_mem_attrs
[(int) GET_MODE (mem
)]))
382 || !mem_attrs_eq_p (attrs
, MEM_ATTRS (mem
)))
384 MEM_ATTRS (mem
) = ggc_alloc
<mem_attrs
> ();
385 memcpy (MEM_ATTRS (mem
), attrs
, sizeof (mem_attrs
));
389 /* Returns a hash code for X (which is a really a reg_attrs *). */
392 reg_attr_hasher::hash (reg_attrs
*x
)
394 const reg_attrs
*const p
= x
;
398 h
.add_poly_hwi (p
->offset
);
402 /* Returns nonzero if the value represented by X is the same as that given by
406 reg_attr_hasher::equal (reg_attrs
*x
, reg_attrs
*y
)
408 const reg_attrs
*const p
= x
;
409 const reg_attrs
*const q
= y
;
411 return (p
->decl
== q
->decl
&& known_eq (p
->offset
, q
->offset
));
413 /* Allocate a new reg_attrs structure and insert it into the hash table if
414 one identical to it is not already in the table. We are doing this for
418 get_reg_attrs (tree decl
, poly_int64 offset
)
422 /* If everything is the default, we can just return zero. */
423 if (decl
== 0 && known_eq (offset
, 0))
427 attrs
.offset
= offset
;
429 reg_attrs
**slot
= reg_attrs_htab
->find_slot (&attrs
, INSERT
);
432 *slot
= ggc_alloc
<reg_attrs
> ();
433 memcpy (*slot
, &attrs
, sizeof (reg_attrs
));
441 /* Generate an empty ASM_INPUT, which is used to block attempts to schedule,
442 and to block register equivalences to be seen across this insn. */
447 rtx x
= gen_rtx_ASM_INPUT (VOIDmode
, "");
448 MEM_VOLATILE_P (x
) = true;
454 /* Set the mode and register number of X to MODE and REGNO. */
457 set_mode_and_regno (rtx x
, machine_mode mode
, unsigned int regno
)
459 unsigned int nregs
= (HARD_REGISTER_NUM_P (regno
)
460 ? hard_regno_nregs (regno
, mode
)
462 PUT_MODE_RAW (x
, mode
);
463 set_regno_raw (x
, regno
, nregs
);
466 /* Generate a new REG rtx. Make sure ORIGINAL_REGNO is set properly, and
467 don't attempt to share with the various global pieces of rtl (such as
468 frame_pointer_rtx). */
471 gen_raw_REG (machine_mode mode
, unsigned int regno
)
473 rtx x
= rtx_alloc (REG MEM_STAT_INFO
);
474 set_mode_and_regno (x
, mode
, regno
);
475 REG_ATTRS (x
) = NULL
;
476 ORIGINAL_REGNO (x
) = regno
;
480 /* There are some RTL codes that require special attention; the generation
481 functions do the raw handling. If you add to this list, modify
482 special_rtx in gengenrtl.c as well. */
485 gen_rtx_EXPR_LIST (machine_mode mode
, rtx expr
, rtx expr_list
)
487 return as_a
<rtx_expr_list
*> (gen_rtx_fmt_ee (EXPR_LIST
, mode
, expr
,
492 gen_rtx_INSN_LIST (machine_mode mode
, rtx insn
, rtx insn_list
)
494 return as_a
<rtx_insn_list
*> (gen_rtx_fmt_ue (INSN_LIST
, mode
, insn
,
499 gen_rtx_INSN (machine_mode mode
, rtx_insn
*prev_insn
, rtx_insn
*next_insn
,
500 basic_block bb
, rtx pattern
, int location
, int code
,
503 return as_a
<rtx_insn
*> (gen_rtx_fmt_uuBeiie (INSN
, mode
,
504 prev_insn
, next_insn
,
505 bb
, pattern
, location
, code
,
510 gen_rtx_CONST_INT (machine_mode mode ATTRIBUTE_UNUSED
, HOST_WIDE_INT arg
)
512 if (arg
>= - MAX_SAVED_CONST_INT
&& arg
<= MAX_SAVED_CONST_INT
)
513 return const_int_rtx
[arg
+ MAX_SAVED_CONST_INT
];
515 #if STORE_FLAG_VALUE != 1 && STORE_FLAG_VALUE != -1
516 if (const_true_rtx
&& arg
== STORE_FLAG_VALUE
)
517 return const_true_rtx
;
520 /* Look up the CONST_INT in the hash table. */
521 rtx
*slot
= const_int_htab
->find_slot_with_hash (arg
, (hashval_t
) arg
,
524 *slot
= gen_rtx_raw_CONST_INT (VOIDmode
, arg
);
530 gen_int_mode (poly_int64 c
, machine_mode mode
)
532 c
= trunc_int_for_mode (c
, mode
);
533 if (c
.is_constant ())
534 return GEN_INT (c
.coeffs
[0]);
535 unsigned int prec
= GET_MODE_PRECISION (as_a
<scalar_mode
> (mode
));
536 return immed_wide_int_const (poly_wide_int::from (c
, prec
, SIGNED
), mode
);
539 /* CONST_DOUBLEs might be created from pairs of integers, or from
540 REAL_VALUE_TYPEs. Also, their length is known only at run time,
541 so we cannot use gen_rtx_raw_CONST_DOUBLE. */
543 /* Determine whether REAL, a CONST_DOUBLE, already exists in the
544 hash table. If so, return its counterpart; otherwise add it
545 to the hash table and return it. */
547 lookup_const_double (rtx real
)
549 rtx
*slot
= const_double_htab
->find_slot (real
, INSERT
);
556 /* Return a CONST_DOUBLE rtx for a floating-point value specified by
557 VALUE in mode MODE. */
559 const_double_from_real_value (REAL_VALUE_TYPE value
, machine_mode mode
)
561 rtx real
= rtx_alloc (CONST_DOUBLE
);
562 PUT_MODE (real
, mode
);
566 return lookup_const_double (real
);
569 /* Determine whether FIXED, a CONST_FIXED, already exists in the
570 hash table. If so, return its counterpart; otherwise add it
571 to the hash table and return it. */
574 lookup_const_fixed (rtx fixed
)
576 rtx
*slot
= const_fixed_htab
->find_slot (fixed
, INSERT
);
583 /* Return a CONST_FIXED rtx for a fixed-point value specified by
584 VALUE in mode MODE. */
587 const_fixed_from_fixed_value (FIXED_VALUE_TYPE value
, machine_mode mode
)
589 rtx fixed
= rtx_alloc (CONST_FIXED
);
590 PUT_MODE (fixed
, mode
);
594 return lookup_const_fixed (fixed
);
597 #if TARGET_SUPPORTS_WIDE_INT == 0
598 /* Constructs double_int from rtx CST. */
601 rtx_to_double_int (const_rtx cst
)
605 if (CONST_INT_P (cst
))
606 r
= double_int::from_shwi (INTVAL (cst
));
607 else if (CONST_DOUBLE_AS_INT_P (cst
))
609 r
.low
= CONST_DOUBLE_LOW (cst
);
610 r
.high
= CONST_DOUBLE_HIGH (cst
);
619 #if TARGET_SUPPORTS_WIDE_INT
620 /* Determine whether CONST_WIDE_INT WINT already exists in the hash table.
621 If so, return its counterpart; otherwise add it to the hash table and
625 lookup_const_wide_int (rtx wint
)
627 rtx
*slot
= const_wide_int_htab
->find_slot (wint
, INSERT
);
635 /* Return an rtx constant for V, given that the constant has mode MODE.
636 The returned rtx will be a CONST_INT if V fits, otherwise it will be
637 a CONST_DOUBLE (if !TARGET_SUPPORTS_WIDE_INT) or a CONST_WIDE_INT
638 (if TARGET_SUPPORTS_WIDE_INT). */
641 immed_wide_int_const_1 (const wide_int_ref
&v
, machine_mode mode
)
643 unsigned int len
= v
.get_len ();
644 /* Not scalar_int_mode because we also allow pointer bound modes. */
645 unsigned int prec
= GET_MODE_PRECISION (as_a
<scalar_mode
> (mode
));
647 /* Allow truncation but not extension since we do not know if the
648 number is signed or unsigned. */
649 gcc_assert (prec
<= v
.get_precision ());
651 if (len
< 2 || prec
<= HOST_BITS_PER_WIDE_INT
)
652 return gen_int_mode (v
.elt (0), mode
);
654 #if TARGET_SUPPORTS_WIDE_INT
658 unsigned int blocks_needed
659 = (prec
+ HOST_BITS_PER_WIDE_INT
- 1) / HOST_BITS_PER_WIDE_INT
;
661 if (len
> blocks_needed
)
664 value
= const_wide_int_alloc (len
);
666 /* It is so tempting to just put the mode in here. Must control
668 PUT_MODE (value
, VOIDmode
);
669 CWI_PUT_NUM_ELEM (value
, len
);
671 for (i
= 0; i
< len
; i
++)
672 CONST_WIDE_INT_ELT (value
, i
) = v
.elt (i
);
674 return lookup_const_wide_int (value
);
677 return immed_double_const (v
.elt (0), v
.elt (1), mode
);
681 #if TARGET_SUPPORTS_WIDE_INT == 0
682 /* Return a CONST_DOUBLE or CONST_INT for a value specified as a pair
683 of ints: I0 is the low-order word and I1 is the high-order word.
684 For values that are larger than HOST_BITS_PER_DOUBLE_INT, the
685 implied upper bits are copies of the high bit of i1. The value
686 itself is neither signed nor unsigned. Do not use this routine for
687 non-integer modes; convert to REAL_VALUE_TYPE and use
688 const_double_from_real_value. */
691 immed_double_const (HOST_WIDE_INT i0
, HOST_WIDE_INT i1
, machine_mode mode
)
696 /* There are the following cases (note that there are no modes with
697 HOST_BITS_PER_WIDE_INT < GET_MODE_BITSIZE (mode) < HOST_BITS_PER_DOUBLE_INT):
699 1) If GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT, then we use
701 2) If the value of the integer fits into HOST_WIDE_INT anyway
702 (i.e., i1 consists only from copies of the sign bit, and sign
703 of i0 and i1 are the same), then we return a CONST_INT for i0.
704 3) Otherwise, we create a CONST_DOUBLE for i0 and i1. */
706 if (is_a
<scalar_mode
> (mode
, &smode
)
707 && GET_MODE_BITSIZE (smode
) <= HOST_BITS_PER_WIDE_INT
)
708 return gen_int_mode (i0
, mode
);
710 /* If this integer fits in one word, return a CONST_INT. */
711 if ((i1
== 0 && i0
>= 0) || (i1
== ~0 && i0
< 0))
714 /* We use VOIDmode for integers. */
715 value
= rtx_alloc (CONST_DOUBLE
);
716 PUT_MODE (value
, VOIDmode
);
718 CONST_DOUBLE_LOW (value
) = i0
;
719 CONST_DOUBLE_HIGH (value
) = i1
;
721 for (i
= 2; i
< (sizeof CONST_DOUBLE_FORMAT
- 1); i
++)
722 XWINT (value
, i
) = 0;
724 return lookup_const_double (value
);
728 /* Return an rtx representation of C in mode MODE. */
731 immed_wide_int_const (const poly_wide_int_ref
&c
, machine_mode mode
)
733 if (c
.is_constant ())
734 return immed_wide_int_const_1 (c
.coeffs
[0], mode
);
736 /* Not scalar_int_mode because we also allow pointer bound modes. */
737 unsigned int prec
= GET_MODE_PRECISION (as_a
<scalar_mode
> (mode
));
739 /* Allow truncation but not extension since we do not know if the
740 number is signed or unsigned. */
741 gcc_assert (prec
<= c
.coeffs
[0].get_precision ());
742 poly_wide_int newc
= poly_wide_int::from (c
, prec
, SIGNED
);
744 /* See whether we already have an rtx for this constant. */
747 for (unsigned int i
= 0; i
< NUM_POLY_INT_COEFFS
; ++i
)
748 h
.add_wide_int (newc
.coeffs
[i
]);
749 const_poly_int_hasher::compare_type
typed_value (mode
, newc
);
750 rtx
*slot
= const_poly_int_htab
->find_slot_with_hash (typed_value
,
756 /* Create a new rtx. There's a choice to be made here between installing
757 the actual mode of the rtx or leaving it as VOIDmode (for consistency
758 with CONST_INT). In practice the handling of the codes is different
759 enough that we get no benefit from using VOIDmode, and various places
760 assume that VOIDmode implies CONST_INT. Using the real mode seems like
761 the right long-term direction anyway. */
762 typedef trailing_wide_ints
<NUM_POLY_INT_COEFFS
> twi
;
763 size_t extra_size
= twi::extra_size (prec
);
764 x
= rtx_alloc_v (CONST_POLY_INT
,
765 sizeof (struct const_poly_int_def
) + extra_size
);
767 CONST_POLY_INT_COEFFS (x
).set_precision (prec
);
768 for (unsigned int i
= 0; i
< NUM_POLY_INT_COEFFS
; ++i
)
769 CONST_POLY_INT_COEFFS (x
)[i
] = newc
.coeffs
[i
];
776 gen_rtx_REG (machine_mode mode
, unsigned int regno
)
778 /* In case the MD file explicitly references the frame pointer, have
779 all such references point to the same frame pointer. This is
780 used during frame pointer elimination to distinguish the explicit
781 references to these registers from pseudos that happened to be
784 If we have eliminated the frame pointer or arg pointer, we will
785 be using it as a normal register, for example as a spill
786 register. In such cases, we might be accessing it in a mode that
787 is not Pmode and therefore cannot use the pre-allocated rtx.
789 Also don't do this when we are making new REGs in reload, since
790 we don't want to get confused with the real pointers. */
792 if (mode
== Pmode
&& !reload_in_progress
&& !lra_in_progress
)
794 if (regno
== FRAME_POINTER_REGNUM
795 && (!reload_completed
|| frame_pointer_needed
))
796 return frame_pointer_rtx
;
798 if (!HARD_FRAME_POINTER_IS_FRAME_POINTER
799 && regno
== HARD_FRAME_POINTER_REGNUM
800 && (!reload_completed
|| frame_pointer_needed
))
801 return hard_frame_pointer_rtx
;
802 #if !HARD_FRAME_POINTER_IS_ARG_POINTER
803 if (FRAME_POINTER_REGNUM
!= ARG_POINTER_REGNUM
804 && regno
== ARG_POINTER_REGNUM
)
805 return arg_pointer_rtx
;
807 #ifdef RETURN_ADDRESS_POINTER_REGNUM
808 if (regno
== RETURN_ADDRESS_POINTER_REGNUM
)
809 return return_address_pointer_rtx
;
811 if (regno
== (unsigned) PIC_OFFSET_TABLE_REGNUM
812 && PIC_OFFSET_TABLE_REGNUM
!= INVALID_REGNUM
813 && fixed_regs
[PIC_OFFSET_TABLE_REGNUM
])
814 return pic_offset_table_rtx
;
815 if (regno
== STACK_POINTER_REGNUM
)
816 return stack_pointer_rtx
;
820 /* If the per-function register table has been set up, try to re-use
821 an existing entry in that table to avoid useless generation of RTL.
823 This code is disabled for now until we can fix the various backends
824 which depend on having non-shared hard registers in some cases. Long
825 term we want to re-enable this code as it can significantly cut down
826 on the amount of useless RTL that gets generated.
828 We'll also need to fix some code that runs after reload that wants to
829 set ORIGINAL_REGNO. */
834 && regno
< FIRST_PSEUDO_REGISTER
835 && reg_raw_mode
[regno
] == mode
)
836 return regno_reg_rtx
[regno
];
839 return gen_raw_REG (mode
, regno
);
843 gen_rtx_MEM (machine_mode mode
, rtx addr
)
845 rtx rt
= gen_rtx_raw_MEM (mode
, addr
);
847 /* This field is not cleared by the mere allocation of the rtx, so
854 /* Generate a memory referring to non-trapping constant memory. */
857 gen_const_mem (machine_mode mode
, rtx addr
)
859 rtx mem
= gen_rtx_MEM (mode
, addr
);
860 MEM_READONLY_P (mem
) = 1;
861 MEM_NOTRAP_P (mem
) = 1;
865 /* Generate a MEM referring to fixed portions of the frame, e.g., register
869 gen_frame_mem (machine_mode mode
, rtx addr
)
871 rtx mem
= gen_rtx_MEM (mode
, addr
);
872 MEM_NOTRAP_P (mem
) = 1;
873 set_mem_alias_set (mem
, get_frame_alias_set ());
877 /* Generate a MEM referring to a temporary use of the stack, not part
878 of the fixed stack frame. For example, something which is pushed
879 by a target splitter. */
881 gen_tmp_stack_mem (machine_mode mode
, rtx addr
)
883 rtx mem
= gen_rtx_MEM (mode
, addr
);
884 MEM_NOTRAP_P (mem
) = 1;
885 if (!cfun
->calls_alloca
)
886 set_mem_alias_set (mem
, get_frame_alias_set ());
890 /* We want to create (subreg:OMODE (obj:IMODE) OFFSET). Return true if
891 this construct would be valid, and false otherwise. */
894 validate_subreg (machine_mode omode
, machine_mode imode
,
895 const_rtx reg
, poly_uint64 offset
)
897 poly_uint64 isize
= GET_MODE_SIZE (imode
);
898 poly_uint64 osize
= GET_MODE_SIZE (omode
);
900 /* The sizes must be ordered, so that we know whether the subreg
901 is partial, paradoxical or complete. */
902 if (!ordered_p (isize
, osize
))
905 /* All subregs must be aligned. */
906 if (!multiple_p (offset
, osize
))
909 /* The subreg offset cannot be outside the inner object. */
910 if (maybe_ge (offset
, isize
))
913 poly_uint64 regsize
= REGMODE_NATURAL_SIZE (imode
);
915 /* ??? This should not be here. Temporarily continue to allow word_mode
916 subregs of anything. The most common offender is (subreg:SI (reg:DF)).
917 Generally, backends are doing something sketchy but it'll take time to
919 if (omode
== word_mode
)
921 /* ??? Similarly, e.g. with (subreg:DF (reg:TI)). Though store_bit_field
922 is the culprit here, and not the backends. */
923 else if (known_ge (osize
, regsize
) && known_ge (isize
, osize
))
925 /* Allow component subregs of complex and vector. Though given the below
926 extraction rules, it's not always clear what that means. */
927 else if ((COMPLEX_MODE_P (imode
) || VECTOR_MODE_P (imode
))
928 && GET_MODE_INNER (imode
) == omode
)
930 /* ??? x86 sse code makes heavy use of *paradoxical* vector subregs,
931 i.e. (subreg:V4SF (reg:SF) 0). This surely isn't the cleanest way to
932 represent this. It's questionable if this ought to be represented at
933 all -- why can't this all be hidden in post-reload splitters that make
934 arbitrarily mode changes to the registers themselves. */
935 else if (VECTOR_MODE_P (omode
) && GET_MODE_INNER (omode
) == imode
)
937 /* Subregs involving floating point modes are not allowed to
938 change size. Therefore (subreg:DI (reg:DF) 0) is fine, but
939 (subreg:SI (reg:DF) 0) isn't. */
940 else if (FLOAT_MODE_P (imode
) || FLOAT_MODE_P (omode
))
942 if (! (known_eq (isize
, osize
)
943 /* LRA can use subreg to store a floating point value in
944 an integer mode. Although the floating point and the
945 integer modes need the same number of hard registers,
946 the size of floating point mode can be less than the
947 integer mode. LRA also uses subregs for a register
948 should be used in different mode in on insn. */
953 /* Paradoxical subregs must have offset zero. */
954 if (maybe_gt (osize
, isize
))
955 return known_eq (offset
, 0U);
957 /* This is a normal subreg. Verify that the offset is representable. */
959 /* For hard registers, we already have most of these rules collected in
960 subreg_offset_representable_p. */
961 if (reg
&& REG_P (reg
) && HARD_REGISTER_P (reg
))
963 unsigned int regno
= REGNO (reg
);
965 if ((COMPLEX_MODE_P (imode
) || VECTOR_MODE_P (imode
))
966 && GET_MODE_INNER (imode
) == omode
)
968 else if (!REG_CAN_CHANGE_MODE_P (regno
, imode
, omode
))
971 return subreg_offset_representable_p (regno
, imode
, offset
, omode
);
974 /* The outer size must be ordered wrt the register size, otherwise
975 we wouldn't know at compile time how many registers the outer
977 if (!ordered_p (osize
, regsize
))
980 /* For pseudo registers, we want most of the same checks. Namely:
982 Assume that the pseudo register will be allocated to hard registers
983 that can hold REGSIZE bytes each. If OSIZE is not a multiple of REGSIZE,
984 the remainder must correspond to the lowpart of the containing hard
985 register. If BYTES_BIG_ENDIAN, the lowpart is at the highest offset,
986 otherwise it is at the lowest offset.
988 Given that we've already checked the mode and offset alignment,
989 we only have to check subblock subregs here. */
990 if (maybe_lt (osize
, regsize
)
991 && ! (lra_in_progress
&& (FLOAT_MODE_P (imode
) || FLOAT_MODE_P (omode
))))
993 /* It is invalid for the target to pick a register size for a mode
994 that isn't ordered wrt to the size of that mode. */
995 poly_uint64 block_size
= ordered_min (isize
, regsize
);
996 unsigned int start_reg
;
997 poly_uint64 offset_within_reg
;
998 if (!can_div_trunc_p (offset
, block_size
, &start_reg
, &offset_within_reg
)
1000 ? maybe_ne (offset_within_reg
, block_size
- osize
)
1001 : maybe_ne (offset_within_reg
, 0U)))
1008 gen_rtx_SUBREG (machine_mode mode
, rtx reg
, poly_uint64 offset
)
1010 gcc_assert (validate_subreg (mode
, GET_MODE (reg
), reg
, offset
));
1011 return gen_rtx_raw_SUBREG (mode
, reg
, offset
);
1014 /* Generate a SUBREG representing the least-significant part of REG if MODE
1015 is smaller than mode of REG, otherwise paradoxical SUBREG. */
1018 gen_lowpart_SUBREG (machine_mode mode
, rtx reg
)
1020 machine_mode inmode
;
1022 inmode
= GET_MODE (reg
);
1023 if (inmode
== VOIDmode
)
1025 return gen_rtx_SUBREG (mode
, reg
,
1026 subreg_lowpart_offset (mode
, inmode
));
1030 gen_rtx_VAR_LOCATION (machine_mode mode
, tree decl
, rtx loc
,
1031 enum var_init_status status
)
1033 rtx x
= gen_rtx_fmt_te (VAR_LOCATION
, mode
, decl
, loc
);
1034 PAT_VAR_LOCATION_STATUS (x
) = status
;
1039 /* Create an rtvec and stores within it the RTXen passed in the arguments. */
1042 gen_rtvec (int n
, ...)
1050 /* Don't allocate an empty rtvec... */
1057 rt_val
= rtvec_alloc (n
);
1059 for (i
= 0; i
< n
; i
++)
1060 rt_val
->elem
[i
] = va_arg (p
, rtx
);
1067 gen_rtvec_v (int n
, rtx
*argp
)
1072 /* Don't allocate an empty rtvec... */
1076 rt_val
= rtvec_alloc (n
);
1078 for (i
= 0; i
< n
; i
++)
1079 rt_val
->elem
[i
] = *argp
++;
1085 gen_rtvec_v (int n
, rtx_insn
**argp
)
1090 /* Don't allocate an empty rtvec... */
1094 rt_val
= rtvec_alloc (n
);
1096 for (i
= 0; i
< n
; i
++)
1097 rt_val
->elem
[i
] = *argp
++;
1103 /* Return the number of bytes between the start of an OUTER_MODE
1104 in-memory value and the start of an INNER_MODE in-memory value,
1105 given that the former is a lowpart of the latter. It may be a
1106 paradoxical lowpart, in which case the offset will be negative
1107 on big-endian targets. */
1110 byte_lowpart_offset (machine_mode outer_mode
,
1111 machine_mode inner_mode
)
1113 if (paradoxical_subreg_p (outer_mode
, inner_mode
))
1114 return -subreg_lowpart_offset (inner_mode
, outer_mode
);
1116 return subreg_lowpart_offset (outer_mode
, inner_mode
);
1119 /* Return the offset of (subreg:OUTER_MODE (mem:INNER_MODE X) OFFSET)
1120 from address X. For paradoxical big-endian subregs this is a
1121 negative value, otherwise it's the same as OFFSET. */
1124 subreg_memory_offset (machine_mode outer_mode
, machine_mode inner_mode
,
1127 if (paradoxical_subreg_p (outer_mode
, inner_mode
))
1129 gcc_assert (known_eq (offset
, 0U));
1130 return -subreg_lowpart_offset (inner_mode
, outer_mode
);
1135 /* As above, but return the offset that existing subreg X would have
1136 if SUBREG_REG (X) were stored in memory. The only significant thing
1137 about the current SUBREG_REG is its mode. */
1140 subreg_memory_offset (const_rtx x
)
1142 return subreg_memory_offset (GET_MODE (x
), GET_MODE (SUBREG_REG (x
)),
1146 /* Generate a REG rtx for a new pseudo register of mode MODE.
