2011-02-14 Janus Weil <janus@gcc.gnu.org>
[official-gcc.git] / libgfortran / intrinsics / cshift0.c
blob651cd6e1e7c9f47bdd86df9b389f79c78da103a0
1 /* Generic implementation of the CSHIFT intrinsic
2 Copyright 2003, 2005, 2006, 2007, 2010 Free Software Foundation, Inc.
3 Contributed by Feng Wang <wf_cs@yahoo.com>
5 This file is part of the GNU Fortran runtime library (libgfortran).
7 Libgfortran is free software; you can redistribute it and/or
8 modify it under the terms of the GNU General Public
9 License as published by the Free Software Foundation; either
10 version 3 of the License, or (at your option) any later version.
12 Libgfortran is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 Under Section 7 of GPL version 3, you are granted additional
18 permissions described in the GCC Runtime Library Exception, version
19 3.1, as published by the Free Software Foundation.
21 You should have received a copy of the GNU General Public License and
22 a copy of the GCC Runtime Library Exception along with this program;
23 see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
24 <http://www.gnu.org/licenses/>. */
26 #include "libgfortran.h"
27 #include <stdlib.h>
28 #include <assert.h>
29 #include <string.h>
31 static void
32 cshift0 (gfc_array_char * ret, const gfc_array_char * array,
33 ssize_t shift, int which, index_type size)
35 /* r.* indicates the return array. */
36 index_type rstride[GFC_MAX_DIMENSIONS];
37 index_type rstride0;
38 index_type roffset;
39 char *rptr;
41 /* s.* indicates the source array. */
42 index_type sstride[GFC_MAX_DIMENSIONS];
43 index_type sstride0;
44 index_type soffset;
45 const char *sptr;
47 index_type count[GFC_MAX_DIMENSIONS];
48 index_type extent[GFC_MAX_DIMENSIONS];
49 index_type dim;
50 index_type len;
51 index_type n;
52 index_type arraysize;
54 index_type type_size;
56 if (which < 1 || which > GFC_DESCRIPTOR_RANK (array))
57 runtime_error ("Argument 'DIM' is out of range in call to 'CSHIFT'");
59 arraysize = size0 ((array_t *) array);
61 if (ret->data == NULL)
63 int i;
65 ret->offset = 0;
66 ret->dtype = array->dtype;
67 for (i = 0; i < GFC_DESCRIPTOR_RANK (array); i++)
69 index_type ub, str;
71 ub = GFC_DESCRIPTOR_EXTENT(array,i) - 1;
73 if (i == 0)
74 str = 1;
75 else
76 str = GFC_DESCRIPTOR_EXTENT(ret,i-1) *
77 GFC_DESCRIPTOR_STRIDE(ret,i-1);
79 GFC_DIMENSION_SET(ret->dim[i], 0, ub, str);
82 if (arraysize > 0)
83 ret->data = internal_malloc_size (size * arraysize);
84 else
85 ret->data = internal_malloc_size (1);
87 else if (unlikely (compile_options.bounds_check))
89 bounds_equal_extents ((array_t *) ret, (array_t *) array,
90 "return value", "CSHIFT");
93 if (arraysize == 0)
94 return;
96 type_size = GFC_DTYPE_TYPE_SIZE (array);
98 switch(type_size)
100 case GFC_DTYPE_LOGICAL_1:
101 case GFC_DTYPE_INTEGER_1:
102 case GFC_DTYPE_DERIVED_1:
103 cshift0_i1 ((gfc_array_i1 *)ret, (gfc_array_i1 *) array, shift, which);
104 return;
106 case GFC_DTYPE_LOGICAL_2:
107 case GFC_DTYPE_INTEGER_2:
108 cshift0_i2 ((gfc_array_i2 *)ret, (gfc_array_i2 *) array, shift, which);
109 return;
111 case GFC_DTYPE_LOGICAL_4:
112 case GFC_DTYPE_INTEGER_4:
113 cshift0_i4 ((gfc_array_i4 *)ret, (gfc_array_i4 *) array, shift, which);
114 return;
116 case GFC_DTYPE_LOGICAL_8:
117 case GFC_DTYPE_INTEGER_8:
118 cshift0_i8 ((gfc_array_i8 *)ret, (gfc_array_i8 *) array, shift, which);
119 return;
121 #ifdef HAVE_GFC_INTEGER_16
122 case GFC_DTYPE_LOGICAL_16:
123 case GFC_DTYPE_INTEGER_16:
124 cshift0_i16 ((gfc_array_i16 *)ret, (gfc_array_i16 *) array, shift,
125 which);
126 return;
127 #endif
129 case GFC_DTYPE_REAL_4:
130 cshift0_r4 ((gfc_array_r4 *)ret, (gfc_array_r4 *) array, shift, which);
131 return;
133 case GFC_DTYPE_REAL_8:
134 cshift0_r8 ((gfc_array_r8 *)ret, (gfc_array_r8 *) array, shift, which);
135 return;
137 /* FIXME: This here is a hack, which will have to be removed when
138 the array descriptor is reworked. Currently, we don't store the
139 kind value for the type, but only the size. Because on targets with
140 __float128, we have sizeof(logn double) == sizeof(__float128),
141 we cannot discriminate here and have to fall back to the generic
142 handling (which is suboptimal). */
143 #if !defined(GFC_REAL_16_IS_FLOAT128)
144 # ifdef HAVE_GFC_REAL_10
145 case GFC_DTYPE_REAL_10:
146 cshift0_r10 ((gfc_array_r10 *)ret, (gfc_array_r10 *) array, shift,
147 which);
148 return;
149 # endif
151 # ifdef HAVE_GFC_REAL_16
152 case GFC_DTYPE_REAL_16:
153 cshift0_r16 ((gfc_array_r16 *)ret, (gfc_array_r16 *) array, shift,
154 which);
155 return;
156 # endif
157 #endif
159 case GFC_DTYPE_COMPLEX_4:
160 cshift0_c4 ((gfc_array_c4 *)ret, (gfc_array_c4 *) array, shift, which);
161 return;
163 case GFC_DTYPE_COMPLEX_8:
164 cshift0_c8 ((gfc_array_c8 *)ret, (gfc_array_c8 *) array, shift, which);
165 return;
167 /* FIXME: This here is a hack, which will have to be removed when
168 the array descriptor is reworked. Currently, we don't store the
169 kind value for the type, but only the size. Because on targets with
170 __float128, we have sizeof(logn double) == sizeof(__float128),
171 we cannot discriminate here and have to fall back to the generic
172 handling (which is suboptimal). */
173 #if !defined(GFC_REAL_16_IS_FLOAT128)
174 # ifdef HAVE_GFC_COMPLEX_10
175 case GFC_DTYPE_COMPLEX_10:
176 cshift0_c10 ((gfc_array_c10 *)ret, (gfc_array_c10 *) array, shift,
177 which);
178 return;
179 # endif
181 # ifdef HAVE_GFC_COMPLEX_16
182 case GFC_DTYPE_COMPLEX_16:
183 cshift0_c16 ((gfc_array_c16 *)ret, (gfc_array_c16 *) array, shift,
184 which);
185 return;
186 # endif
187 #endif
189 default:
190 break;
193 switch (size)
195 /* Let's check the actual alignment of the data pointers. If they
196 are suitably aligned, we can safely call the unpack functions. */
198 case sizeof (GFC_INTEGER_1):
199 cshift0_i1 ((gfc_array_i1 *) ret, (gfc_array_i1 *) array, shift,
200 which);
201 break;
203 case sizeof (GFC_INTEGER_2):
