* config/darwin.c (machopic_validate_stub_or_non_lazy_ptr): Mark
[official-gcc.git] / gcc / fold-const.c
blob31bf7fd649f72d1c56c0288c0d17f380d0fd8d8c
1 /* Fold a constant sub-tree into a single node for C-compiler
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
3 2000, 2001, 2002, 2003, 2004 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
22 /*@@ This file should be rewritten to use an arbitrary precision
23 @@ representation for "struct tree_int_cst" and "struct tree_real_cst".
24 @@ Perhaps the routines could also be used for bc/dc, and made a lib.
25 @@ The routines that translate from the ap rep should
26 @@ warn if precision et. al. is lost.
27 @@ This would also make life easier when this technology is used
28 @@ for cross-compilers. */
30 /* The entry points in this file are fold, size_int_wide, size_binop
31 and force_fit_type.
33 fold takes a tree as argument and returns a simplified tree.
35 size_binop takes a tree code for an arithmetic operation
36 and two operands that are trees, and produces a tree for the
37 result, assuming the type comes from `sizetype'.
39 size_int takes an integer value, and creates a tree constant
40 with type from `sizetype'.
42 force_fit_type takes a constant, an overflowable flag and prior
43 overflow indicators. It forces the value to fit the type and sets
44 TREE_OVERFLOW and TREE_CONSTANT_OVERFLOW as appropriate. */
46 #include "config.h"
47 #include "system.h"
48 #include "coretypes.h"
49 #include "tm.h"
50 #include "flags.h"
51 #include "tree.h"
52 #include "real.h"
53 #include "rtl.h"
54 #include "expr.h"
55 #include "tm_p.h"
56 #include "toplev.h"
57 #include "ggc.h"
58 #include "hashtab.h"
59 #include "langhooks.h"
60 #include "md5.h"
62 /* The following constants represent a bit based encoding of GCC's
63 comparison operators. This encoding simplifies transformations
64 on relational comparison operators, such as AND and OR. */
65 enum comparison_code {
66 COMPCODE_FALSE = 0,
67 COMPCODE_LT = 1,
68 COMPCODE_EQ = 2,
69 COMPCODE_LE = 3,
70 COMPCODE_GT = 4,
71 COMPCODE_LTGT = 5,
72 COMPCODE_GE = 6,
73 COMPCODE_ORD = 7,
74 COMPCODE_UNORD = 8,
75 COMPCODE_UNLT = 9,
76 COMPCODE_UNEQ = 10,
77 COMPCODE_UNLE = 11,
78 COMPCODE_UNGT = 12,
79 COMPCODE_NE = 13,
80 COMPCODE_UNGE = 14,
81 COMPCODE_TRUE = 15
84 static void encode (HOST_WIDE_INT *, unsigned HOST_WIDE_INT, HOST_WIDE_INT);
85 static void decode (HOST_WIDE_INT *, unsigned HOST_WIDE_INT *, HOST_WIDE_INT *);
86 static bool negate_mathfn_p (enum built_in_function);
87 static bool negate_expr_p (tree);
88 static tree negate_expr (tree);
89 static tree split_tree (tree, enum tree_code, tree *, tree *, tree *, int);
90 static tree associate_trees (tree, tree, enum tree_code, tree);
91 static tree const_binop (enum tree_code, tree, tree, int);
92 static tree build_zero_vector (tree);
93 static tree fold_convert_const (enum tree_code, tree, tree);
94 static enum tree_code invert_tree_comparison (enum tree_code, bool);
95 static enum comparison_code comparison_to_compcode (enum tree_code);
96 static enum tree_code compcode_to_comparison (enum comparison_code);
97 static tree combine_comparisons (enum tree_code, enum tree_code,
98 enum tree_code, tree, tree, tree);
99 static int truth_value_p (enum tree_code);
100 static int operand_equal_for_comparison_p (tree, tree, tree);
101 static int twoval_comparison_p (tree, tree *, tree *, int *);
102 static tree eval_subst (tree, tree, tree, tree, tree);
103 static tree pedantic_omit_one_operand (tree, tree, tree);
104 static tree distribute_bit_expr (enum tree_code, tree, tree, tree);
105 static tree make_bit_field_ref (tree, tree, int, int, int);
106 static tree optimize_bit_field_compare (enum tree_code, tree, tree, tree);
107 static tree decode_field_reference (tree, HOST_WIDE_INT *, HOST_WIDE_INT *,
108 enum machine_mode *, int *, int *,
109 tree *, tree *);
110 static int all_ones_mask_p (tree, int);
111 static tree sign_bit_p (tree, tree);
112 static int simple_operand_p (tree);
113 static tree range_binop (enum tree_code, tree, tree, int, tree, int);
114 static tree make_range (tree, int *, tree *, tree *);
115 static tree build_range_check (tree, tree, int, tree, tree);
116 static int merge_ranges (int *, tree *, tree *, int, tree, tree, int, tree,
117 tree);
118 static tree fold_range_test (tree);
119 static tree fold_cond_expr_with_comparison (tree, tree, tree, tree);
120 static tree unextend (tree, int, int, tree);
121 static tree fold_truthop (enum tree_code, tree, tree, tree);
122 static tree optimize_minmax_comparison (tree);
123 static tree extract_muldiv (tree, tree, enum tree_code, tree);
124 static tree extract_muldiv_1 (tree, tree, enum tree_code, tree);
125 static int multiple_of_p (tree, tree, tree);
126 static tree fold_binary_op_with_conditional_arg (enum tree_code, tree, tree,
127 tree, int);
128 static bool fold_real_zero_addition_p (tree, tree, int);
129 static tree fold_mathfn_compare (enum built_in_function, enum tree_code,
130 tree, tree, tree);
131 static tree fold_inf_compare (enum tree_code, tree, tree, tree);
132 static tree fold_div_compare (enum tree_code, tree, tree, tree);
133 static bool reorder_operands_p (tree, tree);
134 static tree fold_negate_const (tree, tree);
135 static tree fold_not_const (tree, tree);
136 static tree fold_relational_const (enum tree_code, tree, tree, tree);
137 static tree fold_relational_hi_lo (enum tree_code *, const tree,
138 tree *, tree *);
139 static bool tree_expr_nonzero_p (tree);
141 /* We know that A1 + B1 = SUM1, using 2's complement arithmetic and ignoring
142 overflow. Suppose A, B and SUM have the same respective signs as A1, B1,
143 and SUM1. Then this yields nonzero if overflow occurred during the
144 addition.
146 Overflow occurs if A and B have the same sign, but A and SUM differ in
147 sign. Use `^' to test whether signs differ, and `< 0' to isolate the
148 sign. */
149 #define OVERFLOW_SUM_SIGN(a, b, sum) ((~((a) ^ (b)) & ((a) ^ (sum))) < 0)
151 /* To do constant folding on INTEGER_CST nodes requires two-word arithmetic.
152 We do that by representing the two-word integer in 4 words, with only
153 HOST_BITS_PER_WIDE_INT / 2 bits stored in each word, as a positive
154 number. The value of the word is LOWPART + HIGHPART * BASE. */
156 #define LOWPART(x) \
157 ((x) & (((unsigned HOST_WIDE_INT) 1 << (HOST_BITS_PER_WIDE_INT / 2)) - 1))
158 #define HIGHPART(x) \
159 ((unsigned HOST_WIDE_INT) (x) >> HOST_BITS_PER_WIDE_INT / 2)
160 #define BASE ((unsigned HOST_WIDE_INT) 1 << HOST_BITS_PER_WIDE_INT / 2)
162 /* Unpack a two-word integer into 4 words.
163 LOW and HI are the integer, as two `HOST_WIDE_INT' pieces.
164 WORDS points to the array of HOST_WIDE_INTs. */
166 static void
167 encode (HOST_WIDE_INT *words, unsigned HOST_WIDE_INT low, HOST_WIDE_INT hi)
169 words[0] = LOWPART (low);
170 words[1] = HIGHPART (low);
171 words[2] = LOWPART (hi);
172 words[3] = HIGHPART (hi);
175 /* Pack an array of 4 words into a two-word integer.
176 WORDS points to the array of words.
177 The integer is stored into *LOW and *HI as two `HOST_WIDE_INT' pieces. */
179 static void
180 decode (HOST_WIDE_INT *words, unsigned HOST_WIDE_INT *low,
181 HOST_WIDE_INT *hi)
183 *low = words[0] + words[1] * BASE;
184 *hi = words[2] + words[3] * BASE;
187 /* T is an INT_CST node. OVERFLOWABLE indicates if we are interested
188 in overflow of the value, when >0 we are only interested in signed
189 overflow, for <0 we are interested in any overflow. OVERFLOWED
190 indicates whether overflow has already occurred. CONST_OVERFLOWED
191 indicates whether constant overflow has already occurred. We force
192 T's value to be within range of T's type (by setting to 0 or 1 all
193 the bits outside the type's range). We set TREE_OVERFLOWED if,
194 OVERFLOWED is non-zero,
195 or OVERFLOWABLE is >0 and signed overflow occurs
196 or OVERFLOWABLE is <0 and any overflow occurs
197 We set TREE_CONSTANT_OVERFLOWED if,
198 CONST_OVERFLOWED is non-zero
199 or we set TREE_OVERFLOWED.
200 We return either the original T, or a copy. */
202 tree
203 force_fit_type (tree t, int overflowable,
204 bool overflowed, bool overflowed_const)
206 unsigned HOST_WIDE_INT low;
207 HOST_WIDE_INT high;
208 unsigned int prec;
209 int sign_extended_type;
211 gcc_assert (TREE_CODE (t) == INTEGER_CST);
213 low = TREE_INT_CST_LOW (t);
214 high = TREE_INT_CST_HIGH (t);
216 if (POINTER_TYPE_P (TREE_TYPE (t))
217 || TREE_CODE (TREE_TYPE (t)) == OFFSET_TYPE)
218 prec = POINTER_SIZE;
219 else
220 prec = TYPE_PRECISION (TREE_TYPE (t));
221 /* Size types *are* sign extended. */
222 sign_extended_type = (!TYPE_UNSIGNED (TREE_TYPE (t))
223 || (TREE_CODE (TREE_TYPE (t)) == INTEGER_TYPE
224 && TYPE_IS_SIZETYPE (TREE_TYPE (t))));
226 /* First clear all bits that are beyond the type's precision. */
228 if (prec == 2 * HOST_BITS_PER_WIDE_INT)
230 else if (prec > HOST_BITS_PER_WIDE_INT)
231 high &= ~((HOST_WIDE_INT) (-1) << (prec - HOST_BITS_PER_WIDE_INT));
232 else
234 high = 0;
235 if (prec < HOST_BITS_PER_WIDE_INT)
236 low &= ~((HOST_WIDE_INT) (-1) << prec);
239 if (!sign_extended_type)
240 /* No sign extension */;
241 else if (prec == 2 * HOST_BITS_PER_WIDE_INT)
242 /* Correct width already. */;
243 else if (prec > HOST_BITS_PER_WIDE_INT)
245 /* Sign extend top half? */
246 if (high & ((unsigned HOST_WIDE_INT)1
247 << (prec - HOST_BITS_PER_WIDE_INT - 1)))
248 high |= (HOST_WIDE_INT) (-1) << (prec - HOST_BITS_PER_WIDE_INT);
250 else if (prec == HOST_BITS_PER_WIDE_INT)
252 if ((HOST_WIDE_INT)low < 0)
253 high = -1;
255 else
257 /* Sign extend bottom half? */
258 if (low & ((unsigned HOST_WIDE_INT)1 << (prec - 1)))
260 high = -1;
261 low |= (HOST_WIDE_INT)(-1) << prec;
265 /* If the value changed, return a new node. */
266 if (overflowed || overflowed_const
267 || low != TREE_INT_CST_LOW (t) || high != TREE_INT_CST_HIGH (t))
269 t = build_int_cst_wide (TREE_TYPE (t), low, high);
271 if (overflowed
272 || overflowable < 0
273 || (overflowable > 0 && sign_extended_type))
275 t = copy_node (t);
276 TREE_OVERFLOW (t) = 1;
277 TREE_CONSTANT_OVERFLOW (t) = 1;
279 else if (overflowed_const)
281 t = copy_node (t);
282 TREE_CONSTANT_OVERFLOW (t) = 1;
286 return t;
289 /* Add two doubleword integers with doubleword result.
290 Each argument is given as two `HOST_WIDE_INT' pieces.
291 One argument is L1 and H1; the other, L2 and H2.
292 The value is stored as two `HOST_WIDE_INT' pieces in *LV and *HV. */
295 add_double (unsigned HOST_WIDE_INT l1, HOST_WIDE_INT h1,
296 unsigned HOST_WIDE_INT l2, HOST_WIDE_INT h2,
297 unsigned HOST_WIDE_INT *lv, HOST_WIDE_INT *hv)
299 unsigned HOST_WIDE_INT l;
300 HOST_WIDE_INT h;
302 l = l1 + l2;
303 h = h1 + h2 + (l < l1);
305 *lv = l;
306 *hv = h;
307 return OVERFLOW_SUM_SIGN (h1, h2, h);
310 /* Negate a doubleword integer with doubleword result.
311 Return nonzero if the operation overflows, assuming it's signed.
312 The argument is given as two `HOST_WIDE_INT' pieces in L1 and H1.
313 The value is stored as two `HOST_WIDE_INT' pieces in *LV and *HV. */
316 neg_double (unsigned HOST_WIDE_INT l1, HOST_WIDE_INT h1,
317 unsigned HOST_WIDE_INT *lv, HOST_WIDE_INT *hv)
319 if (l1 == 0)
321 *lv = 0;
322 *hv = - h1;
323 return (*hv & h1) < 0;
325 else
327 *lv = -l1;
328 *hv = ~h1;
329 return 0;
333 /* Multiply two doubleword integers with doubleword result.
334 Return nonzero if the operation overflows, assuming it's signed.
335 Each argument is given as two `HOST_WIDE_INT' pieces.
336 One argument is L1 and H1; the other, L2 and H2.
337 The value is stored as two `HOST_WIDE_INT' pieces in *LV and *HV. */
340 mul_double (unsigned HOST_WIDE_INT l1, HOST_WIDE_INT h1,
341 unsigned HOST_WIDE_INT l2, HOST_WIDE_INT h2,
342 unsigned HOST_WIDE_INT *lv, HOST_WIDE_INT *hv)
344 HOST_WIDE_INT arg1[4];
345 HOST_WIDE_INT arg2[4];
346 HOST_WIDE_INT prod[4 * 2];
347 unsigned HOST_WIDE_INT carry;
348 int i, j, k;
349 unsigned HOST_WIDE_INT toplow, neglow;
350 HOST_WIDE_INT tophigh, neghigh;
352 encode (arg1, l1, h1);
353 encode (arg2, l2, h2);
355 memset (prod, 0, sizeof prod);
357 for (i = 0; i < 4; i++)
359 carry = 0;
360 for (j = 0; j < 4; j++)
362 k = i + j;
363 /* This product is <= 0xFFFE0001, the sum <= 0xFFFF0000. */
364 carry += arg1[i] * arg2[j];
365 /* Since prod[p] < 0xFFFF, this sum <= 0xFFFFFFFF. */
366 carry += prod[k];
367 prod[k] = LOWPART (carry);
368 carry = HIGHPART (carry);
370 prod[i + 4] = carry;
373 decode (prod, lv, hv); /* This ignores prod[4] through prod[4*2-1] */
375 /* Check for overflow by calculating the top half of the answer in full;
376 it should agree with the low half's sign bit. */
377 decode (prod + 4, &toplow, &tophigh);
378 if (h1 < 0)
380 neg_double (l2, h2, &neglow, &neghigh);
381 add_double (neglow, neghigh, toplow, tophigh, &toplow, &tophigh);
383 if (h2 < 0)
385 neg_double (l1, h1, &neglow, &neghigh);
386 add_double (neglow, neghigh, toplow, tophigh, &toplow, &tophigh);
388 return (*hv < 0 ? ~(toplow & tophigh) : toplow | tophigh) != 0;
391 /* Shift the doubleword integer in L1, H1 left by COUNT places
392 keeping only PREC bits of result.
393 Shift right if COUNT is negative.
394 ARITH nonzero specifies arithmetic shifting; otherwise use logical shift.
395 Store the value as two `HOST_WIDE_INT' pieces in *LV and *HV. */
397 void
398 lshift_double (unsigned HOST_WIDE_INT l1, HOST_WIDE_INT h1,
399 HOST_WIDE_INT count, unsigned int prec,
400 unsigned HOST_WIDE_INT *lv, HOST_WIDE_INT *hv, int arith)
402 unsigned HOST_WIDE_INT signmask;
404 if (count < 0)
406 rshift_double (l1, h1, -count, prec, lv, hv, arith);
407 return;
410 if (SHIFT_COUNT_TRUNCATED)
411 count %= prec;
413 if (count >= 2 * HOST_BITS_PER_WIDE_INT)
415 /* Shifting by the host word size is undefined according to the
416 ANSI standard, so we must handle this as a special case. */
417 *hv = 0;
418 *lv = 0;
420 else if (count >= HOST_BITS_PER_WIDE_INT)
422 *hv = l1 << (count - HOST_BITS_PER_WIDE_INT);
423 *lv = 0;
425 else
427 *hv = (((unsigned HOST_WIDE_INT) h1 << count)
428 | (l1 >> (HOST_BITS_PER_WIDE_INT - count - 1) >> 1));
429 *lv = l1 << count;
432 /* Sign extend all bits that are beyond the precision. */
434 signmask = -((prec > HOST_BITS_PER_WIDE_INT
435 ? ((unsigned HOST_WIDE_INT) *hv
436 >> (prec - HOST_BITS_PER_WIDE_INT - 1))
437 : (*lv >> (prec - 1))) & 1);
439 if (prec >= 2 * HOST_BITS_PER_WIDE_INT)
441 else if (prec >= HOST_BITS_PER_WIDE_INT)
443 *hv &= ~((HOST_WIDE_INT) (-1) << (prec - HOST_BITS_PER_WIDE_INT));
444 *hv |= signmask << (prec - HOST_BITS_PER_WIDE_INT);
446 else
448 *hv = signmask;
449 *lv &= ~((unsigned HOST_WIDE_INT) (-1) << prec);
450 *lv |= signmask << prec;
454 /* Shift the doubleword integer in L1, H1 right by COUNT places
455 keeping only PREC bits of result. COUNT must be positive.
456 ARITH nonzero specifies arithmetic shifting; otherwise use logical shift.
457 Store the value as two `HOST_WIDE_INT' pieces in *LV and *HV. */
459 void
460 rshift_double (unsigned HOST_WIDE_INT l1, HOST_WIDE_INT h1,
461 HOST_WIDE_INT count, unsigned int prec,
462 unsigned HOST_WIDE_INT *lv, HOST_WIDE_INT *hv,
463 int arith)
465 unsigned HOST_WIDE_INT signmask;
467 signmask = (arith
468 ? -((unsigned HOST_WIDE_INT) h1 >> (HOST_BITS_PER_WIDE_INT - 1))
469 : 0);
471 if (SHIFT_COUNT_TRUNCATED)
472 count %= prec;
474 if (count >= 2 * HOST_BITS_PER_WIDE_INT)
476 /* Shifting by the host word size is undefined according to the
477 ANSI standard, so we must handle this as a special case. */
478 *hv = 0;
479 *lv = 0;
481 else if (count >= HOST_BITS_PER_WIDE_INT)
483 *hv = 0;
484 *lv = (unsigned HOST_WIDE_INT) h1 >> (count - HOST_BITS_PER_WIDE_INT);
486 else
488 *hv = (unsigned HOST_WIDE_INT) h1 >> count;
489 *lv = ((l1 >> count)
490 | ((unsigned HOST_WIDE_INT) h1 << (HOST_BITS_PER_WIDE_INT - count - 1) << 1));
493 /* Zero / sign extend all bits that are beyond the precision. */
495 if (count >= (HOST_WIDE_INT)prec)
497 *hv = signmask;
498 *lv = signmask;
500 else if ((prec - count) >= 2 * HOST_BITS_PER_WIDE_INT)
502 else if ((prec - count) >= HOST_BITS_PER_WIDE_INT)
504 *hv &= ~((HOST_WIDE_INT) (-1) << (prec - count - HOST_BITS_PER_WIDE_INT));
505 *hv |= signmask << (prec - count - HOST_BITS_PER_WIDE_INT);
507 else
509 *hv = signmask;
510 *lv &= ~((unsigned HOST_WIDE_INT) (-1) << (prec - count));
511 *lv |= signmask << (prec - count);
515 /* Rotate the doubleword integer in L1, H1 left by COUNT places
516 keeping only PREC bits of result.
517 Rotate right if COUNT is negative.
518 Store the value as two `HOST_WIDE_INT' pieces in *LV and *HV. */
520 void
521 lrotate_double (unsigned HOST_WIDE_INT l1, HOST_WIDE_INT h1,
522 HOST_WIDE_INT count, unsigned int prec,
523 unsigned HOST_WIDE_INT *lv, HOST_WIDE_INT *hv)
525 unsigned HOST_WIDE_INT s1l, s2l;
526 HOST_WIDE_INT s1h, s2h;
528 count %= prec;
529 if (count < 0)
530 count += prec;
532 lshift_double (l1, h1, count, prec, &s1l, &s1h, 0);
533 rshift_double (l1, h1, prec - count, prec, &s2l, &s2h, 0);
534 *lv = s1l | s2l;
535 *hv = s1h | s2h;
538 /* Rotate the doubleword integer in L1, H1 left by COUNT places
539 keeping only PREC bits of result. COUNT must be positive.
540 Store the value as two `HOST_WIDE_INT' pieces in *LV and *HV. */
542 void
543 rrotate_double (unsigned HOST_WIDE_INT l1, HOST_WIDE_INT h1,
544 HOST_WIDE_INT count, unsigned int prec,
545 unsigned HOST_WIDE_INT *lv, HOST_WIDE_INT *hv)
547 unsigned HOST_WIDE_INT s1l, s2l;
548 HOST_WIDE_INT s1h, s2h;
550 count %= prec;
551 if (count < 0)
552 count += prec;
554 rshift_double (l1, h1, count, prec, &s1l, &s1h, 0);
555 lshift_double (l1, h1, prec - count, prec, &s2l, &s2h, 0);
556 *lv = s1l | s2l;
557 *hv = s1h | s2h;
560 /* Divide doubleword integer LNUM, HNUM by doubleword integer LDEN, HDEN
561 for a quotient (stored in *LQUO, *HQUO) and remainder (in *LREM, *HREM).
562 CODE is a tree code for a kind of division, one of
563 TRUNC_DIV_EXPR, FLOOR_DIV_EXPR, CEIL_DIV_EXPR, ROUND_DIV_EXPR
564 or EXACT_DIV_EXPR
565 It controls how the quotient is rounded to an integer.
566 Return nonzero if the operation overflows.
567 UNS nonzero says do unsigned division. */
570 div_and_round_double (enum tree_code code, int uns,
571 unsigned HOST_WIDE_INT lnum_orig, /* num == numerator == dividend */
572 HOST_WIDE_INT hnum_orig,
573 unsigned HOST_WIDE_INT lden_orig, /* den == denominator == divisor */
574 HOST_WIDE_INT hden_orig,
575 unsigned HOST_WIDE_INT *lquo,
576 HOST_WIDE_INT *hquo, unsigned HOST_WIDE_INT *lrem,
577 HOST_WIDE_INT *hrem)
579 int quo_neg = 0;
580 HOST_WIDE_INT num[4 + 1]; /* extra element for scaling. */
581 HOST_WIDE_INT den[4], quo[4];
582 int i, j;
583 unsigned HOST_WIDE_INT work;
584 unsigned HOST_WIDE_INT carry = 0;
585 unsigned HOST_WIDE_INT lnum = lnum_orig;
586 HOST_WIDE_INT hnum = hnum_orig;
587 unsigned HOST_WIDE_INT lden = lden_orig;
588 HOST_WIDE_INT hden = hden_orig;
589 int overflow = 0;
591 if (hden == 0 && lden == 0)
592 overflow = 1, lden = 1;
594 /* Calculate quotient sign and convert operands to unsigned. */
595 if (!uns)
597 if (hnum < 0)
599 quo_neg = ~ quo_neg;
600 /* (minimum integer) / (-1) is the only overflow case. */
601 if (neg_double (lnum, hnum, &lnum, &hnum)
602 && ((HOST_WIDE_INT) lden & hden) == -1)
603 overflow = 1;
605 if (hden < 0)
607 quo_neg = ~ quo_neg;
608 neg_double (lden, hden, &lden, &hden);
612 if (hnum == 0 && hden == 0)
613 { /* single precision */
614 *hquo = *hrem = 0;
615 /* This unsigned division rounds toward zero. */
616 *lquo = lnum / lden;
617 goto finish_up;
620 if (hnum == 0)
621 { /* trivial case: dividend < divisor */
622 /* hden != 0 already checked. */
623 *hquo = *lquo = 0;
624 *hrem = hnum;
625 *lrem = lnum;
626 goto finish_up;
629 memset (quo, 0, sizeof quo);
631 memset (num, 0, sizeof num); /* to zero 9th element */
632 memset (den, 0, sizeof den);
634 encode (num, lnum, hnum);
635 encode (den, lden, hden);
637 /* Special code for when the divisor < BASE. */
638 if (hden == 0 && lden < (unsigned HOST_WIDE_INT) BASE)
640 /* hnum != 0 already checked. */
641 for (i = 4 - 1; i >= 0; i--)
643 work = num[i] + carry * BASE;
644 quo[i] = work / lden;
645 carry = work % lden;
648 else
650 /* Full double precision division,
651 with thanks to Don Knuth's "Seminumerical Algorithms". */
652 int num_hi_sig, den_hi_sig;
653 unsigned HOST_WIDE_INT quo_est, scale;
655 /* Find the highest nonzero divisor digit. */
656 for (i = 4 - 1;; i--)
657 if (den[i] != 0)
659 den_hi_sig = i;
660 break;
663 /* Insure that the first digit of the divisor is at least BASE/2.
664 This is required by the quotient digit estimation algorithm. */
666 scale = BASE / (den[den_hi_sig] + 1);
667 if (scale > 1)
668 { /* scale divisor and dividend */
669 carry = 0;
670 for (i = 0; i <= 4 - 1; i++)
672 work = (num[i] * scale) + carry;
673 num[i] = LOWPART (work);
674 carry = HIGHPART (work);
677 num[4] = carry;
678 carry = 0;
679 for (i = 0; i <= 4 - 1; i++)
681 work = (den[i] * scale) + carry;
682 den[i] = LOWPART (work);
683 carry = HIGHPART (work);
684 if (den[i] != 0) den_hi_sig = i;
688 num_hi_sig = 4;
690 /* Main loop */
691 for (i = num_hi_sig - den_hi_sig - 1; i >= 0; i--)
693 /* Guess the next quotient digit, quo_est, by dividing the first
694 two remaining dividend digits by the high order quotient digit.
695 quo_est is never low and is at most 2 high. */
696 unsigned HOST_WIDE_INT tmp;
698 num_hi_sig = i + den_hi_sig + 1;
699 work = num[num_hi_sig] * BASE + num[num_hi_sig - 1];
700 if (num[num_hi_sig] != den[den_hi_sig])
701 quo_est = work / den[den_hi_sig];
702 else
703 quo_est = BASE - 1;
705 /* Refine quo_est so it's usually correct, and at most one high. */
706 tmp = work - quo_est * den[den_hi_sig];
707 if (tmp < BASE
708 && (den[den_hi_sig - 1] * quo_est
709 > (tmp * BASE + num[num_hi_sig - 2])))
710 quo_est--;
712 /* Try QUO_EST as the quotient digit, by multiplying the
713 divisor by QUO_EST and subtracting from the remaining dividend.
714 Keep in mind that QUO_EST is the I - 1st digit. */
716 carry = 0;
717 for (j = 0; j <= den_hi_sig; j++)
719 work = quo_est * den[j] + carry;
720 carry = HIGHPART (work);
721 work = num[i + j] - LOWPART (work);
722 num[i + j] = LOWPART (work);
723 carry += HIGHPART (work) != 0;
726 /* If quo_est was high by one, then num[i] went negative and
727 we need to correct things. */
728 if (num[num_hi_sig] < (HOST_WIDE_INT) carry)
730 quo_est--;
731 carry = 0; /* add divisor back in */
732 for (j = 0; j <= den_hi_sig; j++)
734 work = num[i + j] + den[j] + carry;
735 carry = HIGHPART (work);
736 num[i + j] = LOWPART (work);
739 num [num_hi_sig] += carry;
742 /* Store the quotient digit. */
743 quo[i] = quo_est;
747 decode (quo, lquo, hquo);
749 finish_up:
750 /* If result is negative, make it so. */
751 if (quo_neg)
752 neg_double (*lquo, *hquo, lquo, hquo);
754 /* Compute trial remainder: rem = num - (quo * den) */
755 mul_double (*lquo, *hquo, lden_orig, hden_orig, lrem, hrem);
756 neg_double (*lrem, *hrem, lrem, hrem);
757 add_double (lnum_orig, hnum_orig, *lrem, *hrem, lrem, hrem);
759 switch (code)
761 case TRUNC_DIV_EXPR:
762 case TRUNC_MOD_EXPR: /* round toward zero */
763 case EXACT_DIV_EXPR: /* for this one, it shouldn't matter */
764 return overflow;
766 case FLOOR_DIV_EXPR:
767 case FLOOR_MOD_EXPR: /* round toward negative infinity */
768 if (quo_neg && (*lrem != 0 || *hrem != 0)) /* ratio < 0 && rem != 0 */
770 /* quo = quo - 1; */
771 add_double (*lquo, *hquo, (HOST_WIDE_INT) -1, (HOST_WIDE_INT) -1,
772 lquo, hquo);
774 else
775 return overflow;
776 break;
778 case CEIL_DIV_EXPR:
779 case CEIL_MOD_EXPR: /* round toward positive infinity */
780 if (!quo_neg && (*lrem != 0 || *hrem != 0)) /* ratio > 0 && rem != 0 */
782 add_double (*lquo, *hquo, (HOST_WIDE_INT) 1, (HOST_WIDE_INT) 0,
783 lquo, hquo);
785 else
786 return overflow;
787 break;
789 case ROUND_DIV_EXPR:
790 case ROUND_MOD_EXPR: /* round to closest integer */
792 unsigned HOST_WIDE_INT labs_rem = *lrem;
793 HOST_WIDE_INT habs_rem = *hrem;
794 unsigned HOST_WIDE_INT labs_den = lden, ltwice;
795 HOST_WIDE_INT habs_den = hden, htwice;
797 /* Get absolute values. */
798 if (*hrem < 0)
799 neg_double (*lrem, *hrem, &labs_rem, &habs_rem);
800 if (hden < 0)
801 neg_double (lden, hden, &labs_den, &habs_den);
803 /* If (2 * abs (lrem) >= abs (lden)) */
804 mul_double ((HOST_WIDE_INT) 2, (HOST_WIDE_INT) 0,
805 labs_rem, habs_rem, &ltwice, &htwice);
807 if (((unsigned HOST_WIDE_INT) habs_den
808 < (unsigned HOST_WIDE_INT) htwice)
809 || (((unsigned HOST_WIDE_INT) habs_den
810 == (unsigned HOST_WIDE_INT) htwice)
811 && (labs_den < ltwice)))
813 if (*hquo < 0)
814 /* quo = quo - 1; */
815 add_double (*lquo, *hquo,
816 (HOST_WIDE_INT) -1, (HOST_WIDE_INT) -1, lquo, hquo);
817 else
818 /* quo = quo + 1; */
819 add_double (*lquo, *hquo, (HOST_WIDE_INT) 1, (HOST_WIDE_INT) 0,
820 lquo, hquo);
822 else
823 return overflow;
825 break;
827 default:
828 gcc_unreachable ();
831 /* Compute true remainder: rem = num - (quo * den) */
832 mul_double (*lquo, *hquo, lden_orig, hden_orig, lrem, hrem);
833 neg_double (*lrem, *hrem, lrem, hrem);
834 add_double (lnum_orig, hnum_orig, *lrem, *hrem, lrem, hrem);
835 return overflow;
838 /* Return true if built-in mathematical function specified by CODE
839 preserves the sign of it argument, i.e. -f(x) == f(-x). */
841 static bool
842 negate_mathfn_p (enum built_in_function code)
844 switch (code)
846 case BUILT_IN_ASIN:
847 case BUILT_IN_ASINF:
848 case BUILT_IN_ASINL:
849 case BUILT_IN_ATAN:
850 case BUILT_IN_ATANF:
851 case BUILT_IN_ATANL:
852 case BUILT_IN_SIN:
853 case BUILT_IN_SINF:
854 case BUILT_IN_SINL:
855 case BUILT_IN_TAN:
856 case BUILT_IN_TANF:
857 case BUILT_IN_TANL:
858 return true;
860 default:
861 break;
863 return false;
866 /* Check whether we may negate an integer constant T without causing
867 overflow. */
869 bool
870 may_negate_without_overflow_p (tree t)
872 unsigned HOST_WIDE_INT val;
873 unsigned int prec;
874 tree type;
876 gcc_assert (TREE_CODE (t) == INTEGER_CST);
878 type = TREE_TYPE (t);
879 if (TYPE_UNSIGNED (type))
880 return false;
882 prec = TYPE_PRECISION (type);
883 if (prec > HOST_BITS_PER_WIDE_INT)
885 if (TREE_INT_CST_LOW (t) != 0)
886 return true;
887 prec -= HOST_BITS_PER_WIDE_INT;
888 val = TREE_INT_CST_HIGH (t);
890 else
891 val = TREE_INT_CST_LOW (t);
892 if (prec < HOST_BITS_PER_WIDE_INT)
893 val &= ((unsigned HOST_WIDE_INT) 1 << prec) - 1;
894 return val != ((unsigned HOST_WIDE_INT) 1 << (prec - 1));
897 /* Determine whether an expression T can be cheaply negated using
898 the function negate_expr. */
900 static bool
901 negate_expr_p (tree t)
903 tree type;
905 if (t == 0)
906 return false;
908 type = TREE_TYPE (t);
910 STRIP_SIGN_NOPS (t);
911 switch (TREE_CODE (t))
913 case INTEGER_CST:
914 if (TYPE_UNSIGNED (type) || ! flag_trapv)
915 return true;
917 /* Check that -CST will not overflow type. */
918 return may_negate_without_overflow_p (t);
920 case REAL_CST:
921 case NEGATE_EXPR:
922 return true;
924 case COMPLEX_CST:
925 return negate_expr_p (TREE_REALPART (t))
926 && negate_expr_p (TREE_IMAGPART (t));
928 case PLUS_EXPR:
929 if (FLOAT_TYPE_P (type) && !flag_unsafe_math_optimizations)
930 return false;
931 /* -(A + B) -> (-B) - A. */
932 if (negate_expr_p (TREE_OPERAND (t, 1))
933 && reorder_operands_p (TREE_OPERAND (t, 0),
934 TREE_OPERAND (t, 1)))
935 return true;
936 /* -(A + B) -> (-A) - B. */
937 return negate_expr_p (TREE_OPERAND (t, 0));
939 case MINUS_EXPR:
940 /* We can't turn -(A-B) into B-A when we honor signed zeros. */
941 return (! FLOAT_TYPE_P (type) || flag_unsafe_math_optimizations)
942 && reorder_operands_p (TREE_OPERAND (t, 0),
943 TREE_OPERAND (t, 1));
945 case MULT_EXPR:
946 if (TYPE_UNSIGNED (TREE_TYPE (t)))
947 break;
949 /* Fall through. */
951 case RDIV_EXPR:
952 if (! HONOR_SIGN_DEPENDENT_ROUNDING (TYPE_MODE (TREE_TYPE (t))))
953 return negate_expr_p (TREE_OPERAND (t, 1))
954 || negate_expr_p (TREE_OPERAND (t, 0));
955 break;
957 case NOP_EXPR:
958 /* Negate -((double)float) as (double)(-float). */
959 if (TREE_CODE (type) == REAL_TYPE)
961 tree tem = strip_float_extensions (t);
962 if (tem != t)
963 return negate_expr_p (tem);
965 break;
967 case CALL_EXPR:
968 /* Negate -f(x) as f(-x). */
969 if (negate_mathfn_p (builtin_mathfn_code (t)))
970 return negate_expr_p (TREE_VALUE (TREE_OPERAND (t, 1)));
971 break;
973 case RSHIFT_EXPR:
974 /* Optimize -((int)x >> 31) into (unsigned)x >> 31. */
975 if (TREE_CODE (TREE_OPERAND (t, 1)) == INTEGER_CST)
977 tree op1 = TREE_OPERAND (t, 1);
978 if (TREE_INT_CST_HIGH (op1) == 0
979 && (unsigned HOST_WIDE_INT) (TYPE_PRECISION (type) - 1)
980 == TREE_INT_CST_LOW (op1))
981 return true;
983 break;
985 default:
986 break;
988 return false;
991 /* Given T, an expression, return the negation of T. Allow for T to be
992 null, in which case return null. */
994 static tree
995 negate_expr (tree t)
997 tree type;
998 tree tem;
1000 if (t == 0)
1001 return 0;
1003 type = TREE_TYPE (t);
1004 STRIP_SIGN_NOPS (t);
1006 switch (TREE_CODE (t))
1008 case INTEGER_CST:
1009 tem = fold_negate_const (t, type);
1010 if (! TREE_OVERFLOW (tem)
1011 || TYPE_UNSIGNED (type)
1012 || ! flag_trapv)
1013 return tem;
1014 break;
1016 case REAL_CST:
1017 tem = fold_negate_const (t, type);
1018 /* Two's complement FP formats, such as c4x, may overflow. */
1019 if (! TREE_OVERFLOW (tem) || ! flag_trapping_math)
1020 return fold_convert (type, tem);
1021 break;
1023 case COMPLEX_CST:
1025 tree rpart = negate_expr (TREE_REALPART (t));
1026 tree ipart = negate_expr (TREE_IMAGPART (t));
1028 if ((TREE_CODE (rpart) == REAL_CST
1029 && TREE_CODE (ipart) == REAL_CST)
1030 || (TREE_CODE (rpart) == INTEGER_CST
1031 && TREE_CODE (ipart) == INTEGER_CST))
1032 return build_complex (type, rpart, ipart);
1034 break;
1036 case NEGATE_EXPR:
1037 return fold_convert (type, TREE_OPERAND (t, 0));
1039 case PLUS_EXPR:
1040 if (! FLOAT_TYPE_P (type) || flag_unsafe_math_optimizations)
1042 /* -(A + B) -> (-B) - A. */
1043 if (negate_expr_p (TREE_OPERAND (t, 1))
1044 && reorder_operands_p (TREE_OPERAND (t, 0),
1045 TREE_OPERAND (t, 1)))
1047 tem = negate_expr (TREE_OPERAND (t, 1));
1048 tem = fold (build2 (MINUS_EXPR, TREE_TYPE (t),
1049 tem, TREE_OPERAND (t, 0)));
1050 return fold_convert (type, tem);
1053 /* -(A + B) -> (-A) - B. */
1054 if (negate_expr_p (TREE_OPERAND (t, 0)))
1056 tem = negate_expr (TREE_OPERAND (t, 0));
1057 tem = fold (build2 (MINUS_EXPR, TREE_TYPE (t),
1058 tem, TREE_OPERAND (t, 1)));
1059 return fold_convert (type, tem);
1062 break;
1064 case MINUS_EXPR:
1065 /* - (A - B) -> B - A */
1066 if ((! FLOAT_TYPE_P (type) || flag_unsafe_math_optimizations)
1067 && reorder_operands_p (TREE_OPERAND (t, 0), TREE_OPERAND (t, 1)))
1068 return fold_convert (type,
1069 fold (build2 (MINUS_EXPR, TREE_TYPE (t),
1070 TREE_OPERAND (t, 1),
1071 TREE_OPERAND (t, 0))));
1072 break;
1074 case MULT_EXPR:
1075 if (TYPE_UNSIGNED (TREE_TYPE (t)))
1076 break;
1078 /* Fall through. */
1080 case RDIV_EXPR:
1081 if (! HONOR_SIGN_DEPENDENT_ROUNDING (TYPE_MODE (TREE_TYPE (t))))
1083 tem = TREE_OPERAND (t, 1);
1084 if (negate_expr_p (tem))
1085 return fold_convert (type,
1086 fold (build2 (TREE_CODE (t), TREE_TYPE (t),
1087 TREE_OPERAND (t, 0),
1088 negate_expr (tem))));
1089 tem = TREE_OPERAND (t, 0);
1090 if (negate_expr_p (tem))
1091 return fold_convert (type,
1092 fold (build2 (TREE_CODE (t), TREE_TYPE (t),
1093 negate_expr (tem),
1094 TREE_OPERAND (t, 1))));
1096 break;
1098 case NOP_EXPR:
1099 /* Convert -((double)float) into (double)(-float). */
1100 if (TREE_CODE (type) == REAL_TYPE)
1102 tem = strip_float_extensions (t);
1103 if (tem != t && negate_expr_p (tem))
1104 return fold_convert (type, negate_expr (tem));
1106 break;
1108 case CALL_EXPR:
1109 /* Negate -f(x) as f(-x). */
1110 if (negate_mathfn_p (builtin_mathfn_code (t))
1111 && negate_expr_p (TREE_VALUE (TREE_OPERAND (t, 1))))
1113 tree fndecl, arg, arglist;
1115 fndecl = get_callee_fndecl (t);
1116 arg = negate_expr (TREE_VALUE (TREE_OPERAND (t, 1)));
1117 arglist = build_tree_list (NULL_TREE, arg);
1118 return build_function_call_expr (fndecl, arglist);
1120 break;
1122 case RSHIFT_EXPR:
1123 /* Optimize -((int)x >> 31) into (unsigned)x >> 31. */
1124 if (TREE_CODE (TREE_OPERAND (t, 1)) == INTEGER_CST)
1126 tree op1 = TREE_OPERAND (t, 1);
1127 if (TREE_INT_CST_HIGH (op1) == 0
1128 && (unsigned HOST_WIDE_INT) (TYPE_PRECISION (type) - 1)
1129 == TREE_INT_CST_LOW (op1))
1131 tree ntype = TYPE_UNSIGNED (type)
1132 ? lang_hooks.types.signed_type (type)
1133 : lang_hooks.types.unsigned_type (type);
1134 tree temp = fold_convert (ntype, TREE_OPERAND (t, 0));
1135 temp = fold (build2 (RSHIFT_EXPR, ntype, temp, op1));
1136 return fold_convert (type, temp);
1139 break;
1141 default:
1142 break;
1145 tem = fold (build1 (NEGATE_EXPR, TREE_TYPE (t), t));
1146 return fold_convert (type, tem);
1149 /* Split a tree IN into a constant, literal and variable parts that could be
1150 combined with CODE to make IN. "constant" means an expression with
1151 TREE_CONSTANT but that isn't an actual constant. CODE must be a
1152 commutative arithmetic operation. Store the constant part into *CONP,
1153 the literal in *LITP and return the variable part. If a part isn't
1154 present, set it to null. If the tree does not decompose in this way,
1155 return the entire tree as the variable part and the other parts as null.
1157 If CODE is PLUS_EXPR we also split trees that use MINUS_EXPR. In that
1158 case, we negate an operand that was subtracted. Except if it is a
1159 literal for which we use *MINUS_LITP instead.
1161 If NEGATE_P is true, we are negating all of IN, again except a literal
1162 for which we use *MINUS_LITP instead.
1164 If IN is itself a literal or constant, return it as appropriate.
1166 Note that we do not guarantee that any of the three values will be the
1167 same type as IN, but they will have the same signedness and mode. */
1169 static tree
1170 split_tree (tree in, enum tree_code code, tree *conp, tree *litp,
1171 tree *minus_litp, int negate_p)
1173 tree var = 0;
1175 *conp = 0;
1176 *litp = 0;
1177 *minus_litp = 0;
1179 /* Strip any conversions that don't change the machine mode or signedness. */
1180 STRIP_SIGN_NOPS (in);
1182 if (TREE_CODE (in) == INTEGER_CST || TREE_CODE (in) == REAL_CST)
1183 *litp = in;
1184 else if (TREE_CODE (in) == code
1185 || (! FLOAT_TYPE_P (TREE_TYPE (in))
1186 /* We can associate addition and subtraction together (even
1187 though the C standard doesn't say so) for integers because
1188 the value is not affected. For reals, the value might be
1189 affected, so we can't. */
1190 && ((code == PLUS_EXPR && TREE_CODE (in) == MINUS_EXPR)
1191 || (code == MINUS_EXPR && TREE_CODE (in) == PLUS_EXPR))))
1193 tree op0 = TREE_OPERAND (in, 0);
1194 tree op1 = TREE_OPERAND (in, 1);
1195 int neg1_p = TREE_CODE (in) == MINUS_EXPR;
1196 int neg_litp_p = 0, neg_conp_p = 0, neg_var_p = 0;
1198 /* First see if either of the operands is a literal, then a constant. */
1199 if (TREE_CODE (op0) == INTEGER_CST || TREE_CODE (op0) == REAL_CST)
1200 *litp = op0, op0 = 0;
1201 else if (TREE_CODE (op1) == INTEGER_CST || TREE_CODE (op1) == REAL_CST)
1202 *litp = op1, neg_litp_p = neg1_p, op1 = 0;
1204 if (op0 != 0 && TREE_CONSTANT (op0))
1205 *conp = op0, op0 = 0;
1206 else if (op1 != 0 && TREE_CONSTANT (op1))
1207 *conp = op1, neg_conp_p = neg1_p, op1 = 0;
1209 /* If we haven't dealt with either operand, this is not a case we can
1210 decompose. Otherwise, VAR is either of the ones remaining, if any. */
1211 if (op0 != 0 && op1 != 0)
1212 var = in;
1213 else if (op0 != 0)
1214 var = op0;
1215 else
1216 var = op1, neg_var_p = neg1_p;
1218 /* Now do any needed negations. */
1219 if (neg_litp_p)
1220 *minus_litp = *litp, *litp = 0;
1221 if (neg_conp_p)
1222 *conp = negate_expr (*conp);
1223 if (neg_var_p)
1224 var = negate_expr (var);
1226 else if (TREE_CONSTANT (in))
1227 *conp = in;
1228 else
1229 var = in;
1231 if (negate_p)
1233 if (*litp)
1234 *minus_litp = *litp, *litp = 0;
1235 else if (*minus_litp)
1236 *litp = *minus_litp, *minus_litp = 0;
1237 *conp = negate_expr (*conp);
1238 var = negate_expr (var);
1241 return var;
1244 /* Re-associate trees split by the above function. T1 and T2 are either
1245 expressions to associate or null. Return the new expression, if any. If
1246 we build an operation, do it in TYPE and with CODE. */
1248 static tree
1249 associate_trees (tree t1, tree t2, enum tree_code code, tree type)
1251 if (t1 == 0)
1252 return t2;
1253 else if (t2 == 0)
1254 return t1;
1256 /* If either input is CODE, a PLUS_EXPR, or a MINUS_EXPR, don't
1257 try to fold this since we will have infinite recursion. But do
1258 deal with any NEGATE_EXPRs. */
1259 if (TREE_CODE (t1) == code || TREE_CODE (t2) == code
1260 || TREE_CODE (t1) == MINUS_EXPR || TREE_CODE (t2) == MINUS_EXPR)
1262 if (code == PLUS_EXPR)
1264 if (TREE_CODE (t1) == NEGATE_EXPR)
1265 return build2 (MINUS_EXPR, type, fold_convert (type, t2),
1266 fold_convert (type, TREE_OPERAND (t1, 0)));
1267 else if (TREE_CODE (t2) == NEGATE_EXPR)
1268 return build2 (MINUS_EXPR, type, fold_convert (type, t1),
1269 fold_convert (type, TREE_OPERAND (t2, 0)));
1271 return build2 (code, type, fold_convert (type, t1),
1272 fold_convert (type, t2));
1275 return fold (build2 (code, type, fold_convert (type, t1),
1276 fold_convert (type, t2)));
1279 /* Combine two integer constants ARG1 and ARG2 under operation CODE
1280 to produce a new constant.
1282 If NOTRUNC is nonzero, do not truncate the result to fit the data type. */
1284 tree
1285 int_const_binop (enum tree_code code, tree arg1, tree arg2, int notrunc)
1287 unsigned HOST_WIDE_INT int1l, int2l;
1288 HOST_WIDE_INT int1h, int2h;
1289 unsigned HOST_WIDE_INT low;
1290 HOST_WIDE_INT hi;
1291 unsigned HOST_WIDE_INT garbagel;
1292 HOST_WIDE_INT garbageh;
1293 tree t;
1294 tree type = TREE_TYPE (arg1);
1295 int uns = TYPE_UNSIGNED (type);
1296 int is_sizetype
1297 = (TREE_CODE (type) == INTEGER_TYPE && TYPE_IS_SIZETYPE (type));
1298 int overflow = 0;
1299 int no_overflow = 0;
1301 int1l = TREE_INT_CST_LOW (arg1);
1302 int1h = TREE_INT_CST_HIGH (arg1);
1303 int2l = TREE_INT_CST_LOW (arg2);
1304 int2h = TREE_INT_CST_HIGH (arg2);
1306 switch (code)
1308 case BIT_IOR_EXPR:
1309 low = int1l | int2l, hi = int1h | int2h;
1310 break;
1312 case BIT_XOR_EXPR:
1313 low = int1l ^ int2l, hi = int1h ^ int2h;
1314 break;
1316 case BIT_AND_EXPR:
1317 low = int1l & int2l, hi = int1h & int2h;
1318 break;
1320 case RSHIFT_EXPR:
1321 int2l = -int2l;
1322 case LSHIFT_EXPR:
1323 /* It's unclear from the C standard whether shifts can overflow.
1324 The following code ignores overflow; perhaps a C standard
1325 interpretation ruling is needed. */
1326 lshift_double (int1l, int1h, int2l, TYPE_PRECISION (type),
1327 &low, &hi, !uns);
1328 no_overflow = 1;
1329 break;
1331 case RROTATE_EXPR:
1332 int2l = - int2l;
1333 case LROTATE_EXPR:
1334 lrotate_double (int1l, int1h, int2l, TYPE_PRECISION (type),
1335 &low, &hi);
1336 break;
1338 case PLUS_EXPR:
1339 overflow = add_double (int1l, int1h, int2l, int2h, &low, &hi);
1340 break;
1342 case MINUS_EXPR:
1343 neg_double (int2l, int2h, &low, &hi);
1344 add_double (int1l, int1h, low, hi, &low, &hi);
1345 overflow = OVERFLOW_SUM_SIGN (hi, int2h, int1h);
1346 break;
1348 case MULT_EXPR:
1349 overflow = mul_double (int1l, int1h, int2l, int2h, &low, &hi);
1350 break;
1352 case TRUNC_DIV_EXPR:
1353 case FLOOR_DIV_EXPR: case CEIL_DIV_EXPR:
1354 case EXACT_DIV_EXPR:
1355 /* This is a shortcut for a common special case. */
1356 if (int2h == 0 && (HOST_WIDE_INT) int2l > 0
1357 && ! TREE_CONSTANT_OVERFLOW (arg1)
1358 && ! TREE_CONSTANT_OVERFLOW (arg2)
1359 && int1h == 0 && (HOST_WIDE_INT) int1l >= 0)
1361 if (code == CEIL_DIV_EXPR)
1362 int1l += int2l - 1;
1364 low = int1l / int2l, hi = 0;
1365 break;
1368 /* ... fall through ... */
1370 case ROUND_DIV_EXPR:
1371 if (int2h == 0 && int2l == 1)
1373 low = int1l, hi = int1h;
1374 break;
1376 if (int1l == int2l && int1h == int2h
1377 && ! (int1l == 0 && int1h == 0))
1379 low = 1, hi = 0;
1380 break;
1382 overflow = div_and_round_double (code, uns, int1l, int1h, int2l, int2h,
1383 &low, &hi, &garbagel, &garbageh);
1384 break;
1386 case TRUNC_MOD_EXPR:
1387 case FLOOR_MOD_EXPR: case CEIL_MOD_EXPR:
1388 /* This is a shortcut for a common special case. */
1389 if (int2h == 0 && (HOST_WIDE_INT) int2l > 0
1390 && ! TREE_CONSTANT_OVERFLOW (arg1)
1391 && ! TREE_CONSTANT_OVERFLOW (arg2)
1392 && int1h == 0 && (HOST_WIDE_INT) int1l >= 0)
1394 if (code == CEIL_MOD_EXPR)
1395 int1l += int2l - 1;
1396 low = int1l % int2l, hi = 0;
1397 break;
1400 /* ... fall through ... */
1402 case ROUND_MOD_EXPR:
1403 overflow = div_and_round_double (code, uns,
1404 int1l, int1h, int2l, int2h,
1405 &garbagel, &garbageh, &low, &hi);
1406 break;
1408 case MIN_EXPR:
1409 case MAX_EXPR:
1410 if (uns)
1411 low = (((unsigned HOST_WIDE_INT) int1h
1412 < (unsigned HOST_WIDE_INT) int2h)
1413 || (((unsigned HOST_WIDE_INT) int1h
1414 == (unsigned HOST_WIDE_INT) int2h)
1415 && int1l < int2l));
1416 else
1417 low = (int1h < int2h
1418 || (int1h == int2h && int1l < int2l));
1420 if (low == (code == MIN_EXPR))
1421 low = int1l, hi = int1h;
1422 else
1423 low = int2l, hi = int2h;
1424 break;
1426 default:
1427 gcc_unreachable ();
1430 t = build_int_cst_wide (TREE_TYPE (arg1), low, hi);
1432 if (notrunc)
1434 /* Propagate overflow flags ourselves. */
1435 if (((!uns || is_sizetype) && overflow)
1436 | TREE_OVERFLOW (arg1) | TREE_OVERFLOW (arg2))
1438 t = copy_node (t);
1439 TREE_OVERFLOW (t) = 1;
1440 TREE_CONSTANT_OVERFLOW (t) = 1;
1442 else if (TREE_CONSTANT_OVERFLOW (arg1) | TREE_CONSTANT_OVERFLOW (arg2))
1444 t = copy_node (t);
1445 TREE_CONSTANT_OVERFLOW (t) = 1;
1448 else
1449 t = force_fit_type (t, 1,
1450 ((!uns || is_sizetype) && overflow)
1451 | TREE_OVERFLOW (arg1) | TREE_OVERFLOW (arg2),
1452 TREE_CONSTANT_OVERFLOW (arg1)
1453 | TREE_CONSTANT_OVERFLOW (arg2));
1455 return t;
1458 /* Combine two constants ARG1 and ARG2 under operation CODE to produce a new
1459 constant. We assume ARG1 and ARG2 have the same data type, or at least
1460 are the same kind of constant and the same machine mode.
