mmap.c (MAP_FAILED): Define if not defined.
[official-gcc.git] / gcc / tree-vect-loop.c
blob976e1923a4ce38af6161dc9742b2115a8580939d
1 /* Loop Vectorization
2 Copyright (C) 2003-2016 Free Software Foundation, Inc.
3 Contributed by Dorit Naishlos <dorit@il.ibm.com> and
4 Ira Rosen <irar@il.ibm.com>
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "backend.h"
26 #include "target.h"
27 #include "rtl.h"
28 #include "tree.h"
29 #include "gimple.h"
30 #include "cfghooks.h"
31 #include "tree-pass.h"
32 #include "ssa.h"
33 #include "optabs-tree.h"
34 #include "diagnostic-core.h"
35 #include "fold-const.h"
36 #include "stor-layout.h"
37 #include "cfganal.h"
38 #include "gimplify.h"
39 #include "gimple-iterator.h"
40 #include "gimplify-me.h"
41 #include "tree-ssa-loop-ivopts.h"
42 #include "tree-ssa-loop-manip.h"
43 #include "tree-ssa-loop-niter.h"
44 #include "cfgloop.h"
45 #include "params.h"
46 #include "tree-scalar-evolution.h"
47 #include "tree-vectorizer.h"
48 #include "gimple-fold.h"
49 #include "cgraph.h"
51 /* Loop Vectorization Pass.
53 This pass tries to vectorize loops.
55 For example, the vectorizer transforms the following simple loop:
57 short a[N]; short b[N]; short c[N]; int i;
59 for (i=0; i<N; i++){
60 a[i] = b[i] + c[i];
63 as if it was manually vectorized by rewriting the source code into:
65 typedef int __attribute__((mode(V8HI))) v8hi;
66 short a[N]; short b[N]; short c[N]; int i;
67 v8hi *pa = (v8hi*)a, *pb = (v8hi*)b, *pc = (v8hi*)c;
68 v8hi va, vb, vc;
70 for (i=0; i<N/8; i++){
71 vb = pb[i];
72 vc = pc[i];
73 va = vb + vc;
74 pa[i] = va;
77 The main entry to this pass is vectorize_loops(), in which
78 the vectorizer applies a set of analyses on a given set of loops,
79 followed by the actual vectorization transformation for the loops that
80 had successfully passed the analysis phase.
81 Throughout this pass we make a distinction between two types of
82 data: scalars (which are represented by SSA_NAMES), and memory references
83 ("data-refs"). These two types of data require different handling both
84 during analysis and transformation. The types of data-refs that the
85 vectorizer currently supports are ARRAY_REFS which base is an array DECL
86 (not a pointer), and INDIRECT_REFS through pointers; both array and pointer
87 accesses are required to have a simple (consecutive) access pattern.
89 Analysis phase:
90 ===============
91 The driver for the analysis phase is vect_analyze_loop().
92 It applies a set of analyses, some of which rely on the scalar evolution
93 analyzer (scev) developed by Sebastian Pop.
95 During the analysis phase the vectorizer records some information
96 per stmt in a "stmt_vec_info" struct which is attached to each stmt in the
97 loop, as well as general information about the loop as a whole, which is
98 recorded in a "loop_vec_info" struct attached to each loop.
100 Transformation phase:
101 =====================
102 The loop transformation phase scans all the stmts in the loop, and
103 creates a vector stmt (or a sequence of stmts) for each scalar stmt S in
104 the loop that needs to be vectorized. It inserts the vector code sequence
105 just before the scalar stmt S, and records a pointer to the vector code
106 in STMT_VINFO_VEC_STMT (stmt_info) (stmt_info is the stmt_vec_info struct
107 attached to S). This pointer will be used for the vectorization of following
108 stmts which use the def of stmt S. Stmt S is removed if it writes to memory;
109 otherwise, we rely on dead code elimination for removing it.
111 For example, say stmt S1 was vectorized into stmt VS1:
113 VS1: vb = px[i];
114 S1: b = x[i]; STMT_VINFO_VEC_STMT (stmt_info (S1)) = VS1
115 S2: a = b;
117 To vectorize stmt S2, the vectorizer first finds the stmt that defines
118 the operand 'b' (S1), and gets the relevant vector def 'vb' from the
119 vector stmt VS1 pointed to by STMT_VINFO_VEC_STMT (stmt_info (S1)). The
120 resulting sequence would be:
122 VS1: vb = px[i];
123 S1: b = x[i]; STMT_VINFO_VEC_STMT (stmt_info (S1)) = VS1
124 VS2: va = vb;
125 S2: a = b; STMT_VINFO_VEC_STMT (stmt_info (S2)) = VS2
127 Operands that are not SSA_NAMEs, are data-refs that appear in
128 load/store operations (like 'x[i]' in S1), and are handled differently.
130 Target modeling:
131 =================
132 Currently the only target specific information that is used is the
133 size of the vector (in bytes) - "TARGET_VECTORIZE_UNITS_PER_SIMD_WORD".
134 Targets that can support different sizes of vectors, for now will need
135 to specify one value for "TARGET_VECTORIZE_UNITS_PER_SIMD_WORD". More
136 flexibility will be added in the future.
138 Since we only vectorize operations which vector form can be
139 expressed using existing tree codes, to verify that an operation is
140 supported, the vectorizer checks the relevant optab at the relevant
141 machine_mode (e.g, optab_handler (add_optab, V8HImode)). If
142 the value found is CODE_FOR_nothing, then there's no target support, and
143 we can't vectorize the stmt.
145 For additional information on this project see:
146 http://gcc.gnu.org/projects/tree-ssa/vectorization.html
149 static void vect_estimate_min_profitable_iters (loop_vec_info, int *, int *);
151 /* Function vect_determine_vectorization_factor
153 Determine the vectorization factor (VF). VF is the number of data elements
154 that are operated upon in parallel in a single iteration of the vectorized
155 loop. For example, when vectorizing a loop that operates on 4byte elements,
156 on a target with vector size (VS) 16byte, the VF is set to 4, since 4
157 elements can fit in a single vector register.
159 We currently support vectorization of loops in which all types operated upon
160 are of the same size. Therefore this function currently sets VF according to
161 the size of the types operated upon, and fails if there are multiple sizes
162 in the loop.
164 VF is also the factor by which the loop iterations are strip-mined, e.g.:
165 original loop:
166 for (i=0; i<N; i++){
167 a[i] = b[i] + c[i];
170 vectorized loop:
171 for (i=0; i<N; i+=VF){
172 a[i:VF] = b[i:VF] + c[i:VF];
176 static bool
177 vect_determine_vectorization_factor (loop_vec_info loop_vinfo)
179 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
180 basic_block *bbs = LOOP_VINFO_BBS (loop_vinfo);
181 unsigned nbbs = loop->num_nodes;
182 unsigned int vectorization_factor = 0;
183 tree scalar_type;
184 gphi *phi;
185 tree vectype;
186 unsigned int nunits;
187 stmt_vec_info stmt_info;
188 unsigned i;
189 HOST_WIDE_INT dummy;
190 gimple *stmt, *pattern_stmt = NULL;
191 gimple_seq pattern_def_seq = NULL;
192 gimple_stmt_iterator pattern_def_si = gsi_none ();
193 bool analyze_pattern_stmt = false;
194 bool bool_result;
195 auto_vec<stmt_vec_info> mask_producers;
197 if (dump_enabled_p ())
198 dump_printf_loc (MSG_NOTE, vect_location,
199 "=== vect_determine_vectorization_factor ===\n");
201 for (i = 0; i < nbbs; i++)
203 basic_block bb = bbs[i];
205 for (gphi_iterator si = gsi_start_phis (bb); !gsi_end_p (si);
206 gsi_next (&si))
208 phi = si.phi ();
209 stmt_info = vinfo_for_stmt (phi);
210 if (dump_enabled_p ())
212 dump_printf_loc (MSG_NOTE, vect_location, "==> examining phi: ");
213 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, phi, 0);
214 dump_printf (MSG_NOTE, "\n");
217 gcc_assert (stmt_info);
219 if (STMT_VINFO_RELEVANT_P (stmt_info))
221 gcc_assert (!STMT_VINFO_VECTYPE (stmt_info));
222 scalar_type = TREE_TYPE (PHI_RESULT (phi));
224 if (dump_enabled_p ())
226 dump_printf_loc (MSG_NOTE, vect_location,
227 "get vectype for scalar type: ");
228 dump_generic_expr (MSG_NOTE, TDF_SLIM, scalar_type);
229 dump_printf (MSG_NOTE, "\n");
232 vectype = get_vectype_for_scalar_type (scalar_type);
233 if (!vectype)
235 if (dump_enabled_p ())
237 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
238 "not vectorized: unsupported "
239 "data-type ");
240 dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_SLIM,
241 scalar_type);
242 dump_printf (MSG_MISSED_OPTIMIZATION, "\n");
244 return false;
246 STMT_VINFO_VECTYPE (stmt_info) = vectype;
248 if (dump_enabled_p ())
250 dump_printf_loc (MSG_NOTE, vect_location, "vectype: ");
251 dump_generic_expr (MSG_NOTE, TDF_SLIM, vectype);
252 dump_printf (MSG_NOTE, "\n");
255 nunits = TYPE_VECTOR_SUBPARTS (vectype);
256 if (dump_enabled_p ())
257 dump_printf_loc (MSG_NOTE, vect_location, "nunits = %d\n",
258 nunits);
260 if (!vectorization_factor
261 || (nunits > vectorization_factor))
262 vectorization_factor = nunits;
266 for (gimple_stmt_iterator si = gsi_start_bb (bb);
267 !gsi_end_p (si) || analyze_pattern_stmt;)
269 tree vf_vectype;
271 if (analyze_pattern_stmt)
272 stmt = pattern_stmt;
273 else
274 stmt = gsi_stmt (si);
276 stmt_info = vinfo_for_stmt (stmt);
278 if (dump_enabled_p ())
280 dump_printf_loc (MSG_NOTE, vect_location,
281 "==> examining statement: ");
282 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, stmt, 0);
283 dump_printf (MSG_NOTE, "\n");
286 gcc_assert (stmt_info);
288 /* Skip stmts which do not need to be vectorized. */
289 if ((!STMT_VINFO_RELEVANT_P (stmt_info)
290 && !STMT_VINFO_LIVE_P (stmt_info))
291 || gimple_clobber_p (stmt))
293 if (STMT_VINFO_IN_PATTERN_P (stmt_info)
294 && (pattern_stmt = STMT_VINFO_RELATED_STMT (stmt_info))
295 && (STMT_VINFO_RELEVANT_P (vinfo_for_stmt (pattern_stmt))
296 || STMT_VINFO_LIVE_P (vinfo_for_stmt (pattern_stmt))))
298 stmt = pattern_stmt;
299 stmt_info = vinfo_for_stmt (pattern_stmt);
300 if (dump_enabled_p ())
302 dump_printf_loc (MSG_NOTE, vect_location,
303 "==> examining pattern statement: ");
304 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, stmt, 0);
305 dump_printf (MSG_NOTE, "\n");
308 else
310 if (dump_enabled_p ())
311 dump_printf_loc (MSG_NOTE, vect_location, "skip.\n");
312 gsi_next (&si);
313 continue;
316 else if (STMT_VINFO_IN_PATTERN_P (stmt_info)
317 && (pattern_stmt = STMT_VINFO_RELATED_STMT (stmt_info))
318 && (STMT_VINFO_RELEVANT_P (vinfo_for_stmt (pattern_stmt))
319 || STMT_VINFO_LIVE_P (vinfo_for_stmt (pattern_stmt))))
320 analyze_pattern_stmt = true;
322 /* If a pattern statement has def stmts, analyze them too. */
323 if (is_pattern_stmt_p (stmt_info))
325 if (pattern_def_seq == NULL)
327 pattern_def_seq = STMT_VINFO_PATTERN_DEF_SEQ (stmt_info);
328 pattern_def_si = gsi_start (pattern_def_seq);
330 else if (!gsi_end_p (pattern_def_si))
331 gsi_next (&pattern_def_si);
332 if (pattern_def_seq != NULL)
334 gimple *pattern_def_stmt = NULL;
335 stmt_vec_info pattern_def_stmt_info = NULL;
337 while (!gsi_end_p (pattern_def_si))
339 pattern_def_stmt = gsi_stmt (pattern_def_si);
340 pattern_def_stmt_info
341 = vinfo_for_stmt (pattern_def_stmt);
342 if (STMT_VINFO_RELEVANT_P (pattern_def_stmt_info)
343 || STMT_VINFO_LIVE_P (pattern_def_stmt_info))
344 break;
345 gsi_next (&pattern_def_si);
348 if (!gsi_end_p (pattern_def_si))
350 if (dump_enabled_p ())
352 dump_printf_loc (MSG_NOTE, vect_location,
353 "==> examining pattern def stmt: ");
354 dump_gimple_stmt (MSG_NOTE, TDF_SLIM,
355 pattern_def_stmt, 0);
356 dump_printf (MSG_NOTE, "\n");
359 stmt = pattern_def_stmt;
360 stmt_info = pattern_def_stmt_info;
362 else
364 pattern_def_si = gsi_none ();
365 analyze_pattern_stmt = false;
368 else
369 analyze_pattern_stmt = false;
372 if (gimple_get_lhs (stmt) == NULL_TREE
373 /* MASK_STORE has no lhs, but is ok. */
374 && (!is_gimple_call (stmt)
375 || !gimple_call_internal_p (stmt)
376 || gimple_call_internal_fn (stmt) != IFN_MASK_STORE))
378 if (is_gimple_call (stmt))
380 /* Ignore calls with no lhs. These must be calls to
381 #pragma omp simd functions, and what vectorization factor
382 it really needs can't be determined until
383 vectorizable_simd_clone_call. */
384 if (!analyze_pattern_stmt && gsi_end_p (pattern_def_si))
386 pattern_def_seq = NULL;
387 gsi_next (&si);
389 continue;
391 if (dump_enabled_p ())
393 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
394 "not vectorized: irregular stmt.");
395 dump_gimple_stmt (MSG_MISSED_OPTIMIZATION, TDF_SLIM, stmt,
397 dump_printf (MSG_MISSED_OPTIMIZATION, "\n");
399 return false;
402 if (VECTOR_MODE_P (TYPE_MODE (gimple_expr_type (stmt))))
404 if (dump_enabled_p ())
406 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
407 "not vectorized: vector stmt in loop:");
408 dump_gimple_stmt (MSG_MISSED_OPTIMIZATION, TDF_SLIM, stmt, 0);
409 dump_printf (MSG_MISSED_OPTIMIZATION, "\n");
411 return false;
414 bool_result = false;
416 if (STMT_VINFO_VECTYPE (stmt_info))
418 /* The only case when a vectype had been already set is for stmts
419 that contain a dataref, or for "pattern-stmts" (stmts
420 generated by the vectorizer to represent/replace a certain
421 idiom). */
422 gcc_assert (STMT_VINFO_DATA_REF (stmt_info)
423 || is_pattern_stmt_p (stmt_info)
424 || !gsi_end_p (pattern_def_si));
425 vectype = STMT_VINFO_VECTYPE (stmt_info);
427 else
429 gcc_assert (!STMT_VINFO_DATA_REF (stmt_info));
430 if (is_gimple_call (stmt)
431 && gimple_call_internal_p (stmt)
432 && gimple_call_internal_fn (stmt) == IFN_MASK_STORE)
433 scalar_type = TREE_TYPE (gimple_call_arg (stmt, 3));
434 else
435 scalar_type = TREE_TYPE (gimple_get_lhs (stmt));
437 /* Bool ops don't participate in vectorization factor
438 computation. For comparison use compared types to
439 compute a factor. */
440 if (TREE_CODE (scalar_type) == BOOLEAN_TYPE)
442 if (STMT_VINFO_RELEVANT_P (stmt_info))
443 mask_producers.safe_push (stmt_info);
444 bool_result = true;
446 if (gimple_code (stmt) == GIMPLE_ASSIGN
447 && TREE_CODE_CLASS (gimple_assign_rhs_code (stmt))
448 == tcc_comparison
449 && TREE_CODE (TREE_TYPE (gimple_assign_rhs1 (stmt)))
450 != BOOLEAN_TYPE)
451 scalar_type = TREE_TYPE (gimple_assign_rhs1 (stmt));
452 else
454 if (!analyze_pattern_stmt && gsi_end_p (pattern_def_si))
456 pattern_def_seq = NULL;
457 gsi_next (&si);
459 continue;
463 if (dump_enabled_p ())
465 dump_printf_loc (MSG_NOTE, vect_location,
466 "get vectype for scalar type: ");
467 dump_generic_expr (MSG_NOTE, TDF_SLIM, scalar_type);
468 dump_printf (MSG_NOTE, "\n");
470 vectype = get_vectype_for_scalar_type (scalar_type);
471 if (!vectype)
473 if (dump_enabled_p ())
475 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
476 "not vectorized: unsupported "
477 "data-type ");
478 dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_SLIM,
479 scalar_type);
480 dump_printf (MSG_MISSED_OPTIMIZATION, "\n");
482 return false;
485 if (!bool_result)
486 STMT_VINFO_VECTYPE (stmt_info) = vectype;
488 if (dump_enabled_p ())
490 dump_printf_loc (MSG_NOTE, vect_location, "vectype: ");
491 dump_generic_expr (MSG_NOTE, TDF_SLIM, vectype);
492 dump_printf (MSG_NOTE, "\n");
496 /* Don't try to compute VF out scalar types if we stmt
497 produces boolean vector. Use result vectype instead. */
498 if (VECTOR_BOOLEAN_TYPE_P (vectype))
499 vf_vectype = vectype;
500 else
502 /* The vectorization factor is according to the smallest
503 scalar type (or the largest vector size, but we only
504 support one vector size per loop). */
505 if (!bool_result)
506 scalar_type = vect_get_smallest_scalar_type (stmt, &dummy,
507 &dummy);
508 if (dump_enabled_p ())
510 dump_printf_loc (MSG_NOTE, vect_location,
511 "get vectype for scalar type: ");
512 dump_generic_expr (MSG_NOTE, TDF_SLIM, scalar_type);
513 dump_printf (MSG_NOTE, "\n");
515 vf_vectype = get_vectype_for_scalar_type (scalar_type);
517 if (!vf_vectype)
519 if (dump_enabled_p ())
521 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
522 "not vectorized: unsupported data-type ");
523 dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_SLIM,
524 scalar_type);
525 dump_printf (MSG_MISSED_OPTIMIZATION, "\n");
527 return false;
530 if ((GET_MODE_SIZE (TYPE_MODE (vectype))
531 != GET_MODE_SIZE (TYPE_MODE (vf_vectype))))
533 if (dump_enabled_p ())
535 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
536 "not vectorized: different sized vector "
537 "types in statement, ");
538 dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_SLIM,
539 vectype);
540 dump_printf (MSG_MISSED_OPTIMIZATION, " and ");
541 dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_SLIM,
542 vf_vectype);
543 dump_printf (MSG_MISSED_OPTIMIZATION, "\n");
545 return false;
548 if (dump_enabled_p ())
550 dump_printf_loc (MSG_NOTE, vect_location, "vectype: ");
551 dump_generic_expr (MSG_NOTE, TDF_SLIM, vf_vectype);
552 dump_printf (MSG_NOTE, "\n");
555 nunits = TYPE_VECTOR_SUBPARTS (vf_vectype);
556 if (dump_enabled_p ())
557 dump_printf_loc (MSG_NOTE, vect_location, "nunits = %d\n", nunits);
558 if (!vectorization_factor
559 || (nunits > vectorization_factor))
560 vectorization_factor = nunits;
562 if (!analyze_pattern_stmt && gsi_end_p (pattern_def_si))
564 pattern_def_seq = NULL;
565 gsi_next (&si);
570 /* TODO: Analyze cost. Decide if worth while to vectorize. */
571 if (dump_enabled_p ())
572 dump_printf_loc (MSG_NOTE, vect_location, "vectorization factor = %d\n",
573 vectorization_factor);
574 if (vectorization_factor <= 1)
576 if (dump_enabled_p ())
577 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
578 "not vectorized: unsupported data-type\n");
579 return false;
581 LOOP_VINFO_VECT_FACTOR (loop_vinfo) = vectorization_factor;
583 for (i = 0; i < mask_producers.length (); i++)
585 tree mask_type = NULL;
587 stmt = STMT_VINFO_STMT (mask_producers[i]);
589 if (gimple_code (stmt) == GIMPLE_ASSIGN
590 && TREE_CODE_CLASS (gimple_assign_rhs_code (stmt)) == tcc_comparison
591 && TREE_CODE (TREE_TYPE (gimple_assign_rhs1 (stmt))) != BOOLEAN_TYPE)
593 scalar_type = TREE_TYPE (gimple_assign_rhs1 (stmt));
594 mask_type = get_mask_type_for_scalar_type (scalar_type);
596 if (!mask_type)
598 if (dump_enabled_p ())
599 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
600 "not vectorized: unsupported mask\n");
601 return false;
604 else
606 tree rhs;
607 ssa_op_iter iter;
608 gimple *def_stmt;
609 enum vect_def_type dt;
611 FOR_EACH_SSA_TREE_OPERAND (rhs, stmt, iter, SSA_OP_USE)
613 if (!vect_is_simple_use (rhs, mask_producers[i]->vinfo,
614 &def_stmt, &dt, &vectype))
616 if (dump_enabled_p ())
618 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
619 "not vectorized: can't compute mask type "
620 "for statement, ");
621 dump_gimple_stmt (MSG_MISSED_OPTIMIZATION, TDF_SLIM, stmt,
623 dump_printf (MSG_MISSED_OPTIMIZATION, "\n");
625 return false;
628 /* No vectype probably means external definition.
629 Allow it in case there is another operand which
630 allows to determine mask type. */
631 if (!vectype)
632 continue;
634 if (!mask_type)
635 mask_type = vectype;
636 else if (TYPE_VECTOR_SUBPARTS (mask_type)
637 != TYPE_VECTOR_SUBPARTS (vectype))
639 if (dump_enabled_p ())
641 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
642 "not vectorized: different sized masks "
643 "types in statement, ");
644 dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_SLIM,
645 mask_type);
646 dump_printf (MSG_MISSED_OPTIMIZATION, " and ");
647 dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_SLIM,
648 vectype);
649 dump_printf (MSG_MISSED_OPTIMIZATION, "\n");
651 return false;
653 else if (VECTOR_BOOLEAN_TYPE_P (mask_type)
654 != VECTOR_BOOLEAN_TYPE_P (vectype))
656 if (dump_enabled_p ())
658 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
659 "not vectorized: mixed mask and "
660 "nonmask vector types in statement, ");
661 dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_SLIM,
662 mask_type);
663 dump_printf (MSG_MISSED_OPTIMIZATION, " and ");
664 dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_SLIM,
665 vectype);
666 dump_printf (MSG_MISSED_OPTIMIZATION, "\n");
668 return false;
672 /* We may compare boolean value loaded as vector of integers.
673 Fix mask_type in such case. */
674 if (mask_type
675 && !VECTOR_BOOLEAN_TYPE_P (mask_type)
676 && gimple_code (stmt) == GIMPLE_ASSIGN
677 && TREE_CODE_CLASS (gimple_assign_rhs_code (stmt)) == tcc_comparison)
678 mask_type = build_same_sized_truth_vector_type (mask_type);
681 /* No mask_type should mean loop invariant predicate.
682 This is probably a subject for optimization in
683 if-conversion. */
684 if (!mask_type)
686 if (dump_enabled_p ())
688 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
689 "not vectorized: can't compute mask type "
690 "for statement, ");
691 dump_gimple_stmt (MSG_MISSED_OPTIMIZATION, TDF_SLIM, stmt,
693 dump_printf (MSG_MISSED_OPTIMIZATION, "\n");
695 return false;
698 STMT_VINFO_VECTYPE (mask_producers[i]) = mask_type;
701 return true;
705 /* Function vect_is_simple_iv_evolution.
707 FORNOW: A simple evolution of an induction variables in the loop is
708 considered a polynomial evolution. */
710 static bool
711 vect_is_simple_iv_evolution (unsigned loop_nb, tree access_fn, tree * init,
712 tree * step)
714 tree init_expr;
715 tree step_expr;
716 tree evolution_part = evolution_part_in_loop_num (access_fn, loop_nb);
717 basic_block bb;
719 /* When there is no evolution in this loop, the evolution function
720 is not "simple". */
721 if (evolution_part == NULL_TREE)
722 return false;
724 /* When the evolution is a polynomial of degree >= 2
725 the evolution function is not "simple". */
726 if (tree_is_chrec (evolution_part))
727 return false;
729 step_expr = evolution_part;
730 init_expr = unshare_expr (initial_condition_in_loop_num (access_fn, loop_nb));
732 if (dump_enabled_p ())
734 dump_printf_loc (MSG_NOTE, vect_location, "step: ");
735 dump_generic_expr (MSG_NOTE, TDF_SLIM, step_expr);
736 dump_printf (MSG_NOTE, ", init: ");
737 dump_generic_expr (MSG_NOTE, TDF_SLIM, init_expr);
738 dump_printf (MSG_NOTE, "\n");
741 *init = init_expr;
742 *step = step_expr;
744 if (TREE_CODE (step_expr) != INTEGER_CST
745 && (TREE_CODE (step_expr) != SSA_NAME
746 || ((bb = gimple_bb (SSA_NAME_DEF_STMT (step_expr)))
747 && flow_bb_inside_loop_p (get_loop (cfun, loop_nb), bb))
748 || (!INTEGRAL_TYPE_P (TREE_TYPE (step_expr))
749 && (!SCALAR_FLOAT_TYPE_P (TREE_TYPE (step_expr))
750 || !flag_associative_math)))
751 && (TREE_CODE (step_expr) != REAL_CST
752 || !flag_associative_math))
754 if (dump_enabled_p ())
755 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
756 "step unknown.\n");
757 return false;
760 return true;
763 /* Function vect_analyze_scalar_cycles_1.
765 Examine the cross iteration def-use cycles of scalar variables
766 in LOOP. LOOP_VINFO represents the loop that is now being
767 considered for vectorization (can be LOOP, or an outer-loop
768 enclosing LOOP). */
770 static void
771 vect_analyze_scalar_cycles_1 (loop_vec_info loop_vinfo, struct loop *loop)
773 basic_block bb = loop->header;
774 tree init, step;
775 auto_vec<gimple *, 64> worklist;
776 gphi_iterator gsi;
777 bool double_reduc;
779 if (dump_enabled_p ())
780 dump_printf_loc (MSG_NOTE, vect_location,
781 "=== vect_analyze_scalar_cycles ===\n");
783 /* First - identify all inductions. Reduction detection assumes that all the
784 inductions have been identified, therefore, this order must not be
785 changed. */
786 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
788 gphi *phi = gsi.phi ();
789 tree access_fn = NULL;
790 tree def = PHI_RESULT (phi);
791 stmt_vec_info stmt_vinfo = vinfo_for_stmt (phi);
793 if (dump_enabled_p ())
795 dump_printf_loc (MSG_NOTE, vect_location, "Analyze phi: ");
796 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, phi, 0);
797 dump_printf (MSG_NOTE, "\n");
800 /* Skip virtual phi's. The data dependences that are associated with
801 virtual defs/uses (i.e., memory accesses) are analyzed elsewhere. */
802 if (virtual_operand_p (def))
803 continue;
805 STMT_VINFO_DEF_TYPE (stmt_vinfo) = vect_unknown_def_type;
807 /* Analyze the evolution function. */
808 access_fn = analyze_scalar_evolution (loop, def);
809 if (access_fn)
811 STRIP_NOPS (access_fn);
812 if (dump_enabled_p ())
814 dump_printf_loc (MSG_NOTE, vect_location,
815 "Access function of PHI: ");
816 dump_generic_expr (MSG_NOTE, TDF_SLIM, access_fn);
817 dump_printf (MSG_NOTE, "\n");
819 STMT_VINFO_LOOP_PHI_EVOLUTION_BASE_UNCHANGED (stmt_vinfo)
820 = initial_condition_in_loop_num (access_fn, loop->num);
821 STMT_VINFO_LOOP_PHI_EVOLUTION_PART (stmt_vinfo)
822 = evolution_part_in_loop_num (access_fn, loop->num);
825 if (!access_fn
826 || !vect_is_simple_iv_evolution (loop->num, access_fn, &init, &step)
827 || (LOOP_VINFO_LOOP (loop_vinfo) != loop
828 && TREE_CODE (step) != INTEGER_CST))
830 worklist.safe_push (phi);
831 continue;
834 gcc_assert (STMT_VINFO_LOOP_PHI_EVOLUTION_BASE_UNCHANGED (stmt_vinfo)
835 != NULL_TREE);
836 gcc_assert (STMT_VINFO_LOOP_PHI_EVOLUTION_PART (stmt_vinfo) != NULL_TREE);
838 if (dump_enabled_p ())
839 dump_printf_loc (MSG_NOTE, vect_location, "Detected induction.\n");
840 STMT_VINFO_DEF_TYPE (stmt_vinfo) = vect_induction_def;
844 /* Second - identify all reductions and nested cycles. */
845 while (worklist.length () > 0)
847 gimple *phi = worklist.pop ();
848 tree def = PHI_RESULT (phi);
849 stmt_vec_info stmt_vinfo = vinfo_for_stmt (phi);
850 gimple *reduc_stmt;
851 bool nested_cycle;
853 if (dump_enabled_p ())
855 dump_printf_loc (MSG_NOTE, vect_location, "Analyze phi: ");
856 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, phi, 0);
857 dump_printf (MSG_NOTE, "\n");
860 gcc_assert (!virtual_operand_p (def)
861 && STMT_VINFO_DEF_TYPE (stmt_vinfo) == vect_unknown_def_type);
863 nested_cycle = (loop != LOOP_VINFO_LOOP (loop_vinfo));
864 reduc_stmt = vect_force_simple_reduction (loop_vinfo, phi, !nested_cycle,
865 &double_reduc, false);
866 if (reduc_stmt)
868 if (double_reduc)
870 if (dump_enabled_p ())
871 dump_printf_loc (MSG_NOTE, vect_location,
872 "Detected double reduction.\n");
874 STMT_VINFO_DEF_TYPE (stmt_vinfo) = vect_double_reduction_def;
875 STMT_VINFO_DEF_TYPE (vinfo_for_stmt (reduc_stmt)) =
876 vect_double_reduction_def;
878 else
880 if (nested_cycle)
882 if (dump_enabled_p ())
883 dump_printf_loc (MSG_NOTE, vect_location,
884 "Detected vectorizable nested cycle.\n");
886 STMT_VINFO_DEF_TYPE (stmt_vinfo) = vect_nested_cycle;
887 STMT_VINFO_DEF_TYPE (vinfo_for_stmt (reduc_stmt)) =
888 vect_nested_cycle;
890 else
892 if (dump_enabled_p ())
893 dump_printf_loc (MSG_NOTE, vect_location,
894 "Detected reduction.\n");
896 STMT_VINFO_DEF_TYPE (stmt_vinfo) = vect_reduction_def;
897 STMT_VINFO_DEF_TYPE (vinfo_for_stmt (reduc_stmt)) =
898 vect_reduction_def;
899 /* Store the reduction cycles for possible vectorization in
900 loop-aware SLP. */
901 LOOP_VINFO_REDUCTIONS (loop_vinfo).safe_push (reduc_stmt);
905 else
906 if (dump_enabled_p ())
907 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
908 "Unknown def-use cycle pattern.\n");
913 /* Function vect_analyze_scalar_cycles.
915 Examine the cross iteration def-use cycles of scalar variables, by
916 analyzing the loop-header PHIs of scalar variables. Classify each
917 cycle as one of the following: invariant, induction, reduction, unknown.
918 We do that for the loop represented by LOOP_VINFO, and also to its
919 inner-loop, if exists.
920 Examples for scalar cycles:
922 Example1: reduction:
924 loop1:
925 for (i=0; i<N; i++)
926 sum += a[i];
928 Example2: induction:
930 loop2:
931 for (i=0; i<N; i++)
932 a[i] = i; */
934 static void
935 vect_analyze_scalar_cycles (loop_vec_info loop_vinfo)
937 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
939 vect_analyze_scalar_cycles_1 (loop_vinfo, loop);
941 /* When vectorizing an outer-loop, the inner-loop is executed sequentially.
942 Reductions in such inner-loop therefore have different properties than
943 the reductions in the nest that gets vectorized:
944 1. When vectorized, they are executed in the same order as in the original
945 scalar loop, so we can't change the order of computation when
946 vectorizing them.
947 2. FIXME: Inner-loop reductions can be used in the inner-loop, so the
948 current checks are too strict. */
950 if (loop->inner)
951 vect_analyze_scalar_cycles_1 (loop_vinfo, loop->inner);
954 /* Transfer group and reduction information from STMT to its pattern stmt. */
956 static void
957 vect_fixup_reduc_chain (gimple *stmt)
959 gimple *firstp = STMT_VINFO_RELATED_STMT (vinfo_for_stmt (stmt));
960 gimple *stmtp;
961 gcc_assert (!GROUP_FIRST_ELEMENT (vinfo_for_stmt (firstp))
962 && GROUP_FIRST_ELEMENT (vinfo_for_stmt (stmt)));
963 GROUP_SIZE (vinfo_for_stmt (firstp)) = GROUP_SIZE (vinfo_for_stmt (stmt));
966 stmtp = STMT_VINFO_RELATED_STMT (vinfo_for_stmt (stmt));
967 GROUP_FIRST_ELEMENT (vinfo_for_stmt (stmtp)) = firstp;
968 stmt = GROUP_NEXT_ELEMENT (vinfo_for_stmt (stmt));
969 if (stmt)
970 GROUP_NEXT_ELEMENT (vinfo_for_stmt (stmtp))
971 = STMT_VINFO_RELATED_STMT (vinfo_for_stmt (stmt));
973 while (stmt);
974 STMT_VINFO_DEF_TYPE (vinfo_for_stmt (stmtp)) = vect_reduction_def;
977 /* Fixup scalar cycles that now have their stmts detected as patterns. */
979 static void
980 vect_fixup_scalar_cycles_with_patterns (loop_vec_info loop_vinfo)
982 gimple *first;
983 unsigned i;
985 FOR_EACH_VEC_ELT (LOOP_VINFO_REDUCTION_CHAINS (loop_vinfo), i, first)
986 if (STMT_VINFO_IN_PATTERN_P (vinfo_for_stmt (first)))
988 gimple *next = GROUP_NEXT_ELEMENT (vinfo_for_stmt (first));
989 while (next)
991 if (! STMT_VINFO_IN_PATTERN_P (vinfo_for_stmt (next)))
992 break;
993 next = GROUP_NEXT_ELEMENT (vinfo_for_stmt (next));
995 /* If not all stmt in the chain are patterns try to handle
996 the chain without patterns. */
997 if (! next)
999 vect_fixup_reduc_chain (first);
1000 LOOP_VINFO_REDUCTION_CHAINS (loop_vinfo)[i]
1001 = STMT_VINFO_RELATED_STMT (vinfo_for_stmt (first));
1006 /* Function vect_get_loop_niters.
