mmap.c (MAP_FAILED): Define if not defined.
[official-gcc.git] / gcc / stor-layout.c
blobd1738d280b33659e82aca7dbce1e8893e17a22fe
1 /* C-compiler utilities for types and variables storage layout
2 Copyright (C) 1987-2016 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "target.h"
25 #include "function.h"
26 #include "rtl.h"
27 #include "tree.h"
28 #include "tm_p.h"
29 #include "stringpool.h"
30 #include "regs.h"
31 #include "emit-rtl.h"
32 #include "cgraph.h"
33 #include "diagnostic-core.h"
34 #include "fold-const.h"
35 #include "stor-layout.h"
36 #include "varasm.h"
37 #include "print-tree.h"
38 #include "langhooks.h"
39 #include "tree-inline.h"
40 #include "tree-dump.h"
41 #include "gimplify.h"
42 #include "debug.h"
44 /* Data type for the expressions representing sizes of data types.
45 It is the first integer type laid out. */
46 tree sizetype_tab[(int) stk_type_kind_last];
48 /* If nonzero, this is an upper limit on alignment of structure fields.
49 The value is measured in bits. */
50 unsigned int maximum_field_alignment = TARGET_DEFAULT_PACK_STRUCT * BITS_PER_UNIT;
52 /* Nonzero if all REFERENCE_TYPEs are internal and hence should be allocated
53 in the address spaces' address_mode, not pointer_mode. Set only by
54 internal_reference_types called only by a front end. */
55 static int reference_types_internal = 0;
57 static tree self_referential_size (tree);
58 static void finalize_record_size (record_layout_info);
59 static void finalize_type_size (tree);
60 static void place_union_field (record_layout_info, tree);
61 static int excess_unit_span (HOST_WIDE_INT, HOST_WIDE_INT, HOST_WIDE_INT,
62 HOST_WIDE_INT, tree);
63 extern void debug_rli (record_layout_info);
65 /* Show that REFERENCE_TYPES are internal and should use address_mode.
66 Called only by front end. */
68 void
69 internal_reference_types (void)
71 reference_types_internal = 1;
74 /* Given a size SIZE that may not be a constant, return a SAVE_EXPR
75 to serve as the actual size-expression for a type or decl. */
77 tree
78 variable_size (tree size)
80 /* Obviously. */
81 if (TREE_CONSTANT (size))
82 return size;
84 /* If the size is self-referential, we can't make a SAVE_EXPR (see
85 save_expr for the rationale). But we can do something else. */
86 if (CONTAINS_PLACEHOLDER_P (size))
87 return self_referential_size (size);
89 /* If we are in the global binding level, we can't make a SAVE_EXPR
90 since it may end up being shared across functions, so it is up
91 to the front-end to deal with this case. */
92 if (lang_hooks.decls.global_bindings_p ())
93 return size;
95 return save_expr (size);
98 /* An array of functions used for self-referential size computation. */
99 static GTY(()) vec<tree, va_gc> *size_functions;
101 /* Return true if T is a self-referential component reference. */
103 static bool
104 self_referential_component_ref_p (tree t)
106 if (TREE_CODE (t) != COMPONENT_REF)
107 return false;
109 while (REFERENCE_CLASS_P (t))
110 t = TREE_OPERAND (t, 0);
112 return (TREE_CODE (t) == PLACEHOLDER_EXPR);
115 /* Similar to copy_tree_r but do not copy component references involving
116 PLACEHOLDER_EXPRs. These nodes are spotted in find_placeholder_in_expr
117 and substituted in substitute_in_expr. */
119 static tree
120 copy_self_referential_tree_r (tree *tp, int *walk_subtrees, void *data)
122 enum tree_code code = TREE_CODE (*tp);
124 /* Stop at types, decls, constants like copy_tree_r. */
125 if (TREE_CODE_CLASS (code) == tcc_type
126 || TREE_CODE_CLASS (code) == tcc_declaration
127 || TREE_CODE_CLASS (code) == tcc_constant)
129 *walk_subtrees = 0;
130 return NULL_TREE;
133 /* This is the pattern built in ada/make_aligning_type. */
134 else if (code == ADDR_EXPR
135 && TREE_CODE (TREE_OPERAND (*tp, 0)) == PLACEHOLDER_EXPR)
137 *walk_subtrees = 0;
138 return NULL_TREE;
141 /* Default case: the component reference. */
142 else if (self_referential_component_ref_p (*tp))
144 *walk_subtrees = 0;
145 return NULL_TREE;
148 /* We're not supposed to have them in self-referential size trees
149 because we wouldn't properly control when they are evaluated.
150 However, not creating superfluous SAVE_EXPRs requires accurate
151 tracking of readonly-ness all the way down to here, which we
152 cannot always guarantee in practice. So punt in this case. */
153 else if (code == SAVE_EXPR)
154 return error_mark_node;
156 else if (code == STATEMENT_LIST)
157 gcc_unreachable ();
159 return copy_tree_r (tp, walk_subtrees, data);
162 /* Given a SIZE expression that is self-referential, return an equivalent
163 expression to serve as the actual size expression for a type. */
165 static tree
166 self_referential_size (tree size)
168 static unsigned HOST_WIDE_INT fnno = 0;
169 vec<tree> self_refs = vNULL;
170 tree param_type_list = NULL, param_decl_list = NULL;
171 tree t, ref, return_type, fntype, fnname, fndecl;
172 unsigned int i;
173 char buf[128];
174 vec<tree, va_gc> *args = NULL;
176 /* Do not factor out simple operations. */
177 t = skip_simple_constant_arithmetic (size);
178 if (TREE_CODE (t) == CALL_EXPR || self_referential_component_ref_p (t))
179 return size;
181 /* Collect the list of self-references in the expression. */
182 find_placeholder_in_expr (size, &self_refs);
183 gcc_assert (self_refs.length () > 0);
185 /* Obtain a private copy of the expression. */
186 t = size;
187 if (walk_tree (&t, copy_self_referential_tree_r, NULL, NULL) != NULL_TREE)
188 return size;
189 size = t;
191 /* Build the parameter and argument lists in parallel; also
192 substitute the former for the latter in the expression. */
193 vec_alloc (args, self_refs.length ());
194 FOR_EACH_VEC_ELT (self_refs, i, ref)
196 tree subst, param_name, param_type, param_decl;
198 if (DECL_P (ref))
200 /* We shouldn't have true variables here. */
201 gcc_assert (TREE_READONLY (ref));
202 subst = ref;
204 /* This is the pattern built in ada/make_aligning_type. */
205 else if (TREE_CODE (ref) == ADDR_EXPR)
206 subst = ref;
207 /* Default case: the component reference. */
208 else
209 subst = TREE_OPERAND (ref, 1);
211 sprintf (buf, "p%d", i);
212 param_name = get_identifier (buf);
213 param_type = TREE_TYPE (ref);
214 param_decl
215 = build_decl (input_location, PARM_DECL, param_name, param_type);
216 DECL_ARG_TYPE (param_decl) = param_type;
217 DECL_ARTIFICIAL (param_decl) = 1;
218 TREE_READONLY (param_decl) = 1;
220 size = substitute_in_expr (size, subst, param_decl);
222 param_type_list = tree_cons (NULL_TREE, param_type, param_type_list);
223 param_decl_list = chainon (param_decl, param_decl_list);
224 args->quick_push (ref);
227 self_refs.release ();
229 /* Append 'void' to indicate that the number of parameters is fixed. */
230 param_type_list = tree_cons (NULL_TREE, void_type_node, param_type_list);
232 /* The 3 lists have been created in reverse order. */
233 param_type_list = nreverse (param_type_list);
234 param_decl_list = nreverse (param_decl_list);
236 /* Build the function type. */
237 return_type = TREE_TYPE (size);
238 fntype = build_function_type (return_type, param_type_list);
240 /* Build the function declaration. */
241 sprintf (buf, "SZ" HOST_WIDE_INT_PRINT_UNSIGNED, fnno++);
242 fnname = get_file_function_name (buf);
243 fndecl = build_decl (input_location, FUNCTION_DECL, fnname, fntype);
244 for (t = param_decl_list; t; t = DECL_CHAIN (t))
245 DECL_CONTEXT (t) = fndecl;
246 DECL_ARGUMENTS (fndecl) = param_decl_list;
247 DECL_RESULT (fndecl)
248 = build_decl (input_location, RESULT_DECL, 0, return_type);
249 DECL_CONTEXT (DECL_RESULT (fndecl)) = fndecl;
251 /* The function has been created by the compiler and we don't
252 want to emit debug info for it. */
253 DECL_ARTIFICIAL (fndecl) = 1;
254 DECL_IGNORED_P (fndecl) = 1;
256 /* It is supposed to be "const" and never throw. */
257 TREE_READONLY (fndecl) = 1;
258 TREE_NOTHROW (fndecl) = 1;
260 /* We want it to be inlined when this is deemed profitable, as
261 well as discarded if every call has been integrated. */
262 DECL_DECLARED_INLINE_P (fndecl) = 1;
264 /* It is made up of a unique return statement. */
265 DECL_INITIAL (fndecl) = make_node (BLOCK);
266 BLOCK_SUPERCONTEXT (DECL_INITIAL (fndecl)) = fndecl;
267 t = build2 (MODIFY_EXPR, return_type, DECL_RESULT (fndecl), size);
268 DECL_SAVED_TREE (fndecl) = build1 (RETURN_EXPR, void_type_node, t);
269 TREE_STATIC (fndecl) = 1;
271 /* Put it onto the list of size functions. */
272 vec_safe_push (size_functions, fndecl);
274 /* Replace the original expression with a call to the size function. */
275 return build_call_expr_loc_vec (UNKNOWN_LOCATION, fndecl, args);
278 /* Take, queue and compile all the size functions. It is essential that
279 the size functions be gimplified at the very end of the compilation
280 in order to guarantee transparent handling of self-referential sizes.
281 Otherwise the GENERIC inliner would not be able to inline them back
282 at each of their call sites, thus creating artificial non-constant
283 size expressions which would trigger nasty problems later on. */
285 void
286 finalize_size_functions (void)
288 unsigned int i;
289 tree fndecl;
291 for (i = 0; size_functions && size_functions->iterate (i, &fndecl); i++)
293 allocate_struct_function (fndecl, false);
294 set_cfun (NULL);
295 dump_function (TDI_original, fndecl);
297 /* As these functions are used to describe the layout of variable-length
298 structures, debug info generation needs their implementation. */
299 debug_hooks->size_function (fndecl);
300 gimplify_function_tree (fndecl);
301 cgraph_node::finalize_function (fndecl, false);
304 vec_free (size_functions);
307 /* Return the machine mode to use for a nonscalar of SIZE bits. The
308 mode must be in class MCLASS, and have exactly that many value bits;
309 it may have padding as well. If LIMIT is nonzero, modes of wider
310 than MAX_FIXED_MODE_SIZE will not be used. */
312 machine_mode
313 mode_for_size (unsigned int size, enum mode_class mclass, int limit)
315 machine_mode mode;
316 int i;
318 if (limit && size > MAX_FIXED_MODE_SIZE)
319 return BLKmode;
321 /* Get the first mode which has this size, in the specified class. */
322 for (mode = GET_CLASS_NARROWEST_MODE (mclass); mode != VOIDmode;
323 mode = GET_MODE_WIDER_MODE (mode))
324 if (GET_MODE_PRECISION (mode) == size)
325 return mode;
327 if (mclass == MODE_INT || mclass == MODE_PARTIAL_INT)
328 for (i = 0; i < NUM_INT_N_ENTS; i ++)
329 if (int_n_data[i].bitsize == size
330 && int_n_enabled_p[i])
331 return int_n_data[i].m;
333 return BLKmode;
336 /* Similar, except passed a tree node. */
338 machine_mode
339 mode_for_size_tree (const_tree size, enum mode_class mclass, int limit)
341 unsigned HOST_WIDE_INT uhwi;
342 unsigned int ui;
344 if (!tree_fits_uhwi_p (size))
345 return BLKmode;
346 uhwi = tree_to_uhwi (size);
347 ui = uhwi;
348 if (uhwi != ui)
349 return BLKmode;
350 return mode_for_size (ui, mclass, limit);
353 /* Similar, but never return BLKmode; return the narrowest mode that
354 contains at least the requested number of value bits. */
356 machine_mode
357 smallest_mode_for_size (unsigned int size, enum mode_class mclass)
359 machine_mode mode = VOIDmode;
360 int i;
362 /* Get the first mode which has at least this size, in the
363 specified class. */
364 for (mode = GET_CLASS_NARROWEST_MODE (mclass); mode != VOIDmode;
365 mode = GET_MODE_WIDER_MODE (mode))
366 if (GET_MODE_PRECISION (mode) >= size)
367 break;
369 if (mclass == MODE_INT || mclass == MODE_PARTIAL_INT)
370 for (i = 0; i < NUM_INT_N_ENTS; i ++)
371 if (int_n_data[i].bitsize >= size
372 && int_n_data[i].bitsize < GET_MODE_PRECISION (mode)
373 && int_n_enabled_p[i])
374 mode = int_n_data[i].m;
376 if (mode == VOIDmode)
377 gcc_unreachable ();
379 return mode;
382 /* Find an integer mode of the exact same size, or BLKmode on failure. */
384 machine_mode
385 int_mode_for_mode (machine_mode mode)
387 switch (GET_MODE_CLASS (mode))
389 case MODE_INT:
390 case MODE_PARTIAL_INT:
391 break;
393 case MODE_COMPLEX_INT:
394 case MODE_COMPLEX_FLOAT:
395 case MODE_FLOAT:
396 case MODE_DECIMAL_FLOAT:
397 case MODE_VECTOR_INT:
398 case MODE_VECTOR_FLOAT:
399 case MODE_FRACT:
400 case MODE_ACCUM:
401 case MODE_UFRACT:
402 case MODE_UACCUM:
403 case MODE_VECTOR_FRACT:
404 case MODE_VECTOR_ACCUM:
405 case MODE_VECTOR_UFRACT:
406 case MODE_VECTOR_UACCUM:
407 case MODE_POINTER_BOUNDS:
408 mode = mode_for_size (GET_MODE_BITSIZE (mode), MODE_INT, 0);
409 break;
411 case MODE_RANDOM:
412 if (mode == BLKmode)
413 break;
415 /* ... fall through ... */
417 case MODE_CC:
418 default:
419 gcc_unreachable ();
422 return mode;
425 /* Find a mode that can be used for efficient bitwise operations on MODE.
