[Ada] Fix miscellaneous typos
[official-gcc.git] / gcc / ada / sem_res.adb
blob5354d81630b71c75386b90586df4af782fecff01
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT COMPILER COMPONENTS --
4 -- --
5 -- S E M _ R E S --
6 -- --
7 -- B o d y --
8 -- --
9 -- Copyright (C) 1992-2018, Free Software Foundation, Inc. --
10 -- --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
20 -- --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
23 -- --
24 ------------------------------------------------------------------------------
26 with Atree; use Atree;
27 with Checks; use Checks;
28 with Debug; use Debug;
29 with Debug_A; use Debug_A;
30 with Einfo; use Einfo;
31 with Errout; use Errout;
32 with Expander; use Expander;
33 with Exp_Disp; use Exp_Disp;
34 with Exp_Ch6; use Exp_Ch6;
35 with Exp_Ch7; use Exp_Ch7;
36 with Exp_Tss; use Exp_Tss;
37 with Exp_Util; use Exp_Util;
38 with Freeze; use Freeze;
39 with Ghost; use Ghost;
40 with Inline; use Inline;
41 with Itypes; use Itypes;
42 with Lib; use Lib;
43 with Lib.Xref; use Lib.Xref;
44 with Namet; use Namet;
45 with Nmake; use Nmake;
46 with Nlists; use Nlists;
47 with Opt; use Opt;
48 with Output; use Output;
49 with Par_SCO; use Par_SCO;
50 with Restrict; use Restrict;
51 with Rident; use Rident;
52 with Rtsfind; use Rtsfind;
53 with Sem; use Sem;
54 with Sem_Aux; use Sem_Aux;
55 with Sem_Aggr; use Sem_Aggr;
56 with Sem_Attr; use Sem_Attr;
57 with Sem_Cat; use Sem_Cat;
58 with Sem_Ch4; use Sem_Ch4;
59 with Sem_Ch3; use Sem_Ch3;
60 with Sem_Ch6; use Sem_Ch6;
61 with Sem_Ch8; use Sem_Ch8;
62 with Sem_Ch13; use Sem_Ch13;
63 with Sem_Dim; use Sem_Dim;
64 with Sem_Disp; use Sem_Disp;
65 with Sem_Dist; use Sem_Dist;
66 with Sem_Elab; use Sem_Elab;
67 with Sem_Elim; use Sem_Elim;
68 with Sem_Eval; use Sem_Eval;
69 with Sem_Intr; use Sem_Intr;
70 with Sem_Util; use Sem_Util;
71 with Targparm; use Targparm;
72 with Sem_Type; use Sem_Type;
73 with Sem_Warn; use Sem_Warn;
74 with Sinfo; use Sinfo;
75 with Sinfo.CN; use Sinfo.CN;
76 with Snames; use Snames;
77 with Stand; use Stand;
78 with Stringt; use Stringt;
79 with Style; use Style;
80 with Tbuild; use Tbuild;
81 with Uintp; use Uintp;
82 with Urealp; use Urealp;
84 package body Sem_Res is
86 -----------------------
87 -- Local Subprograms --
88 -----------------------
90 -- Second pass (top-down) type checking and overload resolution procedures
91 -- Typ is the type required by context. These procedures propagate the
92 -- type information recursively to the descendants of N. If the node is not
93 -- overloaded, its Etype is established in the first pass. If overloaded,
94 -- the Resolve routines set the correct type. For arithmetic operators, the
95 -- Etype is the base type of the context.
97 -- Note that Resolve_Attribute is separated off in Sem_Attr
99 procedure Check_Discriminant_Use (N : Node_Id);
100 -- Enforce the restrictions on the use of discriminants when constraining
101 -- a component of a discriminated type (record or concurrent type).
103 procedure Check_For_Visible_Operator (N : Node_Id; T : Entity_Id);
104 -- Given a node for an operator associated with type T, check that the
105 -- operator is visible. Operators all of whose operands are universal must
106 -- be checked for visibility during resolution because their type is not
107 -- determinable based on their operands.
109 procedure Check_Fully_Declared_Prefix
110 (Typ : Entity_Id;
111 Pref : Node_Id);
112 -- Check that the type of the prefix of a dereference is not incomplete
114 function Check_Infinite_Recursion (N : Node_Id) return Boolean;
115 -- Given a call node, N, which is known to occur immediately within the
116 -- subprogram being called, determines whether it is a detectable case of
117 -- an infinite recursion, and if so, outputs appropriate messages. Returns
118 -- True if an infinite recursion is detected, and False otherwise.
120 procedure Check_No_Direct_Boolean_Operators (N : Node_Id);
121 -- N is the node for a logical operator. If the operator is predefined, and
122 -- the root type of the operands is Standard.Boolean, then a check is made
123 -- for restriction No_Direct_Boolean_Operators. This procedure also handles
124 -- the style check for Style_Check_Boolean_And_Or.
126 function Is_Atomic_Ref_With_Address (N : Node_Id) return Boolean;
127 -- N is either an indexed component or a selected component. This function
128 -- returns true if the prefix refers to an object that has an address
129 -- clause (the case in which we may want to issue a warning).
131 function Is_Definite_Access_Type (E : Entity_Id) return Boolean;
132 -- Determine whether E is an access type declared by an access declaration,
133 -- and not an (anonymous) allocator type.
135 function Is_Predefined_Op (Nam : Entity_Id) return Boolean;
136 -- Utility to check whether the entity for an operator is a predefined
137 -- operator, in which case the expression is left as an operator in the
138 -- tree (else it is rewritten into a call). An instance of an intrinsic
139 -- conversion operation may be given an operator name, but is not treated
140 -- like an operator. Note that an operator that is an imported back-end
141 -- builtin has convention Intrinsic, but is expected to be rewritten into
142 -- a call, so such an operator is not treated as predefined by this
143 -- predicate.
145 procedure Preanalyze_And_Resolve
146 (N : Node_Id;
147 T : Entity_Id;
148 With_Freezing : Boolean);
149 -- Subsidiary of public versions of Preanalyze_And_Resolve.
151 procedure Replace_Actual_Discriminants (N : Node_Id; Default : Node_Id);
152 -- If a default expression in entry call N depends on the discriminants
153 -- of the task, it must be replaced with a reference to the discriminant
154 -- of the task being called.
156 procedure Resolve_Op_Concat_Arg
157 (N : Node_Id;
158 Arg : Node_Id;
159 Typ : Entity_Id;
160 Is_Comp : Boolean);
161 -- Internal procedure for Resolve_Op_Concat to resolve one operand of
162 -- concatenation operator. The operand is either of the array type or of
163 -- the component type. If the operand is an aggregate, and the component
164 -- type is composite, this is ambiguous if component type has aggregates.
166 procedure Resolve_Op_Concat_First (N : Node_Id; Typ : Entity_Id);
167 -- Does the first part of the work of Resolve_Op_Concat
169 procedure Resolve_Op_Concat_Rest (N : Node_Id; Typ : Entity_Id);
170 -- Does the "rest" of the work of Resolve_Op_Concat, after the left operand
171 -- has been resolved. See Resolve_Op_Concat for details.
173 procedure Resolve_Allocator (N : Node_Id; Typ : Entity_Id);
174 procedure Resolve_Arithmetic_Op (N : Node_Id; Typ : Entity_Id);
175 procedure Resolve_Call (N : Node_Id; Typ : Entity_Id);
176 procedure Resolve_Case_Expression (N : Node_Id; Typ : Entity_Id);
177 procedure Resolve_Character_Literal (N : Node_Id; Typ : Entity_Id);
178 procedure Resolve_Comparison_Op (N : Node_Id; Typ : Entity_Id);
179 procedure Resolve_Entity_Name (N : Node_Id; Typ : Entity_Id);
180 procedure Resolve_Equality_Op (N : Node_Id; Typ : Entity_Id);
181 procedure Resolve_Explicit_Dereference (N : Node_Id; Typ : Entity_Id);
182 procedure Resolve_Expression_With_Actions (N : Node_Id; Typ : Entity_Id);
183 procedure Resolve_If_Expression (N : Node_Id; Typ : Entity_Id);
184 procedure Resolve_Generalized_Indexing (N : Node_Id; Typ : Entity_Id);
185 procedure Resolve_Indexed_Component (N : Node_Id; Typ : Entity_Id);
186 procedure Resolve_Integer_Literal (N : Node_Id; Typ : Entity_Id);
187 procedure Resolve_Logical_Op (N : Node_Id; Typ : Entity_Id);
188 procedure Resolve_Membership_Op (N : Node_Id; Typ : Entity_Id);
189 procedure Resolve_Null (N : Node_Id; Typ : Entity_Id);
190 procedure Resolve_Operator_Symbol (N : Node_Id; Typ : Entity_Id);
191 procedure Resolve_Op_Concat (N : Node_Id; Typ : Entity_Id);
192 procedure Resolve_Op_Expon (N : Node_Id; Typ : Entity_Id);
193 procedure Resolve_Op_Not (N : Node_Id; Typ : Entity_Id);
194 procedure Resolve_Qualified_Expression (N : Node_Id; Typ : Entity_Id);
195 procedure Resolve_Raise_Expression (N : Node_Id; Typ : Entity_Id);
196 procedure Resolve_Range (N : Node_Id; Typ : Entity_Id);
197 procedure Resolve_Real_Literal (N : Node_Id; Typ : Entity_Id);
198 procedure Resolve_Reference (N : Node_Id; Typ : Entity_Id);
199 procedure Resolve_Selected_Component (N : Node_Id; Typ : Entity_Id);
200 procedure Resolve_Shift (N : Node_Id; Typ : Entity_Id);
201 procedure Resolve_Short_Circuit (N : Node_Id; Typ : Entity_Id);
202 procedure Resolve_Slice (N : Node_Id; Typ : Entity_Id);
203 procedure Resolve_String_Literal (N : Node_Id; Typ : Entity_Id);
204 procedure Resolve_Target_Name (N : Node_Id; Typ : Entity_Id);
205 procedure Resolve_Type_Conversion (N : Node_Id; Typ : Entity_Id);
206 procedure Resolve_Unary_Op (N : Node_Id; Typ : Entity_Id);
207 procedure Resolve_Unchecked_Expression (N : Node_Id; Typ : Entity_Id);
208 procedure Resolve_Unchecked_Type_Conversion (N : Node_Id; Typ : Entity_Id);
210 function Operator_Kind
211 (Op_Name : Name_Id;
212 Is_Binary : Boolean) return Node_Kind;
213 -- Utility to map the name of an operator into the corresponding Node. Used
214 -- by other node rewriting procedures.
216 procedure Resolve_Actuals (N : Node_Id; Nam : Entity_Id);
217 -- Resolve actuals of call, and add default expressions for missing ones.
218 -- N is the Node_Id for the subprogram call, and Nam is the entity of the
219 -- called subprogram.
221 procedure Resolve_Entry_Call (N : Node_Id; Typ : Entity_Id);
222 -- Called from Resolve_Call, when the prefix denotes an entry or element
223 -- of entry family. Actuals are resolved as for subprograms, and the node
224 -- is rebuilt as an entry call. Also called for protected operations. Typ
225 -- is the context type, which is used when the operation is a protected
226 -- function with no arguments, and the return value is indexed.
228 procedure Resolve_Intrinsic_Operator (N : Node_Id; Typ : Entity_Id);
229 -- A call to a user-defined intrinsic operator is rewritten as a call to
230 -- the corresponding predefined operator, with suitable conversions. Note
231 -- that this applies only for intrinsic operators that denote predefined
232 -- operators, not ones that are intrinsic imports of back-end builtins.
234 procedure Resolve_Intrinsic_Unary_Operator (N : Node_Id; Typ : Entity_Id);
235 -- Ditto, for arithmetic unary operators
237 procedure Rewrite_Operator_As_Call (N : Node_Id; Nam : Entity_Id);
238 -- If an operator node resolves to a call to a user-defined operator,
239 -- rewrite the node as a function call.
241 procedure Make_Call_Into_Operator
242 (N : Node_Id;
243 Typ : Entity_Id;
244 Op_Id : Entity_Id);
245 -- Inverse transformation: if an operator is given in functional notation,
246 -- then after resolving the node, transform into an operator node, so that
247 -- operands are resolved properly. Recall that predefined operators do not
248 -- have a full signature and special resolution rules apply.
250 procedure Rewrite_Renamed_Operator
251 (N : Node_Id;
252 Op : Entity_Id;
253 Typ : Entity_Id);
254 -- An operator can rename another, e.g. in an instantiation. In that
255 -- case, the proper operator node must be constructed and resolved.
257 procedure Set_String_Literal_Subtype (N : Node_Id; Typ : Entity_Id);
258 -- The String_Literal_Subtype is built for all strings that are not
259 -- operands of a static concatenation operation. If the argument is not
260 -- a N_String_Literal node, then the call has no effect.
262 procedure Set_Slice_Subtype (N : Node_Id);
263 -- Build subtype of array type, with the range specified by the slice
265 procedure Simplify_Type_Conversion (N : Node_Id);
266 -- Called after N has been resolved and evaluated, but before range checks
267 -- have been applied. Currently simplifies a combination of floating-point
268 -- to integer conversion and Rounding or Truncation attribute.
270 function Unique_Fixed_Point_Type (N : Node_Id) return Entity_Id;
271 -- A universal_fixed expression in an universal context is unambiguous if
272 -- there is only one applicable fixed point type. Determining whether there
273 -- is only one requires a search over all visible entities, and happens
274 -- only in very pathological cases (see 6115-006).
276 -------------------------
277 -- Ambiguous_Character --
278 -------------------------
280 procedure Ambiguous_Character (C : Node_Id) is
281 E : Entity_Id;
283 begin
284 if Nkind (C) = N_Character_Literal then
285 Error_Msg_N ("ambiguous character literal", C);
287 -- First the ones in Standard
289 Error_Msg_N ("\\possible interpretation: Character!", C);
290 Error_Msg_N ("\\possible interpretation: Wide_Character!", C);
292 -- Include Wide_Wide_Character in Ada 2005 mode
294 if Ada_Version >= Ada_2005 then
295 Error_Msg_N ("\\possible interpretation: Wide_Wide_Character!", C);
296 end if;
298 -- Now any other types that match
300 E := Current_Entity (C);
301 while Present (E) loop
302 Error_Msg_NE ("\\possible interpretation:}!", C, Etype (E));
303 E := Homonym (E);
304 end loop;
305 end if;
306 end Ambiguous_Character;
308 -------------------------
309 -- Analyze_And_Resolve --
310 -------------------------
312 procedure Analyze_And_Resolve (N : Node_Id) is
313 begin
314 Analyze (N);
315 Resolve (N);
316 end Analyze_And_Resolve;
318 procedure Analyze_And_Resolve (N : Node_Id; Typ : Entity_Id) is
319 begin
320 Analyze (N);
321 Resolve (N, Typ);
322 end Analyze_And_Resolve;
324 -- Versions with check(s) suppressed
326 procedure Analyze_And_Resolve
327 (N : Node_Id;
328 Typ : Entity_Id;
329 Suppress : Check_Id)
331 Scop : constant Entity_Id := Current_Scope;
333 begin
334 if Suppress = All_Checks then
335 declare
336 Sva : constant Suppress_Array := Scope_Suppress.Suppress;
337 begin
338 Scope_Suppress.Suppress := (others => True);
339 Analyze_And_Resolve (N, Typ);
340 Scope_Suppress.Suppress := Sva;
341 end;
343 else
344 declare
345 Svg : constant Boolean := Scope_Suppress.Suppress (Suppress);
346 begin
347 Scope_Suppress.Suppress (Suppress) := True;
348 Analyze_And_Resolve (N, Typ);
349 Scope_Suppress.Suppress (Suppress) := Svg;
350 end;
351 end if;
353 if Current_Scope /= Scop
354 and then Scope_Is_Transient
355 then
356 -- This can only happen if a transient scope was created for an inner
357 -- expression, which will be removed upon completion of the analysis
358 -- of an enclosing construct. The transient scope must have the
359 -- suppress status of the enclosing environment, not of this Analyze
360 -- call.
362 Scope_Stack.Table (Scope_Stack.Last).Save_Scope_Suppress :=
363 Scope_Suppress;
364 end if;
365 end Analyze_And_Resolve;
367 procedure Analyze_And_Resolve
368 (N : Node_Id;
369 Suppress : Check_Id)
371 Scop : constant Entity_Id := Current_Scope;
373 begin
374 if Suppress = All_Checks then
375 declare
376 Sva : constant Suppress_Array := Scope_Suppress.Suppress;
377 begin
378 Scope_Suppress.Suppress := (others => True);
379 Analyze_And_Resolve (N);
380 Scope_Suppress.Suppress := Sva;
381 end;
383 else
384 declare
385 Svg : constant Boolean := Scope_Suppress.Suppress (Suppress);
386 begin
387 Scope_Suppress.Suppress (Suppress) := True;
388 Analyze_And_Resolve (N);
389 Scope_Suppress.Suppress (Suppress) := Svg;
390 end;
391 end if;
393 if Current_Scope /= Scop and then Scope_Is_Transient then
394 Scope_Stack.Table (Scope_Stack.Last).Save_Scope_Suppress :=
395 Scope_Suppress;
396 end if;
397 end Analyze_And_Resolve;
399 ----------------------------
400 -- Check_Discriminant_Use --
401 ----------------------------
403 procedure Check_Discriminant_Use (N : Node_Id) is
404 PN : constant Node_Id := Parent (N);
405 Disc : constant Entity_Id := Entity (N);
406 P : Node_Id;
407 D : Node_Id;
409 begin
410 -- Any use in a spec-expression is legal
412 if In_Spec_Expression then
413 null;
415 elsif Nkind (PN) = N_Range then
417 -- Discriminant cannot be used to constrain a scalar type
419 P := Parent (PN);
421 if Nkind (P) = N_Range_Constraint
422 and then Nkind (Parent (P)) = N_Subtype_Indication
423 and then Nkind (Parent (Parent (P))) = N_Component_Definition
424 then
425 Error_Msg_N ("discriminant cannot constrain scalar type", N);
427 elsif Nkind (P) = N_Index_Or_Discriminant_Constraint then
429 -- The following check catches the unusual case where a
430 -- discriminant appears within an index constraint that is part
431 -- of a larger expression within a constraint on a component,
432 -- e.g. "C : Int range 1 .. F (new A(1 .. D))". For now we only
433 -- check case of record components, and note that a similar check
434 -- should also apply in the case of discriminant constraints
435 -- below. ???
437 -- Note that the check for N_Subtype_Declaration below is to
438 -- detect the valid use of discriminants in the constraints of a
439 -- subtype declaration when this subtype declaration appears
440 -- inside the scope of a record type (which is syntactically
441 -- illegal, but which may be created as part of derived type
442 -- processing for records). See Sem_Ch3.Build_Derived_Record_Type
443 -- for more info.
445 if Ekind (Current_Scope) = E_Record_Type
446 and then Scope (Disc) = Current_Scope
447 and then not
448 (Nkind (Parent (P)) = N_Subtype_Indication
449 and then
450 Nkind_In (Parent (Parent (P)), N_Component_Definition,
451 N_Subtype_Declaration)
452 and then Paren_Count (N) = 0)
453 then
454 Error_Msg_N
455 ("discriminant must appear alone in component constraint", N);
456 return;
457 end if;
459 -- Detect a common error:
461 -- type R (D : Positive := 100) is record
462 -- Name : String (1 .. D);
463 -- end record;
465 -- The default value causes an object of type R to be allocated
466 -- with room for Positive'Last characters. The RM does not mandate
467 -- the allocation of the maximum size, but that is what GNAT does
468 -- so we should warn the programmer that there is a problem.
470 Check_Large : declare
471 SI : Node_Id;
472 T : Entity_Id;
473 TB : Node_Id;
474 CB : Entity_Id;
476 function Large_Storage_Type (T : Entity_Id) return Boolean;
477 -- Return True if type T has a large enough range that any
478 -- array whose index type covered the whole range of the type
479 -- would likely raise Storage_Error.
481 ------------------------
482 -- Large_Storage_Type --
483 ------------------------
485 function Large_Storage_Type (T : Entity_Id) return Boolean is
486 begin
487 -- The type is considered large if its bounds are known at
488 -- compile time and if it requires at least as many bits as
489 -- a Positive to store the possible values.
491 return Compile_Time_Known_Value (Type_Low_Bound (T))
492 and then Compile_Time_Known_Value (Type_High_Bound (T))
493 and then
494 Minimum_Size (T, Biased => True) >=
495 RM_Size (Standard_Positive);
496 end Large_Storage_Type;
498 -- Start of processing for Check_Large
500 begin
501 -- Check that the Disc has a large range
503 if not Large_Storage_Type (Etype (Disc)) then
504 goto No_Danger;
505 end if;
507 -- If the enclosing type is limited, we allocate only the
508 -- default value, not the maximum, and there is no need for
509 -- a warning.
511 if Is_Limited_Type (Scope (Disc)) then
512 goto No_Danger;
513 end if;
515 -- Check that it is the high bound
517 if N /= High_Bound (PN)
518 or else No (Discriminant_Default_Value (Disc))
519 then
520 goto No_Danger;
521 end if;
523 -- Check the array allows a large range at this bound. First
524 -- find the array
526 SI := Parent (P);
528 if Nkind (SI) /= N_Subtype_Indication then
529 goto No_Danger;
530 end if;
532 T := Entity (Subtype_Mark (SI));
534 if not Is_Array_Type (T) then
535 goto No_Danger;
536 end if;
538 -- Next, find the dimension
540 TB := First_Index (T);
541 CB := First (Constraints (P));
542 while True
543 and then Present (TB)
544 and then Present (CB)
545 and then CB /= PN
546 loop
547 Next_Index (TB);
548 Next (CB);
549 end loop;
551 if CB /= PN then
552 goto No_Danger;
553 end if;
555 -- Now, check the dimension has a large range
557 if not Large_Storage_Type (Etype (TB)) then
558 goto No_Danger;
559 end if;
561 -- Warn about the danger
563 Error_Msg_N
564 ("??creation of & object may raise Storage_Error!",
565 Scope (Disc));
567 <<No_Danger>>
568 null;
570 end Check_Large;
571 end if;
573 -- Legal case is in index or discriminant constraint
575 elsif Nkind_In (PN, N_Index_Or_Discriminant_Constraint,
576 N_Discriminant_Association)
577 then
578 if Paren_Count (N) > 0 then
579 Error_Msg_N
580 ("discriminant in constraint must appear alone", N);
582 elsif Nkind (N) = N_Expanded_Name
583 and then Comes_From_Source (N)
584 then
585 Error_Msg_N
586 ("discriminant must appear alone as a direct name", N);
587 end if;
589 return;
591 -- Otherwise, context is an expression. It should not be within (i.e. a
592 -- subexpression of) a constraint for a component.
594 else
595 D := PN;
596 P := Parent (PN);
597 while not Nkind_In (P, N_Component_Declaration,
598 N_Subtype_Indication,
599 N_Entry_Declaration)
600 loop
601 D := P;
602 P := Parent (P);
603 exit when No (P);
604 end loop;
606 -- If the discriminant is used in an expression that is a bound of a
607 -- scalar type, an Itype is created and the bounds are attached to
608 -- its range, not to the original subtype indication. Such use is of
609 -- course a double fault.
611 if (Nkind (P) = N_Subtype_Indication
612 and then Nkind_In (Parent (P), N_Component_Definition,
613 N_Derived_Type_Definition)
614 and then D = Constraint (P))
616 -- The constraint itself may be given by a subtype indication,
617 -- rather than by a more common discrete range.
619 or else (Nkind (P) = N_Subtype_Indication
620 and then
621 Nkind (Parent (P)) = N_Index_Or_Discriminant_Constraint)
622 or else Nkind (P) = N_Entry_Declaration
623 or else Nkind (D) = N_Defining_Identifier
624 then
625 Error_Msg_N
626 ("discriminant in constraint must appear alone", N);
627 end if;
628 end if;
629 end Check_Discriminant_Use;
631 --------------------------------
632 -- Check_For_Visible_Operator --
633 --------------------------------
635 procedure Check_For_Visible_Operator (N : Node_Id; T : Entity_Id) is
636 begin
637 if Is_Invisible_Operator (N, T) then
638 Error_Msg_NE -- CODEFIX
639 ("operator for} is not directly visible!", N, First_Subtype (T));
640 Error_Msg_N -- CODEFIX
641 ("use clause would make operation legal!", N);
642 end if;
643 end Check_For_Visible_Operator;
645 ----------------------------------
646 -- Check_Fully_Declared_Prefix --
647 ----------------------------------
649 procedure Check_Fully_Declared_Prefix
650 (Typ : Entity_Id;
651 Pref : Node_Id)
653 begin
654 -- Check that the designated type of the prefix of a dereference is
655 -- not an incomplete type. This cannot be done unconditionally, because
656 -- dereferences of private types are legal in default expressions. This
657 -- case is taken care of in Check_Fully_Declared, called below. There
658 -- are also 2005 cases where it is legal for the prefix to be unfrozen.
660 -- This consideration also applies to similar checks for allocators,
661 -- qualified expressions, and type conversions.
663 -- An additional exception concerns other per-object expressions that
664 -- are not directly related to component declarations, in particular
665 -- representation pragmas for tasks. These will be per-object
666 -- expressions if they depend on discriminants or some global entity.
667 -- If the task has access discriminants, the designated type may be
668 -- incomplete at the point the expression is resolved. This resolution
669 -- takes place within the body of the initialization procedure, where
670 -- the discriminant is replaced by its discriminal.
672 if Is_Entity_Name (Pref)
673 and then Ekind (Entity (Pref)) = E_In_Parameter
674 then
675 null;
677 -- Ada 2005 (AI-326): Tagged incomplete types allowed. The wrong usages
678 -- are handled by Analyze_Access_Attribute, Analyze_Assignment,
679 -- Analyze_Object_Renaming, and Freeze_Entity.
681 elsif Ada_Version >= Ada_2005
682 and then Is_Entity_Name (Pref)
683 and then Is_Access_Type (Etype (Pref))
684 and then Ekind (Directly_Designated_Type (Etype (Pref))) =
685 E_Incomplete_Type
686 and then Is_Tagged_Type (Directly_Designated_Type (Etype (Pref)))
687 then
688 null;
689 else
690 Check_Fully_Declared (Typ, Parent (Pref));
691 end if;
692 end Check_Fully_Declared_Prefix;
694 ------------------------------
695 -- Check_Infinite_Recursion --
696 ------------------------------
698 function Check_Infinite_Recursion (N : Node_Id) return Boolean is
699 P : Node_Id;
700 C : Node_Id;
702 function Same_Argument_List return Boolean;
703 -- Check whether list of actuals is identical to list of formals of
704 -- called function (which is also the enclosing scope).
706 ------------------------
707 -- Same_Argument_List --
708 ------------------------
710 function Same_Argument_List return Boolean is
711 A : Node_Id;
712 F : Entity_Id;
713 Subp : Entity_Id;
715 begin
716 if not Is_Entity_Name (Name (N)) then
717 return False;
718 else
719 Subp := Entity (Name (N));
720 end if;
722 F := First_Formal (Subp);
723 A := First_Actual (N);
724 while Present (F) and then Present (A) loop
725 if not Is_Entity_Name (A) or else Entity (A) /= F then
726 return False;
727 end if;
729 Next_Actual (A);
730 Next_Formal (F);
731 end loop;
733 return True;
734 end Same_Argument_List;
736 -- Start of processing for Check_Infinite_Recursion
738 begin
739 -- Special case, if this is a procedure call and is a call to the
740 -- current procedure with the same argument list, then this is for
741 -- sure an infinite recursion and we insert a call to raise SE.
743 if Is_List_Member (N)
744 and then List_Length (List_Containing (N)) = 1
745 and then Same_Argument_List
746 then
747 declare
748 P : constant Node_Id := Parent (N);
749 begin
750 if Nkind (P) = N_Handled_Sequence_Of_Statements
751 and then Nkind (Parent (P)) = N_Subprogram_Body
752 and then Is_Empty_List (Declarations (Parent (P)))
753 then
754 Error_Msg_Warn := SPARK_Mode /= On;
755 Error_Msg_N ("!infinite recursion<<", N);
756 Error_Msg_N ("\!Storage_Error [<<", N);
757 Insert_Action (N,
758 Make_Raise_Storage_Error (Sloc (N),
759 Reason => SE_Infinite_Recursion));
760 return True;
761 end if;
762 end;
763 end if;
765 -- If not that special case, search up tree, quitting if we reach a
766 -- construct (e.g. a conditional) that tells us that this is not a
767 -- case for an infinite recursion warning.
769 C := N;
770 loop
771 P := Parent (C);
773 -- If no parent, then we were not inside a subprogram, this can for
774 -- example happen when processing certain pragmas in a spec. Just
775 -- return False in this case.
777 if No (P) then
778 return False;
779 end if;
781 -- Done if we get to subprogram body, this is definitely an infinite
782 -- recursion case if we did not find anything to stop us.
784 exit when Nkind (P) = N_Subprogram_Body;
786 -- If appearing in conditional, result is false
788 if Nkind_In (P, N_Or_Else,
789 N_And_Then,
790 N_Case_Expression,
791 N_Case_Statement,
792 N_If_Expression,
793 N_If_Statement)
794 then
795 return False;
797 elsif Nkind (P) = N_Handled_Sequence_Of_Statements
798 and then C /= First (Statements (P))
799 then
800 -- If the call is the expression of a return statement and the
801 -- actuals are identical to the formals, it's worth a warning.
802 -- However, we skip this if there is an immediately preceding
803 -- raise statement, since the call is never executed.
805 -- Furthermore, this corresponds to a common idiom:
807 -- function F (L : Thing) return Boolean is
808 -- begin
809 -- raise Program_Error;
810 -- return F (L);
811 -- end F;
813 -- for generating a stub function
815 if Nkind (Parent (N)) = N_Simple_Return_Statement
816 and then Same_Argument_List
817 then
818 exit when not Is_List_Member (Parent (N));
820 -- OK, return statement is in a statement list, look for raise
822 declare
823 Nod : Node_Id;
825 begin
826 -- Skip past N_Freeze_Entity nodes generated by expansion
828 Nod := Prev (Parent (N));
829 while Present (Nod)
830 and then Nkind (Nod) = N_Freeze_Entity
831 loop
832 Prev (Nod);
833 end loop;
835 -- If no raise statement, give warning. We look at the
836 -- original node, because in the case of "raise ... with
837 -- ...", the node has been transformed into a call.
839 exit when Nkind (Original_Node (Nod)) /= N_Raise_Statement
840 and then
841 (Nkind (Nod) not in N_Raise_xxx_Error
842 or else Present (Condition (Nod)));
843 end;
844 end if;
846 return False;
848 else
849 C := P;
850 end if;
851 end loop;
853 Error_Msg_Warn := SPARK_Mode /= On;
854 Error_Msg_N ("!possible infinite recursion<<", N);
855 Error_Msg_N ("\!??Storage_Error ]<<", N);
857 return True;
858 end Check_Infinite_Recursion;
860 ---------------------------------------
861 -- Check_No_Direct_Boolean_Operators --
862 ---------------------------------------
864 procedure Check_No_Direct_Boolean_Operators (N : Node_Id) is
865 begin
866 if Scope (Entity (N)) = Standard_Standard
867 and then Root_Type (Etype (Left_Opnd (N))) = Standard_Boolean
868 then
869 -- Restriction only applies to original source code
871 if Comes_From_Source (N) then
872 Check_Restriction (No_Direct_Boolean_Operators, N);
873 end if;
874 end if;
876 -- Do style check (but skip if in instance, error is on template)
878 if Style_Check then
879 if not In_Instance then
880 Check_Boolean_Operator (N);
881 end if;
882 end if;
883 end Check_No_Direct_Boolean_Operators;
885 ------------------------------
886 -- Check_Parameterless_Call --
887 ------------------------------
889 procedure Check_Parameterless_Call (N : Node_Id) is
890 Nam : Node_Id;
892 function Prefix_Is_Access_Subp return Boolean;
893 -- If the prefix is of an access_to_subprogram type, the node must be
894 -- rewritten as a call. Ditto if the prefix is overloaded and all its
895 -- interpretations are access to subprograms.
897 ---------------------------
898 -- Prefix_Is_Access_Subp --
899 ---------------------------
901 function Prefix_Is_Access_Subp return Boolean is
902 I : Interp_Index;
903 It : Interp;
905 begin
906 -- If the context is an attribute reference that can apply to
907 -- functions, this is never a parameterless call (RM 4.1.4(6)).
909 if Nkind (Parent (N)) = N_Attribute_Reference
910 and then Nam_In (Attribute_Name (Parent (N)), Name_Address,
911 Name_Code_Address,
912 Name_Access)
913 then
914 return False;
915 end if;
917 if not Is_Overloaded (N) then
918 return
919 Ekind (Etype (N)) = E_Subprogram_Type
920 and then Base_Type (Etype (Etype (N))) /= Standard_Void_Type;
921 else
922 Get_First_Interp (N, I, It);
923 while Present (It.Typ) loop
924 if Ekind (It.Typ) /= E_Subprogram_Type
925 or else Base_Type (Etype (It.Typ)) = Standard_Void_Type
926 then
927 return False;
928 end if;
930 Get_Next_Interp (I, It);
931 end loop;
933 return True;
934 end if;
935 end Prefix_Is_Access_Subp;
937 -- Start of processing for Check_Parameterless_Call
939 begin
940 -- Defend against junk stuff if errors already detected
942 if Total_Errors_Detected /= 0 then
943 if Nkind (N) in N_Has_Etype and then Etype (N) = Any_Type then
944 return;
945 elsif Nkind (N) in N_Has_Chars
946 and then not Is_Valid_Name (Chars (N))
947 then
948 return;
949 end if;
951 Require_Entity (N);
952 end if;
954 -- If the context expects a value, and the name is a procedure, this is
955 -- most likely a missing 'Access. Don't try to resolve the parameterless
956 -- call, error will be caught when the outer call is analyzed.
958 if Is_Entity_Name (N)
959 and then Ekind (Entity (N)) = E_Procedure
960 and then not Is_Overloaded (N)
961 and then
962 Nkind_In (Parent (N), N_Parameter_Association,
963 N_Function_Call,
964 N_Procedure_Call_Statement)
965 then
966 return;
967 end if;
969 -- Rewrite as call if overloadable entity that is (or could be, in the
970 -- overloaded case) a function call. If we know for sure that the entity
971 -- is an enumeration literal, we do not rewrite it.
973 -- If the entity is the name of an operator, it cannot be a call because
974 -- operators cannot have default parameters. In this case, this must be
975 -- a string whose contents coincide with an operator name. Set the kind
976 -- of the node appropriately.
978 if (Is_Entity_Name (N)
979 and then Nkind (N) /= N_Operator_Symbol
980 and then Is_Overloadable (Entity (N))
981 and then (Ekind (Entity (N)) /= E_Enumeration_Literal
982 or else Is_Overloaded (N)))
984 -- Rewrite as call if it is an explicit dereference of an expression of
985 -- a subprogram access type, and the subprogram type is not that of a
986 -- procedure or entry.
988 or else
989 (Nkind (N) = N_Explicit_Dereference and then Prefix_Is_Access_Subp)
991 -- Rewrite as call if it is a selected component which is a function,
992 -- this is the case of a call to a protected function (which may be
993 -- overloaded with other protected operations).
995 or else
996 (Nkind (N) = N_Selected_Component
997 and then (Ekind (Entity (Selector_Name (N))) = E_Function
998 or else
999 (Ekind_In (Entity (Selector_Name (N)), E_Entry,
1000 E_Procedure)
1001 and then Is_Overloaded (Selector_Name (N)))))
1003 -- If one of the above three conditions is met, rewrite as call. Apply
1004 -- the rewriting only once.
1006 then
1007 if Nkind (Parent (N)) /= N_Function_Call
1008 or else N /= Name (Parent (N))
1009 then
1011 -- This may be a prefixed call that was not fully analyzed, e.g.
1012 -- an actual in an instance.
1014 if Ada_Version >= Ada_2005
1015 and then Nkind (N) = N_Selected_Component
1016 and then Is_Dispatching_Operation (Entity (Selector_Name (N)))
1017 then
1018 Analyze_Selected_Component (N);
1020 if Nkind (N) /= N_Selected_Component then
1021 return;
1022 end if;
1023 end if;
1025 -- The node is the name of the parameterless call. Preserve its
1026 -- descendants, which may be complex expressions.
1028 Nam := Relocate_Node (N);
1030 -- If overloaded, overload set belongs to new copy
1032 Save_Interps (N, Nam);
1034 -- Change node to parameterless function call (note that the
1035 -- Parameter_Associations associations field is left set to Empty,
1036 -- its normal default value since there are no parameters)
1038 Change_Node (N, N_Function_Call);
1039 Set_Name (N, Nam);
1040 Set_Sloc (N, Sloc (Nam));
1041 Analyze_Call (N);
1042 end if;
1044 elsif Nkind (N) = N_Parameter_Association then
1045 Check_Parameterless_Call (Explicit_Actual_Parameter (N));
1047 elsif Nkind (N) = N_Operator_Symbol then
1048 Change_Operator_Symbol_To_String_Literal (N);
1049 Set_Is_Overloaded (N, False);
1050 Set_Etype (N, Any_String);
1051 end if;
1052 end Check_Parameterless_Call;
1054 --------------------------------
1055 -- Is_Atomic_Ref_With_Address --
1056 --------------------------------
1058 function Is_Atomic_Ref_With_Address (N : Node_Id) return Boolean is
1059 Pref : constant Node_Id := Prefix (N);
1061 begin
1062 if not Is_Entity_Name (Pref) then
1063 return False;
1065 else
1066 declare
1067 Pent : constant Entity_Id := Entity (Pref);
1068 Ptyp : constant Entity_Id := Etype (Pent);
1069 begin
1070 return not Is_Access_Type (Ptyp)
1071 and then (Is_Atomic (Ptyp) or else Is_Atomic (Pent))
1072 and then Present (Address_Clause (Pent));
1073 end;
1074 end if;
1075 end Is_Atomic_Ref_With_Address;
1077 -----------------------------
1078 -- Is_Definite_Access_Type --
1079 -----------------------------
1081 function Is_Definite_Access_Type (E : Entity_Id) return Boolean is
1082 Btyp : constant Entity_Id := Base_Type (E);
1083 begin
1084 return Ekind (Btyp) = E_Access_Type
1085 or else (Ekind (Btyp) = E_Access_Subprogram_Type
1086 and then Comes_From_Source (Btyp));
1087 end Is_Definite_Access_Type;
1089 ----------------------
1090 -- Is_Predefined_Op --
1091 ----------------------
1093 function Is_Predefined_Op (Nam : Entity_Id) return Boolean is
1094 begin
1095 -- Predefined operators are intrinsic subprograms
1097 if not Is_Intrinsic_Subprogram (Nam) then
1098 return False;
1099 end if;
1101 -- A call to a back-end builtin is never a predefined operator
1103 if Is_Imported (Nam) and then Present (Interface_Name (Nam)) then
1104 return False;
1105 end if;
1107 return not Is_Generic_Instance (Nam)
1108 and then Chars (Nam) in Any_Operator_Name
1109 and then (No (Alias (Nam)) or else Is_Predefined_Op (Alias (Nam)));
1110 end Is_Predefined_Op;
1112 -----------------------------
1113 -- Make_Call_Into_Operator --
1114 -----------------------------
1116 procedure Make_Call_Into_Operator
1117 (N : Node_Id;
1118 Typ : Entity_Id;
1119 Op_Id : Entity_Id)
1121 Op_Name : constant Name_Id := Chars (Op_Id);
1122 Act1 : Node_Id := First_Actual (N);
1123 Act2 : Node_Id := Next_Actual (Act1);
1124 Error : Boolean := False;
1125 Func : constant Entity_Id := Entity (Name (N));
1126 Is_Binary : constant Boolean := Present (Act2);
1127 Op_Node : Node_Id;
1128 Opnd_Type : Entity_Id := Empty;
1129 Orig_Type : Entity_Id := Empty;
1130 Pack : Entity_Id;
1132 type Kind_Test is access function (E : Entity_Id) return Boolean;
1134 function Operand_Type_In_Scope (S : Entity_Id) return Boolean;
1135 -- If the operand is not universal, and the operator is given by an
1136 -- expanded name, verify that the operand has an interpretation with a
1137 -- type defined in the given scope of the operator.
1139 function Type_In_P (Test : Kind_Test) return Entity_Id;
1140 -- Find a type of the given class in package Pack that contains the
1141 -- operator.
1143 ---------------------------
1144 -- Operand_Type_In_Scope --
1145 ---------------------------
1147 function Operand_Type_In_Scope (S : Entity_Id) return Boolean is
1148 Nod : constant Node_Id := Right_Opnd (Op_Node);
1149 I : Interp_Index;
1150 It : Interp;
1152 begin
1153 if not Is_Overloaded (Nod) then
1154 return Scope (Base_Type (Etype (Nod))) = S;
1156 else
1157 Get_First_Interp (Nod, I, It);
1158 while Present (It.Typ) loop
1159 if Scope (Base_Type (It.Typ)) = S then
1160 return True;
1161 end if;
1163 Get_Next_Interp (I, It);
1164 end loop;
1166 return False;
1167 end if;
1168 end Operand_Type_In_Scope;
1170 ---------------
1171 -- Type_In_P --
1172 ---------------
1174 function Type_In_P (Test : Kind_Test) return Entity_Id is
1175 E : Entity_Id;
1177 function In_Decl return Boolean;
1178 -- Verify that node is not part of the type declaration for the
1179 -- candidate type, which would otherwise be invisible.
1181 -------------
1182 -- In_Decl --
1183 -------------
1185 function In_Decl return Boolean is
1186 Decl_Node : constant Node_Id := Parent (E);
1187 N2 : Node_Id;
1189 begin
1190 N2 := N;
1192 if Etype (E) = Any_Type then
1193 return True;
1195 elsif No (Decl_Node) then
1196 return False;
1198 else
1199 while Present (N2)
1200 and then Nkind (N2) /= N_Compilation_Unit
1201 loop
1202 if N2 = Decl_Node then
1203 return True;
1204 else
1205 N2 := Parent (N2);
1206 end if;
1207 end loop;
1209 return False;
1210 end if;
1211 end In_Decl;
1213 -- Start of processing for Type_In_P
1215 begin
1216 -- If the context type is declared in the prefix package, this is the
1217 -- desired base type.
1219 if Scope (Base_Type (Typ)) = Pack and then Test (Typ) then
1220 return Base_Type (Typ);
1222 else
1223 E := First_Entity (Pack);
1224 while Present (E) loop
1225 if Test (E) and then not In_Decl then
1226 return E;
1227 end if;
1229 Next_Entity (E);
1230 end loop;
1232 return Empty;
1233 end if;
1234 end Type_In_P;
1236 -- Start of processing for Make_Call_Into_Operator
1238 begin
1239 Op_Node := New_Node (Operator_Kind (Op_Name, Is_Binary), Sloc (N));
1241 -- Ensure that the corresponding operator has the same parent as the
1242 -- original call. This guarantees that parent traversals performed by
1243 -- the ABE mechanism succeed.
1245 Set_Parent (Op_Node, Parent (N));
1247 -- Binary operator
1249 if Is_Binary then
1250 Set_Left_Opnd (Op_Node, Relocate_Node (Act1));
1251 Set_Right_Opnd (Op_Node, Relocate_Node (Act2));
1252 Save_Interps (Act1, Left_Opnd (Op_Node));
1253 Save_Interps (Act2, Right_Opnd (Op_Node));
1254 Act1 := Left_Opnd (Op_Node);
1255 Act2 := Right_Opnd (Op_Node);
1257 -- Unary operator
1259 else
1260 Set_Right_Opnd (Op_Node, Relocate_Node (Act1));
1261 Save_Interps (Act1, Right_Opnd (Op_Node));
1262 Act1 := Right_Opnd (Op_Node);
1263 end if;
1265 -- If the operator is denoted by an expanded name, and the prefix is
1266 -- not Standard, but the operator is a predefined one whose scope is
1267 -- Standard, then this is an implicit_operator, inserted as an
1268 -- interpretation by the procedure of the same name. This procedure
1269 -- overestimates the presence of implicit operators, because it does
1270 -- not examine the type of the operands. Verify now that the operand
1271 -- type appears in the given scope. If right operand is universal,
1272 -- check the other operand. In the case of concatenation, either
1273 -- argument can be the component type, so check the type of the result.
1274 -- If both arguments are literals, look for a type of the right kind
1275 -- defined in the given scope. This elaborate nonsense is brought to
1276 -- you courtesy of b33302a. The type itself must be frozen, so we must
1277 -- find the type of the proper class in the given scope.
1279 -- A final wrinkle is the multiplication operator for fixed point types,
1280 -- which is defined in Standard only, and not in the scope of the
1281 -- fixed point type itself.
1283 if Nkind (Name (N)) = N_Expanded_Name then
1284 Pack := Entity (Prefix (Name (N)));
1286 -- If this is a package renaming, get renamed entity, which will be
1287 -- the scope of the operands if operaton is type-correct.
1289 if Present (Renamed_Entity (Pack)) then
1290 Pack := Renamed_Entity (Pack);
1291 end if;
1293 -- If the entity being called is defined in the given package, it is
1294 -- a renaming of a predefined operator, and known to be legal.
1296 if Scope (Entity (Name (N))) = Pack
1297 and then Pack /= Standard_Standard
1298 then
1299 null;
1301 -- Visibility does not need to be checked in an instance: if the
1302 -- operator was not visible in the generic it has been diagnosed
1303 -- already, else there is an implicit copy of it in the instance.
1305 elsif In_Instance then
1306 null;
1308 elsif Nam_In (Op_Name, Name_Op_Multiply, Name_Op_Divide)
1309 and then Is_Fixed_Point_Type (Etype (Left_Opnd (Op_Node)))
1310 and then Is_Fixed_Point_Type (Etype (Right_Opnd (Op_Node)))
1311 then
1312 if Pack /= Standard_Standard then
1313 Error := True;
1314 end if;
1316 -- Ada 2005 AI-420: Predefined equality on Universal_Access is
1317 -- available.
1319 elsif Ada_Version >= Ada_2005
1320 and then Nam_In (Op_Name, Name_Op_Eq, Name_Op_Ne)
1321 and then Ekind (Etype (Act1)) = E_Anonymous_Access_Type
1322 then
1323 null;
1325 else
1326 Opnd_Type := Base_Type (Etype (Right_Opnd (Op_Node)));
1328 if Op_Name = Name_Op_Concat then
1329 Opnd_Type := Base_Type (Typ);
1331 elsif (Scope (Opnd_Type) = Standard_Standard
1332 and then Is_Binary)
1333 or else (Nkind (Right_Opnd (Op_Node)) = N_Attribute_Reference
1334 and then Is_Binary
1335 and then not Comes_From_Source (Opnd_Type))
1336 then
1337 Opnd_Type := Base_Type (Etype (Left_Opnd (Op_Node)));
1338 end if;
1340 if Scope (Opnd_Type) = Standard_Standard then
1342 -- Verify that the scope contains a type that corresponds to
1343 -- the given literal. Optimize the case where Pack is Standard.
1345 if Pack /= Standard_Standard then
1346 if Opnd_Type = Universal_Integer then
1347 Orig_Type := Type_In_P (Is_Integer_Type'Access);
1349 elsif Opnd_Type = Universal_Real then
1350 Orig_Type := Type_In_P (Is_Real_Type'Access);
1352 elsif Opnd_Type = Any_String then
1353 Orig_Type := Type_In_P (Is_String_Type'Access);
1355 elsif Opnd_Type = Any_Access then
1356 Orig_Type := Type_In_P (Is_Definite_Access_Type'Access);
1358 elsif Opnd_Type = Any_Composite then
1359 Orig_Type := Type_In_P (Is_Composite_Type'Access);
1361 if Present (Orig_Type) then
1362 if Has_Private_Component (Orig_Type) then
1363 Orig_Type := Empty;
1364 else
1365 Set_Etype (Act1, Orig_Type);
1367 if Is_Binary then
1368 Set_Etype (Act2, Orig_Type);
1369 end if;
1370 end if;
1371 end if;
1373 else
1374 Orig_Type := Empty;
1375 end if;
1377 Error := No (Orig_Type);
1378 end if;
1380 elsif Ekind (Opnd_Type) = E_Allocator_Type
1381 and then No (Type_In_P (Is_Definite_Access_Type'Access))
1382 then
1383 Error := True;
1385 -- If the type is defined elsewhere, and the operator is not
1386 -- defined in the given scope (by a renaming declaration, e.g.)
1387 -- then this is an error as well. If an extension of System is
1388 -- present, and the type may be defined there, Pack must be
1389 -- System itself.
1391 elsif Scope (Opnd_Type) /= Pack
1392 and then Scope (Op_Id) /= Pack
1393 and then (No (System_Aux_Id)
1394 or else Scope (Opnd_Type) /= System_Aux_Id
1395 or else Pack /= Scope (System_Aux_Id))
1396 then
1397 if not Is_Overloaded (Right_Opnd (Op_Node)) then
1398 Error := True;
1399 else
1400 Error := not Operand_Type_In_Scope (Pack);
1401 end if;
1403 elsif Pack = Standard_Standard
1404 and then not Operand_Type_In_Scope (Standard_Standard)
1405 then
1406 Error := True;
1407 end if;
1408 end if;
1410 if Error then
1411 Error_Msg_Node_2 := Pack;
1412 Error_Msg_NE
1413 ("& not declared in&", N, Selector_Name (Name (N)));
1414 Set_Etype (N, Any_Type);
1415 return;
1417 -- Detect a mismatch between the context type and the result type
1418 -- in the named package, which is otherwise not detected if the
1419 -- operands are universal. Check is only needed if source entity is
1420 -- an operator, not a function that renames an operator.
1422 elsif Nkind (Parent (N)) /= N_Type_Conversion
1423 and then Ekind (Entity (Name (N))) = E_Operator
1424 and then Is_Numeric_Type (Typ)
1425 and then not Is_Universal_Numeric_Type (Typ)
1426 and then Scope (Base_Type (Typ)) /= Pack
1427 and then not In_Instance
1428 then
1429 if Is_Fixed_Point_Type (Typ)
1430 and then Nam_In (Op_Name, Name_Op_Multiply, Name_Op_Divide)
1431 then
1432 -- Already checked above
1434 null;
1436 -- Operator may be defined in an extension of System
1438 elsif Present (System_Aux_Id)
1439 and then Present (Opnd_Type)
1440 and then Scope (Opnd_Type) = System_Aux_Id
1441 then
1442 null;
1444 else
1445 -- Could we use Wrong_Type here??? (this would require setting
1446 -- Etype (N) to the actual type found where Typ was expected).
1448 Error_Msg_NE ("expect }", N, Typ);
1449 end if;
1450 end if;
1451 end if;
1453 Set_Chars (Op_Node, Op_Name);
1455 if not Is_Private_Type (Etype (N)) then
1456 Set_Etype (Op_Node, Base_Type (Etype (N)));
1457 else
1458 Set_Etype (Op_Node, Etype (N));
1459 end if;
1461 -- If this is a call to a function that renames a predefined equality,
1462 -- the renaming declaration provides a type that must be used to
1463 -- resolve the operands. This must be done now because resolution of
1464 -- the equality node will not resolve any remaining ambiguity, and it
1465 -- assumes that the first operand is not overloaded.
1467 if Nam_In (Op_Name, Name_Op_Eq, Name_Op_Ne)
1468 and then Ekind (Func) = E_Function
1469 and then Is_Overloaded (Act1)
1470 then
1471 Resolve (Act1, Base_Type (Etype (First_Formal (Func))));
1472 Resolve (Act2, Base_Type (Etype (First_Formal (Func))));
1473 end if;
1475 Set_Entity (Op_Node, Op_Id);
1476 Generate_Reference (Op_Id, N, ' ');
1478 -- Do rewrite setting Comes_From_Source on the result if the original
1479 -- call came from source. Although it is not strictly the case that the
1480 -- operator as such comes from the source, logically it corresponds
1481 -- exactly to the function call in the source, so it should be marked
1482 -- this way (e.g. to make sure that validity checks work fine).
1484 declare
1485 CS : constant Boolean := Comes_From_Source (N);
1486 begin
1487 Rewrite (N, Op_Node);
1488 Set_Comes_From_Source (N, CS);
1489 end;
1491 -- If this is an arithmetic operator and the result type is private,
1492 -- the operands and the result must be wrapped in conversion to
1493 -- expose the underlying numeric type and expand the proper checks,
1494 -- e.g. on division.
1496 if Is_Private_Type (Typ) then
1497 case Nkind (N) is
1498 when N_Op_Add
1499 | N_Op_Divide
1500 | N_Op_Expon
1501 | N_Op_Mod
1502 | N_Op_Multiply
1503 | N_Op_Rem
1504 | N_Op_Subtract
1506 Resolve_Intrinsic_Operator (N, Typ);
1508 when N_Op_Abs
1509 | N_Op_Minus
1510 | N_Op_Plus
1512 Resolve_Intrinsic_Unary_Operator (N, Typ);
1514 when others =>
1515 Resolve (N, Typ);
1516 end case;
1517 else
1518 Resolve (N, Typ);
1519 end if;
1521 -- If in ASIS_Mode, propagate operand types to original actuals of
1522 -- function call, which would otherwise not be fully resolved. If
1523 -- the call has already been constant-folded, nothing to do. We
1524 -- relocate the operand nodes rather than copy them, to preserve
1525 -- original_node pointers, given that the operands themselves may
1526 -- have been rewritten. If the call was itself a rewriting of an
1527 -- operator node, nothing to do.
1529 if ASIS_Mode
1530 and then Nkind (N) in N_Op
1531 and then Nkind (Original_Node (N)) = N_Function_Call
1532 then
1533 declare
1534 L : Node_Id;
1535 R : constant Node_Id := Right_Opnd (N);
1537 Old_First : constant Node_Id :=
1538 First (Parameter_Associations (Original_Node (N)));
1539 Old_Sec : Node_Id;
1541 begin
1542 if Is_Binary then
1543 L := Left_Opnd (N);
1544 Old_Sec := Next (Old_First);
1546 -- If the original call has named associations, replace the
1547 -- explicit actual parameter in the association with the proper
1548 -- resolved operand.
1550 if Nkind (Old_First) = N_Parameter_Association then
1551 if Chars (Selector_Name (Old_First)) =
1552 Chars (First_Entity (Op_Id))
1553 then
1554 Rewrite (Explicit_Actual_Parameter (Old_First),
1555 Relocate_Node (L));
1556 else
1557 Rewrite (Explicit_Actual_Parameter (Old_First),
1558 Relocate_Node (R));
1559 end if;
1561 else
1562 Rewrite (Old_First, Relocate_Node (L));
1563 end if;
1565 if Nkind (Old_Sec) = N_Parameter_Association then
1566 if Chars (Selector_Name (Old_Sec)) =
1567 Chars (First_Entity (Op_Id))
1568 then
1569 Rewrite (Explicit_Actual_Parameter (Old_Sec),
1570 Relocate_Node (L));
1571 else
1572 Rewrite (Explicit_Actual_Parameter (Old_Sec),
1573 Relocate_Node (R));
1574 end if;
1576 else
1577 Rewrite (Old_Sec, Relocate_Node (R));
1578 end if;
1580 else
1581 if Nkind (Old_First) = N_Parameter_Association then
1582 Rewrite (Explicit_Actual_Parameter (Old_First),
1583 Relocate_Node (R));
1584 else
1585 Rewrite (Old_First, Relocate_Node (R));
1586 end if;
1587 end if;
1588 end;
1590 Set_Parent (Original_Node (N), Parent (N));
1591 end if;
1592 end Make_Call_Into_Operator;
1594 -------------------
1595 -- Operator_Kind --
1596 -------------------
1598 function Operator_Kind
1599 (Op_Name : Name_Id;
1600 Is_Binary : Boolean) return Node_Kind
1602 Kind : Node_Kind;
1604 begin
1605 -- Use CASE statement or array???
