mmap.c (MAP_FAILED): Define if not defined.
[official-gcc.git] / gcc / reg-stack.c
blob89a7a11e0bcf5e9a6645fbdd2079d3f312387542
1 /* Register to Stack convert for GNU compiler.
2 Copyright (C) 1992-2016 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it
7 under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3, or (at your option)
9 any later version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
13 or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
14 License for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 /* This pass converts stack-like registers from the "flat register
21 file" model that gcc uses, to a stack convention that the 387 uses.
23 * The form of the input:
25 On input, the function consists of insn that have had their
26 registers fully allocated to a set of "virtual" registers. Note that
27 the word "virtual" is used differently here than elsewhere in gcc: for
28 each virtual stack reg, there is a hard reg, but the mapping between
29 them is not known until this pass is run. On output, hard register
30 numbers have been substituted, and various pop and exchange insns have
31 been emitted. The hard register numbers and the virtual register
32 numbers completely overlap - before this pass, all stack register
33 numbers are virtual, and afterward they are all hard.
35 The virtual registers can be manipulated normally by gcc, and their
36 semantics are the same as for normal registers. After the hard
37 register numbers are substituted, the semantics of an insn containing
38 stack-like regs are not the same as for an insn with normal regs: for
39 instance, it is not safe to delete an insn that appears to be a no-op
40 move. In general, no insn containing hard regs should be changed
41 after this pass is done.
43 * The form of the output:
45 After this pass, hard register numbers represent the distance from
46 the current top of stack to the desired register. A reference to
47 FIRST_STACK_REG references the top of stack, FIRST_STACK_REG + 1,
48 represents the register just below that, and so forth. Also, REG_DEAD
49 notes indicate whether or not a stack register should be popped.
51 A "swap" insn looks like a parallel of two patterns, where each
52 pattern is a SET: one sets A to B, the other B to A.
54 A "push" or "load" insn is a SET whose SET_DEST is FIRST_STACK_REG
55 and whose SET_DEST is REG or MEM. Any other SET_DEST, such as PLUS,
56 will replace the existing stack top, not push a new value.
58 A store insn is a SET whose SET_DEST is FIRST_STACK_REG, and whose
59 SET_SRC is REG or MEM.
61 The case where the SET_SRC and SET_DEST are both FIRST_STACK_REG
62 appears ambiguous. As a special case, the presence of a REG_DEAD note
63 for FIRST_STACK_REG differentiates between a load insn and a pop.
65 If a REG_DEAD is present, the insn represents a "pop" that discards
66 the top of the register stack. If there is no REG_DEAD note, then the
67 insn represents a "dup" or a push of the current top of stack onto the
68 stack.
70 * Methodology:
72 Existing REG_DEAD and REG_UNUSED notes for stack registers are
73 deleted and recreated from scratch. REG_DEAD is never created for a
74 SET_DEST, only REG_UNUSED.
76 * asm_operands:
78 There are several rules on the usage of stack-like regs in
79 asm_operands insns. These rules apply only to the operands that are
80 stack-like regs:
82 1. Given a set of input regs that die in an asm_operands, it is
83 necessary to know which are implicitly popped by the asm, and
84 which must be explicitly popped by gcc.
86 An input reg that is implicitly popped by the asm must be
87 explicitly clobbered, unless it is constrained to match an
88 output operand.
90 2. For any input reg that is implicitly popped by an asm, it is
91 necessary to know how to adjust the stack to compensate for the pop.
92 If any non-popped input is closer to the top of the reg-stack than
93 the implicitly popped reg, it would not be possible to know what the
94 stack looked like - it's not clear how the rest of the stack "slides
95 up".
97 All implicitly popped input regs must be closer to the top of
98 the reg-stack than any input that is not implicitly popped.
100 3. It is possible that if an input dies in an insn, reload might
101 use the input reg for an output reload. Consider this example:
103 asm ("foo" : "=t" (a) : "f" (b));
105 This asm says that input B is not popped by the asm, and that
106 the asm pushes a result onto the reg-stack, i.e., the stack is one
107 deeper after the asm than it was before. But, it is possible that
108 reload will think that it can use the same reg for both the input and
109 the output, if input B dies in this insn.
111 If any input operand uses the "f" constraint, all output reg
112 constraints must use the "&" earlyclobber.
114 The asm above would be written as
116 asm ("foo" : "=&t" (a) : "f" (b));
118 4. Some operands need to be in particular places on the stack. All
119 output operands fall in this category - there is no other way to
120 know which regs the outputs appear in unless the user indicates
121 this in the constraints.
123 Output operands must specifically indicate which reg an output
124 appears in after an asm. "=f" is not allowed: the operand
125 constraints must select a class with a single reg.
127 5. Output operands may not be "inserted" between existing stack regs.
128 Since no 387 opcode uses a read/write operand, all output operands
129 are dead before the asm_operands, and are pushed by the asm_operands.
130 It makes no sense to push anywhere but the top of the reg-stack.
132 Output operands must start at the top of the reg-stack: output
133 operands may not "skip" a reg.
135 6. Some asm statements may need extra stack space for internal
136 calculations. This can be guaranteed by clobbering stack registers
137 unrelated to the inputs and outputs.
139 Here are a couple of reasonable asms to want to write. This asm
140 takes one input, which is internally popped, and produces two outputs.
142 asm ("fsincos" : "=t" (cos), "=u" (sin) : "0" (inp));
144 This asm takes two inputs, which are popped by the fyl2xp1 opcode,
145 and replaces them with one output. The user must code the "st(1)"
146 clobber for reg-stack.c to know that fyl2xp1 pops both inputs.
148 asm ("fyl2xp1" : "=t" (result) : "0" (x), "u" (y) : "st(1)");
152 #include "config.h"
153 #include "system.h"
154 #include "coretypes.h"
155 #include "backend.h"
156 #include "target.h"
157 #include "rtl.h"
158 #include "tree.h"
159 #include "df.h"
160 #include "insn-config.h"
161 #include "emit-rtl.h" /* FIXME: Can go away once crtl is moved to rtl.h. */
162 #include "recog.h"
163 #include "varasm.h"
164 #include "rtl-error.h"
165 #include "cfgrtl.h"
166 #include "cfganal.h"
167 #include "cfgbuild.h"
168 #include "cfgcleanup.h"
169 #include "reload.h"
170 #include "tree-pass.h"
171 #include "rtl-iter.h"
173 #ifdef STACK_REGS
175 /* We use this array to cache info about insns, because otherwise we
176 spend too much time in stack_regs_mentioned_p.
178 Indexed by insn UIDs. A value of zero is uninitialized, one indicates
179 the insn uses stack registers, two indicates the insn does not use
180 stack registers. */
181 static vec<char> stack_regs_mentioned_data;
183 #define REG_STACK_SIZE (LAST_STACK_REG - FIRST_STACK_REG + 1)
185 int regstack_completed = 0;
187 /* This is the basic stack record. TOP is an index into REG[] such
188 that REG[TOP] is the top of stack. If TOP is -1 the stack is empty.
190 If TOP is -2, REG[] is not yet initialized. Stack initialization
191 consists of placing each live reg in array `reg' and setting `top'
192 appropriately.
194 REG_SET indicates which registers are live. */
196 typedef struct stack_def
198 int top; /* index to top stack element */
199 HARD_REG_SET reg_set; /* set of live registers */
200 unsigned char reg[REG_STACK_SIZE];/* register - stack mapping */
201 } *stack_ptr;
203 /* This is used to carry information about basic blocks. It is
204 attached to the AUX field of the standard CFG block. */
206 typedef struct block_info_def
208 struct stack_def stack_in; /* Input stack configuration. */
209 struct stack_def stack_out; /* Output stack configuration. */
210 HARD_REG_SET out_reg_set; /* Stack regs live on output. */
211 int done; /* True if block already converted. */
212 int predecessors; /* Number of predecessors that need
213 to be visited. */
214 } *block_info;
216 #define BLOCK_INFO(B) ((block_info) (B)->aux)
218 /* Passed to change_stack to indicate where to emit insns. */
219 enum emit_where
221 EMIT_AFTER,
222 EMIT_BEFORE
225 /* The block we're currently working on. */
226 static basic_block current_block;
228 /* In the current_block, whether we're processing the first register
229 stack or call instruction, i.e. the regstack is currently the
230 same as BLOCK_INFO(current_block)->stack_in. */
231 static bool starting_stack_p;
233 /* This is the register file for all register after conversion. */
234 static rtx
235 FP_mode_reg[LAST_STACK_REG+1-FIRST_STACK_REG][(int) MAX_MACHINE_MODE];
237 #define FP_MODE_REG(regno,mode) \
238 (FP_mode_reg[(regno)-FIRST_STACK_REG][(int) (mode)])
240 /* Used to initialize uninitialized registers. */
241 static rtx not_a_num;
243 /* Forward declarations */
245 static int stack_regs_mentioned_p (const_rtx pat);
246 static void pop_stack (stack_ptr, int);
247 static rtx *get_true_reg (rtx *);
249 static int check_asm_stack_operands (rtx_insn *);
250 static void get_asm_operands_in_out (rtx, int *, int *);
251 static rtx stack_result (tree);
252 static void replace_reg (rtx *, int);
253 static void remove_regno_note (rtx_insn *, enum reg_note, unsigned int);
254 static int get_hard_regnum (stack_ptr, rtx);
255 static rtx_insn *emit_pop_insn (rtx_insn *, stack_ptr, rtx, enum emit_where);
256 static void swap_to_top (rtx_insn *, stack_ptr, rtx, rtx);
257 static bool move_for_stack_reg (rtx_insn *, stack_ptr, rtx);
258 static bool move_nan_for_stack_reg (rtx_insn *, stack_ptr, rtx);
259 static int swap_rtx_condition_1 (rtx);
260 static int swap_rtx_condition (rtx_insn *);
261 static void compare_for_stack_reg (rtx_insn *, stack_ptr, rtx);
262 static bool subst_stack_regs_pat (rtx_insn *, stack_ptr, rtx);
263 static void subst_asm_stack_regs (rtx_insn *, stack_ptr);
264 static bool subst_stack_regs (rtx_insn *, stack_ptr);
265 static void change_stack (rtx_insn *, stack_ptr, stack_ptr, enum emit_where);
266 static void print_stack (FILE *, stack_ptr);
267 static rtx_insn *next_flags_user (rtx_insn *);
269 /* Return nonzero if any stack register is mentioned somewhere within PAT. */
271 static int
272 stack_regs_mentioned_p (const_rtx pat)
274 const char *fmt;
275 int i;
277 if (STACK_REG_P (pat))
278 return 1;
280 fmt = GET_RTX_FORMAT (GET_CODE (pat));
281 for (i = GET_RTX_LENGTH (GET_CODE (pat)) - 1; i >= 0; i--)
283 if (fmt[i] == 'E')
285 int j;
287 for (j = XVECLEN (pat, i) - 1; j >= 0; j--)
288 if (stack_regs_mentioned_p (XVECEXP (pat, i, j)))
289 return 1;
291 else if (fmt[i] == 'e' && stack_regs_mentioned_p (XEXP (pat, i)))
292 return 1;
295 return 0;
298 /* Return nonzero if INSN mentions stacked registers, else return zero. */
301 stack_regs_mentioned (const_rtx insn)
303 unsigned int uid, max;
304 int test;
306 if (! INSN_P (insn) || !stack_regs_mentioned_data.exists ())
307 return 0;
309 uid = INSN_UID (insn);
310 max = stack_regs_mentioned_data.length ();
311 if (uid >= max)
313 /* Allocate some extra size to avoid too many reallocs, but
314 do not grow too quickly. */
315 max = uid + uid / 20 + 1;
316 stack_regs_mentioned_data.safe_grow_cleared (max);
319 test = stack_regs_mentioned_data[uid];
320 if (test == 0)
322 /* This insn has yet to be examined. Do so now. */
323 test = stack_regs_mentioned_p (PATTERN (insn)) ? 1 : 2;
324 stack_regs_mentioned_data[uid] = test;
327 return test == 1;
330 static rtx ix86_flags_rtx;
332 static rtx_insn *
333 next_flags_user (rtx_insn *insn)
335 /* Search forward looking for the first use of this value.
336 Stop at block boundaries. */
338 while (insn != BB_END (current_block))
340 insn = NEXT_INSN (insn);
342 if (INSN_P (insn) && reg_mentioned_p (ix86_flags_rtx, PATTERN (insn)))
343 return insn;
345 if (CALL_P (insn))
346 return NULL;
348 return NULL;
351 /* Reorganize the stack into ascending numbers, before this insn. */
353 static void
354 straighten_stack (rtx_insn *insn, stack_ptr regstack)
356 struct stack_def temp_stack;
357 int top;
359 /* If there is only a single register on the stack, then the stack is
360 already in increasing order and no reorganization is needed.