426 Return BLKmode if no such mode exists. */
428 machine_mode
429 bitwise_mode_for_mode (machine_mode mode)
431 /* Quick exit if we already have a suitable mode. */
432 unsigned int bitsize = GET_MODE_BITSIZE (mode);
433 if (SCALAR_INT_MODE_P (mode) && bitsize <= MAX_FIXED_MODE_SIZE)
434 return mode;
436 /* Reuse the sanity checks from int_mode_for_mode. */
437 gcc_checking_assert ((int_mode_for_mode (mode), true));
439 /* Try to replace complex modes with complex modes. In general we
440 expect both components to be processed independently, so we only
441 care whether there is a register for the inner mode. */
442 if (COMPLEX_MODE_P (mode))
444 machine_mode trial = mode;
445 if (GET_MODE_CLASS (mode) != MODE_COMPLEX_INT)
446 trial = mode_for_size (bitsize, MODE_COMPLEX_INT, false);
447 if (trial != BLKmode
448 && have_regs_of_mode[GET_MODE_INNER (trial)])
449 return trial;
452 /* Try to replace vector modes with vector modes. Also try using vector
453 modes if an integer mode would be too big. */
454 if (VECTOR_MODE_P (mode) || bitsize > MAX_FIXED_MODE_SIZE)
456 machine_mode trial = mode;
457 if (GET_MODE_CLASS (mode) != MODE_VECTOR_INT)
458 trial = mode_for_size (bitsize, MODE_VECTOR_INT, 0);
459 if (trial != BLKmode
460 && have_regs_of_mode[trial]
461 && targetm.vector_mode_supported_p (trial))
462 return trial;
465 /* Otherwise fall back on integers while honoring MAX_FIXED_MODE_SIZE. */
466 return mode_for_size (bitsize, MODE_INT, true);
469 /* Find a type that can be used for efficient bitwise operations on MODE.
470 Return null if no such mode exists. */
472 tree
473 bitwise_type_for_mode (machine_mode mode)
475 mode = bitwise_mode_for_mode (mode);
476 if (mode == BLKmode)
477 return NULL_TREE;
479 unsigned int inner_size = GET_MODE_UNIT_BITSIZE (mode);
480 tree inner_type = build_nonstandard_integer_type (inner_size, true);
482 if (VECTOR_MODE_P (mode))
483 return build_vector_type_for_mode (inner_type, mode);
485 if (COMPLEX_MODE_P (mode))
486 return build_complex_type (inner_type);
488 gcc_checking_assert (GET_MODE_INNER (mode) == mode);
489 return inner_type;
492 /* Find a mode that is suitable for representing a vector with
493 NUNITS elements of mode INNERMODE. Returns BLKmode if there
494 is no suitable mode. */
496 machine_mode
497 mode_for_vector (machine_mode innermode, unsigned nunits)
499 machine_mode mode;
501 /* First, look for a supported vector type. */
502 if (SCALAR_FLOAT_MODE_P (innermode))
503 mode = MIN_MODE_VECTOR_FLOAT;
504 else if (SCALAR_FRACT_MODE_P (innermode))
505 mode = MIN_MODE_VECTOR_FRACT;
506 else if (SCALAR_UFRACT_MODE_P (innermode))
507 mode = MIN_MODE_VECTOR_UFRACT;
508 else if (SCALAR_ACCUM_MODE_P (innermode))
509 mode = MIN_MODE_VECTOR_ACCUM;
510 else if (SCALAR_UACCUM_MODE_P (innermode))
511 mode = MIN_MODE_VECTOR_UACCUM;
512 else
513 mode = MIN_MODE_VECTOR_INT;
515 /* Do not check vector_mode_supported_p here. We'll do that
516 later in vector_type_mode. */
517 for (; mode != VOIDmode ; mode = GET_MODE_WIDER_MODE (mode))
518 if (GET_MODE_NUNITS (mode) == nunits
519 && GET_MODE_INNER (mode) == innermode)
520 break;
522 /* For integers, try mapping it to a same-sized scalar mode. */
523 if (mode == VOIDmode
524 && GET_MODE_CLASS (innermode) == MODE_INT)
525 mode = mode_for_size (nunits * GET_MODE_BITSIZE (innermode),
526 MODE_INT, 0);
528 if (mode == VOIDmode
529 || (GET_MODE_CLASS (mode) == MODE_INT
530 && !have_regs_of_mode[mode]))
531 return BLKmode;
533 return mode;
536 /* Return the alignment of MODE. This will be bounded by 1 and
537 BIGGEST_ALIGNMENT. */
539 unsigned int
540 get_mode_alignment (machine_mode mode)
542 return MIN (BIGGEST_ALIGNMENT, MAX (1, mode_base_align[mode]*BITS_PER_UNIT));
545 /* Return the natural mode of an array, given that it is SIZE bytes in
546 total and has elements of type ELEM_TYPE. */
548 static machine_mode
549 mode_for_array (tree elem_type, tree size)
551 tree elem_size;
552 unsigned HOST_WIDE_INT int_size, int_elem_size;
553 bool limit_p;
555 /* One-element arrays get the component type's mode. */
556 elem_size = TYPE_SIZE (elem_type);
557 if (simple_cst_equal (size, elem_size))
558 return TYPE_MODE (elem_type);
560 limit_p = true;
561 if (tree_fits_uhwi_p (size) && tree_fits_uhwi_p (elem_size))
563 int_size = tree_to_uhwi (size);
564 int_elem_size = tree_to_uhwi (elem_size);
565 if (int_elem_size > 0
566 && int_size % int_elem_size == 0
567 && targetm.array_mode_supported_p (TYPE_MODE (elem_type),
568 int_size / int_elem_size))
569 limit_p = false;
571 return mode_for_size_tree (size, MODE_INT, limit_p);
574 /* Subroutine of layout_decl: Force alignment required for the data type.
575 But if the decl itself wants greater alignment, don't override that. */
577 static inline void
578 do_type_align (tree type, tree decl)
580 if (TYPE_ALIGN (type) > DECL_ALIGN (decl))
582 DECL_ALIGN (decl) = TYPE_ALIGN (type);
583 if (TREE_CODE (decl) == FIELD_DECL)
584 DECL_USER_ALIGN (decl) = TYPE_USER_ALIGN (type);
588 /* Set the size, mode and alignment of a ..._DECL node.
589 TYPE_DECL does need this for C++.
590 Note that LABEL_DECL and CONST_DECL nodes do not need this,
591 and FUNCTION_DECL nodes have them set up in a special (and simple) way.
592 Don't call layout_decl for them.
594 KNOWN_ALIGN is the amount of alignment we can assume this
595 decl has with no special effort. It is relevant only for FIELD_DECLs
596 and depends on the previous fields.
597 All that matters about KNOWN_ALIGN is which powers of 2 divide it.
598 If KNOWN_ALIGN is 0, it means, "as much alignment as you like":
599 the record will be aligned to suit. */
601 void
602 layout_decl (tree decl, unsigned int known_align)
604 tree type = TREE_TYPE (decl);
605 enum tree_code code = TREE_CODE (decl);
606 rtx rtl = NULL_RTX;
607 location_t loc = DECL_SOURCE_LOCATION (decl);
609 if (code == CONST_DECL)
610 return;
612 gcc_assert (code == VAR_DECL || code == PARM_DECL || code == RESULT_DECL
613 || code == TYPE_DECL ||code == FIELD_DECL);
615 rtl = DECL_RTL_IF_SET (decl);
617 if (type == error_mark_node)
618 type = void_type_node;
620 /* Usually the size and mode come from the data type without change,
621 however, the front-end may set the explicit width of the field, so its
622 size may not be the same as the size of its type. This happens with
623 bitfields, of course (an `int' bitfield may be only 2 bits, say), but it
624 also happens with other fields. For example, the C++ front-end creates
625 zero-sized fields corresponding to empty base classes, and depends on
626 layout_type setting DECL_FIELD_BITPOS correctly for the field. Set the
627 size in bytes from the size in bits. If we have already set the mode,
628 don't set it again since we can be called twice for FIELD_DECLs. */
630 DECL_UNSIGNED (decl) = TYPE_UNSIGNED (type);
631 if (DECL_MODE (decl) == VOIDmode)
632 DECL_MODE (decl) = TYPE_MODE (type);
634 if (DECL_SIZE (decl) == 0)
636 DECL_SIZE (decl) = TYPE_SIZE (type);
637 DECL_SIZE_UNIT (decl) = TYPE_SIZE_UNIT (type);
639 else if (DECL_SIZE_UNIT (decl) == 0)
640 DECL_SIZE_UNIT (decl)
641 = fold_convert_loc (loc, sizetype,
642 size_binop_loc (loc, CEIL_DIV_EXPR, DECL_SIZE (decl),
643 bitsize_unit_node));
645 if (code != FIELD_DECL)
646 /* For non-fields, update the alignment from the type. */
647 do_type_align (type, decl);
648 else
649 /* For fields, it's a bit more complicated... */
651 bool old_user_align = DECL_USER_ALIGN (decl);
652 bool zero_bitfield = false;
653 bool packed_p = DECL_PACKED (decl);
654 unsigned int mfa;
656 if (DECL_BIT_FIELD (decl))
658 DECL_BIT_FIELD_TYPE (decl) = type;
660 /* A zero-length bit-field affects the alignment of the next
661 field. In essence such bit-fields are not influenced by
662 any packing due to #pragma pack or attribute packed. */
663 if (integer_zerop (DECL_SIZE (decl))
664 && ! targetm.ms_bitfield_layout_p (DECL_FIELD_CONTEXT (decl)))
666 zero_bitfield = true;
667 packed_p = false;
668 if (PCC_BITFIELD_TYPE_MATTERS)
669 do_type_align (type, decl);
670 else
672 #ifdef EMPTY_FIELD_BOUNDARY
673 if (EMPTY_FIELD_BOUNDARY > DECL_ALIGN (decl))
675 DECL_ALIGN (decl) = EMPTY_FIELD_BOUNDARY;
676 DECL_USER_ALIGN (decl) = 0;
678 #endif
682 /* See if we can use an ordinary integer mode for a bit-field.
683 Conditions are: a fixed size that is correct for another mode,
684 occupying a complete byte or bytes on proper boundary. */
685 if (TYPE_SIZE (type) != 0
686 && TREE_CODE (TYPE_SIZE (type)) == INTEGER_CST
687 && GET_MODE_CLASS (TYPE_MODE (type)) == MODE_INT)
689 machine_mode xmode
690 = mode_for_size_tree (DECL_SIZE (decl), MODE_INT, 1);
691 unsigned int xalign = GET_MODE_ALIGNMENT (xmode);
693 if (xmode != BLKmode
694 && !(xalign > BITS_PER_UNIT && DECL_PACKED (decl))
695 && (known_align == 0 || known_align >= xalign))
697 DECL_ALIGN (decl) = MAX (xalign, DECL_ALIGN (decl));
698 DECL_MODE (decl) = xmode;
699 DECL_BIT_FIELD (decl) = 0;
703 /* Turn off DECL_BIT_FIELD if we won't need it set. */
704 if (TYPE_MODE (type) == BLKmode && DECL_MODE (decl) == BLKmode
705 && known_align >= TYPE_ALIGN (type)
706 && DECL_ALIGN (decl) >= TYPE_ALIGN (type))
707 DECL_BIT_FIELD (decl) = 0;
709 else if (packed_p && DECL_USER_ALIGN (decl))
710 /* Don't touch DECL_ALIGN. For other packed fields, go ahead and
711 round up; we'll reduce it again below. We want packing to
712 supersede USER_ALIGN inherited from the type, but defer to
713 alignment explicitly specified on the field decl. */;
714 else
715 do_type_align (type, decl);
717 /* If the field is packed and not explicitly aligned, give it the
718 minimum alignment. Note that do_type_align may set
719 DECL_USER_ALIGN, so we need to check old_user_align instead. */
720 if (packed_p
721 && !old_user_align)
722 DECL_ALIGN (decl) = MIN (DECL_ALIGN (decl), BITS_PER_UNIT);
724 if (! packed_p && ! DECL_USER_ALIGN (decl))
726 /* Some targets (i.e. i386, VMS) limit struct field alignment
727 to a lower boundary than alignment of variables unless
728 it was overridden by attribute aligned. */
729 #ifdef BIGGEST_FIELD_ALIGNMENT
730 DECL_ALIGN (decl)
731 = MIN (DECL_ALIGN (decl), (unsigned) BIGGEST_FIELD_ALIGNMENT);
732 #endif
733 #ifdef ADJUST_FIELD_ALIGN
734 DECL_ALIGN (decl) = ADJUST_FIELD_ALIGN (decl, DECL_ALIGN (decl));
735 #endif
738 if (zero_bitfield)
739 mfa = initial_max_fld_align * BITS_PER_UNIT;
740 else
741 mfa = maximum_field_alignment;
742 /* Should this be controlled by DECL_USER_ALIGN, too? */
743 if (mfa != 0)
744 DECL_ALIGN (decl) = MIN (DECL_ALIGN (decl), mfa);
747 /* Evaluate nonconstant size only once, either now or as soon as safe. */
748 if (DECL_SIZE (decl) != 0 && TREE_CODE (DECL_SIZE (decl)) != INTEGER_CST)
749 DECL_SIZE (decl) = variable_size (DECL_SIZE (decl));
750 if (DECL_SIZE_UNIT (decl) != 0
751 && TREE_CODE (DECL_SIZE_UNIT (decl)) != INTEGER_CST)
752 DECL_SIZE_UNIT (decl) = variable_size (DECL_SIZE_UNIT (decl));
754 /* If requested, warn about definitions of large data objects. */
755 if (warn_larger_than
756 && (code == VAR_DECL || code == PARM_DECL)
757 && ! DECL_EXTERNAL (decl))
759 tree size = DECL_SIZE_UNIT (decl);
761 if (size != 0 && TREE_CODE (size) == INTEGER_CST
762 && compare_tree_int (size, larger_than_size) > 0)
764 int size_as_int = TREE_INT_CST_LOW (size);
766 if (compare_tree_int (size, size_as_int) == 0)
767 warning (OPT_Wlarger_than_, "size of %q+D is %d bytes", decl, size_as_int);
768 else
769 warning (OPT_Wlarger_than_, "size of %q+D is larger than %wd bytes",
770 decl, larger_than_size);
774 /* If the RTL was already set, update its mode and mem attributes. */
775 if (rtl)
777 PUT_MODE (rtl, DECL_MODE (decl));
778 SET_DECL_RTL (decl, 0);
779 if (MEM_P (rtl))
780 set_mem_attributes (rtl, decl, 1);
781 SET_DECL_RTL (decl, rtl);
785 /* Given a VAR_DECL, PARM_DECL or RESULT_DECL, clears the results of
786 a previous call to layout_decl and calls it again. */
788 void
789 relayout_decl (tree decl)
791 DECL_SIZE (decl) = DECL_SIZE_UNIT (decl) = 0;
792 DECL_MODE (decl) = VOIDmode;
793 if (!DECL_USER_ALIGN (decl))
794 DECL_ALIGN (decl) = 0;
795 SET_DECL_RTL (decl, 0);
797 layout_decl (decl, 0);
800 /* Begin laying out type T, which may be a RECORD_TYPE, UNION_TYPE, or
801 QUAL_UNION_TYPE. Return a pointer to a struct record_layout_info which
802 is to be passed to all other layout functions for this record. It is the
803 responsibility of the caller to call `free' for the storage returned.
