* genattrtab.c (simplify_cond): Make TESTS an array of rtxs, instead
[official-gcc.git] / gcc / cse.c
blob42b338c5cec70600eb8c1b46c8232ef914c942de
1 /* Common subexpression elimination for GNU compiler.
2 Copyright (C) 1987, 88, 89, 92-7, 1998, 1999 Free Software Foundation, Inc.
4 This file is part of GNU CC.
6 GNU CC is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2, or (at your option)
9 any later version.
11 GNU CC is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
16 You should have received a copy of the GNU General Public License
17 along with GNU CC; see the file COPYING. If not, write to
18 the Free Software Foundation, 59 Temple Place - Suite 330,
19 Boston, MA 02111-1307, USA. */
22 #include "config.h"
23 /* stdio.h must precede rtl.h for FFS. */
24 #include "system.h"
25 #include <setjmp.h>
27 #include "rtl.h"
28 #include "tm_p.h"
29 #include "regs.h"
30 #include "hard-reg-set.h"
31 #include "flags.h"
32 #include "real.h"
33 #include "insn-config.h"
34 #include "recog.h"
35 #include "function.h"
36 #include "expr.h"
37 #include "toplev.h"
38 #include "output.h"
39 #include "splay-tree.h"
40 #include "ggc.h"
42 /* The basic idea of common subexpression elimination is to go
43 through the code, keeping a record of expressions that would
44 have the same value at the current scan point, and replacing
45 expressions encountered with the cheapest equivalent expression.
47 It is too complicated to keep track of the different possibilities
48 when control paths merge in this code; so, at each label, we forget all
49 that is known and start fresh. This can be described as processing each
50 extended basic block separately. We have a separate pass to perform
51 global CSE.
53 Note CSE can turn a conditional or computed jump into a nop or
54 an unconditional jump. When this occurs we arrange to run the jump
55 optimizer after CSE to delete the unreachable code.
57 We use two data structures to record the equivalent expressions:
58 a hash table for most expressions, and several vectors together
59 with "quantity numbers" to record equivalent (pseudo) registers.
61 The use of the special data structure for registers is desirable
62 because it is faster. It is possible because registers references
63 contain a fairly small number, the register number, taken from
64 a contiguously allocated series, and two register references are
65 identical if they have the same number. General expressions
66 do not have any such thing, so the only way to retrieve the
67 information recorded on an expression other than a register
68 is to keep it in a hash table.
70 Registers and "quantity numbers":
72 At the start of each basic block, all of the (hardware and pseudo)
73 registers used in the function are given distinct quantity
74 numbers to indicate their contents. During scan, when the code
75 copies one register into another, we copy the quantity number.
76 When a register is loaded in any other way, we allocate a new
77 quantity number to describe the value generated by this operation.
78 `reg_qty' records what quantity a register is currently thought
79 of as containing.
81 All real quantity numbers are greater than or equal to `max_reg'.
82 If register N has not been assigned a quantity, reg_qty[N] will equal N.
84 Quantity numbers below `max_reg' do not exist and none of the `qty_...'
85 variables should be referenced with an index below `max_reg'.
87 We also maintain a bidirectional chain of registers for each
88 quantity number. `qty_first_reg', `qty_last_reg',
89 `reg_next_eqv' and `reg_prev_eqv' hold these chains.
91 The first register in a chain is the one whose lifespan is least local.
92 Among equals, it is the one that was seen first.
93 We replace any equivalent register with that one.
95 If two registers have the same quantity number, it must be true that
96 REG expressions with `qty_mode' must be in the hash table for both
97 registers and must be in the same class.
99 The converse is not true. Since hard registers may be referenced in
100 any mode, two REG expressions might be equivalent in the hash table
101 but not have the same quantity number if the quantity number of one
102 of the registers is not the same mode as those expressions.
104 Constants and quantity numbers
106 When a quantity has a known constant value, that value is stored
107 in the appropriate element of qty_const. This is in addition to
108 putting the constant in the hash table as is usual for non-regs.
110 Whether a reg or a constant is preferred is determined by the configuration
111 macro CONST_COSTS and will often depend on the constant value. In any
112 event, expressions containing constants can be simplified, by fold_rtx.
114 When a quantity has a known nearly constant value (such as an address
115 of a stack slot), that value is stored in the appropriate element
116 of qty_const.
118 Integer constants don't have a machine mode. However, cse
119 determines the intended machine mode from the destination
120 of the instruction that moves the constant. The machine mode
121 is recorded in the hash table along with the actual RTL
122 constant expression so that different modes are kept separate.
124 Other expressions:
126 To record known equivalences among expressions in general
127 we use a hash table called `table'. It has a fixed number of buckets
128 that contain chains of `struct table_elt' elements for expressions.
129 These chains connect the elements whose expressions have the same
130 hash codes.
132 Other chains through the same elements connect the elements which
133 currently have equivalent values.
135 Register references in an expression are canonicalized before hashing
136 the expression. This is done using `reg_qty' and `qty_first_reg'.
137 The hash code of a register reference is computed using the quantity
138 number, not the register number.
140 When the value of an expression changes, it is necessary to remove from the
141 hash table not just that expression but all expressions whose values
142 could be different as a result.
144 1. If the value changing is in memory, except in special cases
145 ANYTHING referring to memory could be changed. That is because
146 nobody knows where a pointer does not point.
147 The function `invalidate_memory' removes what is necessary.
149 The special cases are when the address is constant or is
150 a constant plus a fixed register such as the frame pointer
151 or a static chain pointer. When such addresses are stored in,
152 we can tell exactly which other such addresses must be invalidated
153 due to overlap. `invalidate' does this.
154 All expressions that refer to non-constant
155 memory addresses are also invalidated. `invalidate_memory' does this.
157 2. If the value changing is a register, all expressions
158 containing references to that register, and only those,
159 must be removed.
161 Because searching the entire hash table for expressions that contain
162 a register is very slow, we try to figure out when it isn't necessary.
163 Precisely, this is necessary only when expressions have been
164 entered in the hash table using this register, and then the value has
165 changed, and then another expression wants to be added to refer to
166 the register's new value. This sequence of circumstances is rare
167 within any one basic block.
169 The vectors `reg_tick' and `reg_in_table' are used to detect this case.
170 reg_tick[i] is incremented whenever a value is stored in register i.
171 reg_in_table[i] holds -1 if no references to register i have been
172 entered in the table; otherwise, it contains the value reg_tick[i] had
173 when the references were entered. If we want to enter a reference
174 and reg_in_table[i] != reg_tick[i], we must scan and remove old references.
175 Until we want to enter a new entry, the mere fact that the two vectors
176 don't match makes the entries be ignored if anyone tries to match them.
178 Registers themselves are entered in the hash table as well as in
179 the equivalent-register chains. However, the vectors `reg_tick'
180 and `reg_in_table' do not apply to expressions which are simple
181 register references. These expressions are removed from the table
182 immediately when they become invalid, and this can be done even if
183 we do not immediately search for all the expressions that refer to
184 the register.
186 A CLOBBER rtx in an instruction invalidates its operand for further
187 reuse. A CLOBBER or SET rtx whose operand is a MEM:BLK
188 invalidates everything that resides in memory.
190 Related expressions:
192 Constant expressions that differ only by an additive integer
193 are called related. When a constant expression is put in
194 the table, the related expression with no constant term
195 is also entered. These are made to point at each other
196 so that it is possible to find out if there exists any
197 register equivalent to an expression related to a given expression. */
199 /* One plus largest register number used in this function. */
201 static int max_reg;
203 /* One plus largest instruction UID used in this function at time of
204 cse_main call. */
206 static int max_insn_uid;
208 /* Length of vectors indexed by quantity number.
209 We know in advance we will not need a quantity number this big. */
211 static int max_qty;
213 /* Next quantity number to be allocated.
214 This is 1 + the largest number needed so far. */
216 static int next_qty;
218 /* Indexed by quantity number, gives the first (or last) register
219 in the chain of registers that currently contain this quantity. */
221 static int *qty_first_reg;
222 static int *qty_last_reg;
224 /* Index by quantity number, gives the mode of the quantity. */
226 static enum machine_mode *qty_mode;
228 /* Indexed by quantity number, gives the rtx of the constant value of the
229 quantity, or zero if it does not have a known value.
230 A sum of the frame pointer (or arg pointer) plus a constant
231 can also be entered here. */
233 static rtx *qty_const;
235 /* Indexed by qty number, gives the insn that stored the constant value
236 recorded in `qty_const'. */
238 static rtx *qty_const_insn;
240 /* The next three variables are used to track when a comparison between a
241 quantity and some constant or register has been passed. In that case, we
242 know the results of the comparison in case we see it again. These variables
243 record a comparison that is known to be true. */
245 /* Indexed by qty number, gives the rtx code of a comparison with a known
246 result involving this quantity. If none, it is UNKNOWN. */
247 static enum rtx_code *qty_comparison_code;
249 /* Indexed by qty number, gives the constant being compared against in a
250 comparison of known result. If no such comparison, it is undefined.
251 If the comparison is not with a constant, it is zero. */
253 static rtx *qty_comparison_const;
255 /* Indexed by qty number, gives the quantity being compared against in a
256 comparison of known result. If no such comparison, if it undefined.
257 If the comparison is not with a register, it is -1. */
259 static int *qty_comparison_qty;
261 #ifdef HAVE_cc0
262 /* For machines that have a CC0, we do not record its value in the hash
263 table since its use is guaranteed to be the insn immediately following
264 its definition and any other insn is presumed to invalidate it.
266 Instead, we store below the value last assigned to CC0. If it should
267 happen to be a constant, it is stored in preference to the actual
268 assigned value. In case it is a constant, we store the mode in which
269 the constant should be interpreted. */
271 static rtx prev_insn_cc0;
272 static enum machine_mode prev_insn_cc0_mode;
273 #endif
275 /* Previous actual insn. 0 if at first insn of basic block. */
277 static rtx prev_insn;
279 /* Insn being scanned. */
281 static rtx this_insn;
283 /* Index by register number, gives the number of the next (or
284 previous) register in the chain of registers sharing the same
285 value.
287 Or -1 if this register is at the end of the chain.
289 If reg_qty[N] == N, reg_next_eqv[N] is undefined. */
291 static int *reg_next_eqv;
292 static int *reg_prev_eqv;
294 struct cse_reg_info {
295 union {
296 /* The number of times the register has been altered in the current
297 basic block. */
298 int reg_tick;
300 /* The next cse_reg_info structure in the free list. */
301 struct cse_reg_info* next;
302 } variant;
304 /* The REG_TICK value at which rtx's containing this register are
305 valid in the hash table. If this does not equal the current
306 reg_tick value, such expressions existing in the hash table are
307 invalid. */
308 int reg_in_table;
310 /* The quantity number of the register's current contents. */
311 int reg_qty;
314 /* A free list of cse_reg_info entries. */
315 static struct cse_reg_info *cse_reg_info_free_list;
317 /* A mapping from registers to cse_reg_info data structures. */
318 static splay_tree cse_reg_info_tree;
320 /* The last lookup we did into the cse_reg_info_tree. This allows us
321 to cache repeated lookups. */
322 static int cached_regno;
323 static struct cse_reg_info *cached_cse_reg_info;
325 /* A HARD_REG_SET containing all the hard registers for which there is
326 currently a REG expression in the hash table. Note the difference
327 from the above variables, which indicate if the REG is mentioned in some
328 expression in the table. */
330 static HARD_REG_SET hard_regs_in_table;
332 /* A HARD_REG_SET containing all the hard registers that are invalidated
333 by a CALL_INSN. */
335 static HARD_REG_SET regs_invalidated_by_call;
337 /* CUID of insn that starts the basic block currently being cse-processed. */
339 static int cse_basic_block_start;
341 /* CUID of insn that ends the basic block currently being cse-processed. */
343 static int cse_basic_block_end;
345 /* Vector mapping INSN_UIDs to cuids.
346 The cuids are like uids but increase monotonically always.
347 We use them to see whether a reg is used outside a given basic block. */
349 static int *uid_cuid;
351 /* Highest UID in UID_CUID. */
352 static int max_uid;
354 /* Get the cuid of an insn. */
356 #define INSN_CUID(INSN) (uid_cuid[INSN_UID (INSN)])
358 /* Nonzero if cse has altered conditional jump insns
359 in such a way that jump optimization should be redone. */
361 static int cse_jumps_altered;
363 /* Nonzero if we put a LABEL_REF into the hash table. Since we may have put
364 it into an INSN without a REG_LABEL, we have to rerun jump after CSE
365 to put in the note. */
366 static int recorded_label_ref;
368 /* canon_hash stores 1 in do_not_record
369 if it notices a reference to CC0, PC, or some other volatile
370 subexpression. */
372 static int do_not_record;
374 #ifdef LOAD_EXTEND_OP
376 /* Scratch rtl used when looking for load-extended copy of a MEM. */
377 static rtx memory_extend_rtx;
378 #endif
380 /* canon_hash stores 1 in hash_arg_in_memory
381 if it notices a reference to memory within the expression being hashed. */
383 static int hash_arg_in_memory;
385 /* canon_hash stores 1 in hash_arg_in_struct
386 if it notices a reference to memory that's part of a structure. */
388 static int hash_arg_in_struct;
390 /* The hash table contains buckets which are chains of `struct table_elt's,
391 each recording one expression's information.
392 That expression is in the `exp' field.
394 Those elements with the same hash code are chained in both directions
395 through the `next_same_hash' and `prev_same_hash' fields.
397 Each set of expressions with equivalent values
398 are on a two-way chain through the `next_same_value'
399 and `prev_same_value' fields, and all point with
400 the `first_same_value' field at the first element in
401 that chain. The chain is in order of increasing cost.
402 Each element's cost value is in its `cost' field.
404 The `in_memory' field is nonzero for elements that
405 involve any reference to memory. These elements are removed
406 whenever a write is done to an unidentified location in memory.
407 To be safe, we assume that a memory address is unidentified unless
408 the address is either a symbol constant or a constant plus
409 the frame pointer or argument pointer.
411 The `in_struct' field is nonzero for elements that
412 involve any reference to memory inside a structure or array.
414 The `related_value' field is used to connect related expressions
415 (that differ by adding an integer).
416 The related expressions are chained in a circular fashion.
417 `related_value' is zero for expressions for which this
418 chain is not useful.
420 The `cost' field stores the cost of this element's expression.
422 The `is_const' flag is set if the element is a constant (including
423 a fixed address).
425 The `flag' field is used as a temporary during some search routines.
427 The `mode' field is usually the same as GET_MODE (`exp'), but
428 if `exp' is a CONST_INT and has no machine mode then the `mode'
429 field is the mode it was being used as. Each constant is
430 recorded separately for each mode it is used with. */
433 struct table_elt
435 rtx exp;
436 struct table_elt *next_same_hash;
437 struct table_elt *prev_same_hash;
438 struct table_elt *next_same_value;
439 struct table_elt *prev_same_value;
440 struct table_elt *first_same_value;
441 struct table_elt *related_value;
442 int cost;
443 enum machine_mode mode;
444 char in_memory;
445 char in_struct;
446 char is_const;
447 char flag;
450 /* We don't want a lot of buckets, because we rarely have very many
451 things stored in the hash table, and a lot of buckets slows
452 down a lot of loops that happen frequently. */
453 #define NBUCKETS 31
455 /* Compute hash code of X in mode M. Special-case case where X is a pseudo
456 register (hard registers may require `do_not_record' to be set). */
458 #define HASH(X, M) \
459 (GET_CODE (X) == REG && REGNO (X) >= FIRST_PSEUDO_REGISTER \
460 ? (((unsigned) REG << 7) + (unsigned) REG_QTY (REGNO (X))) % NBUCKETS \
461 : canon_hash (X, M) % NBUCKETS)
463 /* Determine whether register number N is considered a fixed register for CSE.
464 It is desirable to replace other regs with fixed regs, to reduce need for
465 non-fixed hard regs.