1147 This pseudo is assigned the next sequential register number. */
1150 gen_reg_rtx (machine_mode mode
)
1153 unsigned int align
= GET_MODE_ALIGNMENT (mode
);
1155 gcc_assert (can_create_pseudo_p ());
1157 /* If a virtual register with bigger mode alignment is generated,
1158 increase stack alignment estimation because it might be spilled
1160 if (SUPPORTS_STACK_ALIGNMENT
1161 && crtl
->stack_alignment_estimated
< align
1162 && !crtl
->stack_realign_processed
)
1164 unsigned int min_align
= MINIMUM_ALIGNMENT (NULL
, mode
, align
);
1165 if (crtl
->stack_alignment_estimated
< min_align
)
1166 crtl
->stack_alignment_estimated
= min_align
;
1169 if (generating_concat_p
1170 && (GET_MODE_CLASS (mode
) == MODE_COMPLEX_FLOAT
1171 || GET_MODE_CLASS (mode
) == MODE_COMPLEX_INT
))
1173 /* For complex modes, don't make a single pseudo.
1174 Instead, make a CONCAT of two pseudos.
1175 This allows noncontiguous allocation of the real and imaginary parts,
1176 which makes much better code. Besides, allocating DCmode
1177 pseudos overstrains reload on some machines like the 386. */
1178 rtx realpart
, imagpart
;
1179 machine_mode partmode
= GET_MODE_INNER (mode
);
1181 realpart
= gen_reg_rtx (partmode
);
1182 imagpart
= gen_reg_rtx (partmode
);
1183 return gen_rtx_CONCAT (mode
, realpart
, imagpart
);
1186 /* Do not call gen_reg_rtx with uninitialized crtl. */
1187 gcc_assert (crtl
->emit
.regno_pointer_align_length
);
1189 crtl
->emit
.ensure_regno_capacity ();
1190 gcc_assert (reg_rtx_no
< crtl
->emit
.regno_pointer_align_length
);
1192 val
= gen_raw_REG (mode
, reg_rtx_no
);
1193 regno_reg_rtx
[reg_rtx_no
++] = val
;
1197 /* Make sure m_regno_pointer_align, and regno_reg_rtx are large
1198 enough to have elements in the range 0 <= idx <= reg_rtx_no. */
1201 emit_status::ensure_regno_capacity ()
1203 int old_size
= regno_pointer_align_length
;
1205 if (reg_rtx_no
< old_size
)
1208 int new_size
= old_size
* 2;
1209 while (reg_rtx_no
>= new_size
)
1212 char *tmp
= XRESIZEVEC (char, regno_pointer_align
, new_size
);
1213 memset (tmp
+ old_size
, 0, new_size
- old_size
);
1214 regno_pointer_align
= (unsigned char *) tmp
;
1216 rtx
*new1
= GGC_RESIZEVEC (rtx
, regno_reg_rtx
, new_size
);
1217 memset (new1
+ old_size
, 0, (new_size
- old_size
) * sizeof (rtx
));
1218 regno_reg_rtx
= new1
;
1220 crtl
->emit
.regno_pointer_align_length
= new_size
;
1223 /* Return TRUE if REG is a PARM_DECL, FALSE otherwise. */
1226 reg_is_parm_p (rtx reg
)
1230 gcc_assert (REG_P (reg
));
1231 decl
= REG_EXPR (reg
);
1232 return (decl
&& TREE_CODE (decl
) == PARM_DECL
);
1235 /* Update NEW with the same attributes as REG, but with OFFSET added
1236 to the REG_OFFSET. */
1239 update_reg_offset (rtx new_rtx
, rtx reg
, poly_int64 offset
)
1241 REG_ATTRS (new_rtx
) = get_reg_attrs (REG_EXPR (reg
),
1242 REG_OFFSET (reg
) + offset
);
1245 /* Generate a register with same attributes as REG, but with OFFSET
1246 added to the REG_OFFSET. */
1249 gen_rtx_REG_offset (rtx reg
, machine_mode mode
, unsigned int regno
,
1252 rtx new_rtx
= gen_rtx_REG (mode
, regno
);
1254 update_reg_offset (new_rtx
, reg
, offset
);
1258 /* Generate a new pseudo-register with the same attributes as REG, but
1259 with OFFSET added to the REG_OFFSET. */
1262 gen_reg_rtx_offset (rtx reg
, machine_mode mode
, int offset
)
1264 rtx new_rtx
= gen_reg_rtx (mode
);
1266 update_reg_offset (new_rtx
, reg
, offset
);
1270 /* Adjust REG in-place so that it has mode MODE. It is assumed that the
1271 new register is a (possibly paradoxical) lowpart of the old one. */
1274 adjust_reg_mode (rtx reg
, machine_mode mode
)
1276 update_reg_offset (reg
, reg
, byte_lowpart_offset (mode
, GET_MODE (reg
)));
1277 PUT_MODE (reg
, mode
);
1280 /* Copy REG's attributes from X, if X has any attributes. If REG and X
1281 have different modes, REG is a (possibly paradoxical) lowpart of X. */
1284 set_reg_attrs_from_value (rtx reg
, rtx x
)
1287 bool can_be_reg_pointer
= true;
1289 /* Don't call mark_reg_pointer for incompatible pointer sign
1291 while (GET_CODE (x
) == SIGN_EXTEND
1292 || GET_CODE (x
) == ZERO_EXTEND
1293 || GET_CODE (x
) == TRUNCATE
1294 || (GET_CODE (x
) == SUBREG
&& subreg_lowpart_p (x
)))
1296 #if defined(POINTERS_EXTEND_UNSIGNED)
1297 if (((GET_CODE (x
) == SIGN_EXTEND
&& POINTERS_EXTEND_UNSIGNED
)
1298 || (GET_CODE (x
) == ZERO_EXTEND
&& ! POINTERS_EXTEND_UNSIGNED
)
1299 || (paradoxical_subreg_p (x
)
1300 && ! (SUBREG_PROMOTED_VAR_P (x
)
1301 && SUBREG_CHECK_PROMOTED_SIGN (x
,
1302 POINTERS_EXTEND_UNSIGNED
))))
1303 && !targetm
.have_ptr_extend ())
1304 can_be_reg_pointer
= false;
1309 /* Hard registers can be reused for multiple purposes within the same
1310 function, so setting REG_ATTRS, REG_POINTER and REG_POINTER_ALIGN
1311 on them is wrong. */
1312 if (HARD_REGISTER_P (reg
))
1315 offset
= byte_lowpart_offset (GET_MODE (reg
), GET_MODE (x
));
1318 if (MEM_OFFSET_KNOWN_P (x
))
1319 REG_ATTRS (reg
) = get_reg_attrs (MEM_EXPR (x
),
1320 MEM_OFFSET (x
) + offset
);
1321 if (can_be_reg_pointer
&& MEM_POINTER (x
))
1322 mark_reg_pointer (reg
, 0);
1327 update_reg_offset (reg
, x
, offset
);
1328 if (can_be_reg_pointer
&& REG_POINTER (x
))
1329 mark_reg_pointer (reg
, REGNO_POINTER_ALIGN (REGNO (x
)));
1333 /* Generate a REG rtx for a new pseudo register, copying the mode
1334 and attributes from X. */
1337 gen_reg_rtx_and_attrs (rtx x
)
1339 rtx reg
= gen_reg_rtx (GET_MODE (x
));
1340 set_reg_attrs_from_value (reg
, x
);
1344 /* Set the register attributes for registers contained in PARM_RTX.
1345 Use needed values from memory attributes of MEM. */
1348 set_reg_attrs_for_parm (rtx parm_rtx
, rtx mem
)
1350 if (REG_P (parm_rtx
))
1351 set_reg_attrs_from_value (parm_rtx
, mem
);
1352 else if (GET_CODE (parm_rtx
) == PARALLEL
)
1354 /* Check for a NULL entry in the first slot, used to indicate that the
1355 parameter goes both on the stack and in registers. */
1356 int i
= XEXP (XVECEXP (parm_rtx
, 0, 0), 0) ? 0 : 1;
1357 for (; i
< XVECLEN (parm_rtx
, 0); i
++)
1359 rtx x
= XVECEXP (parm_rtx
, 0, i
);
1360 if (REG_P (XEXP (x
, 0)))
1361 REG_ATTRS (XEXP (x
, 0))
1362 = get_reg_attrs (MEM_EXPR (mem
),
1363 INTVAL (XEXP (x
, 1)));
1368 /* Set the REG_ATTRS for registers in value X, given that X represents
1372 set_reg_attrs_for_decl_rtl (tree t
, rtx x
)
1377 if (GET_CODE (x
) == SUBREG
)
1379 gcc_assert (subreg_lowpart_p (x
));
1384 = get_reg_attrs (t
, byte_lowpart_offset (GET_MODE (x
),
1387 : TYPE_MODE (TREE_TYPE (tdecl
))));
1388 if (GET_CODE (x
) == CONCAT
)
1390 if (REG_P (XEXP (x
, 0)))
1391 REG_ATTRS (XEXP (x
, 0)) = get_reg_attrs (t
, 0);
1392 if (REG_P (XEXP (x
, 1)))
1393 REG_ATTRS (XEXP (x
, 1))
1394 = get_reg_attrs (t
, GET_MODE_UNIT_SIZE (GET_MODE (XEXP (x
, 0))));
1396 if (GET_CODE (x
) == PARALLEL
)
1400 /* Check for a NULL entry, used to indicate that the parameter goes
1401 both on the stack and in registers. */
1402 if (XEXP (XVECEXP (x
, 0, 0), 0))
1407 for (i
= start
; i
< XVECLEN (x
, 0); i
++)
1409 rtx y
= XVECEXP (x
, 0, i
);
1410 if (REG_P (XEXP (y
, 0)))
1411 REG_ATTRS (XEXP (y
, 0)) = get_reg_attrs (t
, INTVAL (XEXP (y
, 1)));
1416 /* Assign the RTX X to declaration T. */
1419 set_decl_rtl (tree t
, rtx x
)
1421 DECL_WRTL_CHECK (t
)->decl_with_rtl
.rtl
= x
;
1423 set_reg_attrs_for_decl_rtl (t
, x
);
1426 /* Assign the RTX X to parameter declaration T. BY_REFERENCE_P is true
1427 if the ABI requires the parameter to be passed by reference. */
1430 set_decl_incoming_rtl (tree t
, rtx x
, bool by_reference_p
)
1432 DECL_INCOMING_RTL (t
) = x
;
1433 if (x
&& !by_reference_p
)
1434 set_reg_attrs_for_decl_rtl (t
, x
);
1437 /* Identify REG (which may be a CONCAT) as a user register. */
1440 mark_user_reg (rtx reg
)
1442 if (GET_CODE (reg
) == CONCAT
)
1444 REG_USERVAR_P (XEXP (reg
, 0)) = 1;
1445 REG_USERVAR_P (XEXP (reg
, 1)) = 1;
1449 gcc_assert (REG_P (reg
));
1450 REG_USERVAR_P (reg
) = 1;
1454 /* Identify REG as a probable pointer register and show its alignment
1455 as ALIGN, if nonzero. */
1458 mark_reg_pointer (rtx reg
, int align
)
1460 if (! REG_POINTER (reg
))
1462 REG_POINTER (reg
) = 1;
1465 REGNO_POINTER_ALIGN (REGNO (reg
)) = align
;
1467 else if (align
&& align
< REGNO_POINTER_ALIGN (REGNO (reg
)))
1468 /* We can no-longer be sure just how aligned this pointer is. */
1469 REGNO_POINTER_ALIGN (REGNO (reg
)) = align
;
1472 /* Return 1 plus largest pseudo reg number used in the current function. */
1480 /* Return 1 + the largest label number used so far in the current function. */
1483 max_label_num (void)
1488 /* Return first label number used in this function (if any were used). */
1491 get_first_label_num (void)
1493 return first_label_num
;
1496 /* If the rtx for label was created during the expansion of a nested
1497 function, then first_label_num won't include this label number.
1498 Fix this now so that array indices work later. */
1501 maybe_set_first_label_num (rtx_code_label
*x
)
1503 if (CODE_LABEL_NUMBER (x
) < first_label_num
)
1504 first_label_num
= CODE_LABEL_NUMBER (x
);
1507 /* For use by the RTL function loader, when mingling with normal
1509 Ensure that label_num is greater than the label num of X, to avoid
1510 duplicate labels in the generated assembler. */
1513 maybe_set_max_label_num (rtx_code_label
*x
)
1515 if (CODE_LABEL_NUMBER (x
) >= label_num
)
1516 label_num
= CODE_LABEL_NUMBER (x
) + 1;
1520 /* Return a value representing some low-order bits of X, where the number
1521 of low-order bits is given by MODE. Note that no conversion is done
1522 between floating-point and fixed-point values, rather, the bit
1523 representation is returned.
1525 This function handles the cases in common between gen_lowpart, below,
1526 and two variants in cse.c and combine.c. These are the cases that can
1527 be safely handled at all points in the compilation.
1529 If this is not a case we can handle, return 0. */
1532 gen_lowpart_common (machine_mode mode
, rtx x
)
1534 poly_uint64 msize
= GET_MODE_SIZE (mode
);
1535 machine_mode innermode
;
1537 /* Unfortunately, this routine doesn't take a parameter for the mode of X,
1538 so we have to make one up. Yuk. */
1539 innermode
= GET_MODE (x
);
1541 && known_le (msize
* BITS_PER_UNIT
,
1542 (unsigned HOST_WIDE_INT
) HOST_BITS_PER_WIDE_INT
))
1543 innermode
= int_mode_for_size (HOST_BITS_PER_WIDE_INT
, 0).require ();
1544 else if (innermode
== VOIDmode
)
1545 innermode
= int_mode_for_size (HOST_BITS_PER_DOUBLE_INT
, 0).require ();
1547 gcc_assert (innermode
!= VOIDmode
&& innermode
!= BLKmode
);
1549 if (innermode
== mode
)
1552 /* The size of the outer and inner modes must be ordered. */
1553 poly_uint64 xsize
= GET_MODE_SIZE (innermode
);
1554 if (!ordered_p (msize
, xsize
))
1557 if (SCALAR_FLOAT_MODE_P (mode
))
1559 /* Don't allow paradoxical FLOAT_MODE subregs. */
1560 if (maybe_gt (msize
, xsize
))
1565 /* MODE must occupy no more of the underlying registers than X. */
1566 poly_uint64 regsize
= REGMODE_NATURAL_SIZE (innermode
);
1567 unsigned int mregs
, xregs
;
1568 if (!can_div_away_from_zero_p (msize
, regsize
, &mregs
)
1569 || !can_div_away_from_zero_p (xsize
, regsize
, &xregs
)
1574 scalar_int_mode int_mode
, int_innermode
, from_mode
;
1575 if ((GET_CODE (x
) == ZERO_EXTEND
|| GET_CODE (x
) == SIGN_EXTEND
)
1576 && is_a
<scalar_int_mode
> (mode
, &int_mode
)
1577 && is_a
<scalar_int_mode
> (innermode
, &int_innermode
)
1578 && is_a
<scalar_int_mode
> (GET_MODE (XEXP (x
, 0)), &from_mode
))
1580 /* If we are getting the low-order part of something that has been
1581 sign- or zero-extended, we can either just use the object being
1582 extended or make a narrower extension. If we want an even smaller
1583 piece than the size of the object being extended, call ourselves
1586 This case is used mostly by combine and cse. */
1588 if (from_mode
== int_mode
)
1590 else if (GET_MODE_SIZE (int_mode
) < GET_MODE_SIZE (from_mode
))
1591 return gen_lowpart_common (int_mode
, XEXP (x
, 0));
1592 else if (GET_MODE_SIZE (int_mode
) < GET_MODE_SIZE (int_innermode
))
1593 return gen_rtx_fmt_e (GET_CODE (x
), int_mode
, XEXP (x
, 0));
1595 else if (GET_CODE (x
) == SUBREG
|| REG_P (x
)
1596 || GET_CODE (x
) == CONCAT
|| GET_CODE (x
) == CONST_VECTOR
1597 || CONST_DOUBLE_AS_FLOAT_P (x
) || CONST_SCALAR_INT_P (x
)
1598 || CONST_POLY_INT_P (x
))
1599 return lowpart_subreg (mode
, x
, innermode
);
1601 /* Otherwise, we can't do this. */
1606 gen_highpart (machine_mode mode
, rtx x
)
1608 poly_uint64 msize
= GET_MODE_SIZE (mode
);
1611 /* This case loses if X is a subreg. To catch bugs early,
1612 complain if an invalid MODE is used even in other cases. */
1613 gcc_assert (known_le (msize
, (unsigned int) UNITS_PER_WORD
)
1614 || known_eq (msize
, GET_MODE_UNIT_SIZE (GET_MODE (x
))));
1616 result
= simplify_gen_subreg (mode
, x
, GET_MODE (x
),
1617 subreg_highpart_offset (mode
, GET_MODE (x
)));
1618 gcc_assert (result
);
1620 /* simplify_gen_subreg is not guaranteed to return a valid operand for
1621 the target if we have a MEM. gen_highpart must return a valid operand,
1622 emitting code if necessary to do so. */
1625 result
= validize_mem (result
);
1626 gcc_assert (result
);
1632 /* Like gen_highpart, but accept mode of EXP operand in case EXP can
1633 be VOIDmode constant. */
1635 gen_highpart_mode (machine_mode outermode
, machine_mode innermode
, rtx exp
)
1637 if (GET_MODE (exp
) != VOIDmode
)
1639 gcc_assert (GET_MODE (exp
) == innermode
);
1640 return gen_highpart (outermode
, exp
);
1642 return simplify_gen_subreg (outermode
, exp
, innermode
,
1643 subreg_highpart_offset (outermode
, innermode
));
1646 /* Return the SUBREG_BYTE for a lowpart subreg whose outer mode has
1647 OUTER_BYTES bytes and whose inner mode has INNER_BYTES bytes. */
1650 subreg_size_lowpart_offset (poly_uint64 outer_bytes
, poly_uint64 inner_bytes
)
1652 gcc_checking_assert (ordered_p (outer_bytes
, inner_bytes
));
1653 if (maybe_gt (outer_bytes
, inner_bytes
))
1654 /* Paradoxical subregs always have a SUBREG_BYTE of 0. */
1657 if (BYTES_BIG_ENDIAN
&& WORDS_BIG_ENDIAN
)
1658 return inner_bytes
- outer_bytes
;
1659 else if (!BYTES_BIG_ENDIAN
&& !WORDS_BIG_ENDIAN
)
1662 return subreg_size_offset_from_lsb (outer_bytes
, inner_bytes
, 0);
1665 /* Return the SUBREG_BYTE for a highpart subreg whose outer mode has
1666 OUTER_BYTES bytes and whose inner mode has INNER_BYTES bytes. */
1669 subreg_size_highpart_offset (poly_uint64 outer_bytes
, poly_uint64 inner_bytes
)
1671 gcc_assert (known_ge (inner_bytes
, outer_bytes
));
1673 if (BYTES_BIG_ENDIAN
&& WORDS_BIG_ENDIAN
)
1675 else if (!BYTES_BIG_ENDIAN
&& !WORDS_BIG_ENDIAN
)
1676 return inner_bytes
- outer_bytes
;
1678 return subreg_size_offset_from_lsb (outer_bytes
, inner_bytes
,
1679 (inner_bytes
- outer_bytes
)
1683 /* Return 1 iff X, assumed to be a SUBREG,
1684 refers to the least significant part of its containing reg.
1685 If X is not a SUBREG, always return 1 (it is its own low part!). */
1688 subreg_lowpart_p (const_rtx x
)
1690 if (GET_CODE (x
) != SUBREG
)
1692 else if (GET_MODE (SUBREG_REG (x
)) == VOIDmode
)
1695 return known_eq (subreg_lowpart_offset (GET_MODE (x
),
1696 GET_MODE (SUBREG_REG (x
))),
1700 /* Return subword OFFSET of operand OP.
1701 The word number, OFFSET, is interpreted as the word number starting
1702 at the low-order address. OFFSET 0 is the low-order word if not
1703 WORDS_BIG_ENDIAN, otherwise it is the high-order word.
1705 If we cannot extract the required word, we return zero. Otherwise,
1706 an rtx corresponding to the requested word will be returned.
1708 VALIDATE_ADDRESS is nonzero if the address should be validated. Before
1709 reload has completed, a valid address will always be returned. After
1710 reload, if a valid address cannot be returned, we return zero.
1712 If VALIDATE_ADDRESS is zero, we simply form the required address; validating
1713 it is the responsibility of the caller.
1715 MODE is the mode of OP in case it is a CONST_INT.
1717 ??? This is still rather broken for some cases. The problem for the
1718 moment is that all callers of this thing provide no 'goal mode' to
1719 tell us to work with. This exists because all callers were written
1720 in a word based SUBREG world.
1721 Now use of this function can be deprecated by simplify_subreg in most
1726 operand_subword (rtx op
, poly_uint64 offset
, int validate_address
,
1729 if (mode
== VOIDmode
)
1730 mode
= GET_MODE (op
);
1732 gcc_assert (mode
!= VOIDmode
);
1734 /* If OP is narrower than a word, fail. */
1736 && maybe_lt (GET_MODE_SIZE (mode
), UNITS_PER_WORD
))
1739 /* If we want a word outside OP, return zero. */
1741 && maybe_gt ((offset
+ 1) * UNITS_PER_WORD
, GET_MODE_SIZE (mode
)))
1744 /* Form a new MEM at the requested address. */
1747 rtx new_rtx
= adjust_address_nv (op
, word_mode
, offset
* UNITS_PER_WORD
);
1749 if (! validate_address
)
1752 else if (reload_completed
)
1754 if (! strict_memory_address_addr_space_p (word_mode
,
1756 MEM_ADDR_SPACE (op
)))
1760 return replace_equiv_address (new_rtx
, XEXP (new_rtx
, 0));
1763 /* Rest can be handled by simplify_subreg. */
1764 return simplify_gen_subreg (word_mode
, op
, mode
, (offset
* UNITS_PER_WORD
));
1767 /* Similar to `operand_subword', but never return 0. If we can't
1768 extract the required subword, put OP into a register and try again.
1769 The second attempt must succeed. We always validate the address in
1772 MODE is the mode of OP, in case it is CONST_INT. */
1775 operand_subword_force (rtx op
, poly_uint64 offset
, machine_mode mode
)
1777 rtx result
= operand_subword (op
, offset
, 1, mode
);
1782 if (mode
!= BLKmode
&& mode
!= VOIDmode
)
1784 /* If this is a register which can not be accessed by words, copy it
1785 to a pseudo register. */
1787 op
= copy_to_reg (op
);
1789 op
= force_reg (mode
, op
);
1792 result
= operand_subword (op
, offset
, 1, mode
);
1793 gcc_assert (result
);
1798 mem_attrs::mem_attrs ()
1804 addrspace (ADDR_SPACE_GENERIC
),
1805 offset_known_p (false),
1806 size_known_p (false)
1809 /* Returns 1 if both MEM_EXPR can be considered equal
1813 mem_expr_equal_p (const_tree expr1
, const_tree expr2
)
1818 if (! expr1
|| ! expr2
)
1821 if (TREE_CODE (expr1
) != TREE_CODE (expr2
))
1824 return operand_equal_p (expr1
, expr2
, 0);
1827 /* Return OFFSET if XEXP (MEM, 0) - OFFSET is known to be ALIGN
1828 bits aligned for 0 <= OFFSET < ALIGN / BITS_PER_UNIT, or
1832 get_mem_align_offset (rtx mem
, unsigned int align
)
1837 /* This function can't use
1838 if (!MEM_EXPR (mem) || !MEM_OFFSET_KNOWN_P (mem)
1839 || (MAX (MEM_ALIGN (mem),
1840 MAX (align, get_object_alignment (MEM_EXPR (mem))))
1844 return (- MEM_OFFSET (mem)) & (align / BITS_PER_UNIT - 1);
1846 - COMPONENT_REFs in MEM_EXPR can have NULL first operand,
1847 for <variable>. get_inner_reference doesn't handle it and
1848 even if it did, the alignment in that case needs to be determined
1849 from DECL_FIELD_CONTEXT's TYPE_ALIGN.