362 Similarly if the stack is empty. */
363 if (regstack->top <= 0)
364 return;
366 COPY_HARD_REG_SET (temp_stack.reg_set, regstack->reg_set);
368 for (top = temp_stack.top = regstack->top; top >= 0; top--)
369 temp_stack.reg[top] = FIRST_STACK_REG + temp_stack.top - top;
371 change_stack (insn, regstack, &temp_stack, EMIT_BEFORE);
374 /* Pop a register from the stack. */
376 static void
377 pop_stack (stack_ptr regstack, int regno)
379 int top = regstack->top;
381 CLEAR_HARD_REG_BIT (regstack->reg_set, regno);
382 regstack->top--;
383 /* If regno was not at the top of stack then adjust stack. */
384 if (regstack->reg [top] != regno)
386 int i;
387 for (i = regstack->top; i >= 0; i--)
388 if (regstack->reg [i] == regno)
390 int j;
391 for (j = i; j < top; j++)
392 regstack->reg [j] = regstack->reg [j + 1];
393 break;
398 /* Return a pointer to the REG expression within PAT. If PAT is not a
399 REG, possible enclosed by a conversion rtx, return the inner part of
400 PAT that stopped the search. */
402 static rtx *
403 get_true_reg (rtx *pat)
405 for (;;)
406 switch (GET_CODE (*pat))
408 case SUBREG:
409 /* Eliminate FP subregister accesses in favor of the
410 actual FP register in use. */
412 rtx subreg;
413 if (STACK_REG_P (subreg = SUBREG_REG (*pat)))
415 int regno_off = subreg_regno_offset (REGNO (subreg),
416 GET_MODE (subreg),
417 SUBREG_BYTE (*pat),
418 GET_MODE (*pat));
419 *pat = FP_MODE_REG (REGNO (subreg) + regno_off,
420 GET_MODE (subreg));
421 return pat;
424 case FLOAT:
425 case FIX:
426 case FLOAT_EXTEND:
427 pat = & XEXP (*pat, 0);
428 break;
430 case UNSPEC:
431 if (XINT (*pat, 1) == UNSPEC_TRUNC_NOOP
432 || XINT (*pat, 1) == UNSPEC_FILD_ATOMIC)
433 pat = & XVECEXP (*pat, 0, 0);
434 return pat;
436 case FLOAT_TRUNCATE:
437 if (!flag_unsafe_math_optimizations)
438 return pat;
439 pat = & XEXP (*pat, 0);
440 break;
442 default:
443 return pat;
447 /* Set if we find any malformed asms in a block. */
448 static bool any_malformed_asm;
450 /* There are many rules that an asm statement for stack-like regs must
451 follow. Those rules are explained at the top of this file: the rule
452 numbers below refer to that explanation. */
454 static int
455 check_asm_stack_operands (rtx_insn *insn)
457 int i;
458 int n_clobbers;
459 int malformed_asm = 0;
460 rtx body = PATTERN (insn);
462 char reg_used_as_output[FIRST_PSEUDO_REGISTER];
463 char implicitly_dies[FIRST_PSEUDO_REGISTER];
465 rtx *clobber_reg = 0;
466 int n_inputs, n_outputs;
468 /* Find out what the constraints require. If no constraint
469 alternative matches, this asm is malformed. */
470 extract_constrain_insn (insn);
472 preprocess_constraints (insn);
474 get_asm_operands_in_out (body, &n_outputs, &n_inputs);
476 if (which_alternative < 0)
478 malformed_asm = 1;
479 /* Avoid further trouble with this insn. */
480 PATTERN (insn) = gen_rtx_USE (VOIDmode, const0_rtx);
481 return 0;
483 const operand_alternative *op_alt = which_op_alt ();
485 /* Strip SUBREGs here to make the following code simpler. */
486 for (i = 0; i < recog_data.n_operands; i++)
487 if (GET_CODE (recog_data.operand[i]) == SUBREG
488 && REG_P (SUBREG_REG (recog_data.operand[i])))
489 recog_data.operand[i] = SUBREG_REG (recog_data.operand[i]);
491 /* Set up CLOBBER_REG. */
493 n_clobbers = 0;
495 if (GET_CODE (body) == PARALLEL)
497 clobber_reg = XALLOCAVEC (rtx, XVECLEN (body, 0));
499 for (i = 0; i < XVECLEN (body, 0); i++)
500 if (GET_CODE (XVECEXP (body, 0, i)) == CLOBBER)
502 rtx clobber = XVECEXP (body, 0, i);
503 rtx reg = XEXP (clobber, 0);
505 if (GET_CODE (reg) == SUBREG && REG_P (SUBREG_REG (reg)))
506 reg = SUBREG_REG (reg);
508 if (STACK_REG_P (reg))
510 clobber_reg[n_clobbers] = reg;
511 n_clobbers++;
516 /* Enforce rule #4: Output operands must specifically indicate which
517 reg an output appears in after an asm. "=f" is not allowed: the
518 operand constraints must select a class with a single reg.
520 Also enforce rule #5: Output operands must start at the top of
521 the reg-stack: output operands may not "skip" a reg. */
523 memset (reg_used_as_output, 0, sizeof (reg_used_as_output));
524 for (i = 0; i < n_outputs; i++)
525 if (STACK_REG_P (recog_data.operand[i]))
527 if (reg_class_size[(int) op_alt[i].cl] != 1)
529 error_for_asm (insn, "output constraint %d must specify a single register", i);
530 malformed_asm = 1;
532 else
534 int j;
536 for (j = 0; j < n_clobbers; j++)
537 if (REGNO (recog_data.operand[i]) == REGNO (clobber_reg[j]))
539 error_for_asm (insn, "output constraint %d cannot be specified together with \"%s\" clobber",
540 i, reg_names [REGNO (clobber_reg[j])]);
541 malformed_asm = 1;
542 break;
544 if (j == n_clobbers)
545 reg_used_as_output[REGNO (recog_data.operand[i])] = 1;
550 /* Search for first non-popped reg. */
551 for (i = FIRST_STACK_REG; i < LAST_STACK_REG + 1; i++)
552 if (! reg_used_as_output[i])
553 break;
555 /* If there are any other popped regs, that's an error. */
556 for (; i < LAST_STACK_REG + 1; i++)
557 if (reg_used_as_output[i])
558 break;
560 if (i != LAST_STACK_REG + 1)
562 error_for_asm (insn, "output regs must be grouped at top of stack");
563 malformed_asm = 1;
566 /* Enforce rule #2: All implicitly popped input regs must be closer
567 to the top of the reg-stack than any input that is not implicitly
568 popped. */
570 memset (implicitly_dies, 0, sizeof (implicitly_dies));
571 for (i = n_outputs; i < n_outputs + n_inputs; i++)
572 if (STACK_REG_P (recog_data.operand[i]))
574 /* An input reg is implicitly popped if it is tied to an
575 output, or if there is a CLOBBER for it. */
576 int j;
578 for (j = 0; j < n_clobbers; j++)
579 if (operands_match_p (clobber_reg[j], recog_data.operand[i]))
580 break;
582 if (j < n_clobbers || op_alt[i].matches >= 0)
583 implicitly_dies[REGNO (recog_data.operand[i])] = 1;
586 /* Search for first non-popped reg. */
587 for (i = FIRST_STACK_REG; i < LAST_STACK_REG + 1; i++)
588 if (! implicitly_dies[i])
589 break;
591 /* If there are any other popped regs, that's an error. */
592 for (; i < LAST_STACK_REG + 1; i++)
593 if (implicitly_dies[i])
594 break;
596 if (i != LAST_STACK_REG + 1)
598 error_for_asm (insn,
599 "implicitly popped regs must be grouped at top of stack");
600 malformed_asm = 1;
603 /* Enforce rule #3: If any input operand uses the "f" constraint, all
604 output constraints must use the "&" earlyclobber.
606 ??? Detect this more deterministically by having constrain_asm_operands
607 record any earlyclobber. */
609 for (i = n_outputs; i < n_outputs + n_inputs; i++)
610 if (op_alt[i].matches == -1)
612 int j;
614 for (j = 0; j < n_outputs; j++)
615 if (operands_match_p (recog_data.operand[j], recog_data.operand[i]))
617 error_for_asm (insn,
618 "output operand %d must use %<&%> constraint", j);
619 malformed_asm = 1;
623 if (malformed_asm)
625 /* Avoid further trouble with this insn. */
626 PATTERN (insn) = gen_rtx_USE (VOIDmode, const0_rtx);
627 any_malformed_asm = true;
628 return 0;
631 return 1;
634 /* Calculate the number of inputs and outputs in BODY, an
635 asm_operands. N_OPERANDS is the total number of operands, and
636 N_INPUTS and N_OUTPUTS are pointers to ints into which the results are
637 placed. */
639 static void
640 get_asm_operands_in_out (rtx body, int *pout, int *pin)
642 rtx asmop = extract_asm_operands (body);
644 *pin = ASM_OPERANDS_INPUT_LENGTH (asmop);
645 *pout = (recog_data.n_operands
646 - ASM_OPERANDS_INPUT_LENGTH (asmop)
647 - ASM_OPERANDS_LABEL_LENGTH (asmop));
650 /* If current function returns its result in an fp stack register,
651 return the REG. Otherwise, return 0. */
653 static rtx
654 stack_result (tree decl)
656 rtx result;
658 /* If the value is supposed to be returned in memory, then clearly
659 it is not returned in a stack register. */
660 if (aggregate_value_p (DECL_RESULT (decl), decl))
661 return 0;
663 result = DECL_RTL_IF_SET (DECL_RESULT (decl));
664 if (result != 0)
665 result = targetm.calls.function_value (TREE_TYPE (DECL_RESULT (decl)),
666 decl, true);
668 return result != 0 && STACK_REG_P (result) ? result : 0;
673 * This section deals with stack register substitution, and forms the second
674 * pass over the RTL.
677 /* Replace REG, which is a pointer to a stack reg RTX, with an RTX for
678 the desired hard REGNO. */
680 static void
681 replace_reg (rtx *reg, int regno)
683 gcc_assert (IN_RANGE (regno, FIRST_STACK_REG, LAST_STACK_REG));
684 gcc_assert (STACK_REG_P (*reg));
686 gcc_assert (SCALAR_FLOAT_MODE_P (GET_MODE (*reg))
687 || GET_MODE_CLASS (GET_MODE (*reg)) == MODE_COMPLEX_FLOAT);
689 *reg = FP_MODE_REG (regno, GET_MODE (*reg));
692 /* Remove a note of type NOTE, which must be found, for register
693 number REGNO from INSN. Remove only one such note. */
695 static void
696 remove_regno_note (rtx_insn *insn, enum reg_note note, unsigned int regno)
698 rtx *note_link, this_rtx;
700 note_link = &REG_NOTES (insn);
701 for (this_rtx = *note_link; this_rtx; this_rtx = XEXP (this_rtx, 1))
702 if (REG_NOTE_KIND (this_rtx) == note
703 && REG_P (XEXP (this_rtx, 0)) && REGNO (XEXP (this_rtx, 0)) == regno)
705 *note_link = XEXP (this_rtx, 1);
706 return;
708 else
709 note_link = &XEXP (this_rtx, 1);
711 gcc_unreachable ();
714 /* Find the hard register number of virtual register REG in REGSTACK.
715 The hard register number is relative to the top of the stack. -1 is
716 returned if the register is not found. */
718 static int
719 get_hard_regnum (stack_ptr regstack, rtx reg)
721 int i;
723 gcc_assert (STACK_REG_P (reg));
725 for (i = regstack->top; i >= 0; i--)
726 if (regstack->reg[i] == REGNO (reg))
727 break;
729 return i >= 0 ? (FIRST_STACK_REG + regstack->top - i) : -1;
732 /* Emit an insn to pop virtual register REG before or after INSN.
733 REGSTACK is the stack state after INSN and is updated to reflect this
734 pop. WHEN is either emit_insn_before or emit_insn_after. A pop insn
735 is represented as a SET whose destination is the register to be popped
736 and source is the top of stack. A death note for the top of stack
737 cases the movdf pattern to pop. */
739 static rtx_insn *
740 emit_pop_insn (rtx_insn *insn, stack_ptr regstack, rtx reg, enum emit_where where)
742 rtx_insn *pop_insn;
743 rtx pop_rtx;
744 int hard_regno;
746 /* For complex types take care to pop both halves. These may survive in
747 CLOBBER and USE expressions. */
748 if (COMPLEX_MODE_P (GET_MODE (reg)))
750 rtx reg1 = FP_MODE_REG (REGNO (reg), DFmode);
751 rtx reg2 = FP_MODE_REG (REGNO (reg) + 1, DFmode);
753 pop_insn = NULL;
754 if (get_hard_regnum (regstack, reg1) >= 0)
755 pop_insn = emit_pop_insn (insn, regstack, reg1, where);
756 if (get_hard_regnum (regstack, reg2) >= 0)
757 pop_insn = emit_pop_insn (insn, regstack, reg2, where);
758 gcc_assert (pop_insn);
759 return pop_insn;
762 hard_regno = get_hard_regnum (regstack, reg);
764 gcc_assert (hard_regno >= FIRST_STACK_REG);
766 pop_rtx = gen_rtx_SET (FP_MODE_REG (hard_regno, DFmode),
767 FP_MODE_REG (FIRST_STACK_REG, DFmode));
769 if (where == EMIT_AFTER)
770 pop_insn = emit_insn_after (pop_rtx, insn);
771 else
772 pop_insn = emit_insn_before (pop_rtx, insn);
774 add_reg_note (pop_insn, REG_DEAD, FP_MODE_REG (FIRST_STACK_REG, DFmode));
776 regstack->reg[regstack->top - (hard_regno - FIRST_STACK_REG)]
777 = regstack->reg[regstack->top];
778 regstack->top -= 1;
779 CLEAR_HARD_REG_BIT (regstack->reg_set, REGNO (reg));
781 return pop_insn;
