1 /* RTL simplification functions for GNU compiler.
2 Copyright (C) 1987-2016 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
23 #include "coretypes.h"
32 #include "diagnostic-core.h"
36 /* Simplification and canonicalization of RTL. */
38 /* Much code operates on (low, high) pairs; the low value is an
39 unsigned wide int, the high value a signed wide int. We
40 occasionally need to sign extend from low to high as if low were a
42 #define HWI_SIGN_EXTEND(low) \
43 ((((HOST_WIDE_INT) low) < 0) ? ((HOST_WIDE_INT) -1) : ((HOST_WIDE_INT) 0))
45 static rtx
neg_const_int (machine_mode
, const_rtx
);
46 static bool plus_minus_operand_p (const_rtx
);
47 static rtx
simplify_plus_minus (enum rtx_code
, machine_mode
, rtx
, rtx
);
48 static rtx
simplify_immed_subreg (machine_mode
, rtx
, machine_mode
,
50 static rtx
simplify_associative_operation (enum rtx_code
, machine_mode
,
52 static rtx
simplify_relational_operation_1 (enum rtx_code
, machine_mode
,
53 machine_mode
, rtx
, rtx
);
54 static rtx
simplify_unary_operation_1 (enum rtx_code
, machine_mode
, rtx
);
55 static rtx
simplify_binary_operation_1 (enum rtx_code
, machine_mode
,
58 /* Negate a CONST_INT rtx, truncating (because a conversion from a
59 maximally negative number can overflow). */
61 neg_const_int (machine_mode mode
, const_rtx i
)
63 return gen_int_mode (-(unsigned HOST_WIDE_INT
) INTVAL (i
), mode
);
66 /* Test whether expression, X, is an immediate constant that represents
67 the most significant bit of machine mode MODE. */
70 mode_signbit_p (machine_mode mode
, const_rtx x
)
72 unsigned HOST_WIDE_INT val
;
75 if (GET_MODE_CLASS (mode
) != MODE_INT
)
78 width
= GET_MODE_PRECISION (mode
);
82 if (width
<= HOST_BITS_PER_WIDE_INT
85 #if TARGET_SUPPORTS_WIDE_INT
86 else if (CONST_WIDE_INT_P (x
))
89 unsigned int elts
= CONST_WIDE_INT_NUNITS (x
);
90 if (elts
!= (width
+ HOST_BITS_PER_WIDE_INT
- 1) / HOST_BITS_PER_WIDE_INT
)
92 for (i
= 0; i
< elts
- 1; i
++)
93 if (CONST_WIDE_INT_ELT (x
, i
) != 0)
95 val
= CONST_WIDE_INT_ELT (x
, elts
- 1);
96 width
%= HOST_BITS_PER_WIDE_INT
;
98 width
= HOST_BITS_PER_WIDE_INT
;
101 else if (width
<= HOST_BITS_PER_DOUBLE_INT
102 && CONST_DOUBLE_AS_INT_P (x
)
103 && CONST_DOUBLE_LOW (x
) == 0)
105 val
= CONST_DOUBLE_HIGH (x
);
106 width
-= HOST_BITS_PER_WIDE_INT
;
110 /* X is not an integer constant. */
113 if (width
< HOST_BITS_PER_WIDE_INT
)
114 val
&= ((unsigned HOST_WIDE_INT
) 1 << width
) - 1;
115 return val
== ((unsigned HOST_WIDE_INT
) 1 << (width
- 1));
118 /* Test whether VAL is equal to the most significant bit of mode MODE
119 (after masking with the mode mask of MODE). Returns false if the
120 precision of MODE is too large to handle. */
123 val_signbit_p (machine_mode mode
, unsigned HOST_WIDE_INT val
)
127 if (GET_MODE_CLASS (mode
) != MODE_INT
)
130 width
= GET_MODE_PRECISION (mode
);
131 if (width
== 0 || width
> HOST_BITS_PER_WIDE_INT
)
134 val
&= GET_MODE_MASK (mode
);
135 return val
== ((unsigned HOST_WIDE_INT
) 1 << (width
- 1));
138 /* Test whether the most significant bit of mode MODE is set in VAL.
139 Returns false if the precision of MODE is too large to handle. */
141 val_signbit_known_set_p (machine_mode mode
, unsigned HOST_WIDE_INT val
)
145 if (GET_MODE_CLASS (mode
) != MODE_INT
)
148 width
= GET_MODE_PRECISION (mode
);
149 if (width
== 0 || width
> HOST_BITS_PER_WIDE_INT
)
152 val
&= (unsigned HOST_WIDE_INT
) 1 << (width
- 1);
156 /* Test whether the most significant bit of mode MODE is clear in VAL.
157 Returns false if the precision of MODE is too large to handle. */
159 val_signbit_known_clear_p (machine_mode mode
, unsigned HOST_WIDE_INT val
)
163 if (GET_MODE_CLASS (mode
) != MODE_INT
)
166 width
= GET_MODE_PRECISION (mode
);
167 if (width
== 0 || width
> HOST_BITS_PER_WIDE_INT
)
170 val
&= (unsigned HOST_WIDE_INT
) 1 << (width
- 1);
174 /* Make a binary operation by properly ordering the operands and
175 seeing if the expression folds. */
178 simplify_gen_binary (enum rtx_code code
, machine_mode mode
, rtx op0
,
183 /* If this simplifies, do it. */
184 tem
= simplify_binary_operation (code
, mode
, op0
, op1
);
188 /* Put complex operands first and constants second if commutative. */
189 if (GET_RTX_CLASS (code
) == RTX_COMM_ARITH
190 && swap_commutative_operands_p (op0
, op1
))
191 std::swap (op0
, op1
);
193 return gen_rtx_fmt_ee (code
, mode
, op0
, op1
);
196 /* If X is a MEM referencing the constant pool, return the real value.
197 Otherwise return X. */
199 avoid_constant_pool_reference (rtx x
)
203 HOST_WIDE_INT offset
= 0;
205 switch (GET_CODE (x
))
211 /* Handle float extensions of constant pool references. */
213 c
= avoid_constant_pool_reference (tmp
);
214 if (c
!= tmp
&& CONST_DOUBLE_AS_FLOAT_P (c
))
215 return const_double_from_real_value (*CONST_DOUBLE_REAL_VALUE (c
),
223 if (GET_MODE (x
) == BLKmode
)
228 /* Call target hook to avoid the effects of -fpic etc.... */
229 addr
= targetm
.delegitimize_address (addr
);
231 /* Split the address into a base and integer offset. */
232 if (GET_CODE (addr
) == CONST
233 && GET_CODE (XEXP (addr
, 0)) == PLUS
234 && CONST_INT_P (XEXP (XEXP (addr
, 0), 1)))
236 offset
= INTVAL (XEXP (XEXP (addr
, 0), 1));
237 addr
= XEXP (XEXP (addr
, 0), 0);
240 if (GET_CODE (addr
) == LO_SUM
)
241 addr
= XEXP (addr
, 1);
243 /* If this is a constant pool reference, we can turn it into its
244 constant and hope that simplifications happen. */
245 if (GET_CODE (addr
) == SYMBOL_REF
246 && CONSTANT_POOL_ADDRESS_P (addr
))
248 c
= get_pool_constant (addr
);
249 cmode
= get_pool_mode (addr
);
251 /* If we're accessing the constant in a different mode than it was
252 originally stored, attempt to fix that up via subreg simplifications.
253 If that fails we have no choice but to return the original memory. */
254 if ((offset
!= 0 || cmode
!= GET_MODE (x
))
255 && offset
>= 0 && offset
< GET_MODE_SIZE (cmode
))
257 rtx tem
= simplify_subreg (GET_MODE (x
), c
, cmode
, offset
);
258 if (tem
&& CONSTANT_P (tem
))
268 /* Simplify a MEM based on its attributes. This is the default
269 delegitimize_address target hook, and it's recommended that every
270 overrider call it. */
273 delegitimize_mem_from_attrs (rtx x
)
275 /* MEMs without MEM_OFFSETs may have been offset, so we can't just
276 use their base addresses as equivalent. */
279 && MEM_OFFSET_KNOWN_P (x
))
281 tree decl
= MEM_EXPR (x
);
282 machine_mode mode
= GET_MODE (x
);
283 HOST_WIDE_INT offset
= 0;
285 switch (TREE_CODE (decl
))
295 case ARRAY_RANGE_REF
:
300 case VIEW_CONVERT_EXPR
:
302 HOST_WIDE_INT bitsize
, bitpos
;
304 int unsignedp
, reversep
, volatilep
= 0;
307 = get_inner_reference (decl
, &bitsize
, &bitpos
, &toffset
, &mode
,
308 &unsignedp
, &reversep
, &volatilep
, false);
309 if (bitsize
!= GET_MODE_BITSIZE (mode
)
310 || (bitpos
% BITS_PER_UNIT
)
311 || (toffset
&& !tree_fits_shwi_p (toffset
)))
315 offset
+= bitpos
/ BITS_PER_UNIT
;
317 offset
+= tree_to_shwi (toffset
);
324 && mode
== GET_MODE (x
)
325 && TREE_CODE (decl
) == VAR_DECL
326 && (TREE_STATIC (decl
)
327 || DECL_THREAD_LOCAL_P (decl
))
328 && DECL_RTL_SET_P (decl
)
329 && MEM_P (DECL_RTL (decl
)))
333 offset
+= MEM_OFFSET (x
);
335 newx
= DECL_RTL (decl
);
339 rtx n
= XEXP (newx
, 0), o
= XEXP (x
, 0);
341 /* Avoid creating a new MEM needlessly if we already had
342 the same address. We do if there's no OFFSET and the
343 old address X is identical to NEWX, or if X is of the
344 form (plus NEWX OFFSET), or the NEWX is of the form
345 (plus Y (const_int Z)) and X is that with the offset
346 added: (plus Y (const_int Z+OFFSET)). */
348 || (GET_CODE (o
) == PLUS
349 && GET_CODE (XEXP (o
, 1)) == CONST_INT
350 && (offset
== INTVAL (XEXP (o
, 1))
351 || (GET_CODE (n
) == PLUS
352 && GET_CODE (XEXP (n
, 1)) == CONST_INT
353 && (INTVAL (XEXP (n
, 1)) + offset
354 == INTVAL (XEXP (o
, 1)))
355 && (n
= XEXP (n
, 0))))
356 && (o
= XEXP (o
, 0))))
357 && rtx_equal_p (o
, n
)))
358 x
= adjust_address_nv (newx
, mode
, offset
);
360 else if (GET_MODE (x
) == GET_MODE (newx
)
369 /* Make a unary operation by first seeing if it folds and otherwise making
370 the specified operation. */
373 simplify_gen_unary (enum rtx_code code
, machine_mode mode
, rtx op
,
374 machine_mode op_mode
)
378 /* If this simplifies, use it. */
379 if ((tem
= simplify_unary_operation (code
, mode
, op
, op_mode
)) != 0)
382 return gen_rtx_fmt_e (code
, mode
, op
);
385 /* Likewise for ternary operations. */
388 simplify_gen_ternary (enum rtx_code code
, machine_mode mode
,
389 machine_mode op0_mode
, rtx op0
, rtx op1
, rtx op2
)
393 /* If this simplifies, use it. */
394 if (0 != (tem
= simplify_ternary_operation (code
, mode
, op0_mode
,
398 return gen_rtx_fmt_eee (code
, mode
, op0
, op1
, op2
);
401 /* Likewise, for relational operations.
402 CMP_MODE specifies mode comparison is done in. */
405 simplify_gen_relational (enum rtx_code code
, machine_mode mode
,
406 machine_mode cmp_mode
, rtx op0
, rtx op1
)
410 if (0 != (tem
= simplify_relational_operation (code
, mode
, cmp_mode
,
414 return gen_rtx_fmt_ee (code
, mode
, op0
, op1
);
417 /* If FN is NULL, replace all occurrences of OLD_RTX in X with copy_rtx (DATA)
418 and simplify the result. If FN is non-NULL, call this callback on each
419 X, if it returns non-NULL, replace X with its return value and simplify the
423 simplify_replace_fn_rtx (rtx x
, const_rtx old_rtx
,
424 rtx (*fn
) (rtx
, const_rtx
, void *), void *data
)
426 enum rtx_code code
= GET_CODE (x
);
427 machine_mode mode
= GET_MODE (x
);
428 machine_mode op_mode
;
430 rtx op0
, op1
, op2
, newx
, op
;
434 if (__builtin_expect (fn
!= NULL
, 0))
436 newx
= fn (x
, old_rtx
, data
);
440 else if (rtx_equal_p (x
, old_rtx
))
441 return copy_rtx ((rtx
) data
);
443 switch (GET_RTX_CLASS (code
))
447 op_mode
= GET_MODE (op0
);
448 op0
= simplify_replace_fn_rtx (op0
, old_rtx
, fn
, data
);
449 if (op0
== XEXP (x
, 0))
451 return simplify_gen_unary (code
, mode
, op0
, op_mode
);
455 op0
= simplify_replace_fn_rtx (XEXP (x
, 0), old_rtx
, fn
, data
);
456 op1
= simplify_replace_fn_rtx (XEXP (x
, 1), old_rtx
, fn
, data
);
457 if (op0
== XEXP (x
, 0) && op1
== XEXP (x
, 1))
459 return simplify_gen_binary (code
, mode
, op0
, op1
);
462 case RTX_COMM_COMPARE
:
465 op_mode
= GET_MODE (op0
) != VOIDmode
? GET_MODE (op0
) : GET_MODE (op1
);
466 op0
= simplify_replace_fn_rtx (op0
, old_rtx
, fn
, data
);
467 op1
= simplify_replace_fn_rtx (op1
, old_rtx
, fn
, data
);
468 if (op0
== XEXP (x
, 0) && op1
== XEXP (x
, 1))
470 return simplify_gen_relational (code
, mode
, op_mode
, op0
, op1
);
473 case RTX_BITFIELD_OPS
:
475 op_mode
= GET_MODE (op0
);
476 op0
= simplify_replace_fn_rtx (op0
, old_rtx
, fn
, data
);
477 op1
= simplify_replace_fn_rtx (XEXP (x
, 1), old_rtx
, fn
, data
);
478 op2
= simplify_replace_fn_rtx (XEXP (x
, 2), old_rtx
, fn
, data
);
479 if (op0
== XEXP (x
, 0) && op1
== XEXP (x
, 1) && op2
== XEXP (x
, 2))
481 if (op_mode
== VOIDmode
)
482 op_mode
= GET_MODE (op0
);
483 return simplify_gen_ternary (code
, mode
, op_mode
, op0
, op1
, op2
);
488 op0
= simplify_replace_fn_rtx (SUBREG_REG (x
), old_rtx
, fn
, data
);
489 if (op0
== SUBREG_REG (x
))
491 op0
= simplify_gen_subreg (GET_MODE (x
), op0
,
492 GET_MODE (SUBREG_REG (x
)),
494 return op0
? op0
: x
;
501 op0
= simplify_replace_fn_rtx (XEXP (x
, 0), old_rtx
, fn
, data
);
502 if (op0
== XEXP (x
, 0))
504 return replace_equiv_address_nv (x
, op0
);
506 else if (code
== LO_SUM
)
508 op0
= simplify_replace_fn_rtx (XEXP (x
, 0), old_rtx
, fn
, data
);
509 op1
= simplify_replace_fn_rtx (XEXP (x
, 1), old_rtx
, fn
, data
);
511 /* (lo_sum (high x) y) -> y where x and y have the same base. */
512 if (GET_CODE (op0
) == HIGH
)
514 rtx base0
, base1
, offset0
, offset1
;
515 split_const (XEXP (op0
, 0), &base0
, &offset0
);
516 split_const (op1
, &base1
, &offset1
);
517 if (rtx_equal_p (base0
, base1
))
521 if (op0
== XEXP (x
, 0) && op1
== XEXP (x
, 1))
523 return gen_rtx_LO_SUM (mode
, op0
, op1
);
532 fmt
= GET_RTX_FORMAT (code
);
533 for (i
= 0; fmt
[i
]; i
++)
538 newvec
= XVEC (newx
, i
);
539 for (j
= 0; j
< GET_NUM_ELEM (vec
); j
++)
541 op
= simplify_replace_fn_rtx (RTVEC_ELT (vec
, j
),
543 if (op
!= RTVEC_ELT (vec
, j
))
547 newvec
= shallow_copy_rtvec (vec
);
549 newx
= shallow_copy_rtx (x
);
550 XVEC (newx
, i
) = newvec
;
552 RTVEC_ELT (newvec
, j
) = op
;
560 op
= simplify_replace_fn_rtx (XEXP (x
, i
), old_rtx
, fn
, data
);
561 if (op
!= XEXP (x
, i
))
564 newx
= shallow_copy_rtx (x
);
573 /* Replace all occurrences of OLD_RTX in X with NEW_RTX and try to simplify the
574 resulting RTX. Return a new RTX which is as simplified as possible. */
577 simplify_replace_rtx (rtx x
, const_rtx old_rtx
, rtx new_rtx
)
579 return simplify_replace_fn_rtx (x
, old_rtx
, 0, new_rtx
);
582 /* Try to simplify a MODE truncation of OP, which has OP_MODE.
583 Only handle cases where the truncated value is inherently an rvalue.
585 RTL provides two ways of truncating a value:
587 1. a lowpart subreg. This form is only a truncation when both
588 the outer and inner modes (here MODE and OP_MODE respectively)
589 are scalar integers, and only then when the subreg is used as
592 It is only valid to form such truncating subregs if the
593 truncation requires no action by the target. The onus for
594 proving this is on the creator of the subreg -- e.g. the
595 caller to simplify_subreg or simplify_gen_subreg -- and typically
596 involves either TRULY_NOOP_TRUNCATION_MODES_P or truncated_to_mode.
598 2. a TRUNCATE. This form handles both scalar and compound integers.
600 The first form is preferred where valid. However, the TRUNCATE
601 handling in simplify_unary_operation turns the second form into the
602 first form when TRULY_NOOP_TRUNCATION_MODES_P or truncated_to_mode allow,
603 so it is generally safe to form rvalue truncations using:
605 simplify_gen_unary (TRUNCATE, ...)
607 and leave simplify_unary_operation to work out which representation
610 Because of the proof requirements on (1), simplify_truncation must
611 also use simplify_gen_unary (TRUNCATE, ...) to truncate parts of OP,
612 regardless of whether the outer truncation came from a SUBREG or a
613 TRUNCATE. For example, if the caller has proven that an SImode
618 is a no-op and can be represented as a subreg, it does not follow
619 that SImode truncations of X and Y are also no-ops. On a target
620 like 64-bit MIPS that requires SImode values to be stored in
621 sign-extended form, an SImode truncation of:
623 (and:DI (reg:DI X) (const_int 63))
625 is trivially a no-op because only the lower 6 bits can be set.
626 However, X is still an arbitrary 64-bit number and so we cannot
627 assume that truncating it too is a no-op. */
630 simplify_truncation (machine_mode mode
, rtx op
,
631 machine_mode op_mode
)
633 unsigned int precision
= GET_MODE_UNIT_PRECISION (mode
);
634 unsigned int op_precision
= GET_MODE_UNIT_PRECISION (op_mode
);
635 gcc_assert (precision
<= op_precision
);
637 /* Optimize truncations of zero and sign extended values. */
638 if (GET_CODE (op
) == ZERO_EXTEND
639 || GET_CODE (op
) == SIGN_EXTEND
)
641 /* There are three possibilities. If MODE is the same as the
642 origmode, we can omit both the extension and the subreg.
643 If MODE is not larger than the origmode, we can apply the
644 truncation without the extension. Finally, if the outermode
645 is larger than the origmode, we can just extend to the appropriate
647 machine_mode origmode
= GET_MODE (XEXP (op
, 0));
648 if (mode
== origmode
)
650 else if (precision
<= GET_MODE_UNIT_PRECISION (origmode
))
651 return simplify_gen_unary (TRUNCATE
, mode
,
652 XEXP (op
, 0), origmode
);
654 return simplify_gen_unary (GET_CODE (op
), mode
,
655 XEXP (op
, 0), origmode
);
658 /* If the machine can perform operations in the truncated mode, distribute
659 the truncation, i.e. simplify (truncate:QI (op:SI (x:SI) (y:SI))) into
660 (op:QI (truncate:QI (x:SI)) (truncate:QI (y:SI))). */
662 && (!WORD_REGISTER_OPERATIONS
|| precision
>= BITS_PER_WORD
)
663 && (GET_CODE (op
) == PLUS
664 || GET_CODE (op
) == MINUS
665 || GET_CODE (op
) == MULT
))
667 rtx op0
= simplify_gen_unary (TRUNCATE
, mode
, XEXP (op
, 0), op_mode
);
670 rtx op1
= simplify_gen_unary (TRUNCATE
, mode
, XEXP (op
, 1), op_mode
);
672 return simplify_gen_binary (GET_CODE (op
), mode
, op0
, op1
);
676 /* Simplify (truncate:QI (lshiftrt:SI (sign_extend:SI (x:QI)) C)) into
677 to (ashiftrt:QI (x:QI) C), where C is a suitable small constant and
678 the outer subreg is effectively a truncation to the original mode. */
679 if ((GET_CODE (op
) == LSHIFTRT
680 || GET_CODE (op
) == ASHIFTRT
)
681 /* Ensure that OP_MODE is at least twice as wide as MODE
682 to avoid the possibility that an outer LSHIFTRT shifts by more
683 than the sign extension's sign_bit_copies and introduces zeros
684 into the high bits of the result. */
685 && 2 * precision
<= op_precision
686 && CONST_INT_P (XEXP (op
, 1))
687 && GET_CODE (XEXP (op
, 0)) == SIGN_EXTEND
688 && GET_MODE (XEXP (XEXP (op
, 0), 0)) == mode
689 && UINTVAL (XEXP (op
, 1)) < precision
)
690 return simplify_gen_binary (ASHIFTRT
, mode
,
691 XEXP (XEXP (op
, 0), 0), XEXP (op
, 1));
693 /* Likewise (truncate:QI (lshiftrt:SI (zero_extend:SI (x:QI)) C)) into
694 to (lshiftrt:QI (x:QI) C), where C is a suitable small constant and
695 the outer subreg is effectively a truncation to the original mode. */
696 if ((GET_CODE (op
) == LSHIFTRT
697 || GET_CODE (op
) == ASHIFTRT
)
698 && CONST_INT_P (XEXP (op
, 1))
699 && GET_CODE (XEXP (op
, 0)) == ZERO_EXTEND
700 && GET_MODE (XEXP (XEXP (op
, 0), 0)) == mode
701 && UINTVAL (XEXP (op
, 1)) < precision
)
702 return simplify_gen_binary (LSHIFTRT
, mode
,
703 XEXP (XEXP (op
, 0), 0), XEXP (op
, 1));
705 /* Likewise (truncate:QI (ashift:SI (zero_extend:SI (x:QI)) C)) into
706 to (ashift:QI (x:QI) C), where C is a suitable small constant and
707 the outer subreg is effectively a truncation to the original mode. */
708 if (GET_CODE (op
) == ASHIFT
709 && CONST_INT_P (XEXP (op
, 1))
710 && (GET_CODE (XEXP (op
, 0)) == ZERO_EXTEND
711 || GET_CODE (XEXP (op
, 0)) == SIGN_EXTEND
)
712 && GET_MODE (XEXP (XEXP (op
, 0), 0)) == mode
713 && UINTVAL (XEXP (op
, 1)) < precision
)
714 return simplify_gen_binary (ASHIFT
, mode
,
715 XEXP (XEXP (op
, 0), 0), XEXP (op
, 1));
717 /* Likewise (truncate:QI (and:SI (lshiftrt:SI (x:SI) C) C2)) into
718 (and:QI (lshiftrt:QI (truncate:QI (x:SI)) C) C2) for suitable C
720 if (GET_CODE (op
) == AND
721 && (GET_CODE (XEXP (op
, 0)) == LSHIFTRT
722 || GET_CODE (XEXP (op
, 0)) == ASHIFTRT
)
723 && CONST_INT_P (XEXP (XEXP (op
, 0), 1))
724 && CONST_INT_P (XEXP (op
, 1)))
726 rtx op0
= (XEXP (XEXP (op
, 0), 0));
727 rtx shift_op
= XEXP (XEXP (op
, 0), 1);
728 rtx mask_op
= XEXP (op
, 1);
729 unsigned HOST_WIDE_INT shift
= UINTVAL (shift_op
);
730 unsigned HOST_WIDE_INT mask
= UINTVAL (mask_op
);
732 if (shift
< precision
733 /* If doing this transform works for an X with all bits set,
734 it works for any X. */
735 && ((GET_MODE_MASK (mode
) >> shift
) & mask
)
736 == ((GET_MODE_MASK (op_mode
) >> shift
) & mask
)
737 && (op0
= simplify_gen_unary (TRUNCATE
, mode
, op0
, op_mode
))
738 && (op0
= simplify_gen_binary (LSHIFTRT
, mode
, op0
, shift_op
)))
740 mask_op
= GEN_INT (trunc_int_for_mode (mask
, mode
));
741 return simplify_gen_binary (AND
, mode
, op0
, mask_op
);
745 /* Recognize a word extraction from a multi-word subreg. */
746 if ((GET_CODE (op
) == LSHIFTRT
747 || GET_CODE (op
) == ASHIFTRT
)
748 && SCALAR_INT_MODE_P (mode
)
749 && SCALAR_INT_MODE_P (op_mode
)
750 && precision
>= BITS_PER_WORD
751 && 2 * precision
<= op_precision
752 && CONST_INT_P (XEXP (op
, 1))
753 && (INTVAL (XEXP (op
, 1)) & (precision
- 1)) == 0
754 && UINTVAL (XEXP (op
, 1)) < op_precision
)
756 int byte
= subreg_lowpart_offset (mode
, op_mode
);
757 int shifted_bytes
= INTVAL (XEXP (op
, 1)) / BITS_PER_UNIT
;
758 return simplify_gen_subreg (mode
, XEXP (op
, 0), op_mode
,
760 ? byte
- shifted_bytes
761 : byte
+ shifted_bytes
));
764 /* If we have a TRUNCATE of a right shift of MEM, make a new MEM
765 and try replacing the TRUNCATE and shift with it. Don't do this
766 if the MEM has a mode-dependent address. */
767 if ((GET_CODE (op
) == LSHIFTRT
768 || GET_CODE (op
) == ASHIFTRT
)
769 && SCALAR_INT_MODE_P (op_mode
)
770 && MEM_P (XEXP (op
, 0))
771 && CONST_INT_P (XEXP (op
, 1))
772 && (INTVAL (XEXP (op
, 1)) % GET_MODE_BITSIZE (mode
)) == 0
773 && INTVAL (XEXP (op
, 1)) > 0
774 && INTVAL (XEXP (op
, 1)) < GET_MODE_BITSIZE (op_mode
)
775 && ! mode_dependent_address_p (XEXP (XEXP (op
, 0), 0),
776 MEM_ADDR_SPACE (XEXP (op
, 0)))
777 && ! MEM_VOLATILE_P (XEXP (op
, 0))
778 && (GET_MODE_SIZE (mode
) >= UNITS_PER_WORD
779 || WORDS_BIG_ENDIAN
== BYTES_BIG_ENDIAN
))
781 int byte
= subreg_lowpart_offset (mode
, op_mode
);
782 int shifted_bytes
= INTVAL (XEXP (op
, 1)) / BITS_PER_UNIT
;
783 return adjust_address_nv (XEXP (op
, 0), mode
,
785 ? byte
- shifted_bytes
786 : byte
+ shifted_bytes
));
789 /* (truncate:SI (OP:DI ({sign,zero}_extend:DI foo:SI))) is
790 (OP:SI foo:SI) if OP is NEG or ABS. */
791 if ((GET_CODE (op
) == ABS
792 || GET_CODE (op
) == NEG
)
793 && (GET_CODE (XEXP (op
, 0)) == SIGN_EXTEND
794 || GET_CODE (XEXP (op
, 0)) == ZERO_EXTEND
)
795 && GET_MODE (XEXP (XEXP (op
, 0), 0)) == mode
)
796 return simplify_gen_unary (GET_CODE (op
), mode
,
797 XEXP (XEXP (op
, 0), 0), mode
);
799 /* (truncate:A (subreg:B (truncate:C X) 0)) is
801 if (GET_CODE (op
) == SUBREG
802 && SCALAR_INT_MODE_P (mode
)
803 && SCALAR_INT_MODE_P (op_mode
)
804 && SCALAR_INT_MODE_P (GET_MODE (SUBREG_REG (op
)))
805 && GET_CODE (SUBREG_REG (op
)) == TRUNCATE
806 && subreg_lowpart_p (op
))
808 rtx inner
= XEXP (SUBREG_REG (op
), 0);
809 if (GET_MODE_PRECISION (mode
)
810 <= GET_MODE_PRECISION (GET_MODE (SUBREG_REG (op
))))
811 return simplify_gen_unary (TRUNCATE
, mode
, inner
, GET_MODE (inner
));
813 /* If subreg above is paradoxical and C is narrower
814 than A, return (subreg:A (truncate:C X) 0). */
815 return simplify_gen_subreg (mode
, SUBREG_REG (op
),
816 GET_MODE (SUBREG_REG (op
)), 0);
819 /* (truncate:A (truncate:B X)) is (truncate:A X). */
820 if (GET_CODE (op
) == TRUNCATE
)
821 return simplify_gen_unary (TRUNCATE
, mode
, XEXP (op
, 0),
822 GET_MODE (XEXP (op
, 0)));
