* genattrtab.c (simplify_cond): Make TESTS an array of rtxs, instead
[official-gcc.git] / gcc / gcse.c
blobdef34898cd7ac3c0d493920bc7b92f31fc79f4f4
1 /* Global common subexpression elimination/Partial redundancy elimination
2 and global constant/copy propagation for GNU compiler.
3 Copyright (C) 1997, 1998, 1999 Free Software Foundation, Inc.
5 This file is part of GNU CC.
7 GNU CC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
12 GNU CC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GNU CC; see the file COPYING. If not, write to
19 the Free Software Foundation, 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
22 /* TODO
23 - reordering of memory allocation and freeing to be more space efficient
24 - do rough calc of how many regs are needed in each block, and a rough
25 calc of how many regs are available in each class and use that to
26 throttle back the code in cases where RTX_COST is minimal.
27 - dead store elimination
28 - a store to the same address as a load does not kill the load if the
29 source of the store is also the destination of the load. Handling this
30 allows more load motion, particularly out of loops.
31 - ability to realloc sbitmap vectors would allow one initial computation
32 of reg_set_in_block with only subsequent additions, rather than
33 recomputing it for each pass
37 /* References searched while implementing this.
39 Compilers Principles, Techniques and Tools
40 Aho, Sethi, Ullman
41 Addison-Wesley, 1988
43 Global Optimization by Suppression of Partial Redundancies
44 E. Morel, C. Renvoise
45 communications of the acm, Vol. 22, Num. 2, Feb. 1979
47 A Portable Machine-Independent Global Optimizer - Design and Measurements
48 Frederick Chow
49 Stanford Ph.D. thesis, Dec. 1983
51 A Fast Algorithm for Code Movement Optimization
52 D.M. Dhamdhere
53 SIGPLAN Notices, Vol. 23, Num. 10, Oct. 1988
55 A Solution to a Problem with Morel and Renvoise's
56 Global Optimization by Suppression of Partial Redundancies
57 K-H Drechsler, M.P. Stadel
58 ACM TOPLAS, Vol. 10, Num. 4, Oct. 1988
60 Practical Adaptation of the Global Optimization
61 Algorithm of Morel and Renvoise
62 D.M. Dhamdhere
63 ACM TOPLAS, Vol. 13, Num. 2. Apr. 1991
65 Efficiently Computing Static Single Assignment Form and the Control
66 Dependence Graph
67 R. Cytron, J. Ferrante, B.K. Rosen, M.N. Wegman, and F.K. Zadeck
68 ACM TOPLAS, Vol. 13, Num. 4, Oct. 1991
70 Lazy Code Motion
71 J. Knoop, O. Ruthing, B. Steffen
72 ACM SIGPLAN Notices Vol. 27, Num. 7, Jul. 1992, '92 Conference on PLDI
74 What's In a Region? Or Computing Control Dependence Regions in Near-Linear
75 Time for Reducible Flow Control
76 Thomas Ball
77 ACM Letters on Programming Languages and Systems,
78 Vol. 2, Num. 1-4, Mar-Dec 1993
80 An Efficient Representation for Sparse Sets
81 Preston Briggs, Linda Torczon
82 ACM Letters on Programming Languages and Systems,
83 Vol. 2, Num. 1-4, Mar-Dec 1993
85 A Variation of Knoop, Ruthing, and Steffen's Lazy Code Motion
86 K-H Drechsler, M.P. Stadel
87 ACM SIGPLAN Notices, Vol. 28, Num. 5, May 1993
89 Partial Dead Code Elimination
90 J. Knoop, O. Ruthing, B. Steffen
91 ACM SIGPLAN Notices, Vol. 29, Num. 6, Jun. 1994
93 Effective Partial Redundancy Elimination
94 P. Briggs, K.D. Cooper
95 ACM SIGPLAN Notices, Vol. 29, Num. 6, Jun. 1994
97 The Program Structure Tree: Computing Control Regions in Linear Time
98 R. Johnson, D. Pearson, K. Pingali
99 ACM SIGPLAN Notices, Vol. 29, Num. 6, Jun. 1994
101 Optimal Code Motion: Theory and Practice
102 J. Knoop, O. Ruthing, B. Steffen
103 ACM TOPLAS, Vol. 16, Num. 4, Jul. 1994
105 The power of assignment motion
106 J. Knoop, O. Ruthing, B. Steffen
107 ACM SIGPLAN Notices Vol. 30, Num. 6, Jun. 1995, '95 Conference on PLDI
109 Global code motion / global value numbering
110 C. Click
111 ACM SIGPLAN Notices Vol. 30, Num. 6, Jun. 1995, '95 Conference on PLDI
113 Value Driven Redundancy Elimination
114 L.T. Simpson
115 Rice University Ph.D. thesis, Apr. 1996
117 Value Numbering
118 L.T. Simpson
119 Massively Scalar Compiler Project, Rice University, Sep. 1996
121 High Performance Compilers for Parallel Computing
122 Michael Wolfe
123 Addison-Wesley, 1996
125 Advanced Compiler Design and Implementation
126 Steven Muchnick
127 Morgan Kaufmann, 1997
129 People wishing to speed up the code here should read:
130 Elimination Algorithms for Data Flow Analysis
131 B.G. Ryder, M.C. Paull
132 ACM Computing Surveys, Vol. 18, Num. 3, Sep. 1986
134 How to Analyze Large Programs Efficiently and Informatively
135 D.M. Dhamdhere, B.K. Rosen, F.K. Zadeck
136 ACM SIGPLAN Notices Vol. 27, Num. 7, Jul. 1992, '92 Conference on PLDI
138 People wishing to do something different can find various possibilities
139 in the above papers and elsewhere.
142 #include "config.h"
143 #include "system.h"
144 #include "toplev.h"
146 #include "rtl.h"
147 #include "tm_p.h"
148 #include "regs.h"
149 #include "hard-reg-set.h"
150 #include "flags.h"
151 #include "real.h"
152 #include "insn-config.h"
153 #include "recog.h"
154 #include "basic-block.h"
155 #include "output.h"
156 #include "function.h"
157 #include "expr.h"
159 #include "obstack.h"
160 #define obstack_chunk_alloc gmalloc
161 #define obstack_chunk_free free
163 /* Maximum number of passes to perform. */
164 #define MAX_PASSES 1
166 /* Propagate flow information through back edges and thus enable PRE's
167 moving loop invariant calculations out of loops.
169 Originally this tended to create worse overall code, but several
170 improvements during the development of PRE seem to have made following
171 back edges generally a win.
173 Note much of the loop invariant code motion done here would normally
174 be done by loop.c, which has more heuristics for when to move invariants
175 out of loops. At some point we might need to move some of those
176 heuristics into gcse.c. */
177 #define FOLLOW_BACK_EDGES 1
179 /* We support GCSE via Partial Redundancy Elimination. PRE optimizations
180 are a superset of those done by GCSE.
182 We perform the following steps:
184 1) Compute basic block information.
186 2) Compute table of places where registers are set.
188 3) Perform copy/constant propagation.
190 4) Perform global cse.
192 5) Perform another pass of copy/constant propagation.
194 Two passes of copy/constant propagation are done because the first one
195 enables more GCSE and the second one helps to clean up the copies that
196 GCSE creates. This is needed more for PRE than for Classic because Classic
197 GCSE will try to use an existing register containing the common
198 subexpression rather than create a new one. This is harder to do for PRE
199 because of the code motion (which Classic GCSE doesn't do).
201 Expressions we are interested in GCSE-ing are of the form
202 (set (pseudo-reg) (expression)).
203 Function want_to_gcse_p says what these are.
205 PRE handles moving invariant expressions out of loops (by treating them as
206 partially redundant).
208 Eventually it would be nice to replace cse.c/gcse.c with SSA (static single
209 assignment) based GVN (global value numbering). L. T. Simpson's paper
210 (Rice University) on value numbering is a useful reference for this.
212 **********************
214 We used to support multiple passes but there are diminishing returns in
215 doing so. The first pass usually makes 90% of the changes that are doable.
216 A second pass can make a few more changes made possible by the first pass.
217 Experiments show any further passes don't make enough changes to justify
218 the expense.
220 A study of spec92 using an unlimited number of passes:
221 [1 pass] = 1208 substitutions, [2] = 577, [3] = 202, [4] = 192, [5] = 83,
222 [6] = 34, [7] = 17, [8] = 9, [9] = 4, [10] = 4, [11] = 2,
223 [12] = 2, [13] = 1, [15] = 1, [16] = 2, [41] = 1
225 It was found doing copy propagation between each pass enables further
226 substitutions.
228 PRE is quite expensive in complicated functions because the DFA can take
229 awhile to converge. Hence we only perform one pass. Macro MAX_PASSES can
230 be modified if one wants to experiment.
232 **********************
234 The steps for PRE are:
236 1) Build the hash table of expressions we wish to GCSE (expr_hash_table).
238 2) Perform the data flow analysis for PRE.
240 3) Delete the redundant instructions
242 4) Insert the required copies [if any] that make the partially
243 redundant instructions fully redundant.
245 5) For other reaching expressions, insert an instruction to copy the value
246 to a newly created pseudo that will reach the redundant instruction.
248 The deletion is done first so that when we do insertions we
249 know which pseudo reg to use.
251 Various papers have argued that PRE DFA is expensive (O(n^2)) and others
252 argue it is not. The number of iterations for the algorithm to converge
253 is typically 2-4 so I don't view it as that expensive (relatively speaking).
255 PRE GCSE depends heavily on the second CSE pass to clean up the copies
256 we create. To make an expression reach the place where it's redundant,
257 the result of the expression is copied to a new register, and the redundant
258 expression is deleted by replacing it with this new register. Classic GCSE
259 doesn't have this problem as much as it computes the reaching defs of
260 each register in each block and thus can try to use an existing register.
262 **********************
264 A fair bit of simplicity is created by creating small functions for simple
265 tasks, even when the function is only called in one place. This may
266 measurably slow things down [or may not] by creating more function call
267 overhead than is necessary. The source is laid out so that it's trivial
268 to make the affected functions inline so that one can measure what speed
269 up, if any, can be achieved, and maybe later when things settle things can
270 be rearranged.
272 Help stamp out big monolithic functions! */
274 /* GCSE global vars. */
276 /* -dG dump file. */
277 static FILE *gcse_file;
279 /* Note whether or not we should run jump optimization after gcse. We
280 want to do this for two cases.
282 * If we changed any jumps via cprop.
284 * If we added any labels via edge splitting. */
286 static int run_jump_opt_after_gcse;
288 /* Element I is a list of I's predecessors/successors. */
289 static int_list_ptr *s_preds;
290 static int_list_ptr *s_succs;
292 /* Element I is the number of predecessors/successors of basic block I. */
293 static int *num_preds;
294 static int *num_succs;
296 /* Bitmaps are normally not included in debugging dumps.
297 However it's useful to be able to print them from GDB.
298 We could create special functions for this, but it's simpler to
299 just allow passing stderr to the dump_foo fns. Since stderr can
300 be a macro, we store a copy here. */
301 static FILE *debug_stderr;
303 /* An obstack for our working variables. */
304 static struct obstack gcse_obstack;
306 /* Non-zero for each mode that supports (set (reg) (reg)).
307 This is trivially true for integer and floating point values.
308 It may or may not be true for condition codes. */
309 static char can_copy_p[(int) NUM_MACHINE_MODES];
311 /* Non-zero if can_copy_p has been initialized. */
312 static int can_copy_init_p;
314 struct reg_use {
315 rtx reg_rtx;
318 /* Hash table of expressions. */
320 struct expr
322 /* The expression (SET_SRC for expressions, PATTERN for assignments). */
323 rtx expr;
324 /* Index in the available expression bitmaps. */
325 int bitmap_index;
326 /* Next entry with the same hash. */
327 struct expr *next_same_hash;
328 /* List of anticipatable occurrences in basic blocks in the function.
329 An "anticipatable occurrence" is one that is the first occurrence in the
330 basic block, the operands are not modified in the basic block prior
331 to the occurrence and the output is not used between the start of
332 the block and the occurrence. */
333 struct occr *antic_occr;
334 /* List of available occurrence in basic blocks in the function.
335 An "available occurrence" is one that is the last occurrence in the
336 basic block and the operands are not modified by following statements in
337 the basic block [including this insn]. */
338 struct occr *avail_occr;
339 /* Non-null if the computation is PRE redundant.
340 The value is the newly created pseudo-reg to record a copy of the
341 expression in all the places that reach the redundant copy. */
342 rtx reaching_reg;
345 /* Occurrence of an expression.
346 There is one per basic block. If a pattern appears more than once the
347 last appearance is used [or first for anticipatable expressions]. */
349 struct occr
351 /* Next occurrence of this expression. */
352 struct occr *next;
353 /* The insn that computes the expression. */
354 rtx insn;
355 /* Non-zero if this [anticipatable] occurrence has been deleted. */
356 char deleted_p;
357 /* Non-zero if this [available] occurrence has been copied to
358 reaching_reg. */
359 /* ??? This is mutually exclusive with deleted_p, so they could share
360 the same byte. */
361 char copied_p;
364 /* Expression and copy propagation hash tables.
365 Each hash table is an array of buckets.
366 ??? It is known that if it were an array of entries, structure elements
367 `next_same_hash' and `bitmap_index' wouldn't be necessary. However, it is
368 not clear whether in the final analysis a sufficient amount of memory would
369 be saved as the size of the available expression bitmaps would be larger
370 [one could build a mapping table without holes afterwards though].
371 Someday I'll perform the computation and figure it out.
374 /* Total size of the expression hash table, in elements. */
375 static int expr_hash_table_size;
376 /* The table itself.
377 This is an array of `expr_hash_table_size' elements. */
378 static struct expr **expr_hash_table;
380 /* Total size of the copy propagation hash table, in elements. */
381 static int set_hash_table_size;
382 /* The table itself.
383 This is an array of `set_hash_table_size' elements. */
384 static struct expr **set_hash_table;
386 /* Mapping of uids to cuids.
387 Only real insns get cuids. */
388 static int *uid_cuid;
390 /* Highest UID in UID_CUID. */
391 static int max_uid;
393 /* Get the cuid of an insn. */
394 #define INSN_CUID(INSN) (uid_cuid[INSN_UID (INSN)])
396 /* Number of cuids. */
397 static int max_cuid;
399 /* Mapping of cuids to insns. */
400 static rtx *cuid_insn;
402 /* Get insn from cuid. */
403 #define CUID_INSN(CUID) (cuid_insn[CUID])
405 /* Maximum register number in function prior to doing gcse + 1.
406 Registers created during this pass have regno >= max_gcse_regno.
407 This is named with "gcse" to not collide with global of same name. */
408 static int max_gcse_regno;
410 /* Maximum number of cse-able expressions found. */
411 static int n_exprs;
412 /* Maximum number of assignments for copy propagation found. */
413 static int n_sets;
415 /* Table of registers that are modified.
416 For each register, each element is a list of places where the pseudo-reg
417 is set.
419 For simplicity, GCSE is done on sets of pseudo-regs only. PRE GCSE only
420 requires knowledge of which blocks kill which regs [and thus could use
421 a bitmap instead of the lists `reg_set_table' uses].
423 `reg_set_table' and could be turned into an array of bitmaps
424 (num-bbs x num-regs)
425 [however perhaps it may be useful to keep the data as is].
426 One advantage of recording things this way is that `reg_set_table' is
427 fairly sparse with respect to pseudo regs but for hard regs could be
428 fairly dense [relatively speaking].
429 And recording sets of pseudo-regs in lists speeds
430 up functions like compute_transp since in the case of pseudo-regs we only
431 need to iterate over the number of times a pseudo-reg is set, not over the
432 number of basic blocks [clearly there is a bit of a slow down in the cases
433 where a pseudo is set more than once in a block, however it is believed
434 that the net effect is to speed things up]. This isn't done for hard-regs
435 because recording call-clobbered hard-regs in `reg_set_table' at each
436 function call can consume a fair bit of memory, and iterating over hard-regs
437 stored this way in compute_transp will be more expensive. */
439 typedef struct reg_set {
440 /* The next setting of this register. */
441 struct reg_set *next;
442 /* The insn where it was set. */
443 rtx insn;
444 } reg_set;
445 static reg_set **reg_set_table;
446 /* Size of `reg_set_table'.
447 The table starts out at max_gcse_regno + slop, and is enlarged as
448 necessary. */
449 static int reg_set_table_size;
450 /* Amount to grow `reg_set_table' by when it's full. */
451 #define REG_SET_TABLE_SLOP 100
453 /* Bitmap containing one bit for each register in the program.
454 Used when performing GCSE to track which registers have been set since
455 the start of the basic block. */
456 static sbitmap reg_set_bitmap;
458 /* For each block, a bitmap of registers set in the block.
459 This is used by expr_killed_p and compute_transp.
460 It is computed during hash table computation and not by compute_sets
461 as it includes registers added since the last pass (or between cprop and
462 gcse) and it's currently not easy to realloc sbitmap vectors. */
463 static sbitmap *reg_set_in_block;
465 /* For each block, non-zero if memory is set in that block.
466 This is computed during hash table computation and is used by
467 expr_killed_p and compute_transp.
468 ??? Handling of memory is very simple, we don't make any attempt
469 to optimize things (later).
470 ??? This can be computed by compute_sets since the information
471 doesn't change. */
472 static char *mem_set_in_block;
474 /* Various variables for statistics gathering. */
476 /* Memory used in a pass.
477 This isn't intended to be absolutely precise. Its intent is only
478 to keep an eye on memory usage. */
479 static int bytes_used;
480 /* GCSE substitutions made. */
481 static int gcse_subst_count;
482 /* Number of copy instructions created. */
483 static int gcse_create_count;
484 /* Number of constants propagated. */
485 static int const_prop_count;
486 /* Number of copys propagated. */
487 static int copy_prop_count;
489 /* These variables are used by classic GCSE.
490 Normally they'd be defined a bit later, but `rd_gen' needs to
491 be declared sooner. */
493 /* A bitmap of all ones for implementing the algorithm for available
494 expressions and reaching definitions. */
495 /* ??? Available expression bitmaps have a different size than reaching
496 definition bitmaps. This should be the larger of the two, however, it
497 is not currently used for reaching definitions. */
498 static sbitmap u_bitmap;
500 /* Each block has a bitmap of each type.
501 The length of each blocks bitmap is:
503 max_cuid - for reaching definitions
504 n_exprs - for available expressions
506 Thus we view the bitmaps as 2 dimensional arrays. i.e.
507 rd_kill[block_num][cuid_num]
508 ae_kill[block_num][expr_num]
511 /* For reaching defs */
512 static sbitmap *rd_kill, *rd_gen, *reaching_defs, *rd_out;
514 /* for available exprs */
515 static sbitmap *ae_kill, *ae_gen, *ae_in, *ae_out;
518 static void compute_can_copy PROTO ((void));
520 static char *gmalloc PROTO ((unsigned int));
521 static char *grealloc PROTO ((char *, unsigned int));
522 static char *gcse_alloc PROTO ((unsigned long));
523 static void alloc_gcse_mem PROTO ((rtx));
524 static void free_gcse_mem PROTO ((void));
525 static void alloc_reg_set_mem PROTO ((int));
526 static void free_reg_set_mem PROTO ((void));
527 static void record_one_set PROTO ((int, rtx));
528 static void record_set_info PROTO ((rtx, rtx));
529 static void compute_sets PROTO ((rtx));
531 static void hash_scan_insn PROTO ((rtx, int, int));
532 static void hash_scan_set PROTO ((rtx, rtx, int));
533 static void hash_scan_clobber PROTO ((rtx, rtx));
534 static void hash_scan_call PROTO ((rtx, rtx));
535 static int want_to_gcse_p PROTO ((rtx));
536 static int oprs_unchanged_p PROTO ((rtx, rtx, int));
537 static int oprs_anticipatable_p PROTO ((rtx, rtx));
538 static int oprs_available_p PROTO ((rtx, rtx));
539 static void insert_expr_in_table PROTO ((rtx, enum machine_mode,
540 rtx, int, int));
541 static void insert_set_in_table PROTO ((rtx, rtx));
542 static unsigned int hash_expr PROTO ((rtx, enum machine_mode,
543 int *, int));
544 static unsigned int hash_expr_1 PROTO ((rtx, enum machine_mode, int *));
545 static unsigned int hash_set PROTO ((int, int));
546 static int expr_equiv_p PROTO ((rtx, rtx));
547 static void record_last_reg_set_info PROTO ((rtx, int));
548 static void record_last_mem_set_info PROTO ((rtx));
549 static void record_last_set_info PROTO ((rtx, rtx));
550 static void compute_hash_table PROTO ((int));
551 static void alloc_set_hash_table PROTO ((int));
552 static void free_set_hash_table PROTO ((void));
553 static void compute_set_hash_table PROTO ((void));
554 static void alloc_expr_hash_table PROTO ((int));
555 static void free_expr_hash_table PROTO ((void));
556 static void compute_expr_hash_table PROTO ((void));
557 static void dump_hash_table PROTO ((FILE *, const char *, struct expr **,
558 int, int));
559 static struct expr *lookup_expr PROTO ((rtx));
560 static struct expr *lookup_set PROTO ((int, rtx));
561 static struct expr *next_set PROTO ((int, struct expr *));
562 static void reset_opr_set_tables PROTO ((void));
563 static int oprs_not_set_p PROTO ((rtx, rtx));
564 static void mark_call PROTO ((rtx));
565 static void mark_set PROTO ((rtx, rtx));
566 static void mark_clobber PROTO ((rtx, rtx));
567 static void mark_oprs_set PROTO ((rtx));
569 static void alloc_cprop_mem PROTO ((int, int));
570 static void free_cprop_mem PROTO ((void));
571 static void compute_transp PROTO ((rtx, int, sbitmap *, int));
572 static void compute_transpout PROTO ((void));
573 static void compute_local_properties PROTO ((sbitmap *, sbitmap *,
574 sbitmap *, int));
575 static void compute_cprop_avinout PROTO ((void));
576 static void compute_cprop_data PROTO ((void));
577 static void find_used_regs PROTO ((rtx));
578 static int try_replace_reg PROTO ((rtx, rtx, rtx));
579 static struct expr *find_avail_set PROTO ((int, rtx));
580 static int cprop_jump PROTO((rtx, rtx, struct reg_use *, rtx));
581 #ifdef HAVE_cc0
582 static int cprop_cc0_jump PROTO((rtx, struct reg_use *, rtx));
583 #endif
584 static int cprop_insn PROTO ((rtx, int));
585 static int cprop PROTO ((int));
586 static int one_cprop_pass PROTO ((int, int));
588 static void alloc_pre_mem PROTO ((int, int));
589 static void free_pre_mem PROTO ((void));
590 static void compute_pre_data PROTO ((void));
591 static int pre_expr_reaches_here_p PROTO ((int, struct expr *,
592 int, int, char *));
593 static void insert_insn_end_bb PROTO ((struct expr *, int, int));
594 static void pre_insert PROTO ((struct expr **));
595 static void pre_insert_copy_insn PROTO ((struct expr *, rtx));
596 static void pre_insert_copies PROTO ((void));
597 static int pre_delete PROTO ((void));
598 static int pre_gcse PROTO ((void));
599 static int one_pre_gcse_pass PROTO ((int));
601 static void add_label_notes PROTO ((rtx, rtx));
603 static void alloc_code_hoist_mem PROTO ((int, int));
604 static void free_code_hoist_mem PROTO ((void));
605 static void compute_code_hoist_vbeinout PROTO ((void));
606 static void compute_code_hoist_data PROTO ((void));
607 static int hoist_expr_reaches_here_p PROTO ((int, int, int, char *));
608 static void hoist_code PROTO ((void));
609 static int one_code_hoisting_pass PROTO ((void));
611 static void alloc_rd_mem PROTO ((int, int));
612 static void free_rd_mem PROTO ((void));
613 static void handle_rd_kill_set PROTO ((rtx, int, int));
614 static void compute_kill_rd PROTO ((void));
615 static void compute_rd PROTO ((void));
616 static void alloc_avail_expr_mem PROTO ((int, int));
617 static void free_avail_expr_mem PROTO ((void));
618 static void compute_ae_gen PROTO ((void));
619 static int expr_killed_p PROTO ((rtx, int));
620 static void compute_ae_kill PROTO ((void));
621 static void compute_available PROTO ((void));
622 static int expr_reaches_here_p PROTO ((struct occr *, struct expr *,
623 int, int, char *));
624 static rtx computing_insn PROTO ((struct expr *, rtx));
625 static int def_reaches_here_p PROTO ((rtx, rtx));
626 static int can_disregard_other_sets PROTO ((struct reg_set **, rtx, int));
627 static int handle_avail_expr PROTO ((rtx, struct expr *));
628 static int classic_gcse PROTO ((void));
629 static int one_classic_gcse_pass PROTO ((int));
631 static void invalidate_nonnull_info PROTO ((rtx, rtx));
634 /* Entry point for global common subexpression elimination.