1850 - it would do suboptimal job for COMPONENT_REFs, even if MEM_EXPR
1851 isn't sufficiently aligned, the object it is in might be. */
1852 gcc_assert (MEM_P (mem
));
1853 expr
= MEM_EXPR (mem
);
1854 if (expr
== NULL_TREE
|| !MEM_OFFSET_KNOWN_P (mem
))
1857 offset
= MEM_OFFSET (mem
);
1860 if (DECL_ALIGN (expr
) < align
)
1863 else if (INDIRECT_REF_P (expr
))
1865 if (TYPE_ALIGN (TREE_TYPE (expr
)) < (unsigned int) align
)
1868 else if (TREE_CODE (expr
) == COMPONENT_REF
)
1872 tree inner
= TREE_OPERAND (expr
, 0);
1873 tree field
= TREE_OPERAND (expr
, 1);
1874 tree byte_offset
= component_ref_field_offset (expr
);
1875 tree bit_offset
= DECL_FIELD_BIT_OFFSET (field
);
1877 poly_uint64 suboffset
;
1879 || !poly_int_tree_p (byte_offset
, &suboffset
)
1880 || !tree_fits_uhwi_p (bit_offset
))
1883 offset
+= suboffset
;
1884 offset
+= tree_to_uhwi (bit_offset
) / BITS_PER_UNIT
;
1886 if (inner
== NULL_TREE
)
1888 if (TYPE_ALIGN (DECL_FIELD_CONTEXT (field
))
1889 < (unsigned int) align
)
1893 else if (DECL_P (inner
))
1895 if (DECL_ALIGN (inner
) < align
)
1899 else if (TREE_CODE (inner
) != COMPONENT_REF
)
1907 HOST_WIDE_INT misalign
;
1908 if (!known_misalignment (offset
, align
/ BITS_PER_UNIT
, &misalign
))
1913 /* Given REF (a MEM) and T, either the type of X or the expression
1914 corresponding to REF, set the memory attributes. OBJECTP is nonzero
1915 if we are making a new object of this type. BITPOS is nonzero if
1916 there is an offset outstanding on T that will be applied later. */
1919 set_mem_attributes_minus_bitpos (rtx ref
, tree t
, int objectp
,
1922 poly_int64 apply_bitpos
= 0;
1924 struct mem_attrs attrs
, *defattrs
, *refattrs
;
1927 /* It can happen that type_for_mode was given a mode for which there
1928 is no language-level type. In which case it returns NULL, which
1933 type
= TYPE_P (t
) ? t
: TREE_TYPE (t
);
1934 if (type
== error_mark_node
)
1937 /* If we have already set DECL_RTL = ref, get_alias_set will get the
1938 wrong answer, as it assumes that DECL_RTL already has the right alias
1939 info. Callers should not set DECL_RTL until after the call to
1940 set_mem_attributes. */
1941 gcc_assert (!DECL_P (t
) || ref
!= DECL_RTL_IF_SET (t
));
1943 /* Get the alias set from the expression or type (perhaps using a
1944 front-end routine) and use it. */
1945 attrs
.alias
= get_alias_set (t
);
1947 MEM_VOLATILE_P (ref
) |= TYPE_VOLATILE (type
);
1948 MEM_POINTER (ref
) = POINTER_TYPE_P (type
);
1950 /* Default values from pre-existing memory attributes if present. */
1951 refattrs
= MEM_ATTRS (ref
);
1954 /* ??? Can this ever happen? Calling this routine on a MEM that
1955 already carries memory attributes should probably be invalid. */
1956 attrs
.expr
= refattrs
->expr
;
1957 attrs
.offset_known_p
= refattrs
->offset_known_p
;
1958 attrs
.offset
= refattrs
->offset
;
1959 attrs
.size_known_p
= refattrs
->size_known_p
;
1960 attrs
.size
= refattrs
->size
;
1961 attrs
.align
= refattrs
->align
;
1964 /* Otherwise, default values from the mode of the MEM reference. */
1967 defattrs
= mode_mem_attrs
[(int) GET_MODE (ref
)];
1968 gcc_assert (!defattrs
->expr
);
1969 gcc_assert (!defattrs
->offset_known_p
);
1971 /* Respect mode size. */
1972 attrs
.size_known_p
= defattrs
->size_known_p
;
1973 attrs
.size
= defattrs
->size
;
1974 /* ??? Is this really necessary? We probably should always get
1975 the size from the type below. */
1977 /* Respect mode alignment for STRICT_ALIGNMENT targets if T is a type;
1978 if T is an object, always compute the object alignment below. */
1980 attrs
.align
= defattrs
->align
;
1982 attrs
.align
= BITS_PER_UNIT
;
1983 /* ??? If T is a type, respecting mode alignment may *also* be wrong
1984 e.g. if the type carries an alignment attribute. Should we be
1985 able to simply always use TYPE_ALIGN? */
1988 /* We can set the alignment from the type if we are making an object or if
1989 this is an INDIRECT_REF. */
1990 if (objectp
|| TREE_CODE (t
) == INDIRECT_REF
)
1991 attrs
.align
= MAX (attrs
.align
, TYPE_ALIGN (type
));
1993 /* If the size is known, we can set that. */
1994 tree new_size
= TYPE_SIZE_UNIT (type
);
1996 /* The address-space is that of the type. */
1997 as
= TYPE_ADDR_SPACE (type
);
1999 /* If T is not a type, we may be able to deduce some more information about
2005 if (TREE_THIS_VOLATILE (t
))
2006 MEM_VOLATILE_P (ref
) = 1;
2008 /* Now remove any conversions: they don't change what the underlying
2009 object is. Likewise for SAVE_EXPR. */
2010 while (CONVERT_EXPR_P (t
)
2011 || TREE_CODE (t
) == VIEW_CONVERT_EXPR
2012 || TREE_CODE (t
) == SAVE_EXPR
)
2013 t
= TREE_OPERAND (t
, 0);
2015 /* Note whether this expression can trap. */
2016 MEM_NOTRAP_P (ref
) = !tree_could_trap_p (t
);
2018 base
= get_base_address (t
);
2022 && TREE_READONLY (base
)
2023 && (TREE_STATIC (base
) || DECL_EXTERNAL (base
))
2024 && !TREE_THIS_VOLATILE (base
))
2025 MEM_READONLY_P (ref
) = 1;
2027 /* Mark static const strings readonly as well. */
2028 if (TREE_CODE (base
) == STRING_CST
2029 && TREE_READONLY (base
)
2030 && TREE_STATIC (base
))
2031 MEM_READONLY_P (ref
) = 1;
2033 /* Address-space information is on the base object. */
2034 if (TREE_CODE (base
) == MEM_REF
2035 || TREE_CODE (base
) == TARGET_MEM_REF
)
2036 as
= TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (TREE_OPERAND (base
,
2039 as
= TYPE_ADDR_SPACE (TREE_TYPE (base
));
2042 /* If this expression uses it's parent's alias set, mark it such
2043 that we won't change it. */
2044 if (component_uses_parent_alias_set_from (t
) != NULL_TREE
)
2045 MEM_KEEP_ALIAS_SET_P (ref
) = 1;
2047 /* If this is a decl, set the attributes of the MEM from it. */
2051 attrs
.offset_known_p
= true;
2053 apply_bitpos
= bitpos
;
2054 new_size
= DECL_SIZE_UNIT (t
);
2057 /* ??? If we end up with a constant here do record a MEM_EXPR. */
2058 else if (CONSTANT_CLASS_P (t
))
2061 /* If this is a field reference, record it. */
2062 else if (TREE_CODE (t
) == COMPONENT_REF
)
2065 attrs
.offset_known_p
= true;
2067 apply_bitpos
= bitpos
;
2068 if (DECL_BIT_FIELD (TREE_OPERAND (t
, 1)))
2069 new_size
= DECL_SIZE_UNIT (TREE_OPERAND (t
, 1));
2072 /* If this is an array reference, look for an outer field reference. */
2073 else if (TREE_CODE (t
) == ARRAY_REF
)
2075 tree off_tree
= size_zero_node
;
2076 /* We can't modify t, because we use it at the end of the
2082 tree index
= TREE_OPERAND (t2
, 1);
2083 tree low_bound
= array_ref_low_bound (t2
);
2084 tree unit_size
= array_ref_element_size (t2
);
2086 /* We assume all arrays have sizes that are a multiple of a byte.
2087 First subtract the lower bound, if any, in the type of the
2088 index, then convert to sizetype and multiply by the size of
2089 the array element. */
2090 if (! integer_zerop (low_bound
))
2091 index
= fold_build2 (MINUS_EXPR
, TREE_TYPE (index
),
2094 off_tree
= size_binop (PLUS_EXPR
,
2095 size_binop (MULT_EXPR
,
2096 fold_convert (sizetype
,
2100 t2
= TREE_OPERAND (t2
, 0);
2102 while (TREE_CODE (t2
) == ARRAY_REF
);
2105 || (TREE_CODE (t2
) == COMPONENT_REF
2106 /* For trailing arrays t2 doesn't have a size that
2107 covers all valid accesses. */
2108 && ! array_at_struct_end_p (t
)))
2111 attrs
.offset_known_p
= false;
2112 if (poly_int_tree_p (off_tree
, &attrs
.offset
))
2114 attrs
.offset_known_p
= true;
2115 apply_bitpos
= bitpos
;
2118 /* Else do not record a MEM_EXPR. */
2121 /* If this is an indirect reference, record it. */
2122 else if (TREE_CODE (t
) == MEM_REF
2123 || TREE_CODE (t
) == TARGET_MEM_REF
)
2126 attrs
.offset_known_p
= true;
2128 apply_bitpos
= bitpos
;
2131 /* Compute the alignment. */
2132 unsigned int obj_align
;
2133 unsigned HOST_WIDE_INT obj_bitpos
;
2134 get_object_alignment_1 (t
, &obj_align
, &obj_bitpos
);
2135 unsigned int diff_align
= known_alignment (obj_bitpos
- bitpos
);
2136 if (diff_align
!= 0)
2137 obj_align
= MIN (obj_align
, diff_align
);
2138 attrs
.align
= MAX (attrs
.align
, obj_align
);
2141 poly_uint64 const_size
;
2142 if (poly_int_tree_p (new_size
, &const_size
))
2144 attrs
.size_known_p
= true;
2145 attrs
.size
= const_size
;
2148 /* If we modified OFFSET based on T, then subtract the outstanding
2149 bit position offset. Similarly, increase the size of the accessed
2150 object to contain the negative offset. */
2151 if (maybe_ne (apply_bitpos
, 0))
2153 gcc_assert (attrs
.offset_known_p
);
2154 poly_int64 bytepos
= bits_to_bytes_round_down (apply_bitpos
);
2155 attrs
.offset
-= bytepos
;
2156 if (attrs
.size_known_p
)
2157 attrs
.size
+= bytepos
;
2160 /* Now set the attributes we computed above. */
2161 attrs
.addrspace
= as
;
2162 set_mem_attrs (ref
, &attrs
);
2166 set_mem_attributes (rtx ref
, tree t
, int objectp
)
2168 set_mem_attributes_minus_bitpos (ref
, t
, objectp
, 0);
2171 /* Set the alias set of MEM to SET. */
2174 set_mem_alias_set (rtx mem
, alias_set_type set
)
2176 /* If the new and old alias sets don't conflict, something is wrong. */
2177 gcc_checking_assert (alias_sets_conflict_p (set
, MEM_ALIAS_SET (mem
)));
2178 mem_attrs
attrs (*get_mem_attrs (mem
));
2180 set_mem_attrs (mem
, &attrs
);
2183 /* Set the address space of MEM to ADDRSPACE (target-defined). */
2186 set_mem_addr_space (rtx mem
, addr_space_t addrspace
)
2188 mem_attrs
attrs (*get_mem_attrs (mem
));
2189 attrs
.addrspace
= addrspace
;
2190 set_mem_attrs (mem
, &attrs
);
2193 /* Set the alignment of MEM to ALIGN bits. */
2196 set_mem_align (rtx mem
, unsigned int align
)
2198 mem_attrs
attrs (*get_mem_attrs (mem
));
2199 attrs
.align
= align
;
2200 set_mem_attrs (mem
, &attrs
);
2203 /* Set the expr for MEM to EXPR. */
2206 set_mem_expr (rtx mem
, tree expr
)
2208 mem_attrs
attrs (*get_mem_attrs (mem
));
2210 set_mem_attrs (mem
, &attrs
);
2213 /* Set the offset of MEM to OFFSET. */
2216 set_mem_offset (rtx mem
, poly_int64 offset
)
2218 mem_attrs
attrs (*get_mem_attrs (mem
));
2219 attrs
.offset_known_p
= true;
2220 attrs
.offset
= offset
;
2221 set_mem_attrs (mem
, &attrs
);
2224 /* Clear the offset of MEM. */
2227 clear_mem_offset (rtx mem
)
2229 mem_attrs
attrs (*get_mem_attrs (mem
));
2230 attrs
.offset_known_p
= false;
2231 set_mem_attrs (mem
, &attrs
);
2234 /* Set the size of MEM to SIZE. */
2237 set_mem_size (rtx mem
, poly_int64 size
)
2239 mem_attrs
attrs (*get_mem_attrs (mem
));
2240 attrs
.size_known_p
= true;
2242 set_mem_attrs (mem
, &attrs
);
2245 /* Clear the size of MEM. */
2248 clear_mem_size (rtx mem
)
2250 mem_attrs
attrs (*get_mem_attrs (mem
));
2251 attrs
.size_known_p
= false;
2252 set_mem_attrs (mem
, &attrs
);
2255 /* Return a memory reference like MEMREF, but with its mode changed to MODE
2256 and its address changed to ADDR. (VOIDmode means don't change the mode.
2257 NULL for ADDR means don't change the address.) VALIDATE is nonzero if the
2258 returned memory location is required to be valid. INPLACE is true if any
2259 changes can be made directly to MEMREF or false if MEMREF must be treated
2262 The memory attributes are not changed. */
2265 change_address_1 (rtx memref
, machine_mode mode
, rtx addr
, int validate
,
2271 gcc_assert (MEM_P (memref
));
2272 as
= MEM_ADDR_SPACE (memref
);
2273 if (mode
== VOIDmode
)
2274 mode
= GET_MODE (memref
);
2276 addr
= XEXP (memref
, 0);
2277 if (mode
== GET_MODE (memref
) && addr
== XEXP (memref
, 0)
2278 && (!validate
|| memory_address_addr_space_p (mode
, addr
, as
)))
2281 /* Don't validate address for LRA. LRA can make the address valid
2282 by itself in most efficient way. */
2283 if (validate
&& !lra_in_progress
)
2285 if (reload_in_progress
|| reload_completed
)
2286 gcc_assert (memory_address_addr_space_p (mode
, addr
, as
));
2288 addr
= memory_address_addr_space (mode
, addr
, as
);
2291 if (rtx_equal_p (addr
, XEXP (memref
, 0)) && mode
== GET_MODE (memref
))
2296 XEXP (memref
, 0) = addr
;
2300 new_rtx
= gen_rtx_MEM (mode
, addr
);
2301 MEM_COPY_ATTRIBUTES (new_rtx
, memref
);
2305 /* Like change_address_1 with VALIDATE nonzero, but we are not saying in what
2306 way we are changing MEMREF, so we only preserve the alias set. */
2309 change_address (rtx memref
, machine_mode mode
, rtx addr
)
2311 rtx new_rtx
= change_address_1 (memref
, mode
, addr
, 1, false);
2312 machine_mode mmode
= GET_MODE (new_rtx
);
2313 struct mem_attrs
*defattrs
;
2315 mem_attrs
attrs (*get_mem_attrs (memref
));
2316 defattrs
= mode_mem_attrs
[(int) mmode
];
2317 attrs
.expr
= NULL_TREE
;
2318 attrs
.offset_known_p
= false;
2319 attrs
.size_known_p
= defattrs
->size_known_p
;
2320 attrs
.size
= defattrs
->size
;
2321 attrs
.align
= defattrs
->align
;
2323 /* If there are no changes, just return the original memory reference. */
2324 if (new_rtx
== memref
)
2326 if (mem_attrs_eq_p (get_mem_attrs (memref
), &attrs
))
2329 new_rtx
= gen_rtx_MEM (mmode
, XEXP (memref
, 0));
2330 MEM_COPY_ATTRIBUTES (new_rtx
, memref
);
2333 set_mem_attrs (new_rtx
, &attrs
);
2337 /* Return a memory reference like MEMREF, but with its mode changed
2338 to MODE and its address offset by OFFSET bytes. If VALIDATE is
2339 nonzero, the memory address is forced to be valid.
2340 If ADJUST_ADDRESS is zero, OFFSET is only used to update MEM_ATTRS
2341 and the caller is responsible for adjusting MEMREF base register.
2342 If ADJUST_OBJECT is zero, the underlying object associated with the
2343 memory reference is left unchanged and the caller is responsible for
2344 dealing with it. Otherwise, if the new memory reference is outside
2345 the underlying object, even partially, then the object is dropped.
2346 SIZE, if nonzero, is the size of an access in cases where MODE
2347 has no inherent size. */
2350 adjust_address_1 (rtx memref
, machine_mode mode
, poly_int64 offset
,
2351 int validate
, int adjust_address
, int adjust_object
,
2354 rtx addr
= XEXP (memref
, 0);
2356 scalar_int_mode address_mode
;
2357 struct mem_attrs
attrs (*get_mem_attrs (memref
)), *defattrs
;
2358 unsigned HOST_WIDE_INT max_align
;
2359 #ifdef POINTERS_EXTEND_UNSIGNED
2360 scalar_int_mode pointer_mode
2361 = targetm
.addr_space
.pointer_mode (attrs
.addrspace
);
2364 /* VOIDmode means no mode change for change_address_1. */
2365 if (mode
== VOIDmode
)
2366 mode
= GET_MODE (memref
);
2368 /* Take the size of non-BLKmode accesses from the mode. */
2369 defattrs
= mode_mem_attrs
[(int) mode
];
2370 if (defattrs
->size_known_p
)
2371 size
= defattrs
->size
;
2373 /* If there are no changes, just return the original memory reference. */
2374 if (mode
== GET_MODE (memref
)
2375 && known_eq (offset
, 0)
2376 && (known_eq (size
, 0)
2377 || (attrs
.size_known_p
&& known_eq (attrs
.size
, size
)))
2378 && (!validate
|| memory_address_addr_space_p (mode
, addr
,
2382 /* ??? Prefer to create garbage instead of creating shared rtl.
2383 This may happen even if offset is nonzero -- consider
2384 (plus (plus reg reg) const_int) -- so do this always. */
2385 addr
= copy_rtx (addr
);
2387 /* Convert a possibly large offset to a signed value within the
2388 range of the target address space. */
2389 address_mode
= get_address_mode (memref
);
2390 offset
= trunc_int_for_mode (offset
, address_mode
);
2394 /* If MEMREF is a LO_SUM and the offset is within the alignment of the
2395 object, we can merge it into the LO_SUM. */
2396 if (GET_MODE (memref
) != BLKmode
2397 && GET_CODE (addr
) == LO_SUM
2398 && known_in_range_p (offset
,
2399 0, (GET_MODE_ALIGNMENT (GET_MODE (memref
))
2401 addr
= gen_rtx_LO_SUM (address_mode
, XEXP (addr
, 0),
2402 plus_constant (address_mode
,
2403 XEXP (addr
, 1), offset
));
2404 #ifdef POINTERS_EXTEND_UNSIGNED
2405 /* If MEMREF is a ZERO_EXTEND from pointer_mode and the offset is valid
2406 in that mode, we merge it into the ZERO_EXTEND. We take advantage of
2407 the fact that pointers are not allowed to overflow. */
2408 else if (POINTERS_EXTEND_UNSIGNED
> 0
2409 && GET_CODE (addr
) == ZERO_EXTEND
2410 && GET_MODE (XEXP (addr
, 0)) == pointer_mode
2411 && known_eq (trunc_int_for_mode (offset
, pointer_mode
), offset
))
2412 addr
= gen_rtx_ZERO_EXTEND (address_mode
,
2413 plus_constant (pointer_mode
,
2414 XEXP (addr
, 0), offset
));
2417 addr
= plus_constant (address_mode
, addr
, offset
);
2420 new_rtx
= change_address_1 (memref
, mode
, addr
, validate
, false);
2422 /* If the address is a REG, change_address_1 rightfully returns memref,
2423 but this would destroy memref's MEM_ATTRS. */
2424 if (new_rtx
== memref
&& maybe_ne (offset
, 0))
2425 new_rtx
= copy_rtx (new_rtx
);
2427 /* Conservatively drop the object if we don't know where we start from. */
2428 if (adjust_object
&& (!attrs
.offset_known_p
|| !attrs
.size_known_p
))
2430 attrs
.expr
= NULL_TREE
;
2434 /* Compute the new values of the memory attributes due to this adjustment.
2435 We add the offsets and update the alignment. */
2436 if (attrs
.offset_known_p
)
2438 attrs
.offset
+= offset
;
2440 /* Drop the object if the new left end is not within its bounds. */
2441 if (adjust_object
&& maybe_lt (attrs
.offset
, 0))
2443 attrs
.expr
= NULL_TREE
;
2448 /* Compute the new alignment by taking the MIN of the alignment and the
2449 lowest-order set bit in OFFSET, but don't change the alignment if OFFSET
2451 if (maybe_ne (offset
, 0))
2453 max_align
= known_alignment (offset
) * BITS_PER_UNIT
;
2454 attrs
.align
= MIN (attrs
.align
, max_align
);
2457 if (maybe_ne (size
, 0))
2459 /* Drop the object if the new right end is not within its bounds. */
2460 if (adjust_object
&& maybe_gt (offset
+ size
, attrs
.size
))
2462 attrs
.expr
= NULL_TREE
;
2465 attrs
.size_known_p
= true;
2468 else if (attrs
.size_known_p
)
2470 gcc_assert (!adjust_object
);
2471 attrs
.size
-= offset
;
2472 /* ??? The store_by_pieces machinery generates negative sizes,
2473 so don't assert for that here. */
2476 set_mem_attrs (new_rtx
, &attrs
);
2481 /* Return a memory reference like MEMREF, but with its mode changed
2482 to MODE and its address changed to ADDR, which is assumed to be
2483 MEMREF offset by OFFSET bytes. If VALIDATE is
2484 nonzero, the memory address is forced to be valid. */
2487 adjust_automodify_address_1 (rtx memref
, machine_mode mode
, rtx addr
,
2488 poly_int64 offset
, int validate
)
2490 memref
= change_address_1 (memref
, VOIDmode
, addr
, validate
, false);
2491 return adjust_address_1 (memref
, mode
, offset
, validate
, 0, 0, 0);
2494 /* Return a memory reference like MEMREF, but whose address is changed by
2495 adding OFFSET, an RTX, to it. POW2 is the highest power of two factor
2496 known to be in OFFSET (possibly 1). */
2499 offset_address (rtx memref
, rtx offset
, unsigned HOST_WIDE_INT pow2
)
2501 rtx new_rtx
, addr
= XEXP (memref
, 0);
2502 machine_mode address_mode
;
2503 struct mem_attrs
*defattrs
;
2505 mem_attrs
attrs (*get_mem_attrs (memref
));
2506 address_mode
= get_address_mode (memref
);
2507 new_rtx
= simplify_gen_binary (PLUS
, address_mode
, addr
, offset
);
2509 /* At this point we don't know _why_ the address is invalid. It
2510 could have secondary memory references, multiplies or anything.
2512 However, if we did go and rearrange things, we can wind up not
2513 being able to recognize the magic around pic_offset_table_rtx.
