mmap.c (MAP_FAILED): Define if not defined.
[official-gcc.git] / gcc / real.c
blobfbebbf0ac6223685ddfee054fad582c36103a48b
1 /* real.c - software floating point emulation.
2 Copyright (C) 1993-2016 Free Software Foundation, Inc.
3 Contributed by Stephen L. Moshier (moshier@world.std.com).
4 Re-written by Richard Henderson <rth@redhat.com>
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "tm.h"
26 #include "rtl.h"
27 #include "tree.h"
28 #include "realmpfr.h"
29 #include "dfp.h"
31 /* The floating point model used internally is not exactly IEEE 754
32 compliant, and close to the description in the ISO C99 standard,
33 section 5.2.4.2.2 Characteristics of floating types.
35 Specifically
37 x = s * b^e * \sum_{k=1}^p f_k * b^{-k}
39 where
40 s = sign (+- 1)
41 b = base or radix, here always 2
42 e = exponent
43 p = precision (the number of base-b digits in the significand)
44 f_k = the digits of the significand.
46 We differ from typical IEEE 754 encodings in that the entire
47 significand is fractional. Normalized significands are in the
48 range [0.5, 1.0).
50 A requirement of the model is that P be larger than the largest
51 supported target floating-point type by at least 2 bits. This gives
52 us proper rounding when we truncate to the target type. In addition,
53 E must be large enough to hold the smallest supported denormal number
54 in a normalized form.
56 Both of these requirements are easily satisfied. The largest target
57 significand is 113 bits; we store at least 160. The smallest
58 denormal number fits in 17 exponent bits; we store 26. */
61 /* Used to classify two numbers simultaneously. */
62 #define CLASS2(A, B) ((A) << 2 | (B))
64 #if HOST_BITS_PER_LONG != 64 && HOST_BITS_PER_LONG != 32
65 #error "Some constant folding done by hand to avoid shift count warnings"
66 #endif
68 static void get_zero (REAL_VALUE_TYPE *, int);
69 static void get_canonical_qnan (REAL_VALUE_TYPE *, int);
70 static void get_canonical_snan (REAL_VALUE_TYPE *, int);
71 static void get_inf (REAL_VALUE_TYPE *, int);
72 static bool sticky_rshift_significand (REAL_VALUE_TYPE *,
73 const REAL_VALUE_TYPE *, unsigned int);
74 static void rshift_significand (REAL_VALUE_TYPE *, const REAL_VALUE_TYPE *,
75 unsigned int);
76 static void lshift_significand (REAL_VALUE_TYPE *, const REAL_VALUE_TYPE *,
77 unsigned int);
78 static void lshift_significand_1 (REAL_VALUE_TYPE *, const REAL_VALUE_TYPE *);
79 static bool add_significands (REAL_VALUE_TYPE *r, const REAL_VALUE_TYPE *,
80 const REAL_VALUE_TYPE *);
81 static bool sub_significands (REAL_VALUE_TYPE *, const REAL_VALUE_TYPE *,
82 const REAL_VALUE_TYPE *, int);
83 static void neg_significand (REAL_VALUE_TYPE *, const REAL_VALUE_TYPE *);
84 static int cmp_significands (const REAL_VALUE_TYPE *, const REAL_VALUE_TYPE *);
85 static int cmp_significand_0 (const REAL_VALUE_TYPE *);
86 static void set_significand_bit (REAL_VALUE_TYPE *, unsigned int);
87 static void clear_significand_bit (REAL_VALUE_TYPE *, unsigned int);
88 static bool test_significand_bit (REAL_VALUE_TYPE *, unsigned int);
89 static void clear_significand_below (REAL_VALUE_TYPE *, unsigned int);
90 static bool div_significands (REAL_VALUE_TYPE *, const REAL_VALUE_TYPE *,
91 const REAL_VALUE_TYPE *);
92 static void normalize (REAL_VALUE_TYPE *);
94 static bool do_add (REAL_VALUE_TYPE *, const REAL_VALUE_TYPE *,
95 const REAL_VALUE_TYPE *, int);
96 static bool do_multiply (REAL_VALUE_TYPE *, const REAL_VALUE_TYPE *,
97 const REAL_VALUE_TYPE *);
98 static bool do_divide (REAL_VALUE_TYPE *, const REAL_VALUE_TYPE *,
99 const REAL_VALUE_TYPE *);
100 static int do_compare (const REAL_VALUE_TYPE *, const REAL_VALUE_TYPE *, int);
101 static void do_fix_trunc (REAL_VALUE_TYPE *, const REAL_VALUE_TYPE *);
103 static unsigned long rtd_divmod (REAL_VALUE_TYPE *, REAL_VALUE_TYPE *);
104 static void decimal_from_integer (REAL_VALUE_TYPE *);
105 static void decimal_integer_string (char *, const REAL_VALUE_TYPE *,
106 size_t);
108 static const REAL_VALUE_TYPE * ten_to_ptwo (int);
109 static const REAL_VALUE_TYPE * ten_to_mptwo (int);
110 static const REAL_VALUE_TYPE * real_digit (int);
111 static void times_pten (REAL_VALUE_TYPE *, int);
113 static void round_for_format (const struct real_format *, REAL_VALUE_TYPE *);
115 /* Initialize R with a positive zero. */
117 static inline void
118 get_zero (REAL_VALUE_TYPE *r, int sign)
120 memset (r, 0, sizeof (*r));
121 r->sign = sign;
124 /* Initialize R with the canonical quiet NaN. */
126 static inline void
127 get_canonical_qnan (REAL_VALUE_TYPE *r, int sign)
129 memset (r, 0, sizeof (*r));
130 r->cl = rvc_nan;
131 r->sign = sign;
132 r->canonical = 1;
135 static inline void
136 get_canonical_snan (REAL_VALUE_TYPE *r, int sign)
138 memset (r, 0, sizeof (*r));
139 r->cl = rvc_nan;
140 r->sign = sign;
141 r->signalling = 1;
142 r->canonical = 1;
145 static inline void
146 get_inf (REAL_VALUE_TYPE *r, int sign)
148 memset (r, 0, sizeof (*r));
149 r->cl = rvc_inf;
150 r->sign = sign;
154 /* Right-shift the significand of A by N bits; put the result in the
155 significand of R. If any one bits are shifted out, return true. */
157 static bool
158 sticky_rshift_significand (REAL_VALUE_TYPE *r, const REAL_VALUE_TYPE *a,
159 unsigned int n)
161 unsigned long sticky = 0;
162 unsigned int i, ofs = 0;
164 if (n >= HOST_BITS_PER_LONG)
166 for (i = 0, ofs = n / HOST_BITS_PER_LONG; i < ofs; ++i)
167 sticky |= a->sig[i];
168 n &= HOST_BITS_PER_LONG - 1;
171 if (n != 0)
173 sticky |= a->sig[ofs] & (((unsigned long)1 << n) - 1);
174 for (i = 0; i < SIGSZ; ++i)
176 r->sig[i]
177 = (((ofs + i >= SIGSZ ? 0 : a->sig[ofs + i]) >> n)
178 | ((ofs + i + 1 >= SIGSZ ? 0 : a->sig[ofs + i + 1])
179 << (HOST_BITS_PER_LONG - n)));
182 else
184 for (i = 0; ofs + i < SIGSZ; ++i)
185 r->sig[i] = a->sig[ofs + i];
186 for (; i < SIGSZ; ++i)
187 r->sig[i] = 0;
190 return sticky != 0;
193 /* Right-shift the significand of A by N bits; put the result in the
194 significand of R. */
196 static void
197 rshift_significand (REAL_VALUE_TYPE *r, const REAL_VALUE_TYPE *a,
198 unsigned int n)
200 unsigned int i, ofs = n / HOST_BITS_PER_LONG;
202 n &= HOST_BITS_PER_LONG - 1;
203 if (n != 0)
205 for (i = 0; i < SIGSZ; ++i)
207 r->sig[i]
208 = (((ofs + i >= SIGSZ ? 0 : a->sig[ofs + i]) >> n)
209 | ((ofs + i + 1 >= SIGSZ ? 0 : a->sig[ofs + i + 1])
210 << (HOST_BITS_PER_LONG - n)));
213 else
215 for (i = 0; ofs + i < SIGSZ; ++i)
216 r->sig[i] = a->sig[ofs + i];
217 for (; i < SIGSZ; ++i)
218 r->sig[i] = 0;
222 /* Left-shift the significand of A by N bits; put the result in the
223 significand of R. */
225 static void
226 lshift_significand (REAL_VALUE_TYPE *r, const REAL_VALUE_TYPE *a,
227 unsigned int n)
229 unsigned int i, ofs = n / HOST_BITS_PER_LONG;
231 n &= HOST_BITS_PER_LONG - 1;
232 if (n == 0)
234 for (i = 0; ofs + i < SIGSZ; ++i)
235 r->sig[SIGSZ-1-i] = a->sig[SIGSZ-1-i-ofs];
236 for (; i < SIGSZ; ++i)
237 r->sig[SIGSZ-1-i] = 0;
239 else
240 for (i = 0; i < SIGSZ; ++i)
242 r->sig[SIGSZ-1-i]
243 = (((ofs + i >= SIGSZ ? 0 : a->sig[SIGSZ-1-i-ofs]) << n)
244 | ((ofs + i + 1 >= SIGSZ ? 0 : a->sig[SIGSZ-1-i-ofs-1])
245 >> (HOST_BITS_PER_LONG - n)));
249 /* Likewise, but N is specialized to 1. */
251 static inline void
252 lshift_significand_1 (REAL_VALUE_TYPE *r, const REAL_VALUE_TYPE *a)
254 unsigned int i;
256 for (i = SIGSZ - 1; i > 0; --i)
257 r->sig[i] = (a->sig[i] << 1) | (a->sig[i-1] >> (HOST_BITS_PER_LONG - 1));
258 r->sig[0] = a->sig[0] << 1;
261 /* Add the significands of A and B, placing the result in R. Return
262 true if there was carry out of the most significant word. */
264 static inline bool
265 add_significands (REAL_VALUE_TYPE *r, const REAL_VALUE_TYPE *a,
266 const REAL_VALUE_TYPE *b)
268 bool carry = false;
269 int i;
271 for (i = 0; i < SIGSZ; ++i)
273 unsigned long ai = a->sig[i];
274 unsigned long ri = ai + b->sig[i];
276 if (carry)
278 carry = ri < ai;
279 carry |= ++ri == 0;
281 else
282 carry = ri < ai;
284 r->sig[i] = ri;
287 return carry;
290 /* Subtract the significands of A and B, placing the result in R. CARRY is
291 true if there's a borrow incoming to the least significant word.
292 Return true if there was borrow out of the most significant word. */
294 static inline bool
295 sub_significands (REAL_VALUE_TYPE *r, const REAL_VALUE_TYPE *a,
296 const REAL_VALUE_TYPE *b, int carry)
298 int i;
300 for (i = 0; i < SIGSZ; ++i)
302 unsigned long ai = a->sig[i];
303 unsigned long ri = ai - b->sig[i];
305 if (carry)
307 carry = ri > ai;
308 carry |= ~--ri == 0;
310 else
311 carry = ri > ai;
313 r->sig[i] = ri;
316 return carry;
319 /* Negate the significand A, placing the result in R. */
321 static inline void
322 neg_significand (REAL_VALUE_TYPE *r, const REAL_VALUE_TYPE *a)
324 bool carry = true;
325 int i;
327 for (i = 0; i < SIGSZ; ++i)
329 unsigned long ri, ai = a->sig[i];
331 if (carry)
333 if (ai)
335 ri = -ai;
336 carry = false;
338 else
339 ri = ai;
341 else
342 ri = ~ai;
344 r->sig[i] = ri;
348 /* Compare significands. Return tri-state vs zero. */
350 static inline int
351 cmp_significands (const REAL_VALUE_TYPE *a, const REAL_VALUE_TYPE *b)
353 int i;
355 for (i = SIGSZ - 1; i >= 0; --i)
357 unsigned long ai = a->sig[i];
358 unsigned long bi = b->sig[i];
360 if (ai > bi)
361 return 1;
362 if (ai < bi)
363 return -1;
366 return 0;
369 /* Return true if A is nonzero. */
371 static inline int
372 cmp_significand_0 (const REAL_VALUE_TYPE *a)
374 int i;
376 for (i = SIGSZ - 1; i >= 0; --i)
377 if (a->sig[i])
378 return 1;
380 return 0;
383 /* Set bit N of the significand of R. */
385 static inline void
386 set_significand_bit (REAL_VALUE_TYPE *r, unsigned int n)
388 r->sig[n / HOST_BITS_PER_LONG]
389 |= (unsigned long)1 << (n % HOST_BITS_PER_LONG);
392 /* Clear bit N of the significand of R. */
394 static inline void
395 clear_significand_bit (REAL_VALUE_TYPE *r, unsigned int n)
397 r->sig[n / HOST_BITS_PER_LONG]
398 &= ~((unsigned long)1 << (n % HOST_BITS_PER_LONG));
401 /* Test bit N of the significand of R. */
403 static inline bool
404 test_significand_bit (REAL_VALUE_TYPE *r, unsigned int n)
406 /* ??? Compiler bug here if we return this expression directly.
407 The conversion to bool strips the "&1" and we wind up testing
408 e.g. 2 != 0 -> true. Seen in gcc version 3.2 20020520. */
409 int t = (r->sig[n / HOST_BITS_PER_LONG] >> (n % HOST_BITS_PER_LONG)) & 1;
410 return t;
413 /* Clear bits 0..N-1 of the significand of R. */
415 static void
416 clear_significand_below (REAL_VALUE_TYPE *r, unsigned int n)
418 int i, w = n / HOST_BITS_PER_LONG;
420 for (i = 0; i < w; ++i)
421 r->sig[i] = 0;
423 r->sig[w] &= ~(((unsigned long)1 << (n % HOST_BITS_PER_LONG)) - 1);
426 /* Divide the significands of A and B, placing the result in R. Return
427 true if the division was inexact. */
429 static inline bool
430 div_significands (REAL_VALUE_TYPE *r, const REAL_VALUE_TYPE *a,
431 const REAL_VALUE_TYPE *b)
433 REAL_VALUE_TYPE u;
434 int i, bit = SIGNIFICAND_BITS - 1;
435 unsigned long msb, inexact;
437 u = *a;
438 memset (r->sig, 0, sizeof (r->sig));
440 msb = 0;
441 goto start;
444 msb = u.sig[SIGSZ-1] & SIG_MSB;
445 lshift_significand_1 (&u, &u);
446 start:
447 if (msb || cmp_significands (&u, b) >= 0)
449 sub_significands (&u, &u, b, 0);
450 set_significand_bit (r, bit);
453 while (--bit >= 0);
455 for (i = 0, inexact = 0; i < SIGSZ; i++)
456 inexact |= u.sig[i];
458 return inexact != 0;
461 /* Adjust the exponent and significand of R such that the most
462 significant bit is set. We underflow to zero and overflow to
463 infinity here, without denormals. (The intermediate representation
464 exponent is large enough to handle target denormals normalized.) */
466 static void
467 normalize (REAL_VALUE_TYPE *r)
469 int shift = 0, exp;
470 int i, j;
472 if (r->decimal)
473 return;
475 /* Find the first word that is nonzero. */
476 for (i = SIGSZ - 1; i >= 0; i--)
477 if (r->sig[i] == 0)
478 shift += HOST_BITS_PER_LONG;
479 else
480 break;
482 /* Zero significand flushes to zero. */
483 if (i < 0)
485 r->cl = rvc_zero;
486 SET_REAL_EXP (r, 0);
487 return;
490 /* Find the first bit that is nonzero. */
491 for (j = 0; ; j++)
492 if (r->sig[i] & ((unsigned long)1 << (HOST_BITS_PER_LONG - 1 - j)))
493 break;
494 shift += j;
496 if (shift > 0)
498 exp = REAL_EXP (r) - shift;
499 if (exp > MAX_EXP)
500 get_inf (r, r->sign);
501 else if (exp < -MAX_EXP)
502 get_zero (r, r->sign);
503 else
505 SET_REAL_EXP (r, exp);
506 lshift_significand (r, r, shift);
511 /* Calculate R = A + (SUBTRACT_P ? -B : B). Return true if the
512 result may be inexact due to a loss of precision. */
514 static bool
515 do_add (REAL_VALUE_TYPE *r, const REAL_VALUE_TYPE *a,
516 const REAL_VALUE_TYPE *b, int subtract_p)
518 int dexp, sign, exp;
519 REAL_VALUE_TYPE t;
520 bool inexact = false;
522 /* Determine if we need to add or subtract. */
523 sign = a->sign;
524 subtract_p = (sign ^ b->sign) ^ subtract_p;
526 switch (CLASS2 (a->cl, b->cl))
528 case CLASS2 (rvc_zero, rvc_zero):
529 /* -0 + -0 = -0, -0 - +0 = -0; all other cases yield +0. */
530 get_zero (r, sign & !subtract_p);
531 return false;
533 case CLASS2 (rvc_zero, rvc_normal):
534 case CLASS2 (rvc_zero, rvc_inf):
535 case CLASS2 (rvc_zero, rvc_nan):
536 /* 0 + ANY = ANY. */
537 case CLASS2 (rvc_normal, rvc_nan):
538 case CLASS2 (rvc_inf, rvc_nan):
539 case CLASS2 (rvc_nan, rvc_nan):
540 /* ANY + NaN = NaN. */
541 case CLASS2 (rvc_normal, rvc_inf):
542 /* R + Inf = Inf. */
543 *r = *b;
544 /* Make resulting NaN value to be qNaN. The caller has the
545 responsibility to avoid the operation if flag_signaling_nans
546 is on. */
547 r->signalling = 0;
548 r->sign = sign ^ subtract_p;
549 return false;
551 case CLASS2 (rvc_normal, rvc_zero):
552 case CLASS2 (rvc_inf, rvc_zero):
553 case CLASS2 (rvc_nan, rvc_zero):
554 /* ANY + 0 = ANY. */
555 case CLASS2 (rvc_nan, rvc_normal):
556 case CLASS2 (rvc_nan, rvc_inf):
557 /* NaN + ANY = NaN. */
558 case CLASS2 (rvc_inf, rvc_normal):
559 /* Inf + R = Inf. */
560 *r = *a;
561 /* Make resulting NaN value to be qNaN. The caller has the
562 responsibility to avoid the operation if flag_signaling_nans
563 is on. */
564 r->signalling = 0;
565 return false;
567 case CLASS2 (rvc_inf, rvc_inf):
568 if (subtract_p)
569 /* Inf - Inf = NaN. */
570 get_canonical_qnan (r, 0);
571 else
572 /* Inf + Inf = Inf. */
573 *r = *a;
574 return false;
576 case CLASS2 (rvc_normal, rvc_normal):
577 break;
579 default:
580 gcc_unreachable ();
583 /* Swap the arguments such that A has the larger exponent. */
584 dexp = REAL_EXP (a) - REAL_EXP (b);
585 if (dexp < 0)
587 const REAL_VALUE_TYPE *t;
588 t = a, a = b, b = t;
589 dexp = -dexp;
590 sign ^= subtract_p;
592 exp = REAL_EXP (a);
594 /* If the exponents are not identical, we need to shift the
595 significand of B down. */
596 if (dexp > 0)
598 /* If the exponents are too far apart, the significands
599 do not overlap, which makes the subtraction a noop. */
600 if (dexp >= SIGNIFICAND_BITS)
602 *r = *a;
603 r->sign = sign;
604 return true;
607 inexact |= sticky_rshift_significand (&t, b, dexp);
608 b = &t;
611 if (subtract_p)
613 if (sub_significands (r, a, b, inexact))
615 /* We got a borrow out of the subtraction. That means that
616 A and B had the same exponent, and B had the larger
617 significand. We need to swap the sign and negate the
618 significand. */
619 sign ^= 1;
620 neg_significand (r, r);
623 else
625 if (add_significands (r, a, b))
627 /* We got carry out of the addition. This means we need to
628 shift the significand back down one bit and increase the
629 exponent. */
630 inexact |= sticky_rshift_significand (r, r, 1);
631 r->sig[SIGSZ-1] |= SIG_MSB;
632 if (++exp > MAX_EXP)
634 get_inf (r, sign);
635 return true;
640 r->cl = rvc_normal;
641 r->sign = sign;
642 SET_REAL_EXP (r, exp);
643 /* Zero out the remaining fields. */
644 r->signalling = 0;
645 r->canonical = 0;
646 r->decimal = 0;
648 /* Re-normalize the result. */
649 normalize (r);
651 /* Special case: if the subtraction results in zero, the result
652 is positive. */
653 if (r->cl == rvc_zero)
654 r->sign = 0;
655 else
656 r->sig[0] |= inexact;
658 return inexact;
661 /* Calculate R = A * B. Return true if the result may be inexact. */
663 static bool
664 do_multiply (REAL_VALUE_TYPE *r, const REAL_VALUE_TYPE *a,
665 const REAL_VALUE_TYPE *b)
667 REAL_VALUE_TYPE u, t, *rr;
668 unsigned int i, j, k;
669 int sign = a->sign ^ b->sign;
670 bool inexact = false;
672 switch (CLASS2 (a->cl, b->cl))
674 case CLASS2 (rvc_zero, rvc_zero):
675 case CLASS2 (rvc_zero, rvc_normal):
676 case CLASS2 (rvc_normal, rvc_zero):
677 /* +-0 * ANY = 0 with appropriate sign. */
678 get_zero (r, sign);
679 return false;
681 case CLASS2 (rvc_zero, rvc_nan):
682 case CLASS2 (rvc_normal, rvc_nan):
683 case CLASS2 (rvc_inf, rvc_nan):
684 case CLASS2 (rvc_nan, rvc_nan):
685 /* ANY * NaN = NaN. */
686 *r = *b;
687 /* Make resulting NaN value to be qNaN. The caller has the
688 responsibility to avoid the operation if flag_signaling_nans
689 is on. */
690 r->signalling = 0;
691 r->sign = sign;
692 return false;
694 case CLASS2 (rvc_nan, rvc_zero):
695 case CLASS2 (rvc_nan, rvc_normal):
696 case CLASS2 (rvc_nan, rvc_inf):
697 /* NaN * ANY = NaN. */
698 *r = *a;
699 /* Make resulting NaN value to be qNaN. The caller has the
700 responsibility to avoid the operation if flag_signaling_nans
701 is on. */
702 r->signalling = 0;
703 r->sign = sign;
704 return false;
706 case CLASS2 (rvc_zero, rvc_inf):
707 case CLASS2 (rvc_inf, rvc_zero):
708 /* 0 * Inf = NaN */
709 get_canonical_qnan (r, sign);
710 return false;
712 case CLASS2 (rvc_inf, rvc_inf):
713 case CLASS2 (rvc_normal, rvc_inf):
714 case CLASS2 (rvc_inf, rvc_normal):
715 /* Inf * Inf = Inf, R * Inf = Inf */
716 get_inf (r, sign);
717 return false;
719 case CLASS2 (rvc_normal, rvc_normal):
720 break;
722 default:
723 gcc_unreachable ();
726 if (r == a || r == b)
727 rr = &t;
728 else
729 rr = r;
730 get_zero (rr, 0);
732 /* Collect all the partial products. Since we don't have sure access
733 to a widening multiply, we split each long into two half-words.