784 /* Emit an insn before or after INSN to swap virtual register REG with
785 the top of stack. REGSTACK is the stack state before the swap, and
786 is updated to reflect the swap. A swap insn is represented as a
787 PARALLEL of two patterns: each pattern moves one reg to the other.
789 If REG is already at the top of the stack, no insn is emitted. */
791 static void
792 emit_swap_insn (rtx_insn *insn, stack_ptr regstack, rtx reg)
794 int hard_regno;
795 rtx swap_rtx;
796 int other_reg; /* swap regno temps */
797 rtx_insn *i1; /* the stack-reg insn prior to INSN */
798 rtx i1set = NULL_RTX; /* the SET rtx within I1 */
800 hard_regno = get_hard_regnum (regstack, reg);
802 if (hard_regno == FIRST_STACK_REG)
803 return;
804 if (hard_regno == -1)
806 /* Something failed if the register wasn't on the stack. If we had
807 malformed asms, we zapped the instruction itself, but that didn't
808 produce the same pattern of register sets as before. To prevent
809 further failure, adjust REGSTACK to include REG at TOP. */
810 gcc_assert (any_malformed_asm);
811 regstack->reg[++regstack->top] = REGNO (reg);
812 return;
814 gcc_assert (hard_regno >= FIRST_STACK_REG);
816 other_reg = regstack->top - (hard_regno - FIRST_STACK_REG);
817 std::swap (regstack->reg[regstack->top], regstack->reg[other_reg]);
819 /* Find the previous insn involving stack regs, but don't pass a
820 block boundary. */
821 i1 = NULL;
822 if (current_block && insn != BB_HEAD (current_block))
824 rtx_insn *tmp = PREV_INSN (insn);
825 rtx_insn *limit = PREV_INSN (BB_HEAD (current_block));
826 while (tmp != limit)
828 if (LABEL_P (tmp)
829 || CALL_P (tmp)
830 || NOTE_INSN_BASIC_BLOCK_P (tmp)
831 || (NONJUMP_INSN_P (tmp)
832 && stack_regs_mentioned (tmp)))
834 i1 = tmp;
835 break;
837 tmp = PREV_INSN (tmp);
841 if (i1 != NULL_RTX
842 && (i1set = single_set (i1)) != NULL_RTX)
844 rtx i1src = *get_true_reg (&SET_SRC (i1set));
845 rtx i1dest = *get_true_reg (&SET_DEST (i1set));
847 /* If the previous register stack push was from the reg we are to
848 swap with, omit the swap. */
850 if (REG_P (i1dest) && REGNO (i1dest) == FIRST_STACK_REG
851 && REG_P (i1src)
852 && REGNO (i1src) == (unsigned) hard_regno - 1
853 && find_regno_note (i1, REG_DEAD, FIRST_STACK_REG) == NULL_RTX)
854 return;
856 /* If the previous insn wrote to the reg we are to swap with,
857 omit the swap. */
859 if (REG_P (i1dest) && REGNO (i1dest) == (unsigned) hard_regno
860 && REG_P (i1src) && REGNO (i1src) == FIRST_STACK_REG
861 && find_regno_note (i1, REG_DEAD, FIRST_STACK_REG) == NULL_RTX)
862 return;
865 /* Avoid emitting the swap if this is the first register stack insn
866 of the current_block. Instead update the current_block's stack_in
867 and let compensate edges take care of this for us. */
868 if (current_block && starting_stack_p)
870 BLOCK_INFO (current_block)->stack_in = *regstack;
871 starting_stack_p = false;
872 return;
875 swap_rtx = gen_swapxf (FP_MODE_REG (hard_regno, XFmode),
876 FP_MODE_REG (FIRST_STACK_REG, XFmode));
878 if (i1)
879 emit_insn_after (swap_rtx, i1);
880 else if (current_block)
881 emit_insn_before (swap_rtx, BB_HEAD (current_block));
882 else
883 emit_insn_before (swap_rtx, insn);
886 /* Emit an insns before INSN to swap virtual register SRC1 with
887 the top of stack and virtual register SRC2 with second stack
888 slot. REGSTACK is the stack state before the swaps, and
889 is updated to reflect the swaps. A swap insn is represented as a
890 PARALLEL of two patterns: each pattern moves one reg to the other.
892 If SRC1 and/or SRC2 are already at the right place, no swap insn
893 is emitted. */
895 static void
896 swap_to_top (rtx_insn *insn, stack_ptr regstack, rtx src1, rtx src2)
898 struct stack_def temp_stack;
899 int regno, j, k;
901 temp_stack = *regstack;
903 /* Place operand 1 at the top of stack. */
904 regno = get_hard_regnum (&temp_stack, src1);
905 gcc_assert (regno >= 0);
906 if (regno != FIRST_STACK_REG)
908 k = temp_stack.top - (regno - FIRST_STACK_REG);
909 j = temp_stack.top;
911 std::swap (temp_stack.reg[j], temp_stack.reg[k]);
914 /* Place operand 2 next on the stack. */
915 regno = get_hard_regnum (&temp_stack, src2);
916 gcc_assert (regno >= 0);
917 if (regno != FIRST_STACK_REG + 1)
919 k = temp_stack.top - (regno - FIRST_STACK_REG);
920 j = temp_stack.top - 1;
922 std::swap (temp_stack.reg[j], temp_stack.reg[k]);
925 change_stack (insn, regstack, &temp_stack, EMIT_BEFORE);
928 /* Handle a move to or from a stack register in PAT, which is in INSN.
929 REGSTACK is the current stack. Return whether a control flow insn
930 was deleted in the process. */
932 static bool
933 move_for_stack_reg (rtx_insn *insn, stack_ptr regstack, rtx pat)
935 rtx *psrc = get_true_reg (&SET_SRC (pat));
936 rtx *pdest = get_true_reg (&SET_DEST (pat));
937 rtx src, dest;
938 rtx note;
939 bool control_flow_insn_deleted = false;
941 src = *psrc; dest = *pdest;
943 if (STACK_REG_P (src) && STACK_REG_P (dest))
945 /* Write from one stack reg to another. If SRC dies here, then
946 just change the register mapping and delete the insn. */
948 note = find_regno_note (insn, REG_DEAD, REGNO (src));
949 if (note)
951 int i;
953 /* If this is a no-op move, there must not be a REG_DEAD note. */
954 gcc_assert (REGNO (src) != REGNO (dest));
956 for (i = regstack->top; i >= 0; i--)
957 if (regstack->reg[i] == REGNO (src))
958 break;
960 /* The destination must be dead, or life analysis is borked. */
961 gcc_assert (get_hard_regnum (regstack, dest) < FIRST_STACK_REG);
963 /* If the source is not live, this is yet another case of
964 uninitialized variables. Load up a NaN instead. */
965 if (i < 0)
966 return move_nan_for_stack_reg (insn, regstack, dest);
968 /* It is possible that the dest is unused after this insn.
969 If so, just pop the src. */
971 if (find_regno_note (insn, REG_UNUSED, REGNO (dest)))
972 emit_pop_insn (insn, regstack, src, EMIT_AFTER);
973 else
975 regstack->reg[i] = REGNO (dest);
976 SET_HARD_REG_BIT (regstack->reg_set, REGNO (dest));
977 CLEAR_HARD_REG_BIT (regstack->reg_set, REGNO (src));
980 control_flow_insn_deleted |= control_flow_insn_p (insn);
981 delete_insn (insn);
982 return control_flow_insn_deleted;
985 /* The source reg does not die. */
987 /* If this appears to be a no-op move, delete it, or else it
988 will confuse the machine description output patterns. But if
989 it is REG_UNUSED, we must pop the reg now, as per-insn processing
990 for REG_UNUSED will not work for deleted insns. */
992 if (REGNO (src) == REGNO (dest))
994 if (find_regno_note (insn, REG_UNUSED, REGNO (dest)))
995 emit_pop_insn (insn, regstack, dest, EMIT_AFTER);
997 control_flow_insn_deleted |= control_flow_insn_p (insn);
998 delete_insn (insn);
999 return control_flow_insn_deleted;
1002 /* The destination ought to be dead. */
1003 gcc_assert (get_hard_regnum (regstack, dest) < FIRST_STACK_REG);
1005 replace_reg (psrc, get_hard_regnum (regstack, src));
1007 regstack->reg[++regstack->top] = REGNO (dest);
1008 SET_HARD_REG_BIT (regstack->reg_set, REGNO (dest));
1009 replace_reg (pdest, FIRST_STACK_REG);
1011 else if (STACK_REG_P (src))
1013 /* Save from a stack reg to MEM, or possibly integer reg. Since
1014 only top of stack may be saved, emit an exchange first if
1015 needs be. */
1017 emit_swap_insn (insn, regstack, src);
1019 note = find_regno_note (insn, REG_DEAD, REGNO (src));
1020 if (note)
1022 replace_reg (&XEXP (note, 0), FIRST_STACK_REG);
1023 regstack->top--;
1024 CLEAR_HARD_REG_BIT (regstack->reg_set, REGNO (src));
1026 else if ((GET_MODE (src) == XFmode)
1027 && regstack->top < REG_STACK_SIZE - 1)
1029 /* A 387 cannot write an XFmode value to a MEM without
1030 clobbering the source reg. The output code can handle
1031 this by reading back the value from the MEM.
1032 But it is more efficient to use a temp register if one is
1033 available. Push the source value here if the register
1034 stack is not full, and then write the value to memory via
1035 a pop. */
1036 rtx push_rtx;
1037 rtx top_stack_reg = FP_MODE_REG (FIRST_STACK_REG, GET_MODE (src));
1039 push_rtx = gen_movxf (top_stack_reg, top_stack_reg);
1040 emit_insn_before (push_rtx, insn);
1041 add_reg_note (insn, REG_DEAD, top_stack_reg);
1044 replace_reg (psrc, FIRST_STACK_REG);
1046 else
1048 rtx pat = PATTERN (insn);
1050 gcc_assert (STACK_REG_P (dest));
1052 /* Load from MEM, or possibly integer REG or constant, into the
1053 stack regs. The actual target is always the top of the
1054 stack. The stack mapping is changed to reflect that DEST is
1055 now at top of stack. */
1057 /* The destination ought to be dead. However, there is a
1058 special case with i387 UNSPEC_TAN, where destination is live
1059 (an argument to fptan) but inherent load of 1.0 is modelled
1060 as a load from a constant. */
1061 if (GET_CODE (pat) == PARALLEL
1062 && XVECLEN (pat, 0) == 2
1063 && GET_CODE (XVECEXP (pat, 0, 1)) == SET
1064 && GET_CODE (SET_SRC (XVECEXP (pat, 0, 1))) == UNSPEC
1065 && XINT (SET_SRC (XVECEXP (pat, 0, 1)), 1) == UNSPEC_TAN)
1066 emit_swap_insn (insn, regstack, dest);
1067 else
1068 gcc_assert (get_hard_regnum (regstack, dest) < FIRST_STACK_REG);
1070 gcc_assert (regstack->top < REG_STACK_SIZE);
1072 regstack->reg[++regstack->top] = REGNO (dest);
1073 SET_HARD_REG_BIT (regstack->reg_set, REGNO (dest));
1074 replace_reg (pdest, FIRST_STACK_REG);
1077 return control_flow_insn_deleted;
1080 /* A helper function which replaces INSN with a pattern that loads up
1081 a NaN into DEST, then invokes move_for_stack_reg. */
1083 static bool
1084 move_nan_for_stack_reg (rtx_insn *insn, stack_ptr regstack, rtx dest)
1086 rtx pat;
1088 dest = FP_MODE_REG (REGNO (dest), SFmode);
1089 pat = gen_rtx_SET (dest, not_a_num);
1090 PATTERN (insn) = pat;
1091 INSN_CODE (insn) = -1;
1093 return move_for_stack_reg (insn, regstack, pat);
1096 /* Swap the condition on a branch, if there is one. Return true if we
1097 found a condition to swap. False if the condition was not used as
1098 such. */
1100 static int
1101 swap_rtx_condition_1 (rtx pat)
1103 const char *fmt;
1104 int i, r = 0;
1106 if (COMPARISON_P (pat))
1108 PUT_CODE (pat, swap_condition (GET_CODE (pat)));
1109 r = 1;
1111 else
1113 fmt = GET_RTX_FORMAT (GET_CODE (pat));
1114 for (i = GET_RTX_LENGTH (GET_CODE (pat)) - 1; i >= 0; i--)
1116 if (fmt[i] == 'E')
1118 int j;
1120 for (j = XVECLEN (pat, i) - 1; j >= 0; j--)
1121 r |= swap_rtx_condition_1 (XVECEXP (pat, i, j));
1123 else if (fmt[i] == 'e')
1124 r |= swap_rtx_condition_1 (XEXP (pat, i));
1128 return r;
1131 static int
1132 swap_rtx_condition (rtx_insn *insn)
1134 rtx pat = PATTERN (insn);
1136 /* We're looking for a single set to cc0 or an HImode temporary. */
1138 if (GET_CODE (pat) == SET
1139 && REG_P (SET_DEST (pat))
1140 && REGNO (SET_DEST (pat)) == FLAGS_REG)
1142 insn = next_flags_user (insn);
1143 if (insn == NULL_RTX)
1144 return 0;
1145 pat = PATTERN (insn);
1148 /* See if this is, or ends in, a fnstsw. If so, we're not doing anything
1149 with the cc value right now. We may be able to search for one
1150 though. */
1152 if (GET_CODE (pat) == SET
1153 && GET_CODE (SET_SRC (pat)) == UNSPEC
1154 && XINT (SET_SRC (pat), 1) == UNSPEC_FNSTSW)
1156 rtx dest = SET_DEST (pat);
1158 /* Search forward looking for the first use of this value.
1159 Stop at block boundaries. */
1160 while (insn != BB_END (current_block))
1162 insn = NEXT_INSN (insn);
1163 if (INSN_P (insn) && reg_mentioned_p (dest, insn))
1164 break;
1165 if (CALL_P (insn))
1166 return 0;
1169 /* We haven't found it. */
1170 if (insn == BB_END (current_block))
1171 return 0;
1173 /* So we've found the insn using this value. If it is anything
1174 other than sahf or the value does not die (meaning we'd have
1175 to search further), then we must give up. */
1176 pat = PATTERN (insn);
1177 if (GET_CODE (pat) != SET
1178 || GET_CODE (SET_SRC (pat)) != UNSPEC
1179 || XINT (SET_SRC (pat), 1) != UNSPEC_SAHF
1180 || ! dead_or_set_p (insn, dest))
1181 return 0;
1183 /* Now we are prepared to handle this as a normal cc0 setter. */
1184 insn = next_flags_user (insn);
1185 if (insn == NULL_RTX)
1186 return 0;
1187 pat = PATTERN (insn);
1190 if (swap_rtx_condition_1 (pat))
1192 int fail = 0;
1193 INSN_CODE (insn) = -1;
1194 if (recog_memoized (insn) == -1)
1195 fail = 1;
1196 /* In case the flags don't die here, recurse to try fix
1197 following user too. */
1198 else if (! dead_or_set_p (insn, ix86_flags_rtx))
1200 insn = next_flags_user (insn);
1201 if (!insn || !swap_rtx_condition (insn))
1202 fail = 1;
1204 if (fail)
1206 swap_rtx_condition_1 (pat);
1207 return 0;
1209 return 1;
1211 return 0;
1214 /* Handle a comparison. Special care needs to be taken to avoid
1215 causing comparisons that a 387 cannot do correctly, such as EQ.