827 /* Try to simplify a unary operation CODE whose output mode is to be
828 MODE with input operand OP whose mode was originally OP_MODE.
829 Return zero if no simplification can be made. */
831 simplify_unary_operation (enum rtx_code code
, machine_mode mode
,
832 rtx op
, machine_mode op_mode
)
836 trueop
= avoid_constant_pool_reference (op
);
838 tem
= simplify_const_unary_operation (code
, mode
, trueop
, op_mode
);
842 return simplify_unary_operation_1 (code
, mode
, op
);
845 /* Return true if FLOAT or UNSIGNED_FLOAT operation OP is known
849 exact_int_to_float_conversion_p (const_rtx op
)
851 int out_bits
= significand_size (GET_MODE_INNER (GET_MODE (op
)));
852 machine_mode op0_mode
= GET_MODE (XEXP (op
, 0));
853 /* Constants shouldn't reach here. */
854 gcc_assert (op0_mode
!= VOIDmode
);
855 int in_prec
= GET_MODE_UNIT_PRECISION (op0_mode
);
856 int in_bits
= in_prec
;
857 if (HWI_COMPUTABLE_MODE_P (op0_mode
))
859 unsigned HOST_WIDE_INT nonzero
= nonzero_bits (XEXP (op
, 0), op0_mode
);
860 if (GET_CODE (op
) == FLOAT
)
861 in_bits
-= num_sign_bit_copies (XEXP (op
, 0), op0_mode
);
862 else if (GET_CODE (op
) == UNSIGNED_FLOAT
)
863 in_bits
= wi::min_precision (wi::uhwi (nonzero
, in_prec
), UNSIGNED
);
866 in_bits
-= wi::ctz (wi::uhwi (nonzero
, in_prec
));
868 return in_bits
<= out_bits
;
871 /* Perform some simplifications we can do even if the operands
874 simplify_unary_operation_1 (enum rtx_code code
, machine_mode mode
, rtx op
)
876 enum rtx_code reversed
;
882 /* (not (not X)) == X. */
883 if (GET_CODE (op
) == NOT
)
886 /* (not (eq X Y)) == (ne X Y), etc. if BImode or the result of the
887 comparison is all ones. */
888 if (COMPARISON_P (op
)
889 && (mode
== BImode
|| STORE_FLAG_VALUE
== -1)
890 && ((reversed
= reversed_comparison_code (op
, NULL_RTX
)) != UNKNOWN
))
891 return simplify_gen_relational (reversed
, mode
, VOIDmode
,
892 XEXP (op
, 0), XEXP (op
, 1));
894 /* (not (plus X -1)) can become (neg X). */
895 if (GET_CODE (op
) == PLUS
896 && XEXP (op
, 1) == constm1_rtx
)
897 return simplify_gen_unary (NEG
, mode
, XEXP (op
, 0), mode
);
899 /* Similarly, (not (neg X)) is (plus X -1). */
900 if (GET_CODE (op
) == NEG
)
901 return simplify_gen_binary (PLUS
, mode
, XEXP (op
, 0),
904 /* (not (xor X C)) for C constant is (xor X D) with D = ~C. */
905 if (GET_CODE (op
) == XOR
906 && CONST_INT_P (XEXP (op
, 1))
907 && (temp
= simplify_unary_operation (NOT
, mode
,
908 XEXP (op
, 1), mode
)) != 0)
909 return simplify_gen_binary (XOR
, mode
, XEXP (op
, 0), temp
);
911 /* (not (plus X C)) for signbit C is (xor X D) with D = ~C. */
912 if (GET_CODE (op
) == PLUS
913 && CONST_INT_P (XEXP (op
, 1))
914 && mode_signbit_p (mode
, XEXP (op
, 1))
915 && (temp
= simplify_unary_operation (NOT
, mode
,
916 XEXP (op
, 1), mode
)) != 0)
917 return simplify_gen_binary (XOR
, mode
, XEXP (op
, 0), temp
);
920 /* (not (ashift 1 X)) is (rotate ~1 X). We used to do this for
921 operands other than 1, but that is not valid. We could do a
922 similar simplification for (not (lshiftrt C X)) where C is
923 just the sign bit, but this doesn't seem common enough to
925 if (GET_CODE (op
) == ASHIFT
926 && XEXP (op
, 0) == const1_rtx
)
928 temp
= simplify_gen_unary (NOT
, mode
, const1_rtx
, mode
);
929 return simplify_gen_binary (ROTATE
, mode
, temp
, XEXP (op
, 1));
932 /* (not (ashiftrt foo C)) where C is the number of bits in FOO
933 minus 1 is (ge foo (const_int 0)) if STORE_FLAG_VALUE is -1,
934 so we can perform the above simplification. */
935 if (STORE_FLAG_VALUE
== -1
936 && GET_CODE (op
) == ASHIFTRT
937 && CONST_INT_P (XEXP (op
, 1))
938 && INTVAL (XEXP (op
, 1)) == GET_MODE_PRECISION (mode
) - 1)
939 return simplify_gen_relational (GE
, mode
, VOIDmode
,
940 XEXP (op
, 0), const0_rtx
);
943 if (GET_CODE (op
) == SUBREG
944 && subreg_lowpart_p (op
)
945 && (GET_MODE_SIZE (GET_MODE (op
))
946 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (op
))))
947 && GET_CODE (SUBREG_REG (op
)) == ASHIFT
948 && XEXP (SUBREG_REG (op
), 0) == const1_rtx
)
950 machine_mode inner_mode
= GET_MODE (SUBREG_REG (op
));
953 x
= gen_rtx_ROTATE (inner_mode
,
954 simplify_gen_unary (NOT
, inner_mode
, const1_rtx
,
956 XEXP (SUBREG_REG (op
), 1));
957 temp
= rtl_hooks
.gen_lowpart_no_emit (mode
, x
);
962 /* Apply De Morgan's laws to reduce number of patterns for machines
963 with negating logical insns (and-not, nand, etc.). If result has
964 only one NOT, put it first, since that is how the patterns are
966 if (GET_CODE (op
) == IOR
|| GET_CODE (op
) == AND
)
968 rtx in1
= XEXP (op
, 0), in2
= XEXP (op
, 1);
969 machine_mode op_mode
;
971 op_mode
= GET_MODE (in1
);
972 in1
= simplify_gen_unary (NOT
, op_mode
, in1
, op_mode
);
974 op_mode
= GET_MODE (in2
);
975 if (op_mode
== VOIDmode
)
977 in2
= simplify_gen_unary (NOT
, op_mode
, in2
, op_mode
);
979 if (GET_CODE (in2
) == NOT
&& GET_CODE (in1
) != NOT
)
980 std::swap (in1
, in2
);
982 return gen_rtx_fmt_ee (GET_CODE (op
) == IOR
? AND
: IOR
,
986 /* (not (bswap x)) -> (bswap (not x)). */
987 if (GET_CODE (op
) == BSWAP
)
989 rtx x
= simplify_gen_unary (NOT
, mode
, XEXP (op
, 0), mode
);
990 return simplify_gen_unary (BSWAP
, mode
, x
, mode
);
995 /* (neg (neg X)) == X. */
996 if (GET_CODE (op
) == NEG
)
999 /* (neg (x ? (neg y) : y)) == !x ? (neg y) : y.
1000 If comparison is not reversible use
1002 if (GET_CODE (op
) == IF_THEN_ELSE
)
1004 rtx cond
= XEXP (op
, 0);
1005 rtx true_rtx
= XEXP (op
, 1);
1006 rtx false_rtx
= XEXP (op
, 2);
1008 if ((GET_CODE (true_rtx
) == NEG
1009 && rtx_equal_p (XEXP (true_rtx
, 0), false_rtx
))
1010 || (GET_CODE (false_rtx
) == NEG
1011 && rtx_equal_p (XEXP (false_rtx
, 0), true_rtx
)))
1013 if (reversed_comparison_code (cond
, NULL_RTX
) != UNKNOWN
)
1014 temp
= reversed_comparison (cond
, mode
);
1018 std::swap (true_rtx
, false_rtx
);
1020 return simplify_gen_ternary (IF_THEN_ELSE
, mode
,
1021 mode
, temp
, true_rtx
, false_rtx
);
1025 /* (neg (plus X 1)) can become (not X). */
1026 if (GET_CODE (op
) == PLUS
1027 && XEXP (op
, 1) == const1_rtx
)
1028 return simplify_gen_unary (NOT
, mode
, XEXP (op
, 0), mode
);
1030 /* Similarly, (neg (not X)) is (plus X 1). */
1031 if (GET_CODE (op
) == NOT
)
1032 return simplify_gen_binary (PLUS
, mode
, XEXP (op
, 0),
1035 /* (neg (minus X Y)) can become (minus Y X). This transformation
1036 isn't safe for modes with signed zeros, since if X and Y are
1037 both +0, (minus Y X) is the same as (minus X Y). If the
1038 rounding mode is towards +infinity (or -infinity) then the two
1039 expressions will be rounded differently. */
1040 if (GET_CODE (op
) == MINUS
1041 && !HONOR_SIGNED_ZEROS (mode
)
1042 && !HONOR_SIGN_DEPENDENT_ROUNDING (mode
))
1043 return simplify_gen_binary (MINUS
, mode
, XEXP (op
, 1), XEXP (op
, 0));
1045 if (GET_CODE (op
) == PLUS
1046 && !HONOR_SIGNED_ZEROS (mode
)
1047 && !HONOR_SIGN_DEPENDENT_ROUNDING (mode
))
1049 /* (neg (plus A C)) is simplified to (minus -C A). */
1050 if (CONST_SCALAR_INT_P (XEXP (op
, 1))
1051 || CONST_DOUBLE_AS_FLOAT_P (XEXP (op
, 1)))
1053 temp
= simplify_unary_operation (NEG
, mode
, XEXP (op
, 1), mode
);
1055 return simplify_gen_binary (MINUS
, mode
, temp
, XEXP (op
, 0));
1058 /* (neg (plus A B)) is canonicalized to (minus (neg A) B). */
1059 temp
= simplify_gen_unary (NEG
, mode
, XEXP (op
, 0), mode
);
1060 return simplify_gen_binary (MINUS
, mode
, temp
, XEXP (op
, 1));
1063 /* (neg (mult A B)) becomes (mult A (neg B)).
1064 This works even for floating-point values. */
1065 if (GET_CODE (op
) == MULT
1066 && !HONOR_SIGN_DEPENDENT_ROUNDING (mode
))
1068 temp
= simplify_gen_unary (NEG
, mode
, XEXP (op
, 1), mode
);
1069 return simplify_gen_binary (MULT
, mode
, XEXP (op
, 0), temp
);
1072 /* NEG commutes with ASHIFT since it is multiplication. Only do
1073 this if we can then eliminate the NEG (e.g., if the operand
1075 if (GET_CODE (op
) == ASHIFT
)
1077 temp
= simplify_unary_operation (NEG
, mode
, XEXP (op
, 0), mode
);
1079 return simplify_gen_binary (ASHIFT
, mode
, temp
, XEXP (op
, 1));
1082 /* (neg (ashiftrt X C)) can be replaced by (lshiftrt X C) when
1083 C is equal to the width of MODE minus 1. */
1084 if (GET_CODE (op
) == ASHIFTRT
1085 && CONST_INT_P (XEXP (op
, 1))
1086 && INTVAL (XEXP (op
, 1)) == GET_MODE_PRECISION (mode
) - 1)
1087 return simplify_gen_binary (LSHIFTRT
, mode
,
1088 XEXP (op
, 0), XEXP (op
, 1));
1090 /* (neg (lshiftrt X C)) can be replaced by (ashiftrt X C) when
1091 C is equal to the width of MODE minus 1. */
1092 if (GET_CODE (op
) == LSHIFTRT
1093 && CONST_INT_P (XEXP (op
, 1))
1094 && INTVAL (XEXP (op
, 1)) == GET_MODE_PRECISION (mode
) - 1)
1095 return simplify_gen_binary (ASHIFTRT
, mode
,
1096 XEXP (op
, 0), XEXP (op
, 1));
1098 /* (neg (xor A 1)) is (plus A -1) if A is known to be either 0 or 1. */
1099 if (GET_CODE (op
) == XOR
1100 && XEXP (op
, 1) == const1_rtx
1101 && nonzero_bits (XEXP (op
, 0), mode
) == 1)
1102 return plus_constant (mode
, XEXP (op
, 0), -1);
1104 /* (neg (lt x 0)) is (ashiftrt X C) if STORE_FLAG_VALUE is 1. */
1105 /* (neg (lt x 0)) is (lshiftrt X C) if STORE_FLAG_VALUE is -1. */
1106 if (GET_CODE (op
) == LT
1107 && XEXP (op
, 1) == const0_rtx
1108 && SCALAR_INT_MODE_P (GET_MODE (XEXP (op
, 0))))
1110 machine_mode inner
= GET_MODE (XEXP (op
, 0));
1111 int isize
= GET_MODE_PRECISION (inner
);
1112 if (STORE_FLAG_VALUE
== 1)
1114 temp
= simplify_gen_binary (ASHIFTRT
, inner
, XEXP (op
, 0),
1115 GEN_INT (isize
- 1));
1118 if (GET_MODE_PRECISION (mode
) > isize
)
1119 return simplify_gen_unary (SIGN_EXTEND
, mode
, temp
, inner
);
1120 return simplify_gen_unary (TRUNCATE
, mode
, temp
, inner
);
1122 else if (STORE_FLAG_VALUE
== -1)
1124 temp
= simplify_gen_binary (LSHIFTRT
, inner
, XEXP (op
, 0),
1125 GEN_INT (isize
- 1));
1128 if (GET_MODE_PRECISION (mode
) > isize
)
1129 return simplify_gen_unary (ZERO_EXTEND
, mode
, temp
, inner
);
1130 return simplify_gen_unary (TRUNCATE
, mode
, temp
, inner
);
1136 /* Don't optimize (lshiftrt (mult ...)) as it would interfere
1137 with the umulXi3_highpart patterns. */
1138 if (GET_CODE (op
) == LSHIFTRT
1139 && GET_CODE (XEXP (op
, 0)) == MULT
)
1142 if (GET_MODE_CLASS (mode
) == MODE_PARTIAL_INT
)
1144 if (TRULY_NOOP_TRUNCATION_MODES_P (mode
, GET_MODE (op
)))
1146 temp
= rtl_hooks
.gen_lowpart_no_emit (mode
, op
);
1150 /* We can't handle truncation to a partial integer mode here
1151 because we don't know the real bitsize of the partial
1156 if (GET_MODE (op
) != VOIDmode
)
1158 temp
= simplify_truncation (mode
, op
, GET_MODE (op
));
1163 /* If we know that the value is already truncated, we can
1164 replace the TRUNCATE with a SUBREG. */
1165 if (GET_MODE_NUNITS (mode
) == 1
1166 && (TRULY_NOOP_TRUNCATION_MODES_P (mode
, GET_MODE (op
))
1167 || truncated_to_mode (mode
, op
)))
1169 temp
= rtl_hooks
.gen_lowpart_no_emit (mode
, op
);
1174 /* A truncate of a comparison can be replaced with a subreg if
1175 STORE_FLAG_VALUE permits. This is like the previous test,
1176 but it works even if the comparison is done in a mode larger
1177 than HOST_BITS_PER_WIDE_INT. */
1178 if (HWI_COMPUTABLE_MODE_P (mode
)
1179 && COMPARISON_P (op
)
1180 && (STORE_FLAG_VALUE
& ~GET_MODE_MASK (mode
)) == 0)
1182 temp
= rtl_hooks
.gen_lowpart_no_emit (mode
, op
);
1187 /* A truncate of a memory is just loading the low part of the memory
1188 if we are not changing the meaning of the address. */
1189 if (GET_CODE (op
) == MEM
1190 && !VECTOR_MODE_P (mode
)
1191 && !MEM_VOLATILE_P (op
)
1192 && !mode_dependent_address_p (XEXP (op
, 0), MEM_ADDR_SPACE (op
)))
1194 temp
= rtl_hooks
.gen_lowpart_no_emit (mode
, op
);
1201 case FLOAT_TRUNCATE
:
1202 if (DECIMAL_FLOAT_MODE_P (mode
))
1205 /* (float_truncate:SF (float_extend:DF foo:SF)) = foo:SF. */
1206 if (GET_CODE (op
) == FLOAT_EXTEND
1207 && GET_MODE (XEXP (op
, 0)) == mode
)
1208 return XEXP (op
, 0);
1210 /* (float_truncate:SF (float_truncate:DF foo:XF))
1211 = (float_truncate:SF foo:XF).
1212 This may eliminate double rounding, so it is unsafe.
1214 (float_truncate:SF (float_extend:XF foo:DF))
1215 = (float_truncate:SF foo:DF).
1217 (float_truncate:DF (float_extend:XF foo:SF))
1218 = (float_extend:DF foo:SF). */
1219 if ((GET_CODE (op
) == FLOAT_TRUNCATE
1220 && flag_unsafe_math_optimizations
)
1221 || GET_CODE (op
) == FLOAT_EXTEND
)
1222 return simplify_gen_unary (GET_MODE_SIZE (GET_MODE (XEXP (op
,
1224 > GET_MODE_SIZE (mode
)
1225 ? FLOAT_TRUNCATE
: FLOAT_EXTEND
,
1227 XEXP (op
, 0), mode
);
1229 /* (float_truncate (float x)) is (float x) */
1230 if ((GET_CODE (op
) == FLOAT
|| GET_CODE (op
) == UNSIGNED_FLOAT
)
1231 && (flag_unsafe_math_optimizations
1232 || exact_int_to_float_conversion_p (op
)))
1233 return simplify_gen_unary (GET_CODE (op
), mode
,
1235 GET_MODE (XEXP (op
, 0)));
1237 /* (float_truncate:SF (OP:DF (float_extend:DF foo:sf))) is
1238 (OP:SF foo:SF) if OP is NEG or ABS. */
1239 if ((GET_CODE (op
) == ABS
1240 || GET_CODE (op
) == NEG
)
1241 && GET_CODE (XEXP (op
, 0)) == FLOAT_EXTEND
1242 && GET_MODE (XEXP (XEXP (op
, 0), 0)) == mode
)
1243 return simplify_gen_unary (GET_CODE (op
), mode
,
1244 XEXP (XEXP (op
, 0), 0), mode
);
1246 /* (float_truncate:SF (subreg:DF (float_truncate:SF X) 0))
1247 is (float_truncate:SF x). */
1248 if (GET_CODE (op
) == SUBREG
1249 && subreg_lowpart_p (op
)
1250 && GET_CODE (SUBREG_REG (op
)) == FLOAT_TRUNCATE
)
1251 return SUBREG_REG (op
);
1255 if (DECIMAL_FLOAT_MODE_P (mode
))
1258 /* (float_extend (float_extend x)) is (float_extend x)
1260 (float_extend (float x)) is (float x) assuming that double
1261 rounding can't happen.
1263 if (GET_CODE (op
) == FLOAT_EXTEND
1264 || ((GET_CODE (op
) == FLOAT
|| GET_CODE (op
) == UNSIGNED_FLOAT
)
1265 && exact_int_to_float_conversion_p (op
)))
1266 return simplify_gen_unary (GET_CODE (op
), mode
,
1268 GET_MODE (XEXP (op
, 0)));
1273 /* (abs (neg <foo>)) -> (abs <foo>) */
1274 if (GET_CODE (op
) == NEG
)
1275 return simplify_gen_unary (ABS
, mode
, XEXP (op
, 0),
1276 GET_MODE (XEXP (op
, 0)));
1278 /* If the mode of the operand is VOIDmode (i.e. if it is ASM_OPERANDS),
1280 if (GET_MODE (op
) == VOIDmode
)
1283 /* If operand is something known to be positive, ignore the ABS. */
1284 if (GET_CODE (op
) == FFS
|| GET_CODE (op
) == ABS
1285 || val_signbit_known_clear_p (GET_MODE (op
),
1286 nonzero_bits (op
, GET_MODE (op
))))
1289 /* If operand is known to be only -1 or 0, convert ABS to NEG. */
1290 if (num_sign_bit_copies (op
, mode
) == GET_MODE_PRECISION (mode
))
1291 return gen_rtx_NEG (mode
, op
);
1296 /* (ffs (*_extend <X>)) = (ffs <X>) */
1297 if (GET_CODE (op
) == SIGN_EXTEND
1298 || GET_CODE (op
) == ZERO_EXTEND
)
1299 return simplify_gen_unary (FFS
, mode
, XEXP (op
, 0),
1300 GET_MODE (XEXP (op
, 0)));
1304 switch (GET_CODE (op
))
1308 /* (popcount (zero_extend <X>)) = (popcount <X>) */
1309 return simplify_gen_unary (POPCOUNT
, mode
, XEXP (op
, 0),
1310 GET_MODE (XEXP (op
, 0)));
1314 /* Rotations don't affect popcount. */
1315 if (!side_effects_p (XEXP (op
, 1)))
1316 return simplify_gen_unary (POPCOUNT
, mode
, XEXP (op
, 0),
1317 GET_MODE (XEXP (op
, 0)));
1326 switch (GET_CODE (op
))
1332 return simplify_gen_unary (PARITY
, mode
, XEXP (op
, 0),
1333 GET_MODE (XEXP (op
, 0)));
1337 /* Rotations don't affect parity. */
1338 if (!side_effects_p (XEXP (op
, 1)))
1339 return simplify_gen_unary (PARITY
, mode
, XEXP (op
, 0),
1340 GET_MODE (XEXP (op
, 0)));
1349 /* (bswap (bswap x)) -> x. */
1350 if (GET_CODE (op
) == BSWAP
)
1351 return XEXP (op
, 0);
1355 /* (float (sign_extend <X>)) = (float <X>). */
1356 if (GET_CODE (op
) == SIGN_EXTEND
)
1357 return simplify_gen_unary (FLOAT
, mode
, XEXP (op
, 0),
1358 GET_MODE (XEXP (op
, 0)));
1362 /* (sign_extend (truncate (minus (label_ref L1) (label_ref L2))))
1363 becomes just the MINUS if its mode is MODE. This allows
1364 folding switch statements on machines using casesi (such as
1366 if (GET_CODE (op
) == TRUNCATE
1367 && GET_MODE (XEXP (op
, 0)) == mode
1368 && GET_CODE (XEXP (op
, 0)) == MINUS
1369 && GET_CODE (XEXP (XEXP (op
, 0), 0)) == LABEL_REF
1370 && GET_CODE (XEXP (XEXP (op
, 0), 1)) == LABEL_REF
)
1371 return XEXP (op
, 0);
1373 /* Extending a widening multiplication should be canonicalized to
1374 a wider widening multiplication. */
1375 if (GET_CODE (op
) == MULT
)
1377 rtx lhs
= XEXP (op
, 0);
1378 rtx rhs
= XEXP (op
, 1);
1379 enum rtx_code lcode
= GET_CODE (lhs
);
1380 enum rtx_code rcode
= GET_CODE (rhs
);
1382 /* Widening multiplies usually extend both operands, but sometimes
1383 they use a shift to extract a portion of a register. */
1384 if ((lcode
== SIGN_EXTEND
1385 || (lcode
== ASHIFTRT
&& CONST_INT_P (XEXP (lhs
, 1))))
1386 && (rcode
== SIGN_EXTEND
1387 || (rcode
== ASHIFTRT
&& CONST_INT_P (XEXP (rhs
, 1)))))
1389 machine_mode lmode
= GET_MODE (lhs
);
1390 machine_mode rmode
= GET_MODE (rhs
);
1393 if (lcode
== ASHIFTRT
)
1394 /* Number of bits not shifted off the end. */
1395 bits
= GET_MODE_PRECISION (lmode
) - INTVAL (XEXP (lhs
, 1));
1396 else /* lcode == SIGN_EXTEND */
1397 /* Size of inner mode. */
1398 bits
= GET_MODE_PRECISION (GET_MODE (XEXP (lhs
, 0)));
1400 if (rcode
== ASHIFTRT
)
1401 bits
+= GET_MODE_PRECISION (rmode
) - INTVAL (XEXP (rhs
, 1));
1402 else /* rcode == SIGN_EXTEND */
1403 bits
+= GET_MODE_PRECISION (GET_MODE (XEXP (rhs
, 0)));
1405 /* We can only widen multiplies if the result is mathematiclly
1406 equivalent. I.e. if overflow was impossible. */
1407 if (bits
<= GET_MODE_PRECISION (GET_MODE (op
)))
1408 return simplify_gen_binary
1410 simplify_gen_unary (SIGN_EXTEND
, mode
, lhs
, lmode
),
1411 simplify_gen_unary (SIGN_EXTEND
, mode
, rhs
, rmode
));
1415 /* Check for a sign extension of a subreg of a promoted
1416 variable, where the promotion is sign-extended, and the
1417 target mode is the same as the variable's promotion. */
1418 if (GET_CODE (op
) == SUBREG
1419 && SUBREG_PROMOTED_VAR_P (op
)
1420 && SUBREG_PROMOTED_SIGNED_P (op
)
1421 && GET_MODE_SIZE (mode
) <= GET_MODE_SIZE (GET_MODE (XEXP (op
, 0))))
1423 temp
= rtl_hooks
.gen_lowpart_no_emit (mode
, op
);
1428 /* (sign_extend:M (sign_extend:N <X>)) is (sign_extend:M <X>).