1607 if Is_Binary then
1608 if Op_Name = Name_Op_And then
1609 Kind := N_Op_And;
1610 elsif Op_Name = Name_Op_Or then
1611 Kind := N_Op_Or;
1612 elsif Op_Name = Name_Op_Xor then
1613 Kind := N_Op_Xor;
1614 elsif Op_Name = Name_Op_Eq then
1615 Kind := N_Op_Eq;
1616 elsif Op_Name = Name_Op_Ne then
1617 Kind := N_Op_Ne;
1618 elsif Op_Name = Name_Op_Lt then
1619 Kind := N_Op_Lt;
1620 elsif Op_Name = Name_Op_Le then
1621 Kind := N_Op_Le;
1622 elsif Op_Name = Name_Op_Gt then
1623 Kind := N_Op_Gt;
1624 elsif Op_Name = Name_Op_Ge then
1625 Kind := N_Op_Ge;
1626 elsif Op_Name = Name_Op_Add then
1627 Kind := N_Op_Add;
1628 elsif Op_Name = Name_Op_Subtract then
1629 Kind := N_Op_Subtract;
1630 elsif Op_Name = Name_Op_Concat then
1631 Kind := N_Op_Concat;
1632 elsif Op_Name = Name_Op_Multiply then
1633 Kind := N_Op_Multiply;
1634 elsif Op_Name = Name_Op_Divide then
1635 Kind := N_Op_Divide;
1636 elsif Op_Name = Name_Op_Mod then
1637 Kind := N_Op_Mod;
1638 elsif Op_Name = Name_Op_Rem then
1639 Kind := N_Op_Rem;
1640 elsif Op_Name = Name_Op_Expon then
1641 Kind := N_Op_Expon;
1642 else
1643 raise Program_Error;
1644 end if;
1646 -- Unary operators
1648 else
1649 if Op_Name = Name_Op_Add then
1650 Kind := N_Op_Plus;
1651 elsif Op_Name = Name_Op_Subtract then
1652 Kind := N_Op_Minus;
1653 elsif Op_Name = Name_Op_Abs then
1654 Kind := N_Op_Abs;
1655 elsif Op_Name = Name_Op_Not then
1656 Kind := N_Op_Not;
1657 else
1658 raise Program_Error;
1659 end if;
1660 end if;
1662 return Kind;
1663 end Operator_Kind;
1665 ----------------------------
1666 -- Preanalyze_And_Resolve --
1667 ----------------------------
1669 procedure Preanalyze_And_Resolve
1670 (N : Node_Id;
1671 T : Entity_Id;
1672 With_Freezing : Boolean)
1674 Save_Full_Analysis : constant Boolean := Full_Analysis;
1675 Save_Must_Not_Freeze : constant Boolean := Must_Not_Freeze (N);
1676 Save_Preanalysis_Count : constant Nat :=
1677 Inside_Preanalysis_Without_Freezing;
1678 begin
1679 pragma Assert (Nkind (N) in N_Subexpr);
1681 if not With_Freezing then
1682 Set_Must_Not_Freeze (N);
1683 Inside_Preanalysis_Without_Freezing :=
1684 Inside_Preanalysis_Without_Freezing + 1;
1685 end if;
1687 Full_Analysis := False;
1688 Expander_Mode_Save_And_Set (False);
1690 -- Normally, we suppress all checks for this preanalysis. There is no
1691 -- point in processing them now, since they will be applied properly
1692 -- and in the proper location when the default expressions reanalyzed
1693 -- and reexpanded later on. We will also have more information at that
1694 -- point for possible suppression of individual checks.
1696 -- However, in SPARK mode, most expansion is suppressed, and this
1697 -- later reanalysis and reexpansion may not occur. SPARK mode does
1698 -- require the setting of checking flags for proof purposes, so we
1699 -- do the SPARK preanalysis without suppressing checks.
1701 -- This special handling for SPARK mode is required for example in the
1702 -- case of Ada 2012 constructs such as quantified expressions, which are
1703 -- expanded in two separate steps.
1705 if GNATprove_Mode then
1706 Analyze_And_Resolve (N, T);
1707 else
1708 Analyze_And_Resolve (N, T, Suppress => All_Checks);
1709 end if;
1711 Expander_Mode_Restore;
1712 Full_Analysis := Save_Full_Analysis;
1713 Set_Must_Not_Freeze (N, Save_Must_Not_Freeze);
1715 if not With_Freezing then
1716 Inside_Preanalysis_Without_Freezing :=
1717 Inside_Preanalysis_Without_Freezing - 1;
1718 end if;
1720 pragma Assert
1721 (Inside_Preanalysis_Without_Freezing = Save_Preanalysis_Count);
1722 end Preanalyze_And_Resolve;
1724 ----------------------------
1725 -- Preanalyze_And_Resolve --
1726 ----------------------------
1728 procedure Preanalyze_And_Resolve (N : Node_Id; T : Entity_Id) is
1729 begin
1730 Preanalyze_And_Resolve (N, T, With_Freezing => False);
1731 end Preanalyze_And_Resolve;
1733 -- Version without context type
1735 procedure Preanalyze_And_Resolve (N : Node_Id) is
1736 Save_Full_Analysis : constant Boolean := Full_Analysis;
1738 begin
1739 Full_Analysis := False;
1740 Expander_Mode_Save_And_Set (False);
1742 Analyze (N);
1743 Resolve (N, Etype (N), Suppress => All_Checks);
1745 Expander_Mode_Restore;
1746 Full_Analysis := Save_Full_Analysis;
1747 end Preanalyze_And_Resolve;
1749 ------------------------------------------
1750 -- Preanalyze_With_Freezing_And_Resolve --
1751 ------------------------------------------
1753 procedure Preanalyze_With_Freezing_And_Resolve
1754 (N : Node_Id;
1755 T : Entity_Id)
1757 begin
1758 Preanalyze_And_Resolve (N, T, With_Freezing => True);
1759 end Preanalyze_With_Freezing_And_Resolve;
1761 ----------------------------------
1762 -- Replace_Actual_Discriminants --
1763 ----------------------------------
1765 procedure Replace_Actual_Discriminants (N : Node_Id; Default : Node_Id) is
1766 Loc : constant Source_Ptr := Sloc (N);
1767 Tsk : Node_Id := Empty;
1769 function Process_Discr (Nod : Node_Id) return Traverse_Result;
1770 -- Comment needed???
1772 -------------------
1773 -- Process_Discr --
1774 -------------------
1776 function Process_Discr (Nod : Node_Id) return Traverse_Result is
1777 Ent : Entity_Id;
1779 begin
1780 if Nkind (Nod) = N_Identifier then
1781 Ent := Entity (Nod);
1783 if Present (Ent)
1784 and then Ekind (Ent) = E_Discriminant
1785 then
1786 Rewrite (Nod,
1787 Make_Selected_Component (Loc,
1788 Prefix => New_Copy_Tree (Tsk, New_Sloc => Loc),
1789 Selector_Name => Make_Identifier (Loc, Chars (Ent))));
1791 Set_Etype (Nod, Etype (Ent));
1792 end if;
1794 end if;
1796 return OK;
1797 end Process_Discr;
1799 procedure Replace_Discrs is new Traverse_Proc (Process_Discr);
1801 -- Start of processing for Replace_Actual_Discriminants
1803 begin
1804 if Expander_Active then
1805 null;
1807 -- Allow the replacement of concurrent discriminants in GNATprove even
1808 -- though this is a light expansion activity. Note that generic units
1809 -- are not modified.
1811 elsif GNATprove_Mode and not Inside_A_Generic then
1812 null;
1814 else
1815 return;
1816 end if;
1818 if Nkind (Name (N)) = N_Selected_Component then
1819 Tsk := Prefix (Name (N));
1821 elsif Nkind (Name (N)) = N_Indexed_Component then
1822 Tsk := Prefix (Prefix (Name (N)));
1823 end if;
1825 if Present (Tsk) then
1826 Replace_Discrs (Default);
1827 end if;
1828 end Replace_Actual_Discriminants;
1830 -------------
1831 -- Resolve --
1832 -------------
1834 procedure Resolve (N : Node_Id; Typ : Entity_Id) is
1835 Ambiguous : Boolean := False;
1836 Ctx_Type : Entity_Id := Typ;
1837 Expr_Type : Entity_Id := Empty; -- prevent junk warning
1838 Err_Type : Entity_Id := Empty;
1839 Found : Boolean := False;
1840 From_Lib : Boolean;
1841 I : Interp_Index;
1842 I1 : Interp_Index := 0; -- prevent junk warning
1843 It : Interp;
1844 It1 : Interp;
1845 Seen : Entity_Id := Empty; -- prevent junk warning
1847 function Comes_From_Predefined_Lib_Unit (Nod : Node_Id) return Boolean;
1848 -- Determine whether a node comes from a predefined library unit or
1849 -- Standard.
1851 procedure Patch_Up_Value (N : Node_Id; Typ : Entity_Id);
1852 -- Try and fix up a literal so that it matches its expected type. New
1853 -- literals are manufactured if necessary to avoid cascaded errors.
1855 procedure Report_Ambiguous_Argument;
1856 -- Additional diagnostics when an ambiguous call has an ambiguous
1857 -- argument (typically a controlling actual).
1859 procedure Resolution_Failed;
1860 -- Called when attempt at resolving current expression fails
1862 ------------------------------------
1863 -- Comes_From_Predefined_Lib_Unit --
1864 -------------------------------------
1866 function Comes_From_Predefined_Lib_Unit (Nod : Node_Id) return Boolean is
1867 begin
1868 return
1869 Sloc (Nod) = Standard_Location or else In_Predefined_Unit (Nod);
1870 end Comes_From_Predefined_Lib_Unit;
1872 --------------------
1873 -- Patch_Up_Value --
1874 --------------------
1876 procedure Patch_Up_Value (N : Node_Id; Typ : Entity_Id) is
1877 begin
1878 if Nkind (N) = N_Integer_Literal and then Is_Real_Type (Typ) then
1879 Rewrite (N,
1880 Make_Real_Literal (Sloc (N),
1881 Realval => UR_From_Uint (Intval (N))));
1882 Set_Etype (N, Universal_Real);
1883 Set_Is_Static_Expression (N);
1885 elsif Nkind (N) = N_Real_Literal and then Is_Integer_Type (Typ) then
1886 Rewrite (N,
1887 Make_Integer_Literal (Sloc (N),
1888 Intval => UR_To_Uint (Realval (N))));
1889 Set_Etype (N, Universal_Integer);
1890 Set_Is_Static_Expression (N);
1892 elsif Nkind (N) = N_String_Literal
1893 and then Is_Character_Type (Typ)
1894 then
1895 Set_Character_Literal_Name (Char_Code (Character'Pos ('A')));
1896 Rewrite (N,
1897 Make_Character_Literal (Sloc (N),
1898 Chars => Name_Find,
1899 Char_Literal_Value =>
1900 UI_From_Int (Character'Pos ('A'))));
1901 Set_Etype (N, Any_Character);
1902 Set_Is_Static_Expression (N);
1904 elsif Nkind (N) /= N_String_Literal and then Is_String_Type (Typ) then
1905 Rewrite (N,
1906 Make_String_Literal (Sloc (N),
1907 Strval => End_String));
1909 elsif Nkind (N) = N_Range then
1910 Patch_Up_Value (Low_Bound (N), Typ);
1911 Patch_Up_Value (High_Bound (N), Typ);
1912 end if;
1913 end Patch_Up_Value;
1915 -------------------------------
1916 -- Report_Ambiguous_Argument --
1917 -------------------------------
1919 procedure Report_Ambiguous_Argument is
1920 Arg : constant Node_Id := First (Parameter_Associations (N));
1921 I : Interp_Index;
1922 It : Interp;
1924 begin
1925 if Nkind (Arg) = N_Function_Call
1926 and then Is_Entity_Name (Name (Arg))
1927 and then Is_Overloaded (Name (Arg))
1928 then
1929 Error_Msg_NE ("ambiguous call to&", Arg, Name (Arg));
1931 -- Could use comments on what is going on here???
1933 Get_First_Interp (Name (Arg), I, It);
1934 while Present (It.Nam) loop
1935 Error_Msg_Sloc := Sloc (It.Nam);
1937 if Nkind (Parent (It.Nam)) = N_Full_Type_Declaration then
1938 Error_Msg_N ("interpretation (inherited) #!", Arg);
1939 else
1940 Error_Msg_N ("interpretation #!", Arg);
1941 end if;
1943 Get_Next_Interp (I, It);
1944 end loop;
1945 end if;
1946 end Report_Ambiguous_Argument;
1948 -----------------------
1949 -- Resolution_Failed --
1950 -----------------------
1952 procedure Resolution_Failed is
1953 begin
1954 Patch_Up_Value (N, Typ);
1956 -- Set the type to the desired one to minimize cascaded errors. Note
1957 -- that this is an approximation and does not work in all cases.
1959 Set_Etype (N, Typ);
1961 Debug_A_Exit ("resolving ", N, " (done, resolution failed)");
1962 Set_Is_Overloaded (N, False);
1964 -- The caller will return without calling the expander, so we need
1965 -- to set the analyzed flag. Note that it is fine to set Analyzed
1966 -- to True even if we are in the middle of a shallow analysis,
1967 -- (see the spec of sem for more details) since this is an error
1968 -- situation anyway, and there is no point in repeating the
1969 -- analysis later (indeed it won't work to repeat it later, since
1970 -- we haven't got a clear resolution of which entity is being
1971 -- referenced.)
1973 Set_Analyzed (N, True);
1974 return;
1975 end Resolution_Failed;
1977 -- Start of processing for Resolve
1979 begin
1980 if N = Error then
1981 return;
1982 end if;
1984 -- Access attribute on remote subprogram cannot be used for a non-remote
1985 -- access-to-subprogram type.
1987 if Nkind (N) = N_Attribute_Reference
1988 and then Nam_In (Attribute_Name (N), Name_Access,
1989 Name_Unrestricted_Access,
1990 Name_Unchecked_Access)
1991 and then Comes_From_Source (N)
1992 and then Is_Entity_Name (Prefix (N))
1993 and then Is_Subprogram (Entity (Prefix (N)))
1994 and then Is_Remote_Call_Interface (Entity (Prefix (N)))
1995 and then not Is_Remote_Access_To_Subprogram_Type (Typ)
1996 then
1997 Error_Msg_N
1998 ("prefix must statically denote a non-remote subprogram", N);
1999 end if;
2001 From_Lib := Comes_From_Predefined_Lib_Unit (N);
2003 -- If the context is a Remote_Access_To_Subprogram, access attributes
2004 -- must be resolved with the corresponding fat pointer. There is no need
2005 -- to check for the attribute name since the return type of an
2006 -- attribute is never a remote type.
2008 if Nkind (N) = N_Attribute_Reference
2009 and then Comes_From_Source (N)
2010 and then (Is_Remote_Call_Interface (Typ) or else Is_Remote_Types (Typ))
2011 then
2012 declare
2013 Attr : constant Attribute_Id :=
2014 Get_Attribute_Id (Attribute_Name (N));
2015 Pref : constant Node_Id := Prefix (N);
2016 Decl : Node_Id;
2017 Spec : Node_Id;
2018 Is_Remote : Boolean := True;
2020 begin
2021 -- Check that Typ is a remote access-to-subprogram type
2023 if Is_Remote_Access_To_Subprogram_Type (Typ) then
2025 -- Prefix (N) must statically denote a remote subprogram
2026 -- declared in a package specification.
2028 if Attr = Attribute_Access or else
2029 Attr = Attribute_Unchecked_Access or else
2030 Attr = Attribute_Unrestricted_Access
2031 then
2032 Decl := Unit_Declaration_Node (Entity (Pref));
2034 if Nkind (Decl) = N_Subprogram_Body then
2035 Spec := Corresponding_Spec (Decl);
2037 if Present (Spec) then
2038 Decl := Unit_Declaration_Node (Spec);
2039 end if;
2040 end if;
2042 Spec := Parent (Decl);
2044 if not Is_Entity_Name (Prefix (N))
2045 or else Nkind (Spec) /= N_Package_Specification
2046 or else
2047 not Is_Remote_Call_Interface (Defining_Entity (Spec))
2048 then
2049 Is_Remote := False;
2050 Error_Msg_N
2051 ("prefix must statically denote a remote subprogram ",
2053 end if;
2055 -- If we are generating code in distributed mode, perform
2056 -- semantic checks against corresponding remote entities.
2058 if Expander_Active
2059 and then Get_PCS_Name /= Name_No_DSA
2060 then
2061 Check_Subtype_Conformant
2062 (New_Id => Entity (Prefix (N)),
2063 Old_Id => Designated_Type
2064 (Corresponding_Remote_Type (Typ)),
2065 Err_Loc => N);
2067 if Is_Remote then
2068 Process_Remote_AST_Attribute (N, Typ);
2069 end if;
2070 end if;
2071 end if;
2072 end if;
2073 end;
2074 end if;
2076 Debug_A_Entry ("resolving ", N);
2078 if Debug_Flag_V then
2079 Write_Overloads (N);
2080 end if;
2082 if Comes_From_Source (N) then
2083 if Is_Fixed_Point_Type (Typ) then
2084 Check_Restriction (No_Fixed_Point, N);
2086 elsif Is_Floating_Point_Type (Typ)
2087 and then Typ /= Universal_Real
2088 and then Typ /= Any_Real
2089 then
2090 Check_Restriction (No_Floating_Point, N);
2091 end if;
2092 end if;
2094 -- Return if already analyzed
2096 if Analyzed (N) then
2097 Debug_A_Exit ("resolving ", N, " (done, already analyzed)");
2098 Analyze_Dimension (N);
2099 return;
2101 -- Any case of Any_Type as the Etype value means that we had a
2102 -- previous error.
2104 elsif Etype (N) = Any_Type then
2105 Debug_A_Exit ("resolving ", N, " (done, Etype = Any_Type)");
2106 return;
2107 end if;
2109 Check_Parameterless_Call (N);
2111 -- The resolution of an Expression_With_Actions is determined by
2112 -- its Expression.
2114 if Nkind (N) = N_Expression_With_Actions then
2115 Resolve (Expression (N), Typ);
2117 Found := True;
2118 Expr_Type := Etype (Expression (N));
2120 -- If not overloaded, then we know the type, and all that needs doing
2121 -- is to check that this type is compatible with the context.
2123 elsif not Is_Overloaded (N) then
2124 Found := Covers (Typ, Etype (N));
2125 Expr_Type := Etype (N);
2127 -- In the overloaded case, we must select the interpretation that
2128 -- is compatible with the context (i.e. the type passed to Resolve)
2130 else
2131 -- Loop through possible interpretations
2133 Get_First_Interp (N, I, It);
2134 Interp_Loop : while Present (It.Typ) loop
2135 if Debug_Flag_V then
2136 Write_Str ("Interp: ");
2137 Write_Interp (It);
2138 end if;
2140 -- We are only interested in interpretations that are compatible
2141 -- with the expected type, any other interpretations are ignored.
2143 if not Covers (Typ, It.Typ) then
2144 if Debug_Flag_V then
2145 Write_Str (" interpretation incompatible with context");
2146 Write_Eol;
2147 end if;
2149 else
2150 -- Skip the current interpretation if it is disabled by an
2151 -- abstract operator. This action is performed only when the
2152 -- type against which we are resolving is the same as the
2153 -- type of the interpretation.
2155 if Ada_Version >= Ada_2005
2156 and then It.Typ = Typ
2157 and then Typ /= Universal_Integer
2158 and then Typ /= Universal_Real
2159 and then Present (It.Abstract_Op)
2160 then
2161 if Debug_Flag_V then
2162 Write_Line ("Skip.");
2163 end if;
2165 goto Continue;
2166 end if;
2168 -- First matching interpretation
2170 if not Found then
2171 Found := True;
2172 I1 := I;
2173 Seen := It.Nam;
2174 Expr_Type := It.Typ;
2176 -- Matching interpretation that is not the first, maybe an
2177 -- error, but there are some cases where preference rules are
2178 -- used to choose between the two possibilities. These and
2179 -- some more obscure cases are handled in Disambiguate.
2181 else
2182 -- If the current statement is part of a predefined library
2183 -- unit, then all interpretations which come from user level
2184 -- packages should not be considered. Check previous and
2185 -- current one.
2187 if From_Lib then
2188 if not Comes_From_Predefined_Lib_Unit (It.Nam) then
2189 goto Continue;
2191 elsif not Comes_From_Predefined_Lib_Unit (Seen) then
2193 -- Previous interpretation must be discarded
2195 I1 := I;
2196 Seen := It.Nam;
2197 Expr_Type := It.Typ;
2198 Set_Entity (N, Seen);
2199 goto Continue;
2200 end if;
2201 end if;
2203 -- Otherwise apply further disambiguation steps
2205 Error_Msg_Sloc := Sloc (Seen);
2206 It1 := Disambiguate (N, I1, I, Typ);
2208 -- Disambiguation has succeeded. Skip the remaining
2209 -- interpretations.
2211 if It1 /= No_Interp then
2212 Seen := It1.Nam;
2213 Expr_Type := It1.Typ;
2215 while Present (It.Typ) loop
2216 Get_Next_Interp (I, It);
2217 end loop;
2219 else
2220 -- Before we issue an ambiguity complaint, check for the
2221 -- case of a subprogram call where at least one of the
2222 -- arguments is Any_Type, and if so suppress the message,
2223 -- since it is a cascaded error. This can also happen for
2224 -- a generalized indexing operation.
2226 if Nkind (N) in N_Subprogram_Call
2227 or else (Nkind (N) = N_Indexed_Component
2228 and then Present (Generalized_Indexing (N)))
2229 then
2230 declare
2231 A : Node_Id;
2232 E : Node_Id;
2234 begin
2235 if Nkind (N) = N_Indexed_Component then
2236 Rewrite (N, Generalized_Indexing (N));
2237 end if;
2239 A := First_Actual (N);
2240 while Present (A) loop
2241 E := A;
2243 if Nkind (E) = N_Parameter_Association then
2244 E := Explicit_Actual_Parameter (E);
2245 end if;
2247 if Etype (E) = Any_Type then
2248 if Debug_Flag_V then
2249 Write_Str ("Any_Type in call");
2250 Write_Eol;
2251 end if;
2253 exit Interp_Loop;
2254 end if;
2256 Next_Actual (A);
2257 end loop;
2258 end;
2260 elsif Nkind (N) in N_Binary_Op
2261 and then (Etype (Left_Opnd (N)) = Any_Type
2262 or else Etype (Right_Opnd (N)) = Any_Type)
2263 then
2264 exit Interp_Loop;
2266 elsif Nkind (N) in N_Unary_Op
2267 and then Etype (Right_Opnd (N)) = Any_Type
2268 then
2269 exit Interp_Loop;
2270 end if;
2272 -- Not that special case, so issue message using the flag
2273 -- Ambiguous to control printing of the header message
2274 -- only at the start of an ambiguous set.
2276 if not Ambiguous then
2277 if Nkind (N) = N_Function_Call
2278 and then Nkind (Name (N)) = N_Explicit_Dereference
2279 then
2280 Error_Msg_N
2281 ("ambiguous expression (cannot resolve indirect "
2282 & "call)!", N);
2283 else
2284 Error_Msg_NE -- CODEFIX
2285 ("ambiguous expression (cannot resolve&)!",
2286 N, It.Nam);
2287 end if;
2289 Ambiguous := True;
2291 if Nkind (Parent (Seen)) = N_Full_Type_Declaration then
2292 Error_Msg_N
2293 ("\\possible interpretation (inherited)#!", N);
2294 else
2295 Error_Msg_N -- CODEFIX
2296 ("\\possible interpretation#!", N);
2297 end if;
2299 if Nkind (N) in N_Subprogram_Call
2300 and then Present (Parameter_Associations (N))
2301 then
2302 Report_Ambiguous_Argument;
2303 end if;
2304 end if;
2306 Error_Msg_Sloc := Sloc (It.Nam);
2308 -- By default, the error message refers to the candidate
2309 -- interpretation. But if it is a predefined operator, it
2310 -- is implicitly declared at the declaration of the type
2311 -- of the operand. Recover the sloc of that declaration
2312 -- for the error message.
2314 if Nkind (N) in N_Op
2315 and then Scope (It.Nam) = Standard_Standard
2316 and then not Is_Overloaded (Right_Opnd (N))
2317 and then Scope (Base_Type (Etype (Right_Opnd (N)))) /=
2318 Standard_Standard
2319 then
2320 Err_Type := First_Subtype (Etype (Right_Opnd (N)));
2322 if Comes_From_Source (Err_Type)
2323 and then Present (Parent (Err_Type))
2324 then
2325 Error_Msg_Sloc := Sloc (Parent (Err_Type));
2326 end if;
2328 elsif Nkind (N) in N_Binary_Op
2329 and then Scope (It.Nam) = Standard_Standard
2330 and then not Is_Overloaded (Left_Opnd (N))
2331 and then Scope (Base_Type (Etype (Left_Opnd (N)))) /=
2332 Standard_Standard
2333 then
2334 Err_Type := First_Subtype (Etype (Left_Opnd (N)));
2336 if Comes_From_Source (Err_Type)
2337 and then Present (Parent (Err_Type))
2338 then
2339 Error_Msg_Sloc := Sloc (Parent (Err_Type));
2340 end if;
2342 -- If this is an indirect call, use the subprogram_type
2343 -- in the message, to have a meaningful location. Also
2344 -- indicate if this is an inherited operation, created
2345 -- by a type declaration.
2347 elsif Nkind (N) = N_Function_Call
2348 and then Nkind (Name (N)) = N_Explicit_Dereference
2349 and then Is_Type (It.Nam)
2350 then
2351 Err_Type := It.Nam;
2352 Error_Msg_Sloc :=
2353 Sloc (Associated_Node_For_Itype (Err_Type));
2354 else
2355 Err_Type := Empty;
2356 end if;
2358 if Nkind (N) in N_Op
2359 and then Scope (It.Nam) = Standard_Standard
2360 and then Present (Err_Type)
2361 then
2362 -- Special-case the message for universal_fixed
2363 -- operators, which are not declared with the type
2364 -- of the operand, but appear forever in Standard.
2366 if It.Typ = Universal_Fixed
2367 and then Scope (It.Nam) = Standard_Standard
2368 then
2369 Error_Msg_N
2370 ("\\possible interpretation as universal_fixed "
2371 & "operation (RM 4.5.5 (19))", N);
2372 else
2373 Error_Msg_N
2374 ("\\possible interpretation (predefined)#!", N);
2375 end if;
2377 elsif
2378 Nkind (Parent (It.Nam)) = N_Full_Type_Declaration
2379 then
2380 Error_Msg_N
2381 ("\\possible interpretation (inherited)#!", N);
2382 else
2383 Error_Msg_N -- CODEFIX
2384 ("\\possible interpretation#!", N);
2385 end if;
2387 end if;
2388 end if;
2390 -- We have a matching interpretation, Expr_Type is the type
2391 -- from this interpretation, and Seen is the entity.
2393 -- For an operator, just set the entity name. The type will be
2394 -- set by the specific operator resolution routine.
2396 if Nkind (N) in N_Op then
2397 Set_Entity (N, Seen);
2398 Generate_Reference (Seen, N);
2400 elsif Nkind_In (N, N_Case_Expression,
2401 N_Character_Literal,
2402 N_Delta_Aggregate,
2403 N_If_Expression)
2404 then
2405 Set_Etype (N, Expr_Type);
2407 -- AI05-0139-2: Expression is overloaded because type has
2408 -- implicit dereference. If type matches context, no implicit
2409 -- dereference is involved. If the expression is an entity,
2410 -- generate a reference to it, as this is not done for an
2411 -- overloaded construct during analysis.
2413 elsif Has_Implicit_Dereference (Expr_Type) then
2414 Set_Etype (N, Expr_Type);
2415 Set_Is_Overloaded (N, False);
2417 if Is_Entity_Name (N) then
2418 Generate_Reference (Entity (N), N);
2419 end if;
2421 exit Interp_Loop;
2423 elsif Is_Overloaded (N)
2424 and then Present (It.Nam)
2425 and then Ekind (It.Nam) = E_Discriminant
2426 and then Has_Implicit_Dereference (It.Nam)
2427 then
2428 -- If the node is a general indexing, the dereference is
2429 -- is inserted when resolving the rewritten form, else
2430 -- insert it now.
2432 if Nkind (N) /= N_Indexed_Component
2433 or else No (Generalized_Indexing (N))
2434 then
2435 Build_Explicit_Dereference (N, It.Nam);
2436 end if;
2438 -- For an explicit dereference, attribute reference, range,
2439 -- short-circuit form (which is not an operator node), or call
2440 -- with a name that is an explicit dereference, there is
2441 -- nothing to be done at this point.
2443 elsif Nkind_In (N, N_Attribute_Reference,
2444 N_And_Then,
2445 N_Explicit_Dereference,
2446 N_Identifier,
2447 N_Indexed_Component,
2448 N_Or_Else,
2449 N_Range,
2450 N_Selected_Component,
2451 N_Slice)
2452 or else Nkind (Name (N)) = N_Explicit_Dereference
2453 then
2454 null;
2456 -- For procedure or function calls, set the type of the name,
2457 -- and also the entity pointer for the prefix.
2459 elsif Nkind (N) in N_Subprogram_Call
2460 and then Is_Entity_Name (Name (N))
2461 then
2462 Set_Etype (Name (N), Expr_Type);
2463 Set_Entity (Name (N), Seen);
2464 Generate_Reference (Seen, Name (N));
2466 elsif Nkind (N) = N_Function_Call
2467 and then Nkind (Name (N)) = N_Selected_Component
2468 then
2469 Set_Etype (Name (N), Expr_Type);
2470 Set_Entity (Selector_Name (Name (N)), Seen);
2471 Generate_Reference (Seen, Selector_Name (Name (N)));
2473 -- For all other cases, just set the type of the Name
2475 else
2476 Set_Etype (Name (N), Expr_Type);
2477 end if;
2479 end if;
2481 <<Continue>>
2483 -- Move to next interpretation
2485 exit Interp_Loop when No (It.Typ);
2487 Get_Next_Interp (I, It);
2488 end loop Interp_Loop;
2489 end if;
2491 -- At this stage Found indicates whether or not an acceptable
2492 -- interpretation exists. If not, then we have an error, except that if
2493 -- the context is Any_Type as a result of some other error, then we
2494 -- suppress the error report.
2496 if not Found then
2497 if Typ /= Any_Type then
2499 -- If type we are looking for is Void, then this is the procedure
2500 -- call case, and the error is simply that what we gave is not a
2501 -- procedure name (we think of procedure calls as expressions with
2502 -- types internally, but the user doesn't think of them this way).
2504 if Typ = Standard_Void_Type then
2506 -- Special case message if function used as a procedure
2508 if Nkind (N) = N_Procedure_Call_Statement
2509 and then Is_Entity_Name (Name (N))
2510 and then Ekind (Entity (Name (N))) = E_Function
2511 then
2512 Error_Msg_NE
2513 ("cannot use call to function & as a statement",
2514 Name (N), Entity (Name (N)));
2515 Error_Msg_N
2516 ("\return value of a function call cannot be ignored",
2517 Name (N));
2519 -- Otherwise give general message (not clear what cases this
2520 -- covers, but no harm in providing for them).
2522 else
2523 Error_Msg_N ("expect procedure name in procedure call", N);
2524 end if;
2526 Found := True;
2528 -- Otherwise we do have a subexpression with the wrong type
2530 -- Check for the case of an allocator which uses an access type
2531 -- instead of the designated type. This is a common error and we
2532 -- specialize the message, posting an error on the operand of the
2533 -- allocator, complaining that we expected the designated type of
2534 -- the allocator.
2536 elsif Nkind (N) = N_Allocator
2537 and then Is_Access_Type (Typ)
2538 and then Is_Access_Type (Etype (N))
2539 and then Designated_Type (Etype (N)) = Typ
2540 then
2541 Wrong_Type (Expression (N), Designated_Type (Typ));
2542 Found := True;
2544 -- Check for view mismatch on Null in instances, for which the
2545 -- view-swapping mechanism has no identifier.
2547 elsif (In_Instance or else In_Inlined_Body)
2548 and then (Nkind (N) = N_Null)
2549 and then Is_Private_Type (Typ)
2550 and then Is_Access_Type (Full_View (Typ))
2551 then
2552 Resolve (N, Full_View (Typ));
2553 Set_Etype (N, Typ);
2554 return;
2556 -- Check for an aggregate. Sometimes we can get bogus aggregates
2557 -- from misuse of parentheses, and we are about to complain about
2558 -- the aggregate without even looking inside it.
2560 -- Instead, if we have an aggregate of type Any_Composite, then
2561 -- analyze and resolve the component fields, and then only issue
2562 -- another message if we get no errors doing this (otherwise
2563 -- assume that the errors in the aggregate caused the problem).
2565 elsif Nkind (N) = N_Aggregate
2566 and then Etype (N) = Any_Composite
2567 then
2568 -- Disable expansion in any case. If there is a type mismatch
2569 -- it may be fatal to try to expand the aggregate. The flag
2570 -- would otherwise be set to false when the error is posted.
2572 Expander_Active := False;
2574 declare
2575 procedure Check_Aggr (Aggr : Node_Id);
2576 -- Check one aggregate, and set Found to True if we have a
2577 -- definite error in any of its elements
2579 procedure Check_Elmt (Aelmt : Node_Id);
2580 -- Check one element of aggregate and set Found to True if
2581 -- we definitely have an error in the element.
2583 ----------------
2584 -- Check_Aggr --
2585 ----------------
2587 procedure Check_Aggr (Aggr : Node_Id) is
2588 Elmt : Node_Id;
2590 begin
2591 if Present (Expressions (Aggr)) then
2592 Elmt := First (Expressions (Aggr));
2593 while Present (Elmt) loop
2594 Check_Elmt (Elmt);
2595 Next (Elmt);
2596 end loop;
2597 end if;
2599 if Present (Component_Associations (Aggr)) then
2600 Elmt := First (Component_Associations (Aggr));
2601 while Present (Elmt) loop
2603 -- If this is a default-initialized component, then
2604 -- there is nothing to check. The box will be
2605 -- replaced by the appropriate call during late
2606 -- expansion.
2608 if Nkind (Elmt) /= N_Iterated_Component_Association
2609 and then not Box_Present (Elmt)
2610 then
2611 Check_Elmt (Expression (Elmt));
2612 end if;
2614 Next (Elmt);
2615 end loop;
2616 end if;
2617 end Check_Aggr;
2619 ----------------
2620 -- Check_Elmt --
2621 ----------------
2623 procedure Check_Elmt (Aelmt : Node_Id) is
2624 begin
2625 -- If we have a nested aggregate, go inside it (to
2626 -- attempt a naked analyze-resolve of the aggregate can
2627 -- cause undesirable cascaded errors). Do not resolve
2628 -- expression if it needs a type from context, as for
2629 -- integer * fixed expression.
2631 if Nkind (Aelmt) = N_Aggregate then
2632 Check_Aggr (Aelmt);
2634 else
2635 Analyze (Aelmt);
2637 if not Is_Overloaded (Aelmt)
2638 and then Etype (Aelmt) /= Any_Fixed
2639 then
2640 Resolve (Aelmt);
2641 end if;
2643 if Etype (Aelmt) = Any_Type then
2644 Found := True;
2645 end if;
2646 end if;
2647 end Check_Elmt;
2649 begin
2650 Check_Aggr (N);
2651 end;
2652 end if;
2654 -- Looks like we have a type error, but check for special case
2655 -- of Address wanted, integer found, with the configuration pragma
2656 -- Allow_Integer_Address active. If we have this case, introduce
2657 -- an unchecked conversion to allow the integer expression to be
2658 -- treated as an Address. The reverse case of integer wanted,
2659 -- Address found, is treated in an analogous manner.
2661 if Address_Integer_Convert_OK (Typ, Etype (N)) then
2662 Rewrite (N, Unchecked_Convert_To (Typ, Relocate_Node (N)));
2663 Analyze_And_Resolve (N, Typ);
2664 return;
2666 -- Under relaxed RM semantics silently replace occurrences of null
2667 -- by System.Address_Null.
2669 elsif Null_To_Null_Address_Convert_OK (N, Typ) then
2670 Replace_Null_By_Null_Address (N);
2671 Analyze_And_Resolve (N, Typ);
2672 return;
2673 end if;
2675 -- That special Allow_Integer_Address check did not apply, so we
2676 -- have a real type error. If an error message was issued already,
2677 -- Found got reset to True, so if it's still False, issue standard
2678 -- Wrong_Type message.
2680 if not Found then
2681 if Is_Overloaded (N) and then Nkind (N) = N_Function_Call then
2682 declare
2683 Subp_Name : Node_Id;
2685 begin
2686 if Is_Entity_Name (Name (N)) then
2687 Subp_Name := Name (N);
2689 elsif Nkind (Name (N)) = N_Selected_Component then
2691 -- Protected operation: retrieve operation name
2693 Subp_Name := Selector_Name (Name (N));
2695 else
2696 raise Program_Error;
2697 end if;
2699 Error_Msg_Node_2 := Typ;
2700 Error_Msg_NE
2701 ("no visible interpretation of& matches expected type&",
2702 N, Subp_Name);
2703 end;
2705 if All_Errors_Mode then
2706 declare
2707 Index : Interp_Index;
2708 It : Interp;
2710 begin
2711 Error_Msg_N ("\\possible interpretations:", N);
2713 Get_First_Interp (Name (N), Index, It);
2714 while Present (It.Nam) loop
2715 Error_Msg_Sloc := Sloc (It.Nam);
2716 Error_Msg_Node_2 := It.Nam;
2717 Error_Msg_NE
2718 ("\\ type& for & declared#", N, It.Typ);
2719 Get_Next_Interp (Index, It);
2720 end loop;
2721 end;
2723 else
2724 Error_Msg_N ("\use -gnatf for details", N);
2725 end if;
2727 else
2728 Wrong_Type (N, Typ);
2729 end if;
2730 end if;
2731 end if;
2733 Resolution_Failed;
2734 return;
2736 -- Test if we have more than one interpretation for the context
2738 elsif Ambiguous then
2739 Resolution_Failed;
2740 return;
2742 -- Only one intepretation
2744 else
2745 -- In Ada 2005, if we have something like "X : T := 2 + 2;", where
2746 -- the "+" on T is abstract, and the operands are of universal type,
2747 -- the above code will have (incorrectly) resolved the "+" to the
2748 -- universal one in Standard. Therefore check for this case and give
2749 -- an error. We can't do this earlier, because it would cause legal
2750 -- cases to get errors (when some other type has an abstract "+").
2752 if Ada_Version >= Ada_2005
2753 and then Nkind (N) in N_Op
2754 and then Is_Overloaded (N)
2755 and then Is_Universal_Numeric_Type (Etype (Entity (N)))
2756 then
2757 Get_First_Interp (N, I, It);
2758 while Present (It.Typ) loop
2759 if Present (It.Abstract_Op) and then
2760 Etype (It.Abstract_Op) = Typ
2761 then
2762 Error_Msg_NE
2763 ("cannot call abstract subprogram &!", N, It.Abstract_Op);
2764 return;
2765 end if;
2767 Get_Next_Interp (I, It);
2768 end loop;
2769 end if;
2771 -- Here we have an acceptable interpretation for the context
2773 -- Propagate type information and normalize tree for various
2774 -- predefined operations. If the context only imposes a class of
2775 -- types, rather than a specific type, propagate the actual type
2776 -- downward.
2778 if Typ = Any_Integer or else
2779 Typ = Any_Boolean or else
2780 Typ = Any_Modular or else
2781 Typ = Any_Real or else
2782 Typ = Any_Discrete
2783 then
2784 Ctx_Type := Expr_Type;
2786 -- Any_Fixed is legal in a real context only if a specific fixed-
2787 -- point type is imposed. If Norman Cohen can be confused by this,
2788 -- it deserves a separate message.
2790 if Typ = Any_Real
2791 and then Expr_Type = Any_Fixed
2792 then
2793 Error_Msg_N ("illegal context for mixed mode operation", N);
2794 Set_Etype (N, Universal_Real);
2795 Ctx_Type := Universal_Real;
2796 end if;
2797 end if;
2799 -- A user-defined operator is transformed into a function call at
2800 -- this point, so that further processing knows that operators are
2801 -- really operators (i.e. are predefined operators). User-defined
2802 -- operators that are intrinsic are just renamings of the predefined
2803 -- ones, and need not be turned into calls either, but if they rename
2804 -- a different operator, we must transform the node accordingly.
2805 -- Instantiations of Unchecked_Conversion are intrinsic but are
2806 -- treated as functions, even if given an operator designator.
2808 if Nkind (N) in N_Op
2809 and then Present (Entity (N))
2810 and then Ekind (Entity (N)) /= E_Operator
2811 then
2812 if not Is_Predefined_Op (Entity (N)) then
2813 Rewrite_Operator_As_Call (N, Entity (N));
2815 elsif Present (Alias (Entity (N)))
2816 and then
2817 Nkind (Parent (Parent (Entity (N)))) =
2818 N_Subprogram_Renaming_Declaration
2819 then
2820 Rewrite_Renamed_Operator (N, Alias (Entity (N)), Typ);
2822 -- If the node is rewritten, it will be fully resolved in
2823 -- Rewrite_Renamed_Operator.
2825 if Analyzed (N) then
2826 return;
2827 end if;
2828 end if;
2829 end if;
2831 case N_Subexpr'(Nkind (N)) is
2832 when N_Aggregate =>
2833 Resolve_Aggregate (N, Ctx_Type);
2835 when N_Allocator =>
2836 Resolve_Allocator (N, Ctx_Type);
2838 when N_Short_Circuit =>
2839 Resolve_Short_Circuit (N, Ctx_Type);
2841 when N_Attribute_Reference =>
2842 Resolve_Attribute (N, Ctx_Type);
2844 when N_Case_Expression =>
2845 Resolve_Case_Expression (N, Ctx_Type);
2847 when N_Character_Literal =>
2848 Resolve_Character_Literal (N, Ctx_Type);
2850 when N_Delta_Aggregate =>
2851 Resolve_Delta_Aggregate (N, Ctx_Type);
2853 when N_Expanded_Name =>
2854 Resolve_Entity_Name (N, Ctx_Type);
2856 when N_Explicit_Dereference =>
2857 Resolve_Explicit_Dereference (N, Ctx_Type);
2859 when N_Expression_With_Actions =>
2860 Resolve_Expression_With_Actions (N, Ctx_Type);
2862 when N_Extension_Aggregate =>
2863 Resolve_Extension_Aggregate (N, Ctx_Type);
2865 when N_Function_Call =>
2866 Resolve_Call (N, Ctx_Type);
2868 when N_Identifier =>
2869 Resolve_Entity_Name (N, Ctx_Type);
2871 when N_If_Expression =>
2872 Resolve_If_Expression (N, Ctx_Type);
2874 when N_Indexed_Component =>
2875 Resolve_Indexed_Component (N, Ctx_Type);
2877 when N_Integer_Literal =>
2878 Resolve_Integer_Literal (N, Ctx_Type);
2880 when N_Membership_Test =>
2881 Resolve_Membership_Op (N, Ctx_Type);
2883 when N_Null =>
2884 Resolve_Null (N, Ctx_Type);
2886 when N_Op_And
2887 | N_Op_Or
2888 | N_Op_Xor
2890 Resolve_Logical_Op (N, Ctx_Type);
2892 when N_Op_Eq
2893 | N_Op_Ne
2895 Resolve_Equality_Op (N, Ctx_Type);
2897 when N_Op_Ge
2898 | N_Op_Gt
2899 | N_Op_Le
2900 | N_Op_Lt
2902 Resolve_Comparison_Op (N, Ctx_Type);
2904 when N_Op_Not =>
2905 Resolve_Op_Not (N, Ctx_Type);
2907 when N_Op_Add
2908 | N_Op_Divide
2909 | N_Op_Mod
2910 | N_Op_Multiply
2911 | N_Op_Rem
2912 | N_Op_Subtract
2914 Resolve_Arithmetic_Op (N, Ctx_Type);
2916 when N_Op_Concat =>
2917 Resolve_Op_Concat (N, Ctx_Type);
2919 when N_Op_Expon =>
2920 Resolve_Op_Expon (N, Ctx_Type);
2922 when N_Op_Abs
2923 | N_Op_Minus
2924 | N_Op_Plus
2926 Resolve_Unary_Op (N, Ctx_Type);
2928 when N_Op_Shift =>
2929 Resolve_Shift (N, Ctx_Type);
2931 when N_Procedure_Call_Statement =>
2932 Resolve_Call (N, Ctx_Type);
2934 when N_Operator_Symbol =>
2935 Resolve_Operator_Symbol (N, Ctx_Type);
2937 when N_Qualified_Expression =>
2938 Resolve_Qualified_Expression (N, Ctx_Type);
2940 -- Why is the following null, needs a comment ???
2942 when N_Quantified_Expression =>
2943 null;
2945 when N_Raise_Expression =>
2946 Resolve_Raise_Expression (N, Ctx_Type);
2948 when N_Raise_xxx_Error =>
2949 Set_Etype (N, Ctx_Type);
2951 when N_Range =>
2952 Resolve_Range (N, Ctx_Type);
2954 when N_Real_Literal =>
2955 Resolve_Real_Literal (N, Ctx_Type);
2957 when N_Reference =>
2958 Resolve_Reference (N, Ctx_Type);
2960 when N_Selected_Component =>
2961 Resolve_Selected_Component (N, Ctx_Type);
2963 when N_Slice =>
2964 Resolve_Slice (N, Ctx_Type);
2966 when N_String_Literal =>
2967 Resolve_String_Literal (N, Ctx_Type);
2969 when N_Target_Name =>
2970 Resolve_Target_Name (N, Ctx_Type);
2972 when N_Type_Conversion =>
2973 Resolve_Type_Conversion (N, Ctx_Type);
2975 when N_Unchecked_Expression =>
2976 Resolve_Unchecked_Expression (N, Ctx_Type);
2978 when N_Unchecked_Type_Conversion =>
2979 Resolve_Unchecked_Type_Conversion (N, Ctx_Type);
2980 end case;
2982 -- Mark relevant use-type and use-package clauses as effective using
2983 -- the original node because constant folding may have occured and
2984 -- removed references that need to be examined.
2986 if Nkind (Original_Node (N)) in N_Op then
2987 Mark_Use_Clauses (Original_Node (N));
2988 end if;
2990 -- Ada 2012 (AI05-0149): Apply an (implicit) conversion to an
2991 -- expression of an anonymous access type that occurs in the context
2992 -- of a named general access type, except when the expression is that
2993 -- of a membership test. This ensures proper legality checking in
2994 -- terms of allowed conversions (expressions that would be illegal to
2995 -- convert implicitly are allowed in membership tests).
2997 if Ada_Version >= Ada_2012
2998 and then Ekind (Ctx_Type) = E_General_Access_Type
2999 and then Ekind (Etype (N)) = E_Anonymous_Access_Type
3000 and then Nkind (Parent (N)) not in N_Membership_Test
3001 then
3002 Rewrite (N, Convert_To (Ctx_Type, Relocate_Node (N)));
3003 Analyze_And_Resolve (N, Ctx_Type);
3004 end if;
3006 -- If the subexpression was replaced by a non-subexpression, then
3007 -- all we do is to expand it. The only legitimate case we know of
3008 -- is converting procedure call statement to entry call statements,
3009 -- but there may be others, so we are making this test general.
3011 if Nkind (N) not in N_Subexpr then
3012 Debug_A_Exit ("resolving ", N, " (done)");
3013 Expand (N);
3014 return;
3015 end if;
3017 -- The expression is definitely NOT overloaded at this point, so
3018 -- we reset the Is_Overloaded flag to avoid any confusion when
3019 -- reanalyzing the node.
3021 Set_Is_Overloaded (N, False);
3023 -- Freeze expression type, entity if it is a name, and designated
3024 -- type if it is an allocator (RM 13.14(10,11,13)).
3026 -- Now that the resolution of the type of the node is complete, and
3027 -- we did not detect an error, we can expand this node. We skip the
3028 -- expand call if we are in a default expression, see section
3029 -- "Handling of Default Expressions" in Sem spec.
3031 Debug_A_Exit ("resolving ", N, " (done)");
3033 -- We unconditionally freeze the expression, even if we are in
3034 -- default expression mode (the Freeze_Expression routine tests this
3035 -- flag and only freezes static types if it is set).
3037 -- Ada 2012 (AI05-177): The declaration of an expression function
3038 -- does not cause freezing, but we never reach here in that case.
3039 -- Here we are resolving the corresponding expanded body, so we do
3040 -- need to perform normal freezing.
3042 -- As elsewhere we do not emit freeze node within a generic. We make
3043 -- an exception for entities that are expressions, only to detect
3044 -- misuses of deferred constants and preserve the output of various
3045 -- tests.
3047 if not Inside_A_Generic or else Is_Entity_Name (N) then
3048 Freeze_Expression (N);
3049 end if;
3051 -- Now we can do the expansion
3053 Expand (N);
3054 end if;
3055 end Resolve;
3057 -------------
3058 -- Resolve --
3059 -------------
3061 -- Version with check(s) suppressed
3063 procedure Resolve (N : Node_Id; Typ : Entity_Id; Suppress : Check_Id) is
3064 begin
3065 if Suppress = All_Checks then
3066 declare
3067 Sva : constant Suppress_Array := Scope_Suppress.Suppress;
3068 begin
3069 Scope_Suppress.Suppress := (others => True);
3070 Resolve (N, Typ);
3071 Scope_Suppress.Suppress := Sva;
3072 end;
3074 else
3075 declare
3076 Svg : constant Boolean := Scope_Suppress.Suppress (Suppress);
3077 begin
3078 Scope_Suppress.Suppress (Suppress) := True;
3079 Resolve (N, Typ);
3080 Scope_Suppress.Suppress (Suppress) := Svg;
3081 end;
3082 end if;
3083 end Resolve;
3085 -------------
3086 -- Resolve --
3087 -------------
3089 -- Version with implicit type
3091 procedure Resolve (N : Node_Id) is
3092 begin
3093 Resolve (N, Etype (N));
3094 end Resolve;
3096 ---------------------
3097 -- Resolve_Actuals --
3098 ---------------------
3100 procedure Resolve_Actuals (N : Node_Id; Nam : Entity_Id) is
3101 Loc : constant Source_Ptr := Sloc (N);
3102 A : Node_Id;
3103 A_Id : Entity_Id;
3104 A_Typ : Entity_Id := Empty; -- init to avoid warning
3105 F : Entity_Id;
3106 F_Typ : Entity_Id;
3107 Prev : Node_Id := Empty;
3108 Orig_A : Node_Id;
3109 Real_F : Entity_Id := Empty; -- init to avoid warning
3111 Real_Subp : Entity_Id;
3112 -- If the subprogram being called is an inherited operation for
3113 -- a formal derived type in an instance, Real_Subp is the subprogram
3114 -- that will be called. It may have different formal names than the
3115 -- operation of the formal in the generic, so after actual is resolved
3116 -- the name of the actual in a named association must carry the name
3117 -- of the actual of the subprogram being called.
3119 procedure Check_Aliased_Parameter;
3120 -- Check rules on aliased parameters and related accessibility rules
3121 -- in (RM 3.10.2 (10.2-10.4)).
3123 procedure Check_Argument_Order;
3124 -- Performs a check for the case where the actuals are all simple
3125 -- identifiers that correspond to the formal names, but in the wrong
3126 -- order, which is considered suspicious and cause for a warning.
3128 procedure Check_Prefixed_Call;
3129 -- If the original node is an overloaded call in prefix notation,
3130 -- insert an 'Access or a dereference as needed over the first actual.
3131 -- Try_Object_Operation has already verified that there is a valid
3132 -- interpretation, but the form of the actual can only be determined
3133 -- once the primitive operation is identified.
3135 procedure Flag_Effectively_Volatile_Objects (Expr : Node_Id);
3136 -- Emit an error concerning the illegal usage of an effectively volatile
3137 -- object in interfering context (SPARK RM 7.13(12)).
3139 procedure Insert_Default;
3140 -- If the actual is missing in a call, insert in the actuals list
3141 -- an instance of the default expression. The insertion is always
3142 -- a named association.
3144 function Same_Ancestor (T1, T2 : Entity_Id) return Boolean;
3145 -- Check whether T1 and T2, or their full views, are derived from a
3146 -- common type. Used to enforce the restrictions on array conversions
3147 -- of AI95-00246.
3149 function Static_Concatenation (N : Node_Id) return Boolean;
3150 -- Predicate to determine whether an actual that is a concatenation
3151 -- will be evaluated statically and does not need a transient scope.
3152 -- This must be determined before the actual is resolved and expanded
3153 -- because if needed the transient scope must be introduced earlier.
3155 -----------------------------
3156 -- Check_Aliased_Parameter --
3157 -----------------------------
3159 procedure Check_Aliased_Parameter is
3160 Nominal_Subt : Entity_Id;
3162 begin
3163 if Is_Aliased (F) then
3164 if Is_Tagged_Type (A_Typ) then
3165 null;
3167 elsif Is_Aliased_View (A) then
3168 if Is_Constr_Subt_For_U_Nominal (A_Typ) then
3169 Nominal_Subt := Base_Type (A_Typ);
3170 else
3171 Nominal_Subt := A_Typ;
3172 end if;
3174 if Subtypes_Statically_Match (F_Typ, Nominal_Subt) then
3175 null;
3177 -- In a generic body assume the worst for generic formals:
3178 -- they can have a constrained partial view (AI05-041).
3180 elsif Has_Discriminants (F_Typ)
3181 and then not Is_Constrained (F_Typ)
3182 and then not Has_Constrained_Partial_View (F_Typ)
3183 and then not Is_Generic_Type (F_Typ)
3184 then
3185 null;
3187 else
3188 Error_Msg_NE ("untagged actual does not match "
3189 & "aliased formal&", A, F);
3190 end if;
3192 else
3193 Error_Msg_NE ("actual for aliased formal& must be "
3194 & "aliased object", A, F);
3195 end if;
3197 if Ekind (Nam) = E_Procedure then
3198 null;
3200 elsif Ekind (Etype (Nam)) = E_Anonymous_Access_Type then
3201 if Nkind (Parent (N)) = N_Type_Conversion
3202 and then Type_Access_Level (Etype (Parent (N))) <
3203 Object_Access_Level (A)
3204 then
3205 Error_Msg_N ("aliased actual has wrong accessibility", A);
3206 end if;
3208 elsif Nkind (Parent (N)) = N_Qualified_Expression
3209 and then Nkind (Parent (Parent (N))) = N_Allocator
3210 and then Type_Access_Level (Etype (Parent (Parent (N)))) <
3211 Object_Access_Level (A)
3212 then
3213 Error_Msg_N
3214 ("aliased actual in allocator has wrong accessibility", A);
3215 end if;
3216 end if;
3217 end Check_Aliased_Parameter;
3219 --------------------------
3220 -- Check_Argument_Order --
3221 --------------------------
3223 procedure Check_Argument_Order is
3224 begin
3225 -- Nothing to do if no parameters, or original node is neither a
3226 -- function call nor a procedure call statement (happens in the
3227 -- operator-transformed-to-function call case), or the call does
3228 -- not come from source, or this warning is off.
3230 if not Warn_On_Parameter_Order
3231 or else No (Parameter_Associations (N))
3232 or else Nkind (Original_Node (N)) not in N_Subprogram_Call
3233 or else not Comes_From_Source (N)
3234 then
3235 return;
3236 end if;
3238 declare
3239 Nargs : constant Nat := List_Length (Parameter_Associations (N));
3241 begin
3242 -- Nothing to do if only one parameter
3244 if Nargs < 2 then
3245 return;
3246 end if;
3248 -- Here if at least two arguments
3250 declare
3251 Actuals : array (1 .. Nargs) of Node_Id;
3252 Actual : Node_Id;
3253 Formal : Node_Id;
3255 Wrong_Order : Boolean := False;
3256 -- Set True if an out of order case is found
3258 begin
3259 -- Collect identifier names of actuals, fail if any actual is
3260 -- not a simple identifier, and record max length of name.
3262 Actual := First (Parameter_Associations (N));
3263 for J in Actuals'Range loop
3264 if Nkind (Actual) /= N_Identifier then
3265 return;
3266 else
3267 Actuals (J) := Actual;
3268 Next (Actual);
3269 end if;
3270 end loop;
3272 -- If we got this far, all actuals are identifiers and the list
3273 -- of their names is stored in the Actuals array.
3275 Formal := First_Formal (Nam);
3276 for J in Actuals'Range loop
3278 -- If we ran out of formals, that's odd, probably an error
3279 -- which will be detected elsewhere, but abandon the search.
3281 if No (Formal) then
3282 return;
3283 end if;
3285 -- If name matches and is in order OK
3287 if Chars (Formal) = Chars (Actuals (J)) then
3288 null;
3290 else
3291 -- If no match, see if it is elsewhere in list and if so
3292 -- flag potential wrong order if type is compatible.
3294 for K in Actuals'Range loop
3295 if Chars (Formal) = Chars (Actuals (K))
3296 and then
3297 Has_Compatible_Type (Actuals (K), Etype (Formal))
3298 then
3299 Wrong_Order := True;
3300 goto Continue;
3301 end if;
3302 end loop;
3304 -- No match
3306 return;
3307 end if;
3309 <<Continue>> Next_Formal (Formal);
3310 end loop;
3312 -- If Formals left over, also probably an error, skip warning
3314 if Present (Formal) then
3315 return;
3316 end if;
3318 -- Here we give the warning if something was out of order
3320 if Wrong_Order then
3321 Error_Msg_N
3322 ("?P?actuals for this call may be in wrong order", N);
3323 end if;
3324 end;
3325 end;
3326 end Check_Argument_Order;
3328 -------------------------
3329 -- Check_Prefixed_Call --
3330 -------------------------
3332 procedure Check_Prefixed_Call is
3333 Act : constant Node_Id := First_Actual (N);
3334 A_Type : constant Entity_Id := Etype (Act);
3335 F_Type : constant Entity_Id := Etype (First_Formal (Nam));
3336 Orig : constant Node_Id := Original_Node (N);
3337 New_A : Node_Id;
3339 begin
3340 -- Check whether the call is a prefixed call, with or without
3341 -- additional actuals.
3343 if Nkind (Orig) = N_Selected_Component
3344 or else
3345 (Nkind (Orig) = N_Indexed_Component
3346 and then Nkind (Prefix (Orig)) = N_Selected_Component
3347 and then Is_Entity_Name (Prefix (Prefix (Orig)))
3348 and then Is_Entity_Name (Act)
3349 and then Chars (Act) = Chars (Prefix (Prefix (Orig))))
3350 then
3351 if Is_Access_Type (A_Type)
3352 and then not Is_Access_Type (F_Type)
3353 then
3354 -- Introduce dereference on object in prefix
3356 New_A :=
3357 Make_Explicit_Dereference (Sloc (Act),
3358 Prefix => Relocate_Node (Act));
3359 Rewrite (Act, New_A);
3360 Analyze (Act);
3362 elsif Is_Access_Type (F_Type)
3363 and then not Is_Access_Type (A_Type)
3364 then
3365 -- Introduce an implicit 'Access in prefix
3367 if not Is_Aliased_View (Act) then
3368 Error_Msg_NE
3369 ("object in prefixed call to& must be aliased "
3370 & "(RM 4.1.3 (13 1/2))",
3371 Prefix (Act), Nam);
3372 end if;
3374 Rewrite (Act,
3375 Make_Attribute_Reference (Loc,
3376 Attribute_Name => Name_Access,
3377 Prefix => Relocate_Node (Act)));
3378 end if;
3380 Analyze (Act);
3381 end if;
3382 end Check_Prefixed_Call;
3384 ---------------------------------------
3385 -- Flag_Effectively_Volatile_Objects --
3386 ---------------------------------------
3388 procedure Flag_Effectively_Volatile_Objects (Expr : Node_Id) is
3389 function Flag_Object (N : Node_Id) return Traverse_Result;
3390 -- Determine whether arbitrary node N denotes an effectively volatile
3391 -- object and if it does, emit an error.