735 Consider the long-hand form of a four half-word multiplication:
737 A B C D
738 * E F G H
739 --------------
740 DE DF DG DH
741 CE CF CG CH
742 BE BF BG BH
743 AE AF AG AH
745 We construct partial products of the widened half-word products
746 that are known to not overlap, e.g. DF+DH. Each such partial
747 product is given its proper exponent, which allows us to sum them
748 and obtain the finished product. */
750 for (i = 0; i < SIGSZ * 2; ++i)
752 unsigned long ai = a->sig[i / 2];
753 if (i & 1)
754 ai >>= HOST_BITS_PER_LONG / 2;
755 else
756 ai &= ((unsigned long)1 << (HOST_BITS_PER_LONG / 2)) - 1;
758 if (ai == 0)
759 continue;
761 for (j = 0; j < 2; ++j)
763 int exp = (REAL_EXP (a) - (2*SIGSZ-1-i)*(HOST_BITS_PER_LONG/2)
764 + (REAL_EXP (b) - (1-j)*(HOST_BITS_PER_LONG/2)));
766 if (exp > MAX_EXP)
768 get_inf (r, sign);
769 return true;
771 if (exp < -MAX_EXP)
773 /* Would underflow to zero, which we shouldn't bother adding. */
774 inexact = true;
775 continue;
778 memset (&u, 0, sizeof (u));
779 u.cl = rvc_normal;
780 SET_REAL_EXP (&u, exp);
782 for (k = j; k < SIGSZ * 2; k += 2)
784 unsigned long bi = b->sig[k / 2];
785 if (k & 1)
786 bi >>= HOST_BITS_PER_LONG / 2;
787 else
788 bi &= ((unsigned long)1 << (HOST_BITS_PER_LONG / 2)) - 1;
790 u.sig[k / 2] = ai * bi;
793 normalize (&u);
794 inexact |= do_add (rr, rr, &u, 0);
798 rr->sign = sign;
799 if (rr != r)
800 *r = t;
802 return inexact;
805 /* Calculate R = A / B. Return true if the result may be inexact. */
807 static bool
808 do_divide (REAL_VALUE_TYPE *r, const REAL_VALUE_TYPE *a,
809 const REAL_VALUE_TYPE *b)
811 int exp, sign = a->sign ^ b->sign;
812 REAL_VALUE_TYPE t, *rr;
813 bool inexact;
815 switch (CLASS2 (a->cl, b->cl))
817 case CLASS2 (rvc_zero, rvc_zero):
818 /* 0 / 0 = NaN. */
819 case CLASS2 (rvc_inf, rvc_inf):
820 /* Inf / Inf = NaN. */
821 get_canonical_qnan (r, sign);
822 return false;
824 case CLASS2 (rvc_zero, rvc_normal):
825 case CLASS2 (rvc_zero, rvc_inf):
826 /* 0 / ANY = 0. */
827 case CLASS2 (rvc_normal, rvc_inf):
828 /* R / Inf = 0. */
829 get_zero (r, sign);
830 return false;
832 case CLASS2 (rvc_normal, rvc_zero):
833 /* R / 0 = Inf. */
834 case CLASS2 (rvc_inf, rvc_zero):
835 /* Inf / 0 = Inf. */
836 get_inf (r, sign);
837 return false;
839 case CLASS2 (rvc_zero, rvc_nan):
840 case CLASS2 (rvc_normal, rvc_nan):
841 case CLASS2 (rvc_inf, rvc_nan):
842 case CLASS2 (rvc_nan, rvc_nan):
843 /* ANY / NaN = NaN. */
844 *r = *b;
845 /* Make resulting NaN value to be qNaN. The caller has the
846 responsibility to avoid the operation if flag_signaling_nans
847 is on. */
848 r->signalling = 0;
849 r->sign = sign;
850 return false;
852 case CLASS2 (rvc_nan, rvc_zero):
853 case CLASS2 (rvc_nan, rvc_normal):
854 case CLASS2 (rvc_nan, rvc_inf):
855 /* NaN / ANY = NaN. */
856 *r = *a;
857 /* Make resulting NaN value to be qNaN. The caller has the
858 responsibility to avoid the operation if flag_signaling_nans
859 is on. */
860 r->signalling = 0;
861 r->sign = sign;
862 return false;
864 case CLASS2 (rvc_inf, rvc_normal):
865 /* Inf / R = Inf. */
866 get_inf (r, sign);
867 return false;
869 case CLASS2 (rvc_normal, rvc_normal):
870 break;
872 default:
873 gcc_unreachable ();
876 if (r == a || r == b)
877 rr = &t;
878 else
879 rr = r;
881 /* Make sure all fields in the result are initialized. */
882 get_zero (rr, 0);
883 rr->cl = rvc_normal;
884 rr->sign = sign;
886 exp = REAL_EXP (a) - REAL_EXP (b) + 1;
887 if (exp > MAX_EXP)
889 get_inf (r, sign);
890 return true;
892 if (exp < -MAX_EXP)
894 get_zero (r, sign);
895 return true;
897 SET_REAL_EXP (rr, exp);
899 inexact = div_significands (rr, a, b);
901 /* Re-normalize the result. */
902 normalize (rr);
903 rr->sig[0] |= inexact;
905 if (rr != r)
906 *r = t;
908 return inexact;
911 /* Return a tri-state comparison of A vs B. Return NAN_RESULT if
912 one of the two operands is a NaN. */
914 static int
915 do_compare (const REAL_VALUE_TYPE *a, const REAL_VALUE_TYPE *b,
916 int nan_result)
918 int ret;
920 switch (CLASS2 (a->cl, b->cl))
922 case CLASS2 (rvc_zero, rvc_zero):
923 /* Sign of zero doesn't matter for compares. */
924 return 0;
926 case CLASS2 (rvc_normal, rvc_zero):
927 /* Decimal float zero is special and uses rvc_normal, not rvc_zero. */
928 if (a->decimal)
929 return decimal_do_compare (a, b, nan_result);
930 /* Fall through. */
931 case CLASS2 (rvc_inf, rvc_zero):
932 case CLASS2 (rvc_inf, rvc_normal):
933 return (a->sign ? -1 : 1);
935 case CLASS2 (rvc_inf, rvc_inf):
936 return -a->sign - -b->sign;
938 case CLASS2 (rvc_zero, rvc_normal):
939 /* Decimal float zero is special and uses rvc_normal, not rvc_zero. */
940 if (b->decimal)
941 return decimal_do_compare (a, b, nan_result);
942 /* Fall through. */
943 case CLASS2 (rvc_zero, rvc_inf):
944 case CLASS2 (rvc_normal, rvc_inf):
945 return (b->sign ? 1 : -1);
947 case CLASS2 (rvc_zero, rvc_nan):
948 case CLASS2 (rvc_normal, rvc_nan):
949 case CLASS2 (rvc_inf, rvc_nan):
950 case CLASS2 (rvc_nan, rvc_nan):
951 case CLASS2 (rvc_nan, rvc_zero):
952 case CLASS2 (rvc_nan, rvc_normal):
953 case CLASS2 (rvc_nan, rvc_inf):
954 return nan_result;
956 case CLASS2 (rvc_normal, rvc_normal):
957 break;
959 default:
960 gcc_unreachable ();
963 if (a->sign != b->sign)
964 return -a->sign - -b->sign;
966 if (a->decimal || b->decimal)
967 return decimal_do_compare (a, b, nan_result);
969 if (REAL_EXP (a) > REAL_EXP (b))
970 ret = 1;
971 else if (REAL_EXP (a) < REAL_EXP (b))
972 ret = -1;
973 else
974 ret = cmp_significands (a, b);
976 return (a->sign ? -ret : ret);
979 /* Return A truncated to an integral value toward zero. */
981 static void
982 do_fix_trunc (REAL_VALUE_TYPE *r, const REAL_VALUE_TYPE *a)
984 *r = *a;
986 switch (r->cl)
988 case rvc_zero:
989 case rvc_inf:
990 case rvc_nan:
991 /* Make resulting NaN value to be qNaN. The caller has the
992 responsibility to avoid the operation if flag_signaling_nans
993 is on. */
994 r->signalling = 0;
995 break;
997 case rvc_normal:
998 if (r->decimal)
1000 decimal_do_fix_trunc (r, a);
1001 return;
1003 if (REAL_EXP (r) <= 0)
1004 get_zero (r, r->sign);
1005 else if (REAL_EXP (r) < SIGNIFICAND_BITS)
1006 clear_significand_below (r, SIGNIFICAND_BITS - REAL_EXP (r));
1007 break;
1009 default:
1010 gcc_unreachable ();
1014 /* Perform the binary or unary operation described by CODE.
1015 For a unary operation, leave OP1 NULL. This function returns
1016 true if the result may be inexact due to loss of precision. */
1018 bool
1019 real_arithmetic (REAL_VALUE_TYPE *r, int icode, const REAL_VALUE_TYPE *op0,
1020 const REAL_VALUE_TYPE *op1)
1022 enum tree_code code = (enum tree_code) icode;
1024 if (op0->decimal || (op1 && op1->decimal))
1025 return decimal_real_arithmetic (r, code, op0, op1);
1027 switch (code)
1029 case PLUS_EXPR:
1030 /* Clear any padding areas in *r if it isn't equal to one of the
1031 operands so that we can later do bitwise comparisons later on. */
1032 if (r != op0 && r != op1)
1033 memset (r, '\0', sizeof (*r));
1034 return do_add (r, op0, op1, 0);
1036 case MINUS_EXPR:
1037 if (r != op0 && r != op1)
1038 memset (r, '\0', sizeof (*r));
1039 return do_add (r, op0, op1, 1);
1041 case MULT_EXPR:
1042 if (r != op0 && r != op1)
1043 memset (r, '\0', sizeof (*r));
1044 return do_multiply (r, op0, op1);
1046 case RDIV_EXPR:
1047 if (r != op0 && r != op1)
1048 memset (r, '\0', sizeof (*r));
1049 return do_divide (r, op0, op1);
1051 case MIN_EXPR:
1052 if (op1->cl == rvc_nan)
1054 *r = *op1;
1055 /* Make resulting NaN value to be qNaN. The caller has the
1056 responsibility to avoid the operation if flag_signaling_nans
1057 is on. */
1058 r->signalling = 0;
1060 else if (do_compare (op0, op1, -1) < 0)
1061 *r = *op0;
1062 else
1063 *r = *op1;
1064 break;
1066 case MAX_EXPR:
1067 if (op1->cl == rvc_nan)
1069 *r = *op1;
1070 /* Make resulting NaN value to be qNaN. The caller has the
1071 responsibility to avoid the operation if flag_signaling_nans
1072 is on. */
1073 r->signalling = 0;
1075 else if (do_compare (op0, op1, 1) < 0)
1076 *r = *op1;
1077 else
1078 *r = *op0;
1079 break;
1081 case NEGATE_EXPR:
1082 *r = *op0;
1083 r->sign ^= 1;
1084 break;
1086 case ABS_EXPR:
1087 *r = *op0;
1088 r->sign = 0;
1089 break;
1091 case FIX_TRUNC_EXPR:
1092 do_fix_trunc (r, op0);
1093 break;
1095 default:
1096 gcc_unreachable ();
1098 return false;
1101 REAL_VALUE_TYPE
1102 real_value_negate (const REAL_VALUE_TYPE *op0)
1104 REAL_VALUE_TYPE r;
1105 real_arithmetic (&r, NEGATE_EXPR, op0, NULL);
1106 return r;
1109 REAL_VALUE_TYPE
1110 real_value_abs (const REAL_VALUE_TYPE *op0)
1112 REAL_VALUE_TYPE r;
1113 real_arithmetic (&r, ABS_EXPR, op0, NULL);
1114 return r;
1117 /* Return whether OP0 == OP1. */
1119 bool
1120 real_equal (const REAL_VALUE_TYPE *op0, const REAL_VALUE_TYPE *op1)
1122 return do_compare (op0, op1, -1) == 0;
1125 /* Return whether OP0 < OP1. */
1127 bool
1128 real_less (const REAL_VALUE_TYPE *op0, const REAL_VALUE_TYPE *op1)
1130 return do_compare (op0, op1, 1) < 0;
1133 bool
1134 real_compare (int icode, const REAL_VALUE_TYPE *op0,
1135 const REAL_VALUE_TYPE *op1)
1137 enum tree_code code = (enum tree_code) icode;
1139 switch (code)
1141 case LT_EXPR:
1142 return real_less (op0, op1);
1143 case LE_EXPR:
1144 return do_compare (op0, op1, 1) <= 0;
1145 case GT_EXPR:
1146 return do_compare (op0, op1, -1) > 0;
1147 case GE_EXPR:
1148 return do_compare (op0, op1, -1) >= 0;
1149 case EQ_EXPR:
1150 return real_equal (op0, op1);
1151 case NE_EXPR:
1152 return do_compare (op0, op1, -1) != 0;
1153 case UNORDERED_EXPR:
1154 return op0->cl == rvc_nan || op1->cl == rvc_nan;
1155 case ORDERED_EXPR:
1156 return op0->cl != rvc_nan && op1->cl != rvc_nan;
1157 case UNLT_EXPR:
1158 return do_compare (op0, op1, -1) < 0;
1159 case UNLE_EXPR:
1160 return do_compare (op0, op1, -1) <= 0;
1161 case UNGT_EXPR:
1162 return do_compare (op0, op1, 1) > 0;
1163 case UNGE_EXPR:
1164 return do_compare (op0, op1, 1) >= 0;
1165 case UNEQ_EXPR:
1166 return do_compare (op0, op1, 0) == 0;
1167 case LTGT_EXPR:
1168 return do_compare (op0, op1, 0) != 0;
1170 default:
1171 gcc_unreachable ();
1175 /* Return floor log2(R). */
1178 real_exponent (const REAL_VALUE_TYPE *r)
1180 switch (r->cl)
1182 case rvc_zero:
1183 return 0;
1184 case rvc_inf:
1185 case rvc_nan:
1186 return (unsigned int)-1 >> 1;
1187 case rvc_normal:
1188 return REAL_EXP (r);
1189 default:
1190 gcc_unreachable ();
1194 /* R = OP0 * 2**EXP. */
1196 void
1197 real_ldexp (REAL_VALUE_TYPE *r, const REAL_VALUE_TYPE *op0, int exp)
1199 *r = *op0;
1200 switch (r->cl)
1202 case rvc_zero:
1203 case rvc_inf:
1204 case rvc_nan:
1205 /* Make resulting NaN value to be qNaN. The caller has the
1206 responsibility to avoid the operation if flag_signaling_nans
1207 is on. */
1208 r->signalling = 0;
1209 break;
1211 case rvc_normal:
1212 exp += REAL_EXP (op0);
1213 if (exp > MAX_EXP)
1214 get_inf (r, r->sign);
1215 else if (exp < -MAX_EXP)
1216 get_zero (r, r->sign);
1217 else
1218 SET_REAL_EXP (r, exp);
1219 break;
1221 default:
1222 gcc_unreachable ();
1226 /* Determine whether a floating-point value X is infinite. */
1228 bool
1229 real_isinf (const REAL_VALUE_TYPE *r)
1231 return (r->cl == rvc_inf);
1234 /* Determine whether a floating-point value X is a NaN. */
1236 bool
1237 real_isnan (const REAL_VALUE_TYPE *r)
1239 return (r->cl == rvc_nan);
1242 /* Determine whether a floating-point value X is a signaling NaN. */
1243 bool real_issignaling_nan (const REAL_VALUE_TYPE *r)
1245 return real_isnan (r) && r->signalling;
1248 /* Determine whether a floating-point value X is finite. */
1250 bool
1251 real_isfinite (const REAL_VALUE_TYPE *r)
1253 return (r->cl != rvc_nan) && (r->cl != rvc_inf);
1256 /* Determine whether a floating-point value X is negative. */
1258 bool
1259 real_isneg (const REAL_VALUE_TYPE *r)
1261 return r->sign;
1264 /* Determine whether a floating-point value X is minus zero. */
1266 bool
1267 real_isnegzero (const REAL_VALUE_TYPE *r)
1269 return r->sign && r->cl == rvc_zero;
1272 /* Compare two floating-point objects for bitwise identity. */
1274 bool
1275 real_identical (const REAL_VALUE_TYPE *a, const REAL_VALUE_TYPE *b)
1277 int i;
1279 if (a->cl != b->cl)
1280 return false;
1281 if (a->sign != b->sign)
1282 return false;
1284 switch (a->cl)
1286 case rvc_zero:
1287 case rvc_inf:
1288 return true;
1290 case rvc_normal:
1291 if (a->decimal != b->decimal)
1292 return false;
1293 if (REAL_EXP (a) != REAL_EXP (b))
1294 return false;
1295 break;
1297 case rvc_nan:
1298 if (a->signalling != b->signalling)
1299 return false;
1300 /* The significand is ignored for canonical NaNs. */
1301 if (a->canonical || b->canonical)
1302 return a->canonical == b->canonical;
1303 break;
1305 default:
1306 gcc_unreachable ();
1309 for (i = 0; i < SIGSZ; ++i)
1310 if (a->sig[i] != b->sig[i])
1311 return false;
1313 return true;
1316 /* Try to change R into its exact multiplicative inverse in format FMT.