1462 If NOTRUNC is nonzero, do not truncate the result to fit the data type. */
1464 static tree
1465 const_binop (enum tree_code code, tree arg1, tree arg2, int notrunc)
1467 STRIP_NOPS (arg1);
1468 STRIP_NOPS (arg2);
1470 if (TREE_CODE (arg1) == INTEGER_CST)
1471 return int_const_binop (code, arg1, arg2, notrunc);
1473 if (TREE_CODE (arg1) == REAL_CST)
1475 enum machine_mode mode;
1476 REAL_VALUE_TYPE d1;
1477 REAL_VALUE_TYPE d2;
1478 REAL_VALUE_TYPE value;
1479 tree t, type;
1481 d1 = TREE_REAL_CST (arg1);
1482 d2 = TREE_REAL_CST (arg2);
1484 type = TREE_TYPE (arg1);
1485 mode = TYPE_MODE (type);
1487 /* Don't perform operation if we honor signaling NaNs and
1488 either operand is a NaN. */
1489 if (HONOR_SNANS (mode)
1490 && (REAL_VALUE_ISNAN (d1) || REAL_VALUE_ISNAN (d2)))
1491 return NULL_TREE;
1493 /* Don't perform operation if it would raise a division
1494 by zero exception. */
1495 if (code == RDIV_EXPR
1496 && REAL_VALUES_EQUAL (d2, dconst0)
1497 && (flag_trapping_math || ! MODE_HAS_INFINITIES (mode)))
1498 return NULL_TREE;
1500 /* If either operand is a NaN, just return it. Otherwise, set up
1501 for floating-point trap; we return an overflow. */
1502 if (REAL_VALUE_ISNAN (d1))
1503 return arg1;
1504 else if (REAL_VALUE_ISNAN (d2))
1505 return arg2;
1507 REAL_ARITHMETIC (value, code, d1, d2);
1509 t = build_real (type, real_value_truncate (mode, value));
1511 TREE_OVERFLOW (t) = TREE_OVERFLOW (arg1) | TREE_OVERFLOW (arg2);
1512 TREE_CONSTANT_OVERFLOW (t)
1513 = TREE_OVERFLOW (t)
1514 | TREE_CONSTANT_OVERFLOW (arg1)
1515 | TREE_CONSTANT_OVERFLOW (arg2);
1516 return t;
1518 if (TREE_CODE (arg1) == COMPLEX_CST)
1520 tree type = TREE_TYPE (arg1);
1521 tree r1 = TREE_REALPART (arg1);
1522 tree i1 = TREE_IMAGPART (arg1);
1523 tree r2 = TREE_REALPART (arg2);
1524 tree i2 = TREE_IMAGPART (arg2);
1525 tree t;
1527 switch (code)
1529 case PLUS_EXPR:
1530 t = build_complex (type,
1531 const_binop (PLUS_EXPR, r1, r2, notrunc),
1532 const_binop (PLUS_EXPR, i1, i2, notrunc));
1533 break;
1535 case MINUS_EXPR:
1536 t = build_complex (type,
1537 const_binop (MINUS_EXPR, r1, r2, notrunc),
1538 const_binop (MINUS_EXPR, i1, i2, notrunc));
1539 break;
1541 case MULT_EXPR:
1542 t = build_complex (type,
1543 const_binop (MINUS_EXPR,
1544 const_binop (MULT_EXPR,
1545 r1, r2, notrunc),
1546 const_binop (MULT_EXPR,
1547 i1, i2, notrunc),
1548 notrunc),
1549 const_binop (PLUS_EXPR,
1550 const_binop (MULT_EXPR,
1551 r1, i2, notrunc),
1552 const_binop (MULT_EXPR,
1553 i1, r2, notrunc),
1554 notrunc));
1555 break;
1557 case RDIV_EXPR:
1559 tree magsquared
1560 = const_binop (PLUS_EXPR,
1561 const_binop (MULT_EXPR, r2, r2, notrunc),
1562 const_binop (MULT_EXPR, i2, i2, notrunc),
1563 notrunc);
1565 t = build_complex (type,
1566 const_binop
1567 (INTEGRAL_TYPE_P (TREE_TYPE (r1))
1568 ? TRUNC_DIV_EXPR : RDIV_EXPR,
1569 const_binop (PLUS_EXPR,
1570 const_binop (MULT_EXPR, r1, r2,
1571 notrunc),
1572 const_binop (MULT_EXPR, i1, i2,
1573 notrunc),
1574 notrunc),
1575 magsquared, notrunc),
1576 const_binop
1577 (INTEGRAL_TYPE_P (TREE_TYPE (r1))
1578 ? TRUNC_DIV_EXPR : RDIV_EXPR,
1579 const_binop (MINUS_EXPR,
1580 const_binop (MULT_EXPR, i1, r2,
1581 notrunc),
1582 const_binop (MULT_EXPR, r1, i2,
1583 notrunc),
1584 notrunc),
1585 magsquared, notrunc));
1587 break;
1589 default:
1590 gcc_unreachable ();
1592 return t;
1594 return 0;
1597 /* Create a size type INT_CST node with NUMBER sign extended. KIND
1598 indicates which particular sizetype to create. */
1600 tree
1601 size_int_kind (HOST_WIDE_INT number, enum size_type_kind kind)
1603 return build_int_cst (sizetype_tab[(int) kind], number);
1606 /* Combine operands OP1 and OP2 with arithmetic operation CODE. CODE
1607 is a tree code. The type of the result is taken from the operands.
1608 Both must be the same type integer type and it must be a size type.
1609 If the operands are constant, so is the result. */
1611 tree
1612 size_binop (enum tree_code code, tree arg0, tree arg1)
1614 tree type = TREE_TYPE (arg0);
1616 gcc_assert (TREE_CODE (type) == INTEGER_TYPE && TYPE_IS_SIZETYPE (type)
1617 && type == TREE_TYPE (arg1));
1619 /* Handle the special case of two integer constants faster. */
1620 if (TREE_CODE (arg0) == INTEGER_CST && TREE_CODE (arg1) == INTEGER_CST)
1622 /* And some specific cases even faster than that. */
1623 if (code == PLUS_EXPR && integer_zerop (arg0))
1624 return arg1;
1625 else if ((code == MINUS_EXPR || code == PLUS_EXPR)
1626 && integer_zerop (arg1))
1627 return arg0;
1628 else if (code == MULT_EXPR && integer_onep (arg0))
1629 return arg1;
1631 /* Handle general case of two integer constants. */
1632 return int_const_binop (code, arg0, arg1, 0);
1635 if (arg0 == error_mark_node || arg1 == error_mark_node)
1636 return error_mark_node;
1638 return fold (build2 (code, type, arg0, arg1));
1641 /* Given two values, either both of sizetype or both of bitsizetype,
1642 compute the difference between the two values. Return the value
1643 in signed type corresponding to the type of the operands. */
1645 tree
1646 size_diffop (tree arg0, tree arg1)
1648 tree type = TREE_TYPE (arg0);
1649 tree ctype;
1651 gcc_assert (TREE_CODE (type) == INTEGER_TYPE && TYPE_IS_SIZETYPE (type)
1652 && type == TREE_TYPE (arg1));
1654 /* If the type is already signed, just do the simple thing. */
1655 if (!TYPE_UNSIGNED (type))
1656 return size_binop (MINUS_EXPR, arg0, arg1);
1658 ctype = type == bitsizetype ? sbitsizetype : ssizetype;
1660 /* If either operand is not a constant, do the conversions to the signed
1661 type and subtract. The hardware will do the right thing with any
1662 overflow in the subtraction. */
1663 if (TREE_CODE (arg0) != INTEGER_CST || TREE_CODE (arg1) != INTEGER_CST)
1664 return size_binop (MINUS_EXPR, fold_convert (ctype, arg0),
1665 fold_convert (ctype, arg1));
1667 /* If ARG0 is larger than ARG1, subtract and return the result in CTYPE.
1668 Otherwise, subtract the other way, convert to CTYPE (we know that can't
1669 overflow) and negate (which can't either). Special-case a result
1670 of zero while we're here. */
1671 if (tree_int_cst_equal (arg0, arg1))
1672 return fold_convert (ctype, integer_zero_node);
1673 else if (tree_int_cst_lt (arg1, arg0))
1674 return fold_convert (ctype, size_binop (MINUS_EXPR, arg0, arg1));
1675 else
1676 return size_binop (MINUS_EXPR, fold_convert (ctype, integer_zero_node),
1677 fold_convert (ctype, size_binop (MINUS_EXPR,
1678 arg1, arg0)));
1681 /* Construct a vector of zero elements of vector type TYPE. */
1683 static tree
1684 build_zero_vector (tree type)
1686 tree elem, list;
1687 int i, units;
1689 elem = fold_convert_const (NOP_EXPR, TREE_TYPE (type), integer_zero_node);
1690 units = TYPE_VECTOR_SUBPARTS (type);
1692 list = NULL_TREE;
1693 for (i = 0; i < units; i++)
1694 list = tree_cons (NULL_TREE, elem, list);
1695 return build_vector (type, list);
1699 /* Attempt to fold type conversion operation CODE of expression ARG1 to
1700 type TYPE. If no simplification can be done return NULL_TREE. */
1702 static tree
1703 fold_convert_const (enum tree_code code, tree type, tree arg1)
1705 int overflow = 0;
1706 tree t;
1708 if (TREE_TYPE (arg1) == type)
1709 return arg1;
1711 if (POINTER_TYPE_P (type) || INTEGRAL_TYPE_P (type))
1713 if (TREE_CODE (arg1) == INTEGER_CST)
1715 /* If we would build a constant wider than GCC supports,
1716 leave the conversion unfolded. */
1717 if (TYPE_PRECISION (type) > 2 * HOST_BITS_PER_WIDE_INT)
1718 return NULL_TREE;
1720 /* Given an integer constant, make new constant with new type,
1721 appropriately sign-extended or truncated. */
1722 t = build_int_cst_wide (type, TREE_INT_CST_LOW (arg1),
1723 TREE_INT_CST_HIGH (arg1));
1725 t = force_fit_type (t,
1726 /* Don't set the overflow when
1727 converting a pointer */
1728 !POINTER_TYPE_P (TREE_TYPE (arg1)),
1729 (TREE_INT_CST_HIGH (arg1) < 0
1730 && (TYPE_UNSIGNED (type)
1731 < TYPE_UNSIGNED (TREE_TYPE (arg1))))
1732 | TREE_OVERFLOW (arg1),
1733 TREE_CONSTANT_OVERFLOW (arg1));
1734 return t;
1736 else if (TREE_CODE (arg1) == REAL_CST)
1738 /* The following code implements the floating point to integer
1739 conversion rules required by the Java Language Specification,
1740 that IEEE NaNs are mapped to zero and values that overflow
1741 the target precision saturate, i.e. values greater than
1742 INT_MAX are mapped to INT_MAX, and values less than INT_MIN
1743 are mapped to INT_MIN. These semantics are allowed by the
1744 C and C++ standards that simply state that the behavior of
1745 FP-to-integer conversion is unspecified upon overflow. */
1747 HOST_WIDE_INT high, low;
1748 REAL_VALUE_TYPE r;
1749 REAL_VALUE_TYPE x = TREE_REAL_CST (arg1);
1751 switch (code)
1753 case FIX_TRUNC_EXPR:
1754 real_trunc (&r, VOIDmode, &x);
1755 break;
1757 case FIX_CEIL_EXPR:
1758 real_ceil (&r, VOIDmode, &x);
1759 break;
1761 case FIX_FLOOR_EXPR:
1762 real_floor (&r, VOIDmode, &x);
1763 break;
1765 case FIX_ROUND_EXPR:
1766 real_round (&r, VOIDmode, &x);
1767 break;
1769 default:
1770 gcc_unreachable ();
1773 /* If R is NaN, return zero and show we have an overflow. */
1774 if (REAL_VALUE_ISNAN (r))
1776 overflow = 1;
1777 high = 0;
1778 low = 0;
1781 /* See if R is less than the lower bound or greater than the
1782 upper bound. */
1784 if (! overflow)
1786 tree lt = TYPE_MIN_VALUE (type);
1787 REAL_VALUE_TYPE l = real_value_from_int_cst (NULL_TREE, lt);
1788 if (REAL_VALUES_LESS (r, l))
1790 overflow = 1;
1791 high = TREE_INT_CST_HIGH (lt);
1792 low = TREE_INT_CST_LOW (lt);
1796 if (! overflow)
1798 tree ut = TYPE_MAX_VALUE (type);
1799 if (ut)
1801 REAL_VALUE_TYPE u = real_value_from_int_cst (NULL_TREE, ut);
1802 if (REAL_VALUES_LESS (u, r))
1804 overflow = 1;
1805 high = TREE_INT_CST_HIGH (ut);
1806 low = TREE_INT_CST_LOW (ut);
1811 if (! overflow)
1812 REAL_VALUE_TO_INT (&low, &high, r);
1814 t = build_int_cst_wide (type, low, high);
1816 t = force_fit_type (t, -1, overflow | TREE_OVERFLOW (arg1),
1817 TREE_CONSTANT_OVERFLOW (arg1));
1818 return t;
1821 else if (TREE_CODE (type) == REAL_TYPE)
1823 if (TREE_CODE (arg1) == INTEGER_CST)
1824 return build_real_from_int_cst (type, arg1);
1825 if (TREE_CODE (arg1) == REAL_CST)
1827 if (REAL_VALUE_ISNAN (TREE_REAL_CST (arg1)))
1829 /* We make a copy of ARG1 so that we don't modify an
1830 existing constant tree. */
1831 t = copy_node (arg1);
1832 TREE_TYPE (t) = type;
1833 return t;
1836 t = build_real (type,
1837 real_value_truncate (TYPE_MODE (type),
1838 TREE_REAL_CST (arg1)));
1840 TREE_OVERFLOW (t) = TREE_OVERFLOW (arg1);
1841 TREE_CONSTANT_OVERFLOW (t)
1842 = TREE_OVERFLOW (t) | TREE_CONSTANT_OVERFLOW (arg1);
1843 return t;
1846 return NULL_TREE;
1849 /* Convert expression ARG to type TYPE. Used by the middle-end for
1850 simple conversions in preference to calling the front-end's convert. */
1852 tree
1853 fold_convert (tree type, tree arg)
1855 tree orig = TREE_TYPE (arg);
1856 tree tem;
1858 if (type == orig)
1859 return arg;
1861 if (TREE_CODE (arg) == ERROR_MARK
1862 || TREE_CODE (type) == ERROR_MARK
1863 || TREE_CODE (orig) == ERROR_MARK)
1864 return error_mark_node;
1866 if (TYPE_MAIN_VARIANT (type) == TYPE_MAIN_VARIANT (orig)
1867 || lang_hooks.types_compatible_p (TYPE_MAIN_VARIANT (type),
1868 TYPE_MAIN_VARIANT (orig)))
1869 return fold (build1 (NOP_EXPR, type, arg));
1871 switch (TREE_CODE (type))
1873 case INTEGER_TYPE: case CHAR_TYPE: case ENUMERAL_TYPE: case BOOLEAN_TYPE:
1874 case POINTER_TYPE: case REFERENCE_TYPE:
1875 case OFFSET_TYPE:
1876 if (TREE_CODE (arg) == INTEGER_CST)
1878 tem = fold_convert_const (NOP_EXPR, type, arg);
1879 if (tem != NULL_TREE)
1880 return tem;
1882 if (INTEGRAL_TYPE_P (orig) || POINTER_TYPE_P (orig)
1883 || TREE_CODE (orig) == OFFSET_TYPE)
1884 return fold (build1 (NOP_EXPR, type, arg));
1885 if (TREE_CODE (orig) == COMPLEX_TYPE)
1887 tem = fold (build1 (REALPART_EXPR, TREE_TYPE (orig), arg));
1888 return fold_convert (type, tem);
1890 gcc_assert (TREE_CODE (orig) == VECTOR_TYPE
1891 && tree_int_cst_equal (TYPE_SIZE (type), TYPE_SIZE (orig)));
1892 return fold (build1 (NOP_EXPR, type, arg));
1894 case REAL_TYPE:
1895 if (TREE_CODE (arg) == INTEGER_CST)
1897 tem = fold_convert_const (FLOAT_EXPR, type, arg);
1898 if (tem != NULL_TREE)
1899 return tem;
1901 else if (TREE_CODE (arg) == REAL_CST)
1903 tem = fold_convert_const (NOP_EXPR, type, arg);
1904 if (tem != NULL_TREE)
1905 return tem;
1908 switch (TREE_CODE (orig))
1910 case INTEGER_TYPE: case CHAR_TYPE:
1911 case BOOLEAN_TYPE: case ENUMERAL_TYPE:
1912 case POINTER_TYPE: case REFERENCE_TYPE:
1913 return fold (build1 (FLOAT_EXPR, type, arg));
1915 case REAL_TYPE:
1916 return fold (build1 (flag_float_store ? CONVERT_EXPR : NOP_EXPR,
1917 type, arg));
1919 case COMPLEX_TYPE:
1920 tem = fold (build1 (REALPART_EXPR, TREE_TYPE (orig), arg));
1921 return fold_convert (type, tem);
1923 default:
1924 gcc_unreachable ();
1927 case COMPLEX_TYPE:
1928 switch (TREE_CODE (orig))
1930 case INTEGER_TYPE: case CHAR_TYPE:
1931 case BOOLEAN_TYPE: case ENUMERAL_TYPE:
1932 case POINTER_TYPE: case REFERENCE_TYPE:
1933 case REAL_TYPE:
1934 return build2 (COMPLEX_EXPR, type,
1935 fold_convert (TREE_TYPE (type), arg),
1936 fold_convert (TREE_TYPE (type), integer_zero_node));
1937 case COMPLEX_TYPE:
1939 tree rpart, ipart;
1941 if (TREE_CODE (arg) == COMPLEX_EXPR)
1943 rpart = fold_convert (TREE_TYPE (type), TREE_OPERAND (arg, 0));
1944 ipart = fold_convert (TREE_TYPE (type), TREE_OPERAND (arg, 1));
1945 return fold (build2 (COMPLEX_EXPR, type, rpart, ipart));
1948 arg = save_expr (arg);
1949 rpart = fold (build1 (REALPART_EXPR, TREE_TYPE (orig), arg));
1950 ipart = fold (build1 (IMAGPART_EXPR, TREE_TYPE (orig), arg));
1951 rpart = fold_convert (TREE_TYPE (type), rpart);
1952 ipart = fold_convert (TREE_TYPE (type), ipart);
1953 return fold (build2 (COMPLEX_EXPR, type, rpart, ipart));
1956 default:
1957 gcc_unreachable ();
1960 case VECTOR_TYPE:
1961 if (integer_zerop (arg))
1962 return build_zero_vector (type);
1963 gcc_assert (tree_int_cst_equal (TYPE_SIZE (type), TYPE_SIZE (orig)));
1964 gcc_assert (INTEGRAL_TYPE_P (orig) || POINTER_TYPE_P (orig)
1965 || TREE_CODE (orig) == VECTOR_TYPE);
1966 return fold (build1 (NOP_EXPR, type, arg));
1968 case VOID_TYPE:
1969 return fold (build1 (CONVERT_EXPR, type, fold_ignored_result (arg)));
1971 default:
1972 gcc_unreachable ();
1976 /* Return an expr equal to X but certainly not valid as an lvalue. */
1978 tree
1979 non_lvalue (tree x)
1981 /* We only need to wrap lvalue tree codes. */
1982 switch (TREE_CODE (x))
1984 case VAR_DECL:
1985 case PARM_DECL:
1986 case RESULT_DECL:
1987 case LABEL_DECL:
1988 case FUNCTION_DECL:
1989 case SSA_NAME:
1991 case COMPONENT_REF:
1992 case INDIRECT_REF:
1993 case ARRAY_REF:
1994 case ARRAY_RANGE_REF:
1995 case BIT_FIELD_REF:
1996 case OBJ_TYPE_REF:
1998 case REALPART_EXPR:
1999 case IMAGPART_EXPR:
2000 case PREINCREMENT_EXPR:
2001 case PREDECREMENT_EXPR:
2002 case SAVE_EXPR:
2003 case TRY_CATCH_EXPR:
2004 case WITH_CLEANUP_EXPR:
2005 case COMPOUND_EXPR:
2006 case MODIFY_EXPR:
2007 case TARGET_EXPR:
2008 case COND_EXPR:
2009 case BIND_EXPR:
2010 case MIN_EXPR:
2011 case MAX_EXPR:
2012 break;
2014 default:
2015 /* Assume the worst for front-end tree codes. */
2016 if ((int)TREE_CODE (x) >= NUM_TREE_CODES)
2017 break;
2018 return x;
2020 return build1 (NON_LVALUE_EXPR, TREE_TYPE (x), x);
2023 /* Nonzero means lvalues are limited to those valid in pedantic ANSI C.
2024 Zero means allow extended lvalues. */
2026 int pedantic_lvalues;
2028 /* When pedantic, return an expr equal to X but certainly not valid as a
2029 pedantic lvalue. Otherwise, return X. */
2031 tree
2032 pedantic_non_lvalue (tree x)
2034 if (pedantic_lvalues)
2035 return non_lvalue (x);
2036 else
2037 return x;
2040 /* Given a tree comparison code, return the code that is the logical inverse
2041 of the given code. It is not safe to do this for floating-point
2042 comparisons, except for NE_EXPR and EQ_EXPR, so we receive a machine mode
2043 as well: if reversing the comparison is unsafe, return ERROR_MARK. */
2045 static enum tree_code
2046 invert_tree_comparison (enum tree_code code, bool honor_nans)
2048 if (honor_nans && flag_trapping_math)
2049 return ERROR_MARK;
2051 switch (code)
2053 case EQ_EXPR:
2054 return NE_EXPR;
2055 case NE_EXPR:
2056 return EQ_EXPR;
2057 case GT_EXPR:
2058 return honor_nans ? UNLE_EXPR : LE_EXPR;
2059 case GE_EXPR:
2060 return honor_nans ? UNLT_EXPR : LT_EXPR;
2061 case LT_EXPR:
2062 return honor_nans ? UNGE_EXPR : GE_EXPR;
2063 case LE_EXPR:
2064 return honor_nans ? UNGT_EXPR : GT_EXPR;
2065 case LTGT_EXPR:
2066 return UNEQ_EXPR;
2067 case UNEQ_EXPR:
2068 return LTGT_EXPR;
2069 case UNGT_EXPR:
2070 return LE_EXPR;
2071 case UNGE_EXPR:
2072 return LT_EXPR;
2073 case UNLT_EXPR:
2074 return GE_EXPR;
2075 case UNLE_EXPR:
2076 return GT_EXPR;
2077 case ORDERED_EXPR:
2078 return UNORDERED_EXPR;
2079 case UNORDERED_EXPR:
2080 return ORDERED_EXPR;
2081 default:
2082 gcc_unreachable ();
2086 /* Similar, but return the comparison that results if the operands are
2087 swapped. This is safe for floating-point. */
2089 enum tree_code
2090 swap_tree_comparison (enum tree_code code)
2092 switch (code)
2094 case EQ_EXPR:
2095 case NE_EXPR:
2096 return code;
2097 case GT_EXPR:
2098 return LT_EXPR;
2099 case GE_EXPR:
2100 return LE_EXPR;
2101 case LT_EXPR:
2102 return GT_EXPR;
2103 case LE_EXPR:
2104 return GE_EXPR;
2105 default:
2106 gcc_unreachable ();
2111 /* Convert a comparison tree code from an enum tree_code representation
2112 into a compcode bit-based encoding. This function is the inverse of
2113 compcode_to_comparison. */
2115 static enum comparison_code
2116 comparison_to_compcode (enum tree_code code)
2118 switch (code)
2120 case LT_EXPR:
2121 return COMPCODE_LT;
2122 case EQ_EXPR:
2123 return COMPCODE_EQ;
2124 case LE_EXPR:
2125 return COMPCODE_LE;
2126 case GT_EXPR:
2127 return COMPCODE_GT;
2128 case NE_EXPR:
2129 return COMPCODE_NE;
2130 case GE_EXPR:
2131 return COMPCODE_GE;
2132 case ORDERED_EXPR:
2133 return COMPCODE_ORD;
2134 case UNORDERED_EXPR:
2135 return COMPCODE_UNORD;
2136 case UNLT_EXPR:
2137 return COMPCODE_UNLT;
2138 case UNEQ_EXPR:
2139 return COMPCODE_UNEQ;
2140 case UNLE_EXPR:
2141 return COMPCODE_UNLE;
2142 case UNGT_EXPR:
2143 return COMPCODE_UNGT;
2144 case LTGT_EXPR:
2145 return COMPCODE_LTGT;
2146 case UNGE_EXPR:
2147 return COMPCODE_UNGE;
2148 default:
2149 gcc_unreachable ();
2153 /* Convert a compcode bit-based encoding of a comparison operator back
2154 to GCC's enum tree_code representation. This function is the
2155 inverse of comparison_to_compcode. */
2157 static enum tree_code
2158 compcode_to_comparison (enum comparison_code code)
2160 switch (code)
2162 case COMPCODE_LT:
2163 return LT_EXPR;
2164 case COMPCODE_EQ:
2165 return EQ_EXPR;
2166 case COMPCODE_LE:
2167 return LE_EXPR;
2168 case COMPCODE_GT:
2169 return GT_EXPR;
2170 case COMPCODE_NE:
2171 return NE_EXPR;
2172 case COMPCODE_GE:
2173 return GE_EXPR;
2174 case COMPCODE_ORD:
2175 return ORDERED_EXPR;
2176 case COMPCODE_UNORD:
2177 return UNORDERED_EXPR;
2178 case COMPCODE_UNLT:
2179 return UNLT_EXPR;
2180 case COMPCODE_UNEQ:
2181 return UNEQ_EXPR;
2182 case COMPCODE_UNLE:
2183 return UNLE_EXPR;
2184 case COMPCODE_UNGT:
2185 return UNGT_EXPR;
2186 case COMPCODE_LTGT:
2187 return LTGT_EXPR;
2188 case COMPCODE_UNGE:
2189 return UNGE_EXPR;
2190 default:
2191 gcc_unreachable ();
2195 /* Return a tree for the comparison which is the combination of
2196 doing the AND or OR (depending on CODE) of the two operations LCODE
2197 and RCODE on the identical operands LL_ARG and LR_ARG. Take into account
2198 the possibility of trapping if the mode has NaNs, and return NULL_TREE
2199 if this makes the transformation invalid. */
2201 tree
2202 combine_comparisons (enum tree_code code, enum tree_code lcode,
2203 enum tree_code rcode, tree truth_type,
2204 tree ll_arg, tree lr_arg)
2206 bool honor_nans = HONOR_NANS (TYPE_MODE (TREE_TYPE (ll_arg)));
2207 enum comparison_code lcompcode = comparison_to_compcode (lcode);
2208 enum comparison_code rcompcode = comparison_to_compcode (rcode);
2209 enum comparison_code compcode;
2211 switch (code)
2213 case TRUTH_AND_EXPR: case TRUTH_ANDIF_EXPR:
2214 compcode = lcompcode & rcompcode;
2215 break;
2217 case TRUTH_OR_EXPR: case TRUTH_ORIF_EXPR:
2218 compcode = lcompcode | rcompcode;
2219 break;
2221 default:
2222 return NULL_TREE;
2225 if (!honor_nans)
2227 /* Eliminate unordered comparisons, as well as LTGT and ORD
2228 which are not used unless the mode has NaNs. */
2229 compcode &= ~COMPCODE_UNORD;
2230 if (compcode == COMPCODE_LTGT)
2231 compcode = COMPCODE_NE;
2232 else if (compcode == COMPCODE_ORD)
2233 compcode = COMPCODE_TRUE;
2235 else if (flag_trapping_math)
2237 /* Check that the original operation and the optimized ones will trap
2238 under the same condition. */
2239 bool ltrap = (lcompcode & COMPCODE_UNORD) == 0
2240 && (lcompcode != COMPCODE_EQ)
2241 && (lcompcode != COMPCODE_ORD);
2242 bool rtrap = (rcompcode & COMPCODE_UNORD) == 0
2243 && (rcompcode != COMPCODE_EQ)
2244 && (rcompcode != COMPCODE_ORD);
2245 bool trap = (compcode & COMPCODE_UNORD) == 0
2246 && (compcode != COMPCODE_EQ)
2247 && (compcode != COMPCODE_ORD);
2249 /* In a short-circuited boolean expression the LHS might be
2250 such that the RHS, if evaluated, will never trap. For
2251 example, in ORD (x, y) && (x < y), we evaluate the RHS only
2252 if neither x nor y is NaN. (This is a mixed blessing: for
2253 example, the expression above will never trap, hence
2254 optimizing it to x < y would be invalid). */
2255 if ((code == TRUTH_ORIF_EXPR && (lcompcode & COMPCODE_UNORD))
2256 || (code == TRUTH_ANDIF_EXPR && !(lcompcode & COMPCODE_UNORD)))
2257 rtrap = false;
2259 /* If the comparison was short-circuited, and only the RHS
2260 trapped, we may now generate a spurious trap. */
2261 if (rtrap && !ltrap
2262 && (code == TRUTH_ANDIF_EXPR || code == TRUTH_ORIF_EXPR))
2263 return NULL_TREE;
2265 /* If we changed the conditions that cause a trap, we lose. */
2266 if ((ltrap || rtrap) != trap)
2267 return NULL_TREE;
2270 if (compcode == COMPCODE_TRUE)
2271 return constant_boolean_node (true, truth_type);
2272 else if (compcode == COMPCODE_FALSE)
2273 return constant_boolean_node (false, truth_type);
2274 else
2275 return fold (build2 (compcode_to_comparison (compcode),
2276 truth_type, ll_arg, lr_arg));
2279 /* Return nonzero if CODE is a tree code that represents a truth value. */
2281 static int
2282 truth_value_p (enum tree_code code)
2284 return (TREE_CODE_CLASS (code) == '<'
2285 || code == TRUTH_AND_EXPR || code == TRUTH_ANDIF_EXPR
2286 || code == TRUTH_OR_EXPR || code == TRUTH_ORIF_EXPR
2287 || code == TRUTH_XOR_EXPR || code == TRUTH_NOT_EXPR);
2290 /* Return nonzero if two operands (typically of the same tree node)
2291 are necessarily equal. If either argument has side-effects this
2292 function returns zero. FLAGS modifies behavior as follows:
2294 If OEP_ONLY_CONST is set, only return nonzero for constants.
2295 This function tests whether the operands are indistinguishable;
2296 it does not test whether they are equal using C's == operation.
2297 The distinction is important for IEEE floating point, because
2298 (1) -0.0 and 0.0 are distinguishable, but -0.0==0.0, and
2299 (2) two NaNs may be indistinguishable, but NaN!=NaN.
2301 If OEP_ONLY_CONST is unset, a VAR_DECL is considered equal to itself
2302 even though it may hold multiple values during a function.
2303 This is because a GCC tree node guarantees that nothing else is
2304 executed between the evaluation of its "operands" (which may often
2305 be evaluated in arbitrary order). Hence if the operands themselves
2306 don't side-effect, the VAR_DECLs, PARM_DECLs etc... must hold the
2307 same value in each operand/subexpression. Hence leaving OEP_ONLY_CONST
2308 unset means assuming isochronic (or instantaneous) tree equivalence.
2309 Unless comparing arbitrary expression trees, such as from different
2310 statements, this flag can usually be left unset.
2312 If OEP_PURE_SAME is set, then pure functions with identical arguments
2313 are considered the same. It is used when the caller has other ways
2314 to ensure that global memory is unchanged in between. */
2317 operand_equal_p (tree arg0, tree arg1, unsigned int flags)
2319 /* If one is specified and the other isn't, they aren't equal and if
2320 neither is specified, they are.
2322 ??? This is temporary and is meant only to handle the cases of the
2323 optional operands for COMPONENT_REF and ARRAY_REF. */
2324 if ((arg0 && !arg1) || (!arg0 && arg1))
2325 return 0;
2326 else if (!arg0 && !arg1)
2327 return 1;
2328 /* If either is ERROR_MARK, they aren't equal. */
2329 else if (TREE_CODE (arg0) == ERROR_MARK || TREE_CODE (arg1) == ERROR_MARK)
2330 return 0;
2332 /* If both types don't have the same signedness, then we can't consider
2333 them equal. We must check this before the STRIP_NOPS calls
2334 because they may change the signedness of the arguments. */
2335 if (TYPE_UNSIGNED (TREE_TYPE (arg0)) != TYPE_UNSIGNED (TREE_TYPE (arg1)))
2336 return 0;
2338 STRIP_NOPS (arg0);
2339 STRIP_NOPS (arg1);
2341 if (TREE_CODE (arg0) != TREE_CODE (arg1)
2342 /* This is needed for conversions and for COMPONENT_REF.
2343 Might as well play it safe and always test this. */
2344 || TREE_CODE (TREE_TYPE (arg0)) == ERROR_MARK
2345 || TREE_CODE (TREE_TYPE (arg1)) == ERROR_MARK
2346 || TYPE_MODE (TREE_TYPE (arg0)) != TYPE_MODE (TREE_TYPE (arg1)))
2347 return 0;
2349 /* If ARG0 and ARG1 are the same SAVE_EXPR, they are necessarily equal.
2350 We don't care about side effects in that case because the SAVE_EXPR
2351 takes care of that for us. In all other cases, two expressions are
2352 equal if they have no side effects. If we have two identical
2353 expressions with side effects that should be treated the same due
2354 to the only side effects being identical SAVE_EXPR's, that will
2355 be detected in the recursive calls below. */
2356 if (arg0 == arg1 && ! (flags & OEP_ONLY_CONST)
2357 && (TREE_CODE (arg0) == SAVE_EXPR
2358 || (! TREE_SIDE_EFFECTS (arg0) && ! TREE_SIDE_EFFECTS (arg1))))
2359 return 1;
2361 /* Next handle constant cases, those for which we can return 1 even
2362 if ONLY_CONST is set. */
2363 if (TREE_CONSTANT (arg0) && TREE_CONSTANT (arg1))
2364 switch (TREE_CODE (arg0))
2366 case INTEGER_CST:
2367 return (! TREE_CONSTANT_OVERFLOW (arg0)
2368 && ! TREE_CONSTANT_OVERFLOW (arg1)
2369 && tree_int_cst_equal (arg0, arg1));
2371 case REAL_CST:
2372 return (! TREE_CONSTANT_OVERFLOW (arg0)
2373 && ! TREE_CONSTANT_OVERFLOW (arg1)
2374 && REAL_VALUES_IDENTICAL (TREE_REAL_CST (arg0),
2375 TREE_REAL_CST (arg1)));
2377 case VECTOR_CST:
2379 tree v1, v2;
2381 if (TREE_CONSTANT_OVERFLOW (arg0)
2382 || TREE_CONSTANT_OVERFLOW (arg1))
2383 return 0;
2385 v1 = TREE_VECTOR_CST_ELTS (arg0);
2386 v2 = TREE_VECTOR_CST_ELTS (arg1);
2387 while (v1 && v2)
2389 if (!operand_equal_p (TREE_VALUE (v1), TREE_VALUE (v2),
2390 flags))
2391 return 0;
2392 v1 = TREE_CHAIN (v1);
2393 v2 = TREE_CHAIN (v2);
2396 return 1;
2399 case COMPLEX_CST:
2400 return (operand_equal_p (TREE_REALPART (arg0), TREE_REALPART (arg1),
2401 flags)
2402 && operand_equal_p (TREE_IMAGPART (arg0), TREE_IMAGPART (arg1),
2403 flags));
2405 case STRING_CST:
2406 return (TREE_STRING_LENGTH (arg0) == TREE_STRING_LENGTH (arg1)
2407 && ! memcmp (TREE_STRING_POINTER (arg0),
2408 TREE_STRING_POINTER (arg1),
2409 TREE_STRING_LENGTH (arg0)));
2411 case ADDR_EXPR:
2412 return operand_equal_p (TREE_OPERAND (arg0, 0), TREE_OPERAND (arg1, 0),
2414 default:
2415 break;
2418 if (flags & OEP_ONLY_CONST)
2419 return 0;
2421 switch (TREE_CODE_CLASS (TREE_CODE (arg0)))
2423 case '1':
2424 /* Two conversions are equal only if signedness and modes match. */
2425 switch (TREE_CODE (arg0))
2427 case NOP_EXPR:
2428 case CONVERT_EXPR:
2429 case FIX_CEIL_EXPR:
2430 case FIX_TRUNC_EXPR:
2431 case FIX_FLOOR_EXPR:
2432 case FIX_ROUND_EXPR:
2433 if (TYPE_UNSIGNED (TREE_TYPE (arg0))
2434 != TYPE_UNSIGNED (TREE_TYPE (arg1)))
2435 return 0;
2436 break;
2437 default:
2438 break;
2441 return operand_equal_p (TREE_OPERAND (arg0, 0),
2442 TREE_OPERAND (arg1, 0), flags);
2444 case '<':
2445 case '2':
2446 if (operand_equal_p (TREE_OPERAND (arg0, 0),
2447 TREE_OPERAND (arg1, 0), flags)
2448 && operand_equal_p (TREE_OPERAND (arg0, 1),
2449 TREE_OPERAND (arg1, 1), flags))
2450 return 1;
2452 /* For commutative ops, allow the other order. */
2453 return (commutative_tree_code (TREE_CODE (arg0))
2454 && operand_equal_p (TREE_OPERAND (arg0, 0),
2455 TREE_OPERAND (arg1, 1), flags)
2456 && operand_equal_p (TREE_OPERAND (arg0, 1),
2457 TREE_OPERAND (arg1, 0), flags));
2459 case 'r':
2460 /* If either of the pointer (or reference) expressions we are
2461 dereferencing contain a side effect, these cannot be equal. */
2462 if (TREE_SIDE_EFFECTS (arg0)
2463 || TREE_SIDE_EFFECTS (arg1))
2464 return 0;
2466 switch (TREE_CODE (arg0))
2468 case INDIRECT_REF:
2469 case REALPART_EXPR:
2470 case IMAGPART_EXPR:
2471 return operand_equal_p (TREE_OPERAND (arg0, 0),
2472 TREE_OPERAND (arg1, 0), flags);
2474 case ARRAY_REF:
2475 case ARRAY_RANGE_REF:
2476 return (operand_equal_p (TREE_OPERAND (arg0, 0),
2477 TREE_OPERAND (arg1, 0), flags)
2478 && operand_equal_p (TREE_OPERAND (arg0, 1),
2479 TREE_OPERAND (arg1, 1), flags)
2480 && operand_equal_p (TREE_OPERAND (arg0, 2),
2481 TREE_OPERAND (arg1, 2), flags)
2482 && operand_equal_p (TREE_OPERAND (arg0, 3),
2483 TREE_OPERAND (arg1, 3), flags));
2486 case COMPONENT_REF:
2487 return (operand_equal_p (TREE_OPERAND (arg0, 0),
2488 TREE_OPERAND (arg1, 0), flags)
2489 && operand_equal_p (TREE_OPERAND (arg0, 1),
2490 TREE_OPERAND (arg1, 1), flags)
2491 && operand_equal_p (TREE_OPERAND (arg0, 2),
2492 TREE_OPERAND (arg1, 2), flags));
2495 case BIT_FIELD_REF:
2496 return (operand_equal_p (TREE_OPERAND (arg0, 0),
2497 TREE_OPERAND (arg1, 0), flags)
2498 && operand_equal_p (TREE_OPERAND (arg0, 1),
2499 TREE_OPERAND (arg1, 1), flags)
2500 && operand_equal_p (TREE_OPERAND (arg0, 2),
2501 TREE_OPERAND (arg1, 2), flags));
2502 default:
2503 return 0;
2506 case 'e':
2507 switch (TREE_CODE (arg0))
2509 case ADDR_EXPR:
2510 case TRUTH_NOT_EXPR:
2511 return operand_equal_p (TREE_OPERAND (arg0, 0),
2512 TREE_OPERAND (arg1, 0), flags);
2514 case TRUTH_ANDIF_EXPR:
2515 case TRUTH_ORIF_EXPR:
2516 return operand_equal_p (TREE_OPERAND (arg0, 0),
2517 TREE_OPERAND (arg1, 0), flags)
2518 && operand_equal_p (TREE_OPERAND (arg0, 1),
2519 TREE_OPERAND (arg1, 1), flags);
2521 case TRUTH_AND_EXPR:
2522 case TRUTH_OR_EXPR:
2523 case TRUTH_XOR_EXPR:
2524 return (operand_equal_p (TREE_OPERAND (arg0, 0),
2525 TREE_OPERAND (arg1, 0), flags)
2526 && operand_equal_p (TREE_OPERAND (arg0, 1),
2527 TREE_OPERAND (arg1, 1), flags))
2528 || (operand_equal_p (TREE_OPERAND (arg0, 0),
2529 TREE_OPERAND (arg1, 1), flags)
2530 && operand_equal_p (TREE_OPERAND (arg0, 1),
2531 TREE_OPERAND (arg1, 0), flags));
2533 case CALL_EXPR:
2534 /* If the CALL_EXPRs call different functions, then they
2535 clearly can not be equal. */
2536 if (! operand_equal_p (TREE_OPERAND (arg0, 0),
2537 TREE_OPERAND (arg1, 0), flags))
2538 return 0;
2541 unsigned int cef = call_expr_flags (arg0);
2542 if (flags & OEP_PURE_SAME)
2543 cef &= ECF_CONST | ECF_PURE;
2544 else
2545 cef &= ECF_CONST;
2546 if (!cef)
2547 return 0;
2550 /* Now see if all the arguments are the same. operand_equal_p
2551 does not handle TREE_LIST, so we walk the operands here
2552 feeding them to operand_equal_p. */
2553 arg0 = TREE_OPERAND (arg0, 1);
2554 arg1 = TREE_OPERAND (arg1, 1);
2555 while (arg0 && arg1)
2557 if (! operand_equal_p (TREE_VALUE (arg0), TREE_VALUE (arg1),
2558 flags))
2559 return 0;
2561 arg0 = TREE_CHAIN (arg0);
2562 arg1 = TREE_CHAIN (arg1);
2565 /* If we get here and both argument lists are exhausted
2566 then the CALL_EXPRs are equal. */
2567 return ! (arg0 || arg1);
2569 default:
2570 return 0;
2573 case 'd':
2574 /* Consider __builtin_sqrt equal to sqrt. */
2575 return (TREE_CODE (arg0) == FUNCTION_DECL
2576 && DECL_BUILT_IN (arg0) && DECL_BUILT_IN (arg1)
2577 && DECL_BUILT_IN_CLASS (arg0) == DECL_BUILT_IN_CLASS (arg1)
2578 && DECL_FUNCTION_CODE (arg0) == DECL_FUNCTION_CODE (arg1));
2580 default:
2581 return 0;
2585 /* Similar to operand_equal_p, but see if ARG0 might have been made by
2586 shorten_compare from ARG1 when ARG1 was being compared with OTHER.
2588 When in doubt, return 0. */
2590 static int
2591 operand_equal_for_comparison_p (tree arg0, tree arg1, tree other)
2593 int unsignedp1, unsignedpo;
2594 tree primarg0, primarg1, primother;
2595 unsigned int correct_width;
2597 if (operand_equal_p (arg0, arg1, 0))
2598 return 1;
2600 if (! INTEGRAL_TYPE_P (TREE_TYPE (arg0))
2601 || ! INTEGRAL_TYPE_P (TREE_TYPE (arg1)))
2602 return 0;
2604 /* Discard any conversions that don't change the modes of ARG0 and ARG1
2605 and see if the inner values are the same. This removes any
2606 signedness comparison, which doesn't matter here. */
2607 primarg0 = arg0, primarg1 = arg1;
2608 STRIP_NOPS (primarg0);
2609 STRIP_NOPS (primarg1);
2610 if (operand_equal_p (primarg0, primarg1, 0))
2611 return 1;
2613 /* Duplicate what shorten_compare does to ARG1 and see if that gives the
2614 actual comparison operand, ARG0.
2616 First throw away any conversions to wider types
2617 already present in the operands. */
2619 primarg1 = get_narrower (arg1, &unsignedp1);
2620 primother = get_narrower (other, &unsignedpo);
2622 correct_width = TYPE_PRECISION (TREE_TYPE (arg1));
2623 if (unsignedp1 == unsignedpo
2624 && TYPE_PRECISION (TREE_TYPE (primarg1)) < correct_width
2625 && TYPE_PRECISION (TREE_TYPE (primother)) < correct_width)
2627 tree type = TREE_TYPE (arg0);
2629 /* Make sure shorter operand is extended the right way
2630 to match the longer operand. */
2631 primarg1 = fold_convert (lang_hooks.types.signed_or_unsigned_type
2632 (unsignedp1, TREE_TYPE (primarg1)), primarg1);
2634 if (operand_equal_p (arg0, fold_convert (type, primarg1), 0))
2635 return 1;
2638 return 0;
2641 /* See if ARG is an expression that is either a comparison or is performing
2642 arithmetic on comparisons. The comparisons must only be comparing
2643 two different values, which will be stored in *CVAL1 and *CVAL2; if
2644 they are nonzero it means that some operands have already been found.
2645 No variables may be used anywhere else in the expression except in the
2646 comparisons. If SAVE_P is true it means we removed a SAVE_EXPR around
2647 the expression and save_expr needs to be called with CVAL1 and CVAL2.
2649 If this is true, return 1. Otherwise, return zero. */
2651 static int
2652 twoval_comparison_p (tree arg, tree *cval1, tree *cval2, int *save_p)
2654 enum tree_code code = TREE_CODE (arg);
2655 char class = TREE_CODE_CLASS (code);
2657 /* We can handle some of the 'e' cases here. */
2658 if (class == 'e' && code == TRUTH_NOT_EXPR)
2659 class = '1';
2660 else if (class == 'e'
2661 && (code == TRUTH_ANDIF_EXPR || code == TRUTH_ORIF_EXPR
2662 || code == COMPOUND_EXPR))
2663 class = '2';
2665 else if (class == 'e' && code == SAVE_EXPR
2666 && ! TREE_SIDE_EFFECTS (TREE_OPERAND (arg, 0)))
2668 /* If we've already found a CVAL1 or CVAL2, this expression is
2669 two complex to handle. */
2670 if (*cval1 || *cval2)
2671 return 0;
2673 class = '1';
2674 *save_p = 1;
2677 switch (class)
2679 case '1':
2680 return twoval_comparison_p (TREE_OPERAND (arg, 0), cval1, cval2, save_p);
2682 case '2':
2683 return (twoval_comparison_p (TREE_OPERAND (arg, 0), cval1, cval2, save_p)
2684 && twoval_comparison_p (TREE_OPERAND (arg, 1),
2685 cval1, cval2, save_p));
2687 case 'c':
2688 return 1;
2690 case 'e':
2691 if (code == COND_EXPR)
2692 return (twoval_comparison_p (TREE_OPERAND (arg, 0),
2693 cval1, cval2, save_p)
2694 && twoval_comparison_p (TREE_OPERAND (arg, 1),
2695 cval1, cval2, save_p)
2696 && twoval_comparison_p (TREE_OPERAND (arg, 2),
2697 cval1, cval2, save_p));
2698 return 0;
2700 case '<':
2701 /* First see if we can handle the first operand, then the second. For
2702 the second operand, we know *CVAL1 can't be zero. It must be that
2703 one side of the comparison is each of the values; test for the
2704 case where this isn't true by failing if the two operands
2705 are the same. */
2707 if (operand_equal_p (TREE_OPERAND (arg, 0),
2708 TREE_OPERAND (arg, 1), 0))
2709 return 0;
2711 if (*cval1 == 0)
2712 *cval1 = TREE_OPERAND (arg, 0);
2713 else if (operand_equal_p (*cval1, TREE_OPERAND (arg, 0), 0))
2715 else if (*cval2 == 0)
2716 *cval2 = TREE_OPERAND (arg, 0);
2717 else if (operand_equal_p (*cval2, TREE_OPERAND (arg, 0), 0))
2719 else
2720 return 0;
2722 if (operand_equal_p (*cval1, TREE_OPERAND (arg, 1), 0))
2724 else if (*cval2 == 0)
2725 *cval2 = TREE_OPERAND (arg, 1);
2726 else if (operand_equal_p (*cval2, TREE_OPERAND (arg, 1), 0))
2728 else
2729 return 0;
2731 return 1;
2733 default:
2734 return 0;
2738 /* ARG is a tree that is known to contain just arithmetic operations and
2739 comparisons. Evaluate the operations in the tree substituting NEW0 for
2740 any occurrence of OLD0 as an operand of a comparison and likewise for
2741 NEW1 and OLD1. */
2743 static tree
2744 eval_subst (tree arg, tree old0, tree new0, tree old1, tree new1)
2746 tree type = TREE_TYPE (arg);
2747 enum tree_code code = TREE_CODE (arg);
2748 char class = TREE_CODE_CLASS (code);
2750 /* We can handle some of the 'e' cases here. */
2751 if (class == 'e' && code == TRUTH_NOT_EXPR)
2752 class = '1';
2753 else if (class == 'e'
2754 && (code == TRUTH_ANDIF_EXPR || code == TRUTH_ORIF_EXPR))
2755 class = '2';
2757 switch (class)
2759 case '1':
2760 return fold (build1 (code, type,
2761 eval_subst (TREE_OPERAND (arg, 0),
2762 old0, new0, old1, new1)));
2764 case '2':
2765 return fold (build2 (code, type,
2766 eval_subst (TREE_OPERAND (arg, 0),
2767 old0, new0, old1, new1),
2768 eval_subst (TREE_OPERAND (arg, 1),
2769 old0, new0, old1, new1)));
2771 case 'e':
2772 switch (code)
2774 case SAVE_EXPR:
2775 return eval_subst (TREE_OPERAND (arg, 0), old0, new0, old1, new1);
2777 case COMPOUND_EXPR:
2778 return eval_subst (TREE_OPERAND (arg, 1), old0, new0, old1, new1);
2780 case COND_EXPR:
2781 return fold (build3 (code, type,
2782 eval_subst (TREE_OPERAND (arg, 0),
2783 old0, new0, old1, new1),
2784 eval_subst (TREE_OPERAND (arg, 1),
2785 old0, new0, old1, new1),
2786 eval_subst (TREE_OPERAND (arg, 2),
2787 old0, new0, old1, new1)));
2788 default:
2789 break;
2791 /* Fall through - ??? */
2793 case '<':
2795 tree arg0 = TREE_OPERAND (arg, 0);
2796 tree arg1 = TREE_OPERAND (arg, 1);
2798 /* We need to check both for exact equality and tree equality. The
2799 former will be true if the operand has a side-effect. In that
2800 case, we know the operand occurred exactly once. */
2802 if (arg0 == old0 || operand_equal_p (arg0, old0, 0))
2803 arg0 = new0;
2804 else if (arg0 == old1 || operand_equal_p (arg0, old1, 0))
2805 arg0 = new1;
2807 if (arg1 == old0 || operand_equal_p (arg1, old0, 0))
2808 arg1 = new0;
2809 else if (arg1 == old1 || operand_equal_p (arg1, old1, 0))
2810 arg1 = new1;
2812 return fold (build2 (code, type, arg0, arg1));
2815 default:
2816 return arg;
2820 /* Return a tree for the case when the result of an expression is RESULT
2821 converted to TYPE and OMITTED was previously an operand of the expression
2822 but is now not needed (e.g., we folded OMITTED * 0).
2824 If OMITTED has side effects, we must evaluate it. Otherwise, just do
2825 the conversion of RESULT to TYPE. */
2827 tree
2828 omit_one_operand (tree type, tree result, tree omitted)
2830 tree t = fold_convert (type, result);
2832 if (TREE_SIDE_EFFECTS (omitted))
2833 return build2 (COMPOUND_EXPR, type, fold_ignored_result (omitted), t);
2835 return non_lvalue (t);
2838 /* Similar, but call pedantic_non_lvalue instead of non_lvalue. */
2840 static tree
2841 pedantic_omit_one_operand (tree type, tree result, tree omitted)
2843 tree t = fold_convert (type, result);
2845 if (TREE_SIDE_EFFECTS (omitted))
2846 return build2 (COMPOUND_EXPR, type, fold_ignored_result (omitted), t);
2848 return pedantic_non_lvalue (t);
2851 /* Return a tree for the case when the result of an expression is RESULT
2852 converted to TYPE and OMITTED1 and OMITTED2 were previously operands
2853 of the expression but are now not needed.
2855 If OMITTED1 or OMITTED2 has side effects, they must be evaluated.
2856 If both OMITTED1 and OMITTED2 have side effects, OMITTED1 is
2857 evaluated before OMITTED2. Otherwise, if neither has side effects,
2858 just do the conversion of RESULT to TYPE. */
2860 tree
2861 omit_two_operands (tree type, tree result, tree omitted1, tree omitted2)
2863 tree t = fold_convert (type, result);
2865 if (TREE_SIDE_EFFECTS (omitted2))
2866 t = build2 (COMPOUND_EXPR, type, omitted2, t);
2867 if (TREE_SIDE_EFFECTS (omitted1))
2868 t = build2 (COMPOUND_EXPR, type, omitted1, t);
2870 return TREE_CODE (t) != COMPOUND_EXPR ? non_lvalue (t) : t;
2874 /* Return a simplified tree node for the truth-negation of ARG. This
2875 never alters ARG itself. We assume that ARG is an operation that
2876 returns a truth value (0 or 1).