466 A reg wins if it is either the frame pointer or designated as fixed,
467 but not if it is an overlapping register. */
468 #ifdef OVERLAPPING_REGNO_P
469 #define FIXED_REGNO_P(N) \
470 (((N) == FRAME_POINTER_REGNUM || (N) == HARD_FRAME_POINTER_REGNUM \
471 || fixed_regs[N] || global_regs[N]) \
472 && ! OVERLAPPING_REGNO_P ((N)))
473 #else
474 #define FIXED_REGNO_P(N) \
475 ((N) == FRAME_POINTER_REGNUM || (N) == HARD_FRAME_POINTER_REGNUM \
476 || fixed_regs[N] || global_regs[N])
477 #endif
479 /* Compute cost of X, as stored in the `cost' field of a table_elt. Fixed
480 hard registers and pointers into the frame are the cheapest with a cost
481 of 0. Next come pseudos with a cost of one and other hard registers with
482 a cost of 2. Aside from these special cases, call `rtx_cost'. */
484 #define CHEAP_REGNO(N) \
485 ((N) == FRAME_POINTER_REGNUM || (N) == HARD_FRAME_POINTER_REGNUM \
486 || (N) == STACK_POINTER_REGNUM || (N) == ARG_POINTER_REGNUM \
487 || ((N) >= FIRST_VIRTUAL_REGISTER && (N) <= LAST_VIRTUAL_REGISTER) \
488 || ((N) < FIRST_PSEUDO_REGISTER \
489 && FIXED_REGNO_P (N) && REGNO_REG_CLASS (N) != NO_REGS))
491 /* A register is cheap if it is a user variable assigned to the register
492 or if its register number always corresponds to a cheap register. */
494 #define CHEAP_REG(N) \
495 ((REG_USERVAR_P (N) && REGNO (N) < FIRST_PSEUDO_REGISTER) \
496 || CHEAP_REGNO (REGNO (N)))
498 #define COST(X) \
499 (GET_CODE (X) == REG \
500 ? (CHEAP_REG (X) ? 0 \
501 : REGNO (X) >= FIRST_PSEUDO_REGISTER ? 1 \
502 : 2) \
503 : notreg_cost(X))
505 /* Get the info associated with register N. */
507 #define GET_CSE_REG_INFO(N) \
508 (((N) == cached_regno && cached_cse_reg_info) \
509 ? cached_cse_reg_info : get_cse_reg_info ((N)))
511 /* Get the number of times this register has been updated in this
512 basic block. */
514 #define REG_TICK(N) ((GET_CSE_REG_INFO (N))->variant.reg_tick)
516 /* Get the point at which REG was recorded in the table. */
518 #define REG_IN_TABLE(N) ((GET_CSE_REG_INFO (N))->reg_in_table)
520 /* Get the quantity number for REG. */
522 #define REG_QTY(N) ((GET_CSE_REG_INFO (N))->reg_qty)
524 /* Determine if the quantity number for register X represents a valid index
525 into the `qty_...' variables. */
527 #define REGNO_QTY_VALID_P(N) (REG_QTY (N) != (N))
529 #ifdef ADDRESS_COST
530 /* The ADDRESS_COST macro does not deal with ADDRESSOF nodes. But,
531 during CSE, such nodes are present. Using an ADDRESSOF node which
532 refers to the address of a REG is a good thing because we can then
533 turn (MEM (ADDRESSSOF (REG))) into just plain REG. */
534 #define CSE_ADDRESS_COST(RTX) \
535 ((GET_CODE (RTX) == ADDRESSOF && REG_P (XEXP ((RTX), 0))) \
536 ? -1 : ADDRESS_COST(RTX))
537 #endif
539 static struct table_elt *table[NBUCKETS];
541 /* Chain of `struct table_elt's made so far for this function
542 but currently removed from the table. */
544 static struct table_elt *free_element_chain;
546 /* Number of `struct table_elt' structures made so far for this function. */
548 static int n_elements_made;
550 /* Maximum value `n_elements_made' has had so far in this compilation
551 for functions previously processed. */
553 static int max_elements_made;
555 /* Surviving equivalence class when two equivalence classes are merged
556 by recording the effects of a jump in the last insn. Zero if the
557 last insn was not a conditional jump. */
559 static struct table_elt *last_jump_equiv_class;
561 /* Set to the cost of a constant pool reference if one was found for a
562 symbolic constant. If this was found, it means we should try to
563 convert constants into constant pool entries if they don't fit in
564 the insn. */
566 static int constant_pool_entries_cost;
568 /* Define maximum length of a branch path. */
570 #define PATHLENGTH 10
572 /* This data describes a block that will be processed by cse_basic_block. */
574 struct cse_basic_block_data {
575 /* Lowest CUID value of insns in block. */
576 int low_cuid;
577 /* Highest CUID value of insns in block. */
578 int high_cuid;
579 /* Total number of SETs in block. */
580 int nsets;
581 /* Last insn in the block. */
582 rtx last;
583 /* Size of current branch path, if any. */
584 int path_size;
585 /* Current branch path, indicating which branches will be taken. */
586 struct branch_path {
587 /* The branch insn. */
588 rtx branch;
589 /* Whether it should be taken or not. AROUND is the same as taken
590 except that it is used when the destination label is not preceded
591 by a BARRIER. */
592 enum taken {TAKEN, NOT_TAKEN, AROUND} status;
593 } path[PATHLENGTH];
596 /* Nonzero if X has the form (PLUS frame-pointer integer). We check for
597 virtual regs here because the simplify_*_operation routines are called
598 by integrate.c, which is called before virtual register instantiation. */
600 #define FIXED_BASE_PLUS_P(X) \
601 ((X) == frame_pointer_rtx || (X) == hard_frame_pointer_rtx \
602 || ((X) == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM])\
603 || (X) == virtual_stack_vars_rtx \
604 || (X) == virtual_incoming_args_rtx \
605 || (GET_CODE (X) == PLUS && GET_CODE (XEXP (X, 1)) == CONST_INT \
606 && (XEXP (X, 0) == frame_pointer_rtx \
607 || XEXP (X, 0) == hard_frame_pointer_rtx \
608 || ((X) == arg_pointer_rtx \
609 && fixed_regs[ARG_POINTER_REGNUM]) \
610 || XEXP (X, 0) == virtual_stack_vars_rtx \
611 || XEXP (X, 0) == virtual_incoming_args_rtx)) \
612 || GET_CODE (X) == ADDRESSOF)
614 /* Similar, but also allows reference to the stack pointer.
616 This used to include FIXED_BASE_PLUS_P, however, we can't assume that
617 arg_pointer_rtx by itself is nonzero, because on at least one machine,
618 the i960, the arg pointer is zero when it is unused. */
620 #define NONZERO_BASE_PLUS_P(X) \
621 ((X) == frame_pointer_rtx || (X) == hard_frame_pointer_rtx \
622 || (X) == virtual_stack_vars_rtx \
623 || (X) == virtual_incoming_args_rtx \
624 || (GET_CODE (X) == PLUS && GET_CODE (XEXP (X, 1)) == CONST_INT \
625 && (XEXP (X, 0) == frame_pointer_rtx \
626 || XEXP (X, 0) == hard_frame_pointer_rtx \
627 || ((X) == arg_pointer_rtx \
628 && fixed_regs[ARG_POINTER_REGNUM]) \
629 || XEXP (X, 0) == virtual_stack_vars_rtx \
630 || XEXP (X, 0) == virtual_incoming_args_rtx)) \
631 || (X) == stack_pointer_rtx \
632 || (X) == virtual_stack_dynamic_rtx \
633 || (X) == virtual_outgoing_args_rtx \
634 || (GET_CODE (X) == PLUS && GET_CODE (XEXP (X, 1)) == CONST_INT \
635 && (XEXP (X, 0) == stack_pointer_rtx \
636 || XEXP (X, 0) == virtual_stack_dynamic_rtx \
637 || XEXP (X, 0) == virtual_outgoing_args_rtx)) \
638 || GET_CODE (X) == ADDRESSOF)
640 static int notreg_cost PROTO((rtx));
641 static void new_basic_block PROTO((void));
642 static void make_new_qty PROTO((int));
643 static void make_regs_eqv PROTO((int, int));
644 static void delete_reg_equiv PROTO((int));
645 static int mention_regs PROTO((rtx));
646 static int insert_regs PROTO((rtx, struct table_elt *, int));
647 static void free_element PROTO((struct table_elt *));
648 static void remove_from_table PROTO((struct table_elt *, unsigned));
649 static struct table_elt *get_element PROTO((void));
650 static struct table_elt *lookup PROTO((rtx, unsigned, enum machine_mode)),
651 *lookup_for_remove PROTO((rtx, unsigned, enum machine_mode));
652 static rtx lookup_as_function PROTO((rtx, enum rtx_code));
653 static struct table_elt *insert PROTO((rtx, struct table_elt *, unsigned,
654 enum machine_mode));
655 static void merge_equiv_classes PROTO((struct table_elt *,
656 struct table_elt *));
657 static void invalidate PROTO((rtx, enum machine_mode));
658 static int cse_rtx_varies_p PROTO((rtx));
659 static void remove_invalid_refs PROTO((int));
660 static void remove_invalid_subreg_refs PROTO((int, int, enum machine_mode));
661 static void rehash_using_reg PROTO((rtx));
662 static void invalidate_memory PROTO((void));
663 static void invalidate_for_call PROTO((void));
664 static rtx use_related_value PROTO((rtx, struct table_elt *));
665 static unsigned canon_hash PROTO((rtx, enum machine_mode));
666 static unsigned safe_hash PROTO((rtx, enum machine_mode));
667 static int exp_equiv_p PROTO((rtx, rtx, int, int));
668 static void set_nonvarying_address_components PROTO((rtx, int, rtx *,
669 HOST_WIDE_INT *,
670 HOST_WIDE_INT *));
671 static int refers_to_p PROTO((rtx, rtx));
672 static rtx canon_reg PROTO((rtx, rtx));
673 static void find_best_addr PROTO((rtx, rtx *));
674 static enum rtx_code find_comparison_args PROTO((enum rtx_code, rtx *, rtx *,
675 enum machine_mode *,
676 enum machine_mode *));
677 static rtx cse_gen_binary PROTO((enum rtx_code, enum machine_mode,
678 rtx, rtx));
679 static rtx simplify_plus_minus PROTO((enum rtx_code, enum machine_mode,
680 rtx, rtx));
681 static rtx fold_rtx PROTO((rtx, rtx));
682 static rtx equiv_constant PROTO((rtx));
683 static void record_jump_equiv PROTO((rtx, int));
684 static void record_jump_cond PROTO((enum rtx_code, enum machine_mode,
685 rtx, rtx, int));
686 static void cse_insn PROTO((rtx, rtx));
687 static int note_mem_written PROTO((rtx));
688 static void invalidate_from_clobbers PROTO((rtx));
689 static rtx cse_process_notes PROTO((rtx, rtx));
690 static void cse_around_loop PROTO((rtx));
691 static void invalidate_skipped_set PROTO((rtx, rtx));
692 static void invalidate_skipped_block PROTO((rtx));
693 static void cse_check_loop_start PROTO((rtx, rtx));
694 static void cse_set_around_loop PROTO((rtx, rtx, rtx));
695 static rtx cse_basic_block PROTO((rtx, rtx, struct branch_path *, int));
696 static void count_reg_usage PROTO((rtx, int *, rtx, int));
697 extern void dump_class PROTO((struct table_elt*));
698 static void check_fold_consts PROTO((PTR));
699 static struct cse_reg_info* get_cse_reg_info PROTO((int));
700 static void free_cse_reg_info PROTO((splay_tree_value));
701 static void flush_hash_table PROTO((void));
703 /* Dump the expressions in the equivalence class indicated by CLASSP.
704 This function is used only for debugging. */
705 void
706 dump_class (classp)
707 struct table_elt *classp;
709 struct table_elt *elt;
711 fprintf (stderr, "Equivalence chain for ");
712 print_rtl (stderr, classp->exp);
713 fprintf (stderr, ": \n");
715 for (elt = classp->first_same_value; elt; elt = elt->next_same_value)
717 print_rtl (stderr, elt->exp);
718 fprintf (stderr, "\n");
722 /* Return an estimate of the cost of computing rtx X.
723 One use is in cse, to decide which expression to keep in the hash table.
724 Another is in rtl generation, to pick the cheapest way to multiply.
725 Other uses like the latter are expected in the future. */
727 /* Internal function, to compute cost when X is not a register; called
728 from COST macro to keep it simple. */
730 static int
731 notreg_cost (x)
732 rtx x;
734 return ((GET_CODE (x) == SUBREG
735 && GET_CODE (SUBREG_REG (x)) == REG
736 && GET_MODE_CLASS (GET_MODE (x)) == MODE_INT
737 && GET_MODE_CLASS (GET_MODE (SUBREG_REG (x))) == MODE_INT
738 && (GET_MODE_SIZE (GET_MODE (x))
739 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
740 && subreg_lowpart_p (x)
741 && TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (GET_MODE (x)),
742 GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x)))))
743 ? (CHEAP_REG (SUBREG_REG (x)) ? 0
744 : (REGNO (SUBREG_REG (x)) >= FIRST_PSEUDO_REGISTER ? 1
745 : 2))
746 : rtx_cost (x, SET) * 2);
749 /* Return the right cost to give to an operation
750 to make the cost of the corresponding register-to-register instruction
751 N times that of a fast register-to-register instruction. */
753 #define COSTS_N_INSNS(N) ((N) * 4 - 2)
756 rtx_cost (x, outer_code)
757 rtx x;
758 enum rtx_code outer_code ATTRIBUTE_UNUSED;
760 register int i, j;
761 register enum rtx_code code;
762 register const char *fmt;
763 register int total;
765 if (x == 0)
766 return 0;
768 /* Compute the default costs of certain things.
769 Note that RTX_COSTS can override the defaults. */
771 code = GET_CODE (x);
772 switch (code)
774 case MULT:
775 /* Count multiplication by 2**n as a shift,
776 because if we are considering it, we would output it as a shift. */
777 if (GET_CODE (XEXP (x, 1)) == CONST_INT
778 && exact_log2 (INTVAL (XEXP (x, 1))) >= 0)
779 total = 2;
780 else
781 total = COSTS_N_INSNS (5);
782 break;
783 case DIV:
784 case UDIV:
785 case MOD:
786 case UMOD:
787 total = COSTS_N_INSNS (7);
788 break;
789 case USE:
790 /* Used in loop.c and combine.c as a marker. */
791 total = 0;
792 break;
793 case ASM_OPERANDS:
794 /* We don't want these to be used in substitutions because
795 we have no way of validating the resulting insn. So assign
796 anything containing an ASM_OPERANDS a very high cost. */
797 total = 1000;
798 break;
799 default:
800 total = 2;
803 switch (code)
805 case REG:
806 return ! CHEAP_REG (x);
808 case SUBREG:
809 /* If we can't tie these modes, make this expensive. The larger
810 the mode, the more expensive it is. */
811 if (! MODES_TIEABLE_P (GET_MODE (x), GET_MODE (SUBREG_REG (x))))
812 return COSTS_N_INSNS (2
813 + GET_MODE_SIZE (GET_MODE (x)) / UNITS_PER_WORD);
814 return 2;
815 #ifdef RTX_COSTS
816 RTX_COSTS (x, code, outer_code);
817 #endif
818 #ifdef CONST_COSTS
819 CONST_COSTS (x, code, outer_code);
820 #endif
822 default:
823 #ifdef DEFAULT_RTX_COSTS
824 DEFAULT_RTX_COSTS(x, code, outer_code);
825 #endif
826 break;
829 /* Sum the costs of the sub-rtx's, plus cost of this operation,
830 which is already in total. */
832 fmt = GET_RTX_FORMAT (code);
833 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
834 if (fmt[i] == 'e')
835 total += rtx_cost (XEXP (x, i), code);
836 else if (fmt[i] == 'E')
837 for (j = 0; j < XVECLEN (x, i); j++)
838 total += rtx_cost (XVECEXP (x, i, j), code);
840 return total;
843 static struct cse_reg_info *
844 get_cse_reg_info (regno)
845 int regno;
847 struct cse_reg_info *cri;
848 splay_tree_node n;
850 /* See if we already have this entry. */
851 n = splay_tree_lookup (cse_reg_info_tree,
852 (splay_tree_key) regno);
853 if (n)
854 cri = (struct cse_reg_info *) (n->value);
855 else
857 /* Get a new cse_reg_info structure. */
858 if (cse_reg_info_free_list)
860 cri = cse_reg_info_free_list;
861 cse_reg_info_free_list = cri->variant.next;
863 else
864 cri = (struct cse_reg_info *) xmalloc (sizeof (struct cse_reg_info));
866 /* Initialize it. */
867 cri->variant.reg_tick = 0;
868 cri->reg_in_table = -1;
869 cri->reg_qty = regno;
871 splay_tree_insert (cse_reg_info_tree,
872 (splay_tree_key) regno,
873 (splay_tree_value) cri);
876 /* Cache this lookup; we tend to be looking up information about the
877 same register several times in a row. */
878 cached_regno = regno;
879 cached_cse_reg_info = cri;
881 return cri;
884 static void
885 free_cse_reg_info (v)
886 splay_tree_value v;
888 struct cse_reg_info *cri = (struct cse_reg_info *) v;
890 cri->variant.next = cse_reg_info_free_list;
891 cse_reg_info_free_list = cri;
894 /* Clear the hash table and initialize each register with its own quantity,
895 for a new basic block. */
897 static void
898 new_basic_block ()
900 register int i;
902 next_qty = max_reg;
904 if (cse_reg_info_tree)
906 splay_tree_delete (cse_reg_info_tree);
907 cached_cse_reg_info = 0;
910 cse_reg_info_tree = splay_tree_new (splay_tree_compare_ints, 0,
911 free_cse_reg_info);
913 CLEAR_HARD_REG_SET (hard_regs_in_table);
915 /* The per-quantity values used to be initialized here, but it is
916 much faster to initialize each as it is made in `make_new_qty'. */
918 for (i = 0; i < NBUCKETS; i++)
920 register struct table_elt *this, *next;
921 for (this = table[i]; this; this = next)
923 next = this->next_same_hash;
924 free_element (this);
928 bzero ((char *) table, sizeof table);
930 prev_insn = 0;
932 #ifdef HAVE_cc0
933 prev_insn_cc0 = 0;
934 #endif
937 /* Say that register REG contains a quantity not in any register before
938 and initialize that quantity. */
940 static void
941 make_new_qty (reg)
942 register int reg;
944 register int q;
946 if (next_qty >= max_qty)
947 abort ();
949 q = REG_QTY (reg) = next_qty++;
950 qty_first_reg[q] = reg;
951 qty_last_reg[q] = reg;
952 qty_const[q] = qty_const_insn[q] = 0;
953 qty_comparison_code[q] = UNKNOWN;
955 reg_next_eqv[reg] = reg_prev_eqv[reg] = -1;
958 /* Make reg NEW equivalent to reg OLD.
959 OLD is not changing; NEW is. */
961 static void
962 make_regs_eqv (new, old)
963 register int new, old;
965 register int lastr, firstr;
966 register int q = REG_QTY (old);
968 /* Nothing should become eqv until it has a "non-invalid" qty number. */
969 if (! REGNO_QTY_VALID_P (old))
970 abort ();
972 REG_QTY (new) = q;
973 firstr = qty_first_reg[q];
974 lastr = qty_last_reg[q];
976 /* Prefer fixed hard registers to anything. Prefer pseudo regs to other
977 hard regs. Among pseudos, if NEW will live longer than any other reg
978 of the same qty, and that is beyond the current basic block,
979 make it the new canonical replacement for this qty. */
980 if (! (firstr < FIRST_PSEUDO_REGISTER && FIXED_REGNO_P (firstr))
981 /* Certain fixed registers might be of the class NO_REGS. This means
982 that not only can they not be allocated by the compiler, but
983 they cannot be used in substitutions or canonicalizations
984 either. */
985 && (new >= FIRST_PSEUDO_REGISTER || REGNO_REG_CLASS (new) != NO_REGS)
986 && ((new < FIRST_PSEUDO_REGISTER && FIXED_REGNO_P (new))
987 || (new >= FIRST_PSEUDO_REGISTER
988 && (firstr < FIRST_PSEUDO_REGISTER
989 || ((uid_cuid[REGNO_LAST_UID (new)] > cse_basic_block_end
990 || (uid_cuid[REGNO_FIRST_UID (new)]
991 < cse_basic_block_start))
992 && (uid_cuid[REGNO_LAST_UID (new)]
993 > uid_cuid[REGNO_LAST_UID (firstr)]))))))
995 reg_prev_eqv[firstr] = new;
996 reg_next_eqv[new] = firstr;
997 reg_prev_eqv[new] = -1;
998 qty_first_reg[q] = new;
1000 else
1002 /* If NEW is a hard reg (known to be non-fixed), insert at end.