1317 Return true if successful. */
1319 bool
1320 exact_real_inverse (format_helper fmt, REAL_VALUE_TYPE *r)
1322 const REAL_VALUE_TYPE *one = real_digit (1);
1323 REAL_VALUE_TYPE u;
1324 int i;
1326 if (r->cl != rvc_normal)
1327 return false;
1329 /* Check for a power of two: all significand bits zero except the MSB. */
1330 for (i = 0; i < SIGSZ-1; ++i)
1331 if (r->sig[i] != 0)
1332 return false;
1333 if (r->sig[SIGSZ-1] != SIG_MSB)
1334 return false;
1336 /* Find the inverse and truncate to the required format. */
1337 do_divide (&u, one, r);
1338 real_convert (&u, fmt, &u);
1340 /* The rounding may have overflowed. */
1341 if (u.cl != rvc_normal)
1342 return false;
1343 for (i = 0; i < SIGSZ-1; ++i)
1344 if (u.sig[i] != 0)
1345 return false;
1346 if (u.sig[SIGSZ-1] != SIG_MSB)
1347 return false;
1349 *r = u;
1350 return true;
1353 /* Return true if arithmetic on values in IMODE that were promoted
1354 from values in TMODE is equivalent to direct arithmetic on values
1355 in TMODE. */
1357 bool
1358 real_can_shorten_arithmetic (machine_mode imode, machine_mode tmode)
1360 const struct real_format *tfmt, *ifmt;
1361 tfmt = REAL_MODE_FORMAT (tmode);
1362 ifmt = REAL_MODE_FORMAT (imode);
1363 /* These conditions are conservative rather than trying to catch the
1364 exact boundary conditions; the main case to allow is IEEE float
1365 and double. */
1366 return (ifmt->b == tfmt->b
1367 && ifmt->p > 2 * tfmt->p
1368 && ifmt->emin < 2 * tfmt->emin - tfmt->p - 2
1369 && ifmt->emin < tfmt->emin - tfmt->emax - tfmt->p - 2
1370 && ifmt->emax > 2 * tfmt->emax + 2
1371 && ifmt->emax > tfmt->emax - tfmt->emin + tfmt->p + 2
1372 && ifmt->round_towards_zero == tfmt->round_towards_zero
1373 && (ifmt->has_sign_dependent_rounding
1374 == tfmt->has_sign_dependent_rounding)
1375 && ifmt->has_nans >= tfmt->has_nans
1376 && ifmt->has_inf >= tfmt->has_inf
1377 && ifmt->has_signed_zero >= tfmt->has_signed_zero
1378 && !MODE_COMPOSITE_P (tmode)
1379 && !MODE_COMPOSITE_P (imode));
1382 /* Render R as an integer. */
1384 HOST_WIDE_INT
1385 real_to_integer (const REAL_VALUE_TYPE *r)
1387 unsigned HOST_WIDE_INT i;
1389 switch (r->cl)
1391 case rvc_zero:
1392 underflow:
1393 return 0;
1395 case rvc_inf:
1396 case rvc_nan:
1397 overflow:
1398 i = (unsigned HOST_WIDE_INT) 1 << (HOST_BITS_PER_WIDE_INT - 1);
1399 if (!r->sign)
1400 i--;
1401 return i;
1403 case rvc_normal:
1404 if (r->decimal)
1405 return decimal_real_to_integer (r);
1407 if (REAL_EXP (r) <= 0)
1408 goto underflow;
1409 /* Only force overflow for unsigned overflow. Signed overflow is
1410 undefined, so it doesn't matter what we return, and some callers
1411 expect to be able to use this routine for both signed and
1412 unsigned conversions. */
1413 if (REAL_EXP (r) > HOST_BITS_PER_WIDE_INT)
1414 goto overflow;
1416 if (HOST_BITS_PER_WIDE_INT == HOST_BITS_PER_LONG)
1417 i = r->sig[SIGSZ-1];
1418 else
1420 gcc_assert (HOST_BITS_PER_WIDE_INT == 2 * HOST_BITS_PER_LONG);
1421 i = r->sig[SIGSZ-1];
1422 i = i << (HOST_BITS_PER_LONG - 1) << 1;
1423 i |= r->sig[SIGSZ-2];
1426 i >>= HOST_BITS_PER_WIDE_INT - REAL_EXP (r);
1428 if (r->sign)
1429 i = -i;
1430 return i;
1432 default:
1433 gcc_unreachable ();
1437 /* Likewise, but producing a wide-int of PRECISION. If the value cannot
1438 be represented in precision, *FAIL is set to TRUE. */
1440 wide_int
1441 real_to_integer (const REAL_VALUE_TYPE *r, bool *fail, int precision)
1443 HOST_WIDE_INT val[2 * WIDE_INT_MAX_ELTS];
1444 int exp;
1445 int words, w;
1446 wide_int result;
1448 switch (r->cl)
1450 case rvc_zero:
1451 underflow:
1452 return wi::zero (precision);
1454 case rvc_inf:
1455 case rvc_nan:
1456 overflow:
1457 *fail = true;
1459 if (r->sign)
1460 return wi::set_bit_in_zero (precision - 1, precision);
1461 else
1462 return ~wi::set_bit_in_zero (precision - 1, precision);
1464 case rvc_normal:
1465 if (r->decimal)
1466 return decimal_real_to_integer (r, fail, precision);
1468 exp = REAL_EXP (r);
1469 if (exp <= 0)
1470 goto underflow;
1471 /* Only force overflow for unsigned overflow. Signed overflow is
1472 undefined, so it doesn't matter what we return, and some callers
1473 expect to be able to use this routine for both signed and
1474 unsigned conversions. */
1475 if (exp > precision)
1476 goto overflow;
1478 /* Put the significand into a wide_int that has precision W, which
1479 is the smallest HWI-multiple that has at least PRECISION bits.
1480 This ensures that the top bit of the significand is in the
1481 top bit of the wide_int. */
1482 words = (precision + HOST_BITS_PER_WIDE_INT - 1) / HOST_BITS_PER_WIDE_INT;
1483 w = words * HOST_BITS_PER_WIDE_INT;
1485 #if (HOST_BITS_PER_WIDE_INT == HOST_BITS_PER_LONG)
1486 for (int i = 0; i < words; i++)
1488 int j = SIGSZ - words + i;
1489 val[i] = (j < 0) ? 0 : r->sig[j];
1491 #else
1492 gcc_assert (HOST_BITS_PER_WIDE_INT == 2 * HOST_BITS_PER_LONG);
1493 for (int i = 0; i < words; i++)
1495 int j = SIGSZ - (words * 2) + (i * 2);
1496 if (j < 0)
1497 val[i] = 0;
1498 else
1499 val[i] = r->sig[j];
1500 j += 1;
1501 if (j >= 0)
1502 val[i] |= (unsigned HOST_WIDE_INT) r->sig[j] << HOST_BITS_PER_LONG;
1504 #endif
1505 /* Shift the value into place and truncate to the desired precision. */
1506 result = wide_int::from_array (val, words, w);
1507 result = wi::lrshift (result, w - exp);
1508 result = wide_int::from (result, precision, UNSIGNED);
1510 if (r->sign)
1511 return -result;
1512 else
1513 return result;
1515 default:
1516 gcc_unreachable ();
1520 /* A subroutine of real_to_decimal. Compute the quotient and remainder
1521 of NUM / DEN. Return the quotient and place the remainder in NUM.
1522 It is expected that NUM / DEN are close enough that the quotient is
1523 small. */
1525 static unsigned long
1526 rtd_divmod (REAL_VALUE_TYPE *num, REAL_VALUE_TYPE *den)
1528 unsigned long q, msb;
1529 int expn = REAL_EXP (num), expd = REAL_EXP (den);
1531 if (expn < expd)
1532 return 0;
1534 q = msb = 0;
1535 goto start;
1538 msb = num->sig[SIGSZ-1] & SIG_MSB;
1539 q <<= 1;
1540 lshift_significand_1 (num, num);
1541 start:
1542 if (msb || cmp_significands (num, den) >= 0)
1544 sub_significands (num, num, den, 0);
1545 q |= 1;
1548 while (--expn >= expd);
1550 SET_REAL_EXP (num, expd);
1551 normalize (num);
1553 return q;
1556 /* Render R as a decimal floating point constant. Emit DIGITS significant
1557 digits in the result, bounded by BUF_SIZE. If DIGITS is 0, choose the
1558 maximum for the representation. If CROP_TRAILING_ZEROS, strip trailing
1559 zeros. If MODE is VOIDmode, round to nearest value. Otherwise, round
1560 to a string that, when parsed back in mode MODE, yields the same value. */
1562 #define M_LOG10_2 0.30102999566398119521
1564 void
1565 real_to_decimal_for_mode (char *str, const REAL_VALUE_TYPE *r_orig,
1566 size_t buf_size, size_t digits,
1567 int crop_trailing_zeros, machine_mode mode)
1569 const struct real_format *fmt = NULL;
1570 const REAL_VALUE_TYPE *one, *ten;
1571 REAL_VALUE_TYPE r, pten, u, v;
1572 int dec_exp, cmp_one, digit;
1573 size_t max_digits;
1574 char *p, *first, *last;
1575 bool sign;
1576 bool round_up;
1578 if (mode != VOIDmode)
1580 fmt = REAL_MODE_FORMAT (mode);
1581 gcc_assert (fmt);
1584 r = *r_orig;
1585 switch (r.cl)
1587 case rvc_zero:
1588 strcpy (str, (r.sign ? "-0.0" : "0.0"));
1589 return;
1590 case rvc_normal:
1591 break;
1592 case rvc_inf:
1593 strcpy (str, (r.sign ? "-Inf" : "+Inf"));
1594 return;
1595 case rvc_nan:
1596 /* ??? Print the significand as well, if not canonical? */
1597 sprintf (str, "%c%cNaN", (r_orig->sign ? '-' : '+'),
1598 (r_orig->signalling ? 'S' : 'Q'));
1599 return;
1600 default:
1601 gcc_unreachable ();
1604 if (r.decimal)
1606 decimal_real_to_decimal (str, &r, buf_size, digits, crop_trailing_zeros);
1607 return;
1610 /* Bound the number of digits printed by the size of the representation. */
1611 max_digits = SIGNIFICAND_BITS * M_LOG10_2;
1612 if (digits == 0 || digits > max_digits)
1613 digits = max_digits;
1615 /* Estimate the decimal exponent, and compute the length of the string it
1616 will print as. Be conservative and add one to account for possible
1617 overflow or rounding error. */
1618 dec_exp = REAL_EXP (&r) * M_LOG10_2;
1619 for (max_digits = 1; dec_exp ; max_digits++)
1620 dec_exp /= 10;
1622 /* Bound the number of digits printed by the size of the output buffer. */
1623 max_digits = buf_size - 1 - 1 - 2 - max_digits - 1;
1624 gcc_assert (max_digits <= buf_size);
1625 if (digits > max_digits)
1626 digits = max_digits;
1628 one = real_digit (1);
1629 ten = ten_to_ptwo (0);
1631 sign = r.sign;
1632 r.sign = 0;
1634 dec_exp = 0;
1635 pten = *one;
1637 cmp_one = do_compare (&r, one, 0);
1638 if (cmp_one > 0)
1640 int m;
1642 /* Number is greater than one. Convert significand to an integer
1643 and strip trailing decimal zeros. */
1645 u = r;
1646 SET_REAL_EXP (&u, SIGNIFICAND_BITS - 1);
1648 /* Largest M, such that 10**2**M fits within SIGNIFICAND_BITS. */
1649 m = floor_log2 (max_digits);
1651 /* Iterate over the bits of the possible powers of 10 that might
1652 be present in U and eliminate them. That is, if we find that
1653 10**2**M divides U evenly, keep the division and increase
1654 DEC_EXP by 2**M. */
1657 REAL_VALUE_TYPE t;
1659 do_divide (&t, &u, ten_to_ptwo (m));
1660 do_fix_trunc (&v, &t);
1661 if (cmp_significands (&v, &t) == 0)
1663 u = t;
1664 dec_exp += 1 << m;
1667 while (--m >= 0);
1669 /* Revert the scaling to integer that we performed earlier. */
1670 SET_REAL_EXP (&u, REAL_EXP (&u) + REAL_EXP (&r)
1671 - (SIGNIFICAND_BITS - 1));
1672 r = u;
1674 /* Find power of 10. Do this by dividing out 10**2**M when
1675 this is larger than the current remainder. Fill PTEN with
1676 the power of 10 that we compute. */
1677 if (REAL_EXP (&r) > 0)
1679 m = floor_log2 ((int)(REAL_EXP (&r) * M_LOG10_2)) + 1;
1682 const REAL_VALUE_TYPE *ptentwo = ten_to_ptwo (m);
1683 if (do_compare (&u, ptentwo, 0) >= 0)
1685 do_divide (&u, &u, ptentwo);
1686 do_multiply (&pten, &pten, ptentwo);
1687 dec_exp += 1 << m;
1690 while (--m >= 0);
1692 else
1693 /* We managed to divide off enough tens in the above reduction
1694 loop that we've now got a negative exponent. Fall into the
1695 less-than-one code to compute the proper value for PTEN. */
1696 cmp_one = -1;
1698 if (cmp_one < 0)
1700 int m;
1702 /* Number is less than one. Pad significand with leading
1703 decimal zeros. */
1705 v = r;
1706 while (1)
1708 /* Stop if we'd shift bits off the bottom. */
1709 if (v.sig[0] & 7)
1710 break;
1712 do_multiply (&u, &v, ten);
1714 /* Stop if we're now >= 1. */
1715 if (REAL_EXP (&u) > 0)
1716 break;
1718 v = u;
1719 dec_exp -= 1;
1721 r = v;
1723 /* Find power of 10. Do this by multiplying in P=10**2**M when
1724 the current remainder is smaller than 1/P. Fill PTEN with the
1725 power of 10 that we compute. */
1726 m = floor_log2 ((int)(-REAL_EXP (&r) * M_LOG10_2)) + 1;
1729 const REAL_VALUE_TYPE *ptentwo = ten_to_ptwo (m);
1730 const REAL_VALUE_TYPE *ptenmtwo = ten_to_mptwo (m);
1732 if (do_compare (&v, ptenmtwo, 0) <= 0)
1734 do_multiply (&v, &v, ptentwo);
1735 do_multiply (&pten, &pten, ptentwo);
1736 dec_exp -= 1 << m;
1739 while (--m >= 0);
1741 /* Invert the positive power of 10 that we've collected so far. */
1742 do_divide (&pten, one, &pten);
1745 p = str;
1746 if (sign)
1747 *p++ = '-';
1748 first = p++;
1750 /* At this point, PTEN should contain the nearest power of 10 smaller
1751 than R, such that this division produces the first digit.