635 F is the first instruction in the function. */
638 gcse_main (f, file)
639 rtx f;
640 FILE *file;
642 int changed, pass;
643 /* Bytes used at start of pass. */
644 int initial_bytes_used;
645 /* Maximum number of bytes used by a pass. */
646 int max_pass_bytes;
647 /* Point to release obstack data from for each pass. */
648 char *gcse_obstack_bottom;
650 /* We do not construct an accurate cfg in functions which call
651 setjmp, so just punt to be safe. */
652 if (current_function_calls_setjmp)
653 return 0;
655 /* Assume that we do not need to run jump optimizations after gcse. */
656 run_jump_opt_after_gcse = 0;
658 /* For calling dump_foo fns from gdb. */
659 debug_stderr = stderr;
660 gcse_file = file;
662 /* Identify the basic block information for this function, including
663 successors and predecessors. */
664 max_gcse_regno = max_reg_num ();
665 find_basic_blocks (f, max_gcse_regno, file, 1);
667 /* Return if there's nothing to do. */
668 if (n_basic_blocks <= 1)
670 /* Free storage allocated by find_basic_blocks. */
671 free_basic_block_vars (0);
672 return 0;
675 /* See what modes support reg/reg copy operations. */
676 if (! can_copy_init_p)
678 compute_can_copy ();
679 can_copy_init_p = 1;
682 gcc_obstack_init (&gcse_obstack);
684 /* Allocate and compute predecessors/successors. */
686 s_preds = (int_list_ptr *) alloca (n_basic_blocks * sizeof (int_list_ptr));
687 s_succs = (int_list_ptr *) alloca (n_basic_blocks * sizeof (int_list_ptr));
688 num_preds = (int *) alloca (n_basic_blocks * sizeof (int));
689 num_succs = (int *) alloca (n_basic_blocks * sizeof (int));
690 bytes_used = 4 * n_basic_blocks * sizeof (int_list_ptr);
691 compute_preds_succs (s_preds, s_succs, num_preds, num_succs);
693 if (file)
694 dump_bb_data (file, s_preds, s_succs, 0);
696 /* Record where pseudo-registers are set.
697 This data is kept accurate during each pass.
698 ??? We could also record hard-reg information here
699 [since it's unchanging], however it is currently done during
700 hash table computation.
702 It may be tempting to compute MEM set information here too, but MEM
703 sets will be subject to code motion one day and thus we need to compute
704 information about memory sets when we build the hash tables. */
706 alloc_reg_set_mem (max_gcse_regno);
707 compute_sets (f);
709 pass = 0;
710 initial_bytes_used = bytes_used;
711 max_pass_bytes = 0;
712 gcse_obstack_bottom = gcse_alloc (1);
713 changed = 1;
714 while (changed && pass < MAX_PASSES)
716 changed = 0;
717 if (file)
718 fprintf (file, "GCSE pass %d\n\n", pass + 1);
720 /* Initialize bytes_used to the space for the pred/succ lists,
721 and the reg_set_table data. */
722 bytes_used = initial_bytes_used;
724 /* Each pass may create new registers, so recalculate each time. */
725 max_gcse_regno = max_reg_num ();
727 alloc_gcse_mem (f);
729 /* Don't allow constant propagation to modify jumps
730 during this pass. */
731 changed = one_cprop_pass (pass + 1, 0);
733 if (optimize_size)
734 changed |= one_classic_gcse_pass (pass + 1);
735 else
736 changed |= one_pre_gcse_pass (pass + 1);
738 if (max_pass_bytes < bytes_used)
739 max_pass_bytes = bytes_used;
741 /* Free up memory, then reallocate for code hoisting. We can
742 not re-use the existing allocated memory because the tables
743 will not have info for the insns or registers created by
744 partial redundancy elimination. */
745 free_gcse_mem ();
747 /* It does not make sense to run code hoisting unless we optimizing
748 for code size -- it rarely makes programs faster, and can make
749 them bigger if we did partial redundancy elimination (when optimizing
750 for space, we use a classic gcse algorithm instead of partial
751 redundancy algorithms). */
752 if (optimize_size)
754 max_gcse_regno = max_reg_num ();
755 alloc_gcse_mem (f);
756 changed |= one_code_hoisting_pass ();
757 free_gcse_mem ();
759 if (max_pass_bytes < bytes_used)
760 max_pass_bytes = bytes_used;
763 if (file)
765 fprintf (file, "\n");
766 fflush (file);
768 obstack_free (&gcse_obstack, gcse_obstack_bottom);
769 pass++;
772 /* Do one last pass of copy propagation, including cprop into
773 conditional jumps. */
775 max_gcse_regno = max_reg_num ();
776 alloc_gcse_mem (f);
777 /* This time, go ahead and allow cprop to alter jumps. */
778 one_cprop_pass (pass + 1, 1);
779 free_gcse_mem ();
781 if (file)
783 fprintf (file, "GCSE of %s: %d basic blocks, ",
784 current_function_name, n_basic_blocks);
785 fprintf (file, "%d pass%s, %d bytes\n\n",
786 pass, pass > 1 ? "es" : "", max_pass_bytes);
789 /* Free our obstack. */
790 obstack_free (&gcse_obstack, NULL_PTR);
791 /* Free reg_set_table. */
792 free_reg_set_mem ();
793 /* Free storage used to record predecessor/successor data. */
794 free_bb_mem ();
795 /* Free storage allocated by find_basic_blocks. */
796 free_basic_block_vars (0);
797 return run_jump_opt_after_gcse;
800 /* Misc. utilities. */
802 /* Compute which modes support reg/reg copy operations. */
804 static void
805 compute_can_copy ()
807 int i;
808 #ifndef AVOID_CCMODE_COPIES
809 rtx reg,insn;
810 #endif
811 char *free_point = (char *) oballoc (1);
813 bzero (can_copy_p, NUM_MACHINE_MODES);
815 start_sequence ();
816 for (i = 0; i < NUM_MACHINE_MODES; i++)
818 switch (GET_MODE_CLASS (i))
820 case MODE_CC :
821 #ifdef AVOID_CCMODE_COPIES
822 can_copy_p[i] = 0;
823 #else
824 reg = gen_rtx_REG ((enum machine_mode) i, LAST_VIRTUAL_REGISTER + 1);
825 insn = emit_insn (gen_rtx_SET (VOIDmode, reg, reg));
826 if (recog (PATTERN (insn), insn, NULL_PTR) >= 0)
827 can_copy_p[i] = 1;
828 #endif
829 break;
830 default :
831 can_copy_p[i] = 1;
832 break;
835 end_sequence ();
837 /* Free the objects we just allocated. */
838 obfree (free_point);
841 /* Cover function to xmalloc to record bytes allocated. */
843 static char *
844 gmalloc (size)
845 unsigned int size;
847 bytes_used += size;
848 return xmalloc (size);
851 /* Cover function to xrealloc.
852 We don't record the additional size since we don't know it.
853 It won't affect memory usage stats much anyway. */
855 static char *
856 grealloc (ptr, size)
857 char *ptr;
858 unsigned int size;
860 return xrealloc (ptr, size);
863 /* Cover function to obstack_alloc.
864 We don't need to record the bytes allocated here since
865 obstack_chunk_alloc is set to gmalloc. */
867 static char *
868 gcse_alloc (size)
869 unsigned long size;
871 return (char *) obstack_alloc (&gcse_obstack, size);
874 /* Allocate memory for the cuid mapping array,
875 and reg/memory set tracking tables.
877 This is called at the start of each pass. */
879 static void
880 alloc_gcse_mem (f)
881 rtx f;
883 int i,n;
884 rtx insn;
886 /* Find the largest UID and create a mapping from UIDs to CUIDs.
887 CUIDs are like UIDs except they increase monotonically, have no gaps,
888 and only apply to real insns. */
890 max_uid = get_max_uid ();
891 n = (max_uid + 1) * sizeof (int);
892 uid_cuid = (int *) gmalloc (n);
893 bzero ((char *) uid_cuid, n);
894 for (insn = f, i = 0; insn; insn = NEXT_INSN (insn))
896 if (GET_RTX_CLASS (GET_CODE (insn)) == 'i')
897 INSN_CUID (insn) = i++;
898 else
899 INSN_CUID (insn) = i;
902 /* Create a table mapping cuids to insns. */
904 max_cuid = i;
905 n = (max_cuid + 1) * sizeof (rtx);
906 cuid_insn = (rtx *) gmalloc (n);
907 bzero ((char *) cuid_insn, n);
908 for (insn = f, i = 0; insn; insn = NEXT_INSN (insn))
910 if (GET_RTX_CLASS (GET_CODE (insn)) == 'i')
912 CUID_INSN (i) = insn;
913 i++;
917 /* Allocate vars to track sets of regs. */
919 reg_set_bitmap = (sbitmap) sbitmap_alloc (max_gcse_regno);
921 /* Allocate vars to track sets of regs, memory per block. */
923 reg_set_in_block = (sbitmap *) sbitmap_vector_alloc (n_basic_blocks,
924 max_gcse_regno);
925 mem_set_in_block = (char *) gmalloc (n_basic_blocks);
928 /* Free memory allocated by alloc_gcse_mem. */
930 static void
931 free_gcse_mem ()
933 free (uid_cuid);
934 free (cuid_insn);
936 free (reg_set_bitmap);
938 free (reg_set_in_block);
939 free (mem_set_in_block);
943 /* Compute the local properties of each recorded expression.
944 Local properties are those that are defined by the block, irrespective
945 of other blocks.
947 An expression is transparent in a block if its operands are not modified
948 in the block.
950 An expression is computed (locally available) in a block if it is computed
951 at least once and expression would contain the same value if the
952 computation was moved to the end of the block.
954 An expression is locally anticipatable in a block if it is computed at
955 least once and expression would contain the same value if the computation
956 was moved to the beginning of the block.
958 We call this routine for cprop, pre and code hoisting. They all
959 compute basically the same information and thus can easily share
960 this code.
962 TRANSP, COMP, and ANTLOC are destination sbitmaps for recording
963 local properties. If NULL, then it is not necessary to compute
964 or record that particular property.
966 SETP controls which hash table to look at. If zero, this routine
967 looks at the expr hash table; if nonzero this routine looks at
968 the set hash table. Additionally, TRANSP is computed as ~TRANSP,
969 since this is really cprop's ABSALTERED. */
971 static void
972 compute_local_properties (transp, comp, antloc, setp)
973 sbitmap *transp;
974 sbitmap *comp;
975 sbitmap *antloc;
976 int setp;
978 int i, hash_table_size;
979 struct expr **hash_table;
981 /* Initialize any bitmaps that were passed in. */
982 if (transp)
984 if (setp)
985 sbitmap_vector_zero (transp, n_basic_blocks);
986 else
987 sbitmap_vector_ones (transp, n_basic_blocks);
989 if (comp)
990 sbitmap_vector_zero (comp, n_basic_blocks);
991 if (antloc)
992 sbitmap_vector_zero (antloc, n_basic_blocks);
994 /* We use the same code for cprop, pre and hoisting. For cprop
995 we care about the set hash table, for pre and hoisting we
996 care about the expr hash table. */
997 hash_table_size = setp ? set_hash_table_size : expr_hash_table_size;
998 hash_table = setp ? set_hash_table : expr_hash_table;
1000 for (i = 0; i < hash_table_size; i++)
1002 struct expr *expr;
1004 for (expr = hash_table[i]; expr != NULL; expr = expr->next_same_hash)
1006 struct occr *occr;
1007 int indx = expr->bitmap_index;
1009 /* The expression is transparent in this block if it is not killed.
1010 We start by assuming all are transparent [none are killed], and
1011 then reset the bits for those that are. */
1013 if (transp)
1014 compute_transp (expr->expr, indx, transp, setp);
1016 /* The occurrences recorded in antic_occr are exactly those that
1017 we want to set to non-zero in ANTLOC. */
1019 if (antloc)
1021 for (occr = expr->antic_occr; occr != NULL; occr = occr->next)
1023 int bb = BLOCK_NUM (occr->insn);
1024 SET_BIT (antloc[bb], indx);
1026 /* While we're scanning the table, this is a good place to
1027 initialize this. */
1028 occr->deleted_p = 0;
1032 /* The occurrences recorded in avail_occr are exactly those that
1033 we want to set to non-zero in COMP. */
1034 if (comp)
1037 for (occr = expr->avail_occr; occr != NULL; occr = occr->next)
1039 int bb = BLOCK_NUM (occr->insn);
1040 SET_BIT (comp[bb], indx);
1042 /* While we're scanning the table, this is a good place to
1043 initialize this. */
1044 occr->copied_p = 0;
1048 /* While we're scanning the table, this is a good place to
1049 initialize this. */
1050 expr->reaching_reg = 0;
1056 /* Register set information.
1058 `reg_set_table' records where each register is set or otherwise
1059 modified. */
1061 static struct obstack reg_set_obstack;
1063 static void
1064 alloc_reg_set_mem (n_regs)
1065 int n_regs;
1067 int n;
1069 reg_set_table_size = n_regs + REG_SET_TABLE_SLOP;
1070 n = reg_set_table_size * sizeof (struct reg_set *);
1071 reg_set_table = (struct reg_set **) gmalloc (n);
1072 bzero ((char *) reg_set_table, n);
1074 gcc_obstack_init (&reg_set_obstack);
1077 static void
1078 free_reg_set_mem ()
1080 free (reg_set_table);
1081 obstack_free (&reg_set_obstack, NULL_PTR);
1084 /* Record REGNO in the reg_set table. */
1086 static void
1087 record_one_set (regno, insn)
1088 int regno;
1089 rtx insn;
1091 /* allocate a new reg_set element and link it onto the list */
1092 struct reg_set *new_reg_info, *reg_info_ptr1, *reg_info_ptr2;
1094 /* If the table isn't big enough, enlarge it. */
1095 if (regno >= reg_set_table_size)
1097 int new_size = regno + REG_SET_TABLE_SLOP;
1098 reg_set_table = (struct reg_set **)
1099 grealloc ((char *) reg_set_table,
1100 new_size * sizeof (struct reg_set *));
1101 bzero ((char *) (reg_set_table + reg_set_table_size),
1102 (new_size - reg_set_table_size) * sizeof (struct reg_set *));
1103 reg_set_table_size = new_size;
1106 new_reg_info = (struct reg_set *) obstack_alloc (&reg_set_obstack,
1107 sizeof (struct reg_set));
1108 bytes_used += sizeof (struct reg_set);
1109 new_reg_info->insn = insn;
1110 new_reg_info->next = NULL;
1111 if (reg_set_table[regno] == NULL)
1112 reg_set_table[regno] = new_reg_info;
1113 else
1115 reg_info_ptr1 = reg_info_ptr2 = reg_set_table[regno];
1116 /* ??? One could keep a "last" pointer to speed this up. */
1117 while (reg_info_ptr1 != NULL)
1119 reg_info_ptr2 = reg_info_ptr1;
1120 reg_info_ptr1 = reg_info_ptr1->next;
1122 reg_info_ptr2->next = new_reg_info;
1126 /* For communication between next two functions (via note_stores). */
1127 static rtx record_set_insn;
1129 /* Called from compute_sets via note_stores to handle one
1130 SET or CLOBBER in an insn. */
1132 static void
1133 record_set_info (dest, setter)
1134 rtx dest, setter ATTRIBUTE_UNUSED;
1136 if (GET_CODE (dest) == SUBREG)
1137 dest = SUBREG_REG (dest);
1139 if (GET_CODE (dest) == REG)
1141 if (REGNO (dest) >= FIRST_PSEUDO_REGISTER)
1142 record_one_set (REGNO (dest), record_set_insn);
1146 /* Scan the function and record each set of each pseudo-register.
1148 This is called once, at the start of the gcse pass.
1149 See the comments for `reg_set_table' for further docs. */
1151 static void
1152 compute_sets (f)
1153 rtx f;
1155 rtx insn = f;
1157 while (insn)
1159 if (GET_RTX_CLASS (GET_CODE (insn)) == 'i')
1161 record_set_insn = insn;
1162 note_stores (PATTERN (insn), record_set_info);
1164 insn = NEXT_INSN (insn);
1168 /* Hash table support. */
1170 #define NEVER_SET -1
1172 /* For each register, the cuid of the first/last insn in the block to set it,
1173 or -1 if not set. */
1174 static int *reg_first_set;
1175 static int *reg_last_set;
1177 /* While computing "first/last set" info, this is the CUID of first/last insn
1178 to set memory or -1 if not set. `mem_last_set' is also used when
1179 performing GCSE to record whether memory has been set since the beginning
1180 of the block.
1181 Note that handling of memory is very simple, we don't make any attempt
1182 to optimize things (later). */
1183 static int mem_first_set;
1184 static int mem_last_set;
1186 /* Perform a quick check whether X, the source of a set, is something
1187 we want to consider for GCSE. */
1189 static int
1190 want_to_gcse_p (x)
1191 rtx x;
1193 enum rtx_code code = GET_CODE (x);
1195 switch (code)
1197 case REG:
1198 case SUBREG:
1199 case CONST_INT:
1200 case CONST_DOUBLE:
1201 case CALL:
1202 return 0;
1204 default:
1205 break;
1208 return 1;
1211 /* Return non-zero if the operands of expression X are unchanged from the
1212 start of INSN's basic block up to but not including INSN (if AVAIL_P == 0),
1213 or from INSN to the end of INSN's basic block (if AVAIL_P != 0). */
1215 static int
1216 oprs_unchanged_p (x, insn, avail_p)
1217 rtx x, insn;
1218 int avail_p;
1220 int i;
1221 enum rtx_code code;
1222 const char *fmt;
1224 /* repeat is used to turn tail-recursion into iteration. */
1225 repeat:
1227 if (x == 0)
1228 return 1;
1230 code = GET_CODE (x);
1231 switch (code)
1233 case REG:
1234 if (avail_p)
1235 return (reg_last_set[REGNO (x)] == NEVER_SET
1236 || reg_last_set[REGNO (x)] < INSN_CUID (insn));
1237 else
1238 return (reg_first_set[REGNO (x)] == NEVER_SET
1239 || reg_first_set[REGNO (x)] >= INSN_CUID (insn));
1241 case MEM:
1242 if (avail_p)
1244 if (mem_last_set != NEVER_SET
1245 && mem_last_set >= INSN_CUID (insn))
1246 return 0;
1248 else
1250 if (mem_first_set != NEVER_SET
1251 && mem_first_set < INSN_CUID (insn))
1252 return 0;
1254 x = XEXP (x, 0);
1255 goto repeat;
1257 case PRE_DEC:
1258 case PRE_INC:
1259 case POST_DEC:
1260 case POST_INC:
1261 return 0;
1263 case PC:
1264 case CC0: /*FIXME*/
1265 case CONST:
1266 case CONST_INT:
1267 case CONST_DOUBLE:
1268 case SYMBOL_REF:
1269 case LABEL_REF:
1270 case ADDR_VEC:
1271 case ADDR_DIFF_VEC:
1272 return 1;
1274 default:
1275 break;
1278 i = GET_RTX_LENGTH (code) - 1;
1279 fmt = GET_RTX_FORMAT (code);
1280 for (; i >= 0; i--)
1282 if (fmt[i] == 'e')
1284 rtx tem = XEXP (x, i);
1286 /* If we are about to do the last recursive call
1287 needed at this level, change it into iteration.