1003 Otherwise, insert before any non-fixed hard regs that are at the
1004 end. Registers of class NO_REGS cannot be used as an
1005 equivalent for anything. */
1006 while (lastr < FIRST_PSEUDO_REGISTER && reg_prev_eqv[lastr] >= 0
1007 && (REGNO_REG_CLASS (lastr) == NO_REGS || ! FIXED_REGNO_P (lastr))
1008 && new >= FIRST_PSEUDO_REGISTER)
1009 lastr = reg_prev_eqv[lastr];
1010 reg_next_eqv[new] = reg_next_eqv[lastr];
1011 if (reg_next_eqv[lastr] >= 0)
1012 reg_prev_eqv[reg_next_eqv[lastr]] = new;
1013 else
1014 qty_last_reg[q] = new;
1015 reg_next_eqv[lastr] = new;
1016 reg_prev_eqv[new] = lastr;
1020 /* Remove REG from its equivalence class. */
1022 static void
1023 delete_reg_equiv (reg)
1024 register int reg;
1026 register int q = REG_QTY (reg);
1027 register int p, n;
1029 /* If invalid, do nothing. */
1030 if (q == reg)
1031 return;
1033 p = reg_prev_eqv[reg];
1034 n = reg_next_eqv[reg];
1036 if (n != -1)
1037 reg_prev_eqv[n] = p;
1038 else
1039 qty_last_reg[q] = p;
1040 if (p != -1)
1041 reg_next_eqv[p] = n;
1042 else
1043 qty_first_reg[q] = n;
1045 REG_QTY (reg) = reg;
1048 /* Remove any invalid expressions from the hash table
1049 that refer to any of the registers contained in expression X.
1051 Make sure that newly inserted references to those registers
1052 as subexpressions will be considered valid.
1054 mention_regs is not called when a register itself
1055 is being stored in the table.
1057 Return 1 if we have done something that may have changed the hash code
1058 of X. */
1060 static int
1061 mention_regs (x)
1062 rtx x;
1064 register enum rtx_code code;
1065 register int i, j;
1066 register const char *fmt;
1067 register int changed = 0;
1069 if (x == 0)
1070 return 0;
1072 code = GET_CODE (x);
1073 if (code == REG)
1075 register int regno = REGNO (x);
1076 register int endregno
1077 = regno + (regno >= FIRST_PSEUDO_REGISTER ? 1
1078 : HARD_REGNO_NREGS (regno, GET_MODE (x)));
1079 int i;
1081 for (i = regno; i < endregno; i++)
1083 if (REG_IN_TABLE (i) >= 0 && REG_IN_TABLE (i) != REG_TICK (i))
1084 remove_invalid_refs (i);
1086 REG_IN_TABLE (i) = REG_TICK (i);
1089 return 0;
1092 /* If this is a SUBREG, we don't want to discard other SUBREGs of the same
1093 pseudo if they don't use overlapping words. We handle only pseudos
1094 here for simplicity. */
1095 if (code == SUBREG && GET_CODE (SUBREG_REG (x)) == REG
1096 && REGNO (SUBREG_REG (x)) >= FIRST_PSEUDO_REGISTER)
1098 int i = REGNO (SUBREG_REG (x));
1100 if (REG_IN_TABLE (i) >= 0 && REG_IN_TABLE (i) != REG_TICK (i))
1102 /* If reg_tick has been incremented more than once since
1103 reg_in_table was last set, that means that the entire
1104 register has been set before, so discard anything memorized
1105 for the entrire register, including all SUBREG expressions. */
1106 if (REG_IN_TABLE (i) != REG_TICK (i) - 1)
1107 remove_invalid_refs (i);
1108 else
1109 remove_invalid_subreg_refs (i, SUBREG_WORD (x), GET_MODE (x));
1112 REG_IN_TABLE (i) = REG_TICK (i);
1113 return 0;
1116 /* If X is a comparison or a COMPARE and either operand is a register
1117 that does not have a quantity, give it one. This is so that a later
1118 call to record_jump_equiv won't cause X to be assigned a different
1119 hash code and not found in the table after that call.
1121 It is not necessary to do this here, since rehash_using_reg can
1122 fix up the table later, but doing this here eliminates the need to
1123 call that expensive function in the most common case where the only
1124 use of the register is in the comparison. */
1126 if (code == COMPARE || GET_RTX_CLASS (code) == '<')
1128 if (GET_CODE (XEXP (x, 0)) == REG
1129 && ! REGNO_QTY_VALID_P (REGNO (XEXP (x, 0))))
1130 if (insert_regs (XEXP (x, 0), NULL_PTR, 0))
1132 rehash_using_reg (XEXP (x, 0));
1133 changed = 1;
1136 if (GET_CODE (XEXP (x, 1)) == REG
1137 && ! REGNO_QTY_VALID_P (REGNO (XEXP (x, 1))))
1138 if (insert_regs (XEXP (x, 1), NULL_PTR, 0))
1140 rehash_using_reg (XEXP (x, 1));
1141 changed = 1;
1145 fmt = GET_RTX_FORMAT (code);
1146 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1147 if (fmt[i] == 'e')
1148 changed |= mention_regs (XEXP (x, i));
1149 else if (fmt[i] == 'E')
1150 for (j = 0; j < XVECLEN (x, i); j++)
1151 changed |= mention_regs (XVECEXP (x, i, j));
1153 return changed;
1156 /* Update the register quantities for inserting X into the hash table
1157 with a value equivalent to CLASSP.
1158 (If the class does not contain a REG, it is irrelevant.)
1159 If MODIFIED is nonzero, X is a destination; it is being modified.
1160 Note that delete_reg_equiv should be called on a register
1161 before insert_regs is done on that register with MODIFIED != 0.
1163 Nonzero value means that elements of reg_qty have changed
1164 so X's hash code may be different. */
1166 static int
1167 insert_regs (x, classp, modified)
1168 rtx x;
1169 struct table_elt *classp;
1170 int modified;
1172 if (GET_CODE (x) == REG)
1174 register int regno = REGNO (x);
1176 /* If REGNO is in the equivalence table already but is of the
1177 wrong mode for that equivalence, don't do anything here. */
1179 if (REGNO_QTY_VALID_P (regno)
1180 && qty_mode[REG_QTY (regno)] != GET_MODE (x))
1181 return 0;
1183 if (modified || ! REGNO_QTY_VALID_P (regno))
1185 if (classp)
1186 for (classp = classp->first_same_value;
1187 classp != 0;
1188 classp = classp->next_same_value)
1189 if (GET_CODE (classp->exp) == REG
1190 && GET_MODE (classp->exp) == GET_MODE (x))
1192 make_regs_eqv (regno, REGNO (classp->exp));
1193 return 1;
1196 make_new_qty (regno);
1197 qty_mode[REG_QTY (regno)] = GET_MODE (x);
1198 return 1;
1201 return 0;
1204 /* If X is a SUBREG, we will likely be inserting the inner register in the
1205 table. If that register doesn't have an assigned quantity number at
1206 this point but does later, the insertion that we will be doing now will
1207 not be accessible because its hash code will have changed. So assign
1208 a quantity number now. */
1210 else if (GET_CODE (x) == SUBREG && GET_CODE (SUBREG_REG (x)) == REG
1211 && ! REGNO_QTY_VALID_P (REGNO (SUBREG_REG (x))))
1213 int regno = REGNO (SUBREG_REG (x));
1215 insert_regs (SUBREG_REG (x), NULL_PTR, 0);
1216 /* Mention_regs checks if REG_TICK is exactly one larger than
1217 REG_IN_TABLE to find out if there was only a single preceding
1218 invalidation - for the SUBREG - or another one, which would be
1219 for the full register. Since we don't invalidate the SUBREG
1220 here first, we might have to bump up REG_TICK so that mention_regs
1221 will do the right thing. */
1222 if (REG_IN_TABLE (regno) >= 0
1223 && REG_TICK (regno) == REG_IN_TABLE (regno) + 1)
1224 REG_TICK (regno)++;
1225 mention_regs (x);
1226 return 1;
1228 else
1229 return mention_regs (x);
1232 /* Look in or update the hash table. */
1234 /* Put the element ELT on the list of free elements. */
1236 static void
1237 free_element (elt)
1238 struct table_elt *elt;
1240 elt->next_same_hash = free_element_chain;
1241 free_element_chain = elt;
1244 /* Return an element that is free for use. */
1246 static struct table_elt *
1247 get_element ()
1249 struct table_elt *elt = free_element_chain;
1250 if (elt)
1252 free_element_chain = elt->next_same_hash;
1253 return elt;
1255 n_elements_made++;
1256 return (struct table_elt *) oballoc (sizeof (struct table_elt));
1259 /* Remove table element ELT from use in the table.
1260 HASH is its hash code, made using the HASH macro.
1261 It's an argument because often that is known in advance
1262 and we save much time not recomputing it. */
1264 static void
1265 remove_from_table (elt, hash)
1266 register struct table_elt *elt;
1267 unsigned hash;
1269 if (elt == 0)
1270 return;
1272 /* Mark this element as removed. See cse_insn. */
1273 elt->first_same_value = 0;
1275 /* Remove the table element from its equivalence class. */
1278 register struct table_elt *prev = elt->prev_same_value;
1279 register struct table_elt *next = elt->next_same_value;
1281 if (next) next->prev_same_value = prev;
1283 if (prev)
1284 prev->next_same_value = next;
1285 else
1287 register struct table_elt *newfirst = next;
1288 while (next)
1290 next->first_same_value = newfirst;
1291 next = next->next_same_value;
1296 /* Remove the table element from its hash bucket. */
1299 register struct table_elt *prev = elt->prev_same_hash;
1300 register struct table_elt *next = elt->next_same_hash;
1302 if (next) next->prev_same_hash = prev;
1304 if (prev)
1305 prev->next_same_hash = next;
1306 else if (table[hash] == elt)
1307 table[hash] = next;
1308 else
1310 /* This entry is not in the proper hash bucket. This can happen
1311 when two classes were merged by `merge_equiv_classes'. Search
1312 for the hash bucket that it heads. This happens only very
1313 rarely, so the cost is acceptable. */
1314 for (hash = 0; hash < NBUCKETS; hash++)
1315 if (table[hash] == elt)
1316 table[hash] = next;
1320 /* Remove the table element from its related-value circular chain. */
1322 if (elt->related_value != 0 && elt->related_value != elt)
1324 register struct table_elt *p = elt->related_value;
1325 while (p->related_value != elt)
1326 p = p->related_value;
1327 p->related_value = elt->related_value;
1328 if (p->related_value == p)
1329 p->related_value = 0;
1332 free_element (elt);
1335 /* Look up X in the hash table and return its table element,
1336 or 0 if X is not in the table.
1338 MODE is the machine-mode of X, or if X is an integer constant
1339 with VOIDmode then MODE is the mode with which X will be used.
1341 Here we are satisfied to find an expression whose tree structure
1342 looks like X. */
1344 static struct table_elt *
1345 lookup (x, hash, mode)
1346 rtx x;
1347 unsigned hash;
1348 enum machine_mode mode;
1350 register struct table_elt *p;
1352 for (p = table[hash]; p; p = p->next_same_hash)
1353 if (mode == p->mode && ((x == p->exp && GET_CODE (x) == REG)
1354 || exp_equiv_p (x, p->exp, GET_CODE (x) != REG, 0)))
1355 return p;
1357 return 0;
1360 /* Like `lookup' but don't care whether the table element uses invalid regs.
1361 Also ignore discrepancies in the machine mode of a register. */
1363 static struct table_elt *
1364 lookup_for_remove (x, hash, mode)
1365 rtx x;
1366 unsigned hash;
1367 enum machine_mode mode;
1369 register struct table_elt *p;
1371 if (GET_CODE (x) == REG)
1373 int regno = REGNO (x);
1374 /* Don't check the machine mode when comparing registers;
1375 invalidating (REG:SI 0) also invalidates (REG:DF 0). */
1376 for (p = table[hash]; p; p = p->next_same_hash)
1377 if (GET_CODE (p->exp) == REG
1378 && REGNO (p->exp) == regno)
1379 return p;
1381 else
1383 for (p = table[hash]; p; p = p->next_same_hash)
1384 if (mode == p->mode && (x == p->exp || exp_equiv_p (x, p->exp, 0, 0)))
1385 return p;
1388 return 0;
1391 /* Look for an expression equivalent to X and with code CODE.
1392 If one is found, return that expression. */
1394 static rtx
1395 lookup_as_function (x, code)
1396 rtx x;
1397 enum rtx_code code;
1399 register struct table_elt *p = lookup (x, safe_hash (x, VOIDmode) % NBUCKETS,
1400 GET_MODE (x));
1401 /* If we are looking for a CONST_INT, the mode doesn't really matter, as
1402 long as we are narrowing. So if we looked in vain for a mode narrower
1403 than word_mode before, look for word_mode now. */
1404 if (p == 0 && code == CONST_INT
1405 && GET_MODE_SIZE (GET_MODE (x)) < GET_MODE_SIZE (word_mode))
1407 x = copy_rtx (x);
1408 PUT_MODE (x, word_mode);
1409 p = lookup (x, safe_hash (x, VOIDmode) % NBUCKETS, word_mode);
1412 if (p == 0)
1413 return 0;
1415 for (p = p->first_same_value; p; p = p->next_same_value)
1417 if (GET_CODE (p->exp) == code
1418 /* Make sure this is a valid entry in the table. */
1419 && exp_equiv_p (p->exp, p->exp, 1, 0))
1420 return p->exp;
1423 return 0;
1426 /* Insert X in the hash table, assuming HASH is its hash code
1427 and CLASSP is an element of the class it should go in
1428 (or 0 if a new class should be made).
1429 It is inserted at the proper position to keep the class in
1430 the order cheapest first.
1432 MODE is the machine-mode of X, or if X is an integer constant
1433 with VOIDmode then MODE is the mode with which X will be used.
1435 For elements of equal cheapness, the most recent one
1436 goes in front, except that the first element in the list
1437 remains first unless a cheaper element is added. The order of
1438 pseudo-registers does not matter, as canon_reg will be called to
1439 find the cheapest when a register is retrieved from the table.
1441 The in_memory field in the hash table element is set to 0.
1442 The caller must set it nonzero if appropriate.
1444 You should call insert_regs (X, CLASSP, MODIFY) before calling here,
1445 and if insert_regs returns a nonzero value
1446 you must then recompute its hash code before calling here.
1448 If necessary, update table showing constant values of quantities. */
1450 #define CHEAPER(X,Y) ((X)->cost < (Y)->cost)
1452 static struct table_elt *
1453 insert (x, classp, hash, mode)
1454 register rtx x;
1455 register struct table_elt *classp;
1456 unsigned hash;
1457 enum machine_mode mode;
1459 register struct table_elt *elt;
1461 /* If X is a register and we haven't made a quantity for it,
1462 something is wrong. */
1463 if (GET_CODE (x) == REG && ! REGNO_QTY_VALID_P (REGNO (x)))
1464 abort ();
1466 /* If X is a hard register, show it is being put in the table. */
1467 if (GET_CODE (x) == REG && REGNO (x) < FIRST_PSEUDO_REGISTER)
1469 int regno = REGNO (x);
1470 int endregno = regno + HARD_REGNO_NREGS (regno, GET_MODE (x));
1471 int i;
1473 for (i = regno; i < endregno; i++)
1474 SET_HARD_REG_BIT (hard_regs_in_table, i);
1477 /* If X is a label, show we recorded it. */
1478 if (GET_CODE (x) == LABEL_REF
1479 || (GET_CODE (x) == CONST && GET_CODE (XEXP (x, 0)) == PLUS
1480 && GET_CODE (XEXP (XEXP (x, 0), 0)) == LABEL_REF))
1481 recorded_label_ref = 1;
1483 /* Put an element for X into the right hash bucket. */
1485 elt = get_element ();
1486 elt->exp = x;
1487 elt->cost = COST (x);
1488 elt->next_same_value = 0;
1489 elt->prev_same_value = 0;
1490 elt->next_same_hash = table[hash];
1491 elt->prev_same_hash = 0;
1492 elt->related_value = 0;
1493 elt->in_memory = 0;
1494 elt->mode = mode;
1495 elt->is_const = (CONSTANT_P (x)
1496 /* GNU C++ takes advantage of this for `this'
1497 (and other const values). */
1498 || (RTX_UNCHANGING_P (x)
1499 && GET_CODE (x) == REG
1500 && REGNO (x) >= FIRST_PSEUDO_REGISTER)
1501 || FIXED_BASE_PLUS_P (x));
1503 if (table[hash])
1504 table[hash]->prev_same_hash = elt;
1505 table[hash] = elt;
1507 /* Put it into the proper value-class. */
1508 if (classp)
1510 classp = classp->first_same_value;
1511 if (CHEAPER (elt, classp))
1512 /* Insert at the head of the class */
1514 register struct table_elt *p;
1515 elt->next_same_value = classp;
1516 classp->prev_same_value = elt;
1517 elt->first_same_value = elt;
1519 for (p = classp; p; p = p->next_same_value)
1520 p->first_same_value = elt;
1522 else
1524 /* Insert not at head of the class. */
1525 /* Put it after the last element cheaper than X. */
1526 register struct table_elt *p, *next;
1527 for (p = classp; (next = p->next_same_value) && CHEAPER (next, elt);
1528 p = next);
1529 /* Put it after P and before NEXT. */
1530 elt->next_same_value = next;
1531 if (next)
1532 next->prev_same_value = elt;
1533 elt->prev_same_value = p;
1534 p->next_same_value = elt;
1535 elt->first_same_value = classp;
1538 else
1539 elt->first_same_value = elt;
1541 /* If this is a constant being set equivalent to a register or a register
1542 being set equivalent to a constant, note the constant equivalence.
1544 If this is a constant, it cannot be equivalent to a different constant,
1545 and a constant is the only thing that can be cheaper than a register. So
1546 we know the register is the head of the class (before the constant was
1547 inserted).
1549 If this is a register that is not already known equivalent to a
1550 constant, we must check the entire class.
1552 If this is a register that is already known equivalent to an insn,
1553 update `qty_const_insn' to show that `this_insn' is the latest
1554 insn making that quantity equivalent to the constant. */
1556 if (elt->is_const && classp && GET_CODE (classp->exp) == REG
1557 && GET_CODE (x) != REG)
1559 qty_const[REG_QTY (REGNO (classp->exp))]
1560 = gen_lowpart_if_possible (qty_mode[REG_QTY (REGNO (classp->exp))], x);
1561 qty_const_insn[REG_QTY (REGNO (classp->exp))] = this_insn;
1564 else if (GET_CODE (x) == REG && classp && ! qty_const[REG_QTY (REGNO (x))]
1565 && ! elt->is_const)
1567 register struct table_elt *p;
1569 for (p = classp; p != 0; p = p->next_same_value)
1571 if (p->is_const && GET_CODE (p->exp) != REG)
1573 qty_const[REG_QTY (REGNO (x))]
1574 = gen_lowpart_if_possible (GET_MODE (x), p->exp);
1575 qty_const_insn[REG_QTY (REGNO (x))] = this_insn;
1576 break;
1581 else if (GET_CODE (x) == REG && qty_const[REG_QTY (REGNO (x))]
1582 && GET_MODE (x) == qty_mode[REG_QTY (REGNO (x))])
1583 qty_const_insn[REG_QTY (REGNO (x))] = this_insn;
1585 /* If this is a constant with symbolic value,
1586 and it has a term with an explicit integer value,
1587 link it up with related expressions. */
1588 if (GET_CODE (x) == CONST)
1590 rtx subexp = get_related_value (x);
1591 unsigned subhash;
1592 struct table_elt *subelt, *subelt_prev;
1594 if (subexp != 0)
1596 /* Get the integer-free subexpression in the hash table. */
1597 subhash = safe_hash (subexp, mode) % NBUCKETS;
1598 subelt = lookup (subexp, subhash, mode);
1599 if (subelt == 0)
1600 subelt = insert (subexp, NULL_PTR, subhash, mode);
1601 /* Initialize SUBELT's circular chain if it has none. */
1602 if (subelt->related_value == 0)
1603 subelt->related_value = subelt;
1604 /* Find the element in the circular chain that precedes SUBELT. */
1605 subelt_prev = subelt;
1606 while (subelt_prev->related_value != subelt)
1607 subelt_prev = subelt_prev->related_value;
1608 /* Put new ELT into SUBELT's circular chain just before SUBELT.