1753 Using a divide-step primitive that returns the complete integral
1754 remainder avoids the rounding error that would be produced if
1755 we were to use do_divide here and then simply multiply by 10 for
1756 each subsequent digit. */
1758 digit = rtd_divmod (&r, &pten);
1760 /* Be prepared for error in that division via underflow ... */
1761 if (digit == 0 && cmp_significand_0 (&r))
1763 /* Multiply by 10 and try again. */
1764 do_multiply (&r, &r, ten);
1765 digit = rtd_divmod (&r, &pten);
1766 dec_exp -= 1;
1767 gcc_assert (digit != 0);
1770 /* ... or overflow. */
1771 if (digit == 10)
1773 *p++ = '1';
1774 if (--digits > 0)
1775 *p++ = '0';
1776 dec_exp += 1;
1778 else
1780 gcc_assert (digit <= 10);
1781 *p++ = digit + '0';
1784 /* Generate subsequent digits. */
1785 while (--digits > 0)
1787 do_multiply (&r, &r, ten);
1788 digit = rtd_divmod (&r, &pten);
1789 *p++ = digit + '0';
1791 last = p;
1793 /* Generate one more digit with which to do rounding. */
1794 do_multiply (&r, &r, ten);
1795 digit = rtd_divmod (&r, &pten);
1797 /* Round the result. */
1798 if (fmt && fmt->round_towards_zero)
1800 /* If the format uses round towards zero when parsing the string
1801 back in, we need to always round away from zero here. */
1802 if (cmp_significand_0 (&r))
1803 digit++;
1804 round_up = digit > 0;
1806 else
1808 if (digit == 5)
1810 /* Round to nearest. If R is nonzero there are additional
1811 nonzero digits to be extracted. */
1812 if (cmp_significand_0 (&r))
1813 digit++;
1814 /* Round to even. */
1815 else if ((p[-1] - '0') & 1)
1816 digit++;
1819 round_up = digit > 5;
1822 if (round_up)
1824 while (p > first)
1826 digit = *--p;
1827 if (digit == '9')
1828 *p = '0';
1829 else
1831 *p = digit + 1;
1832 break;
1836 /* Carry out of the first digit. This means we had all 9's and
1837 now have all 0's. "Prepend" a 1 by overwriting the first 0. */
1838 if (p == first)
1840 first[1] = '1';
1841 dec_exp++;
1845 /* Insert the decimal point. */
1846 first[0] = first[1];
1847 first[1] = '.';
1849 /* If requested, drop trailing zeros. Never crop past "1.0". */
1850 if (crop_trailing_zeros)
1851 while (last > first + 3 && last[-1] == '0')
1852 last--;
1854 /* Append the exponent. */
1855 sprintf (last, "e%+d", dec_exp);
1857 /* Verify that we can read the original value back in. */
1858 if (flag_checking && mode != VOIDmode)
1860 real_from_string (&r, str);
1861 real_convert (&r, mode, &r);
1862 gcc_assert (real_identical (&r, r_orig));
1866 /* Likewise, except always uses round-to-nearest. */
1868 void
1869 real_to_decimal (char *str, const REAL_VALUE_TYPE *r_orig, size_t buf_size,
1870 size_t digits, int crop_trailing_zeros)
1872 real_to_decimal_for_mode (str, r_orig, buf_size,
1873 digits, crop_trailing_zeros, VOIDmode);
1876 /* Render R as a hexadecimal floating point constant. Emit DIGITS
1877 significant digits in the result, bounded by BUF_SIZE. If DIGITS is 0,
1878 choose the maximum for the representation. If CROP_TRAILING_ZEROS,
1879 strip trailing zeros. */
1881 void
1882 real_to_hexadecimal (char *str, const REAL_VALUE_TYPE *r, size_t buf_size,
1883 size_t digits, int crop_trailing_zeros)
1885 int i, j, exp = REAL_EXP (r);
1886 char *p, *first;
1887 char exp_buf[16];
1888 size_t max_digits;
1890 switch (r->cl)
1892 case rvc_zero:
1893 exp = 0;
1894 break;
1895 case rvc_normal:
1896 break;
1897 case rvc_inf:
1898 strcpy (str, (r->sign ? "-Inf" : "+Inf"));
1899 return;
1900 case rvc_nan:
1901 /* ??? Print the significand as well, if not canonical? */
1902 sprintf (str, "%c%cNaN", (r->sign ? '-' : '+'),
1903 (r->signalling ? 'S' : 'Q'));
1904 return;
1905 default:
1906 gcc_unreachable ();
1909 if (r->decimal)
1911 /* Hexadecimal format for decimal floats is not interesting. */
1912 strcpy (str, "N/A");
1913 return;
1916 if (digits == 0)
1917 digits = SIGNIFICAND_BITS / 4;
1919 /* Bound the number of digits printed by the size of the output buffer. */
1921 sprintf (exp_buf, "p%+d", exp);
1922 max_digits = buf_size - strlen (exp_buf) - r->sign - 4 - 1;
1923 gcc_assert (max_digits <= buf_size);
1924 if (digits > max_digits)
1925 digits = max_digits;
1927 p = str;
1928 if (r->sign)
1929 *p++ = '-';
1930 *p++ = '0';
1931 *p++ = 'x';
1932 *p++ = '0';
1933 *p++ = '.';
1934 first = p;
1936 for (i = SIGSZ - 1; i >= 0; --i)
1937 for (j = HOST_BITS_PER_LONG - 4; j >= 0; j -= 4)
1939 *p++ = "0123456789abcdef"[(r->sig[i] >> j) & 15];
1940 if (--digits == 0)
1941 goto out;
1944 out:
1945 if (crop_trailing_zeros)
1946 while (p > first + 1 && p[-1] == '0')
1947 p--;
1949 sprintf (p, "p%+d", exp);
1952 /* Initialize R from a decimal or hexadecimal string. The string is
1953 assumed to have been syntax checked already. Return -1 if the
1954 value underflows, +1 if overflows, and 0 otherwise. */
1957 real_from_string (REAL_VALUE_TYPE *r, const char *str)
1959 int exp = 0;
1960 bool sign = false;
1962 get_zero (r, 0);
1964 if (*str == '-')
1966 sign = true;
1967 str++;
1969 else if (*str == '+')
1970 str++;
1972 if (!strncmp (str, "QNaN", 4))
1974 get_canonical_qnan (r, sign);
1975 return 0;
1977 else if (!strncmp (str, "SNaN", 4))
1979 get_canonical_snan (r, sign);
1980 return 0;
1982 else if (!strncmp (str, "Inf", 3))
1984 get_inf (r, sign);
1985 return 0;
1988 if (str[0] == '0' && (str[1] == 'x' || str[1] == 'X'))
1990 /* Hexadecimal floating point. */
1991 int pos = SIGNIFICAND_BITS - 4, d;
1993 str += 2;
1995 while (*str == '0')
1996 str++;
1997 while (1)
1999 d = hex_value (*str);
2000 if (d == _hex_bad)
2001 break;
2002 if (pos >= 0)
2004 r->sig[pos / HOST_BITS_PER_LONG]
2005 |= (unsigned long) d << (pos % HOST_BITS_PER_LONG);
2006 pos -= 4;
2008 else if (d)
2009 /* Ensure correct rounding by setting last bit if there is
2010 a subsequent nonzero digit. */
2011 r->sig[0] |= 1;
2012 exp += 4;
2013 str++;
2015 if (*str == '.')
2017 str++;
2018 if (pos == SIGNIFICAND_BITS - 4)
2020 while (*str == '0')
2021 str++, exp -= 4;
2023 while (1)
2025 d = hex_value (*str);
2026 if (d == _hex_bad)
2027 break;
2028 if (pos >= 0)
2030 r->sig[pos / HOST_BITS_PER_LONG]
2031 |= (unsigned long) d << (pos % HOST_BITS_PER_LONG);
2032 pos -= 4;
2034 else if (d)
2035 /* Ensure correct rounding by setting last bit if there is
2036 a subsequent nonzero digit. */
2037 r->sig[0] |= 1;
2038 str++;
2042 /* If the mantissa is zero, ignore the exponent. */
2043 if (!cmp_significand_0 (r))
2044 goto is_a_zero;
2046 if (*str == 'p' || *str == 'P')
2048 bool exp_neg = false;
2050 str++;
2051 if (*str == '-')
2053 exp_neg = true;
2054 str++;
2056 else if (*str == '+')
2057 str++;
2059 d = 0;
2060 while (ISDIGIT (*str))
2062 d *= 10;
2063 d += *str - '0';
2064 if (d > MAX_EXP)
2066 /* Overflowed the exponent. */
2067 if (exp_neg)
2068 goto underflow;
2069 else
2070 goto overflow;
2072 str++;
2074 if (exp_neg)
2075 d = -d;
2077 exp += d;
2080 r->cl = rvc_normal;
2081 SET_REAL_EXP (r, exp);
2083 normalize (r);
2085 else
2087 /* Decimal floating point. */
2088 const char *cstr = str;
2089 mpfr_t m;
2090 bool inexact;
2092 while (*cstr == '0')
2093 cstr++;
2094 if (*cstr == '.')
2096 cstr++;
2097 while (*cstr == '0')
2098 cstr++;
2101 /* If the mantissa is zero, ignore the exponent. */
2102 if (!ISDIGIT (*cstr))
2103 goto is_a_zero;
2105 /* Nonzero value, possibly overflowing or underflowing. */
2106 mpfr_init2 (m, SIGNIFICAND_BITS);
2107 inexact = mpfr_strtofr (m, str, NULL, 10, GMP_RNDZ);
2108 /* The result should never be a NaN, and because the rounding is
2109 toward zero should never be an infinity. */
2110 gcc_assert (!mpfr_nan_p (m) && !mpfr_inf_p (m));
2111 if (mpfr_zero_p (m) || mpfr_get_exp (m) < -MAX_EXP + 4)
2113 mpfr_clear (m);
2114 goto underflow;
2116 else if (mpfr_get_exp (m) > MAX_EXP - 4)
2118 mpfr_clear (m);
2119 goto overflow;
2121 else
2123 real_from_mpfr (r, m, NULL_TREE, GMP_RNDZ);
2124 /* 1 to 3 bits may have been shifted off (with a sticky bit)
2125 because the hex digits used in real_from_mpfr did not
2126 start with a digit 8 to f, but the exponent bounds above
2127 should have avoided underflow or overflow. */
2128 gcc_assert (r->cl == rvc_normal);
2129 /* Set a sticky bit if mpfr_strtofr was inexact. */
2130 r->sig[0] |= inexact;
2131 mpfr_clear (m);
2135 r->sign = sign;
2136 return 0;
2138 is_a_zero:
2139 get_zero (r, sign);
2140 return 0;
2142 underflow:
2143 get_zero (r, sign);
2144 return -1;
2146 overflow:
2147 get_inf (r, sign);
2148 return 1;
2151 /* Legacy. Similar, but return the result directly. */
2153 REAL_VALUE_TYPE
2154 real_from_string2 (const char *s, format_helper fmt)
2156 REAL_VALUE_TYPE r;
2158 real_from_string (&r, s);
2159 if (fmt)
2160 real_convert (&r, fmt, &r);
2162 return r;
2165 /* Initialize R from string S and desired format FMT. */
2167 void
2168 real_from_string3 (REAL_VALUE_TYPE *r, const char *s, format_helper fmt)
2170 if (fmt.decimal_p ())
2171 decimal_real_from_string (r, s);
2172 else
2173 real_from_string (r, s);
2175 if (fmt)
2176 real_convert (r, fmt, r);
2179 /* Initialize R from the wide_int VAL_IN. Round it to format FMT if
2180 FMT is nonnull. */
2182 void
2183 real_from_integer (REAL_VALUE_TYPE *r, format_helper fmt,
2184 const wide_int_ref &val_in, signop sgn)
2186 if (val_in == 0)
2187 get_zero (r, 0);
2188 else
2190 unsigned int len = val_in.get_precision ();
2191 int i, j, e = 0;
2192 int maxbitlen = MAX_BITSIZE_MODE_ANY_INT + HOST_BITS_PER_WIDE_INT;
2193 const unsigned int realmax = (SIGNIFICAND_BITS / HOST_BITS_PER_WIDE_INT
2194 * HOST_BITS_PER_WIDE_INT);
2196 memset (r, 0, sizeof (*r));
2197 r->cl = rvc_normal;
2198 r->sign = wi::neg_p (val_in, sgn);
2200 /* We have to ensure we can negate the largest negative number. */
2201 wide_int val = wide_int::from (val_in, maxbitlen, sgn);
2203 if (r->sign)
2204 val = -val;
2206 /* Ensure a multiple of HOST_BITS_PER_WIDE_INT, ceiling, as elt
2207 won't work with precisions that are not a multiple of
2208 HOST_BITS_PER_WIDE_INT. */
2209 len += HOST_BITS_PER_WIDE_INT - 1;
2211 /* Ensure we can represent the largest negative number. */
2212 len += 1;
2214 len = len/HOST_BITS_PER_WIDE_INT * HOST_BITS_PER_WIDE_INT;
2216 /* Cap the size to the size allowed by real.h. */
2217 if (len > realmax)
2219 HOST_WIDE_INT cnt_l_z;
2220 cnt_l_z = wi::clz (val);
2222 if (maxbitlen - cnt_l_z > realmax)
2224 e = maxbitlen - cnt_l_z - realmax;
2226 /* This value is too large, we must shift it right to
2227 preserve all the bits we can, and then bump the
2228 exponent up by that amount. */
2229 val = wi::lrshift (val, e);
2231 len = realmax;
2234 /* Clear out top bits so elt will work with precisions that aren't
2235 a multiple of HOST_BITS_PER_WIDE_INT. */
2236 val = wide_int::from (val, len, sgn);
2237 len = len / HOST_BITS_PER_WIDE_INT;
2239 SET_REAL_EXP (r, len * HOST_BITS_PER_WIDE_INT + e);
2241 j = SIGSZ - 1;
2242 if (HOST_BITS_PER_LONG == HOST_BITS_PER_WIDE_INT)
2243 for (i = len - 1; i >= 0; i--)
2245 r->sig[j--] = val.elt (i);
2246 if (j < 0)
2247 break;
2249 else
2251 gcc_assert (HOST_BITS_PER_LONG*2 == HOST_BITS_PER_WIDE_INT);
2252 for (i = len - 1; i >= 0; i--)
2254 HOST_WIDE_INT e = val.elt (i);
2255 r->sig[j--] = e >> (HOST_BITS_PER_LONG - 1) >> 1;
2256 if (j < 0)
2257 break;
2258 r->sig[j--] = e;
2259 if (j < 0)
2260 break;
2264 normalize (r);
2267 if (fmt.decimal_p ())
2268 decimal_from_integer (r);
2269 else if (fmt)
2270 real_convert (r, fmt, r);
2273 /* Render R, an integral value, as a floating point constant with no
2274 specified exponent. */
2276 static void
2277 decimal_integer_string (char *str, const REAL_VALUE_TYPE *r_orig,
2278 size_t buf_size)
2280 int dec_exp, digit, digits;
2281 REAL_VALUE_TYPE r, pten;
2282 char *p;
2283 bool sign;
2285 r = *r_orig;
2287 if (r.cl == rvc_zero)
2289 strcpy (str, "0.");
2290 return;
2293 sign = r.sign;
2294 r.sign = 0;
2296 dec_exp = REAL_EXP (&r) * M_LOG10_2;
2297 digits = dec_exp + 1;
2298 gcc_assert ((digits + 2) < (int)buf_size);
2300 pten = *real_digit (1);
2301 times_pten (&pten, dec_exp);
2303 p = str;
2304 if (sign)
2305 *p++ = '-';
2307 digit = rtd_divmod (&r, &pten);
2308 gcc_assert (digit >= 0 && digit <= 9);
2309 *p++ = digit + '0';
2310 while (--digits > 0)
2312 times_pten (&r, 1);
2313 digit = rtd_divmod (&r, &pten);
2314 *p++ = digit + '0';
2316 *p++ = '.';
2317 *p++ = '\0';
2320 /* Convert a real with an integral value to decimal float. */
2322 static void
2323 decimal_from_integer (REAL_VALUE_TYPE *r)
2325 char str[256];
2327 decimal_integer_string (str, r, sizeof (str) - 1);
2328 decimal_real_from_string (r, str);
2331 /* Returns 10**2**N. */
2333 static const REAL_VALUE_TYPE *
2334 ten_to_ptwo (int n)
2336 static REAL_VALUE_TYPE tens[EXP_BITS];
2338 gcc_assert (n >= 0);
2339 gcc_assert (n < EXP_BITS);
2341 if (tens[n].cl == rvc_zero)
2343 if (n < (HOST_BITS_PER_WIDE_INT == 64 ? 5 : 4))
2345 HOST_WIDE_INT t = 10;
2346 int i;
2348 for (i = 0; i < n; ++i)
2349 t *= t;
2351 real_from_integer (&tens[n], VOIDmode, t, UNSIGNED);
2353 else
2355 const REAL_VALUE_TYPE *t = ten_to_ptwo (n - 1);
2356 do_multiply (&tens[n], t, t);
2360 return &tens[n];
2363 /* Returns 10**(-2**N). */
2365 static const REAL_VALUE_TYPE *
2366 ten_to_mptwo (int n)
2368 static REAL_VALUE_TYPE tens[EXP_BITS];
2370 gcc_assert (n >= 0);
2371 gcc_assert (n < EXP_BITS);
2373 if (tens[n].cl == rvc_zero)
2374 do_divide (&tens[n], real_digit (1), ten_to_ptwo (n));
2376 return &tens[n];
2379 /* Returns N. */
2381 static const REAL_VALUE_TYPE *
2382 real_digit (int n)
2384 static REAL_VALUE_TYPE num[10];
2386 gcc_assert (n >= 0);
2387 gcc_assert (n <= 9);
2389 if (n > 0 && num[n].cl == rvc_zero)
2390 real_from_integer (&num[n], VOIDmode, n, UNSIGNED);
2392 return &num[n];
2395 /* Multiply R by 10**EXP. */
2397 static void
2398 times_pten (REAL_VALUE_TYPE *r, int exp)
2400 REAL_VALUE_TYPE pten, *rr;
2401 bool negative = (exp < 0);
2402 int i;
2404 if (negative)
2406 exp = -exp;
2407 pten = *real_digit (1);
2408 rr = &pten;
2410 else
2411 rr = r;
2413 for (i = 0; exp > 0; ++i, exp >>= 1)
2414 if (exp & 1)
2415 do_multiply (rr, rr, ten_to_ptwo (i));
2417 if (negative)
2418 do_divide (r, r, &pten);
2421 /* Returns the special REAL_VALUE_TYPE corresponding to 'e'. */
2423 const REAL_VALUE_TYPE *
2424 dconst_e_ptr (void)
2426 static REAL_VALUE_TYPE value;
2428 /* Initialize mathematical constants for constant folding builtins.
2429 These constants need to be given to at least 160 bits precision. */
2430 if (value.cl == rvc_zero)
2432 mpfr_t m;
2433 mpfr_init2 (m, SIGNIFICAND_BITS);
2434 mpfr_set_ui (m, 1, GMP_RNDN);
2435 mpfr_exp (m, m, GMP_RNDN);
2436 real_from_mpfr (&value, m, NULL_TREE, GMP_RNDN);
2437 mpfr_clear (m);
2440 return &value;
2443 /* Returns a cached REAL_VALUE_TYPE corresponding to 1/n, for various n. */
2445 #define CACHED_FRACTION(NAME, N) \
2446 const REAL_VALUE_TYPE * \
2447 NAME (void) \
2449 static REAL_VALUE_TYPE value; \
2451 /* Initialize mathematical constants for constant folding builtins. \
2452 These constants need to be given to at least 160 bits \
2453 precision. */ \
2454 if (value.cl == rvc_zero) \
2455 real_arithmetic (&value, RDIV_EXPR, &dconst1, real_digit (N)); \
2456 return &value; \
2459 CACHED_FRACTION (dconst_third_ptr, 3)
2460 CACHED_FRACTION (dconst_quarter_ptr, 4)
2461 CACHED_FRACTION (dconst_sixth_ptr, 6)
2462 CACHED_FRACTION (dconst_ninth_ptr, 9)
2464 /* Returns the special REAL_VALUE_TYPE corresponding to sqrt(2). */
2466 const REAL_VALUE_TYPE *
2467 dconst_sqrt2_ptr (void)
2469 static REAL_VALUE_TYPE value;
2471 /* Initialize mathematical constants for constant folding builtins.