804 Note that garbage collection is not permitted until we finish laying
805 out the record. */
807 record_layout_info
808 start_record_layout (tree t)
810 record_layout_info rli = XNEW (struct record_layout_info_s);
812 rli->t = t;
814 /* If the type has a minimum specified alignment (via an attribute
815 declaration, for example) use it -- otherwise, start with a
816 one-byte alignment. */
817 rli->record_align = MAX (BITS_PER_UNIT, TYPE_ALIGN (t));
818 rli->unpacked_align = rli->record_align;
819 rli->offset_align = MAX (rli->record_align, BIGGEST_ALIGNMENT);
821 #ifdef STRUCTURE_SIZE_BOUNDARY
822 /* Packed structures don't need to have minimum size. */
823 if (! TYPE_PACKED (t))
825 unsigned tmp;
827 /* #pragma pack overrides STRUCTURE_SIZE_BOUNDARY. */
828 tmp = (unsigned) STRUCTURE_SIZE_BOUNDARY;
829 if (maximum_field_alignment != 0)
830 tmp = MIN (tmp, maximum_field_alignment);
831 rli->record_align = MAX (rli->record_align, tmp);
833 #endif
835 rli->offset = size_zero_node;
836 rli->bitpos = bitsize_zero_node;
837 rli->prev_field = 0;
838 rli->pending_statics = 0;
839 rli->packed_maybe_necessary = 0;
840 rli->remaining_in_alignment = 0;
842 return rli;
845 /* Return the combined bit position for the byte offset OFFSET and the
846 bit position BITPOS.
848 These functions operate on byte and bit positions present in FIELD_DECLs
849 and assume that these expressions result in no (intermediate) overflow.
850 This assumption is necessary to fold the expressions as much as possible,
851 so as to avoid creating artificially variable-sized types in languages
852 supporting variable-sized types like Ada. */
854 tree
855 bit_from_pos (tree offset, tree bitpos)
857 if (TREE_CODE (offset) == PLUS_EXPR)
858 offset = size_binop (PLUS_EXPR,
859 fold_convert (bitsizetype, TREE_OPERAND (offset, 0)),
860 fold_convert (bitsizetype, TREE_OPERAND (offset, 1)));
861 else
862 offset = fold_convert (bitsizetype, offset);
863 return size_binop (PLUS_EXPR, bitpos,
864 size_binop (MULT_EXPR, offset, bitsize_unit_node));
867 /* Return the combined truncated byte position for the byte offset OFFSET and
868 the bit position BITPOS. */
870 tree
871 byte_from_pos (tree offset, tree bitpos)
873 tree bytepos;
874 if (TREE_CODE (bitpos) == MULT_EXPR
875 && tree_int_cst_equal (TREE_OPERAND (bitpos, 1), bitsize_unit_node))
876 bytepos = TREE_OPERAND (bitpos, 0);
877 else
878 bytepos = size_binop (TRUNC_DIV_EXPR, bitpos, bitsize_unit_node);
879 return size_binop (PLUS_EXPR, offset, fold_convert (sizetype, bytepos));
882 /* Split the bit position POS into a byte offset *POFFSET and a bit
883 position *PBITPOS with the byte offset aligned to OFF_ALIGN bits. */
885 void
886 pos_from_bit (tree *poffset, tree *pbitpos, unsigned int off_align,
887 tree pos)
889 tree toff_align = bitsize_int (off_align);
890 if (TREE_CODE (pos) == MULT_EXPR
891 && tree_int_cst_equal (TREE_OPERAND (pos, 1), toff_align))
893 *poffset = size_binop (MULT_EXPR,
894 fold_convert (sizetype, TREE_OPERAND (pos, 0)),
895 size_int (off_align / BITS_PER_UNIT));
896 *pbitpos = bitsize_zero_node;
898 else
900 *poffset = size_binop (MULT_EXPR,
901 fold_convert (sizetype,
902 size_binop (FLOOR_DIV_EXPR, pos,
903 toff_align)),
904 size_int (off_align / BITS_PER_UNIT));
905 *pbitpos = size_binop (FLOOR_MOD_EXPR, pos, toff_align);
909 /* Given a pointer to bit and byte offsets and an offset alignment,
910 normalize the offsets so they are within the alignment. */
912 void
913 normalize_offset (tree *poffset, tree *pbitpos, unsigned int off_align)
915 /* If the bit position is now larger than it should be, adjust it
916 downwards. */
917 if (compare_tree_int (*pbitpos, off_align) >= 0)
919 tree offset, bitpos;
920 pos_from_bit (&offset, &bitpos, off_align, *pbitpos);
921 *poffset = size_binop (PLUS_EXPR, *poffset, offset);
922 *pbitpos = bitpos;
926 /* Print debugging information about the information in RLI. */
928 DEBUG_FUNCTION void
929 debug_rli (record_layout_info rli)
931 print_node_brief (stderr, "type", rli->t, 0);
932 print_node_brief (stderr, "\noffset", rli->offset, 0);
933 print_node_brief (stderr, " bitpos", rli->bitpos, 0);
935 fprintf (stderr, "\naligns: rec = %u, unpack = %u, off = %u\n",
936 rli->record_align, rli->unpacked_align,
937 rli->offset_align);
939 /* The ms_struct code is the only that uses this. */
940 if (targetm.ms_bitfield_layout_p (rli->t))
941 fprintf (stderr, "remaining in alignment = %u\n", rli->remaining_in_alignment);
943 if (rli->packed_maybe_necessary)
944 fprintf (stderr, "packed may be necessary\n");
946 if (!vec_safe_is_empty (rli->pending_statics))
948 fprintf (stderr, "pending statics:\n");
949 debug_vec_tree (rli->pending_statics);
953 /* Given an RLI with a possibly-incremented BITPOS, adjust OFFSET and
954 BITPOS if necessary to keep BITPOS below OFFSET_ALIGN. */
956 void
957 normalize_rli (record_layout_info rli)
959 normalize_offset (&rli->offset, &rli->bitpos, rli->offset_align);
962 /* Returns the size in bytes allocated so far. */
964 tree
965 rli_size_unit_so_far (record_layout_info rli)
967 return byte_from_pos (rli->offset, rli->bitpos);
970 /* Returns the size in bits allocated so far. */
972 tree
973 rli_size_so_far (record_layout_info rli)
975 return bit_from_pos (rli->offset, rli->bitpos);
978 /* FIELD is about to be added to RLI->T. The alignment (in bits) of
979 the next available location within the record is given by KNOWN_ALIGN.
980 Update the variable alignment fields in RLI, and return the alignment
981 to give the FIELD. */
983 unsigned int
984 update_alignment_for_field (record_layout_info rli, tree field,
985 unsigned int known_align)
987 /* The alignment required for FIELD. */
988 unsigned int desired_align;
989 /* The type of this field. */
990 tree type = TREE_TYPE (field);
991 /* True if the field was explicitly aligned by the user. */
992 bool user_align;
993 bool is_bitfield;
995 /* Do not attempt to align an ERROR_MARK node */
996 if (TREE_CODE (type) == ERROR_MARK)
997 return 0;
999 /* Lay out the field so we know what alignment it needs. */
1000 layout_decl (field, known_align);
1001 desired_align = DECL_ALIGN (field);
1002 user_align = DECL_USER_ALIGN (field);
1004 is_bitfield = (type != error_mark_node
1005 && DECL_BIT_FIELD_TYPE (field)
1006 && ! integer_zerop (TYPE_SIZE (type)));
1008 /* Record must have at least as much alignment as any field.
1009 Otherwise, the alignment of the field within the record is
1010 meaningless. */
1011 if (targetm.ms_bitfield_layout_p (rli->t))
1013 /* Here, the alignment of the underlying type of a bitfield can
1014 affect the alignment of a record; even a zero-sized field
1015 can do this. The alignment should be to the alignment of
1016 the type, except that for zero-size bitfields this only
1017 applies if there was an immediately prior, nonzero-size
1018 bitfield. (That's the way it is, experimentally.) */
1019 if ((!is_bitfield && !DECL_PACKED (field))
1020 || ((DECL_SIZE (field) == NULL_TREE
1021 || !integer_zerop (DECL_SIZE (field)))
1022 ? !DECL_PACKED (field)
1023 : (rli->prev_field
1024 && DECL_BIT_FIELD_TYPE (rli->prev_field)
1025 && ! integer_zerop (DECL_SIZE (rli->prev_field)))))
1027 unsigned int type_align = TYPE_ALIGN (type);
1028 type_align = MAX (type_align, desired_align);
1029 if (maximum_field_alignment != 0)
1030 type_align = MIN (type_align, maximum_field_alignment);
1031 rli->record_align = MAX (rli->record_align, type_align);
1032 rli->unpacked_align = MAX (rli->unpacked_align, TYPE_ALIGN (type));
1035 else if (is_bitfield && PCC_BITFIELD_TYPE_MATTERS)
1037 /* Named bit-fields cause the entire structure to have the
1038 alignment implied by their type. Some targets also apply the same
1039 rules to unnamed bitfields. */
1040 if (DECL_NAME (field) != 0
1041 || targetm.align_anon_bitfield ())
1043 unsigned int type_align = TYPE_ALIGN (type);
1045 #ifdef ADJUST_FIELD_ALIGN
1046 if (! TYPE_USER_ALIGN (type))
1047 type_align = ADJUST_FIELD_ALIGN (field, type_align);
1048 #endif
1050 /* Targets might chose to handle unnamed and hence possibly
1051 zero-width bitfield. Those are not influenced by #pragmas
1052 or packed attributes. */
1053 if (integer_zerop (DECL_SIZE (field)))
1055 if (initial_max_fld_align)
1056 type_align = MIN (type_align,
1057 initial_max_fld_align * BITS_PER_UNIT);
1059 else if (maximum_field_alignment != 0)
1060 type_align = MIN (type_align, maximum_field_alignment);
1061 else if (DECL_PACKED (field))
1062 type_align = MIN (type_align, BITS_PER_UNIT);
1064 /* The alignment of the record is increased to the maximum
1065 of the current alignment, the alignment indicated on the
1066 field (i.e., the alignment specified by an __aligned__
1067 attribute), and the alignment indicated by the type of
1068 the field. */
1069 rli->record_align = MAX (rli->record_align, desired_align);
1070 rli->record_align = MAX (rli->record_align, type_align);
1072 if (warn_packed)
1073 rli->unpacked_align = MAX (rli->unpacked_align, TYPE_ALIGN (type));
1074 user_align |= TYPE_USER_ALIGN (type);
1077 else
1079 rli->record_align = MAX (rli->record_align, desired_align);
1080 rli->unpacked_align = MAX (rli->unpacked_align, TYPE_ALIGN (type));
1083 TYPE_USER_ALIGN (rli->t) |= user_align;
1085 return desired_align;
1088 /* Called from place_field to handle unions. */
1090 static void
1091 place_union_field (record_layout_info rli, tree field)
1093 update_alignment_for_field (rli, field, /*known_align=*/0);
1095 DECL_FIELD_OFFSET (field) = size_zero_node;
1096 DECL_FIELD_BIT_OFFSET (field) = bitsize_zero_node;
1097 SET_DECL_OFFSET_ALIGN (field, BIGGEST_ALIGNMENT);
1099 /* If this is an ERROR_MARK return *after* having set the
1100 field at the start of the union. This helps when parsing
1101 invalid fields. */
1102 if (TREE_CODE (TREE_TYPE (field)) == ERROR_MARK)
1103 return;
1105 /* We assume the union's size will be a multiple of a byte so we don't
1106 bother with BITPOS. */
1107 if (TREE_CODE (rli->t) == UNION_TYPE)
1108 rli->offset = size_binop (MAX_EXPR, rli->offset, DECL_SIZE_UNIT (field));
1109 else if (TREE_CODE (rli->t) == QUAL_UNION_TYPE)
1110 rli->offset = fold_build3 (COND_EXPR, sizetype, DECL_QUALIFIER (field),
1111 DECL_SIZE_UNIT (field), rli->offset);
1114 /* A bitfield of SIZE with a required access alignment of ALIGN is allocated
1115 at BYTE_OFFSET / BIT_OFFSET. Return nonzero if the field would span more
1116 units of alignment than the underlying TYPE. */
1117 static int
1118 excess_unit_span (HOST_WIDE_INT byte_offset, HOST_WIDE_INT bit_offset,
1119 HOST_WIDE_INT size, HOST_WIDE_INT align, tree type)
1121 /* Note that the calculation of OFFSET might overflow; we calculate it so
1122 that we still get the right result as long as ALIGN is a power of two. */
1123 unsigned HOST_WIDE_INT offset = byte_offset * BITS_PER_UNIT + bit_offset;
1125 offset = offset % align;
1126 return ((offset + size + align - 1) / align
1127 > tree_to_uhwi (TYPE_SIZE (type)) / align);
1130 /* RLI contains information about the layout of a RECORD_TYPE. FIELD
1131 is a FIELD_DECL to be added after those fields already present in
1132 T. (FIELD is not actually added to the TYPE_FIELDS list here;
1133 callers that desire that behavior must manually perform that step.) */
1135 void
1136 place_field (record_layout_info rli, tree field)
1138 /* The alignment required for FIELD. */
1139 unsigned int desired_align;
1140 /* The alignment FIELD would have if we just dropped it into the
1141 record as it presently stands. */
1142 unsigned int known_align;
1143 unsigned int actual_align;
1144 /* The type of this field. */
1145 tree type = TREE_TYPE (field);
1147 gcc_assert (TREE_CODE (field) != ERROR_MARK);
1149 /* If FIELD is static, then treat it like a separate variable, not
1150 really like a structure field. If it is a FUNCTION_DECL, it's a
1151 method. In both cases, all we do is lay out the decl, and we do
1152 it *after* the record is laid out. */
1153 if (TREE_CODE (field) == VAR_DECL)
1155 vec_safe_push (rli->pending_statics, field);
1156 return;
1159 /* Enumerators and enum types which are local to this class need not
1160 be laid out. Likewise for initialized constant fields. */
1161 else if (TREE_CODE (field) != FIELD_DECL)
1162 return;
1164 /* Unions are laid out very differently than records, so split
1165 that code off to another function. */
1166 else if (TREE_CODE (rli->t) != RECORD_TYPE)
1168 place_union_field (rli, field);
1169 return;
1172 else if (TREE_CODE (type) == ERROR_MARK)
1174 /* Place this field at the current allocation position, so we
1175 maintain monotonicity. */
1176 DECL_FIELD_OFFSET (field) = rli->offset;
1177 DECL_FIELD_BIT_OFFSET (field) = rli->bitpos;
1178 SET_DECL_OFFSET_ALIGN (field, rli->offset_align);
1179 return;
1182 /* Work out the known alignment so far. Note that A & (-A) is the
1183 value of the least-significant bit in A that is one. */
1184 if (! integer_zerop (rli->bitpos))
1185 known_align = (tree_to_uhwi (rli->bitpos)
1186 & - tree_to_uhwi (rli->bitpos));
1187 else if (integer_zerop (rli->offset))
1188 known_align = 0;
1189 else if (tree_fits_uhwi_p (rli->offset))
1190 known_align = (BITS_PER_UNIT
1191 * (tree_to_uhwi (rli->offset)
1192 & - tree_to_uhwi (rli->offset)));
1193 else
1194 known_align = rli->offset_align;
1196 desired_align = update_alignment_for_field (rli, field, known_align);
1197 if (known_align == 0)
1198 known_align = MAX (BIGGEST_ALIGNMENT, rli->record_align);
1200 if (warn_packed && DECL_PACKED (field))
1202 if (known_align >= TYPE_ALIGN (type))
1204 if (TYPE_ALIGN (type) > desired_align)
1206 if (STRICT_ALIGNMENT)
1207 warning (OPT_Wattributes, "packed attribute causes "
1208 "inefficient alignment for %q+D", field);
1209 /* Don't warn if DECL_PACKED was set by the type. */
1210 else if (!TYPE_PACKED (rli->t))
1211 warning (OPT_Wattributes, "packed attribute is "
1212 "unnecessary for %q+D", field);
1215 else
1216 rli->packed_maybe_necessary = 1;
1219 /* Does this field automatically have alignment it needs by virtue
1220 of the fields that precede it and the record's own alignment? */
1221 if (known_align < desired_align)
1223 /* No, we need to skip space before this field.