1609 This way the element that follows SUBELT is the oldest one. */
1610 elt->related_value = subelt_prev->related_value;
1611 subelt_prev->related_value = elt;
1615 return elt;
1618 /* Given two equivalence classes, CLASS1 and CLASS2, put all the entries from
1619 CLASS2 into CLASS1. This is done when we have reached an insn which makes
1620 the two classes equivalent.
1622 CLASS1 will be the surviving class; CLASS2 should not be used after this
1623 call.
1625 Any invalid entries in CLASS2 will not be copied. */
1627 static void
1628 merge_equiv_classes (class1, class2)
1629 struct table_elt *class1, *class2;
1631 struct table_elt *elt, *next, *new;
1633 /* Ensure we start with the head of the classes. */
1634 class1 = class1->first_same_value;
1635 class2 = class2->first_same_value;
1637 /* If they were already equal, forget it. */
1638 if (class1 == class2)
1639 return;
1641 for (elt = class2; elt; elt = next)
1643 unsigned hash;
1644 rtx exp = elt->exp;
1645 enum machine_mode mode = elt->mode;
1647 next = elt->next_same_value;
1649 /* Remove old entry, make a new one in CLASS1's class.
1650 Don't do this for invalid entries as we cannot find their
1651 hash code (it also isn't necessary). */
1652 if (GET_CODE (exp) == REG || exp_equiv_p (exp, exp, 1, 0))
1654 hash_arg_in_memory = 0;
1655 hash_arg_in_struct = 0;
1656 hash = HASH (exp, mode);
1658 if (GET_CODE (exp) == REG)
1659 delete_reg_equiv (REGNO (exp));
1661 remove_from_table (elt, hash);
1663 if (insert_regs (exp, class1, 0))
1665 rehash_using_reg (exp);
1666 hash = HASH (exp, mode);
1668 new = insert (exp, class1, hash, mode);
1669 new->in_memory = hash_arg_in_memory;
1670 new->in_struct = hash_arg_in_struct;
1676 /* Flush the entire hash table. */
1678 static void
1679 flush_hash_table ()
1681 int i;
1682 struct table_elt *p;
1684 for (i = 0; i < NBUCKETS; i++)
1685 for (p = table[i]; p; p = table[i])
1687 /* Note that invalidate can remove elements
1688 after P in the current hash chain. */
1689 if (GET_CODE (p->exp) == REG)
1690 invalidate (p->exp, p->mode);
1691 else
1692 remove_from_table (p, i);
1697 /* Remove from the hash table, or mark as invalid,
1698 all expressions whose values could be altered by storing in X.
1699 X is a register, a subreg, or a memory reference with nonvarying address
1700 (because, when a memory reference with a varying address is stored in,
1701 all memory references are removed by invalidate_memory
1702 so specific invalidation is superfluous).
1703 FULL_MODE, if not VOIDmode, indicates that this much should be invalidated
1704 instead of just the amount indicated by the mode of X. This is only used
1705 for bitfield stores into memory.
1707 A nonvarying address may be just a register or just
1708 a symbol reference, or it may be either of those plus
1709 a numeric offset. */
1711 static void
1712 invalidate (x, full_mode)
1713 rtx x;
1714 enum machine_mode full_mode;
1716 register int i;
1717 register struct table_elt *p;
1719 /* If X is a register, dependencies on its contents
1720 are recorded through the qty number mechanism.
1721 Just change the qty number of the register,
1722 mark it as invalid for expressions that refer to it,
1723 and remove it itself. */
1725 if (GET_CODE (x) == REG)
1727 register int regno = REGNO (x);
1728 register unsigned hash = HASH (x, GET_MODE (x));
1730 /* Remove REGNO from any quantity list it might be on and indicate
1731 that its value might have changed. If it is a pseudo, remove its
1732 entry from the hash table.
1734 For a hard register, we do the first two actions above for any
1735 additional hard registers corresponding to X. Then, if any of these
1736 registers are in the table, we must remove any REG entries that
1737 overlap these registers. */
1739 delete_reg_equiv (regno);
1740 REG_TICK (regno)++;
1742 if (regno >= FIRST_PSEUDO_REGISTER)
1744 /* Because a register can be referenced in more than one mode,
1745 we might have to remove more than one table entry. */
1747 struct table_elt *elt;
1749 while ((elt = lookup_for_remove (x, hash, GET_MODE (x))))
1750 remove_from_table (elt, hash);
1752 else
1754 HOST_WIDE_INT in_table
1755 = TEST_HARD_REG_BIT (hard_regs_in_table, regno);
1756 int endregno = regno + HARD_REGNO_NREGS (regno, GET_MODE (x));
1757 int tregno, tendregno;
1758 register struct table_elt *p, *next;
1760 CLEAR_HARD_REG_BIT (hard_regs_in_table, regno);
1762 for (i = regno + 1; i < endregno; i++)
1764 in_table |= TEST_HARD_REG_BIT (hard_regs_in_table, i);
1765 CLEAR_HARD_REG_BIT (hard_regs_in_table, i);
1766 delete_reg_equiv (i);
1767 REG_TICK (i)++;
1770 if (in_table)
1771 for (hash = 0; hash < NBUCKETS; hash++)
1772 for (p = table[hash]; p; p = next)
1774 next = p->next_same_hash;
1776 if (GET_CODE (p->exp) != REG
1777 || REGNO (p->exp) >= FIRST_PSEUDO_REGISTER)
1778 continue;
1780 tregno = REGNO (p->exp);
1781 tendregno
1782 = tregno + HARD_REGNO_NREGS (tregno, GET_MODE (p->exp));
1783 if (tendregno > regno && tregno < endregno)
1784 remove_from_table (p, hash);
1788 return;
1791 if (GET_CODE (x) == SUBREG)
1793 if (GET_CODE (SUBREG_REG (x)) != REG)
1794 abort ();
1795 invalidate (SUBREG_REG (x), VOIDmode);
1796 return;
1799 /* If X is a parallel, invalidate all of its elements. */
1801 if (GET_CODE (x) == PARALLEL)
1803 for (i = XVECLEN (x, 0) - 1; i >= 0 ; --i)
1804 invalidate (XVECEXP (x, 0, i), VOIDmode);
1805 return;
1808 /* If X is an expr_list, this is part of a disjoint return value;
1809 extract the location in question ignoring the offset. */
1811 if (GET_CODE (x) == EXPR_LIST)
1813 invalidate (XEXP (x, 0), VOIDmode);
1814 return;
1817 /* X is not a register; it must be a memory reference with
1818 a nonvarying address. Remove all hash table elements
1819 that refer to overlapping pieces of memory. */
1821 if (GET_CODE (x) != MEM)
1822 abort ();
1824 if (full_mode == VOIDmode)
1825 full_mode = GET_MODE (x);
1827 for (i = 0; i < NBUCKETS; i++)
1829 register struct table_elt *next;
1830 for (p = table[i]; p; p = next)
1832 next = p->next_same_hash;
1833 /* Invalidate ASM_OPERANDS which reference memory (this is easier
1834 than checking all the aliases). */
1835 if (p->in_memory
1836 && (GET_CODE (p->exp) != MEM
1837 || true_dependence (x, full_mode, p->exp, cse_rtx_varies_p)))
1838 remove_from_table (p, i);
1843 /* Remove all expressions that refer to register REGNO,
1844 since they are already invalid, and we are about to
1845 mark that register valid again and don't want the old
1846 expressions to reappear as valid. */
1848 static void
1849 remove_invalid_refs (regno)
1850 int regno;
1852 register int i;
1853 register struct table_elt *p, *next;
1855 for (i = 0; i < NBUCKETS; i++)
1856 for (p = table[i]; p; p = next)
1858 next = p->next_same_hash;
1859 if (GET_CODE (p->exp) != REG
1860 && refers_to_regno_p (regno, regno + 1, p->exp, NULL_PTR))
1861 remove_from_table (p, i);
1865 /* Likewise for a subreg with subreg_reg WORD and mode MODE. */
1866 static void
1867 remove_invalid_subreg_refs (regno, word, mode)
1868 int regno;
1869 int word;
1870 enum machine_mode mode;
1872 register int i;
1873 register struct table_elt *p, *next;
1874 int end = word + (GET_MODE_SIZE (mode) - 1) / UNITS_PER_WORD;
1876 for (i = 0; i < NBUCKETS; i++)
1877 for (p = table[i]; p; p = next)
1879 rtx exp;
1880 next = p->next_same_hash;
1882 exp = p->exp;
1883 if (GET_CODE (p->exp) != REG
1884 && (GET_CODE (exp) != SUBREG
1885 || GET_CODE (SUBREG_REG (exp)) != REG
1886 || REGNO (SUBREG_REG (exp)) != regno
1887 || (((SUBREG_WORD (exp)
1888 + (GET_MODE_SIZE (GET_MODE (exp)) - 1) / UNITS_PER_WORD)
1889 >= word)
1890 && SUBREG_WORD (exp) <= end))
1891 && refers_to_regno_p (regno, regno + 1, p->exp, NULL_PTR))
1892 remove_from_table (p, i);
1896 /* Recompute the hash codes of any valid entries in the hash table that
1897 reference X, if X is a register, or SUBREG_REG (X) if X is a SUBREG.
1899 This is called when we make a jump equivalence. */
1901 static void
1902 rehash_using_reg (x)
1903 rtx x;
1905 unsigned int i;
1906 struct table_elt *p, *next;
1907 unsigned hash;
1909 if (GET_CODE (x) == SUBREG)
1910 x = SUBREG_REG (x);
1912 /* If X is not a register or if the register is known not to be in any
1913 valid entries in the table, we have no work to do. */
1915 if (GET_CODE (x) != REG
1916 || REG_IN_TABLE (REGNO (x)) < 0
1917 || REG_IN_TABLE (REGNO (x)) != REG_TICK (REGNO (x)))
1918 return;
1920 /* Scan all hash chains looking for valid entries that mention X.
1921 If we find one and it is in the wrong hash chain, move it. We can skip
1922 objects that are registers, since they are handled specially. */
1924 for (i = 0; i < NBUCKETS; i++)
1925 for (p = table[i]; p; p = next)
1927 next = p->next_same_hash;
1928 if (GET_CODE (p->exp) != REG && reg_mentioned_p (x, p->exp)
1929 && exp_equiv_p (p->exp, p->exp, 1, 0)
1930 && i != (hash = safe_hash (p->exp, p->mode) % NBUCKETS))
1932 if (p->next_same_hash)
1933 p->next_same_hash->prev_same_hash = p->prev_same_hash;
1935 if (p->prev_same_hash)
1936 p->prev_same_hash->next_same_hash = p->next_same_hash;
1937 else
1938 table[i] = p->next_same_hash;
1940 p->next_same_hash = table[hash];
1941 p->prev_same_hash = 0;
1942 if (table[hash])
1943 table[hash]->prev_same_hash = p;
1944 table[hash] = p;
1949 /* Remove from the hash table any expression that is a call-clobbered
1950 register. Also update their TICK values. */
1952 static void
1953 invalidate_for_call ()
1955 int regno, endregno;
1956 int i;
1957 unsigned hash;
1958 struct table_elt *p, *next;
1959 int in_table = 0;
1961 /* Go through all the hard registers. For each that is clobbered in
1962 a CALL_INSN, remove the register from quantity chains and update
1963 reg_tick if defined. Also see if any of these registers is currently
1964 in the table. */
1966 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
1967 if (TEST_HARD_REG_BIT (regs_invalidated_by_call, regno))
1969 delete_reg_equiv (regno);
1970 if (REG_TICK (regno) >= 0)
1971 REG_TICK (regno)++;
1973 in_table |= (TEST_HARD_REG_BIT (hard_regs_in_table, regno) != 0);
1976 /* In the case where we have no call-clobbered hard registers in the
1977 table, we are done. Otherwise, scan the table and remove any
1978 entry that overlaps a call-clobbered register. */
1980 if (in_table)
1981 for (hash = 0; hash < NBUCKETS; hash++)
1982 for (p = table[hash]; p; p = next)
1984 next = p->next_same_hash;
1986 if (p->in_memory)
1988 remove_from_table (p, hash);
1989 continue;
1992 if (GET_CODE (p->exp) != REG
1993 || REGNO (p->exp) >= FIRST_PSEUDO_REGISTER)
1994 continue;
1996 regno = REGNO (p->exp);
1997 endregno = regno + HARD_REGNO_NREGS (regno, GET_MODE (p->exp));
1999 for (i = regno; i < endregno; i++)
2000 if (TEST_HARD_REG_BIT (regs_invalidated_by_call, i))
2002 remove_from_table (p, hash);
2003 break;
2008 /* Given an expression X of type CONST,
2009 and ELT which is its table entry (or 0 if it
2010 is not in the hash table),
2011 return an alternate expression for X as a register plus integer.
2012 If none can be found, return 0. */
2014 static rtx
2015 use_related_value (x, elt)
2016 rtx x;
2017 struct table_elt *elt;
2019 register struct table_elt *relt = 0;
2020 register struct table_elt *p, *q;
2021 HOST_WIDE_INT offset;
2023 /* First, is there anything related known?
2024 If we have a table element, we can tell from that.
2025 Otherwise, must look it up. */
2027 if (elt != 0 && elt->related_value != 0)
2028 relt = elt;
2029 else if (elt == 0 && GET_CODE (x) == CONST)
2031 rtx subexp = get_related_value (x);
2032 if (subexp != 0)
2033 relt = lookup (subexp,
2034 safe_hash (subexp, GET_MODE (subexp)) % NBUCKETS,
2035 GET_MODE (subexp));
2038 if (relt == 0)
2039 return 0;
2041 /* Search all related table entries for one that has an
2042 equivalent register. */
2044 p = relt;
2045 while (1)
2047 /* This loop is strange in that it is executed in two different cases.
2048 The first is when X is already in the table. Then it is searching
2049 the RELATED_VALUE list of X's class (RELT). The second case is when
2050 X is not in the table. Then RELT points to a class for the related
2051 value.
2053 Ensure that, whatever case we are in, that we ignore classes that have
2054 the same value as X. */
2056 if (rtx_equal_p (x, p->exp))
2057 q = 0;
2058 else
2059 for (q = p->first_same_value; q; q = q->next_same_value)
2060 if (GET_CODE (q->exp) == REG)
2061 break;
2063 if (q)
2064 break;
2066 p = p->related_value;
2068 /* We went all the way around, so there is nothing to be found.
2069 Alternatively, perhaps RELT was in the table for some other reason
2070 and it has no related values recorded. */
2071 if (p == relt || p == 0)
2072 break;
2075 if (q == 0)
2076 return 0;
2078 offset = (get_integer_term (x) - get_integer_term (p->exp));
2079 /* Note: OFFSET may be 0 if P->xexp and X are related by commutativity. */
2080 return plus_constant (q->exp, offset);
2083 /* Hash an rtx. We are careful to make sure the value is never negative.
2084 Equivalent registers hash identically.
2085 MODE is used in hashing for CONST_INTs only;
2086 otherwise the mode of X is used.
2088 Store 1 in do_not_record if any subexpression is volatile.
2090 Store 1 in hash_arg_in_memory if X contains a MEM rtx
2091 which does not have the RTX_UNCHANGING_P bit set.
2092 In this case, also store 1 in hash_arg_in_struct
2093 if there is a MEM rtx which has the MEM_IN_STRUCT_P bit set.
2095 Note that cse_insn knows that the hash code of a MEM expression
2096 is just (int) MEM plus the hash code of the address. */
2098 static unsigned
2099 canon_hash (x, mode)
2100 rtx x;
2101 enum machine_mode mode;
2103 register int i, j;
2104 register unsigned hash = 0;
2105 register enum rtx_code code;
2106 register const char *fmt;
2108 /* repeat is used to turn tail-recursion into iteration. */
2109 repeat:
2110 if (x == 0)
2111 return hash;
2113 code = GET_CODE (x);
2114 switch (code)
2116 case REG:
2118 register int regno = REGNO (x);
2120 /* On some machines, we can't record any non-fixed hard register,
2121 because extending its life will cause reload problems. We
2122 consider ap, fp, and sp to be fixed for this purpose.
2124 We also consider CCmode registers to be fixed for this purpose;
2125 failure to do so leads to failure to simplify 0<100 type of
2126 conditionals.
