2018-02-09 Vladimir Makarov <vmakarov@redhat.com>
[official-gcc.git] / gcc / graphite-scop-detection.c
blob43716f184485c5b9e0f855f5e0ed1bb30ebe8e05
1 /* Detection of Static Control Parts (SCoP) for Graphite.
2 Copyright (C) 2009-2018 Free Software Foundation, Inc.
3 Contributed by Sebastian Pop <sebastian.pop@amd.com> and
4 Tobias Grosser <grosser@fim.uni-passau.de>.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3, or (at your option)
11 any later version.
13 GCC is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
22 #define USES_ISL
24 #include "config.h"
26 #ifdef HAVE_isl
28 #include "system.h"
29 #include "coretypes.h"
30 #include "backend.h"
31 #include "cfghooks.h"
32 #include "domwalk.h"
33 #include "params.h"
34 #include "tree.h"
35 #include "gimple.h"
36 #include "ssa.h"
37 #include "fold-const.h"
38 #include "gimple-iterator.h"
39 #include "tree-cfg.h"
40 #include "tree-ssa-loop-manip.h"
41 #include "tree-ssa-loop-niter.h"
42 #include "tree-ssa-loop.h"
43 #include "tree-into-ssa.h"
44 #include "tree-ssa.h"
45 #include "cfgloop.h"
46 #include "tree-data-ref.h"
47 #include "tree-scalar-evolution.h"
48 #include "tree-pass.h"
49 #include "tree-ssa-propagate.h"
50 #include "gimple-pretty-print.h"
51 #include "cfganal.h"
52 #include "graphite.h"
54 class debug_printer
56 private:
57 FILE *dump_file;
59 public:
60 void
61 set_dump_file (FILE *f)
63 gcc_assert (f);
64 dump_file = f;
67 friend debug_printer &
68 operator<< (debug_printer &output, int i)
70 fprintf (output.dump_file, "%d", i);
71 return output;
73 friend debug_printer &
74 operator<< (debug_printer &output, const char *s)
76 fprintf (output.dump_file, "%s", s);
77 return output;
79 } dp;
81 #define DEBUG_PRINT(args) do \
82 { \
83 if (dump_file && (dump_flags & TDF_DETAILS)) { args; } \
84 } while (0)
86 /* Pretty print to FILE all the SCoPs in DOT format and mark them with
87 different colors. If there are not enough colors, paint the
88 remaining SCoPs in gray.
90 Special nodes:
91 - "*" after the node number denotes the entry of a SCoP,
92 - "#" after the node number denotes the exit of a SCoP,
93 - "()" around the node number denotes the entry or the
94 exit nodes of the SCOP. These are not part of SCoP. */
96 DEBUG_FUNCTION void
97 dot_all_sese (FILE *file, vec<sese_l>& scops)
99 /* Disable debugging while printing graph. */
100 dump_flags_t tmp_dump_flags = dump_flags;
101 dump_flags = TDF_NONE;
103 fprintf (file, "digraph all {\n");
105 basic_block bb;
106 FOR_ALL_BB_FN (bb, cfun)
108 int part_of_scop = false;
110 /* Use HTML for every bb label. So we are able to print bbs
111 which are part of two different SCoPs, with two different
112 background colors. */
113 fprintf (file, "%d [label=<\n <TABLE BORDER=\"0\" CELLBORDER=\"1\" ",
114 bb->index);
115 fprintf (file, "CELLSPACING=\"0\">\n");
117 /* Select color for SCoP. */
118 sese_l *region;
119 int i;
120 FOR_EACH_VEC_ELT (scops, i, region)
122 bool sese_in_region = bb_in_sese_p (bb, *region);
123 if (sese_in_region || (region->exit->dest == bb)
124 || (region->entry->dest == bb))
126 const char *color;
127 switch (i % 17)
129 case 0: /* red */
130 color = "#e41a1c";
131 break;
132 case 1: /* blue */
133 color = "#377eb8";
134 break;
135 case 2: /* green */
136 color = "#4daf4a";
137 break;
138 case 3: /* purple */
139 color = "#984ea3";
140 break;
141 case 4: /* orange */
142 color = "#ff7f00";
143 break;
144 case 5: /* yellow */
145 color = "#ffff33";
146 break;
147 case 6: /* brown */
148 color = "#a65628";
149 break;
150 case 7: /* rose */
151 color = "#f781bf";
152 break;
153 case 8:
154 color = "#8dd3c7";
155 break;
156 case 9:
157 color = "#ffffb3";
158 break;
159 case 10:
160 color = "#bebada";
161 break;
162 case 11:
163 color = "#fb8072";
164 break;
165 case 12:
166 color = "#80b1d3";
167 break;
168 case 13:
169 color = "#fdb462";
170 break;
171 case 14:
172 color = "#b3de69";
173 break;
174 case 15:
175 color = "#fccde5";
176 break;
177 case 16:
178 color = "#bc80bd";
179 break;
180 default: /* gray */
181 color = "#999999";
184 fprintf (file, " <TR><TD WIDTH=\"50\" BGCOLOR=\"%s\">",
185 color);
187 if (!sese_in_region)
188 fprintf (file, " (");
190 if (bb == region->entry->dest && bb == region->exit->dest)
191 fprintf (file, " %d*# ", bb->index);
192 else if (bb == region->entry->dest)
193 fprintf (file, " %d* ", bb->index);
194 else if (bb == region->exit->dest)
195 fprintf (file, " %d# ", bb->index);
196 else
197 fprintf (file, " %d ", bb->index);
199 fprintf (file, "{lp_%d}", bb->loop_father->num);
201 if (!sese_in_region)
202 fprintf (file, ")");
204 fprintf (file, "</TD></TR>\n");
205 part_of_scop = true;
209 if (!part_of_scop)
211 fprintf (file, " <TR><TD WIDTH=\"50\" BGCOLOR=\"#ffffff\">");
212 fprintf (file, " %d {lp_%d} </TD></TR>\n", bb->index,
213 bb->loop_father->num);
215 fprintf (file, " </TABLE>>, shape=box, style=\"setlinewidth(0)\"]\n");
218 FOR_ALL_BB_FN (bb, cfun)
220 edge e;
221 edge_iterator ei;
222 FOR_EACH_EDGE (e, ei, bb->succs)
223 fprintf (file, "%d -> %d;\n", bb->index, e->dest->index);
226 fputs ("}\n\n", file);
228 /* Enable debugging again. */
229 dump_flags = tmp_dump_flags;
232 /* Display SCoP on stderr. */
234 DEBUG_FUNCTION void
235 dot_sese (sese_l& scop)
237 vec<sese_l> scops;
238 scops.create (1);
240 if (scop)
241 scops.safe_push (scop);
243 dot_all_sese (stderr, scops);
245 scops.release ();
248 DEBUG_FUNCTION void
249 dot_cfg ()
251 vec<sese_l> scops;
252 scops.create (1);
253 dot_all_sese (stderr, scops);
254 scops.release ();
257 /* Returns a COND_EXPR statement when BB has a single predecessor, the
258 edge between BB and its predecessor is not a loop exit edge, and
259 the last statement of the single predecessor is a COND_EXPR. */
261 static gcond *
262 single_pred_cond_non_loop_exit (basic_block bb)
264 if (single_pred_p (bb))
266 edge e = single_pred_edge (bb);
267 basic_block pred = e->src;
268 gimple *stmt;
270 if (loop_depth (pred->loop_father) > loop_depth (bb->loop_father))
271 return NULL;
273 stmt = last_stmt (pred);
275 if (stmt && gimple_code (stmt) == GIMPLE_COND)
276 return as_a<gcond *> (stmt);
279 return NULL;
282 namespace
285 /* Build the maximal scop containing LOOPs and add it to SCOPS. */
287 class scop_detection
289 public:
290 scop_detection () : scops (vNULL) {}
292 ~scop_detection ()
294 scops.release ();
297 /* A marker for invalid sese_l. */
298 static sese_l invalid_sese;
300 /* Return the SCOPS in this SCOP_DETECTION. */
302 vec<sese_l>
303 get_scops ()
305 return scops;
308 /* Return an sese_l around the LOOP. */
310 sese_l get_sese (loop_p loop);
312 /* Merge scops at same loop depth and returns the new sese.
