1 /* Data references and dependences detectors.
2 Copyright (C) 2003-2016 Free Software Foundation, Inc.
3 Contributed by Sebastian Pop <pop@cri.ensmp.fr>
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
21 #ifndef GCC_TREE_DATA_REF_H
22 #define GCC_TREE_DATA_REF_H
25 #include "tree-chrec.h"
28 innermost_loop_behavior describes the evolution of the address of the memory
29 reference in the innermost enclosing loop. The address is expressed as
30 BASE + STEP * # of iteration, and base is further decomposed as the base
31 pointer (BASE_ADDRESS), loop invariant offset (OFFSET) and
32 constant offset (INIT). Examples, in loop nest
34 for (i = 0; i < 100; i++)
35 for (j = 3; j < 100; j++)
38 data-ref a[j].b[i][j] *(p + x + 16B + 4B * j)
41 innermost_loop_behavior
44 init 3 * D_j + offsetof (b) 28
48 struct innermost_loop_behavior
55 /* Alignment information. ALIGNED_TO is set to the largest power of two
56 that divides OFFSET. */
60 /* Describes the evolutions of indices of the memory reference. The indices
61 are indices of the ARRAY_REFs, indexes in artificial dimensions
62 added for member selection of records and the operands of MEM_REFs.
63 BASE_OBJECT is the part of the reference that is loop-invariant
64 (note that this reference does not have to cover the whole object
65 being accessed, in which case UNCONSTRAINED_BASE is set; hence it is
66 not recommended to use BASE_OBJECT in any code generation).
67 For the examples above,
69 base_object: a *(p + x + 4B * j_0)
70 indices: {j_0, +, 1}_2 {16, +, 4}_2
81 /* A list of chrecs. Access functions of the indices. */
84 /* Whether BASE_OBJECT is an access representing the whole object
85 or whether the access could not be constrained. */
86 bool unconstrained_base
;
91 /* The alias information that should be used for new pointers to this
93 struct ptr_info_def
*ptr_info
;
96 /* An integer vector. A vector formally consists of an element of a vector
97 space. A vector space is a set that is closed under vector addition
98 and scalar multiplication. In this vector space, an element is a list of
100 typedef int *lambda_vector
;
102 /* An integer matrix. A matrix consists of m vectors of length n (IE
103 all vectors are the same length). */
104 typedef lambda_vector
*lambda_matrix
;
108 struct data_reference
110 /* A pointer to the statement that contains this DR. */
113 /* A pointer to the memory reference. */
116 /* Auxiliary info specific to a pass. */
119 /* True when the data reference is in RHS of a stmt. */
122 /* Behavior of the memory reference in the innermost loop. */
123 struct innermost_loop_behavior innermost
;
125 /* Subscripts of this data reference. */
126 struct indices indices
;
128 /* Alias information for the data reference. */
129 struct dr_alias alias
;
132 #define DR_STMT(DR) (DR)->stmt
133 #define DR_REF(DR) (DR)->ref
134 #define DR_BASE_OBJECT(DR) (DR)->indices.base_object
135 #define DR_UNCONSTRAINED_BASE(DR) (DR)->indices.unconstrained_base
136 #define DR_ACCESS_FNS(DR) (DR)->indices.access_fns
137 #define DR_ACCESS_FN(DR, I) DR_ACCESS_FNS (DR)[I]
138 #define DR_NUM_DIMENSIONS(DR) DR_ACCESS_FNS (DR).length ()
139 #define DR_IS_READ(DR) (DR)->is_read
140 #define DR_IS_WRITE(DR) (!DR_IS_READ (DR))
141 #define DR_BASE_ADDRESS(DR) (DR)->innermost.base_address
142 #define DR_OFFSET(DR) (DR)->innermost.offset
143 #define DR_INIT(DR) (DR)->innermost.init
144 #define DR_STEP(DR) (DR)->innermost.step
145 #define DR_PTR_INFO(DR) (DR)->alias.ptr_info
146 #define DR_ALIGNED_TO(DR) (DR)->innermost.aligned_to
148 typedef struct data_reference
*data_reference_p
;
150 enum data_dependence_direction
{
154 dir_positive_or_negative
,
155 dir_positive_or_equal
,
156 dir_negative_or_equal
,
161 /* The description of the grid of iterations that overlap. At most
162 two loops are considered at the same time just now, hence at most
163 two functions are needed. For each of the functions, we store
164 the vector of coefficients, f[0] + x * f[1] + y * f[2] + ...,
165 where x, y, ... are variables. */
169 /* Special values of N. */
170 #define NO_DEPENDENCE 0
171 #define NOT_KNOWN (MAX_DIM + 1)
172 #define CF_NONTRIVIAL_P(CF) ((CF)->n != NO_DEPENDENCE && (CF)->n != NOT_KNOWN)
173 #define CF_NOT_KNOWN_P(CF) ((CF)->n == NOT_KNOWN)
174 #define CF_NO_DEPENDENCE_P(CF) ((CF)->n == NO_DEPENDENCE)
176 typedef vec
<tree
> affine_fn
;
178 struct conflict_function
181 affine_fn fns
[MAX_DIM
];
184 /* What is a subscript? Given two array accesses a subscript is the
185 tuple composed of the access functions for a given dimension.