2878 FIXME: one would think we would fold the result, but it causes
2879 problems with the dominator optimizer. */
2880 tree
2881 invert_truthvalue (tree arg)
2883 tree type = TREE_TYPE (arg);
2884 enum tree_code code = TREE_CODE (arg);
2886 if (code == ERROR_MARK)
2887 return arg;
2889 /* If this is a comparison, we can simply invert it, except for
2890 floating-point non-equality comparisons, in which case we just
2891 enclose a TRUTH_NOT_EXPR around what we have. */
2893 if (TREE_CODE_CLASS (code) == '<')
2895 tree op_type = TREE_TYPE (TREE_OPERAND (arg, 0));
2896 if (FLOAT_TYPE_P (op_type)
2897 && flag_trapping_math
2898 && code != ORDERED_EXPR && code != UNORDERED_EXPR
2899 && code != NE_EXPR && code != EQ_EXPR)
2900 return build1 (TRUTH_NOT_EXPR, type, arg);
2901 else
2903 code = invert_tree_comparison (code,
2904 HONOR_NANS (TYPE_MODE (op_type)));
2905 if (code == ERROR_MARK)
2906 return build1 (TRUTH_NOT_EXPR, type, arg);
2907 else
2908 return build2 (code, type,
2909 TREE_OPERAND (arg, 0), TREE_OPERAND (arg, 1));
2913 switch (code)
2915 case INTEGER_CST:
2916 return fold_convert (type,
2917 build_int_cst (NULL_TREE, integer_zerop (arg)));
2919 case TRUTH_AND_EXPR:
2920 return build2 (TRUTH_OR_EXPR, type,
2921 invert_truthvalue (TREE_OPERAND (arg, 0)),
2922 invert_truthvalue (TREE_OPERAND (arg, 1)));
2924 case TRUTH_OR_EXPR:
2925 return build2 (TRUTH_AND_EXPR, type,
2926 invert_truthvalue (TREE_OPERAND (arg, 0)),
2927 invert_truthvalue (TREE_OPERAND (arg, 1)));
2929 case TRUTH_XOR_EXPR:
2930 /* Here we can invert either operand. We invert the first operand
2931 unless the second operand is a TRUTH_NOT_EXPR in which case our
2932 result is the XOR of the first operand with the inside of the
2933 negation of the second operand. */
2935 if (TREE_CODE (TREE_OPERAND (arg, 1)) == TRUTH_NOT_EXPR)
2936 return build2 (TRUTH_XOR_EXPR, type, TREE_OPERAND (arg, 0),
2937 TREE_OPERAND (TREE_OPERAND (arg, 1), 0));
2938 else
2939 return build2 (TRUTH_XOR_EXPR, type,
2940 invert_truthvalue (TREE_OPERAND (arg, 0)),
2941 TREE_OPERAND (arg, 1));
2943 case TRUTH_ANDIF_EXPR:
2944 return build2 (TRUTH_ORIF_EXPR, type,
2945 invert_truthvalue (TREE_OPERAND (arg, 0)),
2946 invert_truthvalue (TREE_OPERAND (arg, 1)));
2948 case TRUTH_ORIF_EXPR:
2949 return build2 (TRUTH_ANDIF_EXPR, type,
2950 invert_truthvalue (TREE_OPERAND (arg, 0)),
2951 invert_truthvalue (TREE_OPERAND (arg, 1)));
2953 case TRUTH_NOT_EXPR:
2954 return TREE_OPERAND (arg, 0);
2956 case COND_EXPR:
2957 return build3 (COND_EXPR, type, TREE_OPERAND (arg, 0),
2958 invert_truthvalue (TREE_OPERAND (arg, 1)),
2959 invert_truthvalue (TREE_OPERAND (arg, 2)));
2961 case COMPOUND_EXPR:
2962 return build2 (COMPOUND_EXPR, type, TREE_OPERAND (arg, 0),
2963 invert_truthvalue (TREE_OPERAND (arg, 1)));
2965 case NON_LVALUE_EXPR:
2966 return invert_truthvalue (TREE_OPERAND (arg, 0));
2968 case NOP_EXPR:
2969 if (TREE_CODE (TREE_TYPE (arg)) == BOOLEAN_TYPE)
2970 break;
2972 case CONVERT_EXPR:
2973 case FLOAT_EXPR:
2974 return build1 (TREE_CODE (arg), type,
2975 invert_truthvalue (TREE_OPERAND (arg, 0)));
2977 case BIT_AND_EXPR:
2978 if (!integer_onep (TREE_OPERAND (arg, 1)))
2979 break;
2980 return build2 (EQ_EXPR, type, arg,
2981 fold_convert (type, integer_zero_node));
2983 case SAVE_EXPR:
2984 return build1 (TRUTH_NOT_EXPR, type, arg);
2986 case CLEANUP_POINT_EXPR:
2987 return build1 (CLEANUP_POINT_EXPR, type,
2988 invert_truthvalue (TREE_OPERAND (arg, 0)));
2990 default:
2991 break;
2993 gcc_assert (TREE_CODE (TREE_TYPE (arg)) == BOOLEAN_TYPE);
2994 return build1 (TRUTH_NOT_EXPR, type, arg);
2997 /* Given a bit-wise operation CODE applied to ARG0 and ARG1, see if both
2998 operands are another bit-wise operation with a common input. If so,
2999 distribute the bit operations to save an operation and possibly two if
3000 constants are involved. For example, convert
3001 (A | B) & (A | C) into A | (B & C)
3002 Further simplification will occur if B and C are constants.
3004 If this optimization cannot be done, 0 will be returned. */
3006 static tree
3007 distribute_bit_expr (enum tree_code code, tree type, tree arg0, tree arg1)
3009 tree common;
3010 tree left, right;
3012 if (TREE_CODE (arg0) != TREE_CODE (arg1)
3013 || TREE_CODE (arg0) == code
3014 || (TREE_CODE (arg0) != BIT_AND_EXPR
3015 && TREE_CODE (arg0) != BIT_IOR_EXPR))
3016 return 0;
3018 if (operand_equal_p (TREE_OPERAND (arg0, 0), TREE_OPERAND (arg1, 0), 0))
3020 common = TREE_OPERAND (arg0, 0);
3021 left = TREE_OPERAND (arg0, 1);
3022 right = TREE_OPERAND (arg1, 1);
3024 else if (operand_equal_p (TREE_OPERAND (arg0, 0), TREE_OPERAND (arg1, 1), 0))
3026 common = TREE_OPERAND (arg0, 0);
3027 left = TREE_OPERAND (arg0, 1);
3028 right = TREE_OPERAND (arg1, 0);
3030 else if (operand_equal_p (TREE_OPERAND (arg0, 1), TREE_OPERAND (arg1, 0), 0))
3032 common = TREE_OPERAND (arg0, 1);
3033 left = TREE_OPERAND (arg0, 0);
3034 right = TREE_OPERAND (arg1, 1);
3036 else if (operand_equal_p (TREE_OPERAND (arg0, 1), TREE_OPERAND (arg1, 1), 0))
3038 common = TREE_OPERAND (arg0, 1);
3039 left = TREE_OPERAND (arg0, 0);
3040 right = TREE_OPERAND (arg1, 0);
3042 else
3043 return 0;
3045 return fold (build2 (TREE_CODE (arg0), type, common,
3046 fold (build2 (code, type, left, right))));
3049 /* Return a BIT_FIELD_REF of type TYPE to refer to BITSIZE bits of INNER
3050 starting at BITPOS. The field is unsigned if UNSIGNEDP is nonzero. */
3052 static tree
3053 make_bit_field_ref (tree inner, tree type, int bitsize, int bitpos,
3054 int unsignedp)
3056 tree result = build3 (BIT_FIELD_REF, type, inner,
3057 size_int (bitsize), bitsize_int (bitpos));
3059 BIT_FIELD_REF_UNSIGNED (result) = unsignedp;
3061 return result;
3064 /* Optimize a bit-field compare.
3066 There are two cases: First is a compare against a constant and the
3067 second is a comparison of two items where the fields are at the same
3068 bit position relative to the start of a chunk (byte, halfword, word)
3069 large enough to contain it. In these cases we can avoid the shift
3070 implicit in bitfield extractions.
3072 For constants, we emit a compare of the shifted constant with the
3073 BIT_AND_EXPR of a mask and a byte, halfword, or word of the operand being
3074 compared. For two fields at the same position, we do the ANDs with the
3075 similar mask and compare the result of the ANDs.
3077 CODE is the comparison code, known to be either NE_EXPR or EQ_EXPR.
3078 COMPARE_TYPE is the type of the comparison, and LHS and RHS
3079 are the left and right operands of the comparison, respectively.
3081 If the optimization described above can be done, we return the resulting
3082 tree. Otherwise we return zero. */
3084 static tree
3085 optimize_bit_field_compare (enum tree_code code, tree compare_type,
3086 tree lhs, tree rhs)
3088 HOST_WIDE_INT lbitpos, lbitsize, rbitpos, rbitsize, nbitpos, nbitsize;
3089 tree type = TREE_TYPE (lhs);
3090 tree signed_type, unsigned_type;
3091 int const_p = TREE_CODE (rhs) == INTEGER_CST;
3092 enum machine_mode lmode, rmode, nmode;
3093 int lunsignedp, runsignedp;
3094 int lvolatilep = 0, rvolatilep = 0;
3095 tree linner, rinner = NULL_TREE;
3096 tree mask;
3097 tree offset;
3099 /* Get all the information about the extractions being done. If the bit size
3100 if the same as the size of the underlying object, we aren't doing an
3101 extraction at all and so can do nothing. We also don't want to
3102 do anything if the inner expression is a PLACEHOLDER_EXPR since we
3103 then will no longer be able to replace it. */
3104 linner = get_inner_reference (lhs, &lbitsize, &lbitpos, &offset, &lmode,
3105 &lunsignedp, &lvolatilep);
3106 if (linner == lhs || lbitsize == GET_MODE_BITSIZE (lmode) || lbitsize < 0
3107 || offset != 0 || TREE_CODE (linner) == PLACEHOLDER_EXPR)
3108 return 0;
3110 if (!const_p)
3112 /* If this is not a constant, we can only do something if bit positions,
3113 sizes, and signedness are the same. */
3114 rinner = get_inner_reference (rhs, &rbitsize, &rbitpos, &offset, &rmode,
3115 &runsignedp, &rvolatilep);
3117 if (rinner == rhs || lbitpos != rbitpos || lbitsize != rbitsize
3118 || lunsignedp != runsignedp || offset != 0
3119 || TREE_CODE (rinner) == PLACEHOLDER_EXPR)
3120 return 0;
3123 /* See if we can find a mode to refer to this field. We should be able to,
3124 but fail if we can't. */
3125 nmode = get_best_mode (lbitsize, lbitpos,
3126 const_p ? TYPE_ALIGN (TREE_TYPE (linner))
3127 : MIN (TYPE_ALIGN (TREE_TYPE (linner)),
3128 TYPE_ALIGN (TREE_TYPE (rinner))),
3129 word_mode, lvolatilep || rvolatilep);
3130 if (nmode == VOIDmode)
3131 return 0;
3133 /* Set signed and unsigned types of the precision of this mode for the
3134 shifts below. */
3135 signed_type = lang_hooks.types.type_for_mode (nmode, 0);
3136 unsigned_type = lang_hooks.types.type_for_mode (nmode, 1);
3138 /* Compute the bit position and size for the new reference and our offset
3139 within it. If the new reference is the same size as the original, we
3140 won't optimize anything, so return zero. */
3141 nbitsize = GET_MODE_BITSIZE (nmode);
3142 nbitpos = lbitpos & ~ (nbitsize - 1);
3143 lbitpos -= nbitpos;
3144 if (nbitsize == lbitsize)
3145 return 0;
3147 if (BYTES_BIG_ENDIAN)
3148 lbitpos = nbitsize - lbitsize - lbitpos;
3150 /* Make the mask to be used against the extracted field. */
3151 mask = build_int_cst (unsigned_type, -1);
3152 mask = force_fit_type (mask, 0, false, false);
3153 mask = fold_convert (unsigned_type, mask);
3154 mask = const_binop (LSHIFT_EXPR, mask, size_int (nbitsize - lbitsize), 0);
3155 mask = const_binop (RSHIFT_EXPR, mask,
3156 size_int (nbitsize - lbitsize - lbitpos), 0);
3158 if (! const_p)
3159 /* If not comparing with constant, just rework the comparison
3160 and return. */
3161 return build2 (code, compare_type,
3162 build2 (BIT_AND_EXPR, unsigned_type,
3163 make_bit_field_ref (linner, unsigned_type,
3164 nbitsize, nbitpos, 1),
3165 mask),
3166 build2 (BIT_AND_EXPR, unsigned_type,
3167 make_bit_field_ref (rinner, unsigned_type,
3168 nbitsize, nbitpos, 1),
3169 mask));
3171 /* Otherwise, we are handling the constant case. See if the constant is too
3172 big for the field. Warn and return a tree of for 0 (false) if so. We do
3173 this not only for its own sake, but to avoid having to test for this
3174 error case below. If we didn't, we might generate wrong code.
3176 For unsigned fields, the constant shifted right by the field length should
3177 be all zero. For signed fields, the high-order bits should agree with
3178 the sign bit. */
3180 if (lunsignedp)
3182 if (! integer_zerop (const_binop (RSHIFT_EXPR,
3183 fold_convert (unsigned_type, rhs),
3184 size_int (lbitsize), 0)))
3186 warning ("comparison is always %d due to width of bit-field",
3187 code == NE_EXPR);
3188 return constant_boolean_node (code == NE_EXPR, compare_type);
3191 else
3193 tree tem = const_binop (RSHIFT_EXPR, fold_convert (signed_type, rhs),
3194 size_int (lbitsize - 1), 0);
3195 if (! integer_zerop (tem) && ! integer_all_onesp (tem))
3197 warning ("comparison is always %d due to width of bit-field",
3198 code == NE_EXPR);
3199 return constant_boolean_node (code == NE_EXPR, compare_type);
3203 /* Single-bit compares should always be against zero. */
3204 if (lbitsize == 1 && ! integer_zerop (rhs))
3206 code = code == EQ_EXPR ? NE_EXPR : EQ_EXPR;
3207 rhs = fold_convert (type, integer_zero_node);
3210 /* Make a new bitfield reference, shift the constant over the
3211 appropriate number of bits and mask it with the computed mask
3212 (in case this was a signed field). If we changed it, make a new one. */
3213 lhs = make_bit_field_ref (linner, unsigned_type, nbitsize, nbitpos, 1);
3214 if (lvolatilep)
3216 TREE_SIDE_EFFECTS (lhs) = 1;
3217 TREE_THIS_VOLATILE (lhs) = 1;
3220 rhs = fold (const_binop (BIT_AND_EXPR,
3221 const_binop (LSHIFT_EXPR,
3222 fold_convert (unsigned_type, rhs),
3223 size_int (lbitpos), 0),
3224 mask, 0));
3226 return build2 (code, compare_type,
3227 build2 (BIT_AND_EXPR, unsigned_type, lhs, mask),
3228 rhs);
3231 /* Subroutine for fold_truthop: decode a field reference.
3233 If EXP is a comparison reference, we return the innermost reference.
3235 *PBITSIZE is set to the number of bits in the reference, *PBITPOS is
3236 set to the starting bit number.
3238 If the innermost field can be completely contained in a mode-sized
3239 unit, *PMODE is set to that mode. Otherwise, it is set to VOIDmode.
3241 *PVOLATILEP is set to 1 if the any expression encountered is volatile;
3242 otherwise it is not changed.
3244 *PUNSIGNEDP is set to the signedness of the field.
3246 *PMASK is set to the mask used. This is either contained in a
3247 BIT_AND_EXPR or derived from the width of the field.
3249 *PAND_MASK is set to the mask found in a BIT_AND_EXPR, if any.
3251 Return 0 if this is not a component reference or is one that we can't
3252 do anything with. */
3254 static tree
3255 decode_field_reference (tree exp, HOST_WIDE_INT *pbitsize,
3256 HOST_WIDE_INT *pbitpos, enum machine_mode *pmode,
3257 int *punsignedp, int *pvolatilep,
3258 tree *pmask, tree *pand_mask)
3260 tree outer_type = 0;
3261 tree and_mask = 0;
3262 tree mask, inner, offset;
3263 tree unsigned_type;
3264 unsigned int precision;
3266 /* All the optimizations using this function assume integer fields.
3267 There are problems with FP fields since the type_for_size call
3268 below can fail for, e.g., XFmode. */
3269 if (! INTEGRAL_TYPE_P (TREE_TYPE (exp)))
3270 return 0;
3272 /* We are interested in the bare arrangement of bits, so strip everything
3273 that doesn't affect the machine mode. However, record the type of the
3274 outermost expression if it may matter below. */
3275 if (TREE_CODE (exp) == NOP_EXPR
3276 || TREE_CODE (exp) == CONVERT_EXPR
3277 || TREE_CODE (exp) == NON_LVALUE_EXPR)
3278 outer_type = TREE_TYPE (exp);
3279 STRIP_NOPS (exp);
3281 if (TREE_CODE (exp) == BIT_AND_EXPR)
3283 and_mask = TREE_OPERAND (exp, 1);
3284 exp = TREE_OPERAND (exp, 0);
3285 STRIP_NOPS (exp); STRIP_NOPS (and_mask);
3286 if (TREE_CODE (and_mask) != INTEGER_CST)
3287 return 0;
3290 inner = get_inner_reference (exp, pbitsize, pbitpos, &offset, pmode,
3291 punsignedp, pvolatilep);
3292 if ((inner == exp && and_mask == 0)
3293 || *pbitsize < 0 || offset != 0
3294 || TREE_CODE (inner) == PLACEHOLDER_EXPR)
3295 return 0;
3297 /* If the number of bits in the reference is the same as the bitsize of
3298 the outer type, then the outer type gives the signedness. Otherwise
3299 (in case of a small bitfield) the signedness is unchanged. */
3300 if (outer_type && *pbitsize == TYPE_PRECISION (outer_type))
3301 *punsignedp = TYPE_UNSIGNED (outer_type);
3303 /* Compute the mask to access the bitfield. */
3304 unsigned_type = lang_hooks.types.type_for_size (*pbitsize, 1);
3305 precision = TYPE_PRECISION (unsigned_type);
3307 mask = build_int_cst (unsigned_type, -1);
3308 mask = force_fit_type (mask, 0, false, false);
3310 mask = const_binop (LSHIFT_EXPR, mask, size_int (precision - *pbitsize), 0);
3311 mask = const_binop (RSHIFT_EXPR, mask, size_int (precision - *pbitsize), 0);
3313 /* Merge it with the mask we found in the BIT_AND_EXPR, if any. */
3314 if (and_mask != 0)
3315 mask = fold (build2 (BIT_AND_EXPR, unsigned_type,
3316 fold_convert (unsigned_type, and_mask), mask));
3318 *pmask = mask;
3319 *pand_mask = and_mask;
3320 return inner;
3323 /* Return nonzero if MASK represents a mask of SIZE ones in the low-order
3324 bit positions. */
3326 static int
3327 all_ones_mask_p (tree mask, int size)
3329 tree type = TREE_TYPE (mask);
3330 unsigned int precision = TYPE_PRECISION (type);
3331 tree tmask;
3333 tmask = build_int_cst (lang_hooks.types.signed_type (type), -1);
3334 tmask = force_fit_type (tmask, 0, false, false);
3336 return
3337 tree_int_cst_equal (mask,
3338 const_binop (RSHIFT_EXPR,
3339 const_binop (LSHIFT_EXPR, tmask,
3340 size_int (precision - size),
3342 size_int (precision - size), 0));
3345 /* Subroutine for fold: determine if VAL is the INTEGER_CONST that
3346 represents the sign bit of EXP's type. If EXP represents a sign
3347 or zero extension, also test VAL against the unextended type.
3348 The return value is the (sub)expression whose sign bit is VAL,
3349 or NULL_TREE otherwise. */
3351 static tree
3352 sign_bit_p (tree exp, tree val)
3354 unsigned HOST_WIDE_INT mask_lo, lo;
3355 HOST_WIDE_INT mask_hi, hi;
3356 int width;
3357 tree t;
3359 /* Tree EXP must have an integral type. */
3360 t = TREE_TYPE (exp);
3361 if (! INTEGRAL_TYPE_P (t))
3362 return NULL_TREE;
3364 /* Tree VAL must be an integer constant. */
3365 if (TREE_CODE (val) != INTEGER_CST
3366 || TREE_CONSTANT_OVERFLOW (val))
3367 return NULL_TREE;
3369 width = TYPE_PRECISION (t);
3370 if (width > HOST_BITS_PER_WIDE_INT)
3372 hi = (unsigned HOST_WIDE_INT) 1 << (width - HOST_BITS_PER_WIDE_INT - 1);
3373 lo = 0;
3375 mask_hi = ((unsigned HOST_WIDE_INT) -1
3376 >> (2 * HOST_BITS_PER_WIDE_INT - width));
3377 mask_lo = -1;
3379 else
3381 hi = 0;
3382 lo = (unsigned HOST_WIDE_INT) 1 << (width - 1);
3384 mask_hi = 0;
3385 mask_lo = ((unsigned HOST_WIDE_INT) -1
3386 >> (HOST_BITS_PER_WIDE_INT - width));
3389 /* We mask off those bits beyond TREE_TYPE (exp) so that we can
3390 treat VAL as if it were unsigned. */
3391 if ((TREE_INT_CST_HIGH (val) & mask_hi) == hi
3392 && (TREE_INT_CST_LOW (val) & mask_lo) == lo)
3393 return exp;
3395 /* Handle extension from a narrower type. */
3396 if (TREE_CODE (exp) == NOP_EXPR
3397 && TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (exp, 0))) < width)
3398 return sign_bit_p (TREE_OPERAND (exp, 0), val);
3400 return NULL_TREE;
3403 /* Subroutine for fold_truthop: determine if an operand is simple enough
3404 to be evaluated unconditionally. */
3406 static int
3407 simple_operand_p (tree exp)
3409 /* Strip any conversions that don't change the machine mode. */
3410 while ((TREE_CODE (exp) == NOP_EXPR
3411 || TREE_CODE (exp) == CONVERT_EXPR)
3412 && (TYPE_MODE (TREE_TYPE (exp))
3413 == TYPE_MODE (TREE_TYPE (TREE_OPERAND (exp, 0)))))
3414 exp = TREE_OPERAND (exp, 0);
3416 return (TREE_CODE_CLASS (TREE_CODE (exp)) == 'c'
3417 || (DECL_P (exp)
3418 && ! TREE_ADDRESSABLE (exp)
3419 && ! TREE_THIS_VOLATILE (exp)
3420 && ! DECL_NONLOCAL (exp)
3421 /* Don't regard global variables as simple. They may be
3422 allocated in ways unknown to the compiler (shared memory,
3423 #pragma weak, etc). */
3424 && ! TREE_PUBLIC (exp)
3425 && ! DECL_EXTERNAL (exp)
3426 /* Loading a static variable is unduly expensive, but global
3427 registers aren't expensive. */
3428 && (! TREE_STATIC (exp) || DECL_REGISTER (exp))));
3431 /* The following functions are subroutines to fold_range_test and allow it to
3432 try to change a logical combination of comparisons into a range test.
3434 For example, both
3435 X == 2 || X == 3 || X == 4 || X == 5
3437 X >= 2 && X <= 5
3438 are converted to
3439 (unsigned) (X - 2) <= 3
3441 We describe each set of comparisons as being either inside or outside
3442 a range, using a variable named like IN_P, and then describe the
3443 range with a lower and upper bound. If one of the bounds is omitted,
3444 it represents either the highest or lowest value of the type.
3446 In the comments below, we represent a range by two numbers in brackets
3447 preceded by a "+" to designate being inside that range, or a "-" to
3448 designate being outside that range, so the condition can be inverted by
3449 flipping the prefix. An omitted bound is represented by a "-". For
3450 example, "- [-, 10]" means being outside the range starting at the lowest
3451 possible value and ending at 10, in other words, being greater than 10.
3452 The range "+ [-, -]" is always true and hence the range "- [-, -]" is
3453 always false.
3455 We set up things so that the missing bounds are handled in a consistent
3456 manner so neither a missing bound nor "true" and "false" need to be
3457 handled using a special case. */
3459 /* Return the result of applying CODE to ARG0 and ARG1, but handle the case
3460 of ARG0 and/or ARG1 being omitted, meaning an unlimited range. UPPER0_P
3461 and UPPER1_P are nonzero if the respective argument is an upper bound
3462 and zero for a lower. TYPE, if nonzero, is the type of the result; it
3463 must be specified for a comparison. ARG1 will be converted to ARG0's
3464 type if both are specified. */
3466 static tree
3467 range_binop (enum tree_code code, tree type, tree arg0, int upper0_p,
3468 tree arg1, int upper1_p)
3470 tree tem;
3471 int result;
3472 int sgn0, sgn1;
3474 /* If neither arg represents infinity, do the normal operation.
3475 Else, if not a comparison, return infinity. Else handle the special
3476 comparison rules. Note that most of the cases below won't occur, but
3477 are handled for consistency. */
3479 if (arg0 != 0 && arg1 != 0)
3481 tem = fold (build2 (code, type != 0 ? type : TREE_TYPE (arg0),
3482 arg0, fold_convert (TREE_TYPE (arg0), arg1)));
3483 STRIP_NOPS (tem);
3484 return TREE_CODE (tem) == INTEGER_CST ? tem : 0;
3487 if (TREE_CODE_CLASS (code) != '<')
3488 return 0;
3490 /* Set SGN[01] to -1 if ARG[01] is a lower bound, 1 for upper, and 0
3491 for neither. In real maths, we cannot assume open ended ranges are
3492 the same. But, this is computer arithmetic, where numbers are finite.
3493 We can therefore make the transformation of any unbounded range with
3494 the value Z, Z being greater than any representable number. This permits
3495 us to treat unbounded ranges as equal. */
3496 sgn0 = arg0 != 0 ? 0 : (upper0_p ? 1 : -1);
3497 sgn1 = arg1 != 0 ? 0 : (upper1_p ? 1 : -1);
3498 switch (code)
3500 case EQ_EXPR:
3501 result = sgn0 == sgn1;
3502 break;
3503 case NE_EXPR:
3504 result = sgn0 != sgn1;
3505 break;
3506 case LT_EXPR:
3507 result = sgn0 < sgn1;
3508 break;
3509 case LE_EXPR:
3510 result = sgn0 <= sgn1;
3511 break;
3512 case GT_EXPR:
3513 result = sgn0 > sgn1;
3514 break;
3515 case GE_EXPR:
3516 result = sgn0 >= sgn1;
3517 break;
3518 default:
3519 gcc_unreachable ();
3522 return constant_boolean_node (result, type);
3525 /* Given EXP, a logical expression, set the range it is testing into
3526 variables denoted by PIN_P, PLOW, and PHIGH. Return the expression
3527 actually being tested. *PLOW and *PHIGH will be made of the same type
3528 as the returned expression. If EXP is not a comparison, we will most
3529 likely not be returning a useful value and range. */
3531 static tree
3532 make_range (tree exp, int *pin_p, tree *plow, tree *phigh)
3534 enum tree_code code;
3535 tree arg0 = NULL_TREE, arg1 = NULL_TREE;
3536 tree exp_type = NULL_TREE, arg0_type = NULL_TREE;
3537 int in_p, n_in_p;
3538 tree low, high, n_low, n_high;
3540 /* Start with simply saying "EXP != 0" and then look at the code of EXP
3541 and see if we can refine the range. Some of the cases below may not
3542 happen, but it doesn't seem worth worrying about this. We "continue"
3543 the outer loop when we've changed something; otherwise we "break"
3544 the switch, which will "break" the while. */
3546 in_p = 0;
3547 low = high = fold_convert (TREE_TYPE (exp), integer_zero_node);
3549 while (1)
3551 code = TREE_CODE (exp);
3552 exp_type = TREE_TYPE (exp);
3554 if (IS_EXPR_CODE_CLASS (TREE_CODE_CLASS (code)))
3556 if (first_rtl_op (code) > 0)
3557 arg0 = TREE_OPERAND (exp, 0);
3558 if (TREE_CODE_CLASS (code) == '<'
3559 || TREE_CODE_CLASS (code) == '1'
3560 || TREE_CODE_CLASS (code) == '2')
3561 arg0_type = TREE_TYPE (arg0);
3562 if (TREE_CODE_CLASS (code) == '2'
3563 || TREE_CODE_CLASS (code) == '<'
3564 || (TREE_CODE_CLASS (code) == 'e'
3565 && TREE_CODE_LENGTH (code) > 1))
3566 arg1 = TREE_OPERAND (exp, 1);
3569 switch (code)
3571 case TRUTH_NOT_EXPR:
3572 in_p = ! in_p, exp = arg0;
3573 continue;
3575 case EQ_EXPR: case NE_EXPR:
3576 case LT_EXPR: case LE_EXPR: case GE_EXPR: case GT_EXPR:
3577 /* We can only do something if the range is testing for zero
3578 and if the second operand is an integer constant. Note that
3579 saying something is "in" the range we make is done by
3580 complementing IN_P since it will set in the initial case of
3581 being not equal to zero; "out" is leaving it alone. */
3582 if (low == 0 || high == 0
3583 || ! integer_zerop (low) || ! integer_zerop (high)
3584 || TREE_CODE (arg1) != INTEGER_CST)
3585 break;
3587 switch (code)
3589 case NE_EXPR: /* - [c, c] */
3590 low = high = arg1;
3591 break;
3592 case EQ_EXPR: /* + [c, c] */
3593 in_p = ! in_p, low = high = arg1;
3594 break;
3595 case GT_EXPR: /* - [-, c] */
3596 low = 0, high = arg1;
3597 break;
3598 case GE_EXPR: /* + [c, -] */
3599 in_p = ! in_p, low = arg1, high = 0;
3600 break;
3601 case LT_EXPR: /* - [c, -] */
3602 low = arg1, high = 0;
3603 break;
3604 case LE_EXPR: /* + [-, c] */
3605 in_p = ! in_p, low = 0, high = arg1;
3606 break;
3607 default:
3608 gcc_unreachable ();
3611 /* If this is an unsigned comparison, we also know that EXP is
3612 greater than or equal to zero. We base the range tests we make
3613 on that fact, so we record it here so we can parse existing
3614 range tests. We test arg0_type since often the return type
3615 of, e.g. EQ_EXPR, is boolean. */
3616 if (TYPE_UNSIGNED (arg0_type) && (low == 0 || high == 0))
3618 if (! merge_ranges (&n_in_p, &n_low, &n_high,
3619 in_p, low, high, 1,
3620 fold_convert (arg0_type, integer_zero_node),
3621 NULL_TREE))
3622 break;
3624 in_p = n_in_p, low = n_low, high = n_high;
3626 /* If the high bound is missing, but we have a nonzero low
3627 bound, reverse the range so it goes from zero to the low bound
3628 minus 1. */
3629 if (high == 0 && low && ! integer_zerop (low))
3631 in_p = ! in_p;
3632 high = range_binop (MINUS_EXPR, NULL_TREE, low, 0,
3633 integer_one_node, 0);
3634 low = fold_convert (arg0_type, integer_zero_node);
3638 exp = arg0;
3639 continue;
3641 case NEGATE_EXPR:
3642 /* (-x) IN [a,b] -> x in [-b, -a] */
3643 n_low = range_binop (MINUS_EXPR, exp_type,
3644 fold_convert (exp_type, integer_zero_node),
3645 0, high, 1);
3646 n_high = range_binop (MINUS_EXPR, exp_type,
3647 fold_convert (exp_type, integer_zero_node),
3648 0, low, 0);
3649 low = n_low, high = n_high;
3650 exp = arg0;
3651 continue;
3653 case BIT_NOT_EXPR:
3654 /* ~ X -> -X - 1 */
3655 exp = build2 (MINUS_EXPR, exp_type, negate_expr (arg0),
3656 fold_convert (exp_type, integer_one_node));
3657 continue;
3659 case PLUS_EXPR: case MINUS_EXPR:
3660 if (TREE_CODE (arg1) != INTEGER_CST)
3661 break;
3663 /* If EXP is signed, any overflow in the computation is undefined,
3664 so we don't worry about it so long as our computations on
3665 the bounds don't overflow. For unsigned, overflow is defined
3666 and this is exactly the right thing. */
3667 n_low = range_binop (code == MINUS_EXPR ? PLUS_EXPR : MINUS_EXPR,
3668 arg0_type, low, 0, arg1, 0);
3669 n_high = range_binop (code == MINUS_EXPR ? PLUS_EXPR : MINUS_EXPR,
3670 arg0_type, high, 1, arg1, 0);
3671 if ((n_low != 0 && TREE_OVERFLOW (n_low))
3672 || (n_high != 0 && TREE_OVERFLOW (n_high)))
3673 break;
3675 /* Check for an unsigned range which has wrapped around the maximum
3676 value thus making n_high < n_low, and normalize it. */
3677 if (n_low && n_high && tree_int_cst_lt (n_high, n_low))
3679 low = range_binop (PLUS_EXPR, arg0_type, n_high, 0,
3680 integer_one_node, 0);
3681 high = range_binop (MINUS_EXPR, arg0_type, n_low, 0,
3682 integer_one_node, 0);
3684 /* If the range is of the form +/- [ x+1, x ], we won't
3685 be able to normalize it. But then, it represents the
3686 whole range or the empty set, so make it
3687 +/- [ -, - ]. */
3688 if (tree_int_cst_equal (n_low, low)
3689 && tree_int_cst_equal (n_high, high))
3690 low = high = 0;
3691 else
3692 in_p = ! in_p;
3694 else
3695 low = n_low, high = n_high;
3697 exp = arg0;
3698 continue;
3700 case NOP_EXPR: case NON_LVALUE_EXPR: case CONVERT_EXPR:
3701 if (TYPE_PRECISION (arg0_type) > TYPE_PRECISION (exp_type))
3702 break;
3704 if (! INTEGRAL_TYPE_P (arg0_type)
3705 || (low != 0 && ! int_fits_type_p (low, arg0_type))
3706 || (high != 0 && ! int_fits_type_p (high, arg0_type)))
3707 break;
3709 n_low = low, n_high = high;
3711 if (n_low != 0)
3712 n_low = fold_convert (arg0_type, n_low);
3714 if (n_high != 0)
3715 n_high = fold_convert (arg0_type, n_high);
3718 /* If we're converting arg0 from an unsigned type, to exp,
3719 a signed type, we will be doing the comparison as unsigned.
3720 The tests above have already verified that LOW and HIGH
3721 are both positive.
3723 So we have to ensure that we will handle large unsigned
3724 values the same way that the current signed bounds treat
3725 negative values. */
3727 if (!TYPE_UNSIGNED (exp_type) && TYPE_UNSIGNED (arg0_type))
3729 tree high_positive;
3730 tree equiv_type = lang_hooks.types.type_for_mode
3731 (TYPE_MODE (arg0_type), 1);
3733 /* A range without an upper bound is, naturally, unbounded.
3734 Since convert would have cropped a very large value, use
3735 the max value for the destination type. */
3736 high_positive
3737 = TYPE_MAX_VALUE (equiv_type) ? TYPE_MAX_VALUE (equiv_type)
3738 : TYPE_MAX_VALUE (arg0_type);
3740 if (TYPE_PRECISION (exp_type) == TYPE_PRECISION (arg0_type))
3741 high_positive = fold (build2 (RSHIFT_EXPR, arg0_type,
3742 fold_convert (arg0_type,
3743 high_positive),
3744 fold_convert (arg0_type,
3745 integer_one_node)));
3747 /* If the low bound is specified, "and" the range with the
3748 range for which the original unsigned value will be
3749 positive. */
3750 if (low != 0)
3752 if (! merge_ranges (&n_in_p, &n_low, &n_high,
3753 1, n_low, n_high, 1,
3754 fold_convert (arg0_type,
3755 integer_zero_node),
3756 high_positive))
3757 break;
3759 in_p = (n_in_p == in_p);
3761 else
3763 /* Otherwise, "or" the range with the range of the input
3764 that will be interpreted as negative. */
3765 if (! merge_ranges (&n_in_p, &n_low, &n_high,
3766 0, n_low, n_high, 1,
3767 fold_convert (arg0_type,
3768 integer_zero_node),
3769 high_positive))
3770 break;
3772 in_p = (in_p != n_in_p);
3776 exp = arg0;
3777 low = n_low, high = n_high;
3778 continue;
3780 default:
3781 break;
3784 break;
3787 /* If EXP is a constant, we can evaluate whether this is true or false. */
3788 if (TREE_CODE (exp) == INTEGER_CST)
3790 in_p = in_p == (integer_onep (range_binop (GE_EXPR, integer_type_node,
3791 exp, 0, low, 0))
3792 && integer_onep (range_binop (LE_EXPR, integer_type_node,
3793 exp, 1, high, 1)));
3794 low = high = 0;
3795 exp = 0;
3798 *pin_p = in_p, *plow = low, *phigh = high;
3799 return exp;
3802 /* Given a range, LOW, HIGH, and IN_P, an expression, EXP, and a result
3803 type, TYPE, return an expression to test if EXP is in (or out of, depending
3804 on IN_P) the range. Return 0 if the test couldn't be created. */
3806 static tree
3807 build_range_check (tree type, tree exp, int in_p, tree low, tree high)
3809 tree etype = TREE_TYPE (exp);
3810 tree value;
3812 if (! in_p)
3814 value = build_range_check (type, exp, 1, low, high);
3815 if (value != 0)
3816 return invert_truthvalue (value);
3818 return 0;
3821 if (low == 0 && high == 0)
3822 return fold_convert (type, integer_one_node);
3824 if (low == 0)
3825 return fold (build2 (LE_EXPR, type, exp, high));
3827 if (high == 0)
3828 return fold (build2 (GE_EXPR, type, exp, low));
3830 if (operand_equal_p (low, high, 0))
3831 return fold (build2 (EQ_EXPR, type, exp, low));
3833 if (integer_zerop (low))
3835 if (! TYPE_UNSIGNED (etype))
3837 etype = lang_hooks.types.unsigned_type (etype);
3838 high = fold_convert (etype, high);
3839 exp = fold_convert (etype, exp);
3841 return build_range_check (type, exp, 1, 0, high);
3844 /* Optimize (c>=1) && (c<=127) into (signed char)c > 0. */
3845 if (integer_onep (low) && TREE_CODE (high) == INTEGER_CST)
3847 unsigned HOST_WIDE_INT lo;
3848 HOST_WIDE_INT hi;
3849 int prec;
3851 prec = TYPE_PRECISION (etype);
3852 if (prec <= HOST_BITS_PER_WIDE_INT)
3854 hi = 0;
3855 lo = ((unsigned HOST_WIDE_INT) 1 << (prec - 1)) - 1;
3857 else
3859 hi = ((HOST_WIDE_INT) 1 << (prec - HOST_BITS_PER_WIDE_INT - 1)) - 1;
3860 lo = (unsigned HOST_WIDE_INT) -1;
3863 if (TREE_INT_CST_HIGH (high) == hi && TREE_INT_CST_LOW (high) == lo)
3865 if (TYPE_UNSIGNED (etype))
3867 etype = lang_hooks.types.signed_type (etype);
3868 exp = fold_convert (etype, exp);
3870 return fold (build2 (GT_EXPR, type, exp,
3871 fold_convert (etype, integer_zero_node)));
3875 value = const_binop (MINUS_EXPR, high, low, 0);
3876 if (value != 0 && TREE_OVERFLOW (value) && ! TYPE_UNSIGNED (etype))
3878 tree utype, minv, maxv;
3880 /* Check if (unsigned) INT_MAX + 1 == (unsigned) INT_MIN
3881 for the type in question, as we rely on this here. */
3882 switch (TREE_CODE (etype))
3884 case INTEGER_TYPE:
3885 case ENUMERAL_TYPE:
3886 case CHAR_TYPE:
3887 utype = lang_hooks.types.unsigned_type (etype);
3888 maxv = fold_convert (utype, TYPE_MAX_VALUE (etype));
3889 maxv = range_binop (PLUS_EXPR, NULL_TREE, maxv, 1,
3890 integer_one_node, 1);
3891 minv = fold_convert (utype, TYPE_MIN_VALUE (etype));
3892 if (integer_zerop (range_binop (NE_EXPR, integer_type_node,
3893 minv, 1, maxv, 1)))
3895 etype = utype;
3896 high = fold_convert (etype, high);
3897 low = fold_convert (etype, low);
3898 exp = fold_convert (etype, exp);
3899 value = const_binop (MINUS_EXPR, high, low, 0);
3901 break;
3902 default:
3903 break;
3907 if (value != 0 && ! TREE_OVERFLOW (value))
3908 return build_range_check (type,
3909 fold (build2 (MINUS_EXPR, etype, exp, low)),
3910 1, fold_convert (etype, integer_zero_node),
3911 value);
3913 return 0;
3916 /* Given two ranges, see if we can merge them into one. Return 1 if we
3917 can, 0 if we can't. Set the output range into the specified parameters. */
3919 static int
3920 merge_ranges (int *pin_p, tree *plow, tree *phigh, int in0_p, tree low0,
3921 tree high0, int in1_p, tree low1, tree high1)
3923 int no_overlap;
3924 int subset;
3925 int temp;
3926 tree tem;
3927 int in_p;
3928 tree low, high;
3929 int lowequal = ((low0 == 0 && low1 == 0)
3930 || integer_onep (range_binop (EQ_EXPR, integer_type_node,
3931 low0, 0, low1, 0)));
3932 int highequal = ((high0 == 0 && high1 == 0)
3933 || integer_onep (range_binop (EQ_EXPR, integer_type_node,
3934 high0, 1, high1, 1)));
3936 /* Make range 0 be the range that starts first, or ends last if they
3937 start at the same value. Swap them if it isn't. */
3938 if (integer_onep (range_binop (GT_EXPR, integer_type_node,
3939 low0, 0, low1, 0))
3940 || (lowequal
3941 && integer_onep (range_binop (GT_EXPR, integer_type_node,
3942 high1, 1, high0, 1))))
3944 temp = in0_p, in0_p = in1_p, in1_p = temp;
3945 tem = low0, low0 = low1, low1 = tem;
3946 tem = high0, high0 = high1, high1 = tem;
3949 /* Now flag two cases, whether the ranges are disjoint or whether the
3950 second range is totally subsumed in the first. Note that the tests
3951 below are simplified by the ones above. */
3952 no_overlap = integer_onep (range_binop (LT_EXPR, integer_type_node,
3953 high0, 1, low1, 0));
3954 subset = integer_onep (range_binop (LE_EXPR, integer_type_node,
3955 high1, 1, high0, 1));
3957 /* We now have four cases, depending on whether we are including or
3958 excluding the two ranges. */
3959 if (in0_p && in1_p)
3961 /* If they don't overlap, the result is false. If the second range
3962 is a subset it is the result. Otherwise, the range is from the start
3963 of the second to the end of the first. */
3964 if (no_overlap)
3965 in_p = 0, low = high = 0;
3966 else if (subset)
3967 in_p = 1, low = low1, high = high1;
3968 else
3969 in_p = 1, low = low1, high = high0;
3972 else if (in0_p && ! in1_p)
3974 /* If they don't overlap, the result is the first range. If they are
3975 equal, the result is false. If the second range is a subset of the
3976 first, and the ranges begin at the same place, we go from just after
3977 the end of the first range to the end of the second. If the second
3978 range is not a subset of the first, or if it is a subset and both
3979 ranges end at the same place, the range starts at the start of the
3980 first range and ends just before the second range.
3981 Otherwise, we can't describe this as a single range. */
3982 if (no_overlap)
3983 in_p = 1, low = low0, high = high0;
3984 else if (lowequal && highequal)
3985 in_p = 0, low = high = 0;
3986 else if (subset && lowequal)
3988 in_p = 1, high = high0;
3989 low = range_binop (PLUS_EXPR, NULL_TREE, high1, 0,
3990 integer_one_node, 0);
3992 else if (! subset || highequal)
3994 in_p = 1, low = low0;
3995 high = range_binop (MINUS_EXPR, NULL_TREE, low1, 0,
3996 integer_one_node, 0);
3998 else
3999 return 0;
4002 else if (! in0_p && in1_p)
4004 /* If they don't overlap, the result is the second range. If the second
4005 is a subset of the first, the result is false. Otherwise,
4006 the range starts just after the first range and ends at the
4007 end of the second. */
4008 if (no_overlap)
4009 in_p = 1, low = low1, high = high1;
4010 else if (subset || highequal)
4011 in_p = 0, low = high = 0;
4012 else
4014 in_p = 1, high = high1;
4015 low = range_binop (PLUS_EXPR, NULL_TREE, high0, 1,
4016 integer_one_node, 0);
4020 else
4022 /* The case where we are excluding both ranges. Here the complex case
4023 is if they don't overlap. In that case, the only time we have a
4024 range is if they are adjacent. If the second is a subset of the
4025 first, the result is the first. Otherwise, the range to exclude
4026 starts at the beginning of the first range and ends at the end of the
4027 second. */
4028 if (no_overlap)
4030 if (integer_onep (range_binop (EQ_EXPR, integer_type_node,
4031 range_binop (PLUS_EXPR, NULL_TREE,
4032 high0, 1,
4033 integer_one_node, 1),
4034 1, low1, 0)))
4035 in_p = 0, low = low0, high = high1;
4036 else
4038 /* Canonicalize - [min, x] into - [-, x]. */
4039 if (low0 && TREE_CODE (low0) == INTEGER_CST)
4040 switch (TREE_CODE (TREE_TYPE (low0)))
4042 case ENUMERAL_TYPE:
4043 if (TYPE_PRECISION (TREE_TYPE (low0))
4044 != GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (low0))))
4045 break;
4046 /* FALLTHROUGH */
4047 case INTEGER_TYPE:
4048 case CHAR_TYPE:
4049 if (tree_int_cst_equal (low0,
4050 TYPE_MIN_VALUE (TREE_TYPE (low0))))
4051 low0 = 0;
4052 break;
4053 case POINTER_TYPE:
4054 if (TYPE_UNSIGNED (TREE_TYPE (low0))
4055 && integer_zerop (low0))
4056 low0 = 0;
4057 break;
4058 default:
4059 break;
4062 /* Canonicalize - [x, max] into - [x, -]. */
4063 if (high1 && TREE_CODE (high1) == INTEGER_CST)
4064 switch (TREE_CODE (TREE_TYPE (high1)))
4066 case ENUMERAL_TYPE:
4067 if (TYPE_PRECISION (TREE_TYPE (high1))
4068 != GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (high1))))
4069 break;
4070 /* FALLTHROUGH */
4071 case INTEGER_TYPE:
4072 case CHAR_TYPE:
4073 if (tree_int_cst_equal (high1,
4074 TYPE_MAX_VALUE (TREE_TYPE (high1))))
4075 high1 = 0;
4076 break;
4077 case POINTER_TYPE:
4078 if (TYPE_UNSIGNED (TREE_TYPE (high1))
4079 && integer_zerop (range_binop (PLUS_EXPR, NULL_TREE,
4080 high1, 1,
4081 integer_one_node, 1)))
4082 high1 = 0;
4083 break;
4084 default:
4085 break;
4088 /* The ranges might be also adjacent between the maximum and
4089 minimum values of the given type. For
4090 - [{min,-}, x] and - [y, {max,-}] ranges where x + 1 < y
4091 return + [x + 1, y - 1]. */
4092 if (low0 == 0 && high1 == 0)
4094 low = range_binop (PLUS_EXPR, NULL_TREE, high0, 1,
4095 integer_one_node, 1);
4096 high = range_binop (MINUS_EXPR, NULL_TREE, low1, 0,
4097 integer_one_node, 0);
4098 if (low == 0 || high == 0)
4099 return 0;
4101 in_p = 1;
4103 else
4104 return 0;
4107 else if (subset)
4108 in_p = 0, low = low0, high = high0;
4109 else
4110 in_p = 0, low = low0, high = high1;
4113 *pin_p = in_p, *plow = low, *phigh = high;
4114 return 1;
4118 /* Subroutine of fold, looking inside expressions of the form
4119 A op B ? A : C, where ARG0, ARG1 and ARG2 are the three operands
4120 of the COND_EXPR. This function is being used also to optimize
4121 A op B ? C : A, by reversing the comparison first.
4123 Return a folded expression whose code is not a COND_EXPR
4124 anymore, or NULL_TREE if no folding opportunity is found. */
4126 static tree
4127 fold_cond_expr_with_comparison (tree type, tree arg0, tree arg1, tree arg2)
4129 enum tree_code comp_code = TREE_CODE (arg0);
4130 tree arg00 = TREE_OPERAND (arg0, 0);
4131 tree arg01 = TREE_OPERAND (arg0, 1);
4132 tree arg1_type = TREE_TYPE (arg1);
4133 tree tem;
4135 STRIP_NOPS (arg1);
4136 STRIP_NOPS (arg2);
4138 /* If we have A op 0 ? A : -A, consider applying the following
4139 transformations:
4141 A == 0? A : -A same as -A
4142 A != 0? A : -A same as A
4143 A >= 0? A : -A same as abs (A)
4144 A > 0? A : -A same as abs (A)
4145 A <= 0? A : -A same as -abs (A)
4146 A < 0? A : -A same as -abs (A)
4148 None of these transformations work for modes with signed
4149 zeros. If A is +/-0, the first two transformations will
4150 change the sign of the result (from +0 to -0, or vice
4151 versa). The last four will fix the sign of the result,
4152 even though the original expressions could be positive or
4153 negative, depending on the sign of A.
4155 Note that all these transformations are correct if A is
4156 NaN, since the two alternatives (A and -A) are also NaNs. */
4157 if ((FLOAT_TYPE_P (TREE_TYPE (arg01))
4158 ? real_zerop (arg01)
4159 : integer_zerop (arg01))
4160 && TREE_CODE (arg2) == NEGATE_EXPR
4161 && operand_equal_p (TREE_OPERAND (arg2, 0), arg1, 0))
4162 switch (comp_code)
4164 case EQ_EXPR:
4165 case UNEQ_EXPR:
4166 tem = fold_convert (arg1_type, arg1);
4167 return pedantic_non_lvalue (fold_convert (type, negate_expr (tem)));
4168 case NE_EXPR:
4169 case LTGT_EXPR:
4170 return pedantic_non_lvalue (fold_convert (type, arg1));
4171 case UNGE_EXPR:
4172 case UNGT_EXPR:
4173 if (flag_trapping_math)
4174 break;
4175 /* Fall through. */
4176 case GE_EXPR:
4177 case GT_EXPR:
4178 if (TYPE_UNSIGNED (TREE_TYPE (arg1)))
4179 arg1 = fold_convert (lang_hooks.types.signed_type
4180 (TREE_TYPE (arg1)), arg1);
4181 tem = fold (build1 (ABS_EXPR, TREE_TYPE (arg1), arg1));
4182 return pedantic_non_lvalue (fold_convert (type, tem));
4183 case UNLE_EXPR:
4184 case UNLT_EXPR:
4185 if (flag_trapping_math)
4186 break;
4187 case LE_EXPR:
4188 case LT_EXPR:
4189 if (TYPE_UNSIGNED (TREE_TYPE (arg1)))
4190 arg1 = fold_convert (lang_hooks.types.signed_type
4191 (TREE_TYPE (arg1)), arg1);
4192 tem = fold (build1 (ABS_EXPR, TREE_TYPE (arg1), arg1));
4193 return negate_expr (fold_convert (type, tem));
4194 default:
4195 gcc_assert (TREE_CODE_CLASS (comp_code) == '<');
4196 break;
4199 /* A != 0 ? A : 0 is simply A, unless A is -0. Likewise
4200 A == 0 ? A : 0 is always 0 unless A is -0. Note that
4201 both transformations are correct when A is NaN: A != 0
4202 is then true, and A == 0 is false. */
4204 if (integer_zerop (arg01) && integer_zerop (arg2))
4206 if (comp_code == NE_EXPR)
4207 return pedantic_non_lvalue (fold_convert (type, arg1));
4208 else if (comp_code == EQ_EXPR)
4209 return fold_convert (type, integer_zero_node);
4212 /* Try some transformations of A op B ? A : B.
4214 A == B? A : B same as B
4215 A != B? A : B same as A
4216 A >= B? A : B same as max (A, B)
4217 A > B? A : B same as max (B, A)
4218 A <= B? A : B same as min (A, B)
4219 A < B? A : B same as min (B, A)
4221 As above, these transformations don't work in the presence
4222 of signed zeros. For example, if A and B are zeros of
4223 opposite sign, the first two transformations will change
4224 the sign of the result. In the last four, the original
4225 expressions give different results for (A=+0, B=-0) and
4226 (A=-0, B=+0), but the transformed expressions do not.
4228 The first two transformations are correct if either A or B
4229 is a NaN. In the first transformation, the condition will
4230 be false, and B will indeed be chosen. In the case of the
4231 second transformation, the condition A != B will be true,
4232 and A will be chosen.
4234 The conversions to max() and min() are not correct if B is
4235 a number and A is not. The conditions in the original
4236 expressions will be false, so all four give B. The min()
4237 and max() versions would give a NaN instead. */
4238 if (operand_equal_for_comparison_p (arg01, arg2, arg00))
4240 tree comp_op0 = arg00;
4241 tree comp_op1 = arg01;
4242 tree comp_type = TREE_TYPE (comp_op0);
4244 /* Avoid adding NOP_EXPRs in case this is an lvalue. */
4245 if (TYPE_MAIN_VARIANT (comp_type) == TYPE_MAIN_VARIANT (type))
4247 comp_type = type;
4248 comp_op0 = arg1;
4249 comp_op1 = arg2;
4252 switch (comp_code)
4254 case EQ_EXPR:
4255 return pedantic_non_lvalue (fold_convert (type, arg2));
4256 case NE_EXPR:
4257 return pedantic_non_lvalue (fold_convert (type, arg1));
4258 case LE_EXPR:
4259 case LT_EXPR:
4260 case UNLE_EXPR:
4261 case UNLT_EXPR:
4262 /* In C++ a ?: expression can be an lvalue, so put the
4263 operand which will be used if they are equal first
4264 so that we can convert this back to the
4265 corresponding COND_EXPR. */
4266 if (!HONOR_NANS (TYPE_MODE (TREE_TYPE (arg1))))
4268 comp_op0 = fold_convert (comp_type, comp_op0);
4269 comp_op1 = fold_convert (comp_type, comp_op1);
4270 tem = (comp_code == LE_EXPR || comp_code == UNLE_EXPR)
4271 ? fold (build2 (MIN_EXPR, comp_type, comp_op0, comp_op1))
4272 : fold (build2 (MIN_EXPR, comp_type, comp_op1, comp_op0));
4273 return pedantic_non_lvalue (fold_convert (type, tem));
4275 break;
4276 case GE_EXPR:
4277 case GT_EXPR:
4278 case UNGE_EXPR:
4279 case UNGT_EXPR:
4280 if (!HONOR_NANS (TYPE_MODE (TREE_TYPE (arg1))))
4282 comp_op0 = fold_convert (comp_type, comp_op0);
4283 comp_op1 = fold_convert (comp_type, comp_op1);
4284 tem = (comp_code == GE_EXPR || comp_code == UNGE_EXPR)
4285 ? fold (build2 (MAX_EXPR, comp_type, comp_op0, comp_op1))
4286 : fold (build2 (MAX_EXPR, comp_type, comp_op1, comp_op0));
4287 return pedantic_non_lvalue (fold_convert (type, tem));
4289 break;
4290 case UNEQ_EXPR:
4291 if (!HONOR_NANS (TYPE_MODE (TREE_TYPE (arg1))))
4292 return pedantic_non_lvalue (fold_convert (type, arg2));
4293 break;
4294 case LTGT_EXPR:
4295 if (!HONOR_NANS (TYPE_MODE (TREE_TYPE (arg1))))
4296 return pedantic_non_lvalue (fold_convert (type, arg1));
4297 break;
4298 default:
4299 gcc_assert (TREE_CODE_CLASS (comp_code) == '<');
4300 break;
4304 /* If this is A op C1 ? A : C2 with C1 and C2 constant integers,
4305 we might still be able to simplify this. For example,
4306 if C1 is one less or one more than C2, this might have started
4307 out as a MIN or MAX and been transformed by this function.