2128 On all machines, we can't record any global registers. */
2130 if (regno < FIRST_PSEUDO_REGISTER
2131 && (global_regs[regno]
2132 || (SMALL_REGISTER_CLASSES
2133 && ! fixed_regs[regno]
2134 && regno != FRAME_POINTER_REGNUM
2135 && regno != HARD_FRAME_POINTER_REGNUM
2136 && regno != ARG_POINTER_REGNUM
2137 && regno != STACK_POINTER_REGNUM
2138 && GET_MODE_CLASS (GET_MODE (x)) != MODE_CC)))
2140 do_not_record = 1;
2141 return 0;
2143 hash += ((unsigned) REG << 7) + (unsigned) REG_QTY (regno);
2144 return hash;
2147 /* We handle SUBREG of a REG specially because the underlying
2148 reg changes its hash value with every value change; we don't
2149 want to have to forget unrelated subregs when one subreg changes. */
2150 case SUBREG:
2152 if (GET_CODE (SUBREG_REG (x)) == REG)
2154 hash += (((unsigned) SUBREG << 7)
2155 + REGNO (SUBREG_REG (x)) + SUBREG_WORD (x));
2156 return hash;
2158 break;
2161 case CONST_INT:
2163 unsigned HOST_WIDE_INT tem = INTVAL (x);
2164 hash += ((unsigned) CONST_INT << 7) + (unsigned) mode + tem;
2165 return hash;
2168 case CONST_DOUBLE:
2169 /* This is like the general case, except that it only counts
2170 the integers representing the constant. */
2171 hash += (unsigned) code + (unsigned) GET_MODE (x);
2172 if (GET_MODE (x) != VOIDmode)
2173 for (i = 2; i < GET_RTX_LENGTH (CONST_DOUBLE); i++)
2175 unsigned HOST_WIDE_INT tem = XWINT (x, i);
2176 hash += tem;
2178 else
2179 hash += ((unsigned) CONST_DOUBLE_LOW (x)
2180 + (unsigned) CONST_DOUBLE_HIGH (x));
2181 return hash;
2183 /* Assume there is only one rtx object for any given label. */
2184 case LABEL_REF:
2185 hash
2186 += ((unsigned) LABEL_REF << 7) + (unsigned long) XEXP (x, 0);
2187 return hash;
2189 case SYMBOL_REF:
2190 hash
2191 += ((unsigned) SYMBOL_REF << 7) + (unsigned long) XSTR (x, 0);
2192 return hash;
2194 case MEM:
2195 if (MEM_VOLATILE_P (x))
2197 do_not_record = 1;
2198 return 0;
2200 if (! RTX_UNCHANGING_P (x) || FIXED_BASE_PLUS_P (XEXP (x, 0)))
2202 hash_arg_in_memory = 1;
2203 if (MEM_IN_STRUCT_P (x)) hash_arg_in_struct = 1;
2205 /* Now that we have already found this special case,
2206 might as well speed it up as much as possible. */
2207 hash += (unsigned) MEM;
2208 x = XEXP (x, 0);
2209 goto repeat;
2211 case PRE_DEC:
2212 case PRE_INC:
2213 case POST_DEC:
2214 case POST_INC:
2215 case PC:
2216 case CC0:
2217 case CALL:
2218 case UNSPEC_VOLATILE:
2219 do_not_record = 1;
2220 return 0;
2222 case ASM_OPERANDS:
2223 if (MEM_VOLATILE_P (x))
2225 do_not_record = 1;
2226 return 0;
2228 break;
2230 default:
2231 break;
2234 i = GET_RTX_LENGTH (code) - 1;
2235 hash += (unsigned) code + (unsigned) GET_MODE (x);
2236 fmt = GET_RTX_FORMAT (code);
2237 for (; i >= 0; i--)
2239 if (fmt[i] == 'e')
2241 rtx tem = XEXP (x, i);
2243 /* If we are about to do the last recursive call
2244 needed at this level, change it into iteration.
2245 This function is called enough to be worth it. */
2246 if (i == 0)
2248 x = tem;
2249 goto repeat;
2251 hash += canon_hash (tem, 0);
2253 else if (fmt[i] == 'E')
2254 for (j = 0; j < XVECLEN (x, i); j++)
2255 hash += canon_hash (XVECEXP (x, i, j), 0);
2256 else if (fmt[i] == 's')
2258 register unsigned char *p = (unsigned char *) XSTR (x, i);
2259 if (p)
2260 while (*p)
2261 hash += *p++;
2263 else if (fmt[i] == 'i')
2265 register unsigned tem = XINT (x, i);
2266 hash += tem;
2268 else if (fmt[i] == '0' || fmt[i] == 't')
2269 /* unused */;
2270 else
2271 abort ();
2273 return hash;
2276 /* Like canon_hash but with no side effects. */
2278 static unsigned
2279 safe_hash (x, mode)
2280 rtx x;
2281 enum machine_mode mode;
2283 int save_do_not_record = do_not_record;
2284 int save_hash_arg_in_memory = hash_arg_in_memory;
2285 int save_hash_arg_in_struct = hash_arg_in_struct;
2286 unsigned hash = canon_hash (x, mode);
2287 hash_arg_in_memory = save_hash_arg_in_memory;
2288 hash_arg_in_struct = save_hash_arg_in_struct;
2289 do_not_record = save_do_not_record;
2290 return hash;
2293 /* Return 1 iff X and Y would canonicalize into the same thing,
2294 without actually constructing the canonicalization of either one.
2295 If VALIDATE is nonzero,
2296 we assume X is an expression being processed from the rtl
2297 and Y was found in the hash table. We check register refs
2298 in Y for being marked as valid.
2300 If EQUAL_VALUES is nonzero, we allow a register to match a constant value
2301 that is known to be in the register. Ordinarily, we don't allow them
2302 to match, because letting them match would cause unpredictable results
2303 in all the places that search a hash table chain for an equivalent
2304 for a given value. A possible equivalent that has different structure
2305 has its hash code computed from different data. Whether the hash code
2306 is the same as that of the given value is pure luck. */
2308 static int
2309 exp_equiv_p (x, y, validate, equal_values)
2310 rtx x, y;
2311 int validate;
2312 int equal_values;
2314 register int i, j;
2315 register enum rtx_code code;
2316 register const char *fmt;
2318 /* Note: it is incorrect to assume an expression is equivalent to itself
2319 if VALIDATE is nonzero. */
2320 if (x == y && !validate)
2321 return 1;
2322 if (x == 0 || y == 0)
2323 return x == y;
2325 code = GET_CODE (x);
2326 if (code != GET_CODE (y))
2328 if (!equal_values)
2329 return 0;
2331 /* If X is a constant and Y is a register or vice versa, they may be
2332 equivalent. We only have to validate if Y is a register. */
2333 if (CONSTANT_P (x) && GET_CODE (y) == REG
2334 && REGNO_QTY_VALID_P (REGNO (y))
2335 && GET_MODE (y) == qty_mode[REG_QTY (REGNO (y))]
2336 && rtx_equal_p (x, qty_const[REG_QTY (REGNO (y))])
2337 && (! validate || REG_IN_TABLE (REGNO (y)) == REG_TICK (REGNO (y))))
2338 return 1;
2340 if (CONSTANT_P (y) && code == REG
2341 && REGNO_QTY_VALID_P (REGNO (x))
2342 && GET_MODE (x) == qty_mode[REG_QTY (REGNO (x))]
2343 && rtx_equal_p (y, qty_const[REG_QTY (REGNO (x))]))
2344 return 1;
2346 return 0;
2349 /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent. */
2350 if (GET_MODE (x) != GET_MODE (y))
2351 return 0;
2353 switch (code)
2355 case PC:
2356 case CC0:
2357 return x == y;
2359 case CONST_INT:
2360 return INTVAL (x) == INTVAL (y);
2362 case LABEL_REF:
2363 return XEXP (x, 0) == XEXP (y, 0);
2365 case SYMBOL_REF:
2366 return XSTR (x, 0) == XSTR (y, 0);
2368 case REG:
2370 int regno = REGNO (y);
2371 int endregno
2372 = regno + (regno >= FIRST_PSEUDO_REGISTER ? 1
2373 : HARD_REGNO_NREGS (regno, GET_MODE (y)));
2374 int i;
2376 /* If the quantities are not the same, the expressions are not
2377 equivalent. If there are and we are not to validate, they
2378 are equivalent. Otherwise, ensure all regs are up-to-date. */
2380 if (REG_QTY (REGNO (x)) != REG_QTY (regno))
2381 return 0;
2383 if (! validate)
2384 return 1;
2386 for (i = regno; i < endregno; i++)
2387 if (REG_IN_TABLE (i) != REG_TICK (i))
2388 return 0;
2390 return 1;
2393 /* For commutative operations, check both orders. */
2394 case PLUS:
2395 case MULT:
2396 case AND:
2397 case IOR:
2398 case XOR:
2399 case NE:
2400 case EQ:
2401 return ((exp_equiv_p (XEXP (x, 0), XEXP (y, 0), validate, equal_values)
2402 && exp_equiv_p (XEXP (x, 1), XEXP (y, 1),
2403 validate, equal_values))
2404 || (exp_equiv_p (XEXP (x, 0), XEXP (y, 1),
2405 validate, equal_values)
2406 && exp_equiv_p (XEXP (x, 1), XEXP (y, 0),
2407 validate, equal_values)));
2409 default:
2410 break;
2413 /* Compare the elements. If any pair of corresponding elements
2414 fail to match, return 0 for the whole things. */
2416 fmt = GET_RTX_FORMAT (code);
2417 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2419 switch (fmt[i])
2421 case 'e':
2422 if (! exp_equiv_p (XEXP (x, i), XEXP (y, i), validate, equal_values))
2423 return 0;
2424 break;
2426 case 'E':
2427 if (XVECLEN (x, i) != XVECLEN (y, i))
2428 return 0;
2429 for (j = 0; j < XVECLEN (x, i); j++)
2430 if (! exp_equiv_p (XVECEXP (x, i, j), XVECEXP (y, i, j),
2431 validate, equal_values))
2432 return 0;
2433 break;
2435 case 's':
2436 if (strcmp (XSTR (x, i), XSTR (y, i)))
2437 return 0;
2438 break;
2440 case 'i':
2441 if (XINT (x, i) != XINT (y, i))
2442 return 0;
2443 break;
2445 case 'w':
2446 if (XWINT (x, i) != XWINT (y, i))
2447 return 0;
2448 break;
2450 case '0':
2451 case 't':
2452 break;
2454 default:
2455 abort ();
2459 return 1;
2462 /* Return 1 iff any subexpression of X matches Y.
2463 Here we do not require that X or Y be valid (for registers referred to)
2464 for being in the hash table. */
2466 static int
2467 refers_to_p (x, y)
2468 rtx x, y;
2470 register int i;
2471 register enum rtx_code code;
2472 register const char *fmt;
2474 repeat:
2475 if (x == y)
2476 return 1;
2477 if (x == 0 || y == 0)
2478 return 0;
2480 code = GET_CODE (x);
2481 /* If X as a whole has the same code as Y, they may match.
2482 If so, return 1. */
2483 if (code == GET_CODE (y))
2485 if (exp_equiv_p (x, y, 0, 1))
2486 return 1;
2489 /* X does not match, so try its subexpressions. */
2491 fmt = GET_RTX_FORMAT (code);
2492 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2493 if (fmt[i] == 'e')
2495 if (i == 0)
2497 x = XEXP (x, 0);
2498 goto repeat;
2500 else
2501 if (refers_to_p (XEXP (x, i), y))
2502 return 1;
2504 else if (fmt[i] == 'E')
2506 int j;
2507 for (j = 0; j < XVECLEN (x, i); j++)
2508 if (refers_to_p (XVECEXP (x, i, j), y))
2509 return 1;
2512 return 0;
2515 /* Given ADDR and SIZE (a memory address, and the size of the memory reference),
2516 set PBASE, PSTART, and PEND which correspond to the base of the address,
2517 the starting offset, and ending offset respectively.
2519 ADDR is known to be a nonvarying address. */
2521 /* ??? Despite what the comments say, this function is in fact frequently
2522 passed varying addresses. This does not appear to cause any problems. */
2524 static void
2525 set_nonvarying_address_components (addr, size, pbase, pstart, pend)
2526 rtx addr;
2527 int size;
2528 rtx *pbase;
2529 HOST_WIDE_INT *pstart, *pend;
2531 rtx base;
2532 HOST_WIDE_INT start, end;
2534 base = addr;
2535 start = 0;
2536 end = 0;
2538 if (flag_pic && GET_CODE (base) == PLUS
2539 && XEXP (base, 0) == pic_offset_table_rtx)
2540 base = XEXP (base, 1);
2542 /* Registers with nonvarying addresses usually have constant equivalents;
2543 but the frame pointer register is also possible. */
2544 if (GET_CODE (base) == REG
2545 && qty_const != 0
2546 && REGNO_QTY_VALID_P (REGNO (base))
2547 && qty_mode[REG_QTY (REGNO (base))] == GET_MODE (base)
2548 && qty_const[REG_QTY (REGNO (base))] != 0)
2549 base = qty_const[REG_QTY (REGNO (base))];
2550 else if (GET_CODE (base) == PLUS
2551 && GET_CODE (XEXP (base, 1)) == CONST_INT
2552 && GET_CODE (XEXP (base, 0)) == REG
2553 && qty_const != 0
2554 && REGNO_QTY_VALID_P (REGNO (XEXP (base, 0)))
2555 && (qty_mode[REG_QTY (REGNO (XEXP (base, 0)))]
2556 == GET_MODE (XEXP (base, 0)))
2557 && qty_const[REG_QTY (REGNO (XEXP (base, 0)))])
2559 start = INTVAL (XEXP (base, 1));
2560 base = qty_const[REG_QTY (REGNO (XEXP (base, 0)))];
2562 /* This can happen as the result of virtual register instantiation,
2563 if the initial offset is too large to be a valid address. */
2564 else if (GET_CODE (base) == PLUS
2565 && GET_CODE (XEXP (base, 0)) == REG
2566 && GET_CODE (XEXP (base, 1)) == REG
2567 && qty_const != 0
2568 && REGNO_QTY_VALID_P (REGNO (XEXP (base, 0)))
2569 && (qty_mode[REG_QTY (REGNO (XEXP (base, 0)))]
2570 == GET_MODE (XEXP (base, 0)))
2571 && qty_const[REG_QTY (REGNO (XEXP (base, 0)))]
2572 && REGNO_QTY_VALID_P (REGNO (XEXP (base, 1)))
2573 && (qty_mode[REG_QTY (REGNO (XEXP (base, 1)))]
2574 == GET_MODE (XEXP (base, 1)))
2575 && qty_const[REG_QTY (REGNO (XEXP (base, 1)))])
2577 rtx tem = qty_const[REG_QTY (REGNO (XEXP (base, 1)))];
2578 base = qty_const[REG_QTY (REGNO (XEXP (base, 0)))];
2580 /* One of the two values must be a constant. */
2581 if (GET_CODE (base) != CONST_INT)
2583 if (GET_CODE (tem) != CONST_INT)
2584 abort ();
2585 start = INTVAL (tem);
2587 else
2589 start = INTVAL (base);
2590 base = tem;
2594 /* Handle everything that we can find inside an address that has been
2595 viewed as constant. */
2597 while (1)
2599 /* If no part of this switch does a "continue", the code outside
2600 will exit this loop. */
2602 switch (GET_CODE (base))
2604 case LO_SUM:
2605 /* By definition, operand1 of a LO_SUM is the associated constant
2606 address. Use the associated constant address as the base
2607 instead. */
2608 base = XEXP (base, 1);
2609 continue;
2611 case CONST:
2612 /* Strip off CONST. */
2613 base = XEXP (base, 0);
2614 continue;
2616 case PLUS:
2617 if (GET_CODE (XEXP (base, 1)) == CONST_INT)
2619 start += INTVAL (XEXP (base, 1));
2620 base = XEXP (base, 0);
2621 continue;
2623 break;
2625 case AND:
2626 /* Handle the case of an AND which is the negative of a power of
2627 two. This is used to represent unaligned memory operations. */
2628 if (GET_CODE (XEXP (base, 1)) == CONST_INT
2629 && exact_log2 (- INTVAL (XEXP (base, 1))) > 0)
2631 set_nonvarying_address_components (XEXP (base, 0), size,
2632 pbase, pstart, pend);
2634 /* Assume the worst misalignment. START is affected, but not
2635 END, so compensate but adjusting SIZE. Don't lose any
2636 constant we already had. */
2638 size = *pend - *pstart - INTVAL (XEXP (base, 1)) - 1;
2639 start += *pstart + INTVAL (XEXP (base, 1)) + 1;
2640 end += *pend;
2641 base = *pbase;
2643 break;
2645 default:
2646 break;
2649 break;
2652 if (GET_CODE (base) == CONST_INT)
2654 start += INTVAL (base);
2655 base = const0_rtx;
2658 end = start + size;
2660 /* Set the return values. */
2661 *pbase = base;
2662 *pstart = start;
2663 *pend = end;
2666 /* Return 1 if X has a value that can vary even between two
2667 executions of the program. 0 means X can be compared reliably
2668 against certain constants or near-constants. */
2670 static int
2671 cse_rtx_varies_p (x)
2672 register rtx x;
2674 /* We need not check for X and the equivalence class being of the same
2675 mode because if X is equivalent to a constant in some mode, it
2676 doesn't vary in any mode. */
2678 if (GET_CODE (x) == REG
2679 && REGNO_QTY_VALID_P (REGNO (x))
2680 && GET_MODE (x) == qty_mode[REG_QTY (REGNO (x))]
2681 && qty_const[REG_QTY (REGNO (x))] != 0)
2682 return 0;
2684 if (GET_CODE (x) == PLUS
2685 && GET_CODE (XEXP (x, 1)) == CONST_INT
2686 && GET_CODE (XEXP (x, 0)) == REG
2687 && REGNO_QTY_VALID_P (REGNO (XEXP (x, 0)))
2688 && (GET_MODE (XEXP (x, 0))
2689 == qty_mode[REG_QTY (REGNO (XEXP (x, 0)))])
2690 && qty_const[REG_QTY (REGNO (XEXP (x, 0)))])
2691 return 0;
2693 /* This can happen as the result of virtual register instantiation, if
2694 the initial constant is too large to be a valid address. This gives
2695 us a three instruction sequence, load large offset into a register,
2696 load fp minus a constant into a register, then a MEM which is the
2697 sum of the two `constant' registers. */
2698 if (GET_CODE (x) == PLUS
2699 && GET_CODE (XEXP (x, 0)) == REG
2700 && GET_CODE (XEXP (x, 1)) == REG
2701 && REGNO_QTY_VALID_P (REGNO (XEXP (x, 0)))
2702 && (GET_MODE (XEXP (x, 0))
2703 == qty_mode[REG_QTY (REGNO (XEXP (x, 0)))])
2704 && qty_const[REG_QTY (REGNO (XEXP (x, 0)))]
2705 && REGNO_QTY_VALID_P (REGNO (XEXP (x, 1)))
2706 && (GET_MODE (XEXP (x, 1))
2707 == qty_mode[REG_QTY (REGNO (XEXP (x, 1)))])
2708 && qty_const[REG_QTY (REGNO (XEXP (x, 1)))])
2709 return 0;
2711 return rtx_varies_p (x);
2714 /* Canonicalize an expression:
2715 replace each register reference inside it
2716 with the "oldest" equivalent register.