1217 Also, a pop insn may need to be emitted. The 387 does have an
1218 `fcompp' insn that can pop two regs, but it is sometimes too expensive
1219 to do this - a `fcomp' followed by a `fstpl %st(0)' may be easier to
1220 set up. */
1222 static void
1223 compare_for_stack_reg (rtx_insn *insn, stack_ptr regstack, rtx pat_src)
1225 rtx *src1, *src2;
1226 rtx src1_note, src2_note;
1228 src1 = get_true_reg (&XEXP (pat_src, 0));
1229 src2 = get_true_reg (&XEXP (pat_src, 1));
1231 /* ??? If fxch turns out to be cheaper than fstp, give priority to
1232 registers that die in this insn - move those to stack top first. */
1233 if ((! STACK_REG_P (*src1)
1234 || (STACK_REG_P (*src2)
1235 && get_hard_regnum (regstack, *src2) == FIRST_STACK_REG))
1236 && swap_rtx_condition (insn))
1238 std::swap (XEXP (pat_src, 0), XEXP (pat_src, 1));
1240 src1 = get_true_reg (&XEXP (pat_src, 0));
1241 src2 = get_true_reg (&XEXP (pat_src, 1));
1243 INSN_CODE (insn) = -1;
1246 /* We will fix any death note later. */
1248 src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1250 if (STACK_REG_P (*src2))
1251 src2_note = find_regno_note (insn, REG_DEAD, REGNO (*src2));
1252 else
1253 src2_note = NULL_RTX;
1255 emit_swap_insn (insn, regstack, *src1);
1257 replace_reg (src1, FIRST_STACK_REG);
1259 if (STACK_REG_P (*src2))
1260 replace_reg (src2, get_hard_regnum (regstack, *src2));
1262 if (src1_note)
1264 pop_stack (regstack, REGNO (XEXP (src1_note, 0)));
1265 replace_reg (&XEXP (src1_note, 0), FIRST_STACK_REG);
1268 /* If the second operand dies, handle that. But if the operands are
1269 the same stack register, don't bother, because only one death is
1270 needed, and it was just handled. */
1272 if (src2_note
1273 && ! (STACK_REG_P (*src1) && STACK_REG_P (*src2)
1274 && REGNO (*src1) == REGNO (*src2)))
1276 /* As a special case, two regs may die in this insn if src2 is
1277 next to top of stack and the top of stack also dies. Since
1278 we have already popped src1, "next to top of stack" is really
1279 at top (FIRST_STACK_REG) now. */
1281 if (get_hard_regnum (regstack, XEXP (src2_note, 0)) == FIRST_STACK_REG
1282 && src1_note)
1284 pop_stack (regstack, REGNO (XEXP (src2_note, 0)));
1285 replace_reg (&XEXP (src2_note, 0), FIRST_STACK_REG + 1);
1287 else
1289 /* The 386 can only represent death of the first operand in
1290 the case handled above. In all other cases, emit a separate
1291 pop and remove the death note from here. */
1292 remove_regno_note (insn, REG_DEAD, REGNO (XEXP (src2_note, 0)));
1293 emit_pop_insn (insn, regstack, XEXP (src2_note, 0),
1294 EMIT_AFTER);
1299 /* Substitute hardware stack regs in debug insn INSN, using stack
1300 layout REGSTACK. If we can't find a hardware stack reg for any of
1301 the REGs in it, reset the debug insn. */
1303 static void
1304 subst_all_stack_regs_in_debug_insn (rtx_insn *insn, struct stack_def *regstack)
1306 subrtx_ptr_iterator::array_type array;
1307 FOR_EACH_SUBRTX_PTR (iter, array, &INSN_VAR_LOCATION_LOC (insn), NONCONST)
1309 rtx *loc = *iter;
1310 rtx x = *loc;
1311 if (STACK_REG_P (x))
1313 int hard_regno = get_hard_regnum (regstack, x);
1315 /* If we can't find an active register, reset this debug insn. */
1316 if (hard_regno == -1)
1318 INSN_VAR_LOCATION_LOC (insn) = gen_rtx_UNKNOWN_VAR_LOC ();
1319 return;
1322 gcc_assert (hard_regno >= FIRST_STACK_REG);
1323 replace_reg (loc, hard_regno);
1324 iter.skip_subrtxes ();
1329 /* Substitute new registers in PAT, which is part of INSN. REGSTACK
1330 is the current register layout. Return whether a control flow insn
1331 was deleted in the process. */
1333 static bool
1334 subst_stack_regs_pat (rtx_insn *insn, stack_ptr regstack, rtx pat)
1336 rtx *dest, *src;
1337 bool control_flow_insn_deleted = false;
1339 switch (GET_CODE (pat))
1341 case USE:
1342 /* Deaths in USE insns can happen in non optimizing compilation.
1343 Handle them by popping the dying register. */
1344 src = get_true_reg (&XEXP (pat, 0));
1345 if (STACK_REG_P (*src)
1346 && find_regno_note (insn, REG_DEAD, REGNO (*src)))
1348 /* USEs are ignored for liveness information so USEs of dead
1349 register might happen. */
1350 if (TEST_HARD_REG_BIT (regstack->reg_set, REGNO (*src)))
1351 emit_pop_insn (insn, regstack, *src, EMIT_AFTER);
1352 return control_flow_insn_deleted;
1354 /* Uninitialized USE might happen for functions returning uninitialized
1355 value. We will properly initialize the USE on the edge to EXIT_BLOCK,
1356 so it is safe to ignore the use here. This is consistent with behavior
1357 of dataflow analyzer that ignores USE too. (This also imply that
1358 forcibly initializing the register to NaN here would lead to ICE later,
1359 since the REG_DEAD notes are not issued.) */
1360 break;
1362 case VAR_LOCATION:
1363 gcc_unreachable ();
1365 case CLOBBER:
1367 rtx note;
1369 dest = get_true_reg (&XEXP (pat, 0));
1370 if (STACK_REG_P (*dest))
1372 note = find_reg_note (insn, REG_DEAD, *dest);
1374 if (pat != PATTERN (insn))
1376 /* The fix_truncdi_1 pattern wants to be able to
1377 allocate its own scratch register. It does this by
1378 clobbering an fp reg so that it is assured of an
1379 empty reg-stack register. If the register is live,
1380 kill it now. Remove the DEAD/UNUSED note so we
1381 don't try to kill it later too.
1383 In reality the UNUSED note can be absent in some
1384 complicated cases when the register is reused for
1385 partially set variable. */
1387 if (note)
1388 emit_pop_insn (insn, regstack, *dest, EMIT_BEFORE);
1389 else
1390 note = find_reg_note (insn, REG_UNUSED, *dest);
1391 if (note)
1392 remove_note (insn, note);
1393 replace_reg (dest, FIRST_STACK_REG + 1);
1395 else
1397 /* A top-level clobber with no REG_DEAD, and no hard-regnum
1398 indicates an uninitialized value. Because reload removed
1399 all other clobbers, this must be due to a function
1400 returning without a value. Load up a NaN. */
1402 if (!note)
1404 rtx t = *dest;
1405 if (COMPLEX_MODE_P (GET_MODE (t)))
1407 rtx u = FP_MODE_REG (REGNO (t) + 1, SFmode);
1408 if (get_hard_regnum (regstack, u) == -1)
1410 rtx pat2 = gen_rtx_CLOBBER (VOIDmode, u);
1411 rtx_insn *insn2 = emit_insn_before (pat2, insn);
1412 control_flow_insn_deleted
1413 |= move_nan_for_stack_reg (insn2, regstack, u);
1416 if (get_hard_regnum (regstack, t) == -1)
1417 control_flow_insn_deleted
1418 |= move_nan_for_stack_reg (insn, regstack, t);
1422 break;
1425 case SET:
1427 rtx *src1 = (rtx *) 0, *src2;
1428 rtx src1_note, src2_note;
1429 rtx pat_src;
1431 dest = get_true_reg (&SET_DEST (pat));
1432 src = get_true_reg (&SET_SRC (pat));
1433 pat_src = SET_SRC (pat);
1435 /* See if this is a `movM' pattern, and handle elsewhere if so. */
1436 if (STACK_REG_P (*src)
1437 || (STACK_REG_P (*dest)
1438 && (REG_P (*src) || MEM_P (*src)
1439 || CONST_DOUBLE_P (*src))))
1441 control_flow_insn_deleted |= move_for_stack_reg (insn, regstack, pat);
1442 break;
1445 switch (GET_CODE (pat_src))
1447 case COMPARE:
1448 compare_for_stack_reg (insn, regstack, pat_src);
1449 break;
1451 case CALL:
1453 int count;
1454 for (count = REG_NREGS (*dest); --count >= 0;)
1456 regstack->reg[++regstack->top] = REGNO (*dest) + count;
1457 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest) + count);
1460 replace_reg (dest, FIRST_STACK_REG);
1461 break;
1463 case REG:
1464 /* This is a `tstM2' case. */
1465 gcc_assert (*dest == cc0_rtx);
1466 src1 = src;
1468 /* Fall through. */
1470 case FLOAT_TRUNCATE:
1471 case SQRT:
1472 case ABS:
1473 case NEG:
1474 /* These insns only operate on the top of the stack. DEST might
1475 be cc0_rtx if we're processing a tstM pattern. Also, it's
1476 possible that the tstM case results in a REG_DEAD note on the
1477 source. */
1479 if (src1 == 0)
1480 src1 = get_true_reg (&XEXP (pat_src, 0));
1482 emit_swap_insn (insn, regstack, *src1);
1484 src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1486 if (STACK_REG_P (*dest))
1487 replace_reg (dest, FIRST_STACK_REG);
1489 if (src1_note)
1491 replace_reg (&XEXP (src1_note, 0), FIRST_STACK_REG);
1492 regstack->top--;
1493 CLEAR_HARD_REG_BIT (regstack->reg_set, REGNO (*src1));
1496 replace_reg (src1, FIRST_STACK_REG);
1497 break;
1499 case MINUS:
1500 case DIV:
1501 /* On i386, reversed forms of subM3 and divM3 exist for
1502 MODE_FLOAT, so the same code that works for addM3 and mulM3
1503 can be used. */
1504 case MULT:
1505 case PLUS:
1506 /* These insns can accept the top of stack as a destination
1507 from a stack reg or mem, or can use the top of stack as a
1508 source and some other stack register (possibly top of stack)
1509 as a destination. */
1511 src1 = get_true_reg (&XEXP (pat_src, 0));
1512 src2 = get_true_reg (&XEXP (pat_src, 1));
1514 /* We will fix any death note later. */
1516 if (STACK_REG_P (*src1))
1517 src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1518 else
1519 src1_note = NULL_RTX;
1520 if (STACK_REG_P (*src2))
1521 src2_note = find_regno_note (insn, REG_DEAD, REGNO (*src2));
1522 else
1523 src2_note = NULL_RTX;
1525 /* If either operand is not a stack register, then the dest
1526 must be top of stack. */
1528 if (! STACK_REG_P (*src1) || ! STACK_REG_P (*src2))
1529 emit_swap_insn (insn, regstack, *dest);
1530 else
1532 /* Both operands are REG. If neither operand is already
1533 at the top of stack, choose to make the one that is the
1534 dest the new top of stack. */
1536 int src1_hard_regnum, src2_hard_regnum;
1538 src1_hard_regnum = get_hard_regnum (regstack, *src1);
1539 src2_hard_regnum = get_hard_regnum (regstack, *src2);
1541 /* If the source is not live, this is yet another case of
1542 uninitialized variables. Load up a NaN instead. */
1543 if (src1_hard_regnum == -1)
1545 rtx pat2 = gen_rtx_CLOBBER (VOIDmode, *src1);
1546 rtx_insn *insn2 = emit_insn_before (pat2, insn);
1547 control_flow_insn_deleted
1548 |= move_nan_for_stack_reg (insn2, regstack, *src1);
1550 if (src2_hard_regnum == -1)
1552 rtx pat2 = gen_rtx_CLOBBER (VOIDmode, *src2);
1553 rtx_insn *insn2 = emit_insn_before (pat2, insn);
1554 control_flow_insn_deleted
1555 |= move_nan_for_stack_reg (insn2, regstack, *src2);
1558 if (src1_hard_regnum != FIRST_STACK_REG
1559 && src2_hard_regnum != FIRST_STACK_REG)
1560 emit_swap_insn (insn, regstack, *dest);
1563 if (STACK_REG_P (*src1))
1564 replace_reg (src1, get_hard_regnum (regstack, *src1));
1565 if (STACK_REG_P (*src2))
1566 replace_reg (src2, get_hard_regnum (regstack, *src2));
1568 if (src1_note)
1570 rtx src1_reg = XEXP (src1_note, 0);
1572 /* If the register that dies is at the top of stack, then
1573 the destination is somewhere else - merely substitute it.
1574 But if the reg that dies is not at top of stack, then
1575 move the top of stack to the dead reg, as though we had
1576 done the insn and then a store-with-pop. */
1578 if (REGNO (src1_reg) == regstack->reg[regstack->top])
1580 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1581 replace_reg (dest, get_hard_regnum (regstack, *dest));
1583 else
1585 int regno = get_hard_regnum (regstack, src1_reg);
1587 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1588 replace_reg (dest, regno);
1590 regstack->reg[regstack->top - (regno - FIRST_STACK_REG)]
1591 = regstack->reg[regstack->top];
1594 CLEAR_HARD_REG_BIT (regstack->reg_set,
1595 REGNO (XEXP (src1_note, 0)));
1596 replace_reg (&XEXP (src1_note, 0), FIRST_STACK_REG);
1597 regstack->top--;
1599 else if (src2_note)
1601 rtx src2_reg = XEXP (src2_note, 0);
1602 if (REGNO (src2_reg) == regstack->reg[regstack->top])
1604 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1605 replace_reg (dest, get_hard_regnum (regstack, *dest));
1607 else
1609 int regno = get_hard_regnum (regstack, src2_reg);
1611 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1612 replace_reg (dest, regno);
1614 regstack->reg[regstack->top - (regno - FIRST_STACK_REG)]
1615 = regstack->reg[regstack->top];
1618 CLEAR_HARD_REG_BIT (regstack->reg_set,
1619 REGNO (XEXP (src2_note, 0)));
1620 replace_reg (&XEXP (src2_note, 0), FIRST_STACK_REG);
1621 regstack->top--;
1623 else
1625 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1626 replace_reg (dest, get_hard_regnum (regstack, *dest));
1629 /* Keep operand 1 matching with destination. */
1630 if (COMMUTATIVE_ARITH_P (pat_src)
1631 && REG_P (*src1) && REG_P (*src2)
1632 && REGNO (*src1) != REGNO (*dest))
1634 int tmp = REGNO (*src1);
1635 replace_reg (src1, REGNO (*src2));
1636 replace_reg (src2, tmp);
1638 break;
1640 case UNSPEC:
1641 switch (XINT (pat_src, 1))
1643 case UNSPEC_FIST:
1644 case UNSPEC_FIST_ATOMIC:
1646 case UNSPEC_FIST_FLOOR:
1647 case UNSPEC_FIST_CEIL:
1649 /* These insns only operate on the top of the stack. */
1651 src1 = get_true_reg (&XVECEXP (pat_src, 0, 0));
1652 emit_swap_insn (insn, regstack, *src1);
1654 src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1656 if (STACK_REG_P (*dest))
1657 replace_reg (dest, FIRST_STACK_REG);
1659 if (src1_note)
1661 replace_reg (&XEXP (src1_note, 0), FIRST_STACK_REG);
1662 regstack->top--;
1663 CLEAR_HARD_REG_BIT (regstack->reg_set, REGNO (*src1));
1666 replace_reg (src1, FIRST_STACK_REG);
1667 break;
1669 case UNSPEC_FXAM:
1671 /* This insn only operate on the top of the stack. */
1673 src1 = get_true_reg (&XVECEXP (pat_src, 0, 0));
1674 emit_swap_insn (insn, regstack, *src1);
1676 src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1678 replace_reg (src1, FIRST_STACK_REG);
1680 if (src1_note)
1682 remove_regno_note (insn, REG_DEAD,
1683 REGNO (XEXP (src1_note, 0)));
1684 emit_pop_insn (insn, regstack, XEXP (src1_note, 0),
1685 EMIT_AFTER);
1688 break;
1690 case UNSPEC_SIN:
1691 case UNSPEC_COS:
1692 case UNSPEC_FRNDINT:
1693 case UNSPEC_F2XM1:
1695 case UNSPEC_FRNDINT_FLOOR:
1696 case UNSPEC_FRNDINT_CEIL:
1697 case UNSPEC_FRNDINT_TRUNC:
1698 case UNSPEC_FRNDINT_MASK_PM:
1700 /* Above insns operate on the top of the stack. */
1702 case UNSPEC_SINCOS_COS:
1703 case UNSPEC_XTRACT_FRACT:
1705 /* Above insns operate on the top two stack slots,
1706 first part of one input, double output insn. */
1708 src1 = get_true_reg (&XVECEXP (pat_src, 0, 0));
1710 emit_swap_insn (insn, regstack, *src1);
1712 /* Input should never die, it is replaced with output. */
1713 src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1714 gcc_assert (!src1_note);
1716 if (STACK_REG_P (*dest))
1717 replace_reg (dest, FIRST_STACK_REG);
1719 replace_reg (src1, FIRST_STACK_REG);
1720 break;
1722 case UNSPEC_SINCOS_SIN:
1723 case UNSPEC_XTRACT_EXP:
1725 /* These insns operate on the top two stack slots,
1726 second part of one input, double output insn. */
1728 regstack->top++;
1729 /* FALLTHRU */
1731 case UNSPEC_TAN:
1733 /* For UNSPEC_TAN, regstack->top is already increased
1734 by inherent load of constant 1.0. */
1736 /* Output value is generated in the second stack slot.