4308 Only good for INTEGER_TYPEs, because we need TYPE_MAX_VALUE. */
4310 if (INTEGRAL_TYPE_P (type)
4311 && TREE_CODE (arg01) == INTEGER_CST
4312 && TREE_CODE (arg2) == INTEGER_CST)
4313 switch (comp_code)
4315 case EQ_EXPR:
4316 /* We can replace A with C1 in this case. */
4317 arg1 = fold_convert (type, arg01);
4318 return fold (build3 (COND_EXPR, type, arg0, arg1, arg2));
4320 case LT_EXPR:
4321 /* If C1 is C2 + 1, this is min(A, C2). */
4322 if (! operand_equal_p (arg2, TYPE_MAX_VALUE (type),
4323 OEP_ONLY_CONST)
4324 && operand_equal_p (arg01,
4325 const_binop (PLUS_EXPR, arg2,
4326 integer_one_node, 0),
4327 OEP_ONLY_CONST))
4328 return pedantic_non_lvalue (fold (build2 (MIN_EXPR,
4329 type, arg1, arg2)));
4330 break;
4332 case LE_EXPR:
4333 /* If C1 is C2 - 1, this is min(A, C2). */
4334 if (! operand_equal_p (arg2, TYPE_MIN_VALUE (type),
4335 OEP_ONLY_CONST)
4336 && operand_equal_p (arg01,
4337 const_binop (MINUS_EXPR, arg2,
4338 integer_one_node, 0),
4339 OEP_ONLY_CONST))
4340 return pedantic_non_lvalue (fold (build2 (MIN_EXPR,
4341 type, arg1, arg2)));
4342 break;
4344 case GT_EXPR:
4345 /* If C1 is C2 - 1, this is max(A, C2). */
4346 if (! operand_equal_p (arg2, TYPE_MIN_VALUE (type),
4347 OEP_ONLY_CONST)
4348 && operand_equal_p (arg01,
4349 const_binop (MINUS_EXPR, arg2,
4350 integer_one_node, 0),
4351 OEP_ONLY_CONST))
4352 return pedantic_non_lvalue (fold (build2 (MAX_EXPR,
4353 type, arg1, arg2)));
4354 break;
4356 case GE_EXPR:
4357 /* If C1 is C2 + 1, this is max(A, C2). */
4358 if (! operand_equal_p (arg2, TYPE_MAX_VALUE (type),
4359 OEP_ONLY_CONST)
4360 && operand_equal_p (arg01,
4361 const_binop (PLUS_EXPR, arg2,
4362 integer_one_node, 0),
4363 OEP_ONLY_CONST))
4364 return pedantic_non_lvalue (fold (build2 (MAX_EXPR,
4365 type, arg1, arg2)));
4366 break;
4367 case NE_EXPR:
4368 break;
4369 default:
4370 gcc_unreachable ();
4373 return NULL_TREE;
4378 #ifndef RANGE_TEST_NON_SHORT_CIRCUIT
4379 #define RANGE_TEST_NON_SHORT_CIRCUIT (BRANCH_COST >= 2)
4380 #endif
4382 /* EXP is some logical combination of boolean tests. See if we can
4383 merge it into some range test. Return the new tree if so. */
4385 static tree
4386 fold_range_test (tree exp)
4388 int or_op = (TREE_CODE (exp) == TRUTH_ORIF_EXPR
4389 || TREE_CODE (exp) == TRUTH_OR_EXPR);
4390 int in0_p, in1_p, in_p;
4391 tree low0, low1, low, high0, high1, high;
4392 tree lhs = make_range (TREE_OPERAND (exp, 0), &in0_p, &low0, &high0);
4393 tree rhs = make_range (TREE_OPERAND (exp, 1), &in1_p, &low1, &high1);
4394 tree tem;
4396 /* If this is an OR operation, invert both sides; we will invert
4397 again at the end. */
4398 if (or_op)
4399 in0_p = ! in0_p, in1_p = ! in1_p;
4401 /* If both expressions are the same, if we can merge the ranges, and we
4402 can build the range test, return it or it inverted. If one of the
4403 ranges is always true or always false, consider it to be the same
4404 expression as the other. */
4405 if ((lhs == 0 || rhs == 0 || operand_equal_p (lhs, rhs, 0))
4406 && merge_ranges (&in_p, &low, &high, in0_p, low0, high0,
4407 in1_p, low1, high1)
4408 && 0 != (tem = (build_range_check (TREE_TYPE (exp),
4409 lhs != 0 ? lhs
4410 : rhs != 0 ? rhs : integer_zero_node,
4411 in_p, low, high))))
4412 return or_op ? invert_truthvalue (tem) : tem;
4414 /* On machines where the branch cost is expensive, if this is a
4415 short-circuited branch and the underlying object on both sides
4416 is the same, make a non-short-circuit operation. */
4417 else if (RANGE_TEST_NON_SHORT_CIRCUIT
4418 && lhs != 0 && rhs != 0
4419 && (TREE_CODE (exp) == TRUTH_ANDIF_EXPR
4420 || TREE_CODE (exp) == TRUTH_ORIF_EXPR)
4421 && operand_equal_p (lhs, rhs, 0))
4423 /* If simple enough, just rewrite. Otherwise, make a SAVE_EXPR
4424 unless we are at top level or LHS contains a PLACEHOLDER_EXPR, in
4425 which cases we can't do this. */
4426 if (simple_operand_p (lhs))
4427 return build2 (TREE_CODE (exp) == TRUTH_ANDIF_EXPR
4428 ? TRUTH_AND_EXPR : TRUTH_OR_EXPR,
4429 TREE_TYPE (exp), TREE_OPERAND (exp, 0),
4430 TREE_OPERAND (exp, 1));
4432 else if (lang_hooks.decls.global_bindings_p () == 0
4433 && ! CONTAINS_PLACEHOLDER_P (lhs))
4435 tree common = save_expr (lhs);
4437 if (0 != (lhs = build_range_check (TREE_TYPE (exp), common,
4438 or_op ? ! in0_p : in0_p,
4439 low0, high0))
4440 && (0 != (rhs = build_range_check (TREE_TYPE (exp), common,
4441 or_op ? ! in1_p : in1_p,
4442 low1, high1))))
4443 return build2 (TREE_CODE (exp) == TRUTH_ANDIF_EXPR
4444 ? TRUTH_AND_EXPR : TRUTH_OR_EXPR,
4445 TREE_TYPE (exp), lhs, rhs);
4449 return 0;
4452 /* Subroutine for fold_truthop: C is an INTEGER_CST interpreted as a P
4453 bit value. Arrange things so the extra bits will be set to zero if and
4454 only if C is signed-extended to its full width. If MASK is nonzero,
4455 it is an INTEGER_CST that should be AND'ed with the extra bits. */
4457 static tree
4458 unextend (tree c, int p, int unsignedp, tree mask)
4460 tree type = TREE_TYPE (c);
4461 int modesize = GET_MODE_BITSIZE (TYPE_MODE (type));
4462 tree temp;
4464 if (p == modesize || unsignedp)
4465 return c;
4467 /* We work by getting just the sign bit into the low-order bit, then
4468 into the high-order bit, then sign-extend. We then XOR that value
4469 with C. */
4470 temp = const_binop (RSHIFT_EXPR, c, size_int (p - 1), 0);
4471 temp = const_binop (BIT_AND_EXPR, temp, size_int (1), 0);
4473 /* We must use a signed type in order to get an arithmetic right shift.
4474 However, we must also avoid introducing accidental overflows, so that
4475 a subsequent call to integer_zerop will work. Hence we must
4476 do the type conversion here. At this point, the constant is either
4477 zero or one, and the conversion to a signed type can never overflow.
4478 We could get an overflow if this conversion is done anywhere else. */
4479 if (TYPE_UNSIGNED (type))
4480 temp = fold_convert (lang_hooks.types.signed_type (type), temp);
4482 temp = const_binop (LSHIFT_EXPR, temp, size_int (modesize - 1), 0);
4483 temp = const_binop (RSHIFT_EXPR, temp, size_int (modesize - p - 1), 0);
4484 if (mask != 0)
4485 temp = const_binop (BIT_AND_EXPR, temp,
4486 fold_convert (TREE_TYPE (c), mask), 0);
4487 /* If necessary, convert the type back to match the type of C. */
4488 if (TYPE_UNSIGNED (type))
4489 temp = fold_convert (type, temp);
4491 return fold_convert (type, const_binop (BIT_XOR_EXPR, c, temp, 0));
4494 /* Find ways of folding logical expressions of LHS and RHS:
4495 Try to merge two comparisons to the same innermost item.
4496 Look for range tests like "ch >= '0' && ch <= '9'".
4497 Look for combinations of simple terms on machines with expensive branches
4498 and evaluate the RHS unconditionally.
4500 For example, if we have p->a == 2 && p->b == 4 and we can make an
4501 object large enough to span both A and B, we can do this with a comparison
4502 against the object ANDed with the a mask.
4504 If we have p->a == q->a && p->b == q->b, we may be able to use bit masking
4505 operations to do this with one comparison.
4507 We check for both normal comparisons and the BIT_AND_EXPRs made this by
4508 function and the one above.
4510 CODE is the logical operation being done. It can be TRUTH_ANDIF_EXPR,
4511 TRUTH_AND_EXPR, TRUTH_ORIF_EXPR, or TRUTH_OR_EXPR.
4513 TRUTH_TYPE is the type of the logical operand and LHS and RHS are its
4514 two operands.
4516 We return the simplified tree or 0 if no optimization is possible. */
4518 static tree
4519 fold_truthop (enum tree_code code, tree truth_type, tree lhs, tree rhs)
4521 /* If this is the "or" of two comparisons, we can do something if
4522 the comparisons are NE_EXPR. If this is the "and", we can do something
4523 if the comparisons are EQ_EXPR. I.e.,
4524 (a->b == 2 && a->c == 4) can become (a->new == NEW).
4526 WANTED_CODE is this operation code. For single bit fields, we can
4527 convert EQ_EXPR to NE_EXPR so we need not reject the "wrong"
4528 comparison for one-bit fields. */
4530 enum tree_code wanted_code;
4531 enum tree_code lcode, rcode;
4532 tree ll_arg, lr_arg, rl_arg, rr_arg;
4533 tree ll_inner, lr_inner, rl_inner, rr_inner;
4534 HOST_WIDE_INT ll_bitsize, ll_bitpos, lr_bitsize, lr_bitpos;
4535 HOST_WIDE_INT rl_bitsize, rl_bitpos, rr_bitsize, rr_bitpos;
4536 HOST_WIDE_INT xll_bitpos, xlr_bitpos, xrl_bitpos, xrr_bitpos;
4537 HOST_WIDE_INT lnbitsize, lnbitpos, rnbitsize, rnbitpos;
4538 int ll_unsignedp, lr_unsignedp, rl_unsignedp, rr_unsignedp;
4539 enum machine_mode ll_mode, lr_mode, rl_mode, rr_mode;
4540 enum machine_mode lnmode, rnmode;
4541 tree ll_mask, lr_mask, rl_mask, rr_mask;
4542 tree ll_and_mask, lr_and_mask, rl_and_mask, rr_and_mask;
4543 tree l_const, r_const;
4544 tree lntype, rntype, result;
4545 int first_bit, end_bit;
4546 int volatilep;
4548 /* Start by getting the comparison codes. Fail if anything is volatile.
4549 If one operand is a BIT_AND_EXPR with the constant one, treat it as if
4550 it were surrounded with a NE_EXPR. */
4552 if (TREE_SIDE_EFFECTS (lhs) || TREE_SIDE_EFFECTS (rhs))
4553 return 0;
4555 lcode = TREE_CODE (lhs);
4556 rcode = TREE_CODE (rhs);
4558 if (lcode == BIT_AND_EXPR && integer_onep (TREE_OPERAND (lhs, 1)))
4560 lhs = build2 (NE_EXPR, truth_type, lhs,
4561 fold_convert (TREE_TYPE (lhs), integer_zero_node));
4562 lcode = NE_EXPR;
4565 if (rcode == BIT_AND_EXPR && integer_onep (TREE_OPERAND (rhs, 1)))
4567 rhs = build2 (NE_EXPR, truth_type, rhs,
4568 fold_convert (TREE_TYPE (rhs), integer_zero_node));
4569 rcode = NE_EXPR;
4572 if (TREE_CODE_CLASS (lcode) != '<' || TREE_CODE_CLASS (rcode) != '<')
4573 return 0;
4575 ll_arg = TREE_OPERAND (lhs, 0);
4576 lr_arg = TREE_OPERAND (lhs, 1);
4577 rl_arg = TREE_OPERAND (rhs, 0);
4578 rr_arg = TREE_OPERAND (rhs, 1);
4580 /* Simplify (x<y) && (x==y) into (x<=y) and related optimizations. */
4581 if (simple_operand_p (ll_arg)
4582 && simple_operand_p (lr_arg))
4584 tree result;
4585 if (operand_equal_p (ll_arg, rl_arg, 0)
4586 && operand_equal_p (lr_arg, rr_arg, 0))
4588 result = combine_comparisons (code, lcode, rcode,
4589 truth_type, ll_arg, lr_arg);
4590 if (result)
4591 return result;
4593 else if (operand_equal_p (ll_arg, rr_arg, 0)
4594 && operand_equal_p (lr_arg, rl_arg, 0))
4596 result = combine_comparisons (code, lcode,
4597 swap_tree_comparison (rcode),
4598 truth_type, ll_arg, lr_arg);
4599 if (result)
4600 return result;
4604 code = ((code == TRUTH_AND_EXPR || code == TRUTH_ANDIF_EXPR)
4605 ? TRUTH_AND_EXPR : TRUTH_OR_EXPR);
4607 /* If the RHS can be evaluated unconditionally and its operands are
4608 simple, it wins to evaluate the RHS unconditionally on machines
4609 with expensive branches. In this case, this isn't a comparison
4610 that can be merged. Avoid doing this if the RHS is a floating-point
4611 comparison since those can trap. */
4613 if (BRANCH_COST >= 2
4614 && ! FLOAT_TYPE_P (TREE_TYPE (rl_arg))
4615 && simple_operand_p (rl_arg)
4616 && simple_operand_p (rr_arg))
4618 /* Convert (a != 0) || (b != 0) into (a | b) != 0. */
4619 if (code == TRUTH_OR_EXPR
4620 && lcode == NE_EXPR && integer_zerop (lr_arg)
4621 && rcode == NE_EXPR && integer_zerop (rr_arg)
4622 && TREE_TYPE (ll_arg) == TREE_TYPE (rl_arg))
4623 return build2 (NE_EXPR, truth_type,
4624 build2 (BIT_IOR_EXPR, TREE_TYPE (ll_arg),
4625 ll_arg, rl_arg),
4626 fold_convert (TREE_TYPE (ll_arg), integer_zero_node));
4628 /* Convert (a == 0) && (b == 0) into (a | b) == 0. */
4629 if (code == TRUTH_AND_EXPR
4630 && lcode == EQ_EXPR && integer_zerop (lr_arg)
4631 && rcode == EQ_EXPR && integer_zerop (rr_arg)
4632 && TREE_TYPE (ll_arg) == TREE_TYPE (rl_arg))
4633 return build2 (EQ_EXPR, truth_type,
4634 build2 (BIT_IOR_EXPR, TREE_TYPE (ll_arg),
4635 ll_arg, rl_arg),
4636 fold_convert (TREE_TYPE (ll_arg), integer_zero_node));
4638 return build2 (code, truth_type, lhs, rhs);
4641 /* See if the comparisons can be merged. Then get all the parameters for
4642 each side. */
4644 if ((lcode != EQ_EXPR && lcode != NE_EXPR)
4645 || (rcode != EQ_EXPR && rcode != NE_EXPR))
4646 return 0;
4648 volatilep = 0;
4649 ll_inner = decode_field_reference (ll_arg,
4650 &ll_bitsize, &ll_bitpos, &ll_mode,
4651 &ll_unsignedp, &volatilep, &ll_mask,
4652 &ll_and_mask);
4653 lr_inner = decode_field_reference (lr_arg,
4654 &lr_bitsize, &lr_bitpos, &lr_mode,
4655 &lr_unsignedp, &volatilep, &lr_mask,
4656 &lr_and_mask);
4657 rl_inner = decode_field_reference (rl_arg,
4658 &rl_bitsize, &rl_bitpos, &rl_mode,
4659 &rl_unsignedp, &volatilep, &rl_mask,
4660 &rl_and_mask);
4661 rr_inner = decode_field_reference (rr_arg,
4662 &rr_bitsize, &rr_bitpos, &rr_mode,
4663 &rr_unsignedp, &volatilep, &rr_mask,
4664 &rr_and_mask);
4666 /* It must be true that the inner operation on the lhs of each
4667 comparison must be the same if we are to be able to do anything.
4668 Then see if we have constants. If not, the same must be true for
4669 the rhs's. */
4670 if (volatilep || ll_inner == 0 || rl_inner == 0
4671 || ! operand_equal_p (ll_inner, rl_inner, 0))
4672 return 0;
4674 if (TREE_CODE (lr_arg) == INTEGER_CST
4675 && TREE_CODE (rr_arg) == INTEGER_CST)
4676 l_const = lr_arg, r_const = rr_arg;
4677 else if (lr_inner == 0 || rr_inner == 0
4678 || ! operand_equal_p (lr_inner, rr_inner, 0))
4679 return 0;
4680 else
4681 l_const = r_const = 0;
4683 /* If either comparison code is not correct for our logical operation,
4684 fail. However, we can convert a one-bit comparison against zero into
4685 the opposite comparison against that bit being set in the field. */
4687 wanted_code = (code == TRUTH_AND_EXPR ? EQ_EXPR : NE_EXPR);
4688 if (lcode != wanted_code)
4690 if (l_const && integer_zerop (l_const) && integer_pow2p (ll_mask))
4692 /* Make the left operand unsigned, since we are only interested
4693 in the value of one bit. Otherwise we are doing the wrong
4694 thing below. */
4695 ll_unsignedp = 1;
4696 l_const = ll_mask;
4698 else
4699 return 0;
4702 /* This is analogous to the code for l_const above. */
4703 if (rcode != wanted_code)
4705 if (r_const && integer_zerop (r_const) && integer_pow2p (rl_mask))
4707 rl_unsignedp = 1;
4708 r_const = rl_mask;
4710 else
4711 return 0;
4714 /* After this point all optimizations will generate bit-field
4715 references, which we might not want. */
4716 if (! lang_hooks.can_use_bit_fields_p ())
4717 return 0;
4719 /* See if we can find a mode that contains both fields being compared on
4720 the left. If we can't, fail. Otherwise, update all constants and masks
4721 to be relative to a field of that size. */
4722 first_bit = MIN (ll_bitpos, rl_bitpos);
4723 end_bit = MAX (ll_bitpos + ll_bitsize, rl_bitpos + rl_bitsize);
4724 lnmode = get_best_mode (end_bit - first_bit, first_bit,
4725 TYPE_ALIGN (TREE_TYPE (ll_inner)), word_mode,
4726 volatilep);
4727 if (lnmode == VOIDmode)
4728 return 0;
4730 lnbitsize = GET_MODE_BITSIZE (lnmode);
4731 lnbitpos = first_bit & ~ (lnbitsize - 1);
4732 lntype = lang_hooks.types.type_for_size (lnbitsize, 1);
4733 xll_bitpos = ll_bitpos - lnbitpos, xrl_bitpos = rl_bitpos - lnbitpos;
4735 if (BYTES_BIG_ENDIAN)
4737 xll_bitpos = lnbitsize - xll_bitpos - ll_bitsize;
4738 xrl_bitpos = lnbitsize - xrl_bitpos - rl_bitsize;
4741 ll_mask = const_binop (LSHIFT_EXPR, fold_convert (lntype, ll_mask),
4742 size_int (xll_bitpos), 0);
4743 rl_mask = const_binop (LSHIFT_EXPR, fold_convert (lntype, rl_mask),
4744 size_int (xrl_bitpos), 0);
4746 if (l_const)
4748 l_const = fold_convert (lntype, l_const);
4749 l_const = unextend (l_const, ll_bitsize, ll_unsignedp, ll_and_mask);
4750 l_const = const_binop (LSHIFT_EXPR, l_const, size_int (xll_bitpos), 0);
4751 if (! integer_zerop (const_binop (BIT_AND_EXPR, l_const,
4752 fold (build1 (BIT_NOT_EXPR,
4753 lntype, ll_mask)),
4754 0)))
4756 warning ("comparison is always %d", wanted_code == NE_EXPR);
4758 return constant_boolean_node (wanted_code == NE_EXPR, truth_type);
4761 if (r_const)
4763 r_const = fold_convert (lntype, r_const);
4764 r_const = unextend (r_const, rl_bitsize, rl_unsignedp, rl_and_mask);
4765 r_const = const_binop (LSHIFT_EXPR, r_const, size_int (xrl_bitpos), 0);
4766 if (! integer_zerop (const_binop (BIT_AND_EXPR, r_const,
4767 fold (build1 (BIT_NOT_EXPR,
4768 lntype, rl_mask)),
4769 0)))
4771 warning ("comparison is always %d", wanted_code == NE_EXPR);
4773 return constant_boolean_node (wanted_code == NE_EXPR, truth_type);
4777 /* If the right sides are not constant, do the same for it. Also,
4778 disallow this optimization if a size or signedness mismatch occurs
4779 between the left and right sides. */
4780 if (l_const == 0)
4782 if (ll_bitsize != lr_bitsize || rl_bitsize != rr_bitsize
4783 || ll_unsignedp != lr_unsignedp || rl_unsignedp != rr_unsignedp
4784 /* Make sure the two fields on the right
4785 correspond to the left without being swapped. */
4786 || ll_bitpos - rl_bitpos != lr_bitpos - rr_bitpos)
4787 return 0;
4789 first_bit = MIN (lr_bitpos, rr_bitpos);
4790 end_bit = MAX (lr_bitpos + lr_bitsize, rr_bitpos + rr_bitsize);
4791 rnmode = get_best_mode (end_bit - first_bit, first_bit,
4792 TYPE_ALIGN (TREE_TYPE (lr_inner)), word_mode,
4793 volatilep);
4794 if (rnmode == VOIDmode)
4795 return 0;
4797 rnbitsize = GET_MODE_BITSIZE (rnmode);
4798 rnbitpos = first_bit & ~ (rnbitsize - 1);
4799 rntype = lang_hooks.types.type_for_size (rnbitsize, 1);
4800 xlr_bitpos = lr_bitpos - rnbitpos, xrr_bitpos = rr_bitpos - rnbitpos;
4802 if (BYTES_BIG_ENDIAN)
4804 xlr_bitpos = rnbitsize - xlr_bitpos - lr_bitsize;
4805 xrr_bitpos = rnbitsize - xrr_bitpos - rr_bitsize;
4808 lr_mask = const_binop (LSHIFT_EXPR, fold_convert (rntype, lr_mask),
4809 size_int (xlr_bitpos), 0);
4810 rr_mask = const_binop (LSHIFT_EXPR, fold_convert (rntype, rr_mask),
4811 size_int (xrr_bitpos), 0);
4813 /* Make a mask that corresponds to both fields being compared.
4814 Do this for both items being compared. If the operands are the
4815 same size and the bits being compared are in the same position
4816 then we can do this by masking both and comparing the masked
4817 results. */
4818 ll_mask = const_binop (BIT_IOR_EXPR, ll_mask, rl_mask, 0);
4819 lr_mask = const_binop (BIT_IOR_EXPR, lr_mask, rr_mask, 0);
4820 if (lnbitsize == rnbitsize && xll_bitpos == xlr_bitpos)
4822 lhs = make_bit_field_ref (ll_inner, lntype, lnbitsize, lnbitpos,
4823 ll_unsignedp || rl_unsignedp);
4824 if (! all_ones_mask_p (ll_mask, lnbitsize))
4825 lhs = build2 (BIT_AND_EXPR, lntype, lhs, ll_mask);
4827 rhs = make_bit_field_ref (lr_inner, rntype, rnbitsize, rnbitpos,
4828 lr_unsignedp || rr_unsignedp);
4829 if (! all_ones_mask_p (lr_mask, rnbitsize))
4830 rhs = build2 (BIT_AND_EXPR, rntype, rhs, lr_mask);
4832 return build2 (wanted_code, truth_type, lhs, rhs);
4835 /* There is still another way we can do something: If both pairs of
4836 fields being compared are adjacent, we may be able to make a wider
4837 field containing them both.
4839 Note that we still must mask the lhs/rhs expressions. Furthermore,
4840 the mask must be shifted to account for the shift done by
4841 make_bit_field_ref. */
4842 if ((ll_bitsize + ll_bitpos == rl_bitpos
4843 && lr_bitsize + lr_bitpos == rr_bitpos)
4844 || (ll_bitpos == rl_bitpos + rl_bitsize
4845 && lr_bitpos == rr_bitpos + rr_bitsize))
4847 tree type;
4849 lhs = make_bit_field_ref (ll_inner, lntype, ll_bitsize + rl_bitsize,
4850 MIN (ll_bitpos, rl_bitpos), ll_unsignedp);
4851 rhs = make_bit_field_ref (lr_inner, rntype, lr_bitsize + rr_bitsize,
4852 MIN (lr_bitpos, rr_bitpos), lr_unsignedp);
4854 ll_mask = const_binop (RSHIFT_EXPR, ll_mask,
4855 size_int (MIN (xll_bitpos, xrl_bitpos)), 0);
4856 lr_mask = const_binop (RSHIFT_EXPR, lr_mask,
4857 size_int (MIN (xlr_bitpos, xrr_bitpos)), 0);
4859 /* Convert to the smaller type before masking out unwanted bits. */
4860 type = lntype;
4861 if (lntype != rntype)
4863 if (lnbitsize > rnbitsize)
4865 lhs = fold_convert (rntype, lhs);
4866 ll_mask = fold_convert (rntype, ll_mask);
4867 type = rntype;
4869 else if (lnbitsize < rnbitsize)
4871 rhs = fold_convert (lntype, rhs);
4872 lr_mask = fold_convert (lntype, lr_mask);
4873 type = lntype;
4877 if (! all_ones_mask_p (ll_mask, ll_bitsize + rl_bitsize))
4878 lhs = build2 (BIT_AND_EXPR, type, lhs, ll_mask);
4880 if (! all_ones_mask_p (lr_mask, lr_bitsize + rr_bitsize))
4881 rhs = build2 (BIT_AND_EXPR, type, rhs, lr_mask);
4883 return build2 (wanted_code, truth_type, lhs, rhs);
4886 return 0;
4889 /* Handle the case of comparisons with constants. If there is something in
4890 common between the masks, those bits of the constants must be the same.
4891 If not, the condition is always false. Test for this to avoid generating
4892 incorrect code below. */
4893 result = const_binop (BIT_AND_EXPR, ll_mask, rl_mask, 0);
4894 if (! integer_zerop (result)
4895 && simple_cst_equal (const_binop (BIT_AND_EXPR, result, l_const, 0),
4896 const_binop (BIT_AND_EXPR, result, r_const, 0)) != 1)
4898 if (wanted_code == NE_EXPR)
4900 warning ("`or' of unmatched not-equal tests is always 1");
4901 return constant_boolean_node (true, truth_type);
4903 else
4905 warning ("`and' of mutually exclusive equal-tests is always 0");
4906 return constant_boolean_node (false, truth_type);
4910 /* Construct the expression we will return. First get the component
4911 reference we will make. Unless the mask is all ones the width of
4912 that field, perform the mask operation. Then compare with the
4913 merged constant. */
4914 result = make_bit_field_ref (ll_inner, lntype, lnbitsize, lnbitpos,
4915 ll_unsignedp || rl_unsignedp);
4917 ll_mask = const_binop (BIT_IOR_EXPR, ll_mask, rl_mask, 0);
4918 if (! all_ones_mask_p (ll_mask, lnbitsize))
4919 result = build2 (BIT_AND_EXPR, lntype, result, ll_mask);
4921 return build2 (wanted_code, truth_type, result,
4922 const_binop (BIT_IOR_EXPR, l_const, r_const, 0));
4925 /* Optimize T, which is a comparison of a MIN_EXPR or MAX_EXPR with a
4926 constant. */
4928 static tree
4929 optimize_minmax_comparison (tree t)
4931 tree type = TREE_TYPE (t);
4932 tree arg0 = TREE_OPERAND (t, 0);
4933 enum tree_code op_code;
4934 tree comp_const = TREE_OPERAND (t, 1);
4935 tree minmax_const;
4936 int consts_equal, consts_lt;
4937 tree inner;
4939 STRIP_SIGN_NOPS (arg0);
4941 op_code = TREE_CODE (arg0);
4942 minmax_const = TREE_OPERAND (arg0, 1);
4943 consts_equal = tree_int_cst_equal (minmax_const, comp_const);
4944 consts_lt = tree_int_cst_lt (minmax_const, comp_const);
4945 inner = TREE_OPERAND (arg0, 0);
4947 /* If something does not permit us to optimize, return the original tree. */
4948 if ((op_code != MIN_EXPR && op_code != MAX_EXPR)
4949 || TREE_CODE (comp_const) != INTEGER_CST
4950 || TREE_CONSTANT_OVERFLOW (comp_const)
4951 || TREE_CODE (minmax_const) != INTEGER_CST
4952 || TREE_CONSTANT_OVERFLOW (minmax_const))
4953 return t;
4955 /* Now handle all the various comparison codes. We only handle EQ_EXPR
4956 and GT_EXPR, doing the rest with recursive calls using logical
4957 simplifications. */
4958 switch (TREE_CODE (t))
4960 case NE_EXPR: case LT_EXPR: case LE_EXPR:
4961 return
4962 invert_truthvalue (optimize_minmax_comparison (invert_truthvalue (t)));
4964 case GE_EXPR:
4965 return
4966 fold (build2 (TRUTH_ORIF_EXPR, type,
4967 optimize_minmax_comparison
4968 (build2 (EQ_EXPR, type, arg0, comp_const)),
4969 optimize_minmax_comparison
4970 (build2 (GT_EXPR, type, arg0, comp_const))));
4972 case EQ_EXPR:
4973 if (op_code == MAX_EXPR && consts_equal)
4974 /* MAX (X, 0) == 0 -> X <= 0 */
4975 return fold (build2 (LE_EXPR, type, inner, comp_const));
4977 else if (op_code == MAX_EXPR && consts_lt)
4978 /* MAX (X, 0) == 5 -> X == 5 */
4979 return fold (build2 (EQ_EXPR, type, inner, comp_const));
4981 else if (op_code == MAX_EXPR)
4982 /* MAX (X, 0) == -1 -> false */
4983 return omit_one_operand (type, integer_zero_node, inner);
4985 else if (consts_equal)
4986 /* MIN (X, 0) == 0 -> X >= 0 */
4987 return fold (build2 (GE_EXPR, type, inner, comp_const));
4989 else if (consts_lt)
4990 /* MIN (X, 0) == 5 -> false */
4991 return omit_one_operand (type, integer_zero_node, inner);
4993 else
4994 /* MIN (X, 0) == -1 -> X == -1 */
4995 return fold (build2 (EQ_EXPR, type, inner, comp_const));
4997 case GT_EXPR:
4998 if (op_code == MAX_EXPR && (consts_equal || consts_lt))
4999 /* MAX (X, 0) > 0 -> X > 0
5000 MAX (X, 0) > 5 -> X > 5 */
5001 return fold (build2 (GT_EXPR, type, inner, comp_const));
5003 else if (op_code == MAX_EXPR)
5004 /* MAX (X, 0) > -1 -> true */
5005 return omit_one_operand (type, integer_one_node, inner);
5007 else if (op_code == MIN_EXPR && (consts_equal || consts_lt))
5008 /* MIN (X, 0) > 0 -> false
5009 MIN (X, 0) > 5 -> false */
5010 return omit_one_operand (type, integer_zero_node, inner);
5012 else
5013 /* MIN (X, 0) > -1 -> X > -1 */
5014 return fold (build2 (GT_EXPR, type, inner, comp_const));
5016 default:
5017 return t;
5021 /* T is an integer expression that is being multiplied, divided, or taken a
5022 modulus (CODE says which and what kind of divide or modulus) by a
5023 constant C. See if we can eliminate that operation by folding it with
5024 other operations already in T. WIDE_TYPE, if non-null, is a type that
5025 should be used for the computation if wider than our type.
5027 For example, if we are dividing (X * 8) + (Y * 16) by 4, we can return
5028 (X * 2) + (Y * 4). We must, however, be assured that either the original
5029 expression would not overflow or that overflow is undefined for the type
5030 in the language in question.
5032 We also canonicalize (X + 7) * 4 into X * 4 + 28 in the hope that either
5033 the machine has a multiply-accumulate insn or that this is part of an
5034 addressing calculation.
5036 If we return a non-null expression, it is an equivalent form of the
5037 original computation, but need not be in the original type. */
5039 static tree
5040 extract_muldiv (tree t, tree c, enum tree_code code, tree wide_type)
5042 /* To avoid exponential search depth, refuse to allow recursion past
5043 three levels. Beyond that (1) it's highly unlikely that we'll find
5044 something interesting and (2) we've probably processed it before
5045 when we built the inner expression. */
5047 static int depth;
5048 tree ret;
5050 if (depth > 3)
5051 return NULL;
5053 depth++;
5054 ret = extract_muldiv_1 (t, c, code, wide_type);
5055 depth--;
5057 return ret;
5060 static tree
5061 extract_muldiv_1 (tree t, tree c, enum tree_code code, tree wide_type)
5063 tree type = TREE_TYPE (t);
5064 enum tree_code tcode = TREE_CODE (t);
5065 tree ctype = (wide_type != 0 && (GET_MODE_SIZE (TYPE_MODE (wide_type))
5066 > GET_MODE_SIZE (TYPE_MODE (type)))
5067 ? wide_type : type);
5068 tree t1, t2;
5069 int same_p = tcode == code;
5070 tree op0 = NULL_TREE, op1 = NULL_TREE;
5072 /* Don't deal with constants of zero here; they confuse the code below. */
5073 if (integer_zerop (c))
5074 return NULL_TREE;
5076 if (TREE_CODE_CLASS (tcode) == '1')
5077 op0 = TREE_OPERAND (t, 0);
5079 if (TREE_CODE_CLASS (tcode) == '2')
5080 op0 = TREE_OPERAND (t, 0), op1 = TREE_OPERAND (t, 1);
5082 /* Note that we need not handle conditional operations here since fold
5083 already handles those cases. So just do arithmetic here. */
5084 switch (tcode)
5086 case INTEGER_CST:
5087 /* For a constant, we can always simplify if we are a multiply
5088 or (for divide and modulus) if it is a multiple of our constant. */
5089 if (code == MULT_EXPR
5090 || integer_zerop (const_binop (TRUNC_MOD_EXPR, t, c, 0)))
5091 return const_binop (code, fold_convert (ctype, t),
5092 fold_convert (ctype, c), 0);
5093 break;
5095 case CONVERT_EXPR: case NON_LVALUE_EXPR: case NOP_EXPR:
5096 /* If op0 is an expression ... */
5097 if ((TREE_CODE_CLASS (TREE_CODE (op0)) == '<'
5098 || TREE_CODE_CLASS (TREE_CODE (op0)) == '1'
5099 || TREE_CODE_CLASS (TREE_CODE (op0)) == '2'
5100 || TREE_CODE_CLASS (TREE_CODE (op0)) == 'e')
5101 /* ... and is unsigned, and its type is smaller than ctype,
5102 then we cannot pass through as widening. */
5103 && ((TYPE_UNSIGNED (TREE_TYPE (op0))
5104 && ! (TREE_CODE (TREE_TYPE (op0)) == INTEGER_TYPE
5105 && TYPE_IS_SIZETYPE (TREE_TYPE (op0)))
5106 && (GET_MODE_SIZE (TYPE_MODE (ctype))
5107 > GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (op0)))))
5108 /* ... or this is a truncation (t is narrower than op0),
5109 then we cannot pass through this narrowing. */
5110 || (GET_MODE_SIZE (TYPE_MODE (type))
5111 < GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (op0))))
5112 /* ... or signedness changes for division or modulus,
5113 then we cannot pass through this conversion. */
5114 || (code != MULT_EXPR
5115 && (TYPE_UNSIGNED (ctype)
5116 != TYPE_UNSIGNED (TREE_TYPE (op0))))))
5117 break;
5119 /* Pass the constant down and see if we can make a simplification. If
5120 we can, replace this expression with the inner simplification for
5121 possible later conversion to our or some other type. */
5122 if ((t2 = fold_convert (TREE_TYPE (op0), c)) != 0
5123 && TREE_CODE (t2) == INTEGER_CST
5124 && ! TREE_CONSTANT_OVERFLOW (t2)
5125 && (0 != (t1 = extract_muldiv (op0, t2, code,
5126 code == MULT_EXPR
5127 ? ctype : NULL_TREE))))
5128 return t1;
5129 break;
5131 case NEGATE_EXPR: case ABS_EXPR:
5132 if ((t1 = extract_muldiv (op0, c, code, wide_type)) != 0)
5133 return fold (build1 (tcode, ctype, fold_convert (ctype, t1)));
5134 break;
5136 case MIN_EXPR: case MAX_EXPR:
5137 /* If widening the type changes the signedness, then we can't perform
5138 this optimization as that changes the result. */
5139 if (TYPE_UNSIGNED (ctype) != TYPE_UNSIGNED (type))
5140 break;
5142 /* MIN (a, b) / 5 -> MIN (a / 5, b / 5) */
5143 if ((t1 = extract_muldiv (op0, c, code, wide_type)) != 0
5144 && (t2 = extract_muldiv (op1, c, code, wide_type)) != 0)
5146 if (tree_int_cst_sgn (c) < 0)
5147 tcode = (tcode == MIN_EXPR ? MAX_EXPR : MIN_EXPR);
5149 return fold (build2 (tcode, ctype, fold_convert (ctype, t1),
5150 fold_convert (ctype, t2)));
5152 break;
5154 case LSHIFT_EXPR: case RSHIFT_EXPR:
5155 /* If the second operand is constant, this is a multiplication
5156 or floor division, by a power of two, so we can treat it that
5157 way unless the multiplier or divisor overflows. Signed
5158 left-shift overflow is implementation-defined rather than
5159 undefined in C90, so do not convert signed left shift into
5160 multiplication. */
5161 if (TREE_CODE (op1) == INTEGER_CST
5162 && (tcode == RSHIFT_EXPR || TYPE_UNSIGNED (TREE_TYPE (op0)))
5163 /* const_binop may not detect overflow correctly,
5164 so check for it explicitly here. */
5165 && TYPE_PRECISION (TREE_TYPE (size_one_node)) > TREE_INT_CST_LOW (op1)
5166 && TREE_INT_CST_HIGH (op1) == 0
5167 && 0 != (t1 = fold_convert (ctype,
5168 const_binop (LSHIFT_EXPR,
5169 size_one_node,
5170 op1, 0)))
5171 && ! TREE_OVERFLOW (t1))
5172 return extract_muldiv (build2 (tcode == LSHIFT_EXPR
5173 ? MULT_EXPR : FLOOR_DIV_EXPR,
5174 ctype, fold_convert (ctype, op0), t1),
5175 c, code, wide_type);
5176 break;
5178 case PLUS_EXPR: case MINUS_EXPR:
5179 /* See if we can eliminate the operation on both sides. If we can, we
5180 can return a new PLUS or MINUS. If we can't, the only remaining
5181 cases where we can do anything are if the second operand is a
5182 constant. */
5183 t1 = extract_muldiv (op0, c, code, wide_type);
5184 t2 = extract_muldiv (op1, c, code, wide_type);
5185 if (t1 != 0 && t2 != 0
5186 && (code == MULT_EXPR
5187 /* If not multiplication, we can only do this if both operands
5188 are divisible by c. */
5189 || (multiple_of_p (ctype, op0, c)
5190 && multiple_of_p (ctype, op1, c))))
5191 return fold (build2 (tcode, ctype, fold_convert (ctype, t1),
5192 fold_convert (ctype, t2)));
5194 /* If this was a subtraction, negate OP1 and set it to be an addition.
5195 This simplifies the logic below. */
5196 if (tcode == MINUS_EXPR)
5197 tcode = PLUS_EXPR, op1 = negate_expr (op1);
5199 if (TREE_CODE (op1) != INTEGER_CST)
5200 break;
5202 /* If either OP1 or C are negative, this optimization is not safe for
5203 some of the division and remainder types while for others we need
5204 to change the code. */
5205 if (tree_int_cst_sgn (op1) < 0 || tree_int_cst_sgn (c) < 0)
5207 if (code == CEIL_DIV_EXPR)
5208 code = FLOOR_DIV_EXPR;
5209 else if (code == FLOOR_DIV_EXPR)
5210 code = CEIL_DIV_EXPR;
5211 else if (code != MULT_EXPR
5212 && code != CEIL_MOD_EXPR && code != FLOOR_MOD_EXPR)
5213 break;
5216 /* If it's a multiply or a division/modulus operation of a multiple
5217 of our constant, do the operation and verify it doesn't overflow. */
5218 if (code == MULT_EXPR
5219 || integer_zerop (const_binop (TRUNC_MOD_EXPR, op1, c, 0)))
5221 op1 = const_binop (code, fold_convert (ctype, op1),
5222 fold_convert (ctype, c), 0);
5223 /* We allow the constant to overflow with wrapping semantics. */
5224 if (op1 == 0
5225 || (TREE_OVERFLOW (op1) && ! flag_wrapv))
5226 break;
5228 else
5229 break;
5231 /* If we have an unsigned type is not a sizetype, we cannot widen
5232 the operation since it will change the result if the original
5233 computation overflowed. */
5234 if (TYPE_UNSIGNED (ctype)
5235 && ! (TREE_CODE (ctype) == INTEGER_TYPE && TYPE_IS_SIZETYPE (ctype))
5236 && ctype != type)
5237 break;
5239 /* If we were able to eliminate our operation from the first side,
5240 apply our operation to the second side and reform the PLUS. */
5241 if (t1 != 0 && (TREE_CODE (t1) != code || code == MULT_EXPR))
5242 return fold (build2 (tcode, ctype, fold_convert (ctype, t1), op1));
5244 /* The last case is if we are a multiply. In that case, we can
5245 apply the distributive law to commute the multiply and addition
5246 if the multiplication of the constants doesn't overflow. */
5247 if (code == MULT_EXPR)
5248 return fold (build2 (tcode, ctype,
5249 fold (build2 (code, ctype,
5250 fold_convert (ctype, op0),
5251 fold_convert (ctype, c))),
5252 op1));
5254 break;
5256 case MULT_EXPR:
5257 /* We have a special case here if we are doing something like
5258 (C * 8) % 4 since we know that's zero. */
5259 if ((code == TRUNC_MOD_EXPR || code == CEIL_MOD_EXPR
5260 || code == FLOOR_MOD_EXPR || code == ROUND_MOD_EXPR)
5261 && TREE_CODE (TREE_OPERAND (t, 1)) == INTEGER_CST
5262 && integer_zerop (const_binop (TRUNC_MOD_EXPR, op1, c, 0)))
5263 return omit_one_operand (type, integer_zero_node, op0);
5265 /* ... fall through ... */
5267 case TRUNC_DIV_EXPR: case CEIL_DIV_EXPR: case FLOOR_DIV_EXPR:
5268 case ROUND_DIV_EXPR: case EXACT_DIV_EXPR:
5269 /* If we can extract our operation from the LHS, do so and return a
5270 new operation. Likewise for the RHS from a MULT_EXPR. Otherwise,
5271 do something only if the second operand is a constant. */
5272 if (same_p
5273 && (t1 = extract_muldiv (op0, c, code, wide_type)) != 0)
5274 return fold (build2 (tcode, ctype, fold_convert (ctype, t1),
5275 fold_convert (ctype, op1)));
5276 else if (tcode == MULT_EXPR && code == MULT_EXPR
5277 && (t1 = extract_muldiv (op1, c, code, wide_type)) != 0)
5278 return fold (build2 (tcode, ctype, fold_convert (ctype, op0),
5279 fold_convert (ctype, t1)));
5280 else if (TREE_CODE (op1) != INTEGER_CST)
5281 return 0;
5283 /* If these are the same operation types, we can associate them
5284 assuming no overflow. */
5285 if (tcode == code
5286 && 0 != (t1 = const_binop (MULT_EXPR, fold_convert (ctype, op1),
5287 fold_convert (ctype, c), 0))
5288 && ! TREE_OVERFLOW (t1))
5289 return fold (build2 (tcode, ctype, fold_convert (ctype, op0), t1));
5291 /* If these operations "cancel" each other, we have the main
5292 optimizations of this pass, which occur when either constant is a
5293 multiple of the other, in which case we replace this with either an
5294 operation or CODE or TCODE.
5296 If we have an unsigned type that is not a sizetype, we cannot do
5297 this since it will change the result if the original computation
5298 overflowed. */
5299 if ((! TYPE_UNSIGNED (ctype)
5300 || (TREE_CODE (ctype) == INTEGER_TYPE && TYPE_IS_SIZETYPE (ctype)))
5301 && ! flag_wrapv
5302 && ((code == MULT_EXPR && tcode == EXACT_DIV_EXPR)
5303 || (tcode == MULT_EXPR
5304 && code != TRUNC_MOD_EXPR && code != CEIL_MOD_EXPR
5305 && code != FLOOR_MOD_EXPR && code != ROUND_MOD_EXPR)))
5307 if (integer_zerop (const_binop (TRUNC_MOD_EXPR, op1, c, 0)))
5308 return fold (build2 (tcode, ctype, fold_convert (ctype, op0),
5309 fold_convert (ctype,
5310 const_binop (TRUNC_DIV_EXPR,
5311 op1, c, 0))));
5312 else if (integer_zerop (const_binop (TRUNC_MOD_EXPR, c, op1, 0)))
5313 return fold (build2 (code, ctype, fold_convert (ctype, op0),
5314 fold_convert (ctype,
5315 const_binop (TRUNC_DIV_EXPR,
5316 c, op1, 0))));
5318 break;
5320 default:
5321 break;
5324 return 0;
5327 /* Return a node which has the indicated constant VALUE (either 0 or
5328 1), and is of the indicated TYPE. */
5330 tree
5331 constant_boolean_node (int value, tree type)
5333 if (type == integer_type_node)
5334 return value ? integer_one_node : integer_zero_node;
5335 else if (type == boolean_type_node)
5336 return value ? boolean_true_node : boolean_false_node;
5337 else if (TREE_CODE (type) == BOOLEAN_TYPE)
5338 return lang_hooks.truthvalue_conversion (value ? integer_one_node
5339 : integer_zero_node);
5340 else
5341 return build_int_cst (type, value);
5344 /* Transform `a + (b ? x : y)' into `b ? (a + x) : (a + y)'.
5345 Transform, `a + (x < y)' into `(x < y) ? (a + 1) : (a + 0)'. Here
5346 CODE corresponds to the `+', COND to the `(b ? x : y)' or `(x < y)'
5347 expression, and ARG to `a'. If COND_FIRST_P is nonzero, then the
5348 COND is the first argument to CODE; otherwise (as in the example
5349 given here), it is the second argument. TYPE is the type of the
5350 original expression. Return NULL_TREE if no simplification is
5351 possible. */
5353 static tree
5354 fold_binary_op_with_conditional_arg (enum tree_code code, tree type,
5355 tree cond, tree arg, int cond_first_p)
5357 tree test, true_value, false_value;
5358 tree lhs = NULL_TREE;
5359 tree rhs = NULL_TREE;
5361 /* This transformation is only worthwhile if we don't have to wrap
5362 arg in a SAVE_EXPR, and the operation can be simplified on atleast
5363 one of the branches once its pushed inside the COND_EXPR. */
5364 if (!TREE_CONSTANT (arg))
5365 return NULL_TREE;
5367 if (TREE_CODE (cond) == COND_EXPR)
5369 test = TREE_OPERAND (cond, 0);
5370 true_value = TREE_OPERAND (cond, 1);
5371 false_value = TREE_OPERAND (cond, 2);
5372 /* If this operand throws an expression, then it does not make
5373 sense to try to perform a logical or arithmetic operation
5374 involving it. */
5375 if (VOID_TYPE_P (TREE_TYPE (true_value)))
5376 lhs = true_value;
5377 if (VOID_TYPE_P (TREE_TYPE (false_value)))
5378 rhs = false_value;
5380 else
5382 tree testtype = TREE_TYPE (cond);
5383 test = cond;
5384 true_value = constant_boolean_node (true, testtype);
5385 false_value = constant_boolean_node (false, testtype);
5388 if (lhs == 0)
5389 lhs = fold (cond_first_p ? build2 (code, type, true_value, arg)
5390 : build2 (code, type, arg, true_value));
5391 if (rhs == 0)
5392 rhs = fold (cond_first_p ? build2 (code, type, false_value, arg)
5393 : build2 (code, type, arg, false_value));
5395 test = fold (build3 (COND_EXPR, type, test, lhs, rhs));
5396 return fold_convert (type, test);
5400 /* Subroutine of fold() that checks for the addition of +/- 0.0.
5402 If !NEGATE, return true if ADDEND is +/-0.0 and, for all X of type
5403 TYPE, X + ADDEND is the same as X. If NEGATE, return true if X -
5404 ADDEND is the same as X.
5406 X + 0 and X - 0 both give X when X is NaN, infinite, or nonzero
5407 and finite. The problematic cases are when X is zero, and its mode
5408 has signed zeros. In the case of rounding towards -infinity,
5409 X - 0 is not the same as X because 0 - 0 is -0. In other rounding
5410 modes, X + 0 is not the same as X because -0 + 0 is 0. */
5412 static bool
5413 fold_real_zero_addition_p (tree type, tree addend, int negate)
5415 if (!real_zerop (addend))
5416 return false;
5418 /* Don't allow the fold with -fsignaling-nans. */
5419 if (HONOR_SNANS (TYPE_MODE (type)))
5420 return false;
5422 /* Allow the fold if zeros aren't signed, or their sign isn't important. */
5423 if (!HONOR_SIGNED_ZEROS (TYPE_MODE (type)))
5424 return true;
5426 /* Treat x + -0 as x - 0 and x - -0 as x + 0. */
5427 if (TREE_CODE (addend) == REAL_CST
5428 && REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (addend)))
5429 negate = !negate;
5431 /* The mode has signed zeros, and we have to honor their sign.
5432 In this situation, there is only one case we can return true for.
5433 X - 0 is the same as X unless rounding towards -infinity is
5434 supported. */
5435 return negate && !HONOR_SIGN_DEPENDENT_ROUNDING (TYPE_MODE (type));
5438 /* Subroutine of fold() that checks comparisons of built-in math
5439 functions against real constants.
5441 FCODE is the DECL_FUNCTION_CODE of the built-in, CODE is the comparison
5442 operator: EQ_EXPR, NE_EXPR, GT_EXPR, LT_EXPR, GE_EXPR or LE_EXPR. TYPE
5443 is the type of the result and ARG0 and ARG1 are the operands of the
5444 comparison. ARG1 must be a TREE_REAL_CST.
5446 The function returns the constant folded tree if a simplification
5447 can be made, and NULL_TREE otherwise. */
5449 static tree
5450 fold_mathfn_compare (enum built_in_function fcode, enum tree_code code,
5451 tree type, tree arg0, tree arg1)
5453 REAL_VALUE_TYPE c;
5455 if (BUILTIN_SQRT_P (fcode))
5457 tree arg = TREE_VALUE (TREE_OPERAND (arg0, 1));
5458 enum machine_mode mode = TYPE_MODE (TREE_TYPE (arg0));
5460 c = TREE_REAL_CST (arg1);
5461 if (REAL_VALUE_NEGATIVE (c))
5463 /* sqrt(x) < y is always false, if y is negative. */
5464 if (code == EQ_EXPR || code == LT_EXPR || code == LE_EXPR)
5465 return omit_one_operand (type, integer_zero_node, arg);
5467 /* sqrt(x) > y is always true, if y is negative and we
5468 don't care about NaNs, i.e. negative values of x. */
5469 if (code == NE_EXPR || !HONOR_NANS (mode))
5470 return omit_one_operand (type, integer_one_node, arg);
5472 /* sqrt(x) > y is the same as x >= 0, if y is negative. */
5473 return fold (build2 (GE_EXPR, type, arg,
5474 build_real (TREE_TYPE (arg), dconst0)));
5476 else if (code == GT_EXPR || code == GE_EXPR)
5478 REAL_VALUE_TYPE c2;
5480 REAL_ARITHMETIC (c2, MULT_EXPR, c, c);
5481 real_convert (&c2, mode, &c2);
5483 if (REAL_VALUE_ISINF (c2))
5485 /* sqrt(x) > y is x == +Inf, when y is very large. */
5486 if (HONOR_INFINITIES (mode))
5487 return fold (build2 (EQ_EXPR, type, arg,
5488 build_real (TREE_TYPE (arg), c2)));
5490 /* sqrt(x) > y is always false, when y is very large
5491 and we don't care about infinities. */
5492 return omit_one_operand (type, integer_zero_node, arg);
5495 /* sqrt(x) > c is the same as x > c*c. */
5496 return fold (build2 (code, type, arg,
5497 build_real (TREE_TYPE (arg), c2)));
5499 else if (code == LT_EXPR || code == LE_EXPR)
5501 REAL_VALUE_TYPE c2;
5503 REAL_ARITHMETIC (c2, MULT_EXPR, c, c);
5504 real_convert (&c2, mode, &c2);
5506 if (REAL_VALUE_ISINF (c2))
5508 /* sqrt(x) < y is always true, when y is a very large
5509 value and we don't care about NaNs or Infinities. */
5510 if (! HONOR_NANS (mode) && ! HONOR_INFINITIES (mode))
5511 return omit_one_operand (type, integer_one_node, arg);
5513 /* sqrt(x) < y is x != +Inf when y is very large and we
5514 don't care about NaNs. */
5515 if (! HONOR_NANS (mode))
5516 return fold (build2 (NE_EXPR, type, arg,
5517 build_real (TREE_TYPE (arg), c2)));
5519 /* sqrt(x) < y is x >= 0 when y is very large and we
5520 don't care about Infinities. */
5521 if (! HONOR_INFINITIES (mode))
5522 return fold (build2 (GE_EXPR, type, arg,
5523 build_real (TREE_TYPE (arg), dconst0)));
5525 /* sqrt(x) < y is x >= 0 && x != +Inf, when y is large. */
5526 if (lang_hooks.decls.global_bindings_p () != 0
5527 || CONTAINS_PLACEHOLDER_P (arg))
5528 return NULL_TREE;
5530 arg = save_expr (arg);
5531 return fold (build2 (TRUTH_ANDIF_EXPR, type,
5532 fold (build2 (GE_EXPR, type, arg,
5533 build_real (TREE_TYPE (arg),
5534 dconst0))),
5535 fold (build2 (NE_EXPR, type, arg,
5536 build_real (TREE_TYPE (arg),
5537 c2)))));
5540 /* sqrt(x) < c is the same as x < c*c, if we ignore NaNs. */
5541 if (! HONOR_NANS (mode))
5542 return fold (build2 (code, type, arg,
5543 build_real (TREE_TYPE (arg), c2)));
5545 /* sqrt(x) < c is the same as x >= 0 && x < c*c. */
5546 if (lang_hooks.decls.global_bindings_p () == 0
5547 && ! CONTAINS_PLACEHOLDER_P (arg))
5549 arg = save_expr (arg);
5550 return fold (build2 (TRUTH_ANDIF_EXPR, type,
5551 fold (build2 (GE_EXPR, type, arg,
5552 build_real (TREE_TYPE (arg),
5553 dconst0))),
5554 fold (build2 (code, type, arg,
5555 build_real (TREE_TYPE (arg),
5556 c2)))));
5561 return NULL_TREE;
5564 /* Subroutine of fold() that optimizes comparisons against Infinities,
5565 either +Inf or -Inf.
5567 CODE is the comparison operator: EQ_EXPR, NE_EXPR, GT_EXPR, LT_EXPR,
5568 GE_EXPR or LE_EXPR. TYPE is the type of the result and ARG0 and ARG1
5569 are the operands of the comparison. ARG1 must be a TREE_REAL_CST.