204 if (GFC_UNALIGNED_2(ret->data) || GFC_UNALIGNED_2(array->data))
205 break;
206 else
208 cshift0_i2 ((gfc_array_i2 *) ret, (gfc_array_i2 *) array, shift,
209 which);
210 return;
213 case sizeof (GFC_INTEGER_4):
214 if (GFC_UNALIGNED_4(ret->data) || GFC_UNALIGNED_4(array->data))
215 break;
216 else
218 cshift0_i4 ((gfc_array_i4 *)ret, (gfc_array_i4 *) array, shift,
219 which);
220 return;
223 case sizeof (GFC_INTEGER_8):
224 if (GFC_UNALIGNED_8(ret->data) || GFC_UNALIGNED_8(array->data))
226 /* Let's try to use the complex routines. First, a sanity
227 check that the sizes match; this should be optimized to
228 a no-op. */
229 if (sizeof(GFC_INTEGER_8) != sizeof(GFC_COMPLEX_4))
230 break;
232 if (GFC_UNALIGNED_C4(ret->data) || GFC_UNALIGNED_C4(array->data))
233 break;
235 cshift0_c4 ((gfc_array_c4 *) ret, (gfc_array_c4 *) array, shift,
236 which);
237 return;
239 else
241 cshift0_i8 ((gfc_array_i8 *)ret, (gfc_array_i8 *) array, shift,
242 which);
243 return;
246 #ifdef HAVE_GFC_INTEGER_16
247 case sizeof (GFC_INTEGER_16):
248 if (GFC_UNALIGNED_16(ret->data) || GFC_UNALIGNED_16(array->data))
250 /* Let's try to use the complex routines. First, a sanity
251 check that the sizes match; this should be optimized to
252 a no-op. */
253 if (sizeof(GFC_INTEGER_16) != sizeof(GFC_COMPLEX_8))
254 break;
256 if (GFC_UNALIGNED_C8(ret->data) || GFC_UNALIGNED_C8(array->data))
257 break;
259 cshift0_c8 ((gfc_array_c8 *) ret, (gfc_array_c8 *) array, shift,
260 which);
261 return;
263 else
265 cshift0_i16 ((gfc_array_i16 *) ret, (gfc_array_i16 *) array,
266 shift, which);
267 return;
269 #else
270 case sizeof (GFC_COMPLEX_8):
272 if (GFC_UNALIGNED_C8(ret->data) || GFC_UNALIGNED_C8(array->data))
273 break;
274 else
276 cshift0_c8 ((gfc_array_c8 *) ret, (gfc_array_c8 *) array, shift,
277 which);
278 return;
280 #endif
282 default:
283 break;
287 which = which - 1;
288 sstride[0] = 0;
289 rstride[0] = 0;
291 extent[0] = 1;
292 count[0] = 0;
293 n = 0;
294 /* Initialized for avoiding compiler warnings. */
295 roffset = size;
296 soffset = size;
297 len = 0;
299 for (dim = 0; dim < GFC_DESCRIPTOR_RANK (array); dim++)
301 if (dim == which)
303 roffset = GFC_DESCRIPTOR_STRIDE_BYTES(ret,dim);
304 if (roffset == 0)
305 roffset = size;
306 soffset = GFC_DESCRIPTOR_STRIDE_BYTES(array,dim);
307 if (soffset == 0)
308 soffset = size;
309 len = GFC_DESCRIPTOR_EXTENT(array,dim);
311 else
313 count[n] = 0;
314 extent[n] = GFC_DESCRIPTOR_EXTENT(array,dim);
315 rstride[n] = GFC_DESCRIPTOR_STRIDE_BYTES(ret,dim);
316 sstride[n] = GFC_DESCRIPTOR_STRIDE_BYTES(array,dim);
317 n++;
320 if (sstride[0] == 0)
321 sstride[0] = size;
322 if (rstride[0] == 0)
323 rstride[0] = size;
325 dim = GFC_DESCRIPTOR_RANK (array);
326 rstride0 = rstride[0];
327 sstride0 = sstride[0];
328 rptr = ret->data;
329 sptr = array->data;
331 shift = len == 0 ? 0 : shift % (ssize_t)len;
332 if (shift < 0)
333 shift += len;
335 while (rptr)
337 /* Do the shift for this dimension. */