313 Returns a new SESE when merge was successful, INVALID_SESE otherwise. */
315 sese_l merge_sese (sese_l first, sese_l second) const;
317 /* Build scop outer->inner if possible. */
319 void build_scop_depth (loop_p loop);
321 /* Return true when BEGIN is the preheader edge of a loop with a single exit
322 END. */
324 static bool region_has_one_loop (sese_l s);
326 /* Add to SCOPS a scop starting at SCOP_BEGIN and ending at SCOP_END. */
328 void add_scop (sese_l s);
330 /* Returns true if S1 subsumes/surrounds S2. */
331 static bool subsumes (sese_l s1, sese_l s2);
333 /* Remove a SCoP which is subsumed by S1. */
334 void remove_subscops (sese_l s1);
336 /* Returns true if S1 intersects with S2. Since we already know that S1 does
337 not subsume S2 or vice-versa, we only check for entry bbs. */
339 static bool intersects (sese_l s1, sese_l s2);
341 /* Remove one of the scops when it intersects with any other. */
343 void remove_intersecting_scops (sese_l s1);
345 /* Return true when a statement in SCOP cannot be represented by Graphite. */
347 bool harmful_loop_in_region (sese_l scop) const;
349 /* Return true only when STMT is simple enough for being handled by Graphite.
350 This depends on SCOP, as the parameters are initialized relatively to
351 this basic block, the linear functions are initialized based on the
352 outermost loop containing STMT inside the SCOP. BB is the place where we
353 try to evaluate the STMT. */
355 bool stmt_simple_for_scop_p (sese_l scop, gimple *stmt,
356 basic_block bb) const;
358 /* Something like "n * m" is not allowed. */
360 static bool graphite_can_represent_init (tree e);
362 /* Return true when SCEV can be represented in the polyhedral model.
364 An expression can be represented, if it can be expressed as an
365 affine expression. For loops (i, j) and parameters (m, n) all
366 affine expressions are of the form:
368 x1 * i + x2 * j + x3 * m + x4 * n + x5 * 1 where x1..x5 element of Z
370 1 i + 20 j + (-2) m + 25
372 Something like "i * n" or "n * m" is not allowed. */
374 static bool graphite_can_represent_scev (sese_l scop, tree scev);
376 /* Return true when EXPR can be represented in the polyhedral model.
378 This means an expression can be represented, if it is linear with respect
379 to the loops and the strides are non parametric. LOOP is the place where
380 the expr will be evaluated. SCOP defines the region we analyse. */
382 static bool graphite_can_represent_expr (sese_l scop, loop_p loop,
383 tree expr);
385 /* Return true if the data references of STMT can be represented by Graphite.
386 We try to analyze the data references in a loop contained in the SCOP. */
388 static bool stmt_has_simple_data_refs_p (sese_l scop, gimple *stmt);
390 /* Remove the close phi node at GSI and replace its rhs with the rhs
391 of PHI. */
393 static void remove_duplicate_close_phi (gphi *phi, gphi_iterator *gsi);
395 /* Returns true when Graphite can represent LOOP in SCOP.
396 FIXME: For the moment, graphite cannot be used on loops that iterate using
397 induction variables that wrap. */
399 static bool can_represent_loop (loop_p loop, sese_l scop);
401 /* Returns the number of pbbs that are in loops contained in SCOP. */
403 static int nb_pbbs_in_loops (scop_p scop);
405 private:
406 vec<sese_l> scops;
409 sese_l scop_detection::invalid_sese (NULL, NULL);
411 /* Return an sese_l around the LOOP. */
413 sese_l
414 scop_detection::get_sese (loop_p loop)
416 if (!loop)
417 return invalid_sese;
419 edge scop_begin = loop_preheader_edge (loop);
420 edge scop_end = single_exit (loop);
421 if (!scop_end || (scop_end->flags & (EDGE_COMPLEX|EDGE_FAKE)))
422 return invalid_sese;
424 return sese_l (scop_begin, scop_end);
427 /* Merge scops at same loop depth and returns the new sese.