1224 Bump the cumulative size to multiple of field alignment. */
1226 if (!targetm.ms_bitfield_layout_p (rli->t)
1227 && DECL_SOURCE_LOCATION (field) != BUILTINS_LOCATION)
1228 warning (OPT_Wpadded, "padding struct to align %q+D", field);
1230 /* If the alignment is still within offset_align, just align
1231 the bit position. */
1232 if (desired_align < rli->offset_align)
1233 rli->bitpos = round_up (rli->bitpos, desired_align);
1234 else
1236 /* First adjust OFFSET by the partial bits, then align. */
1237 rli->offset
1238 = size_binop (PLUS_EXPR, rli->offset,
1239 fold_convert (sizetype,
1240 size_binop (CEIL_DIV_EXPR, rli->bitpos,
1241 bitsize_unit_node)));
1242 rli->bitpos = bitsize_zero_node;
1244 rli->offset = round_up (rli->offset, desired_align / BITS_PER_UNIT);
1247 if (! TREE_CONSTANT (rli->offset))
1248 rli->offset_align = desired_align;
1249 if (targetm.ms_bitfield_layout_p (rli->t))
1250 rli->prev_field = NULL;
1253 /* Handle compatibility with PCC. Note that if the record has any
1254 variable-sized fields, we need not worry about compatibility. */
1255 if (PCC_BITFIELD_TYPE_MATTERS
1256 && ! targetm.ms_bitfield_layout_p (rli->t)
1257 && TREE_CODE (field) == FIELD_DECL
1258 && type != error_mark_node
1259 && DECL_BIT_FIELD (field)
1260 && (! DECL_PACKED (field)
1261 /* Enter for these packed fields only to issue a warning. */
1262 || TYPE_ALIGN (type) <= BITS_PER_UNIT)
1263 && maximum_field_alignment == 0
1264 && ! integer_zerop (DECL_SIZE (field))
1265 && tree_fits_uhwi_p (DECL_SIZE (field))
1266 && tree_fits_uhwi_p (rli->offset)
1267 && tree_fits_uhwi_p (TYPE_SIZE (type)))
1269 unsigned int type_align = TYPE_ALIGN (type);
1270 tree dsize = DECL_SIZE (field);
1271 HOST_WIDE_INT field_size = tree_to_uhwi (dsize);
1272 HOST_WIDE_INT offset = tree_to_uhwi (rli->offset);
1273 HOST_WIDE_INT bit_offset = tree_to_shwi (rli->bitpos);
1275 #ifdef ADJUST_FIELD_ALIGN
1276 if (! TYPE_USER_ALIGN (type))
1277 type_align = ADJUST_FIELD_ALIGN (field, type_align);
1278 #endif
1280 /* A bit field may not span more units of alignment of its type
1281 than its type itself. Advance to next boundary if necessary. */
1282 if (excess_unit_span (offset, bit_offset, field_size, type_align, type))
1284 if (DECL_PACKED (field))
1286 if (warn_packed_bitfield_compat == 1)
1287 inform
1288 (input_location,
1289 "offset of packed bit-field %qD has changed in GCC 4.4",
1290 field);
1292 else
1293 rli->bitpos = round_up (rli->bitpos, type_align);
1296 if (! DECL_PACKED (field))
1297 TYPE_USER_ALIGN (rli->t) |= TYPE_USER_ALIGN (type);
1300 #ifdef BITFIELD_NBYTES_LIMITED
1301 if (BITFIELD_NBYTES_LIMITED
1302 && ! targetm.ms_bitfield_layout_p (rli->t)
1303 && TREE_CODE (field) == FIELD_DECL
1304 && type != error_mark_node
1305 && DECL_BIT_FIELD_TYPE (field)
1306 && ! DECL_PACKED (field)
1307 && ! integer_zerop (DECL_SIZE (field))
1308 && tree_fits_uhwi_p (DECL_SIZE (field))
1309 && tree_fits_uhwi_p (rli->offset)
1310 && tree_fits_uhwi_p (TYPE_SIZE (type)))
1312 unsigned int type_align = TYPE_ALIGN (type);
1313 tree dsize = DECL_SIZE (field);
1314 HOST_WIDE_INT field_size = tree_to_uhwi (dsize);
1315 HOST_WIDE_INT offset = tree_to_uhwi (rli->offset);
1316 HOST_WIDE_INT bit_offset = tree_to_shwi (rli->bitpos);
1318 #ifdef ADJUST_FIELD_ALIGN
1319 if (! TYPE_USER_ALIGN (type))
1320 type_align = ADJUST_FIELD_ALIGN (field, type_align);
1321 #endif
1323 if (maximum_field_alignment != 0)
1324 type_align = MIN (type_align, maximum_field_alignment);
1325 /* ??? This test is opposite the test in the containing if
1326 statement, so this code is unreachable currently. */
1327 else if (DECL_PACKED (field))
1328 type_align = MIN (type_align, BITS_PER_UNIT);
1330 /* A bit field may not span the unit of alignment of its type.
1331 Advance to next boundary if necessary. */
1332 if (excess_unit_span (offset, bit_offset, field_size, type_align, type))
1333 rli->bitpos = round_up (rli->bitpos, type_align);
1335 TYPE_USER_ALIGN (rli->t) |= TYPE_USER_ALIGN (type);
1337 #endif
1339 /* See the docs for TARGET_MS_BITFIELD_LAYOUT_P for details.
1340 A subtlety:
1341 When a bit field is inserted into a packed record, the whole
1342 size of the underlying type is used by one or more same-size
1343 adjacent bitfields. (That is, if its long:3, 32 bits is
1344 used in the record, and any additional adjacent long bitfields are
1345 packed into the same chunk of 32 bits. However, if the size
1346 changes, a new field of that size is allocated.) In an unpacked
1347 record, this is the same as using alignment, but not equivalent
1348 when packing.
1350 Note: for compatibility, we use the type size, not the type alignment
1351 to determine alignment, since that matches the documentation */
1353 if (targetm.ms_bitfield_layout_p (rli->t))
1355 tree prev_saved = rli->prev_field;
1356 tree prev_type = prev_saved ? DECL_BIT_FIELD_TYPE (prev_saved) : NULL;
1358 /* This is a bitfield if it exists. */
1359 if (rli->prev_field)
1361 /* If both are bitfields, nonzero, and the same size, this is
1362 the middle of a run. Zero declared size fields are special
1363 and handled as "end of run". (Note: it's nonzero declared
1364 size, but equal type sizes!) (Since we know that both
1365 the current and previous fields are bitfields by the
1366 time we check it, DECL_SIZE must be present for both.) */
1367 if (DECL_BIT_FIELD_TYPE (field)
1368 && !integer_zerop (DECL_SIZE (field))
1369 && !integer_zerop (DECL_SIZE (rli->prev_field))
1370 && tree_fits_shwi_p (DECL_SIZE (rli->prev_field))
1371 && tree_fits_uhwi_p (TYPE_SIZE (type))
1372 && simple_cst_equal (TYPE_SIZE (type), TYPE_SIZE (prev_type)))
1374 /* We're in the middle of a run of equal type size fields; make
1375 sure we realign if we run out of bits. (Not decl size,
1376 type size!) */
1377 HOST_WIDE_INT bitsize = tree_to_uhwi (DECL_SIZE (field));
1379 if (rli->remaining_in_alignment < bitsize)
1381 HOST_WIDE_INT typesize = tree_to_uhwi (TYPE_SIZE (type));
1383 /* out of bits; bump up to next 'word'. */
1384 rli->bitpos
1385 = size_binop (PLUS_EXPR, rli->bitpos,
1386 bitsize_int (rli->remaining_in_alignment));
1387 rli->prev_field = field;
1388 if (typesize < bitsize)
1389 rli->remaining_in_alignment = 0;
1390 else
1391 rli->remaining_in_alignment = typesize - bitsize;
1393 else
1394 rli->remaining_in_alignment -= bitsize;
1396 else
1398 /* End of a run: if leaving a run of bitfields of the same type
1399 size, we have to "use up" the rest of the bits of the type
1400 size.
1402 Compute the new position as the sum of the size for the prior
1403 type and where we first started working on that type.
1404 Note: since the beginning of the field was aligned then
1405 of course the end will be too. No round needed. */
1407 if (!integer_zerop (DECL_SIZE (rli->prev_field)))
1409 rli->bitpos
1410 = size_binop (PLUS_EXPR, rli->bitpos,
1411 bitsize_int (rli->remaining_in_alignment));
1413 else
1414 /* We "use up" size zero fields; the code below should behave
1415 as if the prior field was not a bitfield. */
1416 prev_saved = NULL;
1418 /* Cause a new bitfield to be captured, either this time (if
1419 currently a bitfield) or next time we see one. */
1420 if (!DECL_BIT_FIELD_TYPE (field)
1421 || integer_zerop (DECL_SIZE (field)))
1422 rli->prev_field = NULL;
1425 normalize_rli (rli);
1428 /* If we're starting a new run of same type size bitfields
1429 (or a run of non-bitfields), set up the "first of the run"
1430 fields.
1432 That is, if the current field is not a bitfield, or if there
1433 was a prior bitfield the type sizes differ, or if there wasn't
1434 a prior bitfield the size of the current field is nonzero.
1436 Note: we must be sure to test ONLY the type size if there was
1437 a prior bitfield and ONLY for the current field being zero if
1438 there wasn't. */
1440 if (!DECL_BIT_FIELD_TYPE (field)
1441 || (prev_saved != NULL
1442 ? !simple_cst_equal (TYPE_SIZE (type), TYPE_SIZE (prev_type))
1443 : !integer_zerop (DECL_SIZE (field)) ))
1445 /* Never smaller than a byte for compatibility. */
1446 unsigned int type_align = BITS_PER_UNIT;
1448 /* (When not a bitfield), we could be seeing a flex array (with
1449 no DECL_SIZE). Since we won't be using remaining_in_alignment
1450 until we see a bitfield (and come by here again) we just skip
1451 calculating it. */
1452 if (DECL_SIZE (field) != NULL
1453 && tree_fits_uhwi_p (TYPE_SIZE (TREE_TYPE (field)))
1454 && tree_fits_uhwi_p (DECL_SIZE (field)))
1456 unsigned HOST_WIDE_INT bitsize
1457 = tree_to_uhwi (DECL_SIZE (field));
1458 unsigned HOST_WIDE_INT typesize
1459 = tree_to_uhwi (TYPE_SIZE (TREE_TYPE (field)));
1461 if (typesize < bitsize)
1462 rli->remaining_in_alignment = 0;
1463 else
1464 rli->remaining_in_alignment = typesize - bitsize;
1467 /* Now align (conventionally) for the new type. */
1468 type_align = TYPE_ALIGN (TREE_TYPE (field));
1470 if (maximum_field_alignment != 0)
1471 type_align = MIN (type_align, maximum_field_alignment);
1473 rli->bitpos = round_up (rli->bitpos, type_align);
1475 /* If we really aligned, don't allow subsequent bitfields
1476 to undo that. */
1477 rli->prev_field = NULL;
1481 /* Offset so far becomes the position of this field after normalizing. */
1482 normalize_rli (rli);
1483 DECL_FIELD_OFFSET (field) = rli->offset;
1484 DECL_FIELD_BIT_OFFSET (field) = rli->bitpos;
1485 SET_DECL_OFFSET_ALIGN (field, rli->offset_align);
1487 /* Evaluate nonconstant offsets only once, either now or as soon as safe. */
1488 if (TREE_CODE (DECL_FIELD_OFFSET (field)) != INTEGER_CST)
1489 DECL_FIELD_OFFSET (field) = variable_size (DECL_FIELD_OFFSET (field));
1491 /* If this field ended up more aligned than we thought it would be (we
1492 approximate this by seeing if its position changed), lay out the field
1493 again; perhaps we can use an integral mode for it now. */
1494 if (! integer_zerop (DECL_FIELD_BIT_OFFSET (field)))
1495 actual_align = (tree_to_uhwi (DECL_FIELD_BIT_OFFSET (field))
1496 & - tree_to_uhwi (DECL_FIELD_BIT_OFFSET (field)));
1497 else if (integer_zerop (DECL_FIELD_OFFSET (field)))
1498 actual_align = MAX (BIGGEST_ALIGNMENT, rli->record_align);
1499 else if (tree_fits_uhwi_p (DECL_FIELD_OFFSET (field)))
1500 actual_align = (BITS_PER_UNIT
1501 * (tree_to_uhwi (DECL_FIELD_OFFSET (field))
1502 & - tree_to_uhwi (DECL_FIELD_OFFSET (field))));
1503 else
1504 actual_align = DECL_OFFSET_ALIGN (field);
1505 /* ACTUAL_ALIGN is still the actual alignment *within the record* .