3393 -----------------
3394 -- Flag_Object --
3395 -----------------
3397 function Flag_Object (N : Node_Id) return Traverse_Result is
3398 Id : Entity_Id;
3400 begin
3401 -- Do not consider nested function calls because they have already
3402 -- been processed during their own resolution.
3404 if Nkind (N) = N_Function_Call then
3405 return Skip;
3407 elsif Is_Entity_Name (N) and then Present (Entity (N)) then
3408 Id := Entity (N);
3410 if Is_Object (Id)
3411 and then Is_Effectively_Volatile (Id)
3412 and then (Async_Writers_Enabled (Id)
3413 or else Effective_Reads_Enabled (Id))
3414 then
3415 Error_Msg_N
3416 ("volatile object cannot appear in this context (SPARK "
3417 & "RM 7.1.3(11))", N);
3418 return Skip;
3419 end if;
3420 end if;
3422 return OK;
3423 end Flag_Object;
3425 procedure Flag_Objects is new Traverse_Proc (Flag_Object);
3427 -- Start of processing for Flag_Effectively_Volatile_Objects
3429 begin
3430 Flag_Objects (Expr);
3431 end Flag_Effectively_Volatile_Objects;
3433 --------------------
3434 -- Insert_Default --
3435 --------------------
3437 procedure Insert_Default is
3438 Actval : Node_Id;
3439 Assoc : Node_Id;
3441 begin
3442 -- Missing argument in call, nothing to insert
3444 if No (Default_Value (F)) then
3445 return;
3447 else
3448 -- Note that we do a full New_Copy_Tree, so that any associated
3449 -- Itypes are properly copied. This may not be needed any more,
3450 -- but it does no harm as a safety measure. Defaults of a generic
3451 -- formal may be out of bounds of the corresponding actual (see
3452 -- cc1311b) and an additional check may be required.
3454 Actval :=
3455 New_Copy_Tree
3456 (Default_Value (F),
3457 New_Scope => Current_Scope,
3458 New_Sloc => Loc);
3460 -- Propagate dimension information, if any.
3462 Copy_Dimensions (Default_Value (F), Actval);
3464 if Is_Concurrent_Type (Scope (Nam))
3465 and then Has_Discriminants (Scope (Nam))
3466 then
3467 Replace_Actual_Discriminants (N, Actval);
3468 end if;
3470 if Is_Overloadable (Nam)
3471 and then Present (Alias (Nam))
3472 then
3473 if Base_Type (Etype (F)) /= Base_Type (Etype (Actval))
3474 and then not Is_Tagged_Type (Etype (F))
3475 then
3476 -- If default is a real literal, do not introduce a
3477 -- conversion whose effect may depend on the run-time
3478 -- size of universal real.
3480 if Nkind (Actval) = N_Real_Literal then
3481 Set_Etype (Actval, Base_Type (Etype (F)));
3482 else
3483 Actval := Unchecked_Convert_To (Etype (F), Actval);
3484 end if;
3485 end if;
3487 if Is_Scalar_Type (Etype (F)) then
3488 Enable_Range_Check (Actval);
3489 end if;
3491 Set_Parent (Actval, N);
3493 -- Resolve aggregates with their base type, to avoid scope
3494 -- anomalies: the subtype was first built in the subprogram
3495 -- declaration, and the current call may be nested.
3497 if Nkind (Actval) = N_Aggregate then
3498 Analyze_And_Resolve (Actval, Etype (F));
3499 else
3500 Analyze_And_Resolve (Actval, Etype (Actval));
3501 end if;
3503 else
3504 Set_Parent (Actval, N);
3506 -- See note above concerning aggregates
3508 if Nkind (Actval) = N_Aggregate
3509 and then Has_Discriminants (Etype (Actval))
3510 then
3511 Analyze_And_Resolve (Actval, Base_Type (Etype (Actval)));
3513 -- Resolve entities with their own type, which may differ from
3514 -- the type of a reference in a generic context (the view
3515 -- swapping mechanism did not anticipate the re-analysis of
3516 -- default values in calls).
3518 elsif Is_Entity_Name (Actval) then
3519 Analyze_And_Resolve (Actval, Etype (Entity (Actval)));
3521 else
3522 Analyze_And_Resolve (Actval, Etype (Actval));
3523 end if;
3524 end if;
3526 -- If default is a tag indeterminate function call, propagate tag
3527 -- to obtain proper dispatching.
3529 if Is_Controlling_Formal (F)
3530 and then Nkind (Default_Value (F)) = N_Function_Call
3531 then
3532 Set_Is_Controlling_Actual (Actval);
3533 end if;
3534 end if;
3536 -- If the default expression raises constraint error, then just
3537 -- silently replace it with an N_Raise_Constraint_Error node, since
3538 -- we already gave the warning on the subprogram spec. If node is
3539 -- already a Raise_Constraint_Error leave as is, to prevent loops in
3540 -- the warnings removal machinery.
3542 if Raises_Constraint_Error (Actval)
3543 and then Nkind (Actval) /= N_Raise_Constraint_Error
3544 then
3545 Rewrite (Actval,
3546 Make_Raise_Constraint_Error (Loc,
3547 Reason => CE_Range_Check_Failed));
3549 Set_Raises_Constraint_Error (Actval);
3550 Set_Etype (Actval, Etype (F));
3551 end if;
3553 Assoc :=
3554 Make_Parameter_Association (Loc,
3555 Explicit_Actual_Parameter => Actval,
3556 Selector_Name => Make_Identifier (Loc, Chars (F)));
3558 -- Case of insertion is first named actual
3560 if No (Prev)
3561 or else Nkind (Parent (Prev)) /= N_Parameter_Association
3562 then
3563 Set_Next_Named_Actual (Assoc, First_Named_Actual (N));
3564 Set_First_Named_Actual (N, Actval);
3566 if No (Prev) then
3567 if No (Parameter_Associations (N)) then
3568 Set_Parameter_Associations (N, New_List (Assoc));
3569 else
3570 Append (Assoc, Parameter_Associations (N));
3571 end if;
3573 else
3574 Insert_After (Prev, Assoc);
3575 end if;
3577 -- Case of insertion is not first named actual
3579 else
3580 Set_Next_Named_Actual
3581 (Assoc, Next_Named_Actual (Parent (Prev)));
3582 Set_Next_Named_Actual (Parent (Prev), Actval);
3583 Append (Assoc, Parameter_Associations (N));
3584 end if;
3586 Mark_Rewrite_Insertion (Assoc);
3587 Mark_Rewrite_Insertion (Actval);
3589 Prev := Actval;
3590 end Insert_Default;
3592 -------------------
3593 -- Same_Ancestor --
3594 -------------------
3596 function Same_Ancestor (T1, T2 : Entity_Id) return Boolean is
3597 FT1 : Entity_Id := T1;
3598 FT2 : Entity_Id := T2;
3600 begin
3601 if Is_Private_Type (T1)
3602 and then Present (Full_View (T1))
3603 then
3604 FT1 := Full_View (T1);
3605 end if;
3607 if Is_Private_Type (T2)
3608 and then Present (Full_View (T2))
3609 then
3610 FT2 := Full_View (T2);
3611 end if;
3613 return Root_Type (Base_Type (FT1)) = Root_Type (Base_Type (FT2));
3614 end Same_Ancestor;
3616 --------------------------
3617 -- Static_Concatenation --
3618 --------------------------
3620 function Static_Concatenation (N : Node_Id) return Boolean is
3621 begin
3622 case Nkind (N) is
3623 when N_String_Literal =>
3624 return True;
3626 when N_Op_Concat =>
3628 -- Concatenation is static when both operands are static and
3629 -- the concatenation operator is a predefined one.
3631 return Scope (Entity (N)) = Standard_Standard
3632 and then
3633 Static_Concatenation (Left_Opnd (N))
3634 and then
3635 Static_Concatenation (Right_Opnd (N));
3637 when others =>
3638 if Is_Entity_Name (N) then
3639 declare
3640 Ent : constant Entity_Id := Entity (N);
3641 begin
3642 return Ekind (Ent) = E_Constant
3643 and then Present (Constant_Value (Ent))
3644 and then
3645 Is_OK_Static_Expression (Constant_Value (Ent));
3646 end;
3648 else
3649 return False;
3650 end if;
3651 end case;
3652 end Static_Concatenation;
3654 -- Start of processing for Resolve_Actuals
3656 begin
3657 Check_Argument_Order;
3659 if Is_Overloadable (Nam)
3660 and then Is_Inherited_Operation (Nam)
3661 and then In_Instance
3662 and then Present (Alias (Nam))
3663 and then Present (Overridden_Operation (Alias (Nam)))
3664 then
3665 Real_Subp := Alias (Nam);
3666 else
3667 Real_Subp := Empty;
3668 end if;
3670 if Present (First_Actual (N)) then
3671 Check_Prefixed_Call;
3672 end if;
3674 A := First_Actual (N);
3675 F := First_Formal (Nam);
3677 if Present (Real_Subp) then
3678 Real_F := First_Formal (Real_Subp);
3679 end if;
3681 while Present (F) loop
3682 if No (A) and then Needs_No_Actuals (Nam) then
3683 null;
3685 -- If we have an error in any actual or formal, indicated by a type
3686 -- of Any_Type, then abandon resolution attempt, and set result type
3687 -- to Any_Type. Skip this if the actual is a Raise_Expression, whose
3688 -- type is imposed from context.
3690 elsif (Present (A) and then Etype (A) = Any_Type)
3691 or else Etype (F) = Any_Type
3692 then
3693 if Nkind (A) /= N_Raise_Expression then
3694 Set_Etype (N, Any_Type);
3695 return;
3696 end if;
3697 end if;
3699 -- Case where actual is present
3701 -- If the actual is an entity, generate a reference to it now. We
3702 -- do this before the actual is resolved, because a formal of some
3703 -- protected subprogram, or a task discriminant, will be rewritten
3704 -- during expansion, and the source entity reference may be lost.
3706 if Present (A)
3707 and then Is_Entity_Name (A)
3708 and then Comes_From_Source (A)
3709 then
3710 -- Annotate the tree by creating a variable reference marker when
3711 -- the actual denotes a variable reference, in case the reference
3712 -- is folded or optimized away. The variable reference marker is
3713 -- automatically saved for later examination by the ABE Processing
3714 -- phase. The status of the reference is set as follows:
3716 -- status mode
3717 -- read IN, IN OUT
3718 -- write IN OUT, OUT
3720 if Needs_Variable_Reference_Marker
3721 (N => A,
3722 Calls_OK => True)
3723 then
3724 Build_Variable_Reference_Marker
3725 (N => A,
3726 Read => Ekind (F) /= E_Out_Parameter,
3727 Write => Ekind (F) /= E_In_Parameter);
3728 end if;
3730 Orig_A := Entity (A);
3732 if Present (Orig_A) then
3733 if Is_Formal (Orig_A)
3734 and then Ekind (F) /= E_In_Parameter
3735 then
3736 Generate_Reference (Orig_A, A, 'm');
3738 elsif not Is_Overloaded (A) then
3739 if Ekind (F) /= E_Out_Parameter then
3740 Generate_Reference (Orig_A, A);
3742 -- RM 6.4.1(12): For an out parameter that is passed by
3743 -- copy, the formal parameter object is created, and:
3745 -- * For an access type, the formal parameter is initialized
3746 -- from the value of the actual, without checking that the
3747 -- value satisfies any constraint, any predicate, or any
3748 -- exclusion of the null value.
3750 -- * For a scalar type that has the Default_Value aspect
3751 -- specified, the formal parameter is initialized from the
3752 -- value of the actual, without checking that the value
3753 -- satisfies any constraint or any predicate.
3754 -- I do not understand why this case is included??? this is
3755 -- not a case where an OUT parameter is treated as IN OUT.
3757 -- * For a composite type with discriminants or that has
3758 -- implicit initial values for any subcomponents, the
3759 -- behavior is as for an in out parameter passed by copy.
3761 -- Hence for these cases we generate the read reference now
3762 -- (the write reference will be generated later by
3763 -- Note_Possible_Modification).
3765 elsif Is_By_Copy_Type (Etype (F))
3766 and then
3767 (Is_Access_Type (Etype (F))
3768 or else
3769 (Is_Scalar_Type (Etype (F))
3770 and then
3771 Present (Default_Aspect_Value (Etype (F))))
3772 or else
3773 (Is_Composite_Type (Etype (F))
3774 and then (Has_Discriminants (Etype (F))
3775 or else Is_Partially_Initialized_Type
3776 (Etype (F)))))
3777 then
3778 Generate_Reference (Orig_A, A);
3779 end if;
3780 end if;
3781 end if;
3782 end if;
3784 if Present (A)
3785 and then (Nkind (Parent (A)) /= N_Parameter_Association
3786 or else Chars (Selector_Name (Parent (A))) = Chars (F))
3787 then
3788 -- If style checking mode on, check match of formal name
3790 if Style_Check then
3791 if Nkind (Parent (A)) = N_Parameter_Association then
3792 Check_Identifier (Selector_Name (Parent (A)), F);
3793 end if;
3794 end if;
3796 -- If the formal is Out or In_Out, do not resolve and expand the
3797 -- conversion, because it is subsequently expanded into explicit
3798 -- temporaries and assignments. However, the object of the
3799 -- conversion can be resolved. An exception is the case of tagged
3800 -- type conversion with a class-wide actual. In that case we want
3801 -- the tag check to occur and no temporary will be needed (no
3802 -- representation change can occur) and the parameter is passed by
3803 -- reference, so we go ahead and resolve the type conversion.
3804 -- Another exception is the case of reference to component or
3805 -- subcomponent of a bit-packed array, in which case we want to
3806 -- defer expansion to the point the in and out assignments are
3807 -- performed.
3809 if Ekind (F) /= E_In_Parameter
3810 and then Nkind (A) = N_Type_Conversion
3811 and then not Is_Class_Wide_Type (Etype (Expression (A)))
3812 then
3813 if Ekind (F) = E_In_Out_Parameter
3814 and then Is_Array_Type (Etype (F))
3815 then
3816 -- In a view conversion, the conversion must be legal in
3817 -- both directions, and thus both component types must be
3818 -- aliased, or neither (4.6 (8)).
3820 -- The extra rule in 4.6 (24.9.2) seems unduly restrictive:
3821 -- the privacy requirement should not apply to generic
3822 -- types, and should be checked in an instance. ARG query
3823 -- is in order ???
3825 if Has_Aliased_Components (Etype (Expression (A))) /=
3826 Has_Aliased_Components (Etype (F))
3827 then
3828 Error_Msg_N
3829 ("both component types in a view conversion must be"
3830 & " aliased, or neither", A);
3832 -- Comment here??? what set of cases???
3834 elsif
3835 not Same_Ancestor (Etype (F), Etype (Expression (A)))
3836 then
3837 -- Check view conv between unrelated by ref array types
3839 if Is_By_Reference_Type (Etype (F))
3840 or else Is_By_Reference_Type (Etype (Expression (A)))
3841 then
3842 Error_Msg_N
3843 ("view conversion between unrelated by reference "
3844 & "array types not allowed (\'A'I-00246)", A);
3846 -- In Ada 2005 mode, check view conversion component
3847 -- type cannot be private, tagged, or volatile. Note
3848 -- that we only apply this to source conversions. The
3849 -- generated code can contain conversions which are
3850 -- not subject to this test, and we cannot extract the
3851 -- component type in such cases since it is not present.
3853 elsif Comes_From_Source (A)
3854 and then Ada_Version >= Ada_2005
3855 then
3856 declare
3857 Comp_Type : constant Entity_Id :=
3858 Component_Type
3859 (Etype (Expression (A)));
3860 begin
3861 if (Is_Private_Type (Comp_Type)
3862 and then not Is_Generic_Type (Comp_Type))
3863 or else Is_Tagged_Type (Comp_Type)
3864 or else Is_Volatile (Comp_Type)
3865 then
3866 Error_Msg_N
3867 ("component type of a view conversion cannot"
3868 & " be private, tagged, or volatile"
3869 & " (RM 4.6 (24))",
3870 Expression (A));
3871 end if;
3872 end;
3873 end if;
3874 end if;
3875 end if;
3877 -- Resolve expression if conversion is all OK
3879 if (Conversion_OK (A)
3880 or else Valid_Conversion (A, Etype (A), Expression (A)))
3881 and then not Is_Ref_To_Bit_Packed_Array (Expression (A))
3882 then
3883 Resolve (Expression (A));
3884 end if;
3886 -- If the actual is a function call that returns a limited
3887 -- unconstrained object that needs finalization, create a
3888 -- transient scope for it, so that it can receive the proper
3889 -- finalization list.
3891 elsif Expander_Active
3892 and then Nkind (A) = N_Function_Call
3893 and then Is_Limited_Record (Etype (F))
3894 and then not Is_Constrained (Etype (F))
3895 and then (Needs_Finalization (Etype (F))
3896 or else Has_Task (Etype (F)))
3897 then
3898 Establish_Transient_Scope (A, Manage_Sec_Stack => False);
3899 Resolve (A, Etype (F));
3901 -- A small optimization: if one of the actuals is a concatenation
3902 -- create a block around a procedure call to recover stack space.
3903 -- This alleviates stack usage when several procedure calls in
3904 -- the same statement list use concatenation. We do not perform
3905 -- this wrapping for code statements, where the argument is a
3906 -- static string, and we want to preserve warnings involving
3907 -- sequences of such statements.
3909 elsif Expander_Active
3910 and then Nkind (A) = N_Op_Concat
3911 and then Nkind (N) = N_Procedure_Call_Statement
3912 and then not (Is_Intrinsic_Subprogram (Nam)
3913 and then Chars (Nam) = Name_Asm)
3914 and then not Static_Concatenation (A)
3915 then
3916 Establish_Transient_Scope (A, Manage_Sec_Stack => False);
3917 Resolve (A, Etype (F));
3919 else
3920 if Nkind (A) = N_Type_Conversion
3921 and then Is_Array_Type (Etype (F))
3922 and then not Same_Ancestor (Etype (F), Etype (Expression (A)))
3923 and then
3924 (Is_Limited_Type (Etype (F))
3925 or else Is_Limited_Type (Etype (Expression (A))))
3926 then
3927 Error_Msg_N
3928 ("conversion between unrelated limited array types not "
3929 & "allowed ('A'I-00246)", A);
3931 if Is_Limited_Type (Etype (F)) then
3932 Explain_Limited_Type (Etype (F), A);
3933 end if;
3935 if Is_Limited_Type (Etype (Expression (A))) then
3936 Explain_Limited_Type (Etype (Expression (A)), A);
3937 end if;
3938 end if;
3940 -- (Ada 2005: AI-251): If the actual is an allocator whose
3941 -- directly designated type is a class-wide interface, we build
3942 -- an anonymous access type to use it as the type of the
3943 -- allocator. Later, when the subprogram call is expanded, if
3944 -- the interface has a secondary dispatch table the expander
3945 -- will add a type conversion to force the correct displacement
3946 -- of the pointer.
3948 if Nkind (A) = N_Allocator then
3949 declare
3950 DDT : constant Entity_Id :=
3951 Directly_Designated_Type (Base_Type (Etype (F)));
3953 New_Itype : Entity_Id;
3955 begin
3956 if Is_Class_Wide_Type (DDT)
3957 and then Is_Interface (DDT)
3958 then
3959 New_Itype := Create_Itype (E_Anonymous_Access_Type, A);
3960 Set_Etype (New_Itype, Etype (A));
3961 Set_Directly_Designated_Type
3962 (New_Itype, Directly_Designated_Type (Etype (A)));
3963 Set_Etype (A, New_Itype);
3964 end if;
3966 -- Ada 2005, AI-162:If the actual is an allocator, the
3967 -- innermost enclosing statement is the master of the
3968 -- created object. This needs to be done with expansion
3969 -- enabled only, otherwise the transient scope will not
3970 -- be removed in the expansion of the wrapped construct.
3972 if Expander_Active
3973 and then (Needs_Finalization (DDT)
3974 or else Has_Task (DDT))
3975 then
3976 Establish_Transient_Scope
3977 (A, Manage_Sec_Stack => False);
3978 end if;
3979 end;
3981 if Ekind (Etype (F)) = E_Anonymous_Access_Type then
3982 Check_Restriction (No_Access_Parameter_Allocators, A);
3983 end if;
3984 end if;
3986 -- (Ada 2005): The call may be to a primitive operation of a
3987 -- tagged synchronized type, declared outside of the type. In
3988 -- this case the controlling actual must be converted to its
3989 -- corresponding record type, which is the formal type. The
3990 -- actual may be a subtype, either because of a constraint or
3991 -- because it is a generic actual, so use base type to locate
3992 -- concurrent type.
3994 F_Typ := Base_Type (Etype (F));
3996 if Is_Tagged_Type (F_Typ)
3997 and then (Is_Concurrent_Type (F_Typ)
3998 or else Is_Concurrent_Record_Type (F_Typ))
3999 then
4000 -- If the actual is overloaded, look for an interpretation
4001 -- that has a synchronized type.
4003 if not Is_Overloaded (A) then
4004 A_Typ := Base_Type (Etype (A));
4006 else
4007 declare
4008 Index : Interp_Index;
4009 It : Interp;
4011 begin
4012 Get_First_Interp (A, Index, It);
4013 while Present (It.Typ) loop
4014 if Is_Concurrent_Type (It.Typ)
4015 or else Is_Concurrent_Record_Type (It.Typ)
4016 then
4017 A_Typ := Base_Type (It.Typ);
4018 exit;
4019 end if;
4021 Get_Next_Interp (Index, It);
4022 end loop;
4023 end;
4024 end if;
4026 declare
4027 Full_A_Typ : Entity_Id;
4029 begin
4030 if Present (Full_View (A_Typ)) then
4031 Full_A_Typ := Base_Type (Full_View (A_Typ));
4032 else
4033 Full_A_Typ := A_Typ;
4034 end if;
4036 -- Tagged synchronized type (case 1): the actual is a
4037 -- concurrent type.
4039 if Is_Concurrent_Type (A_Typ)
4040 and then Corresponding_Record_Type (A_Typ) = F_Typ
4041 then
4042 Rewrite (A,
4043 Unchecked_Convert_To
4044 (Corresponding_Record_Type (A_Typ), A));
4045 Resolve (A, Etype (F));
4047 -- Tagged synchronized type (case 2): the formal is a
4048 -- concurrent type.
4050 elsif Ekind (Full_A_Typ) = E_Record_Type
4051 and then Present
4052 (Corresponding_Concurrent_Type (Full_A_Typ))
4053 and then Is_Concurrent_Type (F_Typ)
4054 and then Present (Corresponding_Record_Type (F_Typ))
4055 and then Full_A_Typ = Corresponding_Record_Type (F_Typ)
4056 then
4057 Resolve (A, Corresponding_Record_Type (F_Typ));
4059 -- Common case
4061 else
4062 Resolve (A, Etype (F));
4063 end if;
4064 end;
4066 -- Not a synchronized operation
4068 else
4069 Resolve (A, Etype (F));
4070 end if;
4071 end if;
4073 A_Typ := Etype (A);
4074 F_Typ := Etype (F);
4076 -- An actual cannot be an untagged formal incomplete type
4078 if Ekind (A_Typ) = E_Incomplete_Type
4079 and then not Is_Tagged_Type (A_Typ)
4080 and then Is_Generic_Type (A_Typ)
4081 then
4082 Error_Msg_N
4083 ("invalid use of untagged formal incomplete type", A);
4084 end if;
4086 if Comes_From_Source (Original_Node (N))
4087 and then Nkind_In (Original_Node (N), N_Function_Call,
4088 N_Procedure_Call_Statement)
4089 then
4090 -- In formal mode, check that actual parameters matching
4091 -- formals of tagged types are objects (or ancestor type
4092 -- conversions of objects), not general expressions.
4094 if Is_Actual_Tagged_Parameter (A) then
4095 if Is_SPARK_05_Object_Reference (A) then
4096 null;
4098 elsif Nkind (A) = N_Type_Conversion then
4099 declare
4100 Operand : constant Node_Id := Expression (A);
4101 Operand_Typ : constant Entity_Id := Etype (Operand);
4102 Target_Typ : constant Entity_Id := A_Typ;
4104 begin
4105 if not Is_SPARK_05_Object_Reference (Operand) then
4106 Check_SPARK_05_Restriction
4107 ("object required", Operand);
4109 -- In formal mode, the only view conversions are those
4110 -- involving ancestor conversion of an extended type.
4112 elsif not
4113 (Is_Tagged_Type (Target_Typ)
4114 and then not Is_Class_Wide_Type (Target_Typ)
4115 and then Is_Tagged_Type (Operand_Typ)
4116 and then not Is_Class_Wide_Type (Operand_Typ)
4117 and then Is_Ancestor (Target_Typ, Operand_Typ))
4118 then
4119 if Ekind_In
4120 (F, E_Out_Parameter, E_In_Out_Parameter)
4121 then
4122 Check_SPARK_05_Restriction
4123 ("ancestor conversion is the only permitted "
4124 & "view conversion", A);
4125 else
4126 Check_SPARK_05_Restriction
4127 ("ancestor conversion required", A);
4128 end if;
4130 else
4131 null;
4132 end if;
4133 end;
4135 else
4136 Check_SPARK_05_Restriction ("object required", A);
4137 end if;
4139 -- In formal mode, the only view conversions are those
4140 -- involving ancestor conversion of an extended type.
4142 elsif Nkind (A) = N_Type_Conversion
4143 and then Ekind_In (F, E_Out_Parameter, E_In_Out_Parameter)
4144 then
4145 Check_SPARK_05_Restriction
4146 ("ancestor conversion is the only permitted view "
4147 & "conversion", A);
4148 end if;
4149 end if;
4151 -- has warnings suppressed, then we reset Never_Set_In_Source for
4152 -- the calling entity. The reason for this is to catch cases like
4153 -- GNAT.Spitbol.Patterns.Vstring_Var where the called subprogram
4154 -- uses trickery to modify an IN parameter.
4156 if Ekind (F) = E_In_Parameter
4157 and then Is_Entity_Name (A)
4158 and then Present (Entity (A))
4159 and then Ekind (Entity (A)) = E_Variable
4160 and then Has_Warnings_Off (F_Typ)
4161 then
4162 Set_Never_Set_In_Source (Entity (A), False);
4163 end if;
4165 -- Perform error checks for IN and IN OUT parameters
4167 if Ekind (F) /= E_Out_Parameter then
4169 -- Check unset reference. For scalar parameters, it is clearly
4170 -- wrong to pass an uninitialized value as either an IN or
4171 -- IN-OUT parameter. For composites, it is also clearly an
4172 -- error to pass a completely uninitialized value as an IN
4173 -- parameter, but the case of IN OUT is trickier. We prefer
4174 -- not to give a warning here. For example, suppose there is
4175 -- a routine that sets some component of a record to False.
4176 -- It is perfectly reasonable to make this IN-OUT and allow
4177 -- either initialized or uninitialized records to be passed
4178 -- in this case.
4180 -- For partially initialized composite values, we also avoid
4181 -- warnings, since it is quite likely that we are passing a
4182 -- partially initialized value and only the initialized fields
4183 -- will in fact be read in the subprogram.
4185 if Is_Scalar_Type (A_Typ)
4186 or else (Ekind (F) = E_In_Parameter
4187 and then not Is_Partially_Initialized_Type (A_Typ))
4188 then
4189 Check_Unset_Reference (A);
4190 end if;
4192 -- In Ada 83 we cannot pass an OUT parameter as an IN or IN OUT
4193 -- actual to a nested call, since this constitutes a reading of
4194 -- the parameter, which is not allowed.
4196 if Ada_Version = Ada_83
4197 and then Is_Entity_Name (A)
4198 and then Ekind (Entity (A)) = E_Out_Parameter
4199 then
4200 Error_Msg_N ("(Ada 83) illegal reading of out parameter", A);
4201 end if;
4202 end if;
4204 -- In -gnatd.q mode, forget that a given array is constant when
4205 -- it is passed as an IN parameter to a foreign-convention
4206 -- subprogram. This is in case the subprogram evilly modifies the
4207 -- object. Of course, correct code would use IN OUT.
4209 if Debug_Flag_Dot_Q
4210 and then Ekind (F) = E_In_Parameter
4211 and then Has_Foreign_Convention (Nam)
4212 and then Is_Array_Type (F_Typ)
4213 and then Nkind (A) in N_Has_Entity
4214 and then Present (Entity (A))
4215 then
4216 Set_Is_True_Constant (Entity (A), False);
4217 end if;
4219 -- Case of OUT or IN OUT parameter
4221 if Ekind (F) /= E_In_Parameter then
4223 -- For an Out parameter, check for useless assignment. Note
4224 -- that we can't set Last_Assignment this early, because we may
4225 -- kill current values in Resolve_Call, and that call would
4226 -- clobber the Last_Assignment field.
4228 -- Note: call Warn_On_Useless_Assignment before doing the check
4229 -- below for Is_OK_Variable_For_Out_Formal so that the setting
4230 -- of Referenced_As_LHS/Referenced_As_Out_Formal properly
4231 -- reflects the last assignment, not this one.
4233 if Ekind (F) = E_Out_Parameter then
4234 if Warn_On_Modified_As_Out_Parameter (F)
4235 and then Is_Entity_Name (A)
4236 and then Present (Entity (A))
4237 and then Comes_From_Source (N)
4238 then
4239 Warn_On_Useless_Assignment (Entity (A), A);
4240 end if;
4241 end if;
4243 -- Validate the form of the actual. Note that the call to
4244 -- Is_OK_Variable_For_Out_Formal generates the required
4245 -- reference in this case.
4247 -- A call to an initialization procedure for an aggregate
4248 -- component may initialize a nested component of a constant
4249 -- designated object. In this context the object is variable.
4251 if not Is_OK_Variable_For_Out_Formal (A)
4252 and then not Is_Init_Proc (Nam)
4253 then
4254 Error_Msg_NE ("actual for& must be a variable", A, F);
4256 if Is_Subprogram (Current_Scope) then
4257 if Is_Invariant_Procedure (Current_Scope)
4258 or else Is_Partial_Invariant_Procedure (Current_Scope)
4259 then
4260 Error_Msg_N
4261 ("function used in invariant cannot modify its "
4262 & "argument", F);
4264 elsif Is_Predicate_Function (Current_Scope) then
4265 Error_Msg_N
4266 ("function used in predicate cannot modify its "
4267 & "argument", F);
4268 end if;
4269 end if;
4270 end if;
4272 -- What's the following about???
4274 if Is_Entity_Name (A) then
4275 Kill_Checks (Entity (A));
4276 else
4277 Kill_All_Checks;
4278 end if;
4279 end if;
4281 if Etype (A) = Any_Type then
4282 Set_Etype (N, Any_Type);
4283 return;
4284 end if;
4286 -- Apply appropriate constraint/predicate checks for IN [OUT] case
4288 if Ekind_In (F, E_In_Parameter, E_In_Out_Parameter) then
4290 -- Apply predicate tests except in certain special cases. Note
4291 -- that it might be more consistent to apply these only when
4292 -- expansion is active (in Exp_Ch6.Expand_Actuals), as we do
4293 -- for the outbound predicate tests ??? In any case indicate
4294 -- the function being called, for better warnings if the call
4295 -- leads to an infinite recursion.
4297 if Predicate_Tests_On_Arguments (Nam) then
4298 Apply_Predicate_Check (A, F_Typ, Nam);
4299 end if;
4301 -- Apply required constraint checks
4303 -- Gigi looks at the check flag and uses the appropriate types.
4304 -- For now since one flag is used there is an optimization
4305 -- which might not be done in the IN OUT case since Gigi does
4306 -- not do any analysis. More thought required about this ???
4308 -- In fact is this comment obsolete??? doesn't the expander now
4309 -- generate all these tests anyway???
4311 if Is_Scalar_Type (Etype (A)) then
4312 Apply_Scalar_Range_Check (A, F_Typ);
4314 elsif Is_Array_Type (Etype (A)) then
4315 Apply_Length_Check (A, F_Typ);
4317 elsif Is_Record_Type (F_Typ)
4318 and then Has_Discriminants (F_Typ)
4319 and then Is_Constrained (F_Typ)
4320 and then (not Is_Derived_Type (F_Typ)
4321 or else Comes_From_Source (Nam))
4322 then
4323 Apply_Discriminant_Check (A, F_Typ);
4325 -- For view conversions of a discriminated object, apply
4326 -- check to object itself, the conversion alreay has the
4327 -- proper type.
4329 if Nkind (A) = N_Type_Conversion
4330 and then Is_Constrained (Etype (Expression (A)))
4331 then
4332 Apply_Discriminant_Check (Expression (A), F_Typ);
4333 end if;
4335 elsif Is_Access_Type (F_Typ)
4336 and then Is_Array_Type (Designated_Type (F_Typ))
4337 and then Is_Constrained (Designated_Type (F_Typ))
4338 then
4339 Apply_Length_Check (A, F_Typ);
4341 elsif Is_Access_Type (F_Typ)
4342 and then Has_Discriminants (Designated_Type (F_Typ))
4343 and then Is_Constrained (Designated_Type (F_Typ))
4344 then
4345 Apply_Discriminant_Check (A, F_Typ);
4347 else
4348 Apply_Range_Check (A, F_Typ);
4349 end if;
4351 -- Ada 2005 (AI-231): Note that the controlling parameter case
4352 -- already existed in Ada 95, which is partially checked
4353 -- elsewhere (see Checks), and we don't want the warning
4354 -- message to differ.
4356 if Is_Access_Type (F_Typ)
4357 and then Can_Never_Be_Null (F_Typ)
4358 and then Known_Null (A)
4359 then
4360 if Is_Controlling_Formal (F) then
4361 Apply_Compile_Time_Constraint_Error
4362 (N => A,
4363 Msg => "null value not allowed here??",
4364 Reason => CE_Access_Check_Failed);
4366 elsif Ada_Version >= Ada_2005 then
4367 Apply_Compile_Time_Constraint_Error
4368 (N => A,
4369 Msg => "(Ada 2005) null not allowed in "
4370 & "null-excluding formal??",
4371 Reason => CE_Null_Not_Allowed);
4372 end if;
4373 end if;
4374 end if;
4376 -- Checks for OUT parameters and IN OUT parameters
4378 if Ekind_In (F, E_Out_Parameter, E_In_Out_Parameter) then
4380 -- If there is a type conversion, make sure the return value
4381 -- meets the constraints of the variable before the conversion.
4383 if Nkind (A) = N_Type_Conversion then
4384 if Is_Scalar_Type (A_Typ) then
4385 Apply_Scalar_Range_Check
4386 (Expression (A), Etype (Expression (A)), A_Typ);
4388 -- In addition, the returned value of the parameter must
4389 -- satisfy the bounds of the object type (see comment
4390 -- below).
4392 Apply_Scalar_Range_Check (A, A_Typ, F_Typ);
4394 else
4395 Apply_Range_Check
4396 (Expression (A), Etype (Expression (A)), A_Typ);
4397 end if;
4399 -- If no conversion, apply scalar range checks and length check
4400 -- based on the subtype of the actual (NOT that of the formal).
4401 -- This indicates that the check takes place on return from the
4402 -- call. During expansion the required constraint checks are
4403 -- inserted. In GNATprove mode, in the absence of expansion,
4404 -- the flag indicates that the returned value is valid.
4406 else
4407 if Is_Scalar_Type (F_Typ) then
4408 Apply_Scalar_Range_Check (A, A_Typ, F_Typ);
4410 elsif Is_Array_Type (F_Typ)
4411 and then Ekind (F) = E_Out_Parameter
4412 then
4413 Apply_Length_Check (A, F_Typ);
4414 else
4415 Apply_Range_Check (A, A_Typ, F_Typ);
4416 end if;
4417 end if;
4419 -- Note: we do not apply the predicate checks for the case of
4420 -- OUT and IN OUT parameters. They are instead applied in the
4421 -- Expand_Actuals routine in Exp_Ch6.
4422 end if;
4424 -- An actual associated with an access parameter is implicitly
4425 -- converted to the anonymous access type of the formal and must
4426 -- satisfy the legality checks for access conversions.
4428 if Ekind (F_Typ) = E_Anonymous_Access_Type then
4429 if not Valid_Conversion (A, F_Typ, A) then
4430 Error_Msg_N
4431 ("invalid implicit conversion for access parameter", A);
4432 end if;
4434 -- If the actual is an access selected component of a variable,
4435 -- the call may modify its designated object. It is reasonable
4436 -- to treat this as a potential modification of the enclosing
4437 -- record, to prevent spurious warnings that it should be
4438 -- declared as a constant, because intuitively programmers
4439 -- regard the designated subcomponent as part of the record.
4441 if Nkind (A) = N_Selected_Component
4442 and then Is_Entity_Name (Prefix (A))
4443 and then not Is_Constant_Object (Entity (Prefix (A)))
4444 then
4445 Note_Possible_Modification (A, Sure => False);
4446 end if;
4447 end if;
4449 -- Check bad case of atomic/volatile argument (RM C.6(12))
4451 if Is_By_Reference_Type (Etype (F))
4452 and then Comes_From_Source (N)
4453 then
4454 if Is_Atomic_Object (A)
4455 and then not Is_Atomic (Etype (F))
4456 then
4457 Error_Msg_NE
4458 ("cannot pass atomic argument to non-atomic formal&",
4459 A, F);
4461 elsif Is_Volatile_Object (A)
4462 and then not Is_Volatile (Etype (F))
4463 then
4464 Error_Msg_NE
4465 ("cannot pass volatile argument to non-volatile formal&",
4466 A, F);
4467 end if;
4468 end if;
4470 -- Check that subprograms don't have improper controlling
4471 -- arguments (RM 3.9.2 (9)).
4473 -- A primitive operation may have an access parameter of an
4474 -- incomplete tagged type, but a dispatching call is illegal
4475 -- if the type is still incomplete.
4477 if Is_Controlling_Formal (F) then
4478 Set_Is_Controlling_Actual (A);
4480 if Ekind (Etype (F)) = E_Anonymous_Access_Type then
4481 declare
4482 Desig : constant Entity_Id := Designated_Type (Etype (F));
4483 begin
4484 if Ekind (Desig) = E_Incomplete_Type
4485 and then No (Full_View (Desig))
4486 and then No (Non_Limited_View (Desig))
4487 then
4488 Error_Msg_NE
4489 ("premature use of incomplete type& "
4490 & "in dispatching call", A, Desig);
4491 end if;
4492 end;
4493 end if;
4495 elsif Nkind (A) = N_Explicit_Dereference then
4496 Validate_Remote_Access_To_Class_Wide_Type (A);
4497 end if;
4499 -- Apply legality rule 3.9.2 (9/1)
4501 if (Is_Class_Wide_Type (A_Typ) or else Is_Dynamically_Tagged (A))
4502 and then not Is_Class_Wide_Type (F_Typ)
4503 and then not Is_Controlling_Formal (F)
4504 and then not In_Instance
4505 then
4506 Error_Msg_N ("class-wide argument not allowed here!", A);
4508 if Is_Subprogram (Nam) and then Comes_From_Source (Nam) then
4509 Error_Msg_Node_2 := F_Typ;
4510 Error_Msg_NE
4511 ("& is not a dispatching operation of &!", A, Nam);
4512 end if;
4514 -- Apply the checks described in 3.10.2(27): if the context is a
4515 -- specific access-to-object, the actual cannot be class-wide.
4516 -- Use base type to exclude access_to_subprogram cases.
4518 elsif Is_Access_Type (A_Typ)
4519 and then Is_Access_Type (F_Typ)
4520 and then not Is_Access_Subprogram_Type (Base_Type (F_Typ))
4521 and then (Is_Class_Wide_Type (Designated_Type (A_Typ))
4522 or else (Nkind (A) = N_Attribute_Reference
4523 and then
4524 Is_Class_Wide_Type (Etype (Prefix (A)))))
4525 and then not Is_Class_Wide_Type (Designated_Type (F_Typ))
4526 and then not Is_Controlling_Formal (F)
4528 -- Disable these checks for call to imported C++ subprograms
4530 and then not
4531 (Is_Entity_Name (Name (N))
4532 and then Is_Imported (Entity (Name (N)))
4533 and then Convention (Entity (Name (N))) = Convention_CPP)
4534 then
4535 Error_Msg_N
4536 ("access to class-wide argument not allowed here!", A);
4538 if Is_Subprogram (Nam) and then Comes_From_Source (Nam) then
4539 Error_Msg_Node_2 := Designated_Type (F_Typ);
4540 Error_Msg_NE
4541 ("& is not a dispatching operation of &!", A, Nam);
4542 end if;
4543 end if;
4545 Check_Aliased_Parameter;
4547 Eval_Actual (A);
4549 -- If it is a named association, treat the selector_name as a
4550 -- proper identifier, and mark the corresponding entity.
4552 if Nkind (Parent (A)) = N_Parameter_Association
4554 -- Ignore reference in SPARK mode, as it refers to an entity not
4555 -- in scope at the point of reference, so the reference should
4556 -- be ignored for computing effects of subprograms.
4558 and then not GNATprove_Mode
4559 then
4560 -- If subprogram is overridden, use name of formal that
4561 -- is being called.
4563 if Present (Real_Subp) then
4564 Set_Entity (Selector_Name (Parent (A)), Real_F);
4565 Set_Etype (Selector_Name (Parent (A)), Etype (Real_F));
4567 else
4568 Set_Entity (Selector_Name (Parent (A)), F);
4569 Generate_Reference (F, Selector_Name (Parent (A)));
4570 Set_Etype (Selector_Name (Parent (A)), F_Typ);
4571 Generate_Reference (F_Typ, N, ' ');
4572 end if;
4573 end if;
4575 Prev := A;
4577 if Ekind (F) /= E_Out_Parameter then
4578 Check_Unset_Reference (A);
4579 end if;
4581 -- The following checks are only relevant when SPARK_Mode is on as
4582 -- they are not standard Ada legality rule. Internally generated
4583 -- temporaries are ignored.
4585 if SPARK_Mode = On and then Comes_From_Source (A) then
4587 -- An effectively volatile object may act as an actual when the
4588 -- corresponding formal is of a non-scalar effectively volatile
4589 -- type (SPARK RM 7.1.3(11)).
4591 if not Is_Scalar_Type (Etype (F))
4592 and then Is_Effectively_Volatile (Etype (F))
4593 then
4594 null;
4596 -- An effectively volatile object may act as an actual in a
4597 -- call to an instance of Unchecked_Conversion.
4598 -- (SPARK RM 7.1.3(11)).
4600 elsif Is_Unchecked_Conversion_Instance (Nam) then
4601 null;
4603 -- The actual denotes an object
4605 elsif Is_Effectively_Volatile_Object (A) then
4606 Error_Msg_N
4607 ("volatile object cannot act as actual in a call (SPARK "
4608 & "RM 7.1.3(11))", A);
4610 -- Otherwise the actual denotes an expression. Inspect the
4611 -- expression and flag each effectively volatile object with
4612 -- enabled property Async_Writers or Effective_Reads as illegal
4613 -- because it apprears within an interfering context. Note that
4614 -- this is usually done in Resolve_Entity_Name, but when the
4615 -- effectively volatile object appears as an actual in a call,
4616 -- the call must be resolved first.
4618 else
4619 Flag_Effectively_Volatile_Objects (A);
4620 end if;
4622 -- An effectively volatile variable cannot act as an actual
4623 -- parameter in a procedure call when the variable has enabled
4624 -- property Effective_Reads and the corresponding formal is of
4625 -- mode IN (SPARK RM 7.1.3(10)).
4627 if Ekind (Nam) = E_Procedure
4628 and then Ekind (F) = E_In_Parameter
4629 and then Is_Entity_Name (A)
4630 then
4631 A_Id := Entity (A);
4633 if Ekind (A_Id) = E_Variable
4634 and then Is_Effectively_Volatile (Etype (A_Id))
4635 and then Effective_Reads_Enabled (A_Id)
4636 then
4637 Error_Msg_NE
4638 ("effectively volatile variable & cannot appear as "
4639 & "actual in procedure call", A, A_Id);
4641 Error_Msg_Name_1 := Name_Effective_Reads;
4642 Error_Msg_N ("\\variable has enabled property %", A);
4643 Error_Msg_N ("\\corresponding formal has mode IN", A);
4644 end if;
4645 end if;
4646 end if;
4648 -- A formal parameter of a specific tagged type whose related
4649 -- subprogram is subject to pragma Extensions_Visible with value
4650 -- "False" cannot act as an actual in a subprogram with value
4651 -- "True" (SPARK RM 6.1.7(3)).
4653 if Is_EVF_Expression (A)
4654 and then Extensions_Visible_Status (Nam) =
4655 Extensions_Visible_True
4656 then
4657 Error_Msg_N
4658 ("formal parameter cannot act as actual parameter when "
4659 & "Extensions_Visible is False", A);
4660 Error_Msg_NE
4661 ("\subprogram & has Extensions_Visible True", A, Nam);
4662 end if;
4664 -- The actual parameter of a Ghost subprogram whose formal is of
4665 -- mode IN OUT or OUT must be a Ghost variable (SPARK RM 6.9(12)).
4667 if Comes_From_Source (Nam)
4668 and then Is_Ghost_Entity (Nam)
4669 and then Ekind_In (F, E_In_Out_Parameter, E_Out_Parameter)
4670 and then Is_Entity_Name (A)
4671 and then Present (Entity (A))
4672 and then not Is_Ghost_Entity (Entity (A))
4673 then
4674 Error_Msg_NE
4675 ("non-ghost variable & cannot appear as actual in call to "
4676 & "ghost procedure", A, Entity (A));
4678 if Ekind (F) = E_In_Out_Parameter then
4679 Error_Msg_N ("\corresponding formal has mode `IN OUT`", A);
4680 else
4681 Error_Msg_N ("\corresponding formal has mode OUT", A);
4682 end if;
4683 end if;
4685 Next_Actual (A);
4687 -- Case where actual is not present
4689 else
4690 Insert_Default;
4691 end if;
4693 Next_Formal (F);
4695 if Present (Real_Subp) then
4696 Next_Formal (Real_F);
4697 end if;
4698 end loop;
4699 end Resolve_Actuals;
4701 -----------------------
4702 -- Resolve_Allocator --
4703 -----------------------
4705 procedure Resolve_Allocator (N : Node_Id; Typ : Entity_Id) is
4706 Desig_T : constant Entity_Id := Designated_Type (Typ);
4707 E : constant Node_Id := Expression (N);
4708 Subtyp : Entity_Id;
4709 Discrim : Entity_Id;
4710 Constr : Node_Id;
4711 Aggr : Node_Id;
4712 Assoc : Node_Id := Empty;
4713 Disc_Exp : Node_Id;
4715 procedure Check_Allocator_Discrim_Accessibility
4716 (Disc_Exp : Node_Id;
4717 Alloc_Typ : Entity_Id);
4718 -- Check that accessibility level associated with an access discriminant
4719 -- initialized in an allocator by the expression Disc_Exp is not deeper
4720 -- than the level of the allocator type Alloc_Typ. An error message is
4721 -- issued if this condition is violated. Specialized checks are done for
4722 -- the cases of a constraint expression which is an access attribute or
4723 -- an access discriminant.
4725 function In_Dispatching_Context return Boolean;
4726 -- If the allocator is an actual in a call, it is allowed to be class-
4727 -- wide when the context is not because it is a controlling actual.
4729 -------------------------------------------
4730 -- Check_Allocator_Discrim_Accessibility --
4731 -------------------------------------------
4733 procedure Check_Allocator_Discrim_Accessibility
4734 (Disc_Exp : Node_Id;
4735 Alloc_Typ : Entity_Id)
4737 begin
4738 if Type_Access_Level (Etype (Disc_Exp)) >
4739 Deepest_Type_Access_Level (Alloc_Typ)
4740 then
4741 Error_Msg_N
4742 ("operand type has deeper level than allocator type", Disc_Exp);
4744 -- When the expression is an Access attribute the level of the prefix
4745 -- object must not be deeper than that of the allocator's type.
4747 elsif Nkind (Disc_Exp) = N_Attribute_Reference
4748 and then Get_Attribute_Id (Attribute_Name (Disc_Exp)) =
4749 Attribute_Access
4750 and then Object_Access_Level (Prefix (Disc_Exp)) >
4751 Deepest_Type_Access_Level (Alloc_Typ)
4752 then
4753 Error_Msg_N
4754 ("prefix of attribute has deeper level than allocator type",
4755 Disc_Exp);
4757 -- When the expression is an access discriminant the check is against
4758 -- the level of the prefix object.
4760 elsif Ekind (Etype (Disc_Exp)) = E_Anonymous_Access_Type
4761 and then Nkind (Disc_Exp) = N_Selected_Component
4762 and then Object_Access_Level (Prefix (Disc_Exp)) >
4763 Deepest_Type_Access_Level (Alloc_Typ)
4764 then
4765 Error_Msg_N
4766 ("access discriminant has deeper level than allocator type",
4767 Disc_Exp);
4769 -- All other cases are legal
4771 else
4772 null;
4773 end if;
4774 end Check_Allocator_Discrim_Accessibility;
4776 ----------------------------
4777 -- In_Dispatching_Context --
4778 ----------------------------
4780 function In_Dispatching_Context return Boolean is
4781 Par : constant Node_Id := Parent (N);
4783 begin
4784 return Nkind (Par) in N_Subprogram_Call
4785 and then Is_Entity_Name (Name (Par))
4786 and then Is_Dispatching_Operation (Entity (Name (Par)));
4787 end In_Dispatching_Context;
4789 -- Start of processing for Resolve_Allocator
4791 begin
4792 -- Replace general access with specific type
4794 if Ekind (Etype (N)) = E_Allocator_Type then
4795 Set_Etype (N, Base_Type (Typ));
4796 end if;
4798 if Is_Abstract_Type (Typ) then
4799 Error_Msg_N ("type of allocator cannot be abstract", N);
4800 end if;
4802 -- For qualified expression, resolve the expression using the given
4803 -- subtype (nothing to do for type mark, subtype indication)
4805 if Nkind (E) = N_Qualified_Expression then
4806 if Is_Class_Wide_Type (Etype (E))
4807 and then not Is_Class_Wide_Type (Desig_T)
4808 and then not In_Dispatching_Context
4809 then
4810 Error_Msg_N
4811 ("class-wide allocator not allowed for this access type", N);
4812 end if;
4814 Resolve (Expression (E), Etype (E));
4815 Check_Non_Static_Context (Expression (E));
4816 Check_Unset_Reference (Expression (E));
4818 -- Allocators generated by the build-in-place expansion mechanism
4819 -- are explicitly marked as coming from source but do not need to be
4820 -- checked for limited initialization. To exclude this case, ensure
4821 -- that the parent of the allocator is a source node.
4822 -- The return statement constructed for an Expression_Function does
4823 -- not come from source but requires a limited check.
4825 if Is_Limited_Type (Etype (E))
4826 and then Comes_From_Source (N)
4827 and then
4828 (Comes_From_Source (Parent (N))
4829 or else
4830 (Ekind (Current_Scope) = E_Function
4831 and then Nkind (Original_Node (Unit_Declaration_Node
4832 (Current_Scope))) = N_Expression_Function))
4833 and then not In_Instance_Body
4834 then
4835 if not OK_For_Limited_Init (Etype (E), Expression (E)) then
4836 if Nkind (Parent (N)) = N_Assignment_Statement then
4837 Error_Msg_N
4838 ("illegal expression for initialized allocator of a "
4839 & "limited type (RM 7.5 (2.7/2))", N);
4840 else
4841 Error_Msg_N
4842 ("initialization not allowed for limited types", N);
4843 end if;
4845 Explain_Limited_Type (Etype (E), N);
4846 end if;
4847 end if;
4849 -- A qualified expression requires an exact match of the type. Class-
4850 -- wide matching is not allowed.
4852 if (Is_Class_Wide_Type (Etype (Expression (E)))
4853 or else Is_Class_Wide_Type (Etype (E)))
4854 and then Base_Type (Etype (Expression (E))) /= Base_Type (Etype (E))
4855 then
4856 Wrong_Type (Expression (E), Etype (E));
4857 end if;
4859 -- Calls to build-in-place functions are not currently supported in
4860 -- allocators for access types associated with a simple storage pool.
4861 -- Supporting such allocators may require passing additional implicit
4862 -- parameters to build-in-place functions (or a significant revision
4863 -- of the current b-i-p implementation to unify the handling for
4864 -- multiple kinds of storage pools). ???
4866 if Is_Limited_View (Desig_T)
4867 and then Nkind (Expression (E)) = N_Function_Call
4868 then
4869 declare
4870 Pool : constant Entity_Id :=
4871 Associated_Storage_Pool (Root_Type (Typ));
4872 begin
4873 if Present (Pool)
4874 and then
4875 Present (Get_Rep_Pragma
4876 (Etype (Pool), Name_Simple_Storage_Pool_Type))
4877 then
4878 Error_Msg_N
4879 ("limited function calls not yet supported in simple "
4880 & "storage pool allocators", Expression (E));
4881 end if;
4882 end;
4883 end if;
4885 -- A special accessibility check is needed for allocators that
4886 -- constrain access discriminants. The level of the type of the
4887 -- expression used to constrain an access discriminant cannot be
4888 -- deeper than the type of the allocator (in contrast to access
4889 -- parameters, where the level of the actual can be arbitrary).
4891 -- We can't use Valid_Conversion to perform this check because in
4892 -- general the type of the allocator is unrelated to the type of
4893 -- the access discriminant.
4895 if Ekind (Typ) /= E_Anonymous_Access_Type
4896 or else Is_Local_Anonymous_Access (Typ)
4897 then
4898 Subtyp := Entity (Subtype_Mark (E));
4900 Aggr := Original_Node (Expression (E));
4902 if Has_Discriminants (Subtyp)
4903 and then Nkind_In (Aggr, N_Aggregate, N_Extension_Aggregate)
4904 then
4905 Discrim := First_Discriminant (Base_Type (Subtyp));
4907 -- Get the first component expression of the aggregate
4909 if Present (Expressions (Aggr)) then
4910 Disc_Exp := First (Expressions (Aggr));
4912 elsif Present (Component_Associations (Aggr)) then
4913 Assoc := First (Component_Associations (Aggr));
4915 if Present (Assoc) then
4916 Disc_Exp := Expression (Assoc);
4917 else
4918 Disc_Exp := Empty;
4919 end if;
4921 else
4922 Disc_Exp := Empty;
4923 end if;
4925 while Present (Discrim) and then Present (Disc_Exp) loop
4926 if Ekind (Etype (Discrim)) = E_Anonymous_Access_Type then
4927 Check_Allocator_Discrim_Accessibility (Disc_Exp, Typ);
4928 end if;
4930 Next_Discriminant (Discrim);
4932 if Present (Discrim) then
4933 if Present (Assoc) then
4934 Next (Assoc);
4935 Disc_Exp := Expression (Assoc);
4937 elsif Present (Next (Disc_Exp)) then
4938 Next (Disc_Exp);
4940 else
4941 Assoc := First (Component_Associations (Aggr));
4943 if Present (Assoc) then
4944 Disc_Exp := Expression (Assoc);
4945 else
4946 Disc_Exp := Empty;
4947 end if;
4948 end if;
4949 end if;
4950 end loop;
4951 end if;
4952 end if;
4954 -- For a subtype mark or subtype indication, freeze the subtype
4956 else
4957 Freeze_Expression (E);
4959 if Is_Access_Constant (Typ) and then not No_Initialization (N) then
4960 Error_Msg_N
4961 ("initialization required for access-to-constant allocator", N);
4962 end if;
4964 -- A special accessibility check is needed for allocators that
4965 -- constrain access discriminants. The level of the type of the
4966 -- expression used to constrain an access discriminant cannot be
4967 -- deeper than the type of the allocator (in contrast to access
4968 -- parameters, where the level of the actual can be arbitrary).
4969 -- We can't use Valid_Conversion to perform this check because
4970 -- in general the type of the allocator is unrelated to the type
4971 -- of the access discriminant.
4973 if Nkind (Original_Node (E)) = N_Subtype_Indication
4974 and then (Ekind (Typ) /= E_Anonymous_Access_Type
4975 or else Is_Local_Anonymous_Access (Typ))
4976 then
4977 Subtyp := Entity (Subtype_Mark (Original_Node (E)));
4979 if Has_Discriminants (Subtyp) then
4980 Discrim := First_Discriminant (Base_Type (Subtyp));
4981 Constr := First (Constraints (Constraint (Original_Node (E))));
4982 while Present (Discrim) and then Present (Constr) loop
4983 if Ekind (Etype (Discrim)) = E_Anonymous_Access_Type then
4984 if Nkind (Constr) = N_Discriminant_Association then
4985 Disc_Exp := Original_Node (Expression (Constr));
4986 else
4987 Disc_Exp := Original_Node (Constr);
4988 end if;
4990 Check_Allocator_Discrim_Accessibility (Disc_Exp, Typ);
4991 end if;
4993 Next_Discriminant (Discrim);
4994 Next (Constr);
4995 end loop;
4996 end if;
4997 end if;
4998 end if;
5000 -- Ada 2005 (AI-344): A class-wide allocator requires an accessibility
5001 -- check that the level of the type of the created object is not deeper
5002 -- than the level of the allocator's access type, since extensions can
5003 -- now occur at deeper levels than their ancestor types. This is a
5004 -- static accessibility level check; a run-time check is also needed in
5005 -- the case of an initialized allocator with a class-wide argument (see
5006 -- Expand_Allocator_Expression).