186 Example: Given A[f1][f2][f3] and B[g1][g2][g3], there are three
187 subscripts: (f1, g1), (f2, g2), (f3, g3). These three subscripts
188 are stored in the data_dependence_relation structure under the form
189 of an array of subscripts. */
193 /* A description of the iterations for which the elements are
195 conflict_function
*conflicting_iterations_in_a
;
196 conflict_function
*conflicting_iterations_in_b
;
198 /* This field stores the information about the iteration domain
199 validity of the dependence relation. */
202 /* Distance from the iteration that access a conflicting element in
203 A to the iteration that access this same conflicting element in
204 B. The distance is a tree scalar expression, i.e. a constant or a
205 symbolic expression, but certainly not a chrec function. */
209 typedef struct subscript
*subscript_p
;
211 #define SUB_CONFLICTS_IN_A(SUB) SUB->conflicting_iterations_in_a
212 #define SUB_CONFLICTS_IN_B(SUB) SUB->conflicting_iterations_in_b
213 #define SUB_LAST_CONFLICT(SUB) SUB->last_conflict
214 #define SUB_DISTANCE(SUB) SUB->distance
216 /* A data_dependence_relation represents a relation between two
217 data_references A and B. */
219 struct data_dependence_relation
222 struct data_reference
*a
;
223 struct data_reference
*b
;
225 /* A "yes/no/maybe" field for the dependence relation:
227 - when "ARE_DEPENDENT == NULL_TREE", there exist a dependence
228 relation between A and B, and the description of this relation
229 is given in the SUBSCRIPTS array,
231 - when "ARE_DEPENDENT == chrec_known", there is no dependence and
234 - when "ARE_DEPENDENT == chrec_dont_know", there may be a dependence,
235 but the analyzer cannot be more specific. */
238 /* For each subscript in the dependence test, there is an element in
239 this array. This is the attribute that labels the edge A->B of
240 the data_dependence_relation. */
241 vec
<subscript_p
> subscripts
;
243 /* The analyzed loop nest. */
244 vec
<loop_p
> loop_nest
;
246 /* The classic direction vector. */
247 vec
<lambda_vector
> dir_vects
;
249 /* The classic distance vector. */
250 vec
<lambda_vector
> dist_vects
;
252 /* An index in loop_nest for the innermost loop that varies for
253 this data dependence relation. */
256 /* Is the dependence reversed with respect to the lexicographic order? */
259 /* When the dependence relation is affine, it can be represented by
260 a distance vector. */
263 /* Set to true when the dependence relation is on the same data
265 bool self_reference_p
;
268 typedef struct data_dependence_relation
*ddr_p
;
270 #define DDR_A(DDR) DDR->a
271 #define DDR_B(DDR) DDR->b
272 #define DDR_AFFINE_P(DDR) DDR->affine_p
273 #define DDR_ARE_DEPENDENT(DDR) DDR->are_dependent
274 #define DDR_SUBSCRIPTS(DDR) DDR->subscripts
275 #define DDR_SUBSCRIPT(DDR, I) DDR_SUBSCRIPTS (DDR)[I]
276 #define DDR_NUM_SUBSCRIPTS(DDR) DDR_SUBSCRIPTS (DDR).length ()
278 #define DDR_LOOP_NEST(DDR) DDR->loop_nest
279 /* The size of the direction/distance vectors: the number of loops in
281 #define DDR_NB_LOOPS(DDR) (DDR_LOOP_NEST (DDR).length ())
282 #define DDR_INNER_LOOP(DDR) DDR->inner_loop
283 #define DDR_SELF_REFERENCE(DDR) DDR->self_reference_p
285 #define DDR_DIST_VECTS(DDR) ((DDR)->dist_vects)
286 #define DDR_DIR_VECTS(DDR) ((DDR)->dir_vects)
287 #define DDR_NUM_DIST_VECTS(DDR) \
288 (DDR_DIST_VECTS (DDR).length ())
289 #define DDR_NUM_DIR_VECTS(DDR) \
290 (DDR_DIR_VECTS (DDR).length ())
291 #define DDR_DIR_VECT(DDR, I) \
292 DDR_DIR_VECTS (DDR)[I]
293 #define DDR_DIST_VECT(DDR, I) \
294 DDR_DIST_VECTS (DDR)[I]
295 #define DDR_REVERSED_P(DDR) DDR->reversed_p
298 bool dr_analyze_innermost (struct data_reference
*, struct loop
*);