2718 If INSN is non-zero and we are replacing a pseudo with a hard register
2719 or vice versa, validate_change is used to ensure that INSN remains valid
2720 after we make our substitution. The calls are made with IN_GROUP non-zero
2721 so apply_change_group must be called upon the outermost return from this
2722 function (unless INSN is zero). The result of apply_change_group can
2723 generally be discarded since the changes we are making are optional. */
2725 static rtx
2726 canon_reg (x, insn)
2727 rtx x;
2728 rtx insn;
2730 register int i;
2731 register enum rtx_code code;
2732 register const char *fmt;
2734 if (x == 0)
2735 return x;
2737 code = GET_CODE (x);
2738 switch (code)
2740 case PC:
2741 case CC0:
2742 case CONST:
2743 case CONST_INT:
2744 case CONST_DOUBLE:
2745 case SYMBOL_REF:
2746 case LABEL_REF:
2747 case ADDR_VEC:
2748 case ADDR_DIFF_VEC:
2749 return x;
2751 case REG:
2753 register int first;
2755 /* Never replace a hard reg, because hard regs can appear
2756 in more than one machine mode, and we must preserve the mode
2757 of each occurrence. Also, some hard regs appear in
2758 MEMs that are shared and mustn't be altered. Don't try to
2759 replace any reg that maps to a reg of class NO_REGS. */
2760 if (REGNO (x) < FIRST_PSEUDO_REGISTER
2761 || ! REGNO_QTY_VALID_P (REGNO (x)))
2762 return x;
2764 first = qty_first_reg[REG_QTY (REGNO (x))];
2765 return (first >= FIRST_PSEUDO_REGISTER ? regno_reg_rtx[first]
2766 : REGNO_REG_CLASS (first) == NO_REGS ? x
2767 : gen_rtx_REG (qty_mode[REG_QTY (REGNO (x))], first));
2770 default:
2771 break;
2774 fmt = GET_RTX_FORMAT (code);
2775 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2777 register int j;
2779 if (fmt[i] == 'e')
2781 rtx new = canon_reg (XEXP (x, i), insn);
2782 int insn_code;
2784 /* If replacing pseudo with hard reg or vice versa, ensure the
2785 insn remains valid. Likewise if the insn has MATCH_DUPs. */
2786 if (insn != 0 && new != 0
2787 && GET_CODE (new) == REG && GET_CODE (XEXP (x, i)) == REG
2788 && (((REGNO (new) < FIRST_PSEUDO_REGISTER)
2789 != (REGNO (XEXP (x, i)) < FIRST_PSEUDO_REGISTER))
2790 || (insn_code = recog_memoized (insn)) < 0
2791 || insn_data[insn_code].n_dups > 0))
2792 validate_change (insn, &XEXP (x, i), new, 1);
2793 else
2794 XEXP (x, i) = new;
2796 else if (fmt[i] == 'E')
2797 for (j = 0; j < XVECLEN (x, i); j++)
2798 XVECEXP (x, i, j) = canon_reg (XVECEXP (x, i, j), insn);
2801 return x;
2804 /* LOC is a location within INSN that is an operand address (the contents of
2805 a MEM). Find the best equivalent address to use that is valid for this
2806 insn.
2808 On most CISC machines, complicated address modes are costly, and rtx_cost
2809 is a good approximation for that cost. However, most RISC machines have
2810 only a few (usually only one) memory reference formats. If an address is
2811 valid at all, it is often just as cheap as any other address. Hence, for
2812 RISC machines, we use the configuration macro `ADDRESS_COST' to compare the
2813 costs of various addresses. For two addresses of equal cost, choose the one
2814 with the highest `rtx_cost' value as that has the potential of eliminating
2815 the most insns. For equal costs, we choose the first in the equivalence
2816 class. Note that we ignore the fact that pseudo registers are cheaper
2817 than hard registers here because we would also prefer the pseudo registers.
2820 static void
2821 find_best_addr (insn, loc)
2822 rtx insn;
2823 rtx *loc;
2825 struct table_elt *elt;
2826 rtx addr = *loc;
2827 #ifdef ADDRESS_COST
2828 struct table_elt *p;
2829 int found_better = 1;
2830 #endif
2831 int save_do_not_record = do_not_record;
2832 int save_hash_arg_in_memory = hash_arg_in_memory;
2833 int save_hash_arg_in_struct = hash_arg_in_struct;
2834 int addr_volatile;
2835 int regno;
2836 unsigned hash;
2838 /* Do not try to replace constant addresses or addresses of local and
2839 argument slots. These MEM expressions are made only once and inserted
2840 in many instructions, as well as being used to control symbol table
2841 output. It is not safe to clobber them.
2843 There are some uncommon cases where the address is already in a register
2844 for some reason, but we cannot take advantage of that because we have
2845 no easy way to unshare the MEM. In addition, looking up all stack
2846 addresses is costly. */
2847 if ((GET_CODE (addr) == PLUS
2848 && GET_CODE (XEXP (addr, 0)) == REG
2849 && GET_CODE (XEXP (addr, 1)) == CONST_INT
2850 && (regno = REGNO (XEXP (addr, 0)),
2851 regno == FRAME_POINTER_REGNUM || regno == HARD_FRAME_POINTER_REGNUM
2852 || regno == ARG_POINTER_REGNUM))
2853 || (GET_CODE (addr) == REG
2854 && (regno = REGNO (addr), regno == FRAME_POINTER_REGNUM
2855 || regno == HARD_FRAME_POINTER_REGNUM
2856 || regno == ARG_POINTER_REGNUM))
2857 || GET_CODE (addr) == ADDRESSOF
2858 || CONSTANT_ADDRESS_P (addr))
2859 return;
2861 /* If this address is not simply a register, try to fold it. This will
2862 sometimes simplify the expression. Many simplifications
2863 will not be valid, but some, usually applying the associative rule, will
2864 be valid and produce better code. */
2865 if (GET_CODE (addr) != REG)
2867 rtx folded = fold_rtx (copy_rtx (addr), NULL_RTX);
2869 if (1
2870 #ifdef ADDRESS_COST
2871 && (CSE_ADDRESS_COST (folded) < CSE_ADDRESS_COST (addr)
2872 || (CSE_ADDRESS_COST (folded) == CSE_ADDRESS_COST (addr)
2873 && rtx_cost (folded, MEM) > rtx_cost (addr, MEM)))
2874 #else
2875 && rtx_cost (folded, MEM) < rtx_cost (addr, MEM)
2876 #endif
2877 && validate_change (insn, loc, folded, 0))
2878 addr = folded;
2881 /* If this address is not in the hash table, we can't look for equivalences
2882 of the whole address. Also, ignore if volatile. */
2884 do_not_record = 0;
2885 hash = HASH (addr, Pmode);
2886 addr_volatile = do_not_record;
2887 do_not_record = save_do_not_record;
2888 hash_arg_in_memory = save_hash_arg_in_memory;
2889 hash_arg_in_struct = save_hash_arg_in_struct;
2891 if (addr_volatile)
2892 return;
2894 elt = lookup (addr, hash, Pmode);
2896 #ifndef ADDRESS_COST
2897 if (elt)
2899 int our_cost = elt->cost;
2901 /* Find the lowest cost below ours that works. */
2902 for (elt = elt->first_same_value; elt; elt = elt->next_same_value)
2903 if (elt->cost < our_cost
2904 && (GET_CODE (elt->exp) == REG
2905 || exp_equiv_p (elt->exp, elt->exp, 1, 0))
2906 && validate_change (insn, loc,
2907 canon_reg (copy_rtx (elt->exp), NULL_RTX), 0))
2908 return;
2910 #else
2912 if (elt)
2914 /* We need to find the best (under the criteria documented above) entry
2915 in the class that is valid. We use the `flag' field to indicate
2916 choices that were invalid and iterate until we can't find a better
2917 one that hasn't already been tried. */
2919 for (p = elt->first_same_value; p; p = p->next_same_value)
2920 p->flag = 0;
2922 while (found_better)
2924 int best_addr_cost = CSE_ADDRESS_COST (*loc);
2925 int best_rtx_cost = (elt->cost + 1) >> 1;
2926 struct table_elt *best_elt = elt;
2928 found_better = 0;
2929 for (p = elt->first_same_value; p; p = p->next_same_value)
2930 if (! p->flag)
2932 if ((GET_CODE (p->exp) == REG
2933 || exp_equiv_p (p->exp, p->exp, 1, 0))
2934 && (CSE_ADDRESS_COST (p->exp) < best_addr_cost
2935 || (CSE_ADDRESS_COST (p->exp) == best_addr_cost
2936 && (p->cost + 1) >> 1 > best_rtx_cost)))
2938 found_better = 1;
2939 best_addr_cost = CSE_ADDRESS_COST (p->exp);
2940 best_rtx_cost = (p->cost + 1) >> 1;
2941 best_elt = p;
2945 if (found_better)
2947 if (validate_change (insn, loc,
2948 canon_reg (copy_rtx (best_elt->exp),
2949 NULL_RTX), 0))
2950 return;
2951 else
2952 best_elt->flag = 1;
2957 /* If the address is a binary operation with the first operand a register
2958 and the second a constant, do the same as above, but looking for
2959 equivalences of the register. Then try to simplify before checking for
2960 the best address to use. This catches a few cases: First is when we
2961 have REG+const and the register is another REG+const. We can often merge
2962 the constants and eliminate one insn and one register. It may also be
2963 that a machine has a cheap REG+REG+const. Finally, this improves the
2964 code on the Alpha for unaligned byte stores. */
2966 if (flag_expensive_optimizations
2967 && (GET_RTX_CLASS (GET_CODE (*loc)) == '2'
2968 || GET_RTX_CLASS (GET_CODE (*loc)) == 'c')
2969 && GET_CODE (XEXP (*loc, 0)) == REG
2970 && GET_CODE (XEXP (*loc, 1)) == CONST_INT)
2972 rtx c = XEXP (*loc, 1);
2974 do_not_record = 0;
2975 hash = HASH (XEXP (*loc, 0), Pmode);
2976 do_not_record = save_do_not_record;
2977 hash_arg_in_memory = save_hash_arg_in_memory;
2978 hash_arg_in_struct = save_hash_arg_in_struct;
2980 elt = lookup (XEXP (*loc, 0), hash, Pmode);
2981 if (elt == 0)
2982 return;
2984 /* We need to find the best (under the criteria documented above) entry
2985 in the class that is valid. We use the `flag' field to indicate
2986 choices that were invalid and iterate until we can't find a better
2987 one that hasn't already been tried. */
2989 for (p = elt->first_same_value; p; p = p->next_same_value)
2990 p->flag = 0;
2992 while (found_better)
2994 int best_addr_cost = CSE_ADDRESS_COST (*loc);
2995 int best_rtx_cost = (COST (*loc) + 1) >> 1;
2996 struct table_elt *best_elt = elt;
2997 rtx best_rtx = *loc;
2998 int count;
3000 /* This is at worst case an O(n^2) algorithm, so limit our search
3001 to the first 32 elements on the list. This avoids trouble
3002 compiling code with very long basic blocks that can easily
3003 call cse_gen_binary so many times that we run out of memory. */
3005 found_better = 0;
3006 for (p = elt->first_same_value, count = 0;
3007 p && count < 32;
3008 p = p->next_same_value, count++)
3009 if (! p->flag
3010 && (GET_CODE (p->exp) == REG
3011 || exp_equiv_p (p->exp, p->exp, 1, 0)))
3013 rtx new = cse_gen_binary (GET_CODE (*loc), Pmode, p->exp, c);
3015 if ((CSE_ADDRESS_COST (new) < best_addr_cost
3016 || (CSE_ADDRESS_COST (new) == best_addr_cost
3017 && (COST (new) + 1) >> 1 > best_rtx_cost)))
3019 found_better = 1;
3020 best_addr_cost = CSE_ADDRESS_COST (new);
3021 best_rtx_cost = (COST (new) + 1) >> 1;
3022 best_elt = p;
3023 best_rtx = new;
3027 if (found_better)
3029 if (validate_change (insn, loc,
3030 canon_reg (copy_rtx (best_rtx),
3031 NULL_RTX), 0))
3032 return;
3033 else
3034 best_elt->flag = 1;
3038 #endif
3041 /* Given an operation (CODE, *PARG1, *PARG2), where code is a comparison
3042 operation (EQ, NE, GT, etc.), follow it back through the hash table and
3043 what values are being compared.
3045 *PARG1 and *PARG2 are updated to contain the rtx representing the values
3046 actually being compared. For example, if *PARG1 was (cc0) and *PARG2
3047 was (const_int 0), *PARG1 and *PARG2 will be set to the objects that were
3048 compared to produce cc0.
3050 The return value is the comparison operator and is either the code of
3051 A or the code corresponding to the inverse of the comparison. */
3053 static enum rtx_code
3054 find_comparison_args (code, parg1, parg2, pmode1, pmode2)
3055 enum rtx_code code;
3056 rtx *parg1, *parg2;
3057 enum machine_mode *pmode1, *pmode2;
3059 rtx arg1, arg2;
3061 arg1 = *parg1, arg2 = *parg2;
3063 /* If ARG2 is const0_rtx, see what ARG1 is equivalent to. */
3065 while (arg2 == CONST0_RTX (GET_MODE (arg1)))
3067 /* Set non-zero when we find something of interest. */
3068 rtx x = 0;
3069 int reverse_code = 0;
3070 struct table_elt *p = 0;
3072 /* If arg1 is a COMPARE, extract the comparison arguments from it.
3073 On machines with CC0, this is the only case that can occur, since
3074 fold_rtx will return the COMPARE or item being compared with zero
3075 when given CC0. */
3077 if (GET_CODE (arg1) == COMPARE && arg2 == const0_rtx)
3078 x = arg1;
3080 /* If ARG1 is a comparison operator and CODE is testing for
3081 STORE_FLAG_VALUE, get the inner arguments. */
3083 else if (GET_RTX_CLASS (GET_CODE (arg1)) == '<')
3085 if (code == NE
3086 || (GET_MODE_CLASS (GET_MODE (arg1)) == MODE_INT
3087 && code == LT && STORE_FLAG_VALUE == -1)
3088 #ifdef FLOAT_STORE_FLAG_VALUE
3089 || (GET_MODE_CLASS (GET_MODE (arg1)) == MODE_FLOAT
3090 && FLOAT_STORE_FLAG_VALUE < 0)
3091 #endif
3093 x = arg1;
3094 else if (code == EQ
3095 || (GET_MODE_CLASS (GET_MODE (arg1)) == MODE_INT
3096 && code == GE && STORE_FLAG_VALUE == -1)
3097 #ifdef FLOAT_STORE_FLAG_VALUE
3098 || (GET_MODE_CLASS (GET_MODE (arg1)) == MODE_FLOAT
3099 && FLOAT_STORE_FLAG_VALUE < 0)
3100 #endif
3102 x = arg1, reverse_code = 1;
3105 /* ??? We could also check for
3107 (ne (and (eq (...) (const_int 1))) (const_int 0))
3109 and related forms, but let's wait until we see them occurring. */
3111 if (x == 0)
3112 /* Look up ARG1 in the hash table and see if it has an equivalence
3113 that lets us see what is being compared. */
3114 p = lookup (arg1, safe_hash (arg1, GET_MODE (arg1)) % NBUCKETS,
3115 GET_MODE (arg1));
3116 if (p) p = p->first_same_value;
3118 for (; p; p = p->next_same_value)
3120 enum machine_mode inner_mode = GET_MODE (p->exp);
3122 /* If the entry isn't valid, skip it. */
3123 if (! exp_equiv_p (p->exp, p->exp, 1, 0))
3124 continue;
3126 if (GET_CODE (p->exp) == COMPARE
3127 /* Another possibility is that this machine has a compare insn
3128 that includes the comparison code. In that case, ARG1 would
3129 be equivalent to a comparison operation that would set ARG1 to
3130 either STORE_FLAG_VALUE or zero. If this is an NE operation,
3131 ORIG_CODE is the actual comparison being done; if it is an EQ,
3132 we must reverse ORIG_CODE. On machine with a negative value
3133 for STORE_FLAG_VALUE, also look at LT and GE operations. */
3134 || ((code == NE
3135 || (code == LT
3136 && GET_MODE_CLASS (inner_mode) == MODE_INT
3137 && (GET_MODE_BITSIZE (inner_mode)
3138 <= HOST_BITS_PER_WIDE_INT)
3139 && (STORE_FLAG_VALUE
3140 & ((HOST_WIDE_INT) 1
3141 << (GET_MODE_BITSIZE (inner_mode) - 1))))
3142 #ifdef FLOAT_STORE_FLAG_VALUE
3143 || (code == LT
3144 && GET_MODE_CLASS (inner_mode) == MODE_FLOAT
3145 && FLOAT_STORE_FLAG_VALUE < 0)
3146 #endif
3148 && GET_RTX_CLASS (GET_CODE (p->exp)) == '<'))
3150 x = p->exp;
3151 break;
3153 else if ((code == EQ
3154 || (code == GE
3155 && GET_MODE_CLASS (inner_mode) == MODE_INT
3156 && (GET_MODE_BITSIZE (inner_mode)
3157 <= HOST_BITS_PER_WIDE_INT)
3158 && (STORE_FLAG_VALUE
3159 & ((HOST_WIDE_INT) 1
3160 << (GET_MODE_BITSIZE (inner_mode) - 1))))
3161 #ifdef FLOAT_STORE_FLAG_VALUE
3162 || (code == GE
3163 && GET_MODE_CLASS (inner_mode) == MODE_FLOAT
3164 && FLOAT_STORE_FLAG_VALUE < 0)
3165 #endif
3167 && GET_RTX_CLASS (GET_CODE (p->exp)) == '<')
3169 reverse_code = 1;
3170 x = p->exp;
3171 break;
3174 /* If this is fp + constant, the equivalent is a better operand since
3175 it may let us predict the value of the comparison. */
3176 else if (NONZERO_BASE_PLUS_P (p->exp))
3178 arg1 = p->exp;
3179 continue;
3183 /* If we didn't find a useful equivalence for ARG1, we are done.
