1 /* Convert RTL to assembler code and output it, for GNU compiler.
2 Copyright (C) 1987-2013 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 /* This is the final pass of the compiler.
21 It looks at the rtl code for a function and outputs assembler code.
23 Call `final_start_function' to output the assembler code for function entry,
24 `final' to output assembler code for some RTL code,
25 `final_end_function' to output assembler code for function exit.
26 If a function is compiled in several pieces, each piece is
27 output separately with `final'.
29 Some optimizations are also done at this level.
30 Move instructions that were made unnecessary by good register allocation
31 are detected and omitted from the output. (Though most of these
32 are removed by the last jump pass.)
34 Instructions to set the condition codes are omitted when it can be
35 seen that the condition codes already had the desired values.
37 In some cases it is sufficient if the inherited condition codes
38 have related values, but this may require the following insn
39 (the one that tests the condition codes) to be modified.
41 The code for the function prologue and epilogue are generated
42 directly in assembler by the target functions function_prologue and
43 function_epilogue. Those instructions never exist as rtl. */
47 #include "coretypes.h"
54 #include "insn-config.h"
55 #include "insn-attr.h"
57 #include "conditions.h"
59 #include "hard-reg-set.h"
63 #include "rtl-error.h"
64 #include "toplev.h" /* exact_log2, floor_log2 */
67 #include "basic-block.h"
69 #include "targhooks.h"
72 #include "tree-pass.h"
80 #include "tree-pretty-print.h" /* for dump_function_header */
82 #ifdef XCOFF_DEBUGGING_INFO
83 #include "xcoffout.h" /* Needed for external data
84 declarations for e.g. AIX 4.x. */
87 #include "dwarf2out.h"
89 #ifdef DBX_DEBUGGING_INFO
93 #ifdef SDB_DEBUGGING_INFO
97 /* Most ports that aren't using cc0 don't need to define CC_STATUS_INIT.
98 So define a null default for it to save conditionalization later. */
99 #ifndef CC_STATUS_INIT
100 #define CC_STATUS_INIT
103 /* Is the given character a logical line separator for the assembler? */
104 #ifndef IS_ASM_LOGICAL_LINE_SEPARATOR
105 #define IS_ASM_LOGICAL_LINE_SEPARATOR(C, STR) ((C) == ';')
108 #ifndef JUMP_TABLES_IN_TEXT_SECTION
109 #define JUMP_TABLES_IN_TEXT_SECTION 0
112 /* Bitflags used by final_scan_insn. */
115 #define SEEN_EMITTED 4
117 /* Last insn processed by final_scan_insn. */
118 static rtx debug_insn
;
119 rtx current_output_insn
;
121 /* Line number of last NOTE. */
122 static int last_linenum
;
124 /* Last discriminator written to assembly. */
125 static int last_discriminator
;
127 /* Discriminator of current block. */
128 static int discriminator
;
130 /* Highest line number in current block. */
131 static int high_block_linenum
;
133 /* Likewise for function. */
134 static int high_function_linenum
;
136 /* Filename of last NOTE. */
137 static const char *last_filename
;
139 /* Override filename and line number. */
140 static const char *override_filename
;
141 static int override_linenum
;
143 /* Whether to force emission of a line note before the next insn. */
144 static bool force_source_line
= false;
146 extern const int length_unit_log
; /* This is defined in insn-attrtab.c. */
148 /* Nonzero while outputting an `asm' with operands.
149 This means that inconsistencies are the user's fault, so don't die.
150 The precise value is the insn being output, to pass to error_for_asm. */
151 rtx this_is_asm_operands
;
153 /* Number of operands of this insn, for an `asm' with operands. */
154 static unsigned int insn_noperands
;
156 /* Compare optimization flag. */
158 static rtx last_ignored_compare
= 0;
160 /* Assign a unique number to each insn that is output.
161 This can be used to generate unique local labels. */
163 static int insn_counter
= 0;
166 /* This variable contains machine-dependent flags (defined in tm.h)
167 set and examined by output routines
168 that describe how to interpret the condition codes properly. */
172 /* During output of an insn, this contains a copy of cc_status
173 from before the insn. */
175 CC_STATUS cc_prev_status
;
178 /* Number of unmatched NOTE_INSN_BLOCK_BEG notes we have seen. */
180 static int block_depth
;
182 /* Nonzero if have enabled APP processing of our assembler output. */
186 /* If we are outputting an insn sequence, this contains the sequence rtx.
191 #ifdef ASSEMBLER_DIALECT
193 /* Number of the assembler dialect to use, starting at 0. */
194 static int dialect_number
;
197 /* Nonnull if the insn currently being emitted was a COND_EXEC pattern. */
198 rtx current_insn_predicate
;
200 /* True if printing into -fdump-final-insns= dump. */
201 bool final_insns_dump_p
;
203 /* True if profile_function should be called, but hasn't been called yet. */
204 static bool need_profile_function
;
206 static int asm_insn_count (rtx
);
207 static void profile_function (FILE *);
208 static void profile_after_prologue (FILE *);
209 static bool notice_source_line (rtx
, bool *);
210 static rtx
walk_alter_subreg (rtx
*, bool *);
211 static void output_asm_name (void);
212 static void output_alternate_entry_point (FILE *, rtx
);
213 static tree
get_mem_expr_from_op (rtx
, int *);
214 static void output_asm_operand_names (rtx
*, int *, int);
215 #ifdef LEAF_REGISTERS
216 static void leaf_renumber_regs (rtx
);
219 static int alter_cond (rtx
);
221 #ifndef ADDR_VEC_ALIGN
222 static int final_addr_vec_align (rtx
);
224 static int align_fuzz (rtx
, rtx
, int, unsigned);
226 /* Initialize data in final at the beginning of a compilation. */
229 init_final (const char *filename ATTRIBUTE_UNUSED
)
234 #ifdef ASSEMBLER_DIALECT
235 dialect_number
= ASSEMBLER_DIALECT
;
239 /* Default target function prologue and epilogue assembler output.
241 If not overridden for epilogue code, then the function body itself
242 contains return instructions wherever needed. */
244 default_function_pro_epilogue (FILE *file ATTRIBUTE_UNUSED
,
245 HOST_WIDE_INT size ATTRIBUTE_UNUSED
)
250 default_function_switched_text_sections (FILE *file ATTRIBUTE_UNUSED
,
251 tree decl ATTRIBUTE_UNUSED
,
252 bool new_is_cold ATTRIBUTE_UNUSED
)
256 /* Default target hook that outputs nothing to a stream. */
258 no_asm_to_stream (FILE *file ATTRIBUTE_UNUSED
)
262 /* Enable APP processing of subsequent output.
263 Used before the output from an `asm' statement. */
270 fputs (ASM_APP_ON
, asm_out_file
);
275 /* Disable APP processing of subsequent output.
276 Called from varasm.c before most kinds of output. */
283 fputs (ASM_APP_OFF
, asm_out_file
);
288 /* Return the number of slots filled in the current
289 delayed branch sequence (we don't count the insn needing the
290 delay slot). Zero if not in a delayed branch sequence. */
294 dbr_sequence_length (void)
296 if (final_sequence
!= 0)
297 return XVECLEN (final_sequence
, 0) - 1;
303 /* The next two pages contain routines used to compute the length of an insn
304 and to shorten branches. */
306 /* Arrays for insn lengths, and addresses. The latter is referenced by
307 `insn_current_length'. */
309 static int *insn_lengths
;
311 vec
<int> insn_addresses_
;
313 /* Max uid for which the above arrays are valid. */
314 static int insn_lengths_max_uid
;
316 /* Address of insn being processed. Used by `insn_current_length'. */
317 int insn_current_address
;
319 /* Address of insn being processed in previous iteration. */
320 int insn_last_address
;
322 /* known invariant alignment of insn being processed. */
323 int insn_current_align
;
325 /* After shorten_branches, for any insn, uid_align[INSN_UID (insn)]
326 gives the next following alignment insn that increases the known
327 alignment, or NULL_RTX if there is no such insn.
328 For any alignment obtained this way, we can again index uid_align with
329 its uid to obtain the next following align that in turn increases the
330 alignment, till we reach NULL_RTX; the sequence obtained this way
331 for each insn we'll call the alignment chain of this insn in the following
334 struct label_alignment
340 static rtx
*uid_align
;
341 static int *uid_shuid
;
342 static struct label_alignment
*label_align
;
344 /* Indicate that branch shortening hasn't yet been done. */
347 init_insn_lengths (void)
358 insn_lengths_max_uid
= 0;
360 if (HAVE_ATTR_length
)
361 INSN_ADDRESSES_FREE ();
369 /* Obtain the current length of an insn. If branch shortening has been done,
370 get its actual length. Otherwise, use FALLBACK_FN to calculate the
373 get_attr_length_1 (rtx insn
, int (*fallback_fn
) (rtx
))
379 if (!HAVE_ATTR_length
)
382 if (insn_lengths_max_uid
> INSN_UID (insn
))
383 return insn_lengths
[INSN_UID (insn
)];
385 switch (GET_CODE (insn
))
395 length
= fallback_fn (insn
);
399 body
= PATTERN (insn
);
400 if (GET_CODE (body
) == USE
|| GET_CODE (body
) == CLOBBER
)
403 else if (GET_CODE (body
) == ASM_INPUT
|| asm_noperands (body
) >= 0)
404 length
= asm_insn_count (body
) * fallback_fn (insn
);
405 else if (GET_CODE (body
) == SEQUENCE
)
406 for (i
= 0; i
< XVECLEN (body
, 0); i
++)
407 length
+= get_attr_length_1 (XVECEXP (body
, 0, i
), fallback_fn
);
409 length
= fallback_fn (insn
);
416 #ifdef ADJUST_INSN_LENGTH
417 ADJUST_INSN_LENGTH (insn
, length
);
422 /* Obtain the current length of an insn. If branch shortening has been done,
423 get its actual length. Otherwise, get its maximum length. */
425 get_attr_length (rtx insn
)
427 return get_attr_length_1 (insn
, insn_default_length
);
430 /* Obtain the current length of an insn. If branch shortening has been done,
431 get its actual length. Otherwise, get its minimum length. */
433 get_attr_min_length (rtx insn
)
435 return get_attr_length_1 (insn
, insn_min_length
);
438 /* Code to handle alignment inside shorten_branches. */
440 /* Here is an explanation how the algorithm in align_fuzz can give
443 Call a sequence of instructions beginning with alignment point X
444 and continuing until the next alignment point `block X'. When `X'
445 is used in an expression, it means the alignment value of the
448 Call the distance between the start of the first insn of block X, and
449 the end of the last insn of block X `IX', for the `inner size of X'.
450 This is clearly the sum of the instruction lengths.
452 Likewise with the next alignment-delimited block following X, which we
455 Call the distance between the start of the first insn of block X, and
456 the start of the first insn of block Y `OX', for the `outer size of X'.
458 The estimated padding is then OX - IX.
460 OX can be safely estimated as
465 OX = round_up(IX, X) + Y - X
467 Clearly est(IX) >= real(IX), because that only depends on the
468 instruction lengths, and those being overestimated is a given.
470 Clearly round_up(foo, Z) >= round_up(bar, Z) if foo >= bar, so
471 we needn't worry about that when thinking about OX.
473 When X >= Y, the alignment provided by Y adds no uncertainty factor
474 for branch ranges starting before X, so we can just round what we have.
475 But when X < Y, we don't know anything about the, so to speak,
476 `middle bits', so we have to assume the worst when aligning up from an
477 address mod X to one mod Y, which is Y - X. */
480 #define LABEL_ALIGN(LABEL) align_labels_log
484 #define LOOP_ALIGN(LABEL) align_loops_log
487 #ifndef LABEL_ALIGN_AFTER_BARRIER
488 #define LABEL_ALIGN_AFTER_BARRIER(LABEL) 0
492 #define JUMP_ALIGN(LABEL) align_jumps_log
496 default_label_align_after_barrier_max_skip (rtx insn ATTRIBUTE_UNUSED
)
502 default_loop_align_max_skip (rtx insn ATTRIBUTE_UNUSED
)
504 return align_loops_max_skip
;
508 default_label_align_max_skip (rtx insn ATTRIBUTE_UNUSED
)
510 return align_labels_max_skip
;
514 default_jump_align_max_skip (rtx insn ATTRIBUTE_UNUSED
)
516 return align_jumps_max_skip
;
519 #ifndef ADDR_VEC_ALIGN
521 final_addr_vec_align (rtx addr_vec
)
523 int align
= GET_MODE_SIZE (GET_MODE (PATTERN (addr_vec
)));
525 if (align
> BIGGEST_ALIGNMENT
/ BITS_PER_UNIT
)
526 align
= BIGGEST_ALIGNMENT
/ BITS_PER_UNIT
;
527 return exact_log2 (align
);
531 #define ADDR_VEC_ALIGN(ADDR_VEC) final_addr_vec_align (ADDR_VEC)
534 #ifndef INSN_LENGTH_ALIGNMENT
535 #define INSN_LENGTH_ALIGNMENT(INSN) length_unit_log
538 #define INSN_SHUID(INSN) (uid_shuid[INSN_UID (INSN)])
540 static int min_labelno
, max_labelno
;
542 #define LABEL_TO_ALIGNMENT(LABEL) \
543 (label_align[CODE_LABEL_NUMBER (LABEL) - min_labelno].alignment)
545 #define LABEL_TO_MAX_SKIP(LABEL) \
546 (label_align[CODE_LABEL_NUMBER (LABEL) - min_labelno].max_skip)
548 /* For the benefit of port specific code do this also as a function. */
551 label_to_alignment (rtx label
)
553 if (CODE_LABEL_NUMBER (label
) <= max_labelno
)
554 return LABEL_TO_ALIGNMENT (label
);
559 label_to_max_skip (rtx label
)
561 if (CODE_LABEL_NUMBER (label
) <= max_labelno
)
562 return LABEL_TO_MAX_SKIP (label
);
566 /* The differences in addresses
567 between a branch and its target might grow or shrink depending on
568 the alignment the start insn of the range (the branch for a forward
569 branch or the label for a backward branch) starts out on; if these
570 differences are used naively, they can even oscillate infinitely.
571 We therefore want to compute a 'worst case' address difference that
572 is independent of the alignment the start insn of the range end
573 up on, and that is at least as large as the actual difference.
574 The function align_fuzz calculates the amount we have to add to the
575 naively computed difference, by traversing the part of the alignment
576 chain of the start insn of the range that is in front of the end insn
577 of the range, and considering for each alignment the maximum amount
578 that it might contribute to a size increase.
580 For casesi tables, we also want to know worst case minimum amounts of
581 address difference, in case a machine description wants to introduce
582 some common offset that is added to all offsets in a table.
583 For this purpose, align_fuzz with a growth argument of 0 computes the
584 appropriate adjustment. */
586 /* Compute the maximum delta by which the difference of the addresses of
587 START and END might grow / shrink due to a different address for start
588 which changes the size of alignment insns between START and END.
589 KNOWN_ALIGN_LOG is the alignment known for START.
590 GROWTH should be ~0 if the objective is to compute potential code size
591 increase, and 0 if the objective is to compute potential shrink.
592 The return value is undefined for any other value of GROWTH. */
595 align_fuzz (rtx start
, rtx end
, int known_align_log
, unsigned int growth
)
597 int uid
= INSN_UID (start
);
599 int known_align
= 1 << known_align_log
;
600 int end_shuid
= INSN_SHUID (end
);
603 for (align_label
= uid_align
[uid
]; align_label
; align_label
= uid_align
[uid
])
605 int align_addr
, new_align
;
607 uid
= INSN_UID (align_label
);
608 align_addr
= INSN_ADDRESSES (uid
) - insn_lengths
[uid
];
609 if (uid_shuid
[uid
] > end_shuid
)
611 known_align_log
= LABEL_TO_ALIGNMENT (align_label
);
612 new_align
= 1 << known_align_log
;
613 if (new_align
< known_align
)
615 fuzz
+= (-align_addr
^ growth
) & (new_align
- known_align
);
616 known_align
= new_align
;
621 /* Compute a worst-case reference address of a branch so that it
622 can be safely used in the presence of aligned labels. Since the
623 size of the branch itself is unknown, the size of the branch is
624 not included in the range. I.e. for a forward branch, the reference
625 address is the end address of the branch as known from the previous
626 branch shortening pass, minus a value to account for possible size
627 increase due to alignment. For a backward branch, it is the start
628 address of the branch as known from the current pass, plus a value
629 to account for possible size increase due to alignment.
630 NB.: Therefore, the maximum offset allowed for backward branches needs
631 to exclude the branch size. */
634 insn_current_reference_address (rtx branch
)
639 if (! INSN_ADDRESSES_SET_P ())
642 seq
= NEXT_INSN (PREV_INSN (branch
));
643 seq_uid
= INSN_UID (seq
);
644 if (!JUMP_P (branch
))
645 /* This can happen for example on the PA; the objective is to know the
646 offset to address something in front of the start of the function.