5571 The function returns the constant folded tree if a simplification
5572 can be made, and NULL_TREE otherwise. */
5574 static tree
5575 fold_inf_compare (enum tree_code code, tree type, tree arg0, tree arg1)
5577 enum machine_mode mode;
5578 REAL_VALUE_TYPE max;
5579 tree temp;
5580 bool neg;
5582 mode = TYPE_MODE (TREE_TYPE (arg0));
5584 /* For negative infinity swap the sense of the comparison. */
5585 neg = REAL_VALUE_NEGATIVE (TREE_REAL_CST (arg1));
5586 if (neg)
5587 code = swap_tree_comparison (code);
5589 switch (code)
5591 case GT_EXPR:
5592 /* x > +Inf is always false, if with ignore sNANs. */
5593 if (HONOR_SNANS (mode))
5594 return NULL_TREE;
5595 return omit_one_operand (type, integer_zero_node, arg0);
5597 case LE_EXPR:
5598 /* x <= +Inf is always true, if we don't case about NaNs. */
5599 if (! HONOR_NANS (mode))
5600 return omit_one_operand (type, integer_one_node, arg0);
5602 /* x <= +Inf is the same as x == x, i.e. isfinite(x). */
5603 if (lang_hooks.decls.global_bindings_p () == 0
5604 && ! CONTAINS_PLACEHOLDER_P (arg0))
5606 arg0 = save_expr (arg0);
5607 return fold (build2 (EQ_EXPR, type, arg0, arg0));
5609 break;
5611 case EQ_EXPR:
5612 case GE_EXPR:
5613 /* x == +Inf and x >= +Inf are always equal to x > DBL_MAX. */
5614 real_maxval (&max, neg, mode);
5615 return fold (build2 (neg ? LT_EXPR : GT_EXPR, type,
5616 arg0, build_real (TREE_TYPE (arg0), max)));
5618 case LT_EXPR:
5619 /* x < +Inf is always equal to x <= DBL_MAX. */
5620 real_maxval (&max, neg, mode);
5621 return fold (build2 (neg ? GE_EXPR : LE_EXPR, type,
5622 arg0, build_real (TREE_TYPE (arg0), max)));
5624 case NE_EXPR:
5625 /* x != +Inf is always equal to !(x > DBL_MAX). */
5626 real_maxval (&max, neg, mode);
5627 if (! HONOR_NANS (mode))
5628 return fold (build2 (neg ? GE_EXPR : LE_EXPR, type,
5629 arg0, build_real (TREE_TYPE (arg0), max)));
5631 /* The transformation below creates non-gimple code and thus is
5632 not appropriate if we are in gimple form. */
5633 if (in_gimple_form)
5634 return NULL_TREE;
5636 temp = fold (build2 (neg ? LT_EXPR : GT_EXPR, type,
5637 arg0, build_real (TREE_TYPE (arg0), max)));
5638 return fold (build1 (TRUTH_NOT_EXPR, type, temp));
5640 default:
5641 break;
5644 return NULL_TREE;
5647 /* Subroutine of fold() that optimizes comparisons of a division by
5648 a nonzero integer constant against an integer constant, i.e.
5649 X/C1 op C2.
5651 CODE is the comparison operator: EQ_EXPR, NE_EXPR, GT_EXPR, LT_EXPR,
5652 GE_EXPR or LE_EXPR. TYPE is the type of the result and ARG0 and ARG1
5653 are the operands of the comparison. ARG1 must be a TREE_REAL_CST.
5655 The function returns the constant folded tree if a simplification
5656 can be made, and NULL_TREE otherwise. */
5658 static tree
5659 fold_div_compare (enum tree_code code, tree type, tree arg0, tree arg1)
5661 tree prod, tmp, hi, lo;
5662 tree arg00 = TREE_OPERAND (arg0, 0);
5663 tree arg01 = TREE_OPERAND (arg0, 1);
5664 unsigned HOST_WIDE_INT lpart;
5665 HOST_WIDE_INT hpart;
5666 int overflow;
5668 /* We have to do this the hard way to detect unsigned overflow.
5669 prod = int_const_binop (MULT_EXPR, arg01, arg1, 0); */
5670 overflow = mul_double (TREE_INT_CST_LOW (arg01),
5671 TREE_INT_CST_HIGH (arg01),
5672 TREE_INT_CST_LOW (arg1),
5673 TREE_INT_CST_HIGH (arg1), &lpart, &hpart);
5674 prod = build_int_cst_wide (TREE_TYPE (arg00), lpart, hpart);
5675 prod = force_fit_type (prod, -1, overflow, false);
5677 if (TYPE_UNSIGNED (TREE_TYPE (arg0)))
5679 tmp = int_const_binop (MINUS_EXPR, arg01, integer_one_node, 0);
5680 lo = prod;
5682 /* Likewise hi = int_const_binop (PLUS_EXPR, prod, tmp, 0). */
5683 overflow = add_double (TREE_INT_CST_LOW (prod),
5684 TREE_INT_CST_HIGH (prod),
5685 TREE_INT_CST_LOW (tmp),
5686 TREE_INT_CST_HIGH (tmp),
5687 &lpart, &hpart);
5688 hi = build_int_cst_wide (TREE_TYPE (arg00), lpart, hpart);
5689 hi = force_fit_type (hi, -1, overflow | TREE_OVERFLOW (prod),
5690 TREE_CONSTANT_OVERFLOW (prod));
5692 else if (tree_int_cst_sgn (arg01) >= 0)
5694 tmp = int_const_binop (MINUS_EXPR, arg01, integer_one_node, 0);
5695 switch (tree_int_cst_sgn (arg1))
5697 case -1:
5698 lo = int_const_binop (MINUS_EXPR, prod, tmp, 0);
5699 hi = prod;
5700 break;
5702 case 0:
5703 lo = fold_negate_const (tmp, TREE_TYPE (arg0));
5704 hi = tmp;
5705 break;
5707 case 1:
5708 hi = int_const_binop (PLUS_EXPR, prod, tmp, 0);
5709 lo = prod;
5710 break;
5712 default:
5713 gcc_unreachable ();
5716 else
5718 tmp = int_const_binop (PLUS_EXPR, arg01, integer_one_node, 0);
5719 switch (tree_int_cst_sgn (arg1))
5721 case -1:
5722 hi = int_const_binop (MINUS_EXPR, prod, tmp, 0);
5723 lo = prod;
5724 break;
5726 case 0:
5727 hi = fold_negate_const (tmp, TREE_TYPE (arg0));
5728 lo = tmp;
5729 break;
5731 case 1:
5732 lo = int_const_binop (PLUS_EXPR, prod, tmp, 0);
5733 hi = prod;
5734 break;
5736 default:
5737 gcc_unreachable ();
5741 switch (code)
5743 case EQ_EXPR:
5744 if (TREE_OVERFLOW (lo) && TREE_OVERFLOW (hi))
5745 return omit_one_operand (type, integer_zero_node, arg00);
5746 if (TREE_OVERFLOW (hi))
5747 return fold (build2 (GE_EXPR, type, arg00, lo));
5748 if (TREE_OVERFLOW (lo))
5749 return fold (build2 (LE_EXPR, type, arg00, hi));
5750 return build_range_check (type, arg00, 1, lo, hi);
5752 case NE_EXPR:
5753 if (TREE_OVERFLOW (lo) && TREE_OVERFLOW (hi))
5754 return omit_one_operand (type, integer_one_node, arg00);
5755 if (TREE_OVERFLOW (hi))
5756 return fold (build2 (LT_EXPR, type, arg00, lo));
5757 if (TREE_OVERFLOW (lo))
5758 return fold (build2 (GT_EXPR, type, arg00, hi));
5759 return build_range_check (type, arg00, 0, lo, hi);
5761 case LT_EXPR:
5762 if (TREE_OVERFLOW (lo))
5763 return omit_one_operand (type, integer_zero_node, arg00);
5764 return fold (build2 (LT_EXPR, type, arg00, lo));
5766 case LE_EXPR:
5767 if (TREE_OVERFLOW (hi))
5768 return omit_one_operand (type, integer_one_node, arg00);
5769 return fold (build2 (LE_EXPR, type, arg00, hi));
5771 case GT_EXPR:
5772 if (TREE_OVERFLOW (hi))
5773 return omit_one_operand (type, integer_zero_node, arg00);
5774 return fold (build2 (GT_EXPR, type, arg00, hi));
5776 case GE_EXPR:
5777 if (TREE_OVERFLOW (lo))
5778 return omit_one_operand (type, integer_one_node, arg00);
5779 return fold (build2 (GE_EXPR, type, arg00, lo));
5781 default:
5782 break;
5785 return NULL_TREE;
5789 /* If CODE with arguments ARG0 and ARG1 represents a single bit
5790 equality/inequality test, then return a simplified form of
5791 the test using shifts and logical operations. Otherwise return
5792 NULL. TYPE is the desired result type. */
5794 tree
5795 fold_single_bit_test (enum tree_code code, tree arg0, tree arg1,
5796 tree result_type)
5798 /* If this is a TRUTH_NOT_EXPR, it may have a single bit test inside
5799 operand 0. */
5800 if (code == TRUTH_NOT_EXPR)
5802 code = TREE_CODE (arg0);
5803 if (code != NE_EXPR && code != EQ_EXPR)
5804 return NULL_TREE;
5806 /* Extract the arguments of the EQ/NE. */
5807 arg1 = TREE_OPERAND (arg0, 1);
5808 arg0 = TREE_OPERAND (arg0, 0);
5810 /* This requires us to invert the code. */
5811 code = (code == EQ_EXPR ? NE_EXPR : EQ_EXPR);
5814 /* If this is testing a single bit, we can optimize the test. */
5815 if ((code == NE_EXPR || code == EQ_EXPR)
5816 && TREE_CODE (arg0) == BIT_AND_EXPR && integer_zerop (arg1)
5817 && integer_pow2p (TREE_OPERAND (arg0, 1)))
5819 tree inner = TREE_OPERAND (arg0, 0);
5820 tree type = TREE_TYPE (arg0);
5821 int bitnum = tree_log2 (TREE_OPERAND (arg0, 1));
5822 enum machine_mode operand_mode = TYPE_MODE (type);
5823 int ops_unsigned;
5824 tree signed_type, unsigned_type, intermediate_type;
5825 tree arg00;
5827 /* If we have (A & C) != 0 where C is the sign bit of A, convert
5828 this into A < 0. Similarly for (A & C) == 0 into A >= 0. */
5829 arg00 = sign_bit_p (TREE_OPERAND (arg0, 0), TREE_OPERAND (arg0, 1));
5830 if (arg00 != NULL_TREE
5831 /* This is only a win if casting to a signed type is cheap,
5832 i.e. when arg00's type is not a partial mode. */
5833 && TYPE_PRECISION (TREE_TYPE (arg00))
5834 == GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (arg00))))
5836 tree stype = lang_hooks.types.signed_type (TREE_TYPE (arg00));
5837 return fold (build2 (code == EQ_EXPR ? GE_EXPR : LT_EXPR,
5838 result_type, fold_convert (stype, arg00),
5839 fold_convert (stype, integer_zero_node)));
5842 /* Otherwise we have (A & C) != 0 where C is a single bit,
5843 convert that into ((A >> C2) & 1). Where C2 = log2(C).
5844 Similarly for (A & C) == 0. */
5846 /* If INNER is a right shift of a constant and it plus BITNUM does
5847 not overflow, adjust BITNUM and INNER. */
5848 if (TREE_CODE (inner) == RSHIFT_EXPR
5849 && TREE_CODE (TREE_OPERAND (inner, 1)) == INTEGER_CST
5850 && TREE_INT_CST_HIGH (TREE_OPERAND (inner, 1)) == 0
5851 && bitnum < TYPE_PRECISION (type)
5852 && 0 > compare_tree_int (TREE_OPERAND (inner, 1),
5853 bitnum - TYPE_PRECISION (type)))
5855 bitnum += TREE_INT_CST_LOW (TREE_OPERAND (inner, 1));
5856 inner = TREE_OPERAND (inner, 0);
5859 /* If we are going to be able to omit the AND below, we must do our
5860 operations as unsigned. If we must use the AND, we have a choice.
5861 Normally unsigned is faster, but for some machines signed is. */
5862 #ifdef LOAD_EXTEND_OP
5863 ops_unsigned = (LOAD_EXTEND_OP (operand_mode) == SIGN_EXTEND ? 0 : 1);
5864 #else
5865 ops_unsigned = 1;
5866 #endif
5868 signed_type = lang_hooks.types.type_for_mode (operand_mode, 0);
5869 unsigned_type = lang_hooks.types.type_for_mode (operand_mode, 1);
5870 intermediate_type = ops_unsigned ? unsigned_type : signed_type;
5871 inner = fold_convert (intermediate_type, inner);
5873 if (bitnum != 0)
5874 inner = build2 (RSHIFT_EXPR, intermediate_type,
5875 inner, size_int (bitnum));
5877 if (code == EQ_EXPR)
5878 inner = fold (build2 (BIT_XOR_EXPR, intermediate_type,
5879 inner, integer_one_node));
5881 /* Put the AND last so it can combine with more things. */
5882 inner = build2 (BIT_AND_EXPR, intermediate_type,
5883 inner, integer_one_node);
5885 /* Make sure to return the proper type. */
5886 inner = fold_convert (result_type, inner);
5888 return inner;
5890 return NULL_TREE;
5893 /* Check whether we are allowed to reorder operands arg0 and arg1,
5894 such that the evaluation of arg1 occurs before arg0. */
5896 static bool
5897 reorder_operands_p (tree arg0, tree arg1)
5899 if (! flag_evaluation_order)
5900 return true;
5901 if (TREE_CONSTANT (arg0) || TREE_CONSTANT (arg1))
5902 return true;
5903 return ! TREE_SIDE_EFFECTS (arg0)
5904 && ! TREE_SIDE_EFFECTS (arg1);
5907 /* Test whether it is preferable two swap two operands, ARG0 and
5908 ARG1, for example because ARG0 is an integer constant and ARG1
5909 isn't. If REORDER is true, only recommend swapping if we can
5910 evaluate the operands in reverse order. */
5912 bool
5913 tree_swap_operands_p (tree arg0, tree arg1, bool reorder)
5915 STRIP_SIGN_NOPS (arg0);
5916 STRIP_SIGN_NOPS (arg1);
5918 if (TREE_CODE (arg1) == INTEGER_CST)
5919 return 0;
5920 if (TREE_CODE (arg0) == INTEGER_CST)
5921 return 1;
5923 if (TREE_CODE (arg1) == REAL_CST)
5924 return 0;
5925 if (TREE_CODE (arg0) == REAL_CST)
5926 return 1;
5928 if (TREE_CODE (arg1) == COMPLEX_CST)
5929 return 0;
5930 if (TREE_CODE (arg0) == COMPLEX_CST)
5931 return 1;
5933 if (TREE_CONSTANT (arg1))
5934 return 0;
5935 if (TREE_CONSTANT (arg0))
5936 return 1;
5938 if (optimize_size)
5939 return 0;
5941 if (reorder && flag_evaluation_order
5942 && (TREE_SIDE_EFFECTS (arg0) || TREE_SIDE_EFFECTS (arg1)))
5943 return 0;
5945 if (DECL_P (arg1))
5946 return 0;
5947 if (DECL_P (arg0))
5948 return 1;
5950 if (reorder && flag_evaluation_order
5951 && (TREE_SIDE_EFFECTS (arg0) || TREE_SIDE_EFFECTS (arg1)))
5952 return 0;
5954 if (DECL_P (arg1))
5955 return 0;
5956 if (DECL_P (arg0))
5957 return 1;
5959 /* It is preferable to swap two SSA_NAME to ensure a canonical form
5960 for commutative and comparison operators. Ensuring a canonical
5961 form allows the optimizers to find additional redundancies without
5962 having to explicitly check for both orderings. */
5963 if (TREE_CODE (arg0) == SSA_NAME
5964 && TREE_CODE (arg1) == SSA_NAME
5965 && SSA_NAME_VERSION (arg0) > SSA_NAME_VERSION (arg1))
5966 return 1;
5968 return 0;
5971 /* Perform constant folding and related simplification of EXPR.
5972 The related simplifications include x*1 => x, x*0 => 0, etc.,
5973 and application of the associative law.
5974 NOP_EXPR conversions may be removed freely (as long as we
5975 are careful not to change the type of the overall expression).
5976 We cannot simplify through a CONVERT_EXPR, FIX_EXPR or FLOAT_EXPR,
5977 but we can constant-fold them if they have constant operands. */
5979 #ifdef ENABLE_FOLD_CHECKING
5980 # define fold(x) fold_1 (x)
5981 static tree fold_1 (tree);
5982 static
5983 #endif
5984 tree
5985 fold (tree expr)
5987 const tree t = expr;
5988 const tree type = TREE_TYPE (expr);
5989 tree t1 = NULL_TREE;
5990 tree tem;
5991 tree arg0 = NULL_TREE, arg1 = NULL_TREE;
5992 enum tree_code code = TREE_CODE (t);
5993 int kind = TREE_CODE_CLASS (code);
5995 /* WINS will be nonzero when the switch is done
5996 if all operands are constant. */
5997 int wins = 1;
5999 /* Return right away if a constant. */
6000 if (kind == 'c')
6001 return t;
6003 if (code == NOP_EXPR || code == FLOAT_EXPR || code == CONVERT_EXPR)
6005 tree subop;
6007 /* Special case for conversion ops that can have fixed point args. */
6008 arg0 = TREE_OPERAND (t, 0);
6010 /* Don't use STRIP_NOPS, because signedness of argument type matters. */
6011 if (arg0 != 0)
6012 STRIP_SIGN_NOPS (arg0);
6014 if (arg0 != 0 && TREE_CODE (arg0) == COMPLEX_CST)
6015 subop = TREE_REALPART (arg0);
6016 else
6017 subop = arg0;
6019 if (subop != 0 && TREE_CODE (subop) != INTEGER_CST
6020 && TREE_CODE (subop) != REAL_CST)
6021 /* Note that TREE_CONSTANT isn't enough:
6022 static var addresses are constant but we can't
6023 do arithmetic on them. */
6024 wins = 0;
6026 else if (IS_EXPR_CODE_CLASS (kind))
6028 int len = first_rtl_op (code);
6029 int i;
6030 for (i = 0; i < len; i++)
6032 tree op = TREE_OPERAND (t, i);
6033 tree subop;
6035 if (op == 0)
6036 continue; /* Valid for CALL_EXPR, at least. */
6038 /* Strip any conversions that don't change the mode. This is
6039 safe for every expression, except for a comparison expression
6040 because its signedness is derived from its operands. So, in
6041 the latter case, only strip conversions that don't change the
6042 signedness.
6044 Note that this is done as an internal manipulation within the
6045 constant folder, in order to find the simplest representation
6046 of the arguments so that their form can be studied. In any
6047 cases, the appropriate type conversions should be put back in
6048 the tree that will get out of the constant folder. */
6049 if (kind == '<')
6050 STRIP_SIGN_NOPS (op);
6051 else
6052 STRIP_NOPS (op);
6054 if (TREE_CODE (op) == COMPLEX_CST)
6055 subop = TREE_REALPART (op);
6056 else
6057 subop = op;
6059 if (TREE_CODE (subop) != INTEGER_CST
6060 && TREE_CODE (subop) != REAL_CST)
6061 /* Note that TREE_CONSTANT isn't enough:
6062 static var addresses are constant but we can't
6063 do arithmetic on them. */
6064 wins = 0;
6066 if (i == 0)
6067 arg0 = op;
6068 else if (i == 1)
6069 arg1 = op;
6073 /* If this is a commutative operation, and ARG0 is a constant, move it
6074 to ARG1 to reduce the number of tests below. */
6075 if (commutative_tree_code (code)
6076 && tree_swap_operands_p (arg0, arg1, true))
6077 return fold (build2 (code, type, TREE_OPERAND (t, 1),
6078 TREE_OPERAND (t, 0)));
6080 /* Now WINS is set as described above,
6081 ARG0 is the first operand of EXPR,
6082 and ARG1 is the second operand (if it has more than one operand).
6084 First check for cases where an arithmetic operation is applied to a
6085 compound, conditional, or comparison operation. Push the arithmetic
6086 operation inside the compound or conditional to see if any folding
6087 can then be done. Convert comparison to conditional for this purpose.
6088 The also optimizes non-constant cases that used to be done in
6089 expand_expr.
6091 Before we do that, see if this is a BIT_AND_EXPR or a BIT_IOR_EXPR,
6092 one of the operands is a comparison and the other is a comparison, a
6093 BIT_AND_EXPR with the constant 1, or a truth value. In that case, the
6094 code below would make the expression more complex. Change it to a
6095 TRUTH_{AND,OR}_EXPR. Likewise, convert a similar NE_EXPR to
6096 TRUTH_XOR_EXPR and an EQ_EXPR to the inversion of a TRUTH_XOR_EXPR. */
6098 if ((code == BIT_AND_EXPR || code == BIT_IOR_EXPR
6099 || code == EQ_EXPR || code == NE_EXPR)
6100 && ((truth_value_p (TREE_CODE (arg0))
6101 && (truth_value_p (TREE_CODE (arg1))
6102 || (TREE_CODE (arg1) == BIT_AND_EXPR
6103 && integer_onep (TREE_OPERAND (arg1, 1)))))
6104 || (truth_value_p (TREE_CODE (arg1))
6105 && (truth_value_p (TREE_CODE (arg0))
6106 || (TREE_CODE (arg0) == BIT_AND_EXPR
6107 && integer_onep (TREE_OPERAND (arg0, 1)))))))
6109 tem = fold (build2 (code == BIT_AND_EXPR ? TRUTH_AND_EXPR
6110 : code == BIT_IOR_EXPR ? TRUTH_OR_EXPR
6111 : TRUTH_XOR_EXPR,
6112 type, fold_convert (boolean_type_node, arg0),
6113 fold_convert (boolean_type_node, arg1)));
6115 if (code == EQ_EXPR)
6116 tem = invert_truthvalue (tem);
6118 return tem;
6121 if (TREE_CODE_CLASS (code) == '1')
6123 if (TREE_CODE (arg0) == COMPOUND_EXPR)
6124 return build2 (COMPOUND_EXPR, type, TREE_OPERAND (arg0, 0),
6125 fold (build1 (code, type, TREE_OPERAND (arg0, 1))));
6126 else if (TREE_CODE (arg0) == COND_EXPR)
6128 tree arg01 = TREE_OPERAND (arg0, 1);
6129 tree arg02 = TREE_OPERAND (arg0, 2);
6130 if (! VOID_TYPE_P (TREE_TYPE (arg01)))
6131 arg01 = fold (build1 (code, type, arg01));
6132 if (! VOID_TYPE_P (TREE_TYPE (arg02)))
6133 arg02 = fold (build1 (code, type, arg02));
6134 tem = fold (build3 (COND_EXPR, type, TREE_OPERAND (arg0, 0),
6135 arg01, arg02));
6137 /* If this was a conversion, and all we did was to move into
6138 inside the COND_EXPR, bring it back out. But leave it if
6139 it is a conversion from integer to integer and the
6140 result precision is no wider than a word since such a
6141 conversion is cheap and may be optimized away by combine,
6142 while it couldn't if it were outside the COND_EXPR. Then return
6143 so we don't get into an infinite recursion loop taking the
6144 conversion out and then back in. */
6146 if ((code == NOP_EXPR || code == CONVERT_EXPR
6147 || code == NON_LVALUE_EXPR)
6148 && TREE_CODE (tem) == COND_EXPR
6149 && TREE_CODE (TREE_OPERAND (tem, 1)) == code
6150 && TREE_CODE (TREE_OPERAND (tem, 2)) == code
6151 && ! VOID_TYPE_P (TREE_OPERAND (tem, 1))
6152 && ! VOID_TYPE_P (TREE_OPERAND (tem, 2))
6153 && (TREE_TYPE (TREE_OPERAND (TREE_OPERAND (tem, 1), 0))
6154 == TREE_TYPE (TREE_OPERAND (TREE_OPERAND (tem, 2), 0)))
6155 && ! (INTEGRAL_TYPE_P (TREE_TYPE (tem))
6156 && (INTEGRAL_TYPE_P
6157 (TREE_TYPE (TREE_OPERAND (TREE_OPERAND (tem, 1), 0))))
6158 && TYPE_PRECISION (TREE_TYPE (tem)) <= BITS_PER_WORD))
6159 tem = build1 (code, type,
6160 build3 (COND_EXPR,
6161 TREE_TYPE (TREE_OPERAND
6162 (TREE_OPERAND (tem, 1), 0)),
6163 TREE_OPERAND (tem, 0),
6164 TREE_OPERAND (TREE_OPERAND (tem, 1), 0),
6165 TREE_OPERAND (TREE_OPERAND (tem, 2), 0)));
6166 return tem;
6168 else if (TREE_CODE_CLASS (TREE_CODE (arg0)) == '<')
6170 if (TREE_CODE (type) == BOOLEAN_TYPE)
6172 arg0 = copy_node (arg0);
6173 TREE_TYPE (arg0) = type;
6174 return arg0;
6176 else if (TREE_CODE (type) != INTEGER_TYPE)
6177 return fold (build3 (COND_EXPR, type, arg0,
6178 fold (build1 (code, type,
6179 integer_one_node)),
6180 fold (build1 (code, type,
6181 integer_zero_node))));
6184 else if (TREE_CODE_CLASS (code) == '<'
6185 && TREE_CODE (arg0) == COMPOUND_EXPR)
6186 return build2 (COMPOUND_EXPR, type, TREE_OPERAND (arg0, 0),
6187 fold (build2 (code, type, TREE_OPERAND (arg0, 1), arg1)));
6188 else if (TREE_CODE_CLASS (code) == '<'
6189 && TREE_CODE (arg1) == COMPOUND_EXPR)
6190 return build2 (COMPOUND_EXPR, type, TREE_OPERAND (arg1, 0),
6191 fold (build2 (code, type, arg0, TREE_OPERAND (arg1, 1))));
6192 else if (TREE_CODE_CLASS (code) == '2'
6193 || TREE_CODE_CLASS (code) == '<')
6195 if (TREE_CODE (arg0) == COMPOUND_EXPR)
6196 return build2 (COMPOUND_EXPR, type, TREE_OPERAND (arg0, 0),
6197 fold (build2 (code, type, TREE_OPERAND (arg0, 1),
6198 arg1)));
6199 if (TREE_CODE (arg1) == COMPOUND_EXPR
6200 && reorder_operands_p (arg0, TREE_OPERAND (arg1, 0)))
6201 return build2 (COMPOUND_EXPR, type, TREE_OPERAND (arg1, 0),
6202 fold (build2 (code, type,
6203 arg0, TREE_OPERAND (arg1, 1))));
6205 if (TREE_CODE (arg0) == COND_EXPR
6206 || TREE_CODE_CLASS (TREE_CODE (arg0)) == '<')
6208 tem = fold_binary_op_with_conditional_arg (code, type, arg0, arg1,
6209 /*cond_first_p=*/1);
6210 if (tem != NULL_TREE)
6211 return tem;
6214 if (TREE_CODE (arg1) == COND_EXPR
6215 || TREE_CODE_CLASS (TREE_CODE (arg1)) == '<')
6217 tem = fold_binary_op_with_conditional_arg (code, type, arg1, arg0,
6218 /*cond_first_p=*/0);
6219 if (tem != NULL_TREE)
6220 return tem;
6224 switch (code)
6226 case CONST_DECL:
6227 return fold (DECL_INITIAL (t));
6229 case NOP_EXPR:
6230 case FLOAT_EXPR:
6231 case CONVERT_EXPR:
6232 case FIX_TRUNC_EXPR:
6233 case FIX_CEIL_EXPR:
6234 case FIX_FLOOR_EXPR:
6235 case FIX_ROUND_EXPR:
6236 if (TREE_TYPE (TREE_OPERAND (t, 0)) == type)
6237 return TREE_OPERAND (t, 0);
6239 /* Handle cases of two conversions in a row. */
6240 if (TREE_CODE (TREE_OPERAND (t, 0)) == NOP_EXPR
6241 || TREE_CODE (TREE_OPERAND (t, 0)) == CONVERT_EXPR)
6243 tree inside_type = TREE_TYPE (TREE_OPERAND (TREE_OPERAND (t, 0), 0));
6244 tree inter_type = TREE_TYPE (TREE_OPERAND (t, 0));
6245 int inside_int = INTEGRAL_TYPE_P (inside_type);
6246 int inside_ptr = POINTER_TYPE_P (inside_type);
6247 int inside_float = FLOAT_TYPE_P (inside_type);
6248 unsigned int inside_prec = TYPE_PRECISION (inside_type);
6249 int inside_unsignedp = TYPE_UNSIGNED (inside_type);
6250 int inter_int = INTEGRAL_TYPE_P (inter_type);
6251 int inter_ptr = POINTER_TYPE_P (inter_type);
6252 int inter_float = FLOAT_TYPE_P (inter_type);
6253 unsigned int inter_prec = TYPE_PRECISION (inter_type);
6254 int inter_unsignedp = TYPE_UNSIGNED (inter_type);
6255 int final_int = INTEGRAL_TYPE_P (type);
6256 int final_ptr = POINTER_TYPE_P (type);
6257 int final_float = FLOAT_TYPE_P (type);
6258 unsigned int final_prec = TYPE_PRECISION (type);
6259 int final_unsignedp = TYPE_UNSIGNED (type);
6261 /* In addition to the cases of two conversions in a row
6262 handled below, if we are converting something to its own
6263 type via an object of identical or wider precision, neither
6264 conversion is needed. */
6265 if (TYPE_MAIN_VARIANT (inside_type) == TYPE_MAIN_VARIANT (type)
6266 && ((inter_int && final_int) || (inter_float && final_float))
6267 && inter_prec >= final_prec)
6268 return fold (build1 (code, type,
6269 TREE_OPERAND (TREE_OPERAND (t, 0), 0)));
6271 /* Likewise, if the intermediate and final types are either both
6272 float or both integer, we don't need the middle conversion if
6273 it is wider than the final type and doesn't change the signedness
6274 (for integers). Avoid this if the final type is a pointer
6275 since then we sometimes need the inner conversion. Likewise if
6276 the outer has a precision not equal to the size of its mode. */
6277 if ((((inter_int || inter_ptr) && (inside_int || inside_ptr))
6278 || (inter_float && inside_float))
6279 && inter_prec >= inside_prec
6280 && (inter_float || inter_unsignedp == inside_unsignedp)
6281 && ! (final_prec != GET_MODE_BITSIZE (TYPE_MODE (type))
6282 && TYPE_MODE (type) == TYPE_MODE (inter_type))
6283 && ! final_ptr)
6284 return fold (build1 (code, type,
6285 TREE_OPERAND (TREE_OPERAND (t, 0), 0)));
6287 /* If we have a sign-extension of a zero-extended value, we can
6288 replace that by a single zero-extension. */
6289 if (inside_int && inter_int && final_int
6290 && inside_prec < inter_prec && inter_prec < final_prec
6291 && inside_unsignedp && !inter_unsignedp)
6292 return fold (build1 (code, type,
6293 TREE_OPERAND (TREE_OPERAND (t, 0), 0)));
6295 /* Two conversions in a row are not needed unless:
6296 - some conversion is floating-point (overstrict for now), or
6297 - the intermediate type is narrower than both initial and
6298 final, or
6299 - the intermediate type and innermost type differ in signedness,
6300 and the outermost type is wider than the intermediate, or
6301 - the initial type is a pointer type and the precisions of the
6302 intermediate and final types differ, or
6303 - the final type is a pointer type and the precisions of the
6304 initial and intermediate types differ. */
6305 if (! inside_float && ! inter_float && ! final_float
6306 && (inter_prec > inside_prec || inter_prec > final_prec)
6307 && ! (inside_int && inter_int
6308 && inter_unsignedp != inside_unsignedp
6309 && inter_prec < final_prec)
6310 && ((inter_unsignedp && inter_prec > inside_prec)
6311 == (final_unsignedp && final_prec > inter_prec))
6312 && ! (inside_ptr && inter_prec != final_prec)
6313 && ! (final_ptr && inside_prec != inter_prec)
6314 && ! (final_prec != GET_MODE_BITSIZE (TYPE_MODE (type))
6315 && TYPE_MODE (type) == TYPE_MODE (inter_type))
6316 && ! final_ptr)
6317 return fold (build1 (code, type,
6318 TREE_OPERAND (TREE_OPERAND (t, 0), 0)));
6321 if (TREE_CODE (TREE_OPERAND (t, 0)) == MODIFY_EXPR
6322 && TREE_CONSTANT (TREE_OPERAND (TREE_OPERAND (t, 0), 1))
6323 /* Detect assigning a bitfield. */
6324 && !(TREE_CODE (TREE_OPERAND (TREE_OPERAND (t, 0), 0)) == COMPONENT_REF
6325 && DECL_BIT_FIELD (TREE_OPERAND (TREE_OPERAND (TREE_OPERAND (t, 0), 0), 1))))
6327 /* Don't leave an assignment inside a conversion
6328 unless assigning a bitfield. */
6329 tree prev = TREE_OPERAND (t, 0);
6330 tem = copy_node (t);
6331 TREE_OPERAND (tem, 0) = TREE_OPERAND (prev, 1);
6332 /* First do the assignment, then return converted constant. */
6333 tem = build2 (COMPOUND_EXPR, TREE_TYPE (tem), prev, fold (tem));
6334 TREE_NO_WARNING (tem) = 1;
6335 TREE_USED (tem) = 1;
6336 return tem;
6339 /* Convert (T)(x & c) into (T)x & (T)c, if c is an integer
6340 constants (if x has signed type, the sign bit cannot be set
6341 in c). This folds extension into the BIT_AND_EXPR. */
6342 if (INTEGRAL_TYPE_P (type)
6343 && TREE_CODE (type) != BOOLEAN_TYPE
6344 && TREE_CODE (TREE_OPERAND (t, 0)) == BIT_AND_EXPR
6345 && TREE_CODE (TREE_OPERAND (TREE_OPERAND (t, 0), 1)) == INTEGER_CST)
6347 tree and = TREE_OPERAND (t, 0);
6348 tree and0 = TREE_OPERAND (and, 0), and1 = TREE_OPERAND (and, 1);
6349 int change = 0;
6351 if (TYPE_UNSIGNED (TREE_TYPE (and))
6352 || (TYPE_PRECISION (type)
6353 <= TYPE_PRECISION (TREE_TYPE (and))))
6354 change = 1;
6355 else if (TYPE_PRECISION (TREE_TYPE (and1))
6356 <= HOST_BITS_PER_WIDE_INT
6357 && host_integerp (and1, 1))
6359 unsigned HOST_WIDE_INT cst;
6361 cst = tree_low_cst (and1, 1);
6362 cst &= (HOST_WIDE_INT) -1
6363 << (TYPE_PRECISION (TREE_TYPE (and1)) - 1);
6364 change = (cst == 0);
6365 #ifdef LOAD_EXTEND_OP
6366 if (change
6367 && (LOAD_EXTEND_OP (TYPE_MODE (TREE_TYPE (and0)))
6368 == ZERO_EXTEND))
6370 tree uns = lang_hooks.types.unsigned_type (TREE_TYPE (and0));
6371 and0 = fold_convert (uns, and0);
6372 and1 = fold_convert (uns, and1);
6374 #endif
6376 if (change)
6377 return fold (build2 (BIT_AND_EXPR, type,
6378 fold_convert (type, and0),
6379 fold_convert (type, and1)));
6382 /* Convert (T1)((T2)X op Y) into (T1)X op Y, for pointer types T1 and
6383 T2 being pointers to types of the same size. */
6384 if (POINTER_TYPE_P (TREE_TYPE (t))
6385 && TREE_CODE_CLASS (TREE_CODE (arg0)) == '2'
6386 && TREE_CODE (TREE_OPERAND (arg0, 0)) == NOP_EXPR
6387 && POINTER_TYPE_P (TREE_TYPE (TREE_OPERAND (arg0, 0))))
6389 tree arg00 = TREE_OPERAND (arg0, 0);
6390 tree t0 = TREE_TYPE (t);
6391 tree t1 = TREE_TYPE (arg00);
6392 tree tt0 = TREE_TYPE (t0);
6393 tree tt1 = TREE_TYPE (t1);
6394 tree s0 = TYPE_SIZE (tt0);
6395 tree s1 = TYPE_SIZE (tt1);
6397 if (s0 && s1 && operand_equal_p (s0, s1, OEP_ONLY_CONST))
6398 return build2 (TREE_CODE (arg0), t0, fold_convert (t0, arg00),
6399 TREE_OPERAND (arg0, 1));
6402 tem = fold_convert_const (code, type, arg0);
6403 return tem ? tem : t;
6405 case VIEW_CONVERT_EXPR:
6406 if (TREE_CODE (TREE_OPERAND (t, 0)) == VIEW_CONVERT_EXPR)
6407 return build1 (VIEW_CONVERT_EXPR, type,
6408 TREE_OPERAND (TREE_OPERAND (t, 0), 0));
6409 return t;
6411 case COMPONENT_REF:
6412 if (TREE_CODE (arg0) == CONSTRUCTOR
6413 && ! type_contains_placeholder_p (TREE_TYPE (arg0)))
6415 tree m = purpose_member (arg1, CONSTRUCTOR_ELTS (arg0));
6416 if (m)
6417 return TREE_VALUE (m);
6419 return t;
6421 case RANGE_EXPR:
6422 if (TREE_CONSTANT (t) != wins)
6424 tem = copy_node (t);
6425 TREE_CONSTANT (tem) = wins;
6426 TREE_INVARIANT (tem) = wins;
6427 return tem;
6429 return t;
6431 case NEGATE_EXPR:
6432 if (negate_expr_p (arg0))
6433 return fold_convert (type, negate_expr (arg0));
6434 return t;
6436 case ABS_EXPR:
6437 if (TREE_CODE (arg0) == INTEGER_CST || TREE_CODE (arg0) == REAL_CST)
6438 return fold_abs_const (arg0, type);
6439 else if (TREE_CODE (arg0) == NEGATE_EXPR)
6440 return fold (build1 (ABS_EXPR, type, TREE_OPERAND (arg0, 0)));
6441 /* Convert fabs((double)float) into (double)fabsf(float). */
6442 else if (TREE_CODE (arg0) == NOP_EXPR
6443 && TREE_CODE (type) == REAL_TYPE)
6445 tree targ0 = strip_float_extensions (arg0);
6446 if (targ0 != arg0)
6447 return fold_convert (type, fold (build1 (ABS_EXPR,
6448 TREE_TYPE (targ0),
6449 targ0)));
6451 else if (tree_expr_nonnegative_p (arg0))
6452 return arg0;
6453 return t;
6455 case CONJ_EXPR:
6456 if (TREE_CODE (TREE_TYPE (arg0)) != COMPLEX_TYPE)
6457 return fold_convert (type, arg0);
6458 else if (TREE_CODE (arg0) == COMPLEX_EXPR)
6459 return build2 (COMPLEX_EXPR, type,
6460 TREE_OPERAND (arg0, 0),
6461 negate_expr (TREE_OPERAND (arg0, 1)));
6462 else if (TREE_CODE (arg0) == COMPLEX_CST)
6463 return build_complex (type, TREE_REALPART (arg0),
6464 negate_expr (TREE_IMAGPART (arg0)));
6465 else if (TREE_CODE (arg0) == PLUS_EXPR || TREE_CODE (arg0) == MINUS_EXPR)
6466 return fold (build2 (TREE_CODE (arg0), type,
6467 fold (build1 (CONJ_EXPR, type,
6468 TREE_OPERAND (arg0, 0))),
6469 fold (build1 (CONJ_EXPR, type,
6470 TREE_OPERAND (arg0, 1)))));
6471 else if (TREE_CODE (arg0) == CONJ_EXPR)
6472 return TREE_OPERAND (arg0, 0);
6473 return t;
6475 case BIT_NOT_EXPR:
6476 if (TREE_CODE (arg0) == INTEGER_CST)
6477 return fold_not_const (arg0, type);
6478 else if (TREE_CODE (arg0) == BIT_NOT_EXPR)
6479 return TREE_OPERAND (arg0, 0);
6480 return t;
6482 case PLUS_EXPR:
6483 /* A + (-B) -> A - B */
6484 if (TREE_CODE (arg1) == NEGATE_EXPR)
6485 return fold (build2 (MINUS_EXPR, type, arg0, TREE_OPERAND (arg1, 0)));
6486 /* (-A) + B -> B - A */
6487 if (TREE_CODE (arg0) == NEGATE_EXPR
6488 && reorder_operands_p (TREE_OPERAND (arg0, 0), arg1))
6489 return fold (build2 (MINUS_EXPR, type, arg1, TREE_OPERAND (arg0, 0)));
6490 if (! FLOAT_TYPE_P (type))
6492 if (integer_zerop (arg1))
6493 return non_lvalue (fold_convert (type, arg0));
6495 /* If we are adding two BIT_AND_EXPR's, both of which are and'ing
6496 with a constant, and the two constants have no bits in common,
6497 we should treat this as a BIT_IOR_EXPR since this may produce more
6498 simplifications. */
6499 if (TREE_CODE (arg0) == BIT_AND_EXPR
6500 && TREE_CODE (arg1) == BIT_AND_EXPR
6501 && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST
6502 && TREE_CODE (TREE_OPERAND (arg1, 1)) == INTEGER_CST
6503 && integer_zerop (const_binop (BIT_AND_EXPR,
6504 TREE_OPERAND (arg0, 1),
6505 TREE_OPERAND (arg1, 1), 0)))
6507 code = BIT_IOR_EXPR;
6508 goto bit_ior;
6511 /* Reassociate (plus (plus (mult) (foo)) (mult)) as
6512 (plus (plus (mult) (mult)) (foo)) so that we can
6513 take advantage of the factoring cases below. */
6514 if ((TREE_CODE (arg0) == PLUS_EXPR
6515 && TREE_CODE (arg1) == MULT_EXPR)
6516 || (TREE_CODE (arg1) == PLUS_EXPR
6517 && TREE_CODE (arg0) == MULT_EXPR))
6519 tree parg0, parg1, parg, marg;
6521 if (TREE_CODE (arg0) == PLUS_EXPR)
6522 parg = arg0, marg = arg1;
6523 else
6524 parg = arg1, marg = arg0;
6525 parg0 = TREE_OPERAND (parg, 0);
6526 parg1 = TREE_OPERAND (parg, 1);
6527 STRIP_NOPS (parg0);
6528 STRIP_NOPS (parg1);
6530 if (TREE_CODE (parg0) == MULT_EXPR
6531 && TREE_CODE (parg1) != MULT_EXPR)
6532 return fold (build2 (PLUS_EXPR, type,
6533 fold (build2 (PLUS_EXPR, type,
6534 fold_convert (type, parg0),
6535 fold_convert (type, marg))),
6536 fold_convert (type, parg1)));
6537 if (TREE_CODE (parg0) != MULT_EXPR
6538 && TREE_CODE (parg1) == MULT_EXPR)
6539 return fold (build2 (PLUS_EXPR, type,
6540 fold (build2 (PLUS_EXPR, type,
6541 fold_convert (type, parg1),
6542 fold_convert (type, marg))),
6543 fold_convert (type, parg0)));
6546 if (TREE_CODE (arg0) == MULT_EXPR && TREE_CODE (arg1) == MULT_EXPR)
6548 tree arg00, arg01, arg10, arg11;
6549 tree alt0 = NULL_TREE, alt1 = NULL_TREE, same;
6551 /* (A * C) + (B * C) -> (A+B) * C.
6552 We are most concerned about the case where C is a constant,
6553 but other combinations show up during loop reduction. Since
6554 it is not difficult, try all four possibilities. */
6556 arg00 = TREE_OPERAND (arg0, 0);
6557 arg01 = TREE_OPERAND (arg0, 1);
6558 arg10 = TREE_OPERAND (arg1, 0);
6559 arg11 = TREE_OPERAND (arg1, 1);
6560 same = NULL_TREE;
6562 if (operand_equal_p (arg01, arg11, 0))
6563 same = arg01, alt0 = arg00, alt1 = arg10;
6564 else if (operand_equal_p (arg00, arg10, 0))
6565 same = arg00, alt0 = arg01, alt1 = arg11;
6566 else if (operand_equal_p (arg00, arg11, 0))
6567 same = arg00, alt0 = arg01, alt1 = arg10;
6568 else if (operand_equal_p (arg01, arg10, 0))
6569 same = arg01, alt0 = arg00, alt1 = arg11;
6571 /* No identical multiplicands; see if we can find a common
6572 power-of-two factor in non-power-of-two multiplies. This
6573 can help in multi-dimensional array access. */
6574 else if (TREE_CODE (arg01) == INTEGER_CST
6575 && TREE_CODE (arg11) == INTEGER_CST
6576 && TREE_INT_CST_HIGH (arg01) == 0
6577 && TREE_INT_CST_HIGH (arg11) == 0)
6579 HOST_WIDE_INT int01, int11, tmp;
6580 int01 = TREE_INT_CST_LOW (arg01);
6581 int11 = TREE_INT_CST_LOW (arg11);
6583 /* Move min of absolute values to int11. */
6584 if ((int01 >= 0 ? int01 : -int01)
6585 < (int11 >= 0 ? int11 : -int11))
6587 tmp = int01, int01 = int11, int11 = tmp;
6588 alt0 = arg00, arg00 = arg10, arg10 = alt0;
6589 alt0 = arg01, arg01 = arg11, arg11 = alt0;
6592 if (exact_log2 (int11) > 0 && int01 % int11 == 0)
6594 alt0 = fold (build2 (MULT_EXPR, type, arg00,
6595 build_int_cst (NULL_TREE,
6596 int01 / int11)));
6597 alt1 = arg10;
6598 same = arg11;
6602 if (same)
6603 return fold (build2 (MULT_EXPR, type,
6604 fold (build2 (PLUS_EXPR, type,
6605 alt0, alt1)),
6606 same));
6609 else
6611 /* See if ARG1 is zero and X + ARG1 reduces to X. */
6612 if (fold_real_zero_addition_p (TREE_TYPE (arg0), arg1, 0))
6613 return non_lvalue (fold_convert (type, arg0));
6615 /* Likewise if the operands are reversed. */
6616 if (fold_real_zero_addition_p (TREE_TYPE (arg1), arg0, 0))
6617 return non_lvalue (fold_convert (type, arg1));
6619 /* Convert X + -C into X - C. */
6620 if (TREE_CODE (arg1) == REAL_CST
6621 && REAL_VALUE_NEGATIVE (TREE_REAL_CST (arg1)))
6623 tem = fold_negate_const (arg1, type);
6624 if (!TREE_OVERFLOW (arg1) || !flag_trapping_math)
6625 return fold (build2 (MINUS_EXPR, type,
6626 fold_convert (type, arg0),
6627 fold_convert (type, tem)));
6630 /* Convert x+x into x*2.0. */
6631 if (operand_equal_p (arg0, arg1, 0)
6632 && SCALAR_FLOAT_TYPE_P (type))
6633 return fold (build2 (MULT_EXPR, type, arg0,
6634 build_real (type, dconst2)));
6636 /* Convert x*c+x into x*(c+1). */
6637 if (flag_unsafe_math_optimizations
6638 && TREE_CODE (arg0) == MULT_EXPR
6639 && TREE_CODE (TREE_OPERAND (arg0, 1)) == REAL_CST
6640 && ! TREE_CONSTANT_OVERFLOW (TREE_OPERAND (arg0, 1))
6641 && operand_equal_p (TREE_OPERAND (arg0, 0), arg1, 0))
6643 REAL_VALUE_TYPE c;
6645 c = TREE_REAL_CST (TREE_OPERAND (arg0, 1));
6646 real_arithmetic (&c, PLUS_EXPR, &c, &dconst1);
6647 return fold (build2 (MULT_EXPR, type, arg1,
6648 build_real (type, c)));
6651 /* Convert x+x*c into x*(c+1). */
6652 if (flag_unsafe_math_optimizations
6653 && TREE_CODE (arg1) == MULT_EXPR
6654 && TREE_CODE (TREE_OPERAND (arg1, 1)) == REAL_CST
6655 && ! TREE_CONSTANT_OVERFLOW (TREE_OPERAND (arg1, 1))
6656 && operand_equal_p (TREE_OPERAND (arg1, 0), arg0, 0))
6658 REAL_VALUE_TYPE c;
6660 c = TREE_REAL_CST (TREE_OPERAND (arg1, 1));
6661 real_arithmetic (&c, PLUS_EXPR, &c, &dconst1);
6662 return fold (build2 (MULT_EXPR, type, arg0,
6663 build_real (type, c)));
6666 /* Convert x*c1+x*c2 into x*(c1+c2). */
6667 if (flag_unsafe_math_optimizations
6668 && TREE_CODE (arg0) == MULT_EXPR
6669 && TREE_CODE (arg1) == MULT_EXPR
6670 && TREE_CODE (TREE_OPERAND (arg0, 1)) == REAL_CST
6671 && ! TREE_CONSTANT_OVERFLOW (TREE_OPERAND (arg0, 1))
6672 && TREE_CODE (TREE_OPERAND (arg1, 1)) == REAL_CST
6673 && ! TREE_CONSTANT_OVERFLOW (TREE_OPERAND (arg1, 1))
6674 && operand_equal_p (TREE_OPERAND (arg0, 0),
6675 TREE_OPERAND (arg1, 0), 0))
6677 REAL_VALUE_TYPE c1, c2;
6679 c1 = TREE_REAL_CST (TREE_OPERAND (arg0, 1));
6680 c2 = TREE_REAL_CST (TREE_OPERAND (arg1, 1));
6681 real_arithmetic (&c1, PLUS_EXPR, &c1, &c2);
6682 return fold (build2 (MULT_EXPR, type,
6683 TREE_OPERAND (arg0, 0),
6684 build_real (type, c1)));
6686 /* Convert a + (b*c + d*e) into (a + b*c) + d*e */
6687 if (flag_unsafe_math_optimizations
6688 && TREE_CODE (arg1) == PLUS_EXPR
6689 && TREE_CODE (arg0) != MULT_EXPR)
6691 tree tree10 = TREE_OPERAND (arg1, 0);
6692 tree tree11 = TREE_OPERAND (arg1, 1);
6693 if (TREE_CODE (tree11) == MULT_EXPR
6694 && TREE_CODE (tree10) == MULT_EXPR)
6696 tree tree0;
6697 tree0 = fold (build2 (PLUS_EXPR, type, arg0, tree10));
6698 return fold (build2 (PLUS_EXPR, type, tree0, tree11));
6701 /* Convert (b*c + d*e) + a into b*c + (d*e +a) */
6702 if (flag_unsafe_math_optimizations
6703 && TREE_CODE (arg0) == PLUS_EXPR
6704 && TREE_CODE (arg1) != MULT_EXPR)
6706 tree tree00 = TREE_OPERAND (arg0, 0);
6707 tree tree01 = TREE_OPERAND (arg0, 1);
6708 if (TREE_CODE (tree01) == MULT_EXPR
6709 && TREE_CODE (tree00) == MULT_EXPR)
6711 tree tree0;
6712 tree0 = fold (build2 (PLUS_EXPR, type, tree01, arg1));
6713 return fold (build2 (PLUS_EXPR, type, tree00, tree0));
6718 bit_rotate:
6719 /* (A << C1) + (A >> C2) if A is unsigned and C1+C2 is the size of A
6720 is a rotate of A by C1 bits. */
6721 /* (A << B) + (A >> (Z - B)) if A is unsigned and Z is the size of A
6722 is a rotate of A by B bits. */
6724 enum tree_code code0, code1;
6725 code0 = TREE_CODE (arg0);
6726 code1 = TREE_CODE (arg1);
6727 if (((code0 == RSHIFT_EXPR && code1 == LSHIFT_EXPR)
6728 || (code1 == RSHIFT_EXPR && code0 == LSHIFT_EXPR))
6729 && operand_equal_p (TREE_OPERAND (arg0, 0),
6730 TREE_OPERAND (arg1, 0), 0)
6731 && TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (arg0, 0))))
6733 tree tree01, tree11;
6734 enum tree_code code01, code11;
6736 tree01 = TREE_OPERAND (arg0, 1);
6737 tree11 = TREE_OPERAND (arg1, 1);
6738 STRIP_NOPS (tree01);
6739 STRIP_NOPS (tree11);
6740 code01 = TREE_CODE (tree01);
6741 code11 = TREE_CODE (tree11);
6742 if (code01 == INTEGER_CST
6743 && code11 == INTEGER_CST
6744 && TREE_INT_CST_HIGH (tree01) == 0
6745 && TREE_INT_CST_HIGH (tree11) == 0
6746 && ((TREE_INT_CST_LOW (tree01) + TREE_INT_CST_LOW (tree11))
6747 == TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (arg0, 0)))))
6748 return build2 (LROTATE_EXPR, type, TREE_OPERAND (arg0, 0),
6749 code0 == LSHIFT_EXPR ? tree01 : tree11);
6750 else if (code11 == MINUS_EXPR)
6752 tree tree110, tree111;
6753 tree110 = TREE_OPERAND (tree11, 0);
6754 tree111 = TREE_OPERAND (tree11, 1);
6755 STRIP_NOPS (tree110);
6756 STRIP_NOPS (tree111);
6757 if (TREE_CODE (tree110) == INTEGER_CST
6758 && 0 == compare_tree_int (tree110,
6759 TYPE_PRECISION
6760 (TREE_TYPE (TREE_OPERAND
6761 (arg0, 0))))
6762 && operand_equal_p (tree01, tree111, 0))
6763 return build2 ((code0 == LSHIFT_EXPR
6764 ? LROTATE_EXPR
6765 : RROTATE_EXPR),
6766 type, TREE_OPERAND (arg0, 0), tree01);
6768 else if (code01 == MINUS_EXPR)
6770 tree tree010, tree011;
6771 tree010 = TREE_OPERAND (tree01, 0);
6772 tree011 = TREE_OPERAND (tree01, 1);
6773 STRIP_NOPS (tree010);
6774 STRIP_NOPS (tree011);
6775 if (TREE_CODE (tree010) == INTEGER_CST
6776 && 0 == compare_tree_int (tree010,
6777 TYPE_PRECISION
6778 (TREE_TYPE (TREE_OPERAND
6779 (arg0, 0))))
6780 && operand_equal_p (tree11, tree011, 0))
6781 return build2 ((code0 != LSHIFT_EXPR
6782 ? LROTATE_EXPR
6783 : RROTATE_EXPR),
6784 type, TREE_OPERAND (arg0, 0), tree11);
6789 associate:
6790 /* In most languages, can't associate operations on floats through
6791 parentheses. Rather than remember where the parentheses were, we
6792 don't associate floats at all, unless the user has specified
6793 -funsafe-math-optimizations. */
6795 if (! wins
6796 && (! FLOAT_TYPE_P (type) || flag_unsafe_math_optimizations))
6798 tree var0, con0, lit0, minus_lit0;
6799 tree var1, con1, lit1, minus_lit1;
6801 /* Split both trees into variables, constants, and literals. Then
6802 associate each group together, the constants with literals,
6803 then the result with variables. This increases the chances of
6804 literals being recombined later and of generating relocatable
6805 expressions for the sum of a constant and literal. */
6806 var0 = split_tree (arg0, code, &con0, &lit0, &minus_lit0, 0);
6807 var1 = split_tree (arg1, code, &con1, &lit1, &minus_lit1,
6808 code == MINUS_EXPR);
6810 /* Only do something if we found more than two objects. Otherwise,
6811 nothing has changed and we risk infinite recursion. */
6812 if (2 < ((var0 != 0) + (var1 != 0)
6813 + (con0 != 0) + (con1 != 0)
6814 + (lit0 != 0) + (lit1 != 0)
6815 + (minus_lit0 != 0) + (minus_lit1 != 0)))
6817 /* Recombine MINUS_EXPR operands by using PLUS_EXPR. */
6818 if (code == MINUS_EXPR)
6819 code = PLUS_EXPR;
6821 var0 = associate_trees (var0, var1, code, type);
6822 con0 = associate_trees (con0, con1, code, type);
6823 lit0 = associate_trees (lit0, lit1, code, type);
6824 minus_lit0 = associate_trees (minus_lit0, minus_lit1, code, type);
6826 /* Preserve the MINUS_EXPR if the negative part of the literal is
6827 greater than the positive part. Otherwise, the multiplicative
6828 folding code (i.e extract_muldiv) may be fooled in case
6829 unsigned constants are subtracted, like in the following
6830 example: ((X*2 + 4) - 8U)/2. */
6831 if (minus_lit0 && lit0)
6833 if (TREE_CODE (lit0) == INTEGER_CST
6834 && TREE_CODE (minus_lit0) == INTEGER_CST
6835 && tree_int_cst_lt (lit0, minus_lit0))
6837 minus_lit0 = associate_trees (minus_lit0, lit0,
6838 MINUS_EXPR, type);
6839 lit0 = 0;
6841 else
6843 lit0 = associate_trees (lit0, minus_lit0,
6844 MINUS_EXPR, type);
6845 minus_lit0 = 0;
6848 if (minus_lit0)
6850 if (con0 == 0)
6851 return fold_convert (type,
6852 associate_trees (var0, minus_lit0,
6853 MINUS_EXPR, type));
6854 else
6856 con0 = associate_trees (con0, minus_lit0,
6857 MINUS_EXPR, type);
6858 return fold_convert (type,
6859 associate_trees (var0, con0,
6860 PLUS_EXPR, type));
6864 con0 = associate_trees (con0, lit0, code, type);
6865 return fold_convert (type, associate_trees (var0, con0,
6866 code, type));
6870 binary:
6871 if (wins)
6872 t1 = const_binop (code, arg0, arg1, 0);
6873 if (t1 != NULL_TREE)
6875 /* The return value should always have
6876 the same type as the original expression. */
6877 if (TREE_TYPE (t1) != type)
6878 t1 = fold_convert (type, t1);
6880 return t1;
6882 return t;
6884 case MINUS_EXPR:
6885 /* A - (-B) -> A + B */
6886 if (TREE_CODE (arg1) == NEGATE_EXPR)
6887 return fold (build2 (PLUS_EXPR, type, arg0, TREE_OPERAND (arg1, 0)));
6888 /* (-A) - B -> (-B) - A where B is easily negated and we can swap. */
6889 if (TREE_CODE (arg0) == NEGATE_EXPR
6890 && (FLOAT_TYPE_P (type)
6891 || (INTEGRAL_TYPE_P (type) && flag_wrapv && !flag_trapv))
6892 && negate_expr_p (arg1)
6893 && reorder_operands_p (arg0, arg1))
6894 return fold (build2 (MINUS_EXPR, type, negate_expr (arg1),
6895 TREE_OPERAND (arg0, 0)));
6897 if (! FLOAT_TYPE_P (type))
6899 if (! wins && integer_zerop (arg0))
6900 return negate_expr (fold_convert (type, arg1));
6901 if (integer_zerop (arg1))
6902 return non_lvalue (fold_convert (type, arg0));
6904 /* Fold A - (A & B) into ~B & A. */
6905 if (!TREE_SIDE_EFFECTS (arg0)
6906 && TREE_CODE (arg1) == BIT_AND_EXPR)
6908 if (operand_equal_p (arg0, TREE_OPERAND (arg1, 1), 0))
6909 return fold (build2 (BIT_AND_EXPR, type,
6910 fold (build1 (BIT_NOT_EXPR, type,
6911 TREE_OPERAND (arg1, 0))),
6912 arg0));
6913 if (operand_equal_p (arg0, TREE_OPERAND (arg1, 0), 0))
6914 return fold (build2 (BIT_AND_EXPR, type,
6915 fold (build1 (BIT_NOT_EXPR, type,
6916 TREE_OPERAND (arg1, 1))),
6917 arg0));
6920 /* Fold (A & ~B) - (A & B) into (A ^ B) - B, where B is
6921 any power of 2 minus 1. */
6922 if (TREE_CODE (arg0) == BIT_AND_EXPR
6923 && TREE_CODE (arg1) == BIT_AND_EXPR
6924 && operand_equal_p (TREE_OPERAND (arg0, 0),
6925 TREE_OPERAND (arg1, 0), 0))
6927 tree mask0 = TREE_OPERAND (arg0, 1);
6928 tree mask1 = TREE_OPERAND (arg1, 1);
6929 tree tem = fold (build1 (BIT_NOT_EXPR, type, mask0));
6931 if (operand_equal_p (tem, mask1, 0))
6933 tem = fold (build2 (BIT_XOR_EXPR, type,
6934 TREE_OPERAND (arg0, 0), mask1));
6935 return fold (build2 (MINUS_EXPR, type, tem, mask1));
6940 /* See if ARG1 is zero and X - ARG1 reduces to X. */
6941 else if (fold_real_zero_addition_p (TREE_TYPE (arg0), arg1, 1))
6942 return non_lvalue (fold_convert (type, arg0));
6944 /* (ARG0 - ARG1) is the same as (-ARG1 + ARG0). So check whether
6945 ARG0 is zero and X + ARG0 reduces to X, since that would mean
6946 (-ARG1 + ARG0) reduces to -ARG1. */
6947 else if (!wins && fold_real_zero_addition_p (TREE_TYPE (arg1), arg0, 0))
6948 return negate_expr (fold_convert (type, arg1));
6950 /* Fold &x - &x. This can happen from &x.foo - &x.