3184 Otherwise, set up for the next iteration. */
3185 if (x == 0)
3186 break;
3188 arg1 = XEXP (x, 0), arg2 = XEXP (x, 1);
3189 if (GET_RTX_CLASS (GET_CODE (x)) == '<')
3190 code = GET_CODE (x);
3192 if (reverse_code)
3193 code = reverse_condition (code);
3196 /* Return our results. Return the modes from before fold_rtx
3197 because fold_rtx might produce const_int, and then it's too late. */
3198 *pmode1 = GET_MODE (arg1), *pmode2 = GET_MODE (arg2);
3199 *parg1 = fold_rtx (arg1, 0), *parg2 = fold_rtx (arg2, 0);
3201 return code;
3204 /* Try to simplify a unary operation CODE whose output mode is to be
3205 MODE with input operand OP whose mode was originally OP_MODE.
3206 Return zero if no simplification can be made. */
3209 simplify_unary_operation (code, mode, op, op_mode)
3210 enum rtx_code code;
3211 enum machine_mode mode;
3212 rtx op;
3213 enum machine_mode op_mode;
3215 register int width = GET_MODE_BITSIZE (mode);
3217 /* The order of these tests is critical so that, for example, we don't
3218 check the wrong mode (input vs. output) for a conversion operation,
3219 such as FIX. At some point, this should be simplified. */
3221 #if !defined(REAL_IS_NOT_DOUBLE) || defined(REAL_ARITHMETIC)
3223 if (code == FLOAT && GET_MODE (op) == VOIDmode
3224 && (GET_CODE (op) == CONST_DOUBLE || GET_CODE (op) == CONST_INT))
3226 HOST_WIDE_INT hv, lv;
3227 REAL_VALUE_TYPE d;
3229 if (GET_CODE (op) == CONST_INT)
3230 lv = INTVAL (op), hv = INTVAL (op) < 0 ? -1 : 0;
3231 else
3232 lv = CONST_DOUBLE_LOW (op), hv = CONST_DOUBLE_HIGH (op);
3234 #ifdef REAL_ARITHMETIC
3235 REAL_VALUE_FROM_INT (d, lv, hv, mode);
3236 #else
3237 if (hv < 0)
3239 d = (double) (~ hv);
3240 d *= ((double) ((HOST_WIDE_INT) 1 << (HOST_BITS_PER_WIDE_INT / 2))
3241 * (double) ((HOST_WIDE_INT) 1 << (HOST_BITS_PER_WIDE_INT / 2)));
3242 d += (double) (unsigned HOST_WIDE_INT) (~ lv);
3243 d = (- d - 1.0);
3245 else
3247 d = (double) hv;
3248 d *= ((double) ((HOST_WIDE_INT) 1 << (HOST_BITS_PER_WIDE_INT / 2))
3249 * (double) ((HOST_WIDE_INT) 1 << (HOST_BITS_PER_WIDE_INT / 2)));
3250 d += (double) (unsigned HOST_WIDE_INT) lv;
3252 #endif /* REAL_ARITHMETIC */
3253 d = real_value_truncate (mode, d);
3254 return CONST_DOUBLE_FROM_REAL_VALUE (d, mode);
3256 else if (code == UNSIGNED_FLOAT && GET_MODE (op) == VOIDmode
3257 && (GET_CODE (op) == CONST_DOUBLE || GET_CODE (op) == CONST_INT))
3259 HOST_WIDE_INT hv, lv;
3260 REAL_VALUE_TYPE d;
3262 if (GET_CODE (op) == CONST_INT)
3263 lv = INTVAL (op), hv = INTVAL (op) < 0 ? -1 : 0;
3264 else
3265 lv = CONST_DOUBLE_LOW (op), hv = CONST_DOUBLE_HIGH (op);
3267 if (op_mode == VOIDmode)
3269 /* We don't know how to interpret negative-looking numbers in
3270 this case, so don't try to fold those. */
3271 if (hv < 0)
3272 return 0;
3274 else if (GET_MODE_BITSIZE (op_mode) >= HOST_BITS_PER_WIDE_INT * 2)
3276 else
3277 hv = 0, lv &= GET_MODE_MASK (op_mode);
3279 #ifdef REAL_ARITHMETIC
3280 REAL_VALUE_FROM_UNSIGNED_INT (d, lv, hv, mode);
3281 #else
3283 d = (double) (unsigned HOST_WIDE_INT) hv;
3284 d *= ((double) ((HOST_WIDE_INT) 1 << (HOST_BITS_PER_WIDE_INT / 2))
3285 * (double) ((HOST_WIDE_INT) 1 << (HOST_BITS_PER_WIDE_INT / 2)));
3286 d += (double) (unsigned HOST_WIDE_INT) lv;
3287 #endif /* REAL_ARITHMETIC */
3288 d = real_value_truncate (mode, d);
3289 return CONST_DOUBLE_FROM_REAL_VALUE (d, mode);
3291 #endif
3293 if (GET_CODE (op) == CONST_INT
3294 && width <= HOST_BITS_PER_WIDE_INT && width > 0)
3296 register HOST_WIDE_INT arg0 = INTVAL (op);
3297 register HOST_WIDE_INT val;
3299 switch (code)
3301 case NOT:
3302 val = ~ arg0;
3303 break;
3305 case NEG:
3306 val = - arg0;
3307 break;
3309 case ABS:
3310 val = (arg0 >= 0 ? arg0 : - arg0);
3311 break;
3313 case FFS:
3314 /* Don't use ffs here. Instead, get low order bit and then its
3315 number. If arg0 is zero, this will return 0, as desired. */
3316 arg0 &= GET_MODE_MASK (mode);
3317 val = exact_log2 (arg0 & (- arg0)) + 1;
3318 break;
3320 case TRUNCATE:
3321 val = arg0;
3322 break;
3324 case ZERO_EXTEND:
3325 if (op_mode == VOIDmode)
3326 op_mode = mode;
3327 if (GET_MODE_BITSIZE (op_mode) == HOST_BITS_PER_WIDE_INT)
3329 /* If we were really extending the mode,
3330 we would have to distinguish between zero-extension
3331 and sign-extension. */
3332 if (width != GET_MODE_BITSIZE (op_mode))
3333 abort ();
3334 val = arg0;
3336 else if (GET_MODE_BITSIZE (op_mode) < HOST_BITS_PER_WIDE_INT)
3337 val = arg0 & ~((HOST_WIDE_INT) (-1) << GET_MODE_BITSIZE (op_mode));
3338 else
3339 return 0;
3340 break;
3342 case SIGN_EXTEND:
3343 if (op_mode == VOIDmode)
3344 op_mode = mode;
3345 if (GET_MODE_BITSIZE (op_mode) == HOST_BITS_PER_WIDE_INT)
3347 /* If we were really extending the mode,
3348 we would have to distinguish between zero-extension
3349 and sign-extension. */
3350 if (width != GET_MODE_BITSIZE (op_mode))
3351 abort ();
3352 val = arg0;
3354 else if (GET_MODE_BITSIZE (op_mode) < HOST_BITS_PER_WIDE_INT)
3357 = arg0 & ~((HOST_WIDE_INT) (-1) << GET_MODE_BITSIZE (op_mode));
3358 if (val
3359 & ((HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE (op_mode) - 1)))
3360 val -= (HOST_WIDE_INT) 1 << GET_MODE_BITSIZE (op_mode);
3362 else
3363 return 0;
3364 break;
3366 case SQRT:
3367 return 0;
3369 default:
3370 abort ();
3373 val = trunc_int_for_mode (val, mode);
3375 return GEN_INT (val);
3378 /* We can do some operations on integer CONST_DOUBLEs. Also allow
3379 for a DImode operation on a CONST_INT. */
3380 else if (GET_MODE (op) == VOIDmode && width <= HOST_BITS_PER_INT * 2
3381 && (GET_CODE (op) == CONST_DOUBLE || GET_CODE (op) == CONST_INT))
3383 HOST_WIDE_INT l1, h1, lv, hv;
3385 if (GET_CODE (op) == CONST_DOUBLE)
3386 l1 = CONST_DOUBLE_LOW (op), h1 = CONST_DOUBLE_HIGH (op);
3387 else
3388 l1 = INTVAL (op), h1 = l1 < 0 ? -1 : 0;
3390 switch (code)
3392 case NOT:
3393 lv = ~ l1;
3394 hv = ~ h1;
3395 break;
3397 case NEG:
3398 neg_double (l1, h1, &lv, &hv);
3399 break;
3401 case ABS:
3402 if (h1 < 0)
3403 neg_double (l1, h1, &lv, &hv);
3404 else
3405 lv = l1, hv = h1;
3406 break;
3408 case FFS:
3409 hv = 0;
3410 if (l1 == 0)
3411 lv = HOST_BITS_PER_WIDE_INT + exact_log2 (h1 & (-h1)) + 1;
3412 else
3413 lv = exact_log2 (l1 & (-l1)) + 1;
3414 break;
3416 case TRUNCATE:
3417 /* This is just a change-of-mode, so do nothing. */
3418 lv = l1, hv = h1;
3419 break;
3421 case ZERO_EXTEND:
3422 if (op_mode == VOIDmode
3423 || GET_MODE_BITSIZE (op_mode) > HOST_BITS_PER_WIDE_INT)
3424 return 0;
3426 hv = 0;
3427 lv = l1 & GET_MODE_MASK (op_mode);
3428 break;
3430 case SIGN_EXTEND:
3431 if (op_mode == VOIDmode
3432 || GET_MODE_BITSIZE (op_mode) > HOST_BITS_PER_WIDE_INT)
3433 return 0;
3434 else
3436 lv = l1 & GET_MODE_MASK (op_mode);
3437 if (GET_MODE_BITSIZE (op_mode) < HOST_BITS_PER_WIDE_INT
3438 && (lv & ((HOST_WIDE_INT) 1
3439 << (GET_MODE_BITSIZE (op_mode) - 1))) != 0)
3440 lv -= (HOST_WIDE_INT) 1 << GET_MODE_BITSIZE (op_mode);
3442 hv = (lv < 0) ? ~ (HOST_WIDE_INT) 0 : 0;
3444 break;
3446 case SQRT:
3447 return 0;
3449 default:
3450 return 0;
3453 return immed_double_const (lv, hv, mode);
3456 #if ! defined (REAL_IS_NOT_DOUBLE) || defined (REAL_ARITHMETIC)
3457 else if (GET_CODE (op) == CONST_DOUBLE
3458 && GET_MODE_CLASS (mode) == MODE_FLOAT)
3460 REAL_VALUE_TYPE d;
3461 jmp_buf handler;
3462 rtx x;
3464 if (setjmp (handler))
3465 /* There used to be a warning here, but that is inadvisable.
3466 People may want to cause traps, and the natural way
3467 to do it should not get a warning. */
3468 return 0;
3470 set_float_handler (handler);
3472 REAL_VALUE_FROM_CONST_DOUBLE (d, op);
3474 switch (code)
3476 case NEG:
3477 d = REAL_VALUE_NEGATE (d);
3478 break;
3480 case ABS:
3481 if (REAL_VALUE_NEGATIVE (d))
3482 d = REAL_VALUE_NEGATE (d);
3483 break;
3485 case FLOAT_TRUNCATE:
3486 d = real_value_truncate (mode, d);
3487 break;
3489 case FLOAT_EXTEND:
3490 /* All this does is change the mode. */
3491 break;
3493 case FIX:
3494 d = REAL_VALUE_RNDZINT (d);
3495 break;
3497 case UNSIGNED_FIX:
3498 d = REAL_VALUE_UNSIGNED_RNDZINT (d);
3499 break;
3501 case SQRT:
3502 return 0;
3504 default:
3505 abort ();
3508 x = CONST_DOUBLE_FROM_REAL_VALUE (d, mode);
3509 set_float_handler (NULL_PTR);
3510 return x;
3513 else if (GET_CODE (op) == CONST_DOUBLE
3514 && GET_MODE_CLASS (GET_MODE (op)) == MODE_FLOAT
3515 && GET_MODE_CLASS (mode) == MODE_INT
3516 && width <= HOST_BITS_PER_WIDE_INT && width > 0)
3518 REAL_VALUE_TYPE d;
3519 jmp_buf handler;
3520 HOST_WIDE_INT val;
3522 if (setjmp (handler))
3523 return 0;
3525 set_float_handler (handler);
3527 REAL_VALUE_FROM_CONST_DOUBLE (d, op);
3529 switch (code)
3531 case FIX:
3532 val = REAL_VALUE_FIX (d);
3533 break;
3535 case UNSIGNED_FIX:
3536 val = REAL_VALUE_UNSIGNED_FIX (d);
3537 break;
3539 default:
3540 abort ();
3543 set_float_handler (NULL_PTR);
3545 val = trunc_int_for_mode (val, mode);
3547 return GEN_INT (val);
3549 #endif
3550 /* This was formerly used only for non-IEEE float.
3551 eggert@twinsun.com says it is safe for IEEE also. */
3552 else
3554 /* There are some simplifications we can do even if the operands
3555 aren't constant. */
3556 switch (code)
3558 case NEG:
3559 case NOT:
3560 /* (not (not X)) == X, similarly for NEG. */
3561 if (GET_CODE (op) == code)
3562 return XEXP (op, 0);
3563 break;
3565 case SIGN_EXTEND:
3566 /* (sign_extend (truncate (minus (label_ref L1) (label_ref L2))))
3567 becomes just the MINUS if its mode is MODE. This allows
3568 folding switch statements on machines using casesi (such as
3569 the Vax). */
3570 if (GET_CODE (op) == TRUNCATE
3571 && GET_MODE (XEXP (op, 0)) == mode
3572 && GET_CODE (XEXP (op, 0)) == MINUS
3573 && GET_CODE (XEXP (XEXP (op, 0), 0)) == LABEL_REF
3574 && GET_CODE (XEXP (XEXP (op, 0), 1)) == LABEL_REF)
3575 return XEXP (op, 0);
3577 #ifdef POINTERS_EXTEND_UNSIGNED
3578 if (! POINTERS_EXTEND_UNSIGNED
3579 && mode == Pmode && GET_MODE (op) == ptr_mode
3580 && CONSTANT_P (op))
3581 return convert_memory_address (Pmode, op);
3582 #endif
3583 break;
3585 #ifdef POINTERS_EXTEND_UNSIGNED
3586 case ZERO_EXTEND:
3587 if (POINTERS_EXTEND_UNSIGNED
3588 && mode == Pmode && GET_MODE (op) == ptr_mode
3589 && CONSTANT_P (op))
3590 return convert_memory_address (Pmode, op);
3591 break;
3592 #endif
3594 default:
3595 break;
3598 return 0;
3602 /* Simplify a binary operation CODE with result mode MODE, operating on OP0
3603 and OP1. Return 0 if no simplification is possible.
3605 Don't use this for relational operations such as EQ or LT.
3606 Use simplify_relational_operation instead. */
3609 simplify_binary_operation (code, mode, op0, op1)
3610 enum rtx_code code;
3611 enum machine_mode mode;
3612 rtx op0, op1;
3614 register HOST_WIDE_INT arg0, arg1, arg0s, arg1s;
3615 HOST_WIDE_INT val;
3616 int width = GET_MODE_BITSIZE (mode);
3617 rtx tem;
3619 /* Relational operations don't work here. We must know the mode
3620 of the operands in order to do the comparison correctly.