1008 Determine how many iterations the loop is executed and place it
1009 in NUMBER_OF_ITERATIONS. Place the number of latch iterations
1010 in NUMBER_OF_ITERATIONSM1.
1012 Return the loop exit condition. */
1015 static gcond *
1016 vect_get_loop_niters (struct loop *loop, tree *number_of_iterations,
1017 tree *number_of_iterationsm1)
1019 tree niters;
1021 if (dump_enabled_p ())
1022 dump_printf_loc (MSG_NOTE, vect_location,
1023 "=== get_loop_niters ===\n");
1025 niters = number_of_latch_executions (loop);
1026 *number_of_iterationsm1 = niters;
1028 /* We want the number of loop header executions which is the number
1029 of latch executions plus one.
1030 ??? For UINT_MAX latch executions this number overflows to zero
1031 for loops like do { n++; } while (n != 0); */
1032 if (niters && !chrec_contains_undetermined (niters))
1033 niters = fold_build2 (PLUS_EXPR, TREE_TYPE (niters), unshare_expr (niters),
1034 build_int_cst (TREE_TYPE (niters), 1));
1035 *number_of_iterations = niters;
1037 return get_loop_exit_condition (loop);
1041 /* Function bb_in_loop_p
1043 Used as predicate for dfs order traversal of the loop bbs. */
1045 static bool
1046 bb_in_loop_p (const_basic_block bb, const void *data)
1048 const struct loop *const loop = (const struct loop *)data;
1049 if (flow_bb_inside_loop_p (loop, bb))
1050 return true;
1051 return false;
1055 /* Function new_loop_vec_info.
1057 Create and initialize a new loop_vec_info struct for LOOP, as well as
1058 stmt_vec_info structs for all the stmts in LOOP. */
1060 static loop_vec_info
1061 new_loop_vec_info (struct loop *loop)
1063 loop_vec_info res;
1064 basic_block *bbs;
1065 gimple_stmt_iterator si;
1066 unsigned int i, nbbs;
1068 res = (loop_vec_info) xcalloc (1, sizeof (struct _loop_vec_info));
1069 res->kind = vec_info::loop;
1070 LOOP_VINFO_LOOP (res) = loop;
1072 bbs = get_loop_body (loop);
1074 /* Create/Update stmt_info for all stmts in the loop. */
1075 for (i = 0; i < loop->num_nodes; i++)
1077 basic_block bb = bbs[i];
1079 for (si = gsi_start_phis (bb); !gsi_end_p (si); gsi_next (&si))
1081 gimple *phi = gsi_stmt (si);
1082 gimple_set_uid (phi, 0);
1083 set_vinfo_for_stmt (phi, new_stmt_vec_info (phi, res));
1086 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
1088 gimple *stmt = gsi_stmt (si);
1089 gimple_set_uid (stmt, 0);
1090 set_vinfo_for_stmt (stmt, new_stmt_vec_info (stmt, res));
1094 /* CHECKME: We want to visit all BBs before their successors (except for
1095 latch blocks, for which this assertion wouldn't hold). In the simple
1096 case of the loop forms we allow, a dfs order of the BBs would the same
1097 as reversed postorder traversal, so we are safe. */
1099 free (bbs);
1100 bbs = XCNEWVEC (basic_block, loop->num_nodes);
1101 nbbs = dfs_enumerate_from (loop->header, 0, bb_in_loop_p,
1102 bbs, loop->num_nodes, loop);
1103 gcc_assert (nbbs == loop->num_nodes);
1105 LOOP_VINFO_BBS (res) = bbs;
1106 LOOP_VINFO_NITERSM1 (res) = NULL;
1107 LOOP_VINFO_NITERS (res) = NULL;
1108 LOOP_VINFO_NITERS_UNCHANGED (res) = NULL;
1109 LOOP_VINFO_COST_MODEL_THRESHOLD (res) = 0;
1110 LOOP_VINFO_VECTORIZABLE_P (res) = 0;
1111 LOOP_VINFO_PEELING_FOR_ALIGNMENT (res) = 0;
1112 LOOP_VINFO_VECT_FACTOR (res) = 0;
1113 LOOP_VINFO_LOOP_NEST (res) = vNULL;
1114 LOOP_VINFO_DATAREFS (res) = vNULL;
1115 LOOP_VINFO_DDRS (res) = vNULL;
1116 LOOP_VINFO_UNALIGNED_DR (res) = NULL;
1117 LOOP_VINFO_MAY_MISALIGN_STMTS (res) = vNULL;
1118 LOOP_VINFO_MAY_ALIAS_DDRS (res) = vNULL;
1119 LOOP_VINFO_GROUPED_STORES (res) = vNULL;
1120 LOOP_VINFO_REDUCTIONS (res) = vNULL;
1121 LOOP_VINFO_REDUCTION_CHAINS (res) = vNULL;
1122 LOOP_VINFO_SLP_INSTANCES (res) = vNULL;
1123 LOOP_VINFO_SLP_UNROLLING_FACTOR (res) = 1;
1124 LOOP_VINFO_TARGET_COST_DATA (res) = init_cost (loop);
1125 LOOP_VINFO_PEELING_FOR_GAPS (res) = false;
1126 LOOP_VINFO_PEELING_FOR_NITER (res) = false;
1127 LOOP_VINFO_OPERANDS_SWAPPED (res) = false;
1129 return res;
1133 /* Function destroy_loop_vec_info.
1135 Free LOOP_VINFO struct, as well as all the stmt_vec_info structs of all the
1136 stmts in the loop. */
1138 void
1139 destroy_loop_vec_info (loop_vec_info loop_vinfo, bool clean_stmts)
1141 struct loop *loop;
1142 basic_block *bbs;
1143 int nbbs;
1144 gimple_stmt_iterator si;
1145 int j;
1146 vec<slp_instance> slp_instances;
1147 slp_instance instance;
1148 bool swapped;
1150 if (!loop_vinfo)
1151 return;
1153 loop = LOOP_VINFO_LOOP (loop_vinfo);
1155 bbs = LOOP_VINFO_BBS (loop_vinfo);
1156 nbbs = clean_stmts ? loop->num_nodes : 0;
1157 swapped = LOOP_VINFO_OPERANDS_SWAPPED (loop_vinfo);
1159 for (j = 0; j < nbbs; j++)
1161 basic_block bb = bbs[j];
1162 for (si = gsi_start_phis (bb); !gsi_end_p (si); gsi_next (&si))
1163 free_stmt_vec_info (gsi_stmt (si));
1165 for (si = gsi_start_bb (bb); !gsi_end_p (si); )
1167 gimple *stmt = gsi_stmt (si);
1169 /* We may have broken canonical form by moving a constant
1170 into RHS1 of a commutative op. Fix such occurrences. */
1171 if (swapped && is_gimple_assign (stmt))
1173 enum tree_code code = gimple_assign_rhs_code (stmt);
1175 if ((code == PLUS_EXPR
1176 || code == POINTER_PLUS_EXPR
1177 || code == MULT_EXPR)
1178 && CONSTANT_CLASS_P (gimple_assign_rhs1 (stmt)))
1179 swap_ssa_operands (stmt,
1180 gimple_assign_rhs1_ptr (stmt),
1181 gimple_assign_rhs2_ptr (stmt));
1184 /* Free stmt_vec_info. */
1185 free_stmt_vec_info (stmt);
1186 gsi_next (&si);
1190 free (LOOP_VINFO_BBS (loop_vinfo));
1191 vect_destroy_datarefs (loop_vinfo);
1192 free_dependence_relations (LOOP_VINFO_DDRS (loop_vinfo));
1193 LOOP_VINFO_LOOP_NEST (loop_vinfo).release ();
1194 LOOP_VINFO_MAY_MISALIGN_STMTS (loop_vinfo).release ();
1195 LOOP_VINFO_COMP_ALIAS_DDRS (loop_vinfo).release ();
1196 LOOP_VINFO_MAY_ALIAS_DDRS (loop_vinfo).release ();
1197 slp_instances = LOOP_VINFO_SLP_INSTANCES (loop_vinfo);
1198 FOR_EACH_VEC_ELT (slp_instances, j, instance)
1199 vect_free_slp_instance (instance);
1201 LOOP_VINFO_SLP_INSTANCES (loop_vinfo).release ();
1202 LOOP_VINFO_GROUPED_STORES (loop_vinfo).release ();
1203 LOOP_VINFO_REDUCTIONS (loop_vinfo).release ();
1204 LOOP_VINFO_REDUCTION_CHAINS (loop_vinfo).release ();
1206 destroy_cost_data (LOOP_VINFO_TARGET_COST_DATA (loop_vinfo));
1207 loop_vinfo->scalar_cost_vec.release ();
1209 free (loop_vinfo);
1210 loop->aux = NULL;
1214 /* Calculate the cost of one scalar iteration of the loop. */
1215 static void
1216 vect_compute_single_scalar_iteration_cost (loop_vec_info loop_vinfo)
1218 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
1219 basic_block *bbs = LOOP_VINFO_BBS (loop_vinfo);
1220 int nbbs = loop->num_nodes, factor, scalar_single_iter_cost = 0;
1221 int innerloop_iters, i;
1223 /* Count statements in scalar loop. Using this as scalar cost for a single
1224 iteration for now.
1226 TODO: Add outer loop support.
1228 TODO: Consider assigning different costs to different scalar
1229 statements. */
1231 /* FORNOW. */
1232 innerloop_iters = 1;
1233 if (loop->inner)
1234 innerloop_iters = 50; /* FIXME */
1236 for (i = 0; i < nbbs; i++)
1238 gimple_stmt_iterator si;
1239 basic_block bb = bbs[i];
1241 if (bb->loop_father == loop->inner)
1242 factor = innerloop_iters;
1243 else
1244 factor = 1;
1246 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
1248 gimple *stmt = gsi_stmt (si);
1249 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
1251 if (!is_gimple_assign (stmt) && !is_gimple_call (stmt))
1252 continue;
1254 /* Skip stmts that are not vectorized inside the loop. */
1255 if (stmt_info
1256 && !STMT_VINFO_RELEVANT_P (stmt_info)
1257 && (!STMT_VINFO_LIVE_P (stmt_info)
1258 || !VECTORIZABLE_CYCLE_DEF (STMT_VINFO_DEF_TYPE (stmt_info)))
1259 && !STMT_VINFO_IN_PATTERN_P (stmt_info))
1260 continue;
1262 vect_cost_for_stmt kind;
1263 if (STMT_VINFO_DATA_REF (vinfo_for_stmt (stmt)))
1265 if (DR_IS_READ (STMT_VINFO_DATA_REF (vinfo_for_stmt (stmt))))
1266 kind = scalar_load;
1267 else
1268 kind = scalar_store;
1270 else
1271 kind = scalar_stmt;
1273 scalar_single_iter_cost
1274 += record_stmt_cost (&LOOP_VINFO_SCALAR_ITERATION_COST (loop_vinfo),
1275 factor, kind, NULL, 0, vect_prologue);
1278 LOOP_VINFO_SINGLE_SCALAR_ITERATION_COST (loop_vinfo)
1279 = scalar_single_iter_cost;
1283 /* Function vect_analyze_loop_form_1.
1285 Verify that certain CFG restrictions hold, including:
1286 - the loop has a pre-header
1287 - the loop has a single entry and exit
1288 - the loop exit condition is simple enough, and the number of iterations
1289 can be analyzed (a countable loop). */
1291 bool
1292 vect_analyze_loop_form_1 (struct loop *loop, gcond **loop_cond,
1293 tree *number_of_iterationsm1,
1294 tree *number_of_iterations, gcond **inner_loop_cond)
1296 if (dump_enabled_p ())
1297 dump_printf_loc (MSG_NOTE, vect_location,
1298 "=== vect_analyze_loop_form ===\n");
1300 /* Different restrictions apply when we are considering an inner-most loop,
1301 vs. an outer (nested) loop.
1302 (FORNOW. May want to relax some of these restrictions in the future). */
1304 if (!loop->inner)
1306 /* Inner-most loop. We currently require that the number of BBs is
1307 exactly 2 (the header and latch). Vectorizable inner-most loops
1308 look like this:
1310 (pre-header)
1312 header <--------+
1313 | | |
1314 | +--> latch --+
1316 (exit-bb) */
1318 if (loop->num_nodes != 2)
1320 if (dump_enabled_p ())
1321 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1322 "not vectorized: control flow in loop.\n");
1323 return false;
1326 if (empty_block_p (loop->header))
1328 if (dump_enabled_p ())
1329 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1330 "not vectorized: empty loop.\n");
1331 return false;
1334 else
1336 struct loop *innerloop = loop->inner;
1337 edge entryedge;
1339 /* Nested loop. We currently require that the loop is doubly-nested,
1340 contains a single inner loop, and the number of BBs is exactly 5.
1341 Vectorizable outer-loops look like this:
1343 (pre-header)
1345 header <---+
1347 inner-loop |
1349 tail ------+
1351 (exit-bb)
1353 The inner-loop has the properties expected of inner-most loops
1354 as described above. */
1356 if ((loop->inner)->inner || (loop->inner)->next)
1358 if (dump_enabled_p ())
1359 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1360 "not vectorized: multiple nested loops.\n");
1361 return false;
1364 if (loop->num_nodes != 5)
1366 if (dump_enabled_p ())
1367 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1368 "not vectorized: control flow in loop.\n");
1369 return false;
1372 entryedge = loop_preheader_edge (innerloop);
1373 if (entryedge->src != loop->header
1374 || !single_exit (innerloop)
1375 || single_exit (innerloop)->dest != EDGE_PRED (loop->latch, 0)->src)
1377 if (dump_enabled_p ())
1378 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1379 "not vectorized: unsupported outerloop form.\n");
1380 return false;
1383 /* Analyze the inner-loop. */
1384 tree inner_niterm1, inner_niter;
1385 if (! vect_analyze_loop_form_1 (loop->inner, inner_loop_cond,
1386 &inner_niterm1, &inner_niter, NULL))
1388 if (dump_enabled_p ())
1389 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1390 "not vectorized: Bad inner loop.\n");
1391 return false;
1394 if (!expr_invariant_in_loop_p (loop, inner_niter))
1396 if (dump_enabled_p ())
1397 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1398 "not vectorized: inner-loop count not"
1399 " invariant.\n");
1400 return false;
1403 if (dump_enabled_p ())
1404 dump_printf_loc (MSG_NOTE, vect_location,
1405 "Considering outer-loop vectorization.\n");
1408 if (!single_exit (loop)
1409 || EDGE_COUNT (loop->header->preds) != 2)
1411 if (dump_enabled_p ())
1413 if (!single_exit (loop))
1414 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1415 "not vectorized: multiple exits.\n");
1416 else if (EDGE_COUNT (loop->header->preds) != 2)
1417 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1418 "not vectorized: too many incoming edges.\n");
1420 return false;
1423 /* We assume that the loop exit condition is at the end of the loop. i.e,
1424 that the loop is represented as a do-while (with a proper if-guard
1425 before the loop if needed), where the loop header contains all the
1426 executable statements, and the latch is empty. */
1427 if (!empty_block_p (loop->latch)
1428 || !gimple_seq_empty_p (phi_nodes (loop->latch)))
1430 if (dump_enabled_p ())
1431 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1432 "not vectorized: latch block not empty.\n");
1433 return false;
1436 /* Make sure there exists a single-predecessor exit bb: */
1437 if (!single_pred_p (single_exit (loop)->dest))
1439 edge e = single_exit (loop);
1440 if (!(e->flags & EDGE_ABNORMAL))
1442 split_loop_exit_edge (e);
1443 if (dump_enabled_p ())
1444 dump_printf (MSG_NOTE, "split exit edge.\n");
1446 else
1448 if (dump_enabled_p ())
1449 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1450 "not vectorized: abnormal loop exit edge.\n");
1451 return false;
1455 *loop_cond = vect_get_loop_niters (loop, number_of_iterations,
1456 number_of_iterationsm1);
1457 if (!*loop_cond)
1459 if (dump_enabled_p ())
1460 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1461 "not vectorized: complicated exit condition.\n");
1462 return false;
1465 if (!*number_of_iterations
1466 || chrec_contains_undetermined (*number_of_iterations))
1468 if (dump_enabled_p ())
1469 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1470 "not vectorized: number of iterations cannot be "
1471 "computed.\n");
1472 return false;
1475 if (integer_zerop (*number_of_iterations))
1477 if (dump_enabled_p ())
1478 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1479 "not vectorized: number of iterations = 0.\n");
1480 return false;
1483 return true;
1486 /* Analyze LOOP form and return a loop_vec_info if it is of suitable form. */
1488 loop_vec_info
1489 vect_analyze_loop_form (struct loop *loop)
1491 tree number_of_iterations, number_of_iterationsm1;
1492 gcond *loop_cond, *inner_loop_cond = NULL;
1494 if (! vect_analyze_loop_form_1 (loop, &loop_cond, &number_of_iterationsm1,
1495 &number_of_iterations, &inner_loop_cond))
1496 return NULL;
1498 loop_vec_info loop_vinfo = new_loop_vec_info (loop);
1499 LOOP_VINFO_NITERSM1 (loop_vinfo) = number_of_iterationsm1;
1500 LOOP_VINFO_NITERS (loop_vinfo) = number_of_iterations;
1501 LOOP_VINFO_NITERS_UNCHANGED (loop_vinfo) = number_of_iterations;
1503 if (!LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo))
1505 if (dump_enabled_p ())
1507 dump_printf_loc (MSG_NOTE, vect_location,
1508 "Symbolic number of iterations is ");
1509 dump_generic_expr (MSG_NOTE, TDF_DETAILS, number_of_iterations);
1510 dump_printf (MSG_NOTE, "\n");
1514 STMT_VINFO_TYPE (vinfo_for_stmt (loop_cond)) = loop_exit_ctrl_vec_info_type;
1515 if (inner_loop_cond)
1516 STMT_VINFO_TYPE (vinfo_for_stmt (inner_loop_cond))
1517 = loop_exit_ctrl_vec_info_type;
1519 gcc_assert (!loop->aux);
1520 loop->aux = loop_vinfo;
1521 return loop_vinfo;
1526 /* Scan the loop stmts and dependent on whether there are any (non-)SLP
1527 statements update the vectorization factor. */
1529 static void
1530 vect_update_vf_for_slp (loop_vec_info loop_vinfo)
1532 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
1533 basic_block *bbs = LOOP_VINFO_BBS (loop_vinfo);
1534 int nbbs = loop->num_nodes;
1535 unsigned int vectorization_factor;
1536 int i;
1538 if (dump_enabled_p ())
1539 dump_printf_loc (MSG_NOTE, vect_location,
1540 "=== vect_update_vf_for_slp ===\n");
1542 vectorization_factor = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
1543 gcc_assert (vectorization_factor != 0);
1545 /* If all the stmts in the loop can be SLPed, we perform only SLP, and
1546 vectorization factor of the loop is the unrolling factor required by
1547 the SLP instances. If that unrolling factor is 1, we say, that we
1548 perform pure SLP on loop - cross iteration parallelism is not
1549 exploited. */
1550 bool only_slp_in_loop = true;
1551 for (i = 0; i < nbbs; i++)
1553 basic_block bb = bbs[i];
1554 for (gimple_stmt_iterator si = gsi_start_bb (bb); !gsi_end_p (si);
1555 gsi_next (&si))
1557 gimple *stmt = gsi_stmt (si);
1558 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
1559 if (STMT_VINFO_IN_PATTERN_P (stmt_info)
1560 && STMT_VINFO_RELATED_STMT (stmt_info))
1562 stmt = STMT_VINFO_RELATED_STMT (stmt_info);
1563 stmt_info = vinfo_for_stmt (stmt);
1565 if ((STMT_VINFO_RELEVANT_P (stmt_info)
1566 || VECTORIZABLE_CYCLE_DEF (STMT_VINFO_DEF_TYPE (stmt_info)))
1567 && !PURE_SLP_STMT (stmt_info))
1568 /* STMT needs both SLP and loop-based vectorization. */
1569 only_slp_in_loop = false;
1573 if (only_slp_in_loop)
1574 vectorization_factor = LOOP_VINFO_SLP_UNROLLING_FACTOR (loop_vinfo);
1575 else
1576 vectorization_factor
1577 = least_common_multiple (vectorization_factor,
1578 LOOP_VINFO_SLP_UNROLLING_FACTOR (loop_vinfo));
1580 LOOP_VINFO_VECT_FACTOR (loop_vinfo) = vectorization_factor;
1581 if (dump_enabled_p ())
1582 dump_printf_loc (MSG_NOTE, vect_location,
1583 "Updating vectorization factor to %d\n",
1584 vectorization_factor);
1587 /* Function vect_analyze_loop_operations.
1589 Scan the loop stmts and make sure they are all vectorizable. */
1591 static bool
1592 vect_analyze_loop_operations (loop_vec_info loop_vinfo)
1594 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
1595 basic_block *bbs = LOOP_VINFO_BBS (loop_vinfo);
1596 int nbbs = loop->num_nodes;
1597 int i;
1598 stmt_vec_info stmt_info;
1599 bool need_to_vectorize = false;
1600 bool ok;
1602 if (dump_enabled_p ())
1603 dump_printf_loc (MSG_NOTE, vect_location,
1604 "=== vect_analyze_loop_operations ===\n");
1606 for (i = 0; i < nbbs; i++)
1608 basic_block bb = bbs[i];
1610 for (gphi_iterator si = gsi_start_phis (bb); !gsi_end_p (si);
1611 gsi_next (&si))
1613 gphi *phi = si.phi ();
1614 ok = true;
1616 stmt_info = vinfo_for_stmt (phi);
1617 if (dump_enabled_p ())
1619 dump_printf_loc (MSG_NOTE, vect_location, "examining phi: ");
1620 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, phi, 0);
1621 dump_printf (MSG_NOTE, "\n");
1623 if (virtual_operand_p (gimple_phi_result (phi)))
1624 continue;
1626 /* Inner-loop loop-closed exit phi in outer-loop vectorization
1627 (i.e., a phi in the tail of the outer-loop). */
1628 if (! is_loop_header_bb_p (bb))
1630 /* FORNOW: we currently don't support the case that these phis
1631 are not used in the outerloop (unless it is double reduction,
1632 i.e., this phi is vect_reduction_def), cause this case
1633 requires to actually do something here. */
1634 if ((!STMT_VINFO_RELEVANT_P (stmt_info)
1635 || STMT_VINFO_LIVE_P (stmt_info))
1636 && STMT_VINFO_DEF_TYPE (stmt_info)
1637 != vect_double_reduction_def)
1639 if (dump_enabled_p ())
1640 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1641 "Unsupported loop-closed phi in "
1642 "outer-loop.\n");
1643 return false;
1646 /* If PHI is used in the outer loop, we check that its operand
1647 is defined in the inner loop. */
1648 if (STMT_VINFO_RELEVANT_P (stmt_info))
1650 tree phi_op;
1651 gimple *op_def_stmt;
1653 if (gimple_phi_num_args (phi) != 1)
1654 return false;
1656 phi_op = PHI_ARG_DEF (phi, 0);
1657 if (TREE_CODE (phi_op) != SSA_NAME)
1658 return false;
1660 op_def_stmt = SSA_NAME_DEF_STMT (phi_op);
1661 if (gimple_nop_p (op_def_stmt)
1662 || !flow_bb_inside_loop_p (loop, gimple_bb (op_def_stmt))
1663 || !vinfo_for_stmt (op_def_stmt))
1664 return false;
1666 if (STMT_VINFO_RELEVANT (vinfo_for_stmt (op_def_stmt))
1667 != vect_used_in_outer
1668 && STMT_VINFO_RELEVANT (vinfo_for_stmt (op_def_stmt))
1669 != vect_used_in_outer_by_reduction)
1670 return false;
1673 continue;
1676 gcc_assert (stmt_info);
1678 if (STMT_VINFO_LIVE_P (stmt_info))
1680 /* FORNOW: not yet supported. */
1681 if (dump_enabled_p ())
1682 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1683 "not vectorized: value used after loop.\n");
1684 return false;
1687 if (STMT_VINFO_RELEVANT (stmt_info) == vect_used_in_scope
1688 && STMT_VINFO_DEF_TYPE (stmt_info) != vect_induction_def)
1690 /* A scalar-dependence cycle that we don't support. */
1691 if (dump_enabled_p ())
1692 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1693 "not vectorized: scalar dependence cycle.\n");
1694 return false;
1697 if (STMT_VINFO_RELEVANT_P (stmt_info))
1699 need_to_vectorize = true;
1700 if (STMT_VINFO_DEF_TYPE (stmt_info) == vect_induction_def)
1701 ok = vectorizable_induction (phi, NULL, NULL);
1704 if (!ok)
1706 if (dump_enabled_p ())
1708 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1709 "not vectorized: relevant phi not "
1710 "supported: ");
1711 dump_gimple_stmt (MSG_MISSED_OPTIMIZATION, TDF_SLIM, phi, 0);
1712 dump_printf (MSG_MISSED_OPTIMIZATION, "\n");
1714 return false;
1718 for (gimple_stmt_iterator si = gsi_start_bb (bb); !gsi_end_p (si);
1719 gsi_next (&si))
1721 gimple *stmt = gsi_stmt (si);
1722 if (!gimple_clobber_p (stmt)
1723 && !vect_analyze_stmt (stmt, &need_to_vectorize, NULL))
1724 return false;
1726 } /* bbs */
1728 /* All operations in the loop are either irrelevant (deal with loop
1729 control, or dead), or only used outside the loop and can be moved
1730 out of the loop (e.g. invariants, inductions). The loop can be
1731 optimized away by scalar optimizations. We're better off not
1732 touching this loop. */
1733 if (!need_to_vectorize)
1735 if (dump_enabled_p ())
1736 dump_printf_loc (MSG_NOTE, vect_location,
1737 "All the computation can be taken out of the loop.\n");
1738 if (dump_enabled_p ())
1739 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1740 "not vectorized: redundant loop. no profit to "
1741 "vectorize.\n");
1742 return false;
1745 return true;
1749 /* Function vect_analyze_loop_2.
1751 Apply a set of analyses on LOOP, and create a loop_vec_info struct
1752 for it. The different analyses will record information in the
1753 loop_vec_info struct. */
1754 static bool
1755 vect_analyze_loop_2 (loop_vec_info loop_vinfo, bool &fatal)
1757 bool ok;
1758 int max_vf = MAX_VECTORIZATION_FACTOR;
1759 int min_vf = 2;
1760 unsigned int n_stmts = 0;
1762 /* The first group of checks is independent of the vector size. */
1763 fatal = true;
1765 /* Find all data references in the loop (which correspond to vdefs/vuses)
1766 and analyze their evolution in the loop. */
1768 basic_block *bbs = LOOP_VINFO_BBS (loop_vinfo);
1770 loop_p loop = LOOP_VINFO_LOOP (loop_vinfo);
1771 if (!find_loop_nest (loop, &LOOP_VINFO_LOOP_NEST (loop_vinfo)))
1773 if (dump_enabled_p ())
1774 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1775 "not vectorized: loop contains function calls"
1776 " or data references that cannot be analyzed\n");
1777 return false;
1780 for (unsigned i = 0; i < loop->num_nodes; i++)
1781 for (gimple_stmt_iterator gsi = gsi_start_bb (bbs[i]);
1782 !gsi_end_p (gsi); gsi_next (&gsi))
1784 gimple *stmt = gsi_stmt (gsi);
1785 if (is_gimple_debug (stmt))
1786 continue;
1787 ++n_stmts;
1788 if (!find_data_references_in_stmt (loop, stmt,
1789 &LOOP_VINFO_DATAREFS (loop_vinfo)))
1791 if (is_gimple_call (stmt) && loop->safelen)
1793 tree fndecl = gimple_call_fndecl (stmt), op;
1794 if (fndecl != NULL_TREE)
1796 cgraph_node *node = cgraph_node::get (fndecl);
1797 if (node != NULL && node->simd_clones != NULL)
1799 unsigned int j, n = gimple_call_num_args (stmt);
1800 for (j = 0; j < n; j++)
1802 op = gimple_call_arg (stmt, j);
1803 if (DECL_P (op)
1804 || (REFERENCE_CLASS_P (op)
1805 && get_base_address (op)))
1806 break;
1808 op = gimple_call_lhs (stmt);
1809 /* Ignore #pragma omp declare simd functions
1810 if they don't have data references in the
1811 call stmt itself. */
1812 if (j == n
1813 && !(op
1814 && (DECL_P (op)
1815 || (REFERENCE_CLASS_P (op)
1816 && get_base_address (op)))))
1817 continue;
1821 if (dump_enabled_p ())
1822 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1823 "not vectorized: loop contains function "
1824 "calls or data references that cannot "
1825 "be analyzed\n");
1826 return false;
1830 /* Analyze the data references and also adjust the minimal
1831 vectorization factor according to the loads and stores. */
1833 ok = vect_analyze_data_refs (loop_vinfo, &min_vf);
1834 if (!ok)
1836 if (dump_enabled_p ())
1837 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1838 "bad data references.\n");
1839 return false;
1842 /* Classify all cross-iteration scalar data-flow cycles.
1843 Cross-iteration cycles caused by virtual phis are analyzed separately. */
1844 vect_analyze_scalar_cycles (loop_vinfo);
1846 vect_pattern_recog (loop_vinfo);
1848 vect_fixup_scalar_cycles_with_patterns (loop_vinfo);
1850 /* Analyze the access patterns of the data-refs in the loop (consecutive,
1851 complex, etc.). FORNOW: Only handle consecutive access pattern. */
1853 ok = vect_analyze_data_ref_accesses (loop_vinfo);
1854 if (!ok)
1856 if (dump_enabled_p ())
1857 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1858 "bad data access.\n");
1859 return false;
1862 /* Data-flow analysis to detect stmts that do not need to be vectorized. */
1864 ok = vect_mark_stmts_to_be_vectorized (loop_vinfo);
1865 if (!ok)
1867 if (dump_enabled_p ())
1868 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1869 "unexpected pattern.\n");
1870 return false;
1873 /* While the rest of the analysis below depends on it in some way. */
1874 fatal = false;
1876 /* Analyze data dependences between the data-refs in the loop
1877 and adjust the maximum vectorization factor according to
1878 the dependences.
1879 FORNOW: fail at the first data dependence that we encounter. */
1881 ok = vect_analyze_data_ref_dependences (loop_vinfo, &max_vf);
1882 if (!ok
1883 || max_vf < min_vf)
1885 if (dump_enabled_p ())
1886 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1887 "bad data dependence.\n");
1888 return false;
1891 ok = vect_determine_vectorization_factor (loop_vinfo);
1892 if (!ok)
1894 if (dump_enabled_p ())
1895 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1896 "can't determine vectorization factor.\n");
1897 return false;
1899 if (max_vf < LOOP_VINFO_VECT_FACTOR (loop_vinfo))
1901 if (dump_enabled_p ())
1902 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1903 "bad data dependence.\n");
1904 return false;
1907 /* Compute the scalar iteration cost. */
1908 vect_compute_single_scalar_iteration_cost (loop_vinfo);
1910 int saved_vectorization_factor = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
1911 HOST_WIDE_INT estimated_niter;
1912 unsigned th;
1913 int min_scalar_loop_bound;
1915 /* Check the SLP opportunities in the loop, analyze and build SLP trees. */
1916 ok = vect_analyze_slp (loop_vinfo, n_stmts);
1917 if (!ok)
1918 return false;
1920 /* If there are any SLP instances mark them as pure_slp. */
1921 bool slp = vect_make_slp_decision (loop_vinfo);
1922 if (slp)
1924 /* Find stmts that need to be both vectorized and SLPed. */
1925 vect_detect_hybrid_slp (loop_vinfo);
1927 /* Update the vectorization factor based on the SLP decision. */
1928 vect_update_vf_for_slp (loop_vinfo);
1931 /* This is the point where we can re-start analysis with SLP forced off. */
1932 start_over:
1934 /* Now the vectorization factor is final. */
1935 unsigned vectorization_factor = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
1936 gcc_assert (vectorization_factor != 0);
1938 if (LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo) && dump_enabled_p ())
1939 dump_printf_loc (MSG_NOTE, vect_location,
1940 "vectorization_factor = %d, niters = "
1941 HOST_WIDE_INT_PRINT_DEC "\n", vectorization_factor,
1942 LOOP_VINFO_INT_NITERS (loop_vinfo));
1944 HOST_WIDE_INT max_niter
1945 = max_stmt_executions_int (LOOP_VINFO_LOOP (loop_vinfo));
1946 if ((LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo)
1947 && (LOOP_VINFO_INT_NITERS (loop_vinfo) < vectorization_factor))
1948 || (max_niter != -1
1949 && (unsigned HOST_WIDE_INT) max_niter < vectorization_factor))
1951 if (dump_enabled_p ())
1952 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1953 "not vectorized: iteration count smaller than "
1954 "vectorization factor.\n");
1955 return false;
1958 /* Analyze the alignment of the data-refs in the loop.
1959 Fail if a data reference is found that cannot be vectorized. */
1961 ok = vect_analyze_data_refs_alignment (loop_vinfo);
1962 if (!ok)
1964 if (dump_enabled_p ())
1965 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1966 "bad data alignment.\n");
1967 return false;
1970 /* Prune the list of ddrs to be tested at run-time by versioning for alias.