1429 (sign_extend:M (zero_extend:N <X>)) is (zero_extend:M <X>). */
1430 if (GET_CODE (op
) == SIGN_EXTEND
|| GET_CODE (op
) == ZERO_EXTEND
)
1432 gcc_assert (GET_MODE_PRECISION (mode
)
1433 > GET_MODE_PRECISION (GET_MODE (op
)));
1434 return simplify_gen_unary (GET_CODE (op
), mode
, XEXP (op
, 0),
1435 GET_MODE (XEXP (op
, 0)));
1438 /* (sign_extend:M (ashiftrt:N (ashift <X> (const_int I)) (const_int I)))
1439 is (sign_extend:M (subreg:O <X>)) if there is mode with
1440 GET_MODE_BITSIZE (N) - I bits.
1441 (sign_extend:M (lshiftrt:N (ashift <X> (const_int I)) (const_int I)))
1442 is similarly (zero_extend:M (subreg:O <X>)). */
1443 if ((GET_CODE (op
) == ASHIFTRT
|| GET_CODE (op
) == LSHIFTRT
)
1444 && GET_CODE (XEXP (op
, 0)) == ASHIFT
1445 && CONST_INT_P (XEXP (op
, 1))
1446 && XEXP (XEXP (op
, 0), 1) == XEXP (op
, 1)
1447 && GET_MODE_BITSIZE (GET_MODE (op
)) > INTVAL (XEXP (op
, 1)))
1450 = mode_for_size (GET_MODE_BITSIZE (GET_MODE (op
))
1451 - INTVAL (XEXP (op
, 1)), MODE_INT
, 1);
1452 gcc_assert (GET_MODE_BITSIZE (mode
)
1453 > GET_MODE_BITSIZE (GET_MODE (op
)));
1454 if (tmode
!= BLKmode
)
1457 rtl_hooks
.gen_lowpart_no_emit (tmode
, XEXP (XEXP (op
, 0), 0));
1459 return simplify_gen_unary (GET_CODE (op
) == ASHIFTRT
1460 ? SIGN_EXTEND
: ZERO_EXTEND
,
1461 mode
, inner
, tmode
);
1465 /* (sign_extend:M (lshiftrt:N <X> (const_int I))) is better as
1466 (zero_extend:M (lshiftrt:N <X> (const_int I))) if I is not 0. */
1467 if (GET_CODE (op
) == LSHIFTRT
1468 && CONST_INT_P (XEXP (op
, 1))
1469 && XEXP (op
, 1) != const0_rtx
)
1470 return simplify_gen_unary (ZERO_EXTEND
, mode
, op
, GET_MODE (op
));
1472 #if defined(POINTERS_EXTEND_UNSIGNED)
1473 /* As we do not know which address space the pointer is referring to,
1474 we can do this only if the target does not support different pointer
1475 or address modes depending on the address space. */
1476 if (target_default_pointer_address_modes_p ()
1477 && ! POINTERS_EXTEND_UNSIGNED
1478 && mode
== Pmode
&& GET_MODE (op
) == ptr_mode
1480 || (GET_CODE (op
) == SUBREG
1481 && REG_P (SUBREG_REG (op
))
1482 && REG_POINTER (SUBREG_REG (op
))
1483 && GET_MODE (SUBREG_REG (op
)) == Pmode
))
1484 && !targetm
.have_ptr_extend ())
1485 return convert_memory_address (Pmode
, op
);
1490 /* Check for a zero extension of a subreg of a promoted
1491 variable, where the promotion is zero-extended, and the
1492 target mode is the same as the variable's promotion. */
1493 if (GET_CODE (op
) == SUBREG
1494 && SUBREG_PROMOTED_VAR_P (op
)
1495 && SUBREG_PROMOTED_UNSIGNED_P (op
)
1496 && GET_MODE_SIZE (mode
) <= GET_MODE_SIZE (GET_MODE (XEXP (op
, 0))))
1498 temp
= rtl_hooks
.gen_lowpart_no_emit (mode
, op
);
1503 /* Extending a widening multiplication should be canonicalized to
1504 a wider widening multiplication. */
1505 if (GET_CODE (op
) == MULT
)
1507 rtx lhs
= XEXP (op
, 0);
1508 rtx rhs
= XEXP (op
, 1);
1509 enum rtx_code lcode
= GET_CODE (lhs
);
1510 enum rtx_code rcode
= GET_CODE (rhs
);
1512 /* Widening multiplies usually extend both operands, but sometimes
1513 they use a shift to extract a portion of a register. */
1514 if ((lcode
== ZERO_EXTEND
1515 || (lcode
== LSHIFTRT
&& CONST_INT_P (XEXP (lhs
, 1))))
1516 && (rcode
== ZERO_EXTEND
1517 || (rcode
== LSHIFTRT
&& CONST_INT_P (XEXP (rhs
, 1)))))
1519 machine_mode lmode
= GET_MODE (lhs
);
1520 machine_mode rmode
= GET_MODE (rhs
);
1523 if (lcode
== LSHIFTRT
)
1524 /* Number of bits not shifted off the end. */
1525 bits
= GET_MODE_PRECISION (lmode
) - INTVAL (XEXP (lhs
, 1));
1526 else /* lcode == ZERO_EXTEND */
1527 /* Size of inner mode. */
1528 bits
= GET_MODE_PRECISION (GET_MODE (XEXP (lhs
, 0)));
1530 if (rcode
== LSHIFTRT
)
1531 bits
+= GET_MODE_PRECISION (rmode
) - INTVAL (XEXP (rhs
, 1));
1532 else /* rcode == ZERO_EXTEND */
1533 bits
+= GET_MODE_PRECISION (GET_MODE (XEXP (rhs
, 0)));
1535 /* We can only widen multiplies if the result is mathematiclly
1536 equivalent. I.e. if overflow was impossible. */
1537 if (bits
<= GET_MODE_PRECISION (GET_MODE (op
)))
1538 return simplify_gen_binary
1540 simplify_gen_unary (ZERO_EXTEND
, mode
, lhs
, lmode
),
1541 simplify_gen_unary (ZERO_EXTEND
, mode
, rhs
, rmode
));
1545 /* (zero_extend:M (zero_extend:N <X>)) is (zero_extend:M <X>). */
1546 if (GET_CODE (op
) == ZERO_EXTEND
)
1547 return simplify_gen_unary (ZERO_EXTEND
, mode
, XEXP (op
, 0),
1548 GET_MODE (XEXP (op
, 0)));
1550 /* (zero_extend:M (lshiftrt:N (ashift <X> (const_int I)) (const_int I)))
1551 is (zero_extend:M (subreg:O <X>)) if there is mode with
1552 GET_MODE_PRECISION (N) - I bits. */
1553 if (GET_CODE (op
) == LSHIFTRT
1554 && GET_CODE (XEXP (op
, 0)) == ASHIFT
1555 && CONST_INT_P (XEXP (op
, 1))
1556 && XEXP (XEXP (op
, 0), 1) == XEXP (op
, 1)
1557 && GET_MODE_PRECISION (GET_MODE (op
)) > INTVAL (XEXP (op
, 1)))
1560 = mode_for_size (GET_MODE_PRECISION (GET_MODE (op
))
1561 - INTVAL (XEXP (op
, 1)), MODE_INT
, 1);
1562 if (tmode
!= BLKmode
)
1565 rtl_hooks
.gen_lowpart_no_emit (tmode
, XEXP (XEXP (op
, 0), 0));
1567 return simplify_gen_unary (ZERO_EXTEND
, mode
, inner
, tmode
);
1571 /* (zero_extend:M (subreg:N <X:O>)) is <X:O> (for M == O) or
1572 (zero_extend:M <X:O>), if X doesn't have any non-zero bits outside
1574 (zero_extend:SI (subreg:QI (and:SI (reg:SI) (const_int 63)) 0)) is
1575 (and:SI (reg:SI) (const_int 63)). */
1576 if (GET_CODE (op
) == SUBREG
1577 && GET_MODE_PRECISION (GET_MODE (op
))
1578 < GET_MODE_PRECISION (GET_MODE (SUBREG_REG (op
)))
1579 && GET_MODE_PRECISION (GET_MODE (SUBREG_REG (op
)))
1580 <= HOST_BITS_PER_WIDE_INT
1581 && GET_MODE_PRECISION (mode
)
1582 >= GET_MODE_PRECISION (GET_MODE (SUBREG_REG (op
)))
1583 && subreg_lowpart_p (op
)
1584 && (nonzero_bits (SUBREG_REG (op
), GET_MODE (SUBREG_REG (op
)))
1585 & ~GET_MODE_MASK (GET_MODE (op
))) == 0)
1587 if (GET_MODE_PRECISION (mode
)
1588 == GET_MODE_PRECISION (GET_MODE (SUBREG_REG (op
))))
1589 return SUBREG_REG (op
);
1590 return simplify_gen_unary (ZERO_EXTEND
, mode
, SUBREG_REG (op
),
1591 GET_MODE (SUBREG_REG (op
)));
1594 #if defined(POINTERS_EXTEND_UNSIGNED)
1595 /* As we do not know which address space the pointer is referring to,
1596 we can do this only if the target does not support different pointer
1597 or address modes depending on the address space. */
1598 if (target_default_pointer_address_modes_p ()
1599 && POINTERS_EXTEND_UNSIGNED
> 0
1600 && mode
== Pmode
&& GET_MODE (op
) == ptr_mode
1602 || (GET_CODE (op
) == SUBREG
1603 && REG_P (SUBREG_REG (op
))
1604 && REG_POINTER (SUBREG_REG (op
))
1605 && GET_MODE (SUBREG_REG (op
)) == Pmode
))
1606 && !targetm
.have_ptr_extend ())
1607 return convert_memory_address (Pmode
, op
);
1618 /* Try to compute the value of a unary operation CODE whose output mode is to
1619 be MODE with input operand OP whose mode was originally OP_MODE.
1620 Return zero if the value cannot be computed. */
1622 simplify_const_unary_operation (enum rtx_code code
, machine_mode mode
,
1623 rtx op
, machine_mode op_mode
)
1625 unsigned int width
= GET_MODE_PRECISION (mode
);
1627 if (code
== VEC_DUPLICATE
)
1629 gcc_assert (VECTOR_MODE_P (mode
));
1630 if (GET_MODE (op
) != VOIDmode
)
1632 if (!VECTOR_MODE_P (GET_MODE (op
)))
1633 gcc_assert (GET_MODE_INNER (mode
) == GET_MODE (op
));
1635 gcc_assert (GET_MODE_INNER (mode
) == GET_MODE_INNER
1638 if (CONST_SCALAR_INT_P (op
) || CONST_DOUBLE_AS_FLOAT_P (op
)
1639 || GET_CODE (op
) == CONST_VECTOR
)
1641 int elt_size
= GET_MODE_UNIT_SIZE (mode
);
1642 unsigned n_elts
= (GET_MODE_SIZE (mode
) / elt_size
);
1643 rtvec v
= rtvec_alloc (n_elts
);
1646 if (GET_CODE (op
) != CONST_VECTOR
)
1647 for (i
= 0; i
< n_elts
; i
++)
1648 RTVEC_ELT (v
, i
) = op
;
1651 machine_mode inmode
= GET_MODE (op
);
1652 int in_elt_size
= GET_MODE_UNIT_SIZE (inmode
);
1653 unsigned in_n_elts
= (GET_MODE_SIZE (inmode
) / in_elt_size
);
1655 gcc_assert (in_n_elts
< n_elts
);
1656 gcc_assert ((n_elts
% in_n_elts
) == 0);
1657 for (i
= 0; i
< n_elts
; i
++)
1658 RTVEC_ELT (v
, i
) = CONST_VECTOR_ELT (op
, i
% in_n_elts
);
1660 return gen_rtx_CONST_VECTOR (mode
, v
);
1664 if (VECTOR_MODE_P (mode
) && GET_CODE (op
) == CONST_VECTOR
)
1666 int elt_size
= GET_MODE_UNIT_SIZE (mode
);
1667 unsigned n_elts
= (GET_MODE_SIZE (mode
) / elt_size
);
1668 machine_mode opmode
= GET_MODE (op
);
1669 int op_elt_size
= GET_MODE_UNIT_SIZE (opmode
);
1670 unsigned op_n_elts
= (GET_MODE_SIZE (opmode
) / op_elt_size
);
1671 rtvec v
= rtvec_alloc (n_elts
);
1674 gcc_assert (op_n_elts
== n_elts
);
1675 for (i
= 0; i
< n_elts
; i
++)
1677 rtx x
= simplify_unary_operation (code
, GET_MODE_INNER (mode
),
1678 CONST_VECTOR_ELT (op
, i
),
1679 GET_MODE_INNER (opmode
));
1682 RTVEC_ELT (v
, i
) = x
;
1684 return gen_rtx_CONST_VECTOR (mode
, v
);
1687 /* The order of these tests is critical so that, for example, we don't
1688 check the wrong mode (input vs. output) for a conversion operation,
1689 such as FIX. At some point, this should be simplified. */
1691 if (code
== FLOAT
&& CONST_SCALAR_INT_P (op
))
1695 if (op_mode
== VOIDmode
)
1697 /* CONST_INT have VOIDmode as the mode. We assume that all
1698 the bits of the constant are significant, though, this is
1699 a dangerous assumption as many times CONST_INTs are
1700 created and used with garbage in the bits outside of the
1701 precision of the implied mode of the const_int. */
1702 op_mode
= MAX_MODE_INT
;
1705 real_from_integer (&d
, mode
, std::make_pair (op
, op_mode
), SIGNED
);
1707 /* Avoid the folding if flag_signaling_nans is on and
1708 operand is a signaling NaN. */
1709 if (HONOR_SNANS (mode
) && REAL_VALUE_ISSIGNALING_NAN (d
))
1712 d
= real_value_truncate (mode
, d
);
1713 return const_double_from_real_value (d
, mode
);
1715 else if (code
== UNSIGNED_FLOAT
&& CONST_SCALAR_INT_P (op
))
1719 if (op_mode
== VOIDmode
)
1721 /* CONST_INT have VOIDmode as the mode. We assume that all
1722 the bits of the constant are significant, though, this is
1723 a dangerous assumption as many times CONST_INTs are
1724 created and used with garbage in the bits outside of the
1725 precision of the implied mode of the const_int. */
1726 op_mode
= MAX_MODE_INT
;
1729 real_from_integer (&d
, mode
, std::make_pair (op
, op_mode
), UNSIGNED
);
1731 /* Avoid the folding if flag_signaling_nans is on and
1732 operand is a signaling NaN. */
1733 if (HONOR_SNANS (mode
) && REAL_VALUE_ISSIGNALING_NAN (d
))
1736 d
= real_value_truncate (mode
, d
);
1737 return const_double_from_real_value (d
, mode
);
1740 if (CONST_SCALAR_INT_P (op
) && width
> 0)
1743 machine_mode imode
= op_mode
== VOIDmode
? mode
: op_mode
;
1744 rtx_mode_t op0
= std::make_pair (op
, imode
);
1747 #if TARGET_SUPPORTS_WIDE_INT == 0
1748 /* This assert keeps the simplification from producing a result
1749 that cannot be represented in a CONST_DOUBLE but a lot of
1750 upstream callers expect that this function never fails to
1751 simplify something and so you if you added this to the test
1752 above the code would die later anyway. If this assert
1753 happens, you just need to make the port support wide int. */
1754 gcc_assert (width
<= HOST_BITS_PER_DOUBLE_INT
);
1760 result
= wi::bit_not (op0
);
1764 result
= wi::neg (op0
);
1768 result
= wi::abs (op0
);
1772 result
= wi::shwi (wi::ffs (op0
), mode
);
1776 if (wi::ne_p (op0
, 0))
1777 int_value
= wi::clz (op0
);
1778 else if (! CLZ_DEFINED_VALUE_AT_ZERO (mode
, int_value
))
1779 int_value
= GET_MODE_PRECISION (mode
);
1780 result
= wi::shwi (int_value
, mode
);
1784 result
= wi::shwi (wi::clrsb (op0
), mode
);
1788 if (wi::ne_p (op0
, 0))
1789 int_value
= wi::ctz (op0
);
1790 else if (! CTZ_DEFINED_VALUE_AT_ZERO (mode
, int_value
))
1791 int_value
= GET_MODE_PRECISION (mode
);
1792 result
= wi::shwi (int_value
, mode
);
1796 result
= wi::shwi (wi::popcount (op0
), mode
);
1800 result
= wi::shwi (wi::parity (op0
), mode
);
1804 result
= wide_int (op0
).bswap ();
1809 result
= wide_int::from (op0
, width
, UNSIGNED
);
1813 result
= wide_int::from (op0
, width
, SIGNED
);
1821 return immed_wide_int_const (result
, mode
);
1824 else if (CONST_DOUBLE_AS_FLOAT_P (op
)
1825 && SCALAR_FLOAT_MODE_P (mode
)
1826 && SCALAR_FLOAT_MODE_P (GET_MODE (op
)))
1828 REAL_VALUE_TYPE d
= *CONST_DOUBLE_REAL_VALUE (op
);
1834 d
= real_value_abs (&d
);
1837 d
= real_value_negate (&d
);
1839 case FLOAT_TRUNCATE
:
1840 /* Don't perform the operation if flag_signaling_nans is on
1841 and the operand is a signaling NaN. */
1842 if (!(HONOR_SNANS (mode
) && REAL_VALUE_ISSIGNALING_NAN (d
)))
1843 d
= real_value_truncate (mode
, d
);
1846 /* All this does is change the mode, unless changing
1848 /* Don't perform the operation if flag_signaling_nans is on
1849 and the operand is a signaling NaN. */
1850 if (GET_MODE_CLASS (mode
) != GET_MODE_CLASS (GET_MODE (op
))
1851 && !(HONOR_SNANS (mode
) && REAL_VALUE_ISSIGNALING_NAN (d
)))
1852 real_convert (&d
, mode
, &d
);
1855 /* Don't perform the operation if flag_signaling_nans is on
1856 and the operand is a signaling NaN. */
1857 if (!(HONOR_SNANS (mode
) && REAL_VALUE_ISSIGNALING_NAN (d
)))
1858 real_arithmetic (&d
, FIX_TRUNC_EXPR
, &d
, NULL
);
1865 real_to_target (tmp
, &d
, GET_MODE (op
));
1866 for (i
= 0; i
< 4; i
++)
1868 real_from_target (&d
, tmp
, mode
);
1874 return const_double_from_real_value (d
, mode
);
1876 else if (CONST_DOUBLE_AS_FLOAT_P (op
)
1877 && SCALAR_FLOAT_MODE_P (GET_MODE (op
))
1878 && GET_MODE_CLASS (mode
) == MODE_INT
1881 /* Although the overflow semantics of RTL's FIX and UNSIGNED_FIX
1882 operators are intentionally left unspecified (to ease implementation
1883 by target backends), for consistency, this routine implements the
1884 same semantics for constant folding as used by the middle-end. */
1886 /* This was formerly used only for non-IEEE float.
1887 eggert@twinsun.com says it is safe for IEEE also. */
1889 const REAL_VALUE_TYPE
*x
= CONST_DOUBLE_REAL_VALUE (op
);
1890 wide_int wmax
, wmin
;
1891 /* This is part of the abi to real_to_integer, but we check
1892 things before making this call. */
1898 if (REAL_VALUE_ISNAN (*x
))
1901 /* Test against the signed upper bound. */
1902 wmax
= wi::max_value (width
, SIGNED
);
1903 real_from_integer (&t
, VOIDmode
, wmax
, SIGNED
);
1904 if (real_less (&t
, x
))
1905 return immed_wide_int_const (wmax
, mode
);
1907 /* Test against the signed lower bound. */
1908 wmin
= wi::min_value (width
, SIGNED
);
1909 real_from_integer (&t
, VOIDmode
, wmin
, SIGNED
);
1910 if (real_less (x
, &t
))
1911 return immed_wide_int_const (wmin
, mode
);
1913 return immed_wide_int_const (real_to_integer (x
, &fail
, width
),
1917 if (REAL_VALUE_ISNAN (*x
) || REAL_VALUE_NEGATIVE (*x
))
1920 /* Test against the unsigned upper bound. */
1921 wmax
= wi::max_value (width
, UNSIGNED
);
1922 real_from_integer (&t
, VOIDmode
, wmax
, UNSIGNED
);
1923 if (real_less (&t
, x
))
1924 return immed_wide_int_const (wmax
, mode
);
1926 return immed_wide_int_const (real_to_integer (x
, &fail
, width
),
1937 /* Subroutine of simplify_binary_operation to simplify a binary operation
1938 CODE that can commute with byte swapping, with result mode MODE and
1939 operating on OP0 and OP1. CODE is currently one of AND, IOR or XOR.
1940 Return zero if no simplification or canonicalization is possible. */
1943 simplify_byte_swapping_operation (enum rtx_code code
, machine_mode mode
,
1948 /* (op (bswap x) C1)) -> (bswap (op x C2)) with C2 swapped. */
1949 if (GET_CODE (op0
) == BSWAP
&& CONST_SCALAR_INT_P (op1
))
1951 tem
= simplify_gen_binary (code
, mode
, XEXP (op0
, 0),
1952 simplify_gen_unary (BSWAP
, mode
, op1
, mode
));
1953 return simplify_gen_unary (BSWAP
, mode
, tem
, mode
);
1956 /* (op (bswap x) (bswap y)) -> (bswap (op x y)). */
1957 if (GET_CODE (op0
) == BSWAP
&& GET_CODE (op1
) == BSWAP
)
1959 tem
= simplify_gen_binary (code
, mode
, XEXP (op0
, 0), XEXP (op1
, 0));
1960 return simplify_gen_unary (BSWAP
, mode
, tem
, mode
);
1966 /* Subroutine of simplify_binary_operation to simplify a commutative,
1967 associative binary operation CODE with result mode MODE, operating
1968 on OP0 and OP1. CODE is currently one of PLUS, MULT, AND, IOR, XOR,
1969 SMIN, SMAX, UMIN or UMAX. Return zero if no simplification or
1970 canonicalization is possible. */
1973 simplify_associative_operation (enum rtx_code code
, machine_mode mode
,
1978 /* Linearize the operator to the left. */
1979 if (GET_CODE (op1
) == code
)
1981 /* "(a op b) op (c op d)" becomes "((a op b) op c) op d)". */
1982 if (GET_CODE (op0
) == code
)
1984 tem
= simplify_gen_binary (code
, mode
, op0
, XEXP (op1
, 0));
1985 return simplify_gen_binary (code
, mode
, tem
, XEXP (op1
, 1));
1988 /* "a op (b op c)" becomes "(b op c) op a". */
1989 if (! swap_commutative_operands_p (op1
, op0
))
1990 return simplify_gen_binary (code
, mode
, op1
, op0
);
1992 std::swap (op0
, op1
);
1995 if (GET_CODE (op0
) == code
)
1997 /* Canonicalize "(x op c) op y" as "(x op y) op c". */
1998 if (swap_commutative_operands_p (XEXP (op0
, 1), op1
))
2000 tem
= simplify_gen_binary (code
, mode
, XEXP (op0
, 0), op1
);
2001 return simplify_gen_binary (code
, mode
, tem
, XEXP (op0
, 1));
2004 /* Attempt to simplify "(a op b) op c" as "a op (b op c)". */
2005 tem
= simplify_binary_operation (code
, mode
, XEXP (op0
, 1), op1
);
2007 return simplify_gen_binary (code
, mode
, XEXP (op0
, 0), tem
);
2009 /* Attempt to simplify "(a op b) op c" as "(a op c) op b". */
2010 tem
= simplify_binary_operation (code
, mode
, XEXP (op0
, 0), op1
);
2012 return simplify_gen_binary (code
, mode
, tem
, XEXP (op0
, 1));
2019 /* Simplify a binary operation CODE with result mode MODE, operating on OP0
2020 and OP1. Return 0 if no simplification is possible.
2022 Don't use this for relational operations such as EQ or LT.
2023 Use simplify_relational_operation instead. */
2025 simplify_binary_operation (enum rtx_code code
, machine_mode mode
,
2028 rtx trueop0
, trueop1
;
2031 /* Relational operations don't work here. We must know the mode
2032 of the operands in order to do the comparison correctly.
2033 Assuming a full word can give incorrect results.
2034 Consider comparing 128 with -128 in QImode. */
2035 gcc_assert (GET_RTX_CLASS (code
) != RTX_COMPARE
);
2036 gcc_assert (GET_RTX_CLASS (code
) != RTX_COMM_COMPARE
);
2038 /* Make sure the constant is second. */
2039 if (GET_RTX_CLASS (code
) == RTX_COMM_ARITH
2040 && swap_commutative_operands_p (op0
, op1
))
2041 std::swap (op0
, op1
);
2043 trueop0
= avoid_constant_pool_reference (op0
);
2044 trueop1
= avoid_constant_pool_reference (op1
);
2046 tem
= simplify_const_binary_operation (code
, mode
, trueop0
, trueop1
);
2049 tem
= simplify_binary_operation_1 (code
, mode
, op0
, op1
, trueop0
, trueop1
);
2054 /* If the above steps did not result in a simplification and op0 or op1
2055 were constant pool references, use the referenced constants directly. */
2056 if (trueop0
!= op0
|| trueop1
!= op1
)
2057 return simplify_gen_binary (code
, mode
, trueop0
, trueop1
);
2062 /* Subroutine of simplify_binary_operation. Simplify a binary operation
2063 CODE with result mode MODE, operating on OP0 and OP1. If OP0 and/or
2064 OP1 are constant pool references, TRUEOP0 and TRUEOP1 represent the
2065 actual constants. */
2068 simplify_binary_operation_1 (enum rtx_code code
, machine_mode mode
,
2069 rtx op0
, rtx op1
, rtx trueop0
, rtx trueop1
)
2071 rtx tem
, reversed
, opleft
, opright
;
2073 unsigned int width
= GET_MODE_PRECISION (mode
);
2075 /* Even if we can't compute a constant result,
2076 there are some cases worth simplifying. */
2081 /* Maybe simplify x + 0 to x. The two expressions are equivalent
2082 when x is NaN, infinite, or finite and nonzero. They aren't
2083 when x is -0 and the rounding mode is not towards -infinity,
2084 since (-0) + 0 is then 0. */
2085 if (!HONOR_SIGNED_ZEROS (mode
) && trueop1
== CONST0_RTX (mode
))
2088 /* ((-a) + b) -> (b - a) and similarly for (a + (-b)). These
2089 transformations are safe even for IEEE. */
2090 if (GET_CODE (op0
) == NEG
)
2091 return simplify_gen_binary (MINUS
, mode
, op1
, XEXP (op0
, 0));
2092 else if (GET_CODE (op1
) == NEG
)
2093 return simplify_gen_binary (MINUS
, mode
, op0
, XEXP (op1
, 0));
2095 /* (~a) + 1 -> -a */
2096 if (INTEGRAL_MODE_P (mode
)
2097 && GET_CODE (op0
) == NOT
2098 && trueop1
== const1_rtx
)
2099 return simplify_gen_unary (NEG
, mode
, XEXP (op0
, 0), mode
);
2101 /* Handle both-operands-constant cases. We can only add
2102 CONST_INTs to constants since the sum of relocatable symbols
2103 can't be handled by most assemblers. Don't add CONST_INT
2104 to CONST_INT since overflow won't be computed properly if wider
2105 than HOST_BITS_PER_WIDE_INT. */
2107 if ((GET_CODE (op0
) == CONST
2108 || GET_CODE (op0
) == SYMBOL_REF
2109 || GET_CODE (op0
) == LABEL_REF
)
2110 && CONST_INT_P (op1
))
2111 return plus_constant (mode
, op0
, INTVAL (op1
));
2112 else if ((GET_CODE (op1
) == CONST
2113 || GET_CODE (op1
) == SYMBOL_REF
2114 || GET_CODE (op1
) == LABEL_REF
)
2115 && CONST_INT_P (op0
))
2116 return plus_constant (mode
, op1
, INTVAL (op0
));
2118 /* See if this is something like X * C - X or vice versa or
2119 if the multiplication is written as a shift. If so, we can
2120 distribute and make a new multiply, shift, or maybe just
2121 have X (if C is 2 in the example above). But don't make
2122 something more expensive than we had before. */
2124 if (SCALAR_INT_MODE_P (mode
))
2126 rtx lhs
= op0
, rhs
= op1
;
2128 wide_int coeff0
= wi::one (GET_MODE_PRECISION (mode
));
2129 wide_int coeff1
= wi::one (GET_MODE_PRECISION (mode
));
2131 if (GET_CODE (lhs
) == NEG
)
2133 coeff0
= wi::minus_one (GET_MODE_PRECISION (mode
));
2134 lhs
= XEXP (lhs
, 0);
2136 else if (GET_CODE (lhs
) == MULT
2137 && CONST_SCALAR_INT_P (XEXP (lhs
, 1)))
2139 coeff0
= std::make_pair (XEXP (lhs
, 1), mode
);
2140 lhs
= XEXP (lhs
, 0);
2142 else if (GET_CODE (lhs
) == ASHIFT
2143 && CONST_INT_P (XEXP (lhs
, 1))
2144 && INTVAL (XEXP (lhs
, 1)) >= 0
2145 && INTVAL (XEXP (lhs
, 1)) < GET_MODE_PRECISION (mode
))
2147 coeff0
= wi::set_bit_in_zero (INTVAL (XEXP (lhs
, 1)),
2148 GET_MODE_PRECISION (mode
));
2149 lhs
= XEXP (lhs
, 0);
2152 if (GET_CODE (rhs
) == NEG
)
2154 coeff1
= wi::minus_one (GET_MODE_PRECISION (mode
));
2155 rhs
= XEXP (rhs
, 0);
2157 else if (GET_CODE (rhs
) == MULT
2158 && CONST_INT_P (XEXP (rhs
, 1)))
2160 coeff1
= std::make_pair (XEXP (rhs
, 1), mode
);
2161 rhs
= XEXP (rhs
, 0);
2163 else if (GET_CODE (rhs
) == ASHIFT
2164 && CONST_INT_P (XEXP (rhs
, 1))
2165 && INTVAL (XEXP (rhs
, 1)) >= 0
2166 && INTVAL (XEXP (rhs
, 1)) < GET_MODE_PRECISION (mode
))
2168 coeff1
= wi::set_bit_in_zero (INTVAL (XEXP (rhs
, 1)),
2169 GET_MODE_PRECISION (mode
));
2170 rhs
= XEXP (rhs
, 0);
2173 if (rtx_equal_p (lhs
, rhs
))
2175 rtx orig
= gen_rtx_PLUS (mode
, op0
, op1
);
2177 bool speed
= optimize_function_for_speed_p (cfun
);
2179 coeff
= immed_wide_int_const (coeff0
+ coeff1
, mode
);
2181 tem
= simplify_gen_binary (MULT
, mode
, lhs
, coeff
);
2182 return (set_src_cost (tem
, mode
, speed
)
2183 <= set_src_cost (orig
, mode
, speed
) ? tem
: 0);
2187 /* (plus (xor X C1) C2) is (xor X (C1^C2)) if C2 is signbit. */
2188 if (CONST_SCALAR_INT_P (op1
)
2189 && GET_CODE (op0
) == XOR
2190 && CONST_SCALAR_INT_P (XEXP (op0
, 1))
2191 && mode_signbit_p (mode
, op1
))
2192 return simplify_gen_binary (XOR
, mode
, XEXP (op0
, 0),
2193 simplify_gen_binary (XOR
, mode
, op1
,
2196 /* Canonicalize (plus (mult (neg B) C) A) to (minus A (mult B C)). */
2197 if (!HONOR_SIGN_DEPENDENT_ROUNDING (mode
)
2198 && GET_CODE (op0
) == MULT
2199 && GET_CODE (XEXP (op0
, 0)) == NEG
)
2203 in1
= XEXP (XEXP (op0
, 0), 0);
2204 in2
= XEXP (op0
, 1);
2205 return simplify_gen_binary (MINUS
, mode
, op1
,
2206 simplify_gen_binary (MULT
, mode
,
2210 /* (plus (comparison A B) C) can become (neg (rev-comp A B)) if
2211 C is 1 and STORE_FLAG_VALUE is -1 or if C is -1 and STORE_FLAG_VALUE
2213 if (COMPARISON_P (op0
)
2214 && ((STORE_FLAG_VALUE
== -1 && trueop1
== const1_rtx
)
2215 || (STORE_FLAG_VALUE
== 1 && trueop1
== constm1_rtx
))
2216 && (reversed
= reversed_comparison (op0
, mode
)))
2218 simplify_gen_unary (NEG
, mode
, reversed
, mode
);
2220 /* If one of the operands is a PLUS or a MINUS, see if we can
2221 simplify this by the associative law.