6951 This is unsafe for certain floats even in non-IEEE formats.
6952 In IEEE, it is unsafe because it does wrong for NaNs.
6953 Also note that operand_equal_p is always false if an operand
6954 is volatile. */
6956 if ((! FLOAT_TYPE_P (type) || flag_unsafe_math_optimizations)
6957 && operand_equal_p (arg0, arg1, 0))
6958 return fold_convert (type, integer_zero_node);
6960 /* A - B -> A + (-B) if B is easily negatable. */
6961 if (!wins && negate_expr_p (arg1)
6962 && ((FLOAT_TYPE_P (type)
6963 /* Avoid this transformation if B is a positive REAL_CST. */
6964 && (TREE_CODE (arg1) != REAL_CST
6965 || REAL_VALUE_NEGATIVE (TREE_REAL_CST (arg1))))
6966 || (INTEGRAL_TYPE_P (type) && flag_wrapv && !flag_trapv)))
6967 return fold (build2 (PLUS_EXPR, type, arg0, negate_expr (arg1)));
6969 if (TREE_CODE (arg0) == MULT_EXPR
6970 && TREE_CODE (arg1) == MULT_EXPR
6971 && (INTEGRAL_TYPE_P (type) || flag_unsafe_math_optimizations))
6973 /* (A * C) - (B * C) -> (A-B) * C. */
6974 if (operand_equal_p (TREE_OPERAND (arg0, 1),
6975 TREE_OPERAND (arg1, 1), 0))
6976 return fold (build2 (MULT_EXPR, type,
6977 fold (build2 (MINUS_EXPR, type,
6978 TREE_OPERAND (arg0, 0),
6979 TREE_OPERAND (arg1, 0))),
6980 TREE_OPERAND (arg0, 1)));
6981 /* (A * C1) - (A * C2) -> A * (C1-C2). */
6982 if (operand_equal_p (TREE_OPERAND (arg0, 0),
6983 TREE_OPERAND (arg1, 0), 0))
6984 return fold (build2 (MULT_EXPR, type,
6985 TREE_OPERAND (arg0, 0),
6986 fold (build2 (MINUS_EXPR, type,
6987 TREE_OPERAND (arg0, 1),
6988 TREE_OPERAND (arg1, 1)))));
6991 goto associate;
6993 case MULT_EXPR:
6994 /* (-A) * (-B) -> A * B */
6995 if (TREE_CODE (arg0) == NEGATE_EXPR && negate_expr_p (arg1))
6996 return fold (build2 (MULT_EXPR, type,
6997 TREE_OPERAND (arg0, 0),
6998 negate_expr (arg1)));
6999 if (TREE_CODE (arg1) == NEGATE_EXPR && negate_expr_p (arg0))
7000 return fold (build2 (MULT_EXPR, type,
7001 negate_expr (arg0),
7002 TREE_OPERAND (arg1, 0)));
7004 if (! FLOAT_TYPE_P (type))
7006 if (integer_zerop (arg1))
7007 return omit_one_operand (type, arg1, arg0);
7008 if (integer_onep (arg1))
7009 return non_lvalue (fold_convert (type, arg0));
7011 /* (a * (1 << b)) is (a << b) */
7012 if (TREE_CODE (arg1) == LSHIFT_EXPR
7013 && integer_onep (TREE_OPERAND (arg1, 0)))
7014 return fold (build2 (LSHIFT_EXPR, type, arg0,
7015 TREE_OPERAND (arg1, 1)));
7016 if (TREE_CODE (arg0) == LSHIFT_EXPR
7017 && integer_onep (TREE_OPERAND (arg0, 0)))
7018 return fold (build2 (LSHIFT_EXPR, type, arg1,
7019 TREE_OPERAND (arg0, 1)));
7021 if (TREE_CODE (arg1) == INTEGER_CST
7022 && 0 != (tem = extract_muldiv (TREE_OPERAND (t, 0),
7023 fold_convert (type, arg1),
7024 code, NULL_TREE)))
7025 return fold_convert (type, tem);
7028 else
7030 /* Maybe fold x * 0 to 0. The expressions aren't the same
7031 when x is NaN, since x * 0 is also NaN. Nor are they the
7032 same in modes with signed zeros, since multiplying a
7033 negative value by 0 gives -0, not +0. */
7034 if (!HONOR_NANS (TYPE_MODE (TREE_TYPE (arg0)))
7035 && !HONOR_SIGNED_ZEROS (TYPE_MODE (TREE_TYPE (arg0)))
7036 && real_zerop (arg1))
7037 return omit_one_operand (type, arg1, arg0);
7038 /* In IEEE floating point, x*1 is not equivalent to x for snans. */
7039 if (!HONOR_SNANS (TYPE_MODE (TREE_TYPE (arg0)))
7040 && real_onep (arg1))
7041 return non_lvalue (fold_convert (type, arg0));
7043 /* Transform x * -1.0 into -x. */
7044 if (!HONOR_SNANS (TYPE_MODE (TREE_TYPE (arg0)))
7045 && real_minus_onep (arg1))
7046 return fold_convert (type, negate_expr (arg0));
7048 /* Convert (C1/X)*C2 into (C1*C2)/X. */
7049 if (flag_unsafe_math_optimizations
7050 && TREE_CODE (arg0) == RDIV_EXPR
7051 && TREE_CODE (arg1) == REAL_CST
7052 && TREE_CODE (TREE_OPERAND (arg0, 0)) == REAL_CST)
7054 tree tem = const_binop (MULT_EXPR, TREE_OPERAND (arg0, 0),
7055 arg1, 0);
7056 if (tem)
7057 return fold (build2 (RDIV_EXPR, type, tem,
7058 TREE_OPERAND (arg0, 1)));
7061 if (flag_unsafe_math_optimizations)
7063 enum built_in_function fcode0 = builtin_mathfn_code (arg0);
7064 enum built_in_function fcode1 = builtin_mathfn_code (arg1);
7066 /* Optimizations of root(...)*root(...). */
7067 if (fcode0 == fcode1 && BUILTIN_ROOT_P (fcode0))
7069 tree rootfn, arg, arglist;
7070 tree arg00 = TREE_VALUE (TREE_OPERAND (arg0, 1));
7071 tree arg10 = TREE_VALUE (TREE_OPERAND (arg1, 1));
7073 /* Optimize sqrt(x)*sqrt(x) as x. */
7074 if (BUILTIN_SQRT_P (fcode0)
7075 && operand_equal_p (arg00, arg10, 0)
7076 && ! HONOR_SNANS (TYPE_MODE (type)))
7077 return arg00;
7079 /* Optimize root(x)*root(y) as root(x*y). */
7080 rootfn = TREE_OPERAND (TREE_OPERAND (arg0, 0), 0);
7081 arg = fold (build2 (MULT_EXPR, type, arg00, arg10));
7082 arglist = build_tree_list (NULL_TREE, arg);
7083 return build_function_call_expr (rootfn, arglist);
7086 /* Optimize expN(x)*expN(y) as expN(x+y). */
7087 if (fcode0 == fcode1 && BUILTIN_EXPONENT_P (fcode0))
7089 tree expfn = TREE_OPERAND (TREE_OPERAND (arg0, 0), 0);
7090 tree arg = build2 (PLUS_EXPR, type,
7091 TREE_VALUE (TREE_OPERAND (arg0, 1)),
7092 TREE_VALUE (TREE_OPERAND (arg1, 1)));
7093 tree arglist = build_tree_list (NULL_TREE, fold (arg));
7094 return build_function_call_expr (expfn, arglist);
7097 /* Optimizations of pow(...)*pow(...). */
7098 if ((fcode0 == BUILT_IN_POW && fcode1 == BUILT_IN_POW)
7099 || (fcode0 == BUILT_IN_POWF && fcode1 == BUILT_IN_POWF)
7100 || (fcode0 == BUILT_IN_POWL && fcode1 == BUILT_IN_POWL))
7102 tree arg00 = TREE_VALUE (TREE_OPERAND (arg0, 1));
7103 tree arg01 = TREE_VALUE (TREE_CHAIN (TREE_OPERAND (arg0,
7104 1)));
7105 tree arg10 = TREE_VALUE (TREE_OPERAND (arg1, 1));
7106 tree arg11 = TREE_VALUE (TREE_CHAIN (TREE_OPERAND (arg1,
7107 1)));
7109 /* Optimize pow(x,y)*pow(z,y) as pow(x*z,y). */
7110 if (operand_equal_p (arg01, arg11, 0))
7112 tree powfn = TREE_OPERAND (TREE_OPERAND (arg0, 0), 0);
7113 tree arg = build2 (MULT_EXPR, type, arg00, arg10);
7114 tree arglist = tree_cons (NULL_TREE, fold (arg),
7115 build_tree_list (NULL_TREE,
7116 arg01));
7117 return build_function_call_expr (powfn, arglist);
7120 /* Optimize pow(x,y)*pow(x,z) as pow(x,y+z). */
7121 if (operand_equal_p (arg00, arg10, 0))
7123 tree powfn = TREE_OPERAND (TREE_OPERAND (arg0, 0), 0);
7124 tree arg = fold (build2 (PLUS_EXPR, type, arg01, arg11));
7125 tree arglist = tree_cons (NULL_TREE, arg00,
7126 build_tree_list (NULL_TREE,
7127 arg));
7128 return build_function_call_expr (powfn, arglist);
7132 /* Optimize tan(x)*cos(x) as sin(x). */
7133 if (((fcode0 == BUILT_IN_TAN && fcode1 == BUILT_IN_COS)
7134 || (fcode0 == BUILT_IN_TANF && fcode1 == BUILT_IN_COSF)
7135 || (fcode0 == BUILT_IN_TANL && fcode1 == BUILT_IN_COSL)
7136 || (fcode0 == BUILT_IN_COS && fcode1 == BUILT_IN_TAN)
7137 || (fcode0 == BUILT_IN_COSF && fcode1 == BUILT_IN_TANF)
7138 || (fcode0 == BUILT_IN_COSL && fcode1 == BUILT_IN_TANL))
7139 && operand_equal_p (TREE_VALUE (TREE_OPERAND (arg0, 1)),
7140 TREE_VALUE (TREE_OPERAND (arg1, 1)), 0))
7142 tree sinfn = mathfn_built_in (type, BUILT_IN_SIN);
7144 if (sinfn != NULL_TREE)
7145 return build_function_call_expr (sinfn,
7146 TREE_OPERAND (arg0, 1));
7149 /* Optimize x*pow(x,c) as pow(x,c+1). */
7150 if (fcode1 == BUILT_IN_POW
7151 || fcode1 == BUILT_IN_POWF
7152 || fcode1 == BUILT_IN_POWL)
7154 tree arg10 = TREE_VALUE (TREE_OPERAND (arg1, 1));
7155 tree arg11 = TREE_VALUE (TREE_CHAIN (TREE_OPERAND (arg1,
7156 1)));
7157 if (TREE_CODE (arg11) == REAL_CST
7158 && ! TREE_CONSTANT_OVERFLOW (arg11)
7159 && operand_equal_p (arg0, arg10, 0))
7161 tree powfn = TREE_OPERAND (TREE_OPERAND (arg1, 0), 0);
7162 REAL_VALUE_TYPE c;
7163 tree arg, arglist;
7165 c = TREE_REAL_CST (arg11);
7166 real_arithmetic (&c, PLUS_EXPR, &c, &dconst1);
7167 arg = build_real (type, c);
7168 arglist = build_tree_list (NULL_TREE, arg);
7169 arglist = tree_cons (NULL_TREE, arg0, arglist);
7170 return build_function_call_expr (powfn, arglist);
7174 /* Optimize pow(x,c)*x as pow(x,c+1). */
7175 if (fcode0 == BUILT_IN_POW
7176 || fcode0 == BUILT_IN_POWF
7177 || fcode0 == BUILT_IN_POWL)
7179 tree arg00 = TREE_VALUE (TREE_OPERAND (arg0, 1));
7180 tree arg01 = TREE_VALUE (TREE_CHAIN (TREE_OPERAND (arg0,
7181 1)));
7182 if (TREE_CODE (arg01) == REAL_CST
7183 && ! TREE_CONSTANT_OVERFLOW (arg01)
7184 && operand_equal_p (arg1, arg00, 0))
7186 tree powfn = TREE_OPERAND (TREE_OPERAND (arg0, 0), 0);
7187 REAL_VALUE_TYPE c;
7188 tree arg, arglist;
7190 c = TREE_REAL_CST (arg01);
7191 real_arithmetic (&c, PLUS_EXPR, &c, &dconst1);
7192 arg = build_real (type, c);
7193 arglist = build_tree_list (NULL_TREE, arg);
7194 arglist = tree_cons (NULL_TREE, arg1, arglist);
7195 return build_function_call_expr (powfn, arglist);
7199 /* Optimize x*x as pow(x,2.0), which is expanded as x*x. */
7200 if (! optimize_size
7201 && operand_equal_p (arg0, arg1, 0))
7203 tree powfn = mathfn_built_in (type, BUILT_IN_POW);
7205 if (powfn)
7207 tree arg = build_real (type, dconst2);
7208 tree arglist = build_tree_list (NULL_TREE, arg);
7209 arglist = tree_cons (NULL_TREE, arg0, arglist);
7210 return build_function_call_expr (powfn, arglist);
7215 goto associate;
7217 case BIT_IOR_EXPR:
7218 bit_ior:
7219 if (integer_all_onesp (arg1))
7220 return omit_one_operand (type, arg1, arg0);
7221 if (integer_zerop (arg1))
7222 return non_lvalue (fold_convert (type, arg0));
7223 if (operand_equal_p (arg0, arg1, 0))
7224 return non_lvalue (fold_convert (type, arg0));
7226 /* ~X | X is -1. */
7227 if (TREE_CODE (arg0) == BIT_NOT_EXPR
7228 && operand_equal_p (TREE_OPERAND (arg0, 0), arg1, 0))
7230 t1 = build_int_cst (type, -1);
7231 t1 = force_fit_type (t1, 0, false, false);
7232 return omit_one_operand (type, t1, arg1);
7235 /* X | ~X is -1. */
7236 if (TREE_CODE (arg1) == BIT_NOT_EXPR
7237 && operand_equal_p (arg0, TREE_OPERAND (arg1, 0), 0))
7239 t1 = build_int_cst (type, -1);
7240 t1 = force_fit_type (t1, 0, false, false);
7241 return omit_one_operand (type, t1, arg0);
7244 t1 = distribute_bit_expr (code, type, arg0, arg1);
7245 if (t1 != NULL_TREE)
7246 return t1;
7248 /* Convert (or (not arg0) (not arg1)) to (not (and (arg0) (arg1))).
7250 This results in more efficient code for machines without a NAND
7251 instruction. Combine will canonicalize to the first form
7252 which will allow use of NAND instructions provided by the
7253 backend if they exist. */
7254 if (TREE_CODE (arg0) == BIT_NOT_EXPR
7255 && TREE_CODE (arg1) == BIT_NOT_EXPR)
7257 return fold (build1 (BIT_NOT_EXPR, type,
7258 build2 (BIT_AND_EXPR, type,
7259 TREE_OPERAND (arg0, 0),
7260 TREE_OPERAND (arg1, 0))));
7263 /* See if this can be simplified into a rotate first. If that
7264 is unsuccessful continue in the association code. */
7265 goto bit_rotate;
7267 case BIT_XOR_EXPR:
7268 if (integer_zerop (arg1))
7269 return non_lvalue (fold_convert (type, arg0));
7270 if (integer_all_onesp (arg1))
7271 return fold (build1 (BIT_NOT_EXPR, type, arg0));
7272 if (operand_equal_p (arg0, arg1, 0))
7273 return omit_one_operand (type, integer_zero_node, arg0);
7275 /* ~X ^ X is -1. */
7276 if (TREE_CODE (arg0) == BIT_NOT_EXPR
7277 && operand_equal_p (TREE_OPERAND (arg0, 0), arg1, 0))
7279 t1 = build_int_cst (type, -1);
7280 t1 = force_fit_type (t1, 0, false, false);
7281 return omit_one_operand (type, t1, arg1);
7284 /* X ^ ~X is -1. */
7285 if (TREE_CODE (arg1) == BIT_NOT_EXPR
7286 && operand_equal_p (arg0, TREE_OPERAND (arg1, 0), 0))
7288 t1 = build_int_cst (type, -1);
7289 t1 = force_fit_type (t1, 0, false, false);
7290 return omit_one_operand (type, t1, arg0);
7293 /* If we are XORing two BIT_AND_EXPR's, both of which are and'ing
7294 with a constant, and the two constants have no bits in common,
7295 we should treat this as a BIT_IOR_EXPR since this may produce more
7296 simplifications. */
7297 if (TREE_CODE (arg0) == BIT_AND_EXPR
7298 && TREE_CODE (arg1) == BIT_AND_EXPR
7299 && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST
7300 && TREE_CODE (TREE_OPERAND (arg1, 1)) == INTEGER_CST
7301 && integer_zerop (const_binop (BIT_AND_EXPR,
7302 TREE_OPERAND (arg0, 1),
7303 TREE_OPERAND (arg1, 1), 0)))
7305 code = BIT_IOR_EXPR;
7306 goto bit_ior;
7309 /* See if this can be simplified into a rotate first. If that
7310 is unsuccessful continue in the association code. */
7311 goto bit_rotate;
7313 case BIT_AND_EXPR:
7314 if (integer_all_onesp (arg1))
7315 return non_lvalue (fold_convert (type, arg0));
7316 if (integer_zerop (arg1))
7317 return omit_one_operand (type, arg1, arg0);
7318 if (operand_equal_p (arg0, arg1, 0))
7319 return non_lvalue (fold_convert (type, arg0));
7321 /* ~X & X is always zero. */
7322 if (TREE_CODE (arg0) == BIT_NOT_EXPR
7323 && operand_equal_p (TREE_OPERAND (arg0, 0), arg1, 0))
7324 return omit_one_operand (type, integer_zero_node, arg1);
7326 /* X & ~X is always zero. */
7327 if (TREE_CODE (arg1) == BIT_NOT_EXPR
7328 && operand_equal_p (arg0, TREE_OPERAND (arg1, 0), 0))
7329 return omit_one_operand (type, integer_zero_node, arg0);
7331 t1 = distribute_bit_expr (code, type, arg0, arg1);
7332 if (t1 != NULL_TREE)
7333 return t1;
7334 /* Simplify ((int)c & 0377) into (int)c, if c is unsigned char. */
7335 if (TREE_CODE (arg1) == INTEGER_CST && TREE_CODE (arg0) == NOP_EXPR
7336 && TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (arg0, 0))))
7338 unsigned int prec
7339 = TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (arg0, 0)));
7341 if (prec < BITS_PER_WORD && prec < HOST_BITS_PER_WIDE_INT
7342 && (~TREE_INT_CST_LOW (arg1)
7343 & (((HOST_WIDE_INT) 1 << prec) - 1)) == 0)
7344 return fold_convert (type, TREE_OPERAND (arg0, 0));
7347 /* Convert (and (not arg0) (not arg1)) to (not (or (arg0) (arg1))).
7349 This results in more efficient code for machines without a NOR
7350 instruction. Combine will canonicalize to the first form
7351 which will allow use of NOR instructions provided by the
7352 backend if they exist. */
7353 if (TREE_CODE (arg0) == BIT_NOT_EXPR
7354 && TREE_CODE (arg1) == BIT_NOT_EXPR)
7356 return fold (build1 (BIT_NOT_EXPR, type,
7357 build2 (BIT_IOR_EXPR, type,
7358 TREE_OPERAND (arg0, 0),
7359 TREE_OPERAND (arg1, 0))));
7362 goto associate;
7364 case RDIV_EXPR:
7365 /* Don't touch a floating-point divide by zero unless the mode
7366 of the constant can represent infinity. */
7367 if (TREE_CODE (arg1) == REAL_CST
7368 && !MODE_HAS_INFINITIES (TYPE_MODE (TREE_TYPE (arg1)))
7369 && real_zerop (arg1))
7370 return t;
7372 /* (-A) / (-B) -> A / B */
7373 if (TREE_CODE (arg0) == NEGATE_EXPR && negate_expr_p (arg1))
7374 return fold (build2 (RDIV_EXPR, type,
7375 TREE_OPERAND (arg0, 0),
7376 negate_expr (arg1)));
7377 if (TREE_CODE (arg1) == NEGATE_EXPR && negate_expr_p (arg0))
7378 return fold (build2 (RDIV_EXPR, type,
7379 negate_expr (arg0),
7380 TREE_OPERAND (arg1, 0)));
7382 /* In IEEE floating point, x/1 is not equivalent to x for snans. */
7383 if (!HONOR_SNANS (TYPE_MODE (TREE_TYPE (arg0)))
7384 && real_onep (arg1))
7385 return non_lvalue (fold_convert (type, arg0));
7387 /* In IEEE floating point, x/-1 is not equivalent to -x for snans. */
7388 if (!HONOR_SNANS (TYPE_MODE (TREE_TYPE (arg0)))
7389 && real_minus_onep (arg1))
7390 return non_lvalue (fold_convert (type, negate_expr (arg0)));
7392 /* If ARG1 is a constant, we can convert this to a multiply by the
7393 reciprocal. This does not have the same rounding properties,
7394 so only do this if -funsafe-math-optimizations. We can actually
7395 always safely do it if ARG1 is a power of two, but it's hard to
7396 tell if it is or not in a portable manner. */
7397 if (TREE_CODE (arg1) == REAL_CST)
7399 if (flag_unsafe_math_optimizations
7400 && 0 != (tem = const_binop (code, build_real (type, dconst1),
7401 arg1, 0)))
7402 return fold (build2 (MULT_EXPR, type, arg0, tem));
7403 /* Find the reciprocal if optimizing and the result is exact. */
7404 if (optimize)
7406 REAL_VALUE_TYPE r;
7407 r = TREE_REAL_CST (arg1);
7408 if (exact_real_inverse (TYPE_MODE(TREE_TYPE(arg0)), &r))
7410 tem = build_real (type, r);
7411 return fold (build2 (MULT_EXPR, type, arg0, tem));
7415 /* Convert A/B/C to A/(B*C). */
7416 if (flag_unsafe_math_optimizations
7417 && TREE_CODE (arg0) == RDIV_EXPR)
7418 return fold (build2 (RDIV_EXPR, type, TREE_OPERAND (arg0, 0),
7419 fold (build2 (MULT_EXPR, type,
7420 TREE_OPERAND (arg0, 1), arg1))));
7422 /* Convert A/(B/C) to (A/B)*C. */
7423 if (flag_unsafe_math_optimizations
7424 && TREE_CODE (arg1) == RDIV_EXPR)
7425 return fold (build2 (MULT_EXPR, type,
7426 fold (build2 (RDIV_EXPR, type, arg0,
7427 TREE_OPERAND (arg1, 0))),
7428 TREE_OPERAND (arg1, 1)));
7430 /* Convert C1/(X*C2) into (C1/C2)/X. */
7431 if (flag_unsafe_math_optimizations
7432 && TREE_CODE (arg1) == MULT_EXPR
7433 && TREE_CODE (arg0) == REAL_CST
7434 && TREE_CODE (TREE_OPERAND (arg1, 1)) == REAL_CST)
7436 tree tem = const_binop (RDIV_EXPR, arg0,
7437 TREE_OPERAND (arg1, 1), 0);
7438 if (tem)
7439 return fold (build2 (RDIV_EXPR, type, tem,
7440 TREE_OPERAND (arg1, 0)));
7443 if (flag_unsafe_math_optimizations)
7445 enum built_in_function fcode = builtin_mathfn_code (arg1);
7446 /* Optimize x/expN(y) into x*expN(-y). */
7447 if (BUILTIN_EXPONENT_P (fcode))
7449 tree expfn = TREE_OPERAND (TREE_OPERAND (arg1, 0), 0);
7450 tree arg = negate_expr (TREE_VALUE (TREE_OPERAND (arg1, 1)));
7451 tree arglist = build_tree_list (NULL_TREE,
7452 fold_convert (type, arg));
7453 arg1 = build_function_call_expr (expfn, arglist);
7454 return fold (build2 (MULT_EXPR, type, arg0, arg1));
7457 /* Optimize x/pow(y,z) into x*pow(y,-z). */
7458 if (fcode == BUILT_IN_POW
7459 || fcode == BUILT_IN_POWF
7460 || fcode == BUILT_IN_POWL)
7462 tree powfn = TREE_OPERAND (TREE_OPERAND (arg1, 0), 0);
7463 tree arg10 = TREE_VALUE (TREE_OPERAND (arg1, 1));
7464 tree arg11 = TREE_VALUE (TREE_CHAIN (TREE_OPERAND (arg1, 1)));
7465 tree neg11 = fold_convert (type, negate_expr (arg11));
7466 tree arglist = tree_cons(NULL_TREE, arg10,
7467 build_tree_list (NULL_TREE, neg11));
7468 arg1 = build_function_call_expr (powfn, arglist);
7469 return fold (build2 (MULT_EXPR, type, arg0, arg1));
7473 if (flag_unsafe_math_optimizations)
7475 enum built_in_function fcode0 = builtin_mathfn_code (arg0);
7476 enum built_in_function fcode1 = builtin_mathfn_code (arg1);
7478 /* Optimize sin(x)/cos(x) as tan(x). */
7479 if (((fcode0 == BUILT_IN_SIN && fcode1 == BUILT_IN_COS)
7480 || (fcode0 == BUILT_IN_SINF && fcode1 == BUILT_IN_COSF)
7481 || (fcode0 == BUILT_IN_SINL && fcode1 == BUILT_IN_COSL))
7482 && operand_equal_p (TREE_VALUE (TREE_OPERAND (arg0, 1)),
7483 TREE_VALUE (TREE_OPERAND (arg1, 1)), 0))
7485 tree tanfn = mathfn_built_in (type, BUILT_IN_TAN);
7487 if (tanfn != NULL_TREE)
7488 return build_function_call_expr (tanfn,
7489 TREE_OPERAND (arg0, 1));
7492 /* Optimize cos(x)/sin(x) as 1.0/tan(x). */
7493 if (((fcode0 == BUILT_IN_COS && fcode1 == BUILT_IN_SIN)
7494 || (fcode0 == BUILT_IN_COSF && fcode1 == BUILT_IN_SINF)
7495 || (fcode0 == BUILT_IN_COSL && fcode1 == BUILT_IN_SINL))
7496 && operand_equal_p (TREE_VALUE (TREE_OPERAND (arg0, 1)),
7497 TREE_VALUE (TREE_OPERAND (arg1, 1)), 0))
7499 tree tanfn = mathfn_built_in (type, BUILT_IN_TAN);
7501 if (tanfn != NULL_TREE)
7503 tree tmp = TREE_OPERAND (arg0, 1);
7504 tmp = build_function_call_expr (tanfn, tmp);
7505 return fold (build2 (RDIV_EXPR, type,
7506 build_real (type, dconst1), tmp));
7510 /* Optimize pow(x,c)/x as pow(x,c-1). */
7511 if (fcode0 == BUILT_IN_POW
7512 || fcode0 == BUILT_IN_POWF
7513 || fcode0 == BUILT_IN_POWL)
7515 tree arg00 = TREE_VALUE (TREE_OPERAND (arg0, 1));
7516 tree arg01 = TREE_VALUE (TREE_CHAIN (TREE_OPERAND (arg0, 1)));
7517 if (TREE_CODE (arg01) == REAL_CST
7518 && ! TREE_CONSTANT_OVERFLOW (arg01)
7519 && operand_equal_p (arg1, arg00, 0))
7521 tree powfn = TREE_OPERAND (TREE_OPERAND (arg0, 0), 0);
7522 REAL_VALUE_TYPE c;
7523 tree arg, arglist;
7525 c = TREE_REAL_CST (arg01);
7526 real_arithmetic (&c, MINUS_EXPR, &c, &dconst1);
7527 arg = build_real (type, c);
7528 arglist = build_tree_list (NULL_TREE, arg);
7529 arglist = tree_cons (NULL_TREE, arg1, arglist);
7530 return build_function_call_expr (powfn, arglist);
7534 goto binary;
7536 case TRUNC_DIV_EXPR:
7537 case ROUND_DIV_EXPR:
7538 case FLOOR_DIV_EXPR:
7539 case CEIL_DIV_EXPR:
7540 case EXACT_DIV_EXPR:
7541 if (integer_onep (arg1))
7542 return non_lvalue (fold_convert (type, arg0));
7543 if (integer_zerop (arg1))
7544 return t;
7545 /* X / -1 is -X. */
7546 if (!TYPE_UNSIGNED (type)
7547 && TREE_CODE (arg1) == INTEGER_CST
7548 && TREE_INT_CST_LOW (arg1) == (unsigned HOST_WIDE_INT) -1
7549 && TREE_INT_CST_HIGH (arg1) == -1)
7550 return fold_convert (type, negate_expr (arg0));
7552 /* If arg0 is a multiple of arg1, then rewrite to the fastest div
7553 operation, EXACT_DIV_EXPR.
7555 Note that only CEIL_DIV_EXPR and FLOOR_DIV_EXPR are rewritten now.
7556 At one time others generated faster code, it's not clear if they do
7557 after the last round to changes to the DIV code in expmed.c. */
7558 if ((code == CEIL_DIV_EXPR || code == FLOOR_DIV_EXPR)
7559 && multiple_of_p (type, arg0, arg1))
7560 return fold (build2 (EXACT_DIV_EXPR, type, arg0, arg1));
7562 if (TREE_CODE (arg1) == INTEGER_CST
7563 && 0 != (tem = extract_muldiv (TREE_OPERAND (t, 0), arg1,
7564 code, NULL_TREE)))
7565 return fold_convert (type, tem);
7567 goto binary;
7569 case CEIL_MOD_EXPR:
7570 case FLOOR_MOD_EXPR:
7571 case ROUND_MOD_EXPR:
7572 case TRUNC_MOD_EXPR:
7573 if (integer_onep (arg1))
7574 return omit_one_operand (type, integer_zero_node, arg0);
7575 if (integer_zerop (arg1))
7576 return t;
7578 /* X % -1 is zero. */
7579 if (!TYPE_UNSIGNED (type)
7580 && TREE_CODE (arg1) == INTEGER_CST
7581 && TREE_INT_CST_LOW (arg1) == (unsigned HOST_WIDE_INT) -1
7582 && TREE_INT_CST_HIGH (arg1) == -1)
7583 return omit_one_operand (type, integer_zero_node, arg0);
7585 /* Optimize unsigned TRUNC_MOD_EXPR by a power of two into a
7586 BIT_AND_EXPR, i.e. "X % C" into "X & C2". */
7587 if (code == TRUNC_MOD_EXPR
7588 && TYPE_UNSIGNED (type)
7589 && integer_pow2p (arg1))
7591 unsigned HOST_WIDE_INT high, low;
7592 tree mask;
7593 int l;
7595 l = tree_log2 (arg1);
7596 if (l >= HOST_BITS_PER_WIDE_INT)
7598 high = ((unsigned HOST_WIDE_INT) 1
7599 << (l - HOST_BITS_PER_WIDE_INT)) - 1;
7600 low = -1;
7602 else
7604 high = 0;
7605 low = ((unsigned HOST_WIDE_INT) 1 << l) - 1;
7608 mask = build_int_cst_wide (type, low, high);
7609 return fold (build2 (BIT_AND_EXPR, type,
7610 fold_convert (type, arg0), mask));
7613 /* X % -C is the same as X % C. */
7614 if (code == TRUNC_MOD_EXPR
7615 && !TYPE_UNSIGNED (type)
7616 && TREE_CODE (arg1) == INTEGER_CST
7617 && TREE_INT_CST_HIGH (arg1) < 0
7618 && !flag_trapv
7619 /* Avoid this transformation if C is INT_MIN, i.e. C == -C. */
7620 && !sign_bit_p (arg1, arg1))
7621 return fold (build2 (code, type, fold_convert (type, arg0),
7622 fold_convert (type, negate_expr (arg1))));
7624 /* X % -Y is the same as X % Y. */
7625 if (code == TRUNC_MOD_EXPR
7626 && !TYPE_UNSIGNED (type)
7627 && TREE_CODE (arg1) == NEGATE_EXPR
7628 && !flag_trapv)
7629 return fold (build2 (code, type, fold_convert (type, arg0),
7630 fold_convert (type, TREE_OPERAND (arg1, 0))));
7632 if (TREE_CODE (arg1) == INTEGER_CST
7633 && 0 != (tem = extract_muldiv (TREE_OPERAND (t, 0), arg1,
7634 code, NULL_TREE)))
7635 return fold_convert (type, tem);
7637 goto binary;
7639 case LROTATE_EXPR:
7640 case RROTATE_EXPR:
7641 if (integer_all_onesp (arg0))
7642 return omit_one_operand (type, arg0, arg1);
7643 goto shift;
7645 case RSHIFT_EXPR:
7646 /* Optimize -1 >> x for arithmetic right shifts. */
7647 if (integer_all_onesp (arg0) && !TYPE_UNSIGNED (type))
7648 return omit_one_operand (type, arg0, arg1);
7649 /* ... fall through ... */
7651 case LSHIFT_EXPR:
7652 shift:
7653 if (integer_zerop (arg1))
7654 return non_lvalue (fold_convert (type, arg0));
7655 if (integer_zerop (arg0))
7656 return omit_one_operand (type, arg0, arg1);
7658 /* Since negative shift count is not well-defined,
7659 don't try to compute it in the compiler. */
7660 if (TREE_CODE (arg1) == INTEGER_CST && tree_int_cst_sgn (arg1) < 0)
7661 return t;
7662 /* Rewrite an LROTATE_EXPR by a constant into an
7663 RROTATE_EXPR by a new constant. */
7664 if (code == LROTATE_EXPR && TREE_CODE (arg1) == INTEGER_CST)
7666 tree tem = build_int_cst (NULL_TREE,
7667 GET_MODE_BITSIZE (TYPE_MODE (type)));
7668 tem = fold_convert (TREE_TYPE (arg1), tem);
7669 tem = const_binop (MINUS_EXPR, tem, arg1, 0);
7670 return fold (build2 (RROTATE_EXPR, type, arg0, tem));
7673 /* If we have a rotate of a bit operation with the rotate count and
7674 the second operand of the bit operation both constant,
7675 permute the two operations. */
7676 if (code == RROTATE_EXPR && TREE_CODE (arg1) == INTEGER_CST
7677 && (TREE_CODE (arg0) == BIT_AND_EXPR
7678 || TREE_CODE (arg0) == BIT_IOR_EXPR
7679 || TREE_CODE (arg0) == BIT_XOR_EXPR)
7680 && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST)
7681 return fold (build2 (TREE_CODE (arg0), type,
7682 fold (build2 (code, type,
7683 TREE_OPERAND (arg0, 0), arg1)),
7684 fold (build2 (code, type,
7685 TREE_OPERAND (arg0, 1), arg1))));
7687 /* Two consecutive rotates adding up to the width of the mode can
7688 be ignored. */
7689 if (code == RROTATE_EXPR && TREE_CODE (arg1) == INTEGER_CST
7690 && TREE_CODE (arg0) == RROTATE_EXPR
7691 && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST
7692 && TREE_INT_CST_HIGH (arg1) == 0
7693 && TREE_INT_CST_HIGH (TREE_OPERAND (arg0, 1)) == 0
7694 && ((TREE_INT_CST_LOW (arg1)
7695 + TREE_INT_CST_LOW (TREE_OPERAND (arg0, 1)))
7696 == (unsigned int) GET_MODE_BITSIZE (TYPE_MODE (type))))
7697 return TREE_OPERAND (arg0, 0);
7699 goto binary;
7701 case MIN_EXPR:
7702 if (operand_equal_p (arg0, arg1, 0))
7703 return omit_one_operand (type, arg0, arg1);
7704 if (INTEGRAL_TYPE_P (type)
7705 && operand_equal_p (arg1, TYPE_MIN_VALUE (type), OEP_ONLY_CONST))
7706 return omit_one_operand (type, arg1, arg0);
7707 goto associate;
7709 case MAX_EXPR:
7710 if (operand_equal_p (arg0, arg1, 0))
7711 return omit_one_operand (type, arg0, arg1);
7712 if (INTEGRAL_TYPE_P (type)
7713 && TYPE_MAX_VALUE (type)
7714 && operand_equal_p (arg1, TYPE_MAX_VALUE (type), OEP_ONLY_CONST))
7715 return omit_one_operand (type, arg1, arg0);
7716 goto associate;
7718 case TRUTH_NOT_EXPR:
7719 /* The argument to invert_truthvalue must have Boolean type. */
7720 if (TREE_CODE (TREE_TYPE (arg0)) != BOOLEAN_TYPE)
7721 arg0 = fold_convert (boolean_type_node, arg0);
7723 /* Note that the operand of this must be an int
7724 and its values must be 0 or 1.
7725 ("true" is a fixed value perhaps depending on the language,
7726 but we don't handle values other than 1 correctly yet.) */
7727 tem = invert_truthvalue (arg0);
7728 /* Avoid infinite recursion. */
7729 if (TREE_CODE (tem) == TRUTH_NOT_EXPR)
7731 tem = fold_single_bit_test (code, arg0, arg1, type);
7732 if (tem)
7733 return tem;
7734 return t;
7736 return fold_convert (type, tem);
7738 case TRUTH_ANDIF_EXPR:
7739 /* Note that the operands of this must be ints
7740 and their values must be 0 or 1.
7741 ("true" is a fixed value perhaps depending on the language.) */
7742 /* If first arg is constant zero, return it. */
7743 if (integer_zerop (arg0))
7744 return fold_convert (type, arg0);
7745 case TRUTH_AND_EXPR:
7746 /* If either arg is constant true, drop it. */
7747 if (TREE_CODE (arg0) == INTEGER_CST && ! integer_zerop (arg0))
7748 return non_lvalue (fold_convert (type, arg1));
7749 if (TREE_CODE (arg1) == INTEGER_CST && ! integer_zerop (arg1)
7750 /* Preserve sequence points. */
7751 && (code != TRUTH_ANDIF_EXPR || ! TREE_SIDE_EFFECTS (arg0)))
7752 return non_lvalue (fold_convert (type, arg0));
7753 /* If second arg is constant zero, result is zero, but first arg
7754 must be evaluated. */
7755 if (integer_zerop (arg1))
7756 return omit_one_operand (type, arg1, arg0);
7757 /* Likewise for first arg, but note that only the TRUTH_AND_EXPR
7758 case will be handled here. */
7759 if (integer_zerop (arg0))
7760 return omit_one_operand (type, arg0, arg1);
7762 /* !X && X is always false. */
7763 if (TREE_CODE (arg0) == TRUTH_NOT_EXPR
7764 && operand_equal_p (TREE_OPERAND (arg0, 0), arg1, 0))
7765 return omit_one_operand (type, integer_zero_node, arg1);
7766 /* X && !X is always false. */
7767 if (TREE_CODE (arg1) == TRUTH_NOT_EXPR
7768 && operand_equal_p (arg0, TREE_OPERAND (arg1, 0), 0))
7769 return omit_one_operand (type, integer_zero_node, arg0);
7771 truth_andor:
7772 /* We only do these simplifications if we are optimizing. */
7773 if (!optimize)
7774 return t;
7776 /* Check for things like (A || B) && (A || C). We can convert this
7777 to A || (B && C). Note that either operator can be any of the four
7778 truth and/or operations and the transformation will still be
7779 valid. Also note that we only care about order for the
7780 ANDIF and ORIF operators. If B contains side effects, this
7781 might change the truth-value of A. */
7782 if (TREE_CODE (arg0) == TREE_CODE (arg1)
7783 && (TREE_CODE (arg0) == TRUTH_ANDIF_EXPR
7784 || TREE_CODE (arg0) == TRUTH_ORIF_EXPR
7785 || TREE_CODE (arg0) == TRUTH_AND_EXPR
7786 || TREE_CODE (arg0) == TRUTH_OR_EXPR)
7787 && ! TREE_SIDE_EFFECTS (TREE_OPERAND (arg0, 1)))
7789 tree a00 = TREE_OPERAND (arg0, 0);
7790 tree a01 = TREE_OPERAND (arg0, 1);
7791 tree a10 = TREE_OPERAND (arg1, 0);
7792 tree a11 = TREE_OPERAND (arg1, 1);
7793 int commutative = ((TREE_CODE (arg0) == TRUTH_OR_EXPR
7794 || TREE_CODE (arg0) == TRUTH_AND_EXPR)
7795 && (code == TRUTH_AND_EXPR
7796 || code == TRUTH_OR_EXPR));
7798 if (operand_equal_p (a00, a10, 0))
7799 return fold (build2 (TREE_CODE (arg0), type, a00,
7800 fold (build2 (code, type, a01, a11))));
7801 else if (commutative && operand_equal_p (a00, a11, 0))
7802 return fold (build2 (TREE_CODE (arg0), type, a00,
7803 fold (build2 (code, type, a01, a10))));
7804 else if (commutative && operand_equal_p (a01, a10, 0))
7805 return fold (build2 (TREE_CODE (arg0), type, a01,
7806 fold (build2 (code, type, a00, a11))));
7808 /* This case if tricky because we must either have commutative
7809 operators or else A10 must not have side-effects. */
7811 else if ((commutative || ! TREE_SIDE_EFFECTS (a10))
7812 && operand_equal_p (a01, a11, 0))
7813 return fold (build2 (TREE_CODE (arg0), type,
7814 fold (build2 (code, type, a00, a10)),
7815 a01));
7818 /* See if we can build a range comparison. */
7819 if (0 != (tem = fold_range_test (t)))
7820 return tem;
7822 /* Check for the possibility of merging component references. If our
7823 lhs is another similar operation, try to merge its rhs with our
7824 rhs. Then try to merge our lhs and rhs. */
7825 if (TREE_CODE (arg0) == code
7826 && 0 != (tem = fold_truthop (code, type,
7827 TREE_OPERAND (arg0, 1), arg1)))
7828 return fold (build2 (code, type, TREE_OPERAND (arg0, 0), tem));
7830 if ((tem = fold_truthop (code, type, arg0, arg1)) != 0)
7831 return tem;
7833 return t;
7835 case TRUTH_ORIF_EXPR:
7836 /* Note that the operands of this must be ints
7837 and their values must be 0 or true.
7838 ("true" is a fixed value perhaps depending on the language.) */
7839 /* If first arg is constant true, return it. */
7840 if (TREE_CODE (arg0) == INTEGER_CST && ! integer_zerop (arg0))
7841 return fold_convert (type, arg0);
7842 case TRUTH_OR_EXPR:
7843 /* If either arg is constant zero, drop it. */
7844 if (TREE_CODE (arg0) == INTEGER_CST && integer_zerop (arg0))
7845 return non_lvalue (fold_convert (type, arg1));
7846 if (TREE_CODE (arg1) == INTEGER_CST && integer_zerop (arg1)
7847 /* Preserve sequence points. */
7848 && (code != TRUTH_ORIF_EXPR || ! TREE_SIDE_EFFECTS (arg0)))
7849 return non_lvalue (fold_convert (type, arg0));
7850 /* If second arg is constant true, result is true, but we must
7851 evaluate first arg. */
7852 if (TREE_CODE (arg1) == INTEGER_CST && ! integer_zerop (arg1))
7853 return omit_one_operand (type, arg1, arg0);
7854 /* Likewise for first arg, but note this only occurs here for
7855 TRUTH_OR_EXPR. */
7856 if (TREE_CODE (arg0) == INTEGER_CST && ! integer_zerop (arg0))
7857 return omit_one_operand (type, arg0, arg1);
7859 /* !X || X is always true. */
7860 if (TREE_CODE (arg0) == TRUTH_NOT_EXPR
7861 && operand_equal_p (TREE_OPERAND (arg0, 0), arg1, 0))
7862 return omit_one_operand (type, integer_one_node, arg1);
7863 /* X || !X is always true. */
7864 if (TREE_CODE (arg1) == TRUTH_NOT_EXPR
7865 && operand_equal_p (arg0, TREE_OPERAND (arg1, 0), 0))
7866 return omit_one_operand (type, integer_one_node, arg0);
7868 goto truth_andor;
7870 case TRUTH_XOR_EXPR:
7871 /* If the second arg is constant zero, drop it. */
7872 if (integer_zerop (arg1))
7873 return non_lvalue (fold_convert (type, arg0));
7874 /* If the second arg is constant true, this is a logical inversion. */
7875 if (integer_onep (arg1))
7876 return non_lvalue (fold_convert (type, invert_truthvalue (arg0)));
7877 /* Identical arguments cancel to zero. */
7878 if (operand_equal_p (arg0, arg1, 0))
7879 return omit_one_operand (type, integer_zero_node, arg0);
7881 /* !X ^ X is always true. */
7882 if (TREE_CODE (arg0) == TRUTH_NOT_EXPR
7883 && operand_equal_p (TREE_OPERAND (arg0, 0), arg1, 0))
7884 return omit_one_operand (type, integer_one_node, arg1);
7886 /* X ^ !X is always true. */
7887 if (TREE_CODE (arg1) == TRUTH_NOT_EXPR
7888 && operand_equal_p (arg0, TREE_OPERAND (arg1, 0), 0))
7889 return omit_one_operand (type, integer_one_node, arg0);
7891 return t;
7893 case EQ_EXPR:
7894 case NE_EXPR:
7895 case LT_EXPR:
7896 case GT_EXPR:
7897 case LE_EXPR:
7898 case GE_EXPR:
7899 /* If one arg is a real or integer constant, put it last. */
7900 if (tree_swap_operands_p (arg0, arg1, true))
7901 return fold (build2 (swap_tree_comparison (code), type, arg1, arg0));
7903 /* If this is an equality comparison of the address of a non-weak
7904 object against zero, then we know the result. */
7905 if ((code == EQ_EXPR || code == NE_EXPR)
7906 && TREE_CODE (arg0) == ADDR_EXPR
7907 && DECL_P (TREE_OPERAND (arg0, 0))
7908 && ! DECL_WEAK (TREE_OPERAND (arg0, 0))
7909 && integer_zerop (arg1))
7910 return constant_boolean_node (code != EQ_EXPR, type);
7912 /* If this is an equality comparison of the address of two non-weak,
7913 unaliased symbols neither of which are extern (since we do not
7914 have access to attributes for externs), then we know the result. */
7915 if ((code == EQ_EXPR || code == NE_EXPR)
7916 && TREE_CODE (arg0) == ADDR_EXPR
7917 && DECL_P (TREE_OPERAND (arg0, 0))
7918 && ! DECL_WEAK (TREE_OPERAND (arg0, 0))
7919 && ! lookup_attribute ("alias",
7920 DECL_ATTRIBUTES (TREE_OPERAND (arg0, 0)))
7921 && ! DECL_EXTERNAL (TREE_OPERAND (arg0, 0))
7922 && TREE_CODE (arg1) == ADDR_EXPR
7923 && DECL_P (TREE_OPERAND (arg1, 0))
7924 && ! DECL_WEAK (TREE_OPERAND (arg1, 0))
7925 && ! lookup_attribute ("alias",
7926 DECL_ATTRIBUTES (TREE_OPERAND (arg1, 0)))
7927 && ! DECL_EXTERNAL (TREE_OPERAND (arg1, 0)))
7928 return constant_boolean_node (operand_equal_p (arg0, arg1, 0)
7929 ? code == EQ_EXPR : code != EQ_EXPR,
7930 type);
7932 if (FLOAT_TYPE_P (TREE_TYPE (arg0)))
7934 tree targ0 = strip_float_extensions (arg0);
7935 tree targ1 = strip_float_extensions (arg1);
7936 tree newtype = TREE_TYPE (targ0);
7938 if (TYPE_PRECISION (TREE_TYPE (targ1)) > TYPE_PRECISION (newtype))
7939 newtype = TREE_TYPE (targ1);
7941 /* Fold (double)float1 CMP (double)float2 into float1 CMP float2. */
7942 if (TYPE_PRECISION (newtype) < TYPE_PRECISION (TREE_TYPE (arg0)))
7943 return fold (build2 (code, type, fold_convert (newtype, targ0),
7944 fold_convert (newtype, targ1)));
7946 /* (-a) CMP (-b) -> b CMP a */
7947 if (TREE_CODE (arg0) == NEGATE_EXPR
7948 && TREE_CODE (arg1) == NEGATE_EXPR)
7949 return fold (build2 (code, type, TREE_OPERAND (arg1, 0),
7950 TREE_OPERAND (arg0, 0)));
7952 if (TREE_CODE (arg1) == REAL_CST)
7954 REAL_VALUE_TYPE cst;
7955 cst = TREE_REAL_CST (arg1);
7957 /* (-a) CMP CST -> a swap(CMP) (-CST) */
7958 if (TREE_CODE (arg0) == NEGATE_EXPR)
7959 return
7960 fold (build2 (swap_tree_comparison (code), type,
7961 TREE_OPERAND (arg0, 0),
7962 build_real (TREE_TYPE (arg1),
7963 REAL_VALUE_NEGATE (cst))));
7965 /* IEEE doesn't distinguish +0 and -0 in comparisons. */
7966 /* a CMP (-0) -> a CMP 0 */
7967 if (REAL_VALUE_MINUS_ZERO (cst))
7968 return fold (build2 (code, type, arg0,
7969 build_real (TREE_TYPE (arg1), dconst0)));
7971 /* x != NaN is always true, other ops are always false. */
7972 if (REAL_VALUE_ISNAN (cst)
7973 && ! HONOR_SNANS (TYPE_MODE (TREE_TYPE (arg1))))
7975 tem = (code == NE_EXPR) ? integer_one_node : integer_zero_node;
7976 return omit_one_operand (type, tem, arg0);
7979 /* Fold comparisons against infinity. */
7980 if (REAL_VALUE_ISINF (cst))
7982 tem = fold_inf_compare (code, type, arg0, arg1);
7983 if (tem != NULL_TREE)
7984 return tem;
7988 /* If this is a comparison of a real constant with a PLUS_EXPR
7989 or a MINUS_EXPR of a real constant, we can convert it into a
7990 comparison with a revised real constant as long as no overflow
7991 occurs when unsafe_math_optimizations are enabled. */
7992 if (flag_unsafe_math_optimizations
7993 && TREE_CODE (arg1) == REAL_CST
7994 && (TREE_CODE (arg0) == PLUS_EXPR
7995 || TREE_CODE (arg0) == MINUS_EXPR)
7996 && TREE_CODE (TREE_OPERAND (arg0, 1)) == REAL_CST
7997 && 0 != (tem = const_binop (TREE_CODE (arg0) == PLUS_EXPR
7998 ? MINUS_EXPR : PLUS_EXPR,
7999 arg1, TREE_OPERAND (arg0, 1), 0))
8000 && ! TREE_CONSTANT_OVERFLOW (tem))
8001 return fold (build2 (code, type, TREE_OPERAND (arg0, 0), tem));
8003 /* Likewise, we can simplify a comparison of a real constant with
8004 a MINUS_EXPR whose first operand is also a real constant, i.e.