2514 This stuff is fragile, and is yet another example of why it is
2515 bad to expose PIC machinery too early. */
2516 if (! memory_address_addr_space_p (GET_MODE (memref
), new_rtx
,
2518 && GET_CODE (addr
) == PLUS
2519 && XEXP (addr
, 0) == pic_offset_table_rtx
)
2521 addr
= force_reg (GET_MODE (addr
), addr
);
2522 new_rtx
= simplify_gen_binary (PLUS
, address_mode
, addr
, offset
);
2525 update_temp_slot_address (XEXP (memref
, 0), new_rtx
);
2526 new_rtx
= change_address_1 (memref
, VOIDmode
, new_rtx
, 1, false);
2528 /* If there are no changes, just return the original memory reference. */
2529 if (new_rtx
== memref
)
2532 /* Update the alignment to reflect the offset. Reset the offset, which
2534 defattrs
= mode_mem_attrs
[(int) GET_MODE (new_rtx
)];
2535 attrs
.offset_known_p
= false;
2536 attrs
.size_known_p
= defattrs
->size_known_p
;
2537 attrs
.size
= defattrs
->size
;
2538 attrs
.align
= MIN (attrs
.align
, pow2
* BITS_PER_UNIT
);
2539 set_mem_attrs (new_rtx
, &attrs
);
2543 /* Return a memory reference like MEMREF, but with its address changed to
2544 ADDR. The caller is asserting that the actual piece of memory pointed
2545 to is the same, just the form of the address is being changed, such as
2546 by putting something into a register. INPLACE is true if any changes
2547 can be made directly to MEMREF or false if MEMREF must be treated as
2551 replace_equiv_address (rtx memref
, rtx addr
, bool inplace
)
2553 /* change_address_1 copies the memory attribute structure without change
2554 and that's exactly what we want here. */
2555 update_temp_slot_address (XEXP (memref
, 0), addr
);
2556 return change_address_1 (memref
, VOIDmode
, addr
, 1, inplace
);
2559 /* Likewise, but the reference is not required to be valid. */
2562 replace_equiv_address_nv (rtx memref
, rtx addr
, bool inplace
)
2564 return change_address_1 (memref
, VOIDmode
, addr
, 0, inplace
);
2567 /* Return a memory reference like MEMREF, but with its mode widened to
2568 MODE and offset by OFFSET. This would be used by targets that e.g.
2569 cannot issue QImode memory operations and have to use SImode memory
2570 operations plus masking logic. */
2573 widen_memory_access (rtx memref
, machine_mode mode
, poly_int64 offset
)
2575 rtx new_rtx
= adjust_address_1 (memref
, mode
, offset
, 1, 1, 0, 0);
2576 poly_uint64 size
= GET_MODE_SIZE (mode
);
2578 /* If there are no changes, just return the original memory reference. */
2579 if (new_rtx
== memref
)
2582 mem_attrs
attrs (*get_mem_attrs (new_rtx
));
2584 /* If we don't know what offset we were at within the expression, then
2585 we can't know if we've overstepped the bounds. */
2586 if (! attrs
.offset_known_p
)
2587 attrs
.expr
= NULL_TREE
;
2591 if (TREE_CODE (attrs
.expr
) == COMPONENT_REF
)
2593 tree field
= TREE_OPERAND (attrs
.expr
, 1);
2594 tree offset
= component_ref_field_offset (attrs
.expr
);
2596 if (! DECL_SIZE_UNIT (field
))
2598 attrs
.expr
= NULL_TREE
;
2602 /* Is the field at least as large as the access? If so, ok,
2603 otherwise strip back to the containing structure. */
2604 if (poly_int_tree_p (DECL_SIZE_UNIT (field
))
2605 && known_ge (wi::to_poly_offset (DECL_SIZE_UNIT (field
)), size
)
2606 && known_ge (attrs
.offset
, 0))
2609 poly_uint64 suboffset
;
2610 if (!poly_int_tree_p (offset
, &suboffset
))
2612 attrs
.expr
= NULL_TREE
;
2616 attrs
.expr
= TREE_OPERAND (attrs
.expr
, 0);
2617 attrs
.offset
+= suboffset
;
2618 attrs
.offset
+= (tree_to_uhwi (DECL_FIELD_BIT_OFFSET (field
))
2621 /* Similarly for the decl. */
2622 else if (DECL_P (attrs
.expr
)
2623 && DECL_SIZE_UNIT (attrs
.expr
)
2624 && poly_int_tree_p (DECL_SIZE_UNIT (attrs
.expr
))
2625 && known_ge (wi::to_poly_offset (DECL_SIZE_UNIT (attrs
.expr
)),
2627 && known_ge (attrs
.offset
, 0))
2631 /* The widened memory access overflows the expression, which means
2632 that it could alias another expression. Zap it. */
2633 attrs
.expr
= NULL_TREE
;
2639 attrs
.offset_known_p
= false;
2641 /* The widened memory may alias other stuff, so zap the alias set. */
2642 /* ??? Maybe use get_alias_set on any remaining expression. */
2644 attrs
.size_known_p
= true;
2646 set_mem_attrs (new_rtx
, &attrs
);
2650 /* A fake decl that is used as the MEM_EXPR of spill slots. */
2651 static GTY(()) tree spill_slot_decl
;
2654 get_spill_slot_decl (bool force_build_p
)
2656 tree d
= spill_slot_decl
;
2659 if (d
|| !force_build_p
)
2662 d
= build_decl (DECL_SOURCE_LOCATION (current_function_decl
),
2663 VAR_DECL
, get_identifier ("%sfp"), void_type_node
);
2664 DECL_ARTIFICIAL (d
) = 1;
2665 DECL_IGNORED_P (d
) = 1;
2667 spill_slot_decl
= d
;
2669 rd
= gen_rtx_MEM (BLKmode
, frame_pointer_rtx
);
2670 MEM_NOTRAP_P (rd
) = 1;
2671 mem_attrs
attrs (*mode_mem_attrs
[(int) BLKmode
]);
2672 attrs
.alias
= new_alias_set ();
2674 set_mem_attrs (rd
, &attrs
);
2675 SET_DECL_RTL (d
, rd
);
2680 /* Given MEM, a result from assign_stack_local, fill in the memory
2681 attributes as appropriate for a register allocator spill slot.
2682 These slots are not aliasable by other memory. We arrange for
2683 them all to use a single MEM_EXPR, so that the aliasing code can
2684 work properly in the case of shared spill slots. */
2687 set_mem_attrs_for_spill (rtx mem
)
2691 mem_attrs
attrs (*get_mem_attrs (mem
));
2692 attrs
.expr
= get_spill_slot_decl (true);
2693 attrs
.alias
= MEM_ALIAS_SET (DECL_RTL (attrs
.expr
));
2694 attrs
.addrspace
= ADDR_SPACE_GENERIC
;
2696 /* We expect the incoming memory to be of the form:
2697 (mem:MODE (plus (reg sfp) (const_int offset)))
2698 with perhaps the plus missing for offset = 0. */
2699 addr
= XEXP (mem
, 0);
2700 attrs
.offset_known_p
= true;
2701 strip_offset (addr
, &attrs
.offset
);
2703 set_mem_attrs (mem
, &attrs
);
2704 MEM_NOTRAP_P (mem
) = 1;
2707 /* Return a newly created CODE_LABEL rtx with a unique label number. */
2710 gen_label_rtx (void)
2712 return as_a
<rtx_code_label
*> (
2713 gen_rtx_CODE_LABEL (VOIDmode
, NULL_RTX
, NULL_RTX
,
2714 NULL
, label_num
++, NULL
));
2717 /* For procedure integration. */
2719 /* Install new pointers to the first and last insns in the chain.
2720 Also, set cur_insn_uid to one higher than the last in use.
2721 Used for an inline-procedure after copying the insn chain. */
2724 set_new_first_and_last_insn (rtx_insn
*first
, rtx_insn
*last
)
2728 set_first_insn (first
);
2729 set_last_insn (last
);
2732 if (MIN_NONDEBUG_INSN_UID
|| MAY_HAVE_DEBUG_INSNS
)
2734 int debug_count
= 0;
2736 cur_insn_uid
= MIN_NONDEBUG_INSN_UID
- 1;
2737 cur_debug_insn_uid
= 0;
2739 for (insn
= first
; insn
; insn
= NEXT_INSN (insn
))
2740 if (INSN_UID (insn
) < MIN_NONDEBUG_INSN_UID
)
2741 cur_debug_insn_uid
= MAX (cur_debug_insn_uid
, INSN_UID (insn
));
2744 cur_insn_uid
= MAX (cur_insn_uid
, INSN_UID (insn
));
2745 if (DEBUG_INSN_P (insn
))
2750 cur_debug_insn_uid
= MIN_NONDEBUG_INSN_UID
+ debug_count
;
2752 cur_debug_insn_uid
++;
2755 for (insn
= first
; insn
; insn
= NEXT_INSN (insn
))
2756 cur_insn_uid
= MAX (cur_insn_uid
, INSN_UID (insn
));
2761 /* Go through all the RTL insn bodies and copy any invalid shared
2762 structure. This routine should only be called once. */
2765 unshare_all_rtl_1 (rtx_insn
*insn
)
2767 /* Unshare just about everything else. */
2768 unshare_all_rtl_in_chain (insn
);
2770 /* Make sure the addresses of stack slots found outside the insn chain
2771 (such as, in DECL_RTL of a variable) are not shared
2772 with the insn chain.
2774 This special care is necessary when the stack slot MEM does not
2775 actually appear in the insn chain. If it does appear, its address
2776 is unshared from all else at that point. */
2779 FOR_EACH_VEC_SAFE_ELT (stack_slot_list
, i
, temp
)
2780 (*stack_slot_list
)[i
] = copy_rtx_if_shared (temp
);
2783 /* Go through all the RTL insn bodies and copy any invalid shared
2784 structure, again. This is a fairly expensive thing to do so it
2785 should be done sparingly. */
2788 unshare_all_rtl_again (rtx_insn
*insn
)
2793 for (p
= insn
; p
; p
= NEXT_INSN (p
))
2796 reset_used_flags (PATTERN (p
));
2797 reset_used_flags (REG_NOTES (p
));
2799 reset_used_flags (CALL_INSN_FUNCTION_USAGE (p
));
2802 /* Make sure that virtual stack slots are not shared. */
2803 set_used_decls (DECL_INITIAL (cfun
->decl
));
2805 /* Make sure that virtual parameters are not shared. */
2806 for (decl
= DECL_ARGUMENTS (cfun
->decl
); decl
; decl
= DECL_CHAIN (decl
))
2807 set_used_flags (DECL_RTL (decl
));
2811 FOR_EACH_VEC_SAFE_ELT (stack_slot_list
, i
, temp
)
2812 reset_used_flags (temp
);
2814 unshare_all_rtl_1 (insn
);
2818 unshare_all_rtl (void)
2820 unshare_all_rtl_1 (get_insns ());
2822 for (tree decl
= DECL_ARGUMENTS (cfun
->decl
); decl
; decl
= DECL_CHAIN (decl
))
2824 if (DECL_RTL_SET_P (decl
))
2825 SET_DECL_RTL (decl
, copy_rtx_if_shared (DECL_RTL (decl
)));
2826 DECL_INCOMING_RTL (decl
) = copy_rtx_if_shared (DECL_INCOMING_RTL (decl
));
2833 /* Check that ORIG is not marked when it should not be and mark ORIG as in use,
2834 Recursively does the same for subexpressions. */
2837 verify_rtx_sharing (rtx orig
, rtx insn
)
2842 const char *format_ptr
;
2847 code
= GET_CODE (x
);
2849 /* These types may be freely shared. */
2865 /* SCRATCH must be shared because they represent distinct values. */
2868 /* Share clobbers of hard registers (like cc0), but do not share pseudo reg
2869 clobbers or clobbers of hard registers that originated as pseudos.
2870 This is needed to allow safe register renaming. */
2871 if (REG_P (XEXP (x
, 0))
2872 && HARD_REGISTER_NUM_P (REGNO (XEXP (x
, 0)))
2873 && HARD_REGISTER_NUM_P (ORIGINAL_REGNO (XEXP (x
, 0))))
2878 if (shared_const_p (orig
))
2883 /* A MEM is allowed to be shared if its address is constant. */
2884 if (CONSTANT_ADDRESS_P (XEXP (x
, 0))
2885 || reload_completed
|| reload_in_progress
)
2894 /* This rtx may not be shared. If it has already been seen,
2895 replace it with a copy of itself. */
2896 if (flag_checking
&& RTX_FLAG (x
, used
))
2898 error ("invalid rtl sharing found in the insn");
2900 error ("shared rtx");
2902 internal_error ("internal consistency failure");
2904 gcc_assert (!RTX_FLAG (x
, used
));
2906 RTX_FLAG (x
, used
) = 1;
2908 /* Now scan the subexpressions recursively. */
2910 format_ptr
= GET_RTX_FORMAT (code
);
2912 for (i
= 0; i
< GET_RTX_LENGTH (code
); i
++)
2914 switch (*format_ptr
++)
2917 verify_rtx_sharing (XEXP (x
, i
), insn
);
2921 if (XVEC (x
, i
) != NULL
)
2924 int len
= XVECLEN (x
, i
);
2926 for (j
= 0; j
< len
; j
++)
2928 /* We allow sharing of ASM_OPERANDS inside single
2930 if (j
&& GET_CODE (XVECEXP (x
, i
, j
)) == SET
2931 && (GET_CODE (SET_SRC (XVECEXP (x
, i
, j
)))
2933 verify_rtx_sharing (SET_DEST (XVECEXP (x
, i
, j
)), insn
);
2935 verify_rtx_sharing (XVECEXP (x
, i
, j
), insn
);
2944 /* Reset used-flags for INSN. */
2947 reset_insn_used_flags (rtx insn
)
2949 gcc_assert (INSN_P (insn
));
2950 reset_used_flags (PATTERN (insn
));
2951 reset_used_flags (REG_NOTES (insn
));
2953 reset_used_flags (CALL_INSN_FUNCTION_USAGE (insn
));
2956 /* Go through all the RTL insn bodies and clear all the USED bits. */
2959 reset_all_used_flags (void)
2963 for (p
= get_insns (); p
; p
= NEXT_INSN (p
))
2966 rtx pat
= PATTERN (p
);
2967 if (GET_CODE (pat
) != SEQUENCE
)
2968 reset_insn_used_flags (p
);
2971 gcc_assert (REG_NOTES (p
) == NULL
);
2972 for (int i
= 0; i
< XVECLEN (pat
, 0); i
++)
2974 rtx insn
= XVECEXP (pat
, 0, i
);
2976 reset_insn_used_flags (insn
);
2982 /* Verify sharing in INSN. */
2985 verify_insn_sharing (rtx insn
)
2987 gcc_assert (INSN_P (insn
));
2988 verify_rtx_sharing (PATTERN (insn
), insn
);
2989 verify_rtx_sharing (REG_NOTES (insn
), insn
);
2991 verify_rtx_sharing (CALL_INSN_FUNCTION_USAGE (insn
), insn
);
2994 /* Go through all the RTL insn bodies and check that there is no unexpected
2995 sharing in between the subexpressions. */
2998 verify_rtl_sharing (void)
3002 timevar_push (TV_VERIFY_RTL_SHARING
);
3004 reset_all_used_flags ();
3006 for (p
= get_insns (); p
; p
= NEXT_INSN (p
))
3009 rtx pat
= PATTERN (p
);
3010 if (GET_CODE (pat
) != SEQUENCE
)
3011 verify_insn_sharing (p
);
3013 for (int i
= 0; i
< XVECLEN (pat
, 0); i
++)
3015 rtx insn
= XVECEXP (pat
, 0, i
);
3017 verify_insn_sharing (insn
);
3021 reset_all_used_flags ();
3023 timevar_pop (TV_VERIFY_RTL_SHARING
);
3026 /* Go through all the RTL insn bodies and copy any invalid shared structure.
3027 Assumes the mark bits are cleared at entry. */
3030 unshare_all_rtl_in_chain (rtx_insn
*insn
)
3032 for (; insn
; insn
= NEXT_INSN (insn
))
3035 PATTERN (insn
) = copy_rtx_if_shared (PATTERN (insn
));
3036 REG_NOTES (insn
) = copy_rtx_if_shared (REG_NOTES (insn
));
3038 CALL_INSN_FUNCTION_USAGE (insn
)
3039 = copy_rtx_if_shared (CALL_INSN_FUNCTION_USAGE (insn
));
3043 /* Go through all virtual stack slots of a function and mark them as
3044 shared. We never replace the DECL_RTLs themselves with a copy,
3045 but expressions mentioned into a DECL_RTL cannot be shared with
3046 expressions in the instruction stream.
3048 Note that reload may convert pseudo registers into memories in-place.
3049 Pseudo registers are always shared, but MEMs never are. Thus if we
3050 reset the used flags on MEMs in the instruction stream, we must set
3051 them again on MEMs that appear in DECL_RTLs. */
3054 set_used_decls (tree blk
)
3059 for (t
= BLOCK_VARS (blk
); t
; t
= DECL_CHAIN (t
))
3060 if (DECL_RTL_SET_P (t
))
3061 set_used_flags (DECL_RTL (t
));
3063 /* Now process sub-blocks. */
3064 for (t
= BLOCK_SUBBLOCKS (blk
); t
; t
= BLOCK_CHAIN (t
))
3068 /* Mark ORIG as in use, and return a copy of it if it was already in use.
3069 Recursively does the same for subexpressions. Uses
3070 copy_rtx_if_shared_1 to reduce stack space. */
3073 copy_rtx_if_shared (rtx orig
)
3075 copy_rtx_if_shared_1 (&orig
);
3079 /* Mark *ORIG1 as in use, and set it to a copy of it if it was already in
3080 use. Recursively does the same for subexpressions. */
3083 copy_rtx_if_shared_1 (rtx
*orig1
)
3089 const char *format_ptr
;
3093 /* Repeat is used to turn tail-recursion into iteration. */
3100 code
= GET_CODE (x
);
3102 /* These types may be freely shared. */
3118 /* SCRATCH must be shared because they represent distinct values. */
3121 /* Share clobbers of hard registers (like cc0), but do not share pseudo reg
3122 clobbers or clobbers of hard registers that originated as pseudos.
3123 This is needed to allow safe register renaming. */
3124 if (REG_P (XEXP (x
, 0))
3125 && HARD_REGISTER_NUM_P (REGNO (XEXP (x
, 0)))
3126 && HARD_REGISTER_NUM_P (ORIGINAL_REGNO (XEXP (x
, 0))))
3131 if (shared_const_p (x
))
3141 /* The chain of insns is not being copied. */
3148 /* This rtx may not be shared. If it has already been seen,
3149 replace it with a copy of itself. */
3151 if (RTX_FLAG (x
, used
))
3153 x
= shallow_copy_rtx (x
);
3156 RTX_FLAG (x
, used
) = 1;
3158 /* Now scan the subexpressions recursively.
3159 We can store any replaced subexpressions directly into X
3160 since we know X is not shared! Any vectors in X
3161 must be copied if X was copied. */
3163 format_ptr
= GET_RTX_FORMAT (code
);
3164 length
= GET_RTX_LENGTH (code
);
3167 for (i
= 0; i
< length
; i
++)
3169 switch (*format_ptr
++)
3173 copy_rtx_if_shared_1 (last_ptr
);
3174 last_ptr
= &XEXP (x
, i
);
3178 if (XVEC (x
, i
) != NULL
)
3181 int len
= XVECLEN (x
, i
);
3183 /* Copy the vector iff I copied the rtx and the length
3185 if (copied
&& len
> 0)
3186 XVEC (x
, i
) = gen_rtvec_v (len
, XVEC (x
, i
)->elem
);
3188 /* Call recursively on all inside the vector. */
3189 for (j
= 0; j
< len
; j
++)
3192 copy_rtx_if_shared_1 (last_ptr
);
3193 last_ptr
= &XVECEXP (x
, i
, j
);
3208 /* Set the USED bit in X and its non-shareable subparts to FLAG. */
3211 mark_used_flags (rtx x
, int flag
)
3215 const char *format_ptr
;
3218 /* Repeat is used to turn tail-recursion into iteration. */
3223 code
= GET_CODE (x
);
3225 /* These types may be freely shared so we needn't do any resetting
3249 /* The chain of insns is not being copied. */
3256 RTX_FLAG (x
, used
) = flag
;
3258 format_ptr
= GET_RTX_FORMAT (code
);
3259 length
= GET_RTX_LENGTH (code
);
3261 for (i
= 0; i
< length
; i
++)
3263 switch (*format_ptr
++)
3271 mark_used_flags (XEXP (x
, i
), flag
);
3275 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
3276 mark_used_flags (XVECEXP (x
, i
, j
), flag
);
3282 /* Clear all the USED bits in X to allow copy_rtx_if_shared to be used
3283 to look for shared sub-parts. */
3286 reset_used_flags (rtx x
)
3288 mark_used_flags (x
, 0);
3291 /* Set all the USED bits in X to allow copy_rtx_if_shared to be used
3292 to look for shared sub-parts. */
3295 set_used_flags (rtx x
)
3297 mark_used_flags (x
, 1);
3300 /* Copy X if necessary so that it won't be altered by changes in OTHER.
3301 Return X or the rtx for the pseudo reg the value of X was copied into.
3302 OTHER must be valid as a SET_DEST. */
3305 make_safe_from (rtx x
, rtx other
)
3308 switch (GET_CODE (other
))
3311 other
= SUBREG_REG (other
);
3313 case STRICT_LOW_PART
:
3316 other
= XEXP (other
, 0);
3325 && GET_CODE (x
) != SUBREG
)
3327 && (REGNO (other
) < FIRST_PSEUDO_REGISTER
3328 || reg_mentioned_p (other
, x
))))
3330 rtx temp
= gen_reg_rtx (GET_MODE (x
));
3331 emit_move_insn (temp
, x
);
3337 /* Emission of insns (adding them to the doubly-linked list). */
3339 /* Return the last insn emitted, even if it is in a sequence now pushed. */
3342 get_last_insn_anywhere (void)
3344 struct sequence_stack
*seq
;
3345 for (seq
= get_current_sequence (); seq
; seq
= seq
->next
)
3351 /* Return the first nonnote insn emitted in current sequence or current
3352 function. This routine looks inside SEQUENCEs. */
3355 get_first_nonnote_insn (void)
3357 rtx_insn
*insn
= get_insns ();
3362 for (insn
= next_insn (insn
);
3363 insn
&& NOTE_P (insn
);
3364 insn
= next_insn (insn
))
3368 if (NONJUMP_INSN_P (insn
)
3369 && GET_CODE (PATTERN (insn
)) == SEQUENCE
)
3370 insn
= as_a
<rtx_sequence
*> (PATTERN (insn
))->insn (0);
3377 /* Return the last nonnote insn emitted in current sequence or current
3378 function. This routine looks inside SEQUENCEs. */
3381 get_last_nonnote_insn (void)
3383 rtx_insn
*insn
= get_last_insn ();
3388 for (insn
= previous_insn (insn
);
3389 insn
&& NOTE_P (insn
);
3390 insn
= previous_insn (insn
))
3394 if (NONJUMP_INSN_P (insn
))
3395 if (rtx_sequence
*seq
= dyn_cast
<rtx_sequence
*> (PATTERN (insn
)))
3396 insn
= seq
->insn (seq
->len () - 1);
3403 /* Return the number of actual (non-debug) insns emitted in this
3407 get_max_insn_count (void)
3409 int n
= cur_insn_uid
;
3411 /* The table size must be stable across -g, to avoid codegen
3412 differences due to debug insns, and not be affected by
3413 -fmin-insn-uid, to avoid excessive table size and to simplify
3414 debugging of -fcompare-debug failures. */
3415 if (cur_debug_insn_uid
> MIN_NONDEBUG_INSN_UID
)
3416 n
-= cur_debug_insn_uid
;
3418 n
-= MIN_NONDEBUG_INSN_UID
;
3424 /* Return the next insn. If it is a SEQUENCE, return the first insn
3428 next_insn (rtx_insn
*insn
)
3432 insn
= NEXT_INSN (insn
);
3433 if (insn
&& NONJUMP_INSN_P (insn
)
3434 && GET_CODE (PATTERN (insn
)) == SEQUENCE
)
3435 insn
= as_a
<rtx_sequence
*> (PATTERN (insn
))->insn (0);
3441 /* Return the previous insn. If it is a SEQUENCE, return the last insn
3445 previous_insn (rtx_insn
*insn
)
3449 insn
= PREV_INSN (insn
);
3450 if (insn
&& NONJUMP_INSN_P (insn
))
3451 if (rtx_sequence
*seq
= dyn_cast
<rtx_sequence
*> (PATTERN (insn
)))
3452 insn
= seq
->insn (seq
->len () - 1);
3458 /* Return the next insn after INSN that is not a NOTE. This routine does not
3459 look inside SEQUENCEs. */
3462 next_nonnote_insn (rtx_insn
*insn
)
3466 insn
= NEXT_INSN (insn
);
3467 if (insn
== 0 || !NOTE_P (insn
))
3474 /* Return the next insn after INSN that is not a DEBUG_INSN. This
3475 routine does not look inside SEQUENCEs. */
3478 next_nondebug_insn (rtx_insn
*insn
)
3482 insn
= NEXT_INSN (insn
);
3483 if (insn
== 0 || !DEBUG_INSN_P (insn
))
3490 /* Return the previous insn before INSN that is not a NOTE. This routine does
3491 not look inside SEQUENCEs. */
3494 prev_nonnote_insn (rtx_insn
*insn
)
3498 insn
= PREV_INSN (insn
);
3499 if (insn
== 0 || !NOTE_P (insn
))
3506 /* Return the previous insn before INSN that is not a DEBUG_INSN.
3507 This routine does not look inside SEQUENCEs. */
3510 prev_nondebug_insn (rtx_insn
*insn
)
3514 insn
= PREV_INSN (insn
);
3515 if (insn
== 0 || !DEBUG_INSN_P (insn
))
3522 /* Return the next insn after INSN that is not a NOTE nor DEBUG_INSN.
3523 This routine does not look inside SEQUENCEs. */
3526 next_nonnote_nondebug_insn (rtx_insn
*insn
)
3530 insn
= NEXT_INSN (insn
);
3531 if (insn
== 0 || (!NOTE_P (insn
) && !DEBUG_INSN_P (insn
)))
3538 /* Return the next insn after INSN that is not a NOTE nor DEBUG_INSN,
3539 but stop the search before we enter another basic block. This
3540 routine does not look inside SEQUENCEs. */
3543 next_nonnote_nondebug_insn_bb (rtx_insn
*insn
)
3547 insn
= NEXT_INSN (insn
);
3550 if (DEBUG_INSN_P (insn
))
3554 if (NOTE_INSN_BASIC_BLOCK_P (insn
))
3561 /* Return the previous insn before INSN that is not a NOTE nor DEBUG_INSN.