1737 Move current value from second slot to the top. */
1738 regstack->reg[regstack->top]
1739 = regstack->reg[regstack->top - 1];
1741 gcc_assert (STACK_REG_P (*dest));
1743 regstack->reg[regstack->top - 1] = REGNO (*dest);
1744 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1745 replace_reg (dest, FIRST_STACK_REG + 1);
1747 src1 = get_true_reg (&XVECEXP (pat_src, 0, 0));
1749 replace_reg (src1, FIRST_STACK_REG);
1750 break;
1752 case UNSPEC_FPATAN:
1753 case UNSPEC_FYL2X:
1754 case UNSPEC_FYL2XP1:
1755 /* These insns operate on the top two stack slots. */
1757 src1 = get_true_reg (&XVECEXP (pat_src, 0, 0));
1758 src2 = get_true_reg (&XVECEXP (pat_src, 0, 1));
1760 src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1761 src2_note = find_regno_note (insn, REG_DEAD, REGNO (*src2));
1763 swap_to_top (insn, regstack, *src1, *src2);
1765 replace_reg (src1, FIRST_STACK_REG);
1766 replace_reg (src2, FIRST_STACK_REG + 1);
1768 if (src1_note)
1769 replace_reg (&XEXP (src1_note, 0), FIRST_STACK_REG);
1770 if (src2_note)
1771 replace_reg (&XEXP (src2_note, 0), FIRST_STACK_REG + 1);
1773 /* Pop both input operands from the stack. */
1774 CLEAR_HARD_REG_BIT (regstack->reg_set,
1775 regstack->reg[regstack->top]);
1776 CLEAR_HARD_REG_BIT (regstack->reg_set,
1777 regstack->reg[regstack->top - 1]);
1778 regstack->top -= 2;
1780 /* Push the result back onto the stack. */
1781 regstack->reg[++regstack->top] = REGNO (*dest);
1782 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1783 replace_reg (dest, FIRST_STACK_REG);
1784 break;
1786 case UNSPEC_FSCALE_FRACT:
1787 case UNSPEC_FPREM_F:
1788 case UNSPEC_FPREM1_F:
1789 /* These insns operate on the top two stack slots,
1790 first part of double input, double output insn. */
1792 src1 = get_true_reg (&XVECEXP (pat_src, 0, 0));
1793 src2 = get_true_reg (&XVECEXP (pat_src, 0, 1));
1795 src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1796 src2_note = find_regno_note (insn, REG_DEAD, REGNO (*src2));
1798 /* Inputs should never die, they are
1799 replaced with outputs. */
1800 gcc_assert (!src1_note);
1801 gcc_assert (!src2_note);
1803 swap_to_top (insn, regstack, *src1, *src2);
1805 /* Push the result back onto stack. Empty stack slot
1806 will be filled in second part of insn. */
1807 if (STACK_REG_P (*dest))
1809 regstack->reg[regstack->top] = REGNO (*dest);
1810 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1811 replace_reg (dest, FIRST_STACK_REG);
1814 replace_reg (src1, FIRST_STACK_REG);
1815 replace_reg (src2, FIRST_STACK_REG + 1);
1816 break;
1818 case UNSPEC_FSCALE_EXP:
1819 case UNSPEC_FPREM_U:
1820 case UNSPEC_FPREM1_U:
1821 /* These insns operate on the top two stack slots,
1822 second part of double input, double output insn. */
1824 src1 = get_true_reg (&XVECEXP (pat_src, 0, 0));
1825 src2 = get_true_reg (&XVECEXP (pat_src, 0, 1));
1827 /* Push the result back onto stack. Fill empty slot from
1828 first part of insn and fix top of stack pointer. */
1829 if (STACK_REG_P (*dest))
1831 regstack->reg[regstack->top - 1] = REGNO (*dest);
1832 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1833 replace_reg (dest, FIRST_STACK_REG + 1);
1836 replace_reg (src1, FIRST_STACK_REG);
1837 replace_reg (src2, FIRST_STACK_REG + 1);
1838 break;
1840 case UNSPEC_C2_FLAG:
1841 /* This insn operates on the top two stack slots,
1842 third part of C2 setting double input insn. */
1844 src1 = get_true_reg (&XVECEXP (pat_src, 0, 0));
1845 src2 = get_true_reg (&XVECEXP (pat_src, 0, 1));
1847 replace_reg (src1, FIRST_STACK_REG);
1848 replace_reg (src2, FIRST_STACK_REG + 1);
1849 break;
1851 case UNSPEC_SAHF:
1852 /* (unspec [(unspec [(compare)] UNSPEC_FNSTSW)] UNSPEC_SAHF)
1853 The combination matches the PPRO fcomi instruction. */
1855 pat_src = XVECEXP (pat_src, 0, 0);
1856 gcc_assert (GET_CODE (pat_src) == UNSPEC);
1857 gcc_assert (XINT (pat_src, 1) == UNSPEC_FNSTSW);
1858 /* Fall through. */
1860 case UNSPEC_FNSTSW:
1861 /* Combined fcomp+fnstsw generated for doing well with
1862 CSE. When optimizing this would have been broken
1863 up before now. */
1865 pat_src = XVECEXP (pat_src, 0, 0);
1866 gcc_assert (GET_CODE (pat_src) == COMPARE);
1868 compare_for_stack_reg (insn, regstack, pat_src);
1869 break;
1871 default:
1872 gcc_unreachable ();
1874 break;
1876 case IF_THEN_ELSE:
1877 /* This insn requires the top of stack to be the destination. */
1879 src1 = get_true_reg (&XEXP (pat_src, 1));
1880 src2 = get_true_reg (&XEXP (pat_src, 2));
1882 src1_note = find_regno_note (insn, REG_DEAD, REGNO (*src1));
1883 src2_note = find_regno_note (insn, REG_DEAD, REGNO (*src2));
1885 /* If the comparison operator is an FP comparison operator,
1886 it is handled correctly by compare_for_stack_reg () who
1887 will move the destination to the top of stack. But if the
1888 comparison operator is not an FP comparison operator, we
1889 have to handle it here. */
1890 if (get_hard_regnum (regstack, *dest) >= FIRST_STACK_REG
1891 && REGNO (*dest) != regstack->reg[regstack->top])
1893 /* In case one of operands is the top of stack and the operands
1894 dies, it is safe to make it the destination operand by
1895 reversing the direction of cmove and avoid fxch. */
1896 if ((REGNO (*src1) == regstack->reg[regstack->top]
1897 && src1_note)
1898 || (REGNO (*src2) == regstack->reg[regstack->top]
1899 && src2_note))
1901 int idx1 = (get_hard_regnum (regstack, *src1)
1902 - FIRST_STACK_REG);
1903 int idx2 = (get_hard_regnum (regstack, *src2)
1904 - FIRST_STACK_REG);
1906 /* Make reg-stack believe that the operands are already
1907 swapped on the stack */
1908 regstack->reg[regstack->top - idx1] = REGNO (*src2);
1909 regstack->reg[regstack->top - idx2] = REGNO (*src1);
1911 /* Reverse condition to compensate the operand swap.
1912 i386 do have comparison always reversible. */
1913 PUT_CODE (XEXP (pat_src, 0),
1914 reversed_comparison_code (XEXP (pat_src, 0), insn));
1916 else
1917 emit_swap_insn (insn, regstack, *dest);
1921 rtx src_note [3];
1922 int i;
1924 src_note[0] = 0;
1925 src_note[1] = src1_note;
1926 src_note[2] = src2_note;
1928 if (STACK_REG_P (*src1))
1929 replace_reg (src1, get_hard_regnum (regstack, *src1));
1930 if (STACK_REG_P (*src2))
1931 replace_reg (src2, get_hard_regnum (regstack, *src2));
1933 for (i = 1; i <= 2; i++)
1934 if (src_note [i])
1936 int regno = REGNO (XEXP (src_note[i], 0));
1938 /* If the register that dies is not at the top of
1939 stack, then move the top of stack to the dead reg.
1940 Top of stack should never die, as it is the
1941 destination. */
1942 gcc_assert (regno != regstack->reg[regstack->top]);
1943 remove_regno_note (insn, REG_DEAD, regno);
1944 emit_pop_insn (insn, regstack, XEXP (src_note[i], 0),
1945 EMIT_AFTER);
1949 /* Make dest the top of stack. Add dest to regstack if
1950 not present. */
1951 if (get_hard_regnum (regstack, *dest) < FIRST_STACK_REG)
1952 regstack->reg[++regstack->top] = REGNO (*dest);
1953 SET_HARD_REG_BIT (regstack->reg_set, REGNO (*dest));
1954 replace_reg (dest, FIRST_STACK_REG);
1955 break;
1957 default:
1958 gcc_unreachable ();
1960 break;
1963 default:
1964 break;
1967 return control_flow_insn_deleted;
1970 /* Substitute hard regnums for any stack regs in INSN, which has
1971 N_INPUTS inputs and N_OUTPUTS outputs. REGSTACK is the stack info
1972 before the insn, and is updated with changes made here.
1974 There are several requirements and assumptions about the use of
1975 stack-like regs in asm statements. These rules are enforced by
1976 record_asm_stack_regs; see comments there for details. Any
1977 asm_operands left in the RTL at this point may be assume to meet the
1978 requirements, since record_asm_stack_regs removes any problem asm. */
1980 static void
1981 subst_asm_stack_regs (rtx_insn *insn, stack_ptr regstack)
1983 rtx body = PATTERN (insn);
1985 rtx *note_reg; /* Array of note contents */
1986 rtx **note_loc; /* Address of REG field of each note */
1987 enum reg_note *note_kind; /* The type of each note */
1989 rtx *clobber_reg = 0;
1990 rtx **clobber_loc = 0;
1992 struct stack_def temp_stack;
1993 int n_notes;
1994 int n_clobbers;
1995 rtx note;
1996 int i;
1997 int n_inputs, n_outputs;
1999 if (! check_asm_stack_operands (insn))
2000 return;
2002 /* Find out what the constraints required. If no constraint
2003 alternative matches, that is a compiler bug: we should have caught
2004 such an insn in check_asm_stack_operands. */
2005 extract_constrain_insn (insn);
2007 preprocess_constraints (insn);
2008 const operand_alternative *op_alt = which_op_alt ();
2010 get_asm_operands_in_out (body, &n_outputs, &n_inputs);
2012 /* Strip SUBREGs here to make the following code simpler. */
2013 for (i = 0; i < recog_data.n_operands; i++)
2014 if (GET_CODE (recog_data.operand[i]) == SUBREG
2015 && REG_P (SUBREG_REG (recog_data.operand[i])))
2017 recog_data.operand_loc[i] = & SUBREG_REG (recog_data.operand[i]);
2018 recog_data.operand[i] = SUBREG_REG (recog_data.operand[i]);
2021 /* Set up NOTE_REG, NOTE_LOC and NOTE_KIND. */
2023 for (i = 0, note = REG_NOTES (insn); note; note = XEXP (note, 1))
2024 i++;
2026 note_reg = XALLOCAVEC (rtx, i);
2027 note_loc = XALLOCAVEC (rtx *, i);
2028 note_kind = XALLOCAVEC (enum reg_note, i);
2030 n_notes = 0;
2031 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
2033 if (GET_CODE (note) != EXPR_LIST)
2034 continue;
2035 rtx reg = XEXP (note, 0);
2036 rtx *loc = & XEXP (note, 0);
2038 if (GET_CODE (reg) == SUBREG && REG_P (SUBREG_REG (reg)))
2040 loc = & SUBREG_REG (reg);
2041 reg = SUBREG_REG (reg);
2044 if (STACK_REG_P (reg)
2045 && (REG_NOTE_KIND (note) == REG_DEAD
2046 || REG_NOTE_KIND (note) == REG_UNUSED))
2048 note_reg[n_notes] = reg;
2049 note_loc[n_notes] = loc;
2050 note_kind[n_notes] = REG_NOTE_KIND (note);
2051 n_notes++;
2055 /* Set up CLOBBER_REG and CLOBBER_LOC. */
2057 n_clobbers = 0;
2059 if (GET_CODE (body) == PARALLEL)
2061 clobber_reg = XALLOCAVEC (rtx, XVECLEN (body, 0));
2062 clobber_loc = XALLOCAVEC (rtx *, XVECLEN (body, 0));
2064 for (i = 0; i < XVECLEN (body, 0); i++)
2065 if (GET_CODE (XVECEXP (body, 0, i)) == CLOBBER)
2067 rtx clobber = XVECEXP (body, 0, i);
2068 rtx reg = XEXP (clobber, 0);
2069 rtx *loc = & XEXP (clobber, 0);
2071 if (GET_CODE (reg) == SUBREG && REG_P (SUBREG_REG (reg)))
2073 loc = & SUBREG_REG (reg);
2074 reg = SUBREG_REG (reg);
2077 if (STACK_REG_P (reg))
2079 clobber_reg[n_clobbers] = reg;
2080 clobber_loc[n_clobbers] = loc;
2081 n_clobbers++;
2086 temp_stack = *regstack;
2088 /* Put the input regs into the desired place in TEMP_STACK. */
2090 for (i = n_outputs; i < n_outputs + n_inputs; i++)
2091 if (STACK_REG_P (recog_data.operand[i])
2092 && reg_class_subset_p (op_alt[i].cl, FLOAT_REGS)
2093 && op_alt[i].cl != FLOAT_REGS)
2095 /* If an operand needs to be in a particular reg in
2096 FLOAT_REGS, the constraint was either 't' or 'u'. Since
2097 these constraints are for single register classes, and
2098 reload guaranteed that operand[i] is already in that class,
2099 we can just use REGNO (recog_data.operand[i]) to know which
2100 actual reg this operand needs to be in. */
2102 int regno = get_hard_regnum (&temp_stack, recog_data.operand[i]);
2104 gcc_assert (regno >= 0);
2106 if ((unsigned int) regno != REGNO (recog_data.operand[i]))
2108 /* recog_data.operand[i] is not in the right place. Find
2109 it and swap it with whatever is already in I's place.