2222 Don't use the associative law for floating point.
2223 The inaccuracy makes it nonassociative,
2224 and subtle programs can break if operations are associated. */
2226 if (INTEGRAL_MODE_P (mode
)
2227 && (plus_minus_operand_p (op0
)
2228 || plus_minus_operand_p (op1
))
2229 && (tem
= simplify_plus_minus (code
, mode
, op0
, op1
)) != 0)
2232 /* Reassociate floating point addition only when the user
2233 specifies associative math operations. */
2234 if (FLOAT_MODE_P (mode
)
2235 && flag_associative_math
)
2237 tem
= simplify_associative_operation (code
, mode
, op0
, op1
);
2244 /* Convert (compare (gt (flags) 0) (lt (flags) 0)) to (flags). */
2245 if (((GET_CODE (op0
) == GT
&& GET_CODE (op1
) == LT
)
2246 || (GET_CODE (op0
) == GTU
&& GET_CODE (op1
) == LTU
))
2247 && XEXP (op0
, 1) == const0_rtx
&& XEXP (op1
, 1) == const0_rtx
)
2249 rtx xop00
= XEXP (op0
, 0);
2250 rtx xop10
= XEXP (op1
, 0);
2252 if (GET_CODE (xop00
) == CC0
&& GET_CODE (xop10
) == CC0
)
2255 if (REG_P (xop00
) && REG_P (xop10
)
2256 && GET_MODE (xop00
) == GET_MODE (xop10
)
2257 && REGNO (xop00
) == REGNO (xop10
)
2258 && GET_MODE_CLASS (GET_MODE (xop00
)) == MODE_CC
2259 && GET_MODE_CLASS (GET_MODE (xop10
)) == MODE_CC
)
2265 /* We can't assume x-x is 0 even with non-IEEE floating point,
2266 but since it is zero except in very strange circumstances, we
2267 will treat it as zero with -ffinite-math-only. */
2268 if (rtx_equal_p (trueop0
, trueop1
)
2269 && ! side_effects_p (op0
)
2270 && (!FLOAT_MODE_P (mode
) || !HONOR_NANS (mode
)))
2271 return CONST0_RTX (mode
);
2273 /* Change subtraction from zero into negation. (0 - x) is the
2274 same as -x when x is NaN, infinite, or finite and nonzero.
2275 But if the mode has signed zeros, and does not round towards
2276 -infinity, then 0 - 0 is 0, not -0. */
2277 if (!HONOR_SIGNED_ZEROS (mode
) && trueop0
== CONST0_RTX (mode
))
2278 return simplify_gen_unary (NEG
, mode
, op1
, mode
);
2280 /* (-1 - a) is ~a, unless the expression contains symbolic
2281 constants, in which case not retaining additions and
2282 subtractions could cause invalid assembly to be produced. */
2283 if (trueop0
== constm1_rtx
2284 && !contains_symbolic_reference_p (op1
))
2285 return simplify_gen_unary (NOT
, mode
, op1
, mode
);
2287 /* Subtracting 0 has no effect unless the mode has signed zeros
2288 and supports rounding towards -infinity. In such a case,
2290 if (!(HONOR_SIGNED_ZEROS (mode
)
2291 && HONOR_SIGN_DEPENDENT_ROUNDING (mode
))
2292 && trueop1
== CONST0_RTX (mode
))
2295 /* See if this is something like X * C - X or vice versa or
2296 if the multiplication is written as a shift. If so, we can
2297 distribute and make a new multiply, shift, or maybe just
2298 have X (if C is 2 in the example above). But don't make
2299 something more expensive than we had before. */
2301 if (SCALAR_INT_MODE_P (mode
))
2303 rtx lhs
= op0
, rhs
= op1
;
2305 wide_int coeff0
= wi::one (GET_MODE_PRECISION (mode
));
2306 wide_int negcoeff1
= wi::minus_one (GET_MODE_PRECISION (mode
));
2308 if (GET_CODE (lhs
) == NEG
)
2310 coeff0
= wi::minus_one (GET_MODE_PRECISION (mode
));
2311 lhs
= XEXP (lhs
, 0);
2313 else if (GET_CODE (lhs
) == MULT
2314 && CONST_SCALAR_INT_P (XEXP (lhs
, 1)))
2316 coeff0
= std::make_pair (XEXP (lhs
, 1), mode
);
2317 lhs
= XEXP (lhs
, 0);
2319 else if (GET_CODE (lhs
) == ASHIFT
2320 && CONST_INT_P (XEXP (lhs
, 1))
2321 && INTVAL (XEXP (lhs
, 1)) >= 0
2322 && INTVAL (XEXP (lhs
, 1)) < GET_MODE_PRECISION (mode
))
2324 coeff0
= wi::set_bit_in_zero (INTVAL (XEXP (lhs
, 1)),
2325 GET_MODE_PRECISION (mode
));
2326 lhs
= XEXP (lhs
, 0);
2329 if (GET_CODE (rhs
) == NEG
)
2331 negcoeff1
= wi::one (GET_MODE_PRECISION (mode
));
2332 rhs
= XEXP (rhs
, 0);
2334 else if (GET_CODE (rhs
) == MULT
2335 && CONST_INT_P (XEXP (rhs
, 1)))
2337 negcoeff1
= wi::neg (std::make_pair (XEXP (rhs
, 1), mode
));
2338 rhs
= XEXP (rhs
, 0);
2340 else if (GET_CODE (rhs
) == ASHIFT
2341 && CONST_INT_P (XEXP (rhs
, 1))
2342 && INTVAL (XEXP (rhs
, 1)) >= 0
2343 && INTVAL (XEXP (rhs
, 1)) < GET_MODE_PRECISION (mode
))
2345 negcoeff1
= wi::set_bit_in_zero (INTVAL (XEXP (rhs
, 1)),
2346 GET_MODE_PRECISION (mode
));
2347 negcoeff1
= -negcoeff1
;
2348 rhs
= XEXP (rhs
, 0);
2351 if (rtx_equal_p (lhs
, rhs
))
2353 rtx orig
= gen_rtx_MINUS (mode
, op0
, op1
);
2355 bool speed
= optimize_function_for_speed_p (cfun
);
2357 coeff
= immed_wide_int_const (coeff0
+ negcoeff1
, mode
);
2359 tem
= simplify_gen_binary (MULT
, mode
, lhs
, coeff
);
2360 return (set_src_cost (tem
, mode
, speed
)
2361 <= set_src_cost (orig
, mode
, speed
) ? tem
: 0);
2365 /* (a - (-b)) -> (a + b). True even for IEEE. */
2366 if (GET_CODE (op1
) == NEG
)
2367 return simplify_gen_binary (PLUS
, mode
, op0
, XEXP (op1
, 0));
2369 /* (-x - c) may be simplified as (-c - x). */
2370 if (GET_CODE (op0
) == NEG
2371 && (CONST_SCALAR_INT_P (op1
) || CONST_DOUBLE_AS_FLOAT_P (op1
)))
2373 tem
= simplify_unary_operation (NEG
, mode
, op1
, mode
);
2375 return simplify_gen_binary (MINUS
, mode
, tem
, XEXP (op0
, 0));
2378 /* Don't let a relocatable value get a negative coeff. */
2379 if (CONST_INT_P (op1
) && GET_MODE (op0
) != VOIDmode
)
2380 return simplify_gen_binary (PLUS
, mode
,
2382 neg_const_int (mode
, op1
));
2384 /* (x - (x & y)) -> (x & ~y) */
2385 if (INTEGRAL_MODE_P (mode
) && GET_CODE (op1
) == AND
)
2387 if (rtx_equal_p (op0
, XEXP (op1
, 0)))
2389 tem
= simplify_gen_unary (NOT
, mode
, XEXP (op1
, 1),
2390 GET_MODE (XEXP (op1
, 1)));
2391 return simplify_gen_binary (AND
, mode
, op0
, tem
);
2393 if (rtx_equal_p (op0
, XEXP (op1
, 1)))
2395 tem
= simplify_gen_unary (NOT
, mode
, XEXP (op1
, 0),
2396 GET_MODE (XEXP (op1
, 0)));
2397 return simplify_gen_binary (AND
, mode
, op0
, tem
);
2401 /* If STORE_FLAG_VALUE is 1, (minus 1 (comparison foo bar)) can be done
2402 by reversing the comparison code if valid. */
2403 if (STORE_FLAG_VALUE
== 1
2404 && trueop0
== const1_rtx
2405 && COMPARISON_P (op1
)
2406 && (reversed
= reversed_comparison (op1
, mode
)))
2409 /* Canonicalize (minus A (mult (neg B) C)) to (plus (mult B C) A). */
2410 if (!HONOR_SIGN_DEPENDENT_ROUNDING (mode
)
2411 && GET_CODE (op1
) == MULT
2412 && GET_CODE (XEXP (op1
, 0)) == NEG
)
2416 in1
= XEXP (XEXP (op1
, 0), 0);
2417 in2
= XEXP (op1
, 1);
2418 return simplify_gen_binary (PLUS
, mode
,
2419 simplify_gen_binary (MULT
, mode
,
2424 /* Canonicalize (minus (neg A) (mult B C)) to
2425 (minus (mult (neg B) C) A). */
2426 if (!HONOR_SIGN_DEPENDENT_ROUNDING (mode
)
2427 && GET_CODE (op1
) == MULT
2428 && GET_CODE (op0
) == NEG
)
2432 in1
= simplify_gen_unary (NEG
, mode
, XEXP (op1
, 0), mode
);
2433 in2
= XEXP (op1
, 1);
2434 return simplify_gen_binary (MINUS
, mode
,
2435 simplify_gen_binary (MULT
, mode
,
2440 /* If one of the operands is a PLUS or a MINUS, see if we can
2441 simplify this by the associative law. This will, for example,
2442 canonicalize (minus A (plus B C)) to (minus (minus A B) C).
2443 Don't use the associative law for floating point.
2444 The inaccuracy makes it nonassociative,
2445 and subtle programs can break if operations are associated. */
2447 if (INTEGRAL_MODE_P (mode
)
2448 && (plus_minus_operand_p (op0
)
2449 || plus_minus_operand_p (op1
))
2450 && (tem
= simplify_plus_minus (code
, mode
, op0
, op1
)) != 0)
2455 if (trueop1
== constm1_rtx
)
2456 return simplify_gen_unary (NEG
, mode
, op0
, mode
);
2458 if (GET_CODE (op0
) == NEG
)
2460 rtx temp
= simplify_unary_operation (NEG
, mode
, op1
, mode
);
2461 /* If op1 is a MULT as well and simplify_unary_operation
2462 just moved the NEG to the second operand, simplify_gen_binary
2463 below could through simplify_associative_operation move
2464 the NEG around again and recurse endlessly. */
2466 && GET_CODE (op1
) == MULT
2467 && GET_CODE (temp
) == MULT
2468 && XEXP (op1
, 0) == XEXP (temp
, 0)
2469 && GET_CODE (XEXP (temp
, 1)) == NEG
2470 && XEXP (op1
, 1) == XEXP (XEXP (temp
, 1), 0))
2473 return simplify_gen_binary (MULT
, mode
, XEXP (op0
, 0), temp
);
2475 if (GET_CODE (op1
) == NEG
)
2477 rtx temp
= simplify_unary_operation (NEG
, mode
, op0
, mode
);
2478 /* If op0 is a MULT as well and simplify_unary_operation
2479 just moved the NEG to the second operand, simplify_gen_binary
2480 below could through simplify_associative_operation move
2481 the NEG around again and recurse endlessly. */
2483 && GET_CODE (op0
) == MULT
2484 && GET_CODE (temp
) == MULT
2485 && XEXP (op0
, 0) == XEXP (temp
, 0)
2486 && GET_CODE (XEXP (temp
, 1)) == NEG
2487 && XEXP (op0
, 1) == XEXP (XEXP (temp
, 1), 0))
2490 return simplify_gen_binary (MULT
, mode
, temp
, XEXP (op1
, 0));
2493 /* Maybe simplify x * 0 to 0. The reduction is not valid if
2494 x is NaN, since x * 0 is then also NaN. Nor is it valid
2495 when the mode has signed zeros, since multiplying a negative
2496 number by 0 will give -0, not 0. */
2497 if (!HONOR_NANS (mode
)
2498 && !HONOR_SIGNED_ZEROS (mode
)
2499 && trueop1
== CONST0_RTX (mode
)
2500 && ! side_effects_p (op0
))
2503 /* In IEEE floating point, x*1 is not equivalent to x for
2505 if (!HONOR_SNANS (mode
)
2506 && trueop1
== CONST1_RTX (mode
))
2509 /* Convert multiply by constant power of two into shift. */
2510 if (CONST_SCALAR_INT_P (trueop1
))
2512 val
= wi::exact_log2 (std::make_pair (trueop1
, mode
));
2514 return simplify_gen_binary (ASHIFT
, mode
, op0
, GEN_INT (val
));
2517 /* x*2 is x+x and x*(-1) is -x */
2518 if (CONST_DOUBLE_AS_FLOAT_P (trueop1
)
2519 && SCALAR_FLOAT_MODE_P (GET_MODE (trueop1
))
2520 && !DECIMAL_FLOAT_MODE_P (GET_MODE (trueop1
))
2521 && GET_MODE (op0
) == mode
)
2523 const REAL_VALUE_TYPE
*d1
= CONST_DOUBLE_REAL_VALUE (trueop1
);
2525 if (real_equal (d1
, &dconst2
))
2526 return simplify_gen_binary (PLUS
, mode
, op0
, copy_rtx (op0
));
2528 if (!HONOR_SNANS (mode
)
2529 && real_equal (d1
, &dconstm1
))
2530 return simplify_gen_unary (NEG
, mode
, op0
, mode
);
2533 /* Optimize -x * -x as x * x. */
2534 if (FLOAT_MODE_P (mode
)
2535 && GET_CODE (op0
) == NEG
2536 && GET_CODE (op1
) == NEG
2537 && rtx_equal_p (XEXP (op0
, 0), XEXP (op1
, 0))
2538 && !side_effects_p (XEXP (op0
, 0)))
2539 return simplify_gen_binary (MULT
, mode
, XEXP (op0
, 0), XEXP (op1
, 0));
2541 /* Likewise, optimize abs(x) * abs(x) as x * x. */
2542 if (SCALAR_FLOAT_MODE_P (mode
)
2543 && GET_CODE (op0
) == ABS
2544 && GET_CODE (op1
) == ABS
2545 && rtx_equal_p (XEXP (op0
, 0), XEXP (op1
, 0))
2546 && !side_effects_p (XEXP (op0
, 0)))
2547 return simplify_gen_binary (MULT
, mode
, XEXP (op0
, 0), XEXP (op1
, 0));
2549 /* Reassociate multiplication, but for floating point MULTs
2550 only when the user specifies unsafe math optimizations. */
2551 if (! FLOAT_MODE_P (mode
)
2552 || flag_unsafe_math_optimizations
)
2554 tem
= simplify_associative_operation (code
, mode
, op0
, op1
);
2561 if (trueop1
== CONST0_RTX (mode
))
2563 if (INTEGRAL_MODE_P (mode
)
2564 && trueop1
== CONSTM1_RTX (mode
)
2565 && !side_effects_p (op0
))
2567 if (rtx_equal_p (trueop0
, trueop1
) && ! side_effects_p (op0
))
2569 /* A | (~A) -> -1 */
2570 if (((GET_CODE (op0
) == NOT
&& rtx_equal_p (XEXP (op0
, 0), op1
))
2571 || (GET_CODE (op1
) == NOT
&& rtx_equal_p (XEXP (op1
, 0), op0
)))
2572 && ! side_effects_p (op0
)
2573 && SCALAR_INT_MODE_P (mode
))
2576 /* (ior A C) is C if all bits of A that might be nonzero are on in C. */
2577 if (CONST_INT_P (op1
)
2578 && HWI_COMPUTABLE_MODE_P (mode
)
2579 && (nonzero_bits (op0
, mode
) & ~UINTVAL (op1
)) == 0
2580 && !side_effects_p (op0
))
2583 /* Canonicalize (X & C1) | C2. */
2584 if (GET_CODE (op0
) == AND
2585 && CONST_INT_P (trueop1
)
2586 && CONST_INT_P (XEXP (op0
, 1)))
2588 HOST_WIDE_INT mask
= GET_MODE_MASK (mode
);
2589 HOST_WIDE_INT c1
= INTVAL (XEXP (op0
, 1));
2590 HOST_WIDE_INT c2
= INTVAL (trueop1
);
2592 /* If (C1&C2) == C1, then (X&C1)|C2 becomes X. */
2594 && !side_effects_p (XEXP (op0
, 0)))
2597 /* If (C1|C2) == ~0 then (X&C1)|C2 becomes X|C2. */
2598 if (((c1
|c2
) & mask
) == mask
)
2599 return simplify_gen_binary (IOR
, mode
, XEXP (op0
, 0), op1
);
2601 /* Minimize the number of bits set in C1, i.e. C1 := C1 & ~C2. */
2602 if (((c1
& ~c2
) & mask
) != (c1
& mask
))
2604 tem
= simplify_gen_binary (AND
, mode
, XEXP (op0
, 0),
2605 gen_int_mode (c1
& ~c2
, mode
));
2606 return simplify_gen_binary (IOR
, mode
, tem
, op1
);
2610 /* Convert (A & B) | A to A. */
2611 if (GET_CODE (op0
) == AND
2612 && (rtx_equal_p (XEXP (op0
, 0), op1
)
2613 || rtx_equal_p (XEXP (op0
, 1), op1
))
2614 && ! side_effects_p (XEXP (op0
, 0))
2615 && ! side_effects_p (XEXP (op0
, 1)))
2618 /* Convert (ior (ashift A CX) (lshiftrt A CY)) where CX+CY equals the
2619 mode size to (rotate A CX). */
2621 if (GET_CODE (op1
) == ASHIFT
2622 || GET_CODE (op1
) == SUBREG
)
2633 if (GET_CODE (opleft
) == ASHIFT
&& GET_CODE (opright
) == LSHIFTRT
2634 && rtx_equal_p (XEXP (opleft
, 0), XEXP (opright
, 0))
2635 && CONST_INT_P (XEXP (opleft
, 1))
2636 && CONST_INT_P (XEXP (opright
, 1))
2637 && (INTVAL (XEXP (opleft
, 1)) + INTVAL (XEXP (opright
, 1))
2638 == GET_MODE_PRECISION (mode
)))
2639 return gen_rtx_ROTATE (mode
, XEXP (opright
, 0), XEXP (opleft
, 1));
2641 /* Same, but for ashift that has been "simplified" to a wider mode
2642 by simplify_shift_const. */
2644 if (GET_CODE (opleft
) == SUBREG
2645 && GET_CODE (SUBREG_REG (opleft
)) == ASHIFT
2646 && GET_CODE (opright
) == LSHIFTRT
2647 && GET_CODE (XEXP (opright
, 0)) == SUBREG
2648 && GET_MODE (opleft
) == GET_MODE (XEXP (opright
, 0))
2649 && SUBREG_BYTE (opleft
) == SUBREG_BYTE (XEXP (opright
, 0))
2650 && (GET_MODE_SIZE (GET_MODE (opleft
))
2651 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (opleft
))))
2652 && rtx_equal_p (XEXP (SUBREG_REG (opleft
), 0),
2653 SUBREG_REG (XEXP (opright
, 0)))
2654 && CONST_INT_P (XEXP (SUBREG_REG (opleft
), 1))
2655 && CONST_INT_P (XEXP (opright
, 1))
2656 && (INTVAL (XEXP (SUBREG_REG (opleft
), 1)) + INTVAL (XEXP (opright
, 1))
2657 == GET_MODE_PRECISION (mode
)))
2658 return gen_rtx_ROTATE (mode
, XEXP (opright
, 0),
2659 XEXP (SUBREG_REG (opleft
), 1));
2661 /* If we have (ior (and (X C1) C2)), simplify this by making
2662 C1 as small as possible if C1 actually changes. */
2663 if (CONST_INT_P (op1
)
2664 && (HWI_COMPUTABLE_MODE_P (mode
)
2665 || INTVAL (op1
) > 0)
2666 && GET_CODE (op0
) == AND
2667 && CONST_INT_P (XEXP (op0
, 1))
2668 && CONST_INT_P (op1
)
2669 && (UINTVAL (XEXP (op0
, 1)) & UINTVAL (op1
)) != 0)
2671 rtx tmp
= simplify_gen_binary (AND
, mode
, XEXP (op0
, 0),
2672 gen_int_mode (UINTVAL (XEXP (op0
, 1))
2675 return simplify_gen_binary (IOR
, mode
, tmp
, op1
);
2678 /* If OP0 is (ashiftrt (plus ...) C), it might actually be
2679 a (sign_extend (plus ...)). Then check if OP1 is a CONST_INT and
2680 the PLUS does not affect any of the bits in OP1: then we can do
2681 the IOR as a PLUS and we can associate. This is valid if OP1
2682 can be safely shifted left C bits. */
2683 if (CONST_INT_P (trueop1
) && GET_CODE (op0
) == ASHIFTRT
2684 && GET_CODE (XEXP (op0
, 0)) == PLUS
2685 && CONST_INT_P (XEXP (XEXP (op0
, 0), 1))
2686 && CONST_INT_P (XEXP (op0
, 1))
2687 && INTVAL (XEXP (op0
, 1)) < HOST_BITS_PER_WIDE_INT
)
2689 int count
= INTVAL (XEXP (op0
, 1));
2690 HOST_WIDE_INT mask
= INTVAL (trueop1
) << count
;
2692 if (mask
>> count
== INTVAL (trueop1
)
2693 && trunc_int_for_mode (mask
, mode
) == mask
2694 && (mask
& nonzero_bits (XEXP (op0
, 0), mode
)) == 0)
2695 return simplify_gen_binary (ASHIFTRT
, mode
,
2696 plus_constant (mode
, XEXP (op0
, 0),
2701 tem
= simplify_byte_swapping_operation (code
, mode
, op0
, op1
);
2705 tem
= simplify_associative_operation (code
, mode
, op0
, op1
);
2711 if (trueop1
== CONST0_RTX (mode
))
2713 if (INTEGRAL_MODE_P (mode
) && trueop1
== CONSTM1_RTX (mode
))
2714 return simplify_gen_unary (NOT
, mode
, op0
, mode
);
2715 if (rtx_equal_p (trueop0
, trueop1
)
2716 && ! side_effects_p (op0
)
2717 && GET_MODE_CLASS (mode
) != MODE_CC
)
2718 return CONST0_RTX (mode
);
2720 /* Canonicalize XOR of the most significant bit to PLUS. */
2721 if (CONST_SCALAR_INT_P (op1
)
2722 && mode_signbit_p (mode
, op1
))
2723 return simplify_gen_binary (PLUS
, mode
, op0
, op1
);
2724 /* (xor (plus X C1) C2) is (xor X (C1^C2)) if C1 is signbit. */
2725 if (CONST_SCALAR_INT_P (op1
)
2726 && GET_CODE (op0
) == PLUS
2727 && CONST_SCALAR_INT_P (XEXP (op0
, 1))
2728 && mode_signbit_p (mode
, XEXP (op0
, 1)))
2729 return simplify_gen_binary (XOR
, mode
, XEXP (op0
, 0),
2730 simplify_gen_binary (XOR
, mode
, op1
,
2733 /* If we are XORing two things that have no bits in common,
2734 convert them into an IOR. This helps to detect rotation encoded
2735 using those methods and possibly other simplifications. */
2737 if (HWI_COMPUTABLE_MODE_P (mode
)
2738 && (nonzero_bits (op0
, mode
)
2739 & nonzero_bits (op1
, mode
)) == 0)
2740 return (simplify_gen_binary (IOR
, mode
, op0
, op1
));
2742 /* Convert (XOR (NOT x) (NOT y)) to (XOR x y).
2743 Also convert (XOR (NOT x) y) to (NOT (XOR x y)), similarly for
2746 int num_negated
= 0;
2748 if (GET_CODE (op0
) == NOT
)
2749 num_negated
++, op0
= XEXP (op0
, 0);
2750 if (GET_CODE (op1
) == NOT
)
2751 num_negated
++, op1
= XEXP (op1
, 0);
2753 if (num_negated
== 2)
2754 return simplify_gen_binary (XOR
, mode
, op0
, op1
);
2755 else if (num_negated
== 1)
2756 return simplify_gen_unary (NOT
, mode
,
2757 simplify_gen_binary (XOR
, mode
, op0
, op1
),
2761 /* Convert (xor (and A B) B) to (and (not A) B). The latter may
2762 correspond to a machine insn or result in further simplifications
2763 if B is a constant. */
2765 if (GET_CODE (op0
) == AND
2766 && rtx_equal_p (XEXP (op0
, 1), op1
)
2767 && ! side_effects_p (op1
))
2768 return simplify_gen_binary (AND
, mode
,
2769 simplify_gen_unary (NOT
, mode
,
2770 XEXP (op0
, 0), mode
),
2773 else if (GET_CODE (op0
) == AND
2774 && rtx_equal_p (XEXP (op0
, 0), op1
)
2775 && ! side_effects_p (op1
))
2776 return simplify_gen_binary (AND
, mode
,
2777 simplify_gen_unary (NOT
, mode
,
2778 XEXP (op0
, 1), mode
),
2781 /* Given (xor (ior (xor A B) C) D), where B, C and D are
2782 constants, simplify to (xor (ior A C) (B&~C)^D), canceling
2783 out bits inverted twice and not set by C. Similarly, given
2784 (xor (and (xor A B) C) D), simplify without inverting C in
2785 the xor operand: (xor (and A C) (B&C)^D).