647 Thus, we can treat it like a backward branch.
648 We assume here that FUNCTION_BOUNDARY / BITS_PER_UNIT is larger than
649 any alignment we'd encounter, so we skip the call to align_fuzz. */
650 return insn_current_address
;
651 dest
= JUMP_LABEL (branch
);
653 /* BRANCH has no proper alignment chain set, so use SEQ.
654 BRANCH also has no INSN_SHUID. */
655 if (INSN_SHUID (seq
) < INSN_SHUID (dest
))
657 /* Forward branch. */
658 return (insn_last_address
+ insn_lengths
[seq_uid
]
659 - align_fuzz (seq
, dest
, length_unit_log
, ~0));
663 /* Backward branch. */
664 return (insn_current_address
665 + align_fuzz (dest
, seq
, length_unit_log
, ~0));
669 /* Compute branch alignments based on frequency information in the
673 compute_alignments (void)
675 int log
, max_skip
, max_log
;
678 int freq_threshold
= 0;
686 max_labelno
= max_label_num ();
687 min_labelno
= get_first_label_num ();
688 label_align
= XCNEWVEC (struct label_alignment
, max_labelno
- min_labelno
+ 1);
690 /* If not optimizing or optimizing for size, don't assign any alignments. */
691 if (! optimize
|| optimize_function_for_size_p (cfun
))
696 dump_reg_info (dump_file
);
697 dump_flow_info (dump_file
, TDF_DETAILS
);
698 flow_loops_dump (dump_file
, NULL
, 1);
700 loop_optimizer_init (AVOID_CFG_MODIFICATIONS
);
702 if (bb
->frequency
> freq_max
)
703 freq_max
= bb
->frequency
;
704 freq_threshold
= freq_max
/ PARAM_VALUE (PARAM_ALIGN_THRESHOLD
);
707 fprintf (dump_file
, "freq_max: %i\n",freq_max
);
710 rtx label
= BB_HEAD (bb
);
711 int fallthru_frequency
= 0, branch_frequency
= 0, has_fallthru
= 0;
716 || optimize_bb_for_size_p (bb
))
720 "BB %4i freq %4i loop %2i loop_depth %2i skipped.\n",
721 bb
->index
, bb
->frequency
, bb
->loop_father
->num
,
725 max_log
= LABEL_ALIGN (label
);
726 max_skip
= targetm
.asm_out
.label_align_max_skip (label
);
728 FOR_EACH_EDGE (e
, ei
, bb
->preds
)
730 if (e
->flags
& EDGE_FALLTHRU
)
731 has_fallthru
= 1, fallthru_frequency
+= EDGE_FREQUENCY (e
);
733 branch_frequency
+= EDGE_FREQUENCY (e
);
737 fprintf (dump_file
, "BB %4i freq %4i loop %2i loop_depth"
738 " %2i fall %4i branch %4i",
739 bb
->index
, bb
->frequency
, bb
->loop_father
->num
,
741 fallthru_frequency
, branch_frequency
);
742 if (!bb
->loop_father
->inner
&& bb
->loop_father
->num
)
743 fprintf (dump_file
, " inner_loop");
744 if (bb
->loop_father
->header
== bb
)
745 fprintf (dump_file
, " loop_header");
746 fprintf (dump_file
, "\n");
749 /* There are two purposes to align block with no fallthru incoming edge:
750 1) to avoid fetch stalls when branch destination is near cache boundary
751 2) to improve cache efficiency in case the previous block is not executed
752 (so it does not need to be in the cache).
754 We to catch first case, we align frequently executed blocks.
755 To catch the second, we align blocks that are executed more frequently
756 than the predecessor and the predecessor is likely to not be executed
757 when function is called. */
760 && (branch_frequency
> freq_threshold
761 || (bb
->frequency
> bb
->prev_bb
->frequency
* 10
762 && (bb
->prev_bb
->frequency
763 <= ENTRY_BLOCK_PTR
->frequency
/ 2))))
765 log
= JUMP_ALIGN (label
);
767 fprintf (dump_file
, " jump alignment added.\n");
771 max_skip
= targetm
.asm_out
.jump_align_max_skip (label
);
774 /* In case block is frequent and reached mostly by non-fallthru edge,
775 align it. It is most likely a first block of loop. */
777 && optimize_bb_for_speed_p (bb
)
778 && branch_frequency
+ fallthru_frequency
> freq_threshold
780 > fallthru_frequency
* PARAM_VALUE (PARAM_ALIGN_LOOP_ITERATIONS
)))
782 log
= LOOP_ALIGN (label
);
784 fprintf (dump_file
, " internal loop alignment added.\n");
788 max_skip
= targetm
.asm_out
.loop_align_max_skip (label
);
791 LABEL_TO_ALIGNMENT (label
) = max_log
;
792 LABEL_TO_MAX_SKIP (label
) = max_skip
;
795 loop_optimizer_finalize ();
796 free_dominance_info (CDI_DOMINATORS
);
800 /* Grow the LABEL_ALIGN array after new labels are created. */
803 grow_label_align (void)
805 int old
= max_labelno
;
809 max_labelno
= max_label_num ();
811 n_labels
= max_labelno
- min_labelno
+ 1;
812 n_old_labels
= old
- min_labelno
+ 1;
814 label_align
= XRESIZEVEC (struct label_alignment
, label_align
, n_labels
);
816 /* Range of labels grows monotonically in the function. Failing here
817 means that the initialization of array got lost. */
818 gcc_assert (n_old_labels
<= n_labels
);
820 memset (label_align
+ n_old_labels
, 0,
821 (n_labels
- n_old_labels
) * sizeof (struct label_alignment
));
824 /* Update the already computed alignment information. LABEL_PAIRS is a vector
825 made up of pairs of labels for which the alignment information of the first
826 element will be copied from that of the second element. */
829 update_alignments (vec
<rtx
> &label_pairs
)
834 if (max_labelno
!= max_label_num ())
837 FOR_EACH_VEC_ELT (label_pairs
, i
, iter
)
840 LABEL_TO_ALIGNMENT (label
) = LABEL_TO_ALIGNMENT (iter
);
841 LABEL_TO_MAX_SKIP (label
) = LABEL_TO_MAX_SKIP (iter
);
849 const pass_data pass_data_compute_alignments
=
852 "alignments", /* name */
853 OPTGROUP_NONE
, /* optinfo_flags */
854 false, /* has_gate */
855 true, /* has_execute */
857 0, /* properties_required */
858 0, /* properties_provided */
859 0, /* properties_destroyed */
860 0, /* todo_flags_start */
861 TODO_verify_rtl_sharing
, /* todo_flags_finish */
864 class pass_compute_alignments
: public rtl_opt_pass
867 pass_compute_alignments (gcc::context
*ctxt
)
868 : rtl_opt_pass (pass_data_compute_alignments
, ctxt
)
871 /* opt_pass methods: */
872 unsigned int execute () { return compute_alignments (); }
874 }; // class pass_compute_alignments
879 make_pass_compute_alignments (gcc::context
*ctxt
)
881 return new pass_compute_alignments (ctxt
);
885 /* Make a pass over all insns and compute their actual lengths by shortening
886 any branches of variable length if possible. */
888 /* shorten_branches might be called multiple times: for example, the SH
889 port splits out-of-range conditional branches in MACHINE_DEPENDENT_REORG.
890 In order to do this, it needs proper length information, which it obtains
891 by calling shorten_branches. This cannot be collapsed with
892 shorten_branches itself into a single pass unless we also want to integrate
893 reorg.c, since the branch splitting exposes new instructions with delay
897 shorten_branches (rtx first
)
904 #define MAX_CODE_ALIGN 16
906 int something_changed
= 1;
907 char *varying_length
;
910 rtx align_tab
[MAX_CODE_ALIGN
];
912 /* Compute maximum UID and allocate label_align / uid_shuid. */
913 max_uid
= get_max_uid ();
915 /* Free uid_shuid before reallocating it. */
918 uid_shuid
= XNEWVEC (int, max_uid
);
920 if (max_labelno
!= max_label_num ())
923 /* Initialize label_align and set up uid_shuid to be strictly
924 monotonically rising with insn order. */
925 /* We use max_log here to keep track of the maximum alignment we want to
926 impose on the next CODE_LABEL (or the current one if we are processing
927 the CODE_LABEL itself). */
932 for (insn
= get_insns (), i
= 1; insn
; insn
= NEXT_INSN (insn
))
936 INSN_SHUID (insn
) = i
++;
943 bool next_is_jumptable
;
945 /* Merge in alignments computed by compute_alignments. */
946 log
= LABEL_TO_ALIGNMENT (insn
);
950 max_skip
= LABEL_TO_MAX_SKIP (insn
);
953 next
= next_nonnote_insn (insn
);
954 next_is_jumptable
= next
&& JUMP_TABLE_DATA_P (next
);
955 if (!next_is_jumptable
)
957 log
= LABEL_ALIGN (insn
);
961 max_skip
= targetm
.asm_out
.label_align_max_skip (insn
);
964 /* ADDR_VECs only take room if read-only data goes into the text
966 if ((JUMP_TABLES_IN_TEXT_SECTION
967 || readonly_data_section
== text_section
)
968 && next_is_jumptable
)
970 log
= ADDR_VEC_ALIGN (next
);
974 max_skip
= targetm
.asm_out
.label_align_max_skip (insn
);
977 LABEL_TO_ALIGNMENT (insn
) = max_log
;
978 LABEL_TO_MAX_SKIP (insn
) = max_skip
;
982 else if (BARRIER_P (insn
))
986 for (label
= insn
; label
&& ! INSN_P (label
);
987 label
= NEXT_INSN (label
))
990 log
= LABEL_ALIGN_AFTER_BARRIER (insn
);
994 max_skip
= targetm
.asm_out
.label_align_after_barrier_max_skip (label
);
1000 if (!HAVE_ATTR_length
)
1003 /* Allocate the rest of the arrays. */
1004 insn_lengths
= XNEWVEC (int, max_uid
);
1005 insn_lengths_max_uid
= max_uid
;
1006 /* Syntax errors can lead to labels being outside of the main insn stream.
1007 Initialize insn_addresses, so that we get reproducible results. */
1008 INSN_ADDRESSES_ALLOC (max_uid
);
1010 varying_length
= XCNEWVEC (char, max_uid
);
1012 /* Initialize uid_align. We scan instructions
1013 from end to start, and keep in align_tab[n] the last seen insn
1014 that does an alignment of at least n+1, i.e. the successor
1015 in the alignment chain for an insn that does / has a known
1017 uid_align
= XCNEWVEC (rtx
, max_uid
);
1019 for (i
= MAX_CODE_ALIGN
; --i
>= 0;)
1020 align_tab
[i
] = NULL_RTX
;
1021 seq
= get_last_insn ();
1022 for (; seq
; seq
= PREV_INSN (seq
))
1024 int uid
= INSN_UID (seq
);
1026 log
= (LABEL_P (seq
) ? LABEL_TO_ALIGNMENT (seq
) : 0);
1027 uid_align
[uid
] = align_tab
[0];
1030 /* Found an alignment label. */
1031 uid_align
[uid
] = align_tab
[log
];
1032 for (i
= log
- 1; i
>= 0; i
--)
1037 /* When optimizing, we start assuming minimum length, and keep increasing
1038 lengths as we find the need for this, till nothing changes.
1039 When not optimizing, we start assuming maximum lengths, and
1040 do a single pass to update the lengths. */
1041 bool increasing
= optimize
!= 0;
1043 #ifdef CASE_VECTOR_SHORTEN_MODE
1046 /* Look for ADDR_DIFF_VECs, and initialize their minimum and maximum
1049 int min_shuid
= INSN_SHUID (get_insns ()) - 1;
1050 int max_shuid
= INSN_SHUID (get_last_insn ()) + 1;
1053 for (insn
= first
; insn
!= 0; insn
= NEXT_INSN (insn
))
1055 rtx min_lab
= NULL_RTX
, max_lab
= NULL_RTX
, pat
;
1056 int len
, i
, min
, max
, insn_shuid
;
1058 addr_diff_vec_flags flags
;
1060 if (! JUMP_TABLE_DATA_P (insn
)
1061 || GET_CODE (PATTERN (insn
)) != ADDR_DIFF_VEC
)
1063 pat
= PATTERN (insn
);
1064 len
= XVECLEN (pat
, 1);
1065 gcc_assert (len
> 0);
1066 min_align
= MAX_CODE_ALIGN
;
1067 for (min
= max_shuid
, max
= min_shuid
, i
= len
- 1; i
>= 0; i
--)
1069 rtx lab
= XEXP (XVECEXP (pat
, 1, i
), 0);
1070 int shuid
= INSN_SHUID (lab
);
1081 if (min_align
> LABEL_TO_ALIGNMENT (lab
))
1082 min_align
= LABEL_TO_ALIGNMENT (lab
);
1084 XEXP (pat
, 2) = gen_rtx_LABEL_REF (Pmode
, min_lab
);
1085 XEXP (pat
, 3) = gen_rtx_LABEL_REF (Pmode
, max_lab
);
1086 insn_shuid
= INSN_SHUID (insn
);
1087 rel
= INSN_SHUID (XEXP (XEXP (pat
, 0), 0));
1088 memset (&flags
, 0, sizeof (flags
));
1089 flags
.min_align
= min_align
;
1090 flags
.base_after_vec
= rel
> insn_shuid
;
1091 flags
.min_after_vec
= min
> insn_shuid
;
1092 flags
.max_after_vec
= max
> insn_shuid
;
1093 flags
.min_after_base
= min
> rel
;
1094 flags
.max_after_base
= max
> rel
;
1095 ADDR_DIFF_VEC_FLAGS (pat
) = flags
;
1098 PUT_MODE (pat
, CASE_VECTOR_SHORTEN_MODE (0, 0, pat
));
1101 #endif /* CASE_VECTOR_SHORTEN_MODE */
1103 /* Compute initial lengths, addresses, and varying flags for each insn. */
1104 int (*length_fun
) (rtx
) = increasing
? insn_min_length
: insn_default_length
;
1106 for (insn_current_address
= 0, insn
= first
;
1108 insn_current_address
+= insn_lengths
[uid
], insn
= NEXT_INSN (insn
))
1110 uid
= INSN_UID (insn
);
1112 insn_lengths
[uid
] = 0;
1116 int log
= LABEL_TO_ALIGNMENT (insn
);
1119 int align
= 1 << log
;
1120 int new_address
= (insn_current_address
+ align
- 1) & -align
;
1121 insn_lengths
[uid
] = new_address
- insn_current_address
;
1125 INSN_ADDRESSES (uid
) = insn_current_address
+ insn_lengths
[uid
];
1127 if (NOTE_P (insn
) || BARRIER_P (insn
)
1128 || LABEL_P (insn
) || DEBUG_INSN_P (insn
))
1130 if (INSN_DELETED_P (insn
))
1133 body
= PATTERN (insn
);
1134 if (JUMP_TABLE_DATA_P (insn
))
1136 /* This only takes room if read-only data goes into the text
1138 if (JUMP_TABLES_IN_TEXT_SECTION
1139 || readonly_data_section
== text_section
)
1140 insn_lengths
[uid
] = (XVECLEN (body
,
1141 GET_CODE (body
) == ADDR_DIFF_VEC
)
1142 * GET_MODE_SIZE (GET_MODE (body
)));
1143 /* Alignment is handled by ADDR_VEC_ALIGN. */
1145 else if (GET_CODE (body
) == ASM_INPUT
|| asm_noperands (body
) >= 0)
1146 insn_lengths
[uid
] = asm_insn_count (body
) * insn_default_length (insn
);
1147 else if (GET_CODE (body
) == SEQUENCE
)
1150 int const_delay_slots
;
1152 const_delay_slots
= const_num_delay_slots (XVECEXP (body
, 0, 0));
1154 const_delay_slots
= 0;
1156 int (*inner_length_fun
) (rtx
)
1157 = const_delay_slots
? length_fun
: insn_default_length
;
1158 /* Inside a delay slot sequence, we do not do any branch shortening
1159 if the shortening could change the number of delay slots
1161 for (i
= 0; i
< XVECLEN (body
, 0); i
++)
1163 rtx inner_insn
= XVECEXP (body
, 0, i
);
1164 int inner_uid
= INSN_UID (inner_insn
);
1167 if (GET_CODE (body
) == ASM_INPUT
1168 || asm_noperands (PATTERN (XVECEXP (body
, 0, i
))) >= 0)
1169 inner_length
= (asm_insn_count (PATTERN (inner_insn
))
1170 * insn_default_length (inner_insn
));
1172 inner_length
= inner_length_fun (inner_insn
);
1174 insn_lengths
[inner_uid
] = inner_length
;
1175 if (const_delay_slots
)
1177 if ((varying_length
[inner_uid
]
1178 = insn_variable_length_p (inner_insn
)) != 0)
1179 varying_length
[uid
] = 1;
1180 INSN_ADDRESSES (inner_uid
) = (insn_current_address
1181 + insn_lengths
[uid
]);
1184 varying_length
[inner_uid
] = 0;
1185 insn_lengths
[uid
] += inner_length
;
1188 else if (GET_CODE (body
) != USE
&& GET_CODE (body
) != CLOBBER
)
1190 insn_lengths
[uid
] = length_fun (insn
);
1191 varying_length
[uid
] = insn_variable_length_p (insn
);
1194 /* If needed, do any adjustment. */
1195 #ifdef ADJUST_INSN_LENGTH
1196 ADJUST_INSN_LENGTH (insn
, insn_lengths
[uid
]);
1197 if (insn_lengths
[uid
] < 0)
1198 fatal_insn ("negative insn length", insn
);
1202 /* Now loop over all the insns finding varying length insns. For each,
1203 get the current insn length. If it has changed, reflect the change.