1971 It is important to call pruning after vect_analyze_data_ref_accesses,
1972 since we use grouping information gathered by interleaving analysis. */
1973 ok = vect_prune_runtime_alias_test_list (loop_vinfo);
1974 if (!ok)
1976 if (dump_enabled_p ())
1977 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1978 "number of versioning for alias "
1979 "run-time tests exceeds %d "
1980 "(--param vect-max-version-for-alias-checks)\n",
1981 PARAM_VALUE (PARAM_VECT_MAX_VERSION_FOR_ALIAS_CHECKS));
1982 return false;
1985 /* This pass will decide on using loop versioning and/or loop peeling in
1986 order to enhance the alignment of data references in the loop. */
1987 ok = vect_enhance_data_refs_alignment (loop_vinfo);
1988 if (!ok)
1990 if (dump_enabled_p ())
1991 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1992 "bad data alignment.\n");
1993 return false;
1996 if (slp)
1998 /* Analyze operations in the SLP instances. Note this may
1999 remove unsupported SLP instances which makes the above
2000 SLP kind detection invalid. */
2001 unsigned old_size = LOOP_VINFO_SLP_INSTANCES (loop_vinfo).length ();
2002 vect_slp_analyze_operations (LOOP_VINFO_SLP_INSTANCES (loop_vinfo),
2003 LOOP_VINFO_TARGET_COST_DATA (loop_vinfo));
2004 if (LOOP_VINFO_SLP_INSTANCES (loop_vinfo).length () != old_size)
2005 goto again;
2008 /* Scan all the remaining operations in the loop that are not subject
2009 to SLP and make sure they are vectorizable. */
2010 ok = vect_analyze_loop_operations (loop_vinfo);
2011 if (!ok)
2013 if (dump_enabled_p ())
2014 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2015 "bad operation or unsupported loop bound.\n");
2016 return false;
2019 /* Analyze cost. Decide if worth while to vectorize. */
2020 int min_profitable_estimate, min_profitable_iters;
2021 vect_estimate_min_profitable_iters (loop_vinfo, &min_profitable_iters,
2022 &min_profitable_estimate);
2024 if (min_profitable_iters < 0)
2026 if (dump_enabled_p ())
2027 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2028 "not vectorized: vectorization not profitable.\n");
2029 if (dump_enabled_p ())
2030 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2031 "not vectorized: vector version will never be "
2032 "profitable.\n");
2033 goto again;
2036 min_scalar_loop_bound = ((PARAM_VALUE (PARAM_MIN_VECT_LOOP_BOUND)
2037 * vectorization_factor) - 1);
2039 /* Use the cost model only if it is more conservative than user specified
2040 threshold. */
2041 th = (unsigned) min_scalar_loop_bound;
2042 if (min_profitable_iters
2043 && (!min_scalar_loop_bound
2044 || min_profitable_iters > min_scalar_loop_bound))
2045 th = (unsigned) min_profitable_iters;
2047 LOOP_VINFO_COST_MODEL_THRESHOLD (loop_vinfo) = th;
2049 if (LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo)
2050 && LOOP_VINFO_INT_NITERS (loop_vinfo) <= th)
2052 if (dump_enabled_p ())
2053 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2054 "not vectorized: vectorization not profitable.\n");
2055 if (dump_enabled_p ())
2056 dump_printf_loc (MSG_NOTE, vect_location,
2057 "not vectorized: iteration count smaller than user "
2058 "specified loop bound parameter or minimum profitable "
2059 "iterations (whichever is more conservative).\n");
2060 goto again;
2063 estimated_niter
2064 = estimated_stmt_executions_int (LOOP_VINFO_LOOP (loop_vinfo));
2065 if (estimated_niter != -1
2066 && ((unsigned HOST_WIDE_INT) estimated_niter
2067 <= MAX (th, (unsigned)min_profitable_estimate)))
2069 if (dump_enabled_p ())
2070 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2071 "not vectorized: estimated iteration count too "
2072 "small.\n");
2073 if (dump_enabled_p ())
2074 dump_printf_loc (MSG_NOTE, vect_location,
2075 "not vectorized: estimated iteration count smaller "
2076 "than specified loop bound parameter or minimum "
2077 "profitable iterations (whichever is more "
2078 "conservative).\n");
2079 goto again;
2082 /* Decide whether we need to create an epilogue loop to handle
2083 remaining scalar iterations. */
2084 th = ((LOOP_VINFO_COST_MODEL_THRESHOLD (loop_vinfo) + 1)
2085 / LOOP_VINFO_VECT_FACTOR (loop_vinfo))
2086 * LOOP_VINFO_VECT_FACTOR (loop_vinfo);
2088 if (LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo)
2089 && LOOP_VINFO_PEELING_FOR_ALIGNMENT (loop_vinfo) > 0)
2091 if (ctz_hwi (LOOP_VINFO_INT_NITERS (loop_vinfo)
2092 - LOOP_VINFO_PEELING_FOR_ALIGNMENT (loop_vinfo))
2093 < exact_log2 (LOOP_VINFO_VECT_FACTOR (loop_vinfo)))
2094 LOOP_VINFO_PEELING_FOR_NITER (loop_vinfo) = true;
2096 else if (LOOP_VINFO_PEELING_FOR_ALIGNMENT (loop_vinfo)
2097 || (tree_ctz (LOOP_VINFO_NITERS (loop_vinfo))
2098 < (unsigned)exact_log2 (LOOP_VINFO_VECT_FACTOR (loop_vinfo))
2099 /* In case of versioning, check if the maximum number of
2100 iterations is greater than th. If they are identical,
2101 the epilogue is unnecessary. */
2102 && ((!LOOP_REQUIRES_VERSIONING_FOR_ALIAS (loop_vinfo)
2103 && !LOOP_REQUIRES_VERSIONING_FOR_ALIGNMENT (loop_vinfo))
2104 || (unsigned HOST_WIDE_INT) max_niter > th)))
2105 LOOP_VINFO_PEELING_FOR_NITER (loop_vinfo) = true;
2107 /* If an epilogue loop is required make sure we can create one. */
2108 if (LOOP_VINFO_PEELING_FOR_GAPS (loop_vinfo)
2109 || LOOP_VINFO_PEELING_FOR_NITER (loop_vinfo))
2111 if (dump_enabled_p ())
2112 dump_printf_loc (MSG_NOTE, vect_location, "epilog loop required\n");
2113 if (!vect_can_advance_ivs_p (loop_vinfo)
2114 || !slpeel_can_duplicate_loop_p (LOOP_VINFO_LOOP (loop_vinfo),
2115 single_exit (LOOP_VINFO_LOOP
2116 (loop_vinfo))))
2118 if (dump_enabled_p ())
2119 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2120 "not vectorized: can't create required "
2121 "epilog loop\n");
2122 goto again;
2126 gcc_assert (vectorization_factor
2127 == (unsigned)LOOP_VINFO_VECT_FACTOR (loop_vinfo));
2129 /* Ok to vectorize! */
2130 return true;
2132 again:
2133 /* Try again with SLP forced off but if we didn't do any SLP there is
2134 no point in re-trying. */
2135 if (!slp)
2136 return false;
2138 /* If there are reduction chains re-trying will fail anyway. */
2139 if (! LOOP_VINFO_REDUCTION_CHAINS (loop_vinfo).is_empty ())
2140 return false;
2142 /* Likewise if the grouped loads or stores in the SLP cannot be handled
2143 via interleaving or lane instructions. */
2144 slp_instance instance;
2145 slp_tree node;
2146 unsigned i, j;
2147 FOR_EACH_VEC_ELT (LOOP_VINFO_SLP_INSTANCES (loop_vinfo), i, instance)
2149 stmt_vec_info vinfo;
2150 vinfo = vinfo_for_stmt
2151 (SLP_TREE_SCALAR_STMTS (SLP_INSTANCE_TREE (instance))[0]);
2152 if (! STMT_VINFO_GROUPED_ACCESS (vinfo))
2153 continue;
2154 vinfo = vinfo_for_stmt (STMT_VINFO_GROUP_FIRST_ELEMENT (vinfo));
2155 unsigned int size = STMT_VINFO_GROUP_SIZE (vinfo);
2156 tree vectype = STMT_VINFO_VECTYPE (vinfo);
2157 if (! vect_store_lanes_supported (vectype, size)
2158 && ! vect_grouped_store_supported (vectype, size))
2159 return false;
2160 FOR_EACH_VEC_ELT (SLP_INSTANCE_LOADS (instance), j, node)
2162 vinfo = vinfo_for_stmt (SLP_TREE_SCALAR_STMTS (node)[0]);
2163 vinfo = vinfo_for_stmt (STMT_VINFO_GROUP_FIRST_ELEMENT (vinfo));
2164 size = STMT_VINFO_GROUP_SIZE (vinfo);
2165 vectype = STMT_VINFO_VECTYPE (vinfo);
2166 if (! vect_load_lanes_supported (vectype, size)
2167 && ! vect_grouped_load_supported (vectype, size))
2168 return false;
2172 if (dump_enabled_p ())
2173 dump_printf_loc (MSG_NOTE, vect_location,
2174 "re-trying with SLP disabled\n");
2176 /* Roll back state appropriately. No SLP this time. */
2177 slp = false;
2178 /* Restore vectorization factor as it were without SLP. */
2179 LOOP_VINFO_VECT_FACTOR (loop_vinfo) = saved_vectorization_factor;
2180 /* Free the SLP instances. */
2181 FOR_EACH_VEC_ELT (LOOP_VINFO_SLP_INSTANCES (loop_vinfo), j, instance)
2182 vect_free_slp_instance (instance);
2183 LOOP_VINFO_SLP_INSTANCES (loop_vinfo).release ();
2184 /* Reset SLP type to loop_vect on all stmts. */
2185 for (i = 0; i < LOOP_VINFO_LOOP (loop_vinfo)->num_nodes; ++i)
2187 basic_block bb = LOOP_VINFO_BBS (loop_vinfo)[i];
2188 for (gimple_stmt_iterator si = gsi_start_bb (bb);
2189 !gsi_end_p (si); gsi_next (&si))
2191 stmt_vec_info stmt_info = vinfo_for_stmt (gsi_stmt (si));
2192 STMT_SLP_TYPE (stmt_info) = loop_vect;
2193 if (STMT_VINFO_IN_PATTERN_P (stmt_info))
2195 stmt_info = vinfo_for_stmt (STMT_VINFO_RELATED_STMT (stmt_info));
2196 STMT_SLP_TYPE (stmt_info) = loop_vect;
2197 for (gimple_stmt_iterator pi
2198 = gsi_start (STMT_VINFO_PATTERN_DEF_SEQ (stmt_info));
2199 !gsi_end_p (pi); gsi_next (&pi))
2201 gimple *pstmt = gsi_stmt (pi);
2202 STMT_SLP_TYPE (vinfo_for_stmt (pstmt)) = loop_vect;
2207 /* Free optimized alias test DDRS. */
2208 LOOP_VINFO_COMP_ALIAS_DDRS (loop_vinfo).release ();
2209 /* Reset target cost data. */
2210 destroy_cost_data (LOOP_VINFO_TARGET_COST_DATA (loop_vinfo));
2211 LOOP_VINFO_TARGET_COST_DATA (loop_vinfo)
2212 = init_cost (LOOP_VINFO_LOOP (loop_vinfo));
2213 /* Reset assorted flags. */
2214 LOOP_VINFO_PEELING_FOR_NITER (loop_vinfo) = false;
2215 LOOP_VINFO_PEELING_FOR_GAPS (loop_vinfo) = false;
2216 LOOP_VINFO_COST_MODEL_THRESHOLD (loop_vinfo) = 0;
2218 goto start_over;
2221 /* Function vect_analyze_loop.
2223 Apply a set of analyses on LOOP, and create a loop_vec_info struct
2224 for it. The different analyses will record information in the
2225 loop_vec_info struct. */
2226 loop_vec_info
2227 vect_analyze_loop (struct loop *loop)
2229 loop_vec_info loop_vinfo;
2230 unsigned int vector_sizes;
2232 /* Autodetect first vector size we try. */
2233 current_vector_size = 0;
2234 vector_sizes = targetm.vectorize.autovectorize_vector_sizes ();
2236 if (dump_enabled_p ())
2237 dump_printf_loc (MSG_NOTE, vect_location,
2238 "===== analyze_loop_nest =====\n");
2240 if (loop_outer (loop)
2241 && loop_vec_info_for_loop (loop_outer (loop))
2242 && LOOP_VINFO_VECTORIZABLE_P (loop_vec_info_for_loop (loop_outer (loop))))
2244 if (dump_enabled_p ())
2245 dump_printf_loc (MSG_NOTE, vect_location,
2246 "outer-loop already vectorized.\n");
2247 return NULL;
2250 while (1)
2252 /* Check the CFG characteristics of the loop (nesting, entry/exit). */
2253 loop_vinfo = vect_analyze_loop_form (loop);
2254 if (!loop_vinfo)
2256 if (dump_enabled_p ())
2257 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2258 "bad loop form.\n");
2259 return NULL;
2262 bool fatal = false;
2263 if (vect_analyze_loop_2 (loop_vinfo, fatal))
2265 LOOP_VINFO_VECTORIZABLE_P (loop_vinfo) = 1;
2267 return loop_vinfo;
2270 destroy_loop_vec_info (loop_vinfo, true);
2272 vector_sizes &= ~current_vector_size;
2273 if (fatal
2274 || vector_sizes == 0
2275 || current_vector_size == 0)
2276 return NULL;
2278 /* Try the next biggest vector size. */
2279 current_vector_size = 1 << floor_log2 (vector_sizes);
2280 if (dump_enabled_p ())
2281 dump_printf_loc (MSG_NOTE, vect_location,
2282 "***** Re-trying analysis with "
2283 "vector size %d\n", current_vector_size);
2288 /* Function reduction_code_for_scalar_code
2290 Input:
2291 CODE - tree_code of a reduction operations.
2293 Output:
2294 REDUC_CODE - the corresponding tree-code to be used to reduce the
2295 vector of partial results into a single scalar result, or ERROR_MARK
2296 if the operation is a supported reduction operation, but does not have
2297 such a tree-code.
2299 Return FALSE if CODE currently cannot be vectorized as reduction. */
2301 static bool
2302 reduction_code_for_scalar_code (enum tree_code code,
2303 enum tree_code *reduc_code)
2305 switch (code)
2307 case MAX_EXPR:
2308 *reduc_code = REDUC_MAX_EXPR;
2309 return true;
2311 case MIN_EXPR:
2312 *reduc_code = REDUC_MIN_EXPR;
2313 return true;
2315 case PLUS_EXPR:
2316 *reduc_code = REDUC_PLUS_EXPR;
2317 return true;
2319 case MULT_EXPR:
2320 case MINUS_EXPR:
2321 case BIT_IOR_EXPR:
2322 case BIT_XOR_EXPR:
2323 case BIT_AND_EXPR:
2324 *reduc_code = ERROR_MARK;
2325 return true;
2327 default:
2328 return false;
2333 /* Error reporting helper for vect_is_simple_reduction below. GIMPLE statement
2334 STMT is printed with a message MSG. */
2336 static void
2337 report_vect_op (int msg_type, gimple *stmt, const char *msg)
2339 dump_printf_loc (msg_type, vect_location, "%s", msg);
2340 dump_gimple_stmt (msg_type, TDF_SLIM, stmt, 0);
2341 dump_printf (msg_type, "\n");
2345 /* Detect SLP reduction of the form:
2347 #a1 = phi <a5, a0>
2348 a2 = operation (a1)
2349 a3 = operation (a2)
2350 a4 = operation (a3)
2351 a5 = operation (a4)
2353 #a = phi <a5>
2355 PHI is the reduction phi node (#a1 = phi <a5, a0> above)
2356 FIRST_STMT is the first reduction stmt in the chain
2357 (a2 = operation (a1)).
2359 Return TRUE if a reduction chain was detected. */
2361 static bool
2362 vect_is_slp_reduction (loop_vec_info loop_info, gimple *phi,
2363 gimple *first_stmt)
2365 struct loop *loop = (gimple_bb (phi))->loop_father;
2366 struct loop *vect_loop = LOOP_VINFO_LOOP (loop_info);
2367 enum tree_code code;
2368 gimple *current_stmt = NULL, *loop_use_stmt = NULL, *first, *next_stmt;
2369 stmt_vec_info use_stmt_info, current_stmt_info;
2370 tree lhs;
2371 imm_use_iterator imm_iter;
2372 use_operand_p use_p;
2373 int nloop_uses, size = 0, n_out_of_loop_uses;
2374 bool found = false;
2376 if (loop != vect_loop)
2377 return false;
2379 lhs = PHI_RESULT (phi);
2380 code = gimple_assign_rhs_code (first_stmt);
2381 while (1)
2383 nloop_uses = 0;
2384 n_out_of_loop_uses = 0;
2385 FOR_EACH_IMM_USE_FAST (use_p, imm_iter, lhs)
2387 gimple *use_stmt = USE_STMT (use_p);
2388 if (is_gimple_debug (use_stmt))
2389 continue;
2391 /* Check if we got back to the reduction phi. */
2392 if (use_stmt == phi)
2394 loop_use_stmt = use_stmt;
2395 found = true;
2396 break;
2399 if (flow_bb_inside_loop_p (loop, gimple_bb (use_stmt)))
2401 loop_use_stmt = use_stmt;
2402 nloop_uses++;
2404 else
2405 n_out_of_loop_uses++;
2407 /* There are can be either a single use in the loop or two uses in
2408 phi nodes. */
2409 if (nloop_uses > 1 || (n_out_of_loop_uses && nloop_uses))
2410 return false;
2413 if (found)
2414 break;
2416 /* We reached a statement with no loop uses. */
2417 if (nloop_uses == 0)
2418 return false;
2420 /* This is a loop exit phi, and we haven't reached the reduction phi. */
2421 if (gimple_code (loop_use_stmt) == GIMPLE_PHI)
2422 return false;
2424 if (!is_gimple_assign (loop_use_stmt)
2425 || code != gimple_assign_rhs_code (loop_use_stmt)
2426 || !flow_bb_inside_loop_p (loop, gimple_bb (loop_use_stmt)))
2427 return false;
2429 /* Insert USE_STMT into reduction chain. */
2430 use_stmt_info = vinfo_for_stmt (loop_use_stmt);
2431 if (current_stmt)
2433 current_stmt_info = vinfo_for_stmt (current_stmt);
2434 GROUP_NEXT_ELEMENT (current_stmt_info) = loop_use_stmt;
2435 GROUP_FIRST_ELEMENT (use_stmt_info)
2436 = GROUP_FIRST_ELEMENT (current_stmt_info);
2438 else
2439 GROUP_FIRST_ELEMENT (use_stmt_info) = loop_use_stmt;
2441 lhs = gimple_assign_lhs (loop_use_stmt);
2442 current_stmt = loop_use_stmt;
2443 size++;
2446 if (!found || loop_use_stmt != phi || size < 2)
2447 return false;
2449 /* Swap the operands, if needed, to make the reduction operand be the second
2450 operand. */
2451 lhs = PHI_RESULT (phi);
2452 next_stmt = GROUP_FIRST_ELEMENT (vinfo_for_stmt (current_stmt));
2453 while (next_stmt)
2455 if (gimple_assign_rhs2 (next_stmt) == lhs)
2457 tree op = gimple_assign_rhs1 (next_stmt);
2458 gimple *def_stmt = NULL;
2460 if (TREE_CODE (op) == SSA_NAME)
2461 def_stmt = SSA_NAME_DEF_STMT (op);
2463 /* Check that the other def is either defined in the loop
2464 ("vect_internal_def"), or it's an induction (defined by a
2465 loop-header phi-node). */
2466 if (def_stmt
2467 && gimple_bb (def_stmt)
2468 && flow_bb_inside_loop_p (loop, gimple_bb (def_stmt))
2469 && (is_gimple_assign (def_stmt)
2470 || is_gimple_call (def_stmt)
2471 || STMT_VINFO_DEF_TYPE (vinfo_for_stmt (def_stmt))
2472 == vect_induction_def
2473 || (gimple_code (def_stmt) == GIMPLE_PHI
2474 && STMT_VINFO_DEF_TYPE (vinfo_for_stmt (def_stmt))
2475 == vect_internal_def
2476 && !is_loop_header_bb_p (gimple_bb (def_stmt)))))
2478 lhs = gimple_assign_lhs (next_stmt);
2479 next_stmt = GROUP_NEXT_ELEMENT (vinfo_for_stmt (next_stmt));
2480 continue;
2483 return false;
2485 else
2487 tree op = gimple_assign_rhs2 (next_stmt);
2488 gimple *def_stmt = NULL;
2490 if (TREE_CODE (op) == SSA_NAME)
2491 def_stmt = SSA_NAME_DEF_STMT (op);
2493 /* Check that the other def is either defined in the loop
2494 ("vect_internal_def"), or it's an induction (defined by a
2495 loop-header phi-node). */
2496 if (def_stmt
2497 && gimple_bb (def_stmt)
2498 && flow_bb_inside_loop_p (loop, gimple_bb (def_stmt))
2499 && (is_gimple_assign (def_stmt)
2500 || is_gimple_call (def_stmt)
2501 || STMT_VINFO_DEF_TYPE (vinfo_for_stmt (def_stmt))
2502 == vect_induction_def
2503 || (gimple_code (def_stmt) == GIMPLE_PHI
2504 && STMT_VINFO_DEF_TYPE (vinfo_for_stmt (def_stmt))
2505 == vect_internal_def
2506 && !is_loop_header_bb_p (gimple_bb (def_stmt)))))
2508 if (dump_enabled_p ())
2510 dump_printf_loc (MSG_NOTE, vect_location, "swapping oprnds: ");
2511 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, next_stmt, 0);
2512 dump_printf (MSG_NOTE, "\n");
2515 swap_ssa_operands (next_stmt,
2516 gimple_assign_rhs1_ptr (next_stmt),
2517 gimple_assign_rhs2_ptr (next_stmt));
2518 update_stmt (next_stmt);
2520 if (CONSTANT_CLASS_P (gimple_assign_rhs1 (next_stmt)))
2521 LOOP_VINFO_OPERANDS_SWAPPED (loop_info) = true;
2523 else
2524 return false;
2527 lhs = gimple_assign_lhs (next_stmt);
2528 next_stmt = GROUP_NEXT_ELEMENT (vinfo_for_stmt (next_stmt));
2531 /* Save the chain for further analysis in SLP detection. */
2532 first = GROUP_FIRST_ELEMENT (vinfo_for_stmt (current_stmt));
2533 LOOP_VINFO_REDUCTION_CHAINS (loop_info).safe_push (first);
2534 GROUP_SIZE (vinfo_for_stmt (first)) = size;
2536 return true;
2540 /* Function vect_is_simple_reduction_1
2542 (1) Detect a cross-iteration def-use cycle that represents a simple
2543 reduction computation. We look for the following pattern:
2545 loop_header:
2546 a1 = phi < a0, a2 >
2547 a3 = ...
2548 a2 = operation (a3, a1)
2552 a3 = ...
2553 loop_header:
2554 a1 = phi < a0, a2 >
2555 a2 = operation (a3, a1)
2557 such that:
2558 1. operation is commutative and associative and it is safe to
2559 change the order of the computation (if CHECK_REDUCTION is true)
2560 2. no uses for a2 in the loop (a2 is used out of the loop)
2561 3. no uses of a1 in the loop besides the reduction operation
2562 4. no uses of a1 outside the loop.
2564 Conditions 1,4 are tested here.
2565 Conditions 2,3 are tested in vect_mark_stmts_to_be_vectorized.
2567 (2) Detect a cross-iteration def-use cycle in nested loops, i.e.,
2568 nested cycles, if CHECK_REDUCTION is false.
2570 (3) Detect cycles of phi nodes in outer-loop vectorization, i.e., double
2571 reductions:
2573 a1 = phi < a0, a2 >
2574 inner loop (def of a3)
2575 a2 = phi < a3 >
2577 (4) Detect condition expressions, ie:
2578 for (int i = 0; i < N; i++)
2579 if (a[i] < val)
2580 ret_val = a[i];
2584 static gimple *
2585 vect_is_simple_reduction (loop_vec_info loop_info, gimple *phi,
2586 bool check_reduction, bool *double_reduc,
2587 bool need_wrapping_integral_overflow,
2588 enum vect_reduction_type *v_reduc_type)
2590 struct loop *loop = (gimple_bb (phi))->loop_father;
2591 struct loop *vect_loop = LOOP_VINFO_LOOP (loop_info);
2592 edge latch_e = loop_latch_edge (loop);
2593 tree loop_arg = PHI_ARG_DEF_FROM_EDGE (phi, latch_e);
2594 gimple *def_stmt, *def1 = NULL, *def2 = NULL, *phi_use_stmt = NULL;
2595 enum tree_code orig_code, code;
2596 tree op1, op2, op3 = NULL_TREE, op4 = NULL_TREE;
2597 tree type;
2598 int nloop_uses;
2599 tree name;
2600 imm_use_iterator imm_iter;
2601 use_operand_p use_p;
2602 bool phi_def;
2604 *double_reduc = false;
2605 *v_reduc_type = TREE_CODE_REDUCTION;
2607 /* If CHECK_REDUCTION is true, we assume inner-most loop vectorization,
2608 otherwise, we assume outer loop vectorization. */
2609 gcc_assert ((check_reduction && loop == vect_loop)
2610 || (!check_reduction && flow_loop_nested_p (vect_loop, loop)));
2612 name = PHI_RESULT (phi);
2613 /* ??? If there are no uses of the PHI result the inner loop reduction
2614 won't be detected as possibly double-reduction by vectorizable_reduction
2615 because that tries to walk the PHI arg from the preheader edge which
2616 can be constant. See PR60382. */
2617 if (has_zero_uses (name))
2618 return NULL;
2619 nloop_uses = 0;
2620 FOR_EACH_IMM_USE_FAST (use_p, imm_iter, name)
2622 gimple *use_stmt = USE_STMT (use_p);
2623 if (is_gimple_debug (use_stmt))
2624 continue;
2626 if (!flow_bb_inside_loop_p (loop, gimple_bb (use_stmt)))
2628 if (dump_enabled_p ())
2629 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2630 "intermediate value used outside loop.\n");
2632 return NULL;
2635 nloop_uses++;
2636 if (nloop_uses > 1)
2638 if (dump_enabled_p ())
2639 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2640 "reduction used in loop.\n");
2641 return NULL;
2644 phi_use_stmt = use_stmt;
2647 if (TREE_CODE (loop_arg) != SSA_NAME)
2649 if (dump_enabled_p ())
2651 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2652 "reduction: not ssa_name: ");
2653 dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_SLIM, loop_arg);
2654 dump_printf (MSG_MISSED_OPTIMIZATION, "\n");
2656 return NULL;
2659 def_stmt = SSA_NAME_DEF_STMT (loop_arg);
2660 if (!def_stmt)
2662 if (dump_enabled_p ())
2663 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2664 "reduction: no def_stmt.\n");
2665 return NULL;
2668 if (!is_gimple_assign (def_stmt) && gimple_code (def_stmt) != GIMPLE_PHI)
2670 if (dump_enabled_p ())
2672 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, def_stmt, 0);
2673 dump_printf (MSG_NOTE, "\n");
2675 return NULL;
2678 if (is_gimple_assign (def_stmt))
2680 name = gimple_assign_lhs (def_stmt);
2681 phi_def = false;
2683 else
2685 name = PHI_RESULT (def_stmt);
2686 phi_def = true;
2689 nloop_uses = 0;
2690 FOR_EACH_IMM_USE_FAST (use_p, imm_iter, name)
2692 gimple *use_stmt = USE_STMT (use_p);
2693 if (is_gimple_debug (use_stmt))
2694 continue;
2695 if (flow_bb_inside_loop_p (loop, gimple_bb (use_stmt)))
2696 nloop_uses++;
2697 if (nloop_uses > 1)
2699 if (dump_enabled_p ())
2700 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2701 "reduction used in loop.\n");
2702 return NULL;
2706 /* If DEF_STMT is a phi node itself, we expect it to have a single argument
2707 defined in the inner loop. */
2708 if (phi_def)
2710 op1 = PHI_ARG_DEF (def_stmt, 0);
2712 if (gimple_phi_num_args (def_stmt) != 1
2713 || TREE_CODE (op1) != SSA_NAME)
2715 if (dump_enabled_p ())
2716 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2717 "unsupported phi node definition.\n");
2719 return NULL;
2722 def1 = SSA_NAME_DEF_STMT (op1);
2723 if (gimple_bb (def1)
2724 && flow_bb_inside_loop_p (loop, gimple_bb (def_stmt))
2725 && loop->inner
2726 && flow_bb_inside_loop_p (loop->inner, gimple_bb (def1))
2727 && is_gimple_assign (def1)
2728 && flow_bb_inside_loop_p (loop->inner, gimple_bb (phi_use_stmt)))
2730 if (dump_enabled_p ())
2731 report_vect_op (MSG_NOTE, def_stmt,
2732 "detected double reduction: ");
2734 *double_reduc = true;
2735 return def_stmt;
2738 return NULL;
2741 code = orig_code = gimple_assign_rhs_code (def_stmt);
2743 /* We can handle "res -= x[i]", which is non-associative by
2744 simply rewriting this into "res += -x[i]". Avoid changing
2745 gimple instruction for the first simple tests and only do this
2746 if we're allowed to change code at all. */
2747 if (code == MINUS_EXPR
2748 && (op1 = gimple_assign_rhs1 (def_stmt))
2749 && TREE_CODE (op1) == SSA_NAME
2750 && SSA_NAME_DEF_STMT (op1) == phi)
2751 code = PLUS_EXPR;
2753 if (code == COND_EXPR)
2755 if (check_reduction)
2756 *v_reduc_type = COND_REDUCTION;
2758 else if (!commutative_tree_code (code) || !associative_tree_code (code))
2760 if (dump_enabled_p ())
2761 report_vect_op (MSG_MISSED_OPTIMIZATION, def_stmt,
2762 "reduction: not commutative/associative: ");
2763 return NULL;
2766 if (get_gimple_rhs_class (code) != GIMPLE_BINARY_RHS)
2768 if (code != COND_EXPR)
2770 if (dump_enabled_p ())
2771 report_vect_op (MSG_MISSED_OPTIMIZATION, def_stmt,
2772 "reduction: not binary operation: ");
2774 return NULL;
2777 op3 = gimple_assign_rhs1 (def_stmt);
2778 if (COMPARISON_CLASS_P (op3))
2780 op4 = TREE_OPERAND (op3, 1);
2781 op3 = TREE_OPERAND (op3, 0);
2784 op1 = gimple_assign_rhs2 (def_stmt);
2785 op2 = gimple_assign_rhs3 (def_stmt);
2787 if (TREE_CODE (op1) != SSA_NAME && TREE_CODE (op2) != SSA_NAME)
2789 if (dump_enabled_p ())
2790 report_vect_op (MSG_MISSED_OPTIMIZATION, def_stmt,
2791 "reduction: uses not ssa_names: ");
2793 return NULL;
2796 else
2798 op1 = gimple_assign_rhs1 (def_stmt);
2799 op2 = gimple_assign_rhs2 (def_stmt);
2801 if (TREE_CODE (op1) != SSA_NAME && TREE_CODE (op2) != SSA_NAME)
2803 if (dump_enabled_p ())
2804 report_vect_op (MSG_MISSED_OPTIMIZATION, def_stmt,
2805 "reduction: uses not ssa_names: ");
2807 return NULL;
2811 type = TREE_TYPE (gimple_assign_lhs (def_stmt));
2812 if ((TREE_CODE (op1) == SSA_NAME
2813 && !types_compatible_p (type,TREE_TYPE (op1)))
2814 || (TREE_CODE (op2) == SSA_NAME
2815 && !types_compatible_p (type, TREE_TYPE (op2)))
2816 || (op3 && TREE_CODE (op3) == SSA_NAME
2817 && !types_compatible_p (type, TREE_TYPE (op3)))
2818 || (op4 && TREE_CODE (op4) == SSA_NAME
2819 && !types_compatible_p (type, TREE_TYPE (op4))))
2821 if (dump_enabled_p ())
2823 dump_printf_loc (MSG_NOTE, vect_location,
2824 "reduction: multiple types: operation type: ");
2825 dump_generic_expr (MSG_NOTE, TDF_SLIM, type);
2826 dump_printf (MSG_NOTE, ", operands types: ");
2827 dump_generic_expr (MSG_NOTE, TDF_SLIM,
2828 TREE_TYPE (op1));
2829 dump_printf (MSG_NOTE, ",");
2830 dump_generic_expr (MSG_NOTE, TDF_SLIM,
2831 TREE_TYPE (op2));
2832 if (op3)
2834 dump_printf (MSG_NOTE, ",");
2835 dump_generic_expr (MSG_NOTE, TDF_SLIM,
2836 TREE_TYPE (op3));
2839 if (op4)
2841 dump_printf (MSG_NOTE, ",");
2842 dump_generic_expr (MSG_NOTE, TDF_SLIM,
2843 TREE_TYPE (op4));
2845 dump_printf (MSG_NOTE, "\n");
2848 return NULL;
2851 /* Check that it's ok to change the order of the computation.