428 Returns a new SESE when merge was successful, INVALID_SESE otherwise. */
430 sese_l
431 scop_detection::merge_sese (sese_l first, sese_l second) const
433 /* In the trivial case first/second may be NULL. */
434 if (!first)
435 return second;
436 if (!second)
437 return first;
439 DEBUG_PRINT (dp << "[scop-detection] try merging sese s1: ";
440 print_sese (dump_file, first);
441 dp << "[scop-detection] try merging sese s2: ";
442 print_sese (dump_file, second));
444 auto_bitmap worklist, in_sese_region;
445 bitmap_set_bit (worklist, get_entry_bb (first)->index);
446 bitmap_set_bit (worklist, get_exit_bb (first)->index);
447 bitmap_set_bit (worklist, get_entry_bb (second)->index);
448 bitmap_set_bit (worklist, get_exit_bb (second)->index);
449 edge entry = NULL, exit = NULL;
451 /* We can optimize the case of adding a loop entry dest or exit
452 src to the worklist (for single-exit loops) by skipping
453 directly to the exit dest / entry src. in_sese_region
454 doesn't have to cover all blocks in the region but merely
455 its border it acts more like a visited bitmap. */
458 int index = bitmap_first_set_bit (worklist);
459 bitmap_clear_bit (worklist, index);
460 basic_block bb = BASIC_BLOCK_FOR_FN (cfun, index);
461 edge_iterator ei;
462 edge e;
464 /* With fake exit edges we can end up with no possible exit. */
465 if (index == EXIT_BLOCK)
467 DEBUG_PRINT (dp << "[scop-detection-fail] cannot merge seses.\n");
468 return invalid_sese;
471 bitmap_set_bit (in_sese_region, bb->index);
473 basic_block dom = get_immediate_dominator (CDI_DOMINATORS, bb);
474 FOR_EACH_EDGE (e, ei, bb->preds)
475 if (e->src == dom
476 && (! entry
477 || dominated_by_p (CDI_DOMINATORS, entry->dest, bb)))
479 if (entry
480 && ! bitmap_bit_p (in_sese_region, entry->src->index))
481 bitmap_set_bit (worklist, entry->src->index);
482 entry = e;
484 else if (! bitmap_bit_p (in_sese_region, e->src->index))
485 bitmap_set_bit (worklist, e->src->index);
487 basic_block pdom = get_immediate_dominator (CDI_POST_DOMINATORS, bb);
488 FOR_EACH_EDGE (e, ei, bb->succs)
489 if (e->dest == pdom
490 && (! exit
491 || dominated_by_p (CDI_POST_DOMINATORS, exit->src, bb)))
493 if (exit
494 && ! bitmap_bit_p (in_sese_region, exit->dest->index))
495 bitmap_set_bit (worklist, exit->dest->index);
496 exit = e;
498 else if (! bitmap_bit_p (in_sese_region, e->dest->index))
499 bitmap_set_bit (worklist, e->dest->index);
501 while (! bitmap_empty_p (worklist));
503 sese_l combined (entry, exit);
505 DEBUG_PRINT (dp << "[merged-sese] s1: "; print_sese (dump_file, combined));
507 return combined;
510 /* Build scop outer->inner if possible. */
512 void
513 scop_detection::build_scop_depth (loop_p loop)
515 sese_l s = invalid_sese;
516 loop = loop->inner;
517 while (loop)
519 sese_l next = get_sese (loop);
520 if (! next
521 || harmful_loop_in_region (next))
523 if (s)
524 add_scop (s);
525 build_scop_depth (loop);
526 s = invalid_sese;
528 else if (! s)
529 s = next;
530 else
532 sese_l combined = merge_sese (s, next);
533 if (! combined
534 || harmful_loop_in_region (combined))
536 add_scop (s);
537 s = next;
539 else
540 s = combined;
542 loop = loop->next;
544 if (s)
545 add_scop (s);
548 /* Returns true when Graphite can represent LOOP in SCOP.
549 FIXME: For the moment, graphite cannot be used on loops that iterate using
550 induction variables that wrap. */
552 bool
553 scop_detection::can_represent_loop (loop_p loop, sese_l scop)
555 tree niter;
556 struct tree_niter_desc niter_desc;
558 return single_exit (loop)
559 && !(loop_preheader_edge (loop)->flags & EDGE_IRREDUCIBLE_LOOP)
560 && number_of_iterations_exit (loop, single_exit (loop), &niter_desc, false)
561 && niter_desc.control.no_overflow
562 && (niter = number_of_latch_executions (loop))
563 && !chrec_contains_undetermined (niter)
564 && !chrec_contains_undetermined (scalar_evolution_in_region (scop,
565 loop, niter))
566 && graphite_can_represent_expr (scop, loop, niter);
569 /* Return true when BEGIN is the preheader edge of a loop with a single exit
570 END. */
572 bool
573 scop_detection::region_has_one_loop (sese_l s)
575 edge begin = s.entry;
576 edge end = s.exit;
577 /* Check for a single perfectly nested loop. */
578 if (begin->dest->loop_father->inner)
579 return false;
581 /* Otherwise, check whether we have adjacent loops. */
582 return (single_pred_p (end->src)
583 && begin->dest->loop_father == single_pred (end->src)->loop_father);
586 /* Add to SCOPS a scop starting at SCOP_BEGIN and ending at SCOP_END. */
588 void
589 scop_detection::add_scop (sese_l s)
591 gcc_assert (s);
593 /* Include the BB with the loop-closed SSA PHI nodes, we need this
594 block in the region for code-generating out-of-SSA copies.
595 canonicalize_loop_closed_ssa makes sure that is in proper shape. */
596 if (s.exit->dest != EXIT_BLOCK_PTR_FOR_FN (cfun)
597 && loop_exit_edge_p (s.exit->src->loop_father, s.exit))
599 gcc_assert (single_pred_p (s.exit->dest)
600 && single_succ_p (s.exit->dest)
601 && sese_trivially_empty_bb_p (s.exit->dest));
602 s.exit = single_succ_edge (s.exit->dest);
605 /* Do not add scops with only one loop. */
606 if (region_has_one_loop (s))
608 DEBUG_PRINT (dp << "[scop-detection-fail] Discarding one loop SCoP: ";
609 print_sese (dump_file, s));
610 return;
613 if (get_exit_bb (s) == EXIT_BLOCK_PTR_FOR_FN (cfun))
615 DEBUG_PRINT (dp << "[scop-detection-fail] "
616 << "Discarding SCoP exiting to return: ";
617 print_sese (dump_file, s));
618 return;
621 /* Remove all the scops which are subsumed by s. */
622 remove_subscops (s);
624 /* Remove intersecting scops. FIXME: It will be a good idea to keep
625 the non-intersecting part of the scop already in the list. */
626 remove_intersecting_scops (s);
628 scops.safe_push (s);
629 DEBUG_PRINT (dp << "[scop-detection] Adding SCoP: "; print_sese (dump_file, s));
632 /* Return true when a statement in SCOP cannot be represented by Graphite. */
634 bool
635 scop_detection::harmful_loop_in_region (sese_l scop) const
637 basic_block exit_bb = get_exit_bb (scop);
638 basic_block entry_bb = get_entry_bb (scop);
640 DEBUG_PRINT (dp << "[checking-harmful-bbs] ";
641 print_sese (dump_file, scop));
642 gcc_assert (dominated_by_p (CDI_DOMINATORS, exit_bb, entry_bb));
644 auto_vec<basic_block> worklist;
645 auto_bitmap loops;
647 worklist.safe_push (entry_bb);
648 while (! worklist.is_empty ())
650 basic_block bb = worklist.pop ();
651 DEBUG_PRINT (dp << "Visiting bb_" << bb->index << "\n");
653 /* The basic block should not be part of an irreducible loop. */
654 if (bb->flags & BB_IRREDUCIBLE_LOOP)
655 return true;
657 /* Check for unstructured control flow: CFG not generated by structured
658 if-then-else. */
659 if (bb->succs->length () > 1)
661 edge e;
662 edge_iterator ei;
663 FOR_EACH_EDGE (e, ei, bb->succs)
664 if (!dominated_by_p (CDI_POST_DOMINATORS, bb, e->dest)
665 && !dominated_by_p (CDI_DOMINATORS, e->dest, bb))
666 return true;
669 /* Collect all loops in the current region. */
670 loop_p loop = bb->loop_father;
671 if (loop_in_sese_p (loop, scop))
672 bitmap_set_bit (loops, loop->num);
674 /* Check for harmful statements in basic blocks part of the region. */
675 for (gimple_stmt_iterator gsi = gsi_start_bb (bb);
676 !gsi_end_p (gsi); gsi_next (&gsi))
677 if (!stmt_simple_for_scop_p (scop, gsi_stmt (gsi), bb))
678 return true;
680 for (basic_block dom = first_dom_son (CDI_DOMINATORS, bb);
681 dom;
682 dom = next_dom_son (CDI_DOMINATORS, dom))
683 if (dom != scop.exit->dest)
684 worklist.safe_push (dom);
687 /* Go through all loops and check that they are still valid in the combined
688 scop. */
689 unsigned j;
690 bitmap_iterator bi;
691 EXECUTE_IF_SET_IN_BITMAP (loops, 0, j, bi)
693 loop_p loop = (*current_loops->larray)[j];
694 gcc_assert (loop->num == (int) j);
696 /* Check if the loop nests are to be optimized for speed. */
697 if (! loop->inner
698 && ! optimize_loop_for_speed_p (loop))
700 DEBUG_PRINT (dp << "[scop-detection-fail] loop_"
701 << loop->num << " is not on a hot path.\n");
702 return true;
705 if (! can_represent_loop (loop, scop))
707 DEBUG_PRINT (dp << "[scop-detection-fail] cannot represent loop_"
708 << loop->num << "\n");
709 return true;
712 /* Check if all loop nests have at least one data reference.