1204 When nothing changes for a full pass, we are done. */
1206 while (something_changed
)
1208 something_changed
= 0;
1209 insn_current_align
= MAX_CODE_ALIGN
- 1;
1210 for (insn_current_address
= 0, insn
= first
;
1212 insn
= NEXT_INSN (insn
))
1215 #ifdef ADJUST_INSN_LENGTH
1220 uid
= INSN_UID (insn
);
1224 int log
= LABEL_TO_ALIGNMENT (insn
);
1226 #ifdef CASE_VECTOR_SHORTEN_MODE
1227 /* If the mode of a following jump table was changed, we
1228 may need to update the alignment of this label. */
1230 bool next_is_jumptable
;
1232 next
= next_nonnote_insn (insn
);
1233 next_is_jumptable
= next
&& JUMP_TABLE_DATA_P (next
);
1234 if ((JUMP_TABLES_IN_TEXT_SECTION
1235 || readonly_data_section
== text_section
)
1236 && next_is_jumptable
)
1238 int newlog
= ADDR_VEC_ALIGN (next
);
1242 LABEL_TO_ALIGNMENT (insn
) = log
;
1243 something_changed
= 1;
1248 if (log
> insn_current_align
)
1250 int align
= 1 << log
;
1251 int new_address
= (insn_current_address
+ align
- 1) & -align
;
1252 insn_lengths
[uid
] = new_address
- insn_current_address
;
1253 insn_current_align
= log
;
1254 insn_current_address
= new_address
;
1257 insn_lengths
[uid
] = 0;
1258 INSN_ADDRESSES (uid
) = insn_current_address
;
1262 length_align
= INSN_LENGTH_ALIGNMENT (insn
);
1263 if (length_align
< insn_current_align
)
1264 insn_current_align
= length_align
;
1266 insn_last_address
= INSN_ADDRESSES (uid
);
1267 INSN_ADDRESSES (uid
) = insn_current_address
;
1269 #ifdef CASE_VECTOR_SHORTEN_MODE
1271 && JUMP_TABLE_DATA_P (insn
)
1272 && GET_CODE (PATTERN (insn
)) == ADDR_DIFF_VEC
)
1274 rtx body
= PATTERN (insn
);
1275 int old_length
= insn_lengths
[uid
];
1276 rtx rel_lab
= XEXP (XEXP (body
, 0), 0);
1277 rtx min_lab
= XEXP (XEXP (body
, 2), 0);
1278 rtx max_lab
= XEXP (XEXP (body
, 3), 0);
1279 int rel_addr
= INSN_ADDRESSES (INSN_UID (rel_lab
));
1280 int min_addr
= INSN_ADDRESSES (INSN_UID (min_lab
));
1281 int max_addr
= INSN_ADDRESSES (INSN_UID (max_lab
));
1284 addr_diff_vec_flags flags
;
1285 enum machine_mode vec_mode
;
1287 /* Avoid automatic aggregate initialization. */
1288 flags
= ADDR_DIFF_VEC_FLAGS (body
);
1290 /* Try to find a known alignment for rel_lab. */
1291 for (prev
= rel_lab
;
1293 && ! insn_lengths
[INSN_UID (prev
)]
1294 && ! (varying_length
[INSN_UID (prev
)] & 1);
1295 prev
= PREV_INSN (prev
))
1296 if (varying_length
[INSN_UID (prev
)] & 2)
1298 rel_align
= LABEL_TO_ALIGNMENT (prev
);
1302 /* See the comment on addr_diff_vec_flags in rtl.h for the
1303 meaning of the flags values. base: REL_LAB vec: INSN */
1304 /* Anything after INSN has still addresses from the last
1305 pass; adjust these so that they reflect our current
1306 estimate for this pass. */
1307 if (flags
.base_after_vec
)
1308 rel_addr
+= insn_current_address
- insn_last_address
;
1309 if (flags
.min_after_vec
)
1310 min_addr
+= insn_current_address
- insn_last_address
;
1311 if (flags
.max_after_vec
)
1312 max_addr
+= insn_current_address
- insn_last_address
;
1313 /* We want to know the worst case, i.e. lowest possible value
1314 for the offset of MIN_LAB. If MIN_LAB is after REL_LAB,
1315 its offset is positive, and we have to be wary of code shrink;
1316 otherwise, it is negative, and we have to be vary of code
1318 if (flags
.min_after_base
)
1320 /* If INSN is between REL_LAB and MIN_LAB, the size
1321 changes we are about to make can change the alignment
1322 within the observed offset, therefore we have to break
1323 it up into two parts that are independent. */
1324 if (! flags
.base_after_vec
&& flags
.min_after_vec
)
1326 min_addr
-= align_fuzz (rel_lab
, insn
, rel_align
, 0);
1327 min_addr
-= align_fuzz (insn
, min_lab
, 0, 0);
1330 min_addr
-= align_fuzz (rel_lab
, min_lab
, rel_align
, 0);
1334 if (flags
.base_after_vec
&& ! flags
.min_after_vec
)
1336 min_addr
-= align_fuzz (min_lab
, insn
, 0, ~0);
1337 min_addr
-= align_fuzz (insn
, rel_lab
, 0, ~0);
1340 min_addr
-= align_fuzz (min_lab
, rel_lab
, 0, ~0);
1342 /* Likewise, determine the highest lowest possible value
1343 for the offset of MAX_LAB. */
1344 if (flags
.max_after_base
)
1346 if (! flags
.base_after_vec
&& flags
.max_after_vec
)
1348 max_addr
+= align_fuzz (rel_lab
, insn
, rel_align
, ~0);
1349 max_addr
+= align_fuzz (insn
, max_lab
, 0, ~0);
1352 max_addr
+= align_fuzz (rel_lab
, max_lab
, rel_align
, ~0);
1356 if (flags
.base_after_vec
&& ! flags
.max_after_vec
)
1358 max_addr
+= align_fuzz (max_lab
, insn
, 0, 0);
1359 max_addr
+= align_fuzz (insn
, rel_lab
, 0, 0);
1362 max_addr
+= align_fuzz (max_lab
, rel_lab
, 0, 0);
1364 vec_mode
= CASE_VECTOR_SHORTEN_MODE (min_addr
- rel_addr
,
1365 max_addr
- rel_addr
, body
);
1367 || (GET_MODE_SIZE (vec_mode
)
1368 >= GET_MODE_SIZE (GET_MODE (body
))))
1369 PUT_MODE (body
, vec_mode
);
1370 if (JUMP_TABLES_IN_TEXT_SECTION
1371 || readonly_data_section
== text_section
)
1374 = (XVECLEN (body
, 1) * GET_MODE_SIZE (GET_MODE (body
)));
1375 insn_current_address
+= insn_lengths
[uid
];
1376 if (insn_lengths
[uid
] != old_length
)
1377 something_changed
= 1;
1382 #endif /* CASE_VECTOR_SHORTEN_MODE */
1384 if (! (varying_length
[uid
]))
1386 if (NONJUMP_INSN_P (insn
)
1387 && GET_CODE (PATTERN (insn
)) == SEQUENCE
)
1391 body
= PATTERN (insn
);
1392 for (i
= 0; i
< XVECLEN (body
, 0); i
++)
1394 rtx inner_insn
= XVECEXP (body
, 0, i
);
1395 int inner_uid
= INSN_UID (inner_insn
);
1397 INSN_ADDRESSES (inner_uid
) = insn_current_address
;
1399 insn_current_address
+= insn_lengths
[inner_uid
];
1403 insn_current_address
+= insn_lengths
[uid
];
1408 if (NONJUMP_INSN_P (insn
) && GET_CODE (PATTERN (insn
)) == SEQUENCE
)
1412 body
= PATTERN (insn
);
1414 for (i
= 0; i
< XVECLEN (body
, 0); i
++)
1416 rtx inner_insn
= XVECEXP (body
, 0, i
);
1417 int inner_uid
= INSN_UID (inner_insn
);
1420 INSN_ADDRESSES (inner_uid
) = insn_current_address
;
1422 /* insn_current_length returns 0 for insns with a
1423 non-varying length. */
1424 if (! varying_length
[inner_uid
])
1425 inner_length
= insn_lengths
[inner_uid
];
1427 inner_length
= insn_current_length (inner_insn
);
1429 if (inner_length
!= insn_lengths
[inner_uid
])
1431 if (!increasing
|| inner_length
> insn_lengths
[inner_uid
])
1433 insn_lengths
[inner_uid
] = inner_length
;
1434 something_changed
= 1;
1437 inner_length
= insn_lengths
[inner_uid
];
1439 insn_current_address
+= inner_length
;
1440 new_length
+= inner_length
;
1445 new_length
= insn_current_length (insn
);
1446 insn_current_address
+= new_length
;
1449 #ifdef ADJUST_INSN_LENGTH
1450 /* If needed, do any adjustment. */
1451 tmp_length
= new_length
;
1452 ADJUST_INSN_LENGTH (insn
, new_length
);
1453 insn_current_address
+= (new_length
- tmp_length
);
1456 if (new_length
!= insn_lengths
[uid
]
1457 && (!increasing
|| new_length
> insn_lengths
[uid
]))
1459 insn_lengths
[uid
] = new_length
;
1460 something_changed
= 1;
1463 insn_current_address
+= insn_lengths
[uid
] - new_length
;
1465 /* For a non-optimizing compile, do only a single pass. */
1470 free (varying_length
);
1473 /* Given the body of an INSN known to be generated by an ASM statement, return
1474 the number of machine instructions likely to be generated for this insn.
1475 This is used to compute its length. */
1478 asm_insn_count (rtx body
)
1482 if (GET_CODE (body
) == ASM_INPUT
)
1483 templ
= XSTR (body
, 0);
1485 templ
= decode_asm_operands (body
, NULL
, NULL
, NULL
, NULL
, NULL
);
1487 return asm_str_count (templ
);
1490 /* Return the number of machine instructions likely to be generated for the
1491 inline-asm template. */
1493 asm_str_count (const char *templ
)
1500 for (; *templ
; templ
++)
1501 if (IS_ASM_LOGICAL_LINE_SEPARATOR (*templ
, templ
)
1508 /* ??? This is probably the wrong place for these. */
1509 /* Structure recording the mapping from source file and directory
1510 names at compile time to those to be embedded in debug
1512 typedef struct debug_prefix_map
1514 const char *old_prefix
;
1515 const char *new_prefix
;
1518 struct debug_prefix_map
*next
;
1521 /* Linked list of such structures. */
1522 static debug_prefix_map
*debug_prefix_maps
;
1525 /* Record a debug file prefix mapping. ARG is the argument to
1526 -fdebug-prefix-map and must be of the form OLD=NEW. */
1529 add_debug_prefix_map (const char *arg
)
1531 debug_prefix_map
*map
;
1534 p
= strchr (arg
, '=');
1537 error ("invalid argument %qs to -fdebug-prefix-map", arg
);
1540 map
= XNEW (debug_prefix_map
);
1541 map
->old_prefix
= xstrndup (arg
, p
- arg
);
1542 map
->old_len
= p
- arg
;
1544 map
->new_prefix
= xstrdup (p
);
1545 map
->new_len
= strlen (p
);
1546 map
->next
= debug_prefix_maps
;
1547 debug_prefix_maps
= map
;
1550 /* Perform user-specified mapping of debug filename prefixes. Return
1551 the new name corresponding to FILENAME. */
1554 remap_debug_filename (const char *filename
)
1556 debug_prefix_map
*map
;
1561 for (map
= debug_prefix_maps
; map
; map
= map
->next
)
1562 if (filename_ncmp (filename
, map
->old_prefix
, map
->old_len
) == 0)
1566 name
= filename
+ map
->old_len
;
1567 name_len
= strlen (name
) + 1;
1568 s
= (char *) alloca (name_len
+ map
->new_len
);
1569 memcpy (s
, map
->new_prefix
, map
->new_len
);
1570 memcpy (s
+ map
->new_len
, name
, name_len
);
1571 return ggc_strdup (s
);
1574 /* Return true if DWARF2 debug info can be emitted for DECL. */
1577 dwarf2_debug_info_emitted_p (tree decl
)
1579 if (write_symbols
!= DWARF2_DEBUG
&& write_symbols
!= VMS_AND_DWARF2_DEBUG
)
1582 if (DECL_IGNORED_P (decl
))
1588 /* Return scope resulting from combination of S1 and S2. */
1590 choose_inner_scope (tree s1
, tree s2
)
1596 if (BLOCK_NUMBER (s1
) > BLOCK_NUMBER (s2
))
1601 /* Emit lexical block notes needed to change scope from S1 to S2. */
1604 change_scope (rtx orig_insn
, tree s1
, tree s2
)
1606 rtx insn
= orig_insn
;
1607 tree com
= NULL_TREE
;
1608 tree ts1
= s1
, ts2
= s2
;
1613 gcc_assert (ts1
&& ts2
);
1614 if (BLOCK_NUMBER (ts1
) > BLOCK_NUMBER (ts2
))
1615 ts1
= BLOCK_SUPERCONTEXT (ts1
);
1616 else if (BLOCK_NUMBER (ts1
) < BLOCK_NUMBER (ts2
))
1617 ts2
= BLOCK_SUPERCONTEXT (ts2
);
1620 ts1
= BLOCK_SUPERCONTEXT (ts1
);
1621 ts2
= BLOCK_SUPERCONTEXT (ts2
);
1630 rtx note
= emit_note_before (NOTE_INSN_BLOCK_END
, insn
);
1631 NOTE_BLOCK (note
) = s
;
1632 s
= BLOCK_SUPERCONTEXT (s
);
1639 insn
= emit_note_before (NOTE_INSN_BLOCK_BEG
, insn
);
1640 NOTE_BLOCK (insn
) = s
;
1641 s
= BLOCK_SUPERCONTEXT (s
);
1645 /* Rebuild all the NOTE_INSN_BLOCK_BEG and NOTE_INSN_BLOCK_END notes based
1646 on the scope tree and the newly reordered instructions. */
1649 reemit_insn_block_notes (void)
1651 tree cur_block
= DECL_INITIAL (cfun
->decl
);
1654 insn
= get_insns ();
1655 for (; insn
; insn
= NEXT_INSN (insn
))
1659 /* Prevent lexical blocks from straddling section boundaries. */
1660 if (NOTE_P (insn
) && NOTE_KIND (insn
) == NOTE_INSN_SWITCH_TEXT_SECTIONS
)
1662 for (tree s
= cur_block
; s
!= DECL_INITIAL (cfun
->decl
);
1663 s
= BLOCK_SUPERCONTEXT (s
))
1665 rtx note
= emit_note_before (NOTE_INSN_BLOCK_END
, insn
);
1666 NOTE_BLOCK (note
) = s
;
1667 note
= emit_note_after (NOTE_INSN_BLOCK_BEG
, insn
);
1668 NOTE_BLOCK (note
) = s
;
1672 if (!active_insn_p (insn
))
1675 /* Avoid putting scope notes between jump table and its label. */
1676 if (JUMP_TABLE_DATA_P (insn
))
1679 this_block
= insn_scope (insn
);
1680 /* For sequences compute scope resulting from merging all scopes
1681 of instructions nested inside. */
1682 if (GET_CODE (PATTERN (insn
)) == SEQUENCE
)
1685 rtx body
= PATTERN (insn
);
1688 for (i
= 0; i
< XVECLEN (body
, 0); i
++)
1689 this_block
= choose_inner_scope (this_block
,
1690 insn_scope (XVECEXP (body
, 0, i
)));
1694 if (INSN_LOCATION (insn
) == UNKNOWN_LOCATION
)
1697 this_block
= DECL_INITIAL (cfun
->decl
);
1700 if (this_block
!= cur_block
)
1702 change_scope (insn
, cur_block
, this_block
);
1703 cur_block
= this_block
;
1707 /* change_scope emits before the insn, not after. */
1708 note
= emit_note (NOTE_INSN_DELETED
);
1709 change_scope (note
, cur_block
, DECL_INITIAL (cfun
->decl
));
1715 /* Output assembler code for the start of a function,
1716 and initialize some of the variables in this file
1717 for the new function. The label for the function and associated
1718 assembler pseudo-ops have already been output in `assemble_start_function'.