1506 store / extract bit field operations will check the alignment of the
1507 record against the mode of bit fields. */
1509 if (known_align != actual_align)
1510 layout_decl (field, actual_align);
1512 if (rli->prev_field == NULL && DECL_BIT_FIELD_TYPE (field))
1513 rli->prev_field = field;
1515 /* Now add size of this field to the size of the record. If the size is
1516 not constant, treat the field as being a multiple of bytes and just
1517 adjust the offset, resetting the bit position. Otherwise, apportion the
1518 size amongst the bit position and offset. First handle the case of an
1519 unspecified size, which can happen when we have an invalid nested struct
1520 definition, such as struct j { struct j { int i; } }. The error message
1521 is printed in finish_struct. */
1522 if (DECL_SIZE (field) == 0)
1523 /* Do nothing. */;
1524 else if (TREE_CODE (DECL_SIZE (field)) != INTEGER_CST
1525 || TREE_OVERFLOW (DECL_SIZE (field)))
1527 rli->offset
1528 = size_binop (PLUS_EXPR, rli->offset,
1529 fold_convert (sizetype,
1530 size_binop (CEIL_DIV_EXPR, rli->bitpos,
1531 bitsize_unit_node)));
1532 rli->offset
1533 = size_binop (PLUS_EXPR, rli->offset, DECL_SIZE_UNIT (field));
1534 rli->bitpos = bitsize_zero_node;
1535 rli->offset_align = MIN (rli->offset_align, desired_align);
1537 else if (targetm.ms_bitfield_layout_p (rli->t))
1539 rli->bitpos = size_binop (PLUS_EXPR, rli->bitpos, DECL_SIZE (field));
1541 /* If we ended a bitfield before the full length of the type then
1542 pad the struct out to the full length of the last type. */
1543 if ((DECL_CHAIN (field) == NULL
1544 || TREE_CODE (DECL_CHAIN (field)) != FIELD_DECL)
1545 && DECL_BIT_FIELD_TYPE (field)
1546 && !integer_zerop (DECL_SIZE (field)))
1547 rli->bitpos = size_binop (PLUS_EXPR, rli->bitpos,
1548 bitsize_int (rli->remaining_in_alignment));
1550 normalize_rli (rli);
1552 else
1554 rli->bitpos = size_binop (PLUS_EXPR, rli->bitpos, DECL_SIZE (field));
1555 normalize_rli (rli);
1559 /* Assuming that all the fields have been laid out, this function uses
1560 RLI to compute the final TYPE_SIZE, TYPE_ALIGN, etc. for the type
1561 indicated by RLI. */
1563 static void
1564 finalize_record_size (record_layout_info rli)
1566 tree unpadded_size, unpadded_size_unit;
1568 /* Now we want just byte and bit offsets, so set the offset alignment
1569 to be a byte and then normalize. */
1570 rli->offset_align = BITS_PER_UNIT;
1571 normalize_rli (rli);
1573 /* Determine the desired alignment. */
1574 #ifdef ROUND_TYPE_ALIGN
1575 TYPE_ALIGN (rli->t) = ROUND_TYPE_ALIGN (rli->t, TYPE_ALIGN (rli->t),
1576 rli->record_align);
1577 #else
1578 TYPE_ALIGN (rli->t) = MAX (TYPE_ALIGN (rli->t), rli->record_align);
1579 #endif
1581 /* Compute the size so far. Be sure to allow for extra bits in the
1582 size in bytes. We have guaranteed above that it will be no more
1583 than a single byte. */
1584 unpadded_size = rli_size_so_far (rli);
1585 unpadded_size_unit = rli_size_unit_so_far (rli);
1586 if (! integer_zerop (rli->bitpos))
1587 unpadded_size_unit
1588 = size_binop (PLUS_EXPR, unpadded_size_unit, size_one_node);
1590 /* Round the size up to be a multiple of the required alignment. */
1591 TYPE_SIZE (rli->t) = round_up (unpadded_size, TYPE_ALIGN (rli->t));
1592 TYPE_SIZE_UNIT (rli->t)
1593 = round_up (unpadded_size_unit, TYPE_ALIGN_UNIT (rli->t));
1595 if (TREE_CONSTANT (unpadded_size)
1596 && simple_cst_equal (unpadded_size, TYPE_SIZE (rli->t)) == 0
1597 && input_location != BUILTINS_LOCATION)
1598 warning (OPT_Wpadded, "padding struct size to alignment boundary");
1600 if (warn_packed && TREE_CODE (rli->t) == RECORD_TYPE
1601 && TYPE_PACKED (rli->t) && ! rli->packed_maybe_necessary
1602 && TREE_CONSTANT (unpadded_size))
1604 tree unpacked_size;
1606 #ifdef ROUND_TYPE_ALIGN
1607 rli->unpacked_align
1608 = ROUND_TYPE_ALIGN (rli->t, TYPE_ALIGN (rli->t), rli->unpacked_align);
1609 #else
1610 rli->unpacked_align = MAX (TYPE_ALIGN (rli->t), rli->unpacked_align);
1611 #endif
1613 unpacked_size = round_up (TYPE_SIZE (rli->t), rli->unpacked_align);
1614 if (simple_cst_equal (unpacked_size, TYPE_SIZE (rli->t)))
1616 if (TYPE_NAME (rli->t))
1618 tree name;
1620 if (TREE_CODE (TYPE_NAME (rli->t)) == IDENTIFIER_NODE)
1621 name = TYPE_NAME (rli->t);
1622 else
1623 name = DECL_NAME (TYPE_NAME (rli->t));
1625 if (STRICT_ALIGNMENT)
1626 warning (OPT_Wpacked, "packed attribute causes inefficient "
1627 "alignment for %qE", name);
1628 else
1629 warning (OPT_Wpacked,
1630 "packed attribute is unnecessary for %qE", name);
1632 else
1634 if (STRICT_ALIGNMENT)
1635 warning (OPT_Wpacked,
1636 "packed attribute causes inefficient alignment");
1637 else
1638 warning (OPT_Wpacked, "packed attribute is unnecessary");
1644 /* Compute the TYPE_MODE for the TYPE (which is a RECORD_TYPE). */
1646 void
1647 compute_record_mode (tree type)
1649 tree field;
1650 machine_mode mode = VOIDmode;
1652 /* Most RECORD_TYPEs have BLKmode, so we start off assuming that.
1653 However, if possible, we use a mode that fits in a register
1654 instead, in order to allow for better optimization down the
1655 line. */
1656 SET_TYPE_MODE (type, BLKmode);
1658 if (! tree_fits_uhwi_p (TYPE_SIZE (type)))
1659 return;
1661 /* A record which has any BLKmode members must itself be
1662 BLKmode; it can't go in a register. Unless the member is
1663 BLKmode only because it isn't aligned. */
1664 for (field = TYPE_FIELDS (type); field; field = DECL_CHAIN (field))
1666 if (TREE_CODE (field) != FIELD_DECL)
1667 continue;
1669 if (TREE_CODE (TREE_TYPE (field)) == ERROR_MARK
1670 || (TYPE_MODE (TREE_TYPE (field)) == BLKmode
1671 && ! TYPE_NO_FORCE_BLK (TREE_TYPE (field))
1672 && !(TYPE_SIZE (TREE_TYPE (field)) != 0
1673 && integer_zerop (TYPE_SIZE (TREE_TYPE (field)))))
1674 || ! tree_fits_uhwi_p (bit_position (field))
1675 || DECL_SIZE (field) == 0
1676 || ! tree_fits_uhwi_p (DECL_SIZE (field)))
1677 return;
1679 /* If this field is the whole struct, remember its mode so
1680 that, say, we can put a double in a class into a DF
1681 register instead of forcing it to live in the stack. */
1682 if (simple_cst_equal (TYPE_SIZE (type), DECL_SIZE (field)))
1683 mode = DECL_MODE (field);
1685 /* With some targets, it is sub-optimal to access an aligned
1686 BLKmode structure as a scalar. */
1687 if (targetm.member_type_forces_blk (field, mode))
1688 return;
1691 /* If we only have one real field; use its mode if that mode's size
1692 matches the type's size. This only applies to RECORD_TYPE. This
1693 does not apply to unions. */
1694 if (TREE_CODE (type) == RECORD_TYPE && mode != VOIDmode
1695 && tree_fits_uhwi_p (TYPE_SIZE (type))
1696 && GET_MODE_BITSIZE (mode) == tree_to_uhwi (TYPE_SIZE (type)))
1697 SET_TYPE_MODE (type, mode);
1698 else
1699 SET_TYPE_MODE (type, mode_for_size_tree (TYPE_SIZE (type), MODE_INT, 1));
1701 /* If structure's known alignment is less than what the scalar
1702 mode would need, and it matters, then stick with BLKmode. */
1703 if (TYPE_MODE (type) != BLKmode
1704 && STRICT_ALIGNMENT
1705 && ! (TYPE_ALIGN (type) >= BIGGEST_ALIGNMENT
1706 || TYPE_ALIGN (type) >= GET_MODE_ALIGNMENT (TYPE_MODE (type))))
1708 /* If this is the only reason this type is BLKmode, then
1709 don't force containing types to be BLKmode. */
1710 TYPE_NO_FORCE_BLK (type) = 1;
1711 SET_TYPE_MODE (type, BLKmode);
1715 /* Compute TYPE_SIZE and TYPE_ALIGN for TYPE, once it has been laid
1716 out. */
1718 static void
1719 finalize_type_size (tree type)
1721 /* Normally, use the alignment corresponding to the mode chosen.
1722 However, where strict alignment is not required, avoid
1723 over-aligning structures, since most compilers do not do this
1724 alignment. */
1725 if (TYPE_MODE (type) != BLKmode
1726 && TYPE_MODE (type) != VOIDmode
1727 && (STRICT_ALIGNMENT || !AGGREGATE_TYPE_P (type)))
1729 unsigned mode_align = GET_MODE_ALIGNMENT (TYPE_MODE (type));
1731 /* Don't override a larger alignment requirement coming from a user
1732 alignment of one of the fields. */
1733 if (mode_align >= TYPE_ALIGN (type))
1735 TYPE_ALIGN (type) = mode_align;
1736 TYPE_USER_ALIGN (type) = 0;
1740 /* Do machine-dependent extra alignment. */
1741 #ifdef ROUND_TYPE_ALIGN
1742 TYPE_ALIGN (type)
1743 = ROUND_TYPE_ALIGN (type, TYPE_ALIGN (type), BITS_PER_UNIT);
1744 #endif
1746 /* If we failed to find a simple way to calculate the unit size
1747 of the type, find it by division. */
1748 if (TYPE_SIZE_UNIT (type) == 0 && TYPE_SIZE (type) != 0)
1749 /* TYPE_SIZE (type) is computed in bitsizetype. After the division, the
1750 result will fit in sizetype. We will get more efficient code using
1751 sizetype, so we force a conversion. */
1752 TYPE_SIZE_UNIT (type)
1753 = fold_convert (sizetype,
1754 size_binop (FLOOR_DIV_EXPR, TYPE_SIZE (type),
1755 bitsize_unit_node));
1757 if (TYPE_SIZE (type) != 0)
1759 TYPE_SIZE (type) = round_up (TYPE_SIZE (type), TYPE_ALIGN (type));
1760 TYPE_SIZE_UNIT (type)
1761 = round_up (TYPE_SIZE_UNIT (type), TYPE_ALIGN_UNIT (type));
1764 /* Evaluate nonconstant sizes only once, either now or as soon as safe. */
1765 if (TYPE_SIZE (type) != 0 && TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST)
1766 TYPE_SIZE (type) = variable_size (TYPE_SIZE (type));
1767 if (TYPE_SIZE_UNIT (type) != 0
1768 && TREE_CODE (TYPE_SIZE_UNIT (type)) != INTEGER_CST)
1769 TYPE_SIZE_UNIT (type) = variable_size (TYPE_SIZE_UNIT (type));
1771 /* Also layout any other variants of the type. */
1772 if (TYPE_NEXT_VARIANT (type)
1773 || type != TYPE_MAIN_VARIANT (type))
1775 tree variant;
1776 /* Record layout info of this variant. */
1777 tree size = TYPE_SIZE (type);
1778 tree size_unit = TYPE_SIZE_UNIT (type);
1779 unsigned int align = TYPE_ALIGN (type);
1780 unsigned int precision = TYPE_PRECISION (type);
1781 unsigned int user_align = TYPE_USER_ALIGN (type);
1782 machine_mode mode = TYPE_MODE (type);
1784 /* Copy it into all variants. */
1785 for (variant = TYPE_MAIN_VARIANT (type);
1786 variant != 0;
1787 variant = TYPE_NEXT_VARIANT (variant))
1789 TYPE_SIZE (variant) = size;
1790 TYPE_SIZE_UNIT (variant) = size_unit;
1791 unsigned valign = align;
1792 if (TYPE_USER_ALIGN (variant))
1793 valign = MAX (valign, TYPE_ALIGN (variant));
1794 else
1795 TYPE_USER_ALIGN (variant) = user_align;
1796 TYPE_ALIGN (variant) = valign;
1797 TYPE_PRECISION (variant) = precision;
1798 SET_TYPE_MODE (variant, mode);
1803 /* Return a new underlying object for a bitfield started with FIELD. */
1805 static tree
1806 start_bitfield_representative (tree field)
1808 tree repr = make_node (FIELD_DECL);
1809 DECL_FIELD_OFFSET (repr) = DECL_FIELD_OFFSET (field);
1810 /* Force the representative to begin at a BITS_PER_UNIT aligned
1811 boundary - C++ may use tail-padding of a base object to
1812 continue packing bits so the bitfield region does not start
1813 at bit zero (see g++.dg/abi/bitfield5.C for example).