5008 if Ada_Version >= Ada_2005
5009 and then Is_Class_Wide_Type (Desig_T)
5010 then
5011 declare
5012 Exp_Typ : Entity_Id;
5014 begin
5015 if Nkind (E) = N_Qualified_Expression then
5016 Exp_Typ := Etype (E);
5017 elsif Nkind (E) = N_Subtype_Indication then
5018 Exp_Typ := Entity (Subtype_Mark (Original_Node (E)));
5019 else
5020 Exp_Typ := Entity (E);
5021 end if;
5023 if Type_Access_Level (Exp_Typ) >
5024 Deepest_Type_Access_Level (Typ)
5025 then
5026 if In_Instance_Body then
5027 Error_Msg_Warn := SPARK_Mode /= On;
5028 Error_Msg_N
5029 ("type in allocator has deeper level than designated "
5030 & "class-wide type<<", E);
5031 Error_Msg_N ("\Program_Error [<<", E);
5033 Rewrite (N,
5034 Make_Raise_Program_Error (Sloc (N),
5035 Reason => PE_Accessibility_Check_Failed));
5036 Set_Etype (N, Typ);
5038 -- Do not apply Ada 2005 accessibility checks on a class-wide
5039 -- allocator if the type given in the allocator is a formal
5040 -- type. A run-time check will be performed in the instance.
5042 elsif not Is_Generic_Type (Exp_Typ) then
5043 Error_Msg_N
5044 ("type in allocator has deeper level than designated "
5045 & "class-wide type", E);
5046 end if;
5047 end if;
5048 end;
5049 end if;
5051 -- Check for allocation from an empty storage pool. But do not complain
5052 -- if it's a return statement for a build-in-place function, because the
5053 -- allocator is there just in case the caller uses an allocator. If the
5054 -- caller does use an allocator, it will be caught at the call site.
5056 if No_Pool_Assigned (Typ)
5057 and then not Alloc_For_BIP_Return (N)
5058 then
5059 Error_Msg_N ("allocation from empty storage pool!", N);
5061 -- If the context is an unchecked conversion, as may happen within an
5062 -- inlined subprogram, the allocator is being resolved with its own
5063 -- anonymous type. In that case, if the target type has a specific
5064 -- storage pool, it must be inherited explicitly by the allocator type.
5066 elsif Nkind (Parent (N)) = N_Unchecked_Type_Conversion
5067 and then No (Associated_Storage_Pool (Typ))
5068 then
5069 Set_Associated_Storage_Pool
5070 (Typ, Associated_Storage_Pool (Etype (Parent (N))));
5071 end if;
5073 if Ekind (Etype (N)) = E_Anonymous_Access_Type then
5074 Check_Restriction (No_Anonymous_Allocators, N);
5075 end if;
5077 -- Check that an allocator with task parts isn't for a nested access
5078 -- type when restriction No_Task_Hierarchy applies.
5080 if not Is_Library_Level_Entity (Base_Type (Typ))
5081 and then Has_Task (Base_Type (Desig_T))
5082 then
5083 Check_Restriction (No_Task_Hierarchy, N);
5084 end if;
5086 -- An illegal allocator may be rewritten as a raise Program_Error
5087 -- statement.
5089 if Nkind (N) = N_Allocator then
5091 -- Avoid coextension processing for an allocator that is the
5092 -- expansion of a build-in-place function call.
5094 if Nkind (Original_Node (N)) = N_Allocator
5095 and then Nkind (Expression (Original_Node (N))) =
5096 N_Qualified_Expression
5097 and then Nkind (Expression (Expression (Original_Node (N)))) =
5098 N_Function_Call
5099 and then Is_Expanded_Build_In_Place_Call
5100 (Expression (Expression (Original_Node (N))))
5101 then
5102 null; -- b-i-p function call case
5104 else
5105 -- An anonymous access discriminant is the definition of a
5106 -- coextension.
5108 if Ekind (Typ) = E_Anonymous_Access_Type
5109 and then Nkind (Associated_Node_For_Itype (Typ)) =
5110 N_Discriminant_Specification
5111 then
5112 declare
5113 Discr : constant Entity_Id :=
5114 Defining_Identifier (Associated_Node_For_Itype (Typ));
5116 begin
5117 Check_Restriction (No_Coextensions, N);
5119 -- Ada 2012 AI05-0052: If the designated type of the
5120 -- allocator is limited, then the allocator shall not
5121 -- be used to define the value of an access discriminant
5122 -- unless the discriminated type is immutably limited.
5124 if Ada_Version >= Ada_2012
5125 and then Is_Limited_Type (Desig_T)
5126 and then not Is_Limited_View (Scope (Discr))
5127 then
5128 Error_Msg_N
5129 ("only immutably limited types can have anonymous "
5130 & "access discriminants designating a limited type",
5132 end if;
5133 end;
5135 -- Avoid marking an allocator as a dynamic coextension if it is
5136 -- within a static construct.
5138 if not Is_Static_Coextension (N) then
5139 Set_Is_Dynamic_Coextension (N);
5141 -- Finalization and deallocation of coextensions utilizes an
5142 -- approximate implementation which does not directly adhere
5143 -- to the semantic rules. Warn on potential issues involving
5144 -- coextensions.
5146 if Is_Controlled (Desig_T) then
5147 Error_Msg_N
5148 ("??coextension will not be finalized when its "
5149 & "associated owner is deallocated or finalized", N);
5150 else
5151 Error_Msg_N
5152 ("??coextension will not be deallocated when its "
5153 & "associated owner is deallocated", N);
5154 end if;
5155 end if;
5157 -- Cleanup for potential static coextensions
5159 else
5160 Set_Is_Dynamic_Coextension (N, False);
5161 Set_Is_Static_Coextension (N, False);
5163 -- Anonymous access-to-controlled objects are not finalized on
5164 -- time because this involves run-time ownership and currently
5165 -- this property is not available. In rare cases the object may
5166 -- not be finalized at all. Warn on potential issues involving
5167 -- anonymous access-to-controlled objects.
5169 if Ekind (Typ) = E_Anonymous_Access_Type
5170 and then Is_Controlled_Active (Desig_T)
5171 then
5172 Error_Msg_N
5173 ("??object designated by anonymous access object might "
5174 & "not be finalized until its enclosing library unit "
5175 & "goes out of scope", N);
5176 Error_Msg_N ("\use named access type instead", N);
5177 end if;
5178 end if;
5179 end if;
5180 end if;
5182 -- Report a simple error: if the designated object is a local task,
5183 -- its body has not been seen yet, and its activation will fail an
5184 -- elaboration check.
5186 if Is_Task_Type (Desig_T)
5187 and then Scope (Base_Type (Desig_T)) = Current_Scope
5188 and then Is_Compilation_Unit (Current_Scope)
5189 and then Ekind (Current_Scope) = E_Package
5190 and then not In_Package_Body (Current_Scope)
5191 then
5192 Error_Msg_Warn := SPARK_Mode /= On;
5193 Error_Msg_N ("cannot activate task before body seen<<", N);
5194 Error_Msg_N ("\Program_Error [<<", N);
5195 end if;
5197 -- Ada 2012 (AI05-0111-3): Detect an attempt to allocate a task or a
5198 -- type with a task component on a subpool. This action must raise
5199 -- Program_Error at runtime.
5201 if Ada_Version >= Ada_2012
5202 and then Nkind (N) = N_Allocator
5203 and then Present (Subpool_Handle_Name (N))
5204 and then Has_Task (Desig_T)
5205 then
5206 Error_Msg_Warn := SPARK_Mode /= On;
5207 Error_Msg_N ("cannot allocate task on subpool<<", N);
5208 Error_Msg_N ("\Program_Error [<<", N);
5210 Rewrite (N,
5211 Make_Raise_Program_Error (Sloc (N),
5212 Reason => PE_Explicit_Raise));
5213 Set_Etype (N, Typ);
5214 end if;
5215 end Resolve_Allocator;
5217 ---------------------------
5218 -- Resolve_Arithmetic_Op --
5219 ---------------------------
5221 -- Used for resolving all arithmetic operators except exponentiation
5223 procedure Resolve_Arithmetic_Op (N : Node_Id; Typ : Entity_Id) is
5224 L : constant Node_Id := Left_Opnd (N);
5225 R : constant Node_Id := Right_Opnd (N);
5226 TL : constant Entity_Id := Base_Type (Etype (L));
5227 TR : constant Entity_Id := Base_Type (Etype (R));
5228 T : Entity_Id;
5229 Rop : Node_Id;
5231 B_Typ : constant Entity_Id := Base_Type (Typ);
5232 -- We do the resolution using the base type, because intermediate values
5233 -- in expressions always are of the base type, not a subtype of it.
5235 function Expected_Type_Is_Any_Real (N : Node_Id) return Boolean;
5236 -- Returns True if N is in a context that expects "any real type"
5238 function Is_Integer_Or_Universal (N : Node_Id) return Boolean;
5239 -- Return True iff given type is Integer or universal real/integer
5241 procedure Set_Mixed_Mode_Operand (N : Node_Id; T : Entity_Id);
5242 -- Choose type of integer literal in fixed-point operation to conform
5243 -- to available fixed-point type. T is the type of the other operand,
5244 -- which is needed to determine the expected type of N.
5246 procedure Set_Operand_Type (N : Node_Id);
5247 -- Set operand type to T if universal
5249 -------------------------------
5250 -- Expected_Type_Is_Any_Real --
5251 -------------------------------
5253 function Expected_Type_Is_Any_Real (N : Node_Id) return Boolean is
5254 begin
5255 -- N is the expression after "delta" in a fixed_point_definition;
5256 -- see RM-3.5.9(6):
5258 return Nkind_In (Parent (N), N_Ordinary_Fixed_Point_Definition,
5259 N_Decimal_Fixed_Point_Definition,
5261 -- N is one of the bounds in a real_range_specification;
5262 -- see RM-3.5.7(5):
5264 N_Real_Range_Specification,
5266 -- N is the expression of a delta_constraint;
5267 -- see RM-J.3(3):
5269 N_Delta_Constraint);
5270 end Expected_Type_Is_Any_Real;
5272 -----------------------------
5273 -- Is_Integer_Or_Universal --
5274 -----------------------------
5276 function Is_Integer_Or_Universal (N : Node_Id) return Boolean is
5277 T : Entity_Id;
5278 Index : Interp_Index;
5279 It : Interp;
5281 begin
5282 if not Is_Overloaded (N) then
5283 T := Etype (N);
5284 return Base_Type (T) = Base_Type (Standard_Integer)
5285 or else T = Universal_Integer
5286 or else T = Universal_Real;
5287 else
5288 Get_First_Interp (N, Index, It);
5289 while Present (It.Typ) loop
5290 if Base_Type (It.Typ) = Base_Type (Standard_Integer)
5291 or else It.Typ = Universal_Integer
5292 or else It.Typ = Universal_Real
5293 then
5294 return True;
5295 end if;
5297 Get_Next_Interp (Index, It);
5298 end loop;
5299 end if;
5301 return False;
5302 end Is_Integer_Or_Universal;
5304 ----------------------------
5305 -- Set_Mixed_Mode_Operand --
5306 ----------------------------
5308 procedure Set_Mixed_Mode_Operand (N : Node_Id; T : Entity_Id) is
5309 Index : Interp_Index;
5310 It : Interp;
5312 begin
5313 if Universal_Interpretation (N) = Universal_Integer then
5315 -- A universal integer literal is resolved as standard integer
5316 -- except in the case of a fixed-point result, where we leave it
5317 -- as universal (to be handled by Exp_Fixd later on)
5319 if Is_Fixed_Point_Type (T) then
5320 Resolve (N, Universal_Integer);
5321 else
5322 Resolve (N, Standard_Integer);
5323 end if;
5325 elsif Universal_Interpretation (N) = Universal_Real
5326 and then (T = Base_Type (Standard_Integer)
5327 or else T = Universal_Integer
5328 or else T = Universal_Real)
5329 then
5330 -- A universal real can appear in a fixed-type context. We resolve
5331 -- the literal with that context, even though this might raise an
5332 -- exception prematurely (the other operand may be zero).
5334 Resolve (N, B_Typ);
5336 elsif Etype (N) = Base_Type (Standard_Integer)
5337 and then T = Universal_Real
5338 and then Is_Overloaded (N)
5339 then
5340 -- Integer arg in mixed-mode operation. Resolve with universal
5341 -- type, in case preference rule must be applied.
5343 Resolve (N, Universal_Integer);
5345 elsif Etype (N) = T and then B_Typ /= Universal_Fixed then
5347 -- If the operand is part of a fixed multiplication operation,
5348 -- a conversion will be applied to each operand, so resolve it
5349 -- with its own type.
5351 if Nkind_In (Parent (N), N_Op_Divide, N_Op_Multiply) then
5352 Resolve (N);
5354 else
5355 -- Not a mixed-mode operation, resolve with context
5357 Resolve (N, B_Typ);
5358 end if;
5360 elsif Etype (N) = Any_Fixed then
5362 -- N may itself be a mixed-mode operation, so use context type
5364 Resolve (N, B_Typ);
5366 elsif Is_Fixed_Point_Type (T)
5367 and then B_Typ = Universal_Fixed
5368 and then Is_Overloaded (N)
5369 then
5370 -- Must be (fixed * fixed) operation, operand must have one
5371 -- compatible interpretation.
5373 Resolve (N, Any_Fixed);
5375 elsif Is_Fixed_Point_Type (B_Typ)
5376 and then (T = Universal_Real or else Is_Fixed_Point_Type (T))
5377 and then Is_Overloaded (N)
5378 then
5379 -- C * F(X) in a fixed context, where C is a real literal or a
5380 -- fixed-point expression. F must have either a fixed type
5381 -- interpretation or an integer interpretation, but not both.
5383 Get_First_Interp (N, Index, It);
5384 while Present (It.Typ) loop
5385 if Base_Type (It.Typ) = Base_Type (Standard_Integer) then
5386 if Analyzed (N) then
5387 Error_Msg_N ("ambiguous operand in fixed operation", N);
5388 else
5389 Resolve (N, Standard_Integer);
5390 end if;
5392 elsif Is_Fixed_Point_Type (It.Typ) then
5393 if Analyzed (N) then
5394 Error_Msg_N ("ambiguous operand in fixed operation", N);
5395 else
5396 Resolve (N, It.Typ);
5397 end if;
5398 end if;
5400 Get_Next_Interp (Index, It);
5401 end loop;
5403 -- Reanalyze the literal with the fixed type of the context. If
5404 -- context is Universal_Fixed, we are within a conversion, leave
5405 -- the literal as a universal real because there is no usable
5406 -- fixed type, and the target of the conversion plays no role in
5407 -- the resolution.
5409 declare
5410 Op2 : Node_Id;
5411 T2 : Entity_Id;
5413 begin
5414 if N = L then
5415 Op2 := R;
5416 else
5417 Op2 := L;
5418 end if;
5420 if B_Typ = Universal_Fixed
5421 and then Nkind (Op2) = N_Real_Literal
5422 then
5423 T2 := Universal_Real;
5424 else
5425 T2 := B_Typ;
5426 end if;
5428 Set_Analyzed (Op2, False);
5429 Resolve (Op2, T2);
5430 end;
5432 -- A universal real conditional expression can appear in a fixed-type
5433 -- context and must be resolved with that context to facilitate the
5434 -- code generation in the back end.
5436 elsif Nkind_In (N, N_Case_Expression, N_If_Expression)
5437 and then Etype (N) = Universal_Real
5438 and then Is_Fixed_Point_Type (B_Typ)
5439 then
5440 Resolve (N, B_Typ);
5442 else
5443 Resolve (N);
5444 end if;
5445 end Set_Mixed_Mode_Operand;
5447 ----------------------
5448 -- Set_Operand_Type --
5449 ----------------------
5451 procedure Set_Operand_Type (N : Node_Id) is
5452 begin
5453 if Etype (N) = Universal_Integer
5454 or else Etype (N) = Universal_Real
5455 then
5456 Set_Etype (N, T);
5457 end if;
5458 end Set_Operand_Type;
5460 -- Start of processing for Resolve_Arithmetic_Op
5462 begin
5463 if Comes_From_Source (N)
5464 and then Ekind (Entity (N)) = E_Function
5465 and then Is_Imported (Entity (N))
5466 and then Is_Intrinsic_Subprogram (Entity (N))
5467 then
5468 Resolve_Intrinsic_Operator (N, Typ);
5469 return;
5471 -- Special-case for mixed-mode universal expressions or fixed point type
5472 -- operation: each argument is resolved separately. The same treatment
5473 -- is required if one of the operands of a fixed point operation is
5474 -- universal real, since in this case we don't do a conversion to a
5475 -- specific fixed-point type (instead the expander handles the case).
5477 -- Set the type of the node to its universal interpretation because
5478 -- legality checks on an exponentiation operand need the context.
5480 elsif (B_Typ = Universal_Integer or else B_Typ = Universal_Real)
5481 and then Present (Universal_Interpretation (L))
5482 and then Present (Universal_Interpretation (R))
5483 then
5484 Set_Etype (N, B_Typ);
5485 Resolve (L, Universal_Interpretation (L));
5486 Resolve (R, Universal_Interpretation (R));
5488 elsif (B_Typ = Universal_Real
5489 or else Etype (N) = Universal_Fixed
5490 or else (Etype (N) = Any_Fixed
5491 and then Is_Fixed_Point_Type (B_Typ))
5492 or else (Is_Fixed_Point_Type (B_Typ)
5493 and then (Is_Integer_Or_Universal (L)
5494 or else
5495 Is_Integer_Or_Universal (R))))
5496 and then Nkind_In (N, N_Op_Multiply, N_Op_Divide)
5497 then
5498 if TL = Universal_Integer or else TR = Universal_Integer then
5499 Check_For_Visible_Operator (N, B_Typ);
5500 end if;
5502 -- If context is a fixed type and one operand is integer, the other
5503 -- is resolved with the type of the context.
5505 if Is_Fixed_Point_Type (B_Typ)
5506 and then (Base_Type (TL) = Base_Type (Standard_Integer)
5507 or else TL = Universal_Integer)
5508 then
5509 Resolve (R, B_Typ);
5510 Resolve (L, TL);
5512 elsif Is_Fixed_Point_Type (B_Typ)
5513 and then (Base_Type (TR) = Base_Type (Standard_Integer)
5514 or else TR = Universal_Integer)
5515 then
5516 Resolve (L, B_Typ);
5517 Resolve (R, TR);
5519 -- If both operands are universal and the context is a floating
5520 -- point type, the operands are resolved to the type of the context.
5522 elsif Is_Floating_Point_Type (B_Typ) then
5523 Resolve (L, B_Typ);
5524 Resolve (R, B_Typ);
5526 else
5527 Set_Mixed_Mode_Operand (L, TR);
5528 Set_Mixed_Mode_Operand (R, TL);
5529 end if;
5531 -- Check the rule in RM05-4.5.5(19.1/2) disallowing universal_fixed
5532 -- multiplying operators from being used when the expected type is
5533 -- also universal_fixed. Note that B_Typ will be Universal_Fixed in
5534 -- some cases where the expected type is actually Any_Real;
5535 -- Expected_Type_Is_Any_Real takes care of that case.
5537 if Etype (N) = Universal_Fixed
5538 or else Etype (N) = Any_Fixed
5539 then
5540 if B_Typ = Universal_Fixed
5541 and then not Expected_Type_Is_Any_Real (N)
5542 and then not Nkind_In (Parent (N), N_Type_Conversion,
5543 N_Unchecked_Type_Conversion)
5544 then
5545 Error_Msg_N ("type cannot be determined from context!", N);
5546 Error_Msg_N ("\explicit conversion to result type required", N);
5548 Set_Etype (L, Any_Type);
5549 Set_Etype (R, Any_Type);
5551 else
5552 if Ada_Version = Ada_83
5553 and then Etype (N) = Universal_Fixed
5554 and then not
5555 Nkind_In (Parent (N), N_Type_Conversion,
5556 N_Unchecked_Type_Conversion)
5557 then
5558 Error_Msg_N
5559 ("(Ada 83) fixed-point operation needs explicit "
5560 & "conversion", N);
5561 end if;
5563 -- The expected type is "any real type" in contexts like
5565 -- type T is delta <universal_fixed-expression> ...
5567 -- in which case we need to set the type to Universal_Real
5568 -- so that static expression evaluation will work properly.
5570 if Expected_Type_Is_Any_Real (N) then
5571 Set_Etype (N, Universal_Real);
5572 else
5573 Set_Etype (N, B_Typ);
5574 end if;
5575 end if;
5577 elsif Is_Fixed_Point_Type (B_Typ)
5578 and then (Is_Integer_Or_Universal (L)
5579 or else Nkind (L) = N_Real_Literal
5580 or else Nkind (R) = N_Real_Literal
5581 or else Is_Integer_Or_Universal (R))
5582 then
5583 Set_Etype (N, B_Typ);
5585 elsif Etype (N) = Any_Fixed then
5587 -- If no previous errors, this is only possible if one operand is
5588 -- overloaded and the context is universal. Resolve as such.
5590 Set_Etype (N, B_Typ);
5591 end if;
5593 else
5594 if (TL = Universal_Integer or else TL = Universal_Real)
5595 and then
5596 (TR = Universal_Integer or else TR = Universal_Real)
5597 then
5598 Check_For_Visible_Operator (N, B_Typ);
5599 end if;
5601 -- If the context is Universal_Fixed and the operands are also
5602 -- universal fixed, this is an error, unless there is only one
5603 -- applicable fixed_point type (usually Duration).
5605 if B_Typ = Universal_Fixed and then Etype (L) = Universal_Fixed then
5606 T := Unique_Fixed_Point_Type (N);
5608 if T = Any_Type then
5609 Set_Etype (N, T);
5610 return;
5611 else
5612 Resolve (L, T);
5613 Resolve (R, T);
5614 end if;
5616 else
5617 Resolve (L, B_Typ);
5618 Resolve (R, B_Typ);
5619 end if;
5621 -- If one of the arguments was resolved to a non-universal type.
5622 -- label the result of the operation itself with the same type.
5623 -- Do the same for the universal argument, if any.
5625 T := Intersect_Types (L, R);
5626 Set_Etype (N, Base_Type (T));
5627 Set_Operand_Type (L);
5628 Set_Operand_Type (R);
5629 end if;
5631 Generate_Operator_Reference (N, Typ);
5632 Analyze_Dimension (N);
5633 Eval_Arithmetic_Op (N);
5635 -- In SPARK, a multiplication or division with operands of fixed point
5636 -- types must be qualified or explicitly converted to identify the
5637 -- result type.
5639 if (Is_Fixed_Point_Type (Etype (L))
5640 or else Is_Fixed_Point_Type (Etype (R)))
5641 and then Nkind_In (N, N_Op_Multiply, N_Op_Divide)
5642 and then
5643 not Nkind_In (Parent (N), N_Qualified_Expression, N_Type_Conversion)
5644 then
5645 Check_SPARK_05_Restriction
5646 ("operation should be qualified or explicitly converted", N);
5647 end if;
5649 -- Set overflow and division checking bit
5651 if Nkind (N) in N_Op then
5652 if not Overflow_Checks_Suppressed (Etype (N)) then
5653 Enable_Overflow_Check (N);
5654 end if;
5656 -- Give warning if explicit division by zero
5658 if Nkind_In (N, N_Op_Divide, N_Op_Rem, N_Op_Mod)
5659 and then not Division_Checks_Suppressed (Etype (N))
5660 then
5661 Rop := Right_Opnd (N);
5663 if Compile_Time_Known_Value (Rop)
5664 and then ((Is_Integer_Type (Etype (Rop))
5665 and then Expr_Value (Rop) = Uint_0)
5666 or else
5667 (Is_Real_Type (Etype (Rop))
5668 and then Expr_Value_R (Rop) = Ureal_0))
5669 then
5670 -- Specialize the warning message according to the operation.
5671 -- When SPARK_Mode is On, force a warning instead of an error
5672 -- in that case, as this likely corresponds to deactivated
5673 -- code. The following warnings are for the case
5675 case Nkind (N) is
5676 when N_Op_Divide =>
5678 -- For division, we have two cases, for float division
5679 -- of an unconstrained float type, on a machine where
5680 -- Machine_Overflows is false, we don't get an exception
5681 -- at run-time, but rather an infinity or Nan. The Nan
5682 -- case is pretty obscure, so just warn about infinities.
5684 if Is_Floating_Point_Type (Typ)
5685 and then not Is_Constrained (Typ)
5686 and then not Machine_Overflows_On_Target
5687 then
5688 Error_Msg_N
5689 ("float division by zero, may generate "
5690 & "'+'/'- infinity??", Right_Opnd (N));
5692 -- For all other cases, we get a Constraint_Error
5694 else
5695 Apply_Compile_Time_Constraint_Error
5696 (N, "division by zero??", CE_Divide_By_Zero,
5697 Loc => Sloc (Right_Opnd (N)),
5698 Warn => SPARK_Mode = On);
5699 end if;
5701 when N_Op_Rem =>
5702 Apply_Compile_Time_Constraint_Error
5703 (N, "rem with zero divisor??", CE_Divide_By_Zero,
5704 Loc => Sloc (Right_Opnd (N)),
5705 Warn => SPARK_Mode = On);
5707 when N_Op_Mod =>
5708 Apply_Compile_Time_Constraint_Error
5709 (N, "mod with zero divisor??", CE_Divide_By_Zero,
5710 Loc => Sloc (Right_Opnd (N)),
5711 Warn => SPARK_Mode = On);
5713 -- Division by zero can only happen with division, rem,
5714 -- and mod operations.
5716 when others =>
5717 raise Program_Error;
5718 end case;
5720 -- In GNATprove mode, we enable the division check so that
5721 -- GNATprove will issue a message if it cannot be proved.
5723 if GNATprove_Mode then
5724 Activate_Division_Check (N);
5725 end if;
5727 -- Otherwise just set the flag to check at run time
5729 else
5730 Activate_Division_Check (N);
5731 end if;
5732 end if;
5734 -- If Restriction No_Implicit_Conditionals is active, then it is
5735 -- violated if either operand can be negative for mod, or for rem
5736 -- if both operands can be negative.
5738 if Restriction_Check_Required (No_Implicit_Conditionals)
5739 and then Nkind_In (N, N_Op_Rem, N_Op_Mod)
5740 then
5741 declare
5742 Lo : Uint;
5743 Hi : Uint;
5744 OK : Boolean;
5746 LNeg : Boolean;
5747 RNeg : Boolean;
5748 -- Set if corresponding operand might be negative
5750 begin
5751 Determine_Range
5752 (Left_Opnd (N), OK, Lo, Hi, Assume_Valid => True);
5753 LNeg := (not OK) or else Lo < 0;
5755 Determine_Range
5756 (Right_Opnd (N), OK, Lo, Hi, Assume_Valid => True);
5757 RNeg := (not OK) or else Lo < 0;
5759 -- Check if we will be generating conditionals. There are two
5760 -- cases where that can happen, first for REM, the only case
5761 -- is largest negative integer mod -1, where the division can
5762 -- overflow, but we still have to give the right result. The
5763 -- front end generates a test for this annoying case. Here we
5764 -- just test if both operands can be negative (that's what the
5765 -- expander does, so we match its logic here).
5767 -- The second case is mod where either operand can be negative.
5768 -- In this case, the back end has to generate additional tests.
5770 if (Nkind (N) = N_Op_Rem and then (LNeg and RNeg))
5771 or else
5772 (Nkind (N) = N_Op_Mod and then (LNeg or RNeg))
5773 then
5774 Check_Restriction (No_Implicit_Conditionals, N);
5775 end if;
5776 end;
5777 end if;
5778 end if;
5780 Check_Unset_Reference (L);
5781 Check_Unset_Reference (R);
5782 end Resolve_Arithmetic_Op;
5784 ------------------
5785 -- Resolve_Call --
5786 ------------------
5788 procedure Resolve_Call (N : Node_Id; Typ : Entity_Id) is
5789 function Same_Or_Aliased_Subprograms
5790 (S : Entity_Id;
5791 E : Entity_Id) return Boolean;
5792 -- Returns True if the subprogram entity S is the same as E or else
5793 -- S is an alias of E.
5795 ---------------------------------
5796 -- Same_Or_Aliased_Subprograms --
5797 ---------------------------------
5799 function Same_Or_Aliased_Subprograms
5800 (S : Entity_Id;
5801 E : Entity_Id) return Boolean
5803 Subp_Alias : constant Entity_Id := Alias (S);
5804 begin
5805 return S = E or else (Present (Subp_Alias) and then Subp_Alias = E);
5806 end Same_Or_Aliased_Subprograms;
5808 -- Local variables
5810 Loc : constant Source_Ptr := Sloc (N);
5811 Subp : constant Node_Id := Name (N);
5812 Body_Id : Entity_Id;
5813 I : Interp_Index;
5814 It : Interp;
5815 Nam : Entity_Id;
5816 Nam_Decl : Node_Id;
5817 Nam_UA : Entity_Id;
5818 Norm_OK : Boolean;
5819 Rtype : Entity_Id;
5820 Scop : Entity_Id;
5822 -- Start of processing for Resolve_Call
5824 begin
5825 -- Preserve relevant elaboration-related attributes of the context which
5826 -- are no longer available or very expensive to recompute once analysis,
5827 -- resolution, and expansion are over.
5829 Mark_Elaboration_Attributes
5830 (N_Id => N,
5831 Checks => True,
5832 Modes => True,
5833 Warnings => True);
5835 -- The context imposes a unique interpretation with type Typ on a
5836 -- procedure or function call. Find the entity of the subprogram that
5837 -- yields the expected type, and propagate the corresponding formal
5838 -- constraints on the actuals. The caller has established that an
5839 -- interpretation exists, and emitted an error if not unique.
5841 -- First deal with the case of a call to an access-to-subprogram,
5842 -- dereference made explicit in Analyze_Call.
5844 if Ekind (Etype (Subp)) = E_Subprogram_Type then
5845 if not Is_Overloaded (Subp) then
5846 Nam := Etype (Subp);
5848 else
5849 -- Find the interpretation whose type (a subprogram type) has a
5850 -- return type that is compatible with the context. Analysis of
5851 -- the node has established that one exists.
5853 Nam := Empty;
5855 Get_First_Interp (Subp, I, It);
5856 while Present (It.Typ) loop
5857 if Covers (Typ, Etype (It.Typ)) then
5858 Nam := It.Typ;
5859 exit;
5860 end if;
5862 Get_Next_Interp (I, It);
5863 end loop;
5865 if No (Nam) then
5866 raise Program_Error;
5867 end if;
5868 end if;
5870 -- If the prefix is not an entity, then resolve it
5872 if not Is_Entity_Name (Subp) then
5873 Resolve (Subp, Nam);
5874 end if;
5876 -- For an indirect call, we always invalidate checks, since we do not
5877 -- know whether the subprogram is local or global. Yes we could do
5878 -- better here, e.g. by knowing that there are no local subprograms,
5879 -- but it does not seem worth the effort. Similarly, we kill all
5880 -- knowledge of current constant values.
5882 Kill_Current_Values;
5884 -- If this is a procedure call which is really an entry call, do
5885 -- the conversion of the procedure call to an entry call. Protected
5886 -- operations use the same circuitry because the name in the call
5887 -- can be an arbitrary expression with special resolution rules.
5889 elsif Nkind_In (Subp, N_Selected_Component, N_Indexed_Component)
5890 or else (Is_Entity_Name (Subp)
5891 and then Ekind_In (Entity (Subp), E_Entry, E_Entry_Family))
5892 then
5893 Resolve_Entry_Call (N, Typ);
5895 if Legacy_Elaboration_Checks then
5896 Check_Elab_Call (N);
5897 end if;
5899 -- Annotate the tree by creating a call marker in case the original
5900 -- call is transformed by expansion. The call marker is automatically
5901 -- saved for later examination by the ABE Processing phase.
5903 Build_Call_Marker (N);
5905 -- Kill checks and constant values, as above for indirect case
5906 -- Who knows what happens when another task is activated?
5908 Kill_Current_Values;
5909 return;
5911 -- Normal subprogram call with name established in Resolve
5913 elsif not (Is_Type (Entity (Subp))) then
5914 Nam := Entity (Subp);
5915 Set_Entity_With_Checks (Subp, Nam);
5917 -- Otherwise we must have the case of an overloaded call
5919 else
5920 pragma Assert (Is_Overloaded (Subp));
5922 -- Initialize Nam to prevent warning (we know it will be assigned
5923 -- in the loop below, but the compiler does not know that).
5925 Nam := Empty;
5927 Get_First_Interp (Subp, I, It);
5928 while Present (It.Typ) loop
5929 if Covers (Typ, It.Typ) then
5930 Nam := It.Nam;
5931 Set_Entity_With_Checks (Subp, Nam);
5932 exit;
5933 end if;
5935 Get_Next_Interp (I, It);
5936 end loop;
5937 end if;
5939 if Is_Access_Subprogram_Type (Base_Type (Etype (Nam)))
5940 and then not Is_Access_Subprogram_Type (Base_Type (Typ))
5941 and then Nkind (Subp) /= N_Explicit_Dereference
5942 and then Present (Parameter_Associations (N))
5943 then
5944 -- The prefix is a parameterless function call that returns an access
5945 -- to subprogram. If parameters are present in the current call, add
5946 -- add an explicit dereference. We use the base type here because
5947 -- within an instance these may be subtypes.
5949 -- The dereference is added either in Analyze_Call or here. Should
5950 -- be consolidated ???
5952 Set_Is_Overloaded (Subp, False);
5953 Set_Etype (Subp, Etype (Nam));
5954 Insert_Explicit_Dereference (Subp);
5955 Nam := Designated_Type (Etype (Nam));
5956 Resolve (Subp, Nam);
5957 end if;
5959 -- Check that a call to Current_Task does not occur in an entry body
5961 if Is_RTE (Nam, RE_Current_Task) then
5962 declare
5963 P : Node_Id;
5965 begin
5966 P := N;
5967 loop
5968 P := Parent (P);
5970 -- Exclude calls that occur within the default of a formal
5971 -- parameter of the entry, since those are evaluated outside
5972 -- of the body.
5974 exit when No (P) or else Nkind (P) = N_Parameter_Specification;
5976 if Nkind (P) = N_Entry_Body
5977 or else (Nkind (P) = N_Subprogram_Body
5978 and then Is_Entry_Barrier_Function (P))
5979 then
5980 Rtype := Etype (N);
5981 Error_Msg_Warn := SPARK_Mode /= On;
5982 Error_Msg_NE
5983 ("& should not be used in entry body (RM C.7(17))<<",
5984 N, Nam);
5985 Error_Msg_NE ("\Program_Error [<<", N, Nam);
5986 Rewrite (N,
5987 Make_Raise_Program_Error (Loc,
5988 Reason => PE_Current_Task_In_Entry_Body));
5989 Set_Etype (N, Rtype);
5990 return;
5991 end if;
5992 end loop;
5993 end;
5994 end if;
5996 -- Check that a procedure call does not occur in the context of the
5997 -- entry call statement of a conditional or timed entry call. Note that
5998 -- the case of a call to a subprogram renaming of an entry will also be
5999 -- rejected. The test for N not being an N_Entry_Call_Statement is
6000 -- defensive, covering the possibility that the processing of entry
6001 -- calls might reach this point due to later modifications of the code
6002 -- above.
6004 if Nkind (Parent (N)) = N_Entry_Call_Alternative
6005 and then Nkind (N) /= N_Entry_Call_Statement
6006 and then Entry_Call_Statement (Parent (N)) = N
6007 then
6008 if Ada_Version < Ada_2005 then
6009 Error_Msg_N ("entry call required in select statement", N);
6011 -- Ada 2005 (AI-345): If a procedure_call_statement is used
6012 -- for a procedure_or_entry_call, the procedure_name or
6013 -- procedure_prefix of the procedure_call_statement shall denote
6014 -- an entry renamed by a procedure, or (a view of) a primitive
6015 -- subprogram of a limited interface whose first parameter is
6016 -- a controlling parameter.
6018 elsif Nkind (N) = N_Procedure_Call_Statement
6019 and then not Is_Renamed_Entry (Nam)
6020 and then not Is_Controlling_Limited_Procedure (Nam)
6021 then
6022 Error_Msg_N
6023 ("entry call or dispatching primitive of interface required", N);
6024 end if;
6025 end if;
6027 -- If the SPARK_05 restriction is active, we are not allowed
6028 -- to have a call to a subprogram before we see its completion.
6030 if not Has_Completion (Nam)
6031 and then Restriction_Check_Required (SPARK_05)
6033 -- Don't flag strange internal calls
6035 and then Comes_From_Source (N)
6036 and then Comes_From_Source (Nam)
6038 -- Only flag calls in extended main source
6040 and then In_Extended_Main_Source_Unit (Nam)
6041 and then In_Extended_Main_Source_Unit (N)
6043 -- Exclude enumeration literals from this processing
6045 and then Ekind (Nam) /= E_Enumeration_Literal
6046 then
6047 Check_SPARK_05_Restriction
6048 ("call to subprogram cannot appear before its body", N);
6049 end if;
6051 -- Check that this is not a call to a protected procedure or entry from
6052 -- within a protected function.
6054 Check_Internal_Protected_Use (N, Nam);
6056 -- Freeze the subprogram name if not in a spec-expression. Note that
6057 -- we freeze procedure calls as well as function calls. Procedure calls
6058 -- are not frozen according to the rules (RM 13.14(14)) because it is
6059 -- impossible to have a procedure call to a non-frozen procedure in
6060 -- pure Ada, but in the code that we generate in the expander, this
6061 -- rule needs extending because we can generate procedure calls that
6062 -- need freezing.
6064 -- In Ada 2012, expression functions may be called within pre/post
6065 -- conditions of subsequent functions or expression functions. Such
6066 -- calls do not freeze when they appear within generated bodies,
6067 -- (including the body of another expression function) which would
6068 -- place the freeze node in the wrong scope. An expression function
6069 -- is frozen in the usual fashion, by the appearance of a real body,
6070 -- or at the end of a declarative part. However an implicit call to
6071 -- an expression function may appear when it is part of a default
6072 -- expression in a call to an initialiation procedure, and must be
6073 -- frozen now, even if the body is inserted at a later point.
6075 if Is_Entity_Name (Subp)
6076 and then not In_Spec_Expression
6077 and then not Is_Expression_Function_Or_Completion (Current_Scope)
6078 and then
6079 (not Is_Expression_Function_Or_Completion (Entity (Subp))
6080 or else Scope (Entity (Subp)) = Current_Scope)
6081 then
6082 if Is_Expression_Function (Entity (Subp)) then
6084 -- Force freeze of expression function in call
6086 Set_Comes_From_Source (Subp, True);
6087 Set_Must_Not_Freeze (Subp, False);
6088 end if;
6090 Freeze_Expression (Subp);
6091 end if;
6093 -- For a predefined operator, the type of the result is the type imposed
6094 -- by context, except for a predefined operation on universal fixed.
6095 -- Otherwise the type of the call is the type returned by the subprogram
6096 -- being called.
6098 if Is_Predefined_Op (Nam) then
6099 if Etype (N) /= Universal_Fixed then
6100 Set_Etype (N, Typ);
6101 end if;
6103 -- If the subprogram returns an array type, and the context requires the
6104 -- component type of that array type, the node is really an indexing of
6105 -- the parameterless call. Resolve as such. A pathological case occurs
6106 -- when the type of the component is an access to the array type. In
6107 -- this case the call is truly ambiguous. If the call is to an intrinsic
6108 -- subprogram, it can't be an indexed component. This check is necessary
6109 -- because if it's Unchecked_Conversion, and we have "type T_Ptr is
6110 -- access T;" and "type T is array (...) of T_Ptr;" (i.e. an array of
6111 -- pointers to the same array), the compiler gets confused and does an
6112 -- infinite recursion.
6114 elsif (Needs_No_Actuals (Nam) or else Needs_One_Actual (Nam))
6115 and then
6116 ((Is_Array_Type (Etype (Nam))
6117 and then Covers (Typ, Component_Type (Etype (Nam))))
6118 or else
6119 (Is_Access_Type (Etype (Nam))
6120 and then Is_Array_Type (Designated_Type (Etype (Nam)))
6121 and then
6122 Covers (Typ, Component_Type (Designated_Type (Etype (Nam))))
6123 and then not Is_Intrinsic_Subprogram (Entity (Subp))))
6124 then
6125 declare
6126 Index_Node : Node_Id;
6127 New_Subp : Node_Id;
6128 Ret_Type : constant Entity_Id := Etype (Nam);
6130 begin
6131 -- If this is a parameterless call there is no ambiguity and the
6132 -- call has the type of the function.
6134 if No (First_Actual (N)) then
6135 Set_Etype (N, Etype (Nam));
6137 if Present (First_Formal (Nam)) then
6138 Resolve_Actuals (N, Nam);
6139 end if;
6141 -- Annotate the tree by creating a call marker in case the
6142 -- original call is transformed by expansion. The call marker
6143 -- is automatically saved for later examination by the ABE
6144 -- Processing phase.
6146 Build_Call_Marker (N);
6148 elsif Is_Access_Type (Ret_Type)
6150 and then Ret_Type = Component_Type (Designated_Type (Ret_Type))
6151 then
6152 Error_Msg_N
6153 ("cannot disambiguate function call and indexing", N);
6154 else
6155 New_Subp := Relocate_Node (Subp);
6157 -- The called entity may be an explicit dereference, in which
6158 -- case there is no entity to set.
6160 if Nkind (New_Subp) /= N_Explicit_Dereference then
6161 Set_Entity (Subp, Nam);
6162 end if;
6164 if (Is_Array_Type (Ret_Type)
6165 and then Component_Type (Ret_Type) /= Any_Type)
6166 or else
6167 (Is_Access_Type (Ret_Type)
6168 and then
6169 Component_Type (Designated_Type (Ret_Type)) /= Any_Type)
6170 then
6171 if Needs_No_Actuals (Nam) then
6173 -- Indexed call to a parameterless function
6175 Index_Node :=
6176 Make_Indexed_Component (Loc,
6177 Prefix =>
6178 Make_Function_Call (Loc, Name => New_Subp),
6179 Expressions => Parameter_Associations (N));
6180 else
6181 -- An Ada 2005 prefixed call to a primitive operation
6182 -- whose first parameter is the prefix. This prefix was
6183 -- prepended to the parameter list, which is actually a
6184 -- list of indexes. Remove the prefix in order to build
6185 -- the proper indexed component.
6187 Index_Node :=
6188 Make_Indexed_Component (Loc,
6189 Prefix =>
6190 Make_Function_Call (Loc,
6191 Name => New_Subp,
6192 Parameter_Associations =>
6193 New_List
6194 (Remove_Head (Parameter_Associations (N)))),
6195 Expressions => Parameter_Associations (N));
6196 end if;
6198 -- Preserve the parenthesis count of the node
6200 Set_Paren_Count (Index_Node, Paren_Count (N));
6202 -- Since we are correcting a node classification error made
6203 -- by the parser, we call Replace rather than Rewrite.
6205 Replace (N, Index_Node);
6207 Set_Etype (Prefix (N), Ret_Type);
6208 Set_Etype (N, Typ);
6209 Resolve_Indexed_Component (N, Typ);
6211 if Legacy_Elaboration_Checks then
6212 Check_Elab_Call (Prefix (N));
6213 end if;
6215 -- Annotate the tree by creating a call marker in case
6216 -- the original call is transformed by expansion. The call
6217 -- marker is automatically saved for later examination by
6218 -- the ABE Processing phase.
6220 Build_Call_Marker (Prefix (N));
6221 end if;
6222 end if;
6224 return;
6225 end;
6227 else
6228 -- If the called function is not declared in the main unit and it
6229 -- returns the limited view of type then use the available view (as
6230 -- is done in Try_Object_Operation) to prevent back-end confusion;
6231 -- for the function entity itself. The call must appear in a context
6232 -- where the nonlimited view is available. If the function entity is
6233 -- in the extended main unit then no action is needed, because the
6234 -- back end handles this case. In either case the type of the call
6235 -- is the nonlimited view.
6237 if From_Limited_With (Etype (Nam))
6238 and then Present (Available_View (Etype (Nam)))
6239 then
6240 Set_Etype (N, Available_View (Etype (Nam)));
6242 if not In_Extended_Main_Code_Unit (Nam) then
6243 Set_Etype (Nam, Available_View (Etype (Nam)));
6244 end if;
6246 else
6247 Set_Etype (N, Etype (Nam));
6248 end if;
6249 end if;
6251 -- In the case where the call is to an overloaded subprogram, Analyze
6252 -- calls Normalize_Actuals once per overloaded subprogram. Therefore in
6253 -- such a case Normalize_Actuals needs to be called once more to order
6254 -- the actuals correctly. Otherwise the call will have the ordering
6255 -- given by the last overloaded subprogram whether this is the correct
6256 -- one being called or not.
6258 if Is_Overloaded (Subp) then
6259 Normalize_Actuals (N, Nam, False, Norm_OK);
6260 pragma Assert (Norm_OK);
6261 end if;
6263 -- In any case, call is fully resolved now. Reset Overload flag, to
6264 -- prevent subsequent overload resolution if node is analyzed again
6266 Set_Is_Overloaded (Subp, False);
6267 Set_Is_Overloaded (N, False);
6269 -- A Ghost entity must appear in a specific context
6271 if Is_Ghost_Entity (Nam) and then Comes_From_Source (N) then
6272 Check_Ghost_Context (Nam, N);
6273 end if;
6275 -- If we are calling the current subprogram from immediately within its
6276 -- body, then that is the case where we can sometimes detect cases of
6277 -- infinite recursion statically. Do not try this in case restriction
6278 -- No_Recursion is in effect anyway, and do it only for source calls.
6280 if Comes_From_Source (N) then
6281 Scop := Current_Scope;
6283 -- Check violation of SPARK_05 restriction which does not permit
6284 -- a subprogram body to contain a call to the subprogram directly.
6286 if Restriction_Check_Required (SPARK_05)
6287 and then Same_Or_Aliased_Subprograms (Nam, Scop)
6288 then
6289 Check_SPARK_05_Restriction
6290 ("subprogram may not contain direct call to itself", N);
6291 end if;
6293 -- Issue warning for possible infinite recursion in the absence
6294 -- of the No_Recursion restriction.
6296 if Same_Or_Aliased_Subprograms (Nam, Scop)
6297 and then not Restriction_Active (No_Recursion)
6298 and then Check_Infinite_Recursion (N)
6299 then
6300 -- Here we detected and flagged an infinite recursion, so we do
6301 -- not need to test the case below for further warnings. Also we
6302 -- are all done if we now have a raise SE node.
6304 if Nkind (N) = N_Raise_Storage_Error then
6305 return;
6306 end if;
6308 -- If call is to immediately containing subprogram, then check for
6309 -- the case of a possible run-time detectable infinite recursion.
6311 else
6312 Scope_Loop : while Scop /= Standard_Standard loop
6313 if Same_Or_Aliased_Subprograms (Nam, Scop) then
6315 -- Although in general case, recursion is not statically
6316 -- checkable, the case of calling an immediately containing
6317 -- subprogram is easy to catch.
6319 Check_Restriction (No_Recursion, N);
6321 -- If the recursive call is to a parameterless subprogram,
6322 -- then even if we can't statically detect infinite
6323 -- recursion, this is pretty suspicious, and we output a
6324 -- warning. Furthermore, we will try later to detect some
6325 -- cases here at run time by expanding checking code (see
6326 -- Detect_Infinite_Recursion in package Exp_Ch6).
6328 -- If the recursive call is within a handler, do not emit a
6329 -- warning, because this is a common idiom: loop until input
6330 -- is correct, catch illegal input in handler and restart.
6332 if No (First_Formal (Nam))
6333 and then Etype (Nam) = Standard_Void_Type
6334 and then not Error_Posted (N)
6335 and then Nkind (Parent (N)) /= N_Exception_Handler
6336 then
6337 -- For the case of a procedure call. We give the message
6338 -- only if the call is the first statement in a sequence
6339 -- of statements, or if all previous statements are
6340 -- simple assignments. This is simply a heuristic to
6341 -- decrease false positives, without losing too many good
6342 -- warnings. The idea is that these previous statements
6343 -- may affect global variables the procedure depends on.
6344 -- We also exclude raise statements, that may arise from
6345 -- constraint checks and are probably unrelated to the
6346 -- intended control flow.
6348 if Nkind (N) = N_Procedure_Call_Statement
6349 and then Is_List_Member (N)
6350 then
6351 declare
6352 P : Node_Id;
6353 begin
6354 P := Prev (N);
6355 while Present (P) loop
6356 if not Nkind_In (P, N_Assignment_Statement,
6357 N_Raise_Constraint_Error)
6358 then
6359 exit Scope_Loop;
6360 end if;
6362 Prev (P);
6363 end loop;
6364 end;
6365 end if;
6367 -- Do not give warning if we are in a conditional context
6369 declare
6370 K : constant Node_Kind := Nkind (Parent (N));
6371 begin
6372 if (K = N_Loop_Statement
6373 and then Present (Iteration_Scheme (Parent (N))))
6374 or else K = N_If_Statement
6375 or else K = N_Elsif_Part
6376 or else K = N_Case_Statement_Alternative
6377 then
6378 exit Scope_Loop;
6379 end if;
6380 end;
6382 -- Here warning is to be issued
6384 Set_Has_Recursive_Call (Nam);
6385 Error_Msg_Warn := SPARK_Mode /= On;
6386 Error_Msg_N ("possible infinite recursion<<!", N);
6387 Error_Msg_N ("\Storage_Error ]<<!", N);
6388 end if;
6390 exit Scope_Loop;
6391 end if;
6393 Scop := Scope (Scop);
6394 end loop Scope_Loop;
6395 end if;
6396 end if;
6398 -- Check obsolescent reference to Ada.Characters.Handling subprogram
6400 Check_Obsolescent_2005_Entity (Nam, Subp);
6402 -- If subprogram name is a predefined operator, it was given in
6403 -- functional notation. Replace call node with operator node, so
6404 -- that actuals can be resolved appropriately.
6406 if Is_Predefined_Op (Nam) or else Ekind (Nam) = E_Operator then
6407 Make_Call_Into_Operator (N, Typ, Entity (Name (N)));
6408 return;
6410 elsif Present (Alias (Nam))
6411 and then Is_Predefined_Op (Alias (Nam))
6412 then
6413 Resolve_Actuals (N, Nam);
6414 Make_Call_Into_Operator (N, Typ, Alias (Nam));
6415 return;
6416 end if;
6418 -- Create a transient scope if the resulting type requires it
6420 -- There are several notable exceptions:
6422 -- a) In init procs, the transient scope overhead is not needed, and is
6423 -- even incorrect when the call is a nested initialization call for a
6424 -- component whose expansion may generate adjust calls. However, if the
6425 -- call is some other procedure call within an initialization procedure
6426 -- (for example a call to Create_Task in the init_proc of the task
6427 -- run-time record) a transient scope must be created around this call.
6429 -- b) Enumeration literal pseudo-calls need no transient scope
6431 -- c) Intrinsic subprograms (Unchecked_Conversion and source info
6432 -- functions) do not use the secondary stack even though the return
6433 -- type may be unconstrained.
6435 -- d) Calls to a build-in-place function, since such functions may
6436 -- allocate their result directly in a target object, and cases where
6437 -- the result does get allocated in the secondary stack are checked for
6438 -- within the specialized Exp_Ch6 procedures for expanding those
6439 -- build-in-place calls.
6441 -- e) Calls to inlinable expression functions do not use the secondary
6442 -- stack (since the call will be replaced by its returned object).
6444 -- f) If the subprogram is marked Inline_Always, then even if it returns
6445 -- an unconstrained type the call does not require use of the secondary
6446 -- stack. However, inlining will only take place if the body to inline
6447 -- is already present. It may not be available if e.g. the subprogram is
6448 -- declared in a child instance.
6450 if Is_Inlined (Nam)
6451 and then Has_Pragma_Inline (Nam)
6452 and then Nkind (Unit_Declaration_Node (Nam)) = N_Subprogram_Declaration
6453 and then Present (Body_To_Inline (Unit_Declaration_Node (Nam)))
6454 then
6455 null;
6457 elsif Ekind (Nam) = E_Enumeration_Literal
6458 or else Is_Build_In_Place_Function (Nam)
6459 or else Is_Intrinsic_Subprogram (Nam)
6460 or else Is_Inlinable_Expression_Function (Nam)
6461 then
6462 null;
6464 elsif Expander_Active
6465 and then Ekind_In (Nam, E_Function, E_Subprogram_Type)
6466 and then Requires_Transient_Scope (Etype (Nam))
6467 then
6468 Establish_Transient_Scope (N, Manage_Sec_Stack => True);
6470 -- If the call appears within the bounds of a loop, it will be
6471 -- rewritten and reanalyzed, nothing left to do here.
6473 if Nkind (N) /= N_Function_Call then
6474 return;
6475 end if;
6476 end if;
6478 -- A protected function cannot be called within the definition of the
6479 -- enclosing protected type, unless it is part of a pre/postcondition
6480 -- on another protected operation. This may appear in the entry wrapper
6481 -- created for an entry with preconditions.
6483 if Is_Protected_Type (Scope (Nam))
6484 and then In_Open_Scopes (Scope (Nam))
6485 and then not Has_Completion (Scope (Nam))
6486 and then not In_Spec_Expression
6487 and then not Is_Entry_Wrapper (Current_Scope)
6488 then
6489 Error_Msg_NE
6490 ("& cannot be called before end of protected definition", N, Nam);
6491 end if;
6493 -- Propagate interpretation to actuals, and add default expressions
6494 -- where needed.
6496 if Present (First_Formal (Nam)) then
6497 Resolve_Actuals (N, Nam);
6499 -- Overloaded literals are rewritten as function calls, for purpose of
6500 -- resolution. After resolution, we can replace the call with the
6501 -- literal itself.
6503 elsif Ekind (Nam) = E_Enumeration_Literal then
6504 Copy_Node (Subp, N);
6505 Resolve_Entity_Name (N, Typ);
6507 -- Avoid validation, since it is a static function call
6509 Generate_Reference (Nam, Subp);
6510 return;
6511 end if;
6513 -- If the subprogram is not global, then kill all saved values and
6514 -- checks. This is a bit conservative, since in many cases we could do
6515 -- better, but it is not worth the effort. Similarly, we kill constant
6516 -- values. However we do not need to do this for internal entities
6517 -- (unless they are inherited user-defined subprograms), since they
6518 -- are not in the business of molesting local values.
6520 -- If the flag Suppress_Value_Tracking_On_Calls is set, then we also
6521 -- kill all checks and values for calls to global subprograms. This
6522 -- takes care of the case where an access to a local subprogram is
6523 -- taken, and could be passed directly or indirectly and then called
6524 -- from almost any context.
6526 -- Note: we do not do this step till after resolving the actuals. That
6527 -- way we still take advantage of the current value information while
6528 -- scanning the actuals.
6530 -- We suppress killing values if we are processing the nodes associated
6531 -- with N_Freeze_Entity nodes. Otherwise the declaration of a tagged
6532 -- type kills all the values as part of analyzing the code that
6533 -- initializes the dispatch tables.
6535 if Inside_Freezing_Actions = 0
6536 and then (not Is_Library_Level_Entity (Nam)
6537 or else Suppress_Value_Tracking_On_Call
6538 (Nearest_Dynamic_Scope (Current_Scope)))
6539 and then (Comes_From_Source (Nam)
6540 or else (Present (Alias (Nam))
6541 and then Comes_From_Source (Alias (Nam))))
6542 then
6543 Kill_Current_Values;
6544 end if;
6546 -- If we are warning about unread OUT parameters, this is the place to
6547 -- set Last_Assignment for OUT and IN OUT parameters. We have to do this
6548 -- after the above call to Kill_Current_Values (since that call clears
6549 -- the Last_Assignment field of all local variables).
6551 if (Warn_On_Modified_Unread or Warn_On_All_Unread_Out_Parameters)
6552 and then Comes_From_Source (N)
6553 and then In_Extended_Main_Source_Unit (N)
6554 then
6555 declare
6556 F : Entity_Id;
6557 A : Node_Id;
6559 begin
6560 F := First_Formal (Nam);
6561 A := First_Actual (N);
6562 while Present (F) and then Present (A) loop
6563 if Ekind_In (F, E_Out_Parameter, E_In_Out_Parameter)
6564 and then Warn_On_Modified_As_Out_Parameter (F)
6565 and then Is_Entity_Name (A)
6566 and then Present (Entity (A))
6567 and then Comes_From_Source (N)
6568 and then Safe_To_Capture_Value (N, Entity (A))
6569 then
6570 Set_Last_Assignment (Entity (A), A);
6571 end if;
6573 Next_Formal (F);
6574 Next_Actual (A);
6575 end loop;
6576 end;
6577 end if;
6579 -- If the subprogram is a primitive operation, check whether or not
6580 -- it is a correct dispatching call.