2787 else if ((GET_CODE (op0
) == IOR
|| GET_CODE (op0
) == AND
)
2788 && GET_CODE (XEXP (op0
, 0)) == XOR
2789 && CONST_INT_P (op1
)
2790 && CONST_INT_P (XEXP (op0
, 1))
2791 && CONST_INT_P (XEXP (XEXP (op0
, 0), 1)))
2793 enum rtx_code op
= GET_CODE (op0
);
2794 rtx a
= XEXP (XEXP (op0
, 0), 0);
2795 rtx b
= XEXP (XEXP (op0
, 0), 1);
2796 rtx c
= XEXP (op0
, 1);
2798 HOST_WIDE_INT bval
= INTVAL (b
);
2799 HOST_WIDE_INT cval
= INTVAL (c
);
2800 HOST_WIDE_INT dval
= INTVAL (d
);
2801 HOST_WIDE_INT xcval
;
2808 return simplify_gen_binary (XOR
, mode
,
2809 simplify_gen_binary (op
, mode
, a
, c
),
2810 gen_int_mode ((bval
& xcval
) ^ dval
,
2814 /* Given (xor (and A B) C), using P^Q == (~P&Q) | (~Q&P),
2815 we can transform like this:
2816 (A&B)^C == ~(A&B)&C | ~C&(A&B)
2817 == (~A|~B)&C | ~C&(A&B) * DeMorgan's Law
2818 == ~A&C | ~B&C | A&(~C&B) * Distribute and re-order
2819 Attempt a few simplifications when B and C are both constants. */
2820 if (GET_CODE (op0
) == AND
2821 && CONST_INT_P (op1
)
2822 && CONST_INT_P (XEXP (op0
, 1)))
2824 rtx a
= XEXP (op0
, 0);
2825 rtx b
= XEXP (op0
, 1);
2827 HOST_WIDE_INT bval
= INTVAL (b
);
2828 HOST_WIDE_INT cval
= INTVAL (c
);
2830 /* Instead of computing ~A&C, we compute its negated value,
2831 ~(A|~C). If it yields -1, ~A&C is zero, so we can
2832 optimize for sure. If it does not simplify, we still try
2833 to compute ~A&C below, but since that always allocates
2834 RTL, we don't try that before committing to returning a
2835 simplified expression. */
2836 rtx n_na_c
= simplify_binary_operation (IOR
, mode
, a
,
2839 if ((~cval
& bval
) == 0)
2841 rtx na_c
= NULL_RTX
;
2843 na_c
= simplify_gen_unary (NOT
, mode
, n_na_c
, mode
);
2846 /* If ~A does not simplify, don't bother: we don't
2847 want to simplify 2 operations into 3, and if na_c
2848 were to simplify with na, n_na_c would have
2849 simplified as well. */
2850 rtx na
= simplify_unary_operation (NOT
, mode
, a
, mode
);
2852 na_c
= simplify_gen_binary (AND
, mode
, na
, c
);
2855 /* Try to simplify ~A&C | ~B&C. */
2856 if (na_c
!= NULL_RTX
)
2857 return simplify_gen_binary (IOR
, mode
, na_c
,
2858 gen_int_mode (~bval
& cval
, mode
));
2862 /* If ~A&C is zero, simplify A&(~C&B) | ~B&C. */
2863 if (n_na_c
== CONSTM1_RTX (mode
))
2865 rtx a_nc_b
= simplify_gen_binary (AND
, mode
, a
,
2866 gen_int_mode (~cval
& bval
,
2868 return simplify_gen_binary (IOR
, mode
, a_nc_b
,
2869 gen_int_mode (~bval
& cval
,
2875 /* (xor (comparison foo bar) (const_int 1)) can become the reversed
2876 comparison if STORE_FLAG_VALUE is 1. */
2877 if (STORE_FLAG_VALUE
== 1
2878 && trueop1
== const1_rtx
2879 && COMPARISON_P (op0
)
2880 && (reversed
= reversed_comparison (op0
, mode
)))
2883 /* (lshiftrt foo C) where C is the number of bits in FOO minus 1
2884 is (lt foo (const_int 0)), so we can perform the above
2885 simplification if STORE_FLAG_VALUE is 1. */
2887 if (STORE_FLAG_VALUE
== 1
2888 && trueop1
== const1_rtx
2889 && GET_CODE (op0
) == LSHIFTRT
2890 && CONST_INT_P (XEXP (op0
, 1))
2891 && INTVAL (XEXP (op0
, 1)) == GET_MODE_PRECISION (mode
) - 1)
2892 return gen_rtx_GE (mode
, XEXP (op0
, 0), const0_rtx
);
2894 /* (xor (comparison foo bar) (const_int sign-bit))
2895 when STORE_FLAG_VALUE is the sign bit. */
2896 if (val_signbit_p (mode
, STORE_FLAG_VALUE
)
2897 && trueop1
== const_true_rtx
2898 && COMPARISON_P (op0
)
2899 && (reversed
= reversed_comparison (op0
, mode
)))
2902 tem
= simplify_byte_swapping_operation (code
, mode
, op0
, op1
);
2906 tem
= simplify_associative_operation (code
, mode
, op0
, op1
);
2912 if (trueop1
== CONST0_RTX (mode
) && ! side_effects_p (op0
))
2914 if (INTEGRAL_MODE_P (mode
) && trueop1
== CONSTM1_RTX (mode
))
2916 if (HWI_COMPUTABLE_MODE_P (mode
))
2918 HOST_WIDE_INT nzop0
= nonzero_bits (trueop0
, mode
);
2919 HOST_WIDE_INT nzop1
;
2920 if (CONST_INT_P (trueop1
))
2922 HOST_WIDE_INT val1
= INTVAL (trueop1
);
2923 /* If we are turning off bits already known off in OP0, we need
2925 if ((nzop0
& ~val1
) == 0)
2928 nzop1
= nonzero_bits (trueop1
, mode
);
2929 /* If we are clearing all the nonzero bits, the result is zero. */
2930 if ((nzop1
& nzop0
) == 0
2931 && !side_effects_p (op0
) && !side_effects_p (op1
))
2932 return CONST0_RTX (mode
);
2934 if (rtx_equal_p (trueop0
, trueop1
) && ! side_effects_p (op0
)
2935 && GET_MODE_CLASS (mode
) != MODE_CC
)
2938 if (((GET_CODE (op0
) == NOT
&& rtx_equal_p (XEXP (op0
, 0), op1
))
2939 || (GET_CODE (op1
) == NOT
&& rtx_equal_p (XEXP (op1
, 0), op0
)))
2940 && ! side_effects_p (op0
)
2941 && GET_MODE_CLASS (mode
) != MODE_CC
)
2942 return CONST0_RTX (mode
);
2944 /* Transform (and (extend X) C) into (zero_extend (and X C)) if
2945 there are no nonzero bits of C outside of X's mode. */
2946 if ((GET_CODE (op0
) == SIGN_EXTEND
2947 || GET_CODE (op0
) == ZERO_EXTEND
)
2948 && CONST_INT_P (trueop1
)
2949 && HWI_COMPUTABLE_MODE_P (mode
)
2950 && (~GET_MODE_MASK (GET_MODE (XEXP (op0
, 0)))
2951 & UINTVAL (trueop1
)) == 0)
2953 machine_mode imode
= GET_MODE (XEXP (op0
, 0));
2954 tem
= simplify_gen_binary (AND
, imode
, XEXP (op0
, 0),
2955 gen_int_mode (INTVAL (trueop1
),
2957 return simplify_gen_unary (ZERO_EXTEND
, mode
, tem
, imode
);
2960 /* Transform (and (truncate X) C) into (truncate (and X C)). This way
2961 we might be able to further simplify the AND with X and potentially
2962 remove the truncation altogether. */
2963 if (GET_CODE (op0
) == TRUNCATE
&& CONST_INT_P (trueop1
))
2965 rtx x
= XEXP (op0
, 0);
2966 machine_mode xmode
= GET_MODE (x
);
2967 tem
= simplify_gen_binary (AND
, xmode
, x
,
2968 gen_int_mode (INTVAL (trueop1
), xmode
));
2969 return simplify_gen_unary (TRUNCATE
, mode
, tem
, xmode
);
2972 /* Canonicalize (A | C1) & C2 as (A & C2) | (C1 & C2). */
2973 if (GET_CODE (op0
) == IOR
2974 && CONST_INT_P (trueop1
)
2975 && CONST_INT_P (XEXP (op0
, 1)))
2977 HOST_WIDE_INT tmp
= INTVAL (trueop1
) & INTVAL (XEXP (op0
, 1));
2978 return simplify_gen_binary (IOR
, mode
,
2979 simplify_gen_binary (AND
, mode
,
2980 XEXP (op0
, 0), op1
),
2981 gen_int_mode (tmp
, mode
));
2984 /* Convert (A ^ B) & A to A & (~B) since the latter is often a single
2985 insn (and may simplify more). */
2986 if (GET_CODE (op0
) == XOR
2987 && rtx_equal_p (XEXP (op0
, 0), op1
)
2988 && ! side_effects_p (op1
))
2989 return simplify_gen_binary (AND
, mode
,
2990 simplify_gen_unary (NOT
, mode
,
2991 XEXP (op0
, 1), mode
),
2994 if (GET_CODE (op0
) == XOR
2995 && rtx_equal_p (XEXP (op0
, 1), op1
)
2996 && ! side_effects_p (op1
))
2997 return simplify_gen_binary (AND
, mode
,
2998 simplify_gen_unary (NOT
, mode
,
2999 XEXP (op0
, 0), mode
),
3002 /* Similarly for (~(A ^ B)) & A. */
3003 if (GET_CODE (op0
) == NOT
3004 && GET_CODE (XEXP (op0
, 0)) == XOR
3005 && rtx_equal_p (XEXP (XEXP (op0
, 0), 0), op1
)
3006 && ! side_effects_p (op1
))
3007 return simplify_gen_binary (AND
, mode
, XEXP (XEXP (op0
, 0), 1), op1
);
3009 if (GET_CODE (op0
) == NOT
3010 && GET_CODE (XEXP (op0
, 0)) == XOR
3011 && rtx_equal_p (XEXP (XEXP (op0
, 0), 1), op1
)
3012 && ! side_effects_p (op1
))
3013 return simplify_gen_binary (AND
, mode
, XEXP (XEXP (op0
, 0), 0), op1
);
3015 /* Convert (A | B) & A to A. */
3016 if (GET_CODE (op0
) == IOR
3017 && (rtx_equal_p (XEXP (op0
, 0), op1
)
3018 || rtx_equal_p (XEXP (op0
, 1), op1
))
3019 && ! side_effects_p (XEXP (op0
, 0))
3020 && ! side_effects_p (XEXP (op0
, 1)))
3023 /* For constants M and N, if M == (1LL << cst) - 1 && (N & M) == M,
3024 ((A & N) + B) & M -> (A + B) & M
3025 Similarly if (N & M) == 0,
3026 ((A | N) + B) & M -> (A + B) & M
3027 and for - instead of + and/or ^ instead of |.
3028 Also, if (N & M) == 0, then
3029 (A +- N) & M -> A & M. */
3030 if (CONST_INT_P (trueop1
)
3031 && HWI_COMPUTABLE_MODE_P (mode
)
3032 && ~UINTVAL (trueop1
)
3033 && (UINTVAL (trueop1
) & (UINTVAL (trueop1
) + 1)) == 0
3034 && (GET_CODE (op0
) == PLUS
|| GET_CODE (op0
) == MINUS
))
3039 pmop
[0] = XEXP (op0
, 0);
3040 pmop
[1] = XEXP (op0
, 1);
3042 if (CONST_INT_P (pmop
[1])
3043 && (UINTVAL (pmop
[1]) & UINTVAL (trueop1
)) == 0)
3044 return simplify_gen_binary (AND
, mode
, pmop
[0], op1
);
3046 for (which
= 0; which
< 2; which
++)
3049 switch (GET_CODE (tem
))
3052 if (CONST_INT_P (XEXP (tem
, 1))
3053 && (UINTVAL (XEXP (tem
, 1)) & UINTVAL (trueop1
))
3054 == UINTVAL (trueop1
))
3055 pmop
[which
] = XEXP (tem
, 0);
3059 if (CONST_INT_P (XEXP (tem
, 1))
3060 && (UINTVAL (XEXP (tem
, 1)) & UINTVAL (trueop1
)) == 0)
3061 pmop
[which
] = XEXP (tem
, 0);
3068 if (pmop
[0] != XEXP (op0
, 0) || pmop
[1] != XEXP (op0
, 1))
3070 tem
= simplify_gen_binary (GET_CODE (op0
), mode
,
3072 return simplify_gen_binary (code
, mode
, tem
, op1
);
3076 /* (and X (ior (not X) Y) -> (and X Y) */
3077 if (GET_CODE (op1
) == IOR
3078 && GET_CODE (XEXP (op1
, 0)) == NOT
3079 && rtx_equal_p (op0
, XEXP (XEXP (op1
, 0), 0)))
3080 return simplify_gen_binary (AND
, mode
, op0
, XEXP (op1
, 1));
3082 /* (and (ior (not X) Y) X) -> (and X Y) */
3083 if (GET_CODE (op0
) == IOR
3084 && GET_CODE (XEXP (op0
, 0)) == NOT
3085 && rtx_equal_p (op1
, XEXP (XEXP (op0
, 0), 0)))
3086 return simplify_gen_binary (AND
, mode
, op1
, XEXP (op0
, 1));
3088 /* (and X (ior Y (not X)) -> (and X Y) */
3089 if (GET_CODE (op1
) == IOR
3090 && GET_CODE (XEXP (op1
, 1)) == NOT
3091 && rtx_equal_p (op0
, XEXP (XEXP (op1
, 1), 0)))
3092 return simplify_gen_binary (AND
, mode
, op0
, XEXP (op1
, 0));
3094 /* (and (ior Y (not X)) X) -> (and X Y) */
3095 if (GET_CODE (op0
) == IOR
3096 && GET_CODE (XEXP (op0
, 1)) == NOT
3097 && rtx_equal_p (op1
, XEXP (XEXP (op0
, 1), 0)))
3098 return simplify_gen_binary (AND
, mode
, op1
, XEXP (op0
, 0));
3100 tem
= simplify_byte_swapping_operation (code
, mode
, op0
, op1
);
3104 tem
= simplify_associative_operation (code
, mode
, op0
, op1
);
3110 /* 0/x is 0 (or x&0 if x has side-effects). */
3111 if (trueop0
== CONST0_RTX (mode
))
3113 if (side_effects_p (op1
))
3114 return simplify_gen_binary (AND
, mode
, op1
, trueop0
);
3118 if (trueop1
== CONST1_RTX (mode
))
3120 tem
= rtl_hooks
.gen_lowpart_no_emit (mode
, op0
);
3124 /* Convert divide by power of two into shift. */
3125 if (CONST_INT_P (trueop1
)
3126 && (val
= exact_log2 (UINTVAL (trueop1
))) > 0)
3127 return simplify_gen_binary (LSHIFTRT
, mode
, op0
, GEN_INT (val
));
3131 /* Handle floating point and integers separately. */
3132 if (SCALAR_FLOAT_MODE_P (mode
))
3134 /* Maybe change 0.0 / x to 0.0. This transformation isn't
3135 safe for modes with NaNs, since 0.0 / 0.0 will then be
3136 NaN rather than 0.0. Nor is it safe for modes with signed
3137 zeros, since dividing 0 by a negative number gives -0.0 */
3138 if (trueop0
== CONST0_RTX (mode
)
3139 && !HONOR_NANS (mode
)
3140 && !HONOR_SIGNED_ZEROS (mode
)
3141 && ! side_effects_p (op1
))
3144 if (trueop1
== CONST1_RTX (mode
)
3145 && !HONOR_SNANS (mode
))
3148 if (CONST_DOUBLE_AS_FLOAT_P (trueop1
)
3149 && trueop1
!= CONST0_RTX (mode
))
3151 const REAL_VALUE_TYPE
*d1
= CONST_DOUBLE_REAL_VALUE (trueop1
);
3154 if (real_equal (d1
, &dconstm1
)
3155 && !HONOR_SNANS (mode
))
3156 return simplify_gen_unary (NEG
, mode
, op0
, mode
);
3158 /* Change FP division by a constant into multiplication.
3159 Only do this with -freciprocal-math. */
3160 if (flag_reciprocal_math
3161 && !real_equal (d1
, &dconst0
))
3164 real_arithmetic (&d
, RDIV_EXPR
, &dconst1
, d1
);
3165 tem
= const_double_from_real_value (d
, mode
);
3166 return simplify_gen_binary (MULT
, mode
, op0
, tem
);
3170 else if (SCALAR_INT_MODE_P (mode
))
3172 /* 0/x is 0 (or x&0 if x has side-effects). */
3173 if (trueop0
== CONST0_RTX (mode
)
3174 && !cfun
->can_throw_non_call_exceptions
)
3176 if (side_effects_p (op1
))
3177 return simplify_gen_binary (AND
, mode
, op1
, trueop0
);
3181 if (trueop1
== CONST1_RTX (mode
))
3183 tem
= rtl_hooks
.gen_lowpart_no_emit (mode
, op0
);
3188 if (trueop1
== constm1_rtx
)
3190 rtx x
= rtl_hooks
.gen_lowpart_no_emit (mode
, op0
);
3192 return simplify_gen_unary (NEG
, mode
, x
, mode
);
3198 /* 0%x is 0 (or x&0 if x has side-effects). */
3199 if (trueop0
== CONST0_RTX (mode
))
3201 if (side_effects_p (op1
))
3202 return simplify_gen_binary (AND
, mode
, op1
, trueop0
);
3205 /* x%1 is 0 (of x&0 if x has side-effects). */
3206 if (trueop1
== CONST1_RTX (mode
))
3208 if (side_effects_p (op0
))
3209 return simplify_gen_binary (AND
, mode
, op0
, CONST0_RTX (mode
));
3210 return CONST0_RTX (mode
);
3212 /* Implement modulus by power of two as AND. */
3213 if (CONST_INT_P (trueop1
)
3214 && exact_log2 (UINTVAL (trueop1
)) > 0)
3215 return simplify_gen_binary (AND
, mode
, op0
,
3216 gen_int_mode (INTVAL (op1
) - 1, mode
));
3220 /* 0%x is 0 (or x&0 if x has side-effects). */
3221 if (trueop0
== CONST0_RTX (mode
))
3223 if (side_effects_p (op1
))
3224 return simplify_gen_binary (AND
, mode
, op1
, trueop0
);
3227 /* x%1 and x%-1 is 0 (or x&0 if x has side-effects). */
3228 if (trueop1
== CONST1_RTX (mode
) || trueop1
== constm1_rtx
)
3230 if (side_effects_p (op0
))
3231 return simplify_gen_binary (AND
, mode
, op0
, CONST0_RTX (mode
));
3232 return CONST0_RTX (mode
);
3238 /* Canonicalize rotates by constant amount. If op1 is bitsize / 2,
3239 prefer left rotation, if op1 is from bitsize / 2 + 1 to
3240 bitsize - 1, use other direction of rotate with 1 .. bitsize / 2 - 1
3242 #if defined(HAVE_rotate) && defined(HAVE_rotatert)
3243 if (CONST_INT_P (trueop1
)
3244 && IN_RANGE (INTVAL (trueop1
),
3245 GET_MODE_PRECISION (mode
) / 2 + (code
== ROTATE
),
3246 GET_MODE_PRECISION (mode
) - 1))
3247 return simplify_gen_binary (code
== ROTATE
? ROTATERT
: ROTATE
,
3248 mode
, op0
, GEN_INT (GET_MODE_PRECISION (mode
)
3249 - INTVAL (trueop1
)));
3253 if (trueop1
== CONST0_RTX (mode
))
3255 if (trueop0
== CONST0_RTX (mode
) && ! side_effects_p (op1
))
3257 /* Rotating ~0 always results in ~0. */
3258 if (CONST_INT_P (trueop0
) && width
<= HOST_BITS_PER_WIDE_INT
3259 && UINTVAL (trueop0
) == GET_MODE_MASK (mode
)
3260 && ! side_effects_p (op1
))
3264 scalar constants c1, c2
3265 size (M2) > size (M1)
3266 c1 == size (M2) - size (M1)
3268 (ashiftrt:M1 (subreg:M1 (lshiftrt:M2 (reg:M2) (const_int <c1>))
3272 (subreg:M1 (ashiftrt:M2 (reg:M2) (const_int <c1 + c2>))
3274 if (code
== ASHIFTRT
3275 && !VECTOR_MODE_P (mode
)
3277 && CONST_INT_P (op1
)
3278 && GET_CODE (SUBREG_REG (op0
)) == LSHIFTRT
3279 && !VECTOR_MODE_P (GET_MODE (SUBREG_REG (op0
)))
3280 && CONST_INT_P (XEXP (SUBREG_REG (op0
), 1))
3281 && (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (op0
)))
3282 > GET_MODE_BITSIZE (mode
))
3283 && (INTVAL (XEXP (SUBREG_REG (op0
), 1))
3284 == (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (op0
)))
3285 - GET_MODE_BITSIZE (mode
)))
3286 && subreg_lowpart_p (op0
))
3288 rtx tmp
= GEN_INT (INTVAL (XEXP (SUBREG_REG (op0
), 1))
3290 machine_mode inner_mode
= GET_MODE (SUBREG_REG (op0
));
3291 tmp
= simplify_gen_binary (ASHIFTRT
,
3292 GET_MODE (SUBREG_REG (op0
)),
3293 XEXP (SUBREG_REG (op0
), 0),
3295 return lowpart_subreg (mode
, tmp
, inner_mode
);
3298 if (SHIFT_COUNT_TRUNCATED
&& CONST_INT_P (op1
))
3300 val
= INTVAL (op1
) & (GET_MODE_PRECISION (mode
) - 1);
3301 if (val
!= INTVAL (op1
))
3302 return simplify_gen_binary (code
, mode
, op0
, GEN_INT (val
));
3309 if (trueop1
== CONST0_RTX (mode
))
3311 if (trueop0
== CONST0_RTX (mode
) && ! side_effects_p (op1
))
3313 goto canonicalize_shift
;
3316 if (trueop1
== CONST0_RTX (mode
))
3318 if (trueop0
== CONST0_RTX (mode
) && ! side_effects_p (op1
))
3320 /* Optimize (lshiftrt (clz X) C) as (eq X 0). */
3321 if (GET_CODE (op0
) == CLZ
3322 && CONST_INT_P (trueop1
)
3323 && STORE_FLAG_VALUE
== 1
3324 && INTVAL (trueop1
) < (HOST_WIDE_INT
)width
)
3326 machine_mode imode
= GET_MODE (XEXP (op0
, 0));
3327 unsigned HOST_WIDE_INT zero_val
= 0;
3329 if (CLZ_DEFINED_VALUE_AT_ZERO (imode
, zero_val
)
3330 && zero_val
== GET_MODE_PRECISION (imode
)
3331 && INTVAL (trueop1
) == exact_log2 (zero_val
))
3332 return simplify_gen_relational (EQ
, mode
, imode
,
3333 XEXP (op0
, 0), const0_rtx
);
3335 goto canonicalize_shift
;
3338 if (width
<= HOST_BITS_PER_WIDE_INT
3339 && mode_signbit_p (mode
, trueop1
)
3340 && ! side_effects_p (op0
))
3342 if (rtx_equal_p (trueop0
, trueop1
) && ! side_effects_p (op0
))
3344 tem
= simplify_associative_operation (code
, mode
, op0
, op1
);
3350 if (width
<= HOST_BITS_PER_WIDE_INT
3351 && CONST_INT_P (trueop1
)
3352 && (UINTVAL (trueop1
) == GET_MODE_MASK (mode
) >> 1)
3353 && ! side_effects_p (op0
))
3355 if (rtx_equal_p (trueop0
, trueop1
) && ! side_effects_p (op0
))
3357 tem
= simplify_associative_operation (code
, mode
, op0
, op1
);
3363 if (trueop1
== CONST0_RTX (mode
) && ! side_effects_p (op0
))
3365 if (rtx_equal_p (trueop0
, trueop1
) && ! side_effects_p (op0
))
3367 tem
= simplify_associative_operation (code
, mode
, op0
, op1
);
3373 if (trueop1
== constm1_rtx
&& ! side_effects_p (op0
))
3375 if (rtx_equal_p (trueop0
, trueop1
) && ! side_effects_p (op0
))
3377 tem
= simplify_associative_operation (code
, mode
, op0
, op1
);
3390 /* ??? There are simplifications that can be done. */
3394 if (!VECTOR_MODE_P (mode
))
3396 gcc_assert (VECTOR_MODE_P (GET_MODE (trueop0
)));
3397 gcc_assert (mode
== GET_MODE_INNER (GET_MODE (trueop0
)));
3398 gcc_assert (GET_CODE (trueop1
) == PARALLEL
);
3399 gcc_assert (XVECLEN (trueop1
, 0) == 1);
3400 gcc_assert (CONST_INT_P (XVECEXP (trueop1
, 0, 0)));
3402 if (GET_CODE (trueop0
) == CONST_VECTOR
)
3403 return CONST_VECTOR_ELT (trueop0
, INTVAL (XVECEXP
3406 /* Extract a scalar element from a nested VEC_SELECT expression
3407 (with optional nested VEC_CONCAT expression). Some targets
3408 (i386) extract scalar element from a vector using chain of
3409 nested VEC_SELECT expressions. When input operand is a memory
3410 operand, this operation can be simplified to a simple scalar
3411 load from an offseted memory address. */
3412 if (GET_CODE (trueop0
) == VEC_SELECT
)
3414 rtx op0
= XEXP (trueop0
, 0);
3415 rtx op1
= XEXP (trueop0
, 1);
3417 machine_mode opmode
= GET_MODE (op0
);
3418 int elt_size
= GET_MODE_UNIT_SIZE (opmode
);
3419 int n_elts
= GET_MODE_SIZE (opmode
) / elt_size
;
3421 int i
= INTVAL (XVECEXP (trueop1
, 0, 0));
3427 gcc_assert (GET_CODE (op1
) == PARALLEL
);
3428 gcc_assert (i
< n_elts
);
3430 /* Select element, pointed by nested selector. */
3431 elem
= INTVAL (XVECEXP (op1
, 0, i
));
3433 /* Handle the case when nested VEC_SELECT wraps VEC_CONCAT. */
3434 if (GET_CODE (op0
) == VEC_CONCAT
)
3436 rtx op00
= XEXP (op0
, 0);
3437 rtx op01
= XEXP (op0
, 1);
3439 machine_mode mode00
, mode01
;
3440 int n_elts00
, n_elts01
;
3442 mode00
= GET_MODE (op00
);
3443 mode01
= GET_MODE (op01
);
3445 /* Find out number of elements of each operand. */
3446 if (VECTOR_MODE_P (mode00
))
3448 elt_size
= GET_MODE_UNIT_SIZE (mode00
);
3449 n_elts00
= GET_MODE_SIZE (mode00
) / elt_size
;
3454 if (VECTOR_MODE_P (mode01
))
3456 elt_size
= GET_MODE_UNIT_SIZE (mode01
);
3457 n_elts01
= GET_MODE_SIZE (mode01
) / elt_size
;
3462 gcc_assert (n_elts
== n_elts00
+ n_elts01
);
3464 /* Select correct operand of VEC_CONCAT
3465 and adjust selector. */
3466 if (elem
< n_elts01
)
3477 vec
= rtvec_alloc (1);
3478 RTVEC_ELT (vec
, 0) = GEN_INT (elem
);
3480 tmp
= gen_rtx_fmt_ee (code
, mode
,
3481 tmp_op
, gen_rtx_PARALLEL (VOIDmode
, vec
));
3484 if (GET_CODE (trueop0
) == VEC_DUPLICATE
3485 && GET_MODE (XEXP (trueop0
, 0)) == mode
)
3486 return XEXP (trueop0
, 0);
3490 gcc_assert (VECTOR_MODE_P (GET_MODE (trueop0
)));
3491 gcc_assert (GET_MODE_INNER (mode
)
3492 == GET_MODE_INNER (GET_MODE (trueop0
)));
3493 gcc_assert (GET_CODE (trueop1
) == PARALLEL
);
3495 if (GET_CODE (trueop0
) == CONST_VECTOR
)
3497 int elt_size
= GET_MODE_UNIT_SIZE (mode
);
3498 unsigned n_elts
= (GET_MODE_SIZE (mode
) / elt_size
);
3499 rtvec v
= rtvec_alloc (n_elts
);
3502 gcc_assert (XVECLEN (trueop1
, 0) == (int) n_elts
);
3503 for (i
= 0; i
< n_elts
; i
++)
3505 rtx x
= XVECEXP (trueop1
, 0, i
);
3507 gcc_assert (CONST_INT_P (x
));
3508 RTVEC_ELT (v
, i
) = CONST_VECTOR_ELT (trueop0
,
3512 return gen_rtx_CONST_VECTOR (mode
, v
);
3515 /* Recognize the identity. */
3516 if (GET_MODE (trueop0
) == mode
)
3518 bool maybe_ident
= true;
3519 for (int i
= 0; i
< XVECLEN (trueop1
, 0); i
++)
3521 rtx j
= XVECEXP (trueop1
, 0, i
);
3522 if (!CONST_INT_P (j
) || INTVAL (j
) != i
)
3524 maybe_ident
= false;
3532 /* If we build {a,b} then permute it, build the result directly. */
3533 if (XVECLEN (trueop1
, 0) == 2
3534 && CONST_INT_P (XVECEXP (trueop1
, 0, 0))
3535 && CONST_INT_P (XVECEXP (trueop1
, 0, 1))
3536 && GET_CODE (trueop0
) == VEC_CONCAT
3537 && GET_CODE (XEXP (trueop0
, 0)) == VEC_CONCAT
3538 && GET_MODE (XEXP (trueop0
, 0)) == mode
3539 && GET_CODE (XEXP (trueop0
, 1)) == VEC_CONCAT
3540 && GET_MODE (XEXP (trueop0
, 1)) == mode
)
3542 unsigned int i0
= INTVAL (XVECEXP (trueop1
, 0, 0));
3543 unsigned int i1
= INTVAL (XVECEXP (trueop1
, 0, 1));
3546 gcc_assert (i0
< 4 && i1
< 4);
3547 subop0
= XEXP (XEXP (trueop0
, i0
/ 2), i0
% 2);
3548 subop1
= XEXP (XEXP (trueop0
, i1
/ 2), i1
% 2);
3550 return simplify_gen_binary (VEC_CONCAT
, mode
, subop0
, subop1
);
3553 if (XVECLEN (trueop1
, 0) == 2
3554 && CONST_INT_P (XVECEXP (trueop1
, 0, 0))
3555 && CONST_INT_P (XVECEXP (trueop1
, 0, 1))
3556 && GET_CODE (trueop0
) == VEC_CONCAT
3557 && GET_MODE (trueop0
) == mode
)
3559 unsigned int i0
= INTVAL (XVECEXP (trueop1
, 0, 0));
3560 unsigned int i1
= INTVAL (XVECEXP (trueop1
, 0, 1));
3563 gcc_assert (i0
< 2 && i1
< 2);
3564 subop0
= XEXP (trueop0
, i0
);
3565 subop1
= XEXP (trueop0
, i1
);
3567 return simplify_gen_binary (VEC_CONCAT
, mode
, subop0
, subop1
);
3570 /* If we select one half of a vec_concat, return that. */
3571 if (GET_CODE (trueop0
) == VEC_CONCAT
3572 && CONST_INT_P (XVECEXP (trueop1
, 0, 0)))
3574 rtx subop0
= XEXP (trueop0
, 0);
3575 rtx subop1
= XEXP (trueop0
, 1);
3576 machine_mode mode0
= GET_MODE (subop0
);
3577 machine_mode mode1
= GET_MODE (subop1
);
3578 int li
= GET_MODE_UNIT_SIZE (mode0
);
3579 int l0
= GET_MODE_SIZE (mode0
) / li
;
3580 int l1
= GET_MODE_SIZE (mode1
) / li
;
3581 int i0
= INTVAL (XVECEXP (trueop1
, 0, 0));
3582 if (i0
== 0 && !side_effects_p (op1
) && mode
== mode0
)
3584 bool success
= true;
3585 for (int i
= 1; i
< l0
; ++i
)
3587 rtx j
= XVECEXP (trueop1
, 0, i
);
3588 if (!CONST_INT_P (j
) || INTVAL (j
) != i
)
3597 if (i0
== l0
&& !side_effects_p (op0
) && mode
== mode1
)
3599 bool success
= true;
3600 for (int i
= 1; i
< l1
; ++i
)
3602 rtx j
= XVECEXP (trueop1
, 0, i
);
3603 if (!CONST_INT_P (j
) || INTVAL (j
) != i0
+ i
)
3615 if (XVECLEN (trueop1
, 0) == 1
3616 && CONST_INT_P (XVECEXP (trueop1
, 0, 0))
3617 && GET_CODE (trueop0
) == VEC_CONCAT
)
3620 int offset
= INTVAL (XVECEXP (trueop1
, 0, 0)) * GET_MODE_SIZE (mode
);
3622 /* Try to find the element in the VEC_CONCAT. */
3623 while (GET_MODE (vec
) != mode
3624 && GET_CODE (vec
) == VEC_CONCAT
)
3626 HOST_WIDE_INT vec_size
;
3628 if (CONST_INT_P (XEXP (vec
, 0)))
3630 /* vec_concat of two const_ints doesn't make sense with
3631 respect to modes. */
3632 if (CONST_INT_P (XEXP (vec
, 1)))
3635 vec_size
= GET_MODE_SIZE (GET_MODE (trueop0
))
3636 - GET_MODE_SIZE (GET_MODE (XEXP (vec
, 1)));
3639 vec_size
= GET_MODE_SIZE (GET_MODE (XEXP (vec
, 0)));
3641 if (offset
< vec_size
)
3642 vec
= XEXP (vec
, 0);
3646 vec
= XEXP (vec
, 1);
3648 vec
= avoid_constant_pool_reference (vec
);
3651 if (GET_MODE (vec
) == mode
)
3655 /* If we select elements in a vec_merge that all come from the same
3656 operand, select from that operand directly. */
3657 if (GET_CODE (op0
) == VEC_MERGE
)
3659 rtx trueop02
= avoid_constant_pool_reference (XEXP (op0
, 2));
3660 if (CONST_INT_P (trueop02
))
3662 unsigned HOST_WIDE_INT sel
= UINTVAL (trueop02
);
3663 bool all_operand0
= true;
3664 bool all_operand1
= true;
3665 for (int i
= 0; i
< XVECLEN (trueop1
, 0); i
++)
3667 rtx j
= XVECEXP (trueop1
, 0, i
);
3668 if (sel
& (1 << UINTVAL (j
)))
3669 all_operand1
= false;
3671 all_operand0
= false;
3673 if (all_operand0
&& !side_effects_p (XEXP (op0
, 1)))
3674 return simplify_gen_binary (VEC_SELECT
, mode
, XEXP (op0
, 0), op1
);
3675 if (all_operand1
&& !side_effects_p (XEXP (op0
, 0)))
3676 return simplify_gen_binary (VEC_SELECT
, mode
, XEXP (op0
, 1), op1
);
3680 /* If we have two nested selects that are inverses of each
3681 other, replace them with the source operand. */
3682 if (GET_CODE (trueop0
) == VEC_SELECT
3683 && GET_MODE (XEXP (trueop0
, 0)) == mode
)
3685 rtx op0_subop1
= XEXP (trueop0
, 1);
3686 gcc_assert (GET_CODE (op0_subop1
) == PARALLEL
);
3687 gcc_assert (XVECLEN (trueop1
, 0) == GET_MODE_NUNITS (mode
));
3689 /* Apply the outer ordering vector to the inner one. (The inner
3690 ordering vector is expressly permitted to be of a different
3691 length than the outer one.) If the result is { 0, 1, ..., n-1 }
3692 then the two VEC_SELECTs cancel. */
3693 for (int i
= 0; i
< XVECLEN (trueop1
, 0); ++i
)
3695 rtx x
= XVECEXP (trueop1
, 0, i
);
3696 if (!CONST_INT_P (x
))
3698 rtx y
= XVECEXP (op0_subop1
, 0, INTVAL (x
));
3699 if (!CONST_INT_P (y
) || i
!= INTVAL (y
))
3702 return XEXP (trueop0
, 0);
3708 machine_mode op0_mode
= (GET_MODE (trueop0
) != VOIDmode
3709 ? GET_MODE (trueop0
)
3710 : GET_MODE_INNER (mode
));
3711 machine_mode op1_mode
= (GET_MODE (trueop1
) != VOIDmode
3712 ? GET_MODE (trueop1
)
3713 : GET_MODE_INNER (mode
));
3715 gcc_assert (VECTOR_MODE_P (mode
));
3716 gcc_assert (GET_MODE_SIZE (op0_mode
) + GET_MODE_SIZE (op1_mode
)
3717 == GET_MODE_SIZE (mode
));
3719 if (VECTOR_MODE_P (op0_mode
))
3720 gcc_assert (GET_MODE_INNER (mode
)
3721 == GET_MODE_INNER (op0_mode
));
3723 gcc_assert (GET_MODE_INNER (mode
) == op0_mode
);
3725 if (VECTOR_MODE_P (op1_mode
))
3726 gcc_assert (GET_MODE_INNER (mode
)
3727 == GET_MODE_INNER (op1_mode
));
3729 gcc_assert (GET_MODE_INNER (mode
) == op1_mode
);
3731 if ((GET_CODE (trueop0
) == CONST_VECTOR
3732 || CONST_SCALAR_INT_P (trueop0
)
3733 || CONST_DOUBLE_AS_FLOAT_P (trueop0
))
3734 && (GET_CODE (trueop1
) == CONST_VECTOR
3735 || CONST_SCALAR_INT_P (trueop1
)
3736 || CONST_DOUBLE_AS_FLOAT_P (trueop1
)))
3738 int elt_size
= GET_MODE_UNIT_SIZE (mode
);
3739 unsigned n_elts
= (GET_MODE_SIZE (mode
) / elt_size
);
3740 rtvec v
= rtvec_alloc (n_elts
);
3742 unsigned in_n_elts
= 1;
3744 if (VECTOR_MODE_P (op0_mode
))
3745 in_n_elts
= (GET_MODE_SIZE (op0_mode
) / elt_size
);
3746 for (i
= 0; i
< n_elts
; i
++)
3750 if (!VECTOR_MODE_P (op0_mode
))
3751 RTVEC_ELT (v
, i
) = trueop0
;
3753 RTVEC_ELT (v
, i
) = CONST_VECTOR_ELT (trueop0
, i
);
3757 if (!VECTOR_MODE_P (op1_mode
))
3758 RTVEC_ELT (v
, i
) = trueop1
;
3760 RTVEC_ELT (v
, i
) = CONST_VECTOR_ELT (trueop1
,
3765 return gen_rtx_CONST_VECTOR (mode
, v
);
3768 /* Try to merge two VEC_SELECTs from the same vector into a single one.