3562 This routine does not look inside SEQUENCEs. */
3565 prev_nonnote_nondebug_insn (rtx_insn
*insn
)
3569 insn
= PREV_INSN (insn
);
3570 if (insn
== 0 || (!NOTE_P (insn
) && !DEBUG_INSN_P (insn
)))
3577 /* Return the previous insn before INSN that is not a NOTE nor
3578 DEBUG_INSN, but stop the search before we enter another basic
3579 block. This routine does not look inside SEQUENCEs. */
3582 prev_nonnote_nondebug_insn_bb (rtx_insn
*insn
)
3586 insn
= PREV_INSN (insn
);
3589 if (DEBUG_INSN_P (insn
))
3593 if (NOTE_INSN_BASIC_BLOCK_P (insn
))
3600 /* Return the next INSN, CALL_INSN or JUMP_INSN after INSN;
3601 or 0, if there is none. This routine does not look inside
3605 next_real_insn (rtx uncast_insn
)
3607 rtx_insn
*insn
= safe_as_a
<rtx_insn
*> (uncast_insn
);
3611 insn
= NEXT_INSN (insn
);
3612 if (insn
== 0 || INSN_P (insn
))
3619 /* Return the last INSN, CALL_INSN or JUMP_INSN before INSN;
3620 or 0, if there is none. This routine does not look inside
3624 prev_real_insn (rtx_insn
*insn
)
3628 insn
= PREV_INSN (insn
);
3629 if (insn
== 0 || INSN_P (insn
))
3636 /* Return the last CALL_INSN in the current list, or 0 if there is none.
3637 This routine does not look inside SEQUENCEs. */
3640 last_call_insn (void)
3644 for (insn
= get_last_insn ();
3645 insn
&& !CALL_P (insn
);
3646 insn
= PREV_INSN (insn
))
3649 return safe_as_a
<rtx_call_insn
*> (insn
);
3652 /* Find the next insn after INSN that really does something. This routine
3653 does not look inside SEQUENCEs. After reload this also skips over
3654 standalone USE and CLOBBER insn. */
3657 active_insn_p (const rtx_insn
*insn
)
3659 return (CALL_P (insn
) || JUMP_P (insn
)
3660 || JUMP_TABLE_DATA_P (insn
) /* FIXME */
3661 || (NONJUMP_INSN_P (insn
)
3662 && (! reload_completed
3663 || (GET_CODE (PATTERN (insn
)) != USE
3664 && GET_CODE (PATTERN (insn
)) != CLOBBER
))));
3668 next_active_insn (rtx_insn
*insn
)
3672 insn
= NEXT_INSN (insn
);
3673 if (insn
== 0 || active_insn_p (insn
))
3680 /* Find the last insn before INSN that really does something. This routine
3681 does not look inside SEQUENCEs. After reload this also skips over
3682 standalone USE and CLOBBER insn. */
3685 prev_active_insn (rtx_insn
*insn
)
3689 insn
= PREV_INSN (insn
);
3690 if (insn
== 0 || active_insn_p (insn
))
3697 /* Return the next insn that uses CC0 after INSN, which is assumed to
3698 set it. This is the inverse of prev_cc0_setter (i.e., prev_cc0_setter
3699 applied to the result of this function should yield INSN).
3701 Normally, this is simply the next insn. However, if a REG_CC_USER note
3702 is present, it contains the insn that uses CC0.
3704 Return 0 if we can't find the insn. */
3707 next_cc0_user (rtx_insn
*insn
)
3709 rtx note
= find_reg_note (insn
, REG_CC_USER
, NULL_RTX
);
3712 return safe_as_a
<rtx_insn
*> (XEXP (note
, 0));
3714 insn
= next_nonnote_insn (insn
);
3715 if (insn
&& NONJUMP_INSN_P (insn
) && GET_CODE (PATTERN (insn
)) == SEQUENCE
)
3716 insn
= as_a
<rtx_sequence
*> (PATTERN (insn
))->insn (0);
3718 if (insn
&& INSN_P (insn
) && reg_mentioned_p (cc0_rtx
, PATTERN (insn
)))
3724 /* Find the insn that set CC0 for INSN. Unless INSN has a REG_CC_SETTER
3725 note, it is the previous insn. */
3728 prev_cc0_setter (rtx_insn
*insn
)
3730 rtx note
= find_reg_note (insn
, REG_CC_SETTER
, NULL_RTX
);
3733 return safe_as_a
<rtx_insn
*> (XEXP (note
, 0));
3735 insn
= prev_nonnote_insn (insn
);
3736 gcc_assert (sets_cc0_p (PATTERN (insn
)));
3741 /* Find a RTX_AUTOINC class rtx which matches DATA. */
3744 find_auto_inc (const_rtx x
, const_rtx reg
)
3746 subrtx_iterator::array_type array
;
3747 FOR_EACH_SUBRTX (iter
, array
, x
, NONCONST
)
3749 const_rtx x
= *iter
;
3750 if (GET_RTX_CLASS (GET_CODE (x
)) == RTX_AUTOINC
3751 && rtx_equal_p (reg
, XEXP (x
, 0)))
3757 /* Increment the label uses for all labels present in rtx. */
3760 mark_label_nuses (rtx x
)
3766 code
= GET_CODE (x
);
3767 if (code
== LABEL_REF
&& LABEL_P (label_ref_label (x
)))
3768 LABEL_NUSES (label_ref_label (x
))++;
3770 fmt
= GET_RTX_FORMAT (code
);
3771 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
3774 mark_label_nuses (XEXP (x
, i
));
3775 else if (fmt
[i
] == 'E')
3776 for (j
= XVECLEN (x
, i
) - 1; j
>= 0; j
--)
3777 mark_label_nuses (XVECEXP (x
, i
, j
));
3782 /* Try splitting insns that can be split for better scheduling.
3783 PAT is the pattern which might split.
3784 TRIAL is the insn providing PAT.
3785 LAST is nonzero if we should return the last insn of the sequence produced.
3787 If this routine succeeds in splitting, it returns the first or last
3788 replacement insn depending on the value of LAST. Otherwise, it
3789 returns TRIAL. If the insn to be returned can be split, it will be. */
3792 try_split (rtx pat
, rtx_insn
*trial
, int last
)
3794 rtx_insn
*before
, *after
;
3796 rtx_insn
*seq
, *tem
;
3797 profile_probability probability
;
3798 rtx_insn
*insn_last
, *insn
;
3800 rtx_insn
*call_insn
= NULL
;
3802 /* We're not good at redistributing frame information. */
3803 if (RTX_FRAME_RELATED_P (trial
))
3806 if (any_condjump_p (trial
)
3807 && (note
= find_reg_note (trial
, REG_BR_PROB
, 0)))
3808 split_branch_probability
3809 = profile_probability::from_reg_br_prob_note (XINT (note
, 0));
3811 split_branch_probability
= profile_probability::uninitialized ();
3813 probability
= split_branch_probability
;
3815 seq
= split_insns (pat
, trial
);
3817 split_branch_probability
= profile_probability::uninitialized ();
3822 /* Avoid infinite loop if any insn of the result matches
3823 the original pattern. */
3827 if (INSN_P (insn_last
)
3828 && rtx_equal_p (PATTERN (insn_last
), pat
))
3830 if (!NEXT_INSN (insn_last
))
3832 insn_last
= NEXT_INSN (insn_last
);
3835 /* We will be adding the new sequence to the function. The splitters
3836 may have introduced invalid RTL sharing, so unshare the sequence now. */
3837 unshare_all_rtl_in_chain (seq
);
3839 /* Mark labels and copy flags. */
3840 for (insn
= insn_last
; insn
; insn
= PREV_INSN (insn
))
3845 CROSSING_JUMP_P (insn
) = CROSSING_JUMP_P (trial
);
3846 mark_jump_label (PATTERN (insn
), insn
, 0);
3848 if (probability
.initialized_p ()
3849 && any_condjump_p (insn
)
3850 && !find_reg_note (insn
, REG_BR_PROB
, 0))
3852 /* We can preserve the REG_BR_PROB notes only if exactly
3853 one jump is created, otherwise the machine description
3854 is responsible for this step using
3855 split_branch_probability variable. */
3856 gcc_assert (njumps
== 1);
3857 add_reg_br_prob_note (insn
, probability
);
3862 /* If we are splitting a CALL_INSN, look for the CALL_INSN
3863 in SEQ and copy any additional information across. */
3866 for (insn
= insn_last
; insn
; insn
= PREV_INSN (insn
))
3872 gcc_assert (call_insn
== NULL_RTX
);
3875 /* Add the old CALL_INSN_FUNCTION_USAGE to whatever the
3876 target may have explicitly specified. */
3877 p
= &CALL_INSN_FUNCTION_USAGE (insn
);
3880 *p
= CALL_INSN_FUNCTION_USAGE (trial
);
3882 /* If the old call was a sibling call, the new one must
3884 SIBLING_CALL_P (insn
) = SIBLING_CALL_P (trial
);
3886 /* If the new call is the last instruction in the sequence,
3887 it will effectively replace the old call in-situ. Otherwise
3888 we must move any following NOTE_INSN_CALL_ARG_LOCATION note
3889 so that it comes immediately after the new call. */
3890 if (NEXT_INSN (insn
))
3891 for (next
= NEXT_INSN (trial
);
3892 next
&& NOTE_P (next
);
3893 next
= NEXT_INSN (next
))
3894 if (NOTE_KIND (next
) == NOTE_INSN_CALL_ARG_LOCATION
)
3897 add_insn_after (next
, insn
, NULL
);
3903 /* Copy notes, particularly those related to the CFG. */
3904 for (note
= REG_NOTES (trial
); note
; note
= XEXP (note
, 1))
3906 switch (REG_NOTE_KIND (note
))
3909 copy_reg_eh_region_note_backward (note
, insn_last
, NULL
);
3915 case REG_CALL_NOCF_CHECK
:
3916 for (insn
= insn_last
; insn
!= NULL_RTX
; insn
= PREV_INSN (insn
))
3919 add_reg_note (insn
, REG_NOTE_KIND (note
), XEXP (note
, 0));
3923 case REG_NON_LOCAL_GOTO
:
3924 for (insn
= insn_last
; insn
!= NULL_RTX
; insn
= PREV_INSN (insn
))
3927 add_reg_note (insn
, REG_NOTE_KIND (note
), XEXP (note
, 0));
3935 for (insn
= insn_last
; insn
!= NULL_RTX
; insn
= PREV_INSN (insn
))
3937 rtx reg
= XEXP (note
, 0);
3938 if (!FIND_REG_INC_NOTE (insn
, reg
)
3939 && find_auto_inc (PATTERN (insn
), reg
))
3940 add_reg_note (insn
, REG_INC
, reg
);
3945 fixup_args_size_notes (NULL
, insn_last
, get_args_size (note
));
3949 gcc_assert (call_insn
!= NULL_RTX
);
3950 add_reg_note (call_insn
, REG_NOTE_KIND (note
), XEXP (note
, 0));
3958 /* If there are LABELS inside the split insns increment the
3959 usage count so we don't delete the label. */
3963 while (insn
!= NULL_RTX
)
3965 /* JUMP_P insns have already been "marked" above. */
3966 if (NONJUMP_INSN_P (insn
))
3967 mark_label_nuses (PATTERN (insn
));
3969 insn
= PREV_INSN (insn
);
3973 before
= PREV_INSN (trial
);
3974 after
= NEXT_INSN (trial
);
3976 tem
= emit_insn_after_setloc (seq
, trial
, INSN_LOCATION (trial
));
3978 delete_insn (trial
);
3980 /* Recursively call try_split for each new insn created; by the
3981 time control returns here that insn will be fully split, so
3982 set LAST and continue from the insn after the one returned.
3983 We can't use next_active_insn here since AFTER may be a note.
3984 Ignore deleted insns, which can be occur if not optimizing. */
3985 for (tem
= NEXT_INSN (before
); tem
!= after
; tem
= NEXT_INSN (tem
))
3986 if (! tem
->deleted () && INSN_P (tem
))
3987 tem
= try_split (PATTERN (tem
), tem
, 1);
3989 /* Return either the first or the last insn, depending on which was
3992 ? (after
? PREV_INSN (after
) : get_last_insn ())
3993 : NEXT_INSN (before
);
3996 /* Make and return an INSN rtx, initializing all its slots.
3997 Store PATTERN in the pattern slots. */
4000 make_insn_raw (rtx pattern
)
4004 insn
= as_a
<rtx_insn
*> (rtx_alloc (INSN
));
4006 INSN_UID (insn
) = cur_insn_uid
++;
4007 PATTERN (insn
) = pattern
;
4008 INSN_CODE (insn
) = -1;
4009 REG_NOTES (insn
) = NULL
;
4010 INSN_LOCATION (insn
) = curr_insn_location ();
4011 BLOCK_FOR_INSN (insn
) = NULL
;
4013 #ifdef ENABLE_RTL_CHECKING
4016 && (returnjump_p (insn
)
4017 || (GET_CODE (insn
) == SET
4018 && SET_DEST (insn
) == pc_rtx
)))
4020 warning (0, "ICE: emit_insn used where emit_jump_insn needed:\n");
4028 /* Like `make_insn_raw' but make a DEBUG_INSN instead of an insn. */
4031 make_debug_insn_raw (rtx pattern
)
4033 rtx_debug_insn
*insn
;
4035 insn
= as_a
<rtx_debug_insn
*> (rtx_alloc (DEBUG_INSN
));
4036 INSN_UID (insn
) = cur_debug_insn_uid
++;
4037 if (cur_debug_insn_uid
> MIN_NONDEBUG_INSN_UID
)
4038 INSN_UID (insn
) = cur_insn_uid
++;
4040 PATTERN (insn
) = pattern
;
4041 INSN_CODE (insn
) = -1;
4042 REG_NOTES (insn
) = NULL
;
4043 INSN_LOCATION (insn
) = curr_insn_location ();
4044 BLOCK_FOR_INSN (insn
) = NULL
;
4049 /* Like `make_insn_raw' but make a JUMP_INSN instead of an insn. */
4052 make_jump_insn_raw (rtx pattern
)
4054 rtx_jump_insn
*insn
;
4056 insn
= as_a
<rtx_jump_insn
*> (rtx_alloc (JUMP_INSN
));
4057 INSN_UID (insn
) = cur_insn_uid
++;
4059 PATTERN (insn
) = pattern
;
4060 INSN_CODE (insn
) = -1;
4061 REG_NOTES (insn
) = NULL
;
4062 JUMP_LABEL (insn
) = NULL
;
4063 INSN_LOCATION (insn
) = curr_insn_location ();
4064 BLOCK_FOR_INSN (insn
) = NULL
;
4069 /* Like `make_insn_raw' but make a CALL_INSN instead of an insn. */
4072 make_call_insn_raw (rtx pattern
)
4074 rtx_call_insn
*insn
;
4076 insn
= as_a
<rtx_call_insn
*> (rtx_alloc (CALL_INSN
));
4077 INSN_UID (insn
) = cur_insn_uid
++;
4079 PATTERN (insn
) = pattern
;
4080 INSN_CODE (insn
) = -1;
4081 REG_NOTES (insn
) = NULL
;
4082 CALL_INSN_FUNCTION_USAGE (insn
) = NULL
;
4083 INSN_LOCATION (insn
) = curr_insn_location ();
4084 BLOCK_FOR_INSN (insn
) = NULL
;
4089 /* Like `make_insn_raw' but make a NOTE instead of an insn. */
4092 make_note_raw (enum insn_note subtype
)
4094 /* Some notes are never created this way at all. These notes are
4095 only created by patching out insns. */
4096 gcc_assert (subtype
!= NOTE_INSN_DELETED_LABEL
4097 && subtype
!= NOTE_INSN_DELETED_DEBUG_LABEL
);
4099 rtx_note
*note
= as_a
<rtx_note
*> (rtx_alloc (NOTE
));
4100 INSN_UID (note
) = cur_insn_uid
++;
4101 NOTE_KIND (note
) = subtype
;
4102 BLOCK_FOR_INSN (note
) = NULL
;
4103 memset (&NOTE_DATA (note
), 0, sizeof (NOTE_DATA (note
)));
4107 /* Add INSN to the end of the doubly-linked list, between PREV and NEXT.
4108 INSN may be any object that can appear in the chain: INSN_P and NOTE_P objects,
4109 but also BARRIERs and JUMP_TABLE_DATAs. PREV and NEXT may be NULL. */
4112 link_insn_into_chain (rtx_insn
*insn
, rtx_insn
*prev
, rtx_insn
*next
)
4114 SET_PREV_INSN (insn
) = prev
;
4115 SET_NEXT_INSN (insn
) = next
;
4118 SET_NEXT_INSN (prev
) = insn
;
4119 if (NONJUMP_INSN_P (prev
) && GET_CODE (PATTERN (prev
)) == SEQUENCE
)
4121 rtx_sequence
*sequence
= as_a
<rtx_sequence
*> (PATTERN (prev
));
4122 SET_NEXT_INSN (sequence
->insn (sequence
->len () - 1)) = insn
;
4127 SET_PREV_INSN (next
) = insn
;
4128 if (NONJUMP_INSN_P (next
) && GET_CODE (PATTERN (next
)) == SEQUENCE
)
4130 rtx_sequence
*sequence
= as_a
<rtx_sequence
*> (PATTERN (next
));
4131 SET_PREV_INSN (sequence
->insn (0)) = insn
;
4135 if (NONJUMP_INSN_P (insn
) && GET_CODE (PATTERN (insn
)) == SEQUENCE
)
4137 rtx_sequence
*sequence
= as_a
<rtx_sequence
*> (PATTERN (insn
));
4138 SET_PREV_INSN (sequence
->insn (0)) = prev
;
4139 SET_NEXT_INSN (sequence
->insn (sequence
->len () - 1)) = next
;
4143 /* Add INSN to the end of the doubly-linked list.
4144 INSN may be an INSN, JUMP_INSN, CALL_INSN, CODE_LABEL, BARRIER or NOTE. */
4147 add_insn (rtx_insn
*insn
)
4149 rtx_insn
*prev
= get_last_insn ();
4150 link_insn_into_chain (insn
, prev
, NULL
);
4151 if (get_insns () == NULL
)
4152 set_first_insn (insn
);
4153 set_last_insn (insn
);
4156 /* Add INSN into the doubly-linked list after insn AFTER. */
4159 add_insn_after_nobb (rtx_insn
*insn
, rtx_insn
*after
)
4161 rtx_insn
*next
= NEXT_INSN (after
);
4163 gcc_assert (!optimize
|| !after
->deleted ());
4165 link_insn_into_chain (insn
, after
, next
);
4169 struct sequence_stack
*seq
;
4171 for (seq
= get_current_sequence (); seq
; seq
= seq
->next
)
4172 if (after
== seq
->last
)
4180 /* Add INSN into the doubly-linked list before insn BEFORE. */
4183 add_insn_before_nobb (rtx_insn
*insn
, rtx_insn
*before
)
4185 rtx_insn
*prev
= PREV_INSN (before
);
4187 gcc_assert (!optimize
|| !before
->deleted ());
4189 link_insn_into_chain (insn
, prev
, before
);
4193 struct sequence_stack
*seq
;
4195 for (seq
= get_current_sequence (); seq
; seq
= seq
->next
)
4196 if (before
== seq
->first
)
4206 /* Like add_insn_after_nobb, but try to set BLOCK_FOR_INSN.
4207 If BB is NULL, an attempt is made to infer the bb from before.
4209 This and the next function should be the only functions called
4210 to insert an insn once delay slots have been filled since only
4211 they know how to update a SEQUENCE. */
4214 add_insn_after (rtx uncast_insn
, rtx uncast_after
, basic_block bb
)
4216 rtx_insn
*insn
= as_a
<rtx_insn
*> (uncast_insn
);
4217 rtx_insn
*after
= as_a
<rtx_insn
*> (uncast_after
);
4218 add_insn_after_nobb (insn
, after
);
4219 if (!BARRIER_P (after
)
4220 && !BARRIER_P (insn
)
4221 && (bb
= BLOCK_FOR_INSN (after
)))
4223 set_block_for_insn (insn
, bb
);
4225 df_insn_rescan (insn
);
4226 /* Should not happen as first in the BB is always
4227 either NOTE or LABEL. */
4228 if (BB_END (bb
) == after
4229 /* Avoid clobbering of structure when creating new BB. */
4230 && !BARRIER_P (insn
)
4231 && !NOTE_INSN_BASIC_BLOCK_P (insn
))
4236 /* Like add_insn_before_nobb, but try to set BLOCK_FOR_INSN.
4237 If BB is NULL, an attempt is made to infer the bb from before.
4239 This and the previous function should be the only functions called
4240 to insert an insn once delay slots have been filled since only
4241 they know how to update a SEQUENCE. */
4244 add_insn_before (rtx uncast_insn
, rtx uncast_before
, basic_block bb
)
4246 rtx_insn
*insn
= as_a
<rtx_insn
*> (uncast_insn
);
4247 rtx_insn
*before
= as_a
<rtx_insn
*> (uncast_before
);
4248 add_insn_before_nobb (insn
, before
);
4251 && !BARRIER_P (before
)
4252 && !BARRIER_P (insn
))
4253 bb
= BLOCK_FOR_INSN (before
);
4257 set_block_for_insn (insn
, bb
);
4259 df_insn_rescan (insn
);
4260 /* Should not happen as first in the BB is always either NOTE or
4262 gcc_assert (BB_HEAD (bb
) != insn
4263 /* Avoid clobbering of structure when creating new BB. */
4265 || NOTE_INSN_BASIC_BLOCK_P (insn
));
4269 /* Replace insn with an deleted instruction note. */
4272 set_insn_deleted (rtx insn
)
4275 df_insn_delete (as_a
<rtx_insn
*> (insn
));
4276 PUT_CODE (insn
, NOTE
);
4277 NOTE_KIND (insn
) = NOTE_INSN_DELETED
;
4281 /* Unlink INSN from the insn chain.
4283 This function knows how to handle sequences.
4285 This function does not invalidate data flow information associated with
4286 INSN (i.e. does not call df_insn_delete). That makes this function
4287 usable for only disconnecting an insn from the chain, and re-emit it
4290 To later insert INSN elsewhere in the insn chain via add_insn and
4291 similar functions, PREV_INSN and NEXT_INSN must be nullified by
4292 the caller. Nullifying them here breaks many insn chain walks.
4294 To really delete an insn and related DF information, use delete_insn. */
4297 remove_insn (rtx uncast_insn
)
4299 rtx_insn
*insn
= as_a
<rtx_insn
*> (uncast_insn
);
4300 rtx_insn
*next
= NEXT_INSN (insn
);
4301 rtx_insn
*prev
= PREV_INSN (insn
);
4306 SET_NEXT_INSN (prev
) = next
;
4307 if (NONJUMP_INSN_P (prev
) && GET_CODE (PATTERN (prev
)) == SEQUENCE
)
4309 rtx_sequence
*sequence
= as_a
<rtx_sequence
*> (PATTERN (prev
));
4310 SET_NEXT_INSN (sequence
->insn (sequence
->len () - 1)) = next
;
4315 struct sequence_stack
*seq
;
4317 for (seq
= get_current_sequence (); seq
; seq
= seq
->next
)
4318 if (insn
== seq
->first
)
4329 SET_PREV_INSN (next
) = prev
;
4330 if (NONJUMP_INSN_P (next
) && GET_CODE (PATTERN (next
)) == SEQUENCE
)
4332 rtx_sequence
*sequence
= as_a
<rtx_sequence
*> (PATTERN (next
));
4333 SET_PREV_INSN (sequence
->insn (0)) = prev
;
4338 struct sequence_stack
*seq
;
4340 for (seq
= get_current_sequence (); seq
; seq
= seq
->next
)
4341 if (insn
== seq
->last
)
4350 /* Fix up basic block boundaries, if necessary. */
4351 if (!BARRIER_P (insn
)
4352 && (bb
= BLOCK_FOR_INSN (insn
)))
4354 if (BB_HEAD (bb
) == insn
)
4356 /* Never ever delete the basic block note without deleting whole
4358 gcc_assert (!NOTE_P (insn
));
4359 BB_HEAD (bb
) = next
;
4361 if (BB_END (bb
) == insn
)
4366 /* Append CALL_FUSAGE to the CALL_INSN_FUNCTION_USAGE for CALL_INSN. */
4369 add_function_usage_to (rtx call_insn
, rtx call_fusage
)
4371 gcc_assert (call_insn
&& CALL_P (call_insn
));
4373 /* Put the register usage information on the CALL. If there is already
4374 some usage information, put ours at the end. */
4375 if (CALL_INSN_FUNCTION_USAGE (call_insn
))
4379 for (link
= CALL_INSN_FUNCTION_USAGE (call_insn
); XEXP (link
, 1) != 0;
4380 link
= XEXP (link
, 1))
4383 XEXP (link
, 1) = call_fusage
;
4386 CALL_INSN_FUNCTION_USAGE (call_insn
) = call_fusage
;
4389 /* Delete all insns made since FROM.