1720 FIRST is the first insn of the rtl for the function being compiled.
1721 FILE is the file to write assembler code to.
1722 OPTIMIZE_P is nonzero if we should eliminate redundant
1723 test and compare insns. */
1726 final_start_function (rtx first
, FILE *file
,
1727 int optimize_p ATTRIBUTE_UNUSED
)
1731 this_is_asm_operands
= 0;
1733 need_profile_function
= false;
1735 last_filename
= LOCATION_FILE (prologue_location
);
1736 last_linenum
= LOCATION_LINE (prologue_location
);
1737 last_discriminator
= discriminator
= 0;
1739 high_block_linenum
= high_function_linenum
= last_linenum
;
1741 if (!DECL_IGNORED_P (current_function_decl
))
1742 debug_hooks
->begin_prologue (last_linenum
, last_filename
);
1744 if (!dwarf2_debug_info_emitted_p (current_function_decl
))
1745 dwarf2out_begin_prologue (0, NULL
);
1747 #ifdef LEAF_REG_REMAP
1748 if (crtl
->uses_only_leaf_regs
)
1749 leaf_renumber_regs (first
);
1752 /* The Sun386i and perhaps other machines don't work right
1753 if the profiling code comes after the prologue. */
1754 if (targetm
.profile_before_prologue () && crtl
->profile
)
1756 if (targetm
.asm_out
.function_prologue
1757 == default_function_pro_epilogue
1758 #ifdef HAVE_prologue
1764 for (insn
= first
; insn
; insn
= NEXT_INSN (insn
))
1770 else if (NOTE_KIND (insn
) == NOTE_INSN_BASIC_BLOCK
1771 || NOTE_KIND (insn
) == NOTE_INSN_FUNCTION_BEG
)
1773 else if (NOTE_KIND (insn
) == NOTE_INSN_DELETED
1774 || NOTE_KIND (insn
) == NOTE_INSN_VAR_LOCATION
)
1783 need_profile_function
= true;
1785 profile_function (file
);
1788 profile_function (file
);
1791 /* If debugging, assign block numbers to all of the blocks in this
1795 reemit_insn_block_notes ();
1796 number_blocks (current_function_decl
);
1797 /* We never actually put out begin/end notes for the top-level
1798 block in the function. But, conceptually, that block is
1800 TREE_ASM_WRITTEN (DECL_INITIAL (current_function_decl
)) = 1;
1803 if (warn_frame_larger_than
1804 && get_frame_size () > frame_larger_than_size
)
1806 /* Issue a warning */
1807 warning (OPT_Wframe_larger_than_
,
1808 "the frame size of %wd bytes is larger than %wd bytes",
1809 get_frame_size (), frame_larger_than_size
);
1812 /* First output the function prologue: code to set up the stack frame. */
1813 targetm
.asm_out
.function_prologue (file
, get_frame_size ());
1815 /* If the machine represents the prologue as RTL, the profiling code must
1816 be emitted when NOTE_INSN_PROLOGUE_END is scanned. */
1817 #ifdef HAVE_prologue
1818 if (! HAVE_prologue
)
1820 profile_after_prologue (file
);
1824 profile_after_prologue (FILE *file ATTRIBUTE_UNUSED
)
1826 if (!targetm
.profile_before_prologue () && crtl
->profile
)
1827 profile_function (file
);
1831 profile_function (FILE *file ATTRIBUTE_UNUSED
)
1833 #ifndef NO_PROFILE_COUNTERS
1834 # define NO_PROFILE_COUNTERS 0
1836 #ifdef ASM_OUTPUT_REG_PUSH
1837 rtx sval
= NULL
, chain
= NULL
;
1839 if (cfun
->returns_struct
)
1840 sval
= targetm
.calls
.struct_value_rtx (TREE_TYPE (current_function_decl
),
1842 if (cfun
->static_chain_decl
)
1843 chain
= targetm
.calls
.static_chain (current_function_decl
, true);
1844 #endif /* ASM_OUTPUT_REG_PUSH */
1846 if (! NO_PROFILE_COUNTERS
)
1848 int align
= MIN (BIGGEST_ALIGNMENT
, LONG_TYPE_SIZE
);
1849 switch_to_section (data_section
);
1850 ASM_OUTPUT_ALIGN (file
, floor_log2 (align
/ BITS_PER_UNIT
));
1851 targetm
.asm_out
.internal_label (file
, "LP", current_function_funcdef_no
);
1852 assemble_integer (const0_rtx
, LONG_TYPE_SIZE
/ BITS_PER_UNIT
, align
, 1);
1855 switch_to_section (current_function_section ());
1857 #ifdef ASM_OUTPUT_REG_PUSH
1858 if (sval
&& REG_P (sval
))
1859 ASM_OUTPUT_REG_PUSH (file
, REGNO (sval
));
1860 if (chain
&& REG_P (chain
))
1861 ASM_OUTPUT_REG_PUSH (file
, REGNO (chain
));
1864 FUNCTION_PROFILER (file
, current_function_funcdef_no
);
1866 #ifdef ASM_OUTPUT_REG_PUSH
1867 if (chain
&& REG_P (chain
))
1868 ASM_OUTPUT_REG_POP (file
, REGNO (chain
));
1869 if (sval
&& REG_P (sval
))
1870 ASM_OUTPUT_REG_POP (file
, REGNO (sval
));
1874 /* Output assembler code for the end of a function.
1875 For clarity, args are same as those of `final_start_function'
1876 even though not all of them are needed. */
1879 final_end_function (void)
1883 if (!DECL_IGNORED_P (current_function_decl
))
1884 debug_hooks
->end_function (high_function_linenum
);
1886 /* Finally, output the function epilogue:
1887 code to restore the stack frame and return to the caller. */
1888 targetm
.asm_out
.function_epilogue (asm_out_file
, get_frame_size ());
1890 /* And debug output. */
1891 if (!DECL_IGNORED_P (current_function_decl
))
1892 debug_hooks
->end_epilogue (last_linenum
, last_filename
);
1894 if (!dwarf2_debug_info_emitted_p (current_function_decl
)
1895 && dwarf2out_do_frame ())
1896 dwarf2out_end_epilogue (last_linenum
, last_filename
);
1900 /* Dumper helper for basic block information. FILE is the assembly
1901 output file, and INSN is the instruction being emitted. */
1904 dump_basic_block_info (FILE *file
, rtx insn
, basic_block
*start_to_bb
,
1905 basic_block
*end_to_bb
, int bb_map_size
, int *bb_seqn
)
1909 if (!flag_debug_asm
)
1912 if (INSN_UID (insn
) < bb_map_size
1913 && (bb
= start_to_bb
[INSN_UID (insn
)]) != NULL
)
1918 fprintf (file
, "%s BLOCK %d", ASM_COMMENT_START
, bb
->index
);
1920 fprintf (file
, " freq:%d", bb
->frequency
);
1922 fprintf (file
, " count:" HOST_WIDEST_INT_PRINT_DEC
,
1924 fprintf (file
, " seq:%d", (*bb_seqn
)++);
1925 fprintf (file
, "\n%s PRED:", ASM_COMMENT_START
);
1926 FOR_EACH_EDGE (e
, ei
, bb
->preds
)
1928 dump_edge_info (file
, e
, TDF_DETAILS
, 0);
1930 fprintf (file
, "\n");
1932 if (INSN_UID (insn
) < bb_map_size
1933 && (bb
= end_to_bb
[INSN_UID (insn
)]) != NULL
)
1938 fprintf (asm_out_file
, "%s SUCC:", ASM_COMMENT_START
);
1939 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
1941 dump_edge_info (asm_out_file
, e
, TDF_DETAILS
, 1);
1943 fprintf (file
, "\n");
1947 /* Output assembler code for some insns: all or part of a function.
1948 For description of args, see `final_start_function', above. */
1951 final (rtx first
, FILE *file
, int optimize_p
)
1956 /* Used for -dA dump. */
1957 basic_block
*start_to_bb
= NULL
;
1958 basic_block
*end_to_bb
= NULL
;
1959 int bb_map_size
= 0;
1962 last_ignored_compare
= 0;
1965 for (insn
= first
; insn
; insn
= NEXT_INSN (insn
))
1967 /* If CC tracking across branches is enabled, record the insn which
1968 jumps to each branch only reached from one place. */
1969 if (optimize_p
&& JUMP_P (insn
))
1971 rtx lab
= JUMP_LABEL (insn
);
1972 if (lab
&& LABEL_P (lab
) && LABEL_NUSES (lab
) == 1)
1974 LABEL_REFS (lab
) = insn
;
1988 bb_map_size
= get_max_uid () + 1;
1989 start_to_bb
= XCNEWVEC (basic_block
, bb_map_size
);
1990 end_to_bb
= XCNEWVEC (basic_block
, bb_map_size
);
1992 /* There is no cfg for a thunk. */
1993 if (!cfun
->is_thunk
)
1994 FOR_EACH_BB_REVERSE (bb
)
1996 start_to_bb
[INSN_UID (BB_HEAD (bb
))] = bb
;
1997 end_to_bb
[INSN_UID (BB_END (bb
))] = bb
;
2001 /* Output the insns. */
2002 for (insn
= first
; insn
;)
2004 if (HAVE_ATTR_length
)
2006 if ((unsigned) INSN_UID (insn
) >= INSN_ADDRESSES_SIZE ())
2008 /* This can be triggered by bugs elsewhere in the compiler if
2009 new insns are created after init_insn_lengths is called. */
2010 gcc_assert (NOTE_P (insn
));
2011 insn_current_address
= -1;
2014 insn_current_address
= INSN_ADDRESSES (INSN_UID (insn
));
2017 dump_basic_block_info (file
, insn
, start_to_bb
, end_to_bb
,
2018 bb_map_size
, &bb_seqn
);
2019 insn
= final_scan_insn (insn
, file
, optimize_p
, 0, &seen
);
2028 /* Remove CFI notes, to avoid compare-debug failures. */
2029 for (insn
= first
; insn
; insn
= next
)
2031 next
= NEXT_INSN (insn
);
2033 && (NOTE_KIND (insn
) == NOTE_INSN_CFI
2034 || NOTE_KIND (insn
) == NOTE_INSN_CFI_LABEL
))
2040 get_insn_template (int code
, rtx insn
)
2042 switch (insn_data
[code
].output_format
)
2044 case INSN_OUTPUT_FORMAT_SINGLE
:
2045 return insn_data
[code
].output
.single
;
2046 case INSN_OUTPUT_FORMAT_MULTI
:
2047 return insn_data
[code
].output
.multi
[which_alternative
];
2048 case INSN_OUTPUT_FORMAT_FUNCTION
:
2050 return (*insn_data
[code
].output
.function
) (recog_data
.operand
, insn
);
2057 /* Emit the appropriate declaration for an alternate-entry-point
2058 symbol represented by INSN, to FILE. INSN is a CODE_LABEL with
2059 LABEL_KIND != LABEL_NORMAL.
2061 The case fall-through in this function is intentional. */
2063 output_alternate_entry_point (FILE *file
, rtx insn
)
2065 const char *name
= LABEL_NAME (insn
);
2067 switch (LABEL_KIND (insn
))
2069 case LABEL_WEAK_ENTRY
:
2070 #ifdef ASM_WEAKEN_LABEL
2071 ASM_WEAKEN_LABEL (file
, name
);
2073 case LABEL_GLOBAL_ENTRY
:
2074 targetm
.asm_out
.globalize_label (file
, name
);
2075 case LABEL_STATIC_ENTRY
:
2076 #ifdef ASM_OUTPUT_TYPE_DIRECTIVE
2077 ASM_OUTPUT_TYPE_DIRECTIVE (file
, name
, "function");
2079 ASM_OUTPUT_LABEL (file
, name
);
2088 /* Given a CALL_INSN, find and return the nested CALL. */
2090 call_from_call_insn (rtx insn
)
2093 gcc_assert (CALL_P (insn
));
2096 while (GET_CODE (x
) != CALL
)
2098 switch (GET_CODE (x
))
2103 x
= COND_EXEC_CODE (x
);
2106 x
= XVECEXP (x
, 0, 0);
2116 /* The final scan for one insn, INSN.
2117 Args are same as in `final', except that INSN
2118 is the insn being scanned.
2119 Value returned is the next insn to be scanned.
2121 NOPEEPHOLES is the flag to disallow peephole processing (currently
2122 used for within delayed branch sequence output).