3769 Restrict the transformation to avoid generating a VEC_SELECT with a
3770 mode unrelated to its operand. */
3771 if (GET_CODE (trueop0
) == VEC_SELECT
3772 && GET_CODE (trueop1
) == VEC_SELECT
3773 && rtx_equal_p (XEXP (trueop0
, 0), XEXP (trueop1
, 0))
3774 && GET_MODE (XEXP (trueop0
, 0)) == mode
)
3776 rtx par0
= XEXP (trueop0
, 1);
3777 rtx par1
= XEXP (trueop1
, 1);
3778 int len0
= XVECLEN (par0
, 0);
3779 int len1
= XVECLEN (par1
, 0);
3780 rtvec vec
= rtvec_alloc (len0
+ len1
);
3781 for (int i
= 0; i
< len0
; i
++)
3782 RTVEC_ELT (vec
, i
) = XVECEXP (par0
, 0, i
);
3783 for (int i
= 0; i
< len1
; i
++)
3784 RTVEC_ELT (vec
, len0
+ i
) = XVECEXP (par1
, 0, i
);
3785 return simplify_gen_binary (VEC_SELECT
, mode
, XEXP (trueop0
, 0),
3786 gen_rtx_PARALLEL (VOIDmode
, vec
));
3799 simplify_const_binary_operation (enum rtx_code code
, machine_mode mode
,
3802 unsigned int width
= GET_MODE_PRECISION (mode
);
3804 if (VECTOR_MODE_P (mode
)
3805 && code
!= VEC_CONCAT
3806 && GET_CODE (op0
) == CONST_VECTOR
3807 && GET_CODE (op1
) == CONST_VECTOR
)
3809 unsigned n_elts
= GET_MODE_NUNITS (mode
);
3810 machine_mode op0mode
= GET_MODE (op0
);
3811 unsigned op0_n_elts
= GET_MODE_NUNITS (op0mode
);
3812 machine_mode op1mode
= GET_MODE (op1
);
3813 unsigned op1_n_elts
= GET_MODE_NUNITS (op1mode
);
3814 rtvec v
= rtvec_alloc (n_elts
);
3817 gcc_assert (op0_n_elts
== n_elts
);
3818 gcc_assert (op1_n_elts
== n_elts
);
3819 for (i
= 0; i
< n_elts
; i
++)
3821 rtx x
= simplify_binary_operation (code
, GET_MODE_INNER (mode
),
3822 CONST_VECTOR_ELT (op0
, i
),
3823 CONST_VECTOR_ELT (op1
, i
));
3826 RTVEC_ELT (v
, i
) = x
;
3829 return gen_rtx_CONST_VECTOR (mode
, v
);
3832 if (VECTOR_MODE_P (mode
)
3833 && code
== VEC_CONCAT
3834 && (CONST_SCALAR_INT_P (op0
)
3835 || GET_CODE (op0
) == CONST_FIXED
3836 || CONST_DOUBLE_AS_FLOAT_P (op0
))
3837 && (CONST_SCALAR_INT_P (op1
)
3838 || CONST_DOUBLE_AS_FLOAT_P (op1
)
3839 || GET_CODE (op1
) == CONST_FIXED
))
3841 unsigned n_elts
= GET_MODE_NUNITS (mode
);
3842 rtvec v
= rtvec_alloc (n_elts
);
3844 gcc_assert (n_elts
>= 2);
3847 gcc_assert (GET_CODE (op0
) != CONST_VECTOR
);
3848 gcc_assert (GET_CODE (op1
) != CONST_VECTOR
);
3850 RTVEC_ELT (v
, 0) = op0
;
3851 RTVEC_ELT (v
, 1) = op1
;
3855 unsigned op0_n_elts
= GET_MODE_NUNITS (GET_MODE (op0
));
3856 unsigned op1_n_elts
= GET_MODE_NUNITS (GET_MODE (op1
));
3859 gcc_assert (GET_CODE (op0
) == CONST_VECTOR
);
3860 gcc_assert (GET_CODE (op1
) == CONST_VECTOR
);
3861 gcc_assert (op0_n_elts
+ op1_n_elts
== n_elts
);
3863 for (i
= 0; i
< op0_n_elts
; ++i
)
3864 RTVEC_ELT (v
, i
) = XVECEXP (op0
, 0, i
);
3865 for (i
= 0; i
< op1_n_elts
; ++i
)
3866 RTVEC_ELT (v
, op0_n_elts
+i
) = XVECEXP (op1
, 0, i
);
3869 return gen_rtx_CONST_VECTOR (mode
, v
);
3872 if (SCALAR_FLOAT_MODE_P (mode
)
3873 && CONST_DOUBLE_AS_FLOAT_P (op0
)
3874 && CONST_DOUBLE_AS_FLOAT_P (op1
)
3875 && mode
== GET_MODE (op0
) && mode
== GET_MODE (op1
))
3886 real_to_target (tmp0
, CONST_DOUBLE_REAL_VALUE (op0
),
3888 real_to_target (tmp1
, CONST_DOUBLE_REAL_VALUE (op1
),
3890 for (i
= 0; i
< 4; i
++)
3907 real_from_target (&r
, tmp0
, mode
);
3908 return const_double_from_real_value (r
, mode
);
3912 REAL_VALUE_TYPE f0
, f1
, value
, result
;
3913 const REAL_VALUE_TYPE
*opr0
, *opr1
;
3916 opr0
= CONST_DOUBLE_REAL_VALUE (op0
);
3917 opr1
= CONST_DOUBLE_REAL_VALUE (op1
);
3919 if (HONOR_SNANS (mode
)
3920 && (REAL_VALUE_ISSIGNALING_NAN (*opr0
)
3921 || REAL_VALUE_ISSIGNALING_NAN (*opr1
)))
3924 real_convert (&f0
, mode
, opr0
);
3925 real_convert (&f1
, mode
, opr1
);
3928 && real_equal (&f1
, &dconst0
)
3929 && (flag_trapping_math
|| ! MODE_HAS_INFINITIES (mode
)))
3932 if (MODE_HAS_INFINITIES (mode
) && HONOR_NANS (mode
)
3933 && flag_trapping_math
3934 && REAL_VALUE_ISINF (f0
) && REAL_VALUE_ISINF (f1
))
3936 int s0
= REAL_VALUE_NEGATIVE (f0
);
3937 int s1
= REAL_VALUE_NEGATIVE (f1
);
3942 /* Inf + -Inf = NaN plus exception. */
3947 /* Inf - Inf = NaN plus exception. */
3952 /* Inf / Inf = NaN plus exception. */
3959 if (code
== MULT
&& MODE_HAS_INFINITIES (mode
) && HONOR_NANS (mode
)
3960 && flag_trapping_math
3961 && ((REAL_VALUE_ISINF (f0
) && real_equal (&f1
, &dconst0
))
3962 || (REAL_VALUE_ISINF (f1
)
3963 && real_equal (&f0
, &dconst0
))))
3964 /* Inf * 0 = NaN plus exception. */
3967 inexact
= real_arithmetic (&value
, rtx_to_tree_code (code
),
3969 real_convert (&result
, mode
, &value
);
3971 /* Don't constant fold this floating point operation if
3972 the result has overflowed and flag_trapping_math. */
3974 if (flag_trapping_math
3975 && MODE_HAS_INFINITIES (mode
)
3976 && REAL_VALUE_ISINF (result
)
3977 && !REAL_VALUE_ISINF (f0
)
3978 && !REAL_VALUE_ISINF (f1
))
3979 /* Overflow plus exception. */
3982 /* Don't constant fold this floating point operation if the
3983 result may dependent upon the run-time rounding mode and
3984 flag_rounding_math is set, or if GCC's software emulation
3985 is unable to accurately represent the result. */
3987 if ((flag_rounding_math
3988 || (MODE_COMPOSITE_P (mode
) && !flag_unsafe_math_optimizations
))
3989 && (inexact
|| !real_identical (&result
, &value
)))
3992 return const_double_from_real_value (result
, mode
);
3996 /* We can fold some multi-word operations. */
3997 if ((GET_MODE_CLASS (mode
) == MODE_INT
3998 || GET_MODE_CLASS (mode
) == MODE_PARTIAL_INT
)
3999 && CONST_SCALAR_INT_P (op0
)
4000 && CONST_SCALAR_INT_P (op1
))
4004 rtx_mode_t pop0
= std::make_pair (op0
, mode
);
4005 rtx_mode_t pop1
= std::make_pair (op1
, mode
);
4007 #if TARGET_SUPPORTS_WIDE_INT == 0
4008 /* This assert keeps the simplification from producing a result
4009 that cannot be represented in a CONST_DOUBLE but a lot of
4010 upstream callers expect that this function never fails to
4011 simplify something and so you if you added this to the test
4012 above the code would die later anyway. If this assert
4013 happens, you just need to make the port support wide int. */
4014 gcc_assert (width
<= HOST_BITS_PER_DOUBLE_INT
);
4019 result
= wi::sub (pop0
, pop1
);
4023 result
= wi::add (pop0
, pop1
);
4027 result
= wi::mul (pop0
, pop1
);
4031 result
= wi::div_trunc (pop0
, pop1
, SIGNED
, &overflow
);
4037 result
= wi::mod_trunc (pop0
, pop1
, SIGNED
, &overflow
);
4043 result
= wi::div_trunc (pop0
, pop1
, UNSIGNED
, &overflow
);
4049 result
= wi::mod_trunc (pop0
, pop1
, UNSIGNED
, &overflow
);
4055 result
= wi::bit_and (pop0
, pop1
);
4059 result
= wi::bit_or (pop0
, pop1
);
4063 result
= wi::bit_xor (pop0
, pop1
);
4067 result
= wi::smin (pop0
, pop1
);
4071 result
= wi::smax (pop0
, pop1
);
4075 result
= wi::umin (pop0
, pop1
);
4079 result
= wi::umax (pop0
, pop1
);
4086 wide_int wop1
= pop1
;
4087 if (SHIFT_COUNT_TRUNCATED
)
4088 wop1
= wi::umod_trunc (wop1
, width
);
4089 else if (wi::geu_p (wop1
, width
))
4095 result
= wi::lrshift (pop0
, wop1
);
4099 result
= wi::arshift (pop0
, wop1
);
4103 result
= wi::lshift (pop0
, wop1
);
4114 if (wi::neg_p (pop1
))
4120 result
= wi::lrotate (pop0
, pop1
);
4124 result
= wi::rrotate (pop0
, pop1
);
4135 return immed_wide_int_const (result
, mode
);
4143 /* Return a positive integer if X should sort after Y. The value
4144 returned is 1 if and only if X and Y are both regs. */
4147 simplify_plus_minus_op_data_cmp (rtx x
, rtx y
)
4151 result
= (commutative_operand_precedence (y
)
4152 - commutative_operand_precedence (x
));
4154 return result
+ result
;
4156 /* Group together equal REGs to do more simplification. */
4157 if (REG_P (x
) && REG_P (y
))
4158 return REGNO (x
) > REGNO (y
);
4163 /* Simplify and canonicalize a PLUS or MINUS, at least one of whose
4164 operands may be another PLUS or MINUS.
4166 Rather than test for specific case, we do this by a brute-force method
4167 and do all possible simplifications until no more changes occur. Then
4168 we rebuild the operation.
4170 May return NULL_RTX when no changes were made. */
4173 simplify_plus_minus (enum rtx_code code
, machine_mode mode
, rtx op0
,
4176 struct simplify_plus_minus_op_data
4183 int changed
, n_constants
, canonicalized
= 0;
4186 memset (ops
, 0, sizeof ops
);
4188 /* Set up the two operands and then expand them until nothing has been
4189 changed. If we run out of room in our array, give up; this should
4190 almost never happen. */
4195 ops
[1].neg
= (code
== MINUS
);
4202 for (i
= 0; i
< n_ops
; i
++)
4204 rtx this_op
= ops
[i
].op
;
4205 int this_neg
= ops
[i
].neg
;
4206 enum rtx_code this_code
= GET_CODE (this_op
);
4212 if (n_ops
== ARRAY_SIZE (ops
))
4215 ops
[n_ops
].op
= XEXP (this_op
, 1);
4216 ops
[n_ops
].neg
= (this_code
== MINUS
) ^ this_neg
;
4219 ops
[i
].op
= XEXP (this_op
, 0);
4221 /* If this operand was negated then we will potentially
4222 canonicalize the expression. Similarly if we don't
4223 place the operands adjacent we're re-ordering the
4224 expression and thus might be performing a
4225 canonicalization. Ignore register re-ordering.
4226 ??? It might be better to shuffle the ops array here,
4227 but then (plus (plus (A, B), plus (C, D))) wouldn't
4228 be seen as non-canonical. */
4231 && !(REG_P (ops
[i
].op
) && REG_P (ops
[n_ops
- 1].op
))))
4236 ops
[i
].op
= XEXP (this_op
, 0);
4237 ops
[i
].neg
= ! this_neg
;
4243 if (n_ops
!= ARRAY_SIZE (ops
)
4244 && GET_CODE (XEXP (this_op
, 0)) == PLUS
4245 && CONSTANT_P (XEXP (XEXP (this_op
, 0), 0))
4246 && CONSTANT_P (XEXP (XEXP (this_op
, 0), 1)))
4248 ops
[i
].op
= XEXP (XEXP (this_op
, 0), 0);
4249 ops
[n_ops
].op
= XEXP (XEXP (this_op
, 0), 1);
4250 ops
[n_ops
].neg
= this_neg
;
4258 /* ~a -> (-a - 1) */
4259 if (n_ops
!= ARRAY_SIZE (ops
))
4261 ops
[n_ops
].op
= CONSTM1_RTX (mode
);
4262 ops
[n_ops
++].neg
= this_neg
;
4263 ops
[i
].op
= XEXP (this_op
, 0);
4264 ops
[i
].neg
= !this_neg
;
4274 ops
[i
].op
= neg_const_int (mode
, this_op
);
4288 if (n_constants
> 1)
4291 gcc_assert (n_ops
>= 2);
4293 /* If we only have two operands, we can avoid the loops. */
4296 enum rtx_code code
= ops
[0].neg
|| ops
[1].neg
? MINUS
: PLUS
;
4299 /* Get the two operands. Be careful with the order, especially for
4300 the cases where code == MINUS. */
4301 if (ops
[0].neg
&& ops
[1].neg
)
4303 lhs
= gen_rtx_NEG (mode
, ops
[0].op
);
4306 else if (ops
[0].neg
)
4317 return simplify_const_binary_operation (code
, mode
, lhs
, rhs
);
4320 /* Now simplify each pair of operands until nothing changes. */
4323 /* Insertion sort is good enough for a small array. */
4324 for (i
= 1; i
< n_ops
; i
++)
4326 struct simplify_plus_minus_op_data save
;
4330 cmp
= simplify_plus_minus_op_data_cmp (ops
[j
].op
, ops
[i
].op
);
4333 /* Just swapping registers doesn't count as canonicalization. */
4339 ops
[j
+ 1] = ops
[j
];
4341 && simplify_plus_minus_op_data_cmp (ops
[j
].op
, save
.op
) > 0);
4346 for (i
= n_ops
- 1; i
> 0; i
--)
4347 for (j
= i
- 1; j
>= 0; j
--)
4349 rtx lhs
= ops
[j
].op
, rhs
= ops
[i
].op
;
4350 int lneg
= ops
[j
].neg
, rneg
= ops
[i
].neg
;
4352 if (lhs
!= 0 && rhs
!= 0)
4354 enum rtx_code ncode
= PLUS
;
4360 std::swap (lhs
, rhs
);
4362 else if (swap_commutative_operands_p (lhs
, rhs
))
4363 std::swap (lhs
, rhs
);
4365 if ((GET_CODE (lhs
) == CONST
|| CONST_INT_P (lhs
))
4366 && (GET_CODE (rhs
) == CONST
|| CONST_INT_P (rhs
)))
4368 rtx tem_lhs
, tem_rhs
;
4370 tem_lhs
= GET_CODE (lhs
) == CONST
? XEXP (lhs
, 0) : lhs
;
4371 tem_rhs
= GET_CODE (rhs
) == CONST
? XEXP (rhs
, 0) : rhs
;
4372 tem
= simplify_binary_operation (ncode
, mode
, tem_lhs
,
4375 if (tem
&& !CONSTANT_P (tem
))
4376 tem
= gen_rtx_CONST (GET_MODE (tem
), tem
);
4379 tem
= simplify_binary_operation (ncode
, mode
, lhs
, rhs
);
4383 /* Reject "simplifications" that just wrap the two
4384 arguments in a CONST. Failure to do so can result
4385 in infinite recursion with simplify_binary_operation
4386 when it calls us to simplify CONST operations.
4387 Also, if we find such a simplification, don't try
4388 any more combinations with this rhs: We must have
4389 something like symbol+offset, ie. one of the
4390 trivial CONST expressions we handle later. */
4391 if (GET_CODE (tem
) == CONST
4392 && GET_CODE (XEXP (tem
, 0)) == ncode
4393 && XEXP (XEXP (tem
, 0), 0) == lhs
4394 && XEXP (XEXP (tem
, 0), 1) == rhs
)
4397 if (GET_CODE (tem
) == NEG
)
4398 tem
= XEXP (tem
, 0), lneg
= !lneg
;
4399 if (CONST_INT_P (tem
) && lneg
)
4400 tem
= neg_const_int (mode
, tem
), lneg
= 0;
4404 ops
[j
].op
= NULL_RTX
;
4414 /* Pack all the operands to the lower-numbered entries. */
4415 for (i
= 0, j
= 0; j
< n_ops
; j
++)
4424 /* If nothing changed, fail. */
4428 /* Create (minus -C X) instead of (neg (const (plus X C))). */
4430 && CONST_INT_P (ops
[1].op
)
4431 && CONSTANT_P (ops
[0].op
)
4433 return gen_rtx_fmt_ee (MINUS
, mode
, ops
[1].op
, ops
[0].op
);
4435 /* We suppressed creation of trivial CONST expressions in the
4436 combination loop to avoid recursion. Create one manually now.
4437 The combination loop should have ensured that there is exactly
4438 one CONST_INT, and the sort will have ensured that it is last
4439 in the array and that any other constant will be next-to-last. */
4442 && CONST_INT_P (ops
[n_ops
- 1].op
)
4443 && CONSTANT_P (ops
[n_ops
- 2].op
))
4445 rtx value
= ops
[n_ops
- 1].op
;
4446 if (ops
[n_ops
- 1].neg
^ ops
[n_ops
- 2].neg
)
4447 value
= neg_const_int (mode
, value
);
4448 ops
[n_ops
- 2].op
= plus_constant (mode
, ops
[n_ops
- 2].op
,
4453 /* Put a non-negated operand first, if possible. */
4455 for (i
= 0; i
< n_ops
&& ops
[i
].neg
; i
++)
4458 ops
[0].op
= gen_rtx_NEG (mode
, ops
[0].op
);
4467 /* Now make the result by performing the requested operations. */
4469 for (i
= 1; i
< n_ops
; i
++)
4470 result
= gen_rtx_fmt_ee (ops
[i
].neg
? MINUS
: PLUS
,
4471 mode
, result
, ops
[i
].op
);
4476 /* Check whether an operand is suitable for calling simplify_plus_minus. */
4478 plus_minus_operand_p (const_rtx x
)
4480 return GET_CODE (x
) == PLUS
4481 || GET_CODE (x
) == MINUS
4482 || (GET_CODE (x
) == CONST
4483 && GET_CODE (XEXP (x
, 0)) == PLUS
4484 && CONSTANT_P (XEXP (XEXP (x
, 0), 0))
4485 && CONSTANT_P (XEXP (XEXP (x
, 0), 1)));
4488 /* Like simplify_binary_operation except used for relational operators.
4489 MODE is the mode of the result. If MODE is VOIDmode, both operands must
4490 not also be VOIDmode.
4492 CMP_MODE specifies in which mode the comparison is done in, so it is
4493 the mode of the operands. If CMP_MODE is VOIDmode, it is taken from
4494 the operands or, if both are VOIDmode, the operands are compared in
4495 "infinite precision". */
4497 simplify_relational_operation (enum rtx_code code
, machine_mode mode
,
4498 machine_mode cmp_mode
, rtx op0
, rtx op1
)
4500 rtx tem
, trueop0
, trueop1
;
4502 if (cmp_mode
== VOIDmode
)
4503 cmp_mode
= GET_MODE (op0
);
4504 if (cmp_mode
== VOIDmode
)
4505 cmp_mode
= GET_MODE (op1
);
4507 tem
= simplify_const_relational_operation (code
, cmp_mode
, op0
, op1
);
4510 if (SCALAR_FLOAT_MODE_P (mode
))
4512 if (tem
== const0_rtx
)
4513 return CONST0_RTX (mode
);
4514 #ifdef FLOAT_STORE_FLAG_VALUE
4516 REAL_VALUE_TYPE val
;
4517 val
= FLOAT_STORE_FLAG_VALUE (mode
);
4518 return const_double_from_real_value (val
, mode
);
4524 if (VECTOR_MODE_P (mode
))
4526 if (tem
== const0_rtx
)
4527 return CONST0_RTX (mode
);
4528 #ifdef VECTOR_STORE_FLAG_VALUE
4533 rtx val
= VECTOR_STORE_FLAG_VALUE (mode
);
4534 if (val
== NULL_RTX
)
4536 if (val
== const1_rtx
)
4537 return CONST1_RTX (mode
);
4539 units
= GET_MODE_NUNITS (mode
);
4540 v
= rtvec_alloc (units
);
4541 for (i
= 0; i
< units
; i
++)
4542 RTVEC_ELT (v
, i
) = val
;
4543 return gen_rtx_raw_CONST_VECTOR (mode
, v
);
4553 /* For the following tests, ensure const0_rtx is op1. */
4554 if (swap_commutative_operands_p (op0
, op1
)
4555 || (op0
== const0_rtx
&& op1
!= const0_rtx
))
4556 std::swap (op0
, op1
), code
= swap_condition (code
);
4558 /* If op0 is a compare, extract the comparison arguments from it. */
4559 if (GET_CODE (op0
) == COMPARE
&& op1
== const0_rtx
)
4560 return simplify_gen_relational (code
, mode
, VOIDmode
,
4561 XEXP (op0
, 0), XEXP (op0
, 1));
4563 if (GET_MODE_CLASS (cmp_mode
) == MODE_CC
4567 trueop0
= avoid_constant_pool_reference (op0
);
4568 trueop1
= avoid_constant_pool_reference (op1
);
4569 return simplify_relational_operation_1 (code
, mode
, cmp_mode
,
4573 /* This part of simplify_relational_operation is only used when CMP_MODE
4574 is not in class MODE_CC (i.e. it is a real comparison).