713 ??? This check is expensive and loops premature at this point.
714 If important to retain we can pre-compute this for all innermost
715 loops and reject those when we build a SESE region for a loop
716 during SESE discovery. */
717 if (! loop->inner
718 && ! loop_nest_has_data_refs (loop))
720 DEBUG_PRINT (dp << "[scop-detection-fail] loop_" << loop->num
721 << "does not have any data reference.\n");
722 return true;
726 return false;
729 /* Returns true if S1 subsumes/surrounds S2. */
730 bool
731 scop_detection::subsumes (sese_l s1, sese_l s2)
733 if (dominated_by_p (CDI_DOMINATORS, get_entry_bb (s2),
734 get_entry_bb (s1))
735 && dominated_by_p (CDI_POST_DOMINATORS, s2.exit->dest,
736 s1.exit->dest))
737 return true;
738 return false;
741 /* Remove a SCoP which is subsumed by S1. */
742 void
743 scop_detection::remove_subscops (sese_l s1)
745 int j;
746 sese_l *s2;
747 FOR_EACH_VEC_ELT_REVERSE (scops, j, s2)
749 if (subsumes (s1, *s2))
751 DEBUG_PRINT (dp << "Removing sub-SCoP";
752 print_sese (dump_file, *s2));
753 scops.unordered_remove (j);
758 /* Returns true if S1 intersects with S2. Since we already know that S1 does
759 not subsume S2 or vice-versa, we only check for entry bbs. */
761 bool
762 scop_detection::intersects (sese_l s1, sese_l s2)
764 if (dominated_by_p (CDI_DOMINATORS, get_entry_bb (s2),
765 get_entry_bb (s1))
766 && !dominated_by_p (CDI_DOMINATORS, get_entry_bb (s2),
767 get_exit_bb (s1)))
768 return true;
769 if ((s1.exit == s2.entry) || (s2.exit == s1.entry))
770 return true;
772 return false;
775 /* Remove one of the scops when it intersects with any other. */
777 void
778 scop_detection::remove_intersecting_scops (sese_l s1)
780 int j;
781 sese_l *s2;
782 FOR_EACH_VEC_ELT_REVERSE (scops, j, s2)
784 if (intersects (s1, *s2))
786 DEBUG_PRINT (dp << "Removing intersecting SCoP";
787 print_sese (dump_file, *s2);
788 dp << "Intersects with:";
789 print_sese (dump_file, s1));
790 scops.unordered_remove (j);
795 /* Something like "n * m" is not allowed. */
797 bool
798 scop_detection::graphite_can_represent_init (tree e)
800 switch (TREE_CODE (e))
802 case POLYNOMIAL_CHREC:
803 return graphite_can_represent_init (CHREC_LEFT (e))
804 && graphite_can_represent_init (CHREC_RIGHT (e));
806 case MULT_EXPR:
807 if (chrec_contains_symbols (TREE_OPERAND (e, 0)))
808 return graphite_can_represent_init (TREE_OPERAND (e, 0))
809 && tree_fits_shwi_p (TREE_OPERAND (e, 1));
810 else
811 return graphite_can_represent_init (TREE_OPERAND (e, 1))
812 && tree_fits_shwi_p (TREE_OPERAND (e, 0));
814 case PLUS_EXPR:
815 case POINTER_PLUS_EXPR:
816 case MINUS_EXPR:
817 return graphite_can_represent_init (TREE_OPERAND (e, 0))
818 && graphite_can_represent_init (TREE_OPERAND (e, 1));
820 case NEGATE_EXPR:
821 case BIT_NOT_EXPR:
822 CASE_CONVERT:
823 case NON_LVALUE_EXPR:
824 return graphite_can_represent_init (TREE_OPERAND (e, 0));
826 default:
827 break;
830 return true;
833 /* Return true when SCEV can be represented in the polyhedral model.
835 An expression can be represented, if it can be expressed as an
836 affine expression. For loops (i, j) and parameters (m, n) all
837 affine expressions are of the form:
839 x1 * i + x2 * j + x3 * m + x4 * n + x5 * 1 where x1..x5 element of Z
841 1 i + 20 j + (-2) m + 25
843 Something like "i * n" or "n * m" is not allowed. */
845 bool
846 scop_detection::graphite_can_represent_scev (sese_l scop, tree scev)
848 if (chrec_contains_undetermined (scev))
849 return false;
851 switch (TREE_CODE (scev))
853 case NEGATE_EXPR:
854 case BIT_NOT_EXPR:
855 CASE_CONVERT:
856 case NON_LVALUE_EXPR:
857 return graphite_can_represent_scev (scop, TREE_OPERAND (scev, 0));
859 case PLUS_EXPR:
860 case POINTER_PLUS_EXPR:
861 case MINUS_EXPR:
862 return graphite_can_represent_scev (scop, TREE_OPERAND (scev, 0))
863 && graphite_can_represent_scev (scop, TREE_OPERAND (scev, 1));
865 case MULT_EXPR:
866 return !CONVERT_EXPR_CODE_P (TREE_CODE (TREE_OPERAND (scev, 0)))
867 && !CONVERT_EXPR_CODE_P (TREE_CODE (TREE_OPERAND (scev, 1)))
868 && !(chrec_contains_symbols (TREE_OPERAND (scev, 0))
869 && chrec_contains_symbols (TREE_OPERAND (scev, 1)))
870 && graphite_can_represent_init (scev)
871 && graphite_can_represent_scev (scop, TREE_OPERAND (scev, 0))
872 && graphite_can_represent_scev (scop, TREE_OPERAND (scev, 1));
874 case POLYNOMIAL_CHREC:
875 /* Check for constant strides. With a non constant stride of
876 'n' we would have a value of 'iv * n'. Also check that the
877 initial value can represented: for example 'n * m' cannot be
878 represented. */
879 gcc_assert (loop_in_sese_p (get_loop (cfun,
880 CHREC_VARIABLE (scev)), scop));
881 if (!evolution_function_right_is_integer_cst (scev)
882 || !graphite_can_represent_init (scev))
883 return false;
884 return graphite_can_represent_scev (scop, CHREC_LEFT (scev));
886 default:
887 break;
890 /* Only affine functions can be represented. */
891 if (tree_contains_chrecs (scev, NULL) || !scev_is_linear_expression (scev))
892 return false;
894 return true;
897 /* Return true when EXPR can be represented in the polyhedral model.