8005 (c1 - x) < c2 becomes x > c1-c2. */
8006 if (flag_unsafe_math_optimizations
8007 && TREE_CODE (arg1) == REAL_CST
8008 && TREE_CODE (arg0) == MINUS_EXPR
8009 && TREE_CODE (TREE_OPERAND (arg0, 0)) == REAL_CST
8010 && 0 != (tem = const_binop (MINUS_EXPR, TREE_OPERAND (arg0, 0),
8011 arg1, 0))
8012 && ! TREE_CONSTANT_OVERFLOW (tem))
8013 return fold (build2 (swap_tree_comparison (code), type,
8014 TREE_OPERAND (arg0, 1), tem));
8016 /* Fold comparisons against built-in math functions. */
8017 if (TREE_CODE (arg1) == REAL_CST
8018 && flag_unsafe_math_optimizations
8019 && ! flag_errno_math)
8021 enum built_in_function fcode = builtin_mathfn_code (arg0);
8023 if (fcode != END_BUILTINS)
8025 tem = fold_mathfn_compare (fcode, code, type, arg0, arg1);
8026 if (tem != NULL_TREE)
8027 return tem;
8032 /* Convert foo++ == CONST into ++foo == CONST + INCR. */
8033 if (TREE_CONSTANT (arg1)
8034 && (TREE_CODE (arg0) == POSTINCREMENT_EXPR
8035 || TREE_CODE (arg0) == POSTDECREMENT_EXPR)
8036 /* This optimization is invalid for ordered comparisons
8037 if CONST+INCR overflows or if foo+incr might overflow.
8038 This optimization is invalid for floating point due to rounding.
8039 For pointer types we assume overflow doesn't happen. */
8040 && (POINTER_TYPE_P (TREE_TYPE (arg0))
8041 || (INTEGRAL_TYPE_P (TREE_TYPE (arg0))
8042 && (code == EQ_EXPR || code == NE_EXPR))))
8044 tree varop, newconst;
8046 if (TREE_CODE (arg0) == POSTINCREMENT_EXPR)
8048 newconst = fold (build2 (PLUS_EXPR, TREE_TYPE (arg0),
8049 arg1, TREE_OPERAND (arg0, 1)));
8050 varop = build2 (PREINCREMENT_EXPR, TREE_TYPE (arg0),
8051 TREE_OPERAND (arg0, 0),
8052 TREE_OPERAND (arg0, 1));
8054 else
8056 newconst = fold (build2 (MINUS_EXPR, TREE_TYPE (arg0),
8057 arg1, TREE_OPERAND (arg0, 1)));
8058 varop = build2 (PREDECREMENT_EXPR, TREE_TYPE (arg0),
8059 TREE_OPERAND (arg0, 0),
8060 TREE_OPERAND (arg0, 1));
8064 /* If VAROP is a reference to a bitfield, we must mask
8065 the constant by the width of the field. */
8066 if (TREE_CODE (TREE_OPERAND (varop, 0)) == COMPONENT_REF
8067 && DECL_BIT_FIELD (TREE_OPERAND (TREE_OPERAND (varop, 0), 1))
8068 && host_integerp (DECL_SIZE (TREE_OPERAND
8069 (TREE_OPERAND (varop, 0), 1)), 1))
8071 tree fielddecl = TREE_OPERAND (TREE_OPERAND (varop, 0), 1);
8072 HOST_WIDE_INT size = tree_low_cst (DECL_SIZE (fielddecl), 1);
8073 tree folded_compare, shift;
8075 /* First check whether the comparison would come out
8076 always the same. If we don't do that we would
8077 change the meaning with the masking. */
8078 folded_compare = fold (build2 (code, type,
8079 TREE_OPERAND (varop, 0), arg1));
8080 if (integer_zerop (folded_compare)
8081 || integer_onep (folded_compare))
8082 return omit_one_operand (type, folded_compare, varop);
8084 shift = build_int_cst (NULL_TREE,
8085 TYPE_PRECISION (TREE_TYPE (varop)) - size);
8086 shift = fold_convert (TREE_TYPE (varop), shift);
8087 newconst = fold (build2 (LSHIFT_EXPR, TREE_TYPE (varop),
8088 newconst, shift));
8089 newconst = fold (build2 (RSHIFT_EXPR, TREE_TYPE (varop),
8090 newconst, shift));
8093 return fold (build2 (code, type, varop, newconst));
8096 /* Change X >= C to X > (C - 1) and X < C to X <= (C - 1) if C > 0.
8097 This transformation affects the cases which are handled in later
8098 optimizations involving comparisons with non-negative constants. */
8099 if (TREE_CODE (arg1) == INTEGER_CST
8100 && TREE_CODE (arg0) != INTEGER_CST
8101 && tree_int_cst_sgn (arg1) > 0)
8103 switch (code)
8105 case GE_EXPR:
8106 arg1 = const_binop (MINUS_EXPR, arg1, integer_one_node, 0);
8107 return fold (build2 (GT_EXPR, type, arg0, arg1));
8109 case LT_EXPR:
8110 arg1 = const_binop (MINUS_EXPR, arg1, integer_one_node, 0);
8111 return fold (build2 (LE_EXPR, type, arg0, arg1));
8113 default:
8114 break;
8118 /* Comparisons with the highest or lowest possible integer of
8119 the specified size will have known values.
8121 This is quite similar to fold_relational_hi_lo; however, my
8122 attempts to share the code have been nothing but trouble.
8123 I give up for now. */
8125 int width = GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (arg1)));
8127 if (TREE_CODE (arg1) == INTEGER_CST
8128 && ! TREE_CONSTANT_OVERFLOW (arg1)
8129 && width <= HOST_BITS_PER_WIDE_INT
8130 && (INTEGRAL_TYPE_P (TREE_TYPE (arg1))
8131 || POINTER_TYPE_P (TREE_TYPE (arg1))))
8133 unsigned HOST_WIDE_INT signed_max;
8134 unsigned HOST_WIDE_INT max, min;
8136 signed_max = ((unsigned HOST_WIDE_INT) 1 << (width - 1)) - 1;
8138 if (TYPE_UNSIGNED (TREE_TYPE (arg1)))
8140 max = ((unsigned HOST_WIDE_INT) 2 << (width - 1)) - 1;
8141 min = 0;
8143 else
8145 max = signed_max;
8146 min = ((unsigned HOST_WIDE_INT) -1 << (width - 1));
8149 if (TREE_INT_CST_HIGH (arg1) == 0
8150 && TREE_INT_CST_LOW (arg1) == max)
8151 switch (code)
8153 case GT_EXPR:
8154 return omit_one_operand (type, integer_zero_node, arg0);
8156 case GE_EXPR:
8157 return fold (build2 (EQ_EXPR, type, arg0, arg1));
8159 case LE_EXPR:
8160 return omit_one_operand (type, integer_one_node, arg0);
8162 case LT_EXPR:
8163 return fold (build2 (NE_EXPR, type, arg0, arg1));
8165 /* The GE_EXPR and LT_EXPR cases above are not normally
8166 reached because of previous transformations. */
8168 default:
8169 break;
8171 else if (TREE_INT_CST_HIGH (arg1) == 0
8172 && TREE_INT_CST_LOW (arg1) == max - 1)
8173 switch (code)
8175 case GT_EXPR:
8176 arg1 = const_binop (PLUS_EXPR, arg1, integer_one_node, 0);
8177 return fold (build2 (EQ_EXPR, type, arg0, arg1));
8178 case LE_EXPR:
8179 arg1 = const_binop (PLUS_EXPR, arg1, integer_one_node, 0);
8180 return fold (build2 (NE_EXPR, type, arg0, arg1));
8181 default:
8182 break;
8184 else if (TREE_INT_CST_HIGH (arg1) == (min ? -1 : 0)
8185 && TREE_INT_CST_LOW (arg1) == min)
8186 switch (code)
8188 case LT_EXPR:
8189 return omit_one_operand (type, integer_zero_node, arg0);
8191 case LE_EXPR:
8192 return fold (build2 (EQ_EXPR, type, arg0, arg1));
8194 case GE_EXPR:
8195 return omit_one_operand (type, integer_one_node, arg0);
8197 case GT_EXPR:
8198 return fold (build2 (NE_EXPR, type, arg0, arg1));
8200 default:
8201 break;
8203 else if (TREE_INT_CST_HIGH (arg1) == (min ? -1 : 0)
8204 && TREE_INT_CST_LOW (arg1) == min + 1)
8205 switch (code)
8207 case GE_EXPR:
8208 arg1 = const_binop (MINUS_EXPR, arg1, integer_one_node, 0);
8209 return fold (build2 (NE_EXPR, type, arg0, arg1));
8210 case LT_EXPR:
8211 arg1 = const_binop (MINUS_EXPR, arg1, integer_one_node, 0);
8212 return fold (build2 (EQ_EXPR, type, arg0, arg1));
8213 default:
8214 break;
8217 else if (!in_gimple_form
8218 && TREE_INT_CST_HIGH (arg1) == 0
8219 && TREE_INT_CST_LOW (arg1) == signed_max
8220 && TYPE_UNSIGNED (TREE_TYPE (arg1))
8221 /* signed_type does not work on pointer types. */
8222 && INTEGRAL_TYPE_P (TREE_TYPE (arg1)))
8224 /* The following case also applies to X < signed_max+1
8225 and X >= signed_max+1 because previous transformations. */
8226 if (code == LE_EXPR || code == GT_EXPR)
8228 tree st0, st1;
8229 st0 = lang_hooks.types.signed_type (TREE_TYPE (arg0));
8230 st1 = lang_hooks.types.signed_type (TREE_TYPE (arg1));
8231 return fold
8232 (build2 (code == LE_EXPR ? GE_EXPR: LT_EXPR,
8233 type, fold_convert (st0, arg0),
8234 fold_convert (st1, integer_zero_node)));
8240 /* If this is an EQ or NE comparison of a constant with a PLUS_EXPR or
8241 a MINUS_EXPR of a constant, we can convert it into a comparison with
8242 a revised constant as long as no overflow occurs. */
8243 if ((code == EQ_EXPR || code == NE_EXPR)
8244 && TREE_CODE (arg1) == INTEGER_CST
8245 && (TREE_CODE (arg0) == PLUS_EXPR
8246 || TREE_CODE (arg0) == MINUS_EXPR)
8247 && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST
8248 && 0 != (tem = const_binop (TREE_CODE (arg0) == PLUS_EXPR
8249 ? MINUS_EXPR : PLUS_EXPR,
8250 arg1, TREE_OPERAND (arg0, 1), 0))
8251 && ! TREE_CONSTANT_OVERFLOW (tem))
8252 return fold (build2 (code, type, TREE_OPERAND (arg0, 0), tem));
8254 /* Similarly for a NEGATE_EXPR. */
8255 else if ((code == EQ_EXPR || code == NE_EXPR)
8256 && TREE_CODE (arg0) == NEGATE_EXPR
8257 && TREE_CODE (arg1) == INTEGER_CST
8258 && 0 != (tem = negate_expr (arg1))
8259 && TREE_CODE (tem) == INTEGER_CST
8260 && ! TREE_CONSTANT_OVERFLOW (tem))
8261 return fold (build2 (code, type, TREE_OPERAND (arg0, 0), tem));
8263 /* If we have X - Y == 0, we can convert that to X == Y and similarly
8264 for !=. Don't do this for ordered comparisons due to overflow. */
8265 else if ((code == NE_EXPR || code == EQ_EXPR)
8266 && integer_zerop (arg1) && TREE_CODE (arg0) == MINUS_EXPR)
8267 return fold (build2 (code, type,
8268 TREE_OPERAND (arg0, 0), TREE_OPERAND (arg0, 1)));
8270 /* If we are widening one operand of an integer comparison,
8271 see if the other operand is similarly being widened. Perhaps we
8272 can do the comparison in the narrower type. */
8273 else if (TREE_CODE (TREE_TYPE (arg0)) == INTEGER_TYPE
8274 && TREE_CODE (arg0) == NOP_EXPR
8275 && (tem = get_unwidened (arg0, NULL_TREE)) != arg0
8276 && (code == EQ_EXPR || code == NE_EXPR
8277 || TYPE_UNSIGNED (TREE_TYPE (arg0))
8278 == TYPE_UNSIGNED (TREE_TYPE (tem)))
8279 && (t1 = get_unwidened (arg1, TREE_TYPE (tem))) != 0
8280 && (TREE_TYPE (t1) == TREE_TYPE (tem)
8281 || (TREE_CODE (t1) == INTEGER_CST
8282 && int_fits_type_p (t1, TREE_TYPE (tem)))))
8283 return fold (build2 (code, type, tem,
8284 fold_convert (TREE_TYPE (tem), t1)));
8286 /* If this is comparing a constant with a MIN_EXPR or a MAX_EXPR of a
8287 constant, we can simplify it. */
8288 else if (TREE_CODE (arg1) == INTEGER_CST
8289 && (TREE_CODE (arg0) == MIN_EXPR
8290 || TREE_CODE (arg0) == MAX_EXPR)
8291 && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST)
8292 return optimize_minmax_comparison (t);
8294 /* If we are comparing an ABS_EXPR with a constant, we can
8295 convert all the cases into explicit comparisons, but they may
8296 well not be faster than doing the ABS and one comparison.
8297 But ABS (X) <= C is a range comparison, which becomes a subtraction
8298 and a comparison, and is probably faster. */
8299 else if (code == LE_EXPR && TREE_CODE (arg1) == INTEGER_CST
8300 && TREE_CODE (arg0) == ABS_EXPR
8301 && ! TREE_SIDE_EFFECTS (arg0)
8302 && (0 != (tem = negate_expr (arg1)))
8303 && TREE_CODE (tem) == INTEGER_CST
8304 && ! TREE_CONSTANT_OVERFLOW (tem))
8305 return fold (build2 (TRUTH_ANDIF_EXPR, type,
8306 build2 (GE_EXPR, type,
8307 TREE_OPERAND (arg0, 0), tem),
8308 build2 (LE_EXPR, type,
8309 TREE_OPERAND (arg0, 0), arg1)));
8311 /* If this is an EQ or NE comparison with zero and ARG0 is
8312 (1 << foo) & bar, convert it to (bar >> foo) & 1. Both require
8313 two operations, but the latter can be done in one less insn
8314 on machines that have only two-operand insns or on which a
8315 constant cannot be the first operand. */
8316 if (integer_zerop (arg1) && (code == EQ_EXPR || code == NE_EXPR)
8317 && TREE_CODE (arg0) == BIT_AND_EXPR)
8319 tree arg00 = TREE_OPERAND (arg0, 0);
8320 tree arg01 = TREE_OPERAND (arg0, 1);
8321 if (TREE_CODE (arg00) == LSHIFT_EXPR
8322 && integer_onep (TREE_OPERAND (arg00, 0)))
8323 return
8324 fold (build2 (code, type,
8325 build2 (BIT_AND_EXPR, TREE_TYPE (arg0),
8326 build2 (RSHIFT_EXPR, TREE_TYPE (arg00),
8327 arg01, TREE_OPERAND (arg00, 1)),
8328 fold_convert (TREE_TYPE (arg0),
8329 integer_one_node)),
8330 arg1));
8331 else if (TREE_CODE (TREE_OPERAND (arg0, 1)) == LSHIFT_EXPR
8332 && integer_onep (TREE_OPERAND (TREE_OPERAND (arg0, 1), 0)))
8333 return
8334 fold (build2 (code, type,
8335 build2 (BIT_AND_EXPR, TREE_TYPE (arg0),
8336 build2 (RSHIFT_EXPR, TREE_TYPE (arg01),
8337 arg00, TREE_OPERAND (arg01, 1)),
8338 fold_convert (TREE_TYPE (arg0),
8339 integer_one_node)),
8340 arg1));
8343 /* If this is an NE or EQ comparison of zero against the result of a
8344 signed MOD operation whose second operand is a power of 2, make
8345 the MOD operation unsigned since it is simpler and equivalent. */
8346 if ((code == NE_EXPR || code == EQ_EXPR)
8347 && integer_zerop (arg1)
8348 && !TYPE_UNSIGNED (TREE_TYPE (arg0))
8349 && (TREE_CODE (arg0) == TRUNC_MOD_EXPR
8350 || TREE_CODE (arg0) == CEIL_MOD_EXPR
8351 || TREE_CODE (arg0) == FLOOR_MOD_EXPR
8352 || TREE_CODE (arg0) == ROUND_MOD_EXPR)
8353 && integer_pow2p (TREE_OPERAND (arg0, 1)))
8355 tree newtype = lang_hooks.types.unsigned_type (TREE_TYPE (arg0));
8356 tree newmod = fold (build2 (TREE_CODE (arg0), newtype,
8357 fold_convert (newtype,
8358 TREE_OPERAND (arg0, 0)),
8359 fold_convert (newtype,
8360 TREE_OPERAND (arg0, 1))));
8362 return fold (build2 (code, type, newmod,
8363 fold_convert (newtype, arg1)));
8366 /* If this is an NE comparison of zero with an AND of one, remove the
8367 comparison since the AND will give the correct value. */
8368 if (code == NE_EXPR && integer_zerop (arg1)
8369 && TREE_CODE (arg0) == BIT_AND_EXPR
8370 && integer_onep (TREE_OPERAND (arg0, 1)))
8371 return fold_convert (type, arg0);
8373 /* If we have (A & C) == C where C is a power of 2, convert this into
8374 (A & C) != 0. Similarly for NE_EXPR. */
8375 if ((code == EQ_EXPR || code == NE_EXPR)
8376 && TREE_CODE (arg0) == BIT_AND_EXPR
8377 && integer_pow2p (TREE_OPERAND (arg0, 1))
8378 && operand_equal_p (TREE_OPERAND (arg0, 1), arg1, 0))
8379 return fold (build2 (code == EQ_EXPR ? NE_EXPR : EQ_EXPR, type,
8380 arg0, fold_convert (TREE_TYPE (arg0),
8381 integer_zero_node)));
8383 /* If we have (A & C) != 0 or (A & C) == 0 and C is a power of
8384 2, then fold the expression into shifts and logical operations. */
8385 tem = fold_single_bit_test (code, arg0, arg1, type);
8386 if (tem)
8387 return tem;
8389 /* If we have (A & C) == D where D & ~C != 0, convert this into 0.
8390 Similarly for NE_EXPR. */
8391 if ((code == EQ_EXPR || code == NE_EXPR)
8392 && TREE_CODE (arg0) == BIT_AND_EXPR
8393 && TREE_CODE (arg1) == INTEGER_CST
8394 && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST)
8396 tree dandnotc
8397 = fold (build2 (BIT_AND_EXPR, TREE_TYPE (arg0),
8398 arg1, build1 (BIT_NOT_EXPR,
8399 TREE_TYPE (TREE_OPERAND (arg0, 1)),
8400 TREE_OPERAND (arg0, 1))));
8401 tree rslt = code == EQ_EXPR ? integer_zero_node : integer_one_node;
8402 if (integer_nonzerop (dandnotc))
8403 return omit_one_operand (type, rslt, arg0);
8406 /* If we have (A | C) == D where C & ~D != 0, convert this into 0.
8407 Similarly for NE_EXPR. */
8408 if ((code == EQ_EXPR || code == NE_EXPR)
8409 && TREE_CODE (arg0) == BIT_IOR_EXPR
8410 && TREE_CODE (arg1) == INTEGER_CST
8411 && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST)
8413 tree candnotd
8414 = fold (build2 (BIT_AND_EXPR, TREE_TYPE (arg0),
8415 TREE_OPERAND (arg0, 1),
8416 build1 (BIT_NOT_EXPR, TREE_TYPE (arg1), arg1)));
8417 tree rslt = code == EQ_EXPR ? integer_zero_node : integer_one_node;
8418 if (integer_nonzerop (candnotd))
8419 return omit_one_operand (type, rslt, arg0);
8422 /* If X is unsigned, convert X < (1 << Y) into X >> Y == 0
8423 and similarly for >= into !=. */
8424 if ((code == LT_EXPR || code == GE_EXPR)
8425 && TYPE_UNSIGNED (TREE_TYPE (arg0))
8426 && TREE_CODE (arg1) == LSHIFT_EXPR
8427 && integer_onep (TREE_OPERAND (arg1, 0)))
8428 return build2 (code == LT_EXPR ? EQ_EXPR : NE_EXPR, type,
8429 build2 (RSHIFT_EXPR, TREE_TYPE (arg0), arg0,
8430 TREE_OPERAND (arg1, 1)),
8431 fold_convert (TREE_TYPE (arg0), integer_zero_node));
8433 else if ((code == LT_EXPR || code == GE_EXPR)
8434 && TYPE_UNSIGNED (TREE_TYPE (arg0))
8435 && (TREE_CODE (arg1) == NOP_EXPR
8436 || TREE_CODE (arg1) == CONVERT_EXPR)
8437 && TREE_CODE (TREE_OPERAND (arg1, 0)) == LSHIFT_EXPR
8438 && integer_onep (TREE_OPERAND (TREE_OPERAND (arg1, 0), 0)))
8439 return
8440 build2 (code == LT_EXPR ? EQ_EXPR : NE_EXPR, type,
8441 fold_convert (TREE_TYPE (arg0),
8442 build2 (RSHIFT_EXPR, TREE_TYPE (arg0), arg0,
8443 TREE_OPERAND (TREE_OPERAND (arg1, 0),
8444 1))),
8445 fold_convert (TREE_TYPE (arg0), integer_zero_node));
8447 /* Simplify comparison of something with itself. (For IEEE
8448 floating-point, we can only do some of these simplifications.) */
8449 if (operand_equal_p (arg0, arg1, 0))
8451 switch (code)
8453 case EQ_EXPR:
8454 if (! FLOAT_TYPE_P (TREE_TYPE (arg0))
8455 || ! HONOR_NANS (TYPE_MODE (TREE_TYPE (arg0))))
8456 return constant_boolean_node (1, type);
8457 break;
8459 case GE_EXPR:
8460 case LE_EXPR:
8461 if (! FLOAT_TYPE_P (TREE_TYPE (arg0))
8462 || ! HONOR_NANS (TYPE_MODE (TREE_TYPE (arg0))))
8463 return constant_boolean_node (1, type);
8464 return fold (build2 (EQ_EXPR, type, arg0, arg1));
8466 case NE_EXPR:
8467 /* For NE, we can only do this simplification if integer
8468 or we don't honor IEEE floating point NaNs. */
8469 if (FLOAT_TYPE_P (TREE_TYPE (arg0))
8470 && HONOR_NANS (TYPE_MODE (TREE_TYPE (arg0))))
8471 break;
8472 /* ... fall through ... */
8473 case GT_EXPR:
8474 case LT_EXPR:
8475 return constant_boolean_node (0, type);
8476 default:
8477 gcc_unreachable ();
8481 /* If we are comparing an expression that just has comparisons
8482 of two integer values, arithmetic expressions of those comparisons,
8483 and constants, we can simplify it. There are only three cases
8484 to check: the two values can either be equal, the first can be
8485 greater, or the second can be greater. Fold the expression for
8486 those three values. Since each value must be 0 or 1, we have
8487 eight possibilities, each of which corresponds to the constant 0
8488 or 1 or one of the six possible comparisons.
8490 This handles common cases like (a > b) == 0 but also handles
8491 expressions like ((x > y) - (y > x)) > 0, which supposedly
8492 occur in macroized code. */
8494 if (TREE_CODE (arg1) == INTEGER_CST && TREE_CODE (arg0) != INTEGER_CST)
8496 tree cval1 = 0, cval2 = 0;
8497 int save_p = 0;
8499 if (twoval_comparison_p (arg0, &cval1, &cval2, &save_p)
8500 /* Don't handle degenerate cases here; they should already
8501 have been handled anyway. */
8502 && cval1 != 0 && cval2 != 0
8503 && ! (TREE_CONSTANT (cval1) && TREE_CONSTANT (cval2))
8504 && TREE_TYPE (cval1) == TREE_TYPE (cval2)
8505 && INTEGRAL_TYPE_P (TREE_TYPE (cval1))
8506 && TYPE_MAX_VALUE (TREE_TYPE (cval1))
8507 && TYPE_MAX_VALUE (TREE_TYPE (cval2))
8508 && ! operand_equal_p (TYPE_MIN_VALUE (TREE_TYPE (cval1)),
8509 TYPE_MAX_VALUE (TREE_TYPE (cval2)), 0))
8511 tree maxval = TYPE_MAX_VALUE (TREE_TYPE (cval1));
8512 tree minval = TYPE_MIN_VALUE (TREE_TYPE (cval1));
8514 /* We can't just pass T to eval_subst in case cval1 or cval2
8515 was the same as ARG1. */
8517 tree high_result
8518 = fold (build2 (code, type,
8519 eval_subst (arg0, cval1, maxval,
8520 cval2, minval),
8521 arg1));
8522 tree equal_result
8523 = fold (build2 (code, type,
8524 eval_subst (arg0, cval1, maxval,
8525 cval2, maxval),
8526 arg1));
8527 tree low_result
8528 = fold (build2 (code, type,
8529 eval_subst (arg0, cval1, minval,
8530 cval2, maxval),
8531 arg1));
8533 /* All three of these results should be 0 or 1. Confirm they
8534 are. Then use those values to select the proper code
8535 to use. */
8537 if ((integer_zerop (high_result)
8538 || integer_onep (high_result))
8539 && (integer_zerop (equal_result)
8540 || integer_onep (equal_result))
8541 && (integer_zerop (low_result)
8542 || integer_onep (low_result)))
8544 /* Make a 3-bit mask with the high-order bit being the
8545 value for `>', the next for '=', and the low for '<'. */
8546 switch ((integer_onep (high_result) * 4)
8547 + (integer_onep (equal_result) * 2)
8548 + integer_onep (low_result))
8550 case 0:
8551 /* Always false. */
8552 return omit_one_operand (type, integer_zero_node, arg0);
8553 case 1:
8554 code = LT_EXPR;
8555 break;
8556 case 2:
8557 code = EQ_EXPR;
8558 break;
8559 case 3:
8560 code = LE_EXPR;
8561 break;
8562 case 4:
8563 code = GT_EXPR;
8564 break;
8565 case 5:
8566 code = NE_EXPR;
8567 break;
8568 case 6:
8569 code = GE_EXPR;
8570 break;
8571 case 7:
8572 /* Always true. */
8573 return omit_one_operand (type, integer_one_node, arg0);
8576 tem = build2 (code, type, cval1, cval2);
8577 if (save_p)
8578 return save_expr (tem);
8579 else
8580 return fold (tem);
8585 /* If this is a comparison of a field, we may be able to simplify it. */
8586 if (((TREE_CODE (arg0) == COMPONENT_REF
8587 && lang_hooks.can_use_bit_fields_p ())
8588 || TREE_CODE (arg0) == BIT_FIELD_REF)
8589 && (code == EQ_EXPR || code == NE_EXPR)
8590 /* Handle the constant case even without -O
8591 to make sure the warnings are given. */
8592 && (optimize || TREE_CODE (arg1) == INTEGER_CST))
8594 t1 = optimize_bit_field_compare (code, type, arg0, arg1);
8595 if (t1)
8596 return t1;
8599 /* If this is a comparison of complex values and either or both sides
8600 are a COMPLEX_EXPR or COMPLEX_CST, it is best to split up the
8601 comparisons and join them with a TRUTH_ANDIF_EXPR or TRUTH_ORIF_EXPR.
8602 This may prevent needless evaluations. */
8603 if ((code == EQ_EXPR || code == NE_EXPR)
8604 && TREE_CODE (TREE_TYPE (arg0)) == COMPLEX_TYPE
8605 && (TREE_CODE (arg0) == COMPLEX_EXPR
8606 || TREE_CODE (arg1) == COMPLEX_EXPR
8607 || TREE_CODE (arg0) == COMPLEX_CST
8608 || TREE_CODE (arg1) == COMPLEX_CST))
8610 tree subtype = TREE_TYPE (TREE_TYPE (arg0));
8611 tree real0, imag0, real1, imag1;
8613 arg0 = save_expr (arg0);
8614 arg1 = save_expr (arg1);
8615 real0 = fold (build1 (REALPART_EXPR, subtype, arg0));
8616 imag0 = fold (build1 (IMAGPART_EXPR, subtype, arg0));
8617 real1 = fold (build1 (REALPART_EXPR, subtype, arg1));
8618 imag1 = fold (build1 (IMAGPART_EXPR, subtype, arg1));
8620 return fold (build2 ((code == EQ_EXPR ? TRUTH_ANDIF_EXPR
8621 : TRUTH_ORIF_EXPR),
8622 type,
8623 fold (build2 (code, type, real0, real1)),
8624 fold (build2 (code, type, imag0, imag1))));
8627 /* Optimize comparisons of strlen vs zero to a compare of the
8628 first character of the string vs zero. To wit,
8629 strlen(ptr) == 0 => *ptr == 0
8630 strlen(ptr) != 0 => *ptr != 0
8631 Other cases should reduce to one of these two (or a constant)
8632 due to the return value of strlen being unsigned. */
8633 if ((code == EQ_EXPR || code == NE_EXPR)
8634 && integer_zerop (arg1)
8635 && TREE_CODE (arg0) == CALL_EXPR)
8637 tree fndecl = get_callee_fndecl (arg0);
8638 tree arglist;
8640 if (fndecl
8641 && DECL_BUILT_IN (fndecl)
8642 && DECL_BUILT_IN_CLASS (fndecl) != BUILT_IN_MD
8643 && DECL_FUNCTION_CODE (fndecl) == BUILT_IN_STRLEN
8644 && (arglist = TREE_OPERAND (arg0, 1))
8645 && TREE_CODE (TREE_TYPE (TREE_VALUE (arglist))) == POINTER_TYPE
8646 && ! TREE_CHAIN (arglist))
8647 return fold (build2 (code, type,
8648 build1 (INDIRECT_REF, char_type_node,
8649 TREE_VALUE (arglist)),
8650 fold_convert (char_type_node,
8651 integer_zero_node)));
8654 /* We can fold X/C1 op C2 where C1 and C2 are integer constants
8655 into a single range test. */
8656 if (TREE_CODE (arg0) == TRUNC_DIV_EXPR
8657 && TREE_CODE (arg1) == INTEGER_CST
8658 && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST
8659 && !integer_zerop (TREE_OPERAND (arg0, 1))
8660 && !TREE_OVERFLOW (TREE_OPERAND (arg0, 1))
8661 && !TREE_OVERFLOW (arg1))
8663 t1 = fold_div_compare (code, type, arg0, arg1);
8664 if (t1 != NULL_TREE)
8665 return t1;
8668 if ((code == EQ_EXPR || code == NE_EXPR)
8669 && !TREE_SIDE_EFFECTS (arg0)
8670 && integer_zerop (arg1)
8671 && tree_expr_nonzero_p (arg0))
8672 return constant_boolean_node (code==NE_EXPR, type);
8674 t1 = fold_relational_const (code, type, arg0, arg1);
8675 return t1 == NULL_TREE ? t : t1;
8677 case UNORDERED_EXPR:
8678 case ORDERED_EXPR:
8679 case UNLT_EXPR:
8680 case UNLE_EXPR:
8681 case UNGT_EXPR:
8682 case UNGE_EXPR:
8683 case UNEQ_EXPR:
8684 case LTGT_EXPR:
8685 if (TREE_CODE (arg0) == REAL_CST && TREE_CODE (arg1) == REAL_CST)
8687 t1 = fold_relational_const (code, type, arg0, arg1);
8688 if (t1 != NULL_TREE)
8689 return t1;
8692 /* If the first operand is NaN, the result is constant. */
8693 if (TREE_CODE (arg0) == REAL_CST
8694 && REAL_VALUE_ISNAN (TREE_REAL_CST (arg0))
8695 && (code != LTGT_EXPR || ! flag_trapping_math))
8697 t1 = (code == ORDERED_EXPR || code == LTGT_EXPR)
8698 ? integer_zero_node
8699 : integer_one_node;
8700 return omit_one_operand (type, t1, arg1);
8703 /* If the second operand is NaN, the result is constant. */
8704 if (TREE_CODE (arg1) == REAL_CST
8705 && REAL_VALUE_ISNAN (TREE_REAL_CST (arg1))
8706 && (code != LTGT_EXPR || ! flag_trapping_math))
8708 t1 = (code == ORDERED_EXPR || code == LTGT_EXPR)
8709 ? integer_zero_node
8710 : integer_one_node;
8711 return omit_one_operand (type, t1, arg0);
8714 /* Simplify unordered comparison of something with itself. */
8715 if ((code == UNLE_EXPR || code == UNGE_EXPR || code == UNEQ_EXPR)
8716 && operand_equal_p (arg0, arg1, 0))
8717 return constant_boolean_node (1, type);
8719 if (code == LTGT_EXPR
8720 && !flag_trapping_math
8721 && operand_equal_p (arg0, arg1, 0))
8722 return constant_boolean_node (0, type);
8724 /* Fold (double)float1 CMP (double)float2 into float1 CMP float2. */
8726 tree targ0 = strip_float_extensions (arg0);
8727 tree targ1 = strip_float_extensions (arg1);
8728 tree newtype = TREE_TYPE (targ0);
8730 if (TYPE_PRECISION (TREE_TYPE (targ1)) > TYPE_PRECISION (newtype))
8731 newtype = TREE_TYPE (targ1);
8733 if (TYPE_PRECISION (newtype) < TYPE_PRECISION (TREE_TYPE (arg0)))
8734 return fold (build2 (code, type, fold_convert (newtype, targ0),
8735 fold_convert (newtype, targ1)));
8738 return t;
8740 case COND_EXPR:
8741 /* Pedantic ANSI C says that a conditional expression is never an lvalue,
8742 so all simple results must be passed through pedantic_non_lvalue. */
8743 if (TREE_CODE (arg0) == INTEGER_CST)
8745 tem = TREE_OPERAND (t, (integer_zerop (arg0) ? 2 : 1));
8746 /* Only optimize constant conditions when the selected branch
8747 has the same type as the COND_EXPR. This avoids optimizing
8748 away "c ? x : throw", where the throw has a void type. */
8749 if (! VOID_TYPE_P (TREE_TYPE (tem))
8750 || VOID_TYPE_P (type))
8751 return pedantic_non_lvalue (tem);
8752 return t;
8754 if (operand_equal_p (arg1, TREE_OPERAND (t, 2), 0))
8755 return pedantic_omit_one_operand (type, arg1, arg0);
8757 /* If we have A op B ? A : C, we may be able to convert this to a
8758 simpler expression, depending on the operation and the values
8759 of B and C. Signed zeros prevent all of these transformations,
8760 for reasons given above each one.
8762 Also try swapping the arguments and inverting the conditional. */
8763 if (TREE_CODE_CLASS (TREE_CODE (arg0)) == '<'
8764 && operand_equal_for_comparison_p (TREE_OPERAND (arg0, 0),
8765 arg1, TREE_OPERAND (arg0, 1))
8766 && !HONOR_SIGNED_ZEROS (TYPE_MODE (TREE_TYPE (arg1))))
8768 tem = fold_cond_expr_with_comparison (type, arg0,
8769 TREE_OPERAND (t, 1),
8770 TREE_OPERAND (t, 2));
8771 if (tem)
8772 return tem;
8775 if (TREE_CODE_CLASS (TREE_CODE (arg0)) == '<'
8776 && operand_equal_for_comparison_p (TREE_OPERAND (arg0, 0),
8777 TREE_OPERAND (t, 2),
8778 TREE_OPERAND (arg0, 1))
8779 && !HONOR_SIGNED_ZEROS (TYPE_MODE (TREE_TYPE (TREE_OPERAND (t, 2)))))
8781 tem = invert_truthvalue (arg0);
8782 if (TREE_CODE_CLASS (TREE_CODE (tem)) == '<')
8784 tem = fold_cond_expr_with_comparison (type, tem,
8785 TREE_OPERAND (t, 2),
8786 TREE_OPERAND (t, 1));
8787 if (tem)
8788 return tem;
8792 /* If the second operand is simpler than the third, swap them
8793 since that produces better jump optimization results. */
8794 if (tree_swap_operands_p (TREE_OPERAND (t, 1),
8795 TREE_OPERAND (t, 2), false))
8797 /* See if this can be inverted. If it can't, possibly because
8798 it was a floating-point inequality comparison, don't do
8799 anything. */
8800 tem = invert_truthvalue (arg0);
8802 if (TREE_CODE (tem) != TRUTH_NOT_EXPR)
8803 return fold (build3 (code, type, tem,
8804 TREE_OPERAND (t, 2), TREE_OPERAND (t, 1)));
8807 /* Convert A ? 1 : 0 to simply A. */
8808 if (integer_onep (TREE_OPERAND (t, 1))
8809 && integer_zerop (TREE_OPERAND (t, 2))
8810 /* If we try to convert TREE_OPERAND (t, 0) to our type, the
8811 call to fold will try to move the conversion inside
8812 a COND, which will recurse. In that case, the COND_EXPR
8813 is probably the best choice, so leave it alone. */
8814 && type == TREE_TYPE (arg0))
8815 return pedantic_non_lvalue (arg0);
8817 /* Convert A ? 0 : 1 to !A. This prefers the use of NOT_EXPR
8818 over COND_EXPR in cases such as floating point comparisons. */
8819 if (integer_zerop (TREE_OPERAND (t, 1))
8820 && integer_onep (TREE_OPERAND (t, 2))
8821 && truth_value_p (TREE_CODE (arg0)))
8822 return pedantic_non_lvalue (fold_convert (type,
8823 invert_truthvalue (arg0)));
8825 /* A < 0 ? <sign bit of A> : 0 is simply (A & <sign bit of A>). */
8826 if (TREE_CODE (arg0) == LT_EXPR
8827 && integer_zerop (TREE_OPERAND (arg0, 1))
8828 && integer_zerop (TREE_OPERAND (t, 2))
8829 && (tem = sign_bit_p (TREE_OPERAND (arg0, 0), arg1)))
8830 return fold_convert (type, fold (build2 (BIT_AND_EXPR,
8831 TREE_TYPE (tem), tem, arg1)));
8833 /* (A >> N) & 1 ? (1 << N) : 0 is simply A & (1 << N). A & 1 was
8834 already handled above. */
8835 if (TREE_CODE (arg0) == BIT_AND_EXPR
8836 && integer_onep (TREE_OPERAND (arg0, 1))
8837 && integer_zerop (TREE_OPERAND (t, 2))
8838 && integer_pow2p (arg1))
8840 tree tem = TREE_OPERAND (arg0, 0);
8841 STRIP_NOPS (tem);
8842 if (TREE_CODE (tem) == RSHIFT_EXPR
8843 && TREE_CODE (TREE_OPERAND (tem, 1)) == INTEGER_CST
8844 && (unsigned HOST_WIDE_INT) tree_log2 (arg1) ==
8845 TREE_INT_CST_LOW (TREE_OPERAND (tem, 1)))
8846 return fold (build2 (BIT_AND_EXPR, type,
8847 TREE_OPERAND (tem, 0), arg1));
8850 /* A & N ? N : 0 is simply A & N if N is a power of two. This
8851 is probably obsolete because the first operand should be a
8852 truth value (that's why we have the two cases above), but let's
8853 leave it in until we can confirm this for all front-ends. */
8854 if (integer_zerop (TREE_OPERAND (t, 2))
8855 && TREE_CODE (arg0) == NE_EXPR
8856 && integer_zerop (TREE_OPERAND (arg0, 1))
8857 && integer_pow2p (arg1)
8858 && TREE_CODE (TREE_OPERAND (arg0, 0)) == BIT_AND_EXPR
8859 && operand_equal_p (TREE_OPERAND (TREE_OPERAND (arg0, 0), 1),
8860 arg1, OEP_ONLY_CONST))
8861 return pedantic_non_lvalue (fold_convert (type,
8862 TREE_OPERAND (arg0, 0)));
8864 /* Convert A ? B : 0 into A && B if A and B are truth values. */
8865 if (integer_zerop (TREE_OPERAND (t, 2))
8866 && truth_value_p (TREE_CODE (arg0))
8867 && truth_value_p (TREE_CODE (arg1)))
8868 return fold (build2 (TRUTH_ANDIF_EXPR, type, arg0, arg1));
8870 /* Convert A ? B : 1 into !A || B if A and B are truth values. */
8871 if (integer_onep (TREE_OPERAND (t, 2))
8872 && truth_value_p (TREE_CODE (arg0))
8873 && truth_value_p (TREE_CODE (arg1)))
8875 /* Only perform transformation if ARG0 is easily inverted. */
8876 tem = invert_truthvalue (arg0);
8877 if (TREE_CODE (tem) != TRUTH_NOT_EXPR)
8878 return fold (build2 (TRUTH_ORIF_EXPR, type, tem, arg1));
8881 /* Convert A ? 0 : B into !A && B if A and B are truth values. */
8882 if (integer_zerop (arg1)
8883 && truth_value_p (TREE_CODE (arg0))
8884 && truth_value_p (TREE_CODE (TREE_OPERAND (t, 2))))
8886 /* Only perform transformation if ARG0 is easily inverted. */
8887 tem = invert_truthvalue (arg0);
8888 if (TREE_CODE (tem) != TRUTH_NOT_EXPR)
8889 return fold (build2 (TRUTH_ANDIF_EXPR, type, tem,
8890 TREE_OPERAND (t, 2)));
8893 /* Convert A ? 1 : B into A || B if A and B are truth values. */
8894 if (integer_onep (arg1)
8895 && truth_value_p (TREE_CODE (arg0))
8896 && truth_value_p (TREE_CODE (TREE_OPERAND (t, 2))))
8897 return fold (build2 (TRUTH_ORIF_EXPR, type, arg0,
8898 TREE_OPERAND (t, 2)));
8900 return t;
8902 case COMPOUND_EXPR:
8903 /* When pedantic, a compound expression can be neither an lvalue
8904 nor an integer constant expression. */
8905 if (TREE_SIDE_EFFECTS (arg0) || TREE_CONSTANT (arg1))
8906 return t;
8907 /* Don't let (0, 0) be null pointer constant. */
8908 tem = integer_zerop (arg1) ? build1 (NOP_EXPR, type, arg1)
8909 : fold_convert (type, arg1);
8910 return pedantic_non_lvalue (tem);
8912 case COMPLEX_EXPR:
8913 if (wins)
8914 return build_complex (type, arg0, arg1);
8915 return t;
8917 case REALPART_EXPR:
8918 if (TREE_CODE (TREE_TYPE (arg0)) != COMPLEX_TYPE)
8919 return t;
8920 else if (TREE_CODE (arg0) == COMPLEX_EXPR)
8921 return omit_one_operand (type, TREE_OPERAND (arg0, 0),
8922 TREE_OPERAND (arg0, 1));
8923 else if (TREE_CODE (arg0) == COMPLEX_CST)
8924 return TREE_REALPART (arg0);
8925 else if (TREE_CODE (arg0) == PLUS_EXPR || TREE_CODE (arg0) == MINUS_EXPR)
8926 return fold (build2 (TREE_CODE (arg0), type,
8927 fold (build1 (REALPART_EXPR, type,
8928 TREE_OPERAND (arg0, 0))),
8929 fold (build1 (REALPART_EXPR, type,
8930 TREE_OPERAND (arg0, 1)))));
8931 return t;
8933 case IMAGPART_EXPR:
8934 if (TREE_CODE (TREE_TYPE (arg0)) != COMPLEX_TYPE)
8935 return fold_convert (type, integer_zero_node);
8936 else if (TREE_CODE (arg0) == COMPLEX_EXPR)
8937 return omit_one_operand (type, TREE_OPERAND (arg0, 1),
8938 TREE_OPERAND (arg0, 0));
8939 else if (TREE_CODE (arg0) == COMPLEX_CST)
8940 return TREE_IMAGPART (arg0);
8941 else if (TREE_CODE (arg0) == PLUS_EXPR || TREE_CODE (arg0) == MINUS_EXPR)
8942 return fold (build2 (TREE_CODE (arg0), type,
8943 fold (build1 (IMAGPART_EXPR, type,
8944 TREE_OPERAND (arg0, 0))),
8945 fold (build1 (IMAGPART_EXPR, type,
8946 TREE_OPERAND (arg0, 1)))));
8947 return t;
8949 case CLEANUP_POINT_EXPR:
8950 /* Pull arithmetic ops out of the CLEANUP_POINT_EXPR where
8951 appropriate. */
8952 if (! has_cleanups (arg0))
8953 return TREE_OPERAND (t, 0);
8956 enum tree_code code0 = TREE_CODE (arg0);
8957 int kind0 = TREE_CODE_CLASS (code0);
8959 if (kind0 == '1' || code0 == TRUTH_NOT_EXPR)
8961 tree arg00 = TREE_OPERAND (arg0, 0);
8962 return fold (build1 (code0, type,
8963 fold (build1 (CLEANUP_POINT_EXPR,
8964 TREE_TYPE (arg00), arg00))));
8967 if (kind0 == '<' || kind0 == '2'
8968 || code0 == TRUTH_ANDIF_EXPR || code0 == TRUTH_ORIF_EXPR
8969 || code0 == TRUTH_AND_EXPR || code0 == TRUTH_OR_EXPR
8970 || code0 == TRUTH_XOR_EXPR)
8972 tree arg00 = TREE_OPERAND (arg0, 0);
8973 tree arg01 = TREE_OPERAND (arg0, 1);
8975 if (TREE_CONSTANT (arg00)
8976 || ((code0 == TRUTH_ANDIF_EXPR || code0 == TRUTH_ORIF_EXPR)
8977 && ! has_cleanups (arg00)))
8978 return fold (build2 (code0, type, arg00,
8979 fold (build1 (CLEANUP_POINT_EXPR,
8980 TREE_TYPE (arg01), arg01))));
8982 if (TREE_CONSTANT (arg01))
8983 return fold (build2 (code0, type,
8984 fold (build1 (CLEANUP_POINT_EXPR,
8985 TREE_TYPE (arg00), arg00)),
8986 arg01));
8989 return t;
8992 case CALL_EXPR:
8993 /* Check for a built-in function. */
8994 if (TREE_CODE (TREE_OPERAND (t, 0)) == ADDR_EXPR
8995 && (TREE_CODE (TREE_OPERAND (TREE_OPERAND (t, 0), 0))
8996 == FUNCTION_DECL)
8997 && DECL_BUILT_IN (TREE_OPERAND (TREE_OPERAND (t, 0), 0)))
8999 tree tmp = fold_builtin (t, false);
9000 if (tmp)
9001 return tmp;
9003 return t;
9005 default:
9006 return t;
9007 } /* switch (code) */
9010 #ifdef ENABLE_FOLD_CHECKING
9011 #undef fold
9013 static void fold_checksum_tree (tree, struct md5_ctx *, htab_t);
9014 static void fold_check_failed (tree, tree);
9015 void print_fold_checksum (tree);
9017 /* When --enable-checking=fold, compute a digest of expr before
9018 and after actual fold call to see if fold did not accidentally
9019 change original expr. */
9021 tree
9022 fold (tree expr)
9024 tree ret;
9025 struct md5_ctx ctx;
9026 unsigned char checksum_before[16], checksum_after[16];
9027 htab_t ht;
9029 ht = htab_create (32, htab_hash_pointer, htab_eq_pointer, NULL);
9030 md5_init_ctx (&ctx);
9031 fold_checksum_tree (expr, &ctx, ht);
9032 md5_finish_ctx (&ctx, checksum_before);
9033 htab_empty (ht);
9035 ret = fold_1 (expr);
9037 md5_init_ctx (&ctx);
9038 fold_checksum_tree (expr, &ctx, ht);
9039 md5_finish_ctx (&ctx, checksum_after);
9040 htab_delete (ht);
9042 if (memcmp (checksum_before, checksum_after, 16))
9043 fold_check_failed (expr, ret);
9045 return ret;
9048 void
9049 print_fold_checksum (tree expr)
9051 struct md5_ctx ctx;
9052 unsigned char checksum[16], cnt;
9053 htab_t ht;
9055 ht = htab_create (32, htab_hash_pointer, htab_eq_pointer, NULL);
9056 md5_init_ctx (&ctx);
9057 fold_checksum_tree (expr, &ctx, ht);
9058 md5_finish_ctx (&ctx, checksum);
9059 htab_delete (ht);
9060 for (cnt = 0; cnt < 16; ++cnt)
9061 fprintf (stderr, "%02x", checksum[cnt]);
9062 putc ('\n', stderr);
9065 static void
9066 fold_check_failed (tree expr ATTRIBUTE_UNUSED, tree ret ATTRIBUTE_UNUSED)
9068 internal_error ("fold check: original tree changed by fold");
9071 static void
9072 fold_checksum_tree (tree expr, struct md5_ctx *ctx, htab_t ht)
9074 void **slot;
9075 enum tree_code code;
9076 char buf[sizeof (struct tree_decl)];
9077 int i, len;
9079 gcc_assert ((sizeof (struct tree_exp) + 5 * sizeof (tree)
9080 <= sizeof (struct tree_decl))
9081 && sizeof (struct tree_type) <= sizeof (struct tree_decl));
9082 if (expr == NULL)
9083 return;
9084 slot = htab_find_slot (ht, expr, INSERT);
9085 if (*slot != NULL)
9086 return;
9087 *slot = expr;
9088 code = TREE_CODE (expr);
9089 if (TREE_CODE_CLASS (code) == 'd' && DECL_ASSEMBLER_NAME_SET_P (expr))
9091 /* Allow DECL_ASSEMBLER_NAME to be modified. */
9092 memcpy (buf, expr, tree_size (expr));
9093 expr = (tree) buf;
9094 SET_DECL_ASSEMBLER_NAME (expr, NULL);
9096 else if (TREE_CODE_CLASS (code) == 't'
9097 && (TYPE_POINTER_TO (expr) || TYPE_REFERENCE_TO (expr)))
9099 /* Allow TYPE_POINTER_TO and TYPE_REFERENCE_TO to be modified. */
9100 memcpy (buf, expr, tree_size (expr));
9101 expr = (tree) buf;
9102 TYPE_POINTER_TO (expr) = NULL;
9103 TYPE_REFERENCE_TO (expr) = NULL;
9105 md5_process_bytes (expr, tree_size (expr), ctx);
9106 fold_checksum_tree (TREE_TYPE (expr), ctx, ht);
9107 if (TREE_CODE_CLASS (code) != 't' && TREE_CODE_CLASS (code) != 'd')
9108 fold_checksum_tree (TREE_CHAIN (expr), ctx, ht);
9109 switch (TREE_CODE_CLASS (code))
9111 case 'c':
9112 switch (code)
9114 case STRING_CST:
9115 md5_process_bytes (TREE_STRING_POINTER (expr),
9116 TREE_STRING_LENGTH (expr), ctx);
9117 break;
9118 case COMPLEX_CST:
9119 fold_checksum_tree (TREE_REALPART (expr), ctx, ht);
9120 fold_checksum_tree (TREE_IMAGPART (expr), ctx, ht);
9121 break;
9122 case VECTOR_CST:
9123 fold_checksum_tree (TREE_VECTOR_CST_ELTS (expr), ctx, ht);
9124 break;
9125 default:
9126 break;
9128 break;
9129 case 'x':
9130 switch (code)
9132 case TREE_LIST:
9133 fold_checksum_tree (TREE_PURPOSE (expr), ctx, ht);
9134 fold_checksum_tree (TREE_VALUE (expr), ctx, ht);
9135 break;
9136 case TREE_VEC:
9137 for (i = 0; i < TREE_VEC_LENGTH (expr); ++i)
9138 fold_checksum_tree (TREE_VEC_ELT (expr, i), ctx, ht);
9139 break;
9140 default:
9141 break;
9143 break;
9144 case 'e':
9145 case 'r':
9146 case '<':
9147 case '1':
9148 case '2':
9149 case 's':
9150 len = first_rtl_op (code);
9151 for (i = 0; i < len; ++i)
9152 fold_checksum_tree (TREE_OPERAND (expr, i), ctx, ht);
9153 break;
9154 case 'd':
9155 fold_checksum_tree (DECL_SIZE (expr), ctx, ht);
9156 fold_checksum_tree (DECL_SIZE_UNIT (expr), ctx, ht);
9157 fold_checksum_tree (DECL_NAME (expr), ctx, ht);
9158 fold_checksum_tree (DECL_CONTEXT (expr), ctx, ht);
9159 fold_checksum_tree (DECL_ARGUMENTS (expr), ctx, ht);
9160 fold_checksum_tree (DECL_RESULT_FLD (expr), ctx, ht);
9161 fold_checksum_tree (DECL_INITIAL (expr), ctx, ht);
9162 fold_checksum_tree (DECL_ABSTRACT_ORIGIN (expr), ctx, ht);
9163 fold_checksum_tree (DECL_SECTION_NAME (expr), ctx, ht);
9164 fold_checksum_tree (DECL_ATTRIBUTES (expr), ctx, ht);
9165 fold_checksum_tree (DECL_VINDEX (expr), ctx, ht);
9166 break;
9167 case 't':
9168 if (TREE_CODE (expr) == ENUMERAL_TYPE)
9169 fold_checksum_tree (TYPE_VALUES (expr), ctx, ht);
9170 fold_checksum_tree (TYPE_SIZE (expr), ctx, ht);
9171 fold_checksum_tree (TYPE_SIZE_UNIT (expr), ctx, ht);
9172 fold_checksum_tree (TYPE_ATTRIBUTES (expr), ctx, ht);
9173 fold_checksum_tree (TYPE_NAME (expr), ctx, ht);
9174 if (INTEGRAL_TYPE_P (expr)
9175 || SCALAR_FLOAT_TYPE_P (expr))
9177 fold_checksum_tree (TYPE_MIN_VALUE (expr), ctx, ht);
9178 fold_checksum_tree (TYPE_MAX_VALUE (expr), ctx, ht);
9180 fold_checksum_tree (TYPE_MAIN_VARIANT (expr), ctx, ht);
9181 fold_checksum_tree (TYPE_BINFO (expr), ctx, ht);
9182 fold_checksum_tree (TYPE_CONTEXT (expr), ctx, ht);
9183 break;
9184 default:
9185 break;
9189 #endif
9191 /* Perform constant folding and related simplification of initializer
9192 expression EXPR. This behaves identically to "fold" but ignores
9193 potential run-time traps and exceptions that fold must preserve. */
9195 tree
9196 fold_initializer (tree expr)
9198 int saved_signaling_nans = flag_signaling_nans;
9199 int saved_trapping_math = flag_trapping_math;
9200 int saved_trapv = flag_trapv;
9201 tree result;
9203 flag_signaling_nans = 0;
9204 flag_trapping_math = 0;
9205 flag_trapv = 0;
9207 result = fold (expr);
9209 flag_signaling_nans = saved_signaling_nans;
9210 flag_trapping_math = saved_trapping_math;
9211 flag_trapv = saved_trapv;
9213 return result;
9216 /* Determine if first argument is a multiple of second argument. Return 0 if
9217 it is not, or we cannot easily determined it to be.
9219 An example of the sort of thing we care about (at this point; this routine
9220 could surely be made more general, and expanded to do what the *_DIV_EXPR's
9221 fold cases do now) is discovering that
9223 SAVE_EXPR (I) * SAVE_EXPR (J * 8)
9225 is a multiple of
9227 SAVE_EXPR (J * 8)
9229 when we know that the two SAVE_EXPR (J * 8) nodes are the same node.