4576 MODE is the mode of the result, while CMP_MODE specifies in which
4577 mode the comparison is done in, so it is the mode of the operands. */
4580 simplify_relational_operation_1 (enum rtx_code code
, machine_mode mode
,
4581 machine_mode cmp_mode
, rtx op0
, rtx op1
)
4583 enum rtx_code op0code
= GET_CODE (op0
);
4585 if (op1
== const0_rtx
&& COMPARISON_P (op0
))
4587 /* If op0 is a comparison, extract the comparison arguments
4591 if (GET_MODE (op0
) == mode
)
4592 return simplify_rtx (op0
);
4594 return simplify_gen_relational (GET_CODE (op0
), mode
, VOIDmode
,
4595 XEXP (op0
, 0), XEXP (op0
, 1));
4597 else if (code
== EQ
)
4599 enum rtx_code new_code
= reversed_comparison_code (op0
, NULL_RTX
);
4600 if (new_code
!= UNKNOWN
)
4601 return simplify_gen_relational (new_code
, mode
, VOIDmode
,
4602 XEXP (op0
, 0), XEXP (op0
, 1));
4606 /* (LTU/GEU (PLUS a C) C), where C is constant, can be simplified to
4607 (GEU/LTU a -C). Likewise for (LTU/GEU (PLUS a C) a). */
4608 if ((code
== LTU
|| code
== GEU
)
4609 && GET_CODE (op0
) == PLUS
4610 && CONST_INT_P (XEXP (op0
, 1))
4611 && (rtx_equal_p (op1
, XEXP (op0
, 0))
4612 || rtx_equal_p (op1
, XEXP (op0
, 1)))
4613 /* (LTU/GEU (PLUS a 0) 0) is not the same as (GEU/LTU a 0). */
4614 && XEXP (op0
, 1) != const0_rtx
)
4617 = simplify_gen_unary (NEG
, cmp_mode
, XEXP (op0
, 1), cmp_mode
);
4618 return simplify_gen_relational ((code
== LTU
? GEU
: LTU
), mode
,
4619 cmp_mode
, XEXP (op0
, 0), new_cmp
);
4622 /* Canonicalize (LTU/GEU (PLUS a b) b) as (LTU/GEU (PLUS a b) a). */
4623 if ((code
== LTU
|| code
== GEU
)
4624 && GET_CODE (op0
) == PLUS
4625 && rtx_equal_p (op1
, XEXP (op0
, 1))
4626 /* Don't recurse "infinitely" for (LTU/GEU (PLUS b b) b). */
4627 && !rtx_equal_p (op1
, XEXP (op0
, 0)))
4628 return simplify_gen_relational (code
, mode
, cmp_mode
, op0
,
4629 copy_rtx (XEXP (op0
, 0)));
4631 if (op1
== const0_rtx
)
4633 /* Canonicalize (GTU x 0) as (NE x 0). */
4635 return simplify_gen_relational (NE
, mode
, cmp_mode
, op0
, op1
);
4636 /* Canonicalize (LEU x 0) as (EQ x 0). */
4638 return simplify_gen_relational (EQ
, mode
, cmp_mode
, op0
, op1
);
4640 else if (op1
== const1_rtx
)
4645 /* Canonicalize (GE x 1) as (GT x 0). */
4646 return simplify_gen_relational (GT
, mode
, cmp_mode
,
4649 /* Canonicalize (GEU x 1) as (NE x 0). */
4650 return simplify_gen_relational (NE
, mode
, cmp_mode
,
4653 /* Canonicalize (LT x 1) as (LE x 0). */
4654 return simplify_gen_relational (LE
, mode
, cmp_mode
,
4657 /* Canonicalize (LTU x 1) as (EQ x 0). */
4658 return simplify_gen_relational (EQ
, mode
, cmp_mode
,
4664 else if (op1
== constm1_rtx
)
4666 /* Canonicalize (LE x -1) as (LT x 0). */
4668 return simplify_gen_relational (LT
, mode
, cmp_mode
, op0
, const0_rtx
);
4669 /* Canonicalize (GT x -1) as (GE x 0). */
4671 return simplify_gen_relational (GE
, mode
, cmp_mode
, op0
, const0_rtx
);
4674 /* (eq/ne (plus x cst1) cst2) simplifies to (eq/ne x (cst2 - cst1)) */
4675 if ((code
== EQ
|| code
== NE
)
4676 && (op0code
== PLUS
|| op0code
== MINUS
)
4678 && CONSTANT_P (XEXP (op0
, 1))
4679 && (INTEGRAL_MODE_P (cmp_mode
) || flag_unsafe_math_optimizations
))
4681 rtx x
= XEXP (op0
, 0);
4682 rtx c
= XEXP (op0
, 1);
4683 enum rtx_code invcode
= op0code
== PLUS
? MINUS
: PLUS
;
4684 rtx tem
= simplify_gen_binary (invcode
, cmp_mode
, op1
, c
);
4686 /* Detect an infinite recursive condition, where we oscillate at this
4687 simplification case between:
4688 A + B == C <---> C - B == A,
4689 where A, B, and C are all constants with non-simplifiable expressions,
4690 usually SYMBOL_REFs. */
4691 if (GET_CODE (tem
) == invcode
4693 && rtx_equal_p (c
, XEXP (tem
, 1)))
4696 return simplify_gen_relational (code
, mode
, cmp_mode
, x
, tem
);
4699 /* (ne:SI (zero_extract:SI FOO (const_int 1) BAR) (const_int 0))) is
4700 the same as (zero_extract:SI FOO (const_int 1) BAR). */
4702 && op1
== const0_rtx
4703 && GET_MODE_CLASS (mode
) == MODE_INT
4704 && cmp_mode
!= VOIDmode
4705 /* ??? Work-around BImode bugs in the ia64 backend. */
4707 && cmp_mode
!= BImode
4708 && nonzero_bits (op0
, cmp_mode
) == 1
4709 && STORE_FLAG_VALUE
== 1)
4710 return GET_MODE_SIZE (mode
) > GET_MODE_SIZE (cmp_mode
)
4711 ? simplify_gen_unary (ZERO_EXTEND
, mode
, op0
, cmp_mode
)
4712 : lowpart_subreg (mode
, op0
, cmp_mode
);
4714 /* (eq/ne (xor x y) 0) simplifies to (eq/ne x y). */
4715 if ((code
== EQ
|| code
== NE
)
4716 && op1
== const0_rtx
4718 return simplify_gen_relational (code
, mode
, cmp_mode
,
4719 XEXP (op0
, 0), XEXP (op0
, 1));
4721 /* (eq/ne (xor x y) x) simplifies to (eq/ne y 0). */
4722 if ((code
== EQ
|| code
== NE
)
4724 && rtx_equal_p (XEXP (op0
, 0), op1
)
4725 && !side_effects_p (XEXP (op0
, 0)))
4726 return simplify_gen_relational (code
, mode
, cmp_mode
, XEXP (op0
, 1),
4729 /* Likewise (eq/ne (xor x y) y) simplifies to (eq/ne x 0). */
4730 if ((code
== EQ
|| code
== NE
)
4732 && rtx_equal_p (XEXP (op0
, 1), op1
)
4733 && !side_effects_p (XEXP (op0
, 1)))
4734 return simplify_gen_relational (code
, mode
, cmp_mode
, XEXP (op0
, 0),
4737 /* (eq/ne (xor x C1) C2) simplifies to (eq/ne x (C1^C2)). */
4738 if ((code
== EQ
|| code
== NE
)
4740 && CONST_SCALAR_INT_P (op1
)
4741 && CONST_SCALAR_INT_P (XEXP (op0
, 1)))
4742 return simplify_gen_relational (code
, mode
, cmp_mode
, XEXP (op0
, 0),
4743 simplify_gen_binary (XOR
, cmp_mode
,
4744 XEXP (op0
, 1), op1
));
4746 /* (eq/ne (and x y) x) simplifies to (eq/ne (and (not y) x) 0), which
4747 can be implemented with a BICS instruction on some targets, or
4748 constant-folded if y is a constant. */
4749 if ((code
== EQ
|| code
== NE
)
4751 && rtx_equal_p (XEXP (op0
, 0), op1
)
4752 && !side_effects_p (op1
)
4753 && op1
!= CONST0_RTX (cmp_mode
))
4755 rtx not_y
= simplify_gen_unary (NOT
, cmp_mode
, XEXP (op0
, 1), cmp_mode
);
4756 rtx lhs
= simplify_gen_binary (AND
, cmp_mode
, not_y
, XEXP (op0
, 0));
4758 return simplify_gen_relational (code
, mode
, cmp_mode
, lhs
,
4759 CONST0_RTX (cmp_mode
));
4762 /* Likewise for (eq/ne (and x y) y). */
4763 if ((code
== EQ
|| code
== NE
)
4765 && rtx_equal_p (XEXP (op0
, 1), op1
)
4766 && !side_effects_p (op1
)
4767 && op1
!= CONST0_RTX (cmp_mode
))
4769 rtx not_x
= simplify_gen_unary (NOT
, cmp_mode
, XEXP (op0
, 0), cmp_mode
);
4770 rtx lhs
= simplify_gen_binary (AND
, cmp_mode
, not_x
, XEXP (op0
, 1));
4772 return simplify_gen_relational (code
, mode
, cmp_mode
, lhs
,
4773 CONST0_RTX (cmp_mode
));
4776 /* (eq/ne (bswap x) C1) simplifies to (eq/ne x C2) with C2 swapped. */
4777 if ((code
== EQ
|| code
== NE
)
4778 && GET_CODE (op0
) == BSWAP
4779 && CONST_SCALAR_INT_P (op1
))
4780 return simplify_gen_relational (code
, mode
, cmp_mode
, XEXP (op0
, 0),
4781 simplify_gen_unary (BSWAP
, cmp_mode
,
4784 /* (eq/ne (bswap x) (bswap y)) simplifies to (eq/ne x y). */
4785 if ((code
== EQ
|| code
== NE
)
4786 && GET_CODE (op0
) == BSWAP
4787 && GET_CODE (op1
) == BSWAP
)
4788 return simplify_gen_relational (code
, mode
, cmp_mode
,
4789 XEXP (op0
, 0), XEXP (op1
, 0));
4791 if (op0code
== POPCOUNT
&& op1
== const0_rtx
)
4797 /* (eq (popcount x) (const_int 0)) -> (eq x (const_int 0)). */
4798 return simplify_gen_relational (EQ
, mode
, GET_MODE (XEXP (op0
, 0)),
4799 XEXP (op0
, 0), const0_rtx
);
4804 /* (ne (popcount x) (const_int 0)) -> (ne x (const_int 0)). */
4805 return simplify_gen_relational (NE
, mode
, GET_MODE (XEXP (op0
, 0)),
4806 XEXP (op0
, 0), const0_rtx
);
4825 /* Convert the known results for EQ, LT, GT, LTU, GTU contained in
4826 KNOWN_RESULT to a CONST_INT, based on the requested comparison CODE
4827 For KNOWN_RESULT to make sense it should be either CMP_EQ, or the
4828 logical OR of one of (CMP_LT, CMP_GT) and one of (CMP_LTU, CMP_GTU).
4829 For floating-point comparisons, assume that the operands were ordered. */
4832 comparison_result (enum rtx_code code
, int known_results
)
4838 return (known_results
& CMP_EQ
) ? const_true_rtx
: const0_rtx
;
4841 return (known_results
& CMP_EQ
) ? const0_rtx
: const_true_rtx
;
4845 return (known_results
& CMP_LT
) ? const_true_rtx
: const0_rtx
;
4848 return (known_results
& CMP_LT
) ? const0_rtx
: const_true_rtx
;
4852 return (known_results
& CMP_GT
) ? const_true_rtx
: const0_rtx
;
4855 return (known_results
& CMP_GT
) ? const0_rtx
: const_true_rtx
;
4858 return (known_results
& CMP_LTU
) ? const_true_rtx
: const0_rtx
;
4860 return (known_results
& CMP_LTU
) ? const0_rtx
: const_true_rtx
;
4863 return (known_results
& CMP_GTU
) ? const_true_rtx
: const0_rtx
;
4865 return (known_results
& CMP_GTU
) ? const0_rtx
: const_true_rtx
;
4868 return const_true_rtx
;
4876 /* Check if the given comparison (done in the given MODE) is actually
4877 a tautology or a contradiction. If the mode is VOID_mode, the
4878 comparison is done in "infinite precision". If no simplification
4879 is possible, this function returns zero. Otherwise, it returns
4880 either const_true_rtx or const0_rtx. */
4883 simplify_const_relational_operation (enum rtx_code code
,
4891 gcc_assert (mode
!= VOIDmode
4892 || (GET_MODE (op0
) == VOIDmode
4893 && GET_MODE (op1
) == VOIDmode
));
4895 /* If op0 is a compare, extract the comparison arguments from it. */
4896 if (GET_CODE (op0
) == COMPARE
&& op1
== const0_rtx
)
4898 op1
= XEXP (op0
, 1);
4899 op0
= XEXP (op0
, 0);
4901 if (GET_MODE (op0
) != VOIDmode
)
4902 mode
= GET_MODE (op0
);
4903 else if (GET_MODE (op1
) != VOIDmode
)
4904 mode
= GET_MODE (op1
);
4909 /* We can't simplify MODE_CC values since we don't know what the
4910 actual comparison is. */
4911 if (GET_MODE_CLASS (GET_MODE (op0
)) == MODE_CC
|| CC0_P (op0
))
4914 /* Make sure the constant is second. */
4915 if (swap_commutative_operands_p (op0
, op1
))
4917 std::swap (op0
, op1
);
4918 code
= swap_condition (code
);
4921 trueop0
= avoid_constant_pool_reference (op0
);
4922 trueop1
= avoid_constant_pool_reference (op1
);
4924 /* For integer comparisons of A and B maybe we can simplify A - B and can
4925 then simplify a comparison of that with zero. If A and B are both either
4926 a register or a CONST_INT, this can't help; testing for these cases will
4927 prevent infinite recursion here and speed things up.
4929 We can only do this for EQ and NE comparisons as otherwise we may
4930 lose or introduce overflow which we cannot disregard as undefined as
4931 we do not know the signedness of the operation on either the left or
4932 the right hand side of the comparison. */
4934 if (INTEGRAL_MODE_P (mode
) && trueop1
!= const0_rtx
4935 && (code
== EQ
|| code
== NE
)
4936 && ! ((REG_P (op0
) || CONST_INT_P (trueop0
))
4937 && (REG_P (op1
) || CONST_INT_P (trueop1
)))
4938 && 0 != (tem
= simplify_binary_operation (MINUS
, mode
, op0
, op1
))
4939 /* We cannot do this if tem is a nonzero address. */
4940 && ! nonzero_address_p (tem
))
4941 return simplify_const_relational_operation (signed_condition (code
),
4942 mode
, tem
, const0_rtx
);
4944 if (! HONOR_NANS (mode
) && code
== ORDERED
)
4945 return const_true_rtx
;
4947 if (! HONOR_NANS (mode
) && code
== UNORDERED
)
4950 /* For modes without NaNs, if the two operands are equal, we know the
4951 result except if they have side-effects. Even with NaNs we know
4952 the result of unordered comparisons and, if signaling NaNs are
4953 irrelevant, also the result of LT/GT/LTGT. */
4954 if ((! HONOR_NANS (trueop0
)
4955 || code
== UNEQ
|| code
== UNLE
|| code
== UNGE
4956 || ((code
== LT
|| code
== GT
|| code
== LTGT
)
4957 && ! HONOR_SNANS (trueop0
)))
4958 && rtx_equal_p (trueop0
, trueop1
)
4959 && ! side_effects_p (trueop0
))
4960 return comparison_result (code
, CMP_EQ
);
4962 /* If the operands are floating-point constants, see if we can fold
4964 if (CONST_DOUBLE_AS_FLOAT_P (trueop0
)
4965 && CONST_DOUBLE_AS_FLOAT_P (trueop1
)
4966 && SCALAR_FLOAT_MODE_P (GET_MODE (trueop0
)))
4968 const REAL_VALUE_TYPE
*d0
= CONST_DOUBLE_REAL_VALUE (trueop0
);
4969 const REAL_VALUE_TYPE
*d1
= CONST_DOUBLE_REAL_VALUE (trueop1
);
4971 /* Comparisons are unordered iff at least one of the values is NaN. */
4972 if (REAL_VALUE_ISNAN (*d0
) || REAL_VALUE_ISNAN (*d1
))
4982 return const_true_rtx
;
4995 return comparison_result (code
,
4996 (real_equal (d0
, d1
) ? CMP_EQ
:
4997 real_less (d0
, d1
) ? CMP_LT
: CMP_GT
));
5000 /* Otherwise, see if the operands are both integers. */
5001 if ((GET_MODE_CLASS (mode
) == MODE_INT
|| mode
== VOIDmode
)
5002 && CONST_SCALAR_INT_P (trueop0
) && CONST_SCALAR_INT_P (trueop1
))
5004 /* It would be nice if we really had a mode here. However, the
5005 largest int representable on the target is as good as
5007 machine_mode cmode
= (mode
== VOIDmode
) ? MAX_MODE_INT
: mode
;
5008 rtx_mode_t ptrueop0
= std::make_pair (trueop0
, cmode
);
5009 rtx_mode_t ptrueop1
= std::make_pair (trueop1
, cmode
);
5011 if (wi::eq_p (ptrueop0
, ptrueop1
))
5012 return comparison_result (code
, CMP_EQ
);
5015 int cr
= wi::lts_p (ptrueop0
, ptrueop1
) ? CMP_LT
: CMP_GT
;
5016 cr
|= wi::ltu_p (ptrueop0
, ptrueop1
) ? CMP_LTU
: CMP_GTU
;
5017 return comparison_result (code
, cr
);
5021 /* Optimize comparisons with upper and lower bounds. */
5022 if (HWI_COMPUTABLE_MODE_P (mode
)
5023 && CONST_INT_P (trueop1
)
5024 && !side_effects_p (trueop0
))
5027 unsigned HOST_WIDE_INT nonzero
= nonzero_bits (trueop0
, mode
);
5028 HOST_WIDE_INT val
= INTVAL (trueop1
);
5029 HOST_WIDE_INT mmin
, mmax
;
5039 /* Get a reduced range if the sign bit is zero. */
5040 if (nonzero
<= (GET_MODE_MASK (mode
) >> 1))
5047 rtx mmin_rtx
, mmax_rtx
;
5048 get_mode_bounds (mode
, sign
, mode
, &mmin_rtx
, &mmax_rtx
);
5050 mmin
= INTVAL (mmin_rtx
);
5051 mmax
= INTVAL (mmax_rtx
);
5054 unsigned int sign_copies
= num_sign_bit_copies (trueop0
, mode
);
5056 mmin
>>= (sign_copies
- 1);
5057 mmax
>>= (sign_copies
- 1);
5063 /* x >= y is always true for y <= mmin, always false for y > mmax. */
5065 if ((unsigned HOST_WIDE_INT
) val
<= (unsigned HOST_WIDE_INT
) mmin
)
5066 return const_true_rtx
;
5067 if ((unsigned HOST_WIDE_INT
) val
> (unsigned HOST_WIDE_INT
) mmax
)
5072 return const_true_rtx
;
5077 /* x <= y is always true for y >= mmax, always false for y < mmin. */
5079 if ((unsigned HOST_WIDE_INT
) val
>= (unsigned HOST_WIDE_INT
) mmax
)
5080 return const_true_rtx
;
5081 if ((unsigned HOST_WIDE_INT
) val
< (unsigned HOST_WIDE_INT
) mmin
)
5086 return const_true_rtx
;
5092 /* x == y is always false for y out of range. */
5093 if (val
< mmin
|| val
> mmax
)
5097 /* x > y is always false for y >= mmax, always true for y < mmin. */
5099 if ((unsigned HOST_WIDE_INT
) val
>= (unsigned HOST_WIDE_INT
) mmax
)
5101 if ((unsigned HOST_WIDE_INT
) val
< (unsigned HOST_WIDE_INT
) mmin
)
5102 return const_true_rtx
;
5108 return const_true_rtx
;
5111 /* x < y is always false for y <= mmin, always true for y > mmax. */
5113 if ((unsigned HOST_WIDE_INT
) val
<= (unsigned HOST_WIDE_INT
) mmin
)
5115 if ((unsigned HOST_WIDE_INT
) val
> (unsigned HOST_WIDE_INT
) mmax
)
5116 return const_true_rtx
;
5122 return const_true_rtx
;
5126 /* x != y is always true for y out of range. */
5127 if (val
< mmin
|| val
> mmax
)
5128 return const_true_rtx
;
5136 /* Optimize integer comparisons with zero. */
5137 if (trueop1
== const0_rtx
&& !side_effects_p (trueop0
))
5139 /* Some addresses are known to be nonzero. We don't know
5140 their sign, but equality comparisons are known. */
5141 if (nonzero_address_p (trueop0
))
5143 if (code
== EQ
|| code
== LEU
)
5145 if (code
== NE
|| code
== GTU
)
5146 return const_true_rtx
;
5149 /* See if the first operand is an IOR with a constant. If so, we
5150 may be able to determine the result of this comparison. */
5151 if (GET_CODE (op0
) == IOR
)
5153 rtx inner_const
= avoid_constant_pool_reference (XEXP (op0
, 1));
5154 if (CONST_INT_P (inner_const
) && inner_const
!= const0_rtx
)
5156 int sign_bitnum
= GET_MODE_PRECISION (mode
) - 1;
5157 int has_sign
= (HOST_BITS_PER_WIDE_INT
>= sign_bitnum
5158 && (UINTVAL (inner_const
)
5159 & ((unsigned HOST_WIDE_INT
) 1
5169 return const_true_rtx
;
5173 return const_true_rtx
;
5187 /* Optimize comparison of ABS with zero. */
5188 if (trueop1
== CONST0_RTX (mode
) && !side_effects_p (trueop0
)
5189 && (GET_CODE (trueop0
) == ABS
5190 || (GET_CODE (trueop0
) == FLOAT_EXTEND
5191 && GET_CODE (XEXP (trueop0
, 0)) == ABS
)))
5196 /* Optimize abs(x) < 0.0. */
5197 if (!HONOR_SNANS (mode
)
5198 && (!INTEGRAL_MODE_P (mode
)
5199 || (!flag_wrapv
&& !flag_trapv
&& flag_strict_overflow
)))
5201 if (INTEGRAL_MODE_P (mode
)
5202 && (issue_strict_overflow_warning
5203 (WARN_STRICT_OVERFLOW_CONDITIONAL
)))
5204 warning (OPT_Wstrict_overflow
,
5205 ("assuming signed overflow does not occur when "
5206 "assuming abs (x) < 0 is false"));
5212 /* Optimize abs(x) >= 0.0. */
5213 if (!HONOR_NANS (mode
)
5214 && (!INTEGRAL_MODE_P (mode
)
5215 || (!flag_wrapv
&& !flag_trapv
&& flag_strict_overflow
)))
5217 if (INTEGRAL_MODE_P (mode
)
5218 && (issue_strict_overflow_warning
5219 (WARN_STRICT_OVERFLOW_CONDITIONAL
)))
5220 warning (OPT_Wstrict_overflow
,
5221 ("assuming signed overflow does not occur when "
5222 "assuming abs (x) >= 0 is true"));
5223 return const_true_rtx
;
5228 /* Optimize ! (abs(x) < 0.0). */
5229 return const_true_rtx
;
5239 /* Simplify CODE, an operation with result mode MODE and three operands,
5240 OP0, OP1, and OP2. OP0_MODE was the mode of OP0 before it became
5241 a constant. Return 0 if no simplifications is possible. */
5244 simplify_ternary_operation (enum rtx_code code
, machine_mode mode
,
5245 machine_mode op0_mode
, rtx op0
, rtx op1
,
5248 unsigned int width
= GET_MODE_PRECISION (mode
);
5249 bool any_change
= false;
5252 /* VOIDmode means "infinite" precision. */
5254 width
= HOST_BITS_PER_WIDE_INT
;
5259 /* Simplify negations around the multiplication. */
5260 /* -a * -b + c => a * b + c. */
5261 if (GET_CODE (op0
) == NEG
)
5263 tem
= simplify_unary_operation (NEG
, mode
, op1
, mode
);
5265 op1
= tem
, op0
= XEXP (op0
, 0), any_change
= true;
5267 else if (GET_CODE (op1
) == NEG
)
5269 tem
= simplify_unary_operation (NEG
, mode
, op0
, mode
);
5271 op0
= tem
, op1
= XEXP (op1
, 0), any_change
= true;
5274 /* Canonicalize the two multiplication operands. */
5275 /* a * -b + c => -b * a + c. */
5276 if (swap_commutative_operands_p (op0
, op1
))
5277 std::swap (op0
, op1
), any_change
= true;
5280 return gen_rtx_FMA (mode
, op0
, op1
, op2
);
5285 if (CONST_INT_P (op0
)
5286 && CONST_INT_P (op1
)
5287 && CONST_INT_P (op2
)
5288 && ((unsigned) INTVAL (op1
) + (unsigned) INTVAL (op2
) <= width
)
5289 && width
<= (unsigned) HOST_BITS_PER_WIDE_INT
)
5291 /* Extracting a bit-field from a constant */
5292 unsigned HOST_WIDE_INT val
= UINTVAL (op0
);
5293 HOST_WIDE_INT op1val
= INTVAL (op1
);
5294 HOST_WIDE_INT op2val
= INTVAL (op2
);
5295 if (BITS_BIG_ENDIAN
)
5296 val
>>= GET_MODE_PRECISION (op0_mode
) - op2val
- op1val
;
5300 if (HOST_BITS_PER_WIDE_INT
!= op1val
)
5302 /* First zero-extend. */
5303 val
&= ((unsigned HOST_WIDE_INT
) 1 << op1val
) - 1;
5304 /* If desired, propagate sign bit. */
5305 if (code
== SIGN_EXTRACT
5306 && (val
& ((unsigned HOST_WIDE_INT
) 1 << (op1val
- 1)))
5308 val
|= ~ (((unsigned HOST_WIDE_INT
) 1 << op1val
) - 1);
5311 return gen_int_mode (val
, mode
);
5316 if (CONST_INT_P (op0
))
5317 return op0
!= const0_rtx
? op1
: op2
;
5319 /* Convert c ? a : a into "a". */
5320 if (rtx_equal_p (op1
, op2
) && ! side_effects_p (op0
))
5323 /* Convert a != b ? a : b into "a". */
5324 if (GET_CODE (op0
) == NE
5325 && ! side_effects_p (op0
)
5326 && ! HONOR_NANS (mode
)
5327 && ! HONOR_SIGNED_ZEROS (mode
)
5328 && ((rtx_equal_p (XEXP (op0
, 0), op1
)
5329 && rtx_equal_p (XEXP (op0
, 1), op2
))
5330 || (rtx_equal_p (XEXP (op0
, 0), op2
)
5331 && rtx_equal_p (XEXP (op0
, 1), op1
))))
5334 /* Convert a == b ? a : b into "b". */
5335 if (GET_CODE (op0
) == EQ
5336 && ! side_effects_p (op0
)
5337 && ! HONOR_NANS (mode
)
5338 && ! HONOR_SIGNED_ZEROS (mode
)
5339 && ((rtx_equal_p (XEXP (op0
, 0), op1
)
5340 && rtx_equal_p (XEXP (op0
, 1), op2
))
5341 || (rtx_equal_p (XEXP (op0
, 0), op2
)
5342 && rtx_equal_p (XEXP (op0
, 1), op1
))))
5345 /* Convert (!c) != {0,...,0} ? a : b into
5346 c != {0,...,0} ? b : a for vector modes. */
5347 if (VECTOR_MODE_P (GET_MODE (op1
))
5348 && GET_CODE (op0
) == NE
5349 && GET_CODE (XEXP (op0
, 0)) == NOT
5350 && GET_CODE (XEXP (op0
, 1)) == CONST_VECTOR
)
5352 rtx cv
= XEXP (op0
, 1);
5353 int nunits
= CONST_VECTOR_NUNITS (cv
);
5355 for (int i
= 0; i
< nunits
; ++i
)
5356 if (CONST_VECTOR_ELT (cv
, i
) != const0_rtx
)
5363 rtx new_op0
= gen_rtx_NE (GET_MODE (op0
),
5364 XEXP (XEXP (op0
, 0), 0),
5366 rtx retval
= gen_rtx_IF_THEN_ELSE (mode
, new_op0
, op2
, op1
);
5371 if (COMPARISON_P (op0
) && ! side_effects_p (op0
))
5373 machine_mode cmp_mode
= (GET_MODE (XEXP (op0
, 0)) == VOIDmode
5374 ? GET_MODE (XEXP (op0
, 1))
5375 : GET_MODE (XEXP (op0
, 0)));
5378 /* Look for happy constants in op1 and op2. */
5379 if (CONST_INT_P (op1
) && CONST_INT_P (op2
))
5381 HOST_WIDE_INT t
= INTVAL (op1
);
5382 HOST_WIDE_INT f
= INTVAL (op2
);
5384 if (t
== STORE_FLAG_VALUE
&& f
== 0)
5385 code
= GET_CODE (op0
);
5386 else if (t
== 0 && f
== STORE_FLAG_VALUE
)
5389 tmp
= reversed_comparison_code (op0
, NULL_RTX
);
5397 return simplify_gen_relational (code
, mode
, cmp_mode
,
5398 XEXP (op0
, 0), XEXP (op0
, 1));
5401 if (cmp_mode
== VOIDmode
)
5402 cmp_mode
= op0_mode
;
5403 temp
= simplify_relational_operation (GET_CODE (op0
), op0_mode
,
5404 cmp_mode
, XEXP (op0
, 0),
5407 /* See if any simplifications were possible. */
5410 if (CONST_INT_P (temp
))
5411 return temp
== const0_rtx
? op2
: op1
;
5413 return gen_rtx_IF_THEN_ELSE (mode
, temp
, op1
, op2
);
5419 gcc_assert (GET_MODE (op0
) == mode
);
5420 gcc_assert (GET_MODE (op1
) == mode
);
5421 gcc_assert (VECTOR_MODE_P (mode
));
5422 trueop2
= avoid_constant_pool_reference (op2
);
5423 if (CONST_INT_P (trueop2
))
5425 int elt_size
= GET_MODE_UNIT_SIZE (mode
);
5426 unsigned n_elts
= (GET_MODE_SIZE (mode
) / elt_size
);
5427 unsigned HOST_WIDE_INT sel
= UINTVAL (trueop2
);
5428 unsigned HOST_WIDE_INT mask
;
5429 if (n_elts
== HOST_BITS_PER_WIDE_INT
)
5432 mask
= ((unsigned HOST_WIDE_INT
) 1 << n_elts
) - 1;
5434 if (!(sel
& mask
) && !side_effects_p (op0
))
5436 if ((sel
& mask
) == mask
&& !side_effects_p (op1
))
5439 rtx trueop0
= avoid_constant_pool_reference (op0
);
5440 rtx trueop1
= avoid_constant_pool_reference (op1
);
5441 if (GET_CODE (trueop0
) == CONST_VECTOR
5442 && GET_CODE (trueop1
) == CONST_VECTOR
)
5444 rtvec v
= rtvec_alloc (n_elts
);
5447 for (i
= 0; i
< n_elts
; i
++)
5448 RTVEC_ELT (v
, i
) = ((sel
& ((unsigned HOST_WIDE_INT
) 1 << i
))
5449 ? CONST_VECTOR_ELT (trueop0
, i
)
5450 : CONST_VECTOR_ELT (trueop1
, i
));
5451 return gen_rtx_CONST_VECTOR (mode
, v
);
5454 /* Replace (vec_merge (vec_merge a b m) c n) with (vec_merge b c n)
5455 if no element from a appears in the result. */
5456 if (GET_CODE (op0
) == VEC_MERGE
)
5458 tem
= avoid_constant_pool_reference (XEXP (op0
, 2));
5459 if (CONST_INT_P (tem
))
5461 unsigned HOST_WIDE_INT sel0
= UINTVAL (tem
);
5462 if (!(sel
& sel0
& mask
) && !side_effects_p (XEXP (op0
, 0)))
5463 return simplify_gen_ternary (code
, mode
, mode
,
5464 XEXP (op0
, 1), op1
, op2
);
5465 if (!(sel
& ~sel0
& mask
) && !side_effects_p (XEXP (op0
, 1)))
5466 return simplify_gen_ternary (code
, mode
, mode
,
5467 XEXP (op0
, 0), op1
, op2
);
5470 if (GET_CODE (op1
) == VEC_MERGE
)
5472 tem
= avoid_constant_pool_reference (XEXP (op1
, 2));
5473 if (CONST_INT_P (tem
))
5475 unsigned HOST_WIDE_INT sel1
= UINTVAL (tem
);
5476 if (!(~sel
& sel1
& mask
) && !side_effects_p (XEXP (op1
, 0)))
5477 return simplify_gen_ternary (code
, mode
, mode
,
5478 op0
, XEXP (op1
, 1), op2
);
5479 if (!(~sel
& ~sel1
& mask
) && !side_effects_p (XEXP (op1
, 1)))
5480 return simplify_gen_ternary (code
, mode
, mode
,
5481 op0
, XEXP (op1
, 0), op2
);
5485 /* Replace (vec_merge (vec_duplicate (vec_select a parallel (i))) a 1 << i)
5487 if (GET_CODE (op0
) == VEC_DUPLICATE
5488 && GET_CODE (XEXP (op0
, 0)) == VEC_SELECT
5489 && GET_CODE (XEXP (XEXP (op0
, 0), 1)) == PARALLEL
5490 && mode_nunits
[GET_MODE (XEXP (op0
, 0))] == 1)
5492 tem
= XVECEXP ((XEXP (XEXP (op0
, 0), 1)), 0, 0);
5493 if (CONST_INT_P (tem
) && CONST_INT_P (op2
))
5495 if (XEXP (XEXP (op0
, 0), 0) == op1
5496 && UINTVAL (op2
) == HOST_WIDE_INT_1U
<< UINTVAL (tem
))
5502 if (rtx_equal_p (op0
, op1
)
5503 && !side_effects_p (op2
) && !side_effects_p (op1
))