2472 These constants need to be given to at least 160 bits precision. */
2473 if (value.cl == rvc_zero)
2475 mpfr_t m;
2476 mpfr_init2 (m, SIGNIFICAND_BITS);
2477 mpfr_sqrt_ui (m, 2, GMP_RNDN);
2478 real_from_mpfr (&value, m, NULL_TREE, GMP_RNDN);
2479 mpfr_clear (m);
2481 return &value;
2484 /* Fills R with +Inf. */
2486 void
2487 real_inf (REAL_VALUE_TYPE *r)
2489 get_inf (r, 0);
2492 /* Fills R with a NaN whose significand is described by STR. If QUIET,
2493 we force a QNaN, else we force an SNaN. The string, if not empty,
2494 is parsed as a number and placed in the significand. Return true
2495 if the string was successfully parsed. */
2497 bool
2498 real_nan (REAL_VALUE_TYPE *r, const char *str, int quiet,
2499 format_helper fmt)
2501 if (*str == 0)
2503 if (quiet)
2504 get_canonical_qnan (r, 0);
2505 else
2506 get_canonical_snan (r, 0);
2508 else
2510 int base = 10, d;
2512 memset (r, 0, sizeof (*r));
2513 r->cl = rvc_nan;
2515 /* Parse akin to strtol into the significand of R. */
2517 while (ISSPACE (*str))
2518 str++;
2519 if (*str == '-')
2520 str++;
2521 else if (*str == '+')
2522 str++;
2523 if (*str == '0')
2525 str++;
2526 if (*str == 'x' || *str == 'X')
2528 base = 16;
2529 str++;
2531 else
2532 base = 8;
2535 while ((d = hex_value (*str)) < base)
2537 REAL_VALUE_TYPE u;
2539 switch (base)
2541 case 8:
2542 lshift_significand (r, r, 3);
2543 break;
2544 case 16:
2545 lshift_significand (r, r, 4);
2546 break;
2547 case 10:
2548 lshift_significand_1 (&u, r);
2549 lshift_significand (r, r, 3);
2550 add_significands (r, r, &u);
2551 break;
2552 default:
2553 gcc_unreachable ();
2556 get_zero (&u, 0);
2557 u.sig[0] = d;
2558 add_significands (r, r, &u);
2560 str++;
2563 /* Must have consumed the entire string for success. */
2564 if (*str != 0)
2565 return false;
2567 /* Shift the significand into place such that the bits
2568 are in the most significant bits for the format. */
2569 lshift_significand (r, r, SIGNIFICAND_BITS - fmt->pnan);
2571 /* Our MSB is always unset for NaNs. */
2572 r->sig[SIGSZ-1] &= ~SIG_MSB;
2574 /* Force quiet or signaling NaN. */
2575 r->signalling = !quiet;
2578 return true;
2581 /* Fills R with the largest finite value representable in mode MODE.
2582 If SIGN is nonzero, R is set to the most negative finite value. */
2584 void
2585 real_maxval (REAL_VALUE_TYPE *r, int sign, machine_mode mode)
2587 const struct real_format *fmt;
2588 int np2;
2590 fmt = REAL_MODE_FORMAT (mode);
2591 gcc_assert (fmt);
2592 memset (r, 0, sizeof (*r));
2594 if (fmt->b == 10)
2595 decimal_real_maxval (r, sign, mode);
2596 else
2598 r->cl = rvc_normal;
2599 r->sign = sign;
2600 SET_REAL_EXP (r, fmt->emax);
2602 np2 = SIGNIFICAND_BITS - fmt->p;
2603 memset (r->sig, -1, SIGSZ * sizeof (unsigned long));
2604 clear_significand_below (r, np2);
2606 if (fmt->pnan < fmt->p)
2607 /* This is an IBM extended double format made up of two IEEE
2608 doubles. The value of the long double is the sum of the
2609 values of the two parts. The most significant part is
2610 required to be the value of the long double rounded to the
2611 nearest double. Rounding means we need a slightly smaller
2612 value for LDBL_MAX. */
2613 clear_significand_bit (r, SIGNIFICAND_BITS - fmt->pnan - 1);
2617 /* Fills R with 2**N. */
2619 void
2620 real_2expN (REAL_VALUE_TYPE *r, int n, format_helper fmt)
2622 memset (r, 0, sizeof (*r));
2624 n++;
2625 if (n > MAX_EXP)
2626 r->cl = rvc_inf;
2627 else if (n < -MAX_EXP)
2629 else
2631 r->cl = rvc_normal;
2632 SET_REAL_EXP (r, n);
2633 r->sig[SIGSZ-1] = SIG_MSB;
2635 if (fmt.decimal_p ())
2636 decimal_real_convert (r, fmt, r);
2640 static void
2641 round_for_format (const struct real_format *fmt, REAL_VALUE_TYPE *r)
2643 int p2, np2, i, w;
2644 int emin2m1, emax2;
2645 bool round_up = false;
2647 if (r->decimal)
2649 if (fmt->b == 10)
2651 decimal_round_for_format (fmt, r);
2652 return;
2654 /* FIXME. We can come here via fp_easy_constant
2655 (e.g. -O0 on '_Decimal32 x = 1.0 + 2.0dd'), but have not
2656 investigated whether this convert needs to be here, or
2657 something else is missing. */
2658 decimal_real_convert (r, REAL_MODE_FORMAT (DFmode), r);
2661 p2 = fmt->p;
2662 emin2m1 = fmt->emin - 1;
2663 emax2 = fmt->emax;
2665 np2 = SIGNIFICAND_BITS - p2;
2666 switch (r->cl)
2668 underflow:
2669 get_zero (r, r->sign);
2670 case rvc_zero:
2671 if (!fmt->has_signed_zero)
2672 r->sign = 0;
2673 return;
2675 overflow:
2676 get_inf (r, r->sign);
2677 case rvc_inf:
2678 return;
2680 case rvc_nan:
2681 clear_significand_below (r, np2);
2682 return;
2684 case rvc_normal:
2685 break;
2687 default:
2688 gcc_unreachable ();
2691 /* Check the range of the exponent. If we're out of range,
2692 either underflow or overflow. */
2693 if (REAL_EXP (r) > emax2)
2694 goto overflow;
2695 else if (REAL_EXP (r) <= emin2m1)
2697 int diff;
2699 if (!fmt->has_denorm)
2701 /* Don't underflow completely until we've had a chance to round. */
2702 if (REAL_EXP (r) < emin2m1)
2703 goto underflow;
2705 else
2707 diff = emin2m1 - REAL_EXP (r) + 1;
2708 if (diff > p2)
2709 goto underflow;
2711 /* De-normalize the significand. */
2712 r->sig[0] |= sticky_rshift_significand (r, r, diff);
2713 SET_REAL_EXP (r, REAL_EXP (r) + diff);
2717 if (!fmt->round_towards_zero)
2719 /* There are P2 true significand bits, followed by one guard bit,
2720 followed by one sticky bit, followed by stuff. Fold nonzero
2721 stuff into the sticky bit. */
2722 unsigned long sticky;
2723 bool guard, lsb;
2725 sticky = 0;
2726 for (i = 0, w = (np2 - 1) / HOST_BITS_PER_LONG; i < w; ++i)
2727 sticky |= r->sig[i];
2728 sticky |= r->sig[w]
2729 & (((unsigned long)1 << ((np2 - 1) % HOST_BITS_PER_LONG)) - 1);
2731 guard = test_significand_bit (r, np2 - 1);
2732 lsb = test_significand_bit (r, np2);
2734 /* Round to even. */
2735 round_up = guard && (sticky || lsb);
2738 if (round_up)
2740 REAL_VALUE_TYPE u;
2741 get_zero (&u, 0);
2742 set_significand_bit (&u, np2);
2744 if (add_significands (r, r, &u))
2746 /* Overflow. Means the significand had been all ones, and
2747 is now all zeros. Need to increase the exponent, and
2748 possibly re-normalize it. */
2749 SET_REAL_EXP (r, REAL_EXP (r) + 1);
2750 if (REAL_EXP (r) > emax2)
2751 goto overflow;
2752 r->sig[SIGSZ-1] = SIG_MSB;
2756 /* Catch underflow that we deferred until after rounding. */
2757 if (REAL_EXP (r) <= emin2m1)
2758 goto underflow;
2760 /* Clear out trailing garbage. */
2761 clear_significand_below (r, np2);
2764 /* Extend or truncate to a new format. */
2766 void
2767 real_convert (REAL_VALUE_TYPE *r, format_helper fmt,
2768 const REAL_VALUE_TYPE *a)
2770 *r = *a;
2772 if (a->decimal || fmt->b == 10)
2773 decimal_real_convert (r, fmt, a);
2775 round_for_format (fmt, r);
2777 /* Make resulting NaN value to be qNaN. The caller has the
2778 responsibility to avoid the operation if flag_signaling_nans
2779 is on. */
2780 if (r->cl == rvc_nan)
2781 r->signalling = 0;
2783 /* round_for_format de-normalizes denormals. Undo just that part. */
2784 if (r->cl == rvc_normal)
2785 normalize (r);
2788 /* Legacy. Likewise, except return the struct directly. */
2790 REAL_VALUE_TYPE
2791 real_value_truncate (format_helper fmt, REAL_VALUE_TYPE a)
2793 REAL_VALUE_TYPE r;
2794 real_convert (&r, fmt, &a);
2795 return r;
2798 /* Return true if truncating to FMT is exact. */
2800 bool
2801 exact_real_truncate (format_helper fmt, const REAL_VALUE_TYPE *a)
2803 REAL_VALUE_TYPE t;
2804 int emin2m1;
2806 /* Don't allow conversion to denormals. */
2807 emin2m1 = fmt->emin - 1;
2808 if (REAL_EXP (a) <= emin2m1)
2809 return false;
2811 /* After conversion to the new format, the value must be identical. */
2812 real_convert (&t, fmt, a);
2813 return real_identical (&t, a);
2816 /* Write R to the given target format. Place the words of the result
2817 in target word order in BUF. There are always 32 bits in each
2818 long, no matter the size of the host long.
2820 Legacy: return word 0 for implementing REAL_VALUE_TO_TARGET_SINGLE. */
2822 long
2823 real_to_target (long *buf, const REAL_VALUE_TYPE *r_orig,
2824 format_helper fmt)
2826 REAL_VALUE_TYPE r;
2827 long buf1;
2829 r = *r_orig;
2830 round_for_format (fmt, &r);
2832 if (!buf)
2833 buf = &buf1;
2834 (*fmt->encode) (fmt, buf, &r);
2836 return *buf;
2839 /* Read R from the given target format. Read the words of the result
2840 in target word order in BUF. There are always 32 bits in each
2841 long, no matter the size of the host long. */
2843 void
2844 real_from_target (REAL_VALUE_TYPE *r, const long *buf, format_helper fmt)
2846 (*fmt->decode) (fmt, r, buf);
2849 /* Return the number of bits of the largest binary value that the
2850 significand of FMT will hold. */
2851 /* ??? Legacy. Should get access to real_format directly. */
2854 significand_size (format_helper fmt)
2856 if (fmt == NULL)
2857 return 0;
2859 if (fmt->b == 10)
2861 /* Return the size in bits of the largest binary value that can be
2862 held by the decimal coefficient for this format. This is one more
2863 than the number of bits required to hold the largest coefficient
2864 of this format. */
2865 double log2_10 = 3.3219281;
2866 return fmt->p * log2_10;
2868 return fmt->p;
2871 /* Return a hash value for the given real value. */
2872 /* ??? The "unsigned int" return value is intended to be hashval_t,
2873 but I didn't want to pull hashtab.h into real.h. */
2875 unsigned int
2876 real_hash (const REAL_VALUE_TYPE *r)
2878 unsigned int h;
2879 size_t i;
2881 h = r->cl | (r->sign << 2);
2882 switch (r->cl)
2884 case rvc_zero:
2885 case rvc_inf:
2886 return h;
2888 case rvc_normal:
2889 h |= REAL_EXP (r) << 3;
2890 break;
2892 case rvc_nan:
2893 if (r->signalling)
2894 h ^= (unsigned int)-1;
2895 if (r->canonical)
2896 return h;
2897 break;
2899 default:
2900 gcc_unreachable ();
2903 if (sizeof (unsigned long) > sizeof (unsigned int))
2904 for (i = 0; i < SIGSZ; ++i)
2906 unsigned long s = r->sig[i];
2907 h ^= s ^ (s >> (HOST_BITS_PER_LONG / 2));
2909 else
2910 for (i = 0; i < SIGSZ; ++i)
2911 h ^= r->sig[i];
2913 return h;
2916 /* IEEE single-precision format. */
2918 static void encode_ieee_single (const struct real_format *fmt,
2919 long *, const REAL_VALUE_TYPE *);
2920 static void decode_ieee_single (const struct real_format *,
2921 REAL_VALUE_TYPE *, const long *);
2923 static void
2924 encode_ieee_single (const struct real_format *fmt, long *buf,
2925 const REAL_VALUE_TYPE *r)
2927 unsigned long image, sig, exp;
2928 unsigned long sign = r->sign;
2929 bool denormal = (r->sig[SIGSZ-1] & SIG_MSB) == 0;
2931 image = sign << 31;
2932 sig = (r->sig[SIGSZ-1] >> (HOST_BITS_PER_LONG - 24)) & 0x7fffff;
2934 switch (r->cl)
2936 case rvc_zero:
2937 break;
2939 case rvc_inf:
2940 if (fmt->has_inf)
2941 image |= 255 << 23;
2942 else
2943 image |= 0x7fffffff;
2944 break;
2946 case rvc_nan:
2947 if (fmt->has_nans)
2949 if (r->canonical)
2950 sig = (fmt->canonical_nan_lsbs_set ? (1 << 22) - 1 : 0);
2951 if (r->signalling == fmt->qnan_msb_set)
2952 sig &= ~(1 << 22);
2953 else
2954 sig |= 1 << 22;
2955 if (sig == 0)
2956 sig = 1 << 21;
2958 image |= 255 << 23;
2959 image |= sig;
2961 else
2962 image |= 0x7fffffff;
2963 break;
2965 case rvc_normal:
2966 /* Recall that IEEE numbers are interpreted as 1.F x 2**exp,
2967 whereas the intermediate representation is 0.F x 2**exp.
2968 Which means we're off by one. */
2969 if (denormal)
2970 exp = 0;
2971 else
2972 exp = REAL_EXP (r) + 127 - 1;
2973 image |= exp << 23;
2974 image |= sig;
2975 break;
2977 default:
2978 gcc_unreachable ();
2981 buf[0] = image;
2984 static void
2985 decode_ieee_single (const struct real_format *fmt, REAL_VALUE_TYPE *r,
2986 const long *buf)
2988 unsigned long image = buf[0] & 0xffffffff;
2989 bool sign = (image >> 31) & 1;
2990 int exp = (image >> 23) & 0xff;
2992 memset (r, 0, sizeof (*r));
2993 image <<= HOST_BITS_PER_LONG - 24;
2994 image &= ~SIG_MSB;
2996 if (exp == 0)
2998 if (image && fmt->has_denorm)
3000 r->cl = rvc_normal;
3001 r->sign = sign;
3002 SET_REAL_EXP (r, -126);
3003 r->sig[SIGSZ-1] = image << 1;
3004 normalize (r);
3006 else if (fmt->has_signed_zero)
3007 r->sign = sign;
3009 else if (exp == 255 && (fmt->has_nans || fmt->has_inf))
3011 if (image)
3013 r->cl = rvc_nan;
3014 r->sign = sign;
3015 r->signalling = (((image >> (HOST_BITS_PER_LONG - 2)) & 1)
3016 ^ fmt->qnan_msb_set);
3017 r->sig[SIGSZ-1] = image;
3019 else
3021 r->cl = rvc_inf;
3022 r->sign = sign;
3025 else
3027 r->cl = rvc_normal;
3028 r->sign = sign;
3029 SET_REAL_EXP (r, exp - 127 + 1);
3030 r->sig[SIGSZ-1] = image | SIG_MSB;
3034 const struct real_format ieee_single_format =
3036 encode_ieee_single,
3037 decode_ieee_single,
3041 -125,
3042 128,
3045 false,
3046 true,
3047 true,
3048 true,
3049 true,
3050 true,
3051 true,
3052 false,
3053 "ieee_single"
3056 const struct real_format mips_single_format =
3058 encode_ieee_single,
3059 decode_ieee_single,
3063 -125,
3064 128,
3067 false,
3068 true,
3069 true,
3070 true,
3071 true,
3072 true,
3073 false,
3074 true,
3075 "mips_single"
3078 const struct real_format motorola_single_format =
3080 encode_ieee_single,
3081 decode_ieee_single,
3085 -125,
3086 128,
3089 false,
3090 true,
3091 true,
3092 true,
3093 true,
3094 true,
3095 true,
3096 true,
3097 "motorola_single"
3100 /* SPU Single Precision (Extended-Range Mode) format is the same as IEEE
3101 single precision with the following differences:
3102 - Infinities are not supported. Instead MAX_FLOAT or MIN_FLOAT
3103 are generated.
3104 - NaNs are not supported.
3105 - The range of non-zero numbers in binary is
3106 (001)[1.]000...000 to (255)[1.]111...111.
3107 - Denormals can be represented, but are treated as +0.0 when
3108 used as an operand and are never generated as a result.
3109 - -0.0 can be represented, but a zero result is always +0.0.