2852 Generally, when vectorizing a reduction we change the order of the
2853 computation. This may change the behavior of the program in some
2854 cases, so we need to check that this is ok. One exception is when
2855 vectorizing an outer-loop: the inner-loop is executed sequentially,
2856 and therefore vectorizing reductions in the inner-loop during
2857 outer-loop vectorization is safe. */
2859 if (*v_reduc_type != COND_REDUCTION
2860 && check_reduction)
2862 /* CHECKME: check for !flag_finite_math_only too? */
2863 if (SCALAR_FLOAT_TYPE_P (type) && !flag_associative_math)
2865 /* Changing the order of operations changes the semantics. */
2866 if (dump_enabled_p ())
2867 report_vect_op (MSG_MISSED_OPTIMIZATION, def_stmt,
2868 "reduction: unsafe fp math optimization: ");
2869 return NULL;
2871 else if (INTEGRAL_TYPE_P (type))
2873 if (!operation_no_trapping_overflow (type, code))
2875 /* Changing the order of operations changes the semantics. */
2876 if (dump_enabled_p ())
2877 report_vect_op (MSG_MISSED_OPTIMIZATION, def_stmt,
2878 "reduction: unsafe int math optimization"
2879 " (overflow traps): ");
2880 return NULL;
2882 if (need_wrapping_integral_overflow
2883 && !TYPE_OVERFLOW_WRAPS (type)
2884 && operation_can_overflow (code))
2886 /* Changing the order of operations changes the semantics. */
2887 if (dump_enabled_p ())
2888 report_vect_op (MSG_MISSED_OPTIMIZATION, def_stmt,
2889 "reduction: unsafe int math optimization"
2890 " (overflow doesn't wrap): ");
2891 return NULL;
2894 else if (SAT_FIXED_POINT_TYPE_P (type))
2896 /* Changing the order of operations changes the semantics. */
2897 if (dump_enabled_p ())
2898 report_vect_op (MSG_MISSED_OPTIMIZATION, def_stmt,
2899 "reduction: unsafe fixed-point math optimization: ");
2900 return NULL;
2904 /* Reduction is safe. We're dealing with one of the following:
2905 1) integer arithmetic and no trapv
2906 2) floating point arithmetic, and special flags permit this optimization
2907 3) nested cycle (i.e., outer loop vectorization). */
2908 if (TREE_CODE (op1) == SSA_NAME)
2909 def1 = SSA_NAME_DEF_STMT (op1);
2911 if (TREE_CODE (op2) == SSA_NAME)
2912 def2 = SSA_NAME_DEF_STMT (op2);
2914 if (code != COND_EXPR
2915 && ((!def1 || gimple_nop_p (def1)) && (!def2 || gimple_nop_p (def2))))
2917 if (dump_enabled_p ())
2918 report_vect_op (MSG_NOTE, def_stmt, "reduction: no defs for operands: ");
2919 return NULL;
2922 /* Check that one def is the reduction def, defined by PHI,
2923 the other def is either defined in the loop ("vect_internal_def"),
2924 or it's an induction (defined by a loop-header phi-node). */
2926 if (def2 && def2 == phi
2927 && (code == COND_EXPR
2928 || !def1 || gimple_nop_p (def1)
2929 || !flow_bb_inside_loop_p (loop, gimple_bb (def1))
2930 || (def1 && flow_bb_inside_loop_p (loop, gimple_bb (def1))
2931 && (is_gimple_assign (def1)
2932 || is_gimple_call (def1)
2933 || STMT_VINFO_DEF_TYPE (vinfo_for_stmt (def1))
2934 == vect_induction_def
2935 || (gimple_code (def1) == GIMPLE_PHI
2936 && STMT_VINFO_DEF_TYPE (vinfo_for_stmt (def1))
2937 == vect_internal_def
2938 && !is_loop_header_bb_p (gimple_bb (def1)))))))
2940 if (dump_enabled_p ())
2941 report_vect_op (MSG_NOTE, def_stmt, "detected reduction: ");
2942 return def_stmt;
2945 if (def1 && def1 == phi
2946 && (code == COND_EXPR
2947 || !def2 || gimple_nop_p (def2)
2948 || !flow_bb_inside_loop_p (loop, gimple_bb (def2))
2949 || (def2 && flow_bb_inside_loop_p (loop, gimple_bb (def2))
2950 && (is_gimple_assign (def2)
2951 || is_gimple_call (def2)
2952 || STMT_VINFO_DEF_TYPE (vinfo_for_stmt (def2))
2953 == vect_induction_def
2954 || (gimple_code (def2) == GIMPLE_PHI
2955 && STMT_VINFO_DEF_TYPE (vinfo_for_stmt (def2))
2956 == vect_internal_def
2957 && !is_loop_header_bb_p (gimple_bb (def2)))))))
2959 if (check_reduction
2960 && orig_code != MINUS_EXPR)
2962 if (code == COND_EXPR)
2964 /* No current known use where this case would be useful. */
2965 if (dump_enabled_p ())
2966 report_vect_op (MSG_NOTE, def_stmt,
2967 "detected reduction: cannot currently swap "
2968 "operands for cond_expr");
2969 return NULL;
2972 /* Swap operands (just for simplicity - so that the rest of the code
2973 can assume that the reduction variable is always the last (second)
2974 argument). */
2975 if (dump_enabled_p ())
2976 report_vect_op (MSG_NOTE, def_stmt,
2977 "detected reduction: need to swap operands: ");
2979 swap_ssa_operands (def_stmt, gimple_assign_rhs1_ptr (def_stmt),
2980 gimple_assign_rhs2_ptr (def_stmt));
2982 if (CONSTANT_CLASS_P (gimple_assign_rhs1 (def_stmt)))
2983 LOOP_VINFO_OPERANDS_SWAPPED (loop_info) = true;
2985 else
2987 if (dump_enabled_p ())
2988 report_vect_op (MSG_NOTE, def_stmt, "detected reduction: ");
2991 return def_stmt;
2994 /* Try to find SLP reduction chain. */
2995 if (check_reduction && code != COND_EXPR
2996 && vect_is_slp_reduction (loop_info, phi, def_stmt))
2998 if (dump_enabled_p ())
2999 report_vect_op (MSG_NOTE, def_stmt,
3000 "reduction: detected reduction chain: ");
3002 return def_stmt;
3005 if (dump_enabled_p ())
3006 report_vect_op (MSG_MISSED_OPTIMIZATION, def_stmt,
3007 "reduction: unknown pattern: ");
3009 return NULL;
3012 /* Wrapper around vect_is_simple_reduction_1, which will modify code
3013 in-place if it enables detection of more reductions. Arguments
3014 as there. */
3016 gimple *
3017 vect_force_simple_reduction (loop_vec_info loop_info, gimple *phi,
3018 bool check_reduction, bool *double_reduc,
3019 bool need_wrapping_integral_overflow)
3021 enum vect_reduction_type v_reduc_type;
3022 return vect_is_simple_reduction (loop_info, phi, check_reduction,
3023 double_reduc,
3024 need_wrapping_integral_overflow,
3025 &v_reduc_type);
3028 /* Calculate cost of peeling the loop PEEL_ITERS_PROLOGUE times. */
3030 vect_get_known_peeling_cost (loop_vec_info loop_vinfo, int peel_iters_prologue,
3031 int *peel_iters_epilogue,
3032 stmt_vector_for_cost *scalar_cost_vec,
3033 stmt_vector_for_cost *prologue_cost_vec,
3034 stmt_vector_for_cost *epilogue_cost_vec)
3036 int retval = 0;
3037 int vf = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
3039 if (!LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo))
3041 *peel_iters_epilogue = vf/2;
3042 if (dump_enabled_p ())
3043 dump_printf_loc (MSG_NOTE, vect_location,
3044 "cost model: epilogue peel iters set to vf/2 "
3045 "because loop iterations are unknown .\n");
3047 /* If peeled iterations are known but number of scalar loop
3048 iterations are unknown, count a taken branch per peeled loop. */
3049 retval = record_stmt_cost (prologue_cost_vec, 1, cond_branch_taken,
3050 NULL, 0, vect_prologue);
3051 retval = record_stmt_cost (prologue_cost_vec, 1, cond_branch_taken,
3052 NULL, 0, vect_epilogue);
3054 else
3056 int niters = LOOP_VINFO_INT_NITERS (loop_vinfo);
3057 peel_iters_prologue = niters < peel_iters_prologue ?
3058 niters : peel_iters_prologue;
3059 *peel_iters_epilogue = (niters - peel_iters_prologue) % vf;
3060 /* If we need to peel for gaps, but no peeling is required, we have to
3061 peel VF iterations. */
3062 if (LOOP_VINFO_PEELING_FOR_GAPS (loop_vinfo) && !*peel_iters_epilogue)
3063 *peel_iters_epilogue = vf;
3066 stmt_info_for_cost *si;
3067 int j;
3068 if (peel_iters_prologue)
3069 FOR_EACH_VEC_ELT (*scalar_cost_vec, j, si)
3070 retval += record_stmt_cost (prologue_cost_vec,
3071 si->count * peel_iters_prologue,
3072 si->kind, NULL, si->misalign,
3073 vect_prologue);
3074 if (*peel_iters_epilogue)
3075 FOR_EACH_VEC_ELT (*scalar_cost_vec, j, si)
3076 retval += record_stmt_cost (epilogue_cost_vec,
3077 si->count * *peel_iters_epilogue,
3078 si->kind, NULL, si->misalign,
3079 vect_epilogue);
3081 return retval;
3084 /* Function vect_estimate_min_profitable_iters
3086 Return the number of iterations required for the vector version of the
3087 loop to be profitable relative to the cost of the scalar version of the
3088 loop. */
3090 static void
3091 vect_estimate_min_profitable_iters (loop_vec_info loop_vinfo,
3092 int *ret_min_profitable_niters,
3093 int *ret_min_profitable_estimate)
3095 int min_profitable_iters;
3096 int min_profitable_estimate;
3097 int peel_iters_prologue;
3098 int peel_iters_epilogue;
3099 unsigned vec_inside_cost = 0;
3100 int vec_outside_cost = 0;
3101 unsigned vec_prologue_cost = 0;
3102 unsigned vec_epilogue_cost = 0;
3103 int scalar_single_iter_cost = 0;
3104 int scalar_outside_cost = 0;
3105 int vf = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
3106 int npeel = LOOP_VINFO_PEELING_FOR_ALIGNMENT (loop_vinfo);
3107 void *target_cost_data = LOOP_VINFO_TARGET_COST_DATA (loop_vinfo);
3109 /* Cost model disabled. */
3110 if (unlimited_cost_model (LOOP_VINFO_LOOP (loop_vinfo)))
3112 dump_printf_loc (MSG_NOTE, vect_location, "cost model disabled.\n");
3113 *ret_min_profitable_niters = 0;
3114 *ret_min_profitable_estimate = 0;
3115 return;
3118 /* Requires loop versioning tests to handle misalignment. */
3119 if (LOOP_REQUIRES_VERSIONING_FOR_ALIGNMENT (loop_vinfo))
3121 /* FIXME: Make cost depend on complexity of individual check. */
3122 unsigned len = LOOP_VINFO_MAY_MISALIGN_STMTS (loop_vinfo).length ();
3123 (void) add_stmt_cost (target_cost_data, len, vector_stmt, NULL, 0,
3124 vect_prologue);
3125 dump_printf (MSG_NOTE,
3126 "cost model: Adding cost of checks for loop "
3127 "versioning to treat misalignment.\n");
3130 /* Requires loop versioning with alias checks. */
3131 if (LOOP_REQUIRES_VERSIONING_FOR_ALIAS (loop_vinfo))
3133 /* FIXME: Make cost depend on complexity of individual check. */
3134 unsigned len = LOOP_VINFO_COMP_ALIAS_DDRS (loop_vinfo).length ();
3135 (void) add_stmt_cost (target_cost_data, len, vector_stmt, NULL, 0,
3136 vect_prologue);
3137 dump_printf (MSG_NOTE,
3138 "cost model: Adding cost of checks for loop "
3139 "versioning aliasing.\n");
3142 if (LOOP_REQUIRES_VERSIONING_FOR_ALIGNMENT (loop_vinfo)
3143 || LOOP_REQUIRES_VERSIONING_FOR_ALIAS (loop_vinfo))
3144 (void) add_stmt_cost (target_cost_data, 1, cond_branch_taken, NULL, 0,
3145 vect_prologue);
3147 /* Count statements in scalar loop. Using this as scalar cost for a single
3148 iteration for now.
3150 TODO: Add outer loop support.
3152 TODO: Consider assigning different costs to different scalar
3153 statements. */
3155 scalar_single_iter_cost
3156 = LOOP_VINFO_SINGLE_SCALAR_ITERATION_COST (loop_vinfo);
3158 /* Add additional cost for the peeled instructions in prologue and epilogue
3159 loop.
3161 FORNOW: If we don't know the value of peel_iters for prologue or epilogue
3162 at compile-time - we assume it's vf/2 (the worst would be vf-1).
3164 TODO: Build an expression that represents peel_iters for prologue and
3165 epilogue to be used in a run-time test. */
3167 if (npeel < 0)
3169 peel_iters_prologue = vf/2;
3170 dump_printf (MSG_NOTE, "cost model: "
3171 "prologue peel iters set to vf/2.\n");
3173 /* If peeling for alignment is unknown, loop bound of main loop becomes
3174 unknown. */
3175 peel_iters_epilogue = vf/2;
3176 dump_printf (MSG_NOTE, "cost model: "
3177 "epilogue peel iters set to vf/2 because "
3178 "peeling for alignment is unknown.\n");
3180 /* If peeled iterations are unknown, count a taken branch and a not taken
3181 branch per peeled loop. Even if scalar loop iterations are known,
3182 vector iterations are not known since peeled prologue iterations are
3183 not known. Hence guards remain the same. */
3184 (void) add_stmt_cost (target_cost_data, 1, cond_branch_taken,
3185 NULL, 0, vect_prologue);
3186 (void) add_stmt_cost (target_cost_data, 1, cond_branch_not_taken,
3187 NULL, 0, vect_prologue);
3188 (void) add_stmt_cost (target_cost_data, 1, cond_branch_taken,
3189 NULL, 0, vect_epilogue);
3190 (void) add_stmt_cost (target_cost_data, 1, cond_branch_not_taken,
3191 NULL, 0, vect_epilogue);
3192 stmt_info_for_cost *si;
3193 int j;
3194 FOR_EACH_VEC_ELT (LOOP_VINFO_SCALAR_ITERATION_COST (loop_vinfo), j, si)
3196 struct _stmt_vec_info *stmt_info
3197 = si->stmt ? vinfo_for_stmt (si->stmt) : NULL;
3198 (void) add_stmt_cost (target_cost_data,
3199 si->count * peel_iters_prologue,
3200 si->kind, stmt_info, si->misalign,
3201 vect_prologue);
3202 (void) add_stmt_cost (target_cost_data,
3203 si->count * peel_iters_epilogue,
3204 si->kind, stmt_info, si->misalign,
3205 vect_epilogue);
3208 else
3210 stmt_vector_for_cost prologue_cost_vec, epilogue_cost_vec;
3211 stmt_info_for_cost *si;
3212 int j;
3213 void *data = LOOP_VINFO_TARGET_COST_DATA (loop_vinfo);
3215 prologue_cost_vec.create (2);
3216 epilogue_cost_vec.create (2);
3217 peel_iters_prologue = npeel;
3219 (void) vect_get_known_peeling_cost (loop_vinfo, peel_iters_prologue,
3220 &peel_iters_epilogue,
3221 &LOOP_VINFO_SCALAR_ITERATION_COST
3222 (loop_vinfo),
3223 &prologue_cost_vec,
3224 &epilogue_cost_vec);
3226 FOR_EACH_VEC_ELT (prologue_cost_vec, j, si)
3228 struct _stmt_vec_info *stmt_info
3229 = si->stmt ? vinfo_for_stmt (si->stmt) : NULL;
3230 (void) add_stmt_cost (data, si->count, si->kind, stmt_info,
3231 si->misalign, vect_prologue);
3234 FOR_EACH_VEC_ELT (epilogue_cost_vec, j, si)
3236 struct _stmt_vec_info *stmt_info
3237 = si->stmt ? vinfo_for_stmt (si->stmt) : NULL;
3238 (void) add_stmt_cost (data, si->count, si->kind, stmt_info,
3239 si->misalign, vect_epilogue);
3242 prologue_cost_vec.release ();
3243 epilogue_cost_vec.release ();
3246 /* FORNOW: The scalar outside cost is incremented in one of the
3247 following ways:
3249 1. The vectorizer checks for alignment and aliasing and generates
3250 a condition that allows dynamic vectorization. A cost model
3251 check is ANDED with the versioning condition. Hence scalar code
3252 path now has the added cost of the versioning check.
3254 if (cost > th & versioning_check)
3255 jmp to vector code
3257 Hence run-time scalar is incremented by not-taken branch cost.
3259 2. The vectorizer then checks if a prologue is required. If the
3260 cost model check was not done before during versioning, it has to
3261 be done before the prologue check.
3263 if (cost <= th)
3264 prologue = scalar_iters
3265 if (prologue == 0)
3266 jmp to vector code
3267 else
3268 execute prologue
3269 if (prologue == num_iters)
3270 go to exit
3272 Hence the run-time scalar cost is incremented by a taken branch,
3273 plus a not-taken branch, plus a taken branch cost.
3275 3. The vectorizer then checks if an epilogue is required. If the
3276 cost model check was not done before during prologue check, it
3277 has to be done with the epilogue check.
3279 if (prologue == 0)
3280 jmp to vector code
3281 else
3282 execute prologue
3283 if (prologue == num_iters)
3284 go to exit
3285 vector code:
3286 if ((cost <= th) | (scalar_iters-prologue-epilogue == 0))
3287 jmp to epilogue
3289 Hence the run-time scalar cost should be incremented by 2 taken
3290 branches.
3292 TODO: The back end may reorder the BBS's differently and reverse
3293 conditions/branch directions. Change the estimates below to
3294 something more reasonable. */
3296 /* If the number of iterations is known and we do not do versioning, we can
3297 decide whether to vectorize at compile time. Hence the scalar version
3298 do not carry cost model guard costs. */
3299 if (!LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo)
3300 || LOOP_REQUIRES_VERSIONING_FOR_ALIGNMENT (loop_vinfo)
3301 || LOOP_REQUIRES_VERSIONING_FOR_ALIAS (loop_vinfo))
3303 /* Cost model check occurs at versioning. */
3304 if (LOOP_REQUIRES_VERSIONING_FOR_ALIGNMENT (loop_vinfo)
3305 || LOOP_REQUIRES_VERSIONING_FOR_ALIAS (loop_vinfo))
3306 scalar_outside_cost += vect_get_stmt_cost (cond_branch_not_taken);
3307 else
3309 /* Cost model check occurs at prologue generation. */
3310 if (LOOP_VINFO_PEELING_FOR_ALIGNMENT (loop_vinfo) < 0)
3311 scalar_outside_cost += 2 * vect_get_stmt_cost (cond_branch_taken)
3312 + vect_get_stmt_cost (cond_branch_not_taken);
3313 /* Cost model check occurs at epilogue generation. */
3314 else
3315 scalar_outside_cost += 2 * vect_get_stmt_cost (cond_branch_taken);
3319 /* Complete the target-specific cost calculations. */
3320 finish_cost (LOOP_VINFO_TARGET_COST_DATA (loop_vinfo), &vec_prologue_cost,
3321 &vec_inside_cost, &vec_epilogue_cost);
3323 vec_outside_cost = (int)(vec_prologue_cost + vec_epilogue_cost);
3325 if (dump_enabled_p ())
3327 dump_printf_loc (MSG_NOTE, vect_location, "Cost model analysis: \n");
3328 dump_printf (MSG_NOTE, " Vector inside of loop cost: %d\n",
3329 vec_inside_cost);
3330 dump_printf (MSG_NOTE, " Vector prologue cost: %d\n",
3331 vec_prologue_cost);
3332 dump_printf (MSG_NOTE, " Vector epilogue cost: %d\n",
3333 vec_epilogue_cost);
3334 dump_printf (MSG_NOTE, " Scalar iteration cost: %d\n",
3335 scalar_single_iter_cost);
3336 dump_printf (MSG_NOTE, " Scalar outside cost: %d\n",
3337 scalar_outside_cost);
3338 dump_printf (MSG_NOTE, " Vector outside cost: %d\n",
3339 vec_outside_cost);
3340 dump_printf (MSG_NOTE, " prologue iterations: %d\n",
3341 peel_iters_prologue);
3342 dump_printf (MSG_NOTE, " epilogue iterations: %d\n",
3343 peel_iters_epilogue);
3346 /* Calculate number of iterations required to make the vector version
3347 profitable, relative to the loop bodies only. The following condition
3348 must hold true:
3349 SIC * niters + SOC > VIC * ((niters-PL_ITERS-EP_ITERS)/VF) + VOC
3350 where
3351 SIC = scalar iteration cost, VIC = vector iteration cost,
3352 VOC = vector outside cost, VF = vectorization factor,
3353 PL_ITERS = prologue iterations, EP_ITERS= epilogue iterations
3354 SOC = scalar outside cost for run time cost model check. */
3356 if ((scalar_single_iter_cost * vf) > (int) vec_inside_cost)
3358 if (vec_outside_cost <= 0)
3359 min_profitable_iters = 1;
3360 else
3362 min_profitable_iters = ((vec_outside_cost - scalar_outside_cost) * vf
3363 - vec_inside_cost * peel_iters_prologue
3364 - vec_inside_cost * peel_iters_epilogue)
3365 / ((scalar_single_iter_cost * vf)
3366 - vec_inside_cost);
3368 if ((scalar_single_iter_cost * vf * min_profitable_iters)
3369 <= (((int) vec_inside_cost * min_profitable_iters)
3370 + (((int) vec_outside_cost - scalar_outside_cost) * vf)))
3371 min_profitable_iters++;
3374 /* vector version will never be profitable. */
3375 else
3377 if (LOOP_VINFO_LOOP (loop_vinfo)->force_vectorize)
3378 warning_at (vect_location, OPT_Wopenmp_simd, "vectorization "
3379 "did not happen for a simd loop");
3381 if (dump_enabled_p ())
3382 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
3383 "cost model: the vector iteration cost = %d "
3384 "divided by the scalar iteration cost = %d "
3385 "is greater or equal to the vectorization factor = %d"
3386 ".\n",
3387 vec_inside_cost, scalar_single_iter_cost, vf);
3388 *ret_min_profitable_niters = -1;
3389 *ret_min_profitable_estimate = -1;
3390 return;
3393 dump_printf (MSG_NOTE,
3394 " Calculated minimum iters for profitability: %d\n",
3395 min_profitable_iters);
3397 min_profitable_iters =
3398 min_profitable_iters < vf ? vf : min_profitable_iters;
3400 /* Because the condition we create is:
3401 if (niters <= min_profitable_iters)
3402 then skip the vectorized loop. */
3403 min_profitable_iters--;
3405 if (dump_enabled_p ())
3406 dump_printf_loc (MSG_NOTE, vect_location,
3407 " Runtime profitability threshold = %d\n",
3408 min_profitable_iters);
3410 *ret_min_profitable_niters = min_profitable_iters;
3412 /* Calculate number of iterations required to make the vector version
3413 profitable, relative to the loop bodies only.
3415 Non-vectorized variant is SIC * niters and it must win over vector
3416 variant on the expected loop trip count. The following condition must hold true:
3417 SIC * niters > VIC * ((niters-PL_ITERS-EP_ITERS)/VF) + VOC + SOC */
3419 if (vec_outside_cost <= 0)
3420 min_profitable_estimate = 1;
3421 else
3423 min_profitable_estimate = ((vec_outside_cost + scalar_outside_cost) * vf
3424 - vec_inside_cost * peel_iters_prologue
3425 - vec_inside_cost * peel_iters_epilogue)
3426 / ((scalar_single_iter_cost * vf)
3427 - vec_inside_cost);
3429 min_profitable_estimate --;
3430 min_profitable_estimate = MAX (min_profitable_estimate, min_profitable_iters);
3431 if (dump_enabled_p ())
3432 dump_printf_loc (MSG_NOTE, vect_location,
3433 " Static estimate profitability threshold = %d\n",
3434 min_profitable_iters);
3436 *ret_min_profitable_estimate = min_profitable_estimate;
3439 /* Writes into SEL a mask for a vec_perm, equivalent to a vec_shr by OFFSET
3440 vector elements (not bits) for a vector of mode MODE. */
3441 static void
3442 calc_vec_perm_mask_for_shift (enum machine_mode mode, unsigned int offset,
3443 unsigned char *sel)
3445 unsigned int i, nelt = GET_MODE_NUNITS (mode);
3447 for (i = 0; i < nelt; i++)
3448 sel[i] = (i + offset) & (2*nelt - 1);
3451 /* Checks whether the target supports whole-vector shifts for vectors of mode
3452 MODE. This is the case if _either_ the platform handles vec_shr_optab, _or_
3453 it supports vec_perm_const with masks for all necessary shift amounts. */
3454 static bool
3455 have_whole_vector_shift (enum machine_mode mode)
3457 if (optab_handler (vec_shr_optab, mode) != CODE_FOR_nothing)
3458 return true;
3460 if (direct_optab_handler (vec_perm_const_optab, mode) == CODE_FOR_nothing)
3461 return false;
3463 unsigned int i, nelt = GET_MODE_NUNITS (mode);
3464 unsigned char *sel = XALLOCAVEC (unsigned char, nelt);
3466 for (i = nelt/2; i >= 1; i/=2)
3468 calc_vec_perm_mask_for_shift (mode, i, sel);
3469 if (!can_vec_perm_p (mode, false, sel))
3470 return false;
3472 return true;
3475 /* Return the reduction operand (with index REDUC_INDEX) of STMT. */
3477 static tree
3478 get_reduction_op (gimple *stmt, int reduc_index)
3480 switch (get_gimple_rhs_class (gimple_assign_rhs_code (stmt)))
3482 case GIMPLE_SINGLE_RHS:
3483 gcc_assert (TREE_OPERAND_LENGTH (gimple_assign_rhs1 (stmt))
3484 == ternary_op);
3485 return TREE_OPERAND (gimple_assign_rhs1 (stmt), reduc_index);
3486 case GIMPLE_UNARY_RHS:
3487 return gimple_assign_rhs1 (stmt);
3488 case GIMPLE_BINARY_RHS:
3489 return (reduc_index
3490 ? gimple_assign_rhs2 (stmt) : gimple_assign_rhs1 (stmt));
3491 case GIMPLE_TERNARY_RHS:
3492 return gimple_op (stmt, reduc_index + 1);
3493 default:
3494 gcc_unreachable ();
3498 /* TODO: Close dependency between vect_model_*_cost and vectorizable_*
3499 functions. Design better to avoid maintenance issues. */
3501 /* Function vect_model_reduction_cost.
3503 Models cost for a reduction operation, including the vector ops
3504 generated within the strip-mine loop, the initial definition before
3505 the loop, and the epilogue code that must be generated. */
3507 static bool
3508 vect_model_reduction_cost (stmt_vec_info stmt_info, enum tree_code reduc_code,
3509 int ncopies, int reduc_index)
3511 int prologue_cost = 0, epilogue_cost = 0;
3512 enum tree_code code;
3513 optab optab;
3514 tree vectype;
3515 gimple *stmt, *orig_stmt;
3516 tree reduction_op;
3517 machine_mode mode;
3518 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
3519 struct loop *loop = NULL;
3520 void *target_cost_data;
3522 if (loop_vinfo)
3524 loop = LOOP_VINFO_LOOP (loop_vinfo);
3525 target_cost_data = LOOP_VINFO_TARGET_COST_DATA (loop_vinfo);
3527 else
3528 target_cost_data = BB_VINFO_TARGET_COST_DATA (STMT_VINFO_BB_VINFO (stmt_info));
3530 /* Condition reductions generate two reductions in the loop. */
3531 if (STMT_VINFO_VEC_REDUCTION_TYPE (stmt_info) == COND_REDUCTION)
3532 ncopies *= 2;
3534 /* Cost of reduction op inside loop. */
3535 unsigned inside_cost = add_stmt_cost (target_cost_data, ncopies, vector_stmt,
3536 stmt_info, 0, vect_body);
3537 stmt = STMT_VINFO_STMT (stmt_info);
3539 reduction_op = get_reduction_op (stmt, reduc_index);
3541 vectype = get_vectype_for_scalar_type (TREE_TYPE (reduction_op));
3542 if (!vectype)
3544 if (dump_enabled_p ())
3546 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
3547 "unsupported data-type ");
3548 dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_SLIM,
3549 TREE_TYPE (reduction_op));
3550 dump_printf (MSG_MISSED_OPTIMIZATION, "\n");
3552 return false;
3555 mode = TYPE_MODE (vectype);
3556 orig_stmt = STMT_VINFO_RELATED_STMT (stmt_info);
3558 if (!orig_stmt)
3559 orig_stmt = STMT_VINFO_STMT (stmt_info);
3561 code = gimple_assign_rhs_code (orig_stmt);
3563 /* Add in cost for initial definition.
3564 For cond reduction we have four vectors: initial index, step, initial
3565 result of the data reduction, initial value of the index reduction. */
3566 int prologue_stmts = STMT_VINFO_VEC_REDUCTION_TYPE (stmt_info)
3567 == COND_REDUCTION ? 4 : 1;
3568 prologue_cost += add_stmt_cost (target_cost_data, prologue_stmts,
3569 scalar_to_vec, stmt_info, 0,
3570 vect_prologue);
3572 /* Determine cost of epilogue code.
3574 We have a reduction operator that will reduce the vector in one statement.
3575 Also requires scalar extract. */
3577 if (!loop || !nested_in_vect_loop_p (loop, orig_stmt))
3579 if (reduc_code != ERROR_MARK)
3581 if (STMT_VINFO_VEC_REDUCTION_TYPE (stmt_info) == COND_REDUCTION)
3583 /* An EQ stmt and an COND_EXPR stmt. */
3584 epilogue_cost += add_stmt_cost (target_cost_data, 2,
3585 vector_stmt, stmt_info, 0,
3586 vect_epilogue);
3587 /* Reduction of the max index and a reduction of the found
3588 values. */
3589 epilogue_cost += add_stmt_cost (target_cost_data, 2,
3590 vec_to_scalar, stmt_info, 0,
3591 vect_epilogue);
3592 /* A broadcast of the max value. */
3593 epilogue_cost += add_stmt_cost (target_cost_data, 1,
3594 scalar_to_vec, stmt_info, 0,
3595 vect_epilogue);
3597 else
3599 epilogue_cost += add_stmt_cost (target_cost_data, 1, vector_stmt,
3600 stmt_info, 0, vect_epilogue);
3601 epilogue_cost += add_stmt_cost (target_cost_data, 1,
3602 vec_to_scalar, stmt_info, 0,
3603 vect_epilogue);
3606 else
3608 int vec_size_in_bits = tree_to_uhwi (TYPE_SIZE (vectype));
3609 tree bitsize =
3610 TYPE_SIZE (TREE_TYPE (gimple_assign_lhs (orig_stmt)));
3611 int element_bitsize = tree_to_uhwi (bitsize);
3612 int nelements = vec_size_in_bits / element_bitsize;
3614 optab = optab_for_tree_code (code, vectype, optab_default);
3616 /* We have a whole vector shift available. */
3617 if (VECTOR_MODE_P (mode)
3618 && optab_handler (optab, mode) != CODE_FOR_nothing
3619 && have_whole_vector_shift (mode))
3621 /* Final reduction via vector shifts and the reduction operator.
3622 Also requires scalar extract. */
3623 epilogue_cost += add_stmt_cost (target_cost_data,
3624 exact_log2 (nelements) * 2,
3625 vector_stmt, stmt_info, 0,
3626 vect_epilogue);
3627 epilogue_cost += add_stmt_cost (target_cost_data, 1,
3628 vec_to_scalar, stmt_info, 0,
3629 vect_epilogue);
3631 else
3632 /* Use extracts and reduction op for final reduction. For N
3633 elements, we have N extracts and N-1 reduction ops. */
3634 epilogue_cost += add_stmt_cost (target_cost_data,
3635 nelements + nelements - 1,
3636 vector_stmt, stmt_info, 0,
3637 vect_epilogue);
3641 if (dump_enabled_p ())
3642 dump_printf (MSG_NOTE,
3643 "vect_model_reduction_cost: inside_cost = %d, "
3644 "prologue_cost = %d, epilogue_cost = %d .\n", inside_cost,
3645 prologue_cost, epilogue_cost);
3647 return true;
3651 /* Function vect_model_induction_cost.