899 This means an expression can be represented, if it is linear with respect to
900 the loops and the strides are non parametric. LOOP is the place where the
901 expr will be evaluated. SCOP defines the region we analyse. */
903 bool
904 scop_detection::graphite_can_represent_expr (sese_l scop, loop_p loop,
905 tree expr)
907 tree scev = scalar_evolution_in_region (scop, loop, expr);
908 return graphite_can_represent_scev (scop, scev);
911 /* Return true if the data references of STMT can be represented by Graphite.
912 We try to analyze the data references in a loop contained in the SCOP. */
914 bool
915 scop_detection::stmt_has_simple_data_refs_p (sese_l scop, gimple *stmt)
917 edge nest = scop.entry;
918 loop_p loop = loop_containing_stmt (stmt);
919 if (!loop_in_sese_p (loop, scop))
920 loop = NULL;
922 auto_vec<data_reference_p> drs;
923 if (! graphite_find_data_references_in_stmt (nest, loop, stmt, &drs))
924 return false;
926 int j;
927 data_reference_p dr;
928 FOR_EACH_VEC_ELT (drs, j, dr)
930 for (unsigned i = 0; i < DR_NUM_DIMENSIONS (dr); ++i)
931 if (! graphite_can_represent_scev (scop, DR_ACCESS_FN (dr, i)))
932 return false;
935 return true;
938 /* GIMPLE_ASM and GIMPLE_CALL may embed arbitrary side effects.
939 Calls have side-effects, except those to const or pure
940 functions. */
942 static bool
943 stmt_has_side_effects (gimple *stmt)
945 if (gimple_has_volatile_ops (stmt)
946 || (gimple_code (stmt) == GIMPLE_CALL
947 && !(gimple_call_flags (stmt) & (ECF_CONST | ECF_PURE)))
948 || (gimple_code (stmt) == GIMPLE_ASM))
950 DEBUG_PRINT (dp << "[scop-detection-fail] "
951 << "Statement has side-effects:\n";
952 print_gimple_stmt (dump_file, stmt, 0, TDF_VOPS | TDF_MEMSYMS));
953 return true;
955 return false;
958 /* Return true only when STMT is simple enough for being handled by Graphite.
959 This depends on SCOP, as the parameters are initialized relatively to
960 this basic block, the linear functions are initialized based on the outermost
961 loop containing STMT inside the SCOP. BB is the place where we try to
962 evaluate the STMT. */
964 bool
965 scop_detection::stmt_simple_for_scop_p (sese_l scop, gimple *stmt,
966 basic_block bb) const
968 gcc_assert (scop);
970 if (is_gimple_debug (stmt))
971 return true;
973 if (stmt_has_side_effects (stmt))
974 return false;
976 if (!stmt_has_simple_data_refs_p (scop, stmt))
978 DEBUG_PRINT (dp << "[scop-detection-fail] "
979 << "Graphite cannot handle data-refs in stmt:\n";
980 print_gimple_stmt (dump_file, stmt, 0, TDF_VOPS|TDF_MEMSYMS););
981 return false;
984 switch (gimple_code (stmt))
986 case GIMPLE_LABEL:
987 return true;
989 case GIMPLE_COND:
991 /* We can handle all binary comparisons. Inequalities are
992 also supported as they can be represented with union of
993 polyhedra. */
994 enum tree_code code = gimple_cond_code (stmt);
995 if (!(code == LT_EXPR
996 || code == GT_EXPR
997 || code == LE_EXPR
998 || code == GE_EXPR
999 || code == EQ_EXPR
1000 || code == NE_EXPR))
1002 DEBUG_PRINT (dp << "[scop-detection-fail] "
1003 << "Graphite cannot handle cond stmt:\n";
1004 print_gimple_stmt (dump_file, stmt, 0,
1005 TDF_VOPS | TDF_MEMSYMS));
1006 return false;
1009 loop_p loop = bb->loop_father;
1010 for (unsigned i = 0; i < 2; ++i)
1012 tree op = gimple_op (stmt, i);
1013 if (!graphite_can_represent_expr (scop, loop, op)
1014 /* We can only constrain on integer type. */
1015 || ! INTEGRAL_TYPE_P (TREE_TYPE (op)))
1017 DEBUG_PRINT (dp << "[scop-detection-fail] "
1018 << "Graphite cannot represent stmt:\n";
1019 print_gimple_stmt (dump_file, stmt, 0,
1020 TDF_VOPS | TDF_MEMSYMS));
1021 return false;
1025 return true;
1028 case GIMPLE_ASSIGN:
1029 case GIMPLE_CALL:
1030 return true;
1032 default:
1033 /* These nodes cut a new scope. */
1034 DEBUG_PRINT (
1035 dp << "[scop-detection-fail] "
1036 << "Gimple stmt not handled in Graphite:\n";
1037 print_gimple_stmt (dump_file, stmt, 0, TDF_VOPS | TDF_MEMSYMS));
1038 return false;
1042 /* Returns the number of pbbs that are in loops contained in SCOP. */
1045 scop_detection::nb_pbbs_in_loops (scop_p scop)
1047 int i;
1048 poly_bb_p pbb;
1049 int res = 0;
1051 FOR_EACH_VEC_ELT (scop->pbbs, i, pbb)
1052 if (loop_in_sese_p (gbb_loop (PBB_BLACK_BOX (pbb)), scop->scop_info->region))
1053 res++;
1055 return res;
1058 /* Assigns the parameter NAME an index in REGION. */
1060 static void
1061 assign_parameter_index_in_region (tree name, sese_info_p region)
1063 gcc_assert (TREE_CODE (name) == SSA_NAME
1064 && INTEGRAL_TYPE_P (TREE_TYPE (name))
1065 && ! defined_in_sese_p (name, region->region));
1067 int i;
1068 tree p;
1069 FOR_EACH_VEC_ELT (region->params, i, p)
1070 if (p == name)
1071 return;
1073 i = region->params.length ();
1074 region->params.safe_push (name);
1077 /* In the context of sese S, scan the expression E and translate it to
1078 a linear expression C. When parsing a symbolic multiplication, K
1079 represents the constant multiplier of an expression containing
1080 parameters. */
1082 static void
1083 scan_tree_for_params (sese_info_p s, tree e)
1085 if (e == chrec_dont_know)
1086 return;
1088 switch (TREE_CODE (e))
1090 case POLYNOMIAL_CHREC:
1091 scan_tree_for_params (s, CHREC_LEFT (e));
1092 break;
1094 case MULT_EXPR:
1095 if (chrec_contains_symbols (TREE_OPERAND (e, 0)))
1096 scan_tree_for_params (s, TREE_OPERAND (e, 0));
1097 else
1098 scan_tree_for_params (s, TREE_OPERAND (e, 1));
1099 break;
1101 case PLUS_EXPR:
1102 case POINTER_PLUS_EXPR:
1103 case MINUS_EXPR:
1104 scan_tree_for_params (s, TREE_OPERAND (e, 0));
1105 scan_tree_for_params (s, TREE_OPERAND (e, 1));
1106 break;
1108 case NEGATE_EXPR:
1109 case BIT_NOT_EXPR:
1110 CASE_CONVERT:
1111 case NON_LVALUE_EXPR:
1112 scan_tree_for_params (s, TREE_OPERAND (e, 0));
1113 break;
1115 case SSA_NAME:
1116 assign_parameter_index_in_region (e, s);
1117 break;
1119 case INTEGER_CST:
1120 case ADDR_EXPR:
1121 case REAL_CST:
1122 case COMPLEX_CST:
1123 case VECTOR_CST:
1124 break;
1126 default:
1127 gcc_unreachable ();
1128 break;
1132 /* Find parameters with respect to REGION in BB. We are looking in memory
1133 access functions, conditions and loop bounds. */
1135 static void
1136 find_params_in_bb (sese_info_p region, gimple_poly_bb_p gbb)
1138 /* Find parameters in the access functions of data references. */
1139 int i;
1140 data_reference_p dr;
1141 FOR_EACH_VEC_ELT (GBB_DATA_REFS (gbb), i, dr)
1142 for (unsigned j = 0; j < DR_NUM_DIMENSIONS (dr); j++)
1143 scan_tree_for_params (region, DR_ACCESS_FN (dr, j));
1145 /* Find parameters in conditional statements. */
1146 gimple *stmt;
1147 loop_p loop = GBB_BB (gbb)->loop_father;
1148 FOR_EACH_VEC_ELT (GBB_CONDITIONS (gbb), i, stmt)
1150 tree lhs = scalar_evolution_in_region (region->region, loop,
1151 gimple_cond_lhs (stmt));
1152 tree rhs = scalar_evolution_in_region (region->region, loop,
1153 gimple_cond_rhs (stmt));
1155 scan_tree_for_params (region, lhs);
1156 scan_tree_for_params (region, rhs);
1160 /* Record the parameters used in the SCOP BBs. A variable is a parameter
1161 in a scop if it does not vary during the execution of that scop. */
1163 static void
1164 find_scop_parameters (scop_p scop)
1166 unsigned i;
1167 sese_info_p region = scop->scop_info;
1169 /* Parameters used in loop bounds are processed during gather_bbs. */
1171 /* Find the parameters used in data accesses. */
1172 poly_bb_p pbb;
1173 FOR_EACH_VEC_ELT (scop->pbbs, i, pbb)
1174 find_params_in_bb (region, PBB_BLACK_BOX (pbb));
1176 int nbp = sese_nb_params (region);
1177 scop_set_nb_params (scop, nbp);
1180 static void
1181 add_write (vec<tree> *writes, tree def)
1183 writes->safe_push (def);
1184 DEBUG_PRINT (dp << "Adding scalar write: ";
1185 print_generic_expr (dump_file, def);
1186 dp << "\nFrom stmt: ";
1187 print_gimple_stmt (dump_file,
1188 SSA_NAME_DEF_STMT (def), 0));
1191 static void
1192 add_read (vec<scalar_use> *reads, tree use, gimple *use_stmt)
1194 DEBUG_PRINT (dp << "Adding scalar read: ";
1195 print_generic_expr (dump_file, use);
1196 dp << "\nFrom stmt: ";
1197 print_gimple_stmt (dump_file, use_stmt, 0));
1198 reads->safe_push (std::make_pair (use_stmt, use));
1202 /* Record DEF if it is used in other bbs different than DEF_BB in the SCOP. */
1204 static void
1205 build_cross_bb_scalars_def (scop_p scop, tree def, basic_block def_bb,
1206 vec<tree> *writes)
1208 if (!is_gimple_reg (def))
1209 return;
1211 bool scev_analyzable = scev_analyzable_p (def, scop->scop_info->region);
1213 gimple *use_stmt;
1214 imm_use_iterator imm_iter;
1215 FOR_EACH_IMM_USE_STMT (use_stmt, imm_iter, def)
1216 /* Do not gather scalar variables that can be analyzed by SCEV as they can
1217 be generated out of the induction variables. */
1218 if ((! scev_analyzable
1219 /* But gather SESE liveouts as we otherwise fail to rewrite their
1220 exit PHIs. */
1221 || ! bb_in_sese_p (gimple_bb (use_stmt), scop->scop_info->region))
1222 && (def_bb != gimple_bb (use_stmt) && !is_gimple_debug (use_stmt)))
1224 add_write (writes, def);
1225 /* This is required by the FOR_EACH_IMM_USE_STMT when we want to break
1226 before all the uses have been visited. */
1227 BREAK_FROM_IMM_USE_STMT (imm_iter);
1231 /* Record USE if it is defined in other bbs different than USE_STMT
1232 in the SCOP. */
1234 static void
1235 build_cross_bb_scalars_use (scop_p scop, tree use, gimple *use_stmt,
1236 vec<scalar_use> *reads)
1238 if (!is_gimple_reg (use))
1239 return;
1241 /* Do not gather scalar variables that can be analyzed by SCEV as they can be
1242 generated out of the induction variables. */
1243 if (scev_analyzable_p (use, scop->scop_info->region))
1244 return;
1246 gimple *def_stmt = SSA_NAME_DEF_STMT (use);
1247 if (gimple_bb (def_stmt) != gimple_bb (use_stmt))
1248 add_read (reads, use, use_stmt);
1251 /* Generates a polyhedral black box only if the bb contains interesting
1252 information. */
1254 static gimple_poly_bb_p
1255 try_generate_gimple_bb (scop_p scop, basic_block bb)
1257 vec<data_reference_p> drs = vNULL;
1258 vec<tree> writes = vNULL;
1259 vec<scalar_use> reads = vNULL;
1261 sese_l region = scop->scop_info->region;
1262 edge nest = region.entry;
1263 loop_p loop = bb->loop_father;
1264 if (!loop_in_sese_p (loop, region))
1265 loop = NULL;
1267 for (gimple_stmt_iterator gsi = gsi_start_bb (bb); !gsi_end_p (gsi);
1268 gsi_next (&gsi))