1814 Unallocated bits may happen for other reasons as well,
1815 for example Ada which allows explicit bit-granular structure layout. */
1816 DECL_FIELD_BIT_OFFSET (repr)
1817 = size_binop (BIT_AND_EXPR,
1818 DECL_FIELD_BIT_OFFSET (field),
1819 bitsize_int (~(BITS_PER_UNIT - 1)));
1820 SET_DECL_OFFSET_ALIGN (repr, DECL_OFFSET_ALIGN (field));
1821 DECL_SIZE (repr) = DECL_SIZE (field);
1822 DECL_SIZE_UNIT (repr) = DECL_SIZE_UNIT (field);
1823 DECL_PACKED (repr) = DECL_PACKED (field);
1824 DECL_CONTEXT (repr) = DECL_CONTEXT (field);
1825 return repr;
1828 /* Finish up a bitfield group that was started by creating the underlying
1829 object REPR with the last field in the bitfield group FIELD. */
1831 static void
1832 finish_bitfield_representative (tree repr, tree field)
1834 unsigned HOST_WIDE_INT bitsize, maxbitsize;
1835 machine_mode mode;
1836 tree nextf, size;
1838 size = size_diffop (DECL_FIELD_OFFSET (field),
1839 DECL_FIELD_OFFSET (repr));
1840 while (TREE_CODE (size) == COMPOUND_EXPR)
1841 size = TREE_OPERAND (size, 1);
1842 gcc_assert (tree_fits_uhwi_p (size));
1843 bitsize = (tree_to_uhwi (size) * BITS_PER_UNIT
1844 + tree_to_uhwi (DECL_FIELD_BIT_OFFSET (field))
1845 - tree_to_uhwi (DECL_FIELD_BIT_OFFSET (repr))
1846 + tree_to_uhwi (DECL_SIZE (field)));
1848 /* Round up bitsize to multiples of BITS_PER_UNIT. */
1849 bitsize = (bitsize + BITS_PER_UNIT - 1) & ~(BITS_PER_UNIT - 1);
1851 /* Now nothing tells us how to pad out bitsize ... */
1852 nextf = DECL_CHAIN (field);
1853 while (nextf && TREE_CODE (nextf) != FIELD_DECL)
1854 nextf = DECL_CHAIN (nextf);
1855 if (nextf)
1857 tree maxsize;
1858 /* If there was an error, the field may be not laid out
1859 correctly. Don't bother to do anything. */
1860 if (TREE_TYPE (nextf) == error_mark_node)
1861 return;
1862 maxsize = size_diffop (DECL_FIELD_OFFSET (nextf),
1863 DECL_FIELD_OFFSET (repr));
1864 if (tree_fits_uhwi_p (maxsize))
1866 maxbitsize = (tree_to_uhwi (maxsize) * BITS_PER_UNIT
1867 + tree_to_uhwi (DECL_FIELD_BIT_OFFSET (nextf))
1868 - tree_to_uhwi (DECL_FIELD_BIT_OFFSET (repr)));
1869 /* If the group ends within a bitfield nextf does not need to be
1870 aligned to BITS_PER_UNIT. Thus round up. */
1871 maxbitsize = (maxbitsize + BITS_PER_UNIT - 1) & ~(BITS_PER_UNIT - 1);
1873 else
1874 maxbitsize = bitsize;
1876 else
1878 /* ??? If you consider that tail-padding of this struct might be
1879 re-used when deriving from it we cannot really do the following
1880 and thus need to set maxsize to bitsize? Also we cannot
1881 generally rely on maxsize to fold to an integer constant, so
1882 use bitsize as fallback for this case. */
1883 tree maxsize = size_diffop (TYPE_SIZE_UNIT (DECL_CONTEXT (field)),
1884 DECL_FIELD_OFFSET (repr));
1885 if (tree_fits_uhwi_p (maxsize))
1886 maxbitsize = (tree_to_uhwi (maxsize) * BITS_PER_UNIT
1887 - tree_to_uhwi (DECL_FIELD_BIT_OFFSET (repr)));
1888 else
1889 maxbitsize = bitsize;
1892 /* Only if we don't artificially break up the representative in
1893 the middle of a large bitfield with different possibly
1894 overlapping representatives. And all representatives start
1895 at byte offset. */
1896 gcc_assert (maxbitsize % BITS_PER_UNIT == 0);
1898 /* Find the smallest nice mode to use. */
1899 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); mode != VOIDmode;
1900 mode = GET_MODE_WIDER_MODE (mode))
1901 if (GET_MODE_BITSIZE (mode) >= bitsize)
1902 break;
1903 if (mode != VOIDmode
1904 && (GET_MODE_BITSIZE (mode) > maxbitsize
1905 || GET_MODE_BITSIZE (mode) > MAX_FIXED_MODE_SIZE))
1906 mode = VOIDmode;
1908 if (mode == VOIDmode)
1910 /* We really want a BLKmode representative only as a last resort,
1911 considering the member b in
1912 struct { int a : 7; int b : 17; int c; } __attribute__((packed));
1913 Otherwise we simply want to split the representative up
1914 allowing for overlaps within the bitfield region as required for
1915 struct { int a : 7; int b : 7;
1916 int c : 10; int d; } __attribute__((packed));
1917 [0, 15] HImode for a and b, [8, 23] HImode for c. */
1918 DECL_SIZE (repr) = bitsize_int (bitsize);
1919 DECL_SIZE_UNIT (repr) = size_int (bitsize / BITS_PER_UNIT);
1920 DECL_MODE (repr) = BLKmode;
1921 TREE_TYPE (repr) = build_array_type_nelts (unsigned_char_type_node,
1922 bitsize / BITS_PER_UNIT);
1924 else
1926 unsigned HOST_WIDE_INT modesize = GET_MODE_BITSIZE (mode);
1927 DECL_SIZE (repr) = bitsize_int (modesize);
1928 DECL_SIZE_UNIT (repr) = size_int (modesize / BITS_PER_UNIT);
1929 DECL_MODE (repr) = mode;
1930 TREE_TYPE (repr) = lang_hooks.types.type_for_mode (mode, 1);
1933 /* Remember whether the bitfield group is at the end of the
1934 structure or not. */
1935 DECL_CHAIN (repr) = nextf;
1938 /* Compute and set FIELD_DECLs for the underlying objects we should
1939 use for bitfield access for the structure T. */
1941 void
1942 finish_bitfield_layout (tree t)
1944 tree field, prev;
1945 tree repr = NULL_TREE;
1947 /* Unions would be special, for the ease of type-punning optimizations
1948 we could use the underlying type as hint for the representative
1949 if the bitfield would fit and the representative would not exceed
1950 the union in size. */
1951 if (TREE_CODE (t) != RECORD_TYPE)
1952 return;
1954 for (prev = NULL_TREE, field = TYPE_FIELDS (t);
1955 field; field = DECL_CHAIN (field))
1957 if (TREE_CODE (field) != FIELD_DECL)
1958 continue;
1960 /* In the C++ memory model, consecutive bit fields in a structure are
1961 considered one memory location and updating a memory location
1962 may not store into adjacent memory locations. */
1963 if (!repr
1964 && DECL_BIT_FIELD_TYPE (field))
1966 /* Start new representative. */
1967 repr = start_bitfield_representative (field);
1969 else if (repr
1970 && ! DECL_BIT_FIELD_TYPE (field))
1972 /* Finish off new representative. */
1973 finish_bitfield_representative (repr, prev);
1974 repr = NULL_TREE;
1976 else if (DECL_BIT_FIELD_TYPE (field))
1978 gcc_assert (repr != NULL_TREE);
1980 /* Zero-size bitfields finish off a representative and
1981 do not have a representative themselves. This is
1982 required by the C++ memory model. */
1983 if (integer_zerop (DECL_SIZE (field)))
1985 finish_bitfield_representative (repr, prev);
1986 repr = NULL_TREE;
1989 /* We assume that either DECL_FIELD_OFFSET of the representative
1990 and each bitfield member is a constant or they are equal.
1991 This is because we need to be able to compute the bit-offset
1992 of each field relative to the representative in get_bit_range
1993 during RTL expansion.
1994 If these constraints are not met, simply force a new
1995 representative to be generated. That will at most
1996 generate worse code but still maintain correctness with
1997 respect to the C++ memory model. */
1998 else if (!((tree_fits_uhwi_p (DECL_FIELD_OFFSET (repr))
1999 && tree_fits_uhwi_p (DECL_FIELD_OFFSET (field)))
2000 || operand_equal_p (DECL_FIELD_OFFSET (repr),
2001 DECL_FIELD_OFFSET (field), 0)))
2003 finish_bitfield_representative (repr, prev);
2004 repr = start_bitfield_representative (field);
2007 else
2008 continue;
2010 if (repr)
2011 DECL_BIT_FIELD_REPRESENTATIVE (field) = repr;
2013 prev = field;
2016 if (repr)
2017 finish_bitfield_representative (repr, prev);
2020 /* Do all of the work required to layout the type indicated by RLI,
2021 once the fields have been laid out. This function will call `free'
2022 for RLI, unless FREE_P is false. Passing a value other than false
2023 for FREE_P is bad practice; this option only exists to support the
2024 G++ 3.2 ABI. */
2026 void
2027 finish_record_layout (record_layout_info rli, int free_p)
2029 tree variant;
2031 /* Compute the final size. */
2032 finalize_record_size (rli);
2034 /* Compute the TYPE_MODE for the record. */
2035 compute_record_mode (rli->t);
2037 /* Perform any last tweaks to the TYPE_SIZE, etc. */
2038 finalize_type_size (rli->t);
2040 /* Compute bitfield representatives. */
2041 finish_bitfield_layout (rli->t);
2043 /* Propagate TYPE_PACKED and TYPE_REVERSE_STORAGE_ORDER to variants.
2044 With C++ templates, it is too early to do this when the attribute
2045 is being parsed. */
2046 for (variant = TYPE_NEXT_VARIANT (rli->t); variant;
2047 variant = TYPE_NEXT_VARIANT (variant))
2049 TYPE_PACKED (variant) = TYPE_PACKED (rli->t);
2050 TYPE_REVERSE_STORAGE_ORDER (variant)
2051 = TYPE_REVERSE_STORAGE_ORDER (rli->t);
2054 /* Lay out any static members. This is done now because their type
2055 may use the record's type. */
2056 while (!vec_safe_is_empty (rli->pending_statics))
2057 layout_decl (rli->pending_statics->pop (), 0);
2059 /* Clean up. */
2060 if (free_p)
2062 vec_free (rli->pending_statics);
2063 free (rli);
2068 /* Finish processing a builtin RECORD_TYPE type TYPE. It's name is
2069 NAME, its fields are chained in reverse on FIELDS.
2071 If ALIGN_TYPE is non-null, it is given the same alignment as
2072 ALIGN_TYPE. */
2074 void
2075 finish_builtin_struct (tree type, const char *name, tree fields,
2076 tree align_type)
2078 tree tail, next;
2080 for (tail = NULL_TREE; fields; tail = fields, fields = next)
2082 DECL_FIELD_CONTEXT (fields) = type;
2083 next = DECL_CHAIN (fields);
2084 DECL_CHAIN (fields) = tail;
2086 TYPE_FIELDS (type) = tail;
2088 if (align_type)
2090 TYPE_ALIGN (type) = TYPE_ALIGN (align_type);
2091 TYPE_USER_ALIGN (type) = TYPE_USER_ALIGN (align_type);
2094 layout_type (type);
2095 #if 0 /* not yet, should get fixed properly later */
2096 TYPE_NAME (type) = make_type_decl (get_identifier (name), type);
2097 #else
2098 TYPE_NAME (type) = build_decl (BUILTINS_LOCATION,
2099 TYPE_DECL, get_identifier (name), type);
2100 #endif
2101 TYPE_STUB_DECL (type) = TYPE_NAME (type);
2102 layout_decl (TYPE_NAME (type), 0);
2105 /* Calculate the mode, size, and alignment for TYPE.
2106 For an array type, calculate the element separation as well.
2107 Record TYPE on the chain of permanent or temporary types
2108 so that dbxout will find out about it.
2110 TYPE_SIZE of a type is nonzero if the type has been laid out already.
2111 layout_type does nothing on such a type.
2113 If the type is incomplete, its TYPE_SIZE remains zero. */
2115 void
2116 layout_type (tree type)
2118 gcc_assert (type);
2120 if (type == error_mark_node)
2121 return;
2123 /* We don't want finalize_type_size to copy an alignment attribute to
2124 variants that don't have it. */
2125 type = TYPE_MAIN_VARIANT (type);
2127 /* Do nothing if type has been laid out before. */
2128 if (TYPE_SIZE (type))
2129 return;
2131 switch (TREE_CODE (type))
2133 case LANG_TYPE:
2134 /* This kind of type is the responsibility
2135 of the language-specific code. */
2136 gcc_unreachable ();
2138 case BOOLEAN_TYPE:
2139 case INTEGER_TYPE:
2140 case ENUMERAL_TYPE:
2141 SET_TYPE_MODE (type,
2142 smallest_mode_for_size (TYPE_PRECISION (type), MODE_INT));
2143 TYPE_SIZE (type) = bitsize_int (GET_MODE_BITSIZE (TYPE_MODE (type)));
2144 /* Don't set TYPE_PRECISION here, as it may be set by a bitfield. */
2145 TYPE_SIZE_UNIT (type) = size_int (GET_MODE_SIZE (TYPE_MODE (type)));
2146 break;
2148 case REAL_TYPE:
2149 SET_TYPE_MODE (type,
2150 mode_for_size (TYPE_PRECISION (type), MODE_FLOAT, 0));
2151 TYPE_SIZE (type) = bitsize_int (GET_MODE_BITSIZE (TYPE_MODE (type)));
2152 TYPE_SIZE_UNIT (type) = size_int (GET_MODE_SIZE (TYPE_MODE (type)));
2153 break;
2155 case FIXED_POINT_TYPE:
2156 /* TYPE_MODE (type) has been set already. */
2157 TYPE_SIZE (type) = bitsize_int (GET_MODE_BITSIZE (TYPE_MODE (type)));
2158 TYPE_SIZE_UNIT (type) = size_int (GET_MODE_SIZE (TYPE_MODE (type)));
2159 break;
2161 case COMPLEX_TYPE:
2162 TYPE_UNSIGNED (type) = TYPE_UNSIGNED (TREE_TYPE (type));
2163 SET_TYPE_MODE (type,
2164 mode_for_size (2 * TYPE_PRECISION (TREE_TYPE (type)),
2165 (TREE_CODE (TREE_TYPE (type)) == REAL_TYPE
2166 ? MODE_COMPLEX_FLOAT : MODE_COMPLEX_INT),
2167 0));
2168 TYPE_SIZE (type) = bitsize_int (GET_MODE_BITSIZE (TYPE_MODE (type)));
2169 TYPE_SIZE_UNIT (type) = size_int (GET_MODE_SIZE (TYPE_MODE (type)));
2170 break;
2172 case VECTOR_TYPE:
2174 int nunits = TYPE_VECTOR_SUBPARTS (type);
2175 tree innertype = TREE_TYPE (type);
2177 gcc_assert (!(nunits & (nunits - 1)));
2179 /* Find an appropriate mode for the vector type. */
2180 if (TYPE_MODE (type) == VOIDmode)
2181 SET_TYPE_MODE (type,
2182 mode_for_vector (TYPE_MODE (innertype), nunits));
2184 TYPE_SATURATING (type) = TYPE_SATURATING (TREE_TYPE (type));
2185 TYPE_UNSIGNED (type) = TYPE_UNSIGNED (TREE_TYPE (type));
2186 /* Several boolean vector elements may fit in a single unit. */
2187 if (VECTOR_BOOLEAN_TYPE_P (type)
2188 && type->type_common.mode != BLKmode)
2189 TYPE_SIZE_UNIT (type)
2190 = size_int (GET_MODE_SIZE (type->type_common.mode));
2191 else
2192 TYPE_SIZE_UNIT (type) = int_const_binop (MULT_EXPR,
2193 TYPE_SIZE_UNIT (innertype),
2194 size_int (nunits));
2195 TYPE_SIZE (type) = int_const_binop (MULT_EXPR,
2196 TYPE_SIZE (innertype),
2197 bitsize_int (nunits));
2199 /* For vector types, we do not default to the mode's alignment.