2110 K is where recog_data.operand[i] is now. J is where it
2111 should be. */
2112 int j, k;
2114 k = temp_stack.top - (regno - FIRST_STACK_REG);
2115 j = (temp_stack.top
2116 - (REGNO (recog_data.operand[i]) - FIRST_STACK_REG));
2118 std::swap (temp_stack.reg[j], temp_stack.reg[k]);
2122 /* Emit insns before INSN to make sure the reg-stack is in the right
2123 order. */
2125 change_stack (insn, regstack, &temp_stack, EMIT_BEFORE);
2127 /* Make the needed input register substitutions. Do death notes and
2128 clobbers too, because these are for inputs, not outputs. */
2130 for (i = n_outputs; i < n_outputs + n_inputs; i++)
2131 if (STACK_REG_P (recog_data.operand[i]))
2133 int regnum = get_hard_regnum (regstack, recog_data.operand[i]);
2135 gcc_assert (regnum >= 0);
2137 replace_reg (recog_data.operand_loc[i], regnum);
2140 for (i = 0; i < n_notes; i++)
2141 if (note_kind[i] == REG_DEAD)
2143 int regnum = get_hard_regnum (regstack, note_reg[i]);
2145 gcc_assert (regnum >= 0);
2147 replace_reg (note_loc[i], regnum);
2150 for (i = 0; i < n_clobbers; i++)
2152 /* It's OK for a CLOBBER to reference a reg that is not live.
2153 Don't try to replace it in that case. */
2154 int regnum = get_hard_regnum (regstack, clobber_reg[i]);
2156 if (regnum >= 0)
2158 /* Sigh - clobbers always have QImode. But replace_reg knows
2159 that these regs can't be MODE_INT and will assert. Just put
2160 the right reg there without calling replace_reg. */
2162 *clobber_loc[i] = FP_MODE_REG (regnum, DFmode);
2166 /* Now remove from REGSTACK any inputs that the asm implicitly popped. */
2168 for (i = n_outputs; i < n_outputs + n_inputs; i++)
2169 if (STACK_REG_P (recog_data.operand[i]))
2171 /* An input reg is implicitly popped if it is tied to an
2172 output, or if there is a CLOBBER for it. */
2173 int j;
2175 for (j = 0; j < n_clobbers; j++)
2176 if (operands_match_p (clobber_reg[j], recog_data.operand[i]))
2177 break;
2179 if (j < n_clobbers || op_alt[i].matches >= 0)
2181 /* recog_data.operand[i] might not be at the top of stack.
2182 But that's OK, because all we need to do is pop the
2183 right number of regs off of the top of the reg-stack.
2184 record_asm_stack_regs guaranteed that all implicitly
2185 popped regs were grouped at the top of the reg-stack. */
2187 CLEAR_HARD_REG_BIT (regstack->reg_set,
2188 regstack->reg[regstack->top]);
2189 regstack->top--;
2193 /* Now add to REGSTACK any outputs that the asm implicitly pushed.
2194 Note that there isn't any need to substitute register numbers.
2195 ??? Explain why this is true. */
2197 for (i = LAST_STACK_REG; i >= FIRST_STACK_REG; i--)
2199 /* See if there is an output for this hard reg. */
2200 int j;
2202 for (j = 0; j < n_outputs; j++)
2203 if (STACK_REG_P (recog_data.operand[j])
2204 && REGNO (recog_data.operand[j]) == (unsigned) i)
2206 regstack->reg[++regstack->top] = i;
2207 SET_HARD_REG_BIT (regstack->reg_set, i);
2208 break;
2212 /* Now emit a pop insn for any REG_UNUSED output, or any REG_DEAD
2213 input that the asm didn't implicitly pop. If the asm didn't
2214 implicitly pop an input reg, that reg will still be live.
2216 Note that we can't use find_regno_note here: the register numbers
2217 in the death notes have already been substituted. */
2219 for (i = 0; i < n_outputs; i++)
2220 if (STACK_REG_P (recog_data.operand[i]))
2222 int j;
2224 for (j = 0; j < n_notes; j++)
2225 if (REGNO (recog_data.operand[i]) == REGNO (note_reg[j])
2226 && note_kind[j] == REG_UNUSED)
2228 insn = emit_pop_insn (insn, regstack, recog_data.operand[i],
2229 EMIT_AFTER);
2230 break;
2234 for (i = n_outputs; i < n_outputs + n_inputs; i++)
2235 if (STACK_REG_P (recog_data.operand[i]))
2237 int j;
2239 for (j = 0; j < n_notes; j++)
2240 if (REGNO (recog_data.operand[i]) == REGNO (note_reg[j])
2241 && note_kind[j] == REG_DEAD
2242 && TEST_HARD_REG_BIT (regstack->reg_set,
2243 REGNO (recog_data.operand[i])))
2245 insn = emit_pop_insn (insn, regstack, recog_data.operand[i],
2246 EMIT_AFTER);
2247 break;
2252 /* Substitute stack hard reg numbers for stack virtual registers in
2253 INSN. Non-stack register numbers are not changed. REGSTACK is the
2254 current stack content. Insns may be emitted as needed to arrange the
2255 stack for the 387 based on the contents of the insn. Return whether
2256 a control flow insn was deleted in the process. */
2258 static bool
2259 subst_stack_regs (rtx_insn *insn, stack_ptr regstack)
2261 rtx *note_link, note;
2262 bool control_flow_insn_deleted = false;
2263 int i;
2265 if (CALL_P (insn))
2267 int top = regstack->top;
2269 /* If there are any floating point parameters to be passed in
2270 registers for this call, make sure they are in the right
2271 order. */
2273 if (top >= 0)
2275 straighten_stack (insn, regstack);
2277 /* Now mark the arguments as dead after the call. */
2279 while (regstack->top >= 0)
2281 CLEAR_HARD_REG_BIT (regstack->reg_set, FIRST_STACK_REG + regstack->top);
2282 regstack->top--;
2287 /* Do the actual substitution if any stack regs are mentioned.
2288 Since we only record whether entire insn mentions stack regs, and
2289 subst_stack_regs_pat only works for patterns that contain stack regs,
2290 we must check each pattern in a parallel here. A call_value_pop could
2291 fail otherwise. */
2293 if (stack_regs_mentioned (insn))
2295 int n_operands = asm_noperands (PATTERN (insn));
2296 if (n_operands >= 0)
2298 /* This insn is an `asm' with operands. Decode the operands,
2299 decide how many are inputs, and do register substitution.
2300 Any REG_UNUSED notes will be handled by subst_asm_stack_regs. */
2302 subst_asm_stack_regs (insn, regstack);
2303 return control_flow_insn_deleted;
2306 if (GET_CODE (PATTERN (insn)) == PARALLEL)
2307 for (i = 0; i < XVECLEN (PATTERN (insn), 0); i++)
2309 if (stack_regs_mentioned_p (XVECEXP (PATTERN (insn), 0, i)))
2311 if (GET_CODE (XVECEXP (PATTERN (insn), 0, i)) == CLOBBER)
2312 XVECEXP (PATTERN (insn), 0, i)
2313 = shallow_copy_rtx (XVECEXP (PATTERN (insn), 0, i));
2314 control_flow_insn_deleted
2315 |= subst_stack_regs_pat (insn, regstack,
2316 XVECEXP (PATTERN (insn), 0, i));
2319 else
2320 control_flow_insn_deleted
2321 |= subst_stack_regs_pat (insn, regstack, PATTERN (insn));
2324 /* subst_stack_regs_pat may have deleted a no-op insn. If so, any
2325 REG_UNUSED will already have been dealt with, so just return. */
2327 if (NOTE_P (insn) || insn->deleted ())
2328 return control_flow_insn_deleted;
2330 /* If this a noreturn call, we can't insert pop insns after it.
2331 Instead, reset the stack state to empty. */
2332 if (CALL_P (insn)
2333 && find_reg_note (insn, REG_NORETURN, NULL))
2335 regstack->top = -1;
2336 CLEAR_HARD_REG_SET (regstack->reg_set);
2337 return control_flow_insn_deleted;
2340 /* If there is a REG_UNUSED note on a stack register on this insn,
2341 the indicated reg must be popped. The REG_UNUSED note is removed,
2342 since the form of the newly emitted pop insn references the reg,
2343 making it no longer `unset'. */
2345 note_link = &REG_NOTES (insn);
2346 for (note = *note_link; note; note = XEXP (note, 1))
2347 if (REG_NOTE_KIND (note) == REG_UNUSED && STACK_REG_P (XEXP (note, 0)))
2349 *note_link = XEXP (note, 1);
2350 insn = emit_pop_insn (insn, regstack, XEXP (note, 0), EMIT_AFTER);
2352 else
2353 note_link = &XEXP (note, 1);
2355 return control_flow_insn_deleted;
2358 /* Change the organization of the stack so that it fits a new basic
2359 block. Some registers might have to be popped, but there can never be
2360 a register live in the new block that is not now live.
2362 Insert any needed insns before or after INSN, as indicated by
2363 WHERE. OLD is the original stack layout, and NEW is the desired
2364 form. OLD is updated to reflect the code emitted, i.e., it will be
2365 the same as NEW upon return.
2367 This function will not preserve block_end[]. But that information
2368 is no longer needed once this has executed. */
2370 static void
2371 change_stack (rtx_insn *insn, stack_ptr old, stack_ptr new_stack,
2372 enum emit_where where)
2374 int reg;
2375 int update_end = 0;
2376 int i;
2378 /* Stack adjustments for the first insn in a block update the
2379 current_block's stack_in instead of inserting insns directly.
2380 compensate_edges will add the necessary code later. */
2381 if (current_block
2382 && starting_stack_p
2383 && where == EMIT_BEFORE)
2385 BLOCK_INFO (current_block)->stack_in = *new_stack;
2386 starting_stack_p = false;
2387 *old = *new_stack;
2388 return;
2391 /* We will be inserting new insns "backwards". If we are to insert
2392 after INSN, find the next insn, and insert before it. */
2394 if (where == EMIT_AFTER)
2396 if (current_block && BB_END (current_block) == insn)
2397 update_end = 1;
2398 insn = NEXT_INSN (insn);
2401 /* Initialize partially dead variables. */
2402 for (i = FIRST_STACK_REG; i < LAST_STACK_REG + 1; i++)
2403 if (TEST_HARD_REG_BIT (new_stack->reg_set, i)
2404 && !TEST_HARD_REG_BIT (old->reg_set, i))
2406 old->reg[++old->top] = i;
2407 SET_HARD_REG_BIT (old->reg_set, i);
2408 emit_insn_before (gen_rtx_SET (FP_MODE_REG (i, SFmode), not_a_num),
2409 insn);
2412 /* Pop any registers that are not needed in the new block. */
2414 /* If the destination block's stack already has a specified layout
2415 and contains two or more registers, use a more intelligent algorithm
2416 to pop registers that minimizes the number of fxchs below. */
2417 if (new_stack->top > 0)
2419 bool slots[REG_STACK_SIZE];
2420 int pops[REG_STACK_SIZE];
2421 int next, dest, topsrc;
2423 /* First pass to determine the free slots. */
2424 for (reg = 0; reg <= new_stack->top; reg++)
2425 slots[reg] = TEST_HARD_REG_BIT (new_stack->reg_set, old->reg[reg]);
2427 /* Second pass to allocate preferred slots. */
2428 topsrc = -1;
2429 for (reg = old->top; reg > new_stack->top; reg--)
2430 if (TEST_HARD_REG_BIT (new_stack->reg_set, old->reg[reg]))
2432 dest = -1;
2433 for (next = 0; next <= new_stack->top; next++)
2434 if (!slots[next] && new_stack->reg[next] == old->reg[reg])
2436 /* If this is a preference for the new top of stack, record
2437 the fact by remembering it's old->reg in topsrc. */
2438 if (next == new_stack->top)
2439 topsrc = reg;
2440 slots[next] = true;
2441 dest = next;
2442 break;
2444 pops[reg] = dest;
2446 else
2447 pops[reg] = reg;
2449 /* Intentionally, avoid placing the top of stack in it's correct
2450 location, if we still need to permute the stack below and we
2451 can usefully place it somewhere else. This is the case if any
2452 slot is still unallocated, in which case we should place the
2453 top of stack there. */
2454 if (topsrc != -1)
2455 for (reg = 0; reg < new_stack->top; reg++)
2456 if (!slots[reg])
2458 pops[topsrc] = reg;
2459 slots[new_stack->top] = false;
2460 slots[reg] = true;
2461 break;
2464 /* Third pass allocates remaining slots and emits pop insns. */
2465 next = new_stack->top;
2466 for (reg = old->top; reg > new_stack->top; reg--)
2468 dest = pops[reg];
2469 if (dest == -1)
2471 /* Find next free slot. */
2472 while (slots[next])
2473 next--;
2474 dest = next--;
2476 emit_pop_insn (insn, old, FP_MODE_REG (old->reg[dest], DFmode),
2477 EMIT_BEFORE);
2480 else
2482 /* The following loop attempts to maximize the number of times we
2483 pop the top of the stack, as this permits the use of the faster
2484 ffreep instruction on platforms that support it. */
2485 int live, next;
2487 live = 0;
2488 for (reg = 0; reg <= old->top; reg++)
2489 if (TEST_HARD_REG_BIT (new_stack->reg_set, old->reg[reg]))
2490 live++;
2492 next = live;
2493 while (old->top >= live)
2494 if (TEST_HARD_REG_BIT (new_stack->reg_set, old->reg[old->top]))
2496 while (TEST_HARD_REG_BIT (new_stack->reg_set, old->reg[next]))
2497 next--;
2498 emit_pop_insn (insn, old, FP_MODE_REG (old->reg[next], DFmode),
2499 EMIT_BEFORE);
2501 else
2502 emit_pop_insn (insn, old, FP_MODE_REG (old->reg[old->top], DFmode),
2503 EMIT_BEFORE);
2506 if (new_stack->top == -2)
2508 /* If the new block has never been processed, then it can inherit
2509 the old stack order. */
2511 new_stack->top = old->top;
2512 memcpy (new_stack->reg, old->reg, sizeof (new_stack->reg));
2514 else
2516 /* This block has been entered before, and we must match the
2517 previously selected stack order. */
2519 /* By now, the only difference should be the order of the stack,
2520 not their depth or liveliness. */
2522 gcc_assert (hard_reg_set_equal_p (old->reg_set, new_stack->reg_set));
2523 gcc_assert (old->top == new_stack->top);
2525 /* If the stack is not empty (new_stack->top != -1), loop here emitting
2526 swaps until the stack is correct.