2124 SEEN is used to track the end of the prologue, for emitting
2125 debug information. We force the emission of a line note after
2126 both NOTE_INSN_PROLOGUE_END and NOTE_INSN_FUNCTION_BEG, or
2127 at the beginning of the second basic block, whichever comes
2131 final_scan_insn (rtx insn
, FILE *file
, int optimize_p ATTRIBUTE_UNUSED
,
2132 int nopeepholes ATTRIBUTE_UNUSED
, int *seen
)
2141 /* Ignore deleted insns. These can occur when we split insns (due to a
2142 template of "#") while not optimizing. */
2143 if (INSN_DELETED_P (insn
))
2144 return NEXT_INSN (insn
);
2146 switch (GET_CODE (insn
))
2149 switch (NOTE_KIND (insn
))
2151 case NOTE_INSN_DELETED
:
2154 case NOTE_INSN_SWITCH_TEXT_SECTIONS
:
2155 in_cold_section_p
= !in_cold_section_p
;
2157 if (dwarf2out_do_frame ())
2158 dwarf2out_switch_text_section ();
2159 else if (!DECL_IGNORED_P (current_function_decl
))
2160 debug_hooks
->switch_text_section ();
2162 switch_to_section (current_function_section ());
2163 targetm
.asm_out
.function_switched_text_sections (asm_out_file
,
2164 current_function_decl
,
2168 case NOTE_INSN_BASIC_BLOCK
:
2169 if (need_profile_function
)
2171 profile_function (asm_out_file
);
2172 need_profile_function
= false;
2175 if (targetm
.asm_out
.unwind_emit
)
2176 targetm
.asm_out
.unwind_emit (asm_out_file
, insn
);
2178 if ((*seen
& (SEEN_EMITTED
| SEEN_BB
)) == SEEN_BB
)
2180 *seen
|= SEEN_EMITTED
;
2181 force_source_line
= true;
2186 discriminator
= NOTE_BASIC_BLOCK (insn
)->discriminator
;
2190 case NOTE_INSN_EH_REGION_BEG
:
2191 ASM_OUTPUT_DEBUG_LABEL (asm_out_file
, "LEHB",
2192 NOTE_EH_HANDLER (insn
));
2195 case NOTE_INSN_EH_REGION_END
:
2196 ASM_OUTPUT_DEBUG_LABEL (asm_out_file
, "LEHE",
2197 NOTE_EH_HANDLER (insn
));
2200 case NOTE_INSN_PROLOGUE_END
:
2201 targetm
.asm_out
.function_end_prologue (file
);
2202 profile_after_prologue (file
);
2204 if ((*seen
& (SEEN_EMITTED
| SEEN_NOTE
)) == SEEN_NOTE
)
2206 *seen
|= SEEN_EMITTED
;
2207 force_source_line
= true;
2214 case NOTE_INSN_EPILOGUE_BEG
:
2215 if (!DECL_IGNORED_P (current_function_decl
))
2216 (*debug_hooks
->begin_epilogue
) (last_linenum
, last_filename
);
2217 targetm
.asm_out
.function_begin_epilogue (file
);
2221 dwarf2out_emit_cfi (NOTE_CFI (insn
));
2224 case NOTE_INSN_CFI_LABEL
:
2225 ASM_OUTPUT_DEBUG_LABEL (asm_out_file
, "LCFI",
2226 NOTE_LABEL_NUMBER (insn
));
2229 case NOTE_INSN_FUNCTION_BEG
:
2230 if (need_profile_function
)
2232 profile_function (asm_out_file
);
2233 need_profile_function
= false;
2237 if (!DECL_IGNORED_P (current_function_decl
))
2238 debug_hooks
->end_prologue (last_linenum
, last_filename
);
2240 if ((*seen
& (SEEN_EMITTED
| SEEN_NOTE
)) == SEEN_NOTE
)
2242 *seen
|= SEEN_EMITTED
;
2243 force_source_line
= true;
2250 case NOTE_INSN_BLOCK_BEG
:
2251 if (debug_info_level
== DINFO_LEVEL_NORMAL
2252 || debug_info_level
== DINFO_LEVEL_VERBOSE
2253 || write_symbols
== DWARF2_DEBUG
2254 || write_symbols
== VMS_AND_DWARF2_DEBUG
2255 || write_symbols
== VMS_DEBUG
)
2257 int n
= BLOCK_NUMBER (NOTE_BLOCK (insn
));
2261 high_block_linenum
= last_linenum
;
2263 /* Output debugging info about the symbol-block beginning. */
2264 if (!DECL_IGNORED_P (current_function_decl
))
2265 debug_hooks
->begin_block (last_linenum
, n
);
2267 /* Mark this block as output. */
2268 TREE_ASM_WRITTEN (NOTE_BLOCK (insn
)) = 1;
2270 if (write_symbols
== DBX_DEBUG
2271 || write_symbols
== SDB_DEBUG
)
2273 location_t
*locus_ptr
2274 = block_nonartificial_location (NOTE_BLOCK (insn
));
2276 if (locus_ptr
!= NULL
)
2278 override_filename
= LOCATION_FILE (*locus_ptr
);
2279 override_linenum
= LOCATION_LINE (*locus_ptr
);
2284 case NOTE_INSN_BLOCK_END
:
2285 if (debug_info_level
== DINFO_LEVEL_NORMAL
2286 || debug_info_level
== DINFO_LEVEL_VERBOSE
2287 || write_symbols
== DWARF2_DEBUG
2288 || write_symbols
== VMS_AND_DWARF2_DEBUG
2289 || write_symbols
== VMS_DEBUG
)
2291 int n
= BLOCK_NUMBER (NOTE_BLOCK (insn
));
2295 /* End of a symbol-block. */
2297 gcc_assert (block_depth
>= 0);
2299 if (!DECL_IGNORED_P (current_function_decl
))
2300 debug_hooks
->end_block (high_block_linenum
, n
);
2302 if (write_symbols
== DBX_DEBUG
2303 || write_symbols
== SDB_DEBUG
)
2305 tree outer_block
= BLOCK_SUPERCONTEXT (NOTE_BLOCK (insn
));
2306 location_t
*locus_ptr
2307 = block_nonartificial_location (outer_block
);
2309 if (locus_ptr
!= NULL
)
2311 override_filename
= LOCATION_FILE (*locus_ptr
);
2312 override_linenum
= LOCATION_LINE (*locus_ptr
);
2316 override_filename
= NULL
;
2317 override_linenum
= 0;
2322 case NOTE_INSN_DELETED_LABEL
:
2323 /* Emit the label. We may have deleted the CODE_LABEL because
2324 the label could be proved to be unreachable, though still
2325 referenced (in the form of having its address taken. */
2326 ASM_OUTPUT_DEBUG_LABEL (file
, "L", CODE_LABEL_NUMBER (insn
));
2329 case NOTE_INSN_DELETED_DEBUG_LABEL
:
2330 /* Similarly, but need to use different namespace for it. */
2331 if (CODE_LABEL_NUMBER (insn
) != -1)
2332 ASM_OUTPUT_DEBUG_LABEL (file
, "LDL", CODE_LABEL_NUMBER (insn
));
2335 case NOTE_INSN_VAR_LOCATION
:
2336 case NOTE_INSN_CALL_ARG_LOCATION
:
2337 if (!DECL_IGNORED_P (current_function_decl
))
2338 debug_hooks
->var_location (insn
);
2351 /* The target port might emit labels in the output function for
2352 some insn, e.g. sh.c output_branchy_insn. */
2353 if (CODE_LABEL_NUMBER (insn
) <= max_labelno
)
2355 int align
= LABEL_TO_ALIGNMENT (insn
);
2356 #ifdef ASM_OUTPUT_MAX_SKIP_ALIGN
2357 int max_skip
= LABEL_TO_MAX_SKIP (insn
);
2360 if (align
&& NEXT_INSN (insn
))
2362 #ifdef ASM_OUTPUT_MAX_SKIP_ALIGN
2363 ASM_OUTPUT_MAX_SKIP_ALIGN (file
, align
, max_skip
);
2365 #ifdef ASM_OUTPUT_ALIGN_WITH_NOP
2366 ASM_OUTPUT_ALIGN_WITH_NOP (file
, align
);
2368 ASM_OUTPUT_ALIGN (file
, align
);
2375 if (!DECL_IGNORED_P (current_function_decl
) && LABEL_NAME (insn
))
2376 debug_hooks
->label (insn
);
2380 next
= next_nonnote_insn (insn
);
2381 /* If this label is followed by a jump-table, make sure we put
2382 the label in the read-only section. Also possibly write the
2383 label and jump table together. */
2384 if (next
!= 0 && JUMP_TABLE_DATA_P (next
))
2386 #if defined(ASM_OUTPUT_ADDR_VEC) || defined(ASM_OUTPUT_ADDR_DIFF_VEC)
2387 /* In this case, the case vector is being moved by the
2388 target, so don't output the label at all. Leave that
2389 to the back end macros. */
2391 if (! JUMP_TABLES_IN_TEXT_SECTION
)
2395 switch_to_section (targetm
.asm_out
.function_rodata_section
2396 (current_function_decl
));
2398 #ifdef ADDR_VEC_ALIGN
2399 log_align
= ADDR_VEC_ALIGN (next
);
2401 log_align
= exact_log2 (BIGGEST_ALIGNMENT
/ BITS_PER_UNIT
);
2403 ASM_OUTPUT_ALIGN (file
, log_align
);
2406 switch_to_section (current_function_section ());
2408 #ifdef ASM_OUTPUT_CASE_LABEL
2409 ASM_OUTPUT_CASE_LABEL (file
, "L", CODE_LABEL_NUMBER (insn
),
2412 targetm
.asm_out
.internal_label (file
, "L", CODE_LABEL_NUMBER (insn
));
2417 if (LABEL_ALT_ENTRY_P (insn
))
2418 output_alternate_entry_point (file
, insn
);
2420 targetm
.asm_out
.internal_label (file
, "L", CODE_LABEL_NUMBER (insn
));
2425 rtx body
= PATTERN (insn
);
2426 int insn_code_number
;
2430 /* Reset this early so it is correct for ASM statements. */
2431 current_insn_predicate
= NULL_RTX
;
2433 /* An INSN, JUMP_INSN or CALL_INSN.
2434 First check for special kinds that recog doesn't recognize. */
2436 if (GET_CODE (body
) == USE
/* These are just declarations. */
2437 || GET_CODE (body
) == CLOBBER
)
2442 /* If there is a REG_CC_SETTER note on this insn, it means that
2443 the setting of the condition code was done in the delay slot
2444 of the insn that branched here. So recover the cc status
2445 from the insn that set it. */
2447 rtx note
= find_reg_note (insn
, REG_CC_SETTER
, NULL_RTX
);
2450 NOTICE_UPDATE_CC (PATTERN (XEXP (note
, 0)), XEXP (note
, 0));
2451 cc_prev_status
= cc_status
;
2456 /* Detect insns that are really jump-tables
2457 and output them as such. */
2459 if (JUMP_TABLE_DATA_P (insn
))
2461 #if !(defined(ASM_OUTPUT_ADDR_VEC) || defined(ASM_OUTPUT_ADDR_DIFF_VEC))
2465 if (! JUMP_TABLES_IN_TEXT_SECTION
)
2466 switch_to_section (targetm
.asm_out
.function_rodata_section
2467 (current_function_decl
));
2469 switch_to_section (current_function_section ());
2473 #if defined(ASM_OUTPUT_ADDR_VEC) || defined(ASM_OUTPUT_ADDR_DIFF_VEC)
2474 if (GET_CODE (body
) == ADDR_VEC
)
2476 #ifdef ASM_OUTPUT_ADDR_VEC
2477 ASM_OUTPUT_ADDR_VEC (PREV_INSN (insn
), body
);
2484 #ifdef ASM_OUTPUT_ADDR_DIFF_VEC
2485 ASM_OUTPUT_ADDR_DIFF_VEC (PREV_INSN (insn
), body
);
2491 vlen
= XVECLEN (body
, GET_CODE (body
) == ADDR_DIFF_VEC
);
2492 for (idx
= 0; idx
< vlen
; idx
++)
2494 if (GET_CODE (body
) == ADDR_VEC
)
2496 #ifdef ASM_OUTPUT_ADDR_VEC_ELT
2497 ASM_OUTPUT_ADDR_VEC_ELT
2498 (file
, CODE_LABEL_NUMBER (XEXP (XVECEXP (body
, 0, idx
), 0)));
2505 #ifdef ASM_OUTPUT_ADDR_DIFF_ELT
2506 ASM_OUTPUT_ADDR_DIFF_ELT
2509 CODE_LABEL_NUMBER (XEXP (XVECEXP (body
, 1, idx
), 0)),
2510 CODE_LABEL_NUMBER (XEXP (XEXP (body
, 0), 0)));
2516 #ifdef ASM_OUTPUT_CASE_END
2517 ASM_OUTPUT_CASE_END (file
,
2518 CODE_LABEL_NUMBER (PREV_INSN (insn
)),
2523 switch_to_section (current_function_section ());
2527 /* Output this line note if it is the first or the last line
2529 if (!DECL_IGNORED_P (current_function_decl
)
2530 && notice_source_line (insn
, &is_stmt
))
2531 (*debug_hooks
->source_line
) (last_linenum
, last_filename
,
2532 last_discriminator
, is_stmt
);
2534 if (GET_CODE (body
) == ASM_INPUT
)
2536 const char *string
= XSTR (body
, 0);
2538 /* There's no telling what that did to the condition codes. */
2543 expanded_location loc
;
2546 loc
= expand_location (ASM_INPUT_SOURCE_LOCATION (body
));
2547 if (*loc
.file
&& loc
.line
)
2548 fprintf (asm_out_file
, "%s %i \"%s\" 1\n",
2549 ASM_COMMENT_START
, loc
.line
, loc
.file
);
2550 fprintf (asm_out_file
, "\t%s\n", string
);
2551 #if HAVE_AS_LINE_ZERO
2552 if (*loc
.file
&& loc
.line
)
2553 fprintf (asm_out_file
, "%s 0 \"\" 2\n", ASM_COMMENT_START
);
2559 /* Detect `asm' construct with operands. */
2560 if (asm_noperands (body
) >= 0)
2562 unsigned int noperands
= asm_noperands (body
);
2563 rtx
*ops
= XALLOCAVEC (rtx
, noperands
);
2566 expanded_location expanded
;
2568 /* There's no telling what that did to the condition codes. */
2571 /* Get out the operand values. */
2572 string
= decode_asm_operands (body
, ops
, NULL
, NULL
, NULL
, &loc
);
2573 /* Inhibit dying on what would otherwise be compiler bugs. */
2574 insn_noperands
= noperands
;
2575 this_is_asm_operands
= insn
;
2576 expanded
= expand_location (loc
);
2578 #ifdef FINAL_PRESCAN_INSN
2579 FINAL_PRESCAN_INSN (insn
, ops
, insn_noperands
);
2582 /* Output the insn using them. */
2586 if (expanded
.file
&& expanded
.line
)
2587 fprintf (asm_out_file
, "%s %i \"%s\" 1\n",
2588 ASM_COMMENT_START
, expanded
.line
, expanded
.file
);
2589 output_asm_insn (string
, ops
);
2590 #if HAVE_AS_LINE_ZERO
2591 if (expanded
.file
&& expanded
.line
)
2592 fprintf (asm_out_file
, "%s 0 \"\" 2\n", ASM_COMMENT_START
);
2596 if (targetm
.asm_out
.final_postscan_insn
)
2597 targetm
.asm_out
.final_postscan_insn (file
, insn
, ops
,
2600 this_is_asm_operands
= 0;
2606 if (GET_CODE (body
) == SEQUENCE
)
2608 /* A delayed-branch sequence */
2611 final_sequence
= body
;
2613 /* The first insn in this SEQUENCE might be a JUMP_INSN that will
2614 force the restoration of a comparison that was previously
2615 thought unnecessary. If that happens, cancel this sequence
2616 and cause that insn to be restored. */
2618 next
= final_scan_insn (XVECEXP (body
, 0, 0), file
, 0, 1, seen
);
2619 if (next
!= XVECEXP (body
, 0, 1))
2625 for (i
= 1; i
< XVECLEN (body
, 0); i
++)
2627 rtx insn
= XVECEXP (body
, 0, i
);
2628 rtx next
= NEXT_INSN (insn
);
2629 /* We loop in case any instruction in a delay slot gets
2632 insn
= final_scan_insn (insn
, file
, 0, 1, seen
);
2633 while (insn
!= next
);
2635 #ifdef DBR_OUTPUT_SEQEND
2636 DBR_OUTPUT_SEQEND (file
);
2640 /* If the insn requiring the delay slot was a CALL_INSN, the
2641 insns in the delay slot are actually executed before the
2642 called function. Hence we don't preserve any CC-setting
2643 actions in these insns and the CC must be marked as being
2644 clobbered by the function. */
2645 if (CALL_P (XVECEXP (body
, 0, 0)))
2652 /* We have a real machine instruction as rtl. */
2654 body
= PATTERN (insn
);
2657 set
= single_set (insn
);
2659 /* Check for redundant test and compare instructions
2660 (when the condition codes are already set up as desired).
2661 This is done only when optimizing; if not optimizing,
2662 it should be possible for the user to alter a variable
2663 with the debugger in between statements
2664 and the next statement should reexamine the variable
2665 to compute the condition codes. */
2670 && GET_CODE (SET_DEST (set
)) == CC0
2671 && insn
!= last_ignored_compare
)
2674 if (GET_CODE (SET_SRC (set
)) == SUBREG
)
2675 SET_SRC (set
) = alter_subreg (&SET_SRC (set
), true);
2677 src1
= SET_SRC (set
);
2679 if (GET_CODE (SET_SRC (set
)) == COMPARE
)
2681 if (GET_CODE (XEXP (SET_SRC (set
), 0)) == SUBREG
)
2682 XEXP (SET_SRC (set
), 0)
2683 = alter_subreg (&XEXP (SET_SRC (set
), 0), true);
2684 if (GET_CODE (XEXP (SET_SRC (set
), 1)) == SUBREG
)
2685 XEXP (SET_SRC (set
), 1)
2686 = alter_subreg (&XEXP (SET_SRC (set
), 1), true);
2687 if (XEXP (SET_SRC (set
), 1)
2688 == CONST0_RTX (GET_MODE (XEXP (SET_SRC (set
), 0))))
2689 src2
= XEXP (SET_SRC (set
), 0);
2691 if ((cc_status
.value1
!= 0
2692 && rtx_equal_p (src1
, cc_status
.value1
))
2693 || (cc_status
.value2
!= 0
2694 && rtx_equal_p (src1
, cc_status
.value2
))
2695 || (src2
!= 0 && cc_status
.value1
!= 0
2696 && rtx_equal_p (src2
, cc_status
.value1
))
2697 || (src2
!= 0 && cc_status
.value2
!= 0
2698 && rtx_equal_p (src2
, cc_status
.value2
)))
2700 /* Don't delete insn if it has an addressing side-effect. */
2701 if (! FIND_REG_INC_NOTE (insn
, NULL_RTX
)
2702 /* or if anything in it is volatile. */
2703 && ! volatile_refs_p (PATTERN (insn
)))
2705 /* We don't really delete the insn; just ignore it. */
2706 last_ignored_compare
= insn
;
2713 /* If this is a conditional branch, maybe modify it
2714 if the cc's are in a nonstandard state
2715 so that it accomplishes the same thing that it would
2716 do straightforwardly if the cc's were set up normally. */
2718 if (cc_status
.flags
!= 0
2720 && GET_CODE (body
) == SET
2721 && SET_DEST (body
) == pc_rtx
2722 && GET_CODE (SET_SRC (body
)) == IF_THEN_ELSE
2723 && COMPARISON_P (XEXP (SET_SRC (body
), 0))
2724 && XEXP (XEXP (SET_SRC (body
), 0), 0) == cc0_rtx
)
2726 /* This function may alter the contents of its argument
2727 and clear some of the cc_status.flags bits.
2728 It may also return 1 meaning condition now always true
2729 or -1 meaning condition now always false
2730 or 2 meaning condition nontrivial but altered. */
2731 int result
= alter_cond (XEXP (SET_SRC (body
), 0));
2732 /* If condition now has fixed value, replace the IF_THEN_ELSE
2733 with its then-operand or its else-operand. */
2735 SET_SRC (body
) = XEXP (SET_SRC (body
), 1);
2737 SET_SRC (body
) = XEXP (SET_SRC (body
), 2);
2739 /* The jump is now either unconditional or a no-op.
2740 If it has become a no-op, don't try to output it.
2741 (It would not be recognized.) */
2742 if (SET_SRC (body
) == pc_rtx
)
2747 else if (ANY_RETURN_P (SET_SRC (body
)))
2748 /* Replace (set (pc) (return)) with (return). */
2749 PATTERN (insn
) = body
= SET_SRC (body
);
2751 /* Rerecognize the instruction if it has changed. */
2753 INSN_CODE (insn
) = -1;
2756 /* If this is a conditional trap, maybe modify it if the cc's
2757 are in a nonstandard state so that it accomplishes the same
2758 thing that it would do straightforwardly if the cc's were
2760 if (cc_status
.flags
!= 0
2761 && NONJUMP_INSN_P (insn
)
2762 && GET_CODE (body
) == TRAP_IF
2763 && COMPARISON_P (TRAP_CONDITION (body
))
2764 && XEXP (TRAP_CONDITION (body
), 0) == cc0_rtx
)
2766 /* This function may alter the contents of its argument
2767 and clear some of the cc_status.flags bits.