299 extern bool compute_data_dependences_for_loop (struct loop
*, bool,
301 vec
<data_reference_p
> *,
303 extern void debug_ddrs (vec
<ddr_p
> );
304 extern void dump_data_reference (FILE *, struct data_reference
*);
305 extern void debug (data_reference
&ref
);
306 extern void debug (data_reference
*ptr
);
307 extern void debug_data_reference (struct data_reference
*);
308 extern void debug_data_references (vec
<data_reference_p
> );
309 extern void debug (vec
<data_reference_p
> &ref
);
310 extern void debug (vec
<data_reference_p
> *ptr
);
311 extern void debug_data_dependence_relation (struct data_dependence_relation
*);
312 extern void dump_data_dependence_relations (FILE *, vec
<ddr_p
> );
313 extern void debug (vec
<ddr_p
> &ref
);
314 extern void debug (vec
<ddr_p
> *ptr
);
315 extern void debug_data_dependence_relations (vec
<ddr_p
> );
316 extern void free_dependence_relation (struct data_dependence_relation
*);
317 extern void free_dependence_relations (vec
<ddr_p
> );
318 extern void free_data_ref (data_reference_p
);
319 extern void free_data_refs (vec
<data_reference_p
> );
320 extern bool find_data_references_in_stmt (struct loop
*, gimple
*,
321 vec
<data_reference_p
> *);
322 extern bool graphite_find_data_references_in_stmt (loop_p
, loop_p
, gimple
*,
323 vec
<data_reference_p
> *);
324 tree
find_data_references_in_loop (struct loop
*, vec
<data_reference_p
> *);
325 bool loop_nest_has_data_refs (loop_p loop
);
326 struct data_reference
*create_data_ref (loop_p
, loop_p
, tree
, gimple
*, bool);
327 extern bool find_loop_nest (struct loop
*, vec
<loop_p
> *);
328 extern struct data_dependence_relation
*initialize_data_dependence_relation
329 (struct data_reference
*, struct data_reference
*, vec
<loop_p
>);
330 extern void compute_affine_dependence (struct data_dependence_relation
*,
332 extern void compute_self_dependence (struct data_dependence_relation
*);
333 extern bool compute_all_dependences (vec
<data_reference_p
> ,
336 extern tree
find_data_references_in_bb (struct loop
*, basic_block
,
337 vec
<data_reference_p
> *);
339 extern bool dr_may_alias_p (const struct data_reference
*,
340 const struct data_reference
*, bool);
341 extern bool dr_equal_offsets_p (struct data_reference
*,
342 struct data_reference
*);
344 /* Return true when the base objects of data references A and B are
345 the same memory object. */
348 same_data_refs_base_objects (data_reference_p a
, data_reference_p b
)
350 return DR_NUM_DIMENSIONS (a
) == DR_NUM_DIMENSIONS (b
)
351 && operand_equal_p (DR_BASE_OBJECT (a
), DR_BASE_OBJECT (b
), 0);
354 /* Return true when the data references A and B are accessing the same
355 memory object with the same access functions. */
358 same_data_refs (data_reference_p a
, data_reference_p b
)
362 /* The references are exactly the same. */
363 if (operand_equal_p (DR_REF (a
), DR_REF (b
), 0))
366 if (!same_data_refs_base_objects (a
, b
))
369 for (i
= 0; i
< DR_NUM_DIMENSIONS (a
); i
++)
370 if (!eq_evolutions_p (DR_ACCESS_FN (a
, i
), DR_ACCESS_FN (b
, i
)))
376 /* Return true when the DDR contains two data references that have the
377 same access functions. */
380 same_access_functions (const struct data_dependence_relation
*ddr
)
384 for (i
= 0; i
< DDR_NUM_SUBSCRIPTS (ddr
); i
++)
385 if (!eq_evolutions_p (DR_ACCESS_FN (DDR_A (ddr
), i
),
386 DR_ACCESS_FN (DDR_B (ddr
), i
)))
392 /* Returns true when all the dependences are computable. */
395 known_dependences_p (vec
<ddr_p
> dependence_relations
)
400 FOR_EACH_VEC_ELT (dependence_relations
, i
, ddr
)
401 if (DDR_ARE_DEPENDENT (ddr
) == chrec_dont_know
)
407 /* Returns the dependence level for a vector DIST of size LENGTH.