2528 The worst case number of swaps emitted is N + 2, where N is the
2529 depth of the stack. In some cases, the reg at the top of
2530 stack may be correct, but swapped anyway in order to fix
2531 other regs. But since we never swap any other reg away from
2532 its correct slot, this algorithm will converge. */
2534 if (new_stack->top != -1)
2537 /* Swap the reg at top of stack into the position it is
2538 supposed to be in, until the correct top of stack appears. */
2540 while (old->reg[old->top] != new_stack->reg[new_stack->top])
2542 for (reg = new_stack->top; reg >= 0; reg--)
2543 if (new_stack->reg[reg] == old->reg[old->top])
2544 break;
2546 gcc_assert (reg != -1);
2548 emit_swap_insn (insn, old,
2549 FP_MODE_REG (old->reg[reg], DFmode));
2552 /* See if any regs remain incorrect. If so, bring an
2553 incorrect reg to the top of stack, and let the while loop
2554 above fix it. */
2556 for (reg = new_stack->top; reg >= 0; reg--)
2557 if (new_stack->reg[reg] != old->reg[reg])
2559 emit_swap_insn (insn, old,
2560 FP_MODE_REG (old->reg[reg], DFmode));
2561 break;
2563 } while (reg >= 0);
2565 /* At this point there must be no differences. */
2567 for (reg = old->top; reg >= 0; reg--)
2568 gcc_assert (old->reg[reg] == new_stack->reg[reg]);
2571 if (update_end)
2572 BB_END (current_block) = PREV_INSN (insn);
2575 /* Print stack configuration. */
2577 static void
2578 print_stack (FILE *file, stack_ptr s)
2580 if (! file)
2581 return;
2583 if (s->top == -2)
2584 fprintf (file, "uninitialized\n");
2585 else if (s->top == -1)
2586 fprintf (file, "empty\n");
2587 else
2589 int i;
2590 fputs ("[ ", file);
2591 for (i = 0; i <= s->top; ++i)
2592 fprintf (file, "%d ", s->reg[i]);
2593 fputs ("]\n", file);
2597 /* This function was doing life analysis. We now let the regular live
2598 code do it's job, so we only need to check some extra invariants
2599 that reg-stack expects. Primary among these being that all registers
2600 are initialized before use.
2602 The function returns true when code was emitted to CFG edges and
2603 commit_edge_insertions needs to be called. */
2605 static int
2606 convert_regs_entry (void)
2608 int inserted = 0;
2609 edge e;
2610 edge_iterator ei;
2612 /* Load something into each stack register live at function entry.
2613 Such live registers can be caused by uninitialized variables or
2614 functions not returning values on all paths. In order to keep
2615 the push/pop code happy, and to not scrog the register stack, we
2616 must put something in these registers. Use a QNaN.
2618 Note that we are inserting converted code here. This code is
2619 never seen by the convert_regs pass. */
2621 FOR_EACH_EDGE (e, ei, ENTRY_BLOCK_PTR_FOR_FN (cfun)->succs)
2623 basic_block block = e->dest;
2624 block_info bi = BLOCK_INFO (block);
2625 int reg, top = -1;
2627 for (reg = LAST_STACK_REG; reg >= FIRST_STACK_REG; --reg)
2628 if (TEST_HARD_REG_BIT (bi->stack_in.reg_set, reg))
2630 rtx init;
2632 bi->stack_in.reg[++top] = reg;
2634 init = gen_rtx_SET (FP_MODE_REG (FIRST_STACK_REG, SFmode),
2635 not_a_num);
2636 insert_insn_on_edge (init, e);
2637 inserted = 1;
2640 bi->stack_in.top = top;
2643 return inserted;
2646 /* Construct the desired stack for function exit. This will either
2647 be `empty', or the function return value at top-of-stack. */
2649 static void
2650 convert_regs_exit (void)
2652 int value_reg_low, value_reg_high;
2653 stack_ptr output_stack;
2654 rtx retvalue;
2656 retvalue = stack_result (current_function_decl);
2657 value_reg_low = value_reg_high = -1;
2658 if (retvalue)
2660 value_reg_low = REGNO (retvalue);
2661 value_reg_high = END_REGNO (retvalue) - 1;
2664 output_stack = &BLOCK_INFO (EXIT_BLOCK_PTR_FOR_FN (cfun))->stack_in;
2665 if (value_reg_low == -1)
2666 output_stack->top = -1;
2667 else
2669 int reg;
2671 output_stack->top = value_reg_high - value_reg_low;
2672 for (reg = value_reg_low; reg <= value_reg_high; ++reg)
2674 output_stack->reg[value_reg_high - reg] = reg;
2675 SET_HARD_REG_BIT (output_stack->reg_set, reg);
2680 /* Copy the stack info from the end of edge E's source block to the
2681 start of E's destination block. */
2683 static void
2684 propagate_stack (edge e)
2686 stack_ptr src_stack = &BLOCK_INFO (e->src)->stack_out;
2687 stack_ptr dest_stack = &BLOCK_INFO (e->dest)->stack_in;
2688 int reg;
2690 /* Preserve the order of the original stack, but check whether
2691 any pops are needed. */
2692 dest_stack->top = -1;
2693 for (reg = 0; reg <= src_stack->top; ++reg)
2694 if (TEST_HARD_REG_BIT (dest_stack->reg_set, src_stack->reg[reg]))
2695 dest_stack->reg[++dest_stack->top] = src_stack->reg[reg];
2697 /* Push in any partially dead values. */
2698 for (reg = FIRST_STACK_REG; reg < LAST_STACK_REG + 1; reg++)
2699 if (TEST_HARD_REG_BIT (dest_stack->reg_set, reg)
2700 && !TEST_HARD_REG_BIT (src_stack->reg_set, reg))
2701 dest_stack->reg[++dest_stack->top] = reg;
2705 /* Adjust the stack of edge E's source block on exit to match the stack
2706 of it's target block upon input. The stack layouts of both blocks
2707 should have been defined by now. */
2709 static bool
2710 compensate_edge (edge e)
2712 basic_block source = e->src, target = e->dest;
2713 stack_ptr target_stack = &BLOCK_INFO (target)->stack_in;
2714 stack_ptr source_stack = &BLOCK_INFO (source)->stack_out;
2715 struct stack_def regstack;
2716 int reg;
2718 if (dump_file)
2719 fprintf (dump_file, "Edge %d->%d: ", source->index, target->index);
2721 gcc_assert (target_stack->top != -2);
2723 /* Check whether stacks are identical. */
2724 if (target_stack->top == source_stack->top)
2726 for (reg = target_stack->top; reg >= 0; --reg)
2727 if (target_stack->reg[reg] != source_stack->reg[reg])
2728 break;
2730 if (reg == -1)
2732 if (dump_file)
2733 fprintf (dump_file, "no changes needed\n");
2734 return false;
2738 if (dump_file)
2740 fprintf (dump_file, "correcting stack to ");
2741 print_stack (dump_file, target_stack);
2744 /* Abnormal calls may appear to have values live in st(0), but the
2745 abnormal return path will not have actually loaded the values. */
2746 if (e->flags & EDGE_ABNORMAL_CALL)
2748 /* Assert that the lifetimes are as we expect -- one value
2749 live at st(0) on the end of the source block, and no
2750 values live at the beginning of the destination block.
2751 For complex return values, we may have st(1) live as well. */
2752 gcc_assert (source_stack->top == 0 || source_stack->top == 1);
2753 gcc_assert (target_stack->top == -1);
2754 return false;
2757 /* Handle non-call EH edges specially. The normal return path have
2758 values in registers. These will be popped en masse by the unwind
2759 library. */
2760 if (e->flags & EDGE_EH)
2762 gcc_assert (target_stack->top == -1);
2763 return false;
2766 /* We don't support abnormal edges. Global takes care to
2767 avoid any live register across them, so we should never
2768 have to insert instructions on such edges. */
2769 gcc_assert (! (e->flags & EDGE_ABNORMAL));
2771 /* Make a copy of source_stack as change_stack is destructive. */
2772 regstack = *source_stack;
2774 /* It is better to output directly to the end of the block
2775 instead of to the edge, because emit_swap can do minimal
2776 insn scheduling. We can do this when there is only one
2777 edge out, and it is not abnormal. */
2778 if (EDGE_COUNT (source->succs) == 1)
2780 current_block = source;
2781 change_stack (BB_END (source), &regstack, target_stack,
2782 (JUMP_P (BB_END (source)) ? EMIT_BEFORE : EMIT_AFTER));
2784 else
2786 rtx_insn *seq;
2787 rtx_note *after;
2789 current_block = NULL;
2790 start_sequence ();
2792 /* ??? change_stack needs some point to emit insns after. */
2793 after = emit_note (NOTE_INSN_DELETED);
2795 change_stack (after, &regstack, target_stack, EMIT_BEFORE);
2797 seq = get_insns ();
2798 end_sequence ();
2800 insert_insn_on_edge (seq, e);
2801 return true;
2803 return false;
2806 /* Traverse all non-entry edges in the CFG, and emit the necessary
2807 edge compensation code to change the stack from stack_out of the
2808 source block to the stack_in of the destination block. */
2810 static bool
2811 compensate_edges (void)
2813 bool inserted = false;
2814 basic_block bb;
2816 starting_stack_p = false;
2818 FOR_EACH_BB_FN (bb, cfun)
2819 if (bb != ENTRY_BLOCK_PTR_FOR_FN (cfun))
2821 edge e;
2822 edge_iterator ei;
2824 FOR_EACH_EDGE (e, ei, bb->succs)
2825 inserted |= compensate_edge (e);
2827 return inserted;
2830 /* Select the better of two edges E1 and E2 to use to determine the
2831 stack layout for their shared destination basic block. This is
2832 typically the more frequently executed. The edge E1 may be NULL
2833 (in which case E2 is returned), but E2 is always non-NULL. */
2835 static edge
2836 better_edge (edge e1, edge e2)
2838 if (!e1)
2839 return e2;
2841 if (EDGE_FREQUENCY (e1) > EDGE_FREQUENCY (e2))
2842 return e1;
2843 if (EDGE_FREQUENCY (e1) < EDGE_FREQUENCY (e2))
2844 return e2;
2846 if (e1->count > e2->count)
2847 return e1;
2848 if (e1->count < e2->count)
2849 return e2;
2851 /* Prefer critical edges to minimize inserting compensation code on
2852 critical edges. */
2854 if (EDGE_CRITICAL_P (e1) != EDGE_CRITICAL_P (e2))
2855 return EDGE_CRITICAL_P (e1) ? e1 : e2;
2857 /* Avoid non-deterministic behavior. */
2858 return (e1->src->index < e2->src->index) ? e1 : e2;
2861 /* Convert stack register references in one block. Return true if the CFG
2862 has been modified in the process. */
2864 static bool
2865 convert_regs_1 (basic_block block)
2867 struct stack_def regstack;
2868 block_info bi = BLOCK_INFO (block);
2869 int reg;
2870 rtx_insn *insn, *next;
2871 bool control_flow_insn_deleted = false;
2872 bool cfg_altered = false;
2873 int debug_insns_with_starting_stack = 0;
2875 any_malformed_asm = false;
2877 /* Choose an initial stack layout, if one hasn't already been chosen. */
2878 if (bi->stack_in.top == -2)
2880 edge e, beste = NULL;
2881 edge_iterator ei;
2883 /* Select the best incoming edge (typically the most frequent) to
2884 use as a template for this basic block. */
2885 FOR_EACH_EDGE (e, ei, block->preds)
2886 if (BLOCK_INFO (e->src)->done)
2887 beste = better_edge (beste, e);
2889 if (beste)
2890 propagate_stack (beste);
2891 else
2893 /* No predecessors. Create an arbitrary input stack. */
2894 bi->stack_in.top = -1;
2895 for (reg = LAST_STACK_REG; reg >= FIRST_STACK_REG; --reg)
2896 if (TEST_HARD_REG_BIT (bi->stack_in.reg_set, reg))
2897 bi->stack_in.reg[++bi->stack_in.top] = reg;
2901 if (dump_file)
2903 fprintf (dump_file, "\nBasic block %d\nInput stack: ", block->index);
2904 print_stack (dump_file, &bi->stack_in);
2907 /* Process all insns in this block. Keep track of NEXT so that we
2908 don't process insns emitted while substituting in INSN. */
2909 current_block = block;
2910 next = BB_HEAD (block);
2911 regstack = bi->stack_in;
2912 starting_stack_p = true;
2916 insn = next;
2917 next = NEXT_INSN (insn);
2919 /* Ensure we have not missed a block boundary. */
2920 gcc_assert (next);
2921 if (insn == BB_END (block))
2922 next = NULL;
2924 /* Don't bother processing unless there is a stack reg
2925 mentioned or if it's a CALL_INSN. */
2926 if (DEBUG_INSN_P (insn))
2928 if (starting_stack_p)
2929 debug_insns_with_starting_stack++;
2930 else
2932 subst_all_stack_regs_in_debug_insn (insn, &regstack);
2934 /* Nothing must ever die at a debug insn. If something
2935 is referenced in it that becomes dead, it should have
2936 died before and the reference in the debug insn
2937 should have been removed so as to avoid changing code
2938 generation. */
2939 gcc_assert (!find_reg_note (insn, REG_DEAD, NULL));
2942 else if (stack_regs_mentioned (insn)
2943 || CALL_P (insn))
2945 if (dump_file)
2947 fprintf (dump_file, " insn %d input stack: ",
2948 INSN_UID (insn));
2949 print_stack (dump_file, &regstack);
2951 control_flow_insn_deleted |= subst_stack_regs (insn, &regstack);
2952 starting_stack_p = false;
2955 while (next);
2957 if (debug_insns_with_starting_stack)
2959 /* Since it's the first non-debug instruction that determines
2960 the stack requirements of the current basic block, we refrain
2961 from updating debug insns before it in the loop above, and
2962 fix them up here. */
2963 for (insn = BB_HEAD (block); debug_insns_with_starting_stack;
2964 insn = NEXT_INSN (insn))
2966 if (!DEBUG_INSN_P (insn))
2967 continue;
2969 debug_insns_with_starting_stack--;
2970 subst_all_stack_regs_in_debug_insn (insn, &bi->stack_in);
2974 if (dump_file)
2976 fprintf (dump_file, "Expected live registers [");
2977 for (reg = FIRST_STACK_REG; reg <= LAST_STACK_REG; ++reg)
2978 if (TEST_HARD_REG_BIT (bi->out_reg_set, reg))
2979 fprintf (dump_file, " %d", reg);
2980 fprintf (dump_file, " ]\nOutput stack: ");
2981 print_stack (dump_file, &regstack);
2984 insn = BB_END (block);
2985 if (JUMP_P (insn))
2986 insn = PREV_INSN (insn);
2988 /* If the function is declared to return a value, but it returns one
2989 in only some cases, some registers might come live here. Emit
2990 necessary moves for them. */
2992 for (reg = FIRST_STACK_REG; reg <= LAST_STACK_REG; ++reg)
2994 if (TEST_HARD_REG_BIT (bi->out_reg_set, reg)
2995 && ! TEST_HARD_REG_BIT (regstack.reg_set, reg))
2997 rtx set;
2999 if (dump_file)
3000 fprintf (dump_file, "Emitting insn initializing reg %d\n", reg);
3002 set = gen_rtx_SET (FP_MODE_REG (reg, SFmode), not_a_num);
3003 insn = emit_insn_after (set, insn);
3004 control_flow_insn_deleted |= subst_stack_regs (insn, &regstack);
3008 /* Amongst the insns possibly deleted during the substitution process above,
3009 might have been the only trapping insn in the block. We purge the now
3010 possibly dead EH edges here to avoid an ICE from fixup_abnormal_edges,
3011 called at the end of convert_regs. The order in which we process the
3012 blocks ensures that we never delete an already processed edge.