1288 This function is called enough to be worth it. */
1289 if (i == 0)
1291 x = tem;
1292 goto repeat;
1294 if (! oprs_unchanged_p (tem, insn, avail_p))
1295 return 0;
1297 else if (fmt[i] == 'E')
1299 int j;
1300 for (j = 0; j < XVECLEN (x, i); j++)
1302 if (! oprs_unchanged_p (XVECEXP (x, i, j), insn, avail_p))
1303 return 0;
1308 return 1;
1311 /* Return non-zero if the operands of expression X are unchanged from
1312 the start of INSN's basic block up to but not including INSN. */
1314 static int
1315 oprs_anticipatable_p (x, insn)
1316 rtx x, insn;
1318 return oprs_unchanged_p (x, insn, 0);
1321 /* Return non-zero if the operands of expression X are unchanged from
1322 INSN to the end of INSN's basic block. */
1324 static int
1325 oprs_available_p (x, insn)
1326 rtx x, insn;
1328 return oprs_unchanged_p (x, insn, 1);
1331 /* Hash expression X.
1332 MODE is only used if X is a CONST_INT.
1333 A boolean indicating if a volatile operand is found or if the expression
1334 contains something we don't want to insert in the table is stored in
1335 DO_NOT_RECORD_P.
1337 ??? One might want to merge this with canon_hash. Later. */
1339 static unsigned int
1340 hash_expr (x, mode, do_not_record_p, hash_table_size)
1341 rtx x;
1342 enum machine_mode mode;
1343 int *do_not_record_p;
1344 int hash_table_size;
1346 unsigned int hash;
1348 *do_not_record_p = 0;
1350 hash = hash_expr_1 (x, mode, do_not_record_p);
1351 return hash % hash_table_size;
1354 /* Subroutine of hash_expr to do the actual work. */
1356 static unsigned int
1357 hash_expr_1 (x, mode, do_not_record_p)
1358 rtx x;
1359 enum machine_mode mode;
1360 int *do_not_record_p;
1362 int i, j;
1363 unsigned hash = 0;
1364 enum rtx_code code;
1365 const char *fmt;
1367 /* repeat is used to turn tail-recursion into iteration. */
1368 repeat:
1370 if (x == 0)
1371 return hash;
1373 code = GET_CODE (x);
1374 switch (code)
1376 case REG:
1378 register int regno = REGNO (x);
1379 hash += ((unsigned) REG << 7) + regno;
1380 return hash;
1383 case CONST_INT:
1385 unsigned HOST_WIDE_INT tem = INTVAL (x);
1386 hash += ((unsigned) CONST_INT << 7) + (unsigned) mode + tem;
1387 return hash;
1390 case CONST_DOUBLE:
1391 /* This is like the general case, except that it only counts
1392 the integers representing the constant. */
1393 hash += (unsigned) code + (unsigned) GET_MODE (x);
1394 if (GET_MODE (x) != VOIDmode)
1395 for (i = 2; i < GET_RTX_LENGTH (CONST_DOUBLE); i++)
1397 unsigned tem = XWINT (x, i);
1398 hash += tem;
1400 else
1401 hash += ((unsigned) CONST_DOUBLE_LOW (x)
1402 + (unsigned) CONST_DOUBLE_HIGH (x));
1403 return hash;
1405 /* Assume there is only one rtx object for any given label. */
1406 case LABEL_REF:
1407 /* We don't hash on the address of the CODE_LABEL to avoid bootstrap
1408 differences and differences between each stage's debugging dumps. */
1409 hash += ((unsigned) LABEL_REF << 7) + CODE_LABEL_NUMBER (XEXP (x, 0));
1410 return hash;
1412 case SYMBOL_REF:
1414 /* Don't hash on the symbol's address to avoid bootstrap differences.
1415 Different hash values may cause expressions to be recorded in
1416 different orders and thus different registers to be used in the
1417 final assembler. This also avoids differences in the dump files
1418 between various stages. */
1419 unsigned int h = 0;
1420 unsigned char *p = (unsigned char *) XSTR (x, 0);
1421 while (*p)
1422 h += (h << 7) + *p++; /* ??? revisit */
1423 hash += ((unsigned) SYMBOL_REF << 7) + h;
1424 return hash;
1427 case MEM:
1428 if (MEM_VOLATILE_P (x))
1430 *do_not_record_p = 1;
1431 return 0;
1433 hash += (unsigned) MEM;
1434 x = XEXP (x, 0);
1435 goto repeat;
1437 case PRE_DEC:
1438 case PRE_INC:
1439 case POST_DEC:
1440 case POST_INC:
1441 case PC:
1442 case CC0:
1443 case CALL:
1444 case UNSPEC_VOLATILE:
1445 *do_not_record_p = 1;
1446 return 0;
1448 case ASM_OPERANDS:
1449 if (MEM_VOLATILE_P (x))
1451 *do_not_record_p = 1;
1452 return 0;
1455 default:
1456 break;
1459 i = GET_RTX_LENGTH (code) - 1;
1460 hash += (unsigned) code + (unsigned) GET_MODE (x);
1461 fmt = GET_RTX_FORMAT (code);
1462 for (; i >= 0; i--)
1464 if (fmt[i] == 'e')
1466 rtx tem = XEXP (x, i);
1468 /* If we are about to do the last recursive call
1469 needed at this level, change it into iteration.
1470 This function is called enough to be worth it. */
1471 if (i == 0)
1473 x = tem;
1474 goto repeat;
1476 hash += hash_expr_1 (tem, 0, do_not_record_p);
1477 if (*do_not_record_p)
1478 return 0;
1480 else if (fmt[i] == 'E')
1481 for (j = 0; j < XVECLEN (x, i); j++)
1483 hash += hash_expr_1 (XVECEXP (x, i, j), 0, do_not_record_p);
1484 if (*do_not_record_p)
1485 return 0;
1487 else if (fmt[i] == 's')
1489 register unsigned char *p = (unsigned char *) XSTR (x, i);
1490 if (p)
1491 while (*p)
1492 hash += *p++;
1494 else if (fmt[i] == 'i')
1496 register unsigned tem = XINT (x, i);
1497 hash += tem;
1499 else
1500 abort ();
1503 return hash;
1506 /* Hash a set of register REGNO.
1508 Sets are hashed on the register that is set.
1509 This simplifies the PRE copy propagation code.
1511 ??? May need to make things more elaborate. Later, as necessary. */
1513 static unsigned int
1514 hash_set (regno, hash_table_size)
1515 int regno;
1516 int hash_table_size;
1518 unsigned int hash;
1520 hash = regno;
1521 return hash % hash_table_size;
1524 /* Return non-zero if exp1 is equivalent to exp2.
1525 ??? Borrowed from cse.c. Might want to remerge with cse.c. Later. */
1527 static int
1528 expr_equiv_p (x, y)
1529 rtx x, y;
1531 register int i, j;
1532 register enum rtx_code code;
1533 register const char *fmt;
1535 if (x == y)
1536 return 1;
1537 if (x == 0 || y == 0)
1538 return x == y;
1540 code = GET_CODE (x);
1541 if (code != GET_CODE (y))
1542 return 0;
1544 /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent. */
1545 if (GET_MODE (x) != GET_MODE (y))
1546 return 0;
1548 switch (code)
1550 case PC:
1551 case CC0:
1552 return x == y;
1554 case CONST_INT:
1555 return INTVAL (x) == INTVAL (y);
1557 case LABEL_REF:
1558 return XEXP (x, 0) == XEXP (y, 0);
1560 case SYMBOL_REF:
1561 return XSTR (x, 0) == XSTR (y, 0);
1563 case REG:
1564 return REGNO (x) == REGNO (y);
1566 /* For commutative operations, check both orders. */
1567 case PLUS:
1568 case MULT:
1569 case AND:
1570 case IOR:
1571 case XOR:
1572 case NE:
1573 case EQ:
1574 return ((expr_equiv_p (XEXP (x, 0), XEXP (y, 0))
1575 && expr_equiv_p (XEXP (x, 1), XEXP (y, 1)))
1576 || (expr_equiv_p (XEXP (x, 0), XEXP (y, 1))
1577 && expr_equiv_p (XEXP (x, 1), XEXP (y, 0))));
1579 default:
1580 break;
1583 /* Compare the elements. If any pair of corresponding elements
1584 fail to match, return 0 for the whole thing. */
1586 fmt = GET_RTX_FORMAT (code);
1587 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1589 switch (fmt[i])
1591 case 'e':
1592 if (! expr_equiv_p (XEXP (x, i), XEXP (y, i)))
1593 return 0;
1594 break;
1596 case 'E':
1597 if (XVECLEN (x, i) != XVECLEN (y, i))
1598 return 0;
1599 for (j = 0; j < XVECLEN (x, i); j++)
1600 if (! expr_equiv_p (XVECEXP (x, i, j), XVECEXP (y, i, j)))
1601 return 0;
1602 break;
1604 case 's':
1605 if (strcmp (XSTR (x, i), XSTR (y, i)))
1606 return 0;
1607 break;
1609 case 'i':
1610 if (XINT (x, i) != XINT (y, i))
1611 return 0;
1612 break;
1614 case 'w':
1615 if (XWINT (x, i) != XWINT (y, i))
1616 return 0;
1617 break;
1619 case '0':
1620 break;
1622 default:
1623 abort ();
1627 return 1;
1630 /* Insert expression X in INSN in the hash table.
1631 If it is already present, record it as the last occurrence in INSN's
1632 basic block.
1634 MODE is the mode of the value X is being stored into.
1635 It is only used if X is a CONST_INT.
1637 ANTIC_P is non-zero if X is an anticipatable expression.
1638 AVAIL_P is non-zero if X is an available expression. */
1640 static void
1641 insert_expr_in_table (x, mode, insn, antic_p, avail_p)
1642 rtx x;
1643 enum machine_mode mode;
1644 rtx insn;
1645 int antic_p, avail_p;
1647 int found, do_not_record_p;
1648 unsigned int hash;
1649 struct expr *cur_expr, *last_expr = NULL;
1650 struct occr *antic_occr, *avail_occr;
1651 struct occr *last_occr = NULL;
1653 hash = hash_expr (x, mode, &do_not_record_p, expr_hash_table_size);
1655 /* Do not insert expression in table if it contains volatile operands,
1656 or if hash_expr determines the expression is something we don't want
1657 to or can't handle. */
1658 if (do_not_record_p)
1659 return;
1661 cur_expr = expr_hash_table[hash];
1662 found = 0;
1664 while (cur_expr && ! (found = expr_equiv_p (cur_expr->expr, x)))
1666 /* If the expression isn't found, save a pointer to the end of
1667 the list. */
1668 last_expr = cur_expr;
1669 cur_expr = cur_expr->next_same_hash;
1672 if (! found)
1674 cur_expr = (struct expr *) gcse_alloc (sizeof (struct expr));
1675 bytes_used += sizeof (struct expr);
1676 if (expr_hash_table[hash] == NULL)
1678 /* This is the first pattern that hashed to this index. */
1679 expr_hash_table[hash] = cur_expr;
1681 else
1683 /* Add EXPR to end of this hash chain. */
1684 last_expr->next_same_hash = cur_expr;
1686 /* Set the fields of the expr element. */
1687 cur_expr->expr = x;
1688 cur_expr->bitmap_index = n_exprs++;
1689 cur_expr->next_same_hash = NULL;
1690 cur_expr->antic_occr = NULL;
1691 cur_expr->avail_occr = NULL;
1694 /* Now record the occurrence(s). */
1696 if (antic_p)
1698 antic_occr = cur_expr->antic_occr;
1700 /* Search for another occurrence in the same basic block. */
1701 while (antic_occr && BLOCK_NUM (antic_occr->insn) != BLOCK_NUM (insn))
1703 /* If an occurrence isn't found, save a pointer to the end of
1704 the list. */
1705 last_occr = antic_occr;
1706 antic_occr = antic_occr->next;
1709 if (antic_occr)
1711 /* Found another instance of the expression in the same basic block.
1712 Prefer the currently recorded one. We want the first one in the
1713 block and the block is scanned from start to end. */
1714 ; /* nothing to do */
1716 else
1718 /* First occurrence of this expression in this basic block. */
1719 antic_occr = (struct occr *) gcse_alloc (sizeof (struct occr));
1720 bytes_used += sizeof (struct occr);
1721 /* First occurrence of this expression in any block? */
1722 if (cur_expr->antic_occr == NULL)
1723 cur_expr->antic_occr = antic_occr;
1724 else
1725 last_occr->next = antic_occr;
1726 antic_occr->insn = insn;
1727 antic_occr->next = NULL;
1731 if (avail_p)
1733 avail_occr = cur_expr->avail_occr;
1735 /* Search for another occurrence in the same basic block. */
1736 while (avail_occr && BLOCK_NUM (avail_occr->insn) != BLOCK_NUM (insn))
1738 /* If an occurrence isn't found, save a pointer to the end of
1739 the list. */
1740 last_occr = avail_occr;
1741 avail_occr = avail_occr->next;
1744 if (avail_occr)
1746 /* Found another instance of the expression in the same basic block.
1747 Prefer this occurrence to the currently recorded one. We want
1748 the last one in the block and the block is scanned from start
1749 to end. */
1750 avail_occr->insn = insn;
1752 else
1754 /* First occurrence of this expression in this basic block. */
1755 avail_occr = (struct occr *) gcse_alloc (sizeof (struct occr));
1756 bytes_used += sizeof (struct occr);
1757 /* First occurrence of this expression in any block? */
1758 if (cur_expr->avail_occr == NULL)
1759 cur_expr->avail_occr = avail_occr;
1760 else
1761 last_occr->next = avail_occr;
1762 avail_occr->insn = insn;
1763 avail_occr->next = NULL;
1768 /* Insert pattern X in INSN in the hash table.
1769 X is a SET of a reg to either another reg or a constant.
1770 If it is already present, record it as the last occurrence in INSN's
1771 basic block. */
1773 static void
1774 insert_set_in_table (x, insn)
1775 rtx x;
1776 rtx insn;
1778 int found;
1779 unsigned int hash;
1780 struct expr *cur_expr, *last_expr = NULL;
1781 struct occr *cur_occr, *last_occr = NULL;
1783 if (GET_CODE (x) != SET
1784 || GET_CODE (SET_DEST (x)) != REG)
1785 abort ();
1787 hash = hash_set (REGNO (SET_DEST (x)), set_hash_table_size);
1789 cur_expr = set_hash_table[hash];
1790 found = 0;
1792 while (cur_expr && ! (found = expr_equiv_p (cur_expr->expr, x)))
1794 /* If the expression isn't found, save a pointer to the end of
1795 the list. */
1796 last_expr = cur_expr;
1797 cur_expr = cur_expr->next_same_hash;
1800 if (! found)
1802 cur_expr = (struct expr *) gcse_alloc (sizeof (struct expr));
1803 bytes_used += sizeof (struct expr);
1804 if (set_hash_table[hash] == NULL)
1806 /* This is the first pattern that hashed to this index. */
1807 set_hash_table[hash] = cur_expr;
1809 else
1811 /* Add EXPR to end of this hash chain. */
1812 last_expr->next_same_hash = cur_expr;
1814 /* Set the fields of the expr element.
1815 We must copy X because it can be modified when copy propagation is
1816 performed on its operands. */
1817 /* ??? Should this go in a different obstack? */
1818 cur_expr->expr = copy_rtx (x);
1819 cur_expr->bitmap_index = n_sets++;
1820 cur_expr->next_same_hash = NULL;
1821 cur_expr->antic_occr = NULL;
1822 cur_expr->avail_occr = NULL;
1825 /* Now record the occurrence. */
1827 cur_occr = cur_expr->avail_occr;
1829 /* Search for another occurrence in the same basic block. */
1830 while (cur_occr && BLOCK_NUM (cur_occr->insn) != BLOCK_NUM (insn))
1832 /* If an occurrence isn't found, save a pointer to the end of
1833 the list. */
1834 last_occr = cur_occr;
1835 cur_occr = cur_occr->next;
1838 if (cur_occr)
1840 /* Found another instance of the expression in the same basic block.
1841 Prefer this occurrence to the currently recorded one. We want
1842 the last one in the block and the block is scanned from start
1843 to end. */
1844 cur_occr->insn = insn;
1846 else
1848 /* First occurrence of this expression in this basic block. */
1849 cur_occr = (struct occr *) gcse_alloc (sizeof (struct occr));
1850 bytes_used += sizeof (struct occr);
1851 /* First occurrence of this expression in any block? */
1852 if (cur_expr->avail_occr == NULL)
1853 cur_expr->avail_occr = cur_occr;
1854 else
1855 last_occr->next = cur_occr;
1856 cur_occr->insn = insn;
1857 cur_occr->next = NULL;
1861 /* Scan pattern PAT of INSN and add an entry to the hash table.
1862 If SET_P is non-zero, this is for the assignment hash table,
1863 otherwise it is for the expression hash table. */
1865 static void
1866 hash_scan_set (pat, insn, set_p)
1867 rtx pat, insn;
1868 int set_p;
1870 rtx src = SET_SRC (pat);
1871 rtx dest = SET_DEST (pat);
1873 if (GET_CODE (src) == CALL)
1874 hash_scan_call (src, insn);
1876 if (GET_CODE (dest) == REG)
1878 int regno = REGNO (dest);
1879 rtx tmp;
1881 /* Only record sets of pseudo-regs in the hash table. */
1882 if (! set_p
1883 && regno >= FIRST_PSEUDO_REGISTER
1884 /* Don't GCSE something if we can't do a reg/reg copy. */
1885 && can_copy_p [GET_MODE (dest)]
1886 /* Is SET_SRC something we want to gcse? */
1887 && want_to_gcse_p (src))
1889 /* An expression is not anticipatable if its operands are
1890 modified before this insn. */
1891 int antic_p = ! optimize_size && oprs_anticipatable_p (src, insn);
1892 /* An expression is not available if its operands are
1893 subsequently modified, including this insn. */
1894 int avail_p = oprs_available_p (src, insn);
1895 insert_expr_in_table (src, GET_MODE (dest), insn, antic_p, avail_p);
1897 /* Record sets for constant/copy propagation. */
1898 else if (set_p
1899 && regno >= FIRST_PSEUDO_REGISTER
1900 && ((GET_CODE (src) == REG
1901 && REGNO (src) >= FIRST_PSEUDO_REGISTER
1902 && can_copy_p [GET_MODE (dest)])
1903 || GET_CODE (src) == CONST_INT
1904 || GET_CODE (src) == SYMBOL_REF
1905 || GET_CODE (src) == CONST_DOUBLE)
1906 /* A copy is not available if its src or dest is subsequently
1907 modified. Here we want to search from INSN+1 on, but
1908 oprs_available_p searches from INSN on. */
1909 && (insn == BLOCK_END (BLOCK_NUM (insn))
1910 || ((tmp = next_nonnote_insn (insn)) != NULL_RTX
1911 && oprs_available_p (pat, tmp))))
1912 insert_set_in_table (pat, insn);
1916 static void
1917 hash_scan_clobber (x, insn)
1918 rtx x ATTRIBUTE_UNUSED, insn ATTRIBUTE_UNUSED;
1920 /* Currently nothing to do. */
1923 static void
1924 hash_scan_call (x, insn)
1925 rtx x ATTRIBUTE_UNUSED, insn ATTRIBUTE_UNUSED;
1927 /* Currently nothing to do. */
1930 /* Process INSN and add hash table entries as appropriate.
1932 Only available expressions that set a single pseudo-reg are recorded.
1934 Single sets in a PARALLEL could be handled, but it's an extra complication
1935 that isn't dealt with right now. The trick is handling the CLOBBERs that
1936 are also in the PARALLEL. Later.
1938 If SET_P is non-zero, this is for the assignment hash table,
1939 otherwise it is for the expression hash table.
1940 If IN_LIBCALL_BLOCK nonzero, we are in a libcall block, and should
1941 not record any expressions. */
1943 static void
1944 hash_scan_insn (insn, set_p, in_libcall_block)
1945 rtx insn;
1946 int set_p;
1947 int in_libcall_block;
1949 rtx pat = PATTERN (insn);
1951 /* Pick out the sets of INSN and for other forms of instructions record
1952 what's been modified. */
1954 if (GET_CODE (pat) == SET && ! in_libcall_block)
1956 /* Ignore obvious no-ops. */
1957 if (SET_SRC (pat) != SET_DEST (pat))
1958 hash_scan_set (pat, insn, set_p);
1960 else if (GET_CODE (pat) == PARALLEL)
1962 int i;
1964 for (i = 0; i < XVECLEN (pat, 0); i++)
1966 rtx x = XVECEXP (pat, 0, i);
1968 if (GET_CODE (x) == SET)
1970 if (GET_CODE (SET_SRC (x)) == CALL)
1971 hash_scan_call (SET_SRC (x), insn);
1973 else if (GET_CODE (x) == CLOBBER)
1974 hash_scan_clobber (x, insn);
1975 else if (GET_CODE (x) == CALL)
1976 hash_scan_call (x, insn);
1979 else if (GET_CODE (pat) == CLOBBER)
1980 hash_scan_clobber (pat, insn);
1981 else if (GET_CODE (pat) == CALL)
1982 hash_scan_call (pat, insn);
1985 static void
1986 dump_hash_table (file, name, table, table_size, total_size)
1987 FILE *file;
1988 const char *name;
1989 struct expr **table;
1990 int table_size, total_size;
1992 int i;
1993 /* Flattened out table, so it's printed in proper order. */
1994 struct expr **flat_table = (struct expr **) alloca (total_size * sizeof (struct expr *));
1995 unsigned int *hash_val = (unsigned int *) alloca (total_size * sizeof (unsigned int));
1997 bzero ((char *) flat_table, total_size * sizeof (struct expr *));
1998 for (i = 0; i < table_size; i++)
2000 struct expr *expr;
2002 for (expr = table[i]; expr != NULL; expr = expr->next_same_hash)
2004 flat_table[expr->bitmap_index] = expr;
2005 hash_val[expr->bitmap_index] = i;
2009 fprintf (file, "%s hash table (%d buckets, %d entries)\n",
2010 name, table_size, total_size);
2012 for (i = 0; i < total_size; i++)
2014 struct expr *expr = flat_table[i];
2016 fprintf (file, "Index %d (hash value %d)\n ",
2017 expr->bitmap_index, hash_val[i]);
2018 print_rtl (file, expr->expr);
2019 fprintf (file, "\n");
2022 fprintf (file, "\n");
2025 /* Record register first/last/block set information for REGNO in INSN.