4390 FROM becomes the new last instruction. */
4393 delete_insns_since (rtx_insn
*from
)
4398 SET_NEXT_INSN (from
) = 0;
4399 set_last_insn (from
);
4402 /* This function is deprecated, please use sequences instead.
4404 Move a consecutive bunch of insns to a different place in the chain.
4405 The insns to be moved are those between FROM and TO.
4406 They are moved to a new position after the insn AFTER.
4407 AFTER must not be FROM or TO or any insn in between.
4409 This function does not know about SEQUENCEs and hence should not be
4410 called after delay-slot filling has been done. */
4413 reorder_insns_nobb (rtx_insn
*from
, rtx_insn
*to
, rtx_insn
*after
)
4417 for (rtx_insn
*x
= from
; x
!= to
; x
= NEXT_INSN (x
))
4418 gcc_assert (after
!= x
);
4419 gcc_assert (after
!= to
);
4422 /* Splice this bunch out of where it is now. */
4423 if (PREV_INSN (from
))
4424 SET_NEXT_INSN (PREV_INSN (from
)) = NEXT_INSN (to
);
4426 SET_PREV_INSN (NEXT_INSN (to
)) = PREV_INSN (from
);
4427 if (get_last_insn () == to
)
4428 set_last_insn (PREV_INSN (from
));
4429 if (get_insns () == from
)
4430 set_first_insn (NEXT_INSN (to
));
4432 /* Make the new neighbors point to it and it to them. */
4433 if (NEXT_INSN (after
))
4434 SET_PREV_INSN (NEXT_INSN (after
)) = to
;
4436 SET_NEXT_INSN (to
) = NEXT_INSN (after
);
4437 SET_PREV_INSN (from
) = after
;
4438 SET_NEXT_INSN (after
) = from
;
4439 if (after
== get_last_insn ())
4443 /* Same as function above, but take care to update BB boundaries. */
4445 reorder_insns (rtx_insn
*from
, rtx_insn
*to
, rtx_insn
*after
)
4447 rtx_insn
*prev
= PREV_INSN (from
);
4448 basic_block bb
, bb2
;
4450 reorder_insns_nobb (from
, to
, after
);
4452 if (!BARRIER_P (after
)
4453 && (bb
= BLOCK_FOR_INSN (after
)))
4456 df_set_bb_dirty (bb
);
4458 if (!BARRIER_P (from
)
4459 && (bb2
= BLOCK_FOR_INSN (from
)))
4461 if (BB_END (bb2
) == to
)
4462 BB_END (bb2
) = prev
;
4463 df_set_bb_dirty (bb2
);
4466 if (BB_END (bb
) == after
)
4469 for (x
= from
; x
!= NEXT_INSN (to
); x
= NEXT_INSN (x
))
4471 df_insn_change_bb (x
, bb
);
4476 /* Emit insn(s) of given code and pattern
4477 at a specified place within the doubly-linked list.
4479 All of the emit_foo global entry points accept an object
4480 X which is either an insn list or a PATTERN of a single
4483 There are thus a few canonical ways to generate code and
4484 emit it at a specific place in the instruction stream. For
4485 example, consider the instruction named SPOT and the fact that
4486 we would like to emit some instructions before SPOT. We might
4490 ... emit the new instructions ...
4491 insns_head = get_insns ();
4494 emit_insn_before (insns_head, SPOT);
4496 It used to be common to generate SEQUENCE rtl instead, but that
4497 is a relic of the past which no longer occurs. The reason is that
4498 SEQUENCE rtl results in much fragmented RTL memory since the SEQUENCE
4499 generated would almost certainly die right after it was created. */
4502 emit_pattern_before_noloc (rtx x
, rtx before
, rtx last
, basic_block bb
,
4503 rtx_insn
*(*make_raw
) (rtx
))
4507 gcc_assert (before
);
4510 return safe_as_a
<rtx_insn
*> (last
);
4512 switch (GET_CODE (x
))
4521 insn
= as_a
<rtx_insn
*> (x
);
4524 rtx_insn
*next
= NEXT_INSN (insn
);
4525 add_insn_before (insn
, before
, bb
);
4531 #ifdef ENABLE_RTL_CHECKING
4538 last
= (*make_raw
) (x
);
4539 add_insn_before (last
, before
, bb
);
4543 return safe_as_a
<rtx_insn
*> (last
);
4546 /* Make X be output before the instruction BEFORE. */
4549 emit_insn_before_noloc (rtx x
, rtx_insn
*before
, basic_block bb
)
4551 return emit_pattern_before_noloc (x
, before
, before
, bb
, make_insn_raw
);
4554 /* Make an instruction with body X and code JUMP_INSN
4555 and output it before the instruction BEFORE. */
4558 emit_jump_insn_before_noloc (rtx x
, rtx_insn
*before
)
4560 return as_a
<rtx_jump_insn
*> (
4561 emit_pattern_before_noloc (x
, before
, NULL_RTX
, NULL
,
4562 make_jump_insn_raw
));
4565 /* Make an instruction with body X and code CALL_INSN
4566 and output it before the instruction BEFORE. */
4569 emit_call_insn_before_noloc (rtx x
, rtx_insn
*before
)
4571 return emit_pattern_before_noloc (x
, before
, NULL_RTX
, NULL
,
4572 make_call_insn_raw
);
4575 /* Make an instruction with body X and code DEBUG_INSN
4576 and output it before the instruction BEFORE. */
4579 emit_debug_insn_before_noloc (rtx x
, rtx before
)
4581 return emit_pattern_before_noloc (x
, before
, NULL_RTX
, NULL
,
4582 make_debug_insn_raw
);
4585 /* Make an insn of code BARRIER
4586 and output it before the insn BEFORE. */
4589 emit_barrier_before (rtx before
)
4591 rtx_barrier
*insn
= as_a
<rtx_barrier
*> (rtx_alloc (BARRIER
));
4593 INSN_UID (insn
) = cur_insn_uid
++;
4595 add_insn_before (insn
, before
, NULL
);
4599 /* Emit the label LABEL before the insn BEFORE. */
4602 emit_label_before (rtx label
, rtx_insn
*before
)
4604 gcc_checking_assert (INSN_UID (label
) == 0);
4605 INSN_UID (label
) = cur_insn_uid
++;
4606 add_insn_before (label
, before
, NULL
);
4607 return as_a
<rtx_code_label
*> (label
);
4610 /* Helper for emit_insn_after, handles lists of instructions
4614 emit_insn_after_1 (rtx_insn
*first
, rtx uncast_after
, basic_block bb
)
4616 rtx_insn
*after
= safe_as_a
<rtx_insn
*> (uncast_after
);
4618 rtx_insn
*after_after
;
4619 if (!bb
&& !BARRIER_P (after
))
4620 bb
= BLOCK_FOR_INSN (after
);
4624 df_set_bb_dirty (bb
);
4625 for (last
= first
; NEXT_INSN (last
); last
= NEXT_INSN (last
))
4626 if (!BARRIER_P (last
))
4628 set_block_for_insn (last
, bb
);
4629 df_insn_rescan (last
);
4631 if (!BARRIER_P (last
))
4633 set_block_for_insn (last
, bb
);
4634 df_insn_rescan (last
);
4636 if (BB_END (bb
) == after
)
4640 for (last
= first
; NEXT_INSN (last
); last
= NEXT_INSN (last
))
4643 after_after
= NEXT_INSN (after
);
4645 SET_NEXT_INSN (after
) = first
;
4646 SET_PREV_INSN (first
) = after
;
4647 SET_NEXT_INSN (last
) = after_after
;
4649 SET_PREV_INSN (after_after
) = last
;
4651 if (after
== get_last_insn ())
4652 set_last_insn (last
);
4658 emit_pattern_after_noloc (rtx x
, rtx uncast_after
, basic_block bb
,
4659 rtx_insn
*(*make_raw
)(rtx
))
4661 rtx_insn
*after
= safe_as_a
<rtx_insn
*> (uncast_after
);
4662 rtx_insn
*last
= after
;
4669 switch (GET_CODE (x
))
4678 last
= emit_insn_after_1 (as_a
<rtx_insn
*> (x
), after
, bb
);
4681 #ifdef ENABLE_RTL_CHECKING
4688 last
= (*make_raw
) (x
);
4689 add_insn_after (last
, after
, bb
);
4696 /* Make X be output after the insn AFTER and set the BB of insn. If
4697 BB is NULL, an attempt is made to infer the BB from AFTER. */
4700 emit_insn_after_noloc (rtx x
, rtx after
, basic_block bb
)
4702 return emit_pattern_after_noloc (x
, after
, bb
, make_insn_raw
);
4706 /* Make an insn of code JUMP_INSN with body X
4707 and output it after the insn AFTER. */
4710 emit_jump_insn_after_noloc (rtx x
, rtx after
)
4712 return as_a
<rtx_jump_insn
*> (
4713 emit_pattern_after_noloc (x
, after
, NULL
, make_jump_insn_raw
));
4716 /* Make an instruction with body X and code CALL_INSN
4717 and output it after the instruction AFTER. */
4720 emit_call_insn_after_noloc (rtx x
, rtx after
)
4722 return emit_pattern_after_noloc (x
, after
, NULL
, make_call_insn_raw
);
4725 /* Make an instruction with body X and code CALL_INSN
4726 and output it after the instruction AFTER. */
4729 emit_debug_insn_after_noloc (rtx x
, rtx after
)
4731 return emit_pattern_after_noloc (x
, after
, NULL
, make_debug_insn_raw
);
4734 /* Make an insn of code BARRIER
4735 and output it after the insn AFTER. */
4738 emit_barrier_after (rtx after
)
4740 rtx_barrier
*insn
= as_a
<rtx_barrier
*> (rtx_alloc (BARRIER
));
4742 INSN_UID (insn
) = cur_insn_uid
++;
4744 add_insn_after (insn
, after
, NULL
);
4748 /* Emit the label LABEL after the insn AFTER. */
4751 emit_label_after (rtx label
, rtx_insn
*after
)
4753 gcc_checking_assert (INSN_UID (label
) == 0);
4754 INSN_UID (label
) = cur_insn_uid
++;
4755 add_insn_after (label
, after
, NULL
);
4756 return as_a
<rtx_insn
*> (label
);
4759 /* Notes require a bit of special handling: Some notes need to have their
4760 BLOCK_FOR_INSN set, others should never have it set, and some should
4761 have it set or clear depending on the context. */
4763 /* Return true iff a note of kind SUBTYPE should be emitted with routines
4764 that never set BLOCK_FOR_INSN on NOTE. BB_BOUNDARY is true if the
4765 caller is asked to emit a note before BB_HEAD, or after BB_END. */
4768 note_outside_basic_block_p (enum insn_note subtype
, bool on_bb_boundary_p
)
4772 /* NOTE_INSN_SWITCH_TEXT_SECTIONS only appears between basic blocks. */
4773 case NOTE_INSN_SWITCH_TEXT_SECTIONS
:
4776 /* Notes for var tracking and EH region markers can appear between or
4777 inside basic blocks. If the caller is emitting on the basic block
4778 boundary, do not set BLOCK_FOR_INSN on the new note. */
4779 case NOTE_INSN_VAR_LOCATION
:
4780 case NOTE_INSN_CALL_ARG_LOCATION
:
4781 case NOTE_INSN_EH_REGION_BEG
:
4782 case NOTE_INSN_EH_REGION_END
:
4783 return on_bb_boundary_p
;
4785 /* Otherwise, BLOCK_FOR_INSN must be set. */
4791 /* Emit a note of subtype SUBTYPE after the insn AFTER. */
4794 emit_note_after (enum insn_note subtype
, rtx_insn
*after
)
4796 rtx_note
*note
= make_note_raw (subtype
);
4797 basic_block bb
= BARRIER_P (after
) ? NULL
: BLOCK_FOR_INSN (after
);
4798 bool on_bb_boundary_p
= (bb
!= NULL
&& BB_END (bb
) == after
);
4800 if (note_outside_basic_block_p (subtype
, on_bb_boundary_p
))
4801 add_insn_after_nobb (note
, after
);
4803 add_insn_after (note
, after
, bb
);
4807 /* Emit a note of subtype SUBTYPE before the insn BEFORE. */
4810 emit_note_before (enum insn_note subtype
, rtx_insn
*before
)
4812 rtx_note
*note
= make_note_raw (subtype
);
4813 basic_block bb
= BARRIER_P (before
) ? NULL
: BLOCK_FOR_INSN (before
);
4814 bool on_bb_boundary_p
= (bb
!= NULL
&& BB_HEAD (bb
) == before
);
4816 if (note_outside_basic_block_p (subtype
, on_bb_boundary_p
))
4817 add_insn_before_nobb (note
, before
);
4819 add_insn_before (note
, before
, bb
);
4823 /* Insert PATTERN after AFTER, setting its INSN_LOCATION to LOC.
4824 MAKE_RAW indicates how to turn PATTERN into a real insn. */
4827 emit_pattern_after_setloc (rtx pattern
, rtx uncast_after
, int loc
,
4828 rtx_insn
*(*make_raw
) (rtx
))
4830 rtx_insn
*after
= safe_as_a
<rtx_insn
*> (uncast_after
);
4831 rtx_insn
*last
= emit_pattern_after_noloc (pattern
, after
, NULL
, make_raw
);
4833 if (pattern
== NULL_RTX
|| !loc
)
4836 after
= NEXT_INSN (after
);
4839 if (active_insn_p (after
)
4840 && !JUMP_TABLE_DATA_P (after
) /* FIXME */
4841 && !INSN_LOCATION (after
))
4842 INSN_LOCATION (after
) = loc
;
4845 after
= NEXT_INSN (after
);
4850 /* Insert PATTERN after AFTER. MAKE_RAW indicates how to turn PATTERN
4851 into a real insn. SKIP_DEBUG_INSNS indicates whether to insert after
4855 emit_pattern_after (rtx pattern
, rtx uncast_after
, bool skip_debug_insns
,
4856 rtx_insn
*(*make_raw
) (rtx
))
4858 rtx_insn
*after
= safe_as_a
<rtx_insn
*> (uncast_after
);
4859 rtx_insn
*prev
= after
;
4861 if (skip_debug_insns
)
4862 while (DEBUG_INSN_P (prev
))
4863 prev
= PREV_INSN (prev
);
4866 return emit_pattern_after_setloc (pattern
, after
, INSN_LOCATION (prev
),
4869 return emit_pattern_after_noloc (pattern
, after
, NULL
, make_raw
);
4872 /* Like emit_insn_after_noloc, but set INSN_LOCATION according to LOC. */
4874 emit_insn_after_setloc (rtx pattern
, rtx after
, int loc
)
4876 return emit_pattern_after_setloc (pattern
, after
, loc
, make_insn_raw
);
4879 /* Like emit_insn_after_noloc, but set INSN_LOCATION according to AFTER. */
4881 emit_insn_after (rtx pattern
, rtx after
)
4883 return emit_pattern_after (pattern
, after
, true, make_insn_raw
);
4886 /* Like emit_jump_insn_after_noloc, but set INSN_LOCATION according to LOC. */
4888 emit_jump_insn_after_setloc (rtx pattern
, rtx after
, int loc
)
4890 return as_a
<rtx_jump_insn
*> (
4891 emit_pattern_after_setloc (pattern
, after
, loc
, make_jump_insn_raw
));
4894 /* Like emit_jump_insn_after_noloc, but set INSN_LOCATION according to AFTER. */
4896 emit_jump_insn_after (rtx pattern
, rtx after
)
4898 return as_a
<rtx_jump_insn
*> (
4899 emit_pattern_after (pattern
, after
, true, make_jump_insn_raw
));
4902 /* Like emit_call_insn_after_noloc, but set INSN_LOCATION according to LOC. */
4904 emit_call_insn_after_setloc (rtx pattern
, rtx after
, int loc
)
4906 return emit_pattern_after_setloc (pattern
, after
, loc
, make_call_insn_raw
);
4909 /* Like emit_call_insn_after_noloc, but set INSN_LOCATION according to AFTER. */
4911 emit_call_insn_after (rtx pattern
, rtx after
)
4913 return emit_pattern_after (pattern
, after
, true, make_call_insn_raw
);
4916 /* Like emit_debug_insn_after_noloc, but set INSN_LOCATION according to LOC. */
4918 emit_debug_insn_after_setloc (rtx pattern
, rtx after
, int loc
)
4920 return emit_pattern_after_setloc (pattern
, after
, loc
, make_debug_insn_raw
);
4923 /* Like emit_debug_insn_after_noloc, but set INSN_LOCATION according to AFTER. */
4925 emit_debug_insn_after (rtx pattern
, rtx after
)
4927 return emit_pattern_after (pattern
, after
, false, make_debug_insn_raw
);
4930 /* Insert PATTERN before BEFORE, setting its INSN_LOCATION to LOC.
4931 MAKE_RAW indicates how to turn PATTERN into a real insn. INSNP
4932 indicates if PATTERN is meant for an INSN as opposed to a JUMP_INSN,
4936 emit_pattern_before_setloc (rtx pattern
, rtx uncast_before
, int loc
, bool insnp
,
4937 rtx_insn
*(*make_raw
) (rtx
))
4939 rtx_insn
*before
= as_a
<rtx_insn
*> (uncast_before
);
4940 rtx_insn
*first
= PREV_INSN (before
);
4941 rtx_insn
*last
= emit_pattern_before_noloc (pattern
, before
,
4942 insnp
? before
: NULL_RTX
,
4945 if (pattern
== NULL_RTX
|| !loc
)
4949 first
= get_insns ();
4951 first
= NEXT_INSN (first
);
4954 if (active_insn_p (first
)
4955 && !JUMP_TABLE_DATA_P (first
) /* FIXME */
4956 && !INSN_LOCATION (first
))
4957 INSN_LOCATION (first
) = loc
;
4960 first
= NEXT_INSN (first
);
4965 /* Insert PATTERN before BEFORE. MAKE_RAW indicates how to turn PATTERN
4966 into a real insn. SKIP_DEBUG_INSNS indicates whether to insert
4967 before any DEBUG_INSNs. INSNP indicates if PATTERN is meant for an
4968 INSN as opposed to a JUMP_INSN, CALL_INSN, etc. */
4971 emit_pattern_before (rtx pattern
, rtx uncast_before
, bool skip_debug_insns
,
4972 bool insnp
, rtx_insn
*(*make_raw
) (rtx
))
4974 rtx_insn
*before
= safe_as_a
<rtx_insn
*> (uncast_before
);
4975 rtx_insn
*next
= before
;
4977 if (skip_debug_insns
)
4978 while (DEBUG_INSN_P (next
))
4979 next
= PREV_INSN (next
);
4982 return emit_pattern_before_setloc (pattern
, before
, INSN_LOCATION (next
),
4985 return emit_pattern_before_noloc (pattern
, before
,
4986 insnp
? before
: NULL_RTX
,
4990 /* Like emit_insn_before_noloc, but set INSN_LOCATION according to LOC. */
4992 emit_insn_before_setloc (rtx pattern
, rtx_insn
*before
, int loc
)
4994 return emit_pattern_before_setloc (pattern
, before
, loc
, true,
4998 /* Like emit_insn_before_noloc, but set INSN_LOCATION according to BEFORE. */
5000 emit_insn_before (rtx pattern
, rtx before
)
5002 return emit_pattern_before (pattern
, before
, true, true, make_insn_raw
);
5005 /* like emit_insn_before_noloc, but set INSN_LOCATION according to LOC. */
5007 emit_jump_insn_before_setloc (rtx pattern
, rtx_insn
*before
, int loc
)
5009 return as_a
<rtx_jump_insn
*> (
5010 emit_pattern_before_setloc (pattern
, before
, loc
, false,
5011 make_jump_insn_raw
));
5014 /* Like emit_jump_insn_before_noloc, but set INSN_LOCATION according to BEFORE. */
5016 emit_jump_insn_before (rtx pattern
, rtx before
)
5018 return as_a
<rtx_jump_insn
*> (
5019 emit_pattern_before (pattern
, before
, true, false,
5020 make_jump_insn_raw
));
5023 /* Like emit_insn_before_noloc, but set INSN_LOCATION according to LOC. */
5025 emit_call_insn_before_setloc (rtx pattern
, rtx_insn
*before
, int loc
)
5027 return emit_pattern_before_setloc (pattern
, before
, loc
, false,
5028 make_call_insn_raw
);
5031 /* Like emit_call_insn_before_noloc,
5032 but set insn_location according to BEFORE. */
5034 emit_call_insn_before (rtx pattern
, rtx_insn
*before
)
5036 return emit_pattern_before (pattern
, before
, true, false,
5037 make_call_insn_raw
);
5040 /* Like emit_insn_before_noloc, but set INSN_LOCATION according to LOC. */
5042 emit_debug_insn_before_setloc (rtx pattern
, rtx before
, int loc
)
5044 return emit_pattern_before_setloc (pattern
, before
, loc
, false,
5045 make_debug_insn_raw
);
5048 /* Like emit_debug_insn_before_noloc,
5049 but set insn_location according to BEFORE. */
5051 emit_debug_insn_before (rtx pattern
, rtx_insn
*before
)
5053 return emit_pattern_before (pattern
, before
, false, false,
5054 make_debug_insn_raw
);
5057 /* Take X and emit it at the end of the doubly-linked
5060 Returns the last insn emitted. */
5065 rtx_insn
*last
= get_last_insn ();
5071 switch (GET_CODE (x
))
5080 insn
= as_a
<rtx_insn
*> (x
);
5083 rtx_insn
*next
= NEXT_INSN (insn
);
5090 #ifdef ENABLE_RTL_CHECKING
5091 case JUMP_TABLE_DATA
:
5098 last
= make_insn_raw (x
);
5106 /* Make an insn of code DEBUG_INSN with pattern X
5107 and add it to the end of the doubly-linked list. */
5110 emit_debug_insn (rtx x
)
5112 rtx_insn
*last
= get_last_insn ();
5118 switch (GET_CODE (x
))
5127 insn
= as_a
<rtx_insn
*> (x
);
5130 rtx_insn
*next
= NEXT_INSN (insn
);
5137 #ifdef ENABLE_RTL_CHECKING
5138 case JUMP_TABLE_DATA
:
5145 last
= make_debug_insn_raw (x
);
5153 /* Make an insn of code JUMP_INSN with pattern X
5154 and add it to the end of the doubly-linked list. */
5157 emit_jump_insn (rtx x
)
5159 rtx_insn
*last
= NULL
;
5162 switch (GET_CODE (x
))
5171 insn
= as_a
<rtx_insn
*> (x
);
5174 rtx_insn
*next
= NEXT_INSN (insn
);
5181 #ifdef ENABLE_RTL_CHECKING
5182 case JUMP_TABLE_DATA
:
5189 last
= make_jump_insn_raw (x
);
5197 /* Make an insn of code CALL_INSN with pattern X
5198 and add it to the end of the doubly-linked list. */
5201 emit_call_insn (rtx x
)
5205 switch (GET_CODE (x
))
5214 insn
= emit_insn (x
);
5217 #ifdef ENABLE_RTL_CHECKING
5219 case JUMP_TABLE_DATA
:
5225 insn
= make_call_insn_raw (x
);
5233 /* Add the label LABEL to the end of the doubly-linked list. */
5236 emit_label (rtx uncast_label
)
5238 rtx_code_label
*label
= as_a
<rtx_code_label
*> (uncast_label
);
5240 gcc_checking_assert (INSN_UID (label
) == 0);
5241 INSN_UID (label
) = cur_insn_uid
++;
5246 /* Make an insn of code JUMP_TABLE_DATA
5247 and add it to the end of the doubly-linked list. */
5249 rtx_jump_table_data
*
5250 emit_jump_table_data (rtx table
)
5252 rtx_jump_table_data
*jump_table_data
=
5253 as_a
<rtx_jump_table_data
*> (rtx_alloc (JUMP_TABLE_DATA
));
5254 INSN_UID (jump_table_data
) = cur_insn_uid
++;
5255 PATTERN (jump_table_data
) = table
;
5256 BLOCK_FOR_INSN (jump_table_data
) = NULL
;
5257 add_insn (jump_table_data
);
5258 return jump_table_data
;
5261 /* Make an insn of code BARRIER
5262 and add it to the end of the doubly-linked list. */
5267 rtx_barrier
*barrier
= as_a
<rtx_barrier
*> (rtx_alloc (BARRIER
));
5268 INSN_UID (barrier
) = cur_insn_uid
++;
5273 /* Emit a copy of note ORIG. */
5276 emit_note_copy (rtx_note
*orig
)
5278 enum insn_note kind
= (enum insn_note
) NOTE_KIND (orig
);
5279 rtx_note
*note
= make_note_raw (kind
);
5280 NOTE_DATA (note
) = NOTE_DATA (orig
);
5285 /* Make an insn of code NOTE or type NOTE_NO
5286 and add it to the end of the doubly-linked list. */
5289 emit_note (enum insn_note kind
)
5291 rtx_note
*note
= make_note_raw (kind
);
5296 /* Emit a clobber of lvalue X. */
5299 emit_clobber (rtx x
)
5301 /* CONCATs should not appear in the insn stream. */
5302 if (GET_CODE (x
) == CONCAT
)
5304 emit_clobber (XEXP (x
, 0));
5305 return emit_clobber (XEXP (x
, 1));
5307 return emit_insn (gen_rtx_CLOBBER (VOIDmode
, x
));
5310 /* Return a sequence of insns to clobber lvalue X. */
5324 /* Emit a use of rvalue X. */
5329 /* CONCATs should not appear in the insn stream. */
5330 if (GET_CODE (x
) == CONCAT
)
5332 emit_use (XEXP (x
, 0));
5333 return emit_use (XEXP (x
, 1));
5335 return emit_insn (gen_rtx_USE (VOIDmode
, x
));
5338 /* Return a sequence of insns to use rvalue X. */
5352 /* Notes like REG_EQUAL and REG_EQUIV refer to a set in an instruction.