3110 - the only supported rounding mode is trunction (towards zero). */
3111 const struct real_format spu_single_format =
3113 encode_ieee_single,
3114 decode_ieee_single,
3118 -125,
3119 129,
3122 true,
3123 false,
3124 false,
3125 false,
3126 true,
3127 true,
3128 false,
3129 false,
3130 "spu_single"
3133 /* IEEE double-precision format. */
3135 static void encode_ieee_double (const struct real_format *fmt,
3136 long *, const REAL_VALUE_TYPE *);
3137 static void decode_ieee_double (const struct real_format *,
3138 REAL_VALUE_TYPE *, const long *);
3140 static void
3141 encode_ieee_double (const struct real_format *fmt, long *buf,
3142 const REAL_VALUE_TYPE *r)
3144 unsigned long image_lo, image_hi, sig_lo, sig_hi, exp;
3145 bool denormal = (r->sig[SIGSZ-1] & SIG_MSB) == 0;
3147 image_hi = r->sign << 31;
3148 image_lo = 0;
3150 if (HOST_BITS_PER_LONG == 64)
3152 sig_hi = r->sig[SIGSZ-1];
3153 sig_lo = (sig_hi >> (64 - 53)) & 0xffffffff;
3154 sig_hi = (sig_hi >> (64 - 53 + 1) >> 31) & 0xfffff;
3156 else
3158 sig_hi = r->sig[SIGSZ-1];
3159 sig_lo = r->sig[SIGSZ-2];
3160 sig_lo = (sig_hi << 21) | (sig_lo >> 11);
3161 sig_hi = (sig_hi >> 11) & 0xfffff;
3164 switch (r->cl)
3166 case rvc_zero:
3167 break;
3169 case rvc_inf:
3170 if (fmt->has_inf)
3171 image_hi |= 2047 << 20;
3172 else
3174 image_hi |= 0x7fffffff;
3175 image_lo = 0xffffffff;
3177 break;
3179 case rvc_nan:
3180 if (fmt->has_nans)
3182 if (r->canonical)
3184 if (fmt->canonical_nan_lsbs_set)
3186 sig_hi = (1 << 19) - 1;
3187 sig_lo = 0xffffffff;
3189 else
3191 sig_hi = 0;
3192 sig_lo = 0;
3195 if (r->signalling == fmt->qnan_msb_set)
3196 sig_hi &= ~(1 << 19);
3197 else
3198 sig_hi |= 1 << 19;
3199 if (sig_hi == 0 && sig_lo == 0)
3200 sig_hi = 1 << 18;
3202 image_hi |= 2047 << 20;
3203 image_hi |= sig_hi;
3204 image_lo = sig_lo;
3206 else
3208 image_hi |= 0x7fffffff;
3209 image_lo = 0xffffffff;
3211 break;
3213 case rvc_normal:
3214 /* Recall that IEEE numbers are interpreted as 1.F x 2**exp,
3215 whereas the intermediate representation is 0.F x 2**exp.
3216 Which means we're off by one. */
3217 if (denormal)
3218 exp = 0;
3219 else
3220 exp = REAL_EXP (r) + 1023 - 1;
3221 image_hi |= exp << 20;
3222 image_hi |= sig_hi;
3223 image_lo = sig_lo;
3224 break;
3226 default:
3227 gcc_unreachable ();
3230 if (FLOAT_WORDS_BIG_ENDIAN)
3231 buf[0] = image_hi, buf[1] = image_lo;
3232 else
3233 buf[0] = image_lo, buf[1] = image_hi;
3236 static void
3237 decode_ieee_double (const struct real_format *fmt, REAL_VALUE_TYPE *r,
3238 const long *buf)
3240 unsigned long image_hi, image_lo;
3241 bool sign;
3242 int exp;
3244 if (FLOAT_WORDS_BIG_ENDIAN)
3245 image_hi = buf[0], image_lo = buf[1];
3246 else
3247 image_lo = buf[0], image_hi = buf[1];
3248 image_lo &= 0xffffffff;
3249 image_hi &= 0xffffffff;
3251 sign = (image_hi >> 31) & 1;
3252 exp = (image_hi >> 20) & 0x7ff;
3254 memset (r, 0, sizeof (*r));
3256 image_hi <<= 32 - 21;
3257 image_hi |= image_lo >> 21;
3258 image_hi &= 0x7fffffff;
3259 image_lo <<= 32 - 21;
3261 if (exp == 0)
3263 if ((image_hi || image_lo) && fmt->has_denorm)
3265 r->cl = rvc_normal;
3266 r->sign = sign;
3267 SET_REAL_EXP (r, -1022);
3268 if (HOST_BITS_PER_LONG == 32)
3270 image_hi = (image_hi << 1) | (image_lo >> 31);
3271 image_lo <<= 1;
3272 r->sig[SIGSZ-1] = image_hi;
3273 r->sig[SIGSZ-2] = image_lo;
3275 else
3277 image_hi = (image_hi << 31 << 2) | (image_lo << 1);
3278 r->sig[SIGSZ-1] = image_hi;
3280 normalize (r);
3282 else if (fmt->has_signed_zero)
3283 r->sign = sign;
3285 else if (exp == 2047 && (fmt->has_nans || fmt->has_inf))
3287 if (image_hi || image_lo)
3289 r->cl = rvc_nan;
3290 r->sign = sign;
3291 r->signalling = ((image_hi >> 30) & 1) ^ fmt->qnan_msb_set;
3292 if (HOST_BITS_PER_LONG == 32)
3294 r->sig[SIGSZ-1] = image_hi;
3295 r->sig[SIGSZ-2] = image_lo;
3297 else
3298 r->sig[SIGSZ-1] = (image_hi << 31 << 1) | image_lo;
3300 else
3302 r->cl = rvc_inf;
3303 r->sign = sign;
3306 else
3308 r->cl = rvc_normal;
3309 r->sign = sign;
3310 SET_REAL_EXP (r, exp - 1023 + 1);
3311 if (HOST_BITS_PER_LONG == 32)
3313 r->sig[SIGSZ-1] = image_hi | SIG_MSB;
3314 r->sig[SIGSZ-2] = image_lo;
3316 else
3317 r->sig[SIGSZ-1] = (image_hi << 31 << 1) | image_lo | SIG_MSB;
3321 const struct real_format ieee_double_format =
3323 encode_ieee_double,
3324 decode_ieee_double,
3328 -1021,
3329 1024,
3332 false,
3333 true,
3334 true,
3335 true,
3336 true,
3337 true,
3338 true,
3339 false,
3340 "ieee_double"
3343 const struct real_format mips_double_format =
3345 encode_ieee_double,
3346 decode_ieee_double,
3350 -1021,
3351 1024,
3354 false,
3355 true,
3356 true,
3357 true,
3358 true,
3359 true,
3360 false,
3361 true,
3362 "mips_double"
3365 const struct real_format motorola_double_format =
3367 encode_ieee_double,
3368 decode_ieee_double,
3372 -1021,
3373 1024,
3376 false,
3377 true,
3378 true,
3379 true,
3380 true,
3381 true,
3382 true,
3383 true,
3384 "motorola_double"
3387 /* IEEE extended real format. This comes in three flavors: Intel's as
3388 a 12 byte image, Intel's as a 16 byte image, and Motorola's. Intel
3389 12- and 16-byte images may be big- or little endian; Motorola's is
3390 always big endian. */
3392 /* Helper subroutine which converts from the internal format to the
3393 12-byte little-endian Intel format. Functions below adjust this
3394 for the other possible formats. */
3395 static void
3396 encode_ieee_extended (const struct real_format *fmt, long *buf,
3397 const REAL_VALUE_TYPE *r)
3399 unsigned long image_hi, sig_hi, sig_lo;
3400 bool denormal = (r->sig[SIGSZ-1] & SIG_MSB) == 0;
3402 image_hi = r->sign << 15;
3403 sig_hi = sig_lo = 0;
3405 switch (r->cl)
3407 case rvc_zero:
3408 break;
3410 case rvc_inf:
3411 if (fmt->has_inf)
3413 image_hi |= 32767;
3415 /* Intel requires the explicit integer bit to be set, otherwise
3416 it considers the value a "pseudo-infinity". Motorola docs
3417 say it doesn't care. */
3418 sig_hi = 0x80000000;
3420 else
3422 image_hi |= 32767;
3423 sig_lo = sig_hi = 0xffffffff;
3425 break;
3427 case rvc_nan:
3428 if (fmt->has_nans)
3430 image_hi |= 32767;
3431 if (r->canonical)
3433 if (fmt->canonical_nan_lsbs_set)
3435 sig_hi = (1 << 30) - 1;
3436 sig_lo = 0xffffffff;
3439 else if (HOST_BITS_PER_LONG == 32)
3441 sig_hi = r->sig[SIGSZ-1];
3442 sig_lo = r->sig[SIGSZ-2];
3444 else
3446 sig_lo = r->sig[SIGSZ-1];
3447 sig_hi = sig_lo >> 31 >> 1;
3448 sig_lo &= 0xffffffff;
3450 if (r->signalling == fmt->qnan_msb_set)
3451 sig_hi &= ~(1 << 30);
3452 else
3453 sig_hi |= 1 << 30;
3454 if ((sig_hi & 0x7fffffff) == 0 && sig_lo == 0)
3455 sig_hi = 1 << 29;
3457 /* Intel requires the explicit integer bit to be set, otherwise
3458 it considers the value a "pseudo-nan". Motorola docs say it
3459 doesn't care. */
3460 sig_hi |= 0x80000000;
3462 else
3464 image_hi |= 32767;
3465 sig_lo = sig_hi = 0xffffffff;
3467 break;
3469 case rvc_normal:
3471 int exp = REAL_EXP (r);
3473 /* Recall that IEEE numbers are interpreted as 1.F x 2**exp,
3474 whereas the intermediate representation is 0.F x 2**exp.
3475 Which means we're off by one.
3477 Except for Motorola, which consider exp=0 and explicit
3478 integer bit set to continue to be normalized. In theory
3479 this discrepancy has been taken care of by the difference
3480 in fmt->emin in round_for_format. */
3482 if (denormal)
3483 exp = 0;
3484 else
3486 exp += 16383 - 1;
3487 gcc_assert (exp >= 0);
3489 image_hi |= exp;
3491 if (HOST_BITS_PER_LONG == 32)
3493 sig_hi = r->sig[SIGSZ-1];
3494 sig_lo = r->sig[SIGSZ-2];
3496 else
3498 sig_lo = r->sig[SIGSZ-1];
3499 sig_hi = sig_lo >> 31 >> 1;
3500 sig_lo &= 0xffffffff;
3503 break;
3505 default:
3506 gcc_unreachable ();
3509 buf[0] = sig_lo, buf[1] = sig_hi, buf[2] = image_hi;
3512 /* Convert from the internal format to the 12-byte Motorola format
3513 for an IEEE extended real. */
3514 static void
3515 encode_ieee_extended_motorola (const struct real_format *fmt, long *buf,
3516 const REAL_VALUE_TYPE *r)
3518 long intermed[3];
3519 encode_ieee_extended (fmt, intermed, r);
3521 if (r->cl == rvc_inf)
3522 /* For infinity clear the explicit integer bit again, so that the
3523 format matches the canonical infinity generated by the FPU. */
3524 intermed[1] = 0;
3526 /* Motorola chips are assumed always to be big-endian. Also, the
3527 padding in a Motorola extended real goes between the exponent and
3528 the mantissa. At this point the mantissa is entirely within
3529 elements 0 and 1 of intermed, and the exponent entirely within
3530 element 2, so all we have to do is swap the order around, and
3531 shift element 2 left 16 bits. */
3532 buf[0] = intermed[2] << 16;
3533 buf[1] = intermed[1];
3534 buf[2] = intermed[0];
3537 /* Convert from the internal format to the 12-byte Intel format for
3538 an IEEE extended real. */
3539 static void
3540 encode_ieee_extended_intel_96 (const struct real_format *fmt, long *buf,
3541 const REAL_VALUE_TYPE *r)
3543 if (FLOAT_WORDS_BIG_ENDIAN)
3545 /* All the padding in an Intel-format extended real goes at the high
3546 end, which in this case is after the mantissa, not the exponent.
3547 Therefore we must shift everything down 16 bits. */
3548 long intermed[3];
3549 encode_ieee_extended (fmt, intermed, r);
3550 buf[0] = ((intermed[2] << 16) | ((unsigned long)(intermed[1] & 0xFFFF0000) >> 16));
3551 buf[1] = ((intermed[1] << 16) | ((unsigned long)(intermed[0] & 0xFFFF0000) >> 16));
3552 buf[2] = (intermed[0] << 16);
3554 else
3555 /* encode_ieee_extended produces what we want directly. */
3556 encode_ieee_extended (fmt, buf, r);
3559 /* Convert from the internal format to the 16-byte Intel format for
3560 an IEEE extended real. */
3561 static void
3562 encode_ieee_extended_intel_128 (const struct real_format *fmt, long *buf,
3563 const REAL_VALUE_TYPE *r)
3565 /* All the padding in an Intel-format extended real goes at the high end. */
3566 encode_ieee_extended_intel_96 (fmt, buf, r);
3567 buf[3] = 0;
3570 /* As above, we have a helper function which converts from 12-byte
3571 little-endian Intel format to internal format. Functions below
3572 adjust for the other possible formats. */
3573 static void
3574 decode_ieee_extended (const struct real_format *fmt, REAL_VALUE_TYPE *r,
3575 const long *buf)
3577 unsigned long image_hi, sig_hi, sig_lo;
3578 bool sign;
3579 int exp;
3581 sig_lo = buf[0], sig_hi = buf[1], image_hi = buf[2];
3582 sig_lo &= 0xffffffff;
3583 sig_hi &= 0xffffffff;
3584 image_hi &= 0xffffffff;
3586 sign = (image_hi >> 15) & 1;
3587 exp = image_hi & 0x7fff;
3589 memset (r, 0, sizeof (*r));
3591 if (exp == 0)
3593 if ((sig_hi || sig_lo) && fmt->has_denorm)
3595 r->cl = rvc_normal;
3596 r->sign = sign;
3598 /* When the IEEE format contains a hidden bit, we know that
3599 it's zero at this point, and so shift up the significand
3600 and decrease the exponent to match. In this case, Motorola
3601 defines the explicit integer bit to be valid, so we don't
3602 know whether the msb is set or not. */
3603 SET_REAL_EXP (r, fmt->emin);
3604 if (HOST_BITS_PER_LONG == 32)
3606 r->sig[SIGSZ-1] = sig_hi;
3607 r->sig[SIGSZ-2] = sig_lo;
3609 else
3610 r->sig[SIGSZ-1] = (sig_hi << 31 << 1) | sig_lo;
3612 normalize (r);
3614 else if (fmt->has_signed_zero)
3615 r->sign = sign;
3617 else if (exp == 32767 && (fmt->has_nans || fmt->has_inf))
3619 /* See above re "pseudo-infinities" and "pseudo-nans".
3620 Short summary is that the MSB will likely always be
3621 set, and that we don't care about it. */
3622 sig_hi &= 0x7fffffff;
3624 if (sig_hi || sig_lo)
3626 r->cl = rvc_nan;
3627 r->sign = sign;
3628 r->signalling = ((sig_hi >> 30) & 1) ^ fmt->qnan_msb_set;
3629 if (HOST_BITS_PER_LONG == 32)
3631 r->sig[SIGSZ-1] = sig_hi;
3632 r->sig[SIGSZ-2] = sig_lo;
3634 else
3635 r->sig[SIGSZ-1] = (sig_hi << 31 << 1) | sig_lo;
3637 else
3639 r->cl = rvc_inf;
3640 r->sign = sign;
3643 else
3645 r->cl = rvc_normal;
3646 r->sign = sign;
3647 SET_REAL_EXP (r, exp - 16383 + 1);
3648 if (HOST_BITS_PER_LONG == 32)
3650 r->sig[SIGSZ-1] = sig_hi;
3651 r->sig[SIGSZ-2] = sig_lo;
3653 else
3654 r->sig[SIGSZ-1] = (sig_hi << 31 << 1) | sig_lo;
3658 /* Convert from the internal format to the 12-byte Motorola format
3659 for an IEEE extended real. */
3660 static void
3661 decode_ieee_extended_motorola (const struct real_format *fmt, REAL_VALUE_TYPE *r,
3662 const long *buf)
3664 long intermed[3];
3666 /* Motorola chips are assumed always to be big-endian. Also, the
3667 padding in a Motorola extended real goes between the exponent and
3668 the mantissa; remove it. */
3669 intermed[0] = buf[2];
3670 intermed[1] = buf[1];
3671 intermed[2] = (unsigned long)buf[0] >> 16;
3673 decode_ieee_extended (fmt, r, intermed);
3676 /* Convert from the internal format to the 12-byte Intel format for
3677 an IEEE extended real. */
3678 static void
3679 decode_ieee_extended_intel_96 (const struct real_format *fmt, REAL_VALUE_TYPE *r,
3680 const long *buf)
3682 if (FLOAT_WORDS_BIG_ENDIAN)
3684 /* All the padding in an Intel-format extended real goes at the high
3685 end, which in this case is after the mantissa, not the exponent.