2768 It may also return 1 meaning condition now always true
2769 or -1 meaning condition now always false
2770 or 2 meaning condition nontrivial but altered. */
2771 int result
= alter_cond (TRAP_CONDITION (body
));
2773 /* If TRAP_CONDITION has become always false, delete the
2781 /* If TRAP_CONDITION has become always true, replace
2782 TRAP_CONDITION with const_true_rtx. */
2784 TRAP_CONDITION (body
) = const_true_rtx
;
2786 /* Rerecognize the instruction if it has changed. */
2788 INSN_CODE (insn
) = -1;
2791 /* Make same adjustments to instructions that examine the
2792 condition codes without jumping and instructions that
2793 handle conditional moves (if this machine has either one). */
2795 if (cc_status
.flags
!= 0
2798 rtx cond_rtx
, then_rtx
, else_rtx
;
2801 && GET_CODE (SET_SRC (set
)) == IF_THEN_ELSE
)
2803 cond_rtx
= XEXP (SET_SRC (set
), 0);
2804 then_rtx
= XEXP (SET_SRC (set
), 1);
2805 else_rtx
= XEXP (SET_SRC (set
), 2);
2809 cond_rtx
= SET_SRC (set
);
2810 then_rtx
= const_true_rtx
;
2811 else_rtx
= const0_rtx
;
2814 if (COMPARISON_P (cond_rtx
)
2815 && XEXP (cond_rtx
, 0) == cc0_rtx
)
2818 result
= alter_cond (cond_rtx
);
2820 validate_change (insn
, &SET_SRC (set
), then_rtx
, 0);
2821 else if (result
== -1)
2822 validate_change (insn
, &SET_SRC (set
), else_rtx
, 0);
2823 else if (result
== 2)
2824 INSN_CODE (insn
) = -1;
2825 if (SET_DEST (set
) == SET_SRC (set
))
2832 #ifdef HAVE_peephole
2833 /* Do machine-specific peephole optimizations if desired. */
2835 if (optimize_p
&& !flag_no_peephole
&& !nopeepholes
)
2837 rtx next
= peephole (insn
);
2838 /* When peepholing, if there were notes within the peephole,
2839 emit them before the peephole. */
2840 if (next
!= 0 && next
!= NEXT_INSN (insn
))
2842 rtx note
, prev
= PREV_INSN (insn
);
2844 for (note
= NEXT_INSN (insn
); note
!= next
;
2845 note
= NEXT_INSN (note
))
2846 final_scan_insn (note
, file
, optimize_p
, nopeepholes
, seen
);
2848 /* Put the notes in the proper position for a later
2849 rescan. For example, the SH target can do this
2850 when generating a far jump in a delayed branch
2852 note
= NEXT_INSN (insn
);
2853 PREV_INSN (note
) = prev
;
2854 NEXT_INSN (prev
) = note
;
2855 NEXT_INSN (PREV_INSN (next
)) = insn
;
2856 PREV_INSN (insn
) = PREV_INSN (next
);
2857 NEXT_INSN (insn
) = next
;
2858 PREV_INSN (next
) = insn
;
2861 /* PEEPHOLE might have changed this. */
2862 body
= PATTERN (insn
);
2866 /* Try to recognize the instruction.
2867 If successful, verify that the operands satisfy the
2868 constraints for the instruction. Crash if they don't,
2869 since `reload' should have changed them so that they do. */
2871 insn_code_number
= recog_memoized (insn
);
2872 cleanup_subreg_operands (insn
);
2874 /* Dump the insn in the assembly for debugging (-dAP).
2875 If the final dump is requested as slim RTL, dump slim
2876 RTL to the assembly file also. */
2877 if (flag_dump_rtl_in_asm
)
2879 print_rtx_head
= ASM_COMMENT_START
;
2880 if (! (dump_flags
& TDF_SLIM
))
2881 print_rtl_single (asm_out_file
, insn
);
2883 dump_insn_slim (asm_out_file
, insn
);
2884 print_rtx_head
= "";
2887 if (! constrain_operands_cached (1))
2888 fatal_insn_not_found (insn
);
2890 /* Some target machines need to prescan each insn before
2893 #ifdef FINAL_PRESCAN_INSN
2894 FINAL_PRESCAN_INSN (insn
, recog_data
.operand
, recog_data
.n_operands
);
2897 if (targetm
.have_conditional_execution ()
2898 && GET_CODE (PATTERN (insn
)) == COND_EXEC
)
2899 current_insn_predicate
= COND_EXEC_TEST (PATTERN (insn
));
2902 cc_prev_status
= cc_status
;
2904 /* Update `cc_status' for this instruction.
2905 The instruction's output routine may change it further.
2906 If the output routine for a jump insn needs to depend
2907 on the cc status, it should look at cc_prev_status. */
2909 NOTICE_UPDATE_CC (body
, insn
);
2912 current_output_insn
= debug_insn
= insn
;
2914 /* Find the proper template for this insn. */
2915 templ
= get_insn_template (insn_code_number
, insn
);
2917 /* If the C code returns 0, it means that it is a jump insn
2918 which follows a deleted test insn, and that test insn
2919 needs to be reinserted. */
2924 gcc_assert (prev_nonnote_insn (insn
) == last_ignored_compare
);
2926 /* We have already processed the notes between the setter and
2927 the user. Make sure we don't process them again, this is
2928 particularly important if one of the notes is a block
2929 scope note or an EH note. */
2931 prev
!= last_ignored_compare
;
2932 prev
= PREV_INSN (prev
))
2935 delete_insn (prev
); /* Use delete_note. */
2941 /* If the template is the string "#", it means that this insn must
2943 if (templ
[0] == '#' && templ
[1] == '\0')
2945 rtx new_rtx
= try_split (body
, insn
, 0);
2947 /* If we didn't split the insn, go away. */
2948 if (new_rtx
== insn
&& PATTERN (new_rtx
) == body
)
2949 fatal_insn ("could not split insn", insn
);
2951 /* If we have a length attribute, this instruction should have
2952 been split in shorten_branches, to ensure that we would have
2953 valid length info for the splitees. */
2954 gcc_assert (!HAVE_ATTR_length
);
2959 /* ??? This will put the directives in the wrong place if
2960 get_insn_template outputs assembly directly. However calling it
2961 before get_insn_template breaks if the insns is split. */
2962 if (targetm
.asm_out
.unwind_emit_before_insn
2963 && targetm
.asm_out
.unwind_emit
)
2964 targetm
.asm_out
.unwind_emit (asm_out_file
, insn
);
2968 rtx x
= call_from_call_insn (insn
);
2970 if (x
&& MEM_P (x
) && GET_CODE (XEXP (x
, 0)) == SYMBOL_REF
)
2974 t
= SYMBOL_REF_DECL (x
);
2976 assemble_external (t
);
2978 if (!DECL_IGNORED_P (current_function_decl
))
2979 debug_hooks
->var_location (insn
);
2982 /* Output assembler code from the template. */
2983 output_asm_insn (templ
, recog_data
.operand
);
2985 /* Some target machines need to postscan each insn after
2987 if (targetm
.asm_out
.final_postscan_insn
)
2988 targetm
.asm_out
.final_postscan_insn (file
, insn
, recog_data
.operand
,
2989 recog_data
.n_operands
);
2991 if (!targetm
.asm_out
.unwind_emit_before_insn
2992 && targetm
.asm_out
.unwind_emit
)
2993 targetm
.asm_out
.unwind_emit (asm_out_file
, insn
);
2995 current_output_insn
= debug_insn
= 0;
2998 return NEXT_INSN (insn
);
3001 /* Return whether a source line note needs to be emitted before INSN.
3002 Sets IS_STMT to TRUE if the line should be marked as a possible
3003 breakpoint location. */
3006 notice_source_line (rtx insn
, bool *is_stmt
)
3008 const char *filename
;
3011 if (override_filename
)
3013 filename
= override_filename
;
3014 linenum
= override_linenum
;
3018 filename
= insn_file (insn
);
3019 linenum
= insn_line (insn
);
3022 if (filename
== NULL
)
3025 if (force_source_line
3026 || filename
!= last_filename
3027 || last_linenum
!= linenum
)
3029 force_source_line
= false;
3030 last_filename
= filename
;
3031 last_linenum
= linenum
;
3032 last_discriminator
= discriminator
;
3034 high_block_linenum
= MAX (last_linenum
, high_block_linenum
);
3035 high_function_linenum
= MAX (last_linenum
, high_function_linenum
);
3039 if (SUPPORTS_DISCRIMINATOR
&& last_discriminator
!= discriminator
)
3041 /* If the discriminator changed, but the line number did not,
3042 output the line table entry with is_stmt false so the
3043 debugger does not treat this as a breakpoint location. */
3044 last_discriminator
= discriminator
;
3052 /* For each operand in INSN, simplify (subreg (reg)) so that it refers
3053 directly to the desired hard register. */
3056 cleanup_subreg_operands (rtx insn
)
3059 bool changed
= false;
3060 extract_insn_cached (insn
);
3061 for (i
= 0; i
< recog_data
.n_operands
; i
++)
3063 /* The following test cannot use recog_data.operand when testing
3064 for a SUBREG: the underlying object might have been changed
3065 already if we are inside a match_operator expression that
3066 matches the else clause. Instead we test the underlying
3067 expression directly. */
3068 if (GET_CODE (*recog_data
.operand_loc
[i
]) == SUBREG
)
3070 recog_data
.operand
[i
] = alter_subreg (recog_data
.operand_loc
[i
], true);
3073 else if (GET_CODE (recog_data
.operand
[i
]) == PLUS
3074 || GET_CODE (recog_data
.operand
[i
]) == MULT
3075 || MEM_P (recog_data
.operand
[i
]))
3076 recog_data
.operand
[i
] = walk_alter_subreg (recog_data
.operand_loc
[i
], &changed
);
3079 for (i
= 0; i
< recog_data
.n_dups
; i
++)
3081 if (GET_CODE (*recog_data
.dup_loc
[i
]) == SUBREG
)
3083 *recog_data
.dup_loc
[i
] = alter_subreg (recog_data
.dup_loc
[i
], true);
3086 else if (GET_CODE (*recog_data
.dup_loc
[i
]) == PLUS
3087 || GET_CODE (*recog_data
.dup_loc
[i
]) == MULT
3088 || MEM_P (*recog_data
.dup_loc
[i
]))
3089 *recog_data
.dup_loc
[i
] = walk_alter_subreg (recog_data
.dup_loc
[i
], &changed
);
3092 df_insn_rescan (insn
);
3095 /* If X is a SUBREG, try to replace it with a REG or a MEM, based on
3096 the thing it is a subreg of. Do it anyway if FINAL_P. */
3099 alter_subreg (rtx
*xp
, bool final_p
)
3102 rtx y
= SUBREG_REG (x
);
3104 /* simplify_subreg does not remove subreg from volatile references.
3105 We are required to. */
3108 int offset
= SUBREG_BYTE (x
);
3110 /* For paradoxical subregs on big-endian machines, SUBREG_BYTE
3111 contains 0 instead of the proper offset. See simplify_subreg. */
3113 && GET_MODE_SIZE (GET_MODE (y
)) < GET_MODE_SIZE (GET_MODE (x
)))
3115 int difference
= GET_MODE_SIZE (GET_MODE (y
))
3116 - GET_MODE_SIZE (GET_MODE (x
));
3117 if (WORDS_BIG_ENDIAN
)
3118 offset
+= (difference
/ UNITS_PER_WORD
) * UNITS_PER_WORD
;
3119 if (BYTES_BIG_ENDIAN
)
3120 offset
+= difference
% UNITS_PER_WORD
;
3124 *xp
= adjust_address (y
, GET_MODE (x
), offset
);
3126 *xp
= adjust_address_nv (y
, GET_MODE (x
), offset
);
3130 rtx new_rtx
= simplify_subreg (GET_MODE (x
), y
, GET_MODE (y
),
3135 else if (final_p
&& REG_P (y
))
3137 /* Simplify_subreg can't handle some REG cases, but we have to. */
3139 HOST_WIDE_INT offset
;
3141 regno
= subreg_regno (x
);
3142 if (subreg_lowpart_p (x
))
3143 offset
= byte_lowpart_offset (GET_MODE (x
), GET_MODE (y
));
3145 offset
= SUBREG_BYTE (x
);
3146 *xp
= gen_rtx_REG_offset (y
, GET_MODE (x
), regno
, offset
);
3153 /* Do alter_subreg on all the SUBREGs contained in X. */
3156 walk_alter_subreg (rtx
*xp
, bool *changed
)
3159 switch (GET_CODE (x
))
3164 XEXP (x
, 0) = walk_alter_subreg (&XEXP (x
, 0), changed
);
3165 XEXP (x
, 1) = walk_alter_subreg (&XEXP (x
, 1), changed
);
3170 XEXP (x
, 0) = walk_alter_subreg (&XEXP (x
, 0), changed
);
3175 return alter_subreg (xp
, true);
3186 /* Given BODY, the body of a jump instruction, alter the jump condition
3187 as required by the bits that are set in cc_status.flags.
3188 Not all of the bits there can be handled at this level in all cases.
3190 The value is normally 0.
3191 1 means that the condition has become always true.
3192 -1 means that the condition has become always false.
3193 2 means that COND has been altered. */
3196 alter_cond (rtx cond
)
3200 if (cc_status
.flags
& CC_REVERSED
)
3203 PUT_CODE (cond
, swap_condition (GET_CODE (cond
)));
3206 if (cc_status
.flags
& CC_INVERTED
)
3209 PUT_CODE (cond
, reverse_condition (GET_CODE (cond
)));
3212 if (cc_status
.flags
& CC_NOT_POSITIVE
)
3213 switch (GET_CODE (cond
))
3218 /* Jump becomes unconditional. */
3224 /* Jump becomes no-op. */
3228 PUT_CODE (cond
, EQ
);
3233 PUT_CODE (cond
, NE
);
3241 if (cc_status
.flags
& CC_NOT_NEGATIVE
)
3242 switch (GET_CODE (cond
))
3246 /* Jump becomes unconditional. */
3251 /* Jump becomes no-op. */
3256 PUT_CODE (cond
, EQ
);
3262 PUT_CODE (cond
, NE
);
3270 if (cc_status
.flags
& CC_NO_OVERFLOW
)
3271 switch (GET_CODE (cond
))
3274 /* Jump becomes unconditional. */
3278 PUT_CODE (cond
, EQ
);
3283 PUT_CODE (cond
, NE
);
3288 /* Jump becomes no-op. */
3295 if (cc_status
.flags
& (CC_Z_IN_NOT_N
| CC_Z_IN_N
))
3296 switch (GET_CODE (cond
))
3302 PUT_CODE (cond
, cc_status
.flags
& CC_Z_IN_N
? GE
: LT
);
3307 PUT_CODE (cond
, cc_status
.flags
& CC_Z_IN_N
? LT
: GE
);
3312 if (cc_status
.flags
& CC_NOT_SIGNED
)
3313 /* The flags are valid if signed condition operators are converted
3315 switch (GET_CODE (cond
))
3318 PUT_CODE (cond
, LEU
);
3323 PUT_CODE (cond
, LTU
);
3328 PUT_CODE (cond
, GTU
);
3333 PUT_CODE (cond
, GEU
);
3345 /* Report inconsistency between the assembler template and the operands.
3346 In an `asm', it's the user's fault; otherwise, the compiler's fault. */
3349 output_operand_lossage (const char *cmsgid
, ...)
3353 const char *pfx_str
;
3356 va_start (ap
, cmsgid
);
3358 pfx_str
= this_is_asm_operands
? _("invalid 'asm': ") : "output_operand: ";
3359 asprintf (&fmt_string
, "%s%s", pfx_str
, _(cmsgid
));
3360 vasprintf (&new_message
, fmt_string
, ap
);
3362 if (this_is_asm_operands
)
3363 error_for_asm (this_is_asm_operands
, "%s", new_message
);
3365 internal_error ("%s", new_message
);
3372 /* Output of assembler code from a template, and its subroutines. */
3374 /* Annotate the assembly with a comment describing the pattern and
3375 alternative used. */
3378 output_asm_name (void)
3382 int num
= INSN_CODE (debug_insn
);
3383 fprintf (asm_out_file
, "\t%s %d\t%s",
3384 ASM_COMMENT_START
, INSN_UID (debug_insn
),
3385 insn_data
[num
].name
);
3386 if (insn_data
[num
].n_alternatives
> 1)
3387 fprintf (asm_out_file
, "/%d", which_alternative
+ 1);
3389 if (HAVE_ATTR_length
)
3390 fprintf (asm_out_file
, "\t[length = %d]",
3391 get_attr_length (debug_insn
));
3393 /* Clear this so only the first assembler insn
3394 of any rtl insn will get the special comment for -dp. */
3399 /* If OP is a REG or MEM and we can find a MEM_EXPR corresponding to it
3400 or its address, return that expr . Set *PADDRESSP to 1 if the expr
3401 corresponds to the address of the object and 0 if to the object. */
3404 get_mem_expr_from_op (rtx op
, int *paddressp
)
3412 return REG_EXPR (op
);
3413 else if (!MEM_P (op
))
3416 if (MEM_EXPR (op
) != 0)
3417 return MEM_EXPR (op
);
3419 /* Otherwise we have an address, so indicate it and look at the address. */
3423 /* First check if we have a decl for the address, then look at the right side
3424 if it is a PLUS. Otherwise, strip off arithmetic and keep looking.