5353 Return the set in INSN that such notes describe, or NULL if the notes
5354 have no meaning for INSN. */
5357 set_for_reg_notes (rtx insn
)
5364 pat
= PATTERN (insn
);
5365 if (GET_CODE (pat
) == PARALLEL
)
5367 /* We do not use single_set because that ignores SETs of unused
5368 registers. REG_EQUAL and REG_EQUIV notes really do require the
5369 PARALLEL to have a single SET. */
5370 if (multiple_sets (insn
))
5372 pat
= XVECEXP (pat
, 0, 0);
5375 if (GET_CODE (pat
) != SET
)
5378 reg
= SET_DEST (pat
);
5380 /* Notes apply to the contents of a STRICT_LOW_PART. */
5381 if (GET_CODE (reg
) == STRICT_LOW_PART
5382 || GET_CODE (reg
) == ZERO_EXTRACT
)
5383 reg
= XEXP (reg
, 0);
5385 /* Check that we have a register. */
5386 if (!(REG_P (reg
) || GET_CODE (reg
) == SUBREG
))
5392 /* Place a note of KIND on insn INSN with DATUM as the datum. If a
5393 note of this type already exists, remove it first. */
5396 set_unique_reg_note (rtx insn
, enum reg_note kind
, rtx datum
)
5398 rtx note
= find_reg_note (insn
, kind
, NULL_RTX
);
5404 /* We need to support the REG_EQUAL on USE trick of find_reloads. */
5405 if (!set_for_reg_notes (insn
) && GET_CODE (PATTERN (insn
)) != USE
)
5408 /* Don't add ASM_OPERAND REG_EQUAL/REG_EQUIV notes.
5409 It serves no useful purpose and breaks eliminate_regs. */
5410 if (GET_CODE (datum
) == ASM_OPERANDS
)
5413 /* Notes with side effects are dangerous. Even if the side-effect
5414 initially mirrors one in PATTERN (INSN), later optimizations
5415 might alter the way that the final register value is calculated
5416 and so move or alter the side-effect in some way. The note would
5417 then no longer be a valid substitution for SET_SRC. */
5418 if (side_effects_p (datum
))
5427 XEXP (note
, 0) = datum
;
5430 add_reg_note (insn
, kind
, datum
);
5431 note
= REG_NOTES (insn
);
5438 df_notes_rescan (as_a
<rtx_insn
*> (insn
));
5447 /* Like set_unique_reg_note, but don't do anything unless INSN sets DST. */
5449 set_dst_reg_note (rtx insn
, enum reg_note kind
, rtx datum
, rtx dst
)
5451 rtx set
= set_for_reg_notes (insn
);
5453 if (set
&& SET_DEST (set
) == dst
)
5454 return set_unique_reg_note (insn
, kind
, datum
);
5458 /* Emit the rtl pattern X as an appropriate kind of insn. Also emit a
5459 following barrier if the instruction needs one and if ALLOW_BARRIER_P
5462 If X is a label, it is simply added into the insn chain. */
5465 emit (rtx x
, bool allow_barrier_p
)
5467 enum rtx_code code
= classify_insn (x
);
5472 return emit_label (x
);
5474 return emit_insn (x
);
5477 rtx_insn
*insn
= emit_jump_insn (x
);
5479 && (any_uncondjump_p (insn
) || GET_CODE (x
) == RETURN
))
5480 return emit_barrier ();
5484 return emit_call_insn (x
);
5486 return emit_debug_insn (x
);
5492 /* Space for free sequence stack entries. */
5493 static GTY ((deletable
)) struct sequence_stack
*free_sequence_stack
;
5495 /* Begin emitting insns to a sequence. If this sequence will contain
5496 something that might cause the compiler to pop arguments to function
5497 calls (because those pops have previously been deferred; see
5498 INHIBIT_DEFER_POP for more details), use do_pending_stack_adjust
5499 before calling this function. That will ensure that the deferred
5500 pops are not accidentally emitted in the middle of this sequence. */
5503 start_sequence (void)
5505 struct sequence_stack
*tem
;
5507 if (free_sequence_stack
!= NULL
)
5509 tem
= free_sequence_stack
;
5510 free_sequence_stack
= tem
->next
;
5513 tem
= ggc_alloc
<sequence_stack
> ();
5515 tem
->next
= get_current_sequence ()->next
;
5516 tem
->first
= get_insns ();
5517 tem
->last
= get_last_insn ();
5518 get_current_sequence ()->next
= tem
;
5524 /* Set up the insn chain starting with FIRST as the current sequence,
5525 saving the previously current one. See the documentation for
5526 start_sequence for more information about how to use this function. */
5529 push_to_sequence (rtx_insn
*first
)
5535 for (last
= first
; last
&& NEXT_INSN (last
); last
= NEXT_INSN (last
))
5538 set_first_insn (first
);
5539 set_last_insn (last
);
5542 /* Like push_to_sequence, but take the last insn as an argument to avoid
5543 looping through the list. */
5546 push_to_sequence2 (rtx_insn
*first
, rtx_insn
*last
)
5550 set_first_insn (first
);
5551 set_last_insn (last
);
5554 /* Set up the outer-level insn chain
5555 as the current sequence, saving the previously current one. */
5558 push_topmost_sequence (void)
5560 struct sequence_stack
*top
;
5564 top
= get_topmost_sequence ();
5565 set_first_insn (top
->first
);
5566 set_last_insn (top
->last
);
5569 /* After emitting to the outer-level insn chain, update the outer-level
5570 insn chain, and restore the previous saved state. */
5573 pop_topmost_sequence (void)
5575 struct sequence_stack
*top
;
5577 top
= get_topmost_sequence ();
5578 top
->first
= get_insns ();
5579 top
->last
= get_last_insn ();
5584 /* After emitting to a sequence, restore previous saved state.
5586 To get the contents of the sequence just made, you must call
5587 `get_insns' *before* calling here.
5589 If the compiler might have deferred popping arguments while
5590 generating this sequence, and this sequence will not be immediately
5591 inserted into the instruction stream, use do_pending_stack_adjust
5592 before calling get_insns. That will ensure that the deferred
5593 pops are inserted into this sequence, and not into some random
5594 location in the instruction stream. See INHIBIT_DEFER_POP for more
5595 information about deferred popping of arguments. */
5600 struct sequence_stack
*tem
= get_current_sequence ()->next
;
5602 set_first_insn (tem
->first
);
5603 set_last_insn (tem
->last
);
5604 get_current_sequence ()->next
= tem
->next
;
5606 memset (tem
, 0, sizeof (*tem
));
5607 tem
->next
= free_sequence_stack
;
5608 free_sequence_stack
= tem
;
5611 /* Return 1 if currently emitting into a sequence. */
5614 in_sequence_p (void)
5616 return get_current_sequence ()->next
!= 0;
5619 /* Put the various virtual registers into REGNO_REG_RTX. */
5622 init_virtual_regs (void)
5624 regno_reg_rtx
[VIRTUAL_INCOMING_ARGS_REGNUM
] = virtual_incoming_args_rtx
;
5625 regno_reg_rtx
[VIRTUAL_STACK_VARS_REGNUM
] = virtual_stack_vars_rtx
;
5626 regno_reg_rtx
[VIRTUAL_STACK_DYNAMIC_REGNUM
] = virtual_stack_dynamic_rtx
;
5627 regno_reg_rtx
[VIRTUAL_OUTGOING_ARGS_REGNUM
] = virtual_outgoing_args_rtx
;
5628 regno_reg_rtx
[VIRTUAL_CFA_REGNUM
] = virtual_cfa_rtx
;
5629 regno_reg_rtx
[VIRTUAL_PREFERRED_STACK_BOUNDARY_REGNUM
]
5630 = virtual_preferred_stack_boundary_rtx
;
5634 /* Used by copy_insn_1 to avoid copying SCRATCHes more than once. */
5635 static rtx copy_insn_scratch_in
[MAX_RECOG_OPERANDS
];
5636 static rtx copy_insn_scratch_out
[MAX_RECOG_OPERANDS
];
5637 static int copy_insn_n_scratches
;
5639 /* When an insn is being copied by copy_insn_1, this is nonzero if we have
5640 copied an ASM_OPERANDS.
5641 In that case, it is the original input-operand vector. */
5642 static rtvec orig_asm_operands_vector
;
5644 /* When an insn is being copied by copy_insn_1, this is nonzero if we have
5645 copied an ASM_OPERANDS.
5646 In that case, it is the copied input-operand vector. */
5647 static rtvec copy_asm_operands_vector
;
5649 /* Likewise for the constraints vector. */
5650 static rtvec orig_asm_constraints_vector
;
5651 static rtvec copy_asm_constraints_vector
;
5653 /* Recursively create a new copy of an rtx for copy_insn.
5654 This function differs from copy_rtx in that it handles SCRATCHes and
5655 ASM_OPERANDs properly.
5656 Normally, this function is not used directly; use copy_insn as front end.
5657 However, you could first copy an insn pattern with copy_insn and then use
5658 this function afterwards to properly copy any REG_NOTEs containing
5662 copy_insn_1 (rtx orig
)
5667 const char *format_ptr
;
5672 code
= GET_CODE (orig
);
5687 /* Share clobbers of hard registers (like cc0), but do not share pseudo reg
5688 clobbers or clobbers of hard registers that originated as pseudos.
5689 This is needed to allow safe register renaming. */
5690 if (REG_P (XEXP (orig
, 0))
5691 && HARD_REGISTER_NUM_P (REGNO (XEXP (orig
, 0)))
5692 && HARD_REGISTER_NUM_P (ORIGINAL_REGNO (XEXP (orig
, 0))))
5697 for (i
= 0; i
< copy_insn_n_scratches
; i
++)
5698 if (copy_insn_scratch_in
[i
] == orig
)
5699 return copy_insn_scratch_out
[i
];
5703 if (shared_const_p (orig
))
5707 /* A MEM with a constant address is not sharable. The problem is that
5708 the constant address may need to be reloaded. If the mem is shared,
5709 then reloading one copy of this mem will cause all copies to appear
5710 to have been reloaded. */
5716 /* Copy the various flags, fields, and other information. We assume
5717 that all fields need copying, and then clear the fields that should
5718 not be copied. That is the sensible default behavior, and forces
5719 us to explicitly document why we are *not* copying a flag. */
5720 copy
= shallow_copy_rtx (orig
);
5722 /* We do not copy JUMP, CALL, or FRAME_RELATED for INSNs. */
5725 RTX_FLAG (copy
, jump
) = 0;
5726 RTX_FLAG (copy
, call
) = 0;
5727 RTX_FLAG (copy
, frame_related
) = 0;
5730 format_ptr
= GET_RTX_FORMAT (GET_CODE (copy
));
5732 for (i
= 0; i
< GET_RTX_LENGTH (GET_CODE (copy
)); i
++)
5733 switch (*format_ptr
++)
5736 if (XEXP (orig
, i
) != NULL
)
5737 XEXP (copy
, i
) = copy_insn_1 (XEXP (orig
, i
));
5742 if (XVEC (orig
, i
) == orig_asm_constraints_vector
)
5743 XVEC (copy
, i
) = copy_asm_constraints_vector
;
5744 else if (XVEC (orig
, i
) == orig_asm_operands_vector
)
5745 XVEC (copy
, i
) = copy_asm_operands_vector
;
5746 else if (XVEC (orig
, i
) != NULL
)
5748 XVEC (copy
, i
) = rtvec_alloc (XVECLEN (orig
, i
));
5749 for (j
= 0; j
< XVECLEN (copy
, i
); j
++)
5750 XVECEXP (copy
, i
, j
) = copy_insn_1 (XVECEXP (orig
, i
, j
));
5762 /* These are left unchanged. */
5769 if (code
== SCRATCH
)
5771 i
= copy_insn_n_scratches
++;
5772 gcc_assert (i
< MAX_RECOG_OPERANDS
);
5773 copy_insn_scratch_in
[i
] = orig
;
5774 copy_insn_scratch_out
[i
] = copy
;
5776 else if (code
== ASM_OPERANDS
)
5778 orig_asm_operands_vector
= ASM_OPERANDS_INPUT_VEC (orig
);
5779 copy_asm_operands_vector
= ASM_OPERANDS_INPUT_VEC (copy
);
5780 orig_asm_constraints_vector
= ASM_OPERANDS_INPUT_CONSTRAINT_VEC (orig
);
5781 copy_asm_constraints_vector
= ASM_OPERANDS_INPUT_CONSTRAINT_VEC (copy
);
5787 /* Create a new copy of an rtx.
5788 This function differs from copy_rtx in that it handles SCRATCHes and
5789 ASM_OPERANDs properly.
5790 INSN doesn't really have to be a full INSN; it could be just the
5793 copy_insn (rtx insn
)
5795 copy_insn_n_scratches
= 0;
5796 orig_asm_operands_vector
= 0;
5797 orig_asm_constraints_vector
= 0;
5798 copy_asm_operands_vector
= 0;
5799 copy_asm_constraints_vector
= 0;
5800 return copy_insn_1 (insn
);
5803 /* Return a copy of INSN that can be used in a SEQUENCE delay slot,
5804 on that assumption that INSN itself remains in its original place. */
5807 copy_delay_slot_insn (rtx_insn
*insn
)
5809 /* Copy INSN with its rtx_code, all its notes, location etc. */
5810 insn
= as_a
<rtx_insn
*> (copy_rtx (insn
));
5811 INSN_UID (insn
) = cur_insn_uid
++;
5815 /* Initialize data structures and variables in this file
5816 before generating rtl for each function. */
5821 set_first_insn (NULL
);
5822 set_last_insn (NULL
);
5823 if (MIN_NONDEBUG_INSN_UID
)
5824 cur_insn_uid
= MIN_NONDEBUG_INSN_UID
;
5827 cur_debug_insn_uid
= 1;
5828 reg_rtx_no
= LAST_VIRTUAL_REGISTER
+ 1;
5829 first_label_num
= label_num
;
5830 get_current_sequence ()->next
= NULL
;
5832 /* Init the tables that describe all the pseudo regs. */
5834 crtl
->emit
.regno_pointer_align_length
= LAST_VIRTUAL_REGISTER
+ 101;
5836 crtl
->emit
.regno_pointer_align
5837 = XCNEWVEC (unsigned char, crtl
->emit
.regno_pointer_align_length
);
5840 = ggc_cleared_vec_alloc
<rtx
> (crtl
->emit
.regno_pointer_align_length
);
5842 /* Put copies of all the hard registers into regno_reg_rtx. */
5843 memcpy (regno_reg_rtx
,
5844 initial_regno_reg_rtx
,
5845 FIRST_PSEUDO_REGISTER
* sizeof (rtx
));
5847 /* Put copies of all the virtual register rtx into regno_reg_rtx. */
5848 init_virtual_regs ();
5850 /* Indicate that the virtual registers and stack locations are
5852 REG_POINTER (stack_pointer_rtx
) = 1;
5853 REG_POINTER (frame_pointer_rtx
) = 1;
5854 REG_POINTER (hard_frame_pointer_rtx
) = 1;
5855 REG_POINTER (arg_pointer_rtx
) = 1;
5857 REG_POINTER (virtual_incoming_args_rtx
) = 1;
5858 REG_POINTER (virtual_stack_vars_rtx
) = 1;
5859 REG_POINTER (virtual_stack_dynamic_rtx
) = 1;
5860 REG_POINTER (virtual_outgoing_args_rtx
) = 1;
5861 REG_POINTER (virtual_cfa_rtx
) = 1;
5863 #ifdef STACK_BOUNDARY
5864 REGNO_POINTER_ALIGN (STACK_POINTER_REGNUM
) = STACK_BOUNDARY
;
5865 REGNO_POINTER_ALIGN (FRAME_POINTER_REGNUM
) = STACK_BOUNDARY
;
5866 REGNO_POINTER_ALIGN (HARD_FRAME_POINTER_REGNUM
) = STACK_BOUNDARY
;
5867 REGNO_POINTER_ALIGN (ARG_POINTER_REGNUM
) = STACK_BOUNDARY
;
5869 REGNO_POINTER_ALIGN (VIRTUAL_INCOMING_ARGS_REGNUM
) = STACK_BOUNDARY
;
5870 REGNO_POINTER_ALIGN (VIRTUAL_STACK_VARS_REGNUM
) = STACK_BOUNDARY
;
5871 REGNO_POINTER_ALIGN (VIRTUAL_STACK_DYNAMIC_REGNUM
) = STACK_BOUNDARY
;
5872 REGNO_POINTER_ALIGN (VIRTUAL_OUTGOING_ARGS_REGNUM
) = STACK_BOUNDARY
;
5874 REGNO_POINTER_ALIGN (VIRTUAL_CFA_REGNUM
) = BITS_PER_WORD
;
5877 #ifdef INIT_EXPANDERS
5882 /* Return the value of element I of CONST_VECTOR X as a wide_int. */
5885 const_vector_int_elt (const_rtx x
, unsigned int i
)
5887 /* First handle elements that are directly encoded. */
5888 machine_mode elt_mode
= GET_MODE_INNER (GET_MODE (x
));
5889 if (i
< (unsigned int) XVECLEN (x
, 0))
5890 return rtx_mode_t (CONST_VECTOR_ENCODED_ELT (x
, i
), elt_mode
);
5892 /* Identify the pattern that contains element I and work out the index of
5893 the last encoded element for that pattern. */
5894 unsigned int encoded_nelts
= const_vector_encoded_nelts (x
);
5895 unsigned int npatterns
= CONST_VECTOR_NPATTERNS (x
);
5896 unsigned int count
= i
/ npatterns
;
5897 unsigned int pattern
= i
% npatterns
;
5898 unsigned int final_i
= encoded_nelts
- npatterns
+ pattern
;
5900 /* If there are no steps, the final encoded value is the right one. */
5901 if (!CONST_VECTOR_STEPPED_P (x
))
5902 return rtx_mode_t (CONST_VECTOR_ENCODED_ELT (x
, final_i
), elt_mode
);
5904 /* Otherwise work out the value from the last two encoded elements. */
5905 rtx v1
= CONST_VECTOR_ENCODED_ELT (x
, final_i
- npatterns
);
5906 rtx v2
= CONST_VECTOR_ENCODED_ELT (x
, final_i
);
5907 wide_int diff
= wi::sub (rtx_mode_t (v2
, elt_mode
),
5908 rtx_mode_t (v1
, elt_mode
));
5909 return wi::add (rtx_mode_t (v2
, elt_mode
), (count
- 2) * diff
);
5912 /* Return the value of element I of CONST_VECTOR X. */
5915 const_vector_elt (const_rtx x
, unsigned int i
)
5917 /* First handle elements that are directly encoded. */
5918 if (i
< (unsigned int) XVECLEN (x
, 0))
5919 return CONST_VECTOR_ENCODED_ELT (x
, i
);
5921 /* If there are no steps, the final encoded value is the right one. */
5922 if (!CONST_VECTOR_STEPPED_P (x
))
5924 /* Identify the pattern that contains element I and work out the index of
5925 the last encoded element for that pattern. */
5926 unsigned int encoded_nelts
= const_vector_encoded_nelts (x
);
5927 unsigned int npatterns
= CONST_VECTOR_NPATTERNS (x
);
5928 unsigned int pattern
= i
% npatterns
;
5929 unsigned int final_i
= encoded_nelts
- npatterns
+ pattern
;
5930 return CONST_VECTOR_ENCODED_ELT (x
, final_i
);
5933 /* Otherwise work out the value from the last two encoded elements. */
5934 return immed_wide_int_const (const_vector_int_elt (x
, i
),
5935 GET_MODE_INNER (GET_MODE (x
)));
5938 /* Return true if X is a valid element for a CONST_VECTOR of the given
5942 valid_for_const_vector_p (machine_mode
, rtx x
)
5944 return (CONST_SCALAR_INT_P (x
)
5945 || CONST_DOUBLE_AS_FLOAT_P (x
)
5946 || CONST_FIXED_P (x
));
5949 /* Generate a vector constant of mode MODE in which every element has
5953 gen_const_vec_duplicate (machine_mode mode
, rtx elt
)
5955 rtx_vector_builder
builder (mode
, 1, 1);
5956 builder
.quick_push (elt
);
5957 return builder
.build ();
5960 /* Return a vector rtx of mode MODE in which every element has value X.