3686 Therefore we must shift everything up 16 bits. */
3687 long intermed[3];
3689 intermed[0] = (((unsigned long)buf[2] >> 16) | (buf[1] << 16));
3690 intermed[1] = (((unsigned long)buf[1] >> 16) | (buf[0] << 16));
3691 intermed[2] = ((unsigned long)buf[0] >> 16);
3693 decode_ieee_extended (fmt, r, intermed);
3695 else
3696 /* decode_ieee_extended produces what we want directly. */
3697 decode_ieee_extended (fmt, r, buf);
3700 /* Convert from the internal format to the 16-byte Intel format for
3701 an IEEE extended real. */
3702 static void
3703 decode_ieee_extended_intel_128 (const struct real_format *fmt, REAL_VALUE_TYPE *r,
3704 const long *buf)
3706 /* All the padding in an Intel-format extended real goes at the high end. */
3707 decode_ieee_extended_intel_96 (fmt, r, buf);
3710 const struct real_format ieee_extended_motorola_format =
3712 encode_ieee_extended_motorola,
3713 decode_ieee_extended_motorola,
3717 -16382,
3718 16384,
3721 false,
3722 true,
3723 true,
3724 true,
3725 true,
3726 true,
3727 true,
3728 true,
3729 "ieee_extended_motorola"
3732 const struct real_format ieee_extended_intel_96_format =
3734 encode_ieee_extended_intel_96,
3735 decode_ieee_extended_intel_96,
3739 -16381,
3740 16384,
3743 false,
3744 true,
3745 true,
3746 true,
3747 true,
3748 true,
3749 true,
3750 false,
3751 "ieee_extended_intel_96"
3754 const struct real_format ieee_extended_intel_128_format =
3756 encode_ieee_extended_intel_128,
3757 decode_ieee_extended_intel_128,
3761 -16381,
3762 16384,
3765 false,
3766 true,
3767 true,
3768 true,
3769 true,
3770 true,
3771 true,
3772 false,
3773 "ieee_extended_intel_128"
3776 /* The following caters to i386 systems that set the rounding precision
3777 to 53 bits instead of 64, e.g. FreeBSD. */
3778 const struct real_format ieee_extended_intel_96_round_53_format =
3780 encode_ieee_extended_intel_96,
3781 decode_ieee_extended_intel_96,
3785 -16381,
3786 16384,
3789 false,
3790 true,
3791 true,
3792 true,
3793 true,
3794 true,
3795 true,
3796 false,
3797 "ieee_extended_intel_96_round_53"
3800 /* IBM 128-bit extended precision format: a pair of IEEE double precision
3801 numbers whose sum is equal to the extended precision value. The number
3802 with greater magnitude is first. This format has the same magnitude
3803 range as an IEEE double precision value, but effectively 106 bits of
3804 significand precision. Infinity and NaN are represented by their IEEE
3805 double precision value stored in the first number, the second number is
3806 +0.0 or -0.0 for Infinity and don't-care for NaN. */
3808 static void encode_ibm_extended (const struct real_format *fmt,
3809 long *, const REAL_VALUE_TYPE *);
3810 static void decode_ibm_extended (const struct real_format *,
3811 REAL_VALUE_TYPE *, const long *);
3813 static void
3814 encode_ibm_extended (const struct real_format *fmt, long *buf,
3815 const REAL_VALUE_TYPE *r)
3817 REAL_VALUE_TYPE u, normr, v;
3818 const struct real_format *base_fmt;
3820 base_fmt = fmt->qnan_msb_set ? &ieee_double_format : &mips_double_format;
3822 /* Renormalize R before doing any arithmetic on it. */
3823 normr = *r;
3824 if (normr.cl == rvc_normal)
3825 normalize (&normr);
3827 /* u = IEEE double precision portion of significand. */
3828 u = normr;
3829 round_for_format (base_fmt, &u);
3830 encode_ieee_double (base_fmt, &buf[0], &u);
3832 if (u.cl == rvc_normal)
3834 do_add (&v, &normr, &u, 1);
3835 /* Call round_for_format since we might need to denormalize. */
3836 round_for_format (base_fmt, &v);
3837 encode_ieee_double (base_fmt, &buf[2], &v);
3839 else
3841 /* Inf, NaN, 0 are all representable as doubles, so the
3842 least-significant part can be 0.0. */
3843 buf[2] = 0;
3844 buf[3] = 0;
3848 static void
3849 decode_ibm_extended (const struct real_format *fmt ATTRIBUTE_UNUSED, REAL_VALUE_TYPE *r,
3850 const long *buf)
3852 REAL_VALUE_TYPE u, v;
3853 const struct real_format *base_fmt;
3855 base_fmt = fmt->qnan_msb_set ? &ieee_double_format : &mips_double_format;
3856 decode_ieee_double (base_fmt, &u, &buf[0]);
3858 if (u.cl != rvc_zero && u.cl != rvc_inf && u.cl != rvc_nan)
3860 decode_ieee_double (base_fmt, &v, &buf[2]);
3861 do_add (r, &u, &v, 0);
3863 else
3864 *r = u;
3867 const struct real_format ibm_extended_format =
3869 encode_ibm_extended,
3870 decode_ibm_extended,
3872 53 + 53,
3874 -1021 + 53,
3875 1024,
3876 127,
3878 false,
3879 true,
3880 true,
3881 true,
3882 true,
3883 true,
3884 true,
3885 false,
3886 "ibm_extended"
3889 const struct real_format mips_extended_format =
3891 encode_ibm_extended,
3892 decode_ibm_extended,
3894 53 + 53,
3896 -1021 + 53,
3897 1024,
3898 127,
3900 false,
3901 true,
3902 true,
3903 true,
3904 true,
3905 true,
3906 false,
3907 true,
3908 "mips_extended"
3912 /* IEEE quad precision format. */
3914 static void encode_ieee_quad (const struct real_format *fmt,
3915 long *, const REAL_VALUE_TYPE *);
3916 static void decode_ieee_quad (const struct real_format *,
3917 REAL_VALUE_TYPE *, const long *);
3919 static void
3920 encode_ieee_quad (const struct real_format *fmt, long *buf,
3921 const REAL_VALUE_TYPE *r)
3923 unsigned long image3, image2, image1, image0, exp;
3924 bool denormal = (r->sig[SIGSZ-1] & SIG_MSB) == 0;
3925 REAL_VALUE_TYPE u;
3927 image3 = r->sign << 31;
3928 image2 = 0;
3929 image1 = 0;
3930 image0 = 0;
3932 rshift_significand (&u, r, SIGNIFICAND_BITS - 113);
3934 switch (r->cl)
3936 case rvc_zero:
3937 break;
3939 case rvc_inf:
3940 if (fmt->has_inf)
3941 image3 |= 32767 << 16;
3942 else
3944 image3 |= 0x7fffffff;
3945 image2 = 0xffffffff;
3946 image1 = 0xffffffff;
3947 image0 = 0xffffffff;
3949 break;
3951 case rvc_nan:
3952 if (fmt->has_nans)
3954 image3 |= 32767 << 16;
3956 if (r->canonical)
3958 if (fmt->canonical_nan_lsbs_set)
3960 image3 |= 0x7fff;
3961 image2 = image1 = image0 = 0xffffffff;
3964 else if (HOST_BITS_PER_LONG == 32)
3966 image0 = u.sig[0];
3967 image1 = u.sig[1];
3968 image2 = u.sig[2];
3969 image3 |= u.sig[3] & 0xffff;
3971 else
3973 image0 = u.sig[0];
3974 image1 = image0 >> 31 >> 1;
3975 image2 = u.sig[1];
3976 image3 |= (image2 >> 31 >> 1) & 0xffff;
3977 image0 &= 0xffffffff;
3978 image2 &= 0xffffffff;
3980 if (r->signalling == fmt->qnan_msb_set)
3981 image3 &= ~0x8000;
3982 else
3983 image3 |= 0x8000;
3984 if (((image3 & 0xffff) | image2 | image1 | image0) == 0)
3985 image3 |= 0x4000;
3987 else
3989 image3 |= 0x7fffffff;
3990 image2 = 0xffffffff;
3991 image1 = 0xffffffff;
3992 image0 = 0xffffffff;
3994 break;
3996 case rvc_normal:
3997 /* Recall that IEEE numbers are interpreted as 1.F x 2**exp,
3998 whereas the intermediate representation is 0.F x 2**exp.
3999 Which means we're off by one. */
4000 if (denormal)
4001 exp = 0;
4002 else
4003 exp = REAL_EXP (r) + 16383 - 1;
4004 image3 |= exp << 16;
4006 if (HOST_BITS_PER_LONG == 32)
4008 image0 = u.sig[0];
4009 image1 = u.sig[1];
4010 image2 = u.sig[2];
4011 image3 |= u.sig[3] & 0xffff;
4013 else
4015 image0 = u.sig[0];
4016 image1 = image0 >> 31 >> 1;
4017 image2 = u.sig[1];
4018 image3 |= (image2 >> 31 >> 1) & 0xffff;
4019 image0 &= 0xffffffff;
4020 image2 &= 0xffffffff;
4022 break;
4024 default:
4025 gcc_unreachable ();
4028 if (FLOAT_WORDS_BIG_ENDIAN)
4030 buf[0] = image3;
4031 buf[1] = image2;
4032 buf[2] = image1;
4033 buf[3] = image0;
4035 else
4037 buf[0] = image0;
4038 buf[1] = image1;
4039 buf[2] = image2;
4040 buf[3] = image3;
4044 static void
4045 decode_ieee_quad (const struct real_format *fmt, REAL_VALUE_TYPE *r,
4046 const long *buf)
4048 unsigned long image3, image2, image1, image0;
4049 bool sign;
4050 int exp;
4052 if (FLOAT_WORDS_BIG_ENDIAN)
4054 image3 = buf[0];
4055 image2 = buf[1];
4056 image1 = buf[2];
4057 image0 = buf[3];
4059 else
4061 image0 = buf[0];
4062 image1 = buf[1];
4063 image2 = buf[2];
4064 image3 = buf[3];
4066 image0 &= 0xffffffff;
4067 image1 &= 0xffffffff;
4068 image2 &= 0xffffffff;
4070 sign = (image3 >> 31) & 1;
4071 exp = (image3 >> 16) & 0x7fff;
4072 image3 &= 0xffff;
4074 memset (r, 0, sizeof (*r));
4076 if (exp == 0)
4078 if ((image3 | image2 | image1 | image0) && fmt->has_denorm)
4080 r->cl = rvc_normal;
4081 r->sign = sign;
4083 SET_REAL_EXP (r, -16382 + (SIGNIFICAND_BITS - 112));
4084 if (HOST_BITS_PER_LONG == 32)
4086 r->sig[0] = image0;
4087 r->sig[1] = image1;
4088 r->sig[2] = image2;
4089 r->sig[3] = image3;
4091 else
4093 r->sig[0] = (image1 << 31 << 1) | image0;
4094 r->sig[1] = (image3 << 31 << 1) | image2;
4097 normalize (r);
4099 else if (fmt->has_signed_zero)
4100 r->sign = sign;
4102 else if (exp == 32767 && (fmt->has_nans || fmt->has_inf))
4104 if (image3 | image2 | image1 | image0)
4106 r->cl = rvc_nan;
4107 r->sign = sign;
4108 r->signalling = ((image3 >> 15) & 1) ^ fmt->qnan_msb_set;
4110 if (HOST_BITS_PER_LONG == 32)
4112 r->sig[0] = image0;
4113 r->sig[1] = image1;
4114 r->sig[2] = image2;
4115 r->sig[3] = image3;
4117 else
4119 r->sig[0] = (image1 << 31 << 1) | image0;
4120 r->sig[1] = (image3 << 31 << 1) | image2;
4122 lshift_significand (r, r, SIGNIFICAND_BITS - 113);
4124 else
4126 r->cl = rvc_inf;
4127 r->sign = sign;
4130 else
4132 r->cl = rvc_normal;
4133 r->sign = sign;
4134 SET_REAL_EXP (r, exp - 16383 + 1);
4136 if (HOST_BITS_PER_LONG == 32)
4138 r->sig[0] = image0;
4139 r->sig[1] = image1;
4140 r->sig[2] = image2;
4141 r->sig[3] = image3;
4143 else
4145 r->sig[0] = (image1 << 31 << 1) | image0;
4146 r->sig[1] = (image3 << 31 << 1) | image2;
4148 lshift_significand (r, r, SIGNIFICAND_BITS - 113);
4149 r->sig[SIGSZ-1] |= SIG_MSB;
4153 const struct real_format ieee_quad_format =
4155 encode_ieee_quad,
4156 decode_ieee_quad,
4158 113,
4159 113,
4160 -16381,
4161 16384,
4162 127,
4163 127,
4164 false,
4165 true,
4166 true,
4167 true,
4168 true,
4169 true,
4170 true,
4171 false,
4172 "ieee_quad"
4175 const struct real_format mips_quad_format =
4177 encode_ieee_quad,
4178 decode_ieee_quad,
4180 113,
4181 113,
4182 -16381,
4183 16384,
4184 127,
4185 127,
4186 false,
4187 true,
4188 true,
4189 true,
4190 true,
4191 true,
4192 false,
4193 true,
4194 "mips_quad"
4197 /* Descriptions of VAX floating point formats can be found beginning at
4199 http://h71000.www7.hp.com/doc/73FINAL/4515/4515pro_013.html#f_floating_point_format
4201 The thing to remember is that they're almost IEEE, except for word
4202 order, exponent bias, and the lack of infinities, nans, and denormals.
4204 We don't implement the H_floating format here, simply because neither
4205 the VAX or Alpha ports use it. */
4207 static void encode_vax_f (const struct real_format *fmt,
4208 long *, const REAL_VALUE_TYPE *);
4209 static void decode_vax_f (const struct real_format *,
4210 REAL_VALUE_TYPE *, const long *);
4211 static void encode_vax_d (const struct real_format *fmt,
4212 long *, const REAL_VALUE_TYPE *);
4213 static void decode_vax_d (const struct real_format *,
4214 REAL_VALUE_TYPE *, const long *);
4215 static void encode_vax_g (const struct real_format *fmt,
4216 long *, const REAL_VALUE_TYPE *);
4217 static void decode_vax_g (const struct real_format *,
4218 REAL_VALUE_TYPE *, const long *);
4220 static void
4221 encode_vax_f (const struct real_format *fmt ATTRIBUTE_UNUSED, long *buf,
4222 const REAL_VALUE_TYPE *r)
4224 unsigned long sign, exp, sig, image;
4226 sign = r->sign << 15;
4228 switch (r->cl)
4230 case rvc_zero:
4231 image = 0;
4232 break;
4234 case rvc_inf:
4235 case rvc_nan:
4236 image = 0xffff7fff | sign;
4237 break;
4239 case rvc_normal:
4240 sig = (r->sig[SIGSZ-1] >> (HOST_BITS_PER_LONG - 24)) & 0x7fffff;
4241 exp = REAL_EXP (r) + 128;
4243 image = (sig << 16) & 0xffff0000;
4244 image |= sign;
4245 image |= exp << 7;
4246 image |= sig >> 16;
4247 break;
4249 default:
4250 gcc_unreachable ();
4253 buf[0] = image;
4256 static void
4257 decode_vax_f (const struct real_format *fmt ATTRIBUTE_UNUSED,
4258 REAL_VALUE_TYPE *r, const long *buf)
4260 unsigned long image = buf[0] & 0xffffffff;
4261 int exp = (image >> 7) & 0xff;
4263 memset (r, 0, sizeof (*r));
4265 if (exp != 0)
4267 r->cl = rvc_normal;
4268 r->sign = (image >> 15) & 1;
4269 SET_REAL_EXP (r, exp - 128);
4271 image = ((image & 0x7f) << 16) | ((image >> 16) & 0xffff);
4272 r->sig[SIGSZ-1] = (image << (HOST_BITS_PER_LONG - 24)) | SIG_MSB;
4276 static void
4277 encode_vax_d (const struct real_format *fmt ATTRIBUTE_UNUSED, long *buf,
4278 const REAL_VALUE_TYPE *r)
4280 unsigned long image0, image1, sign = r->sign << 15;
4282 switch (r->cl)
4284 case rvc_zero:
4285 image0 = image1 = 0;
4286 break;
4288 case rvc_inf:
4289 case rvc_nan:
4290 image0 = 0xffff7fff | sign;
4291 image1 = 0xffffffff;
4292 break;
4294 case rvc_normal:
4295 /* Extract the significand into straight hi:lo. */
4296 if (HOST_BITS_PER_LONG == 64)
4298 image0 = r->sig[SIGSZ-1];
4299 image1 = (image0 >> (64 - 56)) & 0xffffffff;
4300 image0 = (image0 >> (64 - 56 + 1) >> 31) & 0x7fffff;
4302 else
4304 image0 = r->sig[SIGSZ-1];
4305 image1 = r->sig[SIGSZ-2];
4306 image1 = (image0 << 24) | (image1 >> 8);
4307 image0 = (image0 >> 8) & 0xffffff;
4310 /* Rearrange the half-words of the significand to match the
4311 external format. */
4312 image0 = ((image0 << 16) | (image0 >> 16)) & 0xffff007f;
4313 image1 = ((image1 << 16) | (image1 >> 16)) & 0xffffffff;
4315 /* Add the sign and exponent. */
4316 image0 |= sign;
4317 image0 |= (REAL_EXP (r) + 128) << 7;
4318 break;
4320 default:
4321 gcc_unreachable ();
4324 if (FLOAT_WORDS_BIG_ENDIAN)
4325 buf[0] = image1, buf[1] = image0;
4326 else
4327 buf[0] = image0, buf[1] = image1;
4330 static void
4331 decode_vax_d (const struct real_format *fmt ATTRIBUTE_UNUSED,
4332 REAL_VALUE_TYPE *r, const long *buf)
4334 unsigned long image0, image1;
4335 int exp;
4337 if (FLOAT_WORDS_BIG_ENDIAN)
4338 image1 = buf[0], image0 = buf[1];
4339 else
4340 image0 = buf[0], image1 = buf[1];
4341 image0 &= 0xffffffff;
4342 image1 &= 0xffffffff;
4344 exp = (image0 >> 7) & 0xff;
4346 memset (r, 0, sizeof (*r));
4348 if (exp != 0)
4350 r->cl = rvc_normal;
4351 r->sign = (image0 >> 15) & 1;
4352 SET_REAL_EXP (r, exp - 128);
4354 /* Rearrange the half-words of the external format into
4355 proper ascending order. */
4356 image0 = ((image0 & 0x7f) << 16) | ((image0 >> 16) & 0xffff);
4357 image1 = ((image1 & 0xffff) << 16) | ((image1 >> 16) & 0xffff);
4359 if (HOST_BITS_PER_LONG == 64)
4361 image0 = (image0 << 31 << 1) | image1;
4362 image0 <<= 64 - 56;
4363 image0 |= SIG_MSB;
4364 r->sig[SIGSZ-1] = image0;
4366 else
4368 r->sig[SIGSZ-1] = image0;
4369 r->sig[SIGSZ-2] = image1;
4370 lshift_significand (r, r, 2*HOST_BITS_PER_LONG - 56);
4371 r->sig[SIGSZ-1] |= SIG_MSB;
4376 static void
4377 encode_vax_g (const struct real_format *fmt ATTRIBUTE_UNUSED, long *buf,
4378 const REAL_VALUE_TYPE *r)
4380 unsigned long image0, image1, sign = r->sign << 15;
4382 switch (r->cl)
4384 case rvc_zero:
4385 image0 = image1 = 0;
4386 break;
4388 case rvc_inf:
4389 case rvc_nan:
4390 image0 = 0xffff7fff | sign;
4391 image1 = 0xffffffff;
4392 break;
4394 case rvc_normal:
4395 /* Extract the significand into straight hi:lo. */
4396 if (HOST_BITS_PER_LONG == 64)
4398 image0 = r->sig[SIGSZ-1];
4399 image1 = (image0 >> (64 - 53)) & 0xffffffff;
4400 image0 = (image0 >> (64 - 53 + 1) >> 31) & 0xfffff;
4402 else
4404 image0 = r->sig[SIGSZ-1];
4405 image1 = r->sig[SIGSZ-2];
4406 image1 = (image0 << 21) | (image1 >> 11);
4407 image0 = (image0 >> 11) & 0xfffff;
4410 /* Rearrange the half-words of the significand to match the
4411 external format. */
4412 image0 = ((image0 << 16) | (image0 >> 16)) & 0xffff000f;