2200 Instead, query a target hook, defaulting to natural alignment.
2201 This prevents ABI changes depending on whether or not native
2202 vector modes are supported. */
2203 TYPE_ALIGN (type) = targetm.vector_alignment (type);
2205 /* However, if the underlying mode requires a bigger alignment than
2206 what the target hook provides, we cannot use the mode. For now,
2207 simply reject that case. */
2208 gcc_assert (TYPE_ALIGN (type)
2209 >= GET_MODE_ALIGNMENT (TYPE_MODE (type)));
2210 break;
2213 case VOID_TYPE:
2214 /* This is an incomplete type and so doesn't have a size. */
2215 TYPE_ALIGN (type) = 1;
2216 TYPE_USER_ALIGN (type) = 0;
2217 SET_TYPE_MODE (type, VOIDmode);
2218 break;
2220 case POINTER_BOUNDS_TYPE:
2221 TYPE_SIZE (type) = bitsize_int (GET_MODE_BITSIZE (TYPE_MODE (type)));
2222 TYPE_SIZE_UNIT (type) = size_int (GET_MODE_SIZE (TYPE_MODE (type)));
2223 break;
2225 case OFFSET_TYPE:
2226 TYPE_SIZE (type) = bitsize_int (POINTER_SIZE);
2227 TYPE_SIZE_UNIT (type) = size_int (POINTER_SIZE_UNITS);
2228 /* A pointer might be MODE_PARTIAL_INT, but ptrdiff_t must be
2229 integral, which may be an __intN. */
2230 SET_TYPE_MODE (type, mode_for_size (POINTER_SIZE, MODE_INT, 0));
2231 TYPE_PRECISION (type) = POINTER_SIZE;
2232 break;
2234 case FUNCTION_TYPE:
2235 case METHOD_TYPE:
2236 /* It's hard to see what the mode and size of a function ought to
2237 be, but we do know the alignment is FUNCTION_BOUNDARY, so
2238 make it consistent with that. */
2239 SET_TYPE_MODE (type, mode_for_size (FUNCTION_BOUNDARY, MODE_INT, 0));
2240 TYPE_SIZE (type) = bitsize_int (FUNCTION_BOUNDARY);
2241 TYPE_SIZE_UNIT (type) = size_int (FUNCTION_BOUNDARY / BITS_PER_UNIT);
2242 break;
2244 case POINTER_TYPE:
2245 case REFERENCE_TYPE:
2247 machine_mode mode = TYPE_MODE (type);
2248 if (TREE_CODE (type) == REFERENCE_TYPE && reference_types_internal)
2250 addr_space_t as = TYPE_ADDR_SPACE (TREE_TYPE (type));
2251 mode = targetm.addr_space.address_mode (as);
2254 TYPE_SIZE (type) = bitsize_int (GET_MODE_BITSIZE (mode));
2255 TYPE_SIZE_UNIT (type) = size_int (GET_MODE_SIZE (mode));
2256 TYPE_UNSIGNED (type) = 1;
2257 TYPE_PRECISION (type) = GET_MODE_PRECISION (mode);
2259 break;
2261 case ARRAY_TYPE:
2263 tree index = TYPE_DOMAIN (type);
2264 tree element = TREE_TYPE (type);
2266 build_pointer_type (element);
2268 /* We need to know both bounds in order to compute the size. */
2269 if (index && TYPE_MAX_VALUE (index) && TYPE_MIN_VALUE (index)
2270 && TYPE_SIZE (element))
2272 tree ub = TYPE_MAX_VALUE (index);
2273 tree lb = TYPE_MIN_VALUE (index);
2274 tree element_size = TYPE_SIZE (element);
2275 tree length;
2277 /* Make sure that an array of zero-sized element is zero-sized
2278 regardless of its extent. */
2279 if (integer_zerop (element_size))
2280 length = size_zero_node;
2282 /* The computation should happen in the original signedness so
2283 that (possible) negative values are handled appropriately
2284 when determining overflow. */
2285 else
2287 /* ??? When it is obvious that the range is signed
2288 represent it using ssizetype. */
2289 if (TREE_CODE (lb) == INTEGER_CST
2290 && TREE_CODE (ub) == INTEGER_CST
2291 && TYPE_UNSIGNED (TREE_TYPE (lb))
2292 && tree_int_cst_lt (ub, lb))
2294 lb = wide_int_to_tree (ssizetype,
2295 offset_int::from (lb, SIGNED));
2296 ub = wide_int_to_tree (ssizetype,
2297 offset_int::from (ub, SIGNED));
2299 length
2300 = fold_convert (sizetype,
2301 size_binop (PLUS_EXPR,
2302 build_int_cst (TREE_TYPE (lb), 1),
2303 size_binop (MINUS_EXPR, ub, lb)));
2306 /* ??? We have no way to distinguish a null-sized array from an
2307 array spanning the whole sizetype range, so we arbitrarily
2308 decide that [0, -1] is the only valid representation. */
2309 if (integer_zerop (length)
2310 && TREE_OVERFLOW (length)
2311 && integer_zerop (lb))
2312 length = size_zero_node;
2314 TYPE_SIZE (type) = size_binop (MULT_EXPR, element_size,
2315 fold_convert (bitsizetype,
2316 length));
2318 /* If we know the size of the element, calculate the total size
2319 directly, rather than do some division thing below. This
2320 optimization helps Fortran assumed-size arrays (where the
2321 size of the array is determined at runtime) substantially. */
2322 if (TYPE_SIZE_UNIT (element))
2323 TYPE_SIZE_UNIT (type)
2324 = size_binop (MULT_EXPR, TYPE_SIZE_UNIT (element), length);
2327 /* Now round the alignment and size,
2328 using machine-dependent criteria if any. */
2330 unsigned align = TYPE_ALIGN (element);
2331 if (TYPE_USER_ALIGN (type))
2332 align = MAX (align, TYPE_ALIGN (type));
2333 else
2334 TYPE_USER_ALIGN (type) = TYPE_USER_ALIGN (element);
2335 #ifdef ROUND_TYPE_ALIGN
2336 align = ROUND_TYPE_ALIGN (type, align, BITS_PER_UNIT);
2337 #else
2338 align = MAX (align, BITS_PER_UNIT);
2339 #endif
2340 TYPE_ALIGN (type) = align;
2341 SET_TYPE_MODE (type, BLKmode);
2342 if (TYPE_SIZE (type) != 0
2343 && ! targetm.member_type_forces_blk (type, VOIDmode)
2344 /* BLKmode elements force BLKmode aggregate;
2345 else extract/store fields may lose. */
2346 && (TYPE_MODE (TREE_TYPE (type)) != BLKmode
2347 || TYPE_NO_FORCE_BLK (TREE_TYPE (type))))
2349 SET_TYPE_MODE (type, mode_for_array (TREE_TYPE (type),
2350 TYPE_SIZE (type)));
2351 if (TYPE_MODE (type) != BLKmode
2352 && STRICT_ALIGNMENT && TYPE_ALIGN (type) < BIGGEST_ALIGNMENT
2353 && TYPE_ALIGN (type) < GET_MODE_ALIGNMENT (TYPE_MODE (type)))
2355 TYPE_NO_FORCE_BLK (type) = 1;
2356 SET_TYPE_MODE (type, BLKmode);
2359 /* When the element size is constant, check that it is at least as
2360 large as the element alignment. */
2361 if (TYPE_SIZE_UNIT (element)
2362 && TREE_CODE (TYPE_SIZE_UNIT (element)) == INTEGER_CST
2363 /* If TYPE_SIZE_UNIT overflowed, then it is certainly larger than
2364 TYPE_ALIGN_UNIT. */
2365 && !TREE_OVERFLOW (TYPE_SIZE_UNIT (element))
2366 && !integer_zerop (TYPE_SIZE_UNIT (element))
2367 && compare_tree_int (TYPE_SIZE_UNIT (element),
2368 TYPE_ALIGN_UNIT (element)) < 0)
2369 error ("alignment of array elements is greater than element size");
2370 break;
2373 case RECORD_TYPE:
2374 case UNION_TYPE:
2375 case QUAL_UNION_TYPE:
2377 tree field;
2378 record_layout_info rli;
2380 /* Initialize the layout information. */
2381 rli = start_record_layout (type);
2383 /* If this is a QUAL_UNION_TYPE, we want to process the fields
2384 in the reverse order in building the COND_EXPR that denotes
2385 its size. We reverse them again later. */
2386 if (TREE_CODE (type) == QUAL_UNION_TYPE)
2387 TYPE_FIELDS (type) = nreverse (TYPE_FIELDS (type));
2389 /* Place all the fields. */
2390 for (field = TYPE_FIELDS (type); field; field = DECL_CHAIN (field))
2391 place_field (rli, field);
2393 if (TREE_CODE (type) == QUAL_UNION_TYPE)
2394 TYPE_FIELDS (type) = nreverse (TYPE_FIELDS (type));
2396 /* Finish laying out the record. */
2397 finish_record_layout (rli, /*free_p=*/true);
2399 break;
2401 default:
2402 gcc_unreachable ();
2405 /* Compute the final TYPE_SIZE, TYPE_ALIGN, etc. for TYPE. For
2406 records and unions, finish_record_layout already called this
2407 function. */
2408 if (!RECORD_OR_UNION_TYPE_P (type))
2409 finalize_type_size (type);
2411 /* We should never see alias sets on incomplete aggregates. And we
2412 should not call layout_type on not incomplete aggregates. */
2413 if (AGGREGATE_TYPE_P (type))
2414 gcc_assert (!TYPE_ALIAS_SET_KNOWN_P (type));
2417 /* Return the least alignment required for type TYPE. */
2419 unsigned int
2420 min_align_of_type (tree type)
2422 unsigned int align = TYPE_ALIGN (type);
2423 if (!TYPE_USER_ALIGN (type))
2425 align = MIN (align, BIGGEST_ALIGNMENT);
2426 #ifdef BIGGEST_FIELD_ALIGNMENT
2427 align = MIN (align, BIGGEST_FIELD_ALIGNMENT);
2428 #endif
2429 unsigned int field_align = align;
2430 #ifdef ADJUST_FIELD_ALIGN
2431 tree field = build_decl (UNKNOWN_LOCATION, FIELD_DECL, NULL_TREE, type);
2432 field_align = ADJUST_FIELD_ALIGN (field, field_align);
2433 ggc_free (field);
2434 #endif
2435 align = MIN (align, field_align);
2437 return align / BITS_PER_UNIT;
2440 /* Vector types need to re-check the target flags each time we report
2441 the machine mode. We need to do this because attribute target can
2442 change the result of vector_mode_supported_p and have_regs_of_mode
2443 on a per-function basis. Thus the TYPE_MODE of a VECTOR_TYPE can
2444 change on a per-function basis. */
2445 /* ??? Possibly a better solution is to run through all the types
2446 referenced by a function and re-compute the TYPE_MODE once, rather
2447 than make the TYPE_MODE macro call a function. */
2449 machine_mode
2450 vector_type_mode (const_tree t)
2452 machine_mode mode;
2454 gcc_assert (TREE_CODE (t) == VECTOR_TYPE);
2456 mode = t->type_common.mode;
2457 if (VECTOR_MODE_P (mode)
2458 && (!targetm.vector_mode_supported_p (mode)
2459 || !have_regs_of_mode[mode]))
2461 machine_mode innermode = TREE_TYPE (t)->type_common.mode;
2463 /* For integers, try mapping it to a same-sized scalar mode. */
2464 if (GET_MODE_CLASS (innermode) == MODE_INT)
2466 mode = mode_for_size (TYPE_VECTOR_SUBPARTS (t)
2467 * GET_MODE_BITSIZE (innermode), MODE_INT, 0);
2469 if (mode != VOIDmode && have_regs_of_mode[mode])
2470 return mode;
2473 return BLKmode;
2476 return mode;
2479 /* Create and return a type for signed integers of PRECISION bits. */
2481 tree
2482 make_signed_type (int precision)
2484 tree type = make_node (INTEGER_TYPE);
2486 TYPE_PRECISION (type) = precision;
2488 fixup_signed_type (type);
2489 return type;
2492 /* Create and return a type for unsigned integers of PRECISION bits. */
2494 tree
2495 make_unsigned_type (int precision)
2497 tree type = make_node (INTEGER_TYPE);
2499 TYPE_PRECISION (type) = precision;
2501 fixup_unsigned_type (type);
2502 return type;
2505 /* Create and return a type for fract of PRECISION bits, UNSIGNEDP,
2506 and SATP. */
2508 tree
2509 make_fract_type (int precision, int unsignedp, int satp)
2511 tree type = make_node (FIXED_POINT_TYPE);
2513 TYPE_PRECISION (type) = precision;
2515 if (satp)
2516 TYPE_SATURATING (type) = 1;
2518 /* Lay out the type: set its alignment, size, etc. */
2519 if (unsignedp)
2521 TYPE_UNSIGNED (type) = 1;
2522 SET_TYPE_MODE (type, mode_for_size (precision, MODE_UFRACT, 0));
2524 else
2525 SET_TYPE_MODE (type, mode_for_size (precision, MODE_FRACT, 0));
2526 layout_type (type);
2528 return type;
2531 /* Create and return a type for accum of PRECISION bits, UNSIGNEDP,
2532 and SATP. */
2534 tree
2535 make_accum_type (int precision, int unsignedp, int satp)
2537 tree type = make_node (FIXED_POINT_TYPE);
2539 TYPE_PRECISION (type) = precision;
2541 if (satp)
2542 TYPE_SATURATING (type) = 1;
2544 /* Lay out the type: set its alignment, size, etc. */
2545 if (unsignedp)
2547 TYPE_UNSIGNED (type) = 1;
2548 SET_TYPE_MODE (type, mode_for_size (precision, MODE_UACCUM, 0));
2550 else
2551 SET_TYPE_MODE (type, mode_for_size (precision, MODE_ACCUM, 0));
2552 layout_type (type);
2554 return type;
2557 /* Initialize sizetypes so layout_type can use them. */
2559 void
2560 initialize_sizetypes (void)
2562 int precision, bprecision;
2564 /* Get sizetypes precision from the SIZE_TYPE target macro. */
2565 if (strcmp (SIZETYPE, "unsigned int") == 0)
2566 precision = INT_TYPE_SIZE;
2567 else if (strcmp (SIZETYPE, "long unsigned int") == 0)
2568 precision = LONG_TYPE_SIZE;
2569 else if (strcmp (SIZETYPE, "long long unsigned int") == 0)
2570 precision = LONG_LONG_TYPE_SIZE;
2571 else if (strcmp (SIZETYPE, "short unsigned int") == 0)
2572 precision = SHORT_TYPE_SIZE;
2573 else
2575 int i;
2577 precision = -1;
2578 for (i = 0; i < NUM_INT_N_ENTS; i++)
2579 if (int_n_enabled_p[i])
2581 char name[50];
2582 sprintf (name, "__int%d unsigned", int_n_data[i].bitsize);
2584 if (strcmp (name, SIZETYPE) == 0)
2586 precision = int_n_data[i].bitsize;
2589 if (precision == -1)
2590 gcc_unreachable ();
2593 bprecision
2594 = MIN (precision + BITS_PER_UNIT_LOG + 1, MAX_FIXED_MODE_SIZE);
2595 bprecision
2596 = GET_MODE_PRECISION (smallest_mode_for_size (bprecision, MODE_INT));
2597 if (bprecision > HOST_BITS_PER_DOUBLE_INT)
2598 bprecision = HOST_BITS_PER_DOUBLE_INT;
2600 /* Create stubs for sizetype and bitsizetype so we can create constants. */
2601 sizetype = make_node (INTEGER_TYPE);
2602 TYPE_NAME (sizetype) = get_identifier ("sizetype");
2603 TYPE_PRECISION (sizetype) = precision;
2604 TYPE_UNSIGNED (sizetype) = 1;
2605 bitsizetype = make_node (INTEGER_TYPE);
2606 TYPE_NAME (bitsizetype) = get_identifier ("bitsizetype");
2607 TYPE_PRECISION (bitsizetype) = bprecision;
2608 TYPE_UNSIGNED (bitsizetype) = 1;
2610 /* Now layout both types manually. */
2611 SET_TYPE_MODE (sizetype, smallest_mode_for_size (precision, MODE_INT));
2612 TYPE_ALIGN (sizetype) = GET_MODE_ALIGNMENT (TYPE_MODE (sizetype));
2613 TYPE_SIZE (sizetype) = bitsize_int (precision);
2614 TYPE_SIZE_UNIT (sizetype) = size_int (GET_MODE_SIZE (TYPE_MODE (sizetype)));
2615 set_min_and_max_values_for_integral_type (sizetype, precision, UNSIGNED);
2617 SET_TYPE_MODE (bitsizetype, smallest_mode_for_size (bprecision, MODE_INT));
2618 TYPE_ALIGN (bitsizetype) = GET_MODE_ALIGNMENT (TYPE_MODE (bitsizetype));
2619 TYPE_SIZE (bitsizetype) = bitsize_int (bprecision);
2620 TYPE_SIZE_UNIT (bitsizetype)
2621 = size_int (GET_MODE_SIZE (TYPE_MODE (bitsizetype)));
2622 set_min_and_max_values_for_integral_type (bitsizetype, bprecision, UNSIGNED);
2624 /* Create the signed variants of *sizetype. */
2625 ssizetype = make_signed_type (TYPE_PRECISION (sizetype));
2626 TYPE_NAME (ssizetype) = get_identifier ("ssizetype");
2627 sbitsizetype = make_signed_type (TYPE_PRECISION (bitsizetype));
2628 TYPE_NAME (sbitsizetype) = get_identifier ("sbitsizetype");
2631 /* TYPE is an integral type, i.e., an INTEGRAL_TYPE, ENUMERAL_TYPE
2632 or BOOLEAN_TYPE. Set TYPE_MIN_VALUE and TYPE_MAX_VALUE
2633 for TYPE, based on the PRECISION and whether or not the TYPE
2634 IS_UNSIGNED. PRECISION need not correspond to a width supported
2635 natively by the hardware; for example, on a machine with 8-bit,
2636 16-bit, and 32-bit register modes, PRECISION might be 7, 23, or
2637 61. */
2639 void
2640 set_min_and_max_values_for_integral_type (tree type,
2641 int precision,
2642 signop sgn)
2644 /* For bitfields with zero width we end up creating integer types
2645 with zero precision. Don't assign any minimum/maximum values
2646 to those types, they don't have any valid value. */
2647 if (precision < 1)
2648 return;
2650 TYPE_MIN_VALUE (type)
2651 = wide_int_to_tree (type, wi::min_value (precision, sgn));
2652 TYPE_MAX_VALUE (type)
2653 = wide_int_to_tree (type, wi::max_value (precision, sgn));
2656 /* Set the extreme values of TYPE based on its precision in bits,
2657 then lay it out. Used when make_signed_type won't do
2658 because the tree code is not INTEGER_TYPE.