3014 Note that, at this point, the CFG may have been damaged by the emission
3015 of instructions after an abnormal call, which moves the basic block end
3016 (and is the reason why we call fixup_abnormal_edges later). So we must
3017 be sure that the trapping insn has been deleted before trying to purge
3018 dead edges, otherwise we risk purging valid edges.
3020 ??? We are normally supposed not to delete trapping insns, so we pretend
3021 that the insns deleted above don't actually trap. It would have been
3022 better to detect this earlier and avoid creating the EH edge in the first
3023 place, still, but we don't have enough information at that time. */
3025 if (control_flow_insn_deleted)
3026 cfg_altered |= purge_dead_edges (block);
3028 /* Something failed if the stack lives don't match. If we had malformed
3029 asms, we zapped the instruction itself, but that didn't produce the
3030 same pattern of register kills as before. */
3032 gcc_assert (hard_reg_set_equal_p (regstack.reg_set, bi->out_reg_set)
3033 || any_malformed_asm);
3034 bi->stack_out = regstack;
3035 bi->done = true;
3037 return cfg_altered;
3040 /* Convert registers in all blocks reachable from BLOCK. Return true if the
3041 CFG has been modified in the process. */
3043 static bool
3044 convert_regs_2 (basic_block block)
3046 basic_block *stack, *sp;
3047 bool cfg_altered = false;
3049 /* We process the blocks in a top-down manner, in a way such that one block
3050 is only processed after all its predecessors. The number of predecessors
3051 of every block has already been computed. */
3053 stack = XNEWVEC (basic_block, n_basic_blocks_for_fn (cfun));
3054 sp = stack;
3056 *sp++ = block;
3060 edge e;
3061 edge_iterator ei;
3063 block = *--sp;
3065 /* Processing BLOCK is achieved by convert_regs_1, which may purge
3066 some dead EH outgoing edge after the deletion of the trapping
3067 insn inside the block. Since the number of predecessors of
3068 BLOCK's successors was computed based on the initial edge set,
3069 we check the necessity to process some of these successors
3070 before such an edge deletion may happen. However, there is
3071 a pitfall: if BLOCK is the only predecessor of a successor and
3072 the edge between them happens to be deleted, the successor
3073 becomes unreachable and should not be processed. The problem
3074 is that there is no way to preventively detect this case so we
3075 stack the successor in all cases and hand over the task of
3076 fixing up the discrepancy to convert_regs_1. */
3078 FOR_EACH_EDGE (e, ei, block->succs)
3079 if (! (e->flags & EDGE_DFS_BACK))
3081 BLOCK_INFO (e->dest)->predecessors--;
3082 if (!BLOCK_INFO (e->dest)->predecessors)
3083 *sp++ = e->dest;
3086 cfg_altered |= convert_regs_1 (block);
3088 while (sp != stack);
3090 free (stack);
3092 return cfg_altered;
3095 /* Traverse all basic blocks in a function, converting the register
3096 references in each insn from the "flat" register file that gcc uses,
3097 to the stack-like registers the 387 uses. */
3099 static void
3100 convert_regs (void)
3102 bool cfg_altered = false;
3103 int inserted;
3104 basic_block b;
3105 edge e;
3106 edge_iterator ei;
3108 /* Initialize uninitialized registers on function entry. */
3109 inserted = convert_regs_entry ();
3111 /* Construct the desired stack for function exit. */
3112 convert_regs_exit ();
3113 BLOCK_INFO (EXIT_BLOCK_PTR_FOR_FN (cfun))->done = 1;
3115 /* ??? Future: process inner loops first, and give them arbitrary
3116 initial stacks which emit_swap_insn can modify. This ought to
3117 prevent double fxch that often appears at the head of a loop. */
3119 /* Process all blocks reachable from all entry points. */
3120 FOR_EACH_EDGE (e, ei, ENTRY_BLOCK_PTR_FOR_FN (cfun)->succs)
3121 cfg_altered |= convert_regs_2 (e->dest);
3123 /* ??? Process all unreachable blocks. Though there's no excuse
3124 for keeping these even when not optimizing. */
3125 FOR_EACH_BB_FN (b, cfun)
3127 block_info bi = BLOCK_INFO (b);
3129 if (! bi->done)
3130 cfg_altered |= convert_regs_2 (b);
3133 /* We must fix up abnormal edges before inserting compensation code
3134 because both mechanisms insert insns on edges. */
3135 inserted |= fixup_abnormal_edges ();
3137 inserted |= compensate_edges ();
3139 clear_aux_for_blocks ();
3141 if (inserted)
3142 commit_edge_insertions ();
3144 if (cfg_altered)
3145 cleanup_cfg (0);
3147 if (dump_file)
3148 fputc ('\n', dump_file);
3151 /* Convert register usage from "flat" register file usage to a "stack
3152 register file. FILE is the dump file, if used.
3154 Construct a CFG and run life analysis. Then convert each insn one
3155 by one. Run a last cleanup_cfg pass, if optimizing, to eliminate
3156 code duplication created when the converter inserts pop insns on
3157 the edges. */
3159 static bool
3160 reg_to_stack (void)
3162 basic_block bb;
3163 int i;
3164 int max_uid;
3166 /* Clean up previous run. */
3167 stack_regs_mentioned_data.release ();
3169 /* See if there is something to do. Flow analysis is quite
3170 expensive so we might save some compilation time. */
3171 for (i = FIRST_STACK_REG; i <= LAST_STACK_REG; i++)
3172 if (df_regs_ever_live_p (i))
3173 break;
3174 if (i > LAST_STACK_REG)
3175 return false;
3177 df_note_add_problem ();
3178 df_analyze ();
3180 mark_dfs_back_edges ();
3182 /* Set up block info for each basic block. */
3183 alloc_aux_for_blocks (sizeof (struct block_info_def));
3184 FOR_EACH_BB_FN (bb, cfun)
3186 block_info bi = BLOCK_INFO (bb);
3187 edge_iterator ei;
3188 edge e;
3189 int reg;
3191 FOR_EACH_EDGE (e, ei, bb->preds)
3192 if (!(e->flags & EDGE_DFS_BACK)
3193 && e->src != ENTRY_BLOCK_PTR_FOR_FN (cfun))
3194 bi->predecessors++;
3196 /* Set current register status at last instruction `uninitialized'. */
3197 bi->stack_in.top = -2;
3199 /* Copy live_at_end and live_at_start into temporaries. */
3200 for (reg = FIRST_STACK_REG; reg <= LAST_STACK_REG; reg++)
3202 if (REGNO_REG_SET_P (DF_LR_OUT (bb), reg))
3203 SET_HARD_REG_BIT (bi->out_reg_set, reg);
3204 if (REGNO_REG_SET_P (DF_LR_IN (bb), reg))
3205 SET_HARD_REG_BIT (bi->stack_in.reg_set, reg);
3209 /* Create the replacement registers up front. */
3210 for (i = FIRST_STACK_REG; i <= LAST_STACK_REG; i++)
3212 machine_mode mode;
3213 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT);
3214 mode != VOIDmode;
3215 mode = GET_MODE_WIDER_MODE (mode))
3216 FP_MODE_REG (i, mode) = gen_rtx_REG (mode, i);
3217 for (mode = GET_CLASS_NARROWEST_MODE (MODE_COMPLEX_FLOAT);
3218 mode != VOIDmode;
3219 mode = GET_MODE_WIDER_MODE (mode))
3220 FP_MODE_REG (i, mode) = gen_rtx_REG (mode, i);
3223 ix86_flags_rtx = gen_rtx_REG (CCmode, FLAGS_REG);
3225 /* A QNaN for initializing uninitialized variables.
3227 ??? We can't load from constant memory in PIC mode, because
3228 we're inserting these instructions before the prologue and
3229 the PIC register hasn't been set up. In that case, fall back
3230 on zero, which we can get from `fldz'. */
3232 if ((flag_pic && !TARGET_64BIT)
3233 || ix86_cmodel == CM_LARGE || ix86_cmodel == CM_LARGE_PIC)
3234 not_a_num = CONST0_RTX (SFmode);
3235 else
3237 REAL_VALUE_TYPE r;
3239 real_nan (&r, "", 1, SFmode);
3240 not_a_num = const_double_from_real_value (r, SFmode);
3241 not_a_num = force_const_mem (SFmode, not_a_num);
3244 /* Allocate a cache for stack_regs_mentioned. */
3245 max_uid = get_max_uid ();
3246 stack_regs_mentioned_data.create (max_uid + 1);
3247 memset (stack_regs_mentioned_data.address (),
3248 0, sizeof (char) * (max_uid + 1));
3250 convert_regs ();
3252 free_aux_for_blocks ();
3253 return true;
3255 #endif /* STACK_REGS */
3257 namespace {
3259 const pass_data pass_data_stack_regs =
3261 RTL_PASS, /* type */
3262 "*stack_regs", /* name */
3263 OPTGROUP_NONE, /* optinfo_flags */
3264 TV_REG_STACK, /* tv_id */
3265 0, /* properties_required */
3266 0, /* properties_provided */
3267 0, /* properties_destroyed */
3268 0, /* todo_flags_start */
3269 0, /* todo_flags_finish */
3272 class pass_stack_regs : public rtl_opt_pass
3274 public:
3275 pass_stack_regs (gcc::context *ctxt)
3276 : rtl_opt_pass (pass_data_stack_regs, ctxt)
3279 /* opt_pass methods: */
3280 virtual bool gate (function *)
3282 #ifdef STACK_REGS
3283 return true;
3284 #else
3285 return false;
3286 #endif
3289 }; // class pass_stack_regs
3291 } // anon namespace
3293 rtl_opt_pass *
3294 make_pass_stack_regs (gcc::context *ctxt)
3296 return new pass_stack_regs (ctxt);
3299 /* Convert register usage from flat register file usage to a stack
3300 register file. */
3301 static unsigned int
3302 rest_of_handle_stack_regs (void)
3304 #ifdef STACK_REGS
3305 reg_to_stack ();
3306 regstack_completed = 1;
3307 #endif
3308 return 0;
3311 namespace {
3313 const pass_data pass_data_stack_regs_run =
3315 RTL_PASS, /* type */
3316 "stack", /* name */
3317 OPTGROUP_NONE, /* optinfo_flags */
3318 TV_REG_STACK, /* tv_id */
3319 0, /* properties_required */
3320 0, /* properties_provided */
3321 0, /* properties_destroyed */
3322 0, /* todo_flags_start */
3323 TODO_df_finish, /* todo_flags_finish */
3326 class pass_stack_regs_run : public rtl_opt_pass
3328 public:
3329 pass_stack_regs_run (gcc::context *ctxt)
3330 : rtl_opt_pass (pass_data_stack_regs_run, ctxt)
3333 /* opt_pass methods: */
3334 virtual unsigned int execute (function *)
3336 return rest_of_handle_stack_regs ();
3339 }; // class pass_stack_regs_run
3341 } // anon namespace
3343 rtl_opt_pass *
3344 make_pass_stack_regs_run (gcc::context *ctxt)
3346 return new pass_stack_regs_run (ctxt);