4413 image1 = ((image1 << 16) | (image1 >> 16)) & 0xffffffff;
4415 /* Add the sign and exponent. */
4416 image0 |= sign;
4417 image0 |= (REAL_EXP (r) + 1024) << 4;
4418 break;
4420 default:
4421 gcc_unreachable ();
4424 if (FLOAT_WORDS_BIG_ENDIAN)
4425 buf[0] = image1, buf[1] = image0;
4426 else
4427 buf[0] = image0, buf[1] = image1;
4430 static void
4431 decode_vax_g (const struct real_format *fmt ATTRIBUTE_UNUSED,
4432 REAL_VALUE_TYPE *r, const long *buf)
4434 unsigned long image0, image1;
4435 int exp;
4437 if (FLOAT_WORDS_BIG_ENDIAN)
4438 image1 = buf[0], image0 = buf[1];
4439 else
4440 image0 = buf[0], image1 = buf[1];
4441 image0 &= 0xffffffff;
4442 image1 &= 0xffffffff;
4444 exp = (image0 >> 4) & 0x7ff;
4446 memset (r, 0, sizeof (*r));
4448 if (exp != 0)
4450 r->cl = rvc_normal;
4451 r->sign = (image0 >> 15) & 1;
4452 SET_REAL_EXP (r, exp - 1024);
4454 /* Rearrange the half-words of the external format into
4455 proper ascending order. */
4456 image0 = ((image0 & 0xf) << 16) | ((image0 >> 16) & 0xffff);
4457 image1 = ((image1 & 0xffff) << 16) | ((image1 >> 16) & 0xffff);
4459 if (HOST_BITS_PER_LONG == 64)
4461 image0 = (image0 << 31 << 1) | image1;
4462 image0 <<= 64 - 53;
4463 image0 |= SIG_MSB;
4464 r->sig[SIGSZ-1] = image0;
4466 else
4468 r->sig[SIGSZ-1] = image0;
4469 r->sig[SIGSZ-2] = image1;
4470 lshift_significand (r, r, 64 - 53);
4471 r->sig[SIGSZ-1] |= SIG_MSB;
4476 const struct real_format vax_f_format =
4478 encode_vax_f,
4479 decode_vax_f,
4483 -127,
4484 127,
4487 false,
4488 false,
4489 false,
4490 false,
4491 false,
4492 false,
4493 false,
4494 false,
4495 "vax_f"
4498 const struct real_format vax_d_format =
4500 encode_vax_d,
4501 decode_vax_d,
4505 -127,
4506 127,
4509 false,
4510 false,
4511 false,
4512 false,
4513 false,
4514 false,
4515 false,
4516 false,
4517 "vax_d"
4520 const struct real_format vax_g_format =
4522 encode_vax_g,
4523 decode_vax_g,
4527 -1023,
4528 1023,
4531 false,
4532 false,
4533 false,
4534 false,
4535 false,
4536 false,
4537 false,
4538 false,
4539 "vax_g"
4542 /* Encode real R into a single precision DFP value in BUF. */
4543 static void
4544 encode_decimal_single (const struct real_format *fmt ATTRIBUTE_UNUSED,
4545 long *buf ATTRIBUTE_UNUSED,
4546 const REAL_VALUE_TYPE *r ATTRIBUTE_UNUSED)
4548 encode_decimal32 (fmt, buf, r);
4551 /* Decode a single precision DFP value in BUF into a real R. */
4552 static void
4553 decode_decimal_single (const struct real_format *fmt ATTRIBUTE_UNUSED,
4554 REAL_VALUE_TYPE *r ATTRIBUTE_UNUSED,
4555 const long *buf ATTRIBUTE_UNUSED)
4557 decode_decimal32 (fmt, r, buf);
4560 /* Encode real R into a double precision DFP value in BUF. */
4561 static void
4562 encode_decimal_double (const struct real_format *fmt ATTRIBUTE_UNUSED,
4563 long *buf ATTRIBUTE_UNUSED,
4564 const REAL_VALUE_TYPE *r ATTRIBUTE_UNUSED)
4566 encode_decimal64 (fmt, buf, r);
4569 /* Decode a double precision DFP value in BUF into a real R. */
4570 static void
4571 decode_decimal_double (const struct real_format *fmt ATTRIBUTE_UNUSED,
4572 REAL_VALUE_TYPE *r ATTRIBUTE_UNUSED,
4573 const long *buf ATTRIBUTE_UNUSED)
4575 decode_decimal64 (fmt, r, buf);
4578 /* Encode real R into a quad precision DFP value in BUF. */
4579 static void
4580 encode_decimal_quad (const struct real_format *fmt ATTRIBUTE_UNUSED,
4581 long *buf ATTRIBUTE_UNUSED,
4582 const REAL_VALUE_TYPE *r ATTRIBUTE_UNUSED)
4584 encode_decimal128 (fmt, buf, r);
4587 /* Decode a quad precision DFP value in BUF into a real R. */
4588 static void
4589 decode_decimal_quad (const struct real_format *fmt ATTRIBUTE_UNUSED,
4590 REAL_VALUE_TYPE *r ATTRIBUTE_UNUSED,
4591 const long *buf ATTRIBUTE_UNUSED)
4593 decode_decimal128 (fmt, r, buf);
4596 /* Single precision decimal floating point (IEEE 754). */
4597 const struct real_format decimal_single_format =
4599 encode_decimal_single,
4600 decode_decimal_single,
4604 -94,
4608 false,
4609 true,
4610 true,
4611 true,
4612 true,
4613 true,
4614 true,
4615 false,
4616 "decimal_single"
4619 /* Double precision decimal floating point (IEEE 754). */
4620 const struct real_format decimal_double_format =
4622 encode_decimal_double,
4623 decode_decimal_double,
4627 -382,
4628 385,
4631 false,
4632 true,
4633 true,
4634 true,
4635 true,
4636 true,
4637 true,
4638 false,
4639 "decimal_double"
4642 /* Quad precision decimal floating point (IEEE 754). */
4643 const struct real_format decimal_quad_format =
4645 encode_decimal_quad,
4646 decode_decimal_quad,
4650 -6142,
4651 6145,
4652 127,
4653 127,
4654 false,
4655 true,
4656 true,
4657 true,
4658 true,
4659 true,
4660 true,
4661 false,
4662 "decimal_quad"
4665 /* Encode half-precision floats. This routine is used both for the IEEE
4666 ARM alternative encodings. */
4667 static void
4668 encode_ieee_half (const struct real_format *fmt, long *buf,
4669 const REAL_VALUE_TYPE *r)
4671 unsigned long image, sig, exp;
4672 unsigned long sign = r->sign;
4673 bool denormal = (r->sig[SIGSZ-1] & SIG_MSB) == 0;
4675 image = sign << 15;
4676 sig = (r->sig[SIGSZ-1] >> (HOST_BITS_PER_LONG - 11)) & 0x3ff;
4678 switch (r->cl)
4680 case rvc_zero:
4681 break;
4683 case rvc_inf:
4684 if (fmt->has_inf)
4685 image |= 31 << 10;
4686 else
4687 image |= 0x7fff;
4688 break;
4690 case rvc_nan:
4691 if (fmt->has_nans)
4693 if (r->canonical)
4694 sig = (fmt->canonical_nan_lsbs_set ? (1 << 9) - 1 : 0);
4695 if (r->signalling == fmt->qnan_msb_set)
4696 sig &= ~(1 << 9);
4697 else
4698 sig |= 1 << 9;
4699 if (sig == 0)
4700 sig = 1 << 8;
4702 image |= 31 << 10;
4703 image |= sig;
4705 else
4706 image |= 0x3ff;
4707 break;
4709 case rvc_normal:
4710 /* Recall that IEEE numbers are interpreted as 1.F x 2**exp,
4711 whereas the intermediate representation is 0.F x 2**exp.
4712 Which means we're off by one. */
4713 if (denormal)
4714 exp = 0;
4715 else
4716 exp = REAL_EXP (r) + 15 - 1;
4717 image |= exp << 10;
4718 image |= sig;
4719 break;
4721 default:
4722 gcc_unreachable ();
4725 buf[0] = image;
4728 /* Decode half-precision floats. This routine is used both for the IEEE
4729 ARM alternative encodings. */
4730 static void
4731 decode_ieee_half (const struct real_format *fmt, REAL_VALUE_TYPE *r,
4732 const long *buf)
4734 unsigned long image = buf[0] & 0xffff;
4735 bool sign = (image >> 15) & 1;
4736 int exp = (image >> 10) & 0x1f;
4738 memset (r, 0, sizeof (*r));
4739 image <<= HOST_BITS_PER_LONG - 11;
4740 image &= ~SIG_MSB;
4742 if (exp == 0)
4744 if (image && fmt->has_denorm)
4746 r->cl = rvc_normal;
4747 r->sign = sign;
4748 SET_REAL_EXP (r, -14);
4749 r->sig[SIGSZ-1] = image << 1;
4750 normalize (r);
4752 else if (fmt->has_signed_zero)
4753 r->sign = sign;
4755 else if (exp == 31 && (fmt->has_nans || fmt->has_inf))
4757 if (image)
4759 r->cl = rvc_nan;
4760 r->sign = sign;
4761 r->signalling = (((image >> (HOST_BITS_PER_LONG - 2)) & 1)
4762 ^ fmt->qnan_msb_set);
4763 r->sig[SIGSZ-1] = image;
4765 else
4767 r->cl = rvc_inf;
4768 r->sign = sign;
4771 else
4773 r->cl = rvc_normal;
4774 r->sign = sign;
4775 SET_REAL_EXP (r, exp - 15 + 1);
4776 r->sig[SIGSZ-1] = image | SIG_MSB;
4780 /* Half-precision format, as specified in IEEE 754R. */
4781 const struct real_format ieee_half_format =
4783 encode_ieee_half,
4784 decode_ieee_half,
4788 -13,
4792 false,
4793 true,
4794 true,
4795 true,
4796 true,
4797 true,
4798 true,
4799 false,
4800 "ieee_half"
4803 /* ARM's alternative half-precision format, similar to IEEE but with
4804 no reserved exponent value for NaNs and infinities; rather, it just
4805 extends the range of exponents by one. */
4806 const struct real_format arm_half_format =
4808 encode_ieee_half,
4809 decode_ieee_half,
4813 -13,
4817 false,
4818 true,
4819 false,
4820 false,
4821 true,
4822 true,
4823 false,
4824 false,
4825 "arm_half"
4828 /* A synthetic "format" for internal arithmetic. It's the size of the
4829 internal significand minus the two bits needed for proper rounding.
4830 The encode and decode routines exist only to satisfy our paranoia
4831 harness. */
4833 static void encode_internal (const struct real_format *fmt,
4834 long *, const REAL_VALUE_TYPE *);
4835 static void decode_internal (const struct real_format *,
4836 REAL_VALUE_TYPE *, const long *);
4838 static void
4839 encode_internal (const struct real_format *fmt ATTRIBUTE_UNUSED, long *buf,
4840 const REAL_VALUE_TYPE *r)
4842 memcpy (buf, r, sizeof (*r));
4845 static void
4846 decode_internal (const struct real_format *fmt ATTRIBUTE_UNUSED,
4847 REAL_VALUE_TYPE *r, const long *buf)
4849 memcpy (r, buf, sizeof (*r));
4852 const struct real_format real_internal_format =
4854 encode_internal,
4855 decode_internal,
4857 SIGNIFICAND_BITS - 2,
4858 SIGNIFICAND_BITS - 2,
4859 -MAX_EXP,
4860 MAX_EXP,
4863 false,
4864 false,
4865 true,
4866 true,
4867 false,
4868 true,
4869 true,
4870 false,
4871 "real_internal"
4874 /* Calculate X raised to the integer exponent N in format FMT and store
4875 the result in R. Return true if the result may be inexact due to
4876 loss of precision. The algorithm is the classic "left-to-right binary
4877 method" described in section 4.6.3 of Donald Knuth's "Seminumerical
4878 Algorithms", "The Art of Computer Programming", Volume 2. */
4880 bool
4881 real_powi (REAL_VALUE_TYPE *r, format_helper fmt,
4882 const REAL_VALUE_TYPE *x, HOST_WIDE_INT n)
4884 unsigned HOST_WIDE_INT bit;
4885 REAL_VALUE_TYPE t;
4886 bool inexact = false;
4887 bool init = false;
4888 bool neg;
4889 int i;
4891 if (n == 0)
4893 *r = dconst1;
4894 return false;
4896 else if (n < 0)
4898 /* Don't worry about overflow, from now on n is unsigned. */
4899 neg = true;
4900 n = -n;
4902 else
4903 neg = false;
4905 t = *x;
4906 bit = (unsigned HOST_WIDE_INT) 1 << (HOST_BITS_PER_WIDE_INT - 1);
4907 for (i = 0; i < HOST_BITS_PER_WIDE_INT; i++)
4909 if (init)
4911 inexact |= do_multiply (&t, &t, &t);
4912 if (n & bit)
4913 inexact |= do_multiply (&t, &t, x);
4915 else if (n & bit)
4916 init = true;
4917 bit >>= 1;
4920 if (neg)
4921 inexact |= do_divide (&t, &dconst1, &t);
4923 real_convert (r, fmt, &t);
4924 return inexact;
4927 /* Round X to the nearest integer not larger in absolute value, i.e.
4928 towards zero, placing the result in R in format FMT. */
4930 void
4931 real_trunc (REAL_VALUE_TYPE *r, format_helper fmt,
4932 const REAL_VALUE_TYPE *x)
4934 do_fix_trunc (r, x);
4935 if (fmt)
4936 real_convert (r, fmt, r);
4939 /* Round X to the largest integer not greater in value, i.e. round
4940 down, placing the result in R in format FMT. */
4942 void
4943 real_floor (REAL_VALUE_TYPE *r, format_helper fmt,
4944 const REAL_VALUE_TYPE *x)
4946 REAL_VALUE_TYPE t;
4948 do_fix_trunc (&t, x);
4949 if (! real_identical (&t, x) && x->sign)
4950 do_add (&t, &t, &dconstm1, 0);
4951 if (fmt)
4952 real_convert (r, fmt, &t);
4953 else
4954 *r = t;
4957 /* Round X to the smallest integer not less then argument, i.e. round
4958 up, placing the result in R in format FMT. */
4960 void
4961 real_ceil (REAL_VALUE_TYPE *r, format_helper fmt,
4962 const REAL_VALUE_TYPE *x)
4964 REAL_VALUE_TYPE t;
4966 do_fix_trunc (&t, x);
4967 if (! real_identical (&t, x) && ! x->sign)
4968 do_add (&t, &t, &dconst1, 0);
4969 if (fmt)
4970 real_convert (r, fmt, &t);
4971 else
4972 *r = t;
4975 /* Round X to the nearest integer, but round halfway cases away from
4976 zero. */
4978 void
4979 real_round (REAL_VALUE_TYPE *r, format_helper fmt,
4980 const REAL_VALUE_TYPE *x)
4982 do_add (r, x, &dconsthalf, x->sign);
4983 do_fix_trunc (r, r);
4984 if (fmt)
4985 real_convert (r, fmt, r);
4988 /* Set the sign of R to the sign of X. */
4990 void
4991 real_copysign (REAL_VALUE_TYPE *r, const REAL_VALUE_TYPE *x)
4993 r->sign = x->sign;
4996 /* Check whether the real constant value given is an integer.
4997 Returns false for signaling NaN. */
4999 bool
5000 real_isinteger (const REAL_VALUE_TYPE *c, format_helper fmt)
5002 REAL_VALUE_TYPE cint;
5004 real_trunc (&cint, fmt, c);
5005 return real_identical (c, &cint);
5008 /* Check whether C is an integer that fits in a HOST_WIDE_INT,
5009 storing it in *INT_OUT if so. */
5011 bool
5012 real_isinteger (const REAL_VALUE_TYPE *c, HOST_WIDE_INT *int_out)
5014 REAL_VALUE_TYPE cint;
5016 HOST_WIDE_INT n = real_to_integer (c);
5017 real_from_integer (&cint, VOIDmode, n, SIGNED);
5018 if (real_identical (c, &cint))
5020 *int_out = n;
5021 return true;
5023 return false;
5026 /* Write into BUF the maximum representable finite floating-point
5027 number, (1 - b**-p) * b**emax for a given FP format FMT as a hex
5028 float string. LEN is the size of BUF, and the buffer must be large
5029 enough to contain the resulting string. */
5031 void
5032 get_max_float (const struct real_format *fmt, char *buf, size_t len)
5034 int i, n;
5035 char *p;
5037 strcpy (buf, "0x0.");
5038 n = fmt->p;
5039 for (i = 0, p = buf + 4; i + 3 < n; i += 4)
5040 *p++ = 'f';
5041 if (i < n)
5042 *p++ = "08ce"[n - i];
5043 sprintf (p, "p%d", fmt->emax);
5044 if (fmt->pnan < fmt->p)
5046 /* This is an IBM extended double format made up of two IEEE
5047 doubles. The value of the long double is the sum of the
5048 values of the two parts. The most significant part is
5049 required to be the value of the long double rounded to the
5050 nearest double. Rounding means we need a slightly smaller
5051 value for LDBL_MAX. */
5052 buf[4 + fmt->pnan / 4] = "7bde"[fmt->pnan % 4];
5055 gcc_assert (strlen (buf) < len);
5058 /* True if mode M has a NaN representation and
5059 the treatment of NaN operands is important. */
5061 bool
5062 HONOR_NANS (machine_mode m)
5064 return MODE_HAS_NANS (m) && !flag_finite_math_only;
5067 bool
5068 HONOR_NANS (const_tree t)
5070 return HONOR_NANS (element_mode (t));
5073 bool
5074 HONOR_NANS (const_rtx x)
5076 return HONOR_NANS (GET_MODE (x));
5079 /* Like HONOR_NANs, but true if we honor signaling NaNs (or sNaNs). */
5081 bool
5082 HONOR_SNANS (machine_mode m)
5084 return flag_signaling_nans && HONOR_NANS (m);
5087 bool
5088 HONOR_SNANS (const_tree t)
5090 return HONOR_SNANS (element_mode (t));
5093 bool
5094 HONOR_SNANS (const_rtx x)
5096 return HONOR_SNANS (GET_MODE (x));
5099 /* As for HONOR_NANS, but true if the mode can represent infinity and
5100 the treatment of infinite values is important. */
5102 bool
5103 HONOR_INFINITIES (machine_mode m)
5105 return MODE_HAS_INFINITIES (m) && !flag_finite_math_only;
5108 bool
5109 HONOR_INFINITIES (const_tree t)
5111 return HONOR_INFINITIES (element_mode (t));
5114 bool
5115 HONOR_INFINITIES (const_rtx x)
5117 return HONOR_INFINITIES (GET_MODE (x));
5120 /* Like HONOR_NANS, but true if the given mode distinguishes between
5121 positive and negative zero, and the sign of zero is important. */
5123 bool
5124 HONOR_SIGNED_ZEROS (machine_mode m)
5126 return MODE_HAS_SIGNED_ZEROS (m) && flag_signed_zeros;
5129 bool
5130 HONOR_SIGNED_ZEROS (const_tree t)
5132 return HONOR_SIGNED_ZEROS (element_mode (t));
5135 bool
5136 HONOR_SIGNED_ZEROS (const_rtx x)
5138 return HONOR_SIGNED_ZEROS (GET_MODE (x));
5141 /* Like HONOR_NANS, but true if given mode supports sign-dependent rounding,
5142 and the rounding mode is important. */
5144 bool
5145 HONOR_SIGN_DEPENDENT_ROUNDING (machine_mode m)
5147 return MODE_HAS_SIGN_DEPENDENT_ROUNDING (m) && flag_rounding_math;
5150 bool
5151 HONOR_SIGN_DEPENDENT_ROUNDING (const_tree t)
5153 return HONOR_SIGN_DEPENDENT_ROUNDING (element_mode (t));
5156 bool
5157 HONOR_SIGN_DEPENDENT_ROUNDING (const_rtx x)
5159 return HONOR_SIGN_DEPENDENT_ROUNDING (GET_MODE (x));