2026 reg_first_set records the first place in the block where the register
2027 is set and is used to compute "anticipatability".
2028 reg_last_set records the last place in the block where the register
2029 is set and is used to compute "availability".
2030 reg_set_in_block records whether the register is set in the block
2031 and is used to compute "transparency". */
2033 static void
2034 record_last_reg_set_info (insn, regno)
2035 rtx insn;
2036 int regno;
2038 if (reg_first_set[regno] == NEVER_SET)
2039 reg_first_set[regno] = INSN_CUID (insn);
2040 reg_last_set[regno] = INSN_CUID (insn);
2041 SET_BIT (reg_set_in_block[BLOCK_NUM (insn)], regno);
2044 /* Record memory first/last/block set information for INSN. */
2046 static void
2047 record_last_mem_set_info (insn)
2048 rtx insn;
2050 if (mem_first_set == NEVER_SET)
2051 mem_first_set = INSN_CUID (insn);
2052 mem_last_set = INSN_CUID (insn);
2053 mem_set_in_block[BLOCK_NUM (insn)] = 1;
2056 /* Used for communicating between next two routines. */
2057 static rtx last_set_insn;
2059 /* Called from compute_hash_table via note_stores to handle one
2060 SET or CLOBBER in an insn. */
2062 static void
2063 record_last_set_info (dest, setter)
2064 rtx dest, setter ATTRIBUTE_UNUSED;
2066 if (GET_CODE (dest) == SUBREG)
2067 dest = SUBREG_REG (dest);
2069 if (GET_CODE (dest) == REG)
2070 record_last_reg_set_info (last_set_insn, REGNO (dest));
2071 else if (GET_CODE (dest) == MEM
2072 /* Ignore pushes, they clobber nothing. */
2073 && ! push_operand (dest, GET_MODE (dest)))
2074 record_last_mem_set_info (last_set_insn);
2077 /* Top level function to create an expression or assignment hash table.
2079 Expression entries are placed in the hash table if
2080 - they are of the form (set (pseudo-reg) src),
2081 - src is something we want to perform GCSE on,
2082 - none of the operands are subsequently modified in the block
2084 Assignment entries are placed in the hash table if
2085 - they are of the form (set (pseudo-reg) src),
2086 - src is something we want to perform const/copy propagation on,
2087 - none of the operands or target are subsequently modified in the block
2088 Currently src must be a pseudo-reg or a const_int.
2090 F is the first insn.
2091 SET_P is non-zero for computing the assignment hash table. */
2093 static void
2094 compute_hash_table (set_p)
2095 int set_p;
2097 int bb;
2099 /* While we compute the hash table we also compute a bit array of which
2100 registers are set in which blocks.
2101 We also compute which blocks set memory, in the absence of aliasing
2102 support [which is TODO].
2103 ??? This isn't needed during const/copy propagation, but it's cheap to
2104 compute. Later. */
2105 sbitmap_vector_zero (reg_set_in_block, n_basic_blocks);
2106 bzero ((char *) mem_set_in_block, n_basic_blocks);
2108 /* Some working arrays used to track first and last set in each block. */
2109 /* ??? One could use alloca here, but at some size a threshold is crossed
2110 beyond which one should use malloc. Are we at that threshold here? */
2111 reg_first_set = (int *) gmalloc (max_gcse_regno * sizeof (int));
2112 reg_last_set = (int *) gmalloc (max_gcse_regno * sizeof (int));
2114 for (bb = 0; bb < n_basic_blocks; bb++)
2116 rtx insn;
2117 int regno;
2118 int in_libcall_block;
2119 int i;
2121 /* First pass over the instructions records information used to
2122 determine when registers and memory are first and last set.
2123 ??? The mem_set_in_block and hard-reg reg_set_in_block computation
2124 could be moved to compute_sets since they currently don't change. */
2126 for (i = 0; i < max_gcse_regno; i++)
2127 reg_first_set[i] = reg_last_set[i] = NEVER_SET;
2128 mem_first_set = NEVER_SET;
2129 mem_last_set = NEVER_SET;
2131 for (insn = BLOCK_HEAD (bb);
2132 insn && insn != NEXT_INSN (BLOCK_END (bb));
2133 insn = NEXT_INSN (insn))
2135 #ifdef NON_SAVING_SETJMP
2136 if (NON_SAVING_SETJMP && GET_CODE (insn) == NOTE
2137 && NOTE_LINE_NUMBER (insn) == NOTE_INSN_SETJMP)
2139 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
2140 record_last_reg_set_info (insn, regno);
2141 continue;
2143 #endif
2145 if (GET_RTX_CLASS (GET_CODE (insn)) != 'i')
2146 continue;
2148 if (GET_CODE (insn) == CALL_INSN)
2150 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
2151 if ((call_used_regs[regno]
2152 && regno != STACK_POINTER_REGNUM
2153 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
2154 && regno != HARD_FRAME_POINTER_REGNUM
2155 #endif
2156 #if ARG_POINTER_REGNUM != FRAME_POINTER_REGNUM
2157 && ! (regno == ARG_POINTER_REGNUM && fixed_regs[regno])
2158 #endif
2159 #if defined (PIC_OFFSET_TABLE_REGNUM) && !defined (PIC_OFFSET_TABLE_REG_CALL_CLOBBERED)
2160 && ! (regno == PIC_OFFSET_TABLE_REGNUM && flag_pic)
2161 #endif
2163 && regno != FRAME_POINTER_REGNUM)
2164 || global_regs[regno])
2165 record_last_reg_set_info (insn, regno);
2166 if (! CONST_CALL_P (insn))
2167 record_last_mem_set_info (insn);
2170 last_set_insn = insn;
2171 note_stores (PATTERN (insn), record_last_set_info);
2174 /* The next pass builds the hash table. */
2176 for (insn = BLOCK_HEAD (bb), in_libcall_block = 0;
2177 insn && insn != NEXT_INSN (BLOCK_END (bb));
2178 insn = NEXT_INSN (insn))
2180 if (GET_RTX_CLASS (GET_CODE (insn)) == 'i')
2182 if (find_reg_note (insn, REG_LIBCALL, NULL_RTX))
2183 in_libcall_block = 1;
2184 else if (find_reg_note (insn, REG_RETVAL, NULL_RTX))
2185 in_libcall_block = 0;
2186 hash_scan_insn (insn, set_p, in_libcall_block);
2191 free (reg_first_set);
2192 free (reg_last_set);
2193 /* Catch bugs early. */
2194 reg_first_set = reg_last_set = 0;
2197 /* Allocate space for the set hash table.
2198 N_INSNS is the number of instructions in the function.
2199 It is used to determine the number of buckets to use. */
2201 static void
2202 alloc_set_hash_table (n_insns)
2203 int n_insns;
2205 int n;
2207 set_hash_table_size = n_insns / 4;
2208 if (set_hash_table_size < 11)
2209 set_hash_table_size = 11;
2210 /* Attempt to maintain efficient use of hash table.
2211 Making it an odd number is simplest for now.
2212 ??? Later take some measurements. */
2213 set_hash_table_size |= 1;
2214 n = set_hash_table_size * sizeof (struct expr *);
2215 set_hash_table = (struct expr **) gmalloc (n);
2218 /* Free things allocated by alloc_set_hash_table. */
2220 static void
2221 free_set_hash_table ()
2223 free (set_hash_table);
2226 /* Compute the hash table for doing copy/const propagation. */
2228 static void
2229 compute_set_hash_table ()
2231 /* Initialize count of number of entries in hash table. */
2232 n_sets = 0;
2233 bzero ((char *) set_hash_table, set_hash_table_size * sizeof (struct expr *));
2235 compute_hash_table (1);
2238 /* Allocate space for the expression hash table.
2239 N_INSNS is the number of instructions in the function.
2240 It is used to determine the number of buckets to use. */
2242 static void
2243 alloc_expr_hash_table (n_insns)
2244 int n_insns;
2246 int n;
2248 expr_hash_table_size = n_insns / 2;
2249 /* Make sure the amount is usable. */
2250 if (expr_hash_table_size < 11)
2251 expr_hash_table_size = 11;
2252 /* Attempt to maintain efficient use of hash table.
2253 Making it an odd number is simplest for now.
2254 ??? Later take some measurements. */
2255 expr_hash_table_size |= 1;
2256 n = expr_hash_table_size * sizeof (struct expr *);
2257 expr_hash_table = (struct expr **) gmalloc (n);
2260 /* Free things allocated by alloc_expr_hash_table. */
2262 static void
2263 free_expr_hash_table ()
2265 free (expr_hash_table);
2268 /* Compute the hash table for doing GCSE. */
2270 static void
2271 compute_expr_hash_table ()
2273 /* Initialize count of number of entries in hash table. */
2274 n_exprs = 0;
2275 bzero ((char *) expr_hash_table, expr_hash_table_size * sizeof (struct expr *));
2277 compute_hash_table (0);
2280 /* Expression tracking support. */
2282 /* Lookup pattern PAT in the expression table.
2283 The result is a pointer to the table entry, or NULL if not found. */
2285 static struct expr *
2286 lookup_expr (pat)
2287 rtx pat;
2289 int do_not_record_p;
2290 unsigned int hash = hash_expr (pat, GET_MODE (pat), &do_not_record_p,
2291 expr_hash_table_size);
2292 struct expr *expr;
2294 if (do_not_record_p)
2295 return NULL;
2297 expr = expr_hash_table[hash];
2299 while (expr && ! expr_equiv_p (expr->expr, pat))
2300 expr = expr->next_same_hash;
2302 return expr;
2305 /* Lookup REGNO in the set table.
2306 If PAT is non-NULL look for the entry that matches it, otherwise return
2307 the first entry for REGNO.
2308 The result is a pointer to the table entry, or NULL if not found. */
2310 static struct expr *
2311 lookup_set (regno, pat)
2312 int regno;
2313 rtx pat;
2315 unsigned int hash = hash_set (regno, set_hash_table_size);
2316 struct expr *expr;
2318 expr = set_hash_table[hash];
2320 if (pat)
2322 while (expr && ! expr_equiv_p (expr->expr, pat))
2323 expr = expr->next_same_hash;
2325 else
2327 while (expr && REGNO (SET_DEST (expr->expr)) != regno)
2328 expr = expr->next_same_hash;
2331 return expr;
2334 /* Return the next entry for REGNO in list EXPR. */
2336 static struct expr *
2337 next_set (regno, expr)
2338 int regno;
2339 struct expr *expr;
2342 expr = expr->next_same_hash;
2343 while (expr && REGNO (SET_DEST (expr->expr)) != regno);
2344 return expr;
2347 /* Reset tables used to keep track of what's still available [since the
2348 start of the block]. */
2350 static void
2351 reset_opr_set_tables ()
2353 /* Maintain a bitmap of which regs have been set since beginning of
2354 the block. */
2355 sbitmap_zero (reg_set_bitmap);
2356 /* Also keep a record of the last instruction to modify memory.
2357 For now this is very trivial, we only record whether any memory
2358 location has been modified. */
2359 mem_last_set = 0;
2362 /* Return non-zero if the operands of X are not set before INSN in
2363 INSN's basic block. */
2365 static int
2366 oprs_not_set_p (x, insn)
2367 rtx x, insn;
2369 int i;
2370 enum rtx_code code;
2371 const char *fmt;
2373 /* repeat is used to turn tail-recursion into iteration. */
2374 repeat:
2376 if (x == 0)
2377 return 1;
2379 code = GET_CODE (x);
2380 switch (code)
2382 case PC:
2383 case CC0:
2384 case CONST:
2385 case CONST_INT:
2386 case CONST_DOUBLE:
2387 case SYMBOL_REF:
2388 case LABEL_REF:
2389 case ADDR_VEC:
2390 case ADDR_DIFF_VEC:
2391 return 1;
2393 case MEM:
2394 if (mem_last_set != 0)
2395 return 0;
2396 x = XEXP (x, 0);
2397 goto repeat;
2399 case REG:
2400 return ! TEST_BIT (reg_set_bitmap, REGNO (x));
2402 default:
2403 break;
2406 fmt = GET_RTX_FORMAT (code);
2407 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2409 if (fmt[i] == 'e')
2411 int not_set_p;
2412 /* If we are about to do the last recursive call
2413 needed at this level, change it into iteration.
2414 This function is called enough to be worth it. */
2415 if (i == 0)
2417 x = XEXP (x, 0);
2418 goto repeat;
2420 not_set_p = oprs_not_set_p (XEXP (x, i), insn);
2421 if (! not_set_p)
2422 return 0;
2424 else if (fmt[i] == 'E')
2426 int j;
2427 for (j = 0; j < XVECLEN (x, i); j++)
2429 int not_set_p = oprs_not_set_p (XVECEXP (x, i, j), insn);
2430 if (! not_set_p)
2431 return 0;
2436 return 1;
2439 /* Mark things set by a CALL. */
2441 static void
2442 mark_call (insn)
2443 rtx insn;
2445 mem_last_set = INSN_CUID (insn);
2448 /* Mark things set by a SET. */
2450 static void
2451 mark_set (pat, insn)
2452 rtx pat, insn;
2454 rtx dest = SET_DEST (pat);
2456 while (GET_CODE (dest) == SUBREG
2457 || GET_CODE (dest) == ZERO_EXTRACT
2458 || GET_CODE (dest) == SIGN_EXTRACT
2459 || GET_CODE (dest) == STRICT_LOW_PART)
2460 dest = XEXP (dest, 0);
2462 if (GET_CODE (dest) == REG)
2463 SET_BIT (reg_set_bitmap, REGNO (dest));
2464 else if (GET_CODE (dest) == MEM)
2465 mem_last_set = INSN_CUID (insn);
2467 if (GET_CODE (SET_SRC (pat)) == CALL)
2468 mark_call (insn);
2471 /* Record things set by a CLOBBER. */
2473 static void
2474 mark_clobber (pat, insn)
2475 rtx pat, insn;
2477 rtx clob = XEXP (pat, 0);
2479 while (GET_CODE (clob) == SUBREG || GET_CODE (clob) == STRICT_LOW_PART)
2480 clob = XEXP (clob, 0);
2482 if (GET_CODE (clob) == REG)
2483 SET_BIT (reg_set_bitmap, REGNO (clob));
2484 else
2485 mem_last_set = INSN_CUID (insn);
2488 /* Record things set by INSN.
2489 This data is used by oprs_not_set_p. */
2491 static void
2492 mark_oprs_set (insn)
2493 rtx insn;
2495 rtx pat = PATTERN (insn);
2497 if (GET_CODE (pat) == SET)
2498 mark_set (pat, insn);
2499 else if (GET_CODE (pat) == PARALLEL)
2501 int i;
2503 for (i = 0; i < XVECLEN (pat, 0); i++)
2505 rtx x = XVECEXP (pat, 0, i);
2507 if (GET_CODE (x) == SET)
2508 mark_set (x, insn);
2509 else if (GET_CODE (x) == CLOBBER)
2510 mark_clobber (x, insn);
2511 else if (GET_CODE (x) == CALL)
2512 mark_call (insn);
2515 else if (GET_CODE (pat) == CLOBBER)
2516 mark_clobber (pat, insn);
2517 else if (GET_CODE (pat) == CALL)
2518 mark_call (insn);
2522 /* Classic GCSE reaching definition support. */
2524 /* Allocate reaching def variables. */
2526 static void
2527 alloc_rd_mem (n_blocks, n_insns)
2528 int n_blocks, n_insns;
2530 rd_kill = (sbitmap *) sbitmap_vector_alloc (n_blocks, n_insns);
2531 sbitmap_vector_zero (rd_kill, n_basic_blocks);
2533 rd_gen = (sbitmap *) sbitmap_vector_alloc (n_blocks, n_insns);
2534 sbitmap_vector_zero (rd_gen, n_basic_blocks);
2536 reaching_defs = (sbitmap *) sbitmap_vector_alloc (n_blocks, n_insns);
2537 sbitmap_vector_zero (reaching_defs, n_basic_blocks);
2539 rd_out = (sbitmap *) sbitmap_vector_alloc (n_blocks, n_insns);
2540 sbitmap_vector_zero (rd_out, n_basic_blocks);
2543 /* Free reaching def variables. */
2545 static void
2546 free_rd_mem ()
2548 free (rd_kill);
2549 free (rd_gen);
2550 free (reaching_defs);
2551 free (rd_out);
2554 /* Add INSN to the kills of BB.
2555 REGNO, set in BB, is killed by INSN. */
2557 static void
2558 handle_rd_kill_set (insn, regno, bb)
2559 rtx insn;
2560 int regno, bb;
2562 struct reg_set *this_reg = reg_set_table[regno];
2564 while (this_reg)
2566 if (BLOCK_NUM (this_reg->insn) != BLOCK_NUM (insn))
2567 SET_BIT (rd_kill[bb], INSN_CUID (this_reg->insn));
2568 this_reg = this_reg->next;
2572 /* Compute the set of kill's for reaching definitions. */
2574 static void
2575 compute_kill_rd ()
2577 int bb,cuid;
2579 /* For each block
2580 For each set bit in `gen' of the block (i.e each insn which
2581 generates a definition in the block)
2582 Call the reg set by the insn corresponding to that bit regx
2583 Look at the linked list starting at reg_set_table[regx]
2584 For each setting of regx in the linked list, which is not in
2585 this block
2586 Set the bit in `kill' corresponding to that insn
2589 for (bb = 0; bb < n_basic_blocks; bb++)
2591 for (cuid = 0; cuid < max_cuid; cuid++)
2593 if (TEST_BIT (rd_gen[bb], cuid))
2595 rtx insn = CUID_INSN (cuid);
2596 rtx pat = PATTERN (insn);
2598 if (GET_CODE (insn) == CALL_INSN)
2600 int regno;
2602 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
2604 if ((call_used_regs[regno]
2605 && regno != STACK_POINTER_REGNUM
2606 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
2607 && regno != HARD_FRAME_POINTER_REGNUM
2608 #endif
2609 #if ARG_POINTER_REGNUM != FRAME_POINTER_REGNUM
2610 && ! (regno == ARG_POINTER_REGNUM
2611 && fixed_regs[regno])
2612 #endif
2613 #if defined (PIC_OFFSET_TABLE_REGNUM) && !defined (PIC_OFFSET_TABLE_REG_CALL_CLOBBERED)
2614 && ! (regno == PIC_OFFSET_TABLE_REGNUM && flag_pic)
2615 #endif
2616 && regno != FRAME_POINTER_REGNUM)
2617 || global_regs[regno])
2618 handle_rd_kill_set (insn, regno, bb);
2622 if (GET_CODE (pat) == PARALLEL)
2624 int i;
2626 /* We work backwards because ... */
2627 for (i = XVECLEN (pat, 0) - 1; i >= 0; i--)
2629 enum rtx_code code = GET_CODE (XVECEXP (pat, 0, i));
2630 if ((code == SET || code == CLOBBER)
2631 && GET_CODE (XEXP (XVECEXP (pat, 0, i), 0)) == REG)
2632 handle_rd_kill_set (insn,
2633 REGNO (XEXP (XVECEXP (pat, 0, i), 0)),
2634 bb);
2637 else if (GET_CODE (pat) == SET)
2639 if (GET_CODE (SET_DEST (pat)) == REG)
2641 /* Each setting of this register outside of this block
2642 must be marked in the set of kills in this block. */
2643 handle_rd_kill_set (insn, REGNO (SET_DEST (pat)), bb);
2646 /* FIXME: CLOBBER? */
2652 /* Compute the reaching definitions as in
2653 Compilers Principles, Techniques, and Tools. Aho, Sethi, Ullman,
2654 Chapter 10. It is the same algorithm as used for computing available
2655 expressions but applied to the gens and kills of reaching definitions. */
2657 static void
2658 compute_rd ()
2660 int bb, changed, passes;
2662 for (bb = 0; bb < n_basic_blocks; bb++)
2663 sbitmap_copy (rd_out[bb] /*dst*/, rd_gen[bb] /*src*/);
2665 passes = 0;
2666 changed = 1;
2667 while (changed)
2669 changed = 0;
2670 for (bb = 0; bb < n_basic_blocks; bb++)
2672 sbitmap_union_of_preds (reaching_defs[bb], rd_out, bb);
2673 changed |= sbitmap_union_of_diff (rd_out[bb], rd_gen[bb],
2674 reaching_defs[bb], rd_kill[bb]);
2676 passes++;
2679 if (gcse_file)
2680 fprintf (gcse_file, "reaching def computation: %d passes\n", passes);
2683 /* Classic GCSE available expression support. */
2685 /* Allocate memory for available expression computation. */
2687 static void
2688 alloc_avail_expr_mem (n_blocks, n_exprs)
2689 int n_blocks, n_exprs;
2691 ae_kill = (sbitmap *) sbitmap_vector_alloc (n_blocks, n_exprs);
2692 sbitmap_vector_zero (ae_kill, n_basic_blocks);
2694 ae_gen = (sbitmap *) sbitmap_vector_alloc (n_blocks, n_exprs);
2695 sbitmap_vector_zero (ae_gen, n_basic_blocks);
2697 ae_in = (sbitmap *) sbitmap_vector_alloc (n_blocks, n_exprs);
2698 sbitmap_vector_zero (ae_in, n_basic_blocks);
2700 ae_out = (sbitmap *) sbitmap_vector_alloc (n_blocks, n_exprs);
2701 sbitmap_vector_zero (ae_out, n_basic_blocks);
2703 u_bitmap = (sbitmap) sbitmap_alloc (n_exprs);
2704 sbitmap_ones (u_bitmap);
2707 static void
2708 free_avail_expr_mem ()
2710 free (ae_kill);
2711 free (ae_gen);
2712 free (ae_in);
2713 free (ae_out);
2714 free (u_bitmap);
2717 /* Compute the set of available expressions generated in each basic block. */
2719 static void
2720 compute_ae_gen ()
2722 int i;
2724 /* For each recorded occurrence of each expression, set ae_gen[bb][expr].