6582 if Is_Overloadable (Nam)
6583 and then Is_Dispatching_Operation (Nam)
6584 then
6585 Check_Dispatching_Call (N);
6587 elsif Ekind (Nam) /= E_Subprogram_Type
6588 and then Is_Abstract_Subprogram (Nam)
6589 and then not In_Instance
6590 then
6591 Error_Msg_NE ("cannot call abstract subprogram &!", N, Nam);
6592 end if;
6594 -- If this is a dispatching call, generate the appropriate reference,
6595 -- for better source navigation in GPS.
6597 if Is_Overloadable (Nam)
6598 and then Present (Controlling_Argument (N))
6599 then
6600 Generate_Reference (Nam, Subp, 'R');
6602 -- Normal case, not a dispatching call: generate a call reference
6604 else
6605 Generate_Reference (Nam, Subp, 's');
6606 end if;
6608 if Is_Intrinsic_Subprogram (Nam) then
6609 Check_Intrinsic_Call (N);
6610 end if;
6612 -- Check for violation of restriction No_Specific_Termination_Handlers
6613 -- and warn on a potentially blocking call to Abort_Task.
6615 if Restriction_Check_Required (No_Specific_Termination_Handlers)
6616 and then (Is_RTE (Nam, RE_Set_Specific_Handler)
6617 or else
6618 Is_RTE (Nam, RE_Specific_Handler))
6619 then
6620 Check_Restriction (No_Specific_Termination_Handlers, N);
6622 elsif Is_RTE (Nam, RE_Abort_Task) then
6623 Check_Potentially_Blocking_Operation (N);
6624 end if;
6626 -- A call to Ada.Real_Time.Timing_Events.Set_Handler to set a relative
6627 -- timing event violates restriction No_Relative_Delay (AI-0211). We
6628 -- need to check the second argument to determine whether it is an
6629 -- absolute or relative timing event.
6631 if Restriction_Check_Required (No_Relative_Delay)
6632 and then Is_RTE (Nam, RE_Set_Handler)
6633 and then Is_RTE (Etype (Next_Actual (First_Actual (N))), RE_Time_Span)
6634 then
6635 Check_Restriction (No_Relative_Delay, N);
6636 end if;
6638 -- Issue an error for a call to an eliminated subprogram. This routine
6639 -- will not perform the check if the call appears within a default
6640 -- expression.
6642 Check_For_Eliminated_Subprogram (Subp, Nam);
6644 -- In formal mode, the primitive operations of a tagged type or type
6645 -- extension do not include functions that return the tagged type.
6647 if Nkind (N) = N_Function_Call
6648 and then Is_Tagged_Type (Etype (N))
6649 and then Is_Entity_Name (Name (N))
6650 and then Is_Inherited_Operation_For_Type (Entity (Name (N)), Etype (N))
6651 then
6652 Check_SPARK_05_Restriction ("function not inherited", N);
6653 end if;
6655 -- Implement rule in 12.5.1 (23.3/2): In an instance, if the actual is
6656 -- class-wide and the call dispatches on result in a context that does
6657 -- not provide a tag, the call raises Program_Error.
6659 if Nkind (N) = N_Function_Call
6660 and then In_Instance
6661 and then Is_Generic_Actual_Type (Typ)
6662 and then Is_Class_Wide_Type (Typ)
6663 and then Has_Controlling_Result (Nam)
6664 and then Nkind (Parent (N)) = N_Object_Declaration
6665 then
6666 -- Verify that none of the formals are controlling
6668 declare
6669 Call_OK : Boolean := False;
6670 F : Entity_Id;
6672 begin
6673 F := First_Formal (Nam);
6674 while Present (F) loop
6675 if Is_Controlling_Formal (F) then
6676 Call_OK := True;
6677 exit;
6678 end if;
6680 Next_Formal (F);
6681 end loop;
6683 if not Call_OK then
6684 Error_Msg_Warn := SPARK_Mode /= On;
6685 Error_Msg_N ("!cannot determine tag of result<<", N);
6686 Error_Msg_N ("\Program_Error [<<!", N);
6687 Insert_Action (N,
6688 Make_Raise_Program_Error (Sloc (N),
6689 Reason => PE_Explicit_Raise));
6690 end if;
6691 end;
6692 end if;
6694 -- Check for calling a function with OUT or IN OUT parameter when the
6695 -- calling context (us right now) is not Ada 2012, so does not allow
6696 -- OUT or IN OUT parameters in function calls. Functions declared in
6697 -- a predefined unit are OK, as they may be called indirectly from a
6698 -- user-declared instantiation.
6700 if Ada_Version < Ada_2012
6701 and then Ekind (Nam) = E_Function
6702 and then Has_Out_Or_In_Out_Parameter (Nam)
6703 and then not In_Predefined_Unit (Nam)
6704 then
6705 Error_Msg_NE ("& has at least one OUT or `IN OUT` parameter", N, Nam);
6706 Error_Msg_N ("\call to this function only allowed in Ada 2012", N);
6707 end if;
6709 -- Check the dimensions of the actuals in the call. For function calls,
6710 -- propagate the dimensions from the returned type to N.
6712 Analyze_Dimension_Call (N, Nam);
6714 -- All done, evaluate call and deal with elaboration issues
6716 Eval_Call (N);
6718 if Legacy_Elaboration_Checks then
6719 Check_Elab_Call (N);
6720 end if;
6722 -- Annotate the tree by creating a call marker in case the original call
6723 -- is transformed by expansion. The call marker is automatically saved
6724 -- for later examination by the ABE Processing phase.
6726 Build_Call_Marker (N);
6728 -- In GNATprove mode, expansion is disabled, but we want to inline some
6729 -- subprograms to facilitate formal verification. Indirect calls through
6730 -- a subprogram type or within a generic cannot be inlined. Inlining is
6731 -- performed only for calls subject to SPARK_Mode on.
6733 if GNATprove_Mode
6734 and then SPARK_Mode = On
6735 and then Is_Overloadable (Nam)
6736 and then not Inside_A_Generic
6737 then
6738 Nam_UA := Ultimate_Alias (Nam);
6739 Nam_Decl := Unit_Declaration_Node (Nam_UA);
6741 if Nkind (Nam_Decl) = N_Subprogram_Declaration then
6742 Body_Id := Corresponding_Body (Nam_Decl);
6744 -- Nothing to do if the subprogram is not eligible for inlining in
6745 -- GNATprove mode, or inlining is disabled with switch -gnatdm
6747 if not Is_Inlined_Always (Nam_UA)
6748 or else not Can_Be_Inlined_In_GNATprove_Mode (Nam_UA, Body_Id)
6749 or else Debug_Flag_M
6750 then
6751 null;
6753 -- Calls cannot be inlined inside assertions, as GNATprove treats
6754 -- assertions as logic expressions. Only issue a message when the
6755 -- body has been seen, otherwise this leads to spurious messages
6756 -- on expression functions.
6758 elsif In_Assertion_Expr /= 0 then
6759 if Present (Body_Id) then
6760 Cannot_Inline
6761 ("cannot inline & (in assertion expression)?", N, Nam_UA);
6762 end if;
6764 -- Calls cannot be inlined inside default expressions
6766 elsif In_Default_Expr then
6767 Cannot_Inline
6768 ("cannot inline & (in default expression)?", N, Nam_UA);
6770 -- Inlining should not be performed during preanalysis
6772 elsif Full_Analysis then
6774 -- Do not inline calls inside expression functions or functions
6775 -- generated by the front end for subtype predicates, as this
6776 -- would prevent interpreting them as logical formulas in
6777 -- GNATprove. Only issue a message when the body has been seen,
6778 -- otherwise this leads to spurious messages on callees that
6779 -- are themselves expression functions.
6781 if Present (Current_Subprogram)
6782 and then
6783 (Is_Expression_Function_Or_Completion (Current_Subprogram)
6784 or else Is_Predicate_Function (Current_Subprogram)
6785 or else Is_Invariant_Procedure (Current_Subprogram)
6786 or else Is_DIC_Procedure (Current_Subprogram))
6787 then
6788 if Present (Body_Id)
6789 and then Present (Body_To_Inline (Nam_Decl))
6790 then
6791 if Is_Predicate_Function (Current_Subprogram) then
6792 Cannot_Inline
6793 ("cannot inline & (inside predicate)?",
6794 N, Nam_UA);
6796 elsif Is_Invariant_Procedure (Current_Subprogram) then
6797 Cannot_Inline
6798 ("cannot inline & (inside invariant)?",
6799 N, Nam_UA);
6801 elsif Is_DIC_Procedure (Current_Subprogram) then
6802 Cannot_Inline
6803 ("cannot inline & (inside Default_Initial_Condition)?",
6804 N, Nam_UA);
6806 else
6807 Cannot_Inline
6808 ("cannot inline & (inside expression function)?",
6809 N, Nam_UA);
6810 end if;
6811 end if;
6813 -- With the one-pass inlining technique, a call cannot be
6814 -- inlined if the corresponding body has not been seen yet.
6816 elsif No (Body_Id) then
6817 Cannot_Inline
6818 ("cannot inline & (body not seen yet)?", N, Nam_UA);
6820 -- Nothing to do if there is no body to inline, indicating that
6821 -- the subprogram is not suitable for inlining in GNATprove
6822 -- mode.
6824 elsif No (Body_To_Inline (Nam_Decl)) then
6825 null;
6827 -- Calls cannot be inlined inside potentially unevaluated
6828 -- expressions, as this would create complex actions inside
6829 -- expressions, that are not handled by GNATprove.
6831 elsif Is_Potentially_Unevaluated (N) then
6832 Cannot_Inline
6833 ("cannot inline & (in potentially unevaluated context)?",
6834 N, Nam_UA);
6836 -- Do not inline calls which would possibly lead to missing a
6837 -- type conversion check on an input parameter.
6839 elsif not Call_Can_Be_Inlined_In_GNATprove_Mode (N, Nam) then
6840 Cannot_Inline
6841 ("cannot inline & (possible check on input parameters)?",
6842 N, Nam_UA);
6844 -- Otherwise, inline the call
6846 else
6847 Expand_Inlined_Call (N, Nam_UA, Nam);
6848 end if;
6849 end if;
6850 end if;
6851 end if;
6853 Mark_Use_Clauses (Subp);
6855 Warn_On_Overlapping_Actuals (Nam, N);
6856 end Resolve_Call;
6858 -----------------------------
6859 -- Resolve_Case_Expression --
6860 -----------------------------
6862 procedure Resolve_Case_Expression (N : Node_Id; Typ : Entity_Id) is
6863 Alt : Node_Id;
6864 Alt_Expr : Node_Id;
6865 Alt_Typ : Entity_Id;
6866 Is_Dyn : Boolean;
6868 begin
6869 Alt := First (Alternatives (N));
6870 while Present (Alt) loop
6871 Alt_Expr := Expression (Alt);
6873 if Error_Posted (Alt_Expr) then
6874 return;
6875 end if;
6877 Resolve (Alt_Expr, Typ);
6878 Alt_Typ := Etype (Alt_Expr);
6880 -- When the expression is of a scalar subtype different from the
6881 -- result subtype, then insert a conversion to ensure the generation
6882 -- of a constraint check.
6884 if Is_Scalar_Type (Alt_Typ) and then Alt_Typ /= Typ then
6885 Rewrite (Alt_Expr, Convert_To (Typ, Alt_Expr));
6886 Analyze_And_Resolve (Alt_Expr, Typ);
6887 end if;
6889 Next (Alt);
6890 end loop;
6892 -- Apply RM 4.5.7 (17/3): whether the expression is statically or
6893 -- dynamically tagged must be known statically.
6895 if Is_Tagged_Type (Typ) and then not Is_Class_Wide_Type (Typ) then
6896 Alt := First (Alternatives (N));
6897 Is_Dyn := Is_Dynamically_Tagged (Expression (Alt));
6899 while Present (Alt) loop
6900 if Is_Dynamically_Tagged (Expression (Alt)) /= Is_Dyn then
6901 Error_Msg_N
6902 ("all or none of the dependent expressions can be "
6903 & "dynamically tagged", N);
6904 end if;
6906 Next (Alt);
6907 end loop;
6908 end if;
6910 Set_Etype (N, Typ);
6911 Eval_Case_Expression (N);
6912 Analyze_Dimension (N);
6913 end Resolve_Case_Expression;
6915 -------------------------------
6916 -- Resolve_Character_Literal --
6917 -------------------------------
6919 procedure Resolve_Character_Literal (N : Node_Id; Typ : Entity_Id) is
6920 B_Typ : constant Entity_Id := Base_Type (Typ);
6921 C : Entity_Id;
6923 begin
6924 -- Verify that the character does belong to the type of the context
6926 Set_Etype (N, B_Typ);
6927 Eval_Character_Literal (N);
6929 -- Wide_Wide_Character literals must always be defined, since the set
6930 -- of wide wide character literals is complete, i.e. if a character
6931 -- literal is accepted by the parser, then it is OK for wide wide
6932 -- character (out of range character literals are rejected).
6934 if Root_Type (B_Typ) = Standard_Wide_Wide_Character then
6935 return;
6937 -- Always accept character literal for type Any_Character, which
6938 -- occurs in error situations and in comparisons of literals, both
6939 -- of which should accept all literals.
6941 elsif B_Typ = Any_Character then
6942 return;
6944 -- For Standard.Character or a type derived from it, check that the
6945 -- literal is in range.
6947 elsif Root_Type (B_Typ) = Standard_Character then
6948 if In_Character_Range (UI_To_CC (Char_Literal_Value (N))) then
6949 return;
6950 end if;
6952 -- For Standard.Wide_Character or a type derived from it, check that the
6953 -- literal is in range.
6955 elsif Root_Type (B_Typ) = Standard_Wide_Character then
6956 if In_Wide_Character_Range (UI_To_CC (Char_Literal_Value (N))) then
6957 return;
6958 end if;
6960 -- If the entity is already set, this has already been resolved in a
6961 -- generic context, or comes from expansion. Nothing else to do.
6963 elsif Present (Entity (N)) then
6964 return;
6966 -- Otherwise we have a user defined character type, and we can use the
6967 -- standard visibility mechanisms to locate the referenced entity.
6969 else
6970 C := Current_Entity (N);
6971 while Present (C) loop
6972 if Etype (C) = B_Typ then
6973 Set_Entity_With_Checks (N, C);
6974 Generate_Reference (C, N);
6975 return;
6976 end if;
6978 C := Homonym (C);
6979 end loop;
6980 end if;
6982 -- If we fall through, then the literal does not match any of the
6983 -- entries of the enumeration type. This isn't just a constraint error
6984 -- situation, it is an illegality (see RM 4.2).
6986 Error_Msg_NE
6987 ("character not defined for }", N, First_Subtype (B_Typ));
6988 end Resolve_Character_Literal;
6990 ---------------------------
6991 -- Resolve_Comparison_Op --
6992 ---------------------------
6994 -- Context requires a boolean type, and plays no role in resolution.
6995 -- Processing identical to that for equality operators. The result type is
6996 -- the base type, which matters when pathological subtypes of booleans with
6997 -- limited ranges are used.
6999 procedure Resolve_Comparison_Op (N : Node_Id; Typ : Entity_Id) is
7000 L : constant Node_Id := Left_Opnd (N);
7001 R : constant Node_Id := Right_Opnd (N);
7002 T : Entity_Id;
7004 begin
7005 -- If this is an intrinsic operation which is not predefined, use the
7006 -- types of its declared arguments to resolve the possibly overloaded
7007 -- operands. Otherwise the operands are unambiguous and specify the
7008 -- expected type.
7010 if Scope (Entity (N)) /= Standard_Standard then
7011 T := Etype (First_Entity (Entity (N)));
7013 else
7014 T := Find_Unique_Type (L, R);
7016 if T = Any_Fixed then
7017 T := Unique_Fixed_Point_Type (L);
7018 end if;
7019 end if;
7021 Set_Etype (N, Base_Type (Typ));
7022 Generate_Reference (T, N, ' ');
7024 -- Skip remaining processing if already set to Any_Type
7026 if T = Any_Type then
7027 return;
7028 end if;
7030 -- Deal with other error cases
7032 if T = Any_String or else
7033 T = Any_Composite or else
7034 T = Any_Character
7035 then
7036 if T = Any_Character then
7037 Ambiguous_Character (L);
7038 else
7039 Error_Msg_N ("ambiguous operands for comparison", N);
7040 end if;
7042 Set_Etype (N, Any_Type);
7043 return;
7044 end if;
7046 -- Resolve the operands if types OK
7048 Resolve (L, T);
7049 Resolve (R, T);
7050 Check_Unset_Reference (L);
7051 Check_Unset_Reference (R);
7052 Generate_Operator_Reference (N, T);
7053 Check_Low_Bound_Tested (N);
7055 -- In SPARK, ordering operators <, <=, >, >= are not defined for Boolean
7056 -- types or array types except String.
7058 if Is_Boolean_Type (T) then
7059 Check_SPARK_05_Restriction
7060 ("comparison is not defined on Boolean type", N);
7062 elsif Is_Array_Type (T)
7063 and then Base_Type (T) /= Standard_String
7064 then
7065 Check_SPARK_05_Restriction
7066 ("comparison is not defined on array types other than String", N);
7067 end if;
7069 -- Check comparison on unordered enumeration
7071 if Bad_Unordered_Enumeration_Reference (N, Etype (L)) then
7072 Error_Msg_Sloc := Sloc (Etype (L));
7073 Error_Msg_NE
7074 ("comparison on unordered enumeration type& declared#?U?",
7075 N, Etype (L));
7076 end if;
7078 Analyze_Dimension (N);
7080 -- Evaluate the relation (note we do this after the above check since
7081 -- this Eval call may change N to True/False. Skip this evaluation
7082 -- inside assertions, in order to keep assertions as written by users
7083 -- for tools that rely on these, e.g. GNATprove for loop invariants.
7084 -- Except evaluation is still performed even inside assertions for
7085 -- comparisons between values of universal type, which are useless
7086 -- for static analysis tools, and not supported even by GNATprove.
7088 if In_Assertion_Expr = 0
7089 or else (Is_Universal_Numeric_Type (Etype (L))
7090 and then
7091 Is_Universal_Numeric_Type (Etype (R)))
7092 then
7093 Eval_Relational_Op (N);
7094 end if;
7095 end Resolve_Comparison_Op;
7097 -----------------------------------------
7098 -- Resolve_Discrete_Subtype_Indication --
7099 -----------------------------------------
7101 procedure Resolve_Discrete_Subtype_Indication
7102 (N : Node_Id;
7103 Typ : Entity_Id)
7105 R : Node_Id;
7106 S : Entity_Id;
7108 begin
7109 Analyze (Subtype_Mark (N));
7110 S := Entity (Subtype_Mark (N));
7112 if Nkind (Constraint (N)) /= N_Range_Constraint then
7113 Error_Msg_N ("expect range constraint for discrete type", N);
7114 Set_Etype (N, Any_Type);
7116 else
7117 R := Range_Expression (Constraint (N));
7119 if R = Error then
7120 return;
7121 end if;
7123 Analyze (R);
7125 if Base_Type (S) /= Base_Type (Typ) then
7126 Error_Msg_NE
7127 ("expect subtype of }", N, First_Subtype (Typ));
7129 -- Rewrite the constraint as a range of Typ
7130 -- to allow compilation to proceed further.
7132 Set_Etype (N, Typ);
7133 Rewrite (Low_Bound (R),
7134 Make_Attribute_Reference (Sloc (Low_Bound (R)),
7135 Prefix => New_Occurrence_Of (Typ, Sloc (R)),
7136 Attribute_Name => Name_First));
7137 Rewrite (High_Bound (R),
7138 Make_Attribute_Reference (Sloc (High_Bound (R)),
7139 Prefix => New_Occurrence_Of (Typ, Sloc (R)),
7140 Attribute_Name => Name_First));
7142 else
7143 Resolve (R, Typ);
7144 Set_Etype (N, Etype (R));
7146 -- Additionally, we must check that the bounds are compatible
7147 -- with the given subtype, which might be different from the
7148 -- type of the context.
7150 Apply_Range_Check (R, S);
7152 -- ??? If the above check statically detects a Constraint_Error
7153 -- it replaces the offending bound(s) of the range R with a
7154 -- Constraint_Error node. When the itype which uses these bounds
7155 -- is frozen the resulting call to Duplicate_Subexpr generates
7156 -- a new temporary for the bounds.
7158 -- Unfortunately there are other itypes that are also made depend
7159 -- on these bounds, so when Duplicate_Subexpr is called they get
7160 -- a forward reference to the newly created temporaries and Gigi
7161 -- aborts on such forward references. This is probably sign of a
7162 -- more fundamental problem somewhere else in either the order of
7163 -- itype freezing or the way certain itypes are constructed.
7165 -- To get around this problem we call Remove_Side_Effects right
7166 -- away if either bounds of R are a Constraint_Error.
7168 declare
7169 L : constant Node_Id := Low_Bound (R);
7170 H : constant Node_Id := High_Bound (R);
7172 begin
7173 if Nkind (L) = N_Raise_Constraint_Error then
7174 Remove_Side_Effects (L);
7175 end if;
7177 if Nkind (H) = N_Raise_Constraint_Error then
7178 Remove_Side_Effects (H);
7179 end if;
7180 end;
7182 Check_Unset_Reference (Low_Bound (R));
7183 Check_Unset_Reference (High_Bound (R));
7184 end if;
7185 end if;
7186 end Resolve_Discrete_Subtype_Indication;
7188 -------------------------
7189 -- Resolve_Entity_Name --
7190 -------------------------
7192 -- Used to resolve identifiers and expanded names
7194 procedure Resolve_Entity_Name (N : Node_Id; Typ : Entity_Id) is
7195 function Is_Assignment_Or_Object_Expression
7196 (Context : Node_Id;
7197 Expr : Node_Id) return Boolean;
7198 -- Determine whether node Context denotes an assignment statement or an
7199 -- object declaration whose expression is node Expr.
7201 ----------------------------------------
7202 -- Is_Assignment_Or_Object_Expression --
7203 ----------------------------------------
7205 function Is_Assignment_Or_Object_Expression
7206 (Context : Node_Id;
7207 Expr : Node_Id) return Boolean
7209 begin
7210 if Nkind_In (Context, N_Assignment_Statement,
7211 N_Object_Declaration)
7212 and then Expression (Context) = Expr
7213 then
7214 return True;
7216 -- Check whether a construct that yields a name is the expression of
7217 -- an assignment statement or an object declaration.
7219 elsif (Nkind_In (Context, N_Attribute_Reference,
7220 N_Explicit_Dereference,
7221 N_Indexed_Component,
7222 N_Selected_Component,
7223 N_Slice)
7224 and then Prefix (Context) = Expr)
7225 or else
7226 (Nkind_In (Context, N_Type_Conversion,
7227 N_Unchecked_Type_Conversion)
7228 and then Expression (Context) = Expr)
7229 then
7230 return
7231 Is_Assignment_Or_Object_Expression
7232 (Context => Parent (Context),
7233 Expr => Context);
7235 -- Otherwise the context is not an assignment statement or an object
7236 -- declaration.
7238 else
7239 return False;
7240 end if;
7241 end Is_Assignment_Or_Object_Expression;
7243 -- Local variables
7245 E : constant Entity_Id := Entity (N);
7246 Par : Node_Id;
7248 -- Start of processing for Resolve_Entity_Name
7250 begin
7251 -- If garbage from errors, set to Any_Type and return
7253 if No (E) and then Total_Errors_Detected /= 0 then
7254 Set_Etype (N, Any_Type);
7255 return;
7256 end if;
7258 -- Replace named numbers by corresponding literals. Note that this is
7259 -- the one case where Resolve_Entity_Name must reset the Etype, since
7260 -- it is currently marked as universal.
7262 if Ekind (E) = E_Named_Integer then
7263 Set_Etype (N, Typ);
7264 Eval_Named_Integer (N);
7266 elsif Ekind (E) = E_Named_Real then
7267 Set_Etype (N, Typ);
7268 Eval_Named_Real (N);
7270 -- For enumeration literals, we need to make sure that a proper style
7271 -- check is done, since such literals are overloaded, and thus we did
7272 -- not do a style check during the first phase of analysis.
7274 elsif Ekind (E) = E_Enumeration_Literal then
7275 Set_Entity_With_Checks (N, E);
7276 Eval_Entity_Name (N);
7278 -- Case of (sub)type name appearing in a context where an expression
7279 -- is expected. This is legal if occurrence is a current instance.
7280 -- See RM 8.6 (17/3).
7282 elsif Is_Type (E) then
7283 if Is_Current_Instance (N) then
7284 null;
7286 -- Any other use is an error
7288 else
7289 Error_Msg_N
7290 ("invalid use of subtype mark in expression or call", N);
7291 end if;
7293 -- Check discriminant use if entity is discriminant in current scope,
7294 -- i.e. discriminant of record or concurrent type currently being
7295 -- analyzed. Uses in corresponding body are unrestricted.
7297 elsif Ekind (E) = E_Discriminant
7298 and then Scope (E) = Current_Scope
7299 and then not Has_Completion (Current_Scope)
7300 then
7301 Check_Discriminant_Use (N);
7303 -- A parameterless generic function cannot appear in a context that
7304 -- requires resolution.
7306 elsif Ekind (E) = E_Generic_Function then
7307 Error_Msg_N ("illegal use of generic function", N);
7309 -- In Ada 83 an OUT parameter cannot be read, but attributes of
7310 -- array types (i.e. bounds and length) are legal.
7312 elsif Ekind (E) = E_Out_Parameter
7313 and then (Nkind (Parent (N)) /= N_Attribute_Reference
7314 or else Is_Scalar_Type (Etype (E)))
7316 and then (Nkind (Parent (N)) in N_Op
7317 or else Nkind (Parent (N)) = N_Explicit_Dereference
7318 or else Is_Assignment_Or_Object_Expression
7319 (Context => Parent (N),
7320 Expr => N))
7321 then
7322 if Ada_Version = Ada_83 then
7323 Error_Msg_N ("(Ada 83) illegal reading of out parameter", N);
7324 end if;
7326 -- In all other cases, just do the possible static evaluation
7328 else
7329 -- A deferred constant that appears in an expression must have a
7330 -- completion, unless it has been removed by in-place expansion of
7331 -- an aggregate. A constant that is a renaming does not need
7332 -- initialization.
7334 if Ekind (E) = E_Constant
7335 and then Comes_From_Source (E)
7336 and then No (Constant_Value (E))
7337 and then Is_Frozen (Etype (E))
7338 and then not In_Spec_Expression
7339 and then not Is_Imported (E)
7340 and then Nkind (Parent (E)) /= N_Object_Renaming_Declaration
7341 then
7342 if No_Initialization (Parent (E))
7343 or else (Present (Full_View (E))
7344 and then No_Initialization (Parent (Full_View (E))))
7345 then
7346 null;
7347 else
7348 Error_Msg_N
7349 ("deferred constant is frozen before completion", N);
7350 end if;
7351 end if;
7353 Eval_Entity_Name (N);
7354 end if;
7356 Par := Parent (N);
7358 -- When the entity appears in a parameter association, retrieve the
7359 -- related subprogram call.
7361 if Nkind (Par) = N_Parameter_Association then
7362 Par := Parent (Par);
7363 end if;
7365 if Comes_From_Source (N) then
7367 -- The following checks are only relevant when SPARK_Mode is on as
7368 -- they are not standard Ada legality rules.
7370 if SPARK_Mode = On then
7372 -- An effectively volatile object subject to enabled properties
7373 -- Async_Writers or Effective_Reads must appear in non-interfering
7374 -- context (SPARK RM 7.1.3(12)).
7376 if Is_Object (E)
7377 and then Is_Effectively_Volatile (E)
7378 and then (Async_Writers_Enabled (E)
7379 or else Effective_Reads_Enabled (E))
7380 and then not Is_OK_Volatile_Context (Par, N)
7381 then
7382 SPARK_Msg_N
7383 ("volatile object cannot appear in this context "
7384 & "(SPARK RM 7.1.3(12))", N);
7385 end if;
7387 -- Check for possible elaboration issues with respect to reads of
7388 -- variables. The act of renaming the variable is not considered a
7389 -- read as it simply establishes an alias.
7391 if Legacy_Elaboration_Checks
7392 and then Ekind (E) = E_Variable
7393 and then Dynamic_Elaboration_Checks
7394 and then Nkind (Par) /= N_Object_Renaming_Declaration
7395 then
7396 Check_Elab_Call (N);
7397 end if;
7398 end if;
7400 -- The variable may eventually become a constituent of a single
7401 -- protected/task type. Record the reference now and verify its
7402 -- legality when analyzing the contract of the variable
7403 -- (SPARK RM 9.3).
7405 if Ekind (E) = E_Variable then
7406 Record_Possible_Part_Of_Reference (E, N);
7407 end if;
7409 -- A Ghost entity must appear in a specific context
7411 if Is_Ghost_Entity (E) then
7412 Check_Ghost_Context (E, N);
7413 end if;
7414 end if;
7416 -- We may be resolving an entity within expanded code, so a reference to
7417 -- an entity should be ignored when calculating effective use clauses to
7418 -- avoid inappropriate marking.
7420 if Comes_From_Source (N) then
7421 Mark_Use_Clauses (E);
7422 end if;
7423 end Resolve_Entity_Name;
7425 -------------------
7426 -- Resolve_Entry --
7427 -------------------
7429 procedure Resolve_Entry (Entry_Name : Node_Id) is
7430 Loc : constant Source_Ptr := Sloc (Entry_Name);
7431 Nam : Entity_Id;
7432 New_N : Node_Id;
7433 S : Entity_Id;
7434 Tsk : Entity_Id;
7435 E_Name : Node_Id;
7436 Index : Node_Id;
7438 function Actual_Index_Type (E : Entity_Id) return Entity_Id;
7439 -- If the bounds of the entry family being called depend on task
7440 -- discriminants, build a new index subtype where a discriminant is
7441 -- replaced with the value of the discriminant of the target task.
7442 -- The target task is the prefix of the entry name in the call.
7444 -----------------------
7445 -- Actual_Index_Type --
7446 -----------------------
7448 function Actual_Index_Type (E : Entity_Id) return Entity_Id is
7449 Typ : constant Entity_Id := Entry_Index_Type (E);
7450 Tsk : constant Entity_Id := Scope (E);
7451 Lo : constant Node_Id := Type_Low_Bound (Typ);
7452 Hi : constant Node_Id := Type_High_Bound (Typ);
7453 New_T : Entity_Id;
7455 function Actual_Discriminant_Ref (Bound : Node_Id) return Node_Id;
7456 -- If the bound is given by a discriminant, replace with a reference
7457 -- to the discriminant of the same name in the target task. If the
7458 -- entry name is the target of a requeue statement and the entry is
7459 -- in the current protected object, the bound to be used is the
7460 -- discriminal of the object (see Apply_Range_Checks for details of
7461 -- the transformation).
7463 -----------------------------
7464 -- Actual_Discriminant_Ref --
7465 -----------------------------
7467 function Actual_Discriminant_Ref (Bound : Node_Id) return Node_Id is
7468 Typ : constant Entity_Id := Etype (Bound);
7469 Ref : Node_Id;
7471 begin
7472 Remove_Side_Effects (Bound);
7474 if not Is_Entity_Name (Bound)
7475 or else Ekind (Entity (Bound)) /= E_Discriminant
7476 then
7477 return Bound;
7479 elsif Is_Protected_Type (Tsk)
7480 and then In_Open_Scopes (Tsk)
7481 and then Nkind (Parent (Entry_Name)) = N_Requeue_Statement
7482 then
7483 -- Note: here Bound denotes a discriminant of the corresponding
7484 -- record type tskV, whose discriminal is a formal of the
7485 -- init-proc tskVIP. What we want is the body discriminal,
7486 -- which is associated to the discriminant of the original
7487 -- concurrent type tsk.
7489 return New_Occurrence_Of
7490 (Find_Body_Discriminal (Entity (Bound)), Loc);
7492 else
7493 Ref :=
7494 Make_Selected_Component (Loc,
7495 Prefix => New_Copy_Tree (Prefix (Prefix (Entry_Name))),
7496 Selector_Name => New_Occurrence_Of (Entity (Bound), Loc));
7497 Analyze (Ref);
7498 Resolve (Ref, Typ);
7499 return Ref;
7500 end if;
7501 end Actual_Discriminant_Ref;
7503 -- Start of processing for Actual_Index_Type
7505 begin
7506 if not Has_Discriminants (Tsk)
7507 or else (not Is_Entity_Name (Lo) and then not Is_Entity_Name (Hi))
7508 then
7509 return Entry_Index_Type (E);
7511 else
7512 New_T := Create_Itype (Ekind (Typ), Parent (Entry_Name));
7513 Set_Etype (New_T, Base_Type (Typ));
7514 Set_Size_Info (New_T, Typ);
7515 Set_RM_Size (New_T, RM_Size (Typ));
7516 Set_Scalar_Range (New_T,
7517 Make_Range (Sloc (Entry_Name),
7518 Low_Bound => Actual_Discriminant_Ref (Lo),
7519 High_Bound => Actual_Discriminant_Ref (Hi)));
7521 return New_T;
7522 end if;
7523 end Actual_Index_Type;
7525 -- Start of processing for Resolve_Entry
7527 begin
7528 -- Find name of entry being called, and resolve prefix of name with its
7529 -- own type. The prefix can be overloaded, and the name and signature of
7530 -- the entry must be taken into account.
7532 if Nkind (Entry_Name) = N_Indexed_Component then
7534 -- Case of dealing with entry family within the current tasks
7536 E_Name := Prefix (Entry_Name);
7538 else
7539 E_Name := Entry_Name;
7540 end if;
7542 if Is_Entity_Name (E_Name) then
7544 -- Entry call to an entry (or entry family) in the current task. This
7545 -- is legal even though the task will deadlock. Rewrite as call to
7546 -- current task.
7548 -- This can also be a call to an entry in an enclosing task. If this
7549 -- is a single task, we have to retrieve its name, because the scope
7550 -- of the entry is the task type, not the object. If the enclosing
7551 -- task is a task type, the identity of the task is given by its own
7552 -- self variable.
7554 -- Finally this can be a requeue on an entry of the same task or
7555 -- protected object.
7557 S := Scope (Entity (E_Name));
7559 for J in reverse 0 .. Scope_Stack.Last loop
7560 if Is_Task_Type (Scope_Stack.Table (J).Entity)
7561 and then not Comes_From_Source (S)
7562 then
7563 -- S is an enclosing task or protected object. The concurrent
7564 -- declaration has been converted into a type declaration, and
7565 -- the object itself has an object declaration that follows
7566 -- the type in the same declarative part.
7568 Tsk := Next_Entity (S);
7569 while Etype (Tsk) /= S loop
7570 Next_Entity (Tsk);
7571 end loop;
7573 S := Tsk;
7574 exit;
7576 elsif S = Scope_Stack.Table (J).Entity then
7578 -- Call to current task. Will be transformed into call to Self
7580 exit;
7582 end if;
7583 end loop;
7585 New_N :=
7586 Make_Selected_Component (Loc,
7587 Prefix => New_Occurrence_Of (S, Loc),
7588 Selector_Name =>
7589 New_Occurrence_Of (Entity (E_Name), Loc));
7590 Rewrite (E_Name, New_N);
7591 Analyze (E_Name);
7593 elsif Nkind (Entry_Name) = N_Selected_Component
7594 and then Is_Overloaded (Prefix (Entry_Name))
7595 then
7596 -- Use the entry name (which must be unique at this point) to find
7597 -- the prefix that returns the corresponding task/protected type.
7599 declare
7600 Pref : constant Node_Id := Prefix (Entry_Name);
7601 Ent : constant Entity_Id := Entity (Selector_Name (Entry_Name));
7602 I : Interp_Index;
7603 It : Interp;
7605 begin
7606 Get_First_Interp (Pref, I, It);
7607 while Present (It.Typ) loop
7608 if Scope (Ent) = It.Typ then
7609 Set_Etype (Pref, It.Typ);
7610 exit;
7611 end if;
7613 Get_Next_Interp (I, It);
7614 end loop;
7615 end;
7616 end if;
7618 if Nkind (Entry_Name) = N_Selected_Component then
7619 Resolve (Prefix (Entry_Name));
7621 else pragma Assert (Nkind (Entry_Name) = N_Indexed_Component);
7622 Nam := Entity (Selector_Name (Prefix (Entry_Name)));
7623 Resolve (Prefix (Prefix (Entry_Name)));
7624 Index := First (Expressions (Entry_Name));
7625 Resolve (Index, Entry_Index_Type (Nam));
7627 -- Generate a reference for the index when it denotes an entity
7629 if Is_Entity_Name (Index) then
7630 Generate_Reference (Entity (Index), Nam);
7631 end if;
7633 -- Up to this point the expression could have been the actual in a
7634 -- simple entry call, and be given by a named association.
7636 if Nkind (Index) = N_Parameter_Association then
7637 Error_Msg_N ("expect expression for entry index", Index);
7638 else
7639 Apply_Range_Check (Index, Actual_Index_Type (Nam));
7640 end if;
7641 end if;
7642 end Resolve_Entry;
7644 ------------------------
7645 -- Resolve_Entry_Call --
7646 ------------------------
7648 procedure Resolve_Entry_Call (N : Node_Id; Typ : Entity_Id) is
7649 Entry_Name : constant Node_Id := Name (N);
7650 Loc : constant Source_Ptr := Sloc (Entry_Name);
7652 Nam : Entity_Id;
7653 Norm_OK : Boolean;
7654 Obj : Node_Id;
7655 Was_Over : Boolean;
7657 begin
7658 -- We kill all checks here, because it does not seem worth the effort to
7659 -- do anything better, an entry call is a big operation.
7661 Kill_All_Checks;
7663 -- Processing of the name is similar for entry calls and protected
7664 -- operation calls. Once the entity is determined, we can complete
7665 -- the resolution of the actuals.
7667 -- The selector may be overloaded, in the case of a protected object
7668 -- with overloaded functions. The type of the context is used for
7669 -- resolution.
7671 if Nkind (Entry_Name) = N_Selected_Component
7672 and then Is_Overloaded (Selector_Name (Entry_Name))
7673 and then Typ /= Standard_Void_Type
7674 then
7675 declare
7676 I : Interp_Index;
7677 It : Interp;
7679 begin
7680 Get_First_Interp (Selector_Name (Entry_Name), I, It);
7681 while Present (It.Typ) loop
7682 if Covers (Typ, It.Typ) then
7683 Set_Entity (Selector_Name (Entry_Name), It.Nam);
7684 Set_Etype (Entry_Name, It.Typ);
7686 Generate_Reference (It.Typ, N, ' ');
7687 end if;
7689 Get_Next_Interp (I, It);
7690 end loop;
7691 end;
7692 end if;
7694 Resolve_Entry (Entry_Name);
7696 if Nkind (Entry_Name) = N_Selected_Component then
7698 -- Simple entry or protected operation call
7700 Nam := Entity (Selector_Name (Entry_Name));
7701 Obj := Prefix (Entry_Name);
7703 if Is_Subprogram (Nam) then
7704 Check_For_Eliminated_Subprogram (Entry_Name, Nam);
7705 end if;
7707 Was_Over := Is_Overloaded (Selector_Name (Entry_Name));
7709 else pragma Assert (Nkind (Entry_Name) = N_Indexed_Component);
7711 -- Call to member of entry family
7713 Nam := Entity (Selector_Name (Prefix (Entry_Name)));
7714 Obj := Prefix (Prefix (Entry_Name));
7715 Was_Over := Is_Overloaded (Selector_Name (Prefix (Entry_Name)));
7716 end if;
7718 -- We cannot in general check the maximum depth of protected entry calls
7719 -- at compile time. But we can tell that any protected entry call at all
7720 -- violates a specified nesting depth of zero.
7722 if Is_Protected_Type (Scope (Nam)) then
7723 Check_Restriction (Max_Entry_Queue_Length, N);
7724 end if;
7726 -- Use context type to disambiguate a protected function that can be
7727 -- called without actuals and that returns an array type, and where the
7728 -- argument list may be an indexing of the returned value.
7730 if Ekind (Nam) = E_Function
7731 and then Needs_No_Actuals (Nam)
7732 and then Present (Parameter_Associations (N))
7733 and then
7734 ((Is_Array_Type (Etype (Nam))
7735 and then Covers (Typ, Component_Type (Etype (Nam))))
7737 or else (Is_Access_Type (Etype (Nam))
7738 and then Is_Array_Type (Designated_Type (Etype (Nam)))
7739 and then
7740 Covers
7741 (Typ,
7742 Component_Type (Designated_Type (Etype (Nam))))))
7743 then
7744 declare
7745 Index_Node : Node_Id;
7747 begin
7748 Index_Node :=
7749 Make_Indexed_Component (Loc,
7750 Prefix =>
7751 Make_Function_Call (Loc, Name => Relocate_Node (Entry_Name)),
7752 Expressions => Parameter_Associations (N));
7754 -- Since we are correcting a node classification error made by the
7755 -- parser, we call Replace rather than Rewrite.
7757 Replace (N, Index_Node);
7758 Set_Etype (Prefix (N), Etype (Nam));
7759 Set_Etype (N, Typ);
7760 Resolve_Indexed_Component (N, Typ);
7761 return;
7762 end;
7763 end if;
7765 if Ekind_In (Nam, E_Entry, E_Entry_Family)
7766 and then Present (Contract_Wrapper (Nam))
7767 and then Current_Scope /= Contract_Wrapper (Nam)
7768 then
7769 -- Note the entity being called before rewriting the call, so that
7770 -- it appears used at this point.
7772 Generate_Reference (Nam, Entry_Name, 'r');
7774 -- Rewrite as call to the precondition wrapper, adding the task
7775 -- object to the list of actuals. If the call is to a member of an
7776 -- entry family, include the index as well.
7778 declare
7779 New_Call : Node_Id;
7780 New_Actuals : List_Id;
7782 begin
7783 New_Actuals := New_List (Obj);
7785 if Nkind (Entry_Name) = N_Indexed_Component then
7786 Append_To (New_Actuals,
7787 New_Copy_Tree (First (Expressions (Entry_Name))));
7788 end if;
7790 Append_List (Parameter_Associations (N), New_Actuals);
7791 New_Call :=
7792 Make_Procedure_Call_Statement (Loc,
7793 Name =>
7794 New_Occurrence_Of (Contract_Wrapper (Nam), Loc),
7795 Parameter_Associations => New_Actuals);
7796 Rewrite (N, New_Call);
7798 -- Preanalyze and resolve new call. Current procedure is called
7799 -- from Resolve_Call, after which expansion will take place.
7801 Preanalyze_And_Resolve (N);
7802 return;
7803 end;
7804 end if;
7806 -- The operation name may have been overloaded. Order the actuals
7807 -- according to the formals of the resolved entity, and set the return
7808 -- type to that of the operation.
7810 if Was_Over then
7811 Normalize_Actuals (N, Nam, False, Norm_OK);
7812 pragma Assert (Norm_OK);
7813 Set_Etype (N, Etype (Nam));
7815 -- Reset the Is_Overloaded flag, since resolution is now completed
7817 -- Simple entry call
7819 if Nkind (Entry_Name) = N_Selected_Component then
7820 Set_Is_Overloaded (Selector_Name (Entry_Name), False);
7822 -- Call to a member of an entry family
7824 else pragma Assert (Nkind (Entry_Name) = N_Indexed_Component);
7825 Set_Is_Overloaded (Selector_Name (Prefix (Entry_Name)), False);
7826 end if;
7827 end if;
7829 Resolve_Actuals (N, Nam);
7830 Check_Internal_Protected_Use (N, Nam);
7832 -- Create a call reference to the entry
7834 Generate_Reference (Nam, Entry_Name, 's');
7836 if Ekind_In (Nam, E_Entry, E_Entry_Family) then
7837 Check_Potentially_Blocking_Operation (N);
7838 end if;
7840 -- Verify that a procedure call cannot masquerade as an entry
7841 -- call where an entry call is expected.
7843 if Ekind (Nam) = E_Procedure then
7844 if Nkind (Parent (N)) = N_Entry_Call_Alternative
7845 and then N = Entry_Call_Statement (Parent (N))
7846 then
7847 Error_Msg_N ("entry call required in select statement", N);
7849 elsif Nkind (Parent (N)) = N_Triggering_Alternative
7850 and then N = Triggering_Statement (Parent (N))
7851 then
7852 Error_Msg_N ("triggering statement cannot be procedure call", N);
7854 elsif Ekind (Scope (Nam)) = E_Task_Type
7855 and then not In_Open_Scopes (Scope (Nam))
7856 then
7857 Error_Msg_N ("task has no entry with this name", Entry_Name);
7858 end if;
7859 end if;
7861 -- After resolution, entry calls and protected procedure calls are
7862 -- changed into entry calls, for expansion. The structure of the node
7863 -- does not change, so it can safely be done in place. Protected
7864 -- function calls must keep their structure because they are
7865 -- subexpressions.
7867 if Ekind (Nam) /= E_Function then
7869 -- A protected operation that is not a function may modify the
7870 -- corresponding object, and cannot apply to a constant. If this
7871 -- is an internal call, the prefix is the type itself.
7873 if Is_Protected_Type (Scope (Nam))
7874 and then not Is_Variable (Obj)
7875 and then (not Is_Entity_Name (Obj)
7876 or else not Is_Type (Entity (Obj)))
7877 then
7878 Error_Msg_N
7879 ("prefix of protected procedure or entry call must be variable",
7880 Entry_Name);
7881 end if;
7883 declare
7884 Entry_Call : Node_Id;
7886 begin
7887 Entry_Call :=
7888 Make_Entry_Call_Statement (Loc,
7889 Name => Entry_Name,
7890 Parameter_Associations => Parameter_Associations (N));
7892 -- Inherit relevant attributes from the original call
7894 Set_First_Named_Actual
7895 (Entry_Call, First_Named_Actual (N));
7897 Set_Is_Elaboration_Checks_OK_Node
7898 (Entry_Call, Is_Elaboration_Checks_OK_Node (N));
7900 Set_Is_Elaboration_Warnings_OK_Node
7901 (Entry_Call, Is_Elaboration_Warnings_OK_Node (N));
7903 Set_Is_SPARK_Mode_On_Node
7904 (Entry_Call, Is_SPARK_Mode_On_Node (N));
7906 Rewrite (N, Entry_Call);
7907 Set_Analyzed (N, True);
7908 end;
7910 -- Protected functions can return on the secondary stack, in which case
7911 -- we must trigger the transient scope mechanism.
7913 elsif Expander_Active
7914 and then Requires_Transient_Scope (Etype (Nam))
7915 then
7916 Establish_Transient_Scope (N, Manage_Sec_Stack => True);
7917 end if;
7918 end Resolve_Entry_Call;
7920 -------------------------
7921 -- Resolve_Equality_Op --
7922 -------------------------
7924 -- Both arguments must have the same type, and the boolean context does
7925 -- not participate in the resolution. The first pass verifies that the
7926 -- interpretation is not ambiguous, and the type of the left argument is
7927 -- correctly set, or is Any_Type in case of ambiguity. If both arguments
7928 -- are strings or aggregates, allocators, or Null, they are ambiguous even
7929 -- though they carry a single (universal) type. Diagnose this case here.
7931 procedure Resolve_Equality_Op (N : Node_Id; Typ : Entity_Id) is
7932 L : constant Node_Id := Left_Opnd (N);
7933 R : constant Node_Id := Right_Opnd (N);
7934 T : Entity_Id := Find_Unique_Type (L, R);
7936 procedure Check_If_Expression (Cond : Node_Id);
7937 -- The resolution rule for if expressions requires that each such must
7938 -- have a unique type. This means that if several dependent expressions
7939 -- are of a non-null anonymous access type, and the context does not
7940 -- impose an expected type (as can be the case in an equality operation)
7941 -- the expression must be rejected.
7943 procedure Explain_Redundancy (N : Node_Id);
7944 -- Attempt to explain the nature of a redundant comparison with True. If
7945 -- the expression N is too complex, this routine issues a general error
7946 -- message.
7948 function Find_Unique_Access_Type return Entity_Id;
7949 -- In the case of allocators and access attributes, the context must
7950 -- provide an indication of the specific access type to be used. If
7951 -- one operand is of such a "generic" access type, check whether there
7952 -- is a specific visible access type that has the same designated type.
7953 -- This is semantically dubious, and of no interest to any real code,
7954 -- but c48008a makes it all worthwhile.
7956 -------------------------
7957 -- Check_If_Expression --
7958 -------------------------
7960 procedure Check_If_Expression (Cond : Node_Id) is
7961 Then_Expr : Node_Id;
7962 Else_Expr : Node_Id;
7964 begin
7965 if Nkind (Cond) = N_If_Expression then
7966 Then_Expr := Next (First (Expressions (Cond)));
7967 Else_Expr := Next (Then_Expr);
7969 if Nkind (Then_Expr) /= N_Null
7970 and then Nkind (Else_Expr) /= N_Null
7971 then
7972 Error_Msg_N ("cannot determine type of if expression", Cond);
7973 end if;
7974 end if;
7975 end Check_If_Expression;
7977 ------------------------
7978 -- Explain_Redundancy --
7979 ------------------------
7981 procedure Explain_Redundancy (N : Node_Id) is
7982 Error : Name_Id;
7983 Val : Node_Id;
7984 Val_Id : Entity_Id;
7986 begin
7987 Val := N;
7989 -- Strip the operand down to an entity
7991 loop
7992 if Nkind (Val) = N_Selected_Component then
7993 Val := Selector_Name (Val);
7994 else
7995 exit;
7996 end if;
7997 end loop;
7999 -- The construct denotes an entity
8001 if Is_Entity_Name (Val) and then Present (Entity (Val)) then
8002 Val_Id := Entity (Val);
8004 -- Do not generate an error message when the comparison is done
8005 -- against the enumeration literal Standard.True.
8007 if Ekind (Val_Id) /= E_Enumeration_Literal then
8009 -- Build a customized error message
8011 Name_Len := 0;
8012 Add_Str_To_Name_Buffer ("?r?");
8014 if Ekind (Val_Id) = E_Component then
8015 Add_Str_To_Name_Buffer ("component ");
8017 elsif Ekind (Val_Id) = E_Constant then
8018 Add_Str_To_Name_Buffer ("constant ");
8020 elsif Ekind (Val_Id) = E_Discriminant then
8021 Add_Str_To_Name_Buffer ("discriminant ");
8023 elsif Is_Formal (Val_Id) then
8024 Add_Str_To_Name_Buffer ("parameter ");
8026 elsif Ekind (Val_Id) = E_Variable then
8027 Add_Str_To_Name_Buffer ("variable ");
8028 end if;
8030 Add_Str_To_Name_Buffer ("& is always True!");
8031 Error := Name_Find;
8033 Error_Msg_NE (Get_Name_String (Error), Val, Val_Id);
8034 end if;
8036 -- The construct is too complex to disect, issue a general message
8038 else
8039 Error_Msg_N ("?r?expression is always True!", Val);
8040 end if;
8041 end Explain_Redundancy;
8043 -----------------------------
8044 -- Find_Unique_Access_Type --
8045 -----------------------------
8047 function Find_Unique_Access_Type return Entity_Id is
8048 Acc : Entity_Id;
8049 E : Entity_Id;
8050 S : Entity_Id;
8052 begin
8053 if Ekind_In (Etype (R), E_Allocator_Type,
8054 E_Access_Attribute_Type)
8055 then
8056 Acc := Designated_Type (Etype (R));
8058 elsif Ekind_In (Etype (L), E_Allocator_Type,
8059 E_Access_Attribute_Type)
8060 then
8061 Acc := Designated_Type (Etype (L));
8062 else
8063 return Empty;
8064 end if;
8066 S := Current_Scope;
8067 while S /= Standard_Standard loop
8068 E := First_Entity (S);
8069 while Present (E) loop
8070 if Is_Type (E)
8071 and then Is_Access_Type (E)
8072 and then Ekind (E) /= E_Allocator_Type
8073 and then Designated_Type (E) = Base_Type (Acc)
8074 then
8075 return E;
8076 end if;
8078 Next_Entity (E);
8079 end loop;
8081 S := Scope (S);
8082 end loop;
8084 return Empty;
8085 end Find_Unique_Access_Type;
8087 -- Start of processing for Resolve_Equality_Op
8089 begin
8090 Set_Etype (N, Base_Type (Typ));
8091 Generate_Reference (T, N, ' ');
8093 if T = Any_Fixed then
8094 T := Unique_Fixed_Point_Type (L);
8095 end if;
8097 if T /= Any_Type then
8098 if T = Any_String or else
8099 T = Any_Composite or else
8100 T = Any_Character
8101 then
8102 if T = Any_Character then
8103 Ambiguous_Character (L);
8104 else
8105 Error_Msg_N ("ambiguous operands for equality", N);
8106 end if;
8108 Set_Etype (N, Any_Type);
8109 return;
8111 elsif T = Any_Access
8112 or else Ekind_In (T, E_Allocator_Type, E_Access_Attribute_Type)
8113 then
8114 T := Find_Unique_Access_Type;
8116 if No (T) then
8117 Error_Msg_N ("ambiguous operands for equality", N);
8118 Set_Etype (N, Any_Type);
8119 return;
8120 end if;
8122 -- If expressions must have a single type, and if the context does
8123 -- not impose one the dependent expressions cannot be anonymous
8124 -- access types.
8126 -- Why no similar processing for case expressions???
8128 elsif Ada_Version >= Ada_2012
8129 and then Ekind_In (Etype (L), E_Anonymous_Access_Type,
8130 E_Anonymous_Access_Subprogram_Type)
8131 and then Ekind_In (Etype (R), E_Anonymous_Access_Type,
8132 E_Anonymous_Access_Subprogram_Type)
8133 then
8134 Check_If_Expression (L);
8135 Check_If_Expression (R);
8136 end if;
8138 Resolve (L, T);
8139 Resolve (R, T);
8141 -- In SPARK, equality operators = and /= for array types other than
8142 -- String are only defined when, for each index position, the
8143 -- operands have equal static bounds.
8145 if Is_Array_Type (T) then
8147 -- Protect call to Matching_Static_Array_Bounds to avoid costly
8148 -- operation if not needed.
8150 if Restriction_Check_Required (SPARK_05)
8151 and then Base_Type (T) /= Standard_String
8152 and then Base_Type (Etype (L)) = Base_Type (Etype (R))
8153 and then Etype (L) /= Any_Composite -- or else L in error
8154 and then Etype (R) /= Any_Composite -- or else R in error
8155 and then not Matching_Static_Array_Bounds (Etype (L), Etype (R))
8156 then
8157 Check_SPARK_05_Restriction
8158 ("array types should have matching static bounds", N);
8159 end if;
8160 end if;
8162 -- If the unique type is a class-wide type then it will be expanded
8163 -- into a dispatching call to the predefined primitive. Therefore we
8164 -- check here for potential violation of such restriction.
8166 if Is_Class_Wide_Type (T) then
8167 Check_Restriction (No_Dispatching_Calls, N);
8168 end if;
8170 -- Only warn for redundant equality comparison to True for objects
8171 -- (e.g. "X = True") and operations (e.g. "(X < Y) = True"). For
8172 -- other expressions, it may be a matter of preference to write
8173 -- "Expr = True" or "Expr".
8175 if Warn_On_Redundant_Constructs
8176 and then Comes_From_Source (N)
8177 and then Comes_From_Source (R)
8178 and then Is_Entity_Name (R)
8179 and then Entity (R) = Standard_True
8180 and then
8181 ((Is_Entity_Name (L) and then Is_Object (Entity (L)))
8182 or else
8183 Nkind (L) in N_Op)
8184 then
8185 Error_Msg_N -- CODEFIX
8186 ("?r?comparison with True is redundant!", N);
8187 Explain_Redundancy (Original_Node (R));
8188 end if;
8190 Check_Unset_Reference (L);
8191 Check_Unset_Reference (R);
8192 Generate_Operator_Reference (N, T);
8193 Check_Low_Bound_Tested (N);
8195 -- If this is an inequality, it may be the implicit inequality
8196 -- created for a user-defined operation, in which case the corres-
8197 -- ponding equality operation is not intrinsic, and the operation
8198 -- cannot be constant-folded. Else fold.
8200 if Nkind (N) = N_Op_Eq
8201 or else Comes_From_Source (Entity (N))
8202 or else Ekind (Entity (N)) = E_Operator
8203 or else Is_Intrinsic_Subprogram
8204 (Corresponding_Equality (Entity (N)))
8205 then
8206 Analyze_Dimension (N);
8207 Eval_Relational_Op (N);
8209 elsif Nkind (N) = N_Op_Ne
8210 and then Is_Abstract_Subprogram (Entity (N))
8211 then
8212 Error_Msg_NE ("cannot call abstract subprogram &!", N, Entity (N));
8213 end if;
8215 -- Ada 2005: If one operand is an anonymous access type, convert the
8216 -- other operand to it, to ensure that the underlying types match in
8217 -- the back-end. Same for access_to_subprogram, and the conversion
8218 -- verifies that the types are subtype conformant.
8220 -- We apply the same conversion in the case one of the operands is a
8221 -- private subtype of the type of the other.
8223 -- Why the Expander_Active test here ???