3425 But don't allow the address to itself be indirect. */
3426 if ((expr
= get_mem_expr_from_op (op
, &inner_addressp
)) && ! inner_addressp
)
3428 else if (GET_CODE (op
) == PLUS
3429 && (expr
= get_mem_expr_from_op (XEXP (op
, 1), &inner_addressp
)))
3433 || GET_RTX_CLASS (GET_CODE (op
)) == RTX_BIN_ARITH
)
3436 expr
= get_mem_expr_from_op (op
, &inner_addressp
);
3437 return inner_addressp
? 0 : expr
;
3440 /* Output operand names for assembler instructions. OPERANDS is the
3441 operand vector, OPORDER is the order to write the operands, and NOPS
3442 is the number of operands to write. */
3445 output_asm_operand_names (rtx
*operands
, int *oporder
, int nops
)
3450 for (i
= 0; i
< nops
; i
++)
3453 rtx op
= operands
[oporder
[i
]];
3454 tree expr
= get_mem_expr_from_op (op
, &addressp
);
3456 fprintf (asm_out_file
, "%c%s",
3457 wrote
? ',' : '\t', wrote
? "" : ASM_COMMENT_START
);
3461 fprintf (asm_out_file
, "%s",
3462 addressp
? "*" : "");
3463 print_mem_expr (asm_out_file
, expr
);
3466 else if (REG_P (op
) && ORIGINAL_REGNO (op
)
3467 && ORIGINAL_REGNO (op
) != REGNO (op
))
3468 fprintf (asm_out_file
, " tmp%i", ORIGINAL_REGNO (op
));
3472 #ifdef ASSEMBLER_DIALECT
3473 /* Helper function to parse assembler dialects in the asm string.
3474 This is called from output_asm_insn and asm_fprintf. */
3476 do_assembler_dialects (const char *p
, int *dialect
)
3487 output_operand_lossage ("nested assembly dialect alternatives");
3491 /* If we want the first dialect, do nothing. Otherwise, skip
3492 DIALECT_NUMBER of strings ending with '|'. */
3493 for (i
= 0; i
< dialect_number
; i
++)
3495 while (*p
&& *p
!= '}')
3503 /* Skip over any character after a percent sign. */
3515 output_operand_lossage ("unterminated assembly dialect alternative");
3522 /* Skip to close brace. */
3527 output_operand_lossage ("unterminated assembly dialect alternative");
3531 /* Skip over any character after a percent sign. */
3532 if (*p
== '%' && p
[1])
3546 putc (c
, asm_out_file
);
3551 putc (c
, asm_out_file
);
3562 /* Output text from TEMPLATE to the assembler output file,
3563 obeying %-directions to substitute operands taken from
3564 the vector OPERANDS.
3566 %N (for N a digit) means print operand N in usual manner.
3567 %lN means require operand N to be a CODE_LABEL or LABEL_REF
3568 and print the label name with no punctuation.
3569 %cN means require operand N to be a constant
3570 and print the constant expression with no punctuation.
3571 %aN means expect operand N to be a memory address
3572 (not a memory reference!) and print a reference
3574 %nN means expect operand N to be a constant
3575 and print a constant expression for minus the value
3576 of the operand, with no other punctuation. */
3579 output_asm_insn (const char *templ
, rtx
*operands
)
3583 #ifdef ASSEMBLER_DIALECT
3586 int oporder
[MAX_RECOG_OPERANDS
];
3587 char opoutput
[MAX_RECOG_OPERANDS
];
3590 /* An insn may return a null string template
3591 in a case where no assembler code is needed. */
3595 memset (opoutput
, 0, sizeof opoutput
);
3597 putc ('\t', asm_out_file
);
3599 #ifdef ASM_OUTPUT_OPCODE
3600 ASM_OUTPUT_OPCODE (asm_out_file
, p
);
3607 if (flag_verbose_asm
)
3608 output_asm_operand_names (operands
, oporder
, ops
);
3609 if (flag_print_asm_name
)
3613 memset (opoutput
, 0, sizeof opoutput
);
3615 putc (c
, asm_out_file
);
3616 #ifdef ASM_OUTPUT_OPCODE
3617 while ((c
= *p
) == '\t')
3619 putc (c
, asm_out_file
);
3622 ASM_OUTPUT_OPCODE (asm_out_file
, p
);
3626 #ifdef ASSEMBLER_DIALECT
3630 p
= do_assembler_dialects (p
, &dialect
);
3635 /* %% outputs a single %. %{, %} and %| print {, } and | respectively
3636 if ASSEMBLER_DIALECT defined and these characters have a special
3637 meaning as dialect delimiters.*/
3639 #ifdef ASSEMBLER_DIALECT
3640 || *p
== '{' || *p
== '}' || *p
== '|'
3644 putc (*p
, asm_out_file
);
3647 /* %= outputs a number which is unique to each insn in the entire
3648 compilation. This is useful for making local labels that are
3649 referred to more than once in a given insn. */
3653 fprintf (asm_out_file
, "%d", insn_counter
);
3655 /* % followed by a letter and some digits
3656 outputs an operand in a special way depending on the letter.
3657 Letters `acln' are implemented directly.
3658 Other letters are passed to `output_operand' so that
3659 the TARGET_PRINT_OPERAND hook can define them. */
3660 else if (ISALPHA (*p
))
3663 unsigned long opnum
;
3666 opnum
= strtoul (p
, &endptr
, 10);
3669 output_operand_lossage ("operand number missing "
3671 else if (this_is_asm_operands
&& opnum
>= insn_noperands
)
3672 output_operand_lossage ("operand number out of range");
3673 else if (letter
== 'l')
3674 output_asm_label (operands
[opnum
]);
3675 else if (letter
== 'a')
3676 output_address (operands
[opnum
]);
3677 else if (letter
== 'c')
3679 if (CONSTANT_ADDRESS_P (operands
[opnum
]))
3680 output_addr_const (asm_out_file
, operands
[opnum
]);
3682 output_operand (operands
[opnum
], 'c');
3684 else if (letter
== 'n')
3686 if (CONST_INT_P (operands
[opnum
]))
3687 fprintf (asm_out_file
, HOST_WIDE_INT_PRINT_DEC
,
3688 - INTVAL (operands
[opnum
]));
3691 putc ('-', asm_out_file
);
3692 output_addr_const (asm_out_file
, operands
[opnum
]);
3696 output_operand (operands
[opnum
], letter
);
3698 if (!opoutput
[opnum
])
3699 oporder
[ops
++] = opnum
;
3700 opoutput
[opnum
] = 1;
3705 /* % followed by a digit outputs an operand the default way. */
3706 else if (ISDIGIT (*p
))
3708 unsigned long opnum
;
3711 opnum
= strtoul (p
, &endptr
, 10);
3712 if (this_is_asm_operands
&& opnum
>= insn_noperands
)
3713 output_operand_lossage ("operand number out of range");
3715 output_operand (operands
[opnum
], 0);
3717 if (!opoutput
[opnum
])
3718 oporder
[ops
++] = opnum
;
3719 opoutput
[opnum
] = 1;
3724 /* % followed by punctuation: output something for that
3725 punctuation character alone, with no operand. The
3726 TARGET_PRINT_OPERAND hook decides what is actually done. */
3727 else if (targetm
.asm_out
.print_operand_punct_valid_p ((unsigned char) *p
))
3728 output_operand (NULL_RTX
, *p
++);
3730 output_operand_lossage ("invalid %%-code");
3734 putc (c
, asm_out_file
);
3737 /* Write out the variable names for operands, if we know them. */
3738 if (flag_verbose_asm
)
3739 output_asm_operand_names (operands
, oporder
, ops
);
3740 if (flag_print_asm_name
)
3743 putc ('\n', asm_out_file
);
3746 /* Output a LABEL_REF, or a bare CODE_LABEL, as an assembler symbol. */
3749 output_asm_label (rtx x
)
3753 if (GET_CODE (x
) == LABEL_REF
)
3757 && NOTE_KIND (x
) == NOTE_INSN_DELETED_LABEL
))
3758 ASM_GENERATE_INTERNAL_LABEL (buf
, "L", CODE_LABEL_NUMBER (x
));
3760 output_operand_lossage ("'%%l' operand isn't a label");
3762 assemble_name (asm_out_file
, buf
);
3765 /* Helper rtx-iteration-function for mark_symbol_refs_as_used and
3766 output_operand. Marks SYMBOL_REFs as referenced through use of
3767 assemble_external. */
3770 mark_symbol_ref_as_used (rtx
*xp
, void *dummy ATTRIBUTE_UNUSED
)
3774 /* If we have a used symbol, we may have to emit assembly
3775 annotations corresponding to whether the symbol is external, weak
3776 or has non-default visibility. */
3777 if (GET_CODE (x
) == SYMBOL_REF
)
3781 t
= SYMBOL_REF_DECL (x
);
3783 assemble_external (t
);
3791 /* Marks SYMBOL_REFs in x as referenced through use of assemble_external. */
3794 mark_symbol_refs_as_used (rtx x
)
3796 for_each_rtx (&x
, mark_symbol_ref_as_used
, NULL
);
3799 /* Print operand X using machine-dependent assembler syntax.
3800 CODE is a non-digit that preceded the operand-number in the % spec,
3801 such as 'z' if the spec was `%z3'. CODE is 0 if there was no char
3802 between the % and the digits.
3803 When CODE is a non-letter, X is 0.
3805 The meanings of the letters are machine-dependent and controlled
3806 by TARGET_PRINT_OPERAND. */
3809 output_operand (rtx x
, int code ATTRIBUTE_UNUSED
)
3811 if (x
&& GET_CODE (x
) == SUBREG
)
3812 x
= alter_subreg (&x
, true);
3814 /* X must not be a pseudo reg. */
3815 gcc_assert (!x
|| !REG_P (x
) || REGNO (x
) < FIRST_PSEUDO_REGISTER
);
3817 targetm
.asm_out
.print_operand (asm_out_file
, x
, code
);
3822 for_each_rtx (&x
, mark_symbol_ref_as_used
, NULL
);
3825 /* Print a memory reference operand for address X using
3826 machine-dependent assembler syntax. */
3829 output_address (rtx x
)
3831 bool changed
= false;
3832 walk_alter_subreg (&x
, &changed
);
3833 targetm
.asm_out
.print_operand_address (asm_out_file
, x
);
3836 /* Print an integer constant expression in assembler syntax.
3837 Addition and subtraction are the only arithmetic
3838 that may appear in these expressions. */
3841 output_addr_const (FILE *file
, rtx x
)
3846 switch (GET_CODE (x
))
3853 if (SYMBOL_REF_DECL (x
))
3854 assemble_external (SYMBOL_REF_DECL (x
));
3855 #ifdef ASM_OUTPUT_SYMBOL_REF
3856 ASM_OUTPUT_SYMBOL_REF (file
, x
);
3858 assemble_name (file
, XSTR (x
, 0));
3866 ASM_GENERATE_INTERNAL_LABEL (buf
, "L", CODE_LABEL_NUMBER (x
));
3867 #ifdef ASM_OUTPUT_LABEL_REF
3868 ASM_OUTPUT_LABEL_REF (file
, buf
);
3870 assemble_name (file
, buf
);
3875 fprintf (file
, HOST_WIDE_INT_PRINT_DEC
, INTVAL (x
));
3879 /* This used to output parentheses around the expression,
3880 but that does not work on the 386 (either ATT or BSD assembler). */
3881 output_addr_const (file
, XEXP (x
, 0));
3885 if (GET_MODE (x
) == VOIDmode
)
3887 /* We can use %d if the number is one word and positive. */
3888 if (CONST_DOUBLE_HIGH (x
))
3889 fprintf (file
, HOST_WIDE_INT_PRINT_DOUBLE_HEX
,
3890 (unsigned HOST_WIDE_INT
) CONST_DOUBLE_HIGH (x
),
3891 (unsigned HOST_WIDE_INT
) CONST_DOUBLE_LOW (x
));
3892 else if (CONST_DOUBLE_LOW (x
) < 0)
3893 fprintf (file
, HOST_WIDE_INT_PRINT_HEX
,
3894 (unsigned HOST_WIDE_INT
) CONST_DOUBLE_LOW (x
));
3896 fprintf (file
, HOST_WIDE_INT_PRINT_DEC
, CONST_DOUBLE_LOW (x
));
3899 /* We can't handle floating point constants;
3900 PRINT_OPERAND must handle them. */
3901 output_operand_lossage ("floating constant misused");
3905 fprintf (file
, HOST_WIDE_INT_PRINT_DEC
, CONST_FIXED_VALUE_LOW (x
));
3909 /* Some assemblers need integer constants to appear last (eg masm). */
3910 if (CONST_INT_P (XEXP (x
, 0)))
3912 output_addr_const (file
, XEXP (x
, 1));
3913 if (INTVAL (XEXP (x
, 0)) >= 0)
3914 fprintf (file
, "+");
3915 output_addr_const (file
, XEXP (x
, 0));
3919 output_addr_const (file
, XEXP (x
, 0));
3920 if (!CONST_INT_P (XEXP (x
, 1))
3921 || INTVAL (XEXP (x
, 1)) >= 0)
3922 fprintf (file
, "+");
3923 output_addr_const (file
, XEXP (x
, 1));
3928 /* Avoid outputting things like x-x or x+5-x,
3929 since some assemblers can't handle that. */
3930 x
= simplify_subtraction (x
);
3931 if (GET_CODE (x
) != MINUS
)
3934 output_addr_const (file
, XEXP (x
, 0));
3935 fprintf (file
, "-");
3936 if ((CONST_INT_P (XEXP (x
, 1)) && INTVAL (XEXP (x
, 1)) >= 0)
3937 || GET_CODE (XEXP (x
, 1)) == PC
3938 || GET_CODE (XEXP (x
, 1)) == SYMBOL_REF
)
3939 output_addr_const (file
, XEXP (x
, 1));
3942 fputs (targetm
.asm_out
.open_paren
, file
);
3943 output_addr_const (file
, XEXP (x
, 1));
3944 fputs (targetm
.asm_out
.close_paren
, file
);
3952 output_addr_const (file
, XEXP (x
, 0));
3956 if (targetm
.asm_out
.output_addr_const_extra (file
, x
))
3959 output_operand_lossage ("invalid expression as operand");
3963 /* Output a quoted string. */
3966 output_quoted_string (FILE *asm_file
, const char *string
)
3968 #ifdef OUTPUT_QUOTED_STRING
3969 OUTPUT_QUOTED_STRING (asm_file
, string
);
3973 putc ('\"', asm_file
);
3974 while ((c
= *string
++) != 0)
3978 if (c
== '\"' || c
== '\\')
3979 putc ('\\', asm_file
);
3983 fprintf (asm_file
, "\\%03o", (unsigned char) c
);
3985 putc ('\"', asm_file
);
3989 /* Write a HOST_WIDE_INT number in hex form 0x1234, fast. */
3992 fprint_whex (FILE *f
, unsigned HOST_WIDE_INT value
)
3994 char buf
[2 + CHAR_BIT
* sizeof (value
) / 4];
3999 char *p
= buf
+ sizeof (buf
);
4001 *--p
= "0123456789abcdef"[value
% 16];
4002 while ((value
/= 16) != 0);
4005 fwrite (p
, 1, buf
+ sizeof (buf
) - p
, f
);
4009 /* Internal function that prints an unsigned long in decimal in reverse.
4010 The output string IS NOT null-terminated. */
4013 sprint_ul_rev (char *s
, unsigned long value
)
4018 s
[i
] = "0123456789"[value
% 10];
4021 /* alternate version, without modulo */
4022 /* oldval = value; */
4024 /* s[i] = "0123456789" [oldval - 10*value]; */
4031 /* Write an unsigned long as decimal to a file, fast. */
4034 fprint_ul (FILE *f
, unsigned long value
)
4036 /* python says: len(str(2**64)) == 20 */
4040 i
= sprint_ul_rev (s
, value
);
4042 /* It's probably too small to bother with string reversal and fputs. */
4051 /* Write an unsigned long as decimal to a string, fast.
4052 s must be wide enough to not overflow, at least 21 chars.
4053 Returns the length of the string (without terminating '\0'). */
4056 sprint_ul (char *s
, unsigned long value
)
4063 len
= sprint_ul_rev (s
, value
);
4066 /* Reverse the string. */
4080 /* A poor man's fprintf, with the added features of %I, %R, %L, and %U.
4081 %R prints the value of REGISTER_PREFIX.
4082 %L prints the value of LOCAL_LABEL_PREFIX.
4083 %U prints the value of USER_LABEL_PREFIX.
4084 %I prints the value of IMMEDIATE_PREFIX.
4085 %O runs ASM_OUTPUT_OPCODE to transform what follows in the string.