2725 This is all we have to do because an expression is not recorded if it
2726 is not available, and the only expressions we want to work with are the
2727 ones that are recorded. */
2729 for (i = 0; i < expr_hash_table_size; i++)
2731 struct expr *expr = expr_hash_table[i];
2732 while (expr != NULL)
2734 struct occr *occr = expr->avail_occr;
2735 while (occr != NULL)
2737 SET_BIT (ae_gen[BLOCK_NUM (occr->insn)], expr->bitmap_index);
2738 occr = occr->next;
2740 expr = expr->next_same_hash;
2745 /* Return non-zero if expression X is killed in BB. */
2747 static int
2748 expr_killed_p (x, bb)
2749 rtx x;
2750 int bb;
2752 int i;
2753 enum rtx_code code;
2754 const char *fmt;
2756 /* repeat is used to turn tail-recursion into iteration. */
2757 repeat:
2759 if (x == 0)
2760 return 1;
2762 code = GET_CODE (x);
2763 switch (code)
2765 case REG:
2766 return TEST_BIT (reg_set_in_block[bb], REGNO (x));
2768 case MEM:
2769 if (mem_set_in_block[bb])
2770 return 1;
2771 x = XEXP (x, 0);
2772 goto repeat;
2774 case PC:
2775 case CC0: /*FIXME*/
2776 case CONST:
2777 case CONST_INT:
2778 case CONST_DOUBLE:
2779 case SYMBOL_REF:
2780 case LABEL_REF:
2781 case ADDR_VEC:
2782 case ADDR_DIFF_VEC:
2783 return 0;
2785 default:
2786 break;
2789 i = GET_RTX_LENGTH (code) - 1;
2790 fmt = GET_RTX_FORMAT (code);
2791 for (; i >= 0; i--)
2793 if (fmt[i] == 'e')
2795 rtx tem = XEXP (x, i);
2797 /* If we are about to do the last recursive call
2798 needed at this level, change it into iteration.
2799 This function is called enough to be worth it. */
2800 if (i == 0)
2802 x = tem;
2803 goto repeat;
2805 if (expr_killed_p (tem, bb))
2806 return 1;
2808 else if (fmt[i] == 'E')
2810 int j;
2811 for (j = 0; j < XVECLEN (x, i); j++)
2813 if (expr_killed_p (XVECEXP (x, i, j), bb))
2814 return 1;
2819 return 0;
2822 /* Compute the set of available expressions killed in each basic block. */
2824 static void
2825 compute_ae_kill ()
2827 int bb,i;
2829 for (bb = 0; bb < n_basic_blocks; bb++)
2831 for (i = 0; i < expr_hash_table_size; i++)
2833 struct expr *expr = expr_hash_table[i];
2835 for ( ; expr != NULL; expr = expr->next_same_hash)
2837 /* Skip EXPR if generated in this block. */
2838 if (TEST_BIT (ae_gen[bb], expr->bitmap_index))
2839 continue;
2841 if (expr_killed_p (expr->expr, bb))
2842 SET_BIT (ae_kill[bb], expr->bitmap_index);
2848 /* Compute available expressions.
2850 Implement the algorithm to find available expressions
2851 as given in the Aho Sethi Ullman book, pages 627-631. */
2853 static void
2854 compute_available ()
2856 int bb, changed, passes;
2858 sbitmap_zero (ae_in[0]);
2860 sbitmap_copy (ae_out[0] /*dst*/, ae_gen[0] /*src*/);
2862 for (bb = 1; bb < n_basic_blocks; bb++)
2863 sbitmap_difference (ae_out[bb], u_bitmap, ae_kill[bb]);
2865 passes = 0;
2866 changed = 1;
2867 while (changed)
2869 changed = 0;
2870 for (bb = 1; bb < n_basic_blocks; bb++)
2872 sbitmap_intersection_of_preds (ae_in[bb], ae_out, bb);
2873 changed |= sbitmap_union_of_diff (ae_out[bb], ae_gen[bb],
2874 ae_in[bb], ae_kill[bb]);
2876 passes++;
2879 if (gcse_file)
2880 fprintf (gcse_file, "avail expr computation: %d passes\n", passes);
2883 /* Actually perform the Classic GCSE optimizations. */
2885 /* Return non-zero if occurrence OCCR of expression EXPR reaches block BB.
2887 CHECK_SELF_LOOP is non-zero if we should consider a block reaching itself
2888 as a positive reach. We want to do this when there are two computations
2889 of the expression in the block.
2891 VISITED is a pointer to a working buffer for tracking which BB's have
2892 been visited. It is NULL for the top-level call.
2894 We treat reaching expressions that go through blocks containing the same
2895 reaching expression as "not reaching". E.g. if EXPR is generated in blocks
2896 2 and 3, INSN is in block 4, and 2->3->4, we treat the expression in block
2897 2 as not reaching. The intent is to improve the probability of finding
2898 only one reaching expression and to reduce register lifetimes by picking
2899 the closest such expression. */
2901 static int
2902 expr_reaches_here_p (occr, expr, bb, check_self_loop, visited)
2903 struct occr *occr;
2904 struct expr *expr;
2905 int bb;
2906 int check_self_loop;
2907 char *visited;
2909 edge pred;
2911 if (visited == NULL)
2913 visited = (char *) alloca (n_basic_blocks);
2914 bzero (visited, n_basic_blocks);
2917 for (pred = BASIC_BLOCK(bb)->pred; pred != NULL; pred = pred->pred_next)
2919 int pred_bb = pred->src->index;
2921 if (visited[pred_bb])
2923 /* This predecessor has already been visited.
2924 Nothing to do. */
2927 else if (pred_bb == bb)
2929 /* BB loops on itself. */
2930 if (check_self_loop
2931 && TEST_BIT (ae_gen[pred_bb], expr->bitmap_index)
2932 && BLOCK_NUM (occr->insn) == pred_bb)
2933 return 1;
2934 visited[pred_bb] = 1;
2936 /* Ignore this predecessor if it kills the expression. */
2937 else if (TEST_BIT (ae_kill[pred_bb], expr->bitmap_index))
2938 visited[pred_bb] = 1;
2939 /* Does this predecessor generate this expression? */
2940 else if (TEST_BIT (ae_gen[pred_bb], expr->bitmap_index))
2942 /* Is this the occurrence we're looking for?
2943 Note that there's only one generating occurrence per block
2944 so we just need to check the block number. */
2945 if (BLOCK_NUM (occr->insn) == pred_bb)
2946 return 1;
2947 visited[pred_bb] = 1;
2949 /* Neither gen nor kill. */
2950 else
2952 visited[pred_bb] = 1;
2953 if (expr_reaches_here_p (occr, expr, pred_bb, check_self_loop, visited))
2954 return 1;
2958 /* All paths have been checked. */
2959 return 0;
2962 /* Return the instruction that computes EXPR that reaches INSN's basic block.
2963 If there is more than one such instruction, return NULL.
2965 Called only by handle_avail_expr. */
2967 static rtx
2968 computing_insn (expr, insn)
2969 struct expr *expr;
2970 rtx insn;
2972 int bb = BLOCK_NUM (insn);
2974 if (expr->avail_occr->next == NULL)
2976 if (BLOCK_NUM (expr->avail_occr->insn) == bb)
2978 /* The available expression is actually itself
2979 (i.e. a loop in the flow graph) so do nothing. */
2980 return NULL;
2982 /* (FIXME) Case that we found a pattern that was created by
2983 a substitution that took place. */
2984 return expr->avail_occr->insn;
2986 else
2988 /* Pattern is computed more than once.
2989 Search backwards from this insn to see how many of these
2990 computations actually reach this insn. */
2991 struct occr *occr;
2992 rtx insn_computes_expr = NULL;
2993 int can_reach = 0;
2995 for (occr = expr->avail_occr; occr != NULL; occr = occr->next)
2997 if (BLOCK_NUM (occr->insn) == bb)
2999 /* The expression is generated in this block.
3000 The only time we care about this is when the expression
3001 is generated later in the block [and thus there's a loop].
3002 We let the normal cse pass handle the other cases. */
3003 if (INSN_CUID (insn) < INSN_CUID (occr->insn))
3005 if (expr_reaches_here_p (occr, expr, bb, 1, NULL))
3007 can_reach++;
3008 if (can_reach > 1)
3009 return NULL;
3010 insn_computes_expr = occr->insn;
3014 else /* Computation of the pattern outside this block. */
3016 if (expr_reaches_here_p (occr, expr, bb, 0, NULL))
3018 can_reach++;
3019 if (can_reach > 1)
3020 return NULL;
3021 insn_computes_expr = occr->insn;
3026 if (insn_computes_expr == NULL)
3027 abort ();
3028 return insn_computes_expr;
3032 /* Return non-zero if the definition in DEF_INSN can reach INSN.
3033 Only called by can_disregard_other_sets. */
3035 static int
3036 def_reaches_here_p (insn, def_insn)
3037 rtx insn, def_insn;
3039 rtx reg;
3041 if (TEST_BIT (reaching_defs[BLOCK_NUM (insn)], INSN_CUID (def_insn)))
3042 return 1;
3044 if (BLOCK_NUM (insn) == BLOCK_NUM (def_insn))
3046 if (INSN_CUID (def_insn) < INSN_CUID (insn))
3048 if (GET_CODE (PATTERN (def_insn)) == PARALLEL)
3049 return 1;
3050 if (GET_CODE (PATTERN (def_insn)) == CLOBBER)
3051 reg = XEXP (PATTERN (def_insn), 0);
3052 else if (GET_CODE (PATTERN (def_insn)) == SET)
3053 reg = SET_DEST (PATTERN (def_insn));
3054 else
3055 abort ();
3056 return ! reg_set_between_p (reg, NEXT_INSN (def_insn), insn);
3058 else
3059 return 0;
3062 return 0;
3065 /* Return non-zero if *ADDR_THIS_REG can only have one value at INSN.
3066 The value returned is the number of definitions that reach INSN.
3067 Returning a value of zero means that [maybe] more than one definition
3068 reaches INSN and the caller can't perform whatever optimization it is
3069 trying. i.e. it is always safe to return zero. */
3071 static int
3072 can_disregard_other_sets (addr_this_reg, insn, for_combine)
3073 struct reg_set **addr_this_reg;
3074 rtx insn;
3075 int for_combine;
3077 int number_of_reaching_defs = 0;
3078 struct reg_set *this_reg = *addr_this_reg;
3080 while (this_reg)
3082 if (def_reaches_here_p (insn, this_reg->insn))
3084 number_of_reaching_defs++;
3085 /* Ignore parallels for now. */
3086 if (GET_CODE (PATTERN (this_reg->insn)) == PARALLEL)
3087 return 0;
3088 if (!for_combine
3089 && (GET_CODE (PATTERN (this_reg->insn)) == CLOBBER
3090 || ! rtx_equal_p (SET_SRC (PATTERN (this_reg->insn)),
3091 SET_SRC (PATTERN (insn)))))
3093 /* A setting of the reg to a different value reaches INSN. */
3094 return 0;
3096 if (number_of_reaching_defs > 1)
3098 /* If in this setting the value the register is being
3099 set to is equal to the previous value the register
3100 was set to and this setting reaches the insn we are
3101 trying to do the substitution on then we are ok. */
3103 if (GET_CODE (PATTERN (this_reg->insn)) == CLOBBER)
3104 return 0;
3105 if (! rtx_equal_p (SET_SRC (PATTERN (this_reg->insn)),
3106 SET_SRC (PATTERN (insn))))
3107 return 0;
3109 *addr_this_reg = this_reg;
3112 /* prev_this_reg = this_reg; */
3113 this_reg = this_reg->next;
3116 return number_of_reaching_defs;
3119 /* Expression computed by insn is available and the substitution is legal,
3120 so try to perform the substitution.
3122 The result is non-zero if any changes were made. */
3124 static int
3125 handle_avail_expr (insn, expr)
3126 rtx insn;
3127 struct expr *expr;
3129 rtx pat, insn_computes_expr;
3130 rtx to;
3131 struct reg_set *this_reg;
3132 int found_setting, use_src;
3133 int changed = 0;
3135 /* We only handle the case where one computation of the expression
3136 reaches this instruction. */
3137 insn_computes_expr = computing_insn (expr, insn);
3138 if (insn_computes_expr == NULL)
3139 return 0;
3141 found_setting = 0;
3142 use_src = 0;
3144 /* At this point we know only one computation of EXPR outside of this
3145 block reaches this insn. Now try to find a register that the
3146 expression is computed into. */
3148 if (GET_CODE (SET_SRC (PATTERN (insn_computes_expr))) == REG)
3150 /* This is the case when the available expression that reaches
3151 here has already been handled as an available expression. */
3152 int regnum_for_replacing = REGNO (SET_SRC (PATTERN (insn_computes_expr)));
3153 /* If the register was created by GCSE we can't use `reg_set_table',
3154 however we know it's set only once. */
3155 if (regnum_for_replacing >= max_gcse_regno
3156 /* If the register the expression is computed into is set only once,
3157 or only one set reaches this insn, we can use it. */
3158 || (((this_reg = reg_set_table[regnum_for_replacing]),
3159 this_reg->next == NULL)
3160 || can_disregard_other_sets (&this_reg, insn, 0)))
3162 use_src = 1;
3163 found_setting = 1;
3167 if (!found_setting)
3169 int regnum_for_replacing = REGNO (SET_DEST (PATTERN (insn_computes_expr)));
3170 /* This shouldn't happen. */
3171 if (regnum_for_replacing >= max_gcse_regno)
3172 abort ();
3173 this_reg = reg_set_table[regnum_for_replacing];
3174 /* If the register the expression is computed into is set only once,
3175 or only one set reaches this insn, use it. */
3176 if (this_reg->next == NULL
3177 || can_disregard_other_sets (&this_reg, insn, 0))
3178 found_setting = 1;
3181 if (found_setting)
3183 pat = PATTERN (insn);
3184 if (use_src)
3185 to = SET_SRC (PATTERN (insn_computes_expr));
3186 else
3187 to = SET_DEST (PATTERN (insn_computes_expr));
3188 changed = validate_change (insn, &SET_SRC (pat), to, 0);
3190 /* We should be able to ignore the return code from validate_change but
3191 to play it safe we check. */
3192 if (changed)
3194 gcse_subst_count++;
3195 if (gcse_file != NULL)
3197 fprintf (gcse_file, "GCSE: Replacing the source in insn %d with reg %d %s insn %d\n",
3198 INSN_UID (insn), REGNO (to),
3199 use_src ? "from" : "set in",
3200 INSN_UID (insn_computes_expr));
3205 /* The register that the expr is computed into is set more than once. */
3206 else if (1 /*expensive_op(this_pattrn->op) && do_expensive_gcse)*/)
3208 /* Insert an insn after insnx that copies the reg set in insnx
3209 into a new pseudo register call this new register REGN.
3210 From insnb until end of basic block or until REGB is set
3211 replace all uses of REGB with REGN. */
3212 rtx new_insn;
3214 to = gen_reg_rtx (GET_MODE (SET_DEST (PATTERN (insn_computes_expr))));
3216 /* Generate the new insn. */
3217 /* ??? If the change fails, we return 0, even though we created
3218 an insn. I think this is ok. */
3219 new_insn
3220 = emit_insn_after (gen_rtx_SET (VOIDmode, to,
3221 SET_DEST (PATTERN (insn_computes_expr))),
3222 insn_computes_expr);
3223 /* Keep block number table up to date. */
3224 set_block_num (new_insn, BLOCK_NUM (insn_computes_expr));
3225 /* Keep register set table up to date. */
3226 record_one_set (REGNO (to), new_insn);
3228 gcse_create_count++;
3229 if (gcse_file != NULL)
3231 fprintf (gcse_file, "GCSE: Creating insn %d to copy value of reg %d, computed in insn %d,\n",
3232 INSN_UID (NEXT_INSN (insn_computes_expr)),
3233 REGNO (SET_SRC (PATTERN (NEXT_INSN (insn_computes_expr)))),
3234 INSN_UID (insn_computes_expr));
3235 fprintf (gcse_file, " into newly allocated reg %d\n", REGNO (to));
3238 pat = PATTERN (insn);
3240 /* Do register replacement for INSN. */
3241 changed = validate_change (insn, &SET_SRC (pat),
3242 SET_DEST (PATTERN (NEXT_INSN (insn_computes_expr))),
3245 /* We should be able to ignore the return code from validate_change but
3246 to play it safe we check. */
3247 if (changed)
3249 gcse_subst_count++;
3250 if (gcse_file != NULL)
3252 fprintf (gcse_file, "GCSE: Replacing the source in insn %d with reg %d set in insn %d\n",
3253 INSN_UID (insn),
3254 REGNO (SET_DEST (PATTERN (NEXT_INSN (insn_computes_expr)))),
3255 INSN_UID (insn_computes_expr));
3261 return changed;
3264 /* Perform classic GCSE.
3265 This is called by one_classic_gcse_pass after all the dataflow analysis
3266 has been done.
3268 The result is non-zero if a change was made. */
3270 static int
3271 classic_gcse ()
3273 int bb, changed;
3274 rtx insn;
3276 /* Note we start at block 1. */
3278 changed = 0;
3279 for (bb = 1; bb < n_basic_blocks; bb++)
3281 /* Reset tables used to keep track of what's still valid [since the
3282 start of the block]. */
3283 reset_opr_set_tables ();
3285 for (insn = BLOCK_HEAD (bb);
3286 insn != NULL && insn != NEXT_INSN (BLOCK_END (bb));
3287 insn = NEXT_INSN (insn))
3289 /* Is insn of form (set (pseudo-reg) ...)? */
3291 if (GET_CODE (insn) == INSN
3292 && GET_CODE (PATTERN (insn)) == SET
3293 && GET_CODE (SET_DEST (PATTERN (insn))) == REG
3294 && REGNO (SET_DEST (PATTERN (insn))) >= FIRST_PSEUDO_REGISTER)
3296 rtx pat = PATTERN (insn);
3297 rtx src = SET_SRC (pat);
3298 struct expr *expr;
3300 if (want_to_gcse_p (src)
3301 /* Is the expression recorded? */
3302 && ((expr = lookup_expr (src)) != NULL)
3303 /* Is the expression available [at the start of the
3304 block]? */
3305 && TEST_BIT (ae_in[bb], expr->bitmap_index)
3306 /* Are the operands unchanged since the start of the
3307 block? */
3308 && oprs_not_set_p (src, insn))
3309 changed |= handle_avail_expr (insn, expr);
3312 /* Keep track of everything modified by this insn. */
3313 /* ??? Need to be careful w.r.t. mods done to INSN. */
3314 if (GET_RTX_CLASS (GET_CODE (insn)) == 'i')
3315 mark_oprs_set (insn);
3319 return changed;
3322 /* Top level routine to perform one classic GCSE pass.
3324 Return non-zero if a change was made. */
3326 static int
3327 one_classic_gcse_pass (pass)
3328 int pass;
3330 int changed = 0;
3332 gcse_subst_count = 0;
3333 gcse_create_count = 0;
3335 alloc_expr_hash_table (max_cuid);
3336 alloc_rd_mem (n_basic_blocks, max_cuid);
3337 compute_expr_hash_table ();
3338 if (gcse_file)
3339 dump_hash_table (gcse_file, "Expression", expr_hash_table,
3340 expr_hash_table_size, n_exprs);
3341 if (n_exprs > 0)
3343 compute_kill_rd ();
3344 compute_rd ();
3345 alloc_avail_expr_mem (n_basic_blocks, n_exprs);
3346 compute_ae_gen ();
3347 compute_ae_kill ();
3348 compute_available ();
3349 changed = classic_gcse ();
3350 free_avail_expr_mem ();
3352 free_rd_mem ();
3353 free_expr_hash_table ();
3355 if (gcse_file)
3357 fprintf (gcse_file, "\n");
3358 fprintf (gcse_file, "GCSE of %s, pass %d: %d bytes needed, %d substs, %d insns created\n",
3359 current_function_name, pass,
3360 bytes_used, gcse_subst_count, gcse_create_count);
3363 return changed;
3366 /* Compute copy/constant propagation working variables. */
3368 /* Local properties of assignments. */
3370 static sbitmap *cprop_pavloc;
3371 static sbitmap *cprop_absaltered;
3373 /* Global properties of assignments (computed from the local properties). */
3375 static sbitmap *cprop_avin;
3376 static sbitmap *cprop_avout;
3378 /* Allocate vars used for copy/const propagation.
3379 N_BLOCKS is the number of basic blocks.
3380 N_SETS is the number of sets. */
3382 static void
3383 alloc_cprop_mem (n_blocks, n_sets)
3384 int n_blocks, n_sets;
3386 cprop_pavloc = sbitmap_vector_alloc (n_blocks, n_sets);
3387 cprop_absaltered = sbitmap_vector_alloc (n_blocks, n_sets);
3389 cprop_avin = sbitmap_vector_alloc (n_blocks, n_sets);
3390 cprop_avout = sbitmap_vector_alloc (n_blocks, n_sets);
3393 /* Free vars used by copy/const propagation. */
3395 static void
3396 free_cprop_mem ()
3398 free (cprop_pavloc);
3399 free (cprop_absaltered);
3400 free (cprop_avin);
3401 free (cprop_avout);
3404 /* For each block, compute whether X is transparent.
3405 X is either an expression or an assignment [though we don't care which,
3406 for this context an assignment is treated as an expression].