8225 if Expander_Active
8226 and then
8227 (Ekind_In (T, E_Anonymous_Access_Type,
8228 E_Anonymous_Access_Subprogram_Type)
8229 or else Is_Private_Type (T))
8230 then
8231 if Etype (L) /= T then
8232 Rewrite (L,
8233 Make_Unchecked_Type_Conversion (Sloc (L),
8234 Subtype_Mark => New_Occurrence_Of (T, Sloc (L)),
8235 Expression => Relocate_Node (L)));
8236 Analyze_And_Resolve (L, T);
8237 end if;
8239 if (Etype (R)) /= T then
8240 Rewrite (R,
8241 Make_Unchecked_Type_Conversion (Sloc (R),
8242 Subtype_Mark => New_Occurrence_Of (Etype (L), Sloc (R)),
8243 Expression => Relocate_Node (R)));
8244 Analyze_And_Resolve (R, T);
8245 end if;
8246 end if;
8247 end if;
8248 end Resolve_Equality_Op;
8250 ----------------------------------
8251 -- Resolve_Explicit_Dereference --
8252 ----------------------------------
8254 procedure Resolve_Explicit_Dereference (N : Node_Id; Typ : Entity_Id) is
8255 Loc : constant Source_Ptr := Sloc (N);
8256 New_N : Node_Id;
8257 P : constant Node_Id := Prefix (N);
8259 P_Typ : Entity_Id;
8260 -- The candidate prefix type, if overloaded
8262 I : Interp_Index;
8263 It : Interp;
8265 begin
8266 Check_Fully_Declared_Prefix (Typ, P);
8267 P_Typ := Empty;
8269 -- A useful optimization: check whether the dereference denotes an
8270 -- element of a container, and if so rewrite it as a call to the
8271 -- corresponding Element function.
8273 -- Disabled for now, on advice of ARG. A more restricted form of the
8274 -- predicate might be acceptable ???
8276 -- if Is_Container_Element (N) then
8277 -- return;
8278 -- end if;
8280 if Is_Overloaded (P) then
8282 -- Use the context type to select the prefix that has the correct
8283 -- designated type. Keep the first match, which will be the inner-
8284 -- most.
8286 Get_First_Interp (P, I, It);
8288 while Present (It.Typ) loop
8289 if Is_Access_Type (It.Typ)
8290 and then Covers (Typ, Designated_Type (It.Typ))
8291 then
8292 if No (P_Typ) then
8293 P_Typ := It.Typ;
8294 end if;
8296 -- Remove access types that do not match, but preserve access
8297 -- to subprogram interpretations, in case a further dereference
8298 -- is needed (see below).
8300 elsif Ekind (It.Typ) /= E_Access_Subprogram_Type then
8301 Remove_Interp (I);
8302 end if;
8304 Get_Next_Interp (I, It);
8305 end loop;
8307 if Present (P_Typ) then
8308 Resolve (P, P_Typ);
8309 Set_Etype (N, Designated_Type (P_Typ));
8311 else
8312 -- If no interpretation covers the designated type of the prefix,
8313 -- this is the pathological case where not all implementations of
8314 -- the prefix allow the interpretation of the node as a call. Now
8315 -- that the expected type is known, Remove other interpretations
8316 -- from prefix, rewrite it as a call, and resolve again, so that
8317 -- the proper call node is generated.
8319 Get_First_Interp (P, I, It);
8320 while Present (It.Typ) loop
8321 if Ekind (It.Typ) /= E_Access_Subprogram_Type then
8322 Remove_Interp (I);
8323 end if;
8325 Get_Next_Interp (I, It);
8326 end loop;
8328 New_N :=
8329 Make_Function_Call (Loc,
8330 Name =>
8331 Make_Explicit_Dereference (Loc,
8332 Prefix => P),
8333 Parameter_Associations => New_List);
8335 Save_Interps (N, New_N);
8336 Rewrite (N, New_N);
8337 Analyze_And_Resolve (N, Typ);
8338 return;
8339 end if;
8341 -- If not overloaded, resolve P with its own type
8343 else
8344 Resolve (P);
8345 end if;
8347 -- If the prefix might be null, add an access check
8349 if Is_Access_Type (Etype (P))
8350 and then not Can_Never_Be_Null (Etype (P))
8351 then
8352 Apply_Access_Check (N);
8353 end if;
8355 -- If the designated type is a packed unconstrained array type, and the
8356 -- explicit dereference is not in the context of an attribute reference,
8357 -- then we must compute and set the actual subtype, since it is needed
8358 -- by Gigi. The reason we exclude the attribute case is that this is
8359 -- handled fine by Gigi, and in fact we use such attributes to build the
8360 -- actual subtype. We also exclude generated code (which builds actual
8361 -- subtypes directly if they are needed).
8363 if Is_Array_Type (Etype (N))
8364 and then Is_Packed (Etype (N))
8365 and then not Is_Constrained (Etype (N))
8366 and then Nkind (Parent (N)) /= N_Attribute_Reference
8367 and then Comes_From_Source (N)
8368 then
8369 Set_Etype (N, Get_Actual_Subtype (N));
8370 end if;
8372 Analyze_Dimension (N);
8374 -- Note: No Eval processing is required for an explicit dereference,
8375 -- because such a name can never be static.
8377 end Resolve_Explicit_Dereference;
8379 -------------------------------------
8380 -- Resolve_Expression_With_Actions --
8381 -------------------------------------
8383 procedure Resolve_Expression_With_Actions (N : Node_Id; Typ : Entity_Id) is
8384 begin
8385 Set_Etype (N, Typ);
8387 -- If N has no actions, and its expression has been constant folded,
8388 -- then rewrite N as just its expression. Note, we can't do this in
8389 -- the general case of Is_Empty_List (Actions (N)) as this would cause
8390 -- Expression (N) to be expanded again.
8392 if Is_Empty_List (Actions (N))
8393 and then Compile_Time_Known_Value (Expression (N))
8394 then
8395 Rewrite (N, Expression (N));
8396 end if;
8397 end Resolve_Expression_With_Actions;
8399 ----------------------------------
8400 -- Resolve_Generalized_Indexing --
8401 ----------------------------------
8403 procedure Resolve_Generalized_Indexing (N : Node_Id; Typ : Entity_Id) is
8404 Indexing : constant Node_Id := Generalized_Indexing (N);
8405 Call : Node_Id;
8406 Indexes : List_Id;
8407 Pref : Node_Id;
8409 begin
8410 -- In ASIS mode, propagate the information about the indexes back to
8411 -- to the original indexing node. The generalized indexing is either
8412 -- a function call, or a dereference of one. The actuals include the
8413 -- prefix of the original node, which is the container expression.
8415 if ASIS_Mode then
8416 Resolve (Indexing, Typ);
8417 Set_Etype (N, Etype (Indexing));
8418 Set_Is_Overloaded (N, False);
8420 Call := Indexing;
8421 while Nkind_In (Call, N_Explicit_Dereference, N_Selected_Component)
8422 loop
8423 Call := Prefix (Call);
8424 end loop;
8426 if Nkind (Call) = N_Function_Call then
8427 Indexes := New_Copy_List (Parameter_Associations (Call));
8428 Pref := Remove_Head (Indexes);
8429 Set_Expressions (N, Indexes);
8431 -- If expression is to be reanalyzed, reset Generalized_Indexing
8432 -- to recreate call node, as is the case when the expression is
8433 -- part of an expression function.
8435 if In_Spec_Expression then
8436 Set_Generalized_Indexing (N, Empty);
8437 end if;
8439 Set_Prefix (N, Pref);
8440 end if;
8442 else
8443 Rewrite (N, Indexing);
8444 Resolve (N, Typ);
8445 end if;
8446 end Resolve_Generalized_Indexing;
8448 ---------------------------
8449 -- Resolve_If_Expression --
8450 ---------------------------
8452 procedure Resolve_If_Expression (N : Node_Id; Typ : Entity_Id) is
8453 Condition : constant Node_Id := First (Expressions (N));
8454 Then_Expr : Node_Id;
8455 Else_Expr : Node_Id;
8456 Else_Typ : Entity_Id;
8457 Then_Typ : Entity_Id;
8459 begin
8460 -- Defend against malformed expressions
8462 if No (Condition) then
8463 return;
8464 end if;
8466 Then_Expr := Next (Condition);
8468 if No (Then_Expr) then
8469 return;
8470 end if;
8472 Else_Expr := Next (Then_Expr);
8474 Resolve (Condition, Any_Boolean);
8475 Resolve (Then_Expr, Typ);
8476 Then_Typ := Etype (Then_Expr);
8478 -- When the "then" expression is of a scalar subtype different from the
8479 -- result subtype, then insert a conversion to ensure the generation of
8480 -- a constraint check. The same is done for the else part below, again
8481 -- comparing subtypes rather than base types.
8483 if Is_Scalar_Type (Then_Typ) and then Then_Typ /= Typ then
8484 Rewrite (Then_Expr, Convert_To (Typ, Then_Expr));
8485 Analyze_And_Resolve (Then_Expr, Typ);
8486 end if;
8488 -- If ELSE expression present, just resolve using the determined type
8489 -- If type is universal, resolve to any member of the class.
8491 if Present (Else_Expr) then
8492 if Typ = Universal_Integer then
8493 Resolve (Else_Expr, Any_Integer);
8495 elsif Typ = Universal_Real then
8496 Resolve (Else_Expr, Any_Real);
8498 else
8499 Resolve (Else_Expr, Typ);
8500 end if;
8502 Else_Typ := Etype (Else_Expr);
8504 if Is_Scalar_Type (Else_Typ) and then Else_Typ /= Typ then
8505 Rewrite (Else_Expr, Convert_To (Typ, Else_Expr));
8506 Analyze_And_Resolve (Else_Expr, Typ);
8508 -- Apply RM 4.5.7 (17/3): whether the expression is statically or
8509 -- dynamically tagged must be known statically.
8511 elsif Is_Tagged_Type (Typ) and then not Is_Class_Wide_Type (Typ) then
8512 if Is_Dynamically_Tagged (Then_Expr) /=
8513 Is_Dynamically_Tagged (Else_Expr)
8514 then
8515 Error_Msg_N ("all or none of the dependent expressions "
8516 & "can be dynamically tagged", N);
8517 end if;
8518 end if;
8520 -- If no ELSE expression is present, root type must be Standard.Boolean
8521 -- and we provide a Standard.True result converted to the appropriate
8522 -- Boolean type (in case it is a derived boolean type).
8524 elsif Root_Type (Typ) = Standard_Boolean then
8525 Else_Expr :=
8526 Convert_To (Typ, New_Occurrence_Of (Standard_True, Sloc (N)));
8527 Analyze_And_Resolve (Else_Expr, Typ);
8528 Append_To (Expressions (N), Else_Expr);
8530 else
8531 Error_Msg_N ("can only omit ELSE expression in Boolean case", N);
8532 Append_To (Expressions (N), Error);
8533 end if;
8535 Set_Etype (N, Typ);
8537 if not Error_Posted (N) then
8538 Eval_If_Expression (N);
8539 end if;
8541 Analyze_Dimension (N);
8542 end Resolve_If_Expression;
8544 -------------------------------
8545 -- Resolve_Indexed_Component --
8546 -------------------------------
8548 procedure Resolve_Indexed_Component (N : Node_Id; Typ : Entity_Id) is
8549 Name : constant Node_Id := Prefix (N);
8550 Expr : Node_Id;
8551 Array_Type : Entity_Id := Empty; -- to prevent junk warning
8552 Index : Node_Id;
8554 begin
8555 if Present (Generalized_Indexing (N)) then
8556 Resolve_Generalized_Indexing (N, Typ);
8557 return;
8558 end if;
8560 if Is_Overloaded (Name) then
8562 -- Use the context type to select the prefix that yields the correct
8563 -- component type.
8565 declare
8566 I : Interp_Index;
8567 It : Interp;
8568 I1 : Interp_Index := 0;
8569 P : constant Node_Id := Prefix (N);
8570 Found : Boolean := False;
8572 begin
8573 Get_First_Interp (P, I, It);
8574 while Present (It.Typ) loop
8575 if (Is_Array_Type (It.Typ)
8576 and then Covers (Typ, Component_Type (It.Typ)))
8577 or else (Is_Access_Type (It.Typ)
8578 and then Is_Array_Type (Designated_Type (It.Typ))
8579 and then
8580 Covers
8581 (Typ,
8582 Component_Type (Designated_Type (It.Typ))))
8583 then
8584 if Found then
8585 It := Disambiguate (P, I1, I, Any_Type);
8587 if It = No_Interp then
8588 Error_Msg_N ("ambiguous prefix for indexing", N);
8589 Set_Etype (N, Typ);
8590 return;
8592 else
8593 Found := True;
8594 Array_Type := It.Typ;
8595 I1 := I;
8596 end if;
8598 else
8599 Found := True;
8600 Array_Type := It.Typ;
8601 I1 := I;
8602 end if;
8603 end if;
8605 Get_Next_Interp (I, It);
8606 end loop;
8607 end;
8609 else
8610 Array_Type := Etype (Name);
8611 end if;
8613 Resolve (Name, Array_Type);
8614 Array_Type := Get_Actual_Subtype_If_Available (Name);
8616 -- If prefix is access type, dereference to get real array type.
8617 -- Note: we do not apply an access check because the expander always
8618 -- introduces an explicit dereference, and the check will happen there.
8620 if Is_Access_Type (Array_Type) then
8621 Array_Type := Designated_Type (Array_Type);
8622 end if;
8624 -- If name was overloaded, set component type correctly now
8625 -- If a misplaced call to an entry family (which has no index types)
8626 -- return. Error will be diagnosed from calling context.
8628 if Is_Array_Type (Array_Type) then
8629 Set_Etype (N, Component_Type (Array_Type));
8630 else
8631 return;
8632 end if;
8634 Index := First_Index (Array_Type);
8635 Expr := First (Expressions (N));
8637 -- The prefix may have resolved to a string literal, in which case its
8638 -- etype has a special representation. This is only possible currently
8639 -- if the prefix is a static concatenation, written in functional
8640 -- notation.
8642 if Ekind (Array_Type) = E_String_Literal_Subtype then
8643 Resolve (Expr, Standard_Positive);
8645 else
8646 while Present (Index) and Present (Expr) loop
8647 Resolve (Expr, Etype (Index));
8648 Check_Unset_Reference (Expr);
8650 if Is_Scalar_Type (Etype (Expr)) then
8651 Apply_Scalar_Range_Check (Expr, Etype (Index));
8652 else
8653 Apply_Range_Check (Expr, Get_Actual_Subtype (Index));
8654 end if;
8656 Next_Index (Index);
8657 Next (Expr);
8658 end loop;
8659 end if;
8661 Analyze_Dimension (N);
8663 -- Do not generate the warning on suspicious index if we are analyzing
8664 -- package Ada.Tags; otherwise we will report the warning with the
8665 -- Prims_Ptr field of the dispatch table.
8667 if Scope (Etype (Prefix (N))) = Standard_Standard
8668 or else not
8669 Is_RTU (Cunit_Entity (Get_Source_Unit (Etype (Prefix (N)))),
8670 Ada_Tags)
8671 then
8672 Warn_On_Suspicious_Index (Name, First (Expressions (N)));
8673 Eval_Indexed_Component (N);
8674 end if;
8676 -- If the array type is atomic, and the component is not atomic, then
8677 -- this is worth a warning, since we have a situation where the access
8678 -- to the component may cause extra read/writes of the atomic array
8679 -- object, or partial word accesses, which could be unexpected.
8681 if Nkind (N) = N_Indexed_Component
8682 and then Is_Atomic_Ref_With_Address (N)
8683 and then not (Has_Atomic_Components (Array_Type)
8684 or else (Is_Entity_Name (Prefix (N))
8685 and then Has_Atomic_Components
8686 (Entity (Prefix (N)))))
8687 and then not Is_Atomic (Component_Type (Array_Type))
8688 then
8689 Error_Msg_N
8690 ("??access to non-atomic component of atomic array", Prefix (N));
8691 Error_Msg_N
8692 ("??\may cause unexpected accesses to atomic object", Prefix (N));
8693 end if;
8694 end Resolve_Indexed_Component;
8696 -----------------------------
8697 -- Resolve_Integer_Literal --
8698 -----------------------------
8700 procedure Resolve_Integer_Literal (N : Node_Id; Typ : Entity_Id) is
8701 begin
8702 Set_Etype (N, Typ);
8703 Eval_Integer_Literal (N);
8704 end Resolve_Integer_Literal;
8706 --------------------------------
8707 -- Resolve_Intrinsic_Operator --
8708 --------------------------------
8710 procedure Resolve_Intrinsic_Operator (N : Node_Id; Typ : Entity_Id) is
8711 Btyp : constant Entity_Id := Base_Type (Underlying_Type (Typ));
8712 Op : Entity_Id;
8713 Arg1 : Node_Id;
8714 Arg2 : Node_Id;
8716 function Convert_Operand (Opnd : Node_Id) return Node_Id;
8717 -- If the operand is a literal, it cannot be the expression in a
8718 -- conversion. Use a qualified expression instead.
8720 ---------------------
8721 -- Convert_Operand --
8722 ---------------------
8724 function Convert_Operand (Opnd : Node_Id) return Node_Id is
8725 Loc : constant Source_Ptr := Sloc (Opnd);
8726 Res : Node_Id;
8728 begin
8729 if Nkind_In (Opnd, N_Integer_Literal, N_Real_Literal) then
8730 Res :=
8731 Make_Qualified_Expression (Loc,
8732 Subtype_Mark => New_Occurrence_Of (Btyp, Loc),
8733 Expression => Relocate_Node (Opnd));
8734 Analyze (Res);
8736 else
8737 Res := Unchecked_Convert_To (Btyp, Opnd);
8738 end if;
8740 return Res;
8741 end Convert_Operand;
8743 -- Start of processing for Resolve_Intrinsic_Operator
8745 begin
8746 -- We must preserve the original entity in a generic setting, so that
8747 -- the legality of the operation can be verified in an instance.
8749 if not Expander_Active then
8750 return;
8751 end if;
8753 Op := Entity (N);
8754 while Scope (Op) /= Standard_Standard loop
8755 Op := Homonym (Op);
8756 pragma Assert (Present (Op));
8757 end loop;
8759 Set_Entity (N, Op);
8760 Set_Is_Overloaded (N, False);
8762 -- If the result or operand types are private, rewrite with unchecked
8763 -- conversions on the operands and the result, to expose the proper
8764 -- underlying numeric type.
8766 if Is_Private_Type (Typ)
8767 or else Is_Private_Type (Etype (Left_Opnd (N)))
8768 or else Is_Private_Type (Etype (Right_Opnd (N)))
8769 then
8770 Arg1 := Convert_Operand (Left_Opnd (N));
8772 if Nkind (N) = N_Op_Expon then
8773 Arg2 := Unchecked_Convert_To (Standard_Integer, Right_Opnd (N));
8774 else
8775 Arg2 := Convert_Operand (Right_Opnd (N));
8776 end if;
8778 if Nkind (Arg1) = N_Type_Conversion then
8779 Save_Interps (Left_Opnd (N), Expression (Arg1));
8780 end if;
8782 if Nkind (Arg2) = N_Type_Conversion then
8783 Save_Interps (Right_Opnd (N), Expression (Arg2));
8784 end if;
8786 Set_Left_Opnd (N, Arg1);
8787 Set_Right_Opnd (N, Arg2);
8789 Set_Etype (N, Btyp);
8790 Rewrite (N, Unchecked_Convert_To (Typ, N));
8791 Resolve (N, Typ);
8793 elsif Typ /= Etype (Left_Opnd (N))
8794 or else Typ /= Etype (Right_Opnd (N))
8795 then
8796 -- Add explicit conversion where needed, and save interpretations in
8797 -- case operands are overloaded.
8799 Arg1 := Convert_To (Typ, Left_Opnd (N));
8800 Arg2 := Convert_To (Typ, Right_Opnd (N));
8802 if Nkind (Arg1) = N_Type_Conversion then
8803 Save_Interps (Left_Opnd (N), Expression (Arg1));
8804 else
8805 Save_Interps (Left_Opnd (N), Arg1);
8806 end if;
8808 if Nkind (Arg2) = N_Type_Conversion then
8809 Save_Interps (Right_Opnd (N), Expression (Arg2));
8810 else
8811 Save_Interps (Right_Opnd (N), Arg2);
8812 end if;
8814 Rewrite (Left_Opnd (N), Arg1);
8815 Rewrite (Right_Opnd (N), Arg2);
8816 Analyze (Arg1);
8817 Analyze (Arg2);
8818 Resolve_Arithmetic_Op (N, Typ);
8820 else
8821 Resolve_Arithmetic_Op (N, Typ);
8822 end if;
8823 end Resolve_Intrinsic_Operator;
8825 --------------------------------------
8826 -- Resolve_Intrinsic_Unary_Operator --
8827 --------------------------------------
8829 procedure Resolve_Intrinsic_Unary_Operator
8830 (N : Node_Id;
8831 Typ : Entity_Id)
8833 Btyp : constant Entity_Id := Base_Type (Underlying_Type (Typ));
8834 Op : Entity_Id;
8835 Arg2 : Node_Id;
8837 begin
8838 Op := Entity (N);
8839 while Scope (Op) /= Standard_Standard loop
8840 Op := Homonym (Op);
8841 pragma Assert (Present (Op));
8842 end loop;
8844 Set_Entity (N, Op);
8846 if Is_Private_Type (Typ) then
8847 Arg2 := Unchecked_Convert_To (Btyp, Right_Opnd (N));
8848 Save_Interps (Right_Opnd (N), Expression (Arg2));
8850 Set_Right_Opnd (N, Arg2);
8852 Set_Etype (N, Btyp);
8853 Rewrite (N, Unchecked_Convert_To (Typ, N));
8854 Resolve (N, Typ);
8856 else
8857 Resolve_Unary_Op (N, Typ);
8858 end if;
8859 end Resolve_Intrinsic_Unary_Operator;
8861 ------------------------
8862 -- Resolve_Logical_Op --
8863 ------------------------
8865 procedure Resolve_Logical_Op (N : Node_Id; Typ : Entity_Id) is
8866 B_Typ : Entity_Id;
8868 begin
8869 Check_No_Direct_Boolean_Operators (N);
8871 -- Predefined operations on scalar types yield the base type. On the
8872 -- other hand, logical operations on arrays yield the type of the
8873 -- arguments (and the context).
8875 if Is_Array_Type (Typ) then
8876 B_Typ := Typ;
8877 else
8878 B_Typ := Base_Type (Typ);
8879 end if;
8881 -- The following test is required because the operands of the operation
8882 -- may be literals, in which case the resulting type appears to be
8883 -- compatible with a signed integer type, when in fact it is compatible
8884 -- only with modular types. If the context itself is universal, the
8885 -- operation is illegal.
8887 if not Valid_Boolean_Arg (Typ) then
8888 Error_Msg_N ("invalid context for logical operation", N);
8889 Set_Etype (N, Any_Type);
8890 return;
8892 elsif Typ = Any_Modular then
8893 Error_Msg_N
8894 ("no modular type available in this context", N);
8895 Set_Etype (N, Any_Type);
8896 return;
8898 elsif Is_Modular_Integer_Type (Typ)
8899 and then Etype (Left_Opnd (N)) = Universal_Integer
8900 and then Etype (Right_Opnd (N)) = Universal_Integer
8901 then
8902 Check_For_Visible_Operator (N, B_Typ);
8903 end if;
8905 -- Replace AND by AND THEN, or OR by OR ELSE, if Short_Circuit_And_Or
8906 -- is active and the result type is standard Boolean (do not mess with
8907 -- ops that return a nonstandard Boolean type, because something strange
8908 -- is going on).
8910 -- Note: you might expect this replacement to be done during expansion,
8911 -- but that doesn't work, because when the pragma Short_Circuit_And_Or
8912 -- is used, no part of the right operand of an "and" or "or" operator
8913 -- should be executed if the left operand would short-circuit the
8914 -- evaluation of the corresponding "and then" or "or else". If we left
8915 -- the replacement to expansion time, then run-time checks associated
8916 -- with such operands would be evaluated unconditionally, due to being
8917 -- before the condition prior to the rewriting as short-circuit forms
8918 -- during expansion.
8920 if Short_Circuit_And_Or
8921 and then B_Typ = Standard_Boolean
8922 and then Nkind_In (N, N_Op_And, N_Op_Or)
8923 then
8924 -- Mark the corresponding putative SCO operator as truly a logical
8925 -- (and short-circuit) operator.
8927 if Generate_SCO and then Comes_From_Source (N) then
8928 Set_SCO_Logical_Operator (N);
8929 end if;
8931 if Nkind (N) = N_Op_And then
8932 Rewrite (N,
8933 Make_And_Then (Sloc (N),
8934 Left_Opnd => Relocate_Node (Left_Opnd (N)),
8935 Right_Opnd => Relocate_Node (Right_Opnd (N))));
8936 Analyze_And_Resolve (N, B_Typ);
8938 -- Case of OR changed to OR ELSE
8940 else
8941 Rewrite (N,
8942 Make_Or_Else (Sloc (N),
8943 Left_Opnd => Relocate_Node (Left_Opnd (N)),
8944 Right_Opnd => Relocate_Node (Right_Opnd (N))));
8945 Analyze_And_Resolve (N, B_Typ);
8946 end if;
8948 -- Return now, since analysis of the rewritten ops will take care of
8949 -- other reference bookkeeping and expression folding.
8951 return;
8952 end if;
8954 Resolve (Left_Opnd (N), B_Typ);
8955 Resolve (Right_Opnd (N), B_Typ);
8957 Check_Unset_Reference (Left_Opnd (N));
8958 Check_Unset_Reference (Right_Opnd (N));
8960 Set_Etype (N, B_Typ);
8961 Generate_Operator_Reference (N, B_Typ);
8962 Eval_Logical_Op (N);
8964 -- In SPARK, logical operations AND, OR and XOR for arrays are defined
8965 -- only when both operands have same static lower and higher bounds. Of
8966 -- course the types have to match, so only check if operands are
8967 -- compatible and the node itself has no errors.
8969 if Is_Array_Type (B_Typ)
8970 and then Nkind (N) in N_Binary_Op
8971 then
8972 declare
8973 Left_Typ : constant Node_Id := Etype (Left_Opnd (N));
8974 Right_Typ : constant Node_Id := Etype (Right_Opnd (N));
8976 begin
8977 -- Protect call to Matching_Static_Array_Bounds to avoid costly
8978 -- operation if not needed.
8980 if Restriction_Check_Required (SPARK_05)
8981 and then Base_Type (Left_Typ) = Base_Type (Right_Typ)
8982 and then Left_Typ /= Any_Composite -- or Left_Opnd in error
8983 and then Right_Typ /= Any_Composite -- or Right_Opnd in error
8984 and then not Matching_Static_Array_Bounds (Left_Typ, Right_Typ)
8985 then
8986 Check_SPARK_05_Restriction
8987 ("array types should have matching static bounds", N);
8988 end if;
8989 end;
8990 end if;
8991 end Resolve_Logical_Op;
8993 ---------------------------
8994 -- Resolve_Membership_Op --
8995 ---------------------------
8997 -- The context can only be a boolean type, and does not determine the
8998 -- arguments. Arguments should be unambiguous, but the preference rule for
8999 -- universal types applies.
9001 procedure Resolve_Membership_Op (N : Node_Id; Typ : Entity_Id) is
9002 pragma Warnings (Off, Typ);
9004 L : constant Node_Id := Left_Opnd (N);
9005 R : constant Node_Id := Right_Opnd (N);
9006 T : Entity_Id;
9008 procedure Resolve_Set_Membership;
9009 -- Analysis has determined a unique type for the left operand. Use it to
9010 -- resolve the disjuncts.
9012 ----------------------------
9013 -- Resolve_Set_Membership --
9014 ----------------------------
9016 procedure Resolve_Set_Membership is
9017 Alt : Node_Id;
9018 Ltyp : Entity_Id;
9020 begin
9021 -- If the left operand is overloaded, find type compatible with not
9022 -- overloaded alternative of the right operand.
9024 if Is_Overloaded (L) then
9025 Ltyp := Empty;
9026 Alt := First (Alternatives (N));
9027 while Present (Alt) loop
9028 if not Is_Overloaded (Alt) then
9029 Ltyp := Intersect_Types (L, Alt);
9030 exit;
9031 else
9032 Next (Alt);
9033 end if;
9034 end loop;
9036 -- Unclear how to resolve expression if all alternatives are also
9037 -- overloaded.
9039 if No (Ltyp) then
9040 Error_Msg_N ("ambiguous expression", N);
9041 end if;
9043 else
9044 Ltyp := Etype (L);
9045 end if;
9047 Resolve (L, Ltyp);
9049 Alt := First (Alternatives (N));
9050 while Present (Alt) loop
9052 -- Alternative is an expression, a range
9053 -- or a subtype mark.
9055 if not Is_Entity_Name (Alt)
9056 or else not Is_Type (Entity (Alt))
9057 then
9058 Resolve (Alt, Ltyp);
9059 end if;
9061 Next (Alt);
9062 end loop;
9064 -- Check for duplicates for discrete case
9066 if Is_Discrete_Type (Ltyp) then
9067 declare
9068 type Ent is record
9069 Alt : Node_Id;
9070 Val : Uint;
9071 end record;
9073 Alts : array (0 .. List_Length (Alternatives (N))) of Ent;
9074 Nalts : Nat;
9076 begin
9077 -- Loop checking duplicates. This is quadratic, but giant sets
9078 -- are unlikely in this context so it's a reasonable choice.
9080 Nalts := 0;
9081 Alt := First (Alternatives (N));
9082 while Present (Alt) loop
9083 if Is_OK_Static_Expression (Alt)
9084 and then (Nkind_In (Alt, N_Integer_Literal,
9085 N_Character_Literal)
9086 or else Nkind (Alt) in N_Has_Entity)
9087 then
9088 Nalts := Nalts + 1;
9089 Alts (Nalts) := (Alt, Expr_Value (Alt));
9091 for J in 1 .. Nalts - 1 loop
9092 if Alts (J).Val = Alts (Nalts).Val then
9093 Error_Msg_Sloc := Sloc (Alts (J).Alt);
9094 Error_Msg_N ("duplicate of value given#??", Alt);
9095 end if;
9096 end loop;
9097 end if;
9099 Alt := Next (Alt);
9100 end loop;
9101 end;
9102 end if;
9104 -- RM 4.5.2 (28.1/3) specifies that for types other than records or
9105 -- limited types, evaluation of a membership test uses the predefined
9106 -- equality for the type. This may be confusing to users, and the
9107 -- following warning appears useful for the most common case.
9109 if Is_Scalar_Type (Ltyp)
9110 and then Present (Get_User_Defined_Eq (Ltyp))
9111 then
9112 Error_Msg_NE
9113 ("membership test on& uses predefined equality?", N, Ltyp);
9114 Error_Msg_N
9115 ("\even if user-defined equality exists (RM 4.5.2 (28.1/3)?", N);
9116 end if;
9117 end Resolve_Set_Membership;
9119 -- Start of processing for Resolve_Membership_Op
9121 begin
9122 if L = Error or else R = Error then
9123 return;
9124 end if;
9126 if Present (Alternatives (N)) then
9127 Resolve_Set_Membership;
9128 goto SM_Exit;
9130 elsif not Is_Overloaded (R)
9131 and then
9132 (Etype (R) = Universal_Integer
9133 or else
9134 Etype (R) = Universal_Real)
9135 and then Is_Overloaded (L)
9136 then
9137 T := Etype (R);
9139 -- Ada 2005 (AI-251): Support the following case:
9141 -- type I is interface;
9142 -- type T is tagged ...
9144 -- function Test (O : I'Class) is
9145 -- begin
9146 -- return O in T'Class.
9147 -- end Test;
9149 -- In this case we have nothing else to do. The membership test will be
9150 -- done at run time.
9152 elsif Ada_Version >= Ada_2005
9153 and then Is_Class_Wide_Type (Etype (L))
9154 and then Is_Interface (Etype (L))
9155 and then not Is_Interface (Etype (R))
9156 then
9157 return;
9158 else
9159 T := Intersect_Types (L, R);
9160 end if;
9162 -- If mixed-mode operations are present and operands are all literal,
9163 -- the only interpretation involves Duration, which is probably not
9164 -- the intention of the programmer.
9166 if T = Any_Fixed then
9167 T := Unique_Fixed_Point_Type (N);
9169 if T = Any_Type then
9170 return;
9171 end if;
9172 end if;
9174 Resolve (L, T);
9175 Check_Unset_Reference (L);
9177 if Nkind (R) = N_Range
9178 and then not Is_Scalar_Type (T)
9179 then
9180 Error_Msg_N ("scalar type required for range", R);
9181 end if;
9183 if Is_Entity_Name (R) then
9184 Freeze_Expression (R);
9185 else
9186 Resolve (R, T);
9187 Check_Unset_Reference (R);
9188 end if;
9190 -- Here after resolving membership operation
9192 <<SM_Exit>>
9194 Eval_Membership_Op (N);
9195 end Resolve_Membership_Op;
9197 ------------------
9198 -- Resolve_Null --
9199 ------------------
9201 procedure Resolve_Null (N : Node_Id; Typ : Entity_Id) is
9202 Loc : constant Source_Ptr := Sloc (N);
9204 begin
9205 -- Handle restriction against anonymous null access values This
9206 -- restriction can be turned off using -gnatdj.
9208 -- Ada 2005 (AI-231): Remove restriction
9210 if Ada_Version < Ada_2005
9211 and then not Debug_Flag_J
9212 and then Ekind (Typ) = E_Anonymous_Access_Type
9213 and then Comes_From_Source (N)
9214 then
9215 -- In the common case of a call which uses an explicitly null value
9216 -- for an access parameter, give specialized error message.
9218 if Nkind (Parent (N)) in N_Subprogram_Call then
9219 Error_Msg_N
9220 ("null is not allowed as argument for an access parameter", N);
9222 -- Standard message for all other cases (are there any?)
9224 else
9225 Error_Msg_N
9226 ("null cannot be of an anonymous access type", N);
9227 end if;
9228 end if;
9230 -- Ada 2005 (AI-231): Generate the null-excluding check in case of
9231 -- assignment to a null-excluding object.
9233 if Ada_Version >= Ada_2005
9234 and then Can_Never_Be_Null (Typ)
9235 and then Nkind (Parent (N)) = N_Assignment_Statement
9236 then
9237 if Inside_Init_Proc then
9239 -- Decide whether to generate an if_statement around our
9240 -- null-excluding check to avoid them on certain internal object
9241 -- declarations by looking at the type the current Init_Proc
9242 -- belongs to.
9244 -- Generate:
9245 -- if T1b_skip_null_excluding_check then
9246 -- [constraint_error "access check failed"]
9247 -- end if;
9249 if Needs_Conditional_Null_Excluding_Check
9250 (Etype (First_Formal (Enclosing_Init_Proc)))
9251 then
9252 Insert_Action (N,
9253 Make_If_Statement (Loc,
9254 Condition =>
9255 Make_Identifier (Loc,
9256 New_External_Name
9257 (Chars (Typ), "_skip_null_excluding_check")),
9258 Then_Statements =>
9259 New_List (
9260 Make_Raise_Constraint_Error (Loc,
9261 Reason => CE_Access_Check_Failed))));
9263 -- Otherwise, simply create the check
9265 else
9266 Insert_Action (N,
9267 Make_Raise_Constraint_Error (Loc,
9268 Reason => CE_Access_Check_Failed));
9269 end if;
9270 else
9271 Insert_Action
9272 (Compile_Time_Constraint_Error (N,
9273 "(Ada 2005) null not allowed in null-excluding objects??"),
9274 Make_Raise_Constraint_Error (Loc,
9275 Reason => CE_Access_Check_Failed));
9276 end if;
9277 end if;
9279 -- In a distributed context, null for a remote access to subprogram may
9280 -- need to be replaced with a special record aggregate. In this case,
9281 -- return after having done the transformation.
9283 if (Ekind (Typ) = E_Record_Type
9284 or else Is_Remote_Access_To_Subprogram_Type (Typ))
9285 and then Remote_AST_Null_Value (N, Typ)
9286 then
9287 return;
9288 end if;
9290 -- The null literal takes its type from the context
9292 Set_Etype (N, Typ);
9293 end Resolve_Null;
9295 -----------------------
9296 -- Resolve_Op_Concat --
9297 -----------------------
9299 procedure Resolve_Op_Concat (N : Node_Id; Typ : Entity_Id) is
9301 -- We wish to avoid deep recursion, because concatenations are often
9302 -- deeply nested, as in A&B&...&Z. Therefore, we walk down the left
9303 -- operands nonrecursively until we find something that is not a simple
9304 -- concatenation (A in this case). We resolve that, and then walk back
9305 -- up the tree following Parent pointers, calling Resolve_Op_Concat_Rest
9306 -- to do the rest of the work at each level. The Parent pointers allow
9307 -- us to avoid recursion, and thus avoid running out of memory. See also
9308 -- Sem_Ch4.Analyze_Concatenation, where a similar approach is used.
9310 NN : Node_Id := N;
9311 Op1 : Node_Id;
9313 begin
9314 -- The following code is equivalent to:
9316 -- Resolve_Op_Concat_First (NN, Typ);
9317 -- Resolve_Op_Concat_Arg (N, ...);
9318 -- Resolve_Op_Concat_Rest (N, Typ);
9320 -- where the Resolve_Op_Concat_Arg call recurses back here if the left
9321 -- operand is a concatenation.
9323 -- Walk down left operands
9325 loop
9326 Resolve_Op_Concat_First (NN, Typ);
9327 Op1 := Left_Opnd (NN);
9328 exit when not (Nkind (Op1) = N_Op_Concat
9329 and then not Is_Array_Type (Component_Type (Typ))
9330 and then Entity (Op1) = Entity (NN));
9331 NN := Op1;
9332 end loop;
9334 -- Now (given the above example) NN is A&B and Op1 is A
9336 -- First resolve Op1 ...
9338 Resolve_Op_Concat_Arg (NN, Op1, Typ, Is_Component_Left_Opnd (NN));
9340 -- ... then walk NN back up until we reach N (where we started), calling
9341 -- Resolve_Op_Concat_Rest along the way.
9343 loop
9344 Resolve_Op_Concat_Rest (NN, Typ);
9345 exit when NN = N;
9346 NN := Parent (NN);
9347 end loop;
9349 if Base_Type (Etype (N)) /= Standard_String then
9350 Check_SPARK_05_Restriction
9351 ("result of concatenation should have type String", N);
9352 end if;
9353 end Resolve_Op_Concat;
9355 ---------------------------
9356 -- Resolve_Op_Concat_Arg --
9357 ---------------------------
9359 procedure Resolve_Op_Concat_Arg
9360 (N : Node_Id;
9361 Arg : Node_Id;
9362 Typ : Entity_Id;
9363 Is_Comp : Boolean)
9365 Btyp : constant Entity_Id := Base_Type (Typ);
9366 Ctyp : constant Entity_Id := Component_Type (Typ);
9368 begin
9369 if In_Instance then
9370 if Is_Comp
9371 or else (not Is_Overloaded (Arg)
9372 and then Etype (Arg) /= Any_Composite
9373 and then Covers (Ctyp, Etype (Arg)))
9374 then
9375 Resolve (Arg, Ctyp);
9376 else
9377 Resolve (Arg, Btyp);
9378 end if;
9380 -- If both Array & Array and Array & Component are visible, there is a
9381 -- potential ambiguity that must be reported.
9383 elsif Has_Compatible_Type (Arg, Ctyp) then
9384 if Nkind (Arg) = N_Aggregate
9385 and then Is_Composite_Type (Ctyp)
9386 then
9387 if Is_Private_Type (Ctyp) then
9388 Resolve (Arg, Btyp);
9390 -- If the operation is user-defined and not overloaded use its
9391 -- profile. The operation may be a renaming, in which case it has
9392 -- been rewritten, and we want the original profile.
9394 elsif not Is_Overloaded (N)
9395 and then Comes_From_Source (Entity (Original_Node (N)))
9396 and then Ekind (Entity (Original_Node (N))) = E_Function
9397 then
9398 Resolve (Arg,
9399 Etype
9400 (Next_Formal (First_Formal (Entity (Original_Node (N))))));
9401 return;
9403 -- Otherwise an aggregate may match both the array type and the
9404 -- component type.
9406 else
9407 Error_Msg_N ("ambiguous aggregate must be qualified", Arg);
9408 Set_Etype (Arg, Any_Type);
9409 end if;
9411 else
9412 if Is_Overloaded (Arg)
9413 and then Has_Compatible_Type (Arg, Typ)
9414 and then Etype (Arg) /= Any_Type
9415 then
9416 declare
9417 I : Interp_Index;
9418 It : Interp;
9419 Func : Entity_Id;
9421 begin
9422 Get_First_Interp (Arg, I, It);
9423 Func := It.Nam;
9424 Get_Next_Interp (I, It);
9426 -- Special-case the error message when the overloading is
9427 -- caused by a function that yields an array and can be
9428 -- called without parameters.
9430 if It.Nam = Func then
9431 Error_Msg_Sloc := Sloc (Func);
9432 Error_Msg_N ("ambiguous call to function#", Arg);
9433 Error_Msg_NE
9434 ("\\interpretation as call yields&", Arg, Typ);
9435 Error_Msg_NE
9436 ("\\interpretation as indexing of call yields&",
9437 Arg, Component_Type (Typ));
9439 else
9440 Error_Msg_N ("ambiguous operand for concatenation!", Arg);
9442 Get_First_Interp (Arg, I, It);
9443 while Present (It.Nam) loop
9444 Error_Msg_Sloc := Sloc (It.Nam);
9446 if Base_Type (It.Typ) = Btyp
9447 or else
9448 Base_Type (It.Typ) = Base_Type (Ctyp)
9449 then
9450 Error_Msg_N -- CODEFIX
9451 ("\\possible interpretation#", Arg);
9452 end if;
9454 Get_Next_Interp (I, It);
9455 end loop;
9456 end if;
9457 end;
9458 end if;
9460 Resolve (Arg, Component_Type (Typ));
9462 if Nkind (Arg) = N_String_Literal then
9463 Set_Etype (Arg, Component_Type (Typ));
9464 end if;
9466 if Arg = Left_Opnd (N) then
9467 Set_Is_Component_Left_Opnd (N);
9468 else
9469 Set_Is_Component_Right_Opnd (N);
9470 end if;
9471 end if;
9473 else
9474 Resolve (Arg, Btyp);
9475 end if;
9477 -- Concatenation is restricted in SPARK: each operand must be either a
9478 -- string literal, the name of a string constant, a static character or
9479 -- string expression, or another concatenation. Arg cannot be a
9480 -- concatenation here as callers of Resolve_Op_Concat_Arg call it
9481 -- separately on each final operand, past concatenation operations.
9483 if Is_Character_Type (Etype (Arg)) then
9484 if not Is_OK_Static_Expression (Arg) then
9485 Check_SPARK_05_Restriction
9486 ("character operand for concatenation should be static", Arg);
9487 end if;
9489 elsif Is_String_Type (Etype (Arg)) then
9490 if not (Nkind_In (Arg, N_Identifier, N_Expanded_Name)
9491 and then Is_Constant_Object (Entity (Arg)))
9492 and then not Is_OK_Static_Expression (Arg)
9493 then
9494 Check_SPARK_05_Restriction
9495 ("string operand for concatenation should be static", Arg);
9496 end if;
9498 -- Do not issue error on an operand that is neither a character nor a
9499 -- string, as the error is issued in Resolve_Op_Concat.
9501 else
9502 null;
9503 end if;
9505 Check_Unset_Reference (Arg);
9506 end Resolve_Op_Concat_Arg;
9508 -----------------------------
9509 -- Resolve_Op_Concat_First --
9510 -----------------------------
9512 procedure Resolve_Op_Concat_First (N : Node_Id; Typ : Entity_Id) is
9513 Btyp : constant Entity_Id := Base_Type (Typ);
9514 Op1 : constant Node_Id := Left_Opnd (N);
9515 Op2 : constant Node_Id := Right_Opnd (N);
9517 begin
9518 -- The parser folds an enormous sequence of concatenations of string
9519 -- literals into "" & "...", where the Is_Folded_In_Parser flag is set
9520 -- in the right operand. If the expression resolves to a predefined "&"
9521 -- operator, all is well. Otherwise, the parser's folding is wrong, so
9522 -- we give an error. See P_Simple_Expression in Par.Ch4.
9524 if Nkind (Op2) = N_String_Literal
9525 and then Is_Folded_In_Parser (Op2)
9526 and then Ekind (Entity (N)) = E_Function
9527 then
9528 pragma Assert (Nkind (Op1) = N_String_Literal -- should be ""
9529 and then String_Length (Strval (Op1)) = 0);
9530 Error_Msg_N ("too many user-defined concatenations", N);
9531 return;
9532 end if;
9534 Set_Etype (N, Btyp);
9536 if Is_Limited_Composite (Btyp) then
9537 Error_Msg_N ("concatenation not available for limited array", N);
9538 Explain_Limited_Type (Btyp, N);
9539 end if;
9540 end Resolve_Op_Concat_First;
9542 ----------------------------
9543 -- Resolve_Op_Concat_Rest --
9544 ----------------------------
9546 procedure Resolve_Op_Concat_Rest (N : Node_Id; Typ : Entity_Id) is
9547 Op1 : constant Node_Id := Left_Opnd (N);
9548 Op2 : constant Node_Id := Right_Opnd (N);
9550 begin
9551 Resolve_Op_Concat_Arg (N, Op2, Typ, Is_Component_Right_Opnd (N));
9553 Generate_Operator_Reference (N, Typ);
9555 if Is_String_Type (Typ) then
9556 Eval_Concatenation (N);
9557 end if;
9559 -- If this is not a static concatenation, but the result is a string
9560 -- type (and not an array of strings) ensure that static string operands
9561 -- have their subtypes properly constructed.
9563 if Nkind (N) /= N_String_Literal
9564 and then Is_Character_Type (Component_Type (Typ))
9565 then
9566 Set_String_Literal_Subtype (Op1, Typ);
9567 Set_String_Literal_Subtype (Op2, Typ);
9568 end if;
9569 end Resolve_Op_Concat_Rest;
9571 ----------------------
9572 -- Resolve_Op_Expon --
9573 ----------------------
9575 procedure Resolve_Op_Expon (N : Node_Id; Typ : Entity_Id) is
9576 B_Typ : constant Entity_Id := Base_Type (Typ);
9578 begin
9579 -- Catch attempts to do fixed-point exponentiation with universal
9580 -- operands, which is a case where the illegality is not caught during
9581 -- normal operator analysis. This is not done in preanalysis mode
9582 -- since the tree is not fully decorated during preanalysis.
9584 if Full_Analysis then
9585 if Is_Fixed_Point_Type (Typ) and then Comes_From_Source (N) then
9586 Error_Msg_N ("exponentiation not available for fixed point", N);
9587 return;
9589 elsif Nkind (Parent (N)) in N_Op
9590 and then Present (Etype (Parent (N)))
9591 and then Is_Fixed_Point_Type (Etype (Parent (N)))
9592 and then Etype (N) = Universal_Real
9593 and then Comes_From_Source (N)
9594 then
9595 Error_Msg_N ("exponentiation not available for fixed point", N);
9596 return;
9597 end if;
9598 end if;
9600 if Comes_From_Source (N)
9601 and then Ekind (Entity (N)) = E_Function
9602 and then Is_Imported (Entity (N))
9603 and then Is_Intrinsic_Subprogram (Entity (N))
9604 then
9605 Resolve_Intrinsic_Operator (N, Typ);
9606 return;
9607 end if;
9609 if Etype (Left_Opnd (N)) = Universal_Integer
9610 or else Etype (Left_Opnd (N)) = Universal_Real
9611 then
9612 Check_For_Visible_Operator (N, B_Typ);
9613 end if;
9615 -- We do the resolution using the base type, because intermediate values
9616 -- in expressions are always of the base type, not a subtype of it.
9618 Resolve (Left_Opnd (N), B_Typ);
9619 Resolve (Right_Opnd (N), Standard_Integer);
9621 -- For integer types, right argument must be in Natural range
9623 if Is_Integer_Type (Typ) then
9624 Apply_Scalar_Range_Check (Right_Opnd (N), Standard_Natural);
9625 end if;
9627 Check_Unset_Reference (Left_Opnd (N));
9628 Check_Unset_Reference (Right_Opnd (N));
9630 Set_Etype (N, B_Typ);
9631 Generate_Operator_Reference (N, B_Typ);
9633 Analyze_Dimension (N);
9635 if Ada_Version >= Ada_2012 and then Has_Dimension_System (B_Typ) then
9636 -- Evaluate the exponentiation operator for dimensioned type
9638 Eval_Op_Expon_For_Dimensioned_Type (N, B_Typ);
9639 else
9640 Eval_Op_Expon (N);
9641 end if;
9643 -- Set overflow checking bit. Much cleverer code needed here eventually
9644 -- and perhaps the Resolve routines should be separated for the various
9645 -- arithmetic operations, since they will need different processing. ???
9647 if Nkind (N) in N_Op then
9648 if not Overflow_Checks_Suppressed (Etype (N)) then
9649 Enable_Overflow_Check (N);
9650 end if;
9651 end if;
9652 end Resolve_Op_Expon;
9654 --------------------
9655 -- Resolve_Op_Not --
9656 --------------------
9658 procedure Resolve_Op_Not (N : Node_Id; Typ : Entity_Id) is
9659 B_Typ : Entity_Id;
9661 function Parent_Is_Boolean return Boolean;
9662 -- This function determines if the parent node is a boolean operator or
9663 -- operation (comparison op, membership test, or short circuit form) and
9664 -- the not in question is the left operand of this operation. Note that
9665 -- if the not is in parens, then false is returned.
9667 -----------------------
9668 -- Parent_Is_Boolean --
9669 -----------------------
9671 function Parent_Is_Boolean return Boolean is
9672 begin
9673 if Paren_Count (N) /= 0 then
9674 return False;
9676 else
9677 case Nkind (Parent (N)) is
9678 when N_And_Then
9679 | N_In
9680 | N_Not_In
9681 | N_Op_And
9682 | N_Op_Eq
9683 | N_Op_Ge
9684 | N_Op_Gt
9685 | N_Op_Le
9686 | N_Op_Lt
9687 | N_Op_Ne
9688 | N_Op_Or
9689 | N_Op_Xor
9690 | N_Or_Else
9692 return Left_Opnd (Parent (N)) = N;
9694 when others =>
9695 return False;
9696 end case;
9697 end if;
9698 end Parent_Is_Boolean;
9700 -- Start of processing for Resolve_Op_Not
9702 begin
9703 -- Predefined operations on scalar types yield the base type. On the
9704 -- other hand, logical operations on arrays yield the type of the
9705 -- arguments (and the context).
9707 if Is_Array_Type (Typ) then
9708 B_Typ := Typ;
9709 else
9710 B_Typ := Base_Type (Typ);
9711 end if;
9713 -- Straightforward case of incorrect arguments
9715 if not Valid_Boolean_Arg (Typ) then
9716 Error_Msg_N ("invalid operand type for operator&", N);
9717 Set_Etype (N, Any_Type);
9718 return;
9720 -- Special case of probable missing parens
9722 elsif Typ = Universal_Integer or else Typ = Any_Modular then
9723 if Parent_Is_Boolean then
9724 Error_Msg_N
9725 ("operand of not must be enclosed in parentheses",
9726 Right_Opnd (N));
9727 else
9728 Error_Msg_N
9729 ("no modular type available in this context", N);
9730 end if;
9732 Set_Etype (N, Any_Type);
9733 return;
9735 -- OK resolution of NOT
9737 else
9738 -- Warn if non-boolean types involved. This is a case like not a < b
9739 -- where a and b are modular, where we will get (not a) < b and most
9740 -- likely not (a < b) was intended.
9742 if Warn_On_Questionable_Missing_Parens
9743 and then not Is_Boolean_Type (Typ)
9744 and then Parent_Is_Boolean
9745 then
9746 Error_Msg_N ("?q?not expression should be parenthesized here!", N);
9747 end if;
9749 -- Warn on double negation if checking redundant constructs
9751 if Warn_On_Redundant_Constructs
9752 and then Comes_From_Source (N)
9753 and then Comes_From_Source (Right_Opnd (N))
9754 and then Root_Type (Typ) = Standard_Boolean
9755 and then Nkind (Right_Opnd (N)) = N_Op_Not
9756 then
9757 Error_Msg_N ("redundant double negation?r?", N);
9758 end if;
9760 -- Complete resolution and evaluation of NOT
9762 Resolve (Right_Opnd (N), B_Typ);
9763 Check_Unset_Reference (Right_Opnd (N));
9764 Set_Etype (N, B_Typ);
9765 Generate_Operator_Reference (N, B_Typ);
9766 Eval_Op_Not (N);
9767 end if;
9768 end Resolve_Op_Not;
9770 -----------------------------
9771 -- Resolve_Operator_Symbol --
9772 -----------------------------
9774 -- Nothing to be done, all resolved already
9776 procedure Resolve_Operator_Symbol (N : Node_Id; Typ : Entity_Id) is
9777 pragma Warnings (Off, N);
9778 pragma Warnings (Off, Typ);
9780 begin
9781 null;
9782 end Resolve_Operator_Symbol;
9784 ----------------------------------
9785 -- Resolve_Qualified_Expression --
9786 ----------------------------------
9788 procedure Resolve_Qualified_Expression (N : Node_Id; Typ : Entity_Id) is
9789 pragma Warnings (Off, Typ);
9791 Target_Typ : constant Entity_Id := Entity (Subtype_Mark (N));
9792 Expr : constant Node_Id := Expression (N);
9794 begin
9795 Resolve (Expr, Target_Typ);
9797 -- Protect call to Matching_Static_Array_Bounds to avoid costly
9798 -- operation if not needed.
9800 if Restriction_Check_Required (SPARK_05)
9801 and then Is_Array_Type (Target_Typ)
9802 and then Is_Array_Type (Etype (Expr))
9803 and then Etype (Expr) /= Any_Composite -- or else Expr in error
9804 and then not Matching_Static_Array_Bounds (Target_Typ, Etype (Expr))
9805 then
9806 Check_SPARK_05_Restriction
9807 ("array types should have matching static bounds", N);
9808 end if;
9810 -- A qualified expression requires an exact match of the type, class-
9811 -- wide matching is not allowed. However, if the qualifying type is
9812 -- specific and the expression has a class-wide type, it may still be
9813 -- okay, since it can be the result of the expansion of a call to a
9814 -- dispatching function, so we also have to check class-wideness of the
9815 -- type of the expression's original node.
9817 if (Is_Class_Wide_Type (Target_Typ)
9818 or else
9819 (Is_Class_Wide_Type (Etype (Expr))
9820 and then Is_Class_Wide_Type (Etype (Original_Node (Expr)))))
9821 and then Base_Type (Etype (Expr)) /= Base_Type (Target_Typ)
9822 then
9823 Wrong_Type (Expr, Target_Typ);
9824 end if;
9826 -- If the target type is unconstrained, then we reset the type of the
9827 -- result from the type of the expression. For other cases, the actual
9828 -- subtype of the expression is the target type.
9830 if Is_Composite_Type (Target_Typ)
9831 and then not Is_Constrained (Target_Typ)
9832 then
9833 Set_Etype (N, Etype (Expr));
9834 end if;
9836 Analyze_Dimension (N);
9837 Eval_Qualified_Expression (N);
9839 -- If we still have a qualified expression after the static evaluation,
9840 -- then apply a scalar range check if needed. The reason that we do this
9841 -- after the Eval call is that otherwise, the application of the range
9842 -- check may convert an illegal static expression and result in warning
9843 -- rather than giving an error (e.g Integer'(Integer'Last + 1)).
9845 if Nkind (N) = N_Qualified_Expression and then Is_Scalar_Type (Typ) then
9846 Apply_Scalar_Range_Check (Expr, Typ);
9847 end if;
9849 -- Finally, check whether a predicate applies to the target type. This
9850 -- comes from AI12-0100. As for type conversions, check the enclosing
9851 -- context to prevent an infinite expansion.
9853 if Has_Predicates (Target_Typ) then
9854 if Nkind (Parent (N)) = N_Function_Call
9855 and then Present (Name (Parent (N)))
9856 and then (Is_Predicate_Function (Entity (Name (Parent (N))))
9857 or else
9858 Is_Predicate_Function_M (Entity (Name (Parent (N)))))
9859 then
9860 null;
9862 -- In the case of a qualified expression in an allocator, the check
9863 -- is applied when expanding the allocator, so avoid redundant check.
9865 elsif Nkind (N) = N_Qualified_Expression
9866 and then Nkind (Parent (N)) /= N_Allocator
9867 then
9868 Apply_Predicate_Check (N, Target_Typ);
9869 end if;
9870 end if;
9871 end Resolve_Qualified_Expression;
9873 ------------------------------
9874 -- Resolve_Raise_Expression --
9875 ------------------------------
9877 procedure Resolve_Raise_Expression (N : Node_Id; Typ : Entity_Id) is
9878 begin
9879 if Typ = Raise_Type then
9880 Error_Msg_N ("cannot find unique type for raise expression", N);
9881 Set_Etype (N, Any_Type);
9882 else
9883 Set_Etype (N, Typ);
9884 end if;
9885 end Resolve_Raise_Expression;
9887 -------------------
9888 -- Resolve_Range --
9889 -------------------
9891 procedure Resolve_Range (N : Node_Id; Typ : Entity_Id) is
9892 L : constant Node_Id := Low_Bound (N);
9893 H : constant Node_Id := High_Bound (N);
9895 function First_Last_Ref return Boolean;
9896 -- Returns True if N is of the form X'First .. X'Last where X is the
9897 -- same entity for both attributes.