3653 Models cost for induction operations. */
3655 static void
3656 vect_model_induction_cost (stmt_vec_info stmt_info, int ncopies)
3658 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
3659 void *target_cost_data = LOOP_VINFO_TARGET_COST_DATA (loop_vinfo);
3660 unsigned inside_cost, prologue_cost;
3662 /* loop cost for vec_loop. */
3663 inside_cost = add_stmt_cost (target_cost_data, ncopies, vector_stmt,
3664 stmt_info, 0, vect_body);
3666 /* prologue cost for vec_init and vec_step. */
3667 prologue_cost = add_stmt_cost (target_cost_data, 2, scalar_to_vec,
3668 stmt_info, 0, vect_prologue);
3670 if (dump_enabled_p ())
3671 dump_printf_loc (MSG_NOTE, vect_location,
3672 "vect_model_induction_cost: inside_cost = %d, "
3673 "prologue_cost = %d .\n", inside_cost, prologue_cost);
3677 /* Function get_initial_def_for_induction
3679 Input:
3680 STMT - a stmt that performs an induction operation in the loop.
3681 IV_PHI - the initial value of the induction variable
3683 Output:
3684 Return a vector variable, initialized with the first VF values of
3685 the induction variable. E.g., for an iv with IV_PHI='X' and
3686 evolution S, for a vector of 4 units, we want to return:
3687 [X, X + S, X + 2*S, X + 3*S]. */
3689 static tree
3690 get_initial_def_for_induction (gimple *iv_phi)
3692 stmt_vec_info stmt_vinfo = vinfo_for_stmt (iv_phi);
3693 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_vinfo);
3694 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
3695 tree vectype;
3696 int nunits;
3697 edge pe = loop_preheader_edge (loop);
3698 struct loop *iv_loop;
3699 basic_block new_bb;
3700 tree new_vec, vec_init, vec_step, t;
3701 tree new_name;
3702 gimple *new_stmt;
3703 gphi *induction_phi;
3704 tree induc_def, vec_def, vec_dest;
3705 tree init_expr, step_expr;
3706 int vf = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
3707 int i;
3708 int ncopies;
3709 tree expr;
3710 stmt_vec_info phi_info = vinfo_for_stmt (iv_phi);
3711 bool nested_in_vect_loop = false;
3712 gimple_seq stmts;
3713 imm_use_iterator imm_iter;
3714 use_operand_p use_p;
3715 gimple *exit_phi;
3716 edge latch_e;
3717 tree loop_arg;
3718 gimple_stmt_iterator si;
3719 basic_block bb = gimple_bb (iv_phi);
3720 tree stepvectype;
3721 tree resvectype;
3723 /* Is phi in an inner-loop, while vectorizing an enclosing outer-loop? */
3724 if (nested_in_vect_loop_p (loop, iv_phi))
3726 nested_in_vect_loop = true;
3727 iv_loop = loop->inner;
3729 else
3730 iv_loop = loop;
3731 gcc_assert (iv_loop == (gimple_bb (iv_phi))->loop_father);
3733 latch_e = loop_latch_edge (iv_loop);
3734 loop_arg = PHI_ARG_DEF_FROM_EDGE (iv_phi, latch_e);
3736 step_expr = STMT_VINFO_LOOP_PHI_EVOLUTION_PART (phi_info);
3737 gcc_assert (step_expr != NULL_TREE);
3739 pe = loop_preheader_edge (iv_loop);
3740 init_expr = PHI_ARG_DEF_FROM_EDGE (iv_phi,
3741 loop_preheader_edge (iv_loop));
3743 vectype = get_vectype_for_scalar_type (TREE_TYPE (init_expr));
3744 resvectype = get_vectype_for_scalar_type (TREE_TYPE (PHI_RESULT (iv_phi)));
3745 gcc_assert (vectype);
3746 nunits = TYPE_VECTOR_SUBPARTS (vectype);
3747 ncopies = vf / nunits;
3749 gcc_assert (phi_info);
3750 gcc_assert (ncopies >= 1);
3752 /* Convert the step to the desired type. */
3753 stmts = NULL;
3754 step_expr = gimple_convert (&stmts, TREE_TYPE (vectype), step_expr);
3755 if (stmts)
3757 new_bb = gsi_insert_seq_on_edge_immediate (pe, stmts);
3758 gcc_assert (!new_bb);
3761 /* Find the first insertion point in the BB. */
3762 si = gsi_after_labels (bb);
3764 /* Create the vector that holds the initial_value of the induction. */
3765 if (nested_in_vect_loop)
3767 /* iv_loop is nested in the loop to be vectorized. init_expr had already
3768 been created during vectorization of previous stmts. We obtain it
3769 from the STMT_VINFO_VEC_STMT of the defining stmt. */
3770 vec_init = vect_get_vec_def_for_operand (init_expr, iv_phi);
3771 /* If the initial value is not of proper type, convert it. */
3772 if (!useless_type_conversion_p (vectype, TREE_TYPE (vec_init)))
3774 new_stmt
3775 = gimple_build_assign (vect_get_new_ssa_name (vectype,
3776 vect_simple_var,
3777 "vec_iv_"),
3778 VIEW_CONVERT_EXPR,
3779 build1 (VIEW_CONVERT_EXPR, vectype,
3780 vec_init));
3781 vec_init = gimple_assign_lhs (new_stmt);
3782 new_bb = gsi_insert_on_edge_immediate (loop_preheader_edge (iv_loop),
3783 new_stmt);
3784 gcc_assert (!new_bb);
3785 set_vinfo_for_stmt (new_stmt,
3786 new_stmt_vec_info (new_stmt, loop_vinfo));
3789 else
3791 vec<constructor_elt, va_gc> *v;
3793 /* iv_loop is the loop to be vectorized. Create:
3794 vec_init = [X, X+S, X+2*S, X+3*S] (S = step_expr, X = init_expr) */
3795 stmts = NULL;
3796 new_name = gimple_convert (&stmts, TREE_TYPE (vectype), init_expr);
3798 vec_alloc (v, nunits);
3799 bool constant_p = is_gimple_min_invariant (new_name);
3800 CONSTRUCTOR_APPEND_ELT (v, NULL_TREE, new_name);
3801 for (i = 1; i < nunits; i++)
3803 /* Create: new_name_i = new_name + step_expr */
3804 new_name = gimple_build (&stmts, PLUS_EXPR, TREE_TYPE (new_name),
3805 new_name, step_expr);
3806 if (!is_gimple_min_invariant (new_name))
3807 constant_p = false;
3808 CONSTRUCTOR_APPEND_ELT (v, NULL_TREE, new_name);
3810 if (stmts)
3812 new_bb = gsi_insert_seq_on_edge_immediate (pe, stmts);
3813 gcc_assert (!new_bb);
3816 /* Create a vector from [new_name_0, new_name_1, ..., new_name_nunits-1] */
3817 if (constant_p)
3818 new_vec = build_vector_from_ctor (vectype, v);
3819 else
3820 new_vec = build_constructor (vectype, v);
3821 vec_init = vect_init_vector (iv_phi, new_vec, vectype, NULL);
3825 /* Create the vector that holds the step of the induction. */
3826 if (nested_in_vect_loop)
3827 /* iv_loop is nested in the loop to be vectorized. Generate:
3828 vec_step = [S, S, S, S] */
3829 new_name = step_expr;
3830 else
3832 /* iv_loop is the loop to be vectorized. Generate:
3833 vec_step = [VF*S, VF*S, VF*S, VF*S] */
3834 if (SCALAR_FLOAT_TYPE_P (TREE_TYPE (step_expr)))
3836 expr = build_int_cst (integer_type_node, vf);
3837 expr = fold_convert (TREE_TYPE (step_expr), expr);
3839 else
3840 expr = build_int_cst (TREE_TYPE (step_expr), vf);
3841 new_name = fold_build2 (MULT_EXPR, TREE_TYPE (step_expr),
3842 expr, step_expr);
3843 if (TREE_CODE (step_expr) == SSA_NAME)
3844 new_name = vect_init_vector (iv_phi, new_name,
3845 TREE_TYPE (step_expr), NULL);
3848 t = unshare_expr (new_name);
3849 gcc_assert (CONSTANT_CLASS_P (new_name)
3850 || TREE_CODE (new_name) == SSA_NAME);
3851 stepvectype = get_vectype_for_scalar_type (TREE_TYPE (new_name));
3852 gcc_assert (stepvectype);
3853 new_vec = build_vector_from_val (stepvectype, t);
3854 vec_step = vect_init_vector (iv_phi, new_vec, stepvectype, NULL);
3857 /* Create the following def-use cycle:
3858 loop prolog:
3859 vec_init = ...
3860 vec_step = ...
3861 loop:
3862 vec_iv = PHI <vec_init, vec_loop>
3864 STMT
3866 vec_loop = vec_iv + vec_step; */
3868 /* Create the induction-phi that defines the induction-operand. */
3869 vec_dest = vect_get_new_vect_var (vectype, vect_simple_var, "vec_iv_");
3870 induction_phi = create_phi_node (vec_dest, iv_loop->header);
3871 set_vinfo_for_stmt (induction_phi,
3872 new_stmt_vec_info (induction_phi, loop_vinfo));
3873 induc_def = PHI_RESULT (induction_phi);
3875 /* Create the iv update inside the loop */
3876 new_stmt = gimple_build_assign (vec_dest, PLUS_EXPR, induc_def, vec_step);
3877 vec_def = make_ssa_name (vec_dest, new_stmt);
3878 gimple_assign_set_lhs (new_stmt, vec_def);
3879 gsi_insert_before (&si, new_stmt, GSI_SAME_STMT);
3880 set_vinfo_for_stmt (new_stmt, new_stmt_vec_info (new_stmt, loop_vinfo));
3882 /* Set the arguments of the phi node: */
3883 add_phi_arg (induction_phi, vec_init, pe, UNKNOWN_LOCATION);
3884 add_phi_arg (induction_phi, vec_def, loop_latch_edge (iv_loop),
3885 UNKNOWN_LOCATION);
3888 /* In case that vectorization factor (VF) is bigger than the number
3889 of elements that we can fit in a vectype (nunits), we have to generate
3890 more than one vector stmt - i.e - we need to "unroll" the
3891 vector stmt by a factor VF/nunits. For more details see documentation
3892 in vectorizable_operation. */
3894 if (ncopies > 1)
3896 stmt_vec_info prev_stmt_vinfo;
3897 /* FORNOW. This restriction should be relaxed. */
3898 gcc_assert (!nested_in_vect_loop);
3900 /* Create the vector that holds the step of the induction. */
3901 if (SCALAR_FLOAT_TYPE_P (TREE_TYPE (step_expr)))
3903 expr = build_int_cst (integer_type_node, nunits);
3904 expr = fold_convert (TREE_TYPE (step_expr), expr);
3906 else
3907 expr = build_int_cst (TREE_TYPE (step_expr), nunits);
3908 new_name = fold_build2 (MULT_EXPR, TREE_TYPE (step_expr),
3909 expr, step_expr);
3910 if (TREE_CODE (step_expr) == SSA_NAME)
3911 new_name = vect_init_vector (iv_phi, new_name,
3912 TREE_TYPE (step_expr), NULL);
3913 t = unshare_expr (new_name);
3914 gcc_assert (CONSTANT_CLASS_P (new_name)
3915 || TREE_CODE (new_name) == SSA_NAME);
3916 new_vec = build_vector_from_val (stepvectype, t);
3917 vec_step = vect_init_vector (iv_phi, new_vec, stepvectype, NULL);
3919 vec_def = induc_def;
3920 prev_stmt_vinfo = vinfo_for_stmt (induction_phi);
3921 for (i = 1; i < ncopies; i++)
3923 /* vec_i = vec_prev + vec_step */
3924 new_stmt = gimple_build_assign (vec_dest, PLUS_EXPR,
3925 vec_def, vec_step);
3926 vec_def = make_ssa_name (vec_dest, new_stmt);
3927 gimple_assign_set_lhs (new_stmt, vec_def);
3929 gsi_insert_before (&si, new_stmt, GSI_SAME_STMT);
3930 if (!useless_type_conversion_p (resvectype, vectype))
3932 new_stmt
3933 = gimple_build_assign
3934 (vect_get_new_vect_var (resvectype, vect_simple_var,
3935 "vec_iv_"),
3936 VIEW_CONVERT_EXPR,
3937 build1 (VIEW_CONVERT_EXPR, resvectype,
3938 gimple_assign_lhs (new_stmt)));
3939 gimple_assign_set_lhs (new_stmt,
3940 make_ssa_name
3941 (gimple_assign_lhs (new_stmt), new_stmt));
3942 gsi_insert_before (&si, new_stmt, GSI_SAME_STMT);
3944 set_vinfo_for_stmt (new_stmt,
3945 new_stmt_vec_info (new_stmt, loop_vinfo));
3946 STMT_VINFO_RELATED_STMT (prev_stmt_vinfo) = new_stmt;
3947 prev_stmt_vinfo = vinfo_for_stmt (new_stmt);
3951 if (nested_in_vect_loop)
3953 /* Find the loop-closed exit-phi of the induction, and record
3954 the final vector of induction results: */
3955 exit_phi = NULL;
3956 FOR_EACH_IMM_USE_FAST (use_p, imm_iter, loop_arg)
3958 gimple *use_stmt = USE_STMT (use_p);
3959 if (is_gimple_debug (use_stmt))
3960 continue;
3962 if (!flow_bb_inside_loop_p (iv_loop, gimple_bb (use_stmt)))
3964 exit_phi = use_stmt;
3965 break;
3968 if (exit_phi)
3970 stmt_vec_info stmt_vinfo = vinfo_for_stmt (exit_phi);
3971 /* FORNOW. Currently not supporting the case that an inner-loop induction
3972 is not used in the outer-loop (i.e. only outside the outer-loop). */
3973 gcc_assert (STMT_VINFO_RELEVANT_P (stmt_vinfo)
3974 && !STMT_VINFO_LIVE_P (stmt_vinfo));
3976 STMT_VINFO_VEC_STMT (stmt_vinfo) = new_stmt;
3977 if (dump_enabled_p ())
3979 dump_printf_loc (MSG_NOTE, vect_location,
3980 "vector of inductions after inner-loop:");
3981 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, new_stmt, 0);
3982 dump_printf (MSG_NOTE, "\n");
3988 if (dump_enabled_p ())
3990 dump_printf_loc (MSG_NOTE, vect_location,
3991 "transform induction: created def-use cycle: ");
3992 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, induction_phi, 0);
3993 dump_printf (MSG_NOTE, "\n");
3994 dump_gimple_stmt (MSG_NOTE, TDF_SLIM,
3995 SSA_NAME_DEF_STMT (vec_def), 0);
3996 dump_printf (MSG_NOTE, "\n");
3999 STMT_VINFO_VEC_STMT (phi_info) = induction_phi;
4000 if (!useless_type_conversion_p (resvectype, vectype))
4002 new_stmt = gimple_build_assign (vect_get_new_vect_var (resvectype,
4003 vect_simple_var,
4004 "vec_iv_"),
4005 VIEW_CONVERT_EXPR,
4006 build1 (VIEW_CONVERT_EXPR, resvectype,
4007 induc_def));
4008 induc_def = make_ssa_name (gimple_assign_lhs (new_stmt), new_stmt);
4009 gimple_assign_set_lhs (new_stmt, induc_def);
4010 si = gsi_after_labels (bb);
4011 gsi_insert_before (&si, new_stmt, GSI_SAME_STMT);
4012 set_vinfo_for_stmt (new_stmt,
4013 new_stmt_vec_info (new_stmt, loop_vinfo));
4014 STMT_VINFO_RELATED_STMT (vinfo_for_stmt (new_stmt))
4015 = STMT_VINFO_RELATED_STMT (vinfo_for_stmt (induction_phi));
4018 return induc_def;
4022 /* Function get_initial_def_for_reduction
4024 Input:
4025 STMT - a stmt that performs a reduction operation in the loop.
4026 INIT_VAL - the initial value of the reduction variable
4028 Output:
4029 ADJUSTMENT_DEF - a tree that holds a value to be added to the final result
4030 of the reduction (used for adjusting the epilog - see below).
4031 Return a vector variable, initialized according to the operation that STMT
4032 performs. This vector will be used as the initial value of the
4033 vector of partial results.
4035 Option1 (adjust in epilog): Initialize the vector as follows:
4036 add/bit or/xor: [0,0,...,0,0]
4037 mult/bit and: [1,1,...,1,1]
4038 min/max/cond_expr: [init_val,init_val,..,init_val,init_val]
4039 and when necessary (e.g. add/mult case) let the caller know
4040 that it needs to adjust the result by init_val.
4042 Option2: Initialize the vector as follows:
4043 add/bit or/xor: [init_val,0,0,...,0]
4044 mult/bit and: [init_val,1,1,...,1]
4045 min/max/cond_expr: [init_val,init_val,...,init_val]
4046 and no adjustments are needed.
4048 For example, for the following code:
4050 s = init_val;
4051 for (i=0;i<n;i++)
4052 s = s + a[i];
4054 STMT is 's = s + a[i]', and the reduction variable is 's'.
4055 For a vector of 4 units, we want to return either [0,0,0,init_val],
4056 or [0,0,0,0] and let the caller know that it needs to adjust
4057 the result at the end by 'init_val'.
4059 FORNOW, we are using the 'adjust in epilog' scheme, because this way the
4060 initialization vector is simpler (same element in all entries), if
4061 ADJUSTMENT_DEF is not NULL, and Option2 otherwise.
4063 A cost model should help decide between these two schemes. */
4065 tree
4066 get_initial_def_for_reduction (gimple *stmt, tree init_val,
4067 tree *adjustment_def)
4069 stmt_vec_info stmt_vinfo = vinfo_for_stmt (stmt);
4070 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_vinfo);
4071 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
4072 tree scalar_type = TREE_TYPE (init_val);
4073 tree vectype = get_vectype_for_scalar_type (scalar_type);
4074 int nunits;
4075 enum tree_code code = gimple_assign_rhs_code (stmt);
4076 tree def_for_init;
4077 tree init_def;
4078 tree *elts;
4079 int i;
4080 bool nested_in_vect_loop = false;
4081 REAL_VALUE_TYPE real_init_val = dconst0;
4082 int int_init_val = 0;
4083 gimple *def_stmt = NULL;
4084 gimple_seq stmts = NULL;
4086 gcc_assert (vectype);
4087 nunits = TYPE_VECTOR_SUBPARTS (vectype);
4089 gcc_assert (POINTER_TYPE_P (scalar_type) || INTEGRAL_TYPE_P (scalar_type)
4090 || SCALAR_FLOAT_TYPE_P (scalar_type));
4092 if (nested_in_vect_loop_p (loop, stmt))
4093 nested_in_vect_loop = true;
4094 else
4095 gcc_assert (loop == (gimple_bb (stmt))->loop_father);
4097 /* In case of double reduction we only create a vector variable to be put
4098 in the reduction phi node. The actual statement creation is done in
4099 vect_create_epilog_for_reduction. */
4100 if (adjustment_def && nested_in_vect_loop
4101 && TREE_CODE (init_val) == SSA_NAME
4102 && (def_stmt = SSA_NAME_DEF_STMT (init_val))
4103 && gimple_code (def_stmt) == GIMPLE_PHI
4104 && flow_bb_inside_loop_p (loop, gimple_bb (def_stmt))
4105 && vinfo_for_stmt (def_stmt)
4106 && STMT_VINFO_DEF_TYPE (vinfo_for_stmt (def_stmt))
4107 == vect_double_reduction_def)
4109 *adjustment_def = NULL;
4110 return vect_create_destination_var (init_val, vectype);
4113 switch (code)
4115 case WIDEN_SUM_EXPR:
4116 case DOT_PROD_EXPR:
4117 case SAD_EXPR:
4118 case PLUS_EXPR:
4119 case MINUS_EXPR:
4120 case BIT_IOR_EXPR:
4121 case BIT_XOR_EXPR:
4122 case MULT_EXPR:
4123 case BIT_AND_EXPR:
4124 /* ADJUSMENT_DEF is NULL when called from
4125 vect_create_epilog_for_reduction to vectorize double reduction. */
4126 if (adjustment_def)
4128 if (nested_in_vect_loop)
4129 *adjustment_def = vect_get_vec_def_for_operand (init_val, stmt);
4130 else
4131 *adjustment_def = init_val;
4134 if (code == MULT_EXPR)
4136 real_init_val = dconst1;
4137 int_init_val = 1;
4140 if (code == BIT_AND_EXPR)
4141 int_init_val = -1;
4143 if (SCALAR_FLOAT_TYPE_P (scalar_type))
4144 def_for_init = build_real (scalar_type, real_init_val);
4145 else
4146 def_for_init = build_int_cst (scalar_type, int_init_val);
4148 /* Create a vector of '0' or '1' except the first element. */
4149 elts = XALLOCAVEC (tree, nunits);
4150 for (i = nunits - 2; i >= 0; --i)
4151 elts[i + 1] = def_for_init;
4153 /* Option1: the first element is '0' or '1' as well. */
4154 if (adjustment_def)
4156 elts[0] = def_for_init;
4157 init_def = build_vector (vectype, elts);
4158 break;
4161 /* Option2: the first element is INIT_VAL. */
4162 elts[0] = init_val;
4163 if (TREE_CONSTANT (init_val))
4164 init_def = build_vector (vectype, elts);
4165 else
4167 vec<constructor_elt, va_gc> *v;
4168 vec_alloc (v, nunits);
4169 CONSTRUCTOR_APPEND_ELT (v, NULL_TREE, init_val);
4170 for (i = 1; i < nunits; ++i)
4171 CONSTRUCTOR_APPEND_ELT (v, NULL_TREE, elts[i]);
4172 init_def = build_constructor (vectype, v);
4175 break;
4177 case MIN_EXPR:
4178 case MAX_EXPR:
4179 case COND_EXPR:
4180 if (adjustment_def)
4182 *adjustment_def = NULL_TREE;
4183 if (STMT_VINFO_VEC_REDUCTION_TYPE (stmt_vinfo) != COND_REDUCTION)
4185 init_def = vect_get_vec_def_for_operand (init_val, stmt);
4186 break;
4189 init_val = gimple_convert (&stmts, TREE_TYPE (vectype), init_val);
4190 if (! gimple_seq_empty_p (stmts))
4191 gsi_insert_seq_on_edge_immediate (loop_preheader_edge (loop), stmts);
4192 init_def = build_vector_from_val (vectype, init_val);
4193 break;
4195 default:
4196 gcc_unreachable ();
4199 return init_def;
4202 /* Function vect_create_epilog_for_reduction
4204 Create code at the loop-epilog to finalize the result of a reduction
4205 computation.
4207 VECT_DEFS is list of vector of partial results, i.e., the lhs's of vector
4208 reduction statements.
4209 STMT is the scalar reduction stmt that is being vectorized.
4210 NCOPIES is > 1 in case the vectorization factor (VF) is bigger than the
4211 number of elements that we can fit in a vectype (nunits). In this case
4212 we have to generate more than one vector stmt - i.e - we need to "unroll"
4213 the vector stmt by a factor VF/nunits. For more details see documentation
4214 in vectorizable_operation.
4215 REDUC_CODE is the tree-code for the epilog reduction.
4216 REDUCTION_PHIS is a list of the phi-nodes that carry the reduction
4217 computation.
4218 REDUC_INDEX is the index of the operand in the right hand side of the
4219 statement that is defined by REDUCTION_PHI.
4220 DOUBLE_REDUC is TRUE if double reduction phi nodes should be handled.
4221 SLP_NODE is an SLP node containing a group of reduction statements. The
4222 first one in this group is STMT.
4223 INDUCTION_INDEX is the index of the loop for condition reductions.
4224 Otherwise it is undefined.
4226 This function:
4227 1. Creates the reduction def-use cycles: sets the arguments for
4228 REDUCTION_PHIS:
4229 The loop-entry argument is the vectorized initial-value of the reduction.
4230 The loop-latch argument is taken from VECT_DEFS - the vector of partial
4231 sums.
4232 2. "Reduces" each vector of partial results VECT_DEFS into a single result,
4233 by applying the operation specified by REDUC_CODE if available, or by
4234 other means (whole-vector shifts or a scalar loop).
4235 The function also creates a new phi node at the loop exit to preserve
4236 loop-closed form, as illustrated below.
4238 The flow at the entry to this function:
4240 loop:
4241 vec_def = phi <null, null> # REDUCTION_PHI
4242 VECT_DEF = vector_stmt # vectorized form of STMT
4243 s_loop = scalar_stmt # (scalar) STMT
4244 loop_exit:
4245 s_out0 = phi <s_loop> # (scalar) EXIT_PHI
4246 use <s_out0>
4247 use <s_out0>
4249 The above is transformed by this function into:
4251 loop:
4252 vec_def = phi <vec_init, VECT_DEF> # REDUCTION_PHI
4253 VECT_DEF = vector_stmt # vectorized form of STMT
4254 s_loop = scalar_stmt # (scalar) STMT
4255 loop_exit:
4256 s_out0 = phi <s_loop> # (scalar) EXIT_PHI
4257 v_out1 = phi <VECT_DEF> # NEW_EXIT_PHI
4258 v_out2 = reduce <v_out1>
4259 s_out3 = extract_field <v_out2, 0>
4260 s_out4 = adjust_result <s_out3>
4261 use <s_out4>
4262 use <s_out4>
4265 static void
4266 vect_create_epilog_for_reduction (vec<tree> vect_defs, gimple *stmt,
4267 int ncopies, enum tree_code reduc_code,
4268 vec<gimple *> reduction_phis,
4269 int reduc_index, bool double_reduc,
4270 slp_tree slp_node, tree induction_index)
4272 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
4273 stmt_vec_info prev_phi_info;
4274 tree vectype;
4275 machine_mode mode;
4276 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
4277 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo), *outer_loop = NULL;
4278 basic_block exit_bb;
4279 tree scalar_dest;
4280 tree scalar_type;
4281 gimple *new_phi = NULL, *phi;
4282 gimple_stmt_iterator exit_gsi;
4283 tree vec_dest;
4284 tree new_temp = NULL_TREE, new_dest, new_name, new_scalar_dest;
4285 gimple *epilog_stmt = NULL;
4286 enum tree_code code = gimple_assign_rhs_code (stmt);
4287 gimple *exit_phi;
4288 tree bitsize;
4289 tree adjustment_def = NULL;
4290 tree vec_initial_def = NULL;
4291 tree reduction_op, expr, def, initial_def = NULL;
4292 tree orig_name, scalar_result;
4293 imm_use_iterator imm_iter, phi_imm_iter;
4294 use_operand_p use_p, phi_use_p;
4295 gimple *use_stmt, *orig_stmt, *reduction_phi = NULL;
4296 bool nested_in_vect_loop = false;
4297 auto_vec<gimple *> new_phis;
4298 auto_vec<gimple *> inner_phis;
4299 enum vect_def_type dt = vect_unknown_def_type;
4300 int j, i;
4301 auto_vec<tree> scalar_results;
4302 unsigned int group_size = 1, k, ratio;
4303 auto_vec<tree> vec_initial_defs;
4304 auto_vec<gimple *> phis;
4305 bool slp_reduc = false;
4306 tree new_phi_result;
4307 gimple *inner_phi = NULL;
4309 if (slp_node)
4310 group_size = SLP_TREE_SCALAR_STMTS (slp_node).length ();
4312 if (nested_in_vect_loop_p (loop, stmt))
4314 outer_loop = loop;
4315 loop = loop->inner;
4316 nested_in_vect_loop = true;
4317 gcc_assert (!slp_node);
4320 reduction_op = get_reduction_op (stmt, reduc_index);
4322 vectype = get_vectype_for_scalar_type (TREE_TYPE (reduction_op));
4323 gcc_assert (vectype);
4324 mode = TYPE_MODE (vectype);
4326 /* 1. Create the reduction def-use cycle:
4327 Set the arguments of REDUCTION_PHIS, i.e., transform
4329 loop:
4330 vec_def = phi <null, null> # REDUCTION_PHI
4331 VECT_DEF = vector_stmt # vectorized form of STMT
4334 into:
4336 loop:
4337 vec_def = phi <vec_init, VECT_DEF> # REDUCTION_PHI
4338 VECT_DEF = vector_stmt # vectorized form of STMT
4341 (in case of SLP, do it for all the phis). */
4343 /* Get the loop-entry arguments. */
4344 if (slp_node)
4345 vect_get_vec_defs (reduction_op, NULL_TREE, stmt, &vec_initial_defs,
4346 NULL, slp_node, reduc_index);
4347 else
4349 /* Get at the scalar def before the loop, that defines the initial value
4350 of the reduction variable. */
4351 gimple *def_stmt = SSA_NAME_DEF_STMT (reduction_op);
4352 initial_def = PHI_ARG_DEF_FROM_EDGE (def_stmt,
4353 loop_preheader_edge (loop));
4354 vec_initial_defs.create (1);
4355 vec_initial_def = get_initial_def_for_reduction (stmt, initial_def,
4356 &adjustment_def);
4357 vec_initial_defs.quick_push (vec_initial_def);
4360 /* Set phi nodes arguments. */
4361 FOR_EACH_VEC_ELT (reduction_phis, i, phi)
4363 tree vec_init_def, def;
4364 gimple_seq stmts;
4365 vec_init_def = force_gimple_operand (vec_initial_defs[i], &stmts,
4366 true, NULL_TREE);
4367 gsi_insert_seq_on_edge_immediate (loop_preheader_edge (loop), stmts);
4368 def = vect_defs[i];
4369 for (j = 0; j < ncopies; j++)
4371 /* Set the loop-entry arg of the reduction-phi. */
4373 if (STMT_VINFO_VEC_REDUCTION_TYPE (stmt_info)
4374 == INTEGER_INDUC_COND_REDUCTION)
4376 /* Initialise the reduction phi to zero. This prevents initial
4377 values of non-zero interferring with the reduction op. */
4378 gcc_assert (ncopies == 1);
4379 gcc_assert (i == 0);
4381 tree vec_init_def_type = TREE_TYPE (vec_init_def);
4382 tree zero_vec = build_zero_cst (vec_init_def_type);
4384 add_phi_arg (as_a <gphi *> (phi), zero_vec,
4385 loop_preheader_edge (loop), UNKNOWN_LOCATION);
4387 else
4388 add_phi_arg (as_a <gphi *> (phi), vec_init_def,
4389 loop_preheader_edge (loop), UNKNOWN_LOCATION);
4391 /* Set the loop-latch arg for the reduction-phi. */
4392 if (j > 0)
4393 def = vect_get_vec_def_for_stmt_copy (vect_unknown_def_type, def);
4395 add_phi_arg (as_a <gphi *> (phi), def, loop_latch_edge (loop),
4396 UNKNOWN_LOCATION);
4398 if (dump_enabled_p ())
4400 dump_printf_loc (MSG_NOTE, vect_location,
4401 "transform reduction: created def-use cycle: ");
4402 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, phi, 0);
4403 dump_printf (MSG_NOTE, "\n");
4404 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, SSA_NAME_DEF_STMT (def), 0);
4405 dump_printf (MSG_NOTE, "\n");
4408 phi = STMT_VINFO_RELATED_STMT (vinfo_for_stmt (phi));
4412 /* 2. Create epilog code.
4413 The reduction epilog code operates across the elements of the vector
4414 of partial results computed by the vectorized loop.
4415 The reduction epilog code consists of:
4417 step 1: compute the scalar result in a vector (v_out2)
4418 step 2: extract the scalar result (s_out3) from the vector (v_out2)
4419 step 3: adjust the scalar result (s_out3) if needed.
4421 Step 1 can be accomplished using one the following three schemes:
4422 (scheme 1) using reduc_code, if available.
4423 (scheme 2) using whole-vector shifts, if available.
4424 (scheme 3) using a scalar loop. In this case steps 1+2 above are
4425 combined.
4427 The overall epilog code looks like this:
4429 s_out0 = phi <s_loop> # original EXIT_PHI
4430 v_out1 = phi <VECT_DEF> # NEW_EXIT_PHI
4431 v_out2 = reduce <v_out1> # step 1
4432 s_out3 = extract_field <v_out2, 0> # step 2
4433 s_out4 = adjust_result <s_out3> # step 3
4435 (step 3 is optional, and steps 1 and 2 may be combined).
4436 Lastly, the uses of s_out0 are replaced by s_out4. */
4439 /* 2.1 Create new loop-exit-phis to preserve loop-closed form:
4440 v_out1 = phi <VECT_DEF>
4441 Store them in NEW_PHIS. */
4443 exit_bb = single_exit (loop)->dest;
4444 prev_phi_info = NULL;
4445 new_phis.create (vect_defs.length ());
4446 FOR_EACH_VEC_ELT (vect_defs, i, def)
4448 for (j = 0; j < ncopies; j++)
4450 tree new_def = copy_ssa_name (def);
4451 phi = create_phi_node (new_def, exit_bb);
4452 set_vinfo_for_stmt (phi, new_stmt_vec_info (phi, loop_vinfo));
4453 if (j == 0)
4454 new_phis.quick_push (phi);
4455 else
4457 def = vect_get_vec_def_for_stmt_copy (dt, def);
4458 STMT_VINFO_RELATED_STMT (prev_phi_info) = phi;
4461 SET_PHI_ARG_DEF (phi, single_exit (loop)->dest_idx, def);
4462 prev_phi_info = vinfo_for_stmt (phi);
4466 /* The epilogue is created for the outer-loop, i.e., for the loop being
4467 vectorized. Create exit phis for the outer loop. */
4468 if (double_reduc)
4470 loop = outer_loop;
4471 exit_bb = single_exit (loop)->dest;
4472 inner_phis.create (vect_defs.length ());
4473 FOR_EACH_VEC_ELT (new_phis, i, phi)
4475 tree new_result = copy_ssa_name (PHI_RESULT (phi));
4476 gphi *outer_phi = create_phi_node (new_result, exit_bb);
4477 SET_PHI_ARG_DEF (outer_phi, single_exit (loop)->dest_idx,
4478 PHI_RESULT (phi));
4479 set_vinfo_for_stmt (outer_phi, new_stmt_vec_info (outer_phi,
4480 loop_vinfo));
4481 inner_phis.quick_push (phi);
4482 new_phis[i] = outer_phi;
4483 prev_phi_info = vinfo_for_stmt (outer_phi);
4484 while (STMT_VINFO_RELATED_STMT (vinfo_for_stmt (phi)))
4486 phi = STMT_VINFO_RELATED_STMT (vinfo_for_stmt (phi));
4487 new_result = copy_ssa_name (PHI_RESULT (phi));
4488 outer_phi = create_phi_node (new_result, exit_bb);
4489 SET_PHI_ARG_DEF (outer_phi, single_exit (loop)->dest_idx,
4490 PHI_RESULT (phi));
4491 set_vinfo_for_stmt (outer_phi, new_stmt_vec_info (outer_phi,
4492 loop_vinfo));
4493 STMT_VINFO_RELATED_STMT (prev_phi_info) = outer_phi;
4494 prev_phi_info = vinfo_for_stmt (outer_phi);
4499 exit_gsi = gsi_after_labels (exit_bb);
4501 /* 2.2 Get the relevant tree-code to use in the epilog for schemes 2,3
4502 (i.e. when reduc_code is not available) and in the final adjustment
4503 code (if needed). Also get the original scalar reduction variable as
4504 defined in the loop. In case STMT is a "pattern-stmt" (i.e. - it
4505 represents a reduction pattern), the tree-code and scalar-def are
4506 taken from the original stmt that the pattern-stmt (STMT) replaces.
4507 Otherwise (it is a regular reduction) - the tree-code and scalar-def
4508 are taken from STMT. */
4510 orig_stmt = STMT_VINFO_RELATED_STMT (stmt_info);
4511 if (!orig_stmt)
4513 /* Regular reduction */
4514 orig_stmt = stmt;
4516 else
4518 /* Reduction pattern */
4519 stmt_vec_info stmt_vinfo = vinfo_for_stmt (orig_stmt);
4520 gcc_assert (STMT_VINFO_IN_PATTERN_P (stmt_vinfo));
4521 gcc_assert (STMT_VINFO_RELATED_STMT (stmt_vinfo) == stmt);
4524 code = gimple_assign_rhs_code (orig_stmt);
4525 /* For MINUS_EXPR the initial vector is [init_val,0,...,0], therefore,
4526 partial results are added and not subtracted. */
4527 if (code == MINUS_EXPR)
4528 code = PLUS_EXPR;
4530 scalar_dest = gimple_assign_lhs (orig_stmt);
4531 scalar_type = TREE_TYPE (scalar_dest);
4532 scalar_results.create (group_size);
4533 new_scalar_dest = vect_create_destination_var (scalar_dest, NULL);
4534 bitsize = TYPE_SIZE (scalar_type);
4536 /* In case this is a reduction in an inner-loop while vectorizing an outer
4537 loop - we don't need to extract a single scalar result at the end of the
4538 inner-loop (unless it is double reduction, i.e., the use of reduction is
4539 outside the outer-loop). The final vector of partial results will be used
4540 in the vectorized outer-loop, or reduced to a scalar result at the end of
4541 the outer-loop. */
4542 if (nested_in_vect_loop && !double_reduc)
4543 goto vect_finalize_reduction;
4545 /* SLP reduction without reduction chain, e.g.,
4546 # a1 = phi <a2, a0>
4547 # b1 = phi <b2, b0>
4548 a2 = operation (a1)
4549 b2 = operation (b1) */
4550 slp_reduc = (slp_node && !GROUP_FIRST_ELEMENT (vinfo_for_stmt (stmt)));
4552 /* In case of reduction chain, e.g.,
4553 # a1 = phi <a3, a0>
4554 a2 = operation (a1)
4555 a3 = operation (a2),
4557 we may end up with more than one vector result. Here we reduce them to
4558 one vector. */
4559 if (GROUP_FIRST_ELEMENT (vinfo_for_stmt (stmt)))
4561 tree first_vect = PHI_RESULT (new_phis[0]);
4562 tree tmp;
4563 gassign *new_vec_stmt = NULL;
4565 vec_dest = vect_create_destination_var (scalar_dest, vectype);
4566 for (k = 1; k < new_phis.length (); k++)
4568 gimple *next_phi = new_phis[k];
4569 tree second_vect = PHI_RESULT (next_phi);
4571 tmp = build2 (code, vectype, first_vect, second_vect);
4572 new_vec_stmt = gimple_build_assign (vec_dest, tmp);
4573 first_vect = make_ssa_name (vec_dest, new_vec_stmt);
4574 gimple_assign_set_lhs (new_vec_stmt, first_vect);
4575 gsi_insert_before (&exit_gsi, new_vec_stmt, GSI_SAME_STMT);
4578 new_phi_result = first_vect;
4579 if (new_vec_stmt)
4581 new_phis.truncate (0);
4582 new_phis.safe_push (new_vec_stmt);
4585 else
4586 new_phi_result = PHI_RESULT (new_phis[0]);
4588 if (STMT_VINFO_VEC_REDUCTION_TYPE (stmt_info) == COND_REDUCTION)
4590 /* For condition reductions, we have a vector (NEW_PHI_RESULT) containing
4591 various data values where the condition matched and another vector
4592 (INDUCTION_INDEX) containing all the indexes of those matches. We
4593 need to extract the last matching index (which will be the index with
4594 highest value) and use this to index into the data vector.