408 LEVEL = 0 means a lexicographic dependence, i.e. a dependence due
409 to the sequence of statements, not carried by any loop. */
411 static inline unsigned
412 dependence_level (lambda_vector dist_vect
, int length
)
416 for (i
= 0; i
< length
; i
++)
417 if (dist_vect
[i
] != 0)
423 /* Return the dependence level for the DDR relation. */
425 static inline unsigned
426 ddr_dependence_level (ddr_p ddr
)
431 if (DDR_DIST_VECTS (ddr
).exists ())
432 level
= dependence_level (DDR_DIST_VECT (ddr
, 0), DDR_NB_LOOPS (ddr
));
434 for (vector
= 1; vector
< DDR_NUM_DIST_VECTS (ddr
); vector
++)
435 level
= MIN (level
, dependence_level (DDR_DIST_VECT (ddr
, vector
),
436 DDR_NB_LOOPS (ddr
)));
440 /* Return the index of the variable VAR in the LOOP_NEST array. */
443 index_in_loop_nest (int var
, vec
<loop_p
> loop_nest
)
448 for (var_index
= 0; loop_nest
.iterate (var_index
, &loopi
);
450 if (loopi
->num
== var
)
456 /* Returns true when the data reference DR the form "A[i] = ..."
457 with a stride equal to its unit type size. */
460 adjacent_dr_p (struct data_reference
*dr
)
462 /* If this is a bitfield store bail out. */
463 if (TREE_CODE (DR_REF (dr
)) == COMPONENT_REF
464 && DECL_BIT_FIELD (TREE_OPERAND (DR_REF (dr
), 1)))
468 || TREE_CODE (DR_STEP (dr
)) != INTEGER_CST
)
471 return tree_int_cst_equal (fold_unary (ABS_EXPR
, TREE_TYPE (DR_STEP (dr
)),
473 TYPE_SIZE_UNIT (TREE_TYPE (DR_REF (dr
))));
476 void split_constant_offset (tree
, tree
*, tree
*);
478 /* Compute the greatest common divisor of a VECTOR of SIZE numbers. */
481 lambda_vector_gcd (lambda_vector vector
, int size
)
489 for (i
= 1; i
< size
; i
++)
490 gcd1
= gcd (gcd1
, vector
[i
]);
495 /* Allocate a new vector of given SIZE. */
497 static inline lambda_vector
498 lambda_vector_new (int size
)
500 /* ??? We shouldn't abuse the GC allocator here. */
501 return ggc_cleared_vec_alloc
<int> (size
);
504 /* Clear out vector VEC1 of length SIZE. */
507 lambda_vector_clear (lambda_vector vec1
, int size
)
509 memset (vec1
, 0, size
* sizeof (*vec1
));
512 /* Returns true when the vector V is lexicographically positive, in
513 other words, when the first nonzero element is positive. */
516 lambda_vector_lexico_pos (lambda_vector v
,
520 for (i
= 0; i
< n
; i
++)
532 /* Return true if vector VEC1 of length SIZE is the zero vector. */
535 lambda_vector_zerop (lambda_vector vec1
, int size
)
538 for (i
= 0; i
< size
; i
++)
544 /* Allocate a matrix of M rows x N cols. */
546 static inline lambda_matrix
547 lambda_matrix_new (int m
, int n
, struct obstack
*lambda_obstack
)
552 mat
= XOBNEWVEC (lambda_obstack
, lambda_vector
, m
);
554 for (i
= 0; i
< m
; i
++)
555 mat
[i
] = XOBNEWVEC (lambda_obstack
, int, n
);
560 #endif /* GCC_TREE_DATA_REF_H */