9899 --------------------
9900 -- First_Last_Ref --
9901 --------------------
9903 function First_Last_Ref return Boolean is
9904 Lorig : constant Node_Id := Original_Node (L);
9905 Horig : constant Node_Id := Original_Node (H);
9907 begin
9908 if Nkind (Lorig) = N_Attribute_Reference
9909 and then Nkind (Horig) = N_Attribute_Reference
9910 and then Attribute_Name (Lorig) = Name_First
9911 and then Attribute_Name (Horig) = Name_Last
9912 then
9913 declare
9914 PL : constant Node_Id := Prefix (Lorig);
9915 PH : constant Node_Id := Prefix (Horig);
9916 begin
9917 if Is_Entity_Name (PL)
9918 and then Is_Entity_Name (PH)
9919 and then Entity (PL) = Entity (PH)
9920 then
9921 return True;
9922 end if;
9923 end;
9924 end if;
9926 return False;
9927 end First_Last_Ref;
9929 -- Start of processing for Resolve_Range
9931 begin
9932 Set_Etype (N, Typ);
9934 -- The lower bound should be in Typ. The higher bound can be in Typ's
9935 -- base type if the range is null. It may still be invalid if it is
9936 -- higher than the lower bound. This is checked later in the context in
9937 -- which the range appears.
9939 Resolve (L, Typ);
9940 Resolve (H, Base_Type (Typ));
9942 -- Reanalyze the lower bound after both bounds have been analyzed, so
9943 -- that the range is known to be static or not by now. This may trigger
9944 -- more compile-time evaluation, which is useful for static analysis
9945 -- with GNATprove. This is not needed for compilation or static analysis
9946 -- with CodePeer, as full expansion does that evaluation then.
9948 if GNATprove_Mode then
9949 Set_Analyzed (L, False);
9950 Resolve (L, Typ);
9951 end if;
9953 -- Check for inappropriate range on unordered enumeration type
9955 if Bad_Unordered_Enumeration_Reference (N, Typ)
9957 -- Exclude X'First .. X'Last if X is the same entity for both
9959 and then not First_Last_Ref
9960 then
9961 Error_Msg_Sloc := Sloc (Typ);
9962 Error_Msg_NE
9963 ("subrange of unordered enumeration type& declared#?U?", N, Typ);
9964 end if;
9966 Check_Unset_Reference (L);
9967 Check_Unset_Reference (H);
9969 -- We have to check the bounds for being within the base range as
9970 -- required for a non-static context. Normally this is automatic and
9971 -- done as part of evaluating expressions, but the N_Range node is an
9972 -- exception, since in GNAT we consider this node to be a subexpression,
9973 -- even though in Ada it is not. The circuit in Sem_Eval could check for
9974 -- this, but that would put the test on the main evaluation path for
9975 -- expressions.
9977 Check_Non_Static_Context (L);
9978 Check_Non_Static_Context (H);
9980 -- Check for an ambiguous range over character literals. This will
9981 -- happen with a membership test involving only literals.
9983 if Typ = Any_Character then
9984 Ambiguous_Character (L);
9985 Set_Etype (N, Any_Type);
9986 return;
9987 end if;
9989 -- If bounds are static, constant-fold them, so size computations are
9990 -- identical between front-end and back-end. Do not perform this
9991 -- transformation while analyzing generic units, as type information
9992 -- would be lost when reanalyzing the constant node in the instance.
9994 if Is_Discrete_Type (Typ) and then Expander_Active then
9995 if Is_OK_Static_Expression (L) then
9996 Fold_Uint (L, Expr_Value (L), Is_OK_Static_Expression (L));
9997 end if;
9999 if Is_OK_Static_Expression (H) then
10000 Fold_Uint (H, Expr_Value (H), Is_OK_Static_Expression (H));
10001 end if;
10002 end if;
10003 end Resolve_Range;
10005 --------------------------
10006 -- Resolve_Real_Literal --
10007 --------------------------
10009 procedure Resolve_Real_Literal (N : Node_Id; Typ : Entity_Id) is
10010 Actual_Typ : constant Entity_Id := Etype (N);
10012 begin
10013 -- Special processing for fixed-point literals to make sure that the
10014 -- value is an exact multiple of small where this is required. We skip
10015 -- this for the universal real case, and also for generic types.
10017 if Is_Fixed_Point_Type (Typ)
10018 and then Typ /= Universal_Fixed
10019 and then Typ /= Any_Fixed
10020 and then not Is_Generic_Type (Typ)
10021 then
10022 declare
10023 Val : constant Ureal := Realval (N);
10024 Cintr : constant Ureal := Val / Small_Value (Typ);
10025 Cint : constant Uint := UR_Trunc (Cintr);
10026 Den : constant Uint := Norm_Den (Cintr);
10027 Stat : Boolean;
10029 begin
10030 -- Case of literal is not an exact multiple of the Small
10032 if Den /= 1 then
10034 -- For a source program literal for a decimal fixed-point type,
10035 -- this is statically illegal (RM 4.9(36)).
10037 if Is_Decimal_Fixed_Point_Type (Typ)
10038 and then Actual_Typ = Universal_Real
10039 and then Comes_From_Source (N)
10040 then
10041 Error_Msg_N ("value has extraneous low order digits", N);
10042 end if;
10044 -- Generate a warning if literal from source
10046 if Is_OK_Static_Expression (N)
10047 and then Warn_On_Bad_Fixed_Value
10048 then
10049 Error_Msg_N
10050 ("?b?static fixed-point value is not a multiple of Small!",
10052 end if;
10054 -- Replace literal by a value that is the exact representation
10055 -- of a value of the type, i.e. a multiple of the small value,
10056 -- by truncation, since Machine_Rounds is false for all GNAT
10057 -- fixed-point types (RM 4.9(38)).
10059 Stat := Is_OK_Static_Expression (N);
10060 Rewrite (N,
10061 Make_Real_Literal (Sloc (N),
10062 Realval => Small_Value (Typ) * Cint));
10064 Set_Is_Static_Expression (N, Stat);
10065 end if;
10067 -- In all cases, set the corresponding integer field
10069 Set_Corresponding_Integer_Value (N, Cint);
10070 end;
10071 end if;
10073 -- Now replace the actual type by the expected type as usual
10075 Set_Etype (N, Typ);
10076 Eval_Real_Literal (N);
10077 end Resolve_Real_Literal;
10079 -----------------------
10080 -- Resolve_Reference --
10081 -----------------------
10083 procedure Resolve_Reference (N : Node_Id; Typ : Entity_Id) is
10084 P : constant Node_Id := Prefix (N);
10086 begin
10087 -- Replace general access with specific type
10089 if Ekind (Etype (N)) = E_Allocator_Type then
10090 Set_Etype (N, Base_Type (Typ));
10091 end if;
10093 Resolve (P, Designated_Type (Etype (N)));
10095 -- If we are taking the reference of a volatile entity, then treat it as
10096 -- a potential modification of this entity. This is too conservative,
10097 -- but necessary because remove side effects can cause transformations
10098 -- of normal assignments into reference sequences that otherwise fail to
10099 -- notice the modification.
10101 if Is_Entity_Name (P) and then Treat_As_Volatile (Entity (P)) then
10102 Note_Possible_Modification (P, Sure => False);
10103 end if;
10104 end Resolve_Reference;
10106 --------------------------------
10107 -- Resolve_Selected_Component --
10108 --------------------------------
10110 procedure Resolve_Selected_Component (N : Node_Id; Typ : Entity_Id) is
10111 Comp : Entity_Id;
10112 Comp1 : Entity_Id := Empty; -- prevent junk warning
10113 P : constant Node_Id := Prefix (N);
10114 S : constant Node_Id := Selector_Name (N);
10115 T : Entity_Id := Etype (P);
10116 I : Interp_Index;
10117 I1 : Interp_Index := 0; -- prevent junk warning
10118 It : Interp;
10119 It1 : Interp;
10120 Found : Boolean;
10122 function Init_Component return Boolean;
10123 -- Check whether this is the initialization of a component within an
10124 -- init proc (by assignment or call to another init proc). If true,
10125 -- there is no need for a discriminant check.
10127 --------------------
10128 -- Init_Component --
10129 --------------------
10131 function Init_Component return Boolean is
10132 begin
10133 return Inside_Init_Proc
10134 and then Nkind (Prefix (N)) = N_Identifier
10135 and then Chars (Prefix (N)) = Name_uInit
10136 and then Nkind (Parent (Parent (N))) = N_Case_Statement_Alternative;
10137 end Init_Component;
10139 -- Start of processing for Resolve_Selected_Component
10141 begin
10142 if Is_Overloaded (P) then
10144 -- Use the context type to select the prefix that has a selector
10145 -- of the correct name and type.
10147 Found := False;
10148 Get_First_Interp (P, I, It);
10150 Search : while Present (It.Typ) loop
10151 if Is_Access_Type (It.Typ) then
10152 T := Designated_Type (It.Typ);
10153 else
10154 T := It.Typ;
10155 end if;
10157 -- Locate selected component. For a private prefix the selector
10158 -- can denote a discriminant.
10160 if Is_Record_Type (T) or else Is_Private_Type (T) then
10162 -- The visible components of a class-wide type are those of
10163 -- the root type.
10165 if Is_Class_Wide_Type (T) then
10166 T := Etype (T);
10167 end if;
10169 Comp := First_Entity (T);
10170 while Present (Comp) loop
10171 if Chars (Comp) = Chars (S)
10172 and then Covers (Typ, Etype (Comp))
10173 then
10174 if not Found then
10175 Found := True;
10176 I1 := I;
10177 It1 := It;
10178 Comp1 := Comp;
10180 else
10181 It := Disambiguate (P, I1, I, Any_Type);
10183 if It = No_Interp then
10184 Error_Msg_N
10185 ("ambiguous prefix for selected component", N);
10186 Set_Etype (N, Typ);
10187 return;
10189 else
10190 It1 := It;
10192 -- There may be an implicit dereference. Retrieve
10193 -- designated record type.
10195 if Is_Access_Type (It1.Typ) then
10196 T := Designated_Type (It1.Typ);
10197 else
10198 T := It1.Typ;
10199 end if;
10201 if Scope (Comp1) /= T then
10203 -- Resolution chooses the new interpretation.
10204 -- Find the component with the right name.
10206 Comp1 := First_Entity (T);
10207 while Present (Comp1)
10208 and then Chars (Comp1) /= Chars (S)
10209 loop
10210 Comp1 := Next_Entity (Comp1);
10211 end loop;
10212 end if;
10214 exit Search;
10215 end if;
10216 end if;
10217 end if;
10219 Comp := Next_Entity (Comp);
10220 end loop;
10221 end if;
10223 Get_Next_Interp (I, It);
10224 end loop Search;
10226 -- There must be a legal interpretation at this point
10228 pragma Assert (Found);
10229 Resolve (P, It1.Typ);
10230 Set_Etype (N, Typ);
10231 Set_Entity_With_Checks (S, Comp1);
10233 -- The type of the context and that of the component are
10234 -- compatible and in general identical, but if they are anonymous
10235 -- access-to-subprogram types, the relevant type is that of the
10236 -- component. This matters in Unnest_Subprograms mode, where the
10237 -- relevant context is the one in which the type is declared, not
10238 -- the point of use. This determines what activation record to use.
10240 if Ekind (Typ) = E_Anonymous_Access_Subprogram_Type then
10241 Set_Etype (N, Etype (Comp1));
10242 end if;
10244 else
10245 -- Resolve prefix with its type
10247 Resolve (P, T);
10248 end if;
10250 -- Generate cross-reference. We needed to wait until full overloading
10251 -- resolution was complete to do this, since otherwise we can't tell if
10252 -- we are an lvalue or not.
10254 if May_Be_Lvalue (N) then
10255 Generate_Reference (Entity (S), S, 'm');
10256 else
10257 Generate_Reference (Entity (S), S, 'r');
10258 end if;
10260 -- If prefix is an access type, the node will be transformed into an
10261 -- explicit dereference during expansion. The type of the node is the
10262 -- designated type of that of the prefix.
10264 if Is_Access_Type (Etype (P)) then
10265 T := Designated_Type (Etype (P));
10266 Check_Fully_Declared_Prefix (T, P);
10267 else
10268 T := Etype (P);
10269 end if;
10271 -- Set flag for expander if discriminant check required on a component
10272 -- appearing within a variant.
10274 if Has_Discriminants (T)
10275 and then Ekind (Entity (S)) = E_Component
10276 and then Present (Original_Record_Component (Entity (S)))
10277 and then Ekind (Original_Record_Component (Entity (S))) = E_Component
10278 and then
10279 Is_Declared_Within_Variant (Original_Record_Component (Entity (S)))
10280 and then not Discriminant_Checks_Suppressed (T)
10281 and then not Init_Component
10282 then
10283 Set_Do_Discriminant_Check (N);
10284 end if;
10286 if Ekind (Entity (S)) = E_Void then
10287 Error_Msg_N ("premature use of component", S);
10288 end if;
10290 -- If the prefix is a record conversion, this may be a renamed
10291 -- discriminant whose bounds differ from those of the original
10292 -- one, so we must ensure that a range check is performed.
10294 if Nkind (P) = N_Type_Conversion
10295 and then Ekind (Entity (S)) = E_Discriminant
10296 and then Is_Discrete_Type (Typ)
10297 then
10298 Set_Etype (N, Base_Type (Typ));
10299 end if;
10301 -- Note: No Eval processing is required, because the prefix is of a
10302 -- record type, or protected type, and neither can possibly be static.
10304 -- If the record type is atomic, and the component is non-atomic, then
10305 -- this is worth a warning, since we have a situation where the access
10306 -- to the component may cause extra read/writes of the atomic array
10307 -- object, or partial word accesses, both of which may be unexpected.
10309 if Nkind (N) = N_Selected_Component
10310 and then Is_Atomic_Ref_With_Address (N)
10311 and then not Is_Atomic (Entity (S))
10312 and then not Is_Atomic (Etype (Entity (S)))
10313 then
10314 Error_Msg_N
10315 ("??access to non-atomic component of atomic record",
10316 Prefix (N));
10317 Error_Msg_N
10318 ("\??may cause unexpected accesses to atomic object",
10319 Prefix (N));
10320 end if;
10322 Analyze_Dimension (N);
10323 end Resolve_Selected_Component;
10325 -------------------
10326 -- Resolve_Shift --
10327 -------------------
10329 procedure Resolve_Shift (N : Node_Id; Typ : Entity_Id) is
10330 B_Typ : constant Entity_Id := Base_Type (Typ);
10331 L : constant Node_Id := Left_Opnd (N);
10332 R : constant Node_Id := Right_Opnd (N);
10334 begin
10335 -- We do the resolution using the base type, because intermediate values
10336 -- in expressions always are of the base type, not a subtype of it.
10338 Resolve (L, B_Typ);
10339 Resolve (R, Standard_Natural);
10341 Check_Unset_Reference (L);
10342 Check_Unset_Reference (R);
10344 Set_Etype (N, B_Typ);
10345 Generate_Operator_Reference (N, B_Typ);
10346 Eval_Shift (N);
10347 end Resolve_Shift;
10349 ---------------------------
10350 -- Resolve_Short_Circuit --
10351 ---------------------------
10353 procedure Resolve_Short_Circuit (N : Node_Id; Typ : Entity_Id) is
10354 B_Typ : constant Entity_Id := Base_Type (Typ);
10355 L : constant Node_Id := Left_Opnd (N);
10356 R : constant Node_Id := Right_Opnd (N);
10358 begin
10359 -- Ensure all actions associated with the left operand (e.g.
10360 -- finalization of transient objects) are fully evaluated locally within
10361 -- an expression with actions. This is particularly helpful for coverage
10362 -- analysis. However this should not happen in generics or if option
10363 -- Minimize_Expression_With_Actions is set.
10365 if Expander_Active and not Minimize_Expression_With_Actions then
10366 declare
10367 Reloc_L : constant Node_Id := Relocate_Node (L);
10368 begin
10369 Save_Interps (Old_N => L, New_N => Reloc_L);
10371 Rewrite (L,
10372 Make_Expression_With_Actions (Sloc (L),
10373 Actions => New_List,
10374 Expression => Reloc_L));
10376 -- Set Comes_From_Source on L to preserve warnings for unset
10377 -- reference.
10379 Set_Comes_From_Source (L, Comes_From_Source (Reloc_L));
10380 end;
10381 end if;
10383 Resolve (L, B_Typ);
10384 Resolve (R, B_Typ);
10386 -- Check for issuing warning for always False assert/check, this happens
10387 -- when assertions are turned off, in which case the pragma Assert/Check
10388 -- was transformed into:
10390 -- if False and then <condition> then ...
10392 -- and we detect this pattern
10394 if Warn_On_Assertion_Failure
10395 and then Is_Entity_Name (R)
10396 and then Entity (R) = Standard_False
10397 and then Nkind (Parent (N)) = N_If_Statement
10398 and then Nkind (N) = N_And_Then
10399 and then Is_Entity_Name (L)
10400 and then Entity (L) = Standard_False
10401 then
10402 declare
10403 Orig : constant Node_Id := Original_Node (Parent (N));
10405 begin
10406 -- Special handling of Asssert pragma
10408 if Nkind (Orig) = N_Pragma
10409 and then Pragma_Name (Orig) = Name_Assert
10410 then
10411 declare
10412 Expr : constant Node_Id :=
10413 Original_Node
10414 (Expression
10415 (First (Pragma_Argument_Associations (Orig))));
10417 begin
10418 -- Don't warn if original condition is explicit False,
10419 -- since obviously the failure is expected in this case.
10421 if Is_Entity_Name (Expr)
10422 and then Entity (Expr) = Standard_False
10423 then
10424 null;
10426 -- Issue warning. We do not want the deletion of the
10427 -- IF/AND-THEN to take this message with it. We achieve this
10428 -- by making sure that the expanded code points to the Sloc
10429 -- of the expression, not the original pragma.
10431 else
10432 -- Note: Use Error_Msg_F here rather than Error_Msg_N.
10433 -- The source location of the expression is not usually
10434 -- the best choice here. For example, it gets located on
10435 -- the last AND keyword in a chain of boolean expressiond
10436 -- AND'ed together. It is best to put the message on the
10437 -- first character of the assertion, which is the effect
10438 -- of the First_Node call here.
10440 Error_Msg_F
10441 ("?A?assertion would fail at run time!",
10442 Expression
10443 (First (Pragma_Argument_Associations (Orig))));
10444 end if;
10445 end;
10447 -- Similar processing for Check pragma
10449 elsif Nkind (Orig) = N_Pragma
10450 and then Pragma_Name (Orig) = Name_Check
10451 then
10452 -- Don't want to warn if original condition is explicit False
10454 declare
10455 Expr : constant Node_Id :=
10456 Original_Node
10457 (Expression
10458 (Next (First (Pragma_Argument_Associations (Orig)))));
10459 begin
10460 if Is_Entity_Name (Expr)
10461 and then Entity (Expr) = Standard_False
10462 then
10463 null;
10465 -- Post warning
10467 else
10468 -- Again use Error_Msg_F rather than Error_Msg_N, see
10469 -- comment above for an explanation of why we do this.
10471 Error_Msg_F
10472 ("?A?check would fail at run time!",
10473 Expression
10474 (Last (Pragma_Argument_Associations (Orig))));
10475 end if;
10476 end;
10477 end if;
10478 end;
10479 end if;
10481 -- Continue with processing of short circuit
10483 Check_Unset_Reference (L);
10484 Check_Unset_Reference (R);
10486 Set_Etype (N, B_Typ);
10487 Eval_Short_Circuit (N);
10488 end Resolve_Short_Circuit;
10490 -------------------
10491 -- Resolve_Slice --
10492 -------------------
10494 procedure Resolve_Slice (N : Node_Id; Typ : Entity_Id) is
10495 Drange : constant Node_Id := Discrete_Range (N);
10496 Name : constant Node_Id := Prefix (N);
10497 Array_Type : Entity_Id := Empty;
10498 Dexpr : Node_Id := Empty;
10499 Index_Type : Entity_Id;
10501 begin
10502 if Is_Overloaded (Name) then
10504 -- Use the context type to select the prefix that yields the correct
10505 -- array type.
10507 declare
10508 I : Interp_Index;
10509 I1 : Interp_Index := 0;
10510 It : Interp;
10511 P : constant Node_Id := Prefix (N);
10512 Found : Boolean := False;
10514 begin
10515 Get_First_Interp (P, I, It);
10516 while Present (It.Typ) loop
10517 if (Is_Array_Type (It.Typ)
10518 and then Covers (Typ, It.Typ))
10519 or else (Is_Access_Type (It.Typ)
10520 and then Is_Array_Type (Designated_Type (It.Typ))
10521 and then Covers (Typ, Designated_Type (It.Typ)))
10522 then
10523 if Found then
10524 It := Disambiguate (P, I1, I, Any_Type);
10526 if It = No_Interp then
10527 Error_Msg_N ("ambiguous prefix for slicing", N);
10528 Set_Etype (N, Typ);
10529 return;
10530 else
10531 Found := True;
10532 Array_Type := It.Typ;
10533 I1 := I;
10534 end if;
10535 else
10536 Found := True;
10537 Array_Type := It.Typ;
10538 I1 := I;
10539 end if;
10540 end if;
10542 Get_Next_Interp (I, It);
10543 end loop;
10544 end;
10546 else
10547 Array_Type := Etype (Name);
10548 end if;
10550 Resolve (Name, Array_Type);
10552 if Is_Access_Type (Array_Type) then
10553 Apply_Access_Check (N);
10554 Array_Type := Designated_Type (Array_Type);
10556 -- If the prefix is an access to an unconstrained array, we must use
10557 -- the actual subtype of the object to perform the index checks. The
10558 -- object denoted by the prefix is implicit in the node, so we build
10559 -- an explicit representation for it in order to compute the actual
10560 -- subtype.
10562 if not Is_Constrained (Array_Type) then
10563 Remove_Side_Effects (Prefix (N));
10565 declare
10566 Obj : constant Node_Id :=
10567 Make_Explicit_Dereference (Sloc (N),
10568 Prefix => New_Copy_Tree (Prefix (N)));
10569 begin
10570 Set_Etype (Obj, Array_Type);
10571 Set_Parent (Obj, Parent (N));
10572 Array_Type := Get_Actual_Subtype (Obj);
10573 end;
10574 end if;
10576 elsif Is_Entity_Name (Name)
10577 or else Nkind (Name) = N_Explicit_Dereference
10578 or else (Nkind (Name) = N_Function_Call
10579 and then not Is_Constrained (Etype (Name)))
10580 then
10581 Array_Type := Get_Actual_Subtype (Name);
10583 -- If the name is a selected component that depends on discriminants,
10584 -- build an actual subtype for it. This can happen only when the name
10585 -- itself is overloaded; otherwise the actual subtype is created when
10586 -- the selected component is analyzed.
10588 elsif Nkind (Name) = N_Selected_Component
10589 and then Full_Analysis
10590 and then Depends_On_Discriminant (First_Index (Array_Type))
10591 then
10592 declare
10593 Act_Decl : constant Node_Id :=
10594 Build_Actual_Subtype_Of_Component (Array_Type, Name);
10595 begin
10596 Insert_Action (N, Act_Decl);
10597 Array_Type := Defining_Identifier (Act_Decl);
10598 end;
10600 -- Maybe this should just be "else", instead of checking for the
10601 -- specific case of slice??? This is needed for the case where the
10602 -- prefix is an Image attribute, which gets expanded to a slice, and so
10603 -- has a constrained subtype which we want to use for the slice range
10604 -- check applied below (the range check won't get done if the
10605 -- unconstrained subtype of the 'Image is used).
10607 elsif Nkind (Name) = N_Slice then
10608 Array_Type := Etype (Name);
10609 end if;
10611 -- Obtain the type of the array index
10613 if Ekind (Array_Type) = E_String_Literal_Subtype then
10614 Index_Type := Etype (String_Literal_Low_Bound (Array_Type));
10615 else
10616 Index_Type := Etype (First_Index (Array_Type));
10617 end if;
10619 -- If name was overloaded, set slice type correctly now
10621 Set_Etype (N, Array_Type);
10623 -- Handle the generation of a range check that compares the array index
10624 -- against the discrete_range. The check is not applied to internally
10625 -- built nodes associated with the expansion of dispatch tables. Check
10626 -- that Ada.Tags has already been loaded to avoid extra dependencies on
10627 -- the unit.
10629 if Tagged_Type_Expansion
10630 and then RTU_Loaded (Ada_Tags)
10631 and then Nkind (Prefix (N)) = N_Selected_Component
10632 and then Present (Entity (Selector_Name (Prefix (N))))
10633 and then Entity (Selector_Name (Prefix (N))) =
10634 RTE_Record_Component (RE_Prims_Ptr)
10635 then
10636 null;
10638 -- The discrete_range is specified by a subtype indication. Create a
10639 -- shallow copy and inherit the type, parent and source location from
10640 -- the discrete_range. This ensures that the range check is inserted
10641 -- relative to the slice and that the runtime exception points to the
10642 -- proper construct.
10644 elsif Is_Entity_Name (Drange) then
10645 Dexpr := New_Copy (Scalar_Range (Entity (Drange)));
10647 Set_Etype (Dexpr, Etype (Drange));
10648 Set_Parent (Dexpr, Parent (Drange));
10649 Set_Sloc (Dexpr, Sloc (Drange));
10651 -- The discrete_range is a regular range. Resolve the bounds and remove
10652 -- their side effects.
10654 else
10655 Resolve (Drange, Base_Type (Index_Type));
10657 if Nkind (Drange) = N_Range then
10658 Force_Evaluation (Low_Bound (Drange));
10659 Force_Evaluation (High_Bound (Drange));
10661 Dexpr := Drange;
10662 end if;
10663 end if;
10665 if Present (Dexpr) then
10666 Apply_Range_Check (Dexpr, Index_Type);
10667 end if;
10669 Set_Slice_Subtype (N);
10671 -- Check bad use of type with predicates
10673 declare
10674 Subt : Entity_Id;
10676 begin
10677 if Nkind (Drange) = N_Subtype_Indication
10678 and then Has_Predicates (Entity (Subtype_Mark (Drange)))
10679 then
10680 Subt := Entity (Subtype_Mark (Drange));
10681 else
10682 Subt := Etype (Drange);
10683 end if;
10685 if Has_Predicates (Subt) then
10686 Bad_Predicated_Subtype_Use
10687 ("subtype& has predicate, not allowed in slice", Drange, Subt);
10688 end if;
10689 end;
10691 -- Otherwise here is where we check suspicious indexes
10693 if Nkind (Drange) = N_Range then
10694 Warn_On_Suspicious_Index (Name, Low_Bound (Drange));
10695 Warn_On_Suspicious_Index (Name, High_Bound (Drange));
10696 end if;
10698 Analyze_Dimension (N);
10699 Eval_Slice (N);
10700 end Resolve_Slice;
10702 ----------------------------
10703 -- Resolve_String_Literal --
10704 ----------------------------
10706 procedure Resolve_String_Literal (N : Node_Id; Typ : Entity_Id) is
10707 C_Typ : constant Entity_Id := Component_Type (Typ);
10708 R_Typ : constant Entity_Id := Root_Type (C_Typ);
10709 Loc : constant Source_Ptr := Sloc (N);
10710 Str : constant String_Id := Strval (N);
10711 Strlen : constant Nat := String_Length (Str);
10712 Subtype_Id : Entity_Id;
10713 Need_Check : Boolean;
10715 begin
10716 -- For a string appearing in a concatenation, defer creation of the
10717 -- string_literal_subtype until the end of the resolution of the
10718 -- concatenation, because the literal may be constant-folded away. This
10719 -- is a useful optimization for long concatenation expressions.
10721 -- If the string is an aggregate built for a single character (which
10722 -- happens in a non-static context) or a is null string to which special
10723 -- checks may apply, we build the subtype. Wide strings must also get a
10724 -- string subtype if they come from a one character aggregate. Strings
10725 -- generated by attributes might be static, but it is often hard to
10726 -- determine whether the enclosing context is static, so we generate
10727 -- subtypes for them as well, thus losing some rarer optimizations ???
10728 -- Same for strings that come from a static conversion.
10730 Need_Check :=
10731 (Strlen = 0 and then Typ /= Standard_String)
10732 or else Nkind (Parent (N)) /= N_Op_Concat
10733 or else (N /= Left_Opnd (Parent (N))
10734 and then N /= Right_Opnd (Parent (N)))
10735 or else ((Typ = Standard_Wide_String
10736 or else Typ = Standard_Wide_Wide_String)
10737 and then Nkind (Original_Node (N)) /= N_String_Literal);
10739 -- If the resolving type is itself a string literal subtype, we can just
10740 -- reuse it, since there is no point in creating another.
10742 if Ekind (Typ) = E_String_Literal_Subtype then
10743 Subtype_Id := Typ;
10745 elsif Nkind (Parent (N)) = N_Op_Concat
10746 and then not Need_Check
10747 and then not Nkind_In (Original_Node (N), N_Character_Literal,
10748 N_Attribute_Reference,
10749 N_Qualified_Expression,
10750 N_Type_Conversion)
10751 then
10752 Subtype_Id := Typ;
10754 -- Do not generate a string literal subtype for the default expression
10755 -- of a formal parameter in GNATprove mode. This is because the string
10756 -- subtype is associated with the freezing actions of the subprogram,
10757 -- however freezing is disabled in GNATprove mode and as a result the
10758 -- subtype is unavailable.
10760 elsif GNATprove_Mode
10761 and then Nkind (Parent (N)) = N_Parameter_Specification
10762 then
10763 Subtype_Id := Typ;
10765 -- Otherwise we must create a string literal subtype. Note that the
10766 -- whole idea of string literal subtypes is simply to avoid the need
10767 -- for building a full fledged array subtype for each literal.
10769 else
10770 Set_String_Literal_Subtype (N, Typ);
10771 Subtype_Id := Etype (N);
10772 end if;
10774 if Nkind (Parent (N)) /= N_Op_Concat
10775 or else Need_Check
10776 then
10777 Set_Etype (N, Subtype_Id);
10778 Eval_String_Literal (N);
10779 end if;
10781 if Is_Limited_Composite (Typ)
10782 or else Is_Private_Composite (Typ)
10783 then
10784 Error_Msg_N ("string literal not available for private array", N);
10785 Set_Etype (N, Any_Type);
10786 return;
10787 end if;
10789 -- The validity of a null string has been checked in the call to
10790 -- Eval_String_Literal.
10792 if Strlen = 0 then
10793 return;
10795 -- Always accept string literal with component type Any_Character, which
10796 -- occurs in error situations and in comparisons of literals, both of
10797 -- which should accept all literals.
10799 elsif R_Typ = Any_Character then
10800 return;
10802 -- If the type is bit-packed, then we always transform the string
10803 -- literal into a full fledged aggregate.
10805 elsif Is_Bit_Packed_Array (Typ) then
10806 null;
10808 -- Deal with cases of Wide_Wide_String, Wide_String, and String
10810 else
10811 -- For Standard.Wide_Wide_String, or any other type whose component
10812 -- type is Standard.Wide_Wide_Character, we know that all the
10813 -- characters in the string must be acceptable, since the parser
10814 -- accepted the characters as valid character literals.
10816 if R_Typ = Standard_Wide_Wide_Character then
10817 null;
10819 -- For the case of Standard.String, or any other type whose component
10820 -- type is Standard.Character, we must make sure that there are no
10821 -- wide characters in the string, i.e. that it is entirely composed
10822 -- of characters in range of type Character.
10824 -- If the string literal is the result of a static concatenation, the
10825 -- test has already been performed on the components, and need not be
10826 -- repeated.
10828 elsif R_Typ = Standard_Character
10829 and then Nkind (Original_Node (N)) /= N_Op_Concat
10830 then
10831 for J in 1 .. Strlen loop
10832 if not In_Character_Range (Get_String_Char (Str, J)) then
10834 -- If we are out of range, post error. This is one of the
10835 -- very few places that we place the flag in the middle of
10836 -- a token, right under the offending wide character. Not
10837 -- quite clear if this is right wrt wide character encoding
10838 -- sequences, but it's only an error message.
10840 Error_Msg
10841 ("literal out of range of type Standard.Character",
10842 Source_Ptr (Int (Loc) + J));
10843 return;
10844 end if;
10845 end loop;
10847 -- For the case of Standard.Wide_String, or any other type whose
10848 -- component type is Standard.Wide_Character, we must make sure that
10849 -- there are no wide characters in the string, i.e. that it is
10850 -- entirely composed of characters in range of type Wide_Character.
10852 -- If the string literal is the result of a static concatenation,
10853 -- the test has already been performed on the components, and need
10854 -- not be repeated.
10856 elsif R_Typ = Standard_Wide_Character
10857 and then Nkind (Original_Node (N)) /= N_Op_Concat
10858 then
10859 for J in 1 .. Strlen loop
10860 if not In_Wide_Character_Range (Get_String_Char (Str, J)) then
10862 -- If we are out of range, post error. This is one of the
10863 -- very few places that we place the flag in the middle of
10864 -- a token, right under the offending wide character.
10866 -- This is not quite right, because characters in general
10867 -- will take more than one character position ???
10869 Error_Msg
10870 ("literal out of range of type Standard.Wide_Character",
10871 Source_Ptr (Int (Loc) + J));
10872 return;
10873 end if;
10874 end loop;
10876 -- If the root type is not a standard character, then we will convert
10877 -- the string into an aggregate and will let the aggregate code do
10878 -- the checking. Standard Wide_Wide_Character is also OK here.
10880 else
10881 null;
10882 end if;
10884 -- See if the component type of the array corresponding to the string
10885 -- has compile time known bounds. If yes we can directly check
10886 -- whether the evaluation of the string will raise constraint error.
10887 -- Otherwise we need to transform the string literal into the
10888 -- corresponding character aggregate and let the aggregate code do
10889 -- the checking. We use the same transformation if the component
10890 -- type has a static predicate, which will be applied to each
10891 -- character when the aggregate is resolved.
10893 if Is_Standard_Character_Type (R_Typ) then
10895 -- Check for the case of full range, where we are definitely OK
10897 if Component_Type (Typ) = Base_Type (Component_Type (Typ)) then
10898 return;
10899 end if;
10901 -- Here the range is not the complete base type range, so check
10903 declare
10904 Comp_Typ_Lo : constant Node_Id :=
10905 Type_Low_Bound (Component_Type (Typ));
10906 Comp_Typ_Hi : constant Node_Id :=
10907 Type_High_Bound (Component_Type (Typ));
10909 Char_Val : Uint;
10911 begin
10912 if Compile_Time_Known_Value (Comp_Typ_Lo)
10913 and then Compile_Time_Known_Value (Comp_Typ_Hi)
10914 then
10915 for J in 1 .. Strlen loop
10916 Char_Val := UI_From_Int (Int (Get_String_Char (Str, J)));
10918 if Char_Val < Expr_Value (Comp_Typ_Lo)
10919 or else Char_Val > Expr_Value (Comp_Typ_Hi)
10920 then
10921 Apply_Compile_Time_Constraint_Error
10922 (N, "character out of range??",
10923 CE_Range_Check_Failed,
10924 Loc => Source_Ptr (Int (Loc) + J));
10925 end if;
10926 end loop;
10928 if not Has_Static_Predicate (C_Typ) then
10929 return;
10930 end if;
10931 end if;
10932 end;
10933 end if;
10934 end if;
10936 -- If we got here we meed to transform the string literal into the
10937 -- equivalent qualified positional array aggregate. This is rather
10938 -- heavy artillery for this situation, but it is hard work to avoid.
10940 declare
10941 Lits : constant List_Id := New_List;
10942 P : Source_Ptr := Loc + 1;
10943 C : Char_Code;
10945 begin
10946 -- Build the character literals, we give them source locations that
10947 -- correspond to the string positions, which is a bit tricky given
10948 -- the possible presence of wide character escape sequences.
10950 for J in 1 .. Strlen loop
10951 C := Get_String_Char (Str, J);
10952 Set_Character_Literal_Name (C);
10954 Append_To (Lits,
10955 Make_Character_Literal (P,
10956 Chars => Name_Find,
10957 Char_Literal_Value => UI_From_CC (C)));
10959 if In_Character_Range (C) then
10960 P := P + 1;
10962 -- Should we have a call to Skip_Wide here ???
10964 -- ??? else
10965 -- Skip_Wide (P);
10967 end if;
10968 end loop;
10970 Rewrite (N,
10971 Make_Qualified_Expression (Loc,
10972 Subtype_Mark => New_Occurrence_Of (Typ, Loc),
10973 Expression =>
10974 Make_Aggregate (Loc, Expressions => Lits)));
10976 Analyze_And_Resolve (N, Typ);
10977 end;
10978 end Resolve_String_Literal;
10980 -------------------------
10981 -- Resolve_Target_Name --
10982 -------------------------
10984 procedure Resolve_Target_Name (N : Node_Id; Typ : Entity_Id) is
10985 begin
10986 Set_Etype (N, Typ);
10987 end Resolve_Target_Name;
10989 -----------------------------
10990 -- Resolve_Type_Conversion --
10991 -----------------------------
10993 procedure Resolve_Type_Conversion (N : Node_Id; Typ : Entity_Id) is
10994 Conv_OK : constant Boolean := Conversion_OK (N);
10995 Operand : constant Node_Id := Expression (N);
10996 Operand_Typ : constant Entity_Id := Etype (Operand);
10997 Target_Typ : constant Entity_Id := Etype (N);
10998 Rop : Node_Id;
10999 Orig_N : Node_Id;
11000 Orig_T : Node_Id;
11002 Test_Redundant : Boolean := Warn_On_Redundant_Constructs;
11003 -- Set to False to suppress cases where we want to suppress the test
11004 -- for redundancy to avoid possible false positives on this warning.
11006 begin
11007 if not Conv_OK
11008 and then not Valid_Conversion (N, Target_Typ, Operand)
11009 then
11010 return;
11011 end if;
11013 -- If the Operand Etype is Universal_Fixed, then the conversion is
11014 -- never redundant. We need this check because by the time we have
11015 -- finished the rather complex transformation, the conversion looks
11016 -- redundant when it is not.
11018 if Operand_Typ = Universal_Fixed then
11019 Test_Redundant := False;
11021 -- If the operand is marked as Any_Fixed, then special processing is
11022 -- required. This is also a case where we suppress the test for a
11023 -- redundant conversion, since most certainly it is not redundant.
11025 elsif Operand_Typ = Any_Fixed then
11026 Test_Redundant := False;
11028 -- Mixed-mode operation involving a literal. Context must be a fixed
11029 -- type which is applied to the literal subsequently.
11031 -- Multiplication and division involving two fixed type operands must
11032 -- yield a universal real because the result is computed in arbitrary
11033 -- precision.
11035 if Is_Fixed_Point_Type (Typ)
11036 and then Nkind_In (Operand, N_Op_Divide, N_Op_Multiply)
11037 and then Etype (Left_Opnd (Operand)) = Any_Fixed
11038 and then Etype (Right_Opnd (Operand)) = Any_Fixed
11039 then
11040 Set_Etype (Operand, Universal_Real);
11042 elsif Is_Numeric_Type (Typ)
11043 and then Nkind_In (Operand, N_Op_Multiply, N_Op_Divide)
11044 and then (Etype (Right_Opnd (Operand)) = Universal_Real
11045 or else
11046 Etype (Left_Opnd (Operand)) = Universal_Real)
11047 then
11048 -- Return if expression is ambiguous
11050 if Unique_Fixed_Point_Type (N) = Any_Type then
11051 return;
11053 -- If nothing else, the available fixed type is Duration
11055 else
11056 Set_Etype (Operand, Standard_Duration);
11057 end if;
11059 -- Resolve the real operand with largest available precision
11061 if Etype (Right_Opnd (Operand)) = Universal_Real then
11062 Rop := New_Copy_Tree (Right_Opnd (Operand));
11063 else
11064 Rop := New_Copy_Tree (Left_Opnd (Operand));
11065 end if;
11067 Resolve (Rop, Universal_Real);
11069 -- If the operand is a literal (it could be a non-static and
11070 -- illegal exponentiation) check whether the use of Duration
11071 -- is potentially inaccurate.
11073 if Nkind (Rop) = N_Real_Literal
11074 and then Realval (Rop) /= Ureal_0
11075 and then abs (Realval (Rop)) < Delta_Value (Standard_Duration)
11076 then
11077 Error_Msg_N
11078 ("??universal real operand can only "
11079 & "be interpreted as Duration!", Rop);
11080 Error_Msg_N
11081 ("\??precision will be lost in the conversion!", Rop);
11082 end if;
11084 elsif Is_Numeric_Type (Typ)
11085 and then Nkind (Operand) in N_Op
11086 and then Unique_Fixed_Point_Type (N) /= Any_Type
11087 then
11088 Set_Etype (Operand, Standard_Duration);
11090 else
11091 Error_Msg_N ("invalid context for mixed mode operation", N);
11092 Set_Etype (Operand, Any_Type);
11093 return;
11094 end if;
11095 end if;
11097 Resolve (Operand);
11099 -- In SPARK, a type conversion between array types should be restricted
11100 -- to types which have matching static bounds.
11102 -- Protect call to Matching_Static_Array_Bounds to avoid costly
11103 -- operation if not needed.
11105 if Restriction_Check_Required (SPARK_05)
11106 and then Is_Array_Type (Target_Typ)
11107 and then Is_Array_Type (Operand_Typ)
11108 and then Operand_Typ /= Any_Composite -- or else Operand in error
11109 and then not Matching_Static_Array_Bounds (Target_Typ, Operand_Typ)
11110 then
11111 Check_SPARK_05_Restriction
11112 ("array types should have matching static bounds", N);
11113 end if;
11115 -- In formal mode, the operand of an ancestor type conversion must be an
11116 -- object (not an expression).
11118 if Is_Tagged_Type (Target_Typ)
11119 and then not Is_Class_Wide_Type (Target_Typ)
11120 and then Is_Tagged_Type (Operand_Typ)
11121 and then not Is_Class_Wide_Type (Operand_Typ)
11122 and then Is_Ancestor (Target_Typ, Operand_Typ)
11123 and then not Is_SPARK_05_Object_Reference (Operand)
11124 then
11125 Check_SPARK_05_Restriction ("object required", Operand);
11126 end if;
11128 Analyze_Dimension (N);
11130 -- Note: we do the Eval_Type_Conversion call before applying the
11131 -- required checks for a subtype conversion. This is important, since
11132 -- both are prepared under certain circumstances to change the type
11133 -- conversion to a constraint error node, but in the case of
11134 -- Eval_Type_Conversion this may reflect an illegality in the static
11135 -- case, and we would miss the illegality (getting only a warning
11136 -- message), if we applied the type conversion checks first.
11138 Eval_Type_Conversion (N);
11140 -- Even when evaluation is not possible, we may be able to simplify the
11141 -- conversion or its expression. This needs to be done before applying
11142 -- checks, since otherwise the checks may use the original expression
11143 -- and defeat the simplifications. This is specifically the case for
11144 -- elimination of the floating-point Truncation attribute in
11145 -- float-to-int conversions.
11147 Simplify_Type_Conversion (N);
11149 -- If after evaluation we still have a type conversion, then we may need
11150 -- to apply checks required for a subtype conversion.
11152 -- Skip these type conversion checks if universal fixed operands
11153 -- operands involved, since range checks are handled separately for
11154 -- these cases (in the appropriate Expand routines in unit Exp_Fixd).
11156 if Nkind (N) = N_Type_Conversion
11157 and then not Is_Generic_Type (Root_Type (Target_Typ))
11158 and then Target_Typ /= Universal_Fixed
11159 and then Operand_Typ /= Universal_Fixed
11160 then
11161 Apply_Type_Conversion_Checks (N);
11162 end if;
11164 -- Issue warning for conversion of simple object to its own type. We
11165 -- have to test the original nodes, since they may have been rewritten
11166 -- by various optimizations.
11168 Orig_N := Original_Node (N);
11170 -- Here we test for a redundant conversion if the warning mode is
11171 -- active (and was not locally reset), and we have a type conversion
11172 -- from source not appearing in a generic instance.
11174 if Test_Redundant
11175 and then Nkind (Orig_N) = N_Type_Conversion
11176 and then Comes_From_Source (Orig_N)
11177 and then not In_Instance
11178 then
11179 Orig_N := Original_Node (Expression (Orig_N));
11180 Orig_T := Target_Typ;
11182 -- If the node is part of a larger expression, the Target_Type
11183 -- may not be the original type of the node if the context is a
11184 -- condition. Recover original type to see if conversion is needed.
11186 if Is_Boolean_Type (Orig_T)
11187 and then Nkind (Parent (N)) in N_Op
11188 then
11189 Orig_T := Etype (Parent (N));
11190 end if;
11192 -- If we have an entity name, then give the warning if the entity
11193 -- is the right type, or if it is a loop parameter covered by the
11194 -- original type (that's needed because loop parameters have an
11195 -- odd subtype coming from the bounds).
11197 if (Is_Entity_Name (Orig_N)
11198 and then
11199 (Etype (Entity (Orig_N)) = Orig_T
11200 or else
11201 (Ekind (Entity (Orig_N)) = E_Loop_Parameter
11202 and then Covers (Orig_T, Etype (Entity (Orig_N))))))
11204 -- If not an entity, then type of expression must match
11206 or else Etype (Orig_N) = Orig_T
11207 then
11208 -- One more check, do not give warning if the analyzed conversion
11209 -- has an expression with non-static bounds, and the bounds of the
11210 -- target are static. This avoids junk warnings in cases where the
11211 -- conversion is necessary to establish staticness, for example in
11212 -- a case statement.
11214 if not Is_OK_Static_Subtype (Operand_Typ)
11215 and then Is_OK_Static_Subtype (Target_Typ)
11216 then
11217 null;
11219 -- Finally, if this type conversion occurs in a context requiring
11220 -- a prefix, and the expression is a qualified expression then the
11221 -- type conversion is not redundant, since a qualified expression
11222 -- is not a prefix, whereas a type conversion is. For example, "X
11223 -- := T'(Funx(...)).Y;" is illegal because a selected component
11224 -- requires a prefix, but a type conversion makes it legal: "X :=
11225 -- T(T'(Funx(...))).Y;"
11227 -- In Ada 2012, a qualified expression is a name, so this idiom is
11228 -- no longer needed, but we still suppress the warning because it
11229 -- seems unfriendly for warnings to pop up when you switch to the
11230 -- newer language version.
11232 elsif Nkind (Orig_N) = N_Qualified_Expression
11233 and then Nkind_In (Parent (N), N_Attribute_Reference,
11234 N_Indexed_Component,
11235 N_Selected_Component,
11236 N_Slice,
11237 N_Explicit_Dereference)
11238 then
11239 null;
11241 -- Never warn on conversion to Long_Long_Integer'Base since
11242 -- that is most likely an artifact of the extended overflow
11243 -- checking and comes from complex expanded code.
11245 elsif Orig_T = Base_Type (Standard_Long_Long_Integer) then
11246 null;
11248 -- Here we give the redundant conversion warning. If it is an
11249 -- entity, give the name of the entity in the message. If not,
11250 -- just mention the expression.
11252 -- Shoudn't we test Warn_On_Redundant_Constructs here ???
11254 else
11255 if Is_Entity_Name (Orig_N) then
11256 Error_Msg_Node_2 := Orig_T;
11257 Error_Msg_NE -- CODEFIX
11258 ("??redundant conversion, & is of type &!",
11259 N, Entity (Orig_N));
11260 else
11261 Error_Msg_NE
11262 ("??redundant conversion, expression is of type&!",
11263 N, Orig_T);
11264 end if;
11265 end if;
11266 end if;
11267 end if;
11269 -- Ada 2005 (AI-251): Handle class-wide interface type conversions.
11270 -- No need to perform any interface conversion if the type of the
11271 -- expression coincides with the target type.
11273 if Ada_Version >= Ada_2005
11274 and then Expander_Active
11275 and then Operand_Typ /= Target_Typ
11276 then
11277 declare
11278 Opnd : Entity_Id := Operand_Typ;
11279 Target : Entity_Id := Target_Typ;
11281 begin
11282 -- If the type of the operand is a limited view, use nonlimited
11283 -- view when available. If it is a class-wide type, recover the
11284 -- class-wide type of the nonlimited view.
11286 if From_Limited_With (Opnd)
11287 and then Has_Non_Limited_View (Opnd)
11288 then
11289 Opnd := Non_Limited_View (Opnd);
11290 Set_Etype (Expression (N), Opnd);
11291 end if;
11293 if Is_Access_Type (Opnd) then
11294 Opnd := Designated_Type (Opnd);
11295 end if;
11297 if Is_Access_Type (Target_Typ) then
11298 Target := Designated_Type (Target);
11299 end if;
11301 if Opnd = Target then
11302 null;
11304 -- Conversion from interface type
11306 elsif Is_Interface (Opnd) then
11308 -- Ada 2005 (AI-217): Handle entities from limited views
11310 if From_Limited_With (Opnd) then
11311 Error_Msg_Qual_Level := 99;
11312 Error_Msg_NE -- CODEFIX
11313 ("missing WITH clause on package &", N,
11314 Cunit_Entity (Get_Source_Unit (Base_Type (Opnd))));
11315 Error_Msg_N
11316 ("type conversions require visibility of the full view",
11319 elsif From_Limited_With (Target)
11320 and then not
11321 (Is_Access_Type (Target_Typ)
11322 and then Present (Non_Limited_View (Etype (Target))))
11323 then
11324 Error_Msg_Qual_Level := 99;
11325 Error_Msg_NE -- CODEFIX
11326 ("missing WITH clause on package &", N,
11327 Cunit_Entity (Get_Source_Unit (Base_Type (Target))));
11328 Error_Msg_N
11329 ("type conversions require visibility of the full view",
11332 else
11333 Expand_Interface_Conversion (N);
11334 end if;
11336 -- Conversion to interface type
11338 elsif Is_Interface (Target) then
11340 -- Handle subtypes
11342 if Ekind_In (Opnd, E_Protected_Subtype, E_Task_Subtype) then
11343 Opnd := Etype (Opnd);
11344 end if;
11346 if Is_Class_Wide_Type (Opnd)
11347 or else Interface_Present_In_Ancestor
11348 (Typ => Opnd,
11349 Iface => Target)
11350 then
11351 Expand_Interface_Conversion (N);
11352 else
11353 Error_Msg_Name_1 := Chars (Etype (Target));
11354 Error_Msg_Name_2 := Chars (Opnd);
11355 Error_Msg_N
11356 ("wrong interface conversion (% is not a progenitor "
11357 & "of %)", N);
11358 end if;
11359 end if;
11360 end;
11361 end if;
11363 -- Ada 2012: once the type conversion is resolved, check whether the
11364 -- operand statisfies the static predicate of the target type.
11366 if Has_Predicates (Target_Typ) then
11367 Check_Expression_Against_Static_Predicate (N, Target_Typ);
11368 end if;
11370 -- If at this stage we have a real to integer conversion, make sure that
11371 -- the Do_Range_Check flag is set, because such conversions in general
11372 -- need a range check. We only need this if expansion is off.
11373 -- In GNATprove mode, we only do that when converting from fixed-point
11374 -- (as floating-point to integer conversions are now handled in
11375 -- GNATprove mode).
11377 if Nkind (N) = N_Type_Conversion
11378 and then not Expander_Active
11379 and then Is_Integer_Type (Target_Typ)
11380 and then (Is_Fixed_Point_Type (Operand_Typ)
11381 or else (not GNATprove_Mode
11382 and then Is_Floating_Point_Type (Operand_Typ)))
11383 then
11384 Set_Do_Range_Check (Operand);
11385 end if;
11387 -- Generating C code a type conversion of an access to constrained
11388 -- array type to access to unconstrained array type involves building
11389 -- a fat pointer which in general cannot be generated on the fly. We
11390 -- remove side effects in order to store the result of the conversion
11391 -- into a temporary.
11393 if Modify_Tree_For_C
11394 and then Nkind (N) = N_Type_Conversion
11395 and then Nkind (Parent (N)) /= N_Object_Declaration
11396 and then Is_Access_Type (Etype (N))
11397 and then Is_Array_Type (Designated_Type (Etype (N)))
11398 and then not Is_Constrained (Designated_Type (Etype (N)))
11399 and then Is_Constrained (Designated_Type (Etype (Expression (N))))
11400 then
11401 Remove_Side_Effects (N);
11402 end if;
11403 end Resolve_Type_Conversion;
11405 ----------------------
11406 -- Resolve_Unary_Op --
11407 ----------------------
11409 procedure Resolve_Unary_Op (N : Node_Id; Typ : Entity_Id) is
11410 B_Typ : constant Entity_Id := Base_Type (Typ);
11411 R : constant Node_Id := Right_Opnd (N);
11412 OK : Boolean;
11413 Lo : Uint;
11414 Hi : Uint;
11416 begin
11417 if Is_Modular_Integer_Type (Typ) and then Nkind (N) /= N_Op_Not then
11418 Error_Msg_Name_1 := Chars (Typ);
11419 Check_SPARK_05_Restriction
11420 ("unary operator not defined for modular type%", N);
11421 end if;
11423 -- Deal with intrinsic unary operators
11425 if Comes_From_Source (N)
11426 and then Ekind (Entity (N)) = E_Function
11427 and then Is_Imported (Entity (N))
11428 and then Is_Intrinsic_Subprogram (Entity (N))
11429 then
11430 Resolve_Intrinsic_Unary_Operator (N, Typ);
11431 return;
11432 end if;
11434 -- Deal with universal cases
11436 if Etype (R) = Universal_Integer
11437 or else
11438 Etype (R) = Universal_Real
11439 then
11440 Check_For_Visible_Operator (N, B_Typ);
11441 end if;
11443 Set_Etype (N, B_Typ);
11444 Resolve (R, B_Typ);
11446 -- Generate warning for expressions like abs (x mod 2)
11448 if Warn_On_Redundant_Constructs
11449 and then Nkind (N) = N_Op_Abs
11450 then
11451 Determine_Range (Right_Opnd (N), OK, Lo, Hi);
11453 if OK and then Hi >= Lo and then Lo >= 0 then
11454 Error_Msg_N -- CODEFIX
11455 ("?r?abs applied to known non-negative value has no effect", N);
11456 end if;
11457 end if;
11459 -- Deal with reference generation
11461 Check_Unset_Reference (R);
11462 Generate_Operator_Reference (N, B_Typ);
11463 Analyze_Dimension (N);
11464 Eval_Unary_Op (N);
11466 -- Set overflow checking bit. Much cleverer code needed here eventually
11467 -- and perhaps the Resolve routines should be separated for the various
11468 -- arithmetic operations, since they will need different processing ???
11470 if Nkind (N) in N_Op then
11471 if not Overflow_Checks_Suppressed (Etype (N)) then
11472 Enable_Overflow_Check (N);
11473 end if;
11474 end if;
11476 -- Generate warning for expressions like -5 mod 3 for integers. No need
11477 -- to worry in the floating-point case, since parens do not affect the
11478 -- result so there is no point in giving in a warning.
11480 declare
11481 Norig : constant Node_Id := Original_Node (N);
11482 Rorig : Node_Id;
11483 Val : Uint;
11484 HB : Uint;
11485 LB : Uint;
11486 Lval : Uint;
11487 Opnd : Node_Id;
11489 begin
11490 if Warn_On_Questionable_Missing_Parens
11491 and then Comes_From_Source (Norig)
11492 and then Is_Integer_Type (Typ)
11493 and then Nkind (Norig) = N_Op_Minus
11494 then
11495 Rorig := Original_Node (Right_Opnd (Norig));
11497 -- We are looking for cases where the right operand is not
11498 -- parenthesized, and is a binary operator, multiply, divide, or
11499 -- mod. These are the cases where the grouping can affect results.
11501 if Paren_Count (Rorig) = 0
11502 and then Nkind_In (Rorig, N_Op_Mod, N_Op_Multiply, N_Op_Divide)
11503 then
11504 -- For mod, we always give the warning, since the value is
11505 -- affected by the parenthesization (e.g. (-5) mod 315 /=
11506 -- -(5 mod 315)). But for the other cases, the only concern is
11507 -- overflow, e.g. for the case of 8 big signed (-(2 * 64)
11508 -- overflows, but (-2) * 64 does not). So we try to give the
11509 -- message only when overflow is possible.
11511 if Nkind (Rorig) /= N_Op_Mod
11512 and then Compile_Time_Known_Value (R)
11513 then
11514 Val := Expr_Value (R);
11516 if Compile_Time_Known_Value (Type_High_Bound (Typ)) then
11517 HB := Expr_Value (Type_High_Bound (Typ));
11518 else
11519 HB := Expr_Value (Type_High_Bound (Base_Type (Typ)));
11520 end if;
11522 if Compile_Time_Known_Value (Type_Low_Bound (Typ)) then
11523 LB := Expr_Value (Type_Low_Bound (Typ));
11524 else
11525 LB := Expr_Value (Type_Low_Bound (Base_Type (Typ)));
11526 end if;
11528 -- Note that the test below is deliberately excluding the
11529 -- largest negative number, since that is a potentially
11530 -- troublesome case (e.g. -2 * x, where the result is the
11531 -- largest negative integer has an overflow with 2 * x).
11533 if Val > LB and then Val <= HB then
11534 return;
11535 end if;
11536 end if;
11538 -- For the multiplication case, the only case we have to worry
11539 -- about is when (-a)*b is exactly the largest negative number
11540 -- so that -(a*b) can cause overflow. This can only happen if
11541 -- a is a power of 2, and more generally if any operand is a
11542 -- constant that is not a power of 2, then the parentheses
11543 -- cannot affect whether overflow occurs. We only bother to
11544 -- test the left most operand
11546 -- Loop looking at left operands for one that has known value
11548 Opnd := Rorig;
11549 Opnd_Loop : while Nkind (Opnd) = N_Op_Multiply loop
11550 if Compile_Time_Known_Value (Left_Opnd (Opnd)) then
11551 Lval := UI_Abs (Expr_Value (Left_Opnd (Opnd)));
11553 -- Operand value of 0 or 1 skips warning
11555 if Lval <= 1 then
11556 return;
11558 -- Otherwise check power of 2, if power of 2, warn, if
11559 -- anything else, skip warning.