4595 For the case where there were no matches, the data vector will contain
4596 all default values and the index vector will be all zeros. */
4598 /* Get various versions of the type of the vector of indexes. */
4599 tree index_vec_type = TREE_TYPE (induction_index);
4600 gcc_checking_assert (TYPE_UNSIGNED (index_vec_type));
4601 tree index_scalar_type = TREE_TYPE (index_vec_type);
4602 tree index_vec_cmp_type = build_same_sized_truth_vector_type
4603 (index_vec_type);
4605 /* Get an unsigned integer version of the type of the data vector. */
4606 int scalar_precision = GET_MODE_PRECISION (TYPE_MODE (scalar_type));
4607 tree scalar_type_unsigned = make_unsigned_type (scalar_precision);
4608 tree vectype_unsigned = build_vector_type
4609 (scalar_type_unsigned, TYPE_VECTOR_SUBPARTS (vectype));
4611 /* First we need to create a vector (ZERO_VEC) of zeros and another
4612 vector (MAX_INDEX_VEC) filled with the last matching index, which we
4613 can create using a MAX reduction and then expanding.
4614 In the case where the loop never made any matches, the max index will
4615 be zero. */
4617 /* Vector of {0, 0, 0,...}. */
4618 tree zero_vec = make_ssa_name (vectype);
4619 tree zero_vec_rhs = build_zero_cst (vectype);
4620 gimple *zero_vec_stmt = gimple_build_assign (zero_vec, zero_vec_rhs);
4621 gsi_insert_before (&exit_gsi, zero_vec_stmt, GSI_SAME_STMT);
4623 /* Find maximum value from the vector of found indexes. */
4624 tree max_index = make_ssa_name (index_scalar_type);
4625 gimple *max_index_stmt = gimple_build_assign (max_index, REDUC_MAX_EXPR,
4626 induction_index);
4627 gsi_insert_before (&exit_gsi, max_index_stmt, GSI_SAME_STMT);
4629 /* Vector of {max_index, max_index, max_index,...}. */
4630 tree max_index_vec = make_ssa_name (index_vec_type);
4631 tree max_index_vec_rhs = build_vector_from_val (index_vec_type,
4632 max_index);
4633 gimple *max_index_vec_stmt = gimple_build_assign (max_index_vec,
4634 max_index_vec_rhs);
4635 gsi_insert_before (&exit_gsi, max_index_vec_stmt, GSI_SAME_STMT);
4637 /* Next we compare the new vector (MAX_INDEX_VEC) full of max indexes
4638 with the vector (INDUCTION_INDEX) of found indexes, choosing values
4639 from the data vector (NEW_PHI_RESULT) for matches, 0 (ZERO_VEC)
4640 otherwise. Only one value should match, resulting in a vector
4641 (VEC_COND) with one data value and the rest zeros.
4642 In the case where the loop never made any matches, every index will
4643 match, resulting in a vector with all data values (which will all be
4644 the default value). */
4646 /* Compare the max index vector to the vector of found indexes to find
4647 the position of the max value. */
4648 tree vec_compare = make_ssa_name (index_vec_cmp_type);
4649 gimple *vec_compare_stmt = gimple_build_assign (vec_compare, EQ_EXPR,
4650 induction_index,
4651 max_index_vec);
4652 gsi_insert_before (&exit_gsi, vec_compare_stmt, GSI_SAME_STMT);
4654 /* Use the compare to choose either values from the data vector or
4655 zero. */
4656 tree vec_cond = make_ssa_name (vectype);
4657 gimple *vec_cond_stmt = gimple_build_assign (vec_cond, VEC_COND_EXPR,
4658 vec_compare, new_phi_result,
4659 zero_vec);
4660 gsi_insert_before (&exit_gsi, vec_cond_stmt, GSI_SAME_STMT);
4662 /* Finally we need to extract the data value from the vector (VEC_COND)
4663 into a scalar (MATCHED_DATA_REDUC). Logically we want to do a OR
4664 reduction, but because this doesn't exist, we can use a MAX reduction
4665 instead. The data value might be signed or a float so we need to cast
4666 it first.
4667 In the case where the loop never made any matches, the data values are
4668 all identical, and so will reduce down correctly. */
4670 /* Make the matched data values unsigned. */
4671 tree vec_cond_cast = make_ssa_name (vectype_unsigned);
4672 tree vec_cond_cast_rhs = build1 (VIEW_CONVERT_EXPR, vectype_unsigned,
4673 vec_cond);
4674 gimple *vec_cond_cast_stmt = gimple_build_assign (vec_cond_cast,
4675 VIEW_CONVERT_EXPR,
4676 vec_cond_cast_rhs);
4677 gsi_insert_before (&exit_gsi, vec_cond_cast_stmt, GSI_SAME_STMT);
4679 /* Reduce down to a scalar value. */
4680 tree data_reduc = make_ssa_name (scalar_type_unsigned);
4681 optab ot = optab_for_tree_code (REDUC_MAX_EXPR, vectype_unsigned,
4682 optab_default);
4683 gcc_assert (optab_handler (ot, TYPE_MODE (vectype_unsigned))
4684 != CODE_FOR_nothing);
4685 gimple *data_reduc_stmt = gimple_build_assign (data_reduc,
4686 REDUC_MAX_EXPR,
4687 vec_cond_cast);
4688 gsi_insert_before (&exit_gsi, data_reduc_stmt, GSI_SAME_STMT);
4690 /* Convert the reduced value back to the result type and set as the
4691 result. */
4692 tree data_reduc_cast = build1 (VIEW_CONVERT_EXPR, scalar_type,
4693 data_reduc);
4694 epilog_stmt = gimple_build_assign (new_scalar_dest, data_reduc_cast);
4695 new_temp = make_ssa_name (new_scalar_dest, epilog_stmt);
4696 gimple_assign_set_lhs (epilog_stmt, new_temp);
4697 gsi_insert_before (&exit_gsi, epilog_stmt, GSI_SAME_STMT);
4698 scalar_results.safe_push (new_temp);
4701 /* 2.3 Create the reduction code, using one of the three schemes described
4702 above. In SLP we simply need to extract all the elements from the
4703 vector (without reducing them), so we use scalar shifts. */
4704 else if (reduc_code != ERROR_MARK && !slp_reduc)
4706 tree tmp;
4707 tree vec_elem_type;
4709 /*** Case 1: Create:
4710 v_out2 = reduc_expr <v_out1> */
4712 if (dump_enabled_p ())
4713 dump_printf_loc (MSG_NOTE, vect_location,
4714 "Reduce using direct vector reduction.\n");
4716 vec_elem_type = TREE_TYPE (TREE_TYPE (new_phi_result));
4717 if (!useless_type_conversion_p (scalar_type, vec_elem_type))
4719 tree tmp_dest =
4720 vect_create_destination_var (scalar_dest, vec_elem_type);
4721 tmp = build1 (reduc_code, vec_elem_type, new_phi_result);
4722 epilog_stmt = gimple_build_assign (tmp_dest, tmp);
4723 new_temp = make_ssa_name (tmp_dest, epilog_stmt);
4724 gimple_assign_set_lhs (epilog_stmt, new_temp);
4725 gsi_insert_before (&exit_gsi, epilog_stmt, GSI_SAME_STMT);
4727 tmp = build1 (NOP_EXPR, scalar_type, new_temp);
4729 else
4730 tmp = build1 (reduc_code, scalar_type, new_phi_result);
4732 epilog_stmt = gimple_build_assign (new_scalar_dest, tmp);
4733 new_temp = make_ssa_name (new_scalar_dest, epilog_stmt);
4734 gimple_assign_set_lhs (epilog_stmt, new_temp);
4735 gsi_insert_before (&exit_gsi, epilog_stmt, GSI_SAME_STMT);
4737 if (STMT_VINFO_VEC_REDUCTION_TYPE (stmt_info)
4738 == INTEGER_INDUC_COND_REDUCTION)
4740 /* Earlier we set the initial value to be zero. Check the result
4741 and if it is zero then replace with the original initial
4742 value. */
4743 tree zero = build_zero_cst (scalar_type);
4744 tree zcompare = build2 (EQ_EXPR, boolean_type_node, new_temp, zero);
4746 tmp = make_ssa_name (new_scalar_dest);
4747 epilog_stmt = gimple_build_assign (tmp, COND_EXPR, zcompare,
4748 initial_def, new_temp);
4749 gsi_insert_before (&exit_gsi, epilog_stmt, GSI_SAME_STMT);
4750 new_temp = tmp;
4753 scalar_results.safe_push (new_temp);
4755 else
4757 bool reduce_with_shift = have_whole_vector_shift (mode);
4758 int element_bitsize = tree_to_uhwi (bitsize);
4759 int vec_size_in_bits = tree_to_uhwi (TYPE_SIZE (vectype));
4760 tree vec_temp;
4762 /* Regardless of whether we have a whole vector shift, if we're
4763 emulating the operation via tree-vect-generic, we don't want
4764 to use it. Only the first round of the reduction is likely
4765 to still be profitable via emulation. */
4766 /* ??? It might be better to emit a reduction tree code here, so that
4767 tree-vect-generic can expand the first round via bit tricks. */
4768 if (!VECTOR_MODE_P (mode))
4769 reduce_with_shift = false;
4770 else
4772 optab optab = optab_for_tree_code (code, vectype, optab_default);
4773 if (optab_handler (optab, mode) == CODE_FOR_nothing)
4774 reduce_with_shift = false;
4777 if (reduce_with_shift && !slp_reduc)
4779 int nelements = vec_size_in_bits / element_bitsize;
4780 unsigned char *sel = XALLOCAVEC (unsigned char, nelements);
4782 int elt_offset;
4784 tree zero_vec = build_zero_cst (vectype);
4785 /*** Case 2: Create:
4786 for (offset = nelements/2; offset >= 1; offset/=2)
4788 Create: va' = vec_shift <va, offset>
4789 Create: va = vop <va, va'>
4790 } */
4792 tree rhs;
4794 if (dump_enabled_p ())
4795 dump_printf_loc (MSG_NOTE, vect_location,
4796 "Reduce using vector shifts\n");
4798 vec_dest = vect_create_destination_var (scalar_dest, vectype);
4799 new_temp = new_phi_result;
4800 for (elt_offset = nelements / 2;
4801 elt_offset >= 1;
4802 elt_offset /= 2)
4804 calc_vec_perm_mask_for_shift (mode, elt_offset, sel);
4805 tree mask = vect_gen_perm_mask_any (vectype, sel);
4806 epilog_stmt = gimple_build_assign (vec_dest, VEC_PERM_EXPR,
4807 new_temp, zero_vec, mask);
4808 new_name = make_ssa_name (vec_dest, epilog_stmt);
4809 gimple_assign_set_lhs (epilog_stmt, new_name);
4810 gsi_insert_before (&exit_gsi, epilog_stmt, GSI_SAME_STMT);
4812 epilog_stmt = gimple_build_assign (vec_dest, code, new_name,
4813 new_temp);
4814 new_temp = make_ssa_name (vec_dest, epilog_stmt);
4815 gimple_assign_set_lhs (epilog_stmt, new_temp);
4816 gsi_insert_before (&exit_gsi, epilog_stmt, GSI_SAME_STMT);
4819 /* 2.4 Extract the final scalar result. Create:
4820 s_out3 = extract_field <v_out2, bitpos> */
4822 if (dump_enabled_p ())
4823 dump_printf_loc (MSG_NOTE, vect_location,
4824 "extract scalar result\n");
4826 rhs = build3 (BIT_FIELD_REF, scalar_type, new_temp,
4827 bitsize, bitsize_zero_node);
4828 epilog_stmt = gimple_build_assign (new_scalar_dest, rhs);
4829 new_temp = make_ssa_name (new_scalar_dest, epilog_stmt);
4830 gimple_assign_set_lhs (epilog_stmt, new_temp);
4831 gsi_insert_before (&exit_gsi, epilog_stmt, GSI_SAME_STMT);
4832 scalar_results.safe_push (new_temp);
4834 else
4836 /*** Case 3: Create:
4837 s = extract_field <v_out2, 0>
4838 for (offset = element_size;
4839 offset < vector_size;
4840 offset += element_size;)
4842 Create: s' = extract_field <v_out2, offset>
4843 Create: s = op <s, s'> // For non SLP cases
4844 } */
4846 if (dump_enabled_p ())
4847 dump_printf_loc (MSG_NOTE, vect_location,
4848 "Reduce using scalar code.\n");
4850 vec_size_in_bits = tree_to_uhwi (TYPE_SIZE (vectype));
4851 FOR_EACH_VEC_ELT (new_phis, i, new_phi)
4853 int bit_offset;
4854 if (gimple_code (new_phi) == GIMPLE_PHI)
4855 vec_temp = PHI_RESULT (new_phi);
4856 else
4857 vec_temp = gimple_assign_lhs (new_phi);
4858 tree rhs = build3 (BIT_FIELD_REF, scalar_type, vec_temp, bitsize,
4859 bitsize_zero_node);
4860 epilog_stmt = gimple_build_assign (new_scalar_dest, rhs);
4861 new_temp = make_ssa_name (new_scalar_dest, epilog_stmt);
4862 gimple_assign_set_lhs (epilog_stmt, new_temp);
4863 gsi_insert_before (&exit_gsi, epilog_stmt, GSI_SAME_STMT);
4865 /* In SLP we don't need to apply reduction operation, so we just
4866 collect s' values in SCALAR_RESULTS. */
4867 if (slp_reduc)
4868 scalar_results.safe_push (new_temp);
4870 for (bit_offset = element_bitsize;
4871 bit_offset < vec_size_in_bits;
4872 bit_offset += element_bitsize)
4874 tree bitpos = bitsize_int (bit_offset);
4875 tree rhs = build3 (BIT_FIELD_REF, scalar_type, vec_temp,
4876 bitsize, bitpos);
4878 epilog_stmt = gimple_build_assign (new_scalar_dest, rhs);
4879 new_name = make_ssa_name (new_scalar_dest, epilog_stmt);
4880 gimple_assign_set_lhs (epilog_stmt, new_name);
4881 gsi_insert_before (&exit_gsi, epilog_stmt, GSI_SAME_STMT);
4883 if (slp_reduc)
4885 /* In SLP we don't need to apply reduction operation, so
4886 we just collect s' values in SCALAR_RESULTS. */
4887 new_temp = new_name;
4888 scalar_results.safe_push (new_name);
4890 else
4892 epilog_stmt = gimple_build_assign (new_scalar_dest, code,
4893 new_name, new_temp);
4894 new_temp = make_ssa_name (new_scalar_dest, epilog_stmt);
4895 gimple_assign_set_lhs (epilog_stmt, new_temp);
4896 gsi_insert_before (&exit_gsi, epilog_stmt, GSI_SAME_STMT);
4901 /* The only case where we need to reduce scalar results in SLP, is
4902 unrolling. If the size of SCALAR_RESULTS is greater than
4903 GROUP_SIZE, we reduce them combining elements modulo
4904 GROUP_SIZE. */
4905 if (slp_reduc)
4907 tree res, first_res, new_res;
4908 gimple *new_stmt;
4910 /* Reduce multiple scalar results in case of SLP unrolling. */
4911 for (j = group_size; scalar_results.iterate (j, &res);
4912 j++)
4914 first_res = scalar_results[j % group_size];
4915 new_stmt = gimple_build_assign (new_scalar_dest, code,
4916 first_res, res);
4917 new_res = make_ssa_name (new_scalar_dest, new_stmt);
4918 gimple_assign_set_lhs (new_stmt, new_res);
4919 gsi_insert_before (&exit_gsi, new_stmt, GSI_SAME_STMT);
4920 scalar_results[j % group_size] = new_res;
4923 else
4924 /* Not SLP - we have one scalar to keep in SCALAR_RESULTS. */
4925 scalar_results.safe_push (new_temp);
4929 vect_finalize_reduction:
4931 if (double_reduc)
4932 loop = loop->inner;
4934 /* 2.5 Adjust the final result by the initial value of the reduction
4935 variable. (When such adjustment is not needed, then
4936 'adjustment_def' is zero). For example, if code is PLUS we create:
4937 new_temp = loop_exit_def + adjustment_def */
4939 if (adjustment_def)
4941 gcc_assert (!slp_reduc);
4942 if (nested_in_vect_loop)
4944 new_phi = new_phis[0];
4945 gcc_assert (TREE_CODE (TREE_TYPE (adjustment_def)) == VECTOR_TYPE);
4946 expr = build2 (code, vectype, PHI_RESULT (new_phi), adjustment_def);
4947 new_dest = vect_create_destination_var (scalar_dest, vectype);
4949 else
4951 new_temp = scalar_results[0];
4952 gcc_assert (TREE_CODE (TREE_TYPE (adjustment_def)) != VECTOR_TYPE);
4953 expr = build2 (code, scalar_type, new_temp, adjustment_def);
4954 new_dest = vect_create_destination_var (scalar_dest, scalar_type);
4957 epilog_stmt = gimple_build_assign (new_dest, expr);
4958 new_temp = make_ssa_name (new_dest, epilog_stmt);
4959 gimple_assign_set_lhs (epilog_stmt, new_temp);
4960 gsi_insert_before (&exit_gsi, epilog_stmt, GSI_SAME_STMT);
4961 if (nested_in_vect_loop)
4963 set_vinfo_for_stmt (epilog_stmt,
4964 new_stmt_vec_info (epilog_stmt, loop_vinfo));
4965 STMT_VINFO_RELATED_STMT (vinfo_for_stmt (epilog_stmt)) =
4966 STMT_VINFO_RELATED_STMT (vinfo_for_stmt (new_phi));
4968 if (!double_reduc)
4969 scalar_results.quick_push (new_temp);
4970 else
4971 scalar_results[0] = new_temp;
4973 else
4974 scalar_results[0] = new_temp;
4976 new_phis[0] = epilog_stmt;
4979 /* 2.6 Handle the loop-exit phis. Replace the uses of scalar loop-exit
4980 phis with new adjusted scalar results, i.e., replace use <s_out0>
4981 with use <s_out4>.
4983 Transform:
4984 loop_exit:
4985 s_out0 = phi <s_loop> # (scalar) EXIT_PHI
4986 v_out1 = phi <VECT_DEF> # NEW_EXIT_PHI
4987 v_out2 = reduce <v_out1>
4988 s_out3 = extract_field <v_out2, 0>
4989 s_out4 = adjust_result <s_out3>
4990 use <s_out0>
4991 use <s_out0>
4993 into:
4995 loop_exit:
4996 s_out0 = phi <s_loop> # (scalar) EXIT_PHI
4997 v_out1 = phi <VECT_DEF> # NEW_EXIT_PHI
4998 v_out2 = reduce <v_out1>
4999 s_out3 = extract_field <v_out2, 0>
5000 s_out4 = adjust_result <s_out3>
5001 use <s_out4>
5002 use <s_out4> */
5005 /* In SLP reduction chain we reduce vector results into one vector if
5006 necessary, hence we set here GROUP_SIZE to 1. SCALAR_DEST is the LHS of
5007 the last stmt in the reduction chain, since we are looking for the loop
5008 exit phi node. */
5009 if (GROUP_FIRST_ELEMENT (vinfo_for_stmt (stmt)))
5011 gimple *dest_stmt = SLP_TREE_SCALAR_STMTS (slp_node)[group_size - 1];
5012 /* Handle reduction patterns. */
5013 if (STMT_VINFO_RELATED_STMT (vinfo_for_stmt (dest_stmt)))
5014 dest_stmt = STMT_VINFO_RELATED_STMT (vinfo_for_stmt (dest_stmt));
5016 scalar_dest = gimple_assign_lhs (dest_stmt);
5017 group_size = 1;
5020 /* In SLP we may have several statements in NEW_PHIS and REDUCTION_PHIS (in
5021 case that GROUP_SIZE is greater than vectorization factor). Therefore, we
5022 need to match SCALAR_RESULTS with corresponding statements. The first
5023 (GROUP_SIZE / number of new vector stmts) scalar results correspond to
5024 the first vector stmt, etc.
5025 (RATIO is equal to (GROUP_SIZE / number of new vector stmts)). */
5026 if (group_size > new_phis.length ())
5028 ratio = group_size / new_phis.length ();
5029 gcc_assert (!(group_size % new_phis.length ()));
5031 else
5032 ratio = 1;
5034 for (k = 0; k < group_size; k++)
5036 if (k % ratio == 0)
5038 epilog_stmt = new_phis[k / ratio];
5039 reduction_phi = reduction_phis[k / ratio];
5040 if (double_reduc)
5041 inner_phi = inner_phis[k / ratio];
5044 if (slp_reduc)
5046 gimple *current_stmt = SLP_TREE_SCALAR_STMTS (slp_node)[k];
5048 orig_stmt = STMT_VINFO_RELATED_STMT (vinfo_for_stmt (current_stmt));
5049 /* SLP statements can't participate in patterns. */
5050 gcc_assert (!orig_stmt);
5051 scalar_dest = gimple_assign_lhs (current_stmt);
5054 phis.create (3);
5055 /* Find the loop-closed-use at the loop exit of the original scalar
5056 result. (The reduction result is expected to have two immediate uses -
5057 one at the latch block, and one at the loop exit). */
5058 FOR_EACH_IMM_USE_FAST (use_p, imm_iter, scalar_dest)
5059 if (!flow_bb_inside_loop_p (loop, gimple_bb (USE_STMT (use_p)))
5060 && !is_gimple_debug (USE_STMT (use_p)))
5061 phis.safe_push (USE_STMT (use_p));
5063 /* While we expect to have found an exit_phi because of loop-closed-ssa
5064 form we can end up without one if the scalar cycle is dead. */
5066 FOR_EACH_VEC_ELT (phis, i, exit_phi)
5068 if (outer_loop)
5070 stmt_vec_info exit_phi_vinfo = vinfo_for_stmt (exit_phi);
5071 gphi *vect_phi;
5073 /* FORNOW. Currently not supporting the case that an inner-loop
5074 reduction is not used in the outer-loop (but only outside the
5075 outer-loop), unless it is double reduction. */
5076 gcc_assert ((STMT_VINFO_RELEVANT_P (exit_phi_vinfo)
5077 && !STMT_VINFO_LIVE_P (exit_phi_vinfo))
5078 || double_reduc);
5080 if (double_reduc)
5081 STMT_VINFO_VEC_STMT (exit_phi_vinfo) = inner_phi;
5082 else
5083 STMT_VINFO_VEC_STMT (exit_phi_vinfo) = epilog_stmt;
5084 if (!double_reduc
5085 || STMT_VINFO_DEF_TYPE (exit_phi_vinfo)
5086 != vect_double_reduction_def)
5087 continue;
5089 /* Handle double reduction:
5091 stmt1: s1 = phi <s0, s2> - double reduction phi (outer loop)
5092 stmt2: s3 = phi <s1, s4> - (regular) reduc phi (inner loop)
5093 stmt3: s4 = use (s3) - (regular) reduc stmt (inner loop)
5094 stmt4: s2 = phi <s4> - double reduction stmt (outer loop)
5096 At that point the regular reduction (stmt2 and stmt3) is
5097 already vectorized, as well as the exit phi node, stmt4.
5098 Here we vectorize the phi node of double reduction, stmt1, and
5099 update all relevant statements. */
5101 /* Go through all the uses of s2 to find double reduction phi
5102 node, i.e., stmt1 above. */
5103 orig_name = PHI_RESULT (exit_phi);
5104 FOR_EACH_IMM_USE_STMT (use_stmt, imm_iter, orig_name)
5106 stmt_vec_info use_stmt_vinfo;
5107 stmt_vec_info new_phi_vinfo;
5108 tree vect_phi_init, preheader_arg, vect_phi_res, init_def;
5109 basic_block bb = gimple_bb (use_stmt);
5110 gimple *use;
5112 /* Check that USE_STMT is really double reduction phi
5113 node. */
5114 if (gimple_code (use_stmt) != GIMPLE_PHI
5115 || gimple_phi_num_args (use_stmt) != 2
5116 || bb->loop_father != outer_loop)
5117 continue;
5118 use_stmt_vinfo = vinfo_for_stmt (use_stmt);
5119 if (!use_stmt_vinfo
5120 || STMT_VINFO_DEF_TYPE (use_stmt_vinfo)
5121 != vect_double_reduction_def)
5122 continue;
5124 /* Create vector phi node for double reduction:
5125 vs1 = phi <vs0, vs2>
5126 vs1 was created previously in this function by a call to
5127 vect_get_vec_def_for_operand and is stored in
5128 vec_initial_def;
5129 vs2 is defined by INNER_PHI, the vectorized EXIT_PHI;
5130 vs0 is created here. */
5132 /* Create vector phi node. */
5133 vect_phi = create_phi_node (vec_initial_def, bb);
5134 new_phi_vinfo = new_stmt_vec_info (vect_phi,
5135 loop_vec_info_for_loop (outer_loop));
5136 set_vinfo_for_stmt (vect_phi, new_phi_vinfo);
5138 /* Create vs0 - initial def of the double reduction phi. */
5139 preheader_arg = PHI_ARG_DEF_FROM_EDGE (use_stmt,
5140 loop_preheader_edge (outer_loop));
5141 init_def = get_initial_def_for_reduction (stmt,
5142 preheader_arg, NULL);
5143 vect_phi_init = vect_init_vector (use_stmt, init_def,
5144 vectype, NULL);
5146 /* Update phi node arguments with vs0 and vs2. */
5147 add_phi_arg (vect_phi, vect_phi_init,
5148 loop_preheader_edge (outer_loop),
5149 UNKNOWN_LOCATION);
5150 add_phi_arg (vect_phi, PHI_RESULT (inner_phi),
5151 loop_latch_edge (outer_loop), UNKNOWN_LOCATION);
5152 if (dump_enabled_p ())
5154 dump_printf_loc (MSG_NOTE, vect_location,
5155 "created double reduction phi node: ");
5156 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, vect_phi, 0);
5157 dump_printf (MSG_NOTE, "\n");
5160 vect_phi_res = PHI_RESULT (vect_phi);
5162 /* Replace the use, i.e., set the correct vs1 in the regular
5163 reduction phi node. FORNOW, NCOPIES is always 1, so the
5164 loop is redundant. */
5165 use = reduction_phi;
5166 for (j = 0; j < ncopies; j++)
5168 edge pr_edge = loop_preheader_edge (loop);
5169 SET_PHI_ARG_DEF (use, pr_edge->dest_idx, vect_phi_res);
5170 use = STMT_VINFO_RELATED_STMT (vinfo_for_stmt (use));
5176 phis.release ();
5177 if (nested_in_vect_loop)
5179 if (double_reduc)
5180 loop = outer_loop;
5181 else
5182 continue;
5185 phis.create (3);
5186 /* Find the loop-closed-use at the loop exit of the original scalar
5187 result. (The reduction result is expected to have two immediate uses,
5188 one at the latch block, and one at the loop exit). For double
5189 reductions we are looking for exit phis of the outer loop. */
5190 FOR_EACH_IMM_USE_FAST (use_p, imm_iter, scalar_dest)
5192 if (!flow_bb_inside_loop_p (loop, gimple_bb (USE_STMT (use_p))))
5194 if (!is_gimple_debug (USE_STMT (use_p)))
5195 phis.safe_push (USE_STMT (use_p));
5197 else
5199 if (double_reduc && gimple_code (USE_STMT (use_p)) == GIMPLE_PHI)
5201 tree phi_res = PHI_RESULT (USE_STMT (use_p));
5203 FOR_EACH_IMM_USE_FAST (phi_use_p, phi_imm_iter, phi_res)
5205 if (!flow_bb_inside_loop_p (loop,
5206 gimple_bb (USE_STMT (phi_use_p)))
5207 && !is_gimple_debug (USE_STMT (phi_use_p)))
5208 phis.safe_push (USE_STMT (phi_use_p));
5214 FOR_EACH_VEC_ELT (phis, i, exit_phi)
5216 /* Replace the uses: */
5217 orig_name = PHI_RESULT (exit_phi);
5218 scalar_result = scalar_results[k];
5219 FOR_EACH_IMM_USE_STMT (use_stmt, imm_iter, orig_name)
5220 FOR_EACH_IMM_USE_ON_STMT (use_p, imm_iter)
5221 SET_USE (use_p, scalar_result);
5224 phis.release ();
5229 /* Function is_nonwrapping_integer_induction.
5231 Check if STMT (which is part of loop LOOP) both increments and
5232 does not cause overflow. */
5234 static bool
5235 is_nonwrapping_integer_induction (gimple *stmt, struct loop *loop)
5237 stmt_vec_info stmt_vinfo = vinfo_for_stmt (stmt);
5238 tree base = STMT_VINFO_LOOP_PHI_EVOLUTION_BASE_UNCHANGED (stmt_vinfo);
5239 tree step = STMT_VINFO_LOOP_PHI_EVOLUTION_PART (stmt_vinfo);
5240 tree lhs_type = TREE_TYPE (gimple_phi_result (stmt));
5241 widest_int ni, max_loop_value, lhs_max;
5242 bool overflow = false;
5244 /* Make sure the loop is integer based. */
5245 if (TREE_CODE (base) != INTEGER_CST
5246 || TREE_CODE (step) != INTEGER_CST)
5247 return false;
5249 /* Check that the induction increments. */
5250 if (tree_int_cst_sgn (step) == -1)
5251 return false;
5253 /* Check that the max size of the loop will not wrap. */
5255 if (TYPE_OVERFLOW_UNDEFINED (lhs_type))
5256 return true;
5258 if (! max_stmt_executions (loop, &ni))
5259 return false;
5261 max_loop_value = wi::mul (wi::to_widest (step), ni, TYPE_SIGN (lhs_type),
5262 &overflow);
5263 if (overflow)
5264 return false;
5266 max_loop_value = wi::add (wi::to_widest (base), max_loop_value,
5267 TYPE_SIGN (lhs_type), &overflow);
5268 if (overflow)
5269 return false;
5271 return (wi::min_precision (max_loop_value, TYPE_SIGN (lhs_type))
5272 <= TYPE_PRECISION (lhs_type));
5275 /* Function vectorizable_reduction.
5277 Check if STMT performs a reduction operation that can be vectorized.
5278 If VEC_STMT is also passed, vectorize the STMT: create a vectorized
5279 stmt to replace it, put it in VEC_STMT, and insert it at GSI.
5280 Return FALSE if not a vectorizable STMT, TRUE otherwise.
5282 This function also handles reduction idioms (patterns) that have been
5283 recognized in advance during vect_pattern_recog. In this case, STMT may be
5284 of this form:
5285 X = pattern_expr (arg0, arg1, ..., X)
5286 and it's STMT_VINFO_RELATED_STMT points to the last stmt in the original
5287 sequence that had been detected and replaced by the pattern-stmt (STMT).
5289 This function also handles reduction of condition expressions, for example:
5290 for (int i = 0; i < N; i++)
5291 if (a[i] < value)
5292 last = a[i];
5293 This is handled by vectorising the loop and creating an additional vector
5294 containing the loop indexes for which "a[i] < value" was true. In the
5295 function epilogue this is reduced to a single max value and then used to
5296 index into the vector of results.
5298 In some cases of reduction patterns, the type of the reduction variable X is
5299 different than the type of the other arguments of STMT.
5300 In such cases, the vectype that is used when transforming STMT into a vector
5301 stmt is different than the vectype that is used to determine the
5302 vectorization factor, because it consists of a different number of elements
5303 than the actual number of elements that are being operated upon in parallel.
5305 For example, consider an accumulation of shorts into an int accumulator.
5306 On some targets it's possible to vectorize this pattern operating on 8
5307 shorts at a time (hence, the vectype for purposes of determining the
5308 vectorization factor should be V8HI); on the other hand, the vectype that
5309 is used to create the vector form is actually V4SI (the type of the result).