2659 E.g. for Pascal, when the -fsigned-char option is given. */
2661 void
2662 fixup_signed_type (tree type)
2664 int precision = TYPE_PRECISION (type);
2666 set_min_and_max_values_for_integral_type (type, precision, SIGNED);
2668 /* Lay out the type: set its alignment, size, etc. */
2669 layout_type (type);
2672 /* Set the extreme values of TYPE based on its precision in bits,
2673 then lay it out. This is used both in `make_unsigned_type'
2674 and for enumeral types. */
2676 void
2677 fixup_unsigned_type (tree type)
2679 int precision = TYPE_PRECISION (type);
2681 TYPE_UNSIGNED (type) = 1;
2683 set_min_and_max_values_for_integral_type (type, precision, UNSIGNED);
2685 /* Lay out the type: set its alignment, size, etc. */
2686 layout_type (type);
2689 /* Construct an iterator for a bitfield that spans BITSIZE bits,
2690 starting at BITPOS.
2692 BITREGION_START is the bit position of the first bit in this
2693 sequence of bit fields. BITREGION_END is the last bit in this
2694 sequence. If these two fields are non-zero, we should restrict the
2695 memory access to that range. Otherwise, we are allowed to touch
2696 any adjacent non bit-fields.
2698 ALIGN is the alignment of the underlying object in bits.
2699 VOLATILEP says whether the bitfield is volatile. */
2701 bit_field_mode_iterator
2702 ::bit_field_mode_iterator (HOST_WIDE_INT bitsize, HOST_WIDE_INT bitpos,
2703 HOST_WIDE_INT bitregion_start,
2704 HOST_WIDE_INT bitregion_end,
2705 unsigned int align, bool volatilep)
2706 : m_mode (GET_CLASS_NARROWEST_MODE (MODE_INT)), m_bitsize (bitsize),
2707 m_bitpos (bitpos), m_bitregion_start (bitregion_start),
2708 m_bitregion_end (bitregion_end), m_align (align),
2709 m_volatilep (volatilep), m_count (0)
2711 if (!m_bitregion_end)
2713 /* We can assume that any aligned chunk of ALIGN bits that overlaps
2714 the bitfield is mapped and won't trap, provided that ALIGN isn't
2715 too large. The cap is the biggest required alignment for data,
2716 or at least the word size. And force one such chunk at least. */
2717 unsigned HOST_WIDE_INT units
2718 = MIN (align, MAX (BIGGEST_ALIGNMENT, BITS_PER_WORD));
2719 if (bitsize <= 0)
2720 bitsize = 1;
2721 m_bitregion_end = bitpos + bitsize + units - 1;
2722 m_bitregion_end -= m_bitregion_end % units + 1;
2726 /* Calls to this function return successively larger modes that can be used
2727 to represent the bitfield. Return true if another bitfield mode is
2728 available, storing it in *OUT_MODE if so. */
2730 bool
2731 bit_field_mode_iterator::next_mode (machine_mode *out_mode)
2733 for (; m_mode != VOIDmode; m_mode = GET_MODE_WIDER_MODE (m_mode))
2735 unsigned int unit = GET_MODE_BITSIZE (m_mode);
2737 /* Skip modes that don't have full precision. */
2738 if (unit != GET_MODE_PRECISION (m_mode))
2739 continue;
2741 /* Stop if the mode is too wide to handle efficiently. */
2742 if (unit > MAX_FIXED_MODE_SIZE)
2743 break;
2745 /* Don't deliver more than one multiword mode; the smallest one
2746 should be used. */
2747 if (m_count > 0 && unit > BITS_PER_WORD)
2748 break;
2750 /* Skip modes that are too small. */
2751 unsigned HOST_WIDE_INT substart = (unsigned HOST_WIDE_INT) m_bitpos % unit;
2752 unsigned HOST_WIDE_INT subend = substart + m_bitsize;
2753 if (subend > unit)
2754 continue;
2756 /* Stop if the mode goes outside the bitregion. */
2757 HOST_WIDE_INT start = m_bitpos - substart;
2758 if (m_bitregion_start && start < m_bitregion_start)
2759 break;
2760 HOST_WIDE_INT end = start + unit;
2761 if (end > m_bitregion_end + 1)
2762 break;
2764 /* Stop if the mode requires too much alignment. */
2765 if (GET_MODE_ALIGNMENT (m_mode) > m_align
2766 && SLOW_UNALIGNED_ACCESS (m_mode, m_align))
2767 break;
2769 *out_mode = m_mode;
2770 m_mode = GET_MODE_WIDER_MODE (m_mode);
2771 m_count++;
2772 return true;
2774 return false;
2777 /* Return true if smaller modes are generally preferred for this kind
2778 of bitfield. */
2780 bool
2781 bit_field_mode_iterator::prefer_smaller_modes ()
2783 return (m_volatilep
2784 ? targetm.narrow_volatile_bitfield ()
2785 : !SLOW_BYTE_ACCESS);
2788 /* Find the best machine mode to use when referencing a bit field of length
2789 BITSIZE bits starting at BITPOS.
2791 BITREGION_START is the bit position of the first bit in this
2792 sequence of bit fields. BITREGION_END is the last bit in this
2793 sequence. If these two fields are non-zero, we should restrict the
2794 memory access to that range. Otherwise, we are allowed to touch
2795 any adjacent non bit-fields.
2797 The underlying object is known to be aligned to a boundary of ALIGN bits.
2798 If LARGEST_MODE is not VOIDmode, it means that we should not use a mode
2799 larger than LARGEST_MODE (usually SImode).
2801 If no mode meets all these conditions, we return VOIDmode.
2803 If VOLATILEP is false and SLOW_BYTE_ACCESS is false, we return the
2804 smallest mode meeting these conditions.
2806 If VOLATILEP is false and SLOW_BYTE_ACCESS is true, we return the
2807 largest mode (but a mode no wider than UNITS_PER_WORD) that meets
2808 all the conditions.
2810 If VOLATILEP is true the narrow_volatile_bitfields target hook is used to
2811 decide which of the above modes should be used. */
2813 machine_mode
2814 get_best_mode (int bitsize, int bitpos,
2815 unsigned HOST_WIDE_INT bitregion_start,
2816 unsigned HOST_WIDE_INT bitregion_end,
2817 unsigned int align,
2818 machine_mode largest_mode, bool volatilep)
2820 bit_field_mode_iterator iter (bitsize, bitpos, bitregion_start,
2821 bitregion_end, align, volatilep);
2822 machine_mode widest_mode = VOIDmode;
2823 machine_mode mode;
2824 while (iter.next_mode (&mode)
2825 /* ??? For historical reasons, reject modes that would normally
2826 receive greater alignment, even if unaligned accesses are
2827 acceptable. This has both advantages and disadvantages.
2828 Removing this check means that something like:
2830 struct s { unsigned int x; unsigned int y; };
2831 int f (struct s *s) { return s->x == 0 && s->y == 0; }
2833 can be implemented using a single load and compare on
2834 64-bit machines that have no alignment restrictions.
2835 For example, on powerpc64-linux-gnu, we would generate:
2837 ld 3,0(3)
2838 cntlzd 3,3
2839 srdi 3,3,6
2842 rather than:
2844 lwz 9,0(3)
2845 cmpwi 7,9,0
2846 bne 7,.L3
2847 lwz 3,4(3)
2848 cntlzw 3,3
2849 srwi 3,3,5
2850 extsw 3,3
2852 .p2align 4,,15
2853 .L3:
2854 li 3,0
2857 However, accessing more than one field can make life harder
2858 for the gimple optimizers. For example, gcc.dg/vect/bb-slp-5.c
2859 has a series of unsigned short copies followed by a series of
2860 unsigned short comparisons. With this check, both the copies
2861 and comparisons remain 16-bit accesses and FRE is able
2862 to eliminate the latter. Without the check, the comparisons
2863 can be done using 2 64-bit operations, which FRE isn't able
2864 to handle in the same way.
2866 Either way, it would probably be worth disabling this check
2867 during expand. One particular example where removing the
2868 check would help is the get_best_mode call in store_bit_field.
2869 If we are given a memory bitregion of 128 bits that is aligned
2870 to a 64-bit boundary, and the bitfield we want to modify is
2871 in the second half of the bitregion, this check causes
2872 store_bitfield to turn the memory into a 64-bit reference
2873 to the _first_ half of the region. We later use
2874 adjust_bitfield_address to get a reference to the correct half,
2875 but doing so looks to adjust_bitfield_address as though we are
2876 moving past the end of the original object, so it drops the
2877 associated MEM_EXPR and MEM_OFFSET. Removing the check
2878 causes store_bit_field to keep a 128-bit memory reference,
2879 so that the final bitfield reference still has a MEM_EXPR
2880 and MEM_OFFSET. */
2881 && GET_MODE_ALIGNMENT (mode) <= align
2882 && (largest_mode == VOIDmode
2883 || GET_MODE_SIZE (mode) <= GET_MODE_SIZE (largest_mode)))
2885 widest_mode = mode;
2886 if (iter.prefer_smaller_modes ())
2887 break;
2889 return widest_mode;
2892 /* Gets minimal and maximal values for MODE (signed or unsigned depending on
2893 SIGN). The returned constants are made to be usable in TARGET_MODE. */
2895 void
2896 get_mode_bounds (machine_mode mode, int sign,
2897 machine_mode target_mode,
2898 rtx *mmin, rtx *mmax)
2900 unsigned size = GET_MODE_PRECISION (mode);
2901 unsigned HOST_WIDE_INT min_val, max_val;
2903 gcc_assert (size <= HOST_BITS_PER_WIDE_INT);
2905 /* Special case BImode, which has values 0 and STORE_FLAG_VALUE. */
2906 if (mode == BImode)
2908 if (STORE_FLAG_VALUE < 0)
2910 min_val = STORE_FLAG_VALUE;
2911 max_val = 0;
2913 else
2915 min_val = 0;
2916 max_val = STORE_FLAG_VALUE;
2919 else if (sign)
2921 min_val = -((unsigned HOST_WIDE_INT) 1 << (size - 1));
2922 max_val = ((unsigned HOST_WIDE_INT) 1 << (size - 1)) - 1;
2924 else
2926 min_val = 0;
2927 max_val = ((unsigned HOST_WIDE_INT) 1 << (size - 1) << 1) - 1;
2930 *mmin = gen_int_mode (min_val, target_mode);
2931 *mmax = gen_int_mode (max_val, target_mode);
2934 #include "gt-stor-layout.h"