3407 For each block where an element of X is modified, set (SET_P == 1) or reset
3408 (SET_P == 0) the INDX bit in BMAP. */
3410 static void
3411 compute_transp (x, indx, bmap, set_p)
3412 rtx x;
3413 int indx;
3414 sbitmap *bmap;
3415 int set_p;
3417 int bb,i;
3418 enum rtx_code code;
3419 const char *fmt;
3421 /* repeat is used to turn tail-recursion into iteration. */
3422 repeat:
3424 if (x == 0)
3425 return;
3427 code = GET_CODE (x);
3428 switch (code)
3430 case REG:
3432 reg_set *r;
3433 int regno = REGNO (x);
3435 if (set_p)
3437 if (regno < FIRST_PSEUDO_REGISTER)
3439 for (bb = 0; bb < n_basic_blocks; bb++)
3440 if (TEST_BIT (reg_set_in_block[bb], regno))
3441 SET_BIT (bmap[bb], indx);
3443 else
3445 for (r = reg_set_table[regno]; r != NULL; r = r->next)
3447 bb = BLOCK_NUM (r->insn);
3448 SET_BIT (bmap[bb], indx);
3452 else
3454 if (regno < FIRST_PSEUDO_REGISTER)
3456 for (bb = 0; bb < n_basic_blocks; bb++)
3457 if (TEST_BIT (reg_set_in_block[bb], regno))
3458 RESET_BIT (bmap[bb], indx);
3460 else
3462 for (r = reg_set_table[regno]; r != NULL; r = r->next)
3464 bb = BLOCK_NUM (r->insn);
3465 RESET_BIT (bmap[bb], indx);
3469 return;
3472 case MEM:
3473 if (set_p)
3475 for (bb = 0; bb < n_basic_blocks; bb++)
3476 if (mem_set_in_block[bb])
3477 SET_BIT (bmap[bb], indx);
3479 else
3481 for (bb = 0; bb < n_basic_blocks; bb++)
3482 if (mem_set_in_block[bb])
3483 RESET_BIT (bmap[bb], indx);
3485 x = XEXP (x, 0);
3486 goto repeat;
3488 case PC:
3489 case CC0: /*FIXME*/
3490 case CONST:
3491 case CONST_INT:
3492 case CONST_DOUBLE:
3493 case SYMBOL_REF:
3494 case LABEL_REF:
3495 case ADDR_VEC:
3496 case ADDR_DIFF_VEC:
3497 return;
3499 default:
3500 break;
3503 i = GET_RTX_LENGTH (code) - 1;
3504 fmt = GET_RTX_FORMAT (code);
3505 for (; i >= 0; i--)
3507 if (fmt[i] == 'e')
3509 rtx tem = XEXP (x, i);
3511 /* If we are about to do the last recursive call
3512 needed at this level, change it into iteration.
3513 This function is called enough to be worth it. */
3514 if (i == 0)
3516 x = tem;
3517 goto repeat;
3519 compute_transp (tem, indx, bmap, set_p);
3521 else if (fmt[i] == 'E')
3523 int j;
3524 for (j = 0; j < XVECLEN (x, i); j++)
3525 compute_transp (XVECEXP (x, i, j), indx, bmap, set_p);
3530 /* Compute the available expressions at the start and end of each
3531 basic block for cprop. This particular dataflow equation is
3532 used often enough that we might want to generalize it and make
3533 as a subroutine for other global optimizations that need available
3534 in/out information. */
3535 static void
3536 compute_cprop_avinout ()
3538 int bb, changed, passes;
3540 sbitmap_zero (cprop_avin[0]);
3541 sbitmap_vector_ones (cprop_avout, n_basic_blocks);
3543 passes = 0;
3544 changed = 1;
3545 while (changed)
3547 changed = 0;
3548 for (bb = 0; bb < n_basic_blocks; bb++)
3550 if (bb != 0)
3551 sbitmap_intersection_of_preds (cprop_avin[bb], cprop_avout, bb);
3552 changed |= sbitmap_union_of_diff (cprop_avout[bb],
3553 cprop_pavloc[bb],
3554 cprop_avin[bb],
3555 cprop_absaltered[bb]);
3557 passes++;
3560 if (gcse_file)
3561 fprintf (gcse_file, "cprop avail expr computation: %d passes\n", passes);
3564 /* Top level routine to do the dataflow analysis needed by copy/const
3565 propagation. */
3567 static void
3568 compute_cprop_data ()
3570 compute_local_properties (cprop_absaltered, cprop_pavloc, NULL, 1);
3571 compute_cprop_avinout ();
3574 /* Copy/constant propagation. */
3576 /* Maximum number of register uses in an insn that we handle. */
3577 #define MAX_USES 8
3579 /* Table of uses found in an insn.
3580 Allocated statically to avoid alloc/free complexity and overhead. */
3581 static struct reg_use reg_use_table[MAX_USES];
3583 /* Index into `reg_use_table' while building it. */
3584 static int reg_use_count;
3586 /* Set up a list of register numbers used in INSN.
3587 The found uses are stored in `reg_use_table'.
3588 `reg_use_count' is initialized to zero before entry, and
3589 contains the number of uses in the table upon exit.
3591 ??? If a register appears multiple times we will record it multiple
3592 times. This doesn't hurt anything but it will slow things down. */
3594 static void
3595 find_used_regs (x)
3596 rtx x;
3598 int i;
3599 enum rtx_code code;
3600 const char *fmt;
3602 /* repeat is used to turn tail-recursion into iteration. */
3603 repeat:
3605 if (x == 0)
3606 return;
3608 code = GET_CODE (x);
3609 switch (code)
3611 case REG:
3612 if (reg_use_count == MAX_USES)
3613 return;
3614 reg_use_table[reg_use_count].reg_rtx = x;
3615 reg_use_count++;
3616 return;
3618 case MEM:
3619 x = XEXP (x, 0);
3620 goto repeat;
3622 case PC:
3623 case CC0:
3624 case CONST:
3625 case CONST_INT:
3626 case CONST_DOUBLE:
3627 case SYMBOL_REF:
3628 case LABEL_REF:
3629 case CLOBBER:
3630 case ADDR_VEC:
3631 case ADDR_DIFF_VEC:
3632 case ASM_INPUT: /*FIXME*/
3633 return;
3635 case SET:
3636 if (GET_CODE (SET_DEST (x)) == MEM)
3637 find_used_regs (SET_DEST (x));
3638 x = SET_SRC (x);
3639 goto repeat;
3641 default:
3642 break;
3645 /* Recursively scan the operands of this expression. */
3647 fmt = GET_RTX_FORMAT (code);
3648 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3650 if (fmt[i] == 'e')
3652 /* If we are about to do the last recursive call
3653 needed at this level, change it into iteration.
3654 This function is called enough to be worth it. */
3655 if (i == 0)
3657 x = XEXP (x, 0);
3658 goto repeat;
3660 find_used_regs (XEXP (x, i));
3662 else if (fmt[i] == 'E')
3664 int j;
3665 for (j = 0; j < XVECLEN (x, i); j++)
3666 find_used_regs (XVECEXP (x, i, j));
3671 /* Try to replace all non-SET_DEST occurrences of FROM in INSN with TO.
3672 Returns non-zero is successful. */
3674 static int
3675 try_replace_reg (from, to, insn)
3676 rtx from, to, insn;
3678 /* If this fails we could try to simplify the result of the
3679 replacement and attempt to recognize the simplified insn.
3681 But we need a general simplify_rtx that doesn't have pass
3682 specific state variables. I'm not aware of one at the moment. */
3683 return validate_replace_src (from, to, insn);
3686 /* Find a set of REGNO that is available on entry to INSN's block.
3687 Returns NULL if not found. */
3689 static struct expr *
3690 find_avail_set (regno, insn)
3691 int regno;
3692 rtx insn;
3694 /* SET1 contains the last set found that can be returned to the caller for
3695 use in a substitution. */
3696 struct expr *set1 = 0;
3698 /* Loops are not possible here. To get a loop we would need two sets
3699 available at the start of the block containing INSN. ie we would
3700 need two sets like this available at the start of the block:
3702 (set (reg X) (reg Y))
3703 (set (reg Y) (reg X))
3705 This can not happen since the set of (reg Y) would have killed the
3706 set of (reg X) making it unavailable at the start of this block. */
3707 while (1)
3709 rtx src;
3710 struct expr *set = lookup_set (regno, NULL_RTX);
3712 /* Find a set that is available at the start of the block
3713 which contains INSN. */
3714 while (set)
3716 if (TEST_BIT (cprop_avin[BLOCK_NUM (insn)], set->bitmap_index))
3717 break;
3718 set = next_set (regno, set);
3721 /* If no available set was found we've reached the end of the
3722 (possibly empty) copy chain. */
3723 if (set == 0)
3724 break;
3726 if (GET_CODE (set->expr) != SET)
3727 abort ();
3729 src = SET_SRC (set->expr);
3731 /* We know the set is available.
3732 Now check that SRC is ANTLOC (i.e. none of the source operands
3733 have changed since the start of the block).
3735 If the source operand changed, we may still use it for the next
3736 iteration of this loop, but we may not use it for substitutions. */
3737 if (CONSTANT_P (src) || oprs_not_set_p (src, insn))
3738 set1 = set;
3740 /* If the source of the set is anything except a register, then
3741 we have reached the end of the copy chain. */
3742 if (GET_CODE (src) != REG)
3743 break;
3745 /* Follow the copy chain, ie start another iteration of the loop
3746 and see if we have an available copy into SRC. */
3747 regno = REGNO (src);
3750 /* SET1 holds the last set that was available and anticipatable at
3751 INSN. */
3752 return set1;
3755 /* Subroutine of cprop_insn that tries to propagate constants into
3756 JUMP_INSNS. INSN must be a conditional jump; COPY is a copy of it
3757 that we can use for substitutions.
3758 REG_USED is the use we will try to replace, SRC is the constant we
3759 will try to substitute for it.
3760 Returns nonzero if a change was made. */
3761 static int
3762 cprop_jump (insn, copy, reg_used, src)
3763 rtx insn, copy;
3764 struct reg_use *reg_used;
3765 rtx src;
3767 rtx set = PATTERN (copy);
3768 rtx temp;
3770 /* Replace the register with the appropriate constant. */
3771 replace_rtx (SET_SRC (set), reg_used->reg_rtx, src);
3773 temp = simplify_ternary_operation (GET_CODE (SET_SRC (set)),
3774 GET_MODE (SET_SRC (set)),
3775 GET_MODE (XEXP (SET_SRC (set), 0)),
3776 XEXP (SET_SRC (set), 0),
3777 XEXP (SET_SRC (set), 1),
3778 XEXP (SET_SRC (set), 2));
3780 /* If no simplification can be made, then try the next
3781 register. */
3782 if (temp == 0)
3783 return 0;
3785 SET_SRC (set) = temp;
3787 /* That may have changed the structure of TEMP, so
3788 force it to be rerecognized if it has not turned
3789 into a nop or unconditional jump. */
3791 INSN_CODE (copy) = -1;
3792 if ((SET_DEST (set) == pc_rtx
3793 && (SET_SRC (set) == pc_rtx
3794 || GET_CODE (SET_SRC (set)) == LABEL_REF))
3795 || recog (PATTERN (copy), copy, NULL) >= 0)
3797 /* This has either become an unconditional jump
3798 or a nop-jump. We'd like to delete nop jumps
3799 here, but doing so confuses gcse. So we just
3800 make the replacement and let later passes
3801 sort things out. */
3802 PATTERN (insn) = set;
3803 INSN_CODE (insn) = -1;
3805 /* One less use of the label this insn used to jump to
3806 if we turned this into a NOP jump. */
3807 if (SET_SRC (set) == pc_rtx && JUMP_LABEL (insn) != 0)
3808 --LABEL_NUSES (JUMP_LABEL (insn));
3810 /* If this has turned into an unconditional jump,
3811 then put a barrier after it so that the unreachable
3812 code will be deleted. */
3813 if (GET_CODE (SET_SRC (set)) == LABEL_REF)
3814 emit_barrier_after (insn);
3816 run_jump_opt_after_gcse = 1;
3818 const_prop_count++;
3819 if (gcse_file != NULL)
3821 int regno = REGNO (reg_used->reg_rtx);
3822 fprintf (gcse_file, "CONST-PROP: Replacing reg %d in insn %d with constant ",
3823 regno, INSN_UID (insn));
3824 print_rtl (gcse_file, src);
3825 fprintf (gcse_file, "\n");
3827 return 1;
3829 return 0;
3832 #ifdef HAVE_cc0
3833 /* Subroutine of cprop_insn that tries to propagate constants into
3834 JUMP_INSNS for machines that have CC0. INSN is a single set that
3835 stores into CC0; the insn following it is a conditional jump.
3836 REG_USED is the use we will try to replace, SRC is the constant we
3837 will try to substitute for it.
3838 Returns nonzero if a change was made. */
3839 static int
3840 cprop_cc0_jump (insn, reg_used, src)
3841 rtx insn;
3842 struct reg_use *reg_used;
3843 rtx src;
3845 rtx jump = NEXT_INSN (insn);
3846 rtx copy = copy_rtx (jump);
3847 rtx set = PATTERN (copy);
3849 /* We need to copy the source of the cc0 setter, as cprop_jump is going to
3850 substitute into it. */
3851 replace_rtx (SET_SRC (set), cc0_rtx, copy_rtx (SET_SRC (PATTERN (insn))));
3852 if (! cprop_jump (jump, copy, reg_used, src))
3853 return 0;
3855 /* If we succeeded, delete the cc0 setter. */
3856 PUT_CODE (insn, NOTE);
3857 NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED;
3858 NOTE_SOURCE_FILE (insn) = 0;
3859 return 1;
3861 #endif
3863 /* Perform constant and copy propagation on INSN.
3864 The result is non-zero if a change was made. */
3866 static int
3867 cprop_insn (insn, alter_jumps)
3868 rtx insn;
3869 int alter_jumps;
3871 struct reg_use *reg_used;
3872 int changed = 0;
3874 /* Only propagate into SETs. Note that a conditional jump is a
3875 SET with pc_rtx as the destination. */
3876 if ((GET_CODE (insn) != INSN
3877 && GET_CODE (insn) != JUMP_INSN)
3878 || GET_CODE (PATTERN (insn)) != SET)
3879 return 0;
3881 reg_use_count = 0;
3882 find_used_regs (PATTERN (insn));
3884 reg_used = &reg_use_table[0];
3885 for ( ; reg_use_count > 0; reg_used++, reg_use_count--)
3887 rtx pat, src;
3888 struct expr *set;
3889 int regno = REGNO (reg_used->reg_rtx);
3891 /* Ignore registers created by GCSE.
3892 We do this because ... */
3893 if (regno >= max_gcse_regno)
3894 continue;
3896 /* If the register has already been set in this block, there's
3897 nothing we can do. */
3898 if (! oprs_not_set_p (reg_used->reg_rtx, insn))
3899 continue;
3901 /* Find an assignment that sets reg_used and is available
3902 at the start of the block. */
3903 set = find_avail_set (regno, insn);
3904 if (! set)
3905 continue;
3907 pat = set->expr;
3908 /* ??? We might be able to handle PARALLELs. Later. */
3909 if (GET_CODE (pat) != SET)
3910 abort ();
3911 src = SET_SRC (pat);
3913 /* Constant propagation. */
3914 if (GET_CODE (src) == CONST_INT || GET_CODE (src) == CONST_DOUBLE
3915 || GET_CODE (src) == SYMBOL_REF)
3917 /* Handle normal insns first. */
3918 if (GET_CODE (insn) == INSN
3919 && try_replace_reg (reg_used->reg_rtx, src, insn))
3921 changed = 1;
3922 const_prop_count++;
3923 if (gcse_file != NULL)
3925 fprintf (gcse_file, "CONST-PROP: Replacing reg %d in insn %d with constant ",
3926 regno, INSN_UID (insn));
3927 print_rtl (gcse_file, src);
3928 fprintf (gcse_file, "\n");
3931 /* The original insn setting reg_used may or may not now be
3932 deletable. We leave the deletion to flow. */
3935 /* Try to propagate a CONST_INT into a conditional jump.
3936 We're pretty specific about what we will handle in this
3937 code, we can extend this as necessary over time.
3939 Right now the insn in question must look like
3940 (set (pc) (if_then_else ...)) */
3941 else if (alter_jumps
3942 && GET_CODE (insn) == JUMP_INSN
3943 && condjump_p (insn)
3944 && ! simplejump_p (insn))
3945 changed |= cprop_jump (insn, copy_rtx (insn), reg_used, src);
3946 #ifdef HAVE_cc0
3947 /* Similar code for machines that use a pair of CC0 setter and
3948 conditional jump insn. */
3949 else if (alter_jumps
3950 && GET_CODE (PATTERN (insn)) == SET
3951 && SET_DEST (PATTERN (insn)) == cc0_rtx
3952 && GET_CODE (NEXT_INSN (insn)) == JUMP_INSN
3953 && condjump_p (NEXT_INSN (insn))
3954 && ! simplejump_p (NEXT_INSN (insn)))
3955 changed |= cprop_cc0_jump (insn, reg_used, src);
3956 #endif
3958 else if (GET_CODE (src) == REG
3959 && REGNO (src) >= FIRST_PSEUDO_REGISTER
3960 && REGNO (src) != regno)
3962 if (try_replace_reg (reg_used->reg_rtx, src, insn))
3964 changed = 1;
3965 copy_prop_count++;
3966 if (gcse_file != NULL)
3968 fprintf (gcse_file, "COPY-PROP: Replacing reg %d in insn %d with reg %d\n",
3969 regno, INSN_UID (insn), REGNO (src));
3972 /* The original insn setting reg_used may or may not now be
3973 deletable. We leave the deletion to flow. */
3974 /* FIXME: If it turns out that the insn isn't deletable,
3975 then we may have unnecessarily extended register lifetimes
3976 and made things worse. */
3981 return changed;
3984 /* Forward propagate copies.
3985 This includes copies and constants.
3986 Return non-zero if a change was made. */
3988 static int
3989 cprop (alter_jumps)
3990 int alter_jumps;
3992 int bb, changed;
3993 rtx insn;
3995 /* Note we start at block 1. */
3997 changed = 0;
3998 for (bb = 1; bb < n_basic_blocks; bb++)
4000 /* Reset tables used to keep track of what's still valid [since the
4001 start of the block]. */
4002 reset_opr_set_tables ();
4004 for (insn = BLOCK_HEAD (bb);
4005 insn != NULL && insn != NEXT_INSN (BLOCK_END (bb));
4006 insn = NEXT_INSN (insn))
4008 if (GET_RTX_CLASS (GET_CODE (insn)) == 'i')
4010 changed |= cprop_insn (insn, alter_jumps);
4012 /* Keep track of everything modified by this insn. */
4013 /* ??? Need to be careful w.r.t. mods done to INSN. Don't
4014 call mark_oprs_set if we turned the insn into a NOTE. */
4015 if (GET_CODE (insn) != NOTE)
4016 mark_oprs_set (insn);
4021 if (gcse_file != NULL)
4022 fprintf (gcse_file, "\n");
4024 return changed;
4027 /* Perform one copy/constant propagation pass.
4028 F is the first insn in the function.
4029 PASS is the pass count. */
4031 static int
4032 one_cprop_pass (pass, alter_jumps)
4033 int pass;
4034 int alter_jumps;
4036 int changed = 0;
4038 const_prop_count = 0;
4039 copy_prop_count = 0;
4041 alloc_set_hash_table (max_cuid);
4042 compute_set_hash_table ();
4043 if (gcse_file)
4044 dump_hash_table (gcse_file, "SET", set_hash_table, set_hash_table_size,
4045 n_sets);
4046 if (n_sets > 0)
4048 alloc_cprop_mem (n_basic_blocks, n_sets);
4049 compute_cprop_data ();
4050 changed = cprop (alter_jumps);
4051 free_cprop_mem ();
4053 free_set_hash_table ();
4055 if (gcse_file)
4057 fprintf (gcse_file, "CPROP of %s, pass %d: %d bytes needed, %d const props, %d copy props\n",
4058 current_function_name, pass,
4059 bytes_used, const_prop_count, copy_prop_count);
4060 fprintf (gcse_file, "\n");
4063 return changed;
4066 /* Compute PRE+LCM working variables. */
4068 /* Local properties of expressions. */
4069 /* Nonzero for expressions that are transparent in the block. */
4070 static sbitmap *transp;
4072 /* Nonzero for expressions that are transparent at the end of the block.
4073 This is only zero for expressions killed by abnormal critical edge
4074 created by a calls. */
4075 static sbitmap *transpout;
4077 /* Nonzero for expressions that are computed (available) in the block. */
4078 static sbitmap *comp;
4080 /* Nonzero for expressions that are locally anticipatable in the block. */
4081 static sbitmap *antloc;
4083 /* Nonzero for expressions where this block is an optimal computation
4084 point. */
4085 static sbitmap *pre_optimal;
4087 /* Nonzero for expressions which are redundant in a particular block. */
4088 static sbitmap *pre_redundant;
4090 static sbitmap *temp_bitmap;
4092 /* Redundant insns. */
4093 static sbitmap pre_redundant_insns;
4095 /* Allocate vars used for PRE analysis. */
4097 static void
4098 alloc_pre_mem (n_blocks, n_exprs)
4099 int n_blocks, n_exprs;
4101 transp = sbitmap_vector_alloc (n_blocks, n_exprs);
4102 comp = sbitmap_vector_alloc (n_blocks, n_exprs);
4103 antloc = sbitmap_vector_alloc (n_blocks, n_exprs);
4105 temp_bitmap = sbitmap_vector_alloc (n_blocks, n_exprs);
4106 pre_optimal = sbitmap_vector_alloc (n_blocks, n_exprs);
4107 pre_redundant = sbitmap_vector_alloc (n_blocks, n_exprs);
4108 transpout = sbitmap_vector_alloc (n_blocks, n_exprs);
4111 /* Free vars used for PRE analysis. */
4113 static void
4114 free_pre_mem ()
4116 free (transp);
4117 free (comp);
4118 free (antloc);
4120 free (temp_bitmap);
4121 free (pre_optimal);
4122 free (pre_redundant);
4123 free (transpout);
4126 /* Top level routine to do the dataflow analysis needed by PRE. */
4128 static void
4129 compute_pre_data ()
4131 compute_local_properties (transp, comp, antloc, 0);
4132 compute_transpout ();
4133 pre_lcm (n_basic_blocks, n_exprs, s_preds, s_succs, transp,
4134 antloc, pre_redundant, pre_optimal);
4138 /* PRE utilities */
4140 /* Return non-zero if an occurrence of expression EXPR in OCCR_BB would reach
4141 block BB.