5311 Upon entry to this function, STMT_VINFO_VECTYPE records the vectype that
5312 indicates what is the actual level of parallelism (V8HI in the example), so
5313 that the right vectorization factor would be derived. This vectype
5314 corresponds to the type of arguments to the reduction stmt, and should *NOT*
5315 be used to create the vectorized stmt. The right vectype for the vectorized
5316 stmt is obtained from the type of the result X:
5317 get_vectype_for_scalar_type (TREE_TYPE (X))
5319 This means that, contrary to "regular" reductions (or "regular" stmts in
5320 general), the following equation:
5321 STMT_VINFO_VECTYPE == get_vectype_for_scalar_type (TREE_TYPE (X))
5322 does *NOT* necessarily hold for reduction patterns. */
5324 bool
5325 vectorizable_reduction (gimple *stmt, gimple_stmt_iterator *gsi,
5326 gimple **vec_stmt, slp_tree slp_node)
5328 tree vec_dest;
5329 tree scalar_dest;
5330 tree loop_vec_def0 = NULL_TREE, loop_vec_def1 = NULL_TREE;
5331 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
5332 tree vectype_out = STMT_VINFO_VECTYPE (stmt_info);
5333 tree vectype_in = NULL_TREE;
5334 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
5335 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
5336 enum tree_code code, orig_code, epilog_reduc_code;
5337 machine_mode vec_mode;
5338 int op_type;
5339 optab optab, reduc_optab;
5340 tree new_temp = NULL_TREE;
5341 gimple *def_stmt;
5342 enum vect_def_type dt;
5343 gphi *new_phi = NULL;
5344 tree scalar_type;
5345 bool is_simple_use;
5346 gimple *orig_stmt;
5347 stmt_vec_info orig_stmt_info;
5348 tree expr = NULL_TREE;
5349 int i;
5350 int ncopies;
5351 int epilog_copies;
5352 stmt_vec_info prev_stmt_info, prev_phi_info;
5353 bool single_defuse_cycle = false;
5354 tree reduc_def = NULL_TREE;
5355 gimple *new_stmt = NULL;
5356 int j;
5357 tree ops[3];
5358 bool nested_cycle = false, found_nested_cycle_def = false;
5359 gimple *reduc_def_stmt = NULL;
5360 bool double_reduc = false, dummy;
5361 basic_block def_bb;
5362 struct loop * def_stmt_loop, *outer_loop = NULL;
5363 tree def_arg;
5364 gimple *def_arg_stmt;
5365 auto_vec<tree> vec_oprnds0;
5366 auto_vec<tree> vec_oprnds1;
5367 auto_vec<tree> vect_defs;
5368 auto_vec<gimple *> phis;
5369 int vec_num;
5370 tree def0, def1, tem, op0, op1 = NULL_TREE;
5371 bool first_p = true;
5372 tree cr_index_scalar_type = NULL_TREE, cr_index_vector_type = NULL_TREE;
5373 gimple *cond_expr_induction_def_stmt = NULL;
5375 /* In case of reduction chain we switch to the first stmt in the chain, but
5376 we don't update STMT_INFO, since only the last stmt is marked as reduction
5377 and has reduction properties. */
5378 if (GROUP_FIRST_ELEMENT (stmt_info)
5379 && GROUP_FIRST_ELEMENT (stmt_info) != stmt)
5381 stmt = GROUP_FIRST_ELEMENT (stmt_info);
5382 first_p = false;
5385 if (nested_in_vect_loop_p (loop, stmt))
5387 outer_loop = loop;
5388 loop = loop->inner;
5389 nested_cycle = true;
5392 /* 1. Is vectorizable reduction? */
5393 /* Not supportable if the reduction variable is used in the loop, unless
5394 it's a reduction chain. */
5395 if (STMT_VINFO_RELEVANT (stmt_info) > vect_used_in_outer
5396 && !GROUP_FIRST_ELEMENT (stmt_info))
5397 return false;
5399 /* Reductions that are not used even in an enclosing outer-loop,
5400 are expected to be "live" (used out of the loop). */
5401 if (STMT_VINFO_RELEVANT (stmt_info) == vect_unused_in_scope
5402 && !STMT_VINFO_LIVE_P (stmt_info))
5403 return false;
5405 /* Make sure it was already recognized as a reduction computation. */
5406 if (STMT_VINFO_DEF_TYPE (vinfo_for_stmt (stmt)) != vect_reduction_def
5407 && STMT_VINFO_DEF_TYPE (vinfo_for_stmt (stmt)) != vect_nested_cycle)
5408 return false;
5410 /* 2. Has this been recognized as a reduction pattern?
5412 Check if STMT represents a pattern that has been recognized
5413 in earlier analysis stages. For stmts that represent a pattern,
5414 the STMT_VINFO_RELATED_STMT field records the last stmt in
5415 the original sequence that constitutes the pattern. */
5417 orig_stmt = STMT_VINFO_RELATED_STMT (vinfo_for_stmt (stmt));
5418 if (orig_stmt)
5420 orig_stmt_info = vinfo_for_stmt (orig_stmt);
5421 gcc_assert (STMT_VINFO_IN_PATTERN_P (orig_stmt_info));
5422 gcc_assert (!STMT_VINFO_IN_PATTERN_P (stmt_info));
5425 /* 3. Check the operands of the operation. The first operands are defined
5426 inside the loop body. The last operand is the reduction variable,
5427 which is defined by the loop-header-phi. */
5429 gcc_assert (is_gimple_assign (stmt));
5431 /* Flatten RHS. */
5432 switch (get_gimple_rhs_class (gimple_assign_rhs_code (stmt)))
5434 case GIMPLE_SINGLE_RHS:
5435 op_type = TREE_OPERAND_LENGTH (gimple_assign_rhs1 (stmt));
5436 if (op_type == ternary_op)
5438 tree rhs = gimple_assign_rhs1 (stmt);
5439 ops[0] = TREE_OPERAND (rhs, 0);
5440 ops[1] = TREE_OPERAND (rhs, 1);
5441 ops[2] = TREE_OPERAND (rhs, 2);
5442 code = TREE_CODE (rhs);
5444 else
5445 return false;
5446 break;
5448 case GIMPLE_BINARY_RHS:
5449 code = gimple_assign_rhs_code (stmt);
5450 op_type = TREE_CODE_LENGTH (code);
5451 gcc_assert (op_type == binary_op);
5452 ops[0] = gimple_assign_rhs1 (stmt);
5453 ops[1] = gimple_assign_rhs2 (stmt);
5454 break;
5456 case GIMPLE_TERNARY_RHS:
5457 code = gimple_assign_rhs_code (stmt);
5458 op_type = TREE_CODE_LENGTH (code);
5459 gcc_assert (op_type == ternary_op);
5460 ops[0] = gimple_assign_rhs1 (stmt);
5461 ops[1] = gimple_assign_rhs2 (stmt);
5462 ops[2] = gimple_assign_rhs3 (stmt);
5463 break;
5465 case GIMPLE_UNARY_RHS:
5466 return false;
5468 default:
5469 gcc_unreachable ();
5471 /* The default is that the reduction variable is the last in statement. */
5472 int reduc_index = op_type - 1;
5473 if (code == MINUS_EXPR)
5474 reduc_index = 0;
5476 if (code == COND_EXPR && slp_node)
5477 return false;
5479 scalar_dest = gimple_assign_lhs (stmt);
5480 scalar_type = TREE_TYPE (scalar_dest);
5481 if (!POINTER_TYPE_P (scalar_type) && !INTEGRAL_TYPE_P (scalar_type)
5482 && !SCALAR_FLOAT_TYPE_P (scalar_type))
5483 return false;
5485 /* Do not try to vectorize bit-precision reductions. */
5486 if ((TYPE_PRECISION (scalar_type)
5487 != GET_MODE_PRECISION (TYPE_MODE (scalar_type))))
5488 return false;
5490 /* All uses but the last are expected to be defined in the loop.
5491 The last use is the reduction variable. In case of nested cycle this
5492 assumption is not true: we use reduc_index to record the index of the
5493 reduction variable. */
5494 for (i = 0; i < op_type; i++)
5496 if (i == reduc_index)
5497 continue;
5499 /* The condition of COND_EXPR is checked in vectorizable_condition(). */
5500 if (i == 0 && code == COND_EXPR)
5501 continue;
5503 is_simple_use = vect_is_simple_use (ops[i], loop_vinfo,
5504 &def_stmt, &dt, &tem);
5505 if (!vectype_in)
5506 vectype_in = tem;
5507 gcc_assert (is_simple_use);
5509 if (dt != vect_internal_def
5510 && dt != vect_external_def
5511 && dt != vect_constant_def
5512 && dt != vect_induction_def
5513 && !(dt == vect_nested_cycle && nested_cycle))
5514 return false;
5516 if (dt == vect_nested_cycle)
5518 found_nested_cycle_def = true;
5519 reduc_def_stmt = def_stmt;
5520 reduc_index = i;
5523 if (i == 1 && code == COND_EXPR && dt == vect_induction_def)
5524 cond_expr_induction_def_stmt = def_stmt;
5527 is_simple_use = vect_is_simple_use (ops[reduc_index], loop_vinfo,
5528 &def_stmt, &dt, &tem);
5529 if (!vectype_in)
5530 vectype_in = tem;
5531 gcc_assert (is_simple_use);
5532 if (!found_nested_cycle_def)
5533 reduc_def_stmt = def_stmt;
5535 if (reduc_def_stmt && gimple_code (reduc_def_stmt) != GIMPLE_PHI)
5536 return false;
5538 if (!(dt == vect_reduction_def
5539 || dt == vect_nested_cycle
5540 || ((dt == vect_internal_def || dt == vect_external_def
5541 || dt == vect_constant_def || dt == vect_induction_def)
5542 && nested_cycle && found_nested_cycle_def)))
5544 /* For pattern recognized stmts, orig_stmt might be a reduction,
5545 but some helper statements for the pattern might not, or
5546 might be COND_EXPRs with reduction uses in the condition. */
5547 gcc_assert (orig_stmt);
5548 return false;
5551 enum vect_reduction_type v_reduc_type;
5552 gimple *tmp = vect_is_simple_reduction (loop_vinfo, reduc_def_stmt,
5553 !nested_cycle, &dummy, false,
5554 &v_reduc_type);
5556 /* If we have a condition reduction, see if we can simplify it further. */
5557 if (v_reduc_type == COND_REDUCTION
5558 && cond_expr_induction_def_stmt != NULL
5559 && is_nonwrapping_integer_induction (cond_expr_induction_def_stmt, loop))
5561 if (dump_enabled_p ())
5562 dump_printf_loc (MSG_NOTE, vect_location,
5563 "condition expression based on integer induction.\n");
5564 STMT_VINFO_VEC_REDUCTION_TYPE (stmt_info) = INTEGER_INDUC_COND_REDUCTION;
5566 else
5567 STMT_VINFO_VEC_REDUCTION_TYPE (stmt_info) = v_reduc_type;
5569 if (orig_stmt)
5570 gcc_assert (tmp == orig_stmt
5571 || GROUP_FIRST_ELEMENT (vinfo_for_stmt (tmp)) == orig_stmt);
5572 else
5573 /* We changed STMT to be the first stmt in reduction chain, hence we
5574 check that in this case the first element in the chain is STMT. */
5575 gcc_assert (stmt == tmp
5576 || GROUP_FIRST_ELEMENT (vinfo_for_stmt (tmp)) == stmt);
5578 if (STMT_VINFO_LIVE_P (vinfo_for_stmt (reduc_def_stmt)))
5579 return false;
5581 if (slp_node || PURE_SLP_STMT (stmt_info))
5582 ncopies = 1;
5583 else
5584 ncopies = (LOOP_VINFO_VECT_FACTOR (loop_vinfo)
5585 / TYPE_VECTOR_SUBPARTS (vectype_in));
5587 gcc_assert (ncopies >= 1);
5589 vec_mode = TYPE_MODE (vectype_in);
5591 if (code == COND_EXPR)
5593 /* Only call during the analysis stage, otherwise we'll lose
5594 STMT_VINFO_TYPE. */
5595 if (!vec_stmt && !vectorizable_condition (stmt, gsi, NULL,
5596 ops[reduc_index], 0, NULL))
5598 if (dump_enabled_p ())
5599 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
5600 "unsupported condition in reduction\n");
5601 return false;
5604 else
5606 /* 4. Supportable by target? */
5608 if (code == LSHIFT_EXPR || code == RSHIFT_EXPR
5609 || code == LROTATE_EXPR || code == RROTATE_EXPR)
5611 /* Shifts and rotates are only supported by vectorizable_shifts,
5612 not vectorizable_reduction. */
5613 if (dump_enabled_p ())
5614 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
5615 "unsupported shift or rotation.\n");
5616 return false;
5619 /* 4.1. check support for the operation in the loop */
5620 optab = optab_for_tree_code (code, vectype_in, optab_default);
5621 if (!optab)
5623 if (dump_enabled_p ())
5624 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
5625 "no optab.\n");
5627 return false;
5630 if (optab_handler (optab, vec_mode) == CODE_FOR_nothing)
5632 if (dump_enabled_p ())
5633 dump_printf (MSG_NOTE, "op not supported by target.\n");
5635 if (GET_MODE_SIZE (vec_mode) != UNITS_PER_WORD
5636 || LOOP_VINFO_VECT_FACTOR (loop_vinfo)
5637 < vect_min_worthwhile_factor (code))
5638 return false;
5640 if (dump_enabled_p ())
5641 dump_printf (MSG_NOTE, "proceeding using word mode.\n");
5644 /* Worthwhile without SIMD support? */
5645 if (!VECTOR_MODE_P (TYPE_MODE (vectype_in))
5646 && LOOP_VINFO_VECT_FACTOR (loop_vinfo)
5647 < vect_min_worthwhile_factor (code))
5649 if (dump_enabled_p ())
5650 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
5651 "not worthwhile without SIMD support.\n");
5653 return false;
5657 /* 4.2. Check support for the epilog operation.
5659 If STMT represents a reduction pattern, then the type of the
5660 reduction variable may be different than the type of the rest
5661 of the arguments. For example, consider the case of accumulation
5662 of shorts into an int accumulator; The original code:
5663 S1: int_a = (int) short_a;
5664 orig_stmt-> S2: int_acc = plus <int_a ,int_acc>;
5666 was replaced with:
5667 STMT: int_acc = widen_sum <short_a, int_acc>
5669 This means that:
5670 1. The tree-code that is used to create the vector operation in the
5671 epilog code (that reduces the partial results) is not the
5672 tree-code of STMT, but is rather the tree-code of the original
5673 stmt from the pattern that STMT is replacing. I.e, in the example
5674 above we want to use 'widen_sum' in the loop, but 'plus' in the
5675 epilog.
5676 2. The type (mode) we use to check available target support
5677 for the vector operation to be created in the *epilog*, is
5678 determined by the type of the reduction variable (in the example
5679 above we'd check this: optab_handler (plus_optab, vect_int_mode])).
5680 However the type (mode) we use to check available target support
5681 for the vector operation to be created *inside the loop*, is
5682 determined by the type of the other arguments to STMT (in the
5683 example we'd check this: optab_handler (widen_sum_optab,
5684 vect_short_mode)).
5686 This is contrary to "regular" reductions, in which the types of all
5687 the arguments are the same as the type of the reduction variable.
5688 For "regular" reductions we can therefore use the same vector type
5689 (and also the same tree-code) when generating the epilog code and
5690 when generating the code inside the loop. */
5692 if (orig_stmt)
5694 /* This is a reduction pattern: get the vectype from the type of the
5695 reduction variable, and get the tree-code from orig_stmt. */
5696 gcc_assert (STMT_VINFO_VEC_REDUCTION_TYPE (stmt_info)
5697 == TREE_CODE_REDUCTION);
5698 orig_code = gimple_assign_rhs_code (orig_stmt);
5699 gcc_assert (vectype_out);
5700 vec_mode = TYPE_MODE (vectype_out);
5702 else
5704 /* Regular reduction: use the same vectype and tree-code as used for
5705 the vector code inside the loop can be used for the epilog code. */
5706 orig_code = code;
5708 if (code == MINUS_EXPR)
5709 orig_code = PLUS_EXPR;
5711 /* For simple condition reductions, replace with the actual expression
5712 we want to base our reduction around. */
5713 if (STMT_VINFO_VEC_REDUCTION_TYPE (stmt_info)
5714 == INTEGER_INDUC_COND_REDUCTION)
5715 orig_code = MAX_EXPR;
5718 if (nested_cycle)
5720 def_bb = gimple_bb (reduc_def_stmt);
5721 def_stmt_loop = def_bb->loop_father;
5722 def_arg = PHI_ARG_DEF_FROM_EDGE (reduc_def_stmt,
5723 loop_preheader_edge (def_stmt_loop));
5724 if (TREE_CODE (def_arg) == SSA_NAME
5725 && (def_arg_stmt = SSA_NAME_DEF_STMT (def_arg))
5726 && gimple_code (def_arg_stmt) == GIMPLE_PHI
5727 && flow_bb_inside_loop_p (outer_loop, gimple_bb (def_arg_stmt))
5728 && vinfo_for_stmt (def_arg_stmt)
5729 && STMT_VINFO_DEF_TYPE (vinfo_for_stmt (def_arg_stmt))
5730 == vect_double_reduction_def)
5731 double_reduc = true;
5734 epilog_reduc_code = ERROR_MARK;
5736 if (STMT_VINFO_VEC_REDUCTION_TYPE (stmt_info) == TREE_CODE_REDUCTION
5737 || STMT_VINFO_VEC_REDUCTION_TYPE (stmt_info)
5738 == INTEGER_INDUC_COND_REDUCTION)
5740 if (reduction_code_for_scalar_code (orig_code, &epilog_reduc_code))
5742 reduc_optab = optab_for_tree_code (epilog_reduc_code, vectype_out,
5743 optab_default);
5744 if (!reduc_optab)
5746 if (dump_enabled_p ())
5747 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
5748 "no optab for reduction.\n");
5750 epilog_reduc_code = ERROR_MARK;
5752 else if (optab_handler (reduc_optab, vec_mode) == CODE_FOR_nothing)
5754 if (dump_enabled_p ())
5755 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
5756 "reduc op not supported by target.\n");
5758 epilog_reduc_code = ERROR_MARK;
5761 /* When epilog_reduc_code is ERROR_MARK then a reduction will be
5762 generated in the epilog using multiple expressions. This does not
5763 work for condition reductions. */
5764 if (epilog_reduc_code == ERROR_MARK
5765 && STMT_VINFO_VEC_REDUCTION_TYPE (stmt_info)
5766 == INTEGER_INDUC_COND_REDUCTION)
5768 if (dump_enabled_p ())
5769 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
5770 "no reduc code for scalar code.\n");
5771 return false;
5774 else
5776 if (!nested_cycle || double_reduc)
5778 if (dump_enabled_p ())
5779 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
5780 "no reduc code for scalar code.\n");
5782 return false;
5786 else
5788 int scalar_precision = GET_MODE_PRECISION (TYPE_MODE (scalar_type));
5789 cr_index_scalar_type = make_unsigned_type (scalar_precision);
5790 cr_index_vector_type = build_vector_type
5791 (cr_index_scalar_type, TYPE_VECTOR_SUBPARTS (vectype_out));
5793 epilog_reduc_code = REDUC_MAX_EXPR;
5794 optab = optab_for_tree_code (REDUC_MAX_EXPR, cr_index_vector_type,
5795 optab_default);
5796 if (optab_handler (optab, TYPE_MODE (cr_index_vector_type))
5797 == CODE_FOR_nothing)
5799 if (dump_enabled_p ())
5800 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
5801 "reduc max op not supported by target.\n");
5802 return false;
5806 if ((double_reduc
5807 || STMT_VINFO_VEC_REDUCTION_TYPE (stmt_info) == COND_REDUCTION
5808 || STMT_VINFO_VEC_REDUCTION_TYPE (stmt_info)
5809 == INTEGER_INDUC_COND_REDUCTION)
5810 && ncopies > 1)
5812 if (dump_enabled_p ())
5813 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
5814 "multiple types in double reduction or condition "
5815 "reduction.\n");
5816 return false;
5819 /* In case of widenning multiplication by a constant, we update the type
5820 of the constant to be the type of the other operand. We check that the
5821 constant fits the type in the pattern recognition pass. */
5822 if (code == DOT_PROD_EXPR
5823 && !types_compatible_p (TREE_TYPE (ops[0]), TREE_TYPE (ops[1])))
5825 if (TREE_CODE (ops[0]) == INTEGER_CST)
5826 ops[0] = fold_convert (TREE_TYPE (ops[1]), ops[0]);
5827 else if (TREE_CODE (ops[1]) == INTEGER_CST)
5828 ops[1] = fold_convert (TREE_TYPE (ops[0]), ops[1]);
5829 else
5831 if (dump_enabled_p ())
5832 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
5833 "invalid types in dot-prod\n");
5835 return false;
5839 if (STMT_VINFO_VEC_REDUCTION_TYPE (stmt_info) == COND_REDUCTION)
5841 widest_int ni;
5843 if (! max_loop_iterations (loop, &ni))
5845 if (dump_enabled_p ())
5846 dump_printf_loc (MSG_NOTE, vect_location,
5847 "loop count not known, cannot create cond "
5848 "reduction.\n");
5849 return false;
5851 /* Convert backedges to iterations. */
5852 ni += 1;
5854 /* The additional index will be the same type as the condition. Check
5855 that the loop can fit into this less one (because we'll use up the
5856 zero slot for when there are no matches). */
5857 tree max_index = TYPE_MAX_VALUE (cr_index_scalar_type);
5858 if (wi::geu_p (ni, wi::to_widest (max_index)))
5860 if (dump_enabled_p ())
5861 dump_printf_loc (MSG_NOTE, vect_location,
5862 "loop size is greater than data size.\n");
5863 return false;
5867 if (!vec_stmt) /* transformation not required. */
5869 if (first_p
5870 && !vect_model_reduction_cost (stmt_info, epilog_reduc_code, ncopies,
5871 reduc_index))
5872 return false;
5873 STMT_VINFO_TYPE (stmt_info) = reduc_vec_info_type;
5874 return true;
5877 /** Transform. **/
5879 if (dump_enabled_p ())
5880 dump_printf_loc (MSG_NOTE, vect_location, "transform reduction.\n");
5882 /* FORNOW: Multiple types are not supported for condition. */
5883 if (code == COND_EXPR)
5884 gcc_assert (ncopies == 1);
5886 /* Create the destination vector */
5887 vec_dest = vect_create_destination_var (scalar_dest, vectype_out);
5889 /* In case the vectorization factor (VF) is bigger than the number
5890 of elements that we can fit in a vectype (nunits), we have to generate
5891 more than one vector stmt - i.e - we need to "unroll" the
5892 vector stmt by a factor VF/nunits. For more details see documentation
5893 in vectorizable_operation. */
5895 /* If the reduction is used in an outer loop we need to generate
5896 VF intermediate results, like so (e.g. for ncopies=2):
5897 r0 = phi (init, r0)
5898 r1 = phi (init, r1)
5899 r0 = x0 + r0;
5900 r1 = x1 + r1;
5901 (i.e. we generate VF results in 2 registers).
5902 In this case we have a separate def-use cycle for each copy, and therefore
5903 for each copy we get the vector def for the reduction variable from the
5904 respective phi node created for this copy.
5906 Otherwise (the reduction is unused in the loop nest), we can combine
5907 together intermediate results, like so (e.g. for ncopies=2):
5908 r = phi (init, r)
5909 r = x0 + r;
5910 r = x1 + r;
5911 (i.e. we generate VF/2 results in a single register).
5912 In this case for each copy we get the vector def for the reduction variable
5913 from the vectorized reduction operation generated in the previous iteration.
5916 if (STMT_VINFO_RELEVANT (stmt_info) == vect_unused_in_scope)
5918 single_defuse_cycle = true;
5919 epilog_copies = 1;
5921 else
5922 epilog_copies = ncopies;
5924 prev_stmt_info = NULL;
5925 prev_phi_info = NULL;
5926 if (slp_node)
5927 vec_num = SLP_TREE_NUMBER_OF_VEC_STMTS (slp_node);
5928 else
5930 vec_num = 1;
5931 vec_oprnds0.create (1);
5932 if (op_type == ternary_op)
5933 vec_oprnds1.create (1);
5936 phis.create (vec_num);
5937 vect_defs.create (vec_num);
5938 if (!slp_node)
5939 vect_defs.quick_push (NULL_TREE);
5941 for (j = 0; j < ncopies; j++)
5943 if (j == 0 || !single_defuse_cycle)
5945 for (i = 0; i < vec_num; i++)
5947 /* Create the reduction-phi that defines the reduction
5948 operand. */
5949 new_phi = create_phi_node (vec_dest, loop->header);
5950 set_vinfo_for_stmt (new_phi,
5951 new_stmt_vec_info (new_phi, loop_vinfo));
5952 if (j == 0 || slp_node)
5953 phis.quick_push (new_phi);
5957 if (code == COND_EXPR)
5959 gcc_assert (!slp_node);
5960 vectorizable_condition (stmt, gsi, vec_stmt,
5961 PHI_RESULT (phis[0]),
5962 reduc_index, NULL);
5963 /* Multiple types are not supported for condition. */
5964 break;
5967 /* Handle uses. */
5968 if (j == 0)
5970 op0 = ops[!reduc_index];
5971 if (op_type == ternary_op)
5973 if (reduc_index == 0)
5974 op1 = ops[2];
5975 else
5976 op1 = ops[1];
5979 if (slp_node)
5980 vect_get_vec_defs (op0, op1, stmt, &vec_oprnds0, &vec_oprnds1,
5981 slp_node, -1);
5982 else
5984 loop_vec_def0 = vect_get_vec_def_for_operand (ops[!reduc_index],
5985 stmt);
5986 vec_oprnds0.quick_push (loop_vec_def0);
5987 if (op_type == ternary_op)
5989 loop_vec_def1 = vect_get_vec_def_for_operand (op1, stmt);
5990 vec_oprnds1.quick_push (loop_vec_def1);
5994 else
5996 if (!slp_node)
5998 enum vect_def_type dt;
5999 gimple *dummy_stmt;
6001 vect_is_simple_use (ops[!reduc_index], loop_vinfo,
6002 &dummy_stmt, &dt);
6003 loop_vec_def0 = vect_get_vec_def_for_stmt_copy (dt,
6004 loop_vec_def0);
6005 vec_oprnds0[0] = loop_vec_def0;
6006 if (op_type == ternary_op)
6008 vect_is_simple_use (op1, loop_vinfo, &dummy_stmt, &dt);
6009 loop_vec_def1 = vect_get_vec_def_for_stmt_copy (dt,
6010 loop_vec_def1);
6011 vec_oprnds1[0] = loop_vec_def1;
6015 if (single_defuse_cycle)
6016 reduc_def = gimple_assign_lhs (new_stmt);
6018 STMT_VINFO_RELATED_STMT (prev_phi_info) = new_phi;
6021 FOR_EACH_VEC_ELT (vec_oprnds0, i, def0)
6023 if (slp_node)
6024 reduc_def = PHI_RESULT (phis[i]);
6025 else
6027 if (!single_defuse_cycle || j == 0)
6028 reduc_def = PHI_RESULT (new_phi);
6031 def1 = ((op_type == ternary_op)
6032 ? vec_oprnds1[i] : NULL);
6033 if (op_type == binary_op)
6035 if (reduc_index == 0)
6036 expr = build2 (code, vectype_out, reduc_def, def0);
6037 else
6038 expr = build2 (code, vectype_out, def0, reduc_def);
6040 else
6042 if (reduc_index == 0)
6043 expr = build3 (code, vectype_out, reduc_def, def0, def1);
6044 else
6046 if (reduc_index == 1)
6047 expr = build3 (code, vectype_out, def0, reduc_def, def1);
6048 else
6049 expr = build3 (code, vectype_out, def0, def1, reduc_def);
6053 new_stmt = gimple_build_assign (vec_dest, expr);
6054 new_temp = make_ssa_name (vec_dest, new_stmt);
6055 gimple_assign_set_lhs (new_stmt, new_temp);
6056 vect_finish_stmt_generation (stmt, new_stmt, gsi);
6058 if (slp_node)
6060 SLP_TREE_VEC_STMTS (slp_node).quick_push (new_stmt);
6061 vect_defs.quick_push (new_temp);
6063 else
6064 vect_defs[0] = new_temp;
6067 if (slp_node)
6068 continue;
6070 if (j == 0)
6071 STMT_VINFO_VEC_STMT (stmt_info) = *vec_stmt = new_stmt;
6072 else
6073 STMT_VINFO_RELATED_STMT (prev_stmt_info) = new_stmt;
6075 prev_stmt_info = vinfo_for_stmt (new_stmt);
6076 prev_phi_info = vinfo_for_stmt (new_phi);
6079 tree indx_before_incr, indx_after_incr, cond_name = NULL;
6081 /* Finalize the reduction-phi (set its arguments) and create the
6082 epilog reduction code. */
6083 if ((!single_defuse_cycle || code == COND_EXPR) && !slp_node)
6085 new_temp = gimple_assign_lhs (*vec_stmt);
6086 vect_defs[0] = new_temp;
6088 /* For cond reductions we want to create a new vector (INDEX_COND_EXPR)
6089 which is updated with the current index of the loop for every match of
6090 the original loop's cond_expr (VEC_STMT). This results in a vector
6091 containing the last time the condition passed for that vector lane.
6092 The first match will be a 1 to allow 0 to be used for non-matching
6093 indexes. If there are no matches at all then the vector will be all
6094 zeroes. */
6095 if (STMT_VINFO_VEC_REDUCTION_TYPE (stmt_info) == COND_REDUCTION)
6097 int nunits_out = TYPE_VECTOR_SUBPARTS (vectype_out);
6098 int k;
6100 gcc_assert (gimple_assign_rhs_code (*vec_stmt) == VEC_COND_EXPR);
6102 /* First we create a simple vector induction variable which starts
6103 with the values {1,2,3,...} (SERIES_VECT) and increments by the
6104 vector size (STEP). */
6106 /* Create a {1,2,3,...} vector. */
6107 tree *vtemp = XALLOCAVEC (tree, nunits_out);
6108 for (k = 0; k < nunits_out; ++k)
6109 vtemp[k] = build_int_cst (cr_index_scalar_type, k + 1);
6110 tree series_vect = build_vector (cr_index_vector_type, vtemp);
6112 /* Create a vector of the step value. */
6113 tree step = build_int_cst (cr_index_scalar_type, nunits_out);
6114 tree vec_step = build_vector_from_val (cr_index_vector_type, step);
6116 /* Create an induction variable. */
6117 gimple_stmt_iterator incr_gsi;
6118 bool insert_after;
6119 standard_iv_increment_position (loop, &incr_gsi, &insert_after);
6120 create_iv (series_vect, vec_step, NULL_TREE, loop, &incr_gsi,
6121 insert_after, &indx_before_incr, &indx_after_incr);
6123 /* Next create a new phi node vector (NEW_PHI_TREE) which starts
6124 filled with zeros (VEC_ZERO). */
6126 /* Create a vector of 0s. */
6127 tree zero = build_zero_cst (cr_index_scalar_type);
6128 tree vec_zero = build_vector_from_val (cr_index_vector_type, zero);
6130 /* Create a vector phi node. */
6131 tree new_phi_tree = make_ssa_name (cr_index_vector_type);
6132 new_phi = create_phi_node (new_phi_tree, loop->header);
6133 set_vinfo_for_stmt (new_phi,
6134 new_stmt_vec_info (new_phi, loop_vinfo));
6135 add_phi_arg (new_phi, vec_zero, loop_preheader_edge (loop),
6136 UNKNOWN_LOCATION);
6138 /* Now take the condition from the loops original cond_expr
6139 (VEC_STMT) and produce a new cond_expr (INDEX_COND_EXPR) which for
6140 every match uses values from the induction variable
6141 (INDEX_BEFORE_INCR) otherwise uses values from the phi node
6142 (NEW_PHI_TREE).
6143 Finally, we update the phi (NEW_PHI_TREE) to take the value of
6144 the new cond_expr (INDEX_COND_EXPR). */
6146 /* Turn the condition from vec_stmt into an ssa name. */
6147 gimple_stmt_iterator vec_stmt_gsi = gsi_for_stmt (*vec_stmt);
6148 tree ccompare = gimple_assign_rhs1 (*vec_stmt);
6149 tree ccompare_name = make_ssa_name (TREE_TYPE (ccompare));
6150 gimple *ccompare_stmt = gimple_build_assign (ccompare_name,
6151 ccompare);
6152 gsi_insert_before (&vec_stmt_gsi, ccompare_stmt, GSI_SAME_STMT);
6153 gimple_assign_set_rhs1 (*vec_stmt, ccompare_name);
6154 update_stmt (*vec_stmt);
6156 /* Create a conditional, where the condition is taken from vec_stmt
6157 (CCOMPARE_NAME), then is the induction index (INDEX_BEFORE_INCR)
6158 and else is the phi (NEW_PHI_TREE). */
6159 tree index_cond_expr = build3 (VEC_COND_EXPR, cr_index_vector_type,
6160 ccompare_name, indx_before_incr,
6161 new_phi_tree);
6162 cond_name = make_ssa_name (cr_index_vector_type);
6163 gimple *index_condition = gimple_build_assign (cond_name,
6164 index_cond_expr);
6165 gsi_insert_before (&incr_gsi, index_condition, GSI_SAME_STMT);
6166 stmt_vec_info index_vec_info = new_stmt_vec_info (index_condition,
6167 loop_vinfo);
6168 STMT_VINFO_VECTYPE (index_vec_info) = cr_index_vector_type;
6169 set_vinfo_for_stmt (index_condition, index_vec_info);
6171 /* Update the phi with the vec cond. */
6172 add_phi_arg (new_phi, cond_name, loop_latch_edge (loop),
6173 UNKNOWN_LOCATION);
6177 vect_create_epilog_for_reduction (vect_defs, stmt, epilog_copies,
6178 epilog_reduc_code, phis, reduc_index,
6179 double_reduc, slp_node, cond_name);
6181 return true;
6184 /* Function vect_min_worthwhile_factor.
6186 For a loop where we could vectorize the operation indicated by CODE,
6187 return the minimum vectorization factor that makes it worthwhile
6188 to use generic vectors. */
6190 vect_min_worthwhile_factor (enum tree_code code)
6192 switch (code)
6194 case PLUS_EXPR:
6195 case MINUS_EXPR:
6196 case NEGATE_EXPR:
6197 return 4;
6199 case BIT_AND_EXPR:
6200 case BIT_IOR_EXPR:
6201 case BIT_XOR_EXPR:
6202 case BIT_NOT_EXPR:
6203 return 2;
6205 default:
6206 return INT_MAX;
6211 /* Function vectorizable_induction
6213 Check if PHI performs an induction computation that can be vectorized.
6214 If VEC_STMT is also passed, vectorize the induction PHI: create a vectorized
6215 phi to replace it, put it in VEC_STMT, and add it to the same basic block.