1270 gimple *stmt = gsi_stmt (gsi);
1271 if (is_gimple_debug (stmt))
1272 continue;
1274 graphite_find_data_references_in_stmt (nest, loop, stmt, &drs);
1276 tree def = gimple_get_lhs (stmt);
1277 if (def)
1278 build_cross_bb_scalars_def (scop, def, gimple_bb (stmt), &writes);
1280 ssa_op_iter iter;
1281 tree use;
1282 FOR_EACH_SSA_TREE_OPERAND (use, stmt, iter, SSA_OP_USE)
1283 build_cross_bb_scalars_use (scop, use, stmt, &reads);
1286 /* Handle defs and uses in PHIs. Those need special treatment given
1287 that we have to present ISL with sth that looks like we've rewritten
1288 the IL out-of-SSA. */
1289 for (gphi_iterator psi = gsi_start_phis (bb); !gsi_end_p (psi);
1290 gsi_next (&psi))
1292 gphi *phi = psi.phi ();
1293 tree res = gimple_phi_result (phi);
1294 if (virtual_operand_p (res)
1295 || scev_analyzable_p (res, scop->scop_info->region))
1296 continue;
1297 /* To simulate out-of-SSA the block containing the PHI node has
1298 reads of the PHI destination. And to preserve SSA dependences
1299 we also write to it (the out-of-SSA decl and the SSA result
1300 are coalesced for dependence purposes which is good enough). */
1301 add_read (&reads, res, phi);
1302 add_write (&writes, res);
1304 basic_block bb_for_succs = bb;
1305 if (bb_for_succs == bb_for_succs->loop_father->latch
1306 && bb_in_sese_p (bb_for_succs, scop->scop_info->region)
1307 && sese_trivially_empty_bb_p (bb_for_succs))
1308 bb_for_succs = NULL;
1309 while (bb_for_succs)
1311 basic_block latch = NULL;
1312 edge_iterator ei;
1313 edge e;
1314 FOR_EACH_EDGE (e, ei, bb_for_succs->succs)
1316 for (gphi_iterator psi = gsi_start_phis (e->dest); !gsi_end_p (psi);
1317 gsi_next (&psi))
1319 gphi *phi = psi.phi ();
1320 tree res = gimple_phi_result (phi);
1321 if (virtual_operand_p (res))
1322 continue;
1323 /* To simulate out-of-SSA the predecessor of edges into PHI nodes
1324 has a copy from the PHI argument to the PHI destination. */
1325 if (! scev_analyzable_p (res, scop->scop_info->region))
1326 add_write (&writes, res);
1327 tree use = PHI_ARG_DEF_FROM_EDGE (phi, e);
1328 if (TREE_CODE (use) == SSA_NAME
1329 && ! SSA_NAME_IS_DEFAULT_DEF (use)
1330 && gimple_bb (SSA_NAME_DEF_STMT (use)) != bb_for_succs
1331 && ! scev_analyzable_p (use, scop->scop_info->region))
1332 add_read (&reads, use, phi);
1334 if (e->dest == bb_for_succs->loop_father->latch
1335 && bb_in_sese_p (e->dest, scop->scop_info->region)
1336 && sese_trivially_empty_bb_p (e->dest))
1337 latch = e->dest;
1339 /* Handle empty latch block PHIs here, otherwise we confuse ISL
1340 with extra conditional code where it then peels off the last
1341 iteration just because of that. It would be simplest if we
1342 just didn't force simple latches (thus remove the forwarder). */
1343 bb_for_succs = latch;
1346 /* For the region exit block add reads for all live-out vars. */
1347 if (bb == scop->scop_info->region.exit->src)
1349 sese_build_liveouts (scop->scop_info);
1350 unsigned i;
1351 bitmap_iterator bi;
1352 EXECUTE_IF_SET_IN_BITMAP (scop->scop_info->liveout, 0, i, bi)
1354 tree use = ssa_name (i);
1355 add_read (&reads, use, NULL);
1359 if (drs.is_empty () && writes.is_empty () && reads.is_empty ())
1360 return NULL;
1362 return new_gimple_poly_bb (bb, drs, reads, writes);
1365 /* Compute alias-sets for all data references in DRS. */
1367 static bool
1368 build_alias_set (scop_p scop)
1370 int num_vertices = scop->drs.length ();
1371 struct graph *g = new_graph (num_vertices);
1372 dr_info *dr1, *dr2;
1373 int i, j;
1374 int *all_vertices;
1376 FOR_EACH_VEC_ELT (scop->drs, i, dr1)
1377 for (j = i+1; scop->drs.iterate (j, &dr2); j++)
1378 if (dr_may_alias_p (dr1->dr, dr2->dr, true))
1380 /* Dependences in the same alias set need to be handled
1381 by just looking at DR_ACCESS_FNs. */
1382 if (DR_NUM_DIMENSIONS (dr1->dr) == 0
1383 || DR_NUM_DIMENSIONS (dr1->dr) != DR_NUM_DIMENSIONS (dr2->dr)
1384 || ! operand_equal_p (DR_BASE_OBJECT (dr1->dr),
1385 DR_BASE_OBJECT (dr2->dr),
1386 OEP_ADDRESS_OF)
1387 || ! types_compatible_p (TREE_TYPE (DR_BASE_OBJECT (dr1->dr)),
1388 TREE_TYPE (DR_BASE_OBJECT (dr2->dr))))
1390 free_graph (g);
1391 return false;
1393 add_edge (g, i, j);
1394 add_edge (g, j, i);
1397 all_vertices = XNEWVEC (int, num_vertices);
1398 for (i = 0; i < num_vertices; i++)
1399 all_vertices[i] = i;
1401 scop->max_alias_set
1402 = graphds_dfs (g, all_vertices, num_vertices, NULL, true, NULL) + 1;
1403 free (all_vertices);
1405 for (i = 0; i < g->n_vertices; i++)
1406 scop->drs[i].alias_set = g->vertices[i].component + 1;
1408 free_graph (g);
1409 return true;
1412 /* Gather BBs and conditions for a SCOP. */
1413 class gather_bbs : public dom_walker
1415 public:
1416 gather_bbs (cdi_direction, scop_p, int *);
1418 virtual edge before_dom_children (basic_block);
1419 virtual void after_dom_children (basic_block);
1421 private:
1422 auto_vec<gimple *, 3> conditions, cases;
1423 scop_p scop;
1426 gather_bbs::gather_bbs (cdi_direction direction, scop_p scop, int *bb_to_rpo)
1427 : dom_walker (direction, ALL_BLOCKS, bb_to_rpo), scop (scop)
1431 /* Call-back for dom_walk executed before visiting the dominated
1432 blocks. */
1434 edge