339 /* If elements are contiguous, perform the operation
340 in two block moves. */
341 if (soffset == size && roffset == size)
343 size_t len1 = shift * size;
344 size_t len2 = (len - shift) * size;
345 memcpy (rptr, sptr + len1, len2);
346 memcpy (rptr + len2, sptr, len1);
348 else
350 /* Otherwise, we'll have to perform the copy one element at
351 a time. */
352 char *dest = rptr;
353 const char *src = &sptr[shift * soffset];
355 for (n = 0; n < len - shift; n++)
357 memcpy (dest, src, size);
358 dest += roffset;
359 src += soffset;
361 for (src = sptr, n = 0; n < shift; n++)
363 memcpy (dest, src, size);
364 dest += roffset;
365 src += soffset;
369 /* Advance to the next section. */
370 rptr += rstride0;
371 sptr += sstride0;
372 count[0]++;
373 n = 0;
374 while (count[n] == extent[n])
376 /* When we get to the end of a dimension, reset it and increment
377 the next dimension. */
378 count[n] = 0;
379 /* We could precalculate these products, but this is a less
380 frequently used path so probably not worth it. */
381 rptr -= rstride[n] * extent[n];
382 sptr -= sstride[n] * extent[n];
383 n++;
384 if (n >= dim - 1)
386 /* Break out of the loop. */
387 rptr = NULL;
388 break;
390 else
392 count[n]++;
393 rptr += rstride[n];
394 sptr += sstride[n];
400 #define DEFINE_CSHIFT(N) \
401 extern void cshift0_##N (gfc_array_char *, const gfc_array_char *, \
402 const GFC_INTEGER_##N *, const GFC_INTEGER_##N *); \
403 export_proto(cshift0_##N); \
405 void \
406 cshift0_##N (gfc_array_char *ret, const gfc_array_char *array, \
407 const GFC_INTEGER_##N *pshift, const GFC_INTEGER_##N *pdim) \
409 cshift0 (ret, array, *pshift, pdim ? *pdim : 1, \
410 GFC_DESCRIPTOR_SIZE (array)); \
413 extern void cshift0_##N##_char (gfc_array_char *, GFC_INTEGER_4, \
414 const gfc_array_char *, \
415 const GFC_INTEGER_##N *, \
416 const GFC_INTEGER_##N *, GFC_INTEGER_4); \
417 export_proto(cshift0_##N##_char); \
419 void \
420 cshift0_##N##_char (gfc_array_char *ret, \
421 GFC_INTEGER_4 ret_length __attribute__((unused)), \
422 const gfc_array_char *array, \
423 const GFC_INTEGER_##N *pshift, \
424 const GFC_INTEGER_##N *pdim, \
425 GFC_INTEGER_4 array_length) \
427 cshift0 (ret, array, *pshift, pdim ? *pdim : 1, array_length); \
430 extern void cshift0_##N##_char4 (gfc_array_char *, GFC_INTEGER_4, \
431 const gfc_array_char *, \
432 const GFC_INTEGER_##N *, \
433 const GFC_INTEGER_##N *, GFC_INTEGER_4); \
434 export_proto(cshift0_##N##_char4); \
436 void \
437 cshift0_##N##_char4 (gfc_array_char *ret, \
438 GFC_INTEGER_4 ret_length __attribute__((unused)), \
439 const gfc_array_char *array, \
440 const GFC_INTEGER_##N *pshift, \
441 const GFC_INTEGER_##N *pdim, \
442 GFC_INTEGER_4 array_length) \
444 cshift0 (ret, array, *pshift, pdim ? *pdim : 1, \
445 array_length * sizeof (gfc_char4_t)); \
448 DEFINE_CSHIFT (1);
449 DEFINE_CSHIFT (2);
450 DEFINE_CSHIFT (4);
451 DEFINE_CSHIFT (8);
452 #ifdef HAVE_GFC_INTEGER_16
453 DEFINE_CSHIFT (16);
454 #endif