4143 VISITED is a pointer to a working buffer for tracking which BB's have
4144 been visited. It is NULL for the top-level call.
4146 CHECK_PRE_COMP controls whether or not we check for a computation of
4147 EXPR in OCCR_BB.
4149 We treat reaching expressions that go through blocks containing the same
4150 reaching expression as "not reaching". E.g. if EXPR is generated in blocks
4151 2 and 3, INSN is in block 4, and 2->3->4, we treat the expression in block
4152 2 as not reaching. The intent is to improve the probability of finding
4153 only one reaching expression and to reduce register lifetimes by picking
4154 the closest such expression. */
4156 static int
4157 pre_expr_reaches_here_p (occr_bb, expr, bb, check_pre_comp, visited)
4158 int occr_bb;
4159 struct expr *expr;
4160 int bb;
4161 int check_pre_comp;
4162 char *visited;
4164 edge pred;
4166 if (visited == NULL)
4168 visited = (char *) alloca (n_basic_blocks);
4169 bzero (visited, n_basic_blocks);
4172 for (pred = BASIC_BLOCK (bb)->pred; pred != NULL; pred = pred->pred_next)
4174 int pred_bb = pred->src->index;
4176 if (pred->src == ENTRY_BLOCK_PTR
4177 /* Has predecessor has already been visited? */
4178 || visited[pred_bb])
4180 /* Nothing to do. */
4182 /* Does this predecessor generate this expression? */
4183 else if ((!check_pre_comp && occr_bb == pred_bb)
4184 || TEST_BIT (comp[pred_bb], expr->bitmap_index))
4186 /* Is this the occurrence we're looking for?
4187 Note that there's only one generating occurrence per block
4188 so we just need to check the block number. */
4189 if (occr_bb == pred_bb)
4190 return 1;
4191 visited[pred_bb] = 1;
4193 /* Ignore this predecessor if it kills the expression. */
4194 else if (! TEST_BIT (transp[pred_bb], expr->bitmap_index))
4195 visited[pred_bb] = 1;
4196 /* Neither gen nor kill. */
4197 else
4199 visited[pred_bb] = 1;
4200 if (pre_expr_reaches_here_p (occr_bb, expr, pred_bb,
4201 check_pre_comp, visited))
4202 return 1;
4206 /* All paths have been checked. */
4207 return 0;
4210 /* Add EXPR to the end of basic block BB.
4212 This is used by both the PRE and code hoisting.
4214 For PRE, we want to verify that the expr is either transparent
4215 or locally anticipatable in the target block. This check makes
4216 no sense for code hoisting. */
4218 static void
4219 insert_insn_end_bb (expr, bb, pre)
4220 struct expr *expr;
4221 int bb;
4222 int pre;
4224 rtx insn = BLOCK_END (bb);
4225 rtx new_insn;
4226 rtx reg = expr->reaching_reg;
4227 int regno = REGNO (reg);
4228 rtx pat, copied_expr;
4229 rtx first_new_insn;
4231 start_sequence ();
4232 copied_expr = copy_rtx (expr->expr);
4233 emit_move_insn (reg, copied_expr);
4234 first_new_insn = get_insns ();
4235 pat = gen_sequence ();
4236 end_sequence ();
4238 /* If the last insn is a jump, insert EXPR in front [taking care to
4239 handle cc0, etc. properly]. */
4241 if (GET_CODE (insn) == JUMP_INSN)
4243 #ifdef HAVE_cc0
4244 rtx note;
4245 #endif
4247 /* If this is a jump table, then we can't insert stuff here. Since
4248 we know the previous real insn must be the tablejump, we insert
4249 the new instruction just before the tablejump. */
4250 if (GET_CODE (PATTERN (insn)) == ADDR_VEC
4251 || GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC)
4252 insn = prev_real_insn (insn);
4254 #ifdef HAVE_cc0
4255 /* FIXME: 'twould be nice to call prev_cc0_setter here but it aborts
4256 if cc0 isn't set. */
4257 note = find_reg_note (insn, REG_CC_SETTER, NULL_RTX);
4258 if (note)
4259 insn = XEXP (note, 0);
4260 else
4262 rtx maybe_cc0_setter = prev_nonnote_insn (insn);
4263 if (maybe_cc0_setter
4264 && GET_RTX_CLASS (GET_CODE (maybe_cc0_setter)) == 'i'
4265 && sets_cc0_p (PATTERN (maybe_cc0_setter)))
4266 insn = maybe_cc0_setter;
4268 #endif
4269 /* FIXME: What if something in cc0/jump uses value set in new insn? */
4270 new_insn = emit_insn_before (pat, insn);
4271 if (BLOCK_HEAD (bb) == insn)
4272 BLOCK_HEAD (bb) = new_insn;
4274 /* Likewise if the last insn is a call, as will happen in the presence
4275 of exception handling. */
4276 else if (GET_CODE (insn) == CALL_INSN)
4278 HARD_REG_SET parm_regs;
4279 int nparm_regs;
4280 rtx p;
4282 /* Keeping in mind SMALL_REGISTER_CLASSES and parameters in registers,
4283 we search backward and place the instructions before the first
4284 parameter is loaded. Do this for everyone for consistency and a
4285 presumtion that we'll get better code elsewhere as well. */
4287 /* It should always be the case that we can put these instructions
4288 anywhere in the basic block with performing PRE optimizations.
4289 Check this. */
4290 if (pre
4291 && !TEST_BIT (antloc[bb], expr->bitmap_index)
4292 && !TEST_BIT (transp[bb], expr->bitmap_index))
4293 abort ();
4295 /* Since different machines initialize their parameter registers
4296 in different orders, assume nothing. Collect the set of all
4297 parameter registers. */
4298 CLEAR_HARD_REG_SET (parm_regs);
4299 nparm_regs = 0;
4300 for (p = CALL_INSN_FUNCTION_USAGE (insn); p ; p = XEXP (p, 1))
4301 if (GET_CODE (XEXP (p, 0)) == USE
4302 && GET_CODE (XEXP (XEXP (p, 0), 0)) == REG)
4304 int regno = REGNO (XEXP (XEXP (p, 0), 0));
4305 if (regno >= FIRST_PSEUDO_REGISTER)
4306 abort ();
4307 SET_HARD_REG_BIT (parm_regs, regno);
4308 nparm_regs++;
4311 /* Search backward for the first set of a register in this set. */
4312 while (nparm_regs && BLOCK_HEAD (bb) != insn)
4314 insn = PREV_INSN (insn);
4315 p = single_set (insn);
4316 if (p && GET_CODE (SET_DEST (p)) == REG
4317 && REGNO (SET_DEST (p)) < FIRST_PSEUDO_REGISTER
4318 && TEST_HARD_REG_BIT (parm_regs, REGNO (SET_DEST (p))))
4320 CLEAR_HARD_REG_BIT (parm_regs, REGNO (SET_DEST (p)));
4321 nparm_regs--;
4325 /* If we found all the parameter loads, then we want to insert
4326 before the first parameter load.
4328 If we did not find all the parameter loads, then we might have
4329 stopped on the head of the block, which could be a CODE_LABEL.
4330 If we inserted before the CODE_LABEL, then we would be putting
4331 the insn in the wrong basic block. In that case, put the insn
4332 after the CODE_LABEL.
4334 ?!? Do we need to account for NOTE_INSN_BASIC_BLOCK here? */
4335 if (GET_CODE (insn) != CODE_LABEL)
4337 new_insn = emit_insn_before (pat, insn);
4338 if (BLOCK_HEAD (bb) == insn)
4339 BLOCK_HEAD (bb) = new_insn;
4341 else
4343 new_insn = emit_insn_after (pat, insn);
4346 else
4348 new_insn = emit_insn_after (pat, insn);
4349 BLOCK_END (bb) = new_insn;
4352 /* Keep block number table up to date.
4353 Note, PAT could be a multiple insn sequence, we have to make
4354 sure that each insn in the sequence is handled. */
4355 if (GET_CODE (pat) == SEQUENCE)
4357 int i;
4359 for (i = 0; i < XVECLEN (pat, 0); i++)
4361 rtx insn = XVECEXP (pat, 0, i);
4362 set_block_num (insn, bb);
4363 if (GET_RTX_CLASS (GET_CODE (insn)) == 'i')
4364 add_label_notes (PATTERN (insn), new_insn);
4365 record_set_insn = insn;
4366 note_stores (PATTERN (insn), record_set_info);
4369 else
4371 add_label_notes (SET_SRC (pat), new_insn);
4372 set_block_num (new_insn, bb);
4373 /* Keep register set table up to date. */
4374 record_one_set (regno, new_insn);
4377 gcse_create_count++;
4379 if (gcse_file)
4381 fprintf (gcse_file, "PRE/HOIST: end of bb %d, insn %d, copying expression %d to reg %d\n",
4382 bb, INSN_UID (new_insn), expr->bitmap_index, regno);
4386 /* Insert partially redundant expressions at the ends of appropriate basic
4387 blocks making them fully redundant. */
4389 static void
4390 pre_insert (index_map)
4391 struct expr **index_map;
4393 int bb, i, set_size;
4394 sbitmap *inserted;
4396 /* Compute INSERT = PRE_OPTIMAL & ~PRE_REDUNDANT.
4397 Where INSERT is nonzero, we add the expression at the end of the basic
4398 block if it reaches any of the deleted expressions. */
4400 set_size = pre_optimal[0]->size;
4401 inserted = sbitmap_vector_alloc (n_basic_blocks, n_exprs);
4402 sbitmap_vector_zero (inserted, n_basic_blocks);
4404 for (bb = 0; bb < n_basic_blocks; bb++)
4406 int indx;
4408 /* This computes the number of potential insertions we need. */
4409 sbitmap_not (temp_bitmap[bb], pre_redundant[bb]);
4410 sbitmap_a_and_b (temp_bitmap[bb], temp_bitmap[bb], pre_optimal[bb]);
4412 /* TEMP_BITMAP[bb] now contains a bitmap of the expressions that we need
4413 to insert at the end of this basic block. */
4414 for (i = indx = 0; i < set_size; i++, indx += SBITMAP_ELT_BITS)
4416 SBITMAP_ELT_TYPE insert = temp_bitmap[bb]->elms[i];
4417 int j;
4419 for (j = indx; insert && j < n_exprs; j++, insert >>= 1)
4421 if ((insert & 1) != 0 && index_map[j]->reaching_reg != NULL_RTX)
4423 struct expr *expr = index_map[j];
4424 struct occr *occr;
4426 /* Now look at each deleted occurence of this expression. */
4427 for (occr = expr->antic_occr; occr != NULL; occr = occr->next)
4429 if (! occr->deleted_p)
4430 continue;
4432 /* Insert this expression at the end of BB if it would
4433 reach the deleted occurence. */
4434 if (!TEST_BIT (inserted[bb], j)
4435 && pre_expr_reaches_here_p (bb, expr,
4436 BLOCK_NUM (occr->insn), 0,
4437 NULL))
4439 SET_BIT (inserted[bb], j);
4440 insert_insn_end_bb (index_map[j], bb, 1);
4448 sbitmap_vector_free (inserted);
4451 /* Copy the result of INSN to REG.
4452 INDX is the expression number. */
4454 static void
4455 pre_insert_copy_insn (expr, insn)
4456 struct expr *expr;
4457 rtx insn;
4459 rtx reg = expr->reaching_reg;
4460 int regno = REGNO (reg);
4461 int indx = expr->bitmap_index;
4462 rtx set = single_set (insn);
4463 rtx new_insn;
4465 if (!set)
4466 abort ();
4467 new_insn = emit_insn_after (gen_rtx_SET (VOIDmode, reg, SET_DEST (set)),
4468 insn);
4469 /* Keep block number table up to date. */
4470 set_block_num (new_insn, BLOCK_NUM (insn));
4471 /* Keep register set table up to date. */
4472 record_one_set (regno, new_insn);
4474 gcse_create_count++;
4476 if (gcse_file)
4478 fprintf (gcse_file, "PRE: bb %d, insn %d, copying expression %d in insn %d to reg %d\n",
4479 BLOCK_NUM (insn), INSN_UID (new_insn), indx, INSN_UID (insn), regno);
4483 /* Copy available expressions that reach the redundant expression
4484 to `reaching_reg'. */
4486 static void
4487 pre_insert_copies ()
4489 int i, bb;
4491 for (bb = 0; bb < n_basic_blocks; bb++)
4493 sbitmap_a_and_b (temp_bitmap[bb], pre_optimal[bb], pre_redundant[bb]);
4496 /* For each available expression in the table, copy the result to
4497 `reaching_reg' if the expression reaches a deleted one.
4499 ??? The current algorithm is rather brute force.
4500 Need to do some profiling. */
4502 for (i = 0; i < expr_hash_table_size; i++)
4504 struct expr *expr;
4506 for (expr = expr_hash_table[i]; expr != NULL; expr = expr->next_same_hash)
4508 struct occr *occr;
4510 /* If the basic block isn't reachable, PPOUT will be TRUE.
4511 However, we don't want to insert a copy here because the
4512 expression may not really be redundant. So only insert
4513 an insn if the expression was deleted.
4514 This test also avoids further processing if the expression
4515 wasn't deleted anywhere. */
4516 if (expr->reaching_reg == NULL)
4517 continue;
4519 for (occr = expr->antic_occr; occr != NULL; occr = occr->next)
4521 struct occr *avail;
4523 if (! occr->deleted_p)
4524 continue;
4526 for (avail = expr->avail_occr; avail != NULL; avail = avail->next)
4528 rtx insn = avail->insn;
4529 int bb = BLOCK_NUM (insn);
4531 if (!TEST_BIT (temp_bitmap[bb], expr->bitmap_index))
4532 continue;
4534 /* No need to handle this one if handled already. */
4535 if (avail->copied_p)
4536 continue;
4537 /* Don't handle this one if it's a redundant one. */
4538 if (TEST_BIT (pre_redundant_insns, INSN_CUID (insn)))
4539 continue;
4540 /* Or if the expression doesn't reach the deleted one. */
4541 if (! pre_expr_reaches_here_p (BLOCK_NUM (avail->insn), expr,
4542 BLOCK_NUM (occr->insn),
4543 1, NULL))
4544 continue;
4546 /* Copy the result of avail to reaching_reg. */
4547 pre_insert_copy_insn (expr, insn);
4548 avail->copied_p = 1;
4555 /* Delete redundant computations.
4556 Deletion is done by changing the insn to copy the `reaching_reg' of
4557 the expression into the result of the SET. It is left to later passes
4558 (cprop, cse2, flow, combine, regmove) to propagate the copy or eliminate it.
4560 Returns non-zero if a change is made. */
4562 static int
4563 pre_delete ()
4565 int i, bb, changed;
4567 /* Compute the expressions which are redundant and need to be replaced by
4568 copies from the reaching reg to the target reg. */
4569 for (bb = 0; bb < n_basic_blocks; bb++)
4571 sbitmap_not (temp_bitmap[bb], pre_optimal[bb]);
4572 sbitmap_a_and_b (temp_bitmap[bb], temp_bitmap[bb], pre_redundant[bb]);
4575 changed = 0;
4576 for (i = 0; i < expr_hash_table_size; i++)
4578 struct expr *expr;
4580 for (expr = expr_hash_table[i]; expr != NULL; expr = expr->next_same_hash)
4582 struct occr *occr;
4583 int indx = expr->bitmap_index;
4585 /* We only need to search antic_occr since we require
4586 ANTLOC != 0. */
4588 for (occr = expr->antic_occr; occr != NULL; occr = occr->next)
4590 rtx insn = occr->insn;
4591 rtx set;
4592 int bb = BLOCK_NUM (insn);
4594 if (TEST_BIT (temp_bitmap[bb], indx))
4596 set = single_set (insn);
4597 if (! set)
4598 abort ();
4600 /* Create a pseudo-reg to store the result of reaching
4601 expressions into. Get the mode for the new pseudo
4602 from the mode of the original destination pseudo. */
4603 if (expr->reaching_reg == NULL)
4604 expr->reaching_reg
4605 = gen_reg_rtx (GET_MODE (SET_DEST (set)));
4607 /* In theory this should never fail since we're creating
4608 a reg->reg copy.
4610 However, on the x86 some of the movXX patterns actually
4611 contain clobbers of scratch regs. This may cause the
4612 insn created by validate_change to not match any pattern
4613 and thus cause validate_change to fail. */
4614 if (validate_change (insn, &SET_SRC (set),
4615 expr->reaching_reg, 0))
4617 occr->deleted_p = 1;
4618 SET_BIT (pre_redundant_insns, INSN_CUID (insn));
4619 changed = 1;
4620 gcse_subst_count++;
4623 if (gcse_file)
4625 fprintf (gcse_file,
4626 "PRE: redundant insn %d (expression %d) in bb %d, reaching reg is %d\n",
4627 INSN_UID (insn), indx, bb, REGNO (expr->reaching_reg));
4634 return changed;
4637 /* Perform GCSE optimizations using PRE.
4638 This is called by one_pre_gcse_pass after all the dataflow analysis
4639 has been done.
4641 This is based on the original Morel-Renvoise paper Fred Chow's thesis,
4642 and lazy code motion from Knoop, Ruthing and Steffen as described in
4643 Advanced Compiler Design and Implementation.
4645 ??? A new pseudo reg is created to hold the reaching expression.
4646 The nice thing about the classical approach is that it would try to
4647 use an existing reg. If the register can't be adequately optimized
4648 [i.e. we introduce reload problems], one could add a pass here to
4649 propagate the new register through the block.
4651 ??? We don't handle single sets in PARALLELs because we're [currently]
4652 not able to copy the rest of the parallel when we insert copies to create
4653 full redundancies from partial redundancies. However, there's no reason
4654 why we can't handle PARALLELs in the cases where there are no partial
4655 redundancies. */
4657 static int
4658 pre_gcse ()
4660 int i;
4661 int changed;
4662 struct expr **index_map;
4664 /* Compute a mapping from expression number (`bitmap_index') to
4665 hash table entry. */
4667 index_map = (struct expr **) alloca (n_exprs * sizeof (struct expr *));
4668 bzero ((char *) index_map, n_exprs * sizeof (struct expr *));
4669 for (i = 0; i < expr_hash_table_size; i++)
4671 struct expr *expr;
4673 for (expr = expr_hash_table[i]; expr != NULL; expr = expr->next_same_hash)
4674 index_map[expr->bitmap_index] = expr;
4677 /* Reset bitmap used to track which insns are redundant. */
4678 pre_redundant_insns = sbitmap_alloc (max_cuid);
4679 sbitmap_zero (pre_redundant_insns);
4681 /* Delete the redundant insns first so that
4682 - we know what register to use for the new insns and for the other
4683 ones with reaching expressions
4684 - we know which insns are redundant when we go to create copies */
4685 changed = pre_delete ();
4687 /* Insert insns in places that make partially redundant expressions
4688 fully redundant. */
4689 pre_insert (index_map);
4691 /* In other places with reaching expressions, copy the expression to the
4692 specially allocated pseudo-reg that reaches the redundant expression. */
4693 pre_insert_copies ();
4695 free (pre_redundant_insns);
4697 return changed;
4700 /* Top level routine to perform one PRE GCSE pass.
4702 Return non-zero if a change was made. */
4704 static int
4705 one_pre_gcse_pass (pass)
4706 int pass;
4708 int changed = 0;
4710 gcse_subst_count = 0;
4711 gcse_create_count = 0;
4713 alloc_expr_hash_table (max_cuid);
4714 compute_expr_hash_table ();
4715 if (gcse_file)
4716 dump_hash_table (gcse_file, "Expression", expr_hash_table,
4717 expr_hash_table_size, n_exprs);
4718 if (n_exprs > 0)
4720 alloc_pre_mem (n_basic_blocks, n_exprs);
4721 compute_pre_data ();
4722 changed |= pre_gcse ();
4723 free_pre_mem ();
4725 free_expr_hash_table ();
4727 if (gcse_file)
4729 fprintf (gcse_file, "\n");
4730 fprintf (gcse_file, "PRE GCSE of %s, pass %d: %d bytes needed, %d substs, %d insns created\n",
4731 current_function_name, pass,
4732 bytes_used, gcse_subst_count, gcse_create_count);
4735 return changed;
4738 /* If X contains any LABEL_REF's, add REG_LABEL notes for them to INSN.
4739 We have to add REG_LABEL notes, because the following loop optimization
4740 pass requires them. */
4742 /* ??? This is very similar to the loop.c add_label_notes function. We
4743 could probably share code here. */
4745 /* ??? If there was a jump optimization pass after gcse and before loop,
4746 then we would not need to do this here, because jump would add the
4747 necessary REG_LABEL notes. */
4749 static void
4750 add_label_notes (x, insn)
4751 rtx x;
4752 rtx insn;
4754 enum rtx_code code = GET_CODE (x);
4755 int i, j;
4756 const char *fmt;
4758 if (code == LABEL_REF && !LABEL_REF_NONLOCAL_P (x))
4760 /* This code used to ignore labels that referred to dispatch tables to
4761 avoid flow generating (slighly) worse code.
4763 We no longer ignore such label references (see LABEL_REF handling in
4764 mark_jump_label for additional information). */
4765 REG_NOTES (insn) = gen_rtx_EXPR_LIST (REG_LABEL, XEXP (x, 0),
4766 REG_NOTES (insn));
4767 return;
4770 fmt = GET_RTX_FORMAT (code);
4771 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
4773 if (fmt[i] == 'e')
4774 add_label_notes (XEXP (x, i), insn);
4775 else if (fmt[i] == 'E')
4776 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
4777 add_label_notes (XVECEXP (x, i, j), insn);
4781 /* Compute transparent outgoing information for each block.
4783 An expression is transparent to an edge unless it is killed by
4784 the edge itself. This can only happen with abnormal control flow,
4785 when the edge is traversed through a call. This happens with
4786 non-local labels and exceptions.