5961 The result will be a constant if X is constant. */
5964 gen_vec_duplicate (machine_mode mode
, rtx x
)
5966 if (valid_for_const_vector_p (mode
, x
))
5967 return gen_const_vec_duplicate (mode
, x
);
5968 return gen_rtx_VEC_DUPLICATE (mode
, x
);
5971 /* A subroutine of const_vec_series_p that handles the case in which:
5973 (GET_CODE (X) == CONST_VECTOR
5974 && CONST_VECTOR_NPATTERNS (X) == 1
5975 && !CONST_VECTOR_DUPLICATE_P (X))
5977 is known to hold. */
5980 const_vec_series_p_1 (const_rtx x
, rtx
*base_out
, rtx
*step_out
)
5982 /* Stepped sequences are only defined for integers, to avoid specifying
5983 rounding behavior. */
5984 if (GET_MODE_CLASS (GET_MODE (x
)) != MODE_VECTOR_INT
)
5987 /* A non-duplicated vector with two elements can always be seen as a
5988 series with a nonzero step. Longer vectors must have a stepped
5990 if (maybe_ne (CONST_VECTOR_NUNITS (x
), 2)
5991 && !CONST_VECTOR_STEPPED_P (x
))
5994 /* Calculate the step between the first and second elements. */
5995 scalar_mode inner
= GET_MODE_INNER (GET_MODE (x
));
5996 rtx base
= CONST_VECTOR_ELT (x
, 0);
5997 rtx step
= simplify_binary_operation (MINUS
, inner
,
5998 CONST_VECTOR_ENCODED_ELT (x
, 1), base
);
5999 if (rtx_equal_p (step
, CONST0_RTX (inner
)))
6002 /* If we have a stepped encoding, check that the step between the
6003 second and third elements is the same as STEP. */
6004 if (CONST_VECTOR_STEPPED_P (x
))
6006 rtx diff
= simplify_binary_operation (MINUS
, inner
,
6007 CONST_VECTOR_ENCODED_ELT (x
, 2),
6008 CONST_VECTOR_ENCODED_ELT (x
, 1));
6009 if (!rtx_equal_p (step
, diff
))
6018 /* Generate a vector constant of mode MODE in which element I has
6019 the value BASE + I * STEP. */
6022 gen_const_vec_series (machine_mode mode
, rtx base
, rtx step
)
6024 gcc_assert (valid_for_const_vector_p (mode
, base
)
6025 && valid_for_const_vector_p (mode
, step
));
6027 rtx_vector_builder
builder (mode
, 1, 3);
6028 builder
.quick_push (base
);
6029 for (int i
= 1; i
< 3; ++i
)
6030 builder
.quick_push (simplify_gen_binary (PLUS
, GET_MODE_INNER (mode
),
6031 builder
[i
- 1], step
));
6032 return builder
.build ();
6035 /* Generate a vector of mode MODE in which element I has the value
6036 BASE + I * STEP. The result will be a constant if BASE and STEP
6037 are both constants. */
6040 gen_vec_series (machine_mode mode
, rtx base
, rtx step
)
6042 if (step
== const0_rtx
)
6043 return gen_vec_duplicate (mode
, base
);
6044 if (valid_for_const_vector_p (mode
, base
)
6045 && valid_for_const_vector_p (mode
, step
))
6046 return gen_const_vec_series (mode
, base
, step
);
6047 return gen_rtx_VEC_SERIES (mode
, base
, step
);
6050 /* Generate a new vector constant for mode MODE and constant value
6054 gen_const_vector (machine_mode mode
, int constant
)
6056 machine_mode inner
= GET_MODE_INNER (mode
);
6058 gcc_assert (!DECIMAL_FLOAT_MODE_P (inner
));
6060 rtx el
= const_tiny_rtx
[constant
][(int) inner
];
6063 return gen_const_vec_duplicate (mode
, el
);
6066 /* Generate a vector like gen_rtx_raw_CONST_VEC, but use the zero vector when
6067 all elements are zero, and the one vector when all elements are one. */
6069 gen_rtx_CONST_VECTOR (machine_mode mode
, rtvec v
)
6071 gcc_assert (known_eq (GET_MODE_NUNITS (mode
), GET_NUM_ELEM (v
)));
6073 /* If the values are all the same, check to see if we can use one of the
6074 standard constant vectors. */
6075 if (rtvec_all_equal_p (v
))
6076 return gen_const_vec_duplicate (mode
, RTVEC_ELT (v
, 0));
6078 unsigned int nunits
= GET_NUM_ELEM (v
);
6079 rtx_vector_builder
builder (mode
, nunits
, 1);
6080 for (unsigned int i
= 0; i
< nunits
; ++i
)
6081 builder
.quick_push (RTVEC_ELT (v
, i
));
6082 return builder
.build (v
);
6085 /* Initialise global register information required by all functions. */
6088 init_emit_regs (void)
6094 /* Reset register attributes */
6095 reg_attrs_htab
->empty ();
6097 /* We need reg_raw_mode, so initialize the modes now. */
6098 init_reg_modes_target ();
6100 /* Assign register numbers to the globally defined register rtx. */
6101 stack_pointer_rtx
= gen_raw_REG (Pmode
, STACK_POINTER_REGNUM
);
6102 frame_pointer_rtx
= gen_raw_REG (Pmode
, FRAME_POINTER_REGNUM
);
6103 hard_frame_pointer_rtx
= gen_raw_REG (Pmode
, HARD_FRAME_POINTER_REGNUM
);
6104 arg_pointer_rtx
= gen_raw_REG (Pmode
, ARG_POINTER_REGNUM
);
6105 virtual_incoming_args_rtx
=
6106 gen_raw_REG (Pmode
, VIRTUAL_INCOMING_ARGS_REGNUM
);
6107 virtual_stack_vars_rtx
=
6108 gen_raw_REG (Pmode
, VIRTUAL_STACK_VARS_REGNUM
);
6109 virtual_stack_dynamic_rtx
=
6110 gen_raw_REG (Pmode
, VIRTUAL_STACK_DYNAMIC_REGNUM
);
6111 virtual_outgoing_args_rtx
=
6112 gen_raw_REG (Pmode
, VIRTUAL_OUTGOING_ARGS_REGNUM
);
6113 virtual_cfa_rtx
= gen_raw_REG (Pmode
, VIRTUAL_CFA_REGNUM
);
6114 virtual_preferred_stack_boundary_rtx
=
6115 gen_raw_REG (Pmode
, VIRTUAL_PREFERRED_STACK_BOUNDARY_REGNUM
);
6117 /* Initialize RTL for commonly used hard registers. These are
6118 copied into regno_reg_rtx as we begin to compile each function. */
6119 for (i
= 0; i
< FIRST_PSEUDO_REGISTER
; i
++)
6120 initial_regno_reg_rtx
[i
] = gen_raw_REG (reg_raw_mode
[i
], i
);
6122 #ifdef RETURN_ADDRESS_POINTER_REGNUM
6123 return_address_pointer_rtx
6124 = gen_raw_REG (Pmode
, RETURN_ADDRESS_POINTER_REGNUM
);
6127 pic_offset_table_rtx
= NULL_RTX
;
6128 if ((unsigned) PIC_OFFSET_TABLE_REGNUM
!= INVALID_REGNUM
)
6129 pic_offset_table_rtx
= gen_raw_REG (Pmode
, PIC_OFFSET_TABLE_REGNUM
);
6131 for (i
= 0; i
< (int) MAX_MACHINE_MODE
; i
++)
6133 mode
= (machine_mode
) i
;
6134 attrs
= ggc_cleared_alloc
<mem_attrs
> ();
6135 attrs
->align
= BITS_PER_UNIT
;
6136 attrs
->addrspace
= ADDR_SPACE_GENERIC
;
6137 if (mode
!= BLKmode
)
6139 attrs
->size_known_p
= true;
6140 attrs
->size
= GET_MODE_SIZE (mode
);
6141 if (STRICT_ALIGNMENT
)
6142 attrs
->align
= GET_MODE_ALIGNMENT (mode
);
6144 mode_mem_attrs
[i
] = attrs
;
6147 split_branch_probability
= profile_probability::uninitialized ();
6150 /* Initialize global machine_mode variables. */
6153 init_derived_machine_modes (void)
6155 opt_scalar_int_mode mode_iter
, opt_byte_mode
, opt_word_mode
;
6156 FOR_EACH_MODE_IN_CLASS (mode_iter
, MODE_INT
)
6158 scalar_int_mode mode
= mode_iter
.require ();
6160 if (GET_MODE_BITSIZE (mode
) == BITS_PER_UNIT
6161 && !opt_byte_mode
.exists ())
6162 opt_byte_mode
= mode
;
6164 if (GET_MODE_BITSIZE (mode
) == BITS_PER_WORD
6165 && !opt_word_mode
.exists ())
6166 opt_word_mode
= mode
;
6169 byte_mode
= opt_byte_mode
.require ();
6170 word_mode
= opt_word_mode
.require ();
6171 ptr_mode
= as_a
<scalar_int_mode
>
6172 (mode_for_size (POINTER_SIZE
, GET_MODE_CLASS (Pmode
), 0).require ());
6175 /* Create some permanent unique rtl objects shared between all functions. */
6178 init_emit_once (void)
6182 scalar_float_mode double_mode
;
6183 opt_scalar_mode smode_iter
;
6185 /* Initialize the CONST_INT, CONST_WIDE_INT, CONST_DOUBLE,
6186 CONST_FIXED, and memory attribute hash tables. */
6187 const_int_htab
= hash_table
<const_int_hasher
>::create_ggc (37);
6189 #if TARGET_SUPPORTS_WIDE_INT
6190 const_wide_int_htab
= hash_table
<const_wide_int_hasher
>::create_ggc (37);
6192 const_double_htab
= hash_table
<const_double_hasher
>::create_ggc (37);
6194 if (NUM_POLY_INT_COEFFS
> 1)
6195 const_poly_int_htab
= hash_table
<const_poly_int_hasher
>::create_ggc (37);
6197 const_fixed_htab
= hash_table
<const_fixed_hasher
>::create_ggc (37);
6199 reg_attrs_htab
= hash_table
<reg_attr_hasher
>::create_ggc (37);
6201 #ifdef INIT_EXPANDERS
6202 /* This is to initialize {init|mark|free}_machine_status before the first
6203 call to push_function_context_to. This is needed by the Chill front
6204 end which calls push_function_context_to before the first call to
6205 init_function_start. */
6209 /* Create the unique rtx's for certain rtx codes and operand values. */
6211 /* Process stack-limiting command-line options. */
6212 if (opt_fstack_limit_symbol_arg
!= NULL
)
6214 = gen_rtx_SYMBOL_REF (Pmode
, ggc_strdup (opt_fstack_limit_symbol_arg
));
6215 if (opt_fstack_limit_register_no
>= 0)
6216 stack_limit_rtx
= gen_rtx_REG (Pmode
, opt_fstack_limit_register_no
);
6218 /* Don't use gen_rtx_CONST_INT here since gen_rtx_CONST_INT in this case
6219 tries to use these variables. */
6220 for (i
= - MAX_SAVED_CONST_INT
; i
<= MAX_SAVED_CONST_INT
; i
++)
6221 const_int_rtx
[i
+ MAX_SAVED_CONST_INT
] =
6222 gen_rtx_raw_CONST_INT (VOIDmode
, (HOST_WIDE_INT
) i
);
6224 if (STORE_FLAG_VALUE
>= - MAX_SAVED_CONST_INT
6225 && STORE_FLAG_VALUE
<= MAX_SAVED_CONST_INT
)
6226 const_true_rtx
= const_int_rtx
[STORE_FLAG_VALUE
+ MAX_SAVED_CONST_INT
];
6228 const_true_rtx
= gen_rtx_CONST_INT (VOIDmode
, STORE_FLAG_VALUE
);
6230 double_mode
= float_mode_for_size (DOUBLE_TYPE_SIZE
).require ();
6232 real_from_integer (&dconst0
, double_mode
, 0, SIGNED
);
6233 real_from_integer (&dconst1
, double_mode
, 1, SIGNED
);
6234 real_from_integer (&dconst2
, double_mode
, 2, SIGNED
);
6239 dconsthalf
= dconst1
;
6240 SET_REAL_EXP (&dconsthalf
, REAL_EXP (&dconsthalf
) - 1);
6242 for (i
= 0; i
< 3; i
++)
6244 const REAL_VALUE_TYPE
*const r
=
6245 (i
== 0 ? &dconst0
: i
== 1 ? &dconst1
: &dconst2
);
6247 FOR_EACH_MODE_IN_CLASS (mode
, MODE_FLOAT
)
6248 const_tiny_rtx
[i
][(int) mode
] =
6249 const_double_from_real_value (*r
, mode
);
6251 FOR_EACH_MODE_IN_CLASS (mode
, MODE_DECIMAL_FLOAT
)
6252 const_tiny_rtx
[i
][(int) mode
] =
6253 const_double_from_real_value (*r
, mode
);
6255 const_tiny_rtx
[i
][(int) VOIDmode
] = GEN_INT (i
);
6257 FOR_EACH_MODE_IN_CLASS (mode
, MODE_INT
)
6258 const_tiny_rtx
[i
][(int) mode
] = GEN_INT (i
);
6260 for (mode
= MIN_MODE_PARTIAL_INT
;
6261 mode
<= MAX_MODE_PARTIAL_INT
;
6262 mode
= (machine_mode
)((int)(mode
) + 1))
6263 const_tiny_rtx
[i
][(int) mode
] = GEN_INT (i
);
6266 const_tiny_rtx
[3][(int) VOIDmode
] = constm1_rtx
;
6268 FOR_EACH_MODE_IN_CLASS (mode
, MODE_INT
)
6269 const_tiny_rtx
[3][(int) mode
] = constm1_rtx
;
6271 /* For BImode, 1 and -1 are unsigned and signed interpretations
6272 of the same value. */
6273 const_tiny_rtx
[0][(int) BImode
] = const0_rtx
;
6274 const_tiny_rtx
[1][(int) BImode
] = const_true_rtx
;
6275 const_tiny_rtx
[3][(int) BImode
] = const_true_rtx
;
6277 for (mode
= MIN_MODE_PARTIAL_INT
;
6278 mode
<= MAX_MODE_PARTIAL_INT
;
6279 mode
= (machine_mode
)((int)(mode
) + 1))
6280 const_tiny_rtx
[3][(int) mode
] = constm1_rtx
;
6282 FOR_EACH_MODE_IN_CLASS (mode
, MODE_COMPLEX_INT
)
6284 rtx inner
= const_tiny_rtx
[0][(int)GET_MODE_INNER (mode
)];
6285 const_tiny_rtx
[0][(int) mode
] = gen_rtx_CONCAT (mode
, inner
, inner
);
6288 FOR_EACH_MODE_IN_CLASS (mode
, MODE_COMPLEX_FLOAT
)
6290 rtx inner
= const_tiny_rtx
[0][(int)GET_MODE_INNER (mode
)];
6291 const_tiny_rtx
[0][(int) mode
] = gen_rtx_CONCAT (mode
, inner
, inner
);
6294 /* As for BImode, "all 1" and "all -1" are unsigned and signed
6295 interpretations of the same value. */
6296 FOR_EACH_MODE_IN_CLASS (mode
, MODE_VECTOR_BOOL
)
6298 const_tiny_rtx
[0][(int) mode
] = gen_const_vector (mode
, 0);
6299 const_tiny_rtx
[3][(int) mode
] = gen_const_vector (mode
, 3);
6300 const_tiny_rtx
[1][(int) mode
] = const_tiny_rtx
[3][(int) mode
];
6303 FOR_EACH_MODE_IN_CLASS (mode
, MODE_VECTOR_INT
)
6305 const_tiny_rtx
[0][(int) mode
] = gen_const_vector (mode
, 0);
6306 const_tiny_rtx
[1][(int) mode
] = gen_const_vector (mode
, 1);
6307 const_tiny_rtx
[3][(int) mode
] = gen_const_vector (mode
, 3);
6310 FOR_EACH_MODE_IN_CLASS (mode
, MODE_VECTOR_FLOAT
)
6312 const_tiny_rtx
[0][(int) mode
] = gen_const_vector (mode
, 0);
6313 const_tiny_rtx
[1][(int) mode
] = gen_const_vector (mode
, 1);
6316 FOR_EACH_MODE_IN_CLASS (smode_iter
, MODE_FRACT
)
6318 scalar_mode smode
= smode_iter
.require ();
6319 FCONST0 (smode
).data
.high
= 0;
6320 FCONST0 (smode
).data
.low
= 0;
6321 FCONST0 (smode
).mode
= smode
;
6322 const_tiny_rtx
[0][(int) smode
]
6323 = CONST_FIXED_FROM_FIXED_VALUE (FCONST0 (smode
), smode
);
6326 FOR_EACH_MODE_IN_CLASS (smode_iter
, MODE_UFRACT
)
6328 scalar_mode smode
= smode_iter
.require ();
6329 FCONST0 (smode
).data
.high
= 0;
6330 FCONST0 (smode
).data
.low
= 0;
6331 FCONST0 (smode
).mode
= smode
;
6332 const_tiny_rtx
[0][(int) smode
]
6333 = CONST_FIXED_FROM_FIXED_VALUE (FCONST0 (smode
), smode
);
6336 FOR_EACH_MODE_IN_CLASS (smode_iter
, MODE_ACCUM
)
6338 scalar_mode smode
= smode_iter
.require ();
6339 FCONST0 (smode
).data
.high
= 0;
6340 FCONST0 (smode
).data
.low
= 0;
6341 FCONST0 (smode
).mode
= smode
;
6342 const_tiny_rtx
[0][(int) smode
]
6343 = CONST_FIXED_FROM_FIXED_VALUE (FCONST0 (smode
), smode
);
6345 /* We store the value 1. */
6346 FCONST1 (smode
).data
.high
= 0;
6347 FCONST1 (smode
).data
.low
= 0;
6348 FCONST1 (smode
).mode
= smode
;
6349 FCONST1 (smode
).data
6350 = double_int_one
.lshift (GET_MODE_FBIT (smode
),
6351 HOST_BITS_PER_DOUBLE_INT
,
6352 SIGNED_FIXED_POINT_MODE_P (smode
));
6353 const_tiny_rtx
[1][(int) smode
]
6354 = CONST_FIXED_FROM_FIXED_VALUE (FCONST1 (smode
), smode
);
6357 FOR_EACH_MODE_IN_CLASS (smode_iter
, MODE_UACCUM
)
6359 scalar_mode smode
= smode_iter
.require ();
6360 FCONST0 (smode
).data
.high
= 0;
6361 FCONST0 (smode
).data
.low
= 0;
6362 FCONST0 (smode
).mode
= smode
;
6363 const_tiny_rtx
[0][(int) smode
]
6364 = CONST_FIXED_FROM_FIXED_VALUE (FCONST0 (smode
), smode
);
6366 /* We store the value 1. */
6367 FCONST1 (smode
).data
.high
= 0;
6368 FCONST1 (smode
).data
.low
= 0;
6369 FCONST1 (smode
).mode
= smode
;
6370 FCONST1 (smode
).data
6371 = double_int_one
.lshift (GET_MODE_FBIT (smode
),
6372 HOST_BITS_PER_DOUBLE_INT
,
6373 SIGNED_FIXED_POINT_MODE_P (smode
));
6374 const_tiny_rtx
[1][(int) smode
]
6375 = CONST_FIXED_FROM_FIXED_VALUE (FCONST1 (smode
), smode
);
6378 FOR_EACH_MODE_IN_CLASS (mode
, MODE_VECTOR_FRACT
)
6380 const_tiny_rtx
[0][(int) mode
] = gen_const_vector (mode
, 0);
6383 FOR_EACH_MODE_IN_CLASS (mode
, MODE_VECTOR_UFRACT
)
6385 const_tiny_rtx
[0][(int) mode
] = gen_const_vector (mode
, 0);
6388 FOR_EACH_MODE_IN_CLASS (mode
, MODE_VECTOR_ACCUM
)
6390 const_tiny_rtx
[0][(int) mode
] = gen_const_vector (mode
, 0);
6391 const_tiny_rtx
[1][(int) mode
] = gen_const_vector (mode
, 1);
6394 FOR_EACH_MODE_IN_CLASS (mode
, MODE_VECTOR_UACCUM
)
6396 const_tiny_rtx
[0][(int) mode
] = gen_const_vector (mode
, 0);
6397 const_tiny_rtx
[1][(int) mode
] = gen_const_vector (mode
, 1);
6400 for (i
= (int) CCmode
; i
< (int) MAX_MACHINE_MODE
; ++i
)
6401 if (GET_MODE_CLASS ((machine_mode
) i
) == MODE_CC
)
6402 const_tiny_rtx
[0][i
] = const0_rtx
;
6404 FOR_EACH_MODE_IN_CLASS (smode_iter
, MODE_POINTER_BOUNDS
)
6406 scalar_mode smode
= smode_iter
.require ();
6407 wide_int wi_zero
= wi::zero (GET_MODE_PRECISION (smode
));
6408 const_tiny_rtx
[0][smode
] = immed_wide_int_const (wi_zero
, smode
);
6411 pc_rtx
= gen_rtx_fmt_ (PC
, VOIDmode
);
6412 ret_rtx
= gen_rtx_fmt_ (RETURN
, VOIDmode
);
6413 simple_return_rtx
= gen_rtx_fmt_ (SIMPLE_RETURN
, VOIDmode
);
6414 cc0_rtx
= gen_rtx_fmt_ (CC0
, VOIDmode
);
6415 invalid_insn_rtx
= gen_rtx_INSN (VOIDmode
,
6419 /*pattern=*/NULL_RTX
,
6422 /*reg_notes=*/NULL_RTX
);
6425 /* Produce exact duplicate of insn INSN after AFTER.
6426 Care updating of libcall regions if present. */
6429 emit_copy_of_insn_after (rtx_insn
*insn
, rtx_insn
*after
)
6434 switch (GET_CODE (insn
))
6437 new_rtx
= emit_insn_after (copy_insn (PATTERN (insn
)), after
);
6441 new_rtx
= emit_jump_insn_after (copy_insn (PATTERN (insn
)), after
);
6442 CROSSING_JUMP_P (new_rtx
) = CROSSING_JUMP_P (insn
);
6446 new_rtx
= emit_debug_insn_after (copy_insn (PATTERN (insn
)), after
);
6450 new_rtx
= emit_call_insn_after (copy_insn (PATTERN (insn
)), after
);
6451 if (CALL_INSN_FUNCTION_USAGE (insn
))
6452 CALL_INSN_FUNCTION_USAGE (new_rtx
)
6453 = copy_insn (CALL_INSN_FUNCTION_USAGE (insn
));
6454 SIBLING_CALL_P (new_rtx
) = SIBLING_CALL_P (insn
);
6455 RTL_CONST_CALL_P (new_rtx
) = RTL_CONST_CALL_P (insn
);
6456 RTL_PURE_CALL_P (new_rtx
) = RTL_PURE_CALL_P (insn
);
6457 RTL_LOOPING_CONST_OR_PURE_CALL_P (new_rtx
)
6458 = RTL_LOOPING_CONST_OR_PURE_CALL_P (insn
);
6465 /* Update LABEL_NUSES. */
6466 mark_jump_label (PATTERN (new_rtx
), new_rtx
, 0);
6468 INSN_LOCATION (new_rtx
) = INSN_LOCATION (insn
);
6470 /* If the old insn is frame related, then so is the new one. This is
6471 primarily needed for IA-64 unwind info which marks epilogue insns,
6472 which may be duplicated by the basic block reordering code. */
6473 RTX_FRAME_RELATED_P (new_rtx
) = RTX_FRAME_RELATED_P (insn
);
6475 /* Locate the end of existing REG_NOTES in NEW_RTX. */
6476 rtx
*ptail
= ®_NOTES (new_rtx
);
6477 while (*ptail
!= NULL_RTX
)
6478 ptail
= &XEXP (*ptail
, 1);
6480 /* Copy all REG_NOTES except REG_LABEL_OPERAND since mark_jump_label
6481 will make them. REG_LABEL_TARGETs are created there too, but are
6482 supposed to be sticky, so we copy them. */
6483 for (link
= REG_NOTES (insn
); link
; link
= XEXP (link
, 1))
6484 if (REG_NOTE_KIND (link
) != REG_LABEL_OPERAND
)
6486 *ptail
= duplicate_reg_note (link
);
6487 ptail
= &XEXP (*ptail
, 1);
6490 INSN_CODE (new_rtx
) = INSN_CODE (insn
);
6494 static GTY((deletable
)) rtx hard_reg_clobbers
[NUM_MACHINE_MODES
][FIRST_PSEUDO_REGISTER
];
6496 gen_hard_reg_clobber (machine_mode mode
, unsigned int regno
)
6498 if (hard_reg_clobbers
[mode
][regno
])
6499 return hard_reg_clobbers
[mode
][regno
];
6501 return (hard_reg_clobbers
[mode
][regno
] =
6502 gen_rtx_CLOBBER (VOIDmode
, gen_rtx_REG (mode
, regno
)));
6505 location_t prologue_location
;
6506 location_t epilogue_location
;
6508 /* Hold current location information and last location information, so the
6509 datastructures are built lazily only when some instructions in given
6510 place are needed. */
6511 static location_t curr_location
;
6513 /* Allocate insn location datastructure. */
6515 insn_locations_init (void)
6517 prologue_location
= epilogue_location
= 0;
6518 curr_location
= UNKNOWN_LOCATION
;
6521 /* At the end of emit stage, clear current location. */
6523 insn_locations_finalize (void)
6525 epilogue_location
= curr_location
;
6526 curr_location
= UNKNOWN_LOCATION
;
6529 /* Set current location. */
6531 set_curr_insn_location (location_t location
)
6533 curr_location
= location
;
6536 /* Get current location. */
6538 curr_insn_location (void)
6540 return curr_location
;
6543 /* Return lexical scope block insn belongs to. */
6545 insn_scope (const rtx_insn
*insn
)
6547 return LOCATION_BLOCK (INSN_LOCATION (insn
));
6550 /* Return line number of the statement that produced this insn. */
6552 insn_line (const rtx_insn
*insn
)
6554 return LOCATION_LINE (INSN_LOCATION (insn
));
6557 /* Return source file of the statement that produced this insn. */
6559 insn_file (const rtx_insn
*insn
)
6561 return LOCATION_FILE (INSN_LOCATION (insn
));
6564 /* Return expanded location of the statement that produced this insn. */
6566 insn_location (const rtx_insn
*insn
)
6568 return expand_location (INSN_LOCATION (insn
));
6571 /* Return true if memory model MODEL requires a pre-operation (release-style)
6572 barrier or a post-operation (acquire-style) barrier. While not universal,
6573 this function matches behavior of several targets. */
6576 need_atomic_barrier_p (enum memmodel model
, bool pre
)
6578 switch (model
& MEMMODEL_BASE_MASK
)
6580 case MEMMODEL_RELAXED
:
6581 case MEMMODEL_CONSUME
:
6583 case MEMMODEL_RELEASE
:
6585 case MEMMODEL_ACQUIRE
:
6587 case MEMMODEL_ACQ_REL
:
6588 case MEMMODEL_SEQ_CST
:
6595 /* Return a constant shift amount for shifting a value of mode MODE
6599 gen_int_shift_amount (machine_mode
, poly_int64 value
)
6601 /* Use a 64-bit mode, to avoid any truncation.
6603 ??? Perhaps this should be automatically derived from the .md files
6604 instead, or perhaps have a target hook. */
6605 scalar_int_mode shift_mode
= (BITS_PER_UNIT
== 8
6607 : int_mode_for_size (64, 0).require ());
6608 return gen_int_mode (value
, shift_mode
);
6611 /* Initialize fields of rtl_data related to stack alignment. */
6614 rtl_data::init_stack_alignment ()
6616 stack_alignment_needed
= STACK_BOUNDARY
;
6617 max_used_stack_slot_alignment
= STACK_BOUNDARY
;
6618 stack_alignment_estimated
= 0;
6619 preferred_stack_boundary
= STACK_BOUNDARY
;
6623 #include "gt-emit-rtl.h"