5515 /* Evaluate a SUBREG of a CONST_INT or CONST_WIDE_INT or CONST_DOUBLE
5516 or CONST_FIXED or CONST_VECTOR, returning another CONST_INT or
5517 CONST_WIDE_INT or CONST_DOUBLE or CONST_FIXED or CONST_VECTOR.
5519 Works by unpacking OP into a collection of 8-bit values
5520 represented as a little-endian array of 'unsigned char', selecting by BYTE,
5521 and then repacking them again for OUTERMODE. */
5524 simplify_immed_subreg (machine_mode outermode
, rtx op
,
5525 machine_mode innermode
, unsigned int byte
)
5529 value_mask
= (1 << value_bit
) - 1
5531 unsigned char value
[MAX_BITSIZE_MODE_ANY_MODE
/ value_bit
];
5540 rtvec result_v
= NULL
;
5541 enum mode_class outer_class
;
5542 machine_mode outer_submode
;
5545 /* Some ports misuse CCmode. */
5546 if (GET_MODE_CLASS (outermode
) == MODE_CC
&& CONST_INT_P (op
))
5549 /* We have no way to represent a complex constant at the rtl level. */
5550 if (COMPLEX_MODE_P (outermode
))
5553 /* We support any size mode. */
5554 max_bitsize
= MAX (GET_MODE_BITSIZE (outermode
),
5555 GET_MODE_BITSIZE (innermode
));
5557 /* Unpack the value. */
5559 if (GET_CODE (op
) == CONST_VECTOR
)
5561 num_elem
= CONST_VECTOR_NUNITS (op
);
5562 elems
= &CONST_VECTOR_ELT (op
, 0);
5563 elem_bitsize
= GET_MODE_UNIT_BITSIZE (innermode
);
5569 elem_bitsize
= max_bitsize
;
5571 /* If this asserts, it is too complicated; reducing value_bit may help. */
5572 gcc_assert (BITS_PER_UNIT
% value_bit
== 0);
5573 /* I don't know how to handle endianness of sub-units. */
5574 gcc_assert (elem_bitsize
% BITS_PER_UNIT
== 0);
5576 for (elem
= 0; elem
< num_elem
; elem
++)
5579 rtx el
= elems
[elem
];
5581 /* Vectors are kept in target memory order. (This is probably
5584 unsigned byte
= (elem
* elem_bitsize
) / BITS_PER_UNIT
;
5585 unsigned ibyte
= (((num_elem
- 1 - elem
) * elem_bitsize
)
5587 unsigned word_byte
= WORDS_BIG_ENDIAN
? ibyte
: byte
;
5588 unsigned subword_byte
= BYTES_BIG_ENDIAN
? ibyte
: byte
;
5589 unsigned bytele
= (subword_byte
% UNITS_PER_WORD
5590 + (word_byte
/ UNITS_PER_WORD
) * UNITS_PER_WORD
);
5591 vp
= value
+ (bytele
* BITS_PER_UNIT
) / value_bit
;
5594 switch (GET_CODE (el
))
5598 i
< HOST_BITS_PER_WIDE_INT
&& i
< elem_bitsize
;
5600 *vp
++ = INTVAL (el
) >> i
;
5601 /* CONST_INTs are always logically sign-extended. */
5602 for (; i
< elem_bitsize
; i
+= value_bit
)
5603 *vp
++ = INTVAL (el
) < 0 ? -1 : 0;
5606 case CONST_WIDE_INT
:
5608 rtx_mode_t val
= std::make_pair (el
, innermode
);
5609 unsigned char extend
= wi::sign_mask (val
);
5611 for (i
= 0; i
< elem_bitsize
; i
+= value_bit
)
5612 *vp
++ = wi::extract_uhwi (val
, i
, value_bit
);
5613 for (; i
< elem_bitsize
; i
+= value_bit
)
5619 if (TARGET_SUPPORTS_WIDE_INT
== 0 && GET_MODE (el
) == VOIDmode
)
5621 unsigned char extend
= 0;
5622 /* If this triggers, someone should have generated a
5623 CONST_INT instead. */
5624 gcc_assert (elem_bitsize
> HOST_BITS_PER_WIDE_INT
);
5626 for (i
= 0; i
< HOST_BITS_PER_WIDE_INT
; i
+= value_bit
)
5627 *vp
++ = CONST_DOUBLE_LOW (el
) >> i
;
5628 while (i
< HOST_BITS_PER_DOUBLE_INT
&& i
< elem_bitsize
)
5631 = CONST_DOUBLE_HIGH (el
) >> (i
- HOST_BITS_PER_WIDE_INT
);
5635 if (CONST_DOUBLE_HIGH (el
) >> (HOST_BITS_PER_WIDE_INT
- 1))
5637 for (; i
< elem_bitsize
; i
+= value_bit
)
5642 /* This is big enough for anything on the platform. */
5643 long tmp
[MAX_BITSIZE_MODE_ANY_MODE
/ 32];
5644 int bitsize
= GET_MODE_BITSIZE (GET_MODE (el
));
5646 gcc_assert (SCALAR_FLOAT_MODE_P (GET_MODE (el
)));
5647 gcc_assert (bitsize
<= elem_bitsize
);
5648 gcc_assert (bitsize
% value_bit
== 0);
5650 real_to_target (tmp
, CONST_DOUBLE_REAL_VALUE (el
),
5653 /* real_to_target produces its result in words affected by
5654 FLOAT_WORDS_BIG_ENDIAN. However, we ignore this,
5655 and use WORDS_BIG_ENDIAN instead; see the documentation
5656 of SUBREG in rtl.texi. */
5657 for (i
= 0; i
< bitsize
; i
+= value_bit
)
5660 if (WORDS_BIG_ENDIAN
)
5661 ibase
= bitsize
- 1 - i
;
5664 *vp
++ = tmp
[ibase
/ 32] >> i
% 32;
5667 /* It shouldn't matter what's done here, so fill it with
5669 for (; i
< elem_bitsize
; i
+= value_bit
)
5675 if (elem_bitsize
<= HOST_BITS_PER_WIDE_INT
)
5677 for (i
= 0; i
< elem_bitsize
; i
+= value_bit
)
5678 *vp
++ = CONST_FIXED_VALUE_LOW (el
) >> i
;
5682 for (i
= 0; i
< HOST_BITS_PER_WIDE_INT
; i
+= value_bit
)
5683 *vp
++ = CONST_FIXED_VALUE_LOW (el
) >> i
;
5684 for (; i
< HOST_BITS_PER_DOUBLE_INT
&& i
< elem_bitsize
;
5686 *vp
++ = CONST_FIXED_VALUE_HIGH (el
)
5687 >> (i
- HOST_BITS_PER_WIDE_INT
);
5688 for (; i
< elem_bitsize
; i
+= value_bit
)
5698 /* Now, pick the right byte to start with. */
5699 /* Renumber BYTE so that the least-significant byte is byte 0. A special
5700 case is paradoxical SUBREGs, which shouldn't be adjusted since they
5701 will already have offset 0. */
5702 if (GET_MODE_SIZE (innermode
) >= GET_MODE_SIZE (outermode
))
5704 unsigned ibyte
= (GET_MODE_SIZE (innermode
) - GET_MODE_SIZE (outermode
)
5706 unsigned word_byte
= WORDS_BIG_ENDIAN
? ibyte
: byte
;
5707 unsigned subword_byte
= BYTES_BIG_ENDIAN
? ibyte
: byte
;
5708 byte
= (subword_byte
% UNITS_PER_WORD
5709 + (word_byte
/ UNITS_PER_WORD
) * UNITS_PER_WORD
);
5712 /* BYTE should still be inside OP. (Note that BYTE is unsigned,
5713 so if it's become negative it will instead be very large.) */
5714 gcc_assert (byte
< GET_MODE_SIZE (innermode
));
5716 /* Convert from bytes to chunks of size value_bit. */
5717 value_start
= byte
* (BITS_PER_UNIT
/ value_bit
);
5719 /* Re-pack the value. */
5720 num_elem
= GET_MODE_NUNITS (outermode
);
5722 if (VECTOR_MODE_P (outermode
))
5724 result_v
= rtvec_alloc (num_elem
);
5725 elems
= &RTVEC_ELT (result_v
, 0);
5730 outer_submode
= GET_MODE_INNER (outermode
);
5731 outer_class
= GET_MODE_CLASS (outer_submode
);
5732 elem_bitsize
= GET_MODE_BITSIZE (outer_submode
);
5734 gcc_assert (elem_bitsize
% value_bit
== 0);
5735 gcc_assert (elem_bitsize
+ value_start
* value_bit
<= max_bitsize
);
5737 for (elem
= 0; elem
< num_elem
; elem
++)
5741 /* Vectors are stored in target memory order. (This is probably
5744 unsigned byte
= (elem
* elem_bitsize
) / BITS_PER_UNIT
;
5745 unsigned ibyte
= (((num_elem
- 1 - elem
) * elem_bitsize
)
5747 unsigned word_byte
= WORDS_BIG_ENDIAN
? ibyte
: byte
;
5748 unsigned subword_byte
= BYTES_BIG_ENDIAN
? ibyte
: byte
;
5749 unsigned bytele
= (subword_byte
% UNITS_PER_WORD
5750 + (word_byte
/ UNITS_PER_WORD
) * UNITS_PER_WORD
);
5751 vp
= value
+ value_start
+ (bytele
* BITS_PER_UNIT
) / value_bit
;
5754 switch (outer_class
)
5757 case MODE_PARTIAL_INT
:
5762 = (GET_MODE_BITSIZE (outer_submode
) + HOST_BITS_PER_WIDE_INT
- 1)
5763 / HOST_BITS_PER_WIDE_INT
;
5764 HOST_WIDE_INT tmp
[MAX_BITSIZE_MODE_ANY_INT
/ HOST_BITS_PER_WIDE_INT
];
5767 if (GET_MODE_PRECISION (outer_submode
) > MAX_BITSIZE_MODE_ANY_INT
)
5769 for (u
= 0; u
< units
; u
++)
5771 unsigned HOST_WIDE_INT buf
= 0;
5773 i
< HOST_BITS_PER_WIDE_INT
&& base
+ i
< elem_bitsize
;
5775 buf
|= (unsigned HOST_WIDE_INT
)(*vp
++ & value_mask
) << i
;
5778 base
+= HOST_BITS_PER_WIDE_INT
;
5780 r
= wide_int::from_array (tmp
, units
,
5781 GET_MODE_PRECISION (outer_submode
));
5782 #if TARGET_SUPPORTS_WIDE_INT == 0
5783 /* Make sure r will fit into CONST_INT or CONST_DOUBLE. */
5784 if (wi::min_precision (r
, SIGNED
) > HOST_BITS_PER_DOUBLE_INT
)
5787 elems
[elem
] = immed_wide_int_const (r
, outer_submode
);
5792 case MODE_DECIMAL_FLOAT
:
5795 long tmp
[MAX_BITSIZE_MODE_ANY_MODE
/ 32];
5797 /* real_from_target wants its input in words affected by
5798 FLOAT_WORDS_BIG_ENDIAN. However, we ignore this,
5799 and use WORDS_BIG_ENDIAN instead; see the documentation
5800 of SUBREG in rtl.texi. */
5801 for (i
= 0; i
< max_bitsize
/ 32; i
++)
5803 for (i
= 0; i
< elem_bitsize
; i
+= value_bit
)
5806 if (WORDS_BIG_ENDIAN
)
5807 ibase
= elem_bitsize
- 1 - i
;
5810 tmp
[ibase
/ 32] |= (*vp
++ & value_mask
) << i
% 32;
5813 real_from_target (&r
, tmp
, outer_submode
);
5814 elems
[elem
] = const_double_from_real_value (r
, outer_submode
);
5826 f
.mode
= outer_submode
;
5829 i
< HOST_BITS_PER_WIDE_INT
&& i
< elem_bitsize
;
5831 f
.data
.low
|= (unsigned HOST_WIDE_INT
)(*vp
++ & value_mask
) << i
;
5832 for (; i
< elem_bitsize
; i
+= value_bit
)
5833 f
.data
.high
|= ((unsigned HOST_WIDE_INT
)(*vp
++ & value_mask
)
5834 << (i
- HOST_BITS_PER_WIDE_INT
));
5836 elems
[elem
] = CONST_FIXED_FROM_FIXED_VALUE (f
, outer_submode
);
5844 if (VECTOR_MODE_P (outermode
))
5845 return gen_rtx_CONST_VECTOR (outermode
, result_v
);
5850 /* Simplify SUBREG:OUTERMODE(OP:INNERMODE, BYTE)
5851 Return 0 if no simplifications are possible. */
5853 simplify_subreg (machine_mode outermode
, rtx op
,
5854 machine_mode innermode
, unsigned int byte
)
5856 /* Little bit of sanity checking. */
5857 gcc_assert (innermode
!= VOIDmode
);
5858 gcc_assert (outermode
!= VOIDmode
);
5859 gcc_assert (innermode
!= BLKmode
);
5860 gcc_assert (outermode
!= BLKmode
);
5862 gcc_assert (GET_MODE (op
) == innermode
5863 || GET_MODE (op
) == VOIDmode
);
5865 if ((byte
% GET_MODE_SIZE (outermode
)) != 0)
5868 if (byte
>= GET_MODE_SIZE (innermode
))
5871 if (outermode
== innermode
&& !byte
)
5874 if (CONST_SCALAR_INT_P (op
)
5875 || CONST_DOUBLE_AS_FLOAT_P (op
)
5876 || GET_CODE (op
) == CONST_FIXED
5877 || GET_CODE (op
) == CONST_VECTOR
)
5878 return simplify_immed_subreg (outermode
, op
, innermode
, byte
);
5880 /* Changing mode twice with SUBREG => just change it once,
5881 or not at all if changing back op starting mode. */
5882 if (GET_CODE (op
) == SUBREG
)
5884 machine_mode innermostmode
= GET_MODE (SUBREG_REG (op
));
5885 int final_offset
= byte
+ SUBREG_BYTE (op
);
5888 if (outermode
== innermostmode
5889 && byte
== 0 && SUBREG_BYTE (op
) == 0)
5890 return SUBREG_REG (op
);
5892 /* The SUBREG_BYTE represents offset, as if the value were stored
5893 in memory. Irritating exception is paradoxical subreg, where
5894 we define SUBREG_BYTE to be 0. On big endian machines, this
5895 value should be negative. For a moment, undo this exception. */
5896 if (byte
== 0 && GET_MODE_SIZE (innermode
) < GET_MODE_SIZE (outermode
))
5898 int difference
= (GET_MODE_SIZE (innermode
) - GET_MODE_SIZE (outermode
));
5899 if (WORDS_BIG_ENDIAN
)
5900 final_offset
+= (difference
/ UNITS_PER_WORD
) * UNITS_PER_WORD
;
5901 if (BYTES_BIG_ENDIAN
)
5902 final_offset
+= difference
% UNITS_PER_WORD
;
5904 if (SUBREG_BYTE (op
) == 0
5905 && GET_MODE_SIZE (innermostmode
) < GET_MODE_SIZE (innermode
))
5907 int difference
= (GET_MODE_SIZE (innermostmode
) - GET_MODE_SIZE (innermode
));
5908 if (WORDS_BIG_ENDIAN
)
5909 final_offset
+= (difference
/ UNITS_PER_WORD
) * UNITS_PER_WORD
;
5910 if (BYTES_BIG_ENDIAN
)
5911 final_offset
+= difference
% UNITS_PER_WORD
;
5914 /* See whether resulting subreg will be paradoxical. */
5915 if (GET_MODE_SIZE (innermostmode
) > GET_MODE_SIZE (outermode
))
5917 /* In nonparadoxical subregs we can't handle negative offsets. */
5918 if (final_offset
< 0)
5920 /* Bail out in case resulting subreg would be incorrect. */
5921 if (final_offset
% GET_MODE_SIZE (outermode
)
5922 || (unsigned) final_offset
>= GET_MODE_SIZE (innermostmode
))
5928 int difference
= (GET_MODE_SIZE (innermostmode
) - GET_MODE_SIZE (outermode
));
5930 /* In paradoxical subreg, see if we are still looking on lower part.
5931 If so, our SUBREG_BYTE will be 0. */
5932 if (WORDS_BIG_ENDIAN
)
5933 offset
+= (difference
/ UNITS_PER_WORD
) * UNITS_PER_WORD
;
5934 if (BYTES_BIG_ENDIAN
)
5935 offset
+= difference
% UNITS_PER_WORD
;
5936 if (offset
== final_offset
)
5942 /* Recurse for further possible simplifications. */
5943 newx
= simplify_subreg (outermode
, SUBREG_REG (op
), innermostmode
,
5947 if (validate_subreg (outermode
, innermostmode
,
5948 SUBREG_REG (op
), final_offset
))
5950 newx
= gen_rtx_SUBREG (outermode
, SUBREG_REG (op
), final_offset
);
5951 if (SUBREG_PROMOTED_VAR_P (op
)
5952 && SUBREG_PROMOTED_SIGN (op
) >= 0
5953 && GET_MODE_CLASS (outermode
) == MODE_INT
5954 && IN_RANGE (GET_MODE_SIZE (outermode
),
5955 GET_MODE_SIZE (innermode
),
5956 GET_MODE_SIZE (innermostmode
))
5957 && subreg_lowpart_p (newx
))
5959 SUBREG_PROMOTED_VAR_P (newx
) = 1;
5960 SUBREG_PROMOTED_SET (newx
, SUBREG_PROMOTED_GET (op
));
5967 /* SUBREG of a hard register => just change the register number
5968 and/or mode. If the hard register is not valid in that mode,
5969 suppress this simplification. If the hard register is the stack,
5970 frame, or argument pointer, leave this as a SUBREG. */
5972 if (REG_P (op
) && HARD_REGISTER_P (op
))
5974 unsigned int regno
, final_regno
;
5977 final_regno
= simplify_subreg_regno (regno
, innermode
, byte
, outermode
);
5978 if (HARD_REGISTER_NUM_P (final_regno
))
5981 int final_offset
= byte
;
5983 /* Adjust offset for paradoxical subregs. */
5985 && GET_MODE_SIZE (innermode
) < GET_MODE_SIZE (outermode
))
5987 int difference
= (GET_MODE_SIZE (innermode
)
5988 - GET_MODE_SIZE (outermode
));
5989 if (WORDS_BIG_ENDIAN
)
5990 final_offset
+= (difference
/ UNITS_PER_WORD
) * UNITS_PER_WORD
;
5991 if (BYTES_BIG_ENDIAN
)
5992 final_offset
+= difference
% UNITS_PER_WORD
;
5995 x
= gen_rtx_REG_offset (op
, outermode
, final_regno
, final_offset
);
5997 /* Propagate original regno. We don't have any way to specify
5998 the offset inside original regno, so do so only for lowpart.
5999 The information is used only by alias analysis that can not
6000 grog partial register anyway. */
6002 if (subreg_lowpart_offset (outermode
, innermode
) == byte
)
6003 ORIGINAL_REGNO (x
) = ORIGINAL_REGNO (op
);
6008 /* If we have a SUBREG of a register that we are replacing and we are
6009 replacing it with a MEM, make a new MEM and try replacing the
6010 SUBREG with it. Don't do this if the MEM has a mode-dependent address
6011 or if we would be widening it. */
6014 && ! mode_dependent_address_p (XEXP (op
, 0), MEM_ADDR_SPACE (op
))
6015 /* Allow splitting of volatile memory references in case we don't
6016 have instruction to move the whole thing. */
6017 && (! MEM_VOLATILE_P (op
)
6018 || ! have_insn_for (SET
, innermode
))
6019 && GET_MODE_SIZE (outermode
) <= GET_MODE_SIZE (GET_MODE (op
)))
6020 return adjust_address_nv (op
, outermode
, byte
);
6022 /* Handle complex values represented as CONCAT
6023 of real and imaginary part. */
6024 if (GET_CODE (op
) == CONCAT
)
6026 unsigned int part_size
, final_offset
;
6029 part_size
= GET_MODE_UNIT_SIZE (GET_MODE (XEXP (op
, 0)));
6030 if (byte
< part_size
)
6032 part
= XEXP (op
, 0);
6033 final_offset
= byte
;
6037 part
= XEXP (op
, 1);
6038 final_offset
= byte
- part_size
;
6041 if (final_offset
+ GET_MODE_SIZE (outermode
) > part_size
)
6044 res
= simplify_subreg (outermode
, part
, GET_MODE (part
), final_offset
);
6047 if (validate_subreg (outermode
, GET_MODE (part
), part
, final_offset
))
6048 return gen_rtx_SUBREG (outermode
, part
, final_offset
);
6052 /* A SUBREG resulting from a zero extension may fold to zero if
6053 it extracts higher bits that the ZERO_EXTEND's source bits. */
6054 if (GET_CODE (op
) == ZERO_EXTEND
&& SCALAR_INT_MODE_P (innermode
))
6056 unsigned int bitpos
= subreg_lsb_1 (outermode
, innermode
, byte
);
6057 if (bitpos
>= GET_MODE_PRECISION (GET_MODE (XEXP (op
, 0))))
6058 return CONST0_RTX (outermode
);
6061 if (SCALAR_INT_MODE_P (outermode
)
6062 && SCALAR_INT_MODE_P (innermode
)
6063 && GET_MODE_PRECISION (outermode
) < GET_MODE_PRECISION (innermode
)
6064 && byte
== subreg_lowpart_offset (outermode
, innermode
))
6066 rtx tem
= simplify_truncation (outermode
, op
, innermode
);
6074 /* Make a SUBREG operation or equivalent if it folds. */
6077 simplify_gen_subreg (machine_mode outermode
, rtx op
,
6078 machine_mode innermode
, unsigned int byte
)
6082 newx
= simplify_subreg (outermode
, op
, innermode
, byte
);
6086 if (GET_CODE (op
) == SUBREG
6087 || GET_CODE (op
) == CONCAT
6088 || GET_MODE (op
) == VOIDmode
)
6091 if (validate_subreg (outermode
, innermode
, op
, byte
))
6092 return gen_rtx_SUBREG (outermode
, op
, byte
);
6097 /* Generates a subreg to get the least significant part of EXPR (in mode
6098 INNER_MODE) to OUTER_MODE. */
6101 lowpart_subreg (machine_mode outer_mode
, rtx expr
,
6102 machine_mode inner_mode
)
6104 return simplify_gen_subreg (outer_mode
, expr
, inner_mode
,
6105 subreg_lowpart_offset (outer_mode
, inner_mode
));
6108 /* Simplify X, an rtx expression.
6110 Return the simplified expression or NULL if no simplifications
6113 This is the preferred entry point into the simplification routines;
6114 however, we still allow passes to call the more specific routines.
6116 Right now GCC has three (yes, three) major bodies of RTL simplification
6117 code that need to be unified.
6119 1. fold_rtx in cse.c. This code uses various CSE specific
6120 information to aid in RTL simplification.
6122 2. simplify_rtx in combine.c. Similar to fold_rtx, except that
6123 it uses combine specific information to aid in RTL
6126 3. The routines in this file.
6129 Long term we want to only have one body of simplification code; to
6130 get to that state I recommend the following steps:
6132 1. Pour over fold_rtx & simplify_rtx and move any simplifications
6133 which are not pass dependent state into these routines.
6135 2. As code is moved by #1, change fold_rtx & simplify_rtx to
6136 use this routine whenever possible.
6138 3. Allow for pass dependent state to be provided to these
6139 routines and add simplifications based on the pass dependent
6140 state. Remove code from cse.c & combine.c that becomes
6143 It will take time, but ultimately the compiler will be easier to
6144 maintain and improve. It's totally silly that when we add a
6145 simplification that it needs to be added to 4 places (3 for RTL
6146 simplification and 1 for tree simplification. */
6149 simplify_rtx (const_rtx x
)
6151 const enum rtx_code code
= GET_CODE (x
);
6152 const machine_mode mode
= GET_MODE (x
);
6154 switch (GET_RTX_CLASS (code
))
6157 return simplify_unary_operation (code
, mode
,
6158 XEXP (x
, 0), GET_MODE (XEXP (x
, 0)));
6159 case RTX_COMM_ARITH
:
6160 if (swap_commutative_operands_p (XEXP (x
, 0), XEXP (x
, 1)))
6161 return simplify_gen_binary (code
, mode
, XEXP (x
, 1), XEXP (x
, 0));
6163 /* Fall through.... */
6166 return simplify_binary_operation (code
, mode
, XEXP (x
, 0), XEXP (x
, 1));
6169 case RTX_BITFIELD_OPS
:
6170 return simplify_ternary_operation (code
, mode
, GET_MODE (XEXP (x
, 0)),
6171 XEXP (x
, 0), XEXP (x
, 1),
6175 case RTX_COMM_COMPARE
:
6176 return simplify_relational_operation (code
, mode
,
6177 ((GET_MODE (XEXP (x
, 0))
6179 ? GET_MODE (XEXP (x
, 0))
6180 : GET_MODE (XEXP (x
, 1))),
6186 return simplify_subreg (mode
, SUBREG_REG (x
),
6187 GET_MODE (SUBREG_REG (x
)),
6194 /* Convert (lo_sum (high FOO) FOO) to FOO. */
6195 if (GET_CODE (XEXP (x
, 0)) == HIGH
6196 && rtx_equal_p (XEXP (XEXP (x
, 0), 0), XEXP (x
, 1)))