6216 Return FALSE if not a vectorizable STMT, TRUE otherwise. */
6218 bool
6219 vectorizable_induction (gimple *phi,
6220 gimple_stmt_iterator *gsi ATTRIBUTE_UNUSED,
6221 gimple **vec_stmt)
6223 stmt_vec_info stmt_info = vinfo_for_stmt (phi);
6224 tree vectype = STMT_VINFO_VECTYPE (stmt_info);
6225 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
6226 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
6227 int nunits = TYPE_VECTOR_SUBPARTS (vectype);
6228 int ncopies = LOOP_VINFO_VECT_FACTOR (loop_vinfo) / nunits;
6229 tree vec_def;
6231 gcc_assert (ncopies >= 1);
6232 /* FORNOW. These restrictions should be relaxed. */
6233 if (nested_in_vect_loop_p (loop, phi))
6235 imm_use_iterator imm_iter;
6236 use_operand_p use_p;
6237 gimple *exit_phi;
6238 edge latch_e;
6239 tree loop_arg;
6241 if (ncopies > 1)
6243 if (dump_enabled_p ())
6244 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
6245 "multiple types in nested loop.\n");
6246 return false;
6249 exit_phi = NULL;
6250 latch_e = loop_latch_edge (loop->inner);
6251 loop_arg = PHI_ARG_DEF_FROM_EDGE (phi, latch_e);
6252 FOR_EACH_IMM_USE_FAST (use_p, imm_iter, loop_arg)
6254 gimple *use_stmt = USE_STMT (use_p);
6255 if (is_gimple_debug (use_stmt))
6256 continue;
6258 if (!flow_bb_inside_loop_p (loop->inner, gimple_bb (use_stmt)))
6260 exit_phi = use_stmt;
6261 break;
6264 if (exit_phi)
6266 stmt_vec_info exit_phi_vinfo = vinfo_for_stmt (exit_phi);
6267 if (!(STMT_VINFO_RELEVANT_P (exit_phi_vinfo)
6268 && !STMT_VINFO_LIVE_P (exit_phi_vinfo)))
6270 if (dump_enabled_p ())
6271 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
6272 "inner-loop induction only used outside "
6273 "of the outer vectorized loop.\n");
6274 return false;
6279 if (!STMT_VINFO_RELEVANT_P (stmt_info))
6280 return false;
6282 /* FORNOW: SLP not supported. */
6283 if (STMT_SLP_TYPE (stmt_info))
6284 return false;
6286 gcc_assert (STMT_VINFO_DEF_TYPE (stmt_info) == vect_induction_def);
6288 if (gimple_code (phi) != GIMPLE_PHI)
6289 return false;
6291 if (!vec_stmt) /* transformation not required. */
6293 STMT_VINFO_TYPE (stmt_info) = induc_vec_info_type;
6294 if (dump_enabled_p ())
6295 dump_printf_loc (MSG_NOTE, vect_location,
6296 "=== vectorizable_induction ===\n");
6297 vect_model_induction_cost (stmt_info, ncopies);
6298 return true;
6301 /** Transform. **/
6303 if (dump_enabled_p ())
6304 dump_printf_loc (MSG_NOTE, vect_location, "transform induction phi.\n");
6306 vec_def = get_initial_def_for_induction (phi);
6307 *vec_stmt = SSA_NAME_DEF_STMT (vec_def);
6308 return true;
6311 /* Function vectorizable_live_operation.
6313 STMT computes a value that is used outside the loop. Check if
6314 it can be supported. */
6316 bool
6317 vectorizable_live_operation (gimple *stmt,
6318 gimple_stmt_iterator *gsi ATTRIBUTE_UNUSED,
6319 gimple **vec_stmt)
6321 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
6322 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
6323 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
6324 tree op;
6325 gimple *def_stmt;
6326 ssa_op_iter iter;
6328 gcc_assert (STMT_VINFO_LIVE_P (stmt_info));
6330 if (STMT_VINFO_DEF_TYPE (stmt_info) == vect_reduction_def)
6331 return false;
6333 if (!is_gimple_assign (stmt))
6335 if (gimple_call_internal_p (stmt)
6336 && gimple_call_internal_fn (stmt) == IFN_GOMP_SIMD_LANE
6337 && gimple_call_lhs (stmt)
6338 && loop->simduid
6339 && TREE_CODE (gimple_call_arg (stmt, 0)) == SSA_NAME
6340 && loop->simduid
6341 == SSA_NAME_VAR (gimple_call_arg (stmt, 0)))
6343 edge e = single_exit (loop);
6344 basic_block merge_bb = e->dest;
6345 imm_use_iterator imm_iter;
6346 use_operand_p use_p;
6347 tree lhs = gimple_call_lhs (stmt);
6349 FOR_EACH_IMM_USE_FAST (use_p, imm_iter, lhs)
6351 gimple *use_stmt = USE_STMT (use_p);
6352 if (gimple_code (use_stmt) == GIMPLE_PHI
6353 && gimple_bb (use_stmt) == merge_bb)
6355 if (vec_stmt)
6357 tree vfm1
6358 = build_int_cst (unsigned_type_node,
6359 loop_vinfo->vectorization_factor - 1);
6360 SET_PHI_ARG_DEF (use_stmt, e->dest_idx, vfm1);
6362 return true;
6367 return false;
6370 if (TREE_CODE (gimple_assign_lhs (stmt)) != SSA_NAME)
6371 return false;
6373 /* FORNOW. CHECKME. */
6374 if (nested_in_vect_loop_p (loop, stmt))
6375 return false;
6377 /* FORNOW: support only if all uses are invariant. This means
6378 that the scalar operations can remain in place, unvectorized.
6379 The original last scalar value that they compute will be used. */
6380 FOR_EACH_SSA_TREE_OPERAND (op, stmt, iter, SSA_OP_USE)
6382 enum vect_def_type dt = vect_uninitialized_def;
6384 if (!vect_is_simple_use (op, loop_vinfo, &def_stmt, &dt))
6386 if (dump_enabled_p ())
6387 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
6388 "use not simple.\n");
6389 return false;
6392 if (dt != vect_external_def && dt != vect_constant_def)
6393 return false;
6396 /* No transformation is required for the cases we currently support. */
6397 return true;
6400 /* Kill any debug uses outside LOOP of SSA names defined in STMT. */
6402 static void
6403 vect_loop_kill_debug_uses (struct loop *loop, gimple *stmt)
6405 ssa_op_iter op_iter;
6406 imm_use_iterator imm_iter;
6407 def_operand_p def_p;
6408 gimple *ustmt;
6410 FOR_EACH_PHI_OR_STMT_DEF (def_p, stmt, op_iter, SSA_OP_DEF)
6412 FOR_EACH_IMM_USE_STMT (ustmt, imm_iter, DEF_FROM_PTR (def_p))
6414 basic_block bb;
6416 if (!is_gimple_debug (ustmt))
6417 continue;
6419 bb = gimple_bb (ustmt);
6421 if (!flow_bb_inside_loop_p (loop, bb))
6423 if (gimple_debug_bind_p (ustmt))
6425 if (dump_enabled_p ())
6426 dump_printf_loc (MSG_NOTE, vect_location,
6427 "killing debug use\n");
6429 gimple_debug_bind_reset_value (ustmt);
6430 update_stmt (ustmt);
6432 else
6433 gcc_unreachable ();
6440 /* This function builds ni_name = number of iterations. Statements
6441 are emitted on the loop preheader edge. */
6443 static tree
6444 vect_build_loop_niters (loop_vec_info loop_vinfo)
6446 tree ni = unshare_expr (LOOP_VINFO_NITERS (loop_vinfo));
6447 if (TREE_CODE (ni) == INTEGER_CST)
6448 return ni;
6449 else
6451 tree ni_name, var;
6452 gimple_seq stmts = NULL;
6453 edge pe = loop_preheader_edge (LOOP_VINFO_LOOP (loop_vinfo));
6455 var = create_tmp_var (TREE_TYPE (ni), "niters");
6456 ni_name = force_gimple_operand (ni, &stmts, false, var);
6457 if (stmts)
6458 gsi_insert_seq_on_edge_immediate (pe, stmts);
6460 return ni_name;
6465 /* This function generates the following statements:
6467 ni_name = number of iterations loop executes
6468 ratio = ni_name / vf
6469 ratio_mult_vf_name = ratio * vf
6471 and places them on the loop preheader edge. */
6473 static void
6474 vect_generate_tmps_on_preheader (loop_vec_info loop_vinfo,
6475 tree ni_name,
6476 tree *ratio_mult_vf_name_ptr,
6477 tree *ratio_name_ptr)
6479 tree ni_minus_gap_name;
6480 tree var;
6481 tree ratio_name;
6482 tree ratio_mult_vf_name;
6483 int vf = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
6484 edge pe = loop_preheader_edge (LOOP_VINFO_LOOP (loop_vinfo));
6485 tree log_vf;
6487 log_vf = build_int_cst (TREE_TYPE (ni_name), exact_log2 (vf));
6489 /* If epilogue loop is required because of data accesses with gaps, we
6490 subtract one iteration from the total number of iterations here for
6491 correct calculation of RATIO. */
6492 if (LOOP_VINFO_PEELING_FOR_GAPS (loop_vinfo))
6494 ni_minus_gap_name = fold_build2 (MINUS_EXPR, TREE_TYPE (ni_name),
6495 ni_name,
6496 build_one_cst (TREE_TYPE (ni_name)));
6497 if (!is_gimple_val (ni_minus_gap_name))
6499 var = create_tmp_var (TREE_TYPE (ni_name), "ni_gap");
6500 gimple *stmts = NULL;
6501 ni_minus_gap_name = force_gimple_operand (ni_minus_gap_name, &stmts,
6502 true, var);
6503 gsi_insert_seq_on_edge_immediate (pe, stmts);
6506 else
6507 ni_minus_gap_name = ni_name;
6509 /* Create: ratio = ni >> log2(vf) */
6510 /* ??? As we have ni == number of latch executions + 1, ni could
6511 have overflown to zero. So avoid computing ratio based on ni
6512 but compute it using the fact that we know ratio will be at least
6513 one, thus via (ni - vf) >> log2(vf) + 1. */
6514 ratio_name
6515 = fold_build2 (PLUS_EXPR, TREE_TYPE (ni_name),
6516 fold_build2 (RSHIFT_EXPR, TREE_TYPE (ni_name),
6517 fold_build2 (MINUS_EXPR, TREE_TYPE (ni_name),
6518 ni_minus_gap_name,
6519 build_int_cst
6520 (TREE_TYPE (ni_name), vf)),
6521 log_vf),
6522 build_int_cst (TREE_TYPE (ni_name), 1));
6523 if (!is_gimple_val (ratio_name))
6525 var = create_tmp_var (TREE_TYPE (ni_name), "bnd");
6526 gimple *stmts = NULL;
6527 ratio_name = force_gimple_operand (ratio_name, &stmts, true, var);
6528 gsi_insert_seq_on_edge_immediate (pe, stmts);
6530 *ratio_name_ptr = ratio_name;
6532 /* Create: ratio_mult_vf = ratio << log2 (vf). */
6534 if (ratio_mult_vf_name_ptr)
6536 ratio_mult_vf_name = fold_build2 (LSHIFT_EXPR, TREE_TYPE (ratio_name),
6537 ratio_name, log_vf);
6538 if (!is_gimple_val (ratio_mult_vf_name))
6540 var = create_tmp_var (TREE_TYPE (ni_name), "ratio_mult_vf");
6541 gimple *stmts = NULL;
6542 ratio_mult_vf_name = force_gimple_operand (ratio_mult_vf_name, &stmts,
6543 true, var);
6544 gsi_insert_seq_on_edge_immediate (pe, stmts);
6546 *ratio_mult_vf_name_ptr = ratio_mult_vf_name;
6549 return;
6553 /* Function vect_transform_loop.
6555 The analysis phase has determined that the loop is vectorizable.
6556 Vectorize the loop - created vectorized stmts to replace the scalar
6557 stmts in the loop, and update the loop exit condition. */
6559 void
6560 vect_transform_loop (loop_vec_info loop_vinfo)
6562 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
6563 basic_block *bbs = LOOP_VINFO_BBS (loop_vinfo);
6564 int nbbs = loop->num_nodes;
6565 int i;
6566 tree ratio = NULL;
6567 int vectorization_factor = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
6568 bool grouped_store;
6569 bool slp_scheduled = false;
6570 gimple *stmt, *pattern_stmt;
6571 gimple_seq pattern_def_seq = NULL;
6572 gimple_stmt_iterator pattern_def_si = gsi_none ();
6573 bool transform_pattern_stmt = false;
6574 bool check_profitability = false;
6575 int th;
6576 /* Record number of iterations before we started tampering with the profile. */
6577 gcov_type expected_iterations = expected_loop_iterations_unbounded (loop);
6579 if (dump_enabled_p ())
6580 dump_printf_loc (MSG_NOTE, vect_location, "=== vec_transform_loop ===\n");
6582 /* If profile is inprecise, we have chance to fix it up. */
6583 if (LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo))
6584 expected_iterations = LOOP_VINFO_INT_NITERS (loop_vinfo);
6586 /* Use the more conservative vectorization threshold. If the number
6587 of iterations is constant assume the cost check has been performed
6588 by our caller. If the threshold makes all loops profitable that
6589 run at least the vectorization factor number of times checking
6590 is pointless, too. */
6591 th = LOOP_VINFO_COST_MODEL_THRESHOLD (loop_vinfo);
6592 if (th >= LOOP_VINFO_VECT_FACTOR (loop_vinfo) - 1
6593 && !LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo))
6595 if (dump_enabled_p ())
6596 dump_printf_loc (MSG_NOTE, vect_location,
6597 "Profitability threshold is %d loop iterations.\n",
6598 th);
6599 check_profitability = true;
6602 /* Version the loop first, if required, so the profitability check
6603 comes first. */
6605 if (LOOP_REQUIRES_VERSIONING_FOR_ALIGNMENT (loop_vinfo)
6606 || LOOP_REQUIRES_VERSIONING_FOR_ALIAS (loop_vinfo))
6608 vect_loop_versioning (loop_vinfo, th, check_profitability);
6609 check_profitability = false;
6612 tree ni_name = vect_build_loop_niters (loop_vinfo);
6613 LOOP_VINFO_NITERS_UNCHANGED (loop_vinfo) = ni_name;
6615 /* Peel the loop if there are data refs with unknown alignment.
6616 Only one data ref with unknown store is allowed. */
6618 if (LOOP_VINFO_PEELING_FOR_ALIGNMENT (loop_vinfo))
6620 vect_do_peeling_for_alignment (loop_vinfo, ni_name,
6621 th, check_profitability);
6622 check_profitability = false;
6623 /* The above adjusts LOOP_VINFO_NITERS, so cause ni_name to
6624 be re-computed. */
6625 ni_name = NULL_TREE;
6628 /* If the loop has a symbolic number of iterations 'n' (i.e. it's not a
6629 compile time constant), or it is a constant that doesn't divide by the
6630 vectorization factor, then an epilog loop needs to be created.
6631 We therefore duplicate the loop: the original loop will be vectorized,
6632 and will compute the first (n/VF) iterations. The second copy of the loop
6633 will remain scalar and will compute the remaining (n%VF) iterations.
6634 (VF is the vectorization factor). */
6636 if (LOOP_VINFO_PEELING_FOR_NITER (loop_vinfo)
6637 || LOOP_VINFO_PEELING_FOR_GAPS (loop_vinfo))
6639 tree ratio_mult_vf;
6640 if (!ni_name)
6641 ni_name = vect_build_loop_niters (loop_vinfo);
6642 vect_generate_tmps_on_preheader (loop_vinfo, ni_name, &ratio_mult_vf,
6643 &ratio);
6644 vect_do_peeling_for_loop_bound (loop_vinfo, ni_name, ratio_mult_vf,
6645 th, check_profitability);
6647 else if (LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo))
6648 ratio = build_int_cst (TREE_TYPE (LOOP_VINFO_NITERS (loop_vinfo)),
6649 LOOP_VINFO_INT_NITERS (loop_vinfo) / vectorization_factor);
6650 else
6652 if (!ni_name)
6653 ni_name = vect_build_loop_niters (loop_vinfo);
6654 vect_generate_tmps_on_preheader (loop_vinfo, ni_name, NULL, &ratio);
6657 /* 1) Make sure the loop header has exactly two entries
6658 2) Make sure we have a preheader basic block. */
6660 gcc_assert (EDGE_COUNT (loop->header->preds) == 2);
6662 split_edge (loop_preheader_edge (loop));
6664 /* FORNOW: the vectorizer supports only loops which body consist
6665 of one basic block (header + empty latch). When the vectorizer will
6666 support more involved loop forms, the order by which the BBs are
6667 traversed need to be reconsidered. */
6669 for (i = 0; i < nbbs; i++)
6671 basic_block bb = bbs[i];
6672 stmt_vec_info stmt_info;
6674 for (gphi_iterator si = gsi_start_phis (bb); !gsi_end_p (si);
6675 gsi_next (&si))
6677 gphi *phi = si.phi ();
6678 if (dump_enabled_p ())
6680 dump_printf_loc (MSG_NOTE, vect_location,
6681 "------>vectorizing phi: ");
6682 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, phi, 0);
6683 dump_printf (MSG_NOTE, "\n");
6685 stmt_info = vinfo_for_stmt (phi);
6686 if (!stmt_info)
6687 continue;
6689 if (MAY_HAVE_DEBUG_STMTS && !STMT_VINFO_LIVE_P (stmt_info))
6690 vect_loop_kill_debug_uses (loop, phi);
6692 if (!STMT_VINFO_RELEVANT_P (stmt_info)
6693 && !STMT_VINFO_LIVE_P (stmt_info))
6694 continue;
6696 if (STMT_VINFO_VECTYPE (stmt_info)
6697 && (TYPE_VECTOR_SUBPARTS (STMT_VINFO_VECTYPE (stmt_info))
6698 != (unsigned HOST_WIDE_INT) vectorization_factor)
6699 && dump_enabled_p ())
6700 dump_printf_loc (MSG_NOTE, vect_location, "multiple-types.\n");
6702 if (STMT_VINFO_DEF_TYPE (stmt_info) == vect_induction_def)
6704 if (dump_enabled_p ())
6705 dump_printf_loc (MSG_NOTE, vect_location, "transform phi.\n");
6706 vect_transform_stmt (phi, NULL, NULL, NULL, NULL);
6710 pattern_stmt = NULL;
6711 for (gimple_stmt_iterator si = gsi_start_bb (bb);
6712 !gsi_end_p (si) || transform_pattern_stmt;)
6714 bool is_store;
6716 if (transform_pattern_stmt)
6717 stmt = pattern_stmt;
6718 else
6720 stmt = gsi_stmt (si);
6721 /* During vectorization remove existing clobber stmts. */
6722 if (gimple_clobber_p (stmt))
6724 unlink_stmt_vdef (stmt);
6725 gsi_remove (&si, true);
6726 release_defs (stmt);
6727 continue;
6731 if (dump_enabled_p ())
6733 dump_printf_loc (MSG_NOTE, vect_location,
6734 "------>vectorizing statement: ");
6735 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, stmt, 0);
6736 dump_printf (MSG_NOTE, "\n");
6739 stmt_info = vinfo_for_stmt (stmt);
6741 /* vector stmts created in the outer-loop during vectorization of
6742 stmts in an inner-loop may not have a stmt_info, and do not
6743 need to be vectorized. */
6744 if (!stmt_info)
6746 gsi_next (&si);
6747 continue;
6750 if (MAY_HAVE_DEBUG_STMTS && !STMT_VINFO_LIVE_P (stmt_info))
6751 vect_loop_kill_debug_uses (loop, stmt);
6753 if (!STMT_VINFO_RELEVANT_P (stmt_info)
6754 && !STMT_VINFO_LIVE_P (stmt_info))
6756 if (STMT_VINFO_IN_PATTERN_P (stmt_info)
6757 && (pattern_stmt = STMT_VINFO_RELATED_STMT (stmt_info))
6758 && (STMT_VINFO_RELEVANT_P (vinfo_for_stmt (pattern_stmt))
6759 || STMT_VINFO_LIVE_P (vinfo_for_stmt (pattern_stmt))))
6761 stmt = pattern_stmt;
6762 stmt_info = vinfo_for_stmt (stmt);
6764 else
6766 gsi_next (&si);
6767 continue;
6770 else if (STMT_VINFO_IN_PATTERN_P (stmt_info)
6771 && (pattern_stmt = STMT_VINFO_RELATED_STMT (stmt_info))
6772 && (STMT_VINFO_RELEVANT_P (vinfo_for_stmt (pattern_stmt))
6773 || STMT_VINFO_LIVE_P (vinfo_for_stmt (pattern_stmt))))
6774 transform_pattern_stmt = true;
6776 /* If pattern statement has def stmts, vectorize them too. */
6777 if (is_pattern_stmt_p (stmt_info))
6779 if (pattern_def_seq == NULL)
6781 pattern_def_seq = STMT_VINFO_PATTERN_DEF_SEQ (stmt_info);
6782 pattern_def_si = gsi_start (pattern_def_seq);
6784 else if (!gsi_end_p (pattern_def_si))
6785 gsi_next (&pattern_def_si);
6786 if (pattern_def_seq != NULL)
6788 gimple *pattern_def_stmt = NULL;
6789 stmt_vec_info pattern_def_stmt_info = NULL;
6791 while (!gsi_end_p (pattern_def_si))
6793 pattern_def_stmt = gsi_stmt (pattern_def_si);
6794 pattern_def_stmt_info
6795 = vinfo_for_stmt (pattern_def_stmt);
6796 if (STMT_VINFO_RELEVANT_P (pattern_def_stmt_info)
6797 || STMT_VINFO_LIVE_P (pattern_def_stmt_info))
6798 break;
6799 gsi_next (&pattern_def_si);
6802 if (!gsi_end_p (pattern_def_si))
6804 if (dump_enabled_p ())
6806 dump_printf_loc (MSG_NOTE, vect_location,
6807 "==> vectorizing pattern def "
6808 "stmt: ");
6809 dump_gimple_stmt (MSG_NOTE, TDF_SLIM,
6810 pattern_def_stmt, 0);
6811 dump_printf (MSG_NOTE, "\n");
6814 stmt = pattern_def_stmt;
6815 stmt_info = pattern_def_stmt_info;
6817 else
6819 pattern_def_si = gsi_none ();
6820 transform_pattern_stmt = false;
6823 else
6824 transform_pattern_stmt = false;
6827 if (STMT_VINFO_VECTYPE (stmt_info))
6829 unsigned int nunits
6830 = (unsigned int)
6831 TYPE_VECTOR_SUBPARTS (STMT_VINFO_VECTYPE (stmt_info));
6832 if (!STMT_SLP_TYPE (stmt_info)
6833 && nunits != (unsigned int) vectorization_factor
6834 && dump_enabled_p ())
6835 /* For SLP VF is set according to unrolling factor, and not
6836 to vector size, hence for SLP this print is not valid. */
6837 dump_printf_loc (MSG_NOTE, vect_location, "multiple-types.\n");
6840 /* SLP. Schedule all the SLP instances when the first SLP stmt is
6841 reached. */
6842 if (STMT_SLP_TYPE (stmt_info))
6844 if (!slp_scheduled)
6846 slp_scheduled = true;
6848 if (dump_enabled_p ())
6849 dump_printf_loc (MSG_NOTE, vect_location,
6850 "=== scheduling SLP instances ===\n");
6852 vect_schedule_slp (loop_vinfo);
6855 /* Hybrid SLP stmts must be vectorized in addition to SLP. */
6856 if (!vinfo_for_stmt (stmt) || PURE_SLP_STMT (stmt_info))
6858 if (!transform_pattern_stmt && gsi_end_p (pattern_def_si))
6860 pattern_def_seq = NULL;
6861 gsi_next (&si);
6863 continue;
6867 /* -------- vectorize statement ------------ */
6868 if (dump_enabled_p ())
6869 dump_printf_loc (MSG_NOTE, vect_location, "transform statement.\n");
6871 grouped_store = false;
6872 is_store = vect_transform_stmt (stmt, &si, &grouped_store, NULL, NULL);
6873 if (is_store)
6875 if (STMT_VINFO_GROUPED_ACCESS (stmt_info))
6877 /* Interleaving. If IS_STORE is TRUE, the vectorization of the
6878 interleaving chain was completed - free all the stores in
6879 the chain. */
6880 gsi_next (&si);
6881 vect_remove_stores (GROUP_FIRST_ELEMENT (stmt_info));
6883 else
6885 /* Free the attached stmt_vec_info and remove the stmt. */
6886 gimple *store = gsi_stmt (si);
6887 free_stmt_vec_info (store);
6888 unlink_stmt_vdef (store);
6889 gsi_remove (&si, true);
6890 release_defs (store);
6893 /* Stores can only appear at the end of pattern statements. */
6894 gcc_assert (!transform_pattern_stmt);
6895 pattern_def_seq = NULL;
6897 else if (!transform_pattern_stmt && gsi_end_p (pattern_def_si))
6899 pattern_def_seq = NULL;
6900 gsi_next (&si);
6902 } /* stmts in BB */
6903 } /* BBs in loop */
6905 slpeel_make_loop_iterate_ntimes (loop, ratio);
6907 /* Reduce loop iterations by the vectorization factor. */
6908 scale_loop_profile (loop, GCOV_COMPUTE_SCALE (1, vectorization_factor),
6909 expected_iterations / vectorization_factor);
6910 loop->nb_iterations_upper_bound
6911 = wi::udiv_floor (loop->nb_iterations_upper_bound, vectorization_factor);
6912 if (LOOP_VINFO_PEELING_FOR_GAPS (loop_vinfo)
6913 && loop->nb_iterations_upper_bound != 0)
6914 loop->nb_iterations_upper_bound = loop->nb_iterations_upper_bound - 1;
6915 if (loop->any_estimate)
6917 loop->nb_iterations_estimate
6918 = wi::udiv_floor (loop->nb_iterations_estimate, vectorization_factor);
6919 if (LOOP_VINFO_PEELING_FOR_GAPS (loop_vinfo)
6920 && loop->nb_iterations_estimate != 0)
6921 loop->nb_iterations_estimate = loop->nb_iterations_estimate - 1;
6924 if (dump_enabled_p ())
6926 dump_printf_loc (MSG_NOTE, vect_location,
6927 "LOOP VECTORIZED\n");
6928 if (loop->inner)
6929 dump_printf_loc (MSG_NOTE, vect_location,
6930 "OUTER LOOP VECTORIZED\n");
6931 dump_printf (MSG_NOTE, "\n");
6934 /* Free SLP instances here because otherwise stmt reference counting
6935 won't work. */
6936 slp_instance instance;
6937 FOR_EACH_VEC_ELT (LOOP_VINFO_SLP_INSTANCES (loop_vinfo), i, instance)
6938 vect_free_slp_instance (instance);
6939 LOOP_VINFO_SLP_INSTANCES (loop_vinfo).release ();
6942 /* The code below is trying to perform simple optimization - revert
6943 if-conversion for masked stores, i.e. if the mask of a store is zero
6944 do not perform it and all stored value producers also if possible.
6945 For example,
6946 for (i=0; i<n; i++)
6947 if (c[i])
6949 p1[i] += 1;
6950 p2[i] = p3[i] +2;
6952 this transformation will produce the following semi-hammock:
6954 if (!mask__ifc__42.18_165 == { 0, 0, 0, 0, 0, 0, 0, 0 })
6956 vect__11.19_170 = MASK_LOAD (vectp_p1.20_168, 0B, mask__ifc__42.18_165);
6957 vect__12.22_172 = vect__11.19_170 + vect_cst__171;
6958 MASK_STORE (vectp_p1.23_175, 0B, mask__ifc__42.18_165, vect__12.22_172);
6959 vect__18.25_182 = MASK_LOAD (vectp_p3.26_180, 0B, mask__ifc__42.18_165);
6960 vect__19.28_184 = vect__18.25_182 + vect_cst__183;
6961 MASK_STORE (vectp_p2.29_187, 0B, mask__ifc__42.18_165, vect__19.28_184);
6965 void
6966 optimize_mask_stores (struct loop *loop)
6968 basic_block *bbs = get_loop_body (loop);
6969 unsigned nbbs = loop->num_nodes;
6970 unsigned i;
6971 basic_block bb;
6972 gimple_stmt_iterator gsi;
6973 gimple *stmt, *stmt1 = NULL;
6974 auto_vec<gimple *> worklist;
6976 vect_location = find_loop_location (loop);
6977 /* Pick up all masked stores in loop if any. */
6978 for (i = 0; i < nbbs; i++)
6980 bb = bbs[i];
6981 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi);
6982 gsi_next (&gsi))
6984 stmt = gsi_stmt (gsi);
6985 if (is_gimple_call (stmt)
6986 && gimple_call_internal_p (stmt)
6987 && gimple_call_internal_fn (stmt) == IFN_MASK_STORE)
6988 worklist.safe_push (stmt);
6992 free (bbs);
6993 if (worklist.is_empty ())
6994 return;
6996 /* Loop has masked stores. */
6997 while (!worklist.is_empty ())
6999 gimple *last, *last_store;
7000 edge e, efalse;
7001 tree mask;
7002 basic_block store_bb, join_bb;
7003 gimple_stmt_iterator gsi_to;
7004 tree vdef, new_vdef;
7005 gphi *phi;
7006 tree vectype;
7007 tree zero;
7009 last = worklist.pop ();
7010 mask = gimple_call_arg (last, 2);
7011 bb = gimple_bb (last);
7012 /* Create new bb. */
7013 e = split_block (bb, last);
7014 join_bb = e->dest;
7015 store_bb = create_empty_bb (bb);
7016 add_bb_to_loop (store_bb, loop);
7017 e->flags = EDGE_TRUE_VALUE;
7018 efalse = make_edge (bb, store_bb, EDGE_FALSE_VALUE);
7019 /* Put STORE_BB to likely part. */
7020 efalse->probability = PROB_UNLIKELY;
7021 store_bb->frequency = PROB_ALWAYS - EDGE_FREQUENCY (efalse);
7022 make_edge (store_bb, join_bb, EDGE_FALLTHRU);
7023 if (dom_info_available_p (CDI_DOMINATORS))
7024 set_immediate_dominator (CDI_DOMINATORS, store_bb, bb);
7025 if (dump_enabled_p ())
7026 dump_printf_loc (MSG_NOTE, vect_location,
7027 "Create new block %d to sink mask stores.",
7028 store_bb->index);
7029 /* Create vector comparison with boolean result. */
7030 vectype = TREE_TYPE (mask);
7031 zero = build_zero_cst (vectype);
7032 stmt = gimple_build_cond (EQ_EXPR, mask, zero, NULL_TREE, NULL_TREE);
7033 gsi = gsi_last_bb (bb);
7034 gsi_insert_after (&gsi, stmt, GSI_SAME_STMT);
7035 /* Create new PHI node for vdef of the last masked store:
7036 .MEM_2 = VDEF <.MEM_1>
7037 will be converted to
7038 .MEM.3 = VDEF <.MEM_1>
7039 and new PHI node will be created in join bb
7040 .MEM_2 = PHI <.MEM_1, .MEM_3>
7042 vdef = gimple_vdef (last);
7043 new_vdef = make_ssa_name (gimple_vop (cfun), last);
7044 gimple_set_vdef (last, new_vdef);
7045 phi = create_phi_node (vdef, join_bb);
7046 add_phi_arg (phi, new_vdef, EDGE_SUCC (store_bb, 0), UNKNOWN_LOCATION);
7048 /* Put all masked stores with the same mask to STORE_BB if possible. */
7049 while (true)
7051 gimple_stmt_iterator gsi_from;
7052 /* Move masked store to STORE_BB. */
7053 last_store = last;
7054 gsi = gsi_for_stmt (last);
7055 gsi_from = gsi;
7056 /* Shift GSI to the previous stmt for further traversal. */
7057 gsi_prev (&gsi);
7058 gsi_to = gsi_start_bb (store_bb);
7059 gsi_move_before (&gsi_from, &gsi_to);
7060 /* Setup GSI_TO to the non-empty block start. */
7061 gsi_to = gsi_start_bb (store_bb);
7062 if (dump_enabled_p ())
7064 dump_printf_loc (MSG_NOTE, vect_location,
7065 "Move stmt to created bb\n");
7066 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, last, 0);
7068 /* Move all stored value producers if possible. */
7069 while (!gsi_end_p (gsi))
7071 tree lhs;
7072 imm_use_iterator imm_iter;
7073 use_operand_p use_p;
7074 bool res;
7075 stmt1 = gsi_stmt (gsi);
7076 /* Do not consider statements writing to memory. */
7077 if (gimple_vdef (stmt1))
7078 break;
7079 gsi_from = gsi;
7080 gsi_prev (&gsi);
7081 lhs = gimple_get_lhs (stmt1);
7082 if (!lhs)
7083 break;
7085 /* LHS of vectorized stmt must be SSA_NAME. */
7086 if (TREE_CODE (lhs) != SSA_NAME)
7087 break;
7089 /* Skip scalar statements. */
7090 if (!VECTOR_TYPE_P (TREE_TYPE (lhs)))
7091 continue;
7093 /* Check that LHS does not have uses outside of STORE_BB. */
7094 res = true;
7095 FOR_EACH_IMM_USE_FAST (use_p, imm_iter, lhs)
7097 gimple *use_stmt;
7098 use_stmt = USE_STMT (use_p);
7099 if (gimple_bb (use_stmt) != store_bb)
7101 res = false;
7102 break;
7105 if (!res)
7106 break;
7108 if (gimple_vuse (stmt1)
7109 && gimple_vuse (stmt1) != gimple_vuse (last_store))
7110 break;
7112 /* Can move STMT1 to STORE_BB. */
7113 if (dump_enabled_p ())
7115 dump_printf_loc (MSG_NOTE, vect_location,
7116 "Move stmt to created bb\n");
7117 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, stmt1, 0);
7119 gsi_move_before (&gsi_from, &gsi_to);
7120 /* Shift GSI_TO for further insertion. */
7121 gsi_prev (&gsi_to);
7123 /* Put other masked stores with the same mask to STORE_BB. */
7124 if (worklist.is_empty ()
7125 || gimple_call_arg (worklist.last (), 2) != mask
7126 || worklist.last () != stmt1)
7127 break;
7128 last = worklist.pop ();
7130 add_phi_arg (phi, gimple_vuse (last_store), e, UNKNOWN_LOCATION);