4788 This would not be necessary if we split the edge. While this is
4789 normally impossible for abnormal critical edges, with some effort
4790 it should be possible with exception handling, since we still have
4791 control over which handler should be invoked. But due to increased
4792 EH table sizes, this may not be worthwhile. */
4794 static void
4795 compute_transpout ()
4797 int bb;
4799 sbitmap_vector_ones (transpout, n_basic_blocks);
4801 for (bb = 0; bb < n_basic_blocks; ++bb)
4803 int i;
4805 /* Note that flow inserted a nop a the end of basic blocks that
4806 end in call instructions for reasons other than abnormal
4807 control flow. */
4808 if (GET_CODE (BLOCK_END (bb)) != CALL_INSN)
4809 continue;
4811 for (i = 0; i < expr_hash_table_size; i++)
4813 struct expr *expr;
4814 for (expr = expr_hash_table[i]; expr ; expr = expr->next_same_hash)
4815 if (GET_CODE (expr->expr) == MEM)
4817 rtx addr = XEXP (expr->expr, 0);
4819 if (GET_CODE (addr) == SYMBOL_REF
4820 && CONSTANT_POOL_ADDRESS_P (addr))
4821 continue;
4823 /* ??? Optimally, we would use interprocedural alias
4824 analysis to determine if this mem is actually killed
4825 by this call. */
4826 RESET_BIT (transpout[bb], expr->bitmap_index);
4832 /* Removal of useless null pointer checks */
4834 /* These need to be file static for communication between
4835 invalidate_nonnull_info and delete_null_pointer_checks. */
4836 static int current_block;
4837 static sbitmap *nonnull_local;
4838 static sbitmap *nonnull_killed;
4840 /* Called via note_stores. X is set by SETTER. If X is a register we must
4841 invalidate nonnull_local and set nonnull_killed.
4843 We ignore hard registers. */
4844 static void
4845 invalidate_nonnull_info (x, setter)
4846 rtx x;
4847 rtx setter ATTRIBUTE_UNUSED;
4849 int offset, regno;
4851 offset = 0;
4852 while (GET_CODE (x) == SUBREG)
4853 x = SUBREG_REG (x);
4855 /* Ignore anything that is not a register or is a hard register. */
4856 if (GET_CODE (x) != REG
4857 || REGNO (x) < FIRST_PSEUDO_REGISTER)
4858 return;
4860 regno = REGNO (x);
4862 RESET_BIT (nonnull_local[current_block], regno);
4863 SET_BIT (nonnull_killed[current_block], regno);
4867 /* Find EQ/NE comparisons against zero which can be (indirectly) evaluated
4868 at compile time.
4870 This is conceptually similar to global constant/copy propagation and
4871 classic global CSE (it even uses the same dataflow equations as cprop).
4873 If a register is used as memory address with the form (mem (reg)), then we
4874 know that REG can not be zero at that point in the program. Any instruction
4875 which sets REG "kills" this property.
4877 So, if every path leading to a conditional branch has an available memory
4878 reference of that form, then we know the register can not have the value
4879 zero at the conditional branch.
4881 So we merely need to compute the local properies and propagate that data
4882 around the cfg, then optimize where possible.
4884 We run this pass two times. Once before CSE, then again after CSE. This
4885 has proven to be the most profitable approach. It is rare for new
4886 optimization opportunities of this nature to appear after the first CSE
4887 pass.
4889 This could probably be integrated with global cprop with a little work. */
4891 void
4892 delete_null_pointer_checks (f)
4893 rtx f;
4895 int_list_ptr *s_preds, *s_succs;
4896 int *num_preds, *num_succs;
4897 int changed, bb;
4898 sbitmap *nonnull_avin, *nonnull_avout;
4900 /* First break the program into basic blocks. */
4901 find_basic_blocks (f, max_reg_num (), NULL, 1);
4903 /* If we have only a single block, then there's nothing to do. */
4904 if (n_basic_blocks <= 1)
4906 /* Free storage allocated by find_basic_blocks. */
4907 free_basic_block_vars (0);
4908 return;
4911 /* We need predecessor/successor lists as well as pred/succ counts for
4912 each basic block. */
4913 s_preds = (int_list_ptr *) alloca (n_basic_blocks * sizeof (int_list_ptr));
4914 s_succs = (int_list_ptr *) alloca (n_basic_blocks * sizeof (int_list_ptr));
4915 num_preds = (int *) alloca (n_basic_blocks * sizeof (int));
4916 num_succs = (int *) alloca (n_basic_blocks * sizeof (int));
4917 compute_preds_succs (s_preds, s_succs, num_preds, num_succs);
4919 /* Allocate bitmaps to hold local and global properties. */
4920 nonnull_local = sbitmap_vector_alloc (n_basic_blocks, max_reg_num ());
4921 nonnull_killed = sbitmap_vector_alloc (n_basic_blocks, max_reg_num ());
4922 nonnull_avin = sbitmap_vector_alloc (n_basic_blocks, max_reg_num ());
4923 nonnull_avout = sbitmap_vector_alloc (n_basic_blocks, max_reg_num ());
4925 /* Compute local properties, nonnull and killed. A register will have
4926 the nonnull property if at the end of the current block its value is
4927 known to be nonnull. The killed property indicates that somewhere in
4928 the block any information we had about the register is killed.
4930 Note that a register can have both properties in a single block. That
4931 indicates that it's killed, then later in the block a new value is
4932 computed. */
4933 sbitmap_vector_zero (nonnull_local, n_basic_blocks);
4934 sbitmap_vector_zero (nonnull_killed, n_basic_blocks);
4935 for (current_block = 0; current_block < n_basic_blocks; current_block++)
4937 rtx insn, stop_insn;
4939 /* Scan each insn in the basic block looking for memory references and
4940 register sets. */
4941 stop_insn = NEXT_INSN (BLOCK_END (current_block));
4942 for (insn = BLOCK_HEAD (current_block);
4943 insn != stop_insn;
4944 insn = NEXT_INSN (insn))
4946 rtx set;
4948 /* Ignore anything that is not a normal insn. */
4949 if (GET_RTX_CLASS (GET_CODE (insn)) != 'i')
4950 continue;
4952 /* Basically ignore anything that is not a simple SET. We do have
4953 to make sure to invalidate nonnull_local and set nonnull_killed
4954 for such insns though. */
4955 set = single_set (insn);
4956 if (!set)
4958 note_stores (PATTERN (insn), invalidate_nonnull_info);
4959 continue;
4962 /* See if we've got a useable memory load. We handle it first
4963 in case it uses its address register as a dest (which kills
4964 the nonnull property). */
4965 if (GET_CODE (SET_SRC (set)) == MEM
4966 && GET_CODE (XEXP (SET_SRC (set), 0)) == REG
4967 && REGNO (XEXP (SET_SRC (set), 0)) >= FIRST_PSEUDO_REGISTER)
4968 SET_BIT (nonnull_local[current_block],
4969 REGNO (XEXP (SET_SRC (set), 0)));
4971 /* Now invalidate stuff clobbered by this insn. */
4972 note_stores (PATTERN (insn), invalidate_nonnull_info);
4974 /* And handle stores, we do these last since any sets in INSN can
4975 not kill the nonnull property if it is derived from a MEM
4976 appearing in a SET_DEST. */
4977 if (GET_CODE (SET_DEST (set)) == MEM
4978 && GET_CODE (XEXP (SET_DEST (set), 0)) == REG)
4979 SET_BIT (nonnull_local[current_block],
4980 REGNO (XEXP (SET_DEST (set), 0)));
4984 /* Now compute global properties based on the local properties. This
4985 is a classic global availablity algorithm. */
4986 sbitmap_zero (nonnull_avin[0]);
4987 sbitmap_vector_ones (nonnull_avout, n_basic_blocks);
4988 changed = 1;
4989 while (changed)
4991 changed = 0;
4993 for (bb = 0; bb < n_basic_blocks; bb++)
4995 if (bb != 0)
4996 sbitmap_intersect_of_predecessors (nonnull_avin[bb],
4997 nonnull_avout, bb, s_preds);
4999 changed |= sbitmap_union_of_diff (nonnull_avout[bb],
5000 nonnull_local[bb],
5001 nonnull_avin[bb],
5002 nonnull_killed[bb]);
5006 /* Now look at each bb and see if it ends with a compare of a value
5007 against zero. */
5008 for (bb = 0; bb < n_basic_blocks; bb++)
5010 rtx last_insn = BLOCK_END (bb);
5011 rtx condition, earliest, reg;
5012 int compare_and_branch;
5014 /* We only want conditional branches. */
5015 if (GET_CODE (last_insn) != JUMP_INSN
5016 || !condjump_p (last_insn)
5017 || simplejump_p (last_insn))
5018 continue;
5020 /* LAST_INSN is a conditional jump. Get its condition. */
5021 condition = get_condition (last_insn, &earliest);
5023 /* If we were unable to get the condition, or it is not a equality
5024 comparison against zero then there's nothing we can do. */
5025 if (!condition
5026 || (GET_CODE (condition) != NE && GET_CODE (condition) != EQ)
5027 || GET_CODE (XEXP (condition, 1)) != CONST_INT
5028 || XEXP (condition, 1) != CONST0_RTX (GET_MODE (XEXP (condition, 0))))
5029 continue;
5031 /* We must be checking a register against zero. */
5032 reg = XEXP (condition, 0);
5033 if (GET_CODE (reg) != REG)
5034 continue;
5036 /* Is the register known to have a nonzero value? */
5037 if (!TEST_BIT (nonnull_avout[bb], REGNO (reg)))
5038 continue;
5040 /* Try to compute whether the compare/branch at the loop end is one or
5041 two instructions. */
5042 if (earliest == last_insn)
5043 compare_and_branch = 1;
5044 else if (earliest == prev_nonnote_insn (last_insn))
5045 compare_and_branch = 2;
5046 else
5047 continue;
5049 /* We know the register in this comparison is nonnull at exit from
5050 this block. We can optimize this comparison. */
5051 if (GET_CODE (condition) == NE)
5053 rtx new_jump;
5055 new_jump = emit_jump_insn_before (gen_jump (JUMP_LABEL (last_insn)),
5056 last_insn);
5057 JUMP_LABEL (new_jump) = JUMP_LABEL (last_insn);
5058 LABEL_NUSES (JUMP_LABEL (new_jump))++;
5059 emit_barrier_after (new_jump);
5061 delete_insn (last_insn);
5062 if (compare_and_branch == 2)
5063 delete_insn (earliest);
5066 /* Free storage allocated by find_basic_blocks. */
5067 free_basic_block_vars (0);
5069 /* Free bitmaps. */
5070 free (nonnull_local);
5071 free (nonnull_killed);
5072 free (nonnull_avin);
5073 free (nonnull_avout);
5076 /* Code Hoisting variables and subroutines. */
5078 /* Very busy expressions. */
5079 static sbitmap *hoist_vbein;
5080 static sbitmap *hoist_vbeout;
5082 /* Hoistable expressions. */
5083 static sbitmap *hoist_exprs;
5085 /* Dominator bitmaps. */
5086 static sbitmap *dominators;
5087 static sbitmap *post_dominators;
5089 /* ??? We could compute post dominators and run this algorithm in
5090 reverse to to perform tail merging, doing so would probably be
5091 more effective than the tail merging code in jump.c.
5093 It's unclear if tail merging could be run in parallel with
5094 code hoisting. It would be nice. */
5096 /* Allocate vars used for code hoisting analysis. */
5098 static void
5099 alloc_code_hoist_mem (n_blocks, n_exprs)
5100 int n_blocks, n_exprs;
5102 antloc = sbitmap_vector_alloc (n_blocks, n_exprs);
5103 transp = sbitmap_vector_alloc (n_blocks, n_exprs);
5104 comp = sbitmap_vector_alloc (n_blocks, n_exprs);
5106 hoist_vbein = sbitmap_vector_alloc (n_blocks, n_exprs);
5107 hoist_vbeout = sbitmap_vector_alloc (n_blocks, n_exprs);
5108 hoist_exprs = sbitmap_vector_alloc (n_blocks, n_exprs);
5109 transpout = sbitmap_vector_alloc (n_blocks, n_exprs);
5111 dominators = sbitmap_vector_alloc (n_blocks, n_blocks);
5112 post_dominators = sbitmap_vector_alloc (n_blocks, n_blocks);
5115 /* Free vars used for code hoisting analysis. */
5117 static void
5118 free_code_hoist_mem ()
5120 free (antloc);
5121 free (transp);
5122 free (comp);
5124 free (hoist_vbein);
5125 free (hoist_vbeout);
5126 free (hoist_exprs);
5127 free (transpout);
5129 free (dominators);
5130 free (post_dominators);
5133 /* Compute the very busy expressions at entry/exit from each block.
5135 An expression is very busy if all paths from a given point
5136 compute the expression. */
5138 static void
5139 compute_code_hoist_vbeinout ()
5141 int bb, changed, passes;
5143 sbitmap_vector_zero (hoist_vbeout, n_basic_blocks);
5144 sbitmap_vector_zero (hoist_vbein, n_basic_blocks);
5146 passes = 0;
5147 changed = 1;
5148 while (changed)
5150 changed = 0;
5151 /* We scan the blocks in the reverse order to speed up
5152 the convergence. */
5153 for (bb = n_basic_blocks - 1; bb >= 0; bb--)
5155 changed |= sbitmap_a_or_b_and_c (hoist_vbein[bb], antloc[bb],
5156 hoist_vbeout[bb], transp[bb]);
5157 if (bb != n_basic_blocks - 1)
5158 sbitmap_intersect_of_successors (hoist_vbeout[bb], hoist_vbein,
5159 bb, s_succs);
5161 passes++;
5164 if (gcse_file)
5165 fprintf (gcse_file, "hoisting vbeinout computation: %d passes\n", passes);
5168 /* Top level routine to do the dataflow analysis needed by code hoisting. */
5170 static void
5171 compute_code_hoist_data ()
5173 compute_local_properties (transp, comp, antloc, 0);
5174 compute_transpout ();
5175 compute_code_hoist_vbeinout ();
5176 compute_flow_dominators (dominators, post_dominators);
5177 if (gcse_file)
5178 fprintf (gcse_file, "\n");
5181 /* Determine if the expression identified by EXPR_INDEX would
5182 reach BB unimpared if it was placed at the end of EXPR_BB.
5184 It's unclear exactly what Muchnick meant by "unimpared". It seems
5185 to me that the expression must either be computed or transparent in
5186 *every* block in the path(s) from EXPR_BB to BB. Any other definition
5187 would allow the expression to be hoisted out of loops, even if
5188 the expression wasn't a loop invariant.
5190 Contrast this to reachability for PRE where an expression is
5191 considered reachable if *any* path reaches instead of *all*
5192 paths. */
5194 static int
5195 hoist_expr_reaches_here_p (expr_bb, expr_index, bb, visited)
5196 int expr_bb;
5197 int expr_index;
5198 int bb;
5199 char *visited;
5201 edge pred;
5203 if (visited == NULL)
5205 visited = (char *) alloca (n_basic_blocks);
5206 bzero (visited, n_basic_blocks);
5209 visited[expr_bb] = 1;
5210 for (pred = BASIC_BLOCK (bb)->pred; pred != NULL; pred = pred->pred_next)
5212 int pred_bb = pred->src->index;
5214 if (pred->src == ENTRY_BLOCK_PTR)
5215 break;
5216 else if (visited[pred_bb])
5217 continue;
5218 /* Does this predecessor generate this expression? */
5219 else if (TEST_BIT (comp[pred_bb], expr_index))
5220 break;
5221 else if (! TEST_BIT (transp[pred_bb], expr_index))
5222 break;
5223 /* Not killed. */
5224 else
5226 visited[pred_bb] = 1;
5227 if (! hoist_expr_reaches_here_p (expr_bb, expr_index,
5228 pred_bb, visited))
5229 break;
5233 return (pred == NULL);
5236 /* Actually perform code hoisting. */
5237 static void
5238 hoist_code ()
5240 int bb, dominated, i;
5241 struct expr **index_map;
5243 sbitmap_vector_zero (hoist_exprs, n_basic_blocks);
5245 /* Compute a mapping from expression number (`bitmap_index') to
5246 hash table entry. */
5248 index_map = (struct expr **) alloca (n_exprs * sizeof (struct expr *));
5249 bzero ((char *) index_map, n_exprs * sizeof (struct expr *));
5250 for (i = 0; i < expr_hash_table_size; i++)
5252 struct expr *expr;
5254 for (expr = expr_hash_table[i]; expr != NULL; expr = expr->next_same_hash)
5255 index_map[expr->bitmap_index] = expr;
5258 /* Walk over each basic block looking for potentially hoistable
5259 expressions, nothing gets hoisted from the entry block. */
5260 for (bb = 0; bb < n_basic_blocks; bb++)
5262 int found = 0;
5263 int insn_inserted_p;
5265 /* Examine each expression that is very busy at the exit of this
5266 block. These are the potentially hoistable expressions. */
5267 for (i = 0; i < hoist_vbeout[bb]->n_bits; i++)
5269 int hoistable = 0;
5270 if (TEST_BIT (hoist_vbeout[bb], i)
5271 && TEST_BIT (transpout[bb], i))
5273 /* We've found a potentially hoistable expression, now
5274 we look at every block BB dominates to see if it
5275 computes the expression. */
5276 for (dominated = 0; dominated < n_basic_blocks; dominated++)
5278 /* Ignore self dominance. */
5279 if (bb == dominated
5280 || ! TEST_BIT (dominators[dominated], bb))
5281 continue;
5283 /* We've found a dominated block, now see if it computes
5284 the busy expression and whether or not moving that
5285 expression to the "beginning" of that block is safe. */
5286 if (!TEST_BIT (antloc[dominated], i))
5287 continue;
5289 /* Note if the expression would reach the dominated block
5290 unimpared if it was placed at the end of BB.
5292 Keep track of how many times this expression is hoistable
5293 from a dominated block into BB. */
5294 if (hoist_expr_reaches_here_p (bb, i, dominated, NULL))
5295 hoistable++;
5298 /* If we found more than one hoistable occurence of this
5299 expression, then note it in the bitmap of expressions to
5300 hoist. It makes no sense to hoist things which are computed
5301 in only one BB, and doing so tends to pessimize register
5302 allocation. One could increase this value to try harder
5303 to avoid any possible code expansion due to register
5304 allocation issues; however experiments have shown that
5305 the vast majority of hoistable expressions are only movable
5306 from two successors, so raising this threshhold is likely
5307 to nullify any benefit we get from code hoisting. */
5308 if (hoistable > 1)
5310 SET_BIT (hoist_exprs[bb], i);
5311 found = 1;
5316 /* If we found nothing to hoist, then quit now. */
5317 if (! found)
5318 continue;
5320 /* Loop over all the hoistable expressions. */
5321 for (i = 0; i < hoist_exprs[bb]->n_bits; i++)
5323 /* We want to insert the expression into BB only once, so
5324 note when we've inserted it. */
5325 insn_inserted_p = 0;
5327 /* These tests should be the same as the tests above. */
5328 if (TEST_BIT (hoist_vbeout[bb], i))
5330 /* We've found a potentially hoistable expression, now
5331 we look at every block BB dominates to see if it
5332 computes the expression. */
5333 for (dominated = 0; dominated < n_basic_blocks; dominated++)
5335 /* Ignore self dominance. */
5336 if (bb == dominated
5337 || ! TEST_BIT (dominators[dominated], bb))
5338 continue;
5340 /* We've found a dominated block, now see if it computes
5341 the busy expression and whether or not moving that
5342 expression to the "beginning" of that block is safe. */
5343 if (!TEST_BIT (antloc[dominated], i))
5344 continue;
5346 /* The expression is computed in the dominated block and
5347 it would be safe to compute it at the start of the
5348 dominated block. Now we have to determine if the
5349 expresion would reach the dominated block if it was
5350 placed at the end of BB. */
5351 if (hoist_expr_reaches_here_p (bb, i, dominated, NULL))
5353 struct expr *expr = index_map[i];
5354 struct occr *occr = expr->antic_occr;
5355 rtx insn;
5356 rtx set;
5359 /* Find the right occurence of this expression. */
5360 while (BLOCK_NUM (occr->insn) != dominated && occr)
5361 occr = occr->next;
5363 /* Should never happen. */
5364 if (!occr)
5365 abort ();
5367 insn = occr->insn;
5369 set = single_set (insn);
5370 if (! set)
5371 abort ();
5373 /* Create a pseudo-reg to store the result of reaching
5374 expressions into. Get the mode for the new pseudo
5375 from the mode of the original destination pseudo. */
5376 if (expr->reaching_reg == NULL)
5377 expr->reaching_reg
5378 = gen_reg_rtx (GET_MODE (SET_DEST (set)));
5380 /* In theory this should never fail since we're creating
5381 a reg->reg copy.
5383 However, on the x86 some of the movXX patterns actually
5384 contain clobbers of scratch regs. This may cause the
5385 insn created by validate_change to not match any
5386 pattern and thus cause validate_change to fail. */
5387 if (validate_change (insn, &SET_SRC (set),
5388 expr->reaching_reg, 0))
5390 occr->deleted_p = 1;
5391 if (!insn_inserted_p)
5393 insert_insn_end_bb (index_map[i], bb, 0);
5394 insn_inserted_p = 1;
5404 /* Top level routine to perform one code hoisting (aka unification) pass
5406 Return non-zero if a change was made. */
5408 static int
5409 one_code_hoisting_pass ()
5411 int changed = 0;
5413 alloc_expr_hash_table (max_cuid);
5414 compute_expr_hash_table ();
5415 if (gcse_file)
5416 dump_hash_table (gcse_file, "Code Hosting Expressions", expr_hash_table,
5417 expr_hash_table_size, n_exprs);
5418 if (n_exprs > 0)
5420 alloc_code_hoist_mem (n_basic_blocks, n_exprs);
5421 compute_code_hoist_data ();
5422 hoist_code ();
5423 free_code_hoist_mem ();
5425 free_expr_hash_table ();
5427 return changed;