11561 else
11562 while Lval /= 2 loop
11563 if Lval mod 2 = 1 then
11564 return;
11565 else
11566 Lval := Lval / 2;
11567 end if;
11568 end loop;
11570 exit Opnd_Loop;
11571 end if;
11572 end if;
11574 -- Keep looking at left operands
11576 Opnd := Left_Opnd (Opnd);
11577 end loop Opnd_Loop;
11579 -- For rem or "/" we can only have a problematic situation
11580 -- if the divisor has a value of minus one or one. Otherwise
11581 -- overflow is impossible (divisor > 1) or we have a case of
11582 -- division by zero in any case.
11584 if Nkind_In (Rorig, N_Op_Divide, N_Op_Rem)
11585 and then Compile_Time_Known_Value (Right_Opnd (Rorig))
11586 and then UI_Abs (Expr_Value (Right_Opnd (Rorig))) /= 1
11587 then
11588 return;
11589 end if;
11591 -- If we fall through warning should be issued
11593 -- Shouldn't we test Warn_On_Questionable_Missing_Parens ???
11595 Error_Msg_N
11596 ("??unary minus expression should be parenthesized here!", N);
11597 end if;
11598 end if;
11599 end;
11600 end Resolve_Unary_Op;
11602 ----------------------------------
11603 -- Resolve_Unchecked_Expression --
11604 ----------------------------------
11606 procedure Resolve_Unchecked_Expression
11607 (N : Node_Id;
11608 Typ : Entity_Id)
11610 begin
11611 Resolve (Expression (N), Typ, Suppress => All_Checks);
11612 Set_Etype (N, Typ);
11613 end Resolve_Unchecked_Expression;
11615 ---------------------------------------
11616 -- Resolve_Unchecked_Type_Conversion --
11617 ---------------------------------------
11619 procedure Resolve_Unchecked_Type_Conversion
11620 (N : Node_Id;
11621 Typ : Entity_Id)
11623 pragma Warnings (Off, Typ);
11625 Operand : constant Node_Id := Expression (N);
11626 Opnd_Type : constant Entity_Id := Etype (Operand);
11628 begin
11629 -- Resolve operand using its own type
11631 Resolve (Operand, Opnd_Type);
11633 -- In an inlined context, the unchecked conversion may be applied
11634 -- to a literal, in which case its type is the type of the context.
11635 -- (In other contexts conversions cannot apply to literals).
11637 if In_Inlined_Body
11638 and then (Opnd_Type = Any_Character or else
11639 Opnd_Type = Any_Integer or else
11640 Opnd_Type = Any_Real)
11641 then
11642 Set_Etype (Operand, Typ);
11643 end if;
11645 Analyze_Dimension (N);
11646 Eval_Unchecked_Conversion (N);
11647 end Resolve_Unchecked_Type_Conversion;
11649 ------------------------------
11650 -- Rewrite_Operator_As_Call --
11651 ------------------------------
11653 procedure Rewrite_Operator_As_Call (N : Node_Id; Nam : Entity_Id) is
11654 Loc : constant Source_Ptr := Sloc (N);
11655 Actuals : constant List_Id := New_List;
11656 New_N : Node_Id;
11658 begin
11659 if Nkind (N) in N_Binary_Op then
11660 Append (Left_Opnd (N), Actuals);
11661 end if;
11663 Append (Right_Opnd (N), Actuals);
11665 New_N :=
11666 Make_Function_Call (Sloc => Loc,
11667 Name => New_Occurrence_Of (Nam, Loc),
11668 Parameter_Associations => Actuals);
11670 Preserve_Comes_From_Source (New_N, N);
11671 Preserve_Comes_From_Source (Name (New_N), N);
11672 Rewrite (N, New_N);
11673 Set_Etype (N, Etype (Nam));
11674 end Rewrite_Operator_As_Call;
11676 ------------------------------
11677 -- Rewrite_Renamed_Operator --
11678 ------------------------------
11680 procedure Rewrite_Renamed_Operator
11681 (N : Node_Id;
11682 Op : Entity_Id;
11683 Typ : Entity_Id)
11685 Nam : constant Name_Id := Chars (Op);
11686 Is_Binary : constant Boolean := Nkind (N) in N_Binary_Op;
11687 Op_Node : Node_Id;
11689 begin
11690 -- Do not perform this transformation within a pre/postcondition,
11691 -- because the expression will be reanalyzed, and the transformation
11692 -- might affect the visibility of the operator, e.g. in an instance.
11693 -- Note that fully analyzed and expanded pre/postconditions appear as
11694 -- pragma Check equivalents.
11696 if In_Pre_Post_Condition (N) then
11697 return;
11698 end if;
11700 -- Likewise when an expression function is being preanalyzed, since the
11701 -- expression will be reanalyzed as part of the generated body.
11703 if In_Spec_Expression then
11704 declare
11705 S : constant Entity_Id := Current_Scope_No_Loops;
11706 begin
11707 if Ekind (S) = E_Function
11708 and then Nkind (Original_Node (Unit_Declaration_Node (S))) =
11709 N_Expression_Function
11710 then
11711 return;
11712 end if;
11713 end;
11714 end if;
11716 -- Rewrite the operator node using the real operator, not its renaming.
11717 -- Exclude user-defined intrinsic operations of the same name, which are
11718 -- treated separately and rewritten as calls.
11720 if Ekind (Op) /= E_Function or else Chars (N) /= Nam then
11721 Op_Node := New_Node (Operator_Kind (Nam, Is_Binary), Sloc (N));
11722 Set_Chars (Op_Node, Nam);
11723 Set_Etype (Op_Node, Etype (N));
11724 Set_Entity (Op_Node, Op);
11725 Set_Right_Opnd (Op_Node, Right_Opnd (N));
11727 -- Indicate that both the original entity and its renaming are
11728 -- referenced at this point.
11730 Generate_Reference (Entity (N), N);
11731 Generate_Reference (Op, N);
11733 if Is_Binary then
11734 Set_Left_Opnd (Op_Node, Left_Opnd (N));
11735 end if;
11737 Rewrite (N, Op_Node);
11739 -- If the context type is private, add the appropriate conversions so
11740 -- that the operator is applied to the full view. This is done in the
11741 -- routines that resolve intrinsic operators.
11743 if Is_Intrinsic_Subprogram (Op) and then Is_Private_Type (Typ) then
11744 case Nkind (N) is
11745 when N_Op_Add
11746 | N_Op_Divide
11747 | N_Op_Expon
11748 | N_Op_Mod
11749 | N_Op_Multiply
11750 | N_Op_Rem
11751 | N_Op_Subtract
11753 Resolve_Intrinsic_Operator (N, Typ);
11755 when N_Op_Abs
11756 | N_Op_Minus
11757 | N_Op_Plus
11759 Resolve_Intrinsic_Unary_Operator (N, Typ);
11761 when others =>
11762 Resolve (N, Typ);
11763 end case;
11764 end if;
11766 elsif Ekind (Op) = E_Function and then Is_Intrinsic_Subprogram (Op) then
11768 -- Operator renames a user-defined operator of the same name. Use the
11769 -- original operator in the node, which is the one Gigi knows about.
11771 Set_Entity (N, Op);
11772 Set_Is_Overloaded (N, False);
11773 end if;
11774 end Rewrite_Renamed_Operator;
11776 -----------------------
11777 -- Set_Slice_Subtype --
11778 -----------------------
11780 -- Build an implicit subtype declaration to represent the type delivered by
11781 -- the slice. This is an abbreviated version of an array subtype. We define
11782 -- an index subtype for the slice, using either the subtype name or the
11783 -- discrete range of the slice. To be consistent with index usage elsewhere
11784 -- we create a list header to hold the single index. This list is not
11785 -- otherwise attached to the syntax tree.
11787 procedure Set_Slice_Subtype (N : Node_Id) is
11788 Loc : constant Source_Ptr := Sloc (N);
11789 Index_List : constant List_Id := New_List;
11790 Index : Node_Id;
11791 Index_Subtype : Entity_Id;
11792 Index_Type : Entity_Id;
11793 Slice_Subtype : Entity_Id;
11794 Drange : constant Node_Id := Discrete_Range (N);
11796 begin
11797 Index_Type := Base_Type (Etype (Drange));
11799 if Is_Entity_Name (Drange) then
11800 Index_Subtype := Entity (Drange);
11802 else
11803 -- We force the evaluation of a range. This is definitely needed in
11804 -- the renamed case, and seems safer to do unconditionally. Note in
11805 -- any case that since we will create and insert an Itype referring
11806 -- to this range, we must make sure any side effect removal actions
11807 -- are inserted before the Itype definition.
11809 if Nkind (Drange) = N_Range then
11810 Force_Evaluation (Low_Bound (Drange));
11811 Force_Evaluation (High_Bound (Drange));
11813 -- If the discrete range is given by a subtype indication, the
11814 -- type of the slice is the base of the subtype mark.
11816 elsif Nkind (Drange) = N_Subtype_Indication then
11817 declare
11818 R : constant Node_Id := Range_Expression (Constraint (Drange));
11819 begin
11820 Index_Type := Base_Type (Entity (Subtype_Mark (Drange)));
11821 Force_Evaluation (Low_Bound (R));
11822 Force_Evaluation (High_Bound (R));
11823 end;
11824 end if;
11826 Index_Subtype := Create_Itype (Subtype_Kind (Ekind (Index_Type)), N);
11828 -- Take a new copy of Drange (where bounds have been rewritten to
11829 -- reference side-effect-free names). Using a separate tree ensures
11830 -- that further expansion (e.g. while rewriting a slice assignment
11831 -- into a FOR loop) does not attempt to remove side effects on the
11832 -- bounds again (which would cause the bounds in the index subtype
11833 -- definition to refer to temporaries before they are defined) (the
11834 -- reason is that some names are considered side effect free here
11835 -- for the subtype, but not in the context of a loop iteration
11836 -- scheme).
11838 Set_Scalar_Range (Index_Subtype, New_Copy_Tree (Drange));
11839 Set_Parent (Scalar_Range (Index_Subtype), Index_Subtype);
11840 Set_Etype (Index_Subtype, Index_Type);
11841 Set_Size_Info (Index_Subtype, Index_Type);
11842 Set_RM_Size (Index_Subtype, RM_Size (Index_Type));
11843 end if;
11845 Slice_Subtype := Create_Itype (E_Array_Subtype, N);
11847 Index := New_Occurrence_Of (Index_Subtype, Loc);
11848 Set_Etype (Index, Index_Subtype);
11849 Append (Index, Index_List);
11851 Set_First_Index (Slice_Subtype, Index);
11852 Set_Etype (Slice_Subtype, Base_Type (Etype (N)));
11853 Set_Is_Constrained (Slice_Subtype, True);
11855 Check_Compile_Time_Size (Slice_Subtype);
11857 -- The Etype of the existing Slice node is reset to this slice subtype.
11858 -- Its bounds are obtained from its first index.
11860 Set_Etype (N, Slice_Subtype);
11862 -- For bit-packed slice subtypes, freeze immediately (except in the case
11863 -- of being in a "spec expression" where we never freeze when we first
11864 -- see the expression).
11866 if Is_Bit_Packed_Array (Slice_Subtype) and not In_Spec_Expression then
11867 Freeze_Itype (Slice_Subtype, N);
11869 -- For all other cases insert an itype reference in the slice's actions
11870 -- so that the itype is frozen at the proper place in the tree (i.e. at
11871 -- the point where actions for the slice are analyzed). Note that this
11872 -- is different from freezing the itype immediately, which might be
11873 -- premature (e.g. if the slice is within a transient scope). This needs
11874 -- to be done only if expansion is enabled.
11876 elsif Expander_Active then
11877 Ensure_Defined (Typ => Slice_Subtype, N => N);
11878 end if;
11879 end Set_Slice_Subtype;
11881 --------------------------------
11882 -- Set_String_Literal_Subtype --
11883 --------------------------------
11885 procedure Set_String_Literal_Subtype (N : Node_Id; Typ : Entity_Id) is
11886 Loc : constant Source_Ptr := Sloc (N);
11887 Low_Bound : constant Node_Id :=
11888 Type_Low_Bound (Etype (First_Index (Typ)));
11889 Subtype_Id : Entity_Id;
11891 begin
11892 if Nkind (N) /= N_String_Literal then
11893 return;
11894 end if;
11896 Subtype_Id := Create_Itype (E_String_Literal_Subtype, N);
11897 Set_String_Literal_Length (Subtype_Id, UI_From_Int
11898 (String_Length (Strval (N))));
11899 Set_Etype (Subtype_Id, Base_Type (Typ));
11900 Set_Is_Constrained (Subtype_Id);
11901 Set_Etype (N, Subtype_Id);
11903 -- The low bound is set from the low bound of the corresponding index
11904 -- type. Note that we do not store the high bound in the string literal
11905 -- subtype, but it can be deduced if necessary from the length and the
11906 -- low bound.
11908 if Is_OK_Static_Expression (Low_Bound) then
11909 Set_String_Literal_Low_Bound (Subtype_Id, Low_Bound);
11911 -- If the lower bound is not static we create a range for the string
11912 -- literal, using the index type and the known length of the literal.
11913 -- The index type is not necessarily Positive, so the upper bound is
11914 -- computed as T'Val (T'Pos (Low_Bound) + L - 1).
11916 else
11917 declare
11918 Index_List : constant List_Id := New_List;
11919 Index_Type : constant Entity_Id := Etype (First_Index (Typ));
11920 High_Bound : constant Node_Id :=
11921 Make_Attribute_Reference (Loc,
11922 Attribute_Name => Name_Val,
11923 Prefix =>
11924 New_Occurrence_Of (Index_Type, Loc),
11925 Expressions => New_List (
11926 Make_Op_Add (Loc,
11927 Left_Opnd =>
11928 Make_Attribute_Reference (Loc,
11929 Attribute_Name => Name_Pos,
11930 Prefix =>
11931 New_Occurrence_Of (Index_Type, Loc),
11932 Expressions =>
11933 New_List (New_Copy_Tree (Low_Bound))),
11934 Right_Opnd =>
11935 Make_Integer_Literal (Loc,
11936 String_Length (Strval (N)) - 1))));
11938 Array_Subtype : Entity_Id;
11939 Drange : Node_Id;
11940 Index : Node_Id;
11941 Index_Subtype : Entity_Id;
11943 begin
11944 if Is_Integer_Type (Index_Type) then
11945 Set_String_Literal_Low_Bound
11946 (Subtype_Id, Make_Integer_Literal (Loc, 1));
11948 else
11949 -- If the index type is an enumeration type, build bounds
11950 -- expression with attributes.
11952 Set_String_Literal_Low_Bound
11953 (Subtype_Id,
11954 Make_Attribute_Reference (Loc,
11955 Attribute_Name => Name_First,
11956 Prefix =>
11957 New_Occurrence_Of (Base_Type (Index_Type), Loc)));
11958 Set_Etype (String_Literal_Low_Bound (Subtype_Id), Index_Type);
11959 end if;
11961 Analyze_And_Resolve (String_Literal_Low_Bound (Subtype_Id));
11963 -- Build bona fide subtype for the string, and wrap it in an
11964 -- unchecked conversion, because the back end expects the
11965 -- String_Literal_Subtype to have a static lower bound.
11967 Index_Subtype :=
11968 Create_Itype (Subtype_Kind (Ekind (Index_Type)), N);
11969 Drange := Make_Range (Loc, New_Copy_Tree (Low_Bound), High_Bound);
11970 Set_Scalar_Range (Index_Subtype, Drange);
11971 Set_Parent (Drange, N);
11972 Analyze_And_Resolve (Drange, Index_Type);
11974 -- In this context, the Index_Type may already have a constraint,
11975 -- so use common base type on string subtype. The base type may
11976 -- be used when generating attributes of the string, for example
11977 -- in the context of a slice assignment.
11979 Set_Etype (Index_Subtype, Base_Type (Index_Type));
11980 Set_Size_Info (Index_Subtype, Index_Type);
11981 Set_RM_Size (Index_Subtype, RM_Size (Index_Type));
11983 Array_Subtype := Create_Itype (E_Array_Subtype, N);
11985 Index := New_Occurrence_Of (Index_Subtype, Loc);
11986 Set_Etype (Index, Index_Subtype);
11987 Append (Index, Index_List);
11989 Set_First_Index (Array_Subtype, Index);
11990 Set_Etype (Array_Subtype, Base_Type (Typ));
11991 Set_Is_Constrained (Array_Subtype, True);
11993 Rewrite (N,
11994 Make_Unchecked_Type_Conversion (Loc,
11995 Subtype_Mark => New_Occurrence_Of (Array_Subtype, Loc),
11996 Expression => Relocate_Node (N)));
11997 Set_Etype (N, Array_Subtype);
11998 end;
11999 end if;
12000 end Set_String_Literal_Subtype;
12002 ------------------------------
12003 -- Simplify_Type_Conversion --
12004 ------------------------------
12006 procedure Simplify_Type_Conversion (N : Node_Id) is
12007 begin
12008 if Nkind (N) = N_Type_Conversion then
12009 declare
12010 Operand : constant Node_Id := Expression (N);
12011 Target_Typ : constant Entity_Id := Etype (N);
12012 Opnd_Typ : constant Entity_Id := Etype (Operand);
12014 begin
12015 -- Special processing if the conversion is the expression of a
12016 -- Rounding or Truncation attribute reference. In this case we
12017 -- replace:
12019 -- ityp (ftyp'Rounding (x)) or ityp (ftyp'Truncation (x))
12021 -- by
12023 -- ityp (x)
12025 -- with the Float_Truncate flag set to False or True respectively,
12026 -- which is more efficient.
12028 if Is_Floating_Point_Type (Opnd_Typ)
12029 and then
12030 (Is_Integer_Type (Target_Typ)
12031 or else (Is_Fixed_Point_Type (Target_Typ)
12032 and then Conversion_OK (N)))
12033 and then Nkind (Operand) = N_Attribute_Reference
12034 and then Nam_In (Attribute_Name (Operand), Name_Rounding,
12035 Name_Truncation)
12036 then
12037 declare
12038 Truncate : constant Boolean :=
12039 Attribute_Name (Operand) = Name_Truncation;
12040 begin
12041 Rewrite (Operand,
12042 Relocate_Node (First (Expressions (Operand))));
12043 Set_Float_Truncate (N, Truncate);
12044 end;
12045 end if;
12046 end;
12047 end if;
12048 end Simplify_Type_Conversion;
12050 -----------------------------
12051 -- Unique_Fixed_Point_Type --
12052 -----------------------------
12054 function Unique_Fixed_Point_Type (N : Node_Id) return Entity_Id is
12055 procedure Fixed_Point_Error (T1 : Entity_Id; T2 : Entity_Id);
12056 -- Give error messages for true ambiguity. Messages are posted on node
12057 -- N, and entities T1, T2 are the possible interpretations.
12059 -----------------------
12060 -- Fixed_Point_Error --
12061 -----------------------
12063 procedure Fixed_Point_Error (T1 : Entity_Id; T2 : Entity_Id) is
12064 begin
12065 Error_Msg_N ("ambiguous universal_fixed_expression", N);
12066 Error_Msg_NE ("\\possible interpretation as}", N, T1);
12067 Error_Msg_NE ("\\possible interpretation as}", N, T2);
12068 end Fixed_Point_Error;
12070 -- Local variables
12072 ErrN : Node_Id;
12073 Item : Node_Id;
12074 Scop : Entity_Id;
12075 T1 : Entity_Id;
12076 T2 : Entity_Id;
12078 -- Start of processing for Unique_Fixed_Point_Type
12080 begin
12081 -- The operations on Duration are visible, so Duration is always a
12082 -- possible interpretation.
12084 T1 := Standard_Duration;
12086 -- Look for fixed-point types in enclosing scopes
12088 Scop := Current_Scope;
12089 while Scop /= Standard_Standard loop
12090 T2 := First_Entity (Scop);
12091 while Present (T2) loop
12092 if Is_Fixed_Point_Type (T2)
12093 and then Current_Entity (T2) = T2
12094 and then Scope (Base_Type (T2)) = Scop
12095 then
12096 if Present (T1) then
12097 Fixed_Point_Error (T1, T2);
12098 return Any_Type;
12099 else
12100 T1 := T2;
12101 end if;
12102 end if;
12104 Next_Entity (T2);
12105 end loop;
12107 Scop := Scope (Scop);
12108 end loop;
12110 -- Look for visible fixed type declarations in the context
12112 Item := First (Context_Items (Cunit (Current_Sem_Unit)));
12113 while Present (Item) loop
12114 if Nkind (Item) = N_With_Clause then
12115 Scop := Entity (Name (Item));
12116 T2 := First_Entity (Scop);
12117 while Present (T2) loop
12118 if Is_Fixed_Point_Type (T2)
12119 and then Scope (Base_Type (T2)) = Scop
12120 and then (Is_Potentially_Use_Visible (T2) or else In_Use (T2))
12121 then
12122 if Present (T1) then
12123 Fixed_Point_Error (T1, T2);
12124 return Any_Type;
12125 else
12126 T1 := T2;
12127 end if;
12128 end if;
12130 Next_Entity (T2);
12131 end loop;
12132 end if;
12134 Next (Item);
12135 end loop;
12137 if Nkind (N) = N_Real_Literal then
12138 Error_Msg_NE ("??real literal interpreted as }!", N, T1);
12140 else
12141 -- When the context is a type conversion, issue the warning on the
12142 -- expression of the conversion because it is the actual operation.
12144 if Nkind_In (N, N_Type_Conversion, N_Unchecked_Type_Conversion) then
12145 ErrN := Expression (N);
12146 else
12147 ErrN := N;
12148 end if;
12150 Error_Msg_NE
12151 ("??universal_fixed expression interpreted as }!", ErrN, T1);
12152 end if;
12154 return T1;
12155 end Unique_Fixed_Point_Type;
12157 ----------------------
12158 -- Valid_Conversion --
12159 ----------------------
12161 function Valid_Conversion
12162 (N : Node_Id;
12163 Target : Entity_Id;
12164 Operand : Node_Id;
12165 Report_Errs : Boolean := True) return Boolean
12167 Target_Type : constant Entity_Id := Base_Type (Target);
12168 Opnd_Type : Entity_Id := Etype (Operand);
12169 Inc_Ancestor : Entity_Id;
12171 function Conversion_Check
12172 (Valid : Boolean;
12173 Msg : String) return Boolean;
12174 -- Little routine to post Msg if Valid is False, returns Valid value
12176 procedure Conversion_Error_N (Msg : String; N : Node_Or_Entity_Id);
12177 -- If Report_Errs, then calls Errout.Error_Msg_N with its arguments
12179 procedure Conversion_Error_NE
12180 (Msg : String;
12181 N : Node_Or_Entity_Id;
12182 E : Node_Or_Entity_Id);
12183 -- If Report_Errs, then calls Errout.Error_Msg_NE with its arguments
12185 function In_Instance_Code return Boolean;
12186 -- Return True if expression is within an instance but is not in one of
12187 -- the actuals of the instantiation. Type conversions within an instance
12188 -- are not rechecked because type visbility may lead to spurious errors,
12189 -- but conversions in an actual for a formal object must be checked.
12191 function Valid_Tagged_Conversion
12192 (Target_Type : Entity_Id;
12193 Opnd_Type : Entity_Id) return Boolean;
12194 -- Specifically test for validity of tagged conversions
12196 function Valid_Array_Conversion return Boolean;
12197 -- Check index and component conformance, and accessibility levels if
12198 -- the component types are anonymous access types (Ada 2005).
12200 ----------------------
12201 -- Conversion_Check --
12202 ----------------------
12204 function Conversion_Check
12205 (Valid : Boolean;
12206 Msg : String) return Boolean
12208 begin
12209 if not Valid
12211 -- A generic unit has already been analyzed and we have verified
12212 -- that a particular conversion is OK in that context. Since the
12213 -- instance is reanalyzed without relying on the relationships
12214 -- established during the analysis of the generic, it is possible
12215 -- to end up with inconsistent views of private types. Do not emit
12216 -- the error message in such cases. The rest of the machinery in
12217 -- Valid_Conversion still ensures the proper compatibility of
12218 -- target and operand types.
12220 and then not In_Instance_Code
12221 then
12222 Conversion_Error_N (Msg, Operand);
12223 end if;
12225 return Valid;
12226 end Conversion_Check;
12228 ------------------------
12229 -- Conversion_Error_N --
12230 ------------------------
12232 procedure Conversion_Error_N (Msg : String; N : Node_Or_Entity_Id) is
12233 begin
12234 if Report_Errs then
12235 Error_Msg_N (Msg, N);
12236 end if;
12237 end Conversion_Error_N;
12239 -------------------------
12240 -- Conversion_Error_NE --
12241 -------------------------
12243 procedure Conversion_Error_NE
12244 (Msg : String;
12245 N : Node_Or_Entity_Id;
12246 E : Node_Or_Entity_Id)
12248 begin
12249 if Report_Errs then
12250 Error_Msg_NE (Msg, N, E);
12251 end if;
12252 end Conversion_Error_NE;
12254 ----------------------
12255 -- In_Instance_Code --
12256 ----------------------
12258 function In_Instance_Code return Boolean is
12259 Par : Node_Id;
12261 begin
12262 if not In_Instance then
12263 return False;
12265 else
12266 Par := Parent (N);
12267 while Present (Par) loop
12269 -- The expression is part of an actual object if it appears in
12270 -- the generated object declaration in the instance.
12272 if Nkind (Par) = N_Object_Declaration
12273 and then Present (Corresponding_Generic_Association (Par))
12274 then
12275 return False;
12277 else
12278 exit when
12279 Nkind (Par) in N_Statement_Other_Than_Procedure_Call
12280 or else Nkind (Par) in N_Subprogram_Call
12281 or else Nkind (Par) in N_Declaration;
12282 end if;
12284 Par := Parent (Par);
12285 end loop;
12287 -- Otherwise the expression appears within the instantiated unit
12289 return True;
12290 end if;
12291 end In_Instance_Code;
12293 ----------------------------
12294 -- Valid_Array_Conversion --
12295 ----------------------------
12297 function Valid_Array_Conversion return Boolean is
12298 Opnd_Comp_Type : constant Entity_Id := Component_Type (Opnd_Type);
12299 Opnd_Comp_Base : constant Entity_Id := Base_Type (Opnd_Comp_Type);
12301 Opnd_Index : Node_Id;
12302 Opnd_Index_Type : Entity_Id;
12304 Target_Comp_Type : constant Entity_Id :=
12305 Component_Type (Target_Type);
12306 Target_Comp_Base : constant Entity_Id :=
12307 Base_Type (Target_Comp_Type);
12309 Target_Index : Node_Id;
12310 Target_Index_Type : Entity_Id;
12312 begin
12313 -- Error if wrong number of dimensions
12316 Number_Dimensions (Target_Type) /= Number_Dimensions (Opnd_Type)
12317 then
12318 Conversion_Error_N
12319 ("incompatible number of dimensions for conversion", Operand);
12320 return False;
12322 -- Number of dimensions matches
12324 else
12325 -- Loop through indexes of the two arrays
12327 Target_Index := First_Index (Target_Type);
12328 Opnd_Index := First_Index (Opnd_Type);
12329 while Present (Target_Index) and then Present (Opnd_Index) loop
12330 Target_Index_Type := Etype (Target_Index);
12331 Opnd_Index_Type := Etype (Opnd_Index);
12333 -- Error if index types are incompatible
12335 if not (Is_Integer_Type (Target_Index_Type)
12336 and then Is_Integer_Type (Opnd_Index_Type))
12337 and then (Root_Type (Target_Index_Type)
12338 /= Root_Type (Opnd_Index_Type))
12339 then
12340 Conversion_Error_N
12341 ("incompatible index types for array conversion",
12342 Operand);
12343 return False;
12344 end if;
12346 Next_Index (Target_Index);
12347 Next_Index (Opnd_Index);
12348 end loop;
12350 -- If component types have same base type, all set
12352 if Target_Comp_Base = Opnd_Comp_Base then
12353 null;
12355 -- Here if base types of components are not the same. The only
12356 -- time this is allowed is if we have anonymous access types.
12358 -- The conversion of arrays of anonymous access types can lead
12359 -- to dangling pointers. AI-392 formalizes the accessibility
12360 -- checks that must be applied to such conversions to prevent
12361 -- out-of-scope references.
12363 elsif Ekind_In
12364 (Target_Comp_Base, E_Anonymous_Access_Type,
12365 E_Anonymous_Access_Subprogram_Type)
12366 and then Ekind (Opnd_Comp_Base) = Ekind (Target_Comp_Base)
12367 and then
12368 Subtypes_Statically_Match (Target_Comp_Type, Opnd_Comp_Type)
12369 then
12370 if Type_Access_Level (Target_Type) <
12371 Deepest_Type_Access_Level (Opnd_Type)
12372 then
12373 if In_Instance_Body then
12374 Error_Msg_Warn := SPARK_Mode /= On;
12375 Conversion_Error_N
12376 ("source array type has deeper accessibility "
12377 & "level than target<<", Operand);
12378 Conversion_Error_N ("\Program_Error [<<", Operand);
12379 Rewrite (N,
12380 Make_Raise_Program_Error (Sloc (N),
12381 Reason => PE_Accessibility_Check_Failed));
12382 Set_Etype (N, Target_Type);
12383 return False;
12385 -- Conversion not allowed because of accessibility levels
12387 else
12388 Conversion_Error_N
12389 ("source array type has deeper accessibility "
12390 & "level than target", Operand);
12391 return False;
12392 end if;
12394 else
12395 null;
12396 end if;
12398 -- All other cases where component base types do not match
12400 else
12401 Conversion_Error_N
12402 ("incompatible component types for array conversion",
12403 Operand);
12404 return False;
12405 end if;
12407 -- Check that component subtypes statically match. For numeric
12408 -- types this means that both must be either constrained or
12409 -- unconstrained. For enumeration types the bounds must match.
12410 -- All of this is checked in Subtypes_Statically_Match.
12412 if not Subtypes_Statically_Match
12413 (Target_Comp_Type, Opnd_Comp_Type)
12414 then
12415 Conversion_Error_N
12416 ("component subtypes must statically match", Operand);
12417 return False;
12418 end if;
12419 end if;
12421 return True;
12422 end Valid_Array_Conversion;
12424 -----------------------------
12425 -- Valid_Tagged_Conversion --
12426 -----------------------------
12428 function Valid_Tagged_Conversion
12429 (Target_Type : Entity_Id;
12430 Opnd_Type : Entity_Id) return Boolean
12432 begin
12433 -- Upward conversions are allowed (RM 4.6(22))
12435 if Covers (Target_Type, Opnd_Type)
12436 or else Is_Ancestor (Target_Type, Opnd_Type)
12437 then
12438 return True;
12440 -- Downward conversion are allowed if the operand is class-wide
12441 -- (RM 4.6(23)).
12443 elsif Is_Class_Wide_Type (Opnd_Type)
12444 and then Covers (Opnd_Type, Target_Type)
12445 then
12446 return True;
12448 elsif Covers (Opnd_Type, Target_Type)
12449 or else Is_Ancestor (Opnd_Type, Target_Type)
12450 then
12451 return
12452 Conversion_Check (False,
12453 "downward conversion of tagged objects not allowed");
12455 -- Ada 2005 (AI-251): The conversion to/from interface types is
12456 -- always valid. The types involved may be class-wide (sub)types.
12458 elsif Is_Interface (Etype (Base_Type (Target_Type)))
12459 or else Is_Interface (Etype (Base_Type (Opnd_Type)))
12460 then
12461 return True;
12463 -- If the operand is a class-wide type obtained through a limited_
12464 -- with clause, and the context includes the nonlimited view, use
12465 -- it to determine whether the conversion is legal.
12467 elsif Is_Class_Wide_Type (Opnd_Type)
12468 and then From_Limited_With (Opnd_Type)
12469 and then Present (Non_Limited_View (Etype (Opnd_Type)))
12470 and then Is_Interface (Non_Limited_View (Etype (Opnd_Type)))
12471 then
12472 return True;
12474 elsif Is_Access_Type (Opnd_Type)
12475 and then Is_Interface (Directly_Designated_Type (Opnd_Type))
12476 then
12477 return True;
12479 else
12480 Conversion_Error_NE
12481 ("invalid tagged conversion, not compatible with}",
12482 N, First_Subtype (Opnd_Type));
12483 return False;
12484 end if;
12485 end Valid_Tagged_Conversion;
12487 -- Start of processing for Valid_Conversion
12489 begin
12490 Check_Parameterless_Call (Operand);
12492 if Is_Overloaded (Operand) then
12493 declare
12494 I : Interp_Index;
12495 I1 : Interp_Index;
12496 It : Interp;
12497 It1 : Interp;
12498 N1 : Entity_Id;
12499 T1 : Entity_Id;
12501 begin
12502 -- Remove procedure calls, which syntactically cannot appear in
12503 -- this context, but which cannot be removed by type checking,
12504 -- because the context does not impose a type.
12506 -- The node may be labelled overloaded, but still contain only one
12507 -- interpretation because others were discarded earlier. If this
12508 -- is the case, retain the single interpretation if legal.
12510 Get_First_Interp (Operand, I, It);
12511 Opnd_Type := It.Typ;
12512 Get_Next_Interp (I, It);
12514 if Present (It.Typ)
12515 and then Opnd_Type /= Standard_Void_Type
12516 then
12517 -- More than one candidate interpretation is available
12519 Get_First_Interp (Operand, I, It);
12520 while Present (It.Typ) loop
12521 if It.Typ = Standard_Void_Type then
12522 Remove_Interp (I);
12523 end if;
12525 -- When compiling for a system where Address is of a visible
12526 -- integer type, spurious ambiguities can be produced when
12527 -- arithmetic operations have a literal operand and return
12528 -- System.Address or a descendant of it. These ambiguities
12529 -- are usually resolved by the context, but for conversions
12530 -- there is no context type and the removal of the spurious
12531 -- operations must be done explicitly here.
12533 if not Address_Is_Private
12534 and then Is_Descendant_Of_Address (It.Typ)
12535 then
12536 Remove_Interp (I);
12537 end if;
12539 Get_Next_Interp (I, It);
12540 end loop;
12541 end if;
12543 Get_First_Interp (Operand, I, It);
12544 I1 := I;
12545 It1 := It;
12547 if No (It.Typ) then
12548 Conversion_Error_N ("illegal operand in conversion", Operand);
12549 return False;
12550 end if;
12552 Get_Next_Interp (I, It);
12554 if Present (It.Typ) then
12555 N1 := It1.Nam;
12556 T1 := It1.Typ;
12557 It1 := Disambiguate (Operand, I1, I, Any_Type);
12559 if It1 = No_Interp then
12560 Conversion_Error_N
12561 ("ambiguous operand in conversion", Operand);
12563 -- If the interpretation involves a standard operator, use
12564 -- the location of the type, which may be user-defined.
12566 if Sloc (It.Nam) = Standard_Location then
12567 Error_Msg_Sloc := Sloc (It.Typ);
12568 else
12569 Error_Msg_Sloc := Sloc (It.Nam);
12570 end if;
12572 Conversion_Error_N -- CODEFIX
12573 ("\\possible interpretation#!", Operand);
12575 if Sloc (N1) = Standard_Location then
12576 Error_Msg_Sloc := Sloc (T1);
12577 else
12578 Error_Msg_Sloc := Sloc (N1);
12579 end if;
12581 Conversion_Error_N -- CODEFIX
12582 ("\\possible interpretation#!", Operand);
12584 return False;
12585 end if;
12586 end if;
12588 Set_Etype (Operand, It1.Typ);
12589 Opnd_Type := It1.Typ;
12590 end;
12591 end if;
12593 -- Deal with conversion of integer type to address if the pragma
12594 -- Allow_Integer_Address is in effect. We convert the conversion to
12595 -- an unchecked conversion in this case and we are all done.
12597 if Address_Integer_Convert_OK (Opnd_Type, Target_Type) then
12598 Rewrite (N, Unchecked_Convert_To (Target_Type, Expression (N)));
12599 Analyze_And_Resolve (N, Target_Type);
12600 return True;
12601 end if;
12603 -- If we are within a child unit, check whether the type of the
12604 -- expression has an ancestor in a parent unit, in which case it
12605 -- belongs to its derivation class even if the ancestor is private.
12606 -- See RM 7.3.1 (5.2/3).
12608 Inc_Ancestor := Get_Incomplete_View_Of_Ancestor (Opnd_Type);
12610 -- Numeric types
12612 if Is_Numeric_Type (Target_Type) then
12614 -- A universal fixed expression can be converted to any numeric type
12616 if Opnd_Type = Universal_Fixed then
12617 return True;
12619 -- Also no need to check when in an instance or inlined body, because
12620 -- the legality has been established when the template was analyzed.
12621 -- Furthermore, numeric conversions may occur where only a private
12622 -- view of the operand type is visible at the instantiation point.
12623 -- This results in a spurious error if we check that the operand type
12624 -- is a numeric type.
12626 -- Note: in a previous version of this unit, the following tests were
12627 -- applied only for generated code (Comes_From_Source set to False),
12628 -- but in fact the test is required for source code as well, since
12629 -- this situation can arise in source code.
12631 elsif In_Instance_Code or else In_Inlined_Body then
12632 return True;
12634 -- Otherwise we need the conversion check
12636 else
12637 return Conversion_Check
12638 (Is_Numeric_Type (Opnd_Type)
12639 or else
12640 (Present (Inc_Ancestor)
12641 and then Is_Numeric_Type (Inc_Ancestor)),
12642 "illegal operand for numeric conversion");
12643 end if;
12645 -- Array types
12647 elsif Is_Array_Type (Target_Type) then
12648 if not Is_Array_Type (Opnd_Type)
12649 or else Opnd_Type = Any_Composite
12650 or else Opnd_Type = Any_String
12651 then
12652 Conversion_Error_N
12653 ("illegal operand for array conversion", Operand);
12654 return False;
12656 else
12657 return Valid_Array_Conversion;
12658 end if;
12660 -- Ada 2005 (AI-251): Internally generated conversions of access to
12661 -- interface types added to force the displacement of the pointer to
12662 -- reference the corresponding dispatch table.
12664 elsif not Comes_From_Source (N)
12665 and then Is_Access_Type (Target_Type)
12666 and then Is_Interface (Designated_Type (Target_Type))
12667 then
12668 return True;
12670 -- Ada 2005 (AI-251): Anonymous access types where target references an
12671 -- interface type.
12673 elsif Is_Access_Type (Opnd_Type)
12674 and then Ekind_In (Target_Type, E_General_Access_Type,
12675 E_Anonymous_Access_Type)
12676 and then Is_Interface (Directly_Designated_Type (Target_Type))
12677 then
12678 -- Check the static accessibility rule of 4.6(17). Note that the
12679 -- check is not enforced when within an instance body, since the
12680 -- RM requires such cases to be caught at run time.
12682 -- If the operand is a rewriting of an allocator no check is needed
12683 -- because there are no accessibility issues.
12685 if Nkind (Original_Node (N)) = N_Allocator then
12686 null;
12688 elsif Ekind (Target_Type) /= E_Anonymous_Access_Type then
12689 if Type_Access_Level (Opnd_Type) >
12690 Deepest_Type_Access_Level (Target_Type)
12691 then
12692 -- In an instance, this is a run-time check, but one we know
12693 -- will fail, so generate an appropriate warning. The raise
12694 -- will be generated by Expand_N_Type_Conversion.
12696 if In_Instance_Body then
12697 Error_Msg_Warn := SPARK_Mode /= On;
12698 Conversion_Error_N
12699 ("cannot convert local pointer to non-local access type<<",
12700 Operand);
12701 Conversion_Error_N ("\Program_Error [<<", Operand);
12703 else
12704 Conversion_Error_N
12705 ("cannot convert local pointer to non-local access type",
12706 Operand);
12707 return False;
12708 end if;
12710 -- Special accessibility checks are needed in the case of access
12711 -- discriminants declared for a limited type.
12713 elsif Ekind (Opnd_Type) = E_Anonymous_Access_Type
12714 and then not Is_Local_Anonymous_Access (Opnd_Type)
12715 then
12716 -- When the operand is a selected access discriminant the check
12717 -- needs to be made against the level of the object denoted by
12718 -- the prefix of the selected name (Object_Access_Level handles
12719 -- checking the prefix of the operand for this case).
12721 if Nkind (Operand) = N_Selected_Component
12722 and then Object_Access_Level (Operand) >
12723 Deepest_Type_Access_Level (Target_Type)
12724 then
12725 -- In an instance, this is a run-time check, but one we know
12726 -- will fail, so generate an appropriate warning. The raise
12727 -- will be generated by Expand_N_Type_Conversion.
12729 if In_Instance_Body then
12730 Error_Msg_Warn := SPARK_Mode /= On;
12731 Conversion_Error_N
12732 ("cannot convert access discriminant to non-local "
12733 & "access type<<", Operand);
12734 Conversion_Error_N ("\Program_Error [<<", Operand);
12736 -- Real error if not in instance body
12738 else
12739 Conversion_Error_N
12740 ("cannot convert access discriminant to non-local "
12741 & "access type", Operand);
12742 return False;
12743 end if;
12744 end if;
12746 -- The case of a reference to an access discriminant from
12747 -- within a limited type declaration (which will appear as
12748 -- a discriminal) is always illegal because the level of the
12749 -- discriminant is considered to be deeper than any (nameable)
12750 -- access type.
12752 if Is_Entity_Name (Operand)
12753 and then not Is_Local_Anonymous_Access (Opnd_Type)
12754 and then
12755 Ekind_In (Entity (Operand), E_In_Parameter, E_Constant)
12756 and then Present (Discriminal_Link (Entity (Operand)))
12757 then
12758 Conversion_Error_N
12759 ("discriminant has deeper accessibility level than target",
12760 Operand);
12761 return False;
12762 end if;
12763 end if;
12764 end if;
12766 return True;
12768 -- General and anonymous access types
12770 elsif Ekind_In (Target_Type, E_General_Access_Type,
12771 E_Anonymous_Access_Type)
12772 and then
12773 Conversion_Check
12774 (Is_Access_Type (Opnd_Type)
12775 and then not
12776 Ekind_In (Opnd_Type, E_Access_Subprogram_Type,
12777 E_Access_Protected_Subprogram_Type),
12778 "must be an access-to-object type")
12779 then
12780 if Is_Access_Constant (Opnd_Type)
12781 and then not Is_Access_Constant (Target_Type)
12782 then
12783 Conversion_Error_N
12784 ("access-to-constant operand type not allowed", Operand);
12785 return False;
12786 end if;
12788 -- Check the static accessibility rule of 4.6(17). Note that the
12789 -- check is not enforced when within an instance body, since the RM
12790 -- requires such cases to be caught at run time.
12792 if Ekind (Target_Type) /= E_Anonymous_Access_Type
12793 or else Is_Local_Anonymous_Access (Target_Type)
12794 or else Nkind (Associated_Node_For_Itype (Target_Type)) =
12795 N_Object_Declaration
12796 then
12797 -- Ada 2012 (AI05-0149): Perform legality checking on implicit
12798 -- conversions from an anonymous access type to a named general
12799 -- access type. Such conversions are not allowed in the case of
12800 -- access parameters and stand-alone objects of an anonymous
12801 -- access type. The implicit conversion case is recognized by
12802 -- testing that Comes_From_Source is False and that it's been
12803 -- rewritten. The Comes_From_Source test isn't sufficient because
12804 -- nodes in inlined calls to predefined library routines can have
12805 -- Comes_From_Source set to False. (Is there a better way to test
12806 -- for implicit conversions???)
12808 if Ada_Version >= Ada_2012
12809 and then not Comes_From_Source (N)
12810 and then Is_Rewrite_Substitution (N)
12811 and then Ekind (Target_Type) = E_General_Access_Type
12812 and then Ekind (Opnd_Type) = E_Anonymous_Access_Type
12813 then
12814 if Is_Itype (Opnd_Type) then
12816 -- Implicit conversions aren't allowed for objects of an
12817 -- anonymous access type, since such objects have nonstatic
12818 -- levels in Ada 2012.
12820 if Nkind (Associated_Node_For_Itype (Opnd_Type)) =
12821 N_Object_Declaration
12822 then
12823 Conversion_Error_N
12824 ("implicit conversion of stand-alone anonymous "
12825 & "access object not allowed", Operand);
12826 return False;
12828 -- Implicit conversions aren't allowed for anonymous access
12829 -- parameters. The "not Is_Local_Anonymous_Access_Type" test
12830 -- is done to exclude anonymous access results.
12832 elsif not Is_Local_Anonymous_Access (Opnd_Type)
12833 and then Nkind_In (Associated_Node_For_Itype (Opnd_Type),
12834 N_Function_Specification,
12835 N_Procedure_Specification)
12836 then
12837 Conversion_Error_N
12838 ("implicit conversion of anonymous access formal "
12839 & "not allowed", Operand);
12840 return False;
12842 -- This is a case where there's an enclosing object whose
12843 -- to which the "statically deeper than" relationship does
12844 -- not apply (such as an access discriminant selected from
12845 -- a dereference of an access parameter).
12847 elsif Object_Access_Level (Operand)
12848 = Scope_Depth (Standard_Standard)
12849 then
12850 Conversion_Error_N
12851 ("implicit conversion of anonymous access value "
12852 & "not allowed", Operand);
12853 return False;
12855 -- In other cases, the level of the operand's type must be
12856 -- statically less deep than that of the target type, else
12857 -- implicit conversion is disallowed (by RM12-8.6(27.1/3)).
12859 elsif Type_Access_Level (Opnd_Type) >
12860 Deepest_Type_Access_Level (Target_Type)
12861 then
12862 Conversion_Error_N
12863 ("implicit conversion of anonymous access value "
12864 & "violates accessibility", Operand);
12865 return False;
12866 end if;
12867 end if;
12869 elsif Type_Access_Level (Opnd_Type) >
12870 Deepest_Type_Access_Level (Target_Type)
12871 then
12872 -- In an instance, this is a run-time check, but one we know
12873 -- will fail, so generate an appropriate warning. The raise
12874 -- will be generated by Expand_N_Type_Conversion.
12876 if In_Instance_Body then
12877 Error_Msg_Warn := SPARK_Mode /= On;
12878 Conversion_Error_N
12879 ("cannot convert local pointer to non-local access type<<",
12880 Operand);
12881 Conversion_Error_N ("\Program_Error [<<", Operand);
12883 -- If not in an instance body, this is a real error
12885 else
12886 -- Avoid generation of spurious error message
12888 if not Error_Posted (N) then
12889 Conversion_Error_N
12890 ("cannot convert local pointer to non-local access type",
12891 Operand);
12892 end if;
12894 return False;
12895 end if;
12897 -- Special accessibility checks are needed in the case of access
12898 -- discriminants declared for a limited type.
12900 elsif Ekind (Opnd_Type) = E_Anonymous_Access_Type
12901 and then not Is_Local_Anonymous_Access (Opnd_Type)
12902 then
12903 -- When the operand is a selected access discriminant the check
12904 -- needs to be made against the level of the object denoted by
12905 -- the prefix of the selected name (Object_Access_Level handles
12906 -- checking the prefix of the operand for this case).
12908 if Nkind (Operand) = N_Selected_Component
12909 and then Object_Access_Level (Operand) >
12910 Deepest_Type_Access_Level (Target_Type)
12911 then
12912 -- In an instance, this is a run-time check, but one we know
12913 -- will fail, so generate an appropriate warning. The raise
12914 -- will be generated by Expand_N_Type_Conversion.
12916 if In_Instance_Body then
12917 Error_Msg_Warn := SPARK_Mode /= On;
12918 Conversion_Error_N
12919 ("cannot convert access discriminant to non-local "
12920 & "access type<<", Operand);
12921 Conversion_Error_N ("\Program_Error [<<", Operand);
12923 -- If not in an instance body, this is a real error
12925 else
12926 Conversion_Error_N
12927 ("cannot convert access discriminant to non-local "
12928 & "access type", Operand);
12929 return False;
12930 end if;
12931 end if;
12933 -- The case of a reference to an access discriminant from
12934 -- within a limited type declaration (which will appear as
12935 -- a discriminal) is always illegal because the level of the
12936 -- discriminant is considered to be deeper than any (nameable)
12937 -- access type.
12939 if Is_Entity_Name (Operand)
12940 and then
12941 Ekind_In (Entity (Operand), E_In_Parameter, E_Constant)
12942 and then Present (Discriminal_Link (Entity (Operand)))
12943 then
12944 Conversion_Error_N
12945 ("discriminant has deeper accessibility level than target",
12946 Operand);
12947 return False;
12948 end if;
12949 end if;
12950 end if;
12952 -- In the presence of limited_with clauses we have to use nonlimited
12953 -- views, if available.
12955 Check_Limited : declare
12956 function Full_Designated_Type (T : Entity_Id) return Entity_Id;
12957 -- Helper function to handle limited views
12959 --------------------------
12960 -- Full_Designated_Type --
12961 --------------------------
12963 function Full_Designated_Type (T : Entity_Id) return Entity_Id is
12964 Desig : constant Entity_Id := Designated_Type (T);
12966 begin
12967 -- Handle the limited view of a type
12969 if From_Limited_With (Desig)
12970 and then Has_Non_Limited_View (Desig)
12971 then
12972 return Available_View (Desig);
12973 else
12974 return Desig;
12975 end if;
12976 end Full_Designated_Type;
12978 -- Local Declarations
12980 Target : constant Entity_Id := Full_Designated_Type (Target_Type);
12981 Opnd : constant Entity_Id := Full_Designated_Type (Opnd_Type);
12983 Same_Base : constant Boolean :=
12984 Base_Type (Target) = Base_Type (Opnd);
12986 -- Start of processing for Check_Limited
12988 begin
12989 if Is_Tagged_Type (Target) then
12990 return Valid_Tagged_Conversion (Target, Opnd);
12992 else
12993 if not Same_Base then
12994 Conversion_Error_NE
12995 ("target designated type not compatible with }",
12996 N, Base_Type (Opnd));
12997 return False;
12999 -- Ada 2005 AI-384: legality rule is symmetric in both
13000 -- designated types. The conversion is legal (with possible
13001 -- constraint check) if either designated type is
13002 -- unconstrained.
13004 elsif Subtypes_Statically_Match (Target, Opnd)
13005 or else
13006 (Has_Discriminants (Target)
13007 and then
13008 (not Is_Constrained (Opnd)
13009 or else not Is_Constrained (Target)))
13010 then
13011 -- Special case, if Value_Size has been used to make the
13012 -- sizes different, the conversion is not allowed even
13013 -- though the subtypes statically match.
13015 if Known_Static_RM_Size (Target)
13016 and then Known_Static_RM_Size (Opnd)
13017 and then RM_Size (Target) /= RM_Size (Opnd)
13018 then
13019 Conversion_Error_NE
13020 ("target designated subtype not compatible with }",
13021 N, Opnd);
13022 Conversion_Error_NE
13023 ("\because sizes of the two designated subtypes differ",
13024 N, Opnd);
13025 return False;
13027 -- Normal case where conversion is allowed
13029 else
13030 return True;
13031 end if;
13033 else
13034 Error_Msg_NE
13035 ("target designated subtype not compatible with }",
13036 N, Opnd);
13037 return False;
13038 end if;
13039 end if;
13040 end Check_Limited;
13042 -- Access to subprogram types. If the operand is an access parameter,
13043 -- the type has a deeper accessibility that any master, and cannot be
13044 -- assigned. We must make an exception if the conversion is part of an
13045 -- assignment and the target is the return object of an extended return
13046 -- statement, because in that case the accessibility check takes place
13047 -- after the return.
13049 elsif Is_Access_Subprogram_Type (Target_Type)
13051 -- Note: this test of Opnd_Type is there to prevent entering this
13052 -- branch in the case of a remote access to subprogram type, which
13053 -- is internally represented as an E_Record_Type.
13055 and then Is_Access_Type (Opnd_Type)
13056 then
13057 if Ekind (Base_Type (Opnd_Type)) = E_Anonymous_Access_Subprogram_Type
13058 and then Is_Entity_Name (Operand)
13059 and then Ekind (Entity (Operand)) = E_In_Parameter
13060 and then
13061 (Nkind (Parent (N)) /= N_Assignment_Statement
13062 or else not Is_Entity_Name (Name (Parent (N)))
13063 or else not Is_Return_Object (Entity (Name (Parent (N)))))
13064 then
13065 Conversion_Error_N
13066 ("illegal attempt to store anonymous access to subprogram",
13067 Operand);
13068 Conversion_Error_N
13069 ("\value has deeper accessibility than any master "
13070 & "(RM 3.10.2 (13))",
13071 Operand);
13073 Error_Msg_NE
13074 ("\use named access type for& instead of access parameter",
13075 Operand, Entity (Operand));
13076 end if;
13078 -- Check that the designated types are subtype conformant
13080 Check_Subtype_Conformant (New_Id => Designated_Type (Target_Type),
13081 Old_Id => Designated_Type (Opnd_Type),
13082 Err_Loc => N);
13084 -- Check the static accessibility rule of 4.6(20)
13086 if Type_Access_Level (Opnd_Type) >
13087 Deepest_Type_Access_Level (Target_Type)
13088 then
13089 Conversion_Error_N
13090 ("operand type has deeper accessibility level than target",
13091 Operand);
13093 -- Check that if the operand type is declared in a generic body,
13094 -- then the target type must be declared within that same body
13095 -- (enforces last sentence of 4.6(20)).
13097 elsif Present (Enclosing_Generic_Body (Opnd_Type)) then
13098 declare
13099 O_Gen : constant Node_Id :=
13100 Enclosing_Generic_Body (Opnd_Type);
13102 T_Gen : Node_Id;
13104 begin
13105 T_Gen := Enclosing_Generic_Body (Target_Type);
13106 while Present (T_Gen) and then T_Gen /= O_Gen loop
13107 T_Gen := Enclosing_Generic_Body (T_Gen);
13108 end loop;
13110 if T_Gen /= O_Gen then
13111 Conversion_Error_N
13112 ("target type must be declared in same generic body "
13113 & "as operand type", N);
13114 end if;
13115 end;
13116 end if;
13118 return True;
13120 -- Remote access to subprogram types
13122 elsif Is_Remote_Access_To_Subprogram_Type (Target_Type)
13123 and then Is_Remote_Access_To_Subprogram_Type (Opnd_Type)
13124 then
13125 -- It is valid to convert from one RAS type to another provided
13126 -- that their specification statically match.
13128 -- Note: at this point, remote access to subprogram types have been
13129 -- expanded to their E_Record_Type representation, and we need to
13130 -- go back to the original access type definition using the
13131 -- Corresponding_Remote_Type attribute in order to check that the
13132 -- designated profiles match.
13134 pragma Assert (Ekind (Target_Type) = E_Record_Type);
13135 pragma Assert (Ekind (Opnd_Type) = E_Record_Type);
13137 Check_Subtype_Conformant
13138 (New_Id =>
13139 Designated_Type (Corresponding_Remote_Type (Target_Type)),
13140 Old_Id =>
13141 Designated_Type (Corresponding_Remote_Type (Opnd_Type)),
13142 Err_Loc =>
13144 return True;
13146 -- If it was legal in the generic, it's legal in the instance
13148 elsif In_Instance_Body then
13149 return True;
13151 -- If both are tagged types, check legality of view conversions
13153 elsif Is_Tagged_Type (Target_Type)
13154 and then
13155 Is_Tagged_Type (Opnd_Type)
13156 then
13157 return Valid_Tagged_Conversion (Target_Type, Opnd_Type);
13159 -- Types derived from the same root type are convertible
13161 elsif Root_Type (Target_Type) = Root_Type (Opnd_Type) then
13162 return True;
13164 -- In an instance or an inlined body, there may be inconsistent views of
13165 -- the same type, or of types derived from a common root.
13167 elsif (In_Instance or In_Inlined_Body)
13168 and then
13169 Root_Type (Underlying_Type (Target_Type)) =
13170 Root_Type (Underlying_Type (Opnd_Type))
13171 then
13172 return True;
13174 -- Special check for common access type error case
13176 elsif Ekind (Target_Type) = E_Access_Type
13177 and then Is_Access_Type (Opnd_Type)
13178 then
13179 Conversion_Error_N ("target type must be general access type!", N);
13180 Conversion_Error_NE -- CODEFIX
13181 ("add ALL to }!", N, Target_Type);
13182 return False;
13184 -- Here we have a real conversion error
13186 else
13187 -- Check for missing regular with_clause when only a limited view of
13188 -- target is available.
13190 if From_Limited_With (Opnd_Type) and then In_Package_Body then
13191 Conversion_Error_NE
13192 ("invalid conversion, not compatible with limited view of }",
13193 N, Opnd_Type);
13194 Conversion_Error_NE
13195 ("\add with_clause for& to current unit!", N, Scope (Opnd_Type));
13197 elsif Is_Access_Type (Opnd_Type)
13198 and then From_Limited_With (Designated_Type (Opnd_Type))
13199 and then In_Package_Body
13200 then
13201 Conversion_Error_NE
13202 ("invalid conversion, not compatible with }", N, Opnd_Type);
13203 Conversion_Error_NE
13204 ("\add with_clause for& to current unit!",
13205 N, Scope (Designated_Type (Opnd_Type)));
13207 else
13208 Conversion_Error_NE
13209 ("invalid conversion, not compatible with }", N, Opnd_Type);
13210 end if;
13212 return False;
13213 end if;
13214 end Valid_Conversion;
13216 end Sem_Res;