4086 Also supported are %d, %i, %u, %x, %X, %o, %c, %s and %%.
4088 We handle alternate assembler dialects here, just like output_asm_insn. */
4091 asm_fprintf (FILE *file
, const char *p
, ...)
4095 #ifdef ASSEMBLER_DIALECT
4100 va_start (argptr
, p
);
4107 #ifdef ASSEMBLER_DIALECT
4111 p
= do_assembler_dialects (p
, &dialect
);
4118 while (strchr ("-+ #0", c
))
4123 while (ISDIGIT (c
) || c
== '.')
4134 case 'd': case 'i': case 'u':
4135 case 'x': case 'X': case 'o':
4139 fprintf (file
, buf
, va_arg (argptr
, int));
4143 /* This is a prefix to the 'd', 'i', 'u', 'x', 'X', and
4144 'o' cases, but we do not check for those cases. It
4145 means that the value is a HOST_WIDE_INT, which may be
4146 either `long' or `long long'. */
4147 memcpy (q
, HOST_WIDE_INT_PRINT
, strlen (HOST_WIDE_INT_PRINT
));
4148 q
+= strlen (HOST_WIDE_INT_PRINT
);
4151 fprintf (file
, buf
, va_arg (argptr
, HOST_WIDE_INT
));
4156 #ifdef HAVE_LONG_LONG
4162 fprintf (file
, buf
, va_arg (argptr
, long long));
4169 fprintf (file
, buf
, va_arg (argptr
, long));
4177 fprintf (file
, buf
, va_arg (argptr
, char *));
4181 #ifdef ASM_OUTPUT_OPCODE
4182 ASM_OUTPUT_OPCODE (asm_out_file
, p
);
4187 #ifdef REGISTER_PREFIX
4188 fprintf (file
, "%s", REGISTER_PREFIX
);
4193 #ifdef IMMEDIATE_PREFIX
4194 fprintf (file
, "%s", IMMEDIATE_PREFIX
);
4199 #ifdef LOCAL_LABEL_PREFIX
4200 fprintf (file
, "%s", LOCAL_LABEL_PREFIX
);
4205 fputs (user_label_prefix
, file
);
4208 #ifdef ASM_FPRINTF_EXTENSIONS
4209 /* Uppercase letters are reserved for general use by asm_fprintf
4210 and so are not available to target specific code. In order to
4211 prevent the ASM_FPRINTF_EXTENSIONS macro from using them then,
4212 they are defined here. As they get turned into real extensions
4213 to asm_fprintf they should be removed from this list. */
4214 case 'A': case 'B': case 'C': case 'D': case 'E':
4215 case 'F': case 'G': case 'H': case 'J': case 'K':
4216 case 'M': case 'N': case 'P': case 'Q': case 'S':
4217 case 'T': case 'V': case 'W': case 'Y': case 'Z':
4220 ASM_FPRINTF_EXTENSIONS (file
, argptr
, p
)
4233 /* Return nonzero if this function has no function calls. */
4236 leaf_function_p (void)
4240 if (crtl
->profile
|| profile_arc_flag
)
4243 for (insn
= get_insns (); insn
; insn
= NEXT_INSN (insn
))
4246 && ! SIBLING_CALL_P (insn
))
4248 if (NONJUMP_INSN_P (insn
)
4249 && GET_CODE (PATTERN (insn
)) == SEQUENCE
4250 && CALL_P (XVECEXP (PATTERN (insn
), 0, 0))
4251 && ! SIBLING_CALL_P (XVECEXP (PATTERN (insn
), 0, 0)))
4258 /* Return 1 if branch is a forward branch.
4259 Uses insn_shuid array, so it works only in the final pass. May be used by
4260 output templates to customary add branch prediction hints.
4263 final_forward_branch_p (rtx insn
)
4265 int insn_id
, label_id
;
4267 gcc_assert (uid_shuid
);
4268 insn_id
= INSN_SHUID (insn
);
4269 label_id
= INSN_SHUID (JUMP_LABEL (insn
));
4270 /* We've hit some insns that does not have id information available. */
4271 gcc_assert (insn_id
&& label_id
);
4272 return insn_id
< label_id
;
4275 /* On some machines, a function with no call insns
4276 can run faster if it doesn't create its own register window.
4277 When output, the leaf function should use only the "output"
4278 registers. Ordinarily, the function would be compiled to use
4279 the "input" registers to find its arguments; it is a candidate
4280 for leaf treatment if it uses only the "input" registers.
4281 Leaf function treatment means renumbering so the function
4282 uses the "output" registers instead. */
4284 #ifdef LEAF_REGISTERS
4286 /* Return 1 if this function uses only the registers that can be
4287 safely renumbered. */
4290 only_leaf_regs_used (void)
4293 const char *const permitted_reg_in_leaf_functions
= LEAF_REGISTERS
;
4295 for (i
= 0; i
< FIRST_PSEUDO_REGISTER
; i
++)
4296 if ((df_regs_ever_live_p (i
) || global_regs
[i
])
4297 && ! permitted_reg_in_leaf_functions
[i
])
4300 if (crtl
->uses_pic_offset_table
4301 && pic_offset_table_rtx
!= 0
4302 && REG_P (pic_offset_table_rtx
)
4303 && ! permitted_reg_in_leaf_functions
[REGNO (pic_offset_table_rtx
)])
4309 /* Scan all instructions and renumber all registers into those
4310 available in leaf functions. */
4313 leaf_renumber_regs (rtx first
)
4317 /* Renumber only the actual patterns.
4318 The reg-notes can contain frame pointer refs,
4319 and renumbering them could crash, and should not be needed. */
4320 for (insn
= first
; insn
; insn
= NEXT_INSN (insn
))
4322 leaf_renumber_regs_insn (PATTERN (insn
));
4325 /* Scan IN_RTX and its subexpressions, and renumber all regs into those
4326 available in leaf functions. */
4329 leaf_renumber_regs_insn (rtx in_rtx
)
4332 const char *format_ptr
;
4337 /* Renumber all input-registers into output-registers.
4338 renumbered_regs would be 1 for an output-register;
4345 /* Don't renumber the same reg twice. */
4349 newreg
= REGNO (in_rtx
);
4350 /* Don't try to renumber pseudo regs. It is possible for a pseudo reg
4351 to reach here as part of a REG_NOTE. */
4352 if (newreg
>= FIRST_PSEUDO_REGISTER
)
4357 newreg
= LEAF_REG_REMAP (newreg
);
4358 gcc_assert (newreg
>= 0);
4359 df_set_regs_ever_live (REGNO (in_rtx
), false);
4360 df_set_regs_ever_live (newreg
, true);
4361 SET_REGNO (in_rtx
, newreg
);
4365 if (INSN_P (in_rtx
))
4367 /* Inside a SEQUENCE, we find insns.
4368 Renumber just the patterns of these insns,
4369 just as we do for the top-level insns. */
4370 leaf_renumber_regs_insn (PATTERN (in_rtx
));
4374 format_ptr
= GET_RTX_FORMAT (GET_CODE (in_rtx
));
4376 for (i
= 0; i
< GET_RTX_LENGTH (GET_CODE (in_rtx
)); i
++)
4377 switch (*format_ptr
++)
4380 leaf_renumber_regs_insn (XEXP (in_rtx
, i
));
4384 if (NULL
!= XVEC (in_rtx
, i
))
4386 for (j
= 0; j
< XVECLEN (in_rtx
, i
); j
++)
4387 leaf_renumber_regs_insn (XVECEXP (in_rtx
, i
, j
));
4406 /* Turn the RTL into assembly. */
4408 rest_of_handle_final (void)
4413 /* Get the function's name, as described by its RTL. This may be
4414 different from the DECL_NAME name used in the source file. */
4416 x
= DECL_RTL (current_function_decl
);
4417 gcc_assert (MEM_P (x
));
4419 gcc_assert (GET_CODE (x
) == SYMBOL_REF
);
4420 fnname
= XSTR (x
, 0);
4422 assemble_start_function (current_function_decl
, fnname
);
4423 final_start_function (get_insns (), asm_out_file
, optimize
);
4424 final (get_insns (), asm_out_file
, optimize
);
4425 final_end_function ();
4427 /* The IA-64 ".handlerdata" directive must be issued before the ".endp"
4428 directive that closes the procedure descriptor. Similarly, for x64 SEH.
4429 Otherwise it's not strictly necessary, but it doesn't hurt either. */
4430 output_function_exception_table (fnname
);
4432 assemble_end_function (current_function_decl
, fnname
);
4434 user_defined_section_attribute
= false;
4436 /* Free up reg info memory. */
4440 fflush (asm_out_file
);
4442 /* Write DBX symbols if requested. */
4444 /* Note that for those inline functions where we don't initially
4445 know for certain that we will be generating an out-of-line copy,
4446 the first invocation of this routine (rest_of_compilation) will
4447 skip over this code by doing a `goto exit_rest_of_compilation;'.
4448 Later on, wrapup_global_declarations will (indirectly) call
4449 rest_of_compilation again for those inline functions that need
4450 to have out-of-line copies generated. During that call, we
4451 *will* be routed past here. */
4453 timevar_push (TV_SYMOUT
);
4454 if (!DECL_IGNORED_P (current_function_decl
))
4455 debug_hooks
->function_decl (current_function_decl
);
4456 timevar_pop (TV_SYMOUT
);
4458 /* Release the blocks that are linked to DECL_INITIAL() to free the memory. */
4459 DECL_INITIAL (current_function_decl
) = error_mark_node
;
4461 if (DECL_STATIC_CONSTRUCTOR (current_function_decl
)
4462 && targetm
.have_ctors_dtors
)
4463 targetm
.asm_out
.constructor (XEXP (DECL_RTL (current_function_decl
), 0),
4464 decl_init_priority_lookup
4465 (current_function_decl
));
4466 if (DECL_STATIC_DESTRUCTOR (current_function_decl
)
4467 && targetm
.have_ctors_dtors
)
4468 targetm
.asm_out
.destructor (XEXP (DECL_RTL (current_function_decl
), 0),
4469 decl_fini_priority_lookup
4470 (current_function_decl
));
4476 const pass_data pass_data_final
=
4478 RTL_PASS
, /* type */
4480 OPTGROUP_NONE
, /* optinfo_flags */
4481 false, /* has_gate */
4482 true, /* has_execute */
4483 TV_FINAL
, /* tv_id */
4484 0, /* properties_required */
4485 0, /* properties_provided */
4486 0, /* properties_destroyed */
4487 0, /* todo_flags_start */
4488 0, /* todo_flags_finish */
4491 class pass_final
: public rtl_opt_pass
4494 pass_final (gcc::context
*ctxt
)
4495 : rtl_opt_pass (pass_data_final
, ctxt
)
4498 /* opt_pass methods: */
4499 unsigned int execute () { return rest_of_handle_final (); }
4501 }; // class pass_final
4506 make_pass_final (gcc::context
*ctxt
)
4508 return new pass_final (ctxt
);
4513 rest_of_handle_shorten_branches (void)
4515 /* Shorten branches. */
4516 shorten_branches (get_insns ());
4522 const pass_data pass_data_shorten_branches
=
4524 RTL_PASS
, /* type */
4525 "shorten", /* name */
4526 OPTGROUP_NONE
, /* optinfo_flags */
4527 false, /* has_gate */
4528 true, /* has_execute */
4529 TV_SHORTEN_BRANCH
, /* tv_id */
4530 0, /* properties_required */
4531 0, /* properties_provided */
4532 0, /* properties_destroyed */
4533 0, /* todo_flags_start */
4534 0, /* todo_flags_finish */
4537 class pass_shorten_branches
: public rtl_opt_pass
4540 pass_shorten_branches (gcc::context
*ctxt
)
4541 : rtl_opt_pass (pass_data_shorten_branches
, ctxt
)
4544 /* opt_pass methods: */
4545 unsigned int execute () { return rest_of_handle_shorten_branches (); }
4547 }; // class pass_shorten_branches
4552 make_pass_shorten_branches (gcc::context
*ctxt
)
4554 return new pass_shorten_branches (ctxt
);
4559 rest_of_clean_state (void)
4562 FILE *final_output
= NULL
;
4563 int save_unnumbered
= flag_dump_unnumbered
;
4564 int save_noaddr
= flag_dump_noaddr
;
4566 if (flag_dump_final_insns
)
4568 final_output
= fopen (flag_dump_final_insns
, "a");
4571 error ("could not open final insn dump file %qs: %m",
4572 flag_dump_final_insns
);
4573 flag_dump_final_insns
= NULL
;
4577 flag_dump_noaddr
= flag_dump_unnumbered
= 1;
4578 if (flag_compare_debug_opt
|| flag_compare_debug
)
4579 dump_flags
|= TDF_NOUID
;
4580 dump_function_header (final_output
, current_function_decl
,
4582 final_insns_dump_p
= true;
4584 for (insn
= get_insns (); insn
; insn
= NEXT_INSN (insn
))
4586 INSN_UID (insn
) = CODE_LABEL_NUMBER (insn
);
4590 set_block_for_insn (insn
, NULL
);
4591 INSN_UID (insn
) = 0;
4596 /* It is very important to decompose the RTL instruction chain here:
4597 debug information keeps pointing into CODE_LABEL insns inside the function
4598 body. If these remain pointing to the other insns, we end up preserving
4599 whole RTL chain and attached detailed debug info in memory. */
4600 for (insn
= get_insns (); insn
; insn
= next
)
4602 next
= NEXT_INSN (insn
);
4603 NEXT_INSN (insn
) = NULL
;
4604 PREV_INSN (insn
) = NULL
;
4607 && (!NOTE_P (insn
) ||
4608 (NOTE_KIND (insn
) != NOTE_INSN_VAR_LOCATION
4609 && NOTE_KIND (insn
) != NOTE_INSN_CALL_ARG_LOCATION
4610 && NOTE_KIND (insn
) != NOTE_INSN_BLOCK_BEG
4611 && NOTE_KIND (insn
) != NOTE_INSN_BLOCK_END
4612 && NOTE_KIND (insn
) != NOTE_INSN_DELETED_DEBUG_LABEL
)))
4613 print_rtl_single (final_output
, insn
);
4618 flag_dump_noaddr
= save_noaddr
;
4619 flag_dump_unnumbered
= save_unnumbered
;
4620 final_insns_dump_p
= false;
4622 if (fclose (final_output
))
4624 error ("could not close final insn dump file %qs: %m",
4625 flag_dump_final_insns
);
4626 flag_dump_final_insns
= NULL
;
4630 /* In case the function was not output,
4631 don't leave any temporary anonymous types
4632 queued up for sdb output. */
4633 #ifdef SDB_DEBUGGING_INFO
4634 if (write_symbols
== SDB_DEBUG
)
4635 sdbout_types (NULL_TREE
);
4638 flag_rerun_cse_after_global_opts
= 0;
4639 reload_completed
= 0;
4640 epilogue_completed
= 0;
4642 regstack_completed
= 0;
4645 /* Clear out the insn_length contents now that they are no
4647 init_insn_lengths ();
4649 /* Show no temporary slots allocated. */
4652 free_bb_for_insn ();
4656 /* We can reduce stack alignment on call site only when we are sure that
4657 the function body just produced will be actually used in the final
4659 if (decl_binds_to_current_def_p (current_function_decl
))
4661 unsigned int pref
= crtl
->preferred_stack_boundary
;
4662 if (crtl
->stack_alignment_needed
> crtl
->preferred_stack_boundary
)
4663 pref
= crtl
->stack_alignment_needed
;
4664 cgraph_rtl_info (current_function_decl
)->preferred_incoming_stack_boundary
4668 /* Make sure volatile mem refs aren't considered valid operands for
4669 arithmetic insns. We must call this here if this is a nested inline
4670 function, since the above code leaves us in the init_recog state,
4671 and the function context push/pop code does not save/restore volatile_ok.
4673 ??? Maybe it isn't necessary for expand_start_function to call this
4674 anymore if we do it here? */
4676 init_recog_no_volatile ();
4678 /* We're done with this function. Free up memory if we can. */
4679 free_after_parsing (cfun
);
4680 free_after_compilation (cfun
);
4686 const pass_data pass_data_clean_state
=
4688 RTL_PASS
, /* type */
4689 "*clean_state", /* name */
4690 OPTGROUP_NONE
, /* optinfo_flags */
4691 false, /* has_gate */
4692 true, /* has_execute */
4693 TV_FINAL
, /* tv_id */
4694 0, /* properties_required */
4695 0, /* properties_provided */
4696 PROP_rtl
, /* properties_destroyed */
4697 0, /* todo_flags_start */
4698 0, /* todo_flags_finish */
4701 class pass_clean_state
: public rtl_opt_pass
4704 pass_clean_state (gcc::context
*ctxt
)
4705 : rtl_opt_pass (pass_data_clean_state
, ctxt
)
4708 /* opt_pass methods: */
4709 unsigned int execute () { return rest_of_clean_state (); }
4711 }; // class pass_clean_state
4716 make_pass_clean_state (gcc::context
*ctxt
)
4718 return new pass_clean_state (ctxt
);