1435 gather_bbs::before_dom_children (basic_block bb)
1437 sese_info_p region = scop->scop_info;
1438 if (!bb_in_sese_p (bb, region->region))
1439 return dom_walker::STOP;
1441 /* For loops fully contained in the region record parameters in the
1442 loop bounds. */
1443 loop_p loop = bb->loop_father;
1444 if (loop->header == bb
1445 && loop_in_sese_p (loop, region->region))
1447 tree nb_iters = number_of_latch_executions (loop);
1448 if (chrec_contains_symbols (nb_iters))
1450 nb_iters = scalar_evolution_in_region (region->region,
1451 loop, nb_iters);
1452 scan_tree_for_params (region, nb_iters);
1456 if (gcond *stmt = single_pred_cond_non_loop_exit (bb))
1458 edge e = single_pred_edge (bb);
1459 /* Make sure the condition is in the region and thus was verified
1460 to be handled. */
1461 if (e != region->region.entry)
1463 conditions.safe_push (stmt);
1464 if (e->flags & EDGE_TRUE_VALUE)
1465 cases.safe_push (stmt);
1466 else
1467 cases.safe_push (NULL);
1471 scop->scop_info->bbs.safe_push (bb);
1473 gimple_poly_bb_p gbb = try_generate_gimple_bb (scop, bb);
1474 if (!gbb)
1475 return NULL;
1477 GBB_CONDITIONS (gbb) = conditions.copy ();
1478 GBB_CONDITION_CASES (gbb) = cases.copy ();
1480 poly_bb_p pbb = new_poly_bb (scop, gbb);
1481 scop->pbbs.safe_push (pbb);
1483 int i;
1484 data_reference_p dr;
1485 FOR_EACH_VEC_ELT (gbb->data_refs, i, dr)
1487 DEBUG_PRINT (dp << "Adding memory ";
1488 if (dr->is_read)
1489 dp << "read: ";
1490 else
1491 dp << "write: ";
1492 print_generic_expr (dump_file, dr->ref);
1493 dp << "\nFrom stmt: ";
1494 print_gimple_stmt (dump_file, dr->stmt, 0));
1496 scop->drs.safe_push (dr_info (dr, pbb));
1499 return NULL;
1502 /* Call-back for dom_walk executed after visiting the dominated
1503 blocks. */
1505 void
1506 gather_bbs::after_dom_children (basic_block bb)
1508 if (!bb_in_sese_p (bb, scop->scop_info->region))
1509 return;
1511 if (single_pred_cond_non_loop_exit (bb))
1513 edge e = single_pred_edge (bb);
1514 if (e != scop->scop_info->region.entry)
1516 conditions.pop ();
1517 cases.pop ();
1523 /* Compute sth like an execution order, dominator order with first executing
1524 edges that stay inside the current loop, delaying processing exit edges. */
1526 static int *bb_to_rpo;
1528 /* Helper for qsort, sorting after order above. */
1530 static int
1531 cmp_pbbs (const void *pa, const void *pb)
1533 poly_bb_p bb1 = *((const poly_bb_p *)pa);
1534 poly_bb_p bb2 = *((const poly_bb_p *)pb);
1535 if (bb_to_rpo[bb1->black_box->bb->index]
1536 < bb_to_rpo[bb2->black_box->bb->index])
1537 return -1;
1538 else if (bb_to_rpo[bb1->black_box->bb->index]
1539 > bb_to_rpo[bb2->black_box->bb->index])
1540 return 1;
1541 else
1542 return 0;
1545 /* Find Static Control Parts (SCoP) in the current function and pushes
1546 them to SCOPS. */
1548 void
1549 build_scops (vec<scop_p> *scops)
1551 if (dump_file)
1552 dp.set_dump_file (dump_file);
1554 scop_detection sb;
1555 sb.build_scop_depth (current_loops->tree_root);
1557 /* Now create scops from the lightweight SESEs. */
1558 vec<sese_l> scops_l = sb.get_scops ();
1560 /* Domwalk needs a bb to RPO mapping. Compute it once here. */
1561 int *postorder = XNEWVEC (int, n_basic_blocks_for_fn (cfun));
1562 int postorder_num = pre_and_rev_post_order_compute (NULL, postorder, true);
1563 bb_to_rpo = XNEWVEC (int, last_basic_block_for_fn (cfun));
1564 for (int i = 0; i < postorder_num; ++i)
1565 bb_to_rpo[postorder[i]] = i;
1566 free (postorder);
1568 int i;
1569 sese_l *s;
1570 FOR_EACH_VEC_ELT (scops_l, i, s)
1572 scop_p scop = new_scop (s->entry, s->exit);
1574 /* Record all basic blocks and their conditions in REGION. */
1575 gather_bbs (CDI_DOMINATORS, scop, bb_to_rpo).walk (s->entry->dest);
1577 /* Sort pbbs after execution order for initial schedule generation. */
1578 scop->pbbs.qsort (cmp_pbbs);
1580 if (! build_alias_set (scop))
1582 DEBUG_PRINT (dp << "[scop-detection-fail] cannot handle dependences\n");
1583 free_scop (scop);
1584 continue;
1587 /* Do not optimize a scop containing only PBBs that do not belong
1588 to any loops. */
1589 if (sb.nb_pbbs_in_loops (scop) == 0)
1591 DEBUG_PRINT (dp << "[scop-detection-fail] no data references.\n");
1592 free_scop (scop);
1593 continue;
1596 unsigned max_arrays = PARAM_VALUE (PARAM_GRAPHITE_MAX_ARRAYS_PER_SCOP);
1597 if (max_arrays > 0
1598 && scop->drs.length () >= max_arrays)
1600 DEBUG_PRINT (dp << "[scop-detection-fail] too many data references: "
1601 << scop->drs.length ()
1602 << " is larger than --param graphite-max-arrays-per-scop="
1603 << max_arrays << ".\n");
1604 free_scop (scop);
1605 continue;
1608 find_scop_parameters (scop);
1609 graphite_dim_t max_dim = PARAM_VALUE (PARAM_GRAPHITE_MAX_NB_SCOP_PARAMS);
1610 if (max_dim > 0
1611 && scop_nb_params (scop) > max_dim)
1613 DEBUG_PRINT (dp << "[scop-detection-fail] too many parameters: "
1614 << scop_nb_params (scop)
1615 << " larger than --param graphite-max-nb-scop-params="
1616 << max_dim << ".\n");
1617 free_scop (scop);
1618 continue;
1621 scops->safe_push (scop);
1624 free (bb_to_rpo);
1625 bb_to_rpo = NULL;
1626 DEBUG_PRINT (dp << "number of SCoPs: " << (scops ? scops->length () : 0););
1629 #endif /* HAVE_isl */