9231 This code also handles discovering that
9233 SAVE_EXPR (I) * SAVE_EXPR (J * 8)
9235 is a multiple of 8 so we don't have to worry about dealing with a
9236 possible remainder.
9238 Note that we *look* inside a SAVE_EXPR only to determine how it was
9239 calculated; it is not safe for fold to do much of anything else with the
9240 internals of a SAVE_EXPR, since it cannot know when it will be evaluated
9241 at run time. For example, the latter example above *cannot* be implemented
9242 as SAVE_EXPR (I) * J or any variant thereof, since the value of J at
9243 evaluation time of the original SAVE_EXPR is not necessarily the same at
9244 the time the new expression is evaluated. The only optimization of this
9245 sort that would be valid is changing
9247 SAVE_EXPR (I) * SAVE_EXPR (SAVE_EXPR (J) * 8)
9249 divided by 8 to
9251 SAVE_EXPR (I) * SAVE_EXPR (J)
9253 (where the same SAVE_EXPR (J) is used in the original and the
9254 transformed version). */
9256 static int
9257 multiple_of_p (tree type, tree top, tree bottom)
9259 if (operand_equal_p (top, bottom, 0))
9260 return 1;
9262 if (TREE_CODE (type) != INTEGER_TYPE)
9263 return 0;
9265 switch (TREE_CODE (top))
9267 case MULT_EXPR:
9268 return (multiple_of_p (type, TREE_OPERAND (top, 0), bottom)
9269 || multiple_of_p (type, TREE_OPERAND (top, 1), bottom));
9271 case PLUS_EXPR:
9272 case MINUS_EXPR:
9273 return (multiple_of_p (type, TREE_OPERAND (top, 0), bottom)
9274 && multiple_of_p (type, TREE_OPERAND (top, 1), bottom));
9276 case LSHIFT_EXPR:
9277 if (TREE_CODE (TREE_OPERAND (top, 1)) == INTEGER_CST)
9279 tree op1, t1;
9281 op1 = TREE_OPERAND (top, 1);
9282 /* const_binop may not detect overflow correctly,
9283 so check for it explicitly here. */
9284 if (TYPE_PRECISION (TREE_TYPE (size_one_node))
9285 > TREE_INT_CST_LOW (op1)
9286 && TREE_INT_CST_HIGH (op1) == 0
9287 && 0 != (t1 = fold_convert (type,
9288 const_binop (LSHIFT_EXPR,
9289 size_one_node,
9290 op1, 0)))
9291 && ! TREE_OVERFLOW (t1))
9292 return multiple_of_p (type, t1, bottom);
9294 return 0;
9296 case NOP_EXPR:
9297 /* Can't handle conversions from non-integral or wider integral type. */
9298 if ((TREE_CODE (TREE_TYPE (TREE_OPERAND (top, 0))) != INTEGER_TYPE)
9299 || (TYPE_PRECISION (type)
9300 < TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (top, 0)))))
9301 return 0;
9303 /* .. fall through ... */
9305 case SAVE_EXPR:
9306 return multiple_of_p (type, TREE_OPERAND (top, 0), bottom);
9308 case INTEGER_CST:
9309 if (TREE_CODE (bottom) != INTEGER_CST
9310 || (TYPE_UNSIGNED (type)
9311 && (tree_int_cst_sgn (top) < 0
9312 || tree_int_cst_sgn (bottom) < 0)))
9313 return 0;
9314 return integer_zerop (const_binop (TRUNC_MOD_EXPR,
9315 top, bottom, 0));
9317 default:
9318 return 0;
9322 /* Return true if `t' is known to be non-negative. */
9325 tree_expr_nonnegative_p (tree t)
9327 switch (TREE_CODE (t))
9329 case ABS_EXPR:
9330 return 1;
9332 case INTEGER_CST:
9333 return tree_int_cst_sgn (t) >= 0;
9335 case REAL_CST:
9336 return ! REAL_VALUE_NEGATIVE (TREE_REAL_CST (t));
9338 case PLUS_EXPR:
9339 if (FLOAT_TYPE_P (TREE_TYPE (t)))
9340 return tree_expr_nonnegative_p (TREE_OPERAND (t, 0))
9341 && tree_expr_nonnegative_p (TREE_OPERAND (t, 1));
9343 /* zero_extend(x) + zero_extend(y) is non-negative if x and y are
9344 both unsigned and at least 2 bits shorter than the result. */
9345 if (TREE_CODE (TREE_TYPE (t)) == INTEGER_TYPE
9346 && TREE_CODE (TREE_OPERAND (t, 0)) == NOP_EXPR
9347 && TREE_CODE (TREE_OPERAND (t, 1)) == NOP_EXPR)
9349 tree inner1 = TREE_TYPE (TREE_OPERAND (TREE_OPERAND (t, 0), 0));
9350 tree inner2 = TREE_TYPE (TREE_OPERAND (TREE_OPERAND (t, 1), 0));
9351 if (TREE_CODE (inner1) == INTEGER_TYPE && TYPE_UNSIGNED (inner1)
9352 && TREE_CODE (inner2) == INTEGER_TYPE && TYPE_UNSIGNED (inner2))
9354 unsigned int prec = MAX (TYPE_PRECISION (inner1),
9355 TYPE_PRECISION (inner2)) + 1;
9356 return prec < TYPE_PRECISION (TREE_TYPE (t));
9359 break;
9361 case MULT_EXPR:
9362 if (FLOAT_TYPE_P (TREE_TYPE (t)))
9364 /* x * x for floating point x is always non-negative. */
9365 if (operand_equal_p (TREE_OPERAND (t, 0), TREE_OPERAND (t, 1), 0))
9366 return 1;
9367 return tree_expr_nonnegative_p (TREE_OPERAND (t, 0))
9368 && tree_expr_nonnegative_p (TREE_OPERAND (t, 1));
9371 /* zero_extend(x) * zero_extend(y) is non-negative if x and y are
9372 both unsigned and their total bits is shorter than the result. */
9373 if (TREE_CODE (TREE_TYPE (t)) == INTEGER_TYPE
9374 && TREE_CODE (TREE_OPERAND (t, 0)) == NOP_EXPR
9375 && TREE_CODE (TREE_OPERAND (t, 1)) == NOP_EXPR)
9377 tree inner1 = TREE_TYPE (TREE_OPERAND (TREE_OPERAND (t, 0), 0));
9378 tree inner2 = TREE_TYPE (TREE_OPERAND (TREE_OPERAND (t, 1), 0));
9379 if (TREE_CODE (inner1) == INTEGER_TYPE && TYPE_UNSIGNED (inner1)
9380 && TREE_CODE (inner2) == INTEGER_TYPE && TYPE_UNSIGNED (inner2))
9381 return TYPE_PRECISION (inner1) + TYPE_PRECISION (inner2)
9382 < TYPE_PRECISION (TREE_TYPE (t));
9384 return 0;
9386 case TRUNC_DIV_EXPR:
9387 case CEIL_DIV_EXPR:
9388 case FLOOR_DIV_EXPR:
9389 case ROUND_DIV_EXPR:
9390 return tree_expr_nonnegative_p (TREE_OPERAND (t, 0))
9391 && tree_expr_nonnegative_p (TREE_OPERAND (t, 1));
9393 case TRUNC_MOD_EXPR:
9394 case CEIL_MOD_EXPR:
9395 case FLOOR_MOD_EXPR:
9396 case ROUND_MOD_EXPR:
9397 return tree_expr_nonnegative_p (TREE_OPERAND (t, 0));
9399 case RDIV_EXPR:
9400 return tree_expr_nonnegative_p (TREE_OPERAND (t, 0))
9401 && tree_expr_nonnegative_p (TREE_OPERAND (t, 1));
9403 case BIT_AND_EXPR:
9404 return tree_expr_nonnegative_p (TREE_OPERAND (t, 1))
9405 || tree_expr_nonnegative_p (TREE_OPERAND (t, 0));
9406 case BIT_IOR_EXPR:
9407 case BIT_XOR_EXPR:
9408 return tree_expr_nonnegative_p (TREE_OPERAND (t, 0))
9409 && tree_expr_nonnegative_p (TREE_OPERAND (t, 1));
9411 case NOP_EXPR:
9413 tree inner_type = TREE_TYPE (TREE_OPERAND (t, 0));
9414 tree outer_type = TREE_TYPE (t);
9416 if (TREE_CODE (outer_type) == REAL_TYPE)
9418 if (TREE_CODE (inner_type) == REAL_TYPE)
9419 return tree_expr_nonnegative_p (TREE_OPERAND (t, 0));
9420 if (TREE_CODE (inner_type) == INTEGER_TYPE)
9422 if (TYPE_UNSIGNED (inner_type))
9423 return 1;
9424 return tree_expr_nonnegative_p (TREE_OPERAND (t, 0));
9427 else if (TREE_CODE (outer_type) == INTEGER_TYPE)
9429 if (TREE_CODE (inner_type) == REAL_TYPE)
9430 return tree_expr_nonnegative_p (TREE_OPERAND (t,0));
9431 if (TREE_CODE (inner_type) == INTEGER_TYPE)
9432 return TYPE_PRECISION (inner_type) < TYPE_PRECISION (outer_type)
9433 && TYPE_UNSIGNED (inner_type);
9436 break;
9438 case COND_EXPR:
9439 return tree_expr_nonnegative_p (TREE_OPERAND (t, 1))
9440 && tree_expr_nonnegative_p (TREE_OPERAND (t, 2));
9441 case COMPOUND_EXPR:
9442 return tree_expr_nonnegative_p (TREE_OPERAND (t, 1));
9443 case MIN_EXPR:
9444 return tree_expr_nonnegative_p (TREE_OPERAND (t, 0))
9445 && tree_expr_nonnegative_p (TREE_OPERAND (t, 1));
9446 case MAX_EXPR:
9447 return tree_expr_nonnegative_p (TREE_OPERAND (t, 0))
9448 || tree_expr_nonnegative_p (TREE_OPERAND (t, 1));
9449 case MODIFY_EXPR:
9450 return tree_expr_nonnegative_p (TREE_OPERAND (t, 1));
9451 case BIND_EXPR:
9452 return tree_expr_nonnegative_p (expr_last (TREE_OPERAND (t, 1)));
9453 case SAVE_EXPR:
9454 return tree_expr_nonnegative_p (TREE_OPERAND (t, 0));
9455 case NON_LVALUE_EXPR:
9456 return tree_expr_nonnegative_p (TREE_OPERAND (t, 0));
9457 case FLOAT_EXPR:
9458 return tree_expr_nonnegative_p (TREE_OPERAND (t, 0));
9460 case TARGET_EXPR:
9462 tree temp = TARGET_EXPR_SLOT (t);
9463 t = TARGET_EXPR_INITIAL (t);
9465 /* If the initializer is non-void, then it's a normal expression
9466 that will be assigned to the slot. */
9467 if (!VOID_TYPE_P (t))
9468 return tree_expr_nonnegative_p (t);
9470 /* Otherwise, the initializer sets the slot in some way. One common
9471 way is an assignment statement at the end of the initializer. */
9472 while (1)
9474 if (TREE_CODE (t) == BIND_EXPR)
9475 t = expr_last (BIND_EXPR_BODY (t));
9476 else if (TREE_CODE (t) == TRY_FINALLY_EXPR
9477 || TREE_CODE (t) == TRY_CATCH_EXPR)
9478 t = expr_last (TREE_OPERAND (t, 0));
9479 else if (TREE_CODE (t) == STATEMENT_LIST)
9480 t = expr_last (t);
9481 else
9482 break;
9484 if (TREE_CODE (t) == MODIFY_EXPR
9485 && TREE_OPERAND (t, 0) == temp)
9486 return tree_expr_nonnegative_p (TREE_OPERAND (t, 1));
9488 return 0;
9491 case CALL_EXPR:
9493 tree fndecl = get_callee_fndecl (t);
9494 tree arglist = TREE_OPERAND (t, 1);
9495 if (fndecl
9496 && DECL_BUILT_IN (fndecl)
9497 && DECL_BUILT_IN_CLASS (fndecl) != BUILT_IN_MD)
9498 switch (DECL_FUNCTION_CODE (fndecl))
9500 #define CASE_BUILTIN_F(BUILT_IN_FN) \
9501 case BUILT_IN_FN: case BUILT_IN_FN##F: case BUILT_IN_FN##L:
9502 #define CASE_BUILTIN_I(BUILT_IN_FN) \
9503 case BUILT_IN_FN: case BUILT_IN_FN##L: case BUILT_IN_FN##LL:
9505 CASE_BUILTIN_F (BUILT_IN_ACOS)
9506 CASE_BUILTIN_F (BUILT_IN_ACOSH)
9507 CASE_BUILTIN_F (BUILT_IN_CABS)
9508 CASE_BUILTIN_F (BUILT_IN_COSH)
9509 CASE_BUILTIN_F (BUILT_IN_ERFC)
9510 CASE_BUILTIN_F (BUILT_IN_EXP)
9511 CASE_BUILTIN_F (BUILT_IN_EXP10)
9512 CASE_BUILTIN_F (BUILT_IN_EXP2)
9513 CASE_BUILTIN_F (BUILT_IN_FABS)
9514 CASE_BUILTIN_F (BUILT_IN_FDIM)
9515 CASE_BUILTIN_F (BUILT_IN_FREXP)
9516 CASE_BUILTIN_F (BUILT_IN_HYPOT)
9517 CASE_BUILTIN_F (BUILT_IN_POW10)
9518 CASE_BUILTIN_I (BUILT_IN_FFS)
9519 CASE_BUILTIN_I (BUILT_IN_PARITY)
9520 CASE_BUILTIN_I (BUILT_IN_POPCOUNT)
9521 /* Always true. */
9522 return 1;
9524 CASE_BUILTIN_F (BUILT_IN_SQRT)
9525 /* sqrt(-0.0) is -0.0. */
9526 if (!HONOR_SIGNED_ZEROS (TYPE_MODE (TREE_TYPE (t))))
9527 return 1;
9528 return tree_expr_nonnegative_p (TREE_VALUE (arglist));
9530 CASE_BUILTIN_F (BUILT_IN_ASINH)
9531 CASE_BUILTIN_F (BUILT_IN_ATAN)
9532 CASE_BUILTIN_F (BUILT_IN_ATANH)
9533 CASE_BUILTIN_F (BUILT_IN_CBRT)
9534 CASE_BUILTIN_F (BUILT_IN_CEIL)
9535 CASE_BUILTIN_F (BUILT_IN_ERF)
9536 CASE_BUILTIN_F (BUILT_IN_EXPM1)
9537 CASE_BUILTIN_F (BUILT_IN_FLOOR)
9538 CASE_BUILTIN_F (BUILT_IN_FMOD)
9539 CASE_BUILTIN_F (BUILT_IN_LDEXP)
9540 CASE_BUILTIN_F (BUILT_IN_LLRINT)
9541 CASE_BUILTIN_F (BUILT_IN_LLROUND)
9542 CASE_BUILTIN_F (BUILT_IN_LRINT)
9543 CASE_BUILTIN_F (BUILT_IN_LROUND)
9544 CASE_BUILTIN_F (BUILT_IN_MODF)
9545 CASE_BUILTIN_F (BUILT_IN_NEARBYINT)
9546 CASE_BUILTIN_F (BUILT_IN_POW)
9547 CASE_BUILTIN_F (BUILT_IN_RINT)
9548 CASE_BUILTIN_F (BUILT_IN_ROUND)
9549 CASE_BUILTIN_F (BUILT_IN_SIGNBIT)
9550 CASE_BUILTIN_F (BUILT_IN_SINH)
9551 CASE_BUILTIN_F (BUILT_IN_TANH)
9552 CASE_BUILTIN_F (BUILT_IN_TRUNC)
9553 /* True if the 1st argument is nonnegative. */
9554 return tree_expr_nonnegative_p (TREE_VALUE (arglist));
9556 CASE_BUILTIN_F (BUILT_IN_FMAX)
9557 /* True if the 1st OR 2nd arguments are nonnegative. */
9558 return tree_expr_nonnegative_p (TREE_VALUE (arglist))
9559 || tree_expr_nonnegative_p (TREE_VALUE (TREE_CHAIN (arglist)));
9561 CASE_BUILTIN_F (BUILT_IN_FMIN)
9562 /* True if the 1st AND 2nd arguments are nonnegative. */
9563 return tree_expr_nonnegative_p (TREE_VALUE (arglist))
9564 && tree_expr_nonnegative_p (TREE_VALUE (TREE_CHAIN (arglist)));
9566 CASE_BUILTIN_F (BUILT_IN_COPYSIGN)
9567 /* True if the 2nd argument is nonnegative. */
9568 return tree_expr_nonnegative_p (TREE_VALUE (TREE_CHAIN (arglist)));
9570 default:
9571 break;
9572 #undef CASE_BUILTIN_F
9573 #undef CASE_BUILTIN_I
9577 /* ... fall through ... */
9579 default:
9580 if (truth_value_p (TREE_CODE (t)))
9581 /* Truth values evaluate to 0 or 1, which is nonnegative. */
9582 return 1;
9585 /* We don't know sign of `t', so be conservative and return false. */
9586 return 0;
9589 /* Return true when T is an address and is known to be nonzero.
9590 For floating point we further ensure that T is not denormal.
9591 Similar logic is present in nonzero_address in rtlanal.h */
9593 static bool
9594 tree_expr_nonzero_p (tree t)
9596 tree type = TREE_TYPE (t);
9598 /* Doing something useful for floating point would need more work. */
9599 if (!INTEGRAL_TYPE_P (type) && !POINTER_TYPE_P (type))
9600 return false;
9602 switch (TREE_CODE (t))
9604 case ABS_EXPR:
9605 if (!TYPE_UNSIGNED (type) && !flag_wrapv)
9606 return tree_expr_nonzero_p (TREE_OPERAND (t, 0));
9608 case INTEGER_CST:
9609 /* We used to test for !integer_zerop here. This does not work correctly
9610 if TREE_CONSTANT_OVERFLOW (t). */
9611 return (TREE_INT_CST_LOW (t) != 0
9612 || TREE_INT_CST_HIGH (t) != 0);
9614 case PLUS_EXPR:
9615 if (!TYPE_UNSIGNED (type) && !flag_wrapv)
9617 /* With the presence of negative values it is hard
9618 to say something. */
9619 if (!tree_expr_nonnegative_p (TREE_OPERAND (t, 0))
9620 || !tree_expr_nonnegative_p (TREE_OPERAND (t, 1)))
9621 return false;
9622 /* One of operands must be positive and the other non-negative. */
9623 return (tree_expr_nonzero_p (TREE_OPERAND (t, 0))
9624 || tree_expr_nonzero_p (TREE_OPERAND (t, 1)));
9626 break;
9628 case MULT_EXPR:
9629 if (!TYPE_UNSIGNED (type) && !flag_wrapv)
9631 return (tree_expr_nonzero_p (TREE_OPERAND (t, 0))
9632 && tree_expr_nonzero_p (TREE_OPERAND (t, 1)));
9634 break;
9636 case NOP_EXPR:
9638 tree inner_type = TREE_TYPE (TREE_OPERAND (t, 0));
9639 tree outer_type = TREE_TYPE (t);
9641 return (TYPE_PRECISION (inner_type) >= TYPE_PRECISION (outer_type)
9642 && tree_expr_nonzero_p (TREE_OPERAND (t, 0)));
9644 break;
9646 case ADDR_EXPR:
9648 tree base = get_base_address (TREE_OPERAND (t, 0));
9650 if (!base)
9651 return false;
9653 /* Weak declarations may link to NULL. */
9654 if (DECL_P (base))
9655 return !DECL_WEAK (base);
9657 /* Constants are never weak. */
9658 if (TREE_CODE_CLASS (TREE_CODE (base)) == 'c')
9659 return true;
9661 return false;
9664 case COND_EXPR:
9665 return (tree_expr_nonzero_p (TREE_OPERAND (t, 1))
9666 && tree_expr_nonzero_p (TREE_OPERAND (t, 2)));
9668 case MIN_EXPR:
9669 return (tree_expr_nonzero_p (TREE_OPERAND (t, 0))
9670 && tree_expr_nonzero_p (TREE_OPERAND (t, 1)));
9672 case MAX_EXPR:
9673 if (tree_expr_nonzero_p (TREE_OPERAND (t, 0)))
9675 /* When both operands are nonzero, then MAX must be too. */
9676 if (tree_expr_nonzero_p (TREE_OPERAND (t, 1)))
9677 return true;
9679 /* MAX where operand 0 is positive is positive. */
9680 return tree_expr_nonnegative_p (TREE_OPERAND (t, 0));
9682 /* MAX where operand 1 is positive is positive. */
9683 else if (tree_expr_nonzero_p (TREE_OPERAND (t, 1))
9684 && tree_expr_nonnegative_p (TREE_OPERAND (t, 1)))
9685 return true;
9686 break;
9688 case COMPOUND_EXPR:
9689 case MODIFY_EXPR:
9690 case BIND_EXPR:
9691 return tree_expr_nonzero_p (TREE_OPERAND (t, 1));
9693 case SAVE_EXPR:
9694 case NON_LVALUE_EXPR:
9695 return tree_expr_nonzero_p (TREE_OPERAND (t, 0));
9697 case BIT_IOR_EXPR:
9698 return tree_expr_nonzero_p (TREE_OPERAND (t, 1))
9699 || tree_expr_nonzero_p (TREE_OPERAND (t, 0));
9701 default:
9702 break;
9704 return false;
9707 /* See if we are applying CODE, a relational to the highest or lowest
9708 possible integer of TYPE. If so, then the result is a compile
9709 time constant. */
9711 static tree
9712 fold_relational_hi_lo (enum tree_code *code_p, const tree type, tree *op0_p,
9713 tree *op1_p)
9715 tree op0 = *op0_p;
9716 tree op1 = *op1_p;
9717 enum tree_code code = *code_p;
9718 int width = GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (op1)));
9720 if (TREE_CODE (op1) == INTEGER_CST
9721 && ! TREE_CONSTANT_OVERFLOW (op1)
9722 && width <= HOST_BITS_PER_WIDE_INT
9723 && (INTEGRAL_TYPE_P (TREE_TYPE (op1))
9724 || POINTER_TYPE_P (TREE_TYPE (op1))))
9726 unsigned HOST_WIDE_INT signed_max;
9727 unsigned HOST_WIDE_INT max, min;
9729 signed_max = ((unsigned HOST_WIDE_INT) 1 << (width - 1)) - 1;
9731 if (TYPE_UNSIGNED (TREE_TYPE (op1)))
9733 max = ((unsigned HOST_WIDE_INT) 2 << (width - 1)) - 1;
9734 min = 0;
9736 else
9738 max = signed_max;
9739 min = ((unsigned HOST_WIDE_INT) -1 << (width - 1));
9742 if (TREE_INT_CST_HIGH (op1) == 0
9743 && TREE_INT_CST_LOW (op1) == max)
9744 switch (code)
9746 case GT_EXPR:
9747 return omit_one_operand (type, integer_zero_node, op0);
9749 case GE_EXPR:
9750 *code_p = EQ_EXPR;
9751 break;
9752 case LE_EXPR:
9753 return omit_one_operand (type, integer_one_node, op0);
9755 case LT_EXPR:
9756 *code_p = NE_EXPR;
9757 break;
9759 /* The GE_EXPR and LT_EXPR cases above are not normally
9760 reached because of previous transformations. */
9762 default:
9763 break;
9765 else if (TREE_INT_CST_HIGH (op1) == 0
9766 && TREE_INT_CST_LOW (op1) == max - 1)
9767 switch (code)
9769 case GT_EXPR:
9770 *code_p = EQ_EXPR;
9771 *op1_p = const_binop (PLUS_EXPR, op1, integer_one_node, 0);
9772 break;
9773 case LE_EXPR:
9774 *code_p = NE_EXPR;
9775 *op1_p = const_binop (PLUS_EXPR, op1, integer_one_node, 0);
9776 break;
9777 default:
9778 break;
9780 else if (TREE_INT_CST_HIGH (op1) == (min ? -1 : 0)
9781 && TREE_INT_CST_LOW (op1) == min)
9782 switch (code)
9784 case LT_EXPR:
9785 return omit_one_operand (type, integer_zero_node, op0);
9787 case LE_EXPR:
9788 *code_p = EQ_EXPR;
9789 break;
9791 case GE_EXPR:
9792 return omit_one_operand (type, integer_one_node, op0);
9794 case GT_EXPR:
9795 *code_p = NE_EXPR;
9796 break;
9798 default:
9799 break;
9801 else if (TREE_INT_CST_HIGH (op1) == (min ? -1 : 0)
9802 && TREE_INT_CST_LOW (op1) == min + 1)
9803 switch (code)
9805 case GE_EXPR:
9806 *code_p = NE_EXPR;
9807 *op1_p = const_binop (MINUS_EXPR, op1, integer_one_node, 0);
9808 break;
9809 case LT_EXPR:
9810 *code_p = EQ_EXPR;
9811 *op1_p = const_binop (MINUS_EXPR, op1, integer_one_node, 0);
9812 break;
9813 default:
9814 break;
9817 else if (TREE_INT_CST_HIGH (op1) == 0
9818 && TREE_INT_CST_LOW (op1) == signed_max
9819 && TYPE_UNSIGNED (TREE_TYPE (op1))
9820 /* signed_type does not work on pointer types. */
9821 && INTEGRAL_TYPE_P (TREE_TYPE (op1)))
9823 /* The following case also applies to X < signed_max+1
9824 and X >= signed_max+1 because previous transformations. */
9825 if (code == LE_EXPR || code == GT_EXPR)
9827 tree st0, st1, exp, retval;
9828 st0 = lang_hooks.types.signed_type (TREE_TYPE (op0));
9829 st1 = lang_hooks.types.signed_type (TREE_TYPE (op1));
9831 exp = build2 (code == LE_EXPR ? GE_EXPR: LT_EXPR,
9832 type,
9833 fold_convert (st0, op0),
9834 fold_convert (st1, integer_zero_node));
9836 retval
9837 = nondestructive_fold_binary_to_constant (TREE_CODE (exp),
9838 TREE_TYPE (exp),
9839 TREE_OPERAND (exp, 0),
9840 TREE_OPERAND (exp, 1));
9842 /* If we are in gimple form, then returning EXP would create
9843 non-gimple expressions. Clearing it is safe and insures
9844 we do not allow a non-gimple expression to escape. */
9845 if (in_gimple_form)
9846 exp = NULL;
9848 return (retval ? retval : exp);
9853 return NULL_TREE;
9857 /* Given the components of a binary expression CODE, TYPE, OP0 and OP1,
9858 attempt to fold the expression to a constant without modifying TYPE,
9859 OP0 or OP1.
9861 If the expression could be simplified to a constant, then return
9862 the constant. If the expression would not be simplified to a
9863 constant, then return NULL_TREE.
9865 Note this is primarily designed to be called after gimplification
9866 of the tree structures and when at least one operand is a constant.
9867 As a result of those simplifying assumptions this routine is far
9868 simpler than the generic fold routine. */
9870 tree
9871 nondestructive_fold_binary_to_constant (enum tree_code code, tree type,
9872 tree op0, tree op1)
9874 int wins = 1;
9875 tree subop0;
9876 tree subop1;
9877 tree tem;
9879 /* If this is a commutative operation, and ARG0 is a constant, move it
9880 to ARG1 to reduce the number of tests below. */
9881 if (commutative_tree_code (code)
9882 && (TREE_CODE (op0) == INTEGER_CST || TREE_CODE (op0) == REAL_CST))
9884 tem = op0;
9885 op0 = op1;
9886 op1 = tem;
9889 /* If either operand is a complex type, extract its real component. */
9890 if (TREE_CODE (op0) == COMPLEX_CST)
9891 subop0 = TREE_REALPART (op0);
9892 else
9893 subop0 = op0;
9895 if (TREE_CODE (op1) == COMPLEX_CST)
9896 subop1 = TREE_REALPART (op1);
9897 else
9898 subop1 = op1;
9900 /* Note if either argument is not a real or integer constant.
9901 With a few exceptions, simplification is limited to cases
9902 where both arguments are constants. */
9903 if ((TREE_CODE (subop0) != INTEGER_CST
9904 && TREE_CODE (subop0) != REAL_CST)
9905 || (TREE_CODE (subop1) != INTEGER_CST
9906 && TREE_CODE (subop1) != REAL_CST))
9907 wins = 0;
9909 switch (code)
9911 case PLUS_EXPR:
9912 /* (plus (address) (const_int)) is a constant. */
9913 if (TREE_CODE (op0) == PLUS_EXPR
9914 && TREE_CODE (op1) == INTEGER_CST
9915 && (TREE_CODE (TREE_OPERAND (op0, 0)) == ADDR_EXPR
9916 || (TREE_CODE (TREE_OPERAND (op0, 0)) == NOP_EXPR
9917 && (TREE_CODE (TREE_OPERAND (TREE_OPERAND (op0, 0), 0))
9918 == ADDR_EXPR)))
9919 && TREE_CODE (TREE_OPERAND (op0, 1)) == INTEGER_CST)
9921 return build2 (PLUS_EXPR, type, TREE_OPERAND (op0, 0),
9922 const_binop (PLUS_EXPR, op1,
9923 TREE_OPERAND (op0, 1), 0));
9925 case BIT_XOR_EXPR:
9927 binary:
9928 if (!wins)
9929 return NULL_TREE;
9931 /* Both arguments are constants. Simplify. */
9932 tem = const_binop (code, op0, op1, 0);
9933 if (tem != NULL_TREE)
9935 /* The return value should always have the same type as
9936 the original expression. */
9937 if (TREE_TYPE (tem) != type)
9938 tem = fold_convert (type, tem);
9940 return tem;
9942 return NULL_TREE;
9944 case MINUS_EXPR:
9945 /* Fold &x - &x. This can happen from &x.foo - &x.
9946 This is unsafe for certain floats even in non-IEEE formats.
9947 In IEEE, it is unsafe because it does wrong for NaNs.
9948 Also note that operand_equal_p is always false if an
9949 operand is volatile. */
9950 if (! FLOAT_TYPE_P (type) && operand_equal_p (op0, op1, 0))
9951 return fold_convert (type, integer_zero_node);
9953 goto binary;
9955 case MULT_EXPR:
9956 case BIT_AND_EXPR:
9957 /* Special case multiplication or bitwise AND where one argument
9958 is zero. */
9959 if (! FLOAT_TYPE_P (type) && integer_zerop (op1))
9960 return omit_one_operand (type, op1, op0);
9961 else
9962 if (!HONOR_NANS (TYPE_MODE (TREE_TYPE (op0)))
9963 && !HONOR_SIGNED_ZEROS (TYPE_MODE (TREE_TYPE (op0)))
9964 && real_zerop (op1))
9965 return omit_one_operand (type, op1, op0);
9967 goto binary;
9969 case BIT_IOR_EXPR:
9970 /* Special case when we know the result will be all ones. */
9971 if (integer_all_onesp (op1))
9972 return omit_one_operand (type, op1, op0);
9974 goto binary;
9976 case TRUNC_DIV_EXPR:
9977 case ROUND_DIV_EXPR:
9978 case FLOOR_DIV_EXPR:
9979 case CEIL_DIV_EXPR:
9980 case EXACT_DIV_EXPR:
9981 case TRUNC_MOD_EXPR:
9982 case ROUND_MOD_EXPR:
9983 case FLOOR_MOD_EXPR:
9984 case CEIL_MOD_EXPR:
9985 case RDIV_EXPR:
9986 /* Division by zero is undefined. */
9987 if (integer_zerop (op1))
9988 return NULL_TREE;
9990 if (TREE_CODE (op1) == REAL_CST
9991 && !MODE_HAS_INFINITIES (TYPE_MODE (TREE_TYPE (op1)))
9992 && real_zerop (op1))
9993 return NULL_TREE;
9995 goto binary;
9997 case MIN_EXPR:
9998 if (INTEGRAL_TYPE_P (type)
9999 && operand_equal_p (op1, TYPE_MIN_VALUE (type), OEP_ONLY_CONST))
10000 return omit_one_operand (type, op1, op0);
10002 goto binary;
10004 case MAX_EXPR:
10005 if (INTEGRAL_TYPE_P (type)
10006 && TYPE_MAX_VALUE (type)
10007 && operand_equal_p (op1, TYPE_MAX_VALUE (type), OEP_ONLY_CONST))
10008 return omit_one_operand (type, op1, op0);
10010 goto binary;
10012 case RSHIFT_EXPR:
10013 /* Optimize -1 >> x for arithmetic right shifts. */
10014 if (integer_all_onesp (op0) && ! TYPE_UNSIGNED (type))
10015 return omit_one_operand (type, op0, op1);
10016 /* ... fall through ... */
10018 case LSHIFT_EXPR:
10019 if (integer_zerop (op0))
10020 return omit_one_operand (type, op0, op1);
10022 /* Since negative shift count is not well-defined, don't
10023 try to compute it in the compiler. */
10024 if (TREE_CODE (op1) == INTEGER_CST && tree_int_cst_sgn (op1) < 0)
10025 return NULL_TREE;
10027 goto binary;
10029 case LROTATE_EXPR:
10030 case RROTATE_EXPR:
10031 /* -1 rotated either direction by any amount is still -1. */
10032 if (integer_all_onesp (op0))
10033 return omit_one_operand (type, op0, op1);
10035 /* 0 rotated either direction by any amount is still zero. */
10036 if (integer_zerop (op0))
10037 return omit_one_operand (type, op0, op1);
10039 goto binary;
10041 case COMPLEX_EXPR:
10042 if (wins)
10043 return build_complex (type, op0, op1);
10044 return NULL_TREE;
10046 case LT_EXPR:
10047 case LE_EXPR:
10048 case GT_EXPR:
10049 case GE_EXPR:
10050 case EQ_EXPR:
10051 case NE_EXPR:
10052 /* If one arg is a real or integer constant, put it last. */
10053 if ((TREE_CODE (op0) == INTEGER_CST
10054 && TREE_CODE (op1) != INTEGER_CST)
10055 || (TREE_CODE (op0) == REAL_CST
10056 && TREE_CODE (op0) != REAL_CST))
10058 tree temp;
10060 temp = op0;
10061 op0 = op1;
10062 op1 = temp;
10063 code = swap_tree_comparison (code);
10066 /* Change X >= C to X > (C - 1) and X < C to X <= (C - 1) if C > 0.
10067 This transformation affects the cases which are handled in later
10068 optimizations involving comparisons with non-negative constants. */
10069 if (TREE_CODE (op1) == INTEGER_CST
10070 && TREE_CODE (op0) != INTEGER_CST
10071 && tree_int_cst_sgn (op1) > 0)
10073 switch (code)
10075 case GE_EXPR:
10076 code = GT_EXPR;
10077 op1 = const_binop (MINUS_EXPR, op1, integer_one_node, 0);
10078 break;
10080 case LT_EXPR:
10081 code = LE_EXPR;
10082 op1 = const_binop (MINUS_EXPR, op1, integer_one_node, 0);
10083 break;
10085 default:
10086 break;
10090 tem = fold_relational_hi_lo (&code, type, &op0, &op1);
10091 if (tem)
10092 return tem;
10094 /* Fall through. */
10096 case ORDERED_EXPR:
10097 case UNORDERED_EXPR:
10098 case UNLT_EXPR:
10099 case UNLE_EXPR:
10100 case UNGT_EXPR:
10101 case UNGE_EXPR:
10102 case UNEQ_EXPR:
10103 case LTGT_EXPR:
10104 if (!wins)
10105 return NULL_TREE;
10107 return fold_relational_const (code, type, op0, op1);
10109 case RANGE_EXPR:
10110 /* This could probably be handled. */
10111 return NULL_TREE;
10113 case TRUTH_AND_EXPR:
10114 /* If second arg is constant zero, result is zero, but first arg
10115 must be evaluated. */
10116 if (integer_zerop (op1))
10117 return omit_one_operand (type, op1, op0);
10118 /* Likewise for first arg, but note that only the TRUTH_AND_EXPR
10119 case will be handled here. */
10120 if (integer_zerop (op0))
10121 return omit_one_operand (type, op0, op1);
10122 if (TREE_CODE (op0) == INTEGER_CST && TREE_CODE (op1) == INTEGER_CST)
10123 return constant_boolean_node (true, type);
10124 return NULL_TREE;
10126 case TRUTH_OR_EXPR:
10127 /* If second arg is constant true, result is true, but we must
10128 evaluate first arg. */
10129 if (TREE_CODE (op1) == INTEGER_CST && ! integer_zerop (op1))
10130 return omit_one_operand (type, op1, op0);
10131 /* Likewise for first arg, but note this only occurs here for
10132 TRUTH_OR_EXPR. */
10133 if (TREE_CODE (op0) == INTEGER_CST && ! integer_zerop (op0))
10134 return omit_one_operand (type, op0, op1);
10135 if (TREE_CODE (op0) == INTEGER_CST && TREE_CODE (op1) == INTEGER_CST)
10136 return constant_boolean_node (false, type);
10137 return NULL_TREE;
10139 case TRUTH_XOR_EXPR:
10140 if (TREE_CODE (op0) == INTEGER_CST && TREE_CODE (op1) == INTEGER_CST)
10142 int x = ! integer_zerop (op0) ^ ! integer_zerop (op1);
10143 return constant_boolean_node (x, type);
10145 return NULL_TREE;
10147 default:
10148 return NULL_TREE;
10152 /* Given the components of a unary expression CODE, TYPE and OP0,
10153 attempt to fold the expression to a constant without modifying
10154 TYPE or OP0.
10156 If the expression could be simplified to a constant, then return
10157 the constant. If the expression would not be simplified to a
10158 constant, then return NULL_TREE.
10160 Note this is primarily designed to be called after gimplification
10161 of the tree structures and when op0 is a constant. As a result
10162 of those simplifying assumptions this routine is far simpler than
10163 the generic fold routine. */
10165 tree
10166 nondestructive_fold_unary_to_constant (enum tree_code code, tree type,
10167 tree op0)
10169 /* Make sure we have a suitable constant argument. */
10170 if (code == NOP_EXPR || code == FLOAT_EXPR || code == CONVERT_EXPR)
10172 tree subop;
10174 if (TREE_CODE (op0) == COMPLEX_CST)
10175 subop = TREE_REALPART (op0);
10176 else
10177 subop = op0;
10179 if (TREE_CODE (subop) != INTEGER_CST && TREE_CODE (subop) != REAL_CST)
10180 return NULL_TREE;
10183 switch (code)
10185 case NOP_EXPR:
10186 case FLOAT_EXPR:
10187 case CONVERT_EXPR:
10188 case FIX_TRUNC_EXPR:
10189 case FIX_FLOOR_EXPR:
10190 case FIX_CEIL_EXPR:
10191 return fold_convert_const (code, type, op0);
10193 case NEGATE_EXPR:
10194 if (TREE_CODE (op0) == INTEGER_CST || TREE_CODE (op0) == REAL_CST)
10195 return fold_negate_const (op0, type);
10196 else
10197 return NULL_TREE;
10199 case ABS_EXPR:
10200 if (TREE_CODE (op0) == INTEGER_CST || TREE_CODE (op0) == REAL_CST)
10201 return fold_abs_const (op0, type);
10202 else
10203 return NULL_TREE;
10205 case BIT_NOT_EXPR:
10206 if (TREE_CODE (op0) == INTEGER_CST)
10207 return fold_not_const (op0, type);
10208 else
10209 return NULL_TREE;
10211 case REALPART_EXPR:
10212 if (TREE_CODE (op0) == COMPLEX_CST)
10213 return TREE_REALPART (op0);
10214 else
10215 return NULL_TREE;
10217 case IMAGPART_EXPR:
10218 if (TREE_CODE (op0) == COMPLEX_CST)
10219 return TREE_IMAGPART (op0);
10220 else
10221 return NULL_TREE;
10223 case CONJ_EXPR:
10224 if (TREE_CODE (op0) == COMPLEX_CST
10225 && TREE_CODE (TREE_TYPE (op0)) == COMPLEX_TYPE)
10226 return build_complex (type, TREE_REALPART (op0),
10227 negate_expr (TREE_IMAGPART (op0)));
10228 return NULL_TREE;
10230 default:
10231 return NULL_TREE;
10235 /* If EXP represents referencing an element in a constant string
10236 (either via pointer arithmetic or array indexing), return the
10237 tree representing the value accessed, otherwise return NULL. */
10239 tree
10240 fold_read_from_constant_string (tree exp)
10242 if (TREE_CODE (exp) == INDIRECT_REF || TREE_CODE (exp) == ARRAY_REF)
10244 tree exp1 = TREE_OPERAND (exp, 0);
10245 tree index;
10246 tree string;
10248 if (TREE_CODE (exp) == INDIRECT_REF)
10249 string = string_constant (exp1, &index);
10250 else
10252 tree low_bound = array_ref_low_bound (exp);
10253 index = fold_convert (sizetype, TREE_OPERAND (exp, 1));
10255 /* Optimize the special-case of a zero lower bound.
10257 We convert the low_bound to sizetype to avoid some problems
10258 with constant folding. (E.g. suppose the lower bound is 1,
10259 and its mode is QI. Without the conversion,l (ARRAY
10260 +(INDEX-(unsigned char)1)) becomes ((ARRAY+(-(unsigned char)1))
10261 +INDEX), which becomes (ARRAY+255+INDEX). Opps!) */
10262 if (! integer_zerop (low_bound))
10263 index = size_diffop (index, fold_convert (sizetype, low_bound));
10265 string = exp1;
10268 if (string
10269 && TREE_TYPE (exp) == TREE_TYPE (TREE_TYPE (string))
10270 && TREE_CODE (string) == STRING_CST
10271 && TREE_CODE (index) == INTEGER_CST
10272 && compare_tree_int (index, TREE_STRING_LENGTH (string)) < 0
10273 && (GET_MODE_CLASS (TYPE_MODE (TREE_TYPE (TREE_TYPE (string))))
10274 == MODE_INT)
10275 && (GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (TREE_TYPE (string)))) == 1))
10276 return fold_convert (TREE_TYPE (exp),
10277 build_int_cst (NULL_TREE,
10278 (TREE_STRING_POINTER (string)
10279 [TREE_INT_CST_LOW (index)])));
10281 return NULL;
10284 /* Return the tree for neg (ARG0) when ARG0 is known to be either
10285 an integer constant or real constant.
10287 TYPE is the type of the result. */
10289 static tree
10290 fold_negate_const (tree arg0, tree type)
10292 tree t = NULL_TREE;
10294 switch (TREE_CODE (arg0))
10296 case INTEGER_CST:
10298 unsigned HOST_WIDE_INT low;
10299 HOST_WIDE_INT high;
10300 int overflow = neg_double (TREE_INT_CST_LOW (arg0),
10301 TREE_INT_CST_HIGH (arg0),
10302 &low, &high);
10303 t = build_int_cst_wide (type, low, high);
10304 t = force_fit_type (t, 1,
10305 (overflow | TREE_OVERFLOW (arg0))
10306 && !TYPE_UNSIGNED (type),
10307 TREE_CONSTANT_OVERFLOW (arg0));
10308 break;
10311 case REAL_CST:
10312 t = build_real (type, REAL_VALUE_NEGATE (TREE_REAL_CST (arg0)));
10313 break;
10315 default:
10316 gcc_unreachable ();
10319 return t;
10322 /* Return the tree for abs (ARG0) when ARG0 is known to be either
10323 an integer constant or real constant.
10325 TYPE is the type of the result. */
10327 tree
10328 fold_abs_const (tree arg0, tree type)
10330 tree t = NULL_TREE;
10332 switch (TREE_CODE (arg0))
10334 case INTEGER_CST:
10335 /* If the value is unsigned, then the absolute value is
10336 the same as the ordinary value. */
10337 if (TYPE_UNSIGNED (type))
10338 t = arg0;
10339 /* Similarly, if the value is non-negative. */
10340 else if (INT_CST_LT (integer_minus_one_node, arg0))
10341 t = arg0;
10342 /* If the value is negative, then the absolute value is
10343 its negation. */
10344 else
10346 unsigned HOST_WIDE_INT low;
10347 HOST_WIDE_INT high;
10348 int overflow = neg_double (TREE_INT_CST_LOW (arg0),
10349 TREE_INT_CST_HIGH (arg0),
10350 &low, &high);
10351 t = build_int_cst_wide (type, low, high);
10352 t = force_fit_type (t, -1, overflow | TREE_OVERFLOW (arg0),
10353 TREE_CONSTANT_OVERFLOW (arg0));
10355 break;
10357 case REAL_CST:
10358 if (REAL_VALUE_NEGATIVE (TREE_REAL_CST (arg0)))
10359 t = build_real (type, REAL_VALUE_NEGATE (TREE_REAL_CST (arg0)));
10360 else
10361 t = arg0;
10362 break;
10364 default:
10365 gcc_unreachable ();
10368 return t;
10371 /* Return the tree for not (ARG0) when ARG0 is known to be an integer
10372 constant. TYPE is the type of the result. */
10374 static tree
10375 fold_not_const (tree arg0, tree type)
10377 tree t = NULL_TREE;
10379 gcc_assert (TREE_CODE (arg0) == INTEGER_CST);
10381 t = build_int_cst_wide (type,
10382 ~ TREE_INT_CST_LOW (arg0),
10383 ~ TREE_INT_CST_HIGH (arg0));
10384 t = force_fit_type (t, 0, TREE_OVERFLOW (arg0),
10385 TREE_CONSTANT_OVERFLOW (arg0));
10387 return t;
10390 /* Given CODE, a relational operator, the target type, TYPE and two
10391 constant operands OP0 and OP1, return the result of the
10392 relational operation. If the result is not a compile time
10393 constant, then return NULL_TREE. */
10395 static tree
10396 fold_relational_const (enum tree_code code, tree type, tree op0, tree op1)
10398 int result, invert;
10400 /* From here on, the only cases we handle are when the result is
10401 known to be a constant. */
10403 if (TREE_CODE (op0) == REAL_CST && TREE_CODE (op1) == REAL_CST)
10405 const REAL_VALUE_TYPE *c0 = TREE_REAL_CST_PTR (op0);
10406 const REAL_VALUE_TYPE *c1 = TREE_REAL_CST_PTR (op1);
10408 /* Handle the cases where either operand is a NaN. */
10409 if (real_isnan (c0) || real_isnan (c1))
10411 switch (code)
10413 case EQ_EXPR:
10414 case ORDERED_EXPR:
10415 result = 0;
10416 break;
10418 case NE_EXPR:
10419 case UNORDERED_EXPR:
10420 case UNLT_EXPR:
10421 case UNLE_EXPR:
10422 case UNGT_EXPR:
10423 case UNGE_EXPR:
10424 case UNEQ_EXPR:
10425 result = 1;
10426 break;
10428 case LT_EXPR:
10429 case LE_EXPR:
10430 case GT_EXPR:
10431 case GE_EXPR:
10432 case LTGT_EXPR:
10433 if (flag_trapping_math)
10434 return NULL_TREE;
10435 result = 0;
10436 break;
10438 default:
10439 gcc_unreachable ();
10442 return constant_boolean_node (result, type);
10445 return constant_boolean_node (real_compare (code, c0, c1), type);
10448 /* From here on we only handle LT, LE, GT, GE, EQ and NE.
10450 To compute GT, swap the arguments and do LT.
10451 To compute GE, do LT and invert the result.
10452 To compute LE, swap the arguments, do LT and invert the result.
10453 To compute NE, do EQ and invert the result.
10455 Therefore, the code below must handle only EQ and LT. */
10457 if (code == LE_EXPR || code == GT_EXPR)
10459 tree tem = op0;
10460 op0 = op1;
10461 op1 = tem;
10462 code = swap_tree_comparison (code);
10465 /* Note that it is safe to invert for real values here because we
10466 have already handled the one case that it matters. */
10468 invert = 0;
10469 if (code == NE_EXPR || code == GE_EXPR)
10471 invert = 1;
10472 code = invert_tree_comparison (code, false);
10475 /* Compute a result for LT or EQ if args permit;
10476 Otherwise return T. */
10477 if (TREE_CODE (op0) == INTEGER_CST && TREE_CODE (op1) == INTEGER_CST)
10479 if (code == EQ_EXPR)
10480 result = tree_int_cst_equal (op0, op1);
10481 else if (TYPE_UNSIGNED (TREE_TYPE (op0)))
10482 result = INT_CST_LT_UNSIGNED (op0, op1);
10483 else
10484 result = INT_CST_LT (op0, op1);
10486 else
10487 return NULL_TREE;
10489 if (invert)
10490 result ^= 1;
10491 return constant_boolean_node (result, type);
10494 /* Build an expression for the address of T. Folds away INDIRECT_REF to
10495 avoid confusing the gimplify process. */
10497 tree
10498 build_fold_addr_expr_with_type (tree t, tree ptrtype)
10500 /* The size of the object is not relevant when talking about its address. */
10501 if (TREE_CODE (t) == WITH_SIZE_EXPR)
10502 t = TREE_OPERAND (t, 0);
10504 if (TREE_CODE (t) == INDIRECT_REF)
10506 t = TREE_OPERAND (t, 0);
10507 if (TREE_TYPE (t) != ptrtype)
10508 t = build1 (NOP_EXPR, ptrtype, t);
10510 else
10512 tree base = t;
10514 while (handled_component_p (base)
10515 || TREE_CODE (base) == REALPART_EXPR
10516 || TREE_CODE (base) == IMAGPART_EXPR)
10517 base = TREE_OPERAND (base, 0);
10518 if (DECL_P (base))
10519 TREE_ADDRESSABLE (base) = 1;
10521 t = build1 (ADDR_EXPR, ptrtype, t);
10524 return t;
10527 tree
10528 build_fold_addr_expr (tree t)
10530 return build_fold_addr_expr_with_type (t, build_pointer_type (TREE_TYPE (t)));
10533 /* Builds an expression for an indirection through T, simplifying some
10534 cases. */
10536 tree
10537 build_fold_indirect_ref (tree t)
10539 tree type = TREE_TYPE (TREE_TYPE (t));
10540 tree sub = t;
10541 tree subtype;
10543 STRIP_NOPS (sub);
10544 if (TREE_CODE (sub) == ADDR_EXPR)
10546 tree op = TREE_OPERAND (sub, 0);
10547 tree optype = TREE_TYPE (op);
10548 /* *&p => p */
10549 if (lang_hooks.types_compatible_p (type, optype))
10550 return op;
10551 /* *(foo *)&fooarray => fooarray[0] */
10552 else if (TREE_CODE (optype) == ARRAY_TYPE
10553 && lang_hooks.types_compatible_p (type, TREE_TYPE (optype)))
10554 return build4 (ARRAY_REF, type, op, size_zero_node, NULL_TREE, NULL_TREE);
10557 /* *(foo *)fooarrptr => (*fooarrptr)[0] */
10558 subtype = TREE_TYPE (sub);
10559 if (TREE_CODE (TREE_TYPE (subtype)) == ARRAY_TYPE
10560 && lang_hooks.types_compatible_p (type, TREE_TYPE (TREE_TYPE (subtype))))
10562 sub = build_fold_indirect_ref (sub);
10563 return build4 (ARRAY_REF, type, sub, size_zero_node, NULL_TREE, NULL_TREE);
10566 return build1 (INDIRECT_REF, type, t);
10569 /* Strip non-trapping, non-side-effecting tree nodes from an expression
10570 whose result is ignored. The type of the returned tree need not be
10571 the same as the original expression. */
10573 tree
10574 fold_ignored_result (tree t)
10576 if (!TREE_SIDE_EFFECTS (t))
10577 return integer_zero_node;
10579 for (;;)
10580 switch (TREE_CODE_CLASS (TREE_CODE (t)))
10582 case '1':
10583 t = TREE_OPERAND (t, 0);
10584 break;
10586 case '2':
10587 case '<':
10588 if (!TREE_SIDE_EFFECTS (TREE_OPERAND (t, 1)))
10589 t = TREE_OPERAND (t, 0);
10590 else if (!TREE_SIDE_EFFECTS (TREE_OPERAND (t, 0)))
10591 t = TREE_OPERAND (t, 1);
10592 else
10593 return t;
10594 break;
10596 case 'e':
10597 switch (TREE_CODE (t))
10599 case COMPOUND_EXPR:
10600 if (TREE_SIDE_EFFECTS (TREE_OPERAND (t, 1)))
10601 return t;
10602 t = TREE_OPERAND (t, 0);
10603 break;
10605 case COND_EXPR:
10606 if (TREE_SIDE_EFFECTS (TREE_OPERAND (t, 1))
10607 || TREE_SIDE_EFFECTS (TREE_OPERAND (t, 2)))
10608 return t;
10609 t = TREE_OPERAND (t, 0);
10610 break;
10612 default:
10613 return t;
10615 break;
10617 default:
10618 return t;
10622 /* Return the value of VALUE, rounded up to a multiple of DIVISOR.
10623 This can only be applied to objects of a sizetype. */
10625 tree
10626 round_up (tree value, int divisor)
10628 tree div = NULL_TREE;
10630 gcc_assert (divisor > 0);
10631 if (divisor == 1)
10632 return value;
10634 /* See if VALUE is already a multiple of DIVISOR. If so, we don't
10635 have to do anything. Only do this when we are not given a const,
10636 because in that case, this check is more expensive than just
10637 doing it. */
10638 if (TREE_CODE (value) != INTEGER_CST)
10640 div = build_int_cst (TREE_TYPE (value), divisor);
10642 if (multiple_of_p (TREE_TYPE (value), value, div))
10643 return value;
10646 /* If divisor is a power of two, simplify this to bit manipulation. */
10647 if (divisor == (divisor & -divisor))
10649 tree t;
10651 t = build_int_cst (TREE_TYPE (value), divisor - 1);
10652 value = size_binop (PLUS_EXPR, value, t);
10653 t = build_int_cst (TREE_TYPE (value), -divisor);
10654 value = size_binop (BIT_AND_EXPR, value, t);
10656 else
10658 if (!div)
10659 div = build_int_cst (TREE_TYPE (value), divisor);
10660 value = size_binop (CEIL_DIV_EXPR, value, div);
10661 value = size_binop (MULT_EXPR, value, div);
10664 return value;
10667 /* Likewise, but round down. */
10669 tree
10670 round_down (tree value, int divisor)
10672 tree div = NULL_TREE;
10674 gcc_assert (divisor > 0);
10675 if (divisor == 1)
10676 return value;
10678 /* See if VALUE is already a multiple of DIVISOR. If so, we don't
10679 have to do anything. Only do this when we are not given a const,
10680 because in that case, this check is more expensive than just
10681 doing it. */
10682 if (TREE_CODE (value) != INTEGER_CST)
10684 div = build_int_cst (TREE_TYPE (value), divisor);
10686 if (multiple_of_p (TREE_TYPE (value), value, div))
10687 return value;
10690 /* If divisor is a power of two, simplify this to bit manipulation. */
10691 if (divisor == (divisor & -divisor))
10693 tree t;
10695 t = build_int_cst (TREE_TYPE (value), -divisor);
10696 value = size_binop (BIT_AND_EXPR, value, t);
10698 else
10700 if (!div)
10701 div = build_int_cst (TREE_TYPE (value), divisor);
10702 value = size_binop (FLOOR_DIV_EXPR, value, div);
10703 value = size_binop (MULT_EXPR, value, div);
10706 return value;