3621 Assuming a full word can give incorrect results.
3622 Consider comparing 128 with -128 in QImode. */
3624 if (GET_RTX_CLASS (code) == '<')
3625 abort ();
3627 #if ! defined (REAL_IS_NOT_DOUBLE) || defined (REAL_ARITHMETIC)
3628 if (GET_MODE_CLASS (mode) == MODE_FLOAT
3629 && GET_CODE (op0) == CONST_DOUBLE && GET_CODE (op1) == CONST_DOUBLE
3630 && mode == GET_MODE (op0) && mode == GET_MODE (op1))
3632 REAL_VALUE_TYPE f0, f1, value;
3633 jmp_buf handler;
3635 if (setjmp (handler))
3636 return 0;
3638 set_float_handler (handler);
3640 REAL_VALUE_FROM_CONST_DOUBLE (f0, op0);
3641 REAL_VALUE_FROM_CONST_DOUBLE (f1, op1);
3642 f0 = real_value_truncate (mode, f0);
3643 f1 = real_value_truncate (mode, f1);
3645 #ifdef REAL_ARITHMETIC
3646 #ifndef REAL_INFINITY
3647 if (code == DIV && REAL_VALUES_EQUAL (f1, dconst0))
3648 return 0;
3649 #endif
3650 REAL_ARITHMETIC (value, rtx_to_tree_code (code), f0, f1);
3651 #else
3652 switch (code)
3654 case PLUS:
3655 value = f0 + f1;
3656 break;
3657 case MINUS:
3658 value = f0 - f1;
3659 break;
3660 case MULT:
3661 value = f0 * f1;
3662 break;
3663 case DIV:
3664 #ifndef REAL_INFINITY
3665 if (f1 == 0)
3666 return 0;
3667 #endif
3668 value = f0 / f1;
3669 break;
3670 case SMIN:
3671 value = MIN (f0, f1);
3672 break;
3673 case SMAX:
3674 value = MAX (f0, f1);
3675 break;
3676 default:
3677 abort ();
3679 #endif
3681 value = real_value_truncate (mode, value);
3682 set_float_handler (NULL_PTR);
3683 return CONST_DOUBLE_FROM_REAL_VALUE (value, mode);
3685 #endif /* not REAL_IS_NOT_DOUBLE, or REAL_ARITHMETIC */
3687 /* We can fold some multi-word operations. */
3688 if (GET_MODE_CLASS (mode) == MODE_INT
3689 && width == HOST_BITS_PER_WIDE_INT * 2
3690 && (GET_CODE (op0) == CONST_DOUBLE || GET_CODE (op0) == CONST_INT)
3691 && (GET_CODE (op1) == CONST_DOUBLE || GET_CODE (op1) == CONST_INT))
3693 HOST_WIDE_INT l1, l2, h1, h2, lv, hv;
3695 if (GET_CODE (op0) == CONST_DOUBLE)
3696 l1 = CONST_DOUBLE_LOW (op0), h1 = CONST_DOUBLE_HIGH (op0);
3697 else
3698 l1 = INTVAL (op0), h1 = l1 < 0 ? -1 : 0;
3700 if (GET_CODE (op1) == CONST_DOUBLE)
3701 l2 = CONST_DOUBLE_LOW (op1), h2 = CONST_DOUBLE_HIGH (op1);
3702 else
3703 l2 = INTVAL (op1), h2 = l2 < 0 ? -1 : 0;
3705 switch (code)
3707 case MINUS:
3708 /* A - B == A + (-B). */
3709 neg_double (l2, h2, &lv, &hv);
3710 l2 = lv, h2 = hv;
3712 /* .. fall through ... */
3714 case PLUS:
3715 add_double (l1, h1, l2, h2, &lv, &hv);
3716 break;
3718 case MULT:
3719 mul_double (l1, h1, l2, h2, &lv, &hv);
3720 break;
3722 case DIV: case MOD: case UDIV: case UMOD:
3723 /* We'd need to include tree.h to do this and it doesn't seem worth
3724 it. */
3725 return 0;
3727 case AND:
3728 lv = l1 & l2, hv = h1 & h2;
3729 break;
3731 case IOR:
3732 lv = l1 | l2, hv = h1 | h2;
3733 break;
3735 case XOR:
3736 lv = l1 ^ l2, hv = h1 ^ h2;
3737 break;
3739 case SMIN:
3740 if (h1 < h2
3741 || (h1 == h2
3742 && ((unsigned HOST_WIDE_INT) l1
3743 < (unsigned HOST_WIDE_INT) l2)))
3744 lv = l1, hv = h1;
3745 else
3746 lv = l2, hv = h2;
3747 break;
3749 case SMAX:
3750 if (h1 > h2
3751 || (h1 == h2
3752 && ((unsigned HOST_WIDE_INT) l1
3753 > (unsigned HOST_WIDE_INT) l2)))
3754 lv = l1, hv = h1;
3755 else
3756 lv = l2, hv = h2;
3757 break;
3759 case UMIN:
3760 if ((unsigned HOST_WIDE_INT) h1 < (unsigned HOST_WIDE_INT) h2
3761 || (h1 == h2
3762 && ((unsigned HOST_WIDE_INT) l1
3763 < (unsigned HOST_WIDE_INT) l2)))
3764 lv = l1, hv = h1;
3765 else
3766 lv = l2, hv = h2;
3767 break;
3769 case UMAX:
3770 if ((unsigned HOST_WIDE_INT) h1 > (unsigned HOST_WIDE_INT) h2
3771 || (h1 == h2
3772 && ((unsigned HOST_WIDE_INT) l1
3773 > (unsigned HOST_WIDE_INT) l2)))
3774 lv = l1, hv = h1;
3775 else
3776 lv = l2, hv = h2;
3777 break;
3779 case LSHIFTRT: case ASHIFTRT:
3780 case ASHIFT:
3781 case ROTATE: case ROTATERT:
3782 #ifdef SHIFT_COUNT_TRUNCATED
3783 if (SHIFT_COUNT_TRUNCATED)
3784 l2 &= (GET_MODE_BITSIZE (mode) - 1), h2 = 0;
3785 #endif
3787 if (h2 != 0 || l2 < 0 || l2 >= GET_MODE_BITSIZE (mode))
3788 return 0;
3790 if (code == LSHIFTRT || code == ASHIFTRT)
3791 rshift_double (l1, h1, l2, GET_MODE_BITSIZE (mode), &lv, &hv,
3792 code == ASHIFTRT);
3793 else if (code == ASHIFT)
3794 lshift_double (l1, h1, l2, GET_MODE_BITSIZE (mode), &lv, &hv, 1);
3795 else if (code == ROTATE)
3796 lrotate_double (l1, h1, l2, GET_MODE_BITSIZE (mode), &lv, &hv);
3797 else /* code == ROTATERT */
3798 rrotate_double (l1, h1, l2, GET_MODE_BITSIZE (mode), &lv, &hv);
3799 break;
3801 default:
3802 return 0;
3805 return immed_double_const (lv, hv, mode);
3808 if (GET_CODE (op0) != CONST_INT || GET_CODE (op1) != CONST_INT
3809 || width > HOST_BITS_PER_WIDE_INT || width == 0)
3811 /* Even if we can't compute a constant result,
3812 there are some cases worth simplifying. */
3814 switch (code)
3816 case PLUS:
3817 /* In IEEE floating point, x+0 is not the same as x. Similarly
3818 for the other optimizations below. */
3819 if (TARGET_FLOAT_FORMAT == IEEE_FLOAT_FORMAT
3820 && FLOAT_MODE_P (mode) && ! flag_fast_math)
3821 break;
3823 if (op1 == CONST0_RTX (mode))
3824 return op0;
3826 /* ((-a) + b) -> (b - a) and similarly for (a + (-b)) */
3827 if (GET_CODE (op0) == NEG)
3828 return cse_gen_binary (MINUS, mode, op1, XEXP (op0, 0));
3829 else if (GET_CODE (op1) == NEG)
3830 return cse_gen_binary (MINUS, mode, op0, XEXP (op1, 0));
3832 /* Handle both-operands-constant cases. We can only add
3833 CONST_INTs to constants since the sum of relocatable symbols
3834 can't be handled by most assemblers. Don't add CONST_INT
3835 to CONST_INT since overflow won't be computed properly if wider
3836 than HOST_BITS_PER_WIDE_INT. */
3838 if (CONSTANT_P (op0) && GET_MODE (op0) != VOIDmode
3839 && GET_CODE (op1) == CONST_INT)
3840 return plus_constant (op0, INTVAL (op1));
3841 else if (CONSTANT_P (op1) && GET_MODE (op1) != VOIDmode
3842 && GET_CODE (op0) == CONST_INT)
3843 return plus_constant (op1, INTVAL (op0));
3845 /* See if this is something like X * C - X or vice versa or
3846 if the multiplication is written as a shift. If so, we can
3847 distribute and make a new multiply, shift, or maybe just
3848 have X (if C is 2 in the example above). But don't make
3849 real multiply if we didn't have one before. */
3851 if (! FLOAT_MODE_P (mode))
3853 HOST_WIDE_INT coeff0 = 1, coeff1 = 1;
3854 rtx lhs = op0, rhs = op1;
3855 int had_mult = 0;
3857 if (GET_CODE (lhs) == NEG)
3858 coeff0 = -1, lhs = XEXP (lhs, 0);
3859 else if (GET_CODE (lhs) == MULT
3860 && GET_CODE (XEXP (lhs, 1)) == CONST_INT)
3862 coeff0 = INTVAL (XEXP (lhs, 1)), lhs = XEXP (lhs, 0);
3863 had_mult = 1;
3865 else if (GET_CODE (lhs) == ASHIFT
3866 && GET_CODE (XEXP (lhs, 1)) == CONST_INT
3867 && INTVAL (XEXP (lhs, 1)) >= 0
3868 && INTVAL (XEXP (lhs, 1)) < HOST_BITS_PER_WIDE_INT)
3870 coeff0 = ((HOST_WIDE_INT) 1) << INTVAL (XEXP (lhs, 1));
3871 lhs = XEXP (lhs, 0);
3874 if (GET_CODE (rhs) == NEG)
3875 coeff1 = -1, rhs = XEXP (rhs, 0);
3876 else if (GET_CODE (rhs) == MULT
3877 && GET_CODE (XEXP (rhs, 1)) == CONST_INT)
3879 coeff1 = INTVAL (XEXP (rhs, 1)), rhs = XEXP (rhs, 0);
3880 had_mult = 1;
3882 else if (GET_CODE (rhs) == ASHIFT
3883 && GET_CODE (XEXP (rhs, 1)) == CONST_INT
3884 && INTVAL (XEXP (rhs, 1)) >= 0
3885 && INTVAL (XEXP (rhs, 1)) < HOST_BITS_PER_WIDE_INT)
3887 coeff1 = ((HOST_WIDE_INT) 1) << INTVAL (XEXP (rhs, 1));
3888 rhs = XEXP (rhs, 0);
3891 if (rtx_equal_p (lhs, rhs))
3893 tem = cse_gen_binary (MULT, mode, lhs,
3894 GEN_INT (coeff0 + coeff1));
3895 return (GET_CODE (tem) == MULT && ! had_mult) ? 0 : tem;
3899 /* If one of the operands is a PLUS or a MINUS, see if we can
3900 simplify this by the associative law.
3901 Don't use the associative law for floating point.
3902 The inaccuracy makes it nonassociative,
3903 and subtle programs can break if operations are associated. */
3905 if (INTEGRAL_MODE_P (mode)
3906 && (GET_CODE (op0) == PLUS || GET_CODE (op0) == MINUS
3907 || GET_CODE (op1) == PLUS || GET_CODE (op1) == MINUS)
3908 && (tem = simplify_plus_minus (code, mode, op0, op1)) != 0)
3909 return tem;
3910 break;
3912 case COMPARE:
3913 #ifdef HAVE_cc0
3914 /* Convert (compare FOO (const_int 0)) to FOO unless we aren't
3915 using cc0, in which case we want to leave it as a COMPARE
3916 so we can distinguish it from a register-register-copy.
3918 In IEEE floating point, x-0 is not the same as x. */
3920 if ((TARGET_FLOAT_FORMAT != IEEE_FLOAT_FORMAT
3921 || ! FLOAT_MODE_P (mode) || flag_fast_math)
3922 && op1 == CONST0_RTX (mode))
3923 return op0;
3924 #else
3925 /* Do nothing here. */
3926 #endif
3927 break;
3929 case MINUS:
3930 /* None of these optimizations can be done for IEEE
3931 floating point. */
3932 if (TARGET_FLOAT_FORMAT == IEEE_FLOAT_FORMAT
3933 && FLOAT_MODE_P (mode) && ! flag_fast_math)
3934 break;
3936 /* We can't assume x-x is 0 even with non-IEEE floating point,
3937 but since it is zero except in very strange circumstances, we
3938 will treat it as zero with -ffast-math. */
3939 if (rtx_equal_p (op0, op1)
3940 && ! side_effects_p (op0)
3941 && (! FLOAT_MODE_P (mode) || flag_fast_math))
3942 return CONST0_RTX (mode);
3944 /* Change subtraction from zero into negation. */
3945 if (op0 == CONST0_RTX (mode))
3946 return gen_rtx_NEG (mode, op1);
3948 /* (-1 - a) is ~a. */
3949 if (op0 == constm1_rtx)
3950 return gen_rtx_NOT (mode, op1);
3952 /* Subtracting 0 has no effect. */
3953 if (op1 == CONST0_RTX (mode))
3954 return op0;
3956 /* See if this is something like X * C - X or vice versa or
3957 if the multiplication is written as a shift. If so, we can
3958 distribute and make a new multiply, shift, or maybe just
3959 have X (if C is 2 in the example above). But don't make
3960 real multiply if we didn't have one before. */
3962 if (! FLOAT_MODE_P (mode))
3964 HOST_WIDE_INT coeff0 = 1, coeff1 = 1;
3965 rtx lhs = op0, rhs = op1;
3966 int had_mult = 0;
3968 if (GET_CODE (lhs) == NEG)
3969 coeff0 = -1, lhs = XEXP (lhs, 0);
3970 else if (GET_CODE (lhs) == MULT
3971 && GET_CODE (XEXP (lhs, 1)) == CONST_INT)
3973 coeff0 = INTVAL (XEXP (lhs, 1)), lhs = XEXP (lhs, 0);
3974 had_mult = 1;
3976 else if (GET_CODE (lhs) == ASHIFT
3977 && GET_CODE (XEXP (lhs, 1)) == CONST_INT
3978 && INTVAL (XEXP (lhs, 1)) >= 0
3979 && INTVAL (XEXP (lhs, 1)) < HOST_BITS_PER_WIDE_INT)
3981 coeff0 = ((HOST_WIDE_INT) 1) << INTVAL (XEXP (lhs, 1));
3982 lhs = XEXP (lhs, 0);
3985 if (GET_CODE (rhs) == NEG)
3986 coeff1 = - 1, rhs = XEXP (rhs, 0);
3987 else if (GET_CODE (rhs) == MULT
3988 && GET_CODE (XEXP (rhs, 1)) == CONST_INT)
3990 coeff1 = INTVAL (XEXP (rhs, 1)), rhs = XEXP (rhs, 0);
3991 had_mult = 1;
3993 else if (GET_CODE (rhs) == ASHIFT
3994 && GET_CODE (XEXP (rhs, 1)) == CONST_INT
3995 && INTVAL (XEXP (rhs, 1)) >= 0
3996 && INTVAL (XEXP (rhs, 1)) < HOST_BITS_PER_WIDE_INT)
3998 coeff1 = ((HOST_WIDE_INT) 1) << INTVAL (XEXP (rhs, 1));
3999 rhs = XEXP (rhs, 0);
4002 if (rtx_equal_p (lhs, rhs))
4004 tem = cse_gen_binary (MULT, mode, lhs,
4005 GEN_INT (coeff0 - coeff1));
4006 return (GET_CODE (tem) == MULT && ! had_mult) ? 0 : tem;
4010 /* (a - (-b)) -> (a + b). */
4011 if (GET_CODE (op1) == NEG)
4012 return cse_gen_binary (PLUS, mode, op0, XEXP (op1, 0));
4014 /* If one of the operands is a PLUS or a MINUS, see if we can
4015 simplify this by the associative law.
4016 Don't use the associative law for floating point.
4017 The inaccuracy makes it nonassociative,
4018 and subtle programs can break if operations are associated. */
4020 if (INTEGRAL_MODE_P (mode)
4021 && (GET_CODE (op0) == PLUS || GET_CODE (op0) == MINUS
4022 || GET_CODE (op1) == PLUS || GET_CODE (op1) == MINUS)
4023 && (tem = simplify_plus_minus (code, mode, op0, op1)) != 0)
4024 return tem;
4026 /* Don't let a relocatable value get a negative coeff. */
4027 if (GET_CODE (op1) == CONST_INT && GET_MODE (op0) != VOIDmode)
4028 return plus_constant (op0, - INTVAL (op1));
4030 /* (x - (x & y)) -> (x & ~y) */
4031 if (GET_CODE (op1) == AND)
4033 if (rtx_equal_p (op0, XEXP (op1, 0)))
4034 return cse_gen_binary (AND, mode, op0,
4035 gen_rtx_NOT (mode, XEXP (op1, 1)));
4036 if (rtx_equal_p (op0, XEXP (op1, 1)))
4037 return cse_gen_binary (AND, mode, op0,
4038 gen_rtx_NOT (mode, XEXP (op1, 0)));
4040 break;
4042 case MULT:
4043 if (op1 == constm1_rtx)
4045 tem = simplify_unary_operation (NEG, mode, op0, mode);
4047 return tem ? tem : gen_rtx_NEG (mode, op0);
4050 /* In IEEE floating point, x*0 is not always 0. */
4051 if ((TARGET_FLOAT_FORMAT != IEEE_FLOAT_FORMAT
4052 || ! FLOAT_MODE_P (mode) || flag_fast_math)
4053 && op1 == CONST0_RTX (mode)
4054 && ! side_effects_p (op0))
4055 return op1;
4057 /* In IEEE floating point, x*1 is not equivalent to x for nans.
4058 However, ANSI says we can drop signals,
4059 so we can do this anyway. */
4060 if (op1 == CONST1_RTX (mode))
4061 return op0;
4063 /* Convert multiply by constant power of two into shift unless
4064 we are still generating RTL. This test is a kludge. */
4065 if (GET_CODE (op1) == CONST_INT
4066 && (val = exact_log2 (INTVAL (op1))) >= 0
4067 /* If the mode is larger than the host word size, and the
4068 uppermost bit is set, then this isn't a power of two due
4069 to implicit sign extension. */
4070 && (width <= HOST_BITS_PER_WIDE_INT
4071 || val != HOST_BITS_PER_WIDE_INT - 1)
4072 && ! rtx_equal_function_value_matters)
4073 return gen_rtx_ASHIFT (mode, op0, GEN_INT (val));
4075 if (GET_CODE (op1) == CONST_DOUBLE
4076 && GET_MODE_CLASS (GET_MODE (op1)) == MODE_FLOAT)
4078 REAL_VALUE_TYPE d;
4079 jmp_buf handler;
4080 int op1is2, op1ism1;
4082 if (setjmp (handler))
4083 return 0;
4085 set_float_handler (handler);
4086 REAL_VALUE_FROM_CONST_DOUBLE (d, op1);
4087 op1is2 = REAL_VALUES_EQUAL (d, dconst2);
4088 op1ism1 = REAL_VALUES_EQUAL (d, dconstm1);
4089 set_float_handler (NULL_PTR);
4091 /* x*2 is x+x and x*(-1) is -x */
4092 if (op1is2 && GET_MODE (op0) == mode)
4093 return gen_rtx_PLUS (mode, op0, copy_rtx (op0));
4095 else if (op1ism1 && GET_MODE (op0) == mode)
4096 return gen_rtx_NEG (mode, op0);
4098 break;
4100 case IOR:
4101 if (op1 == const0_rtx)
4102 return op0;
4103 if (GET_CODE (op1) == CONST_INT
4104 && (INTVAL (op1) & GET_MODE_MASK (mode)) == GET_MODE_MASK (mode))
4105 return op1;
4106 if (rtx_equal_p (op0, op1) && ! side_effects_p (op0))
4107 return op0;
4108 /* A | (~A) -> -1 */
4109 if (((GET_CODE (op0) == NOT && rtx_equal_p (XEXP (op0, 0), op1))
4110 || (GET_CODE (op1) == NOT && rtx_equal_p (XEXP (op1, 0), op0)))
4111 && ! side_effects_p (op0)
4112 && GET_MODE_CLASS (mode) != MODE_CC)
4113 return constm1_rtx;
4114 break;
4116 case XOR:
4117 if (op1 == const0_rtx)
4118 return op0;
4119 if (GET_CODE (op1) == CONST_INT
4120 && (INTVAL (op1) & GET_MODE_MASK (mode)) == GET_MODE_MASK (mode))
4121 return gen_rtx_NOT (mode, op0);
4122 if (op0 == op1 && ! side_effects_p (op0)
4123 && GET_MODE_CLASS (mode) != MODE_CC)
4124 return const0_rtx;
4125 break;
4127 case AND:
4128 if (op1 == const0_rtx && ! side_effects_p (op0))
4129 return const0_rtx;
4130 if (GET_CODE (op1) == CONST_INT
4131 && (INTVAL (op1) & GET_MODE_MASK (mode)) == GET_MODE_MASK (mode))
4132 return op0;
4133 if (op0 == op1 && ! side_effects_p (op0)
4134 && GET_MODE_CLASS (mode) != MODE_CC)
4135 return op0;
4136 /* A & (~A) -> 0 */
4137 if (((GET_CODE (op0) == NOT && rtx_equal_p (XEXP (op0, 0), op1))
4138 || (GET_CODE (op1) == NOT && rtx_equal_p (XEXP (op1, 0), op0)))
4139 && ! side_effects_p (op0)
4140 && GET_MODE_CLASS (mode) != MODE_CC)
4141 return const0_rtx;
4142 break;
4144 case UDIV:
4145 /* Convert divide by power of two into shift (divide by 1 handled
4146 below). */
4147 if (GET_CODE (op1) == CONST_INT
4148 && (arg1 = exact_log2 (INTVAL (op1))) > 0)
4149 return gen_rtx_LSHIFTRT (mode, op0, GEN_INT (arg1));
4151 /* ... fall through ... */
4153 case DIV:
4154 if (op1 == CONST1_RTX (mode))
4155 return op0;
4157 /* In IEEE floating point, 0/x is not always 0. */
4158 if ((TARGET_FLOAT_FORMAT != IEEE_FLOAT_FORMAT
4159 || ! FLOAT_MODE_P (mode) || flag_fast_math)
4160 && op0 == CONST0_RTX (mode)
4161 && ! side_effects_p (op1))
4162 return op0;
4164 #if ! defined (REAL_IS_NOT_DOUBLE) || defined (REAL_ARITHMETIC)
4165 /* Change division by a constant into multiplication. Only do
4166 this with -ffast-math until an expert says it is safe in
4167 general. */
4168 else if (GET_CODE (op1) == CONST_DOUBLE
4169 && GET_MODE_CLASS (GET_MODE (op1)) == MODE_FLOAT
4170 && op1 != CONST0_RTX (mode)
4171 && flag_fast_math)
4173 REAL_VALUE_TYPE d;
4174 REAL_VALUE_FROM_CONST_DOUBLE (d, op1);
4176 if (! REAL_VALUES_EQUAL (d, dconst0))
4178 #if defined (REAL_ARITHMETIC)
4179 REAL_ARITHMETIC (d, rtx_to_tree_code (DIV), dconst1, d);
4180 return gen_rtx_MULT (mode, op0,
4181 CONST_DOUBLE_FROM_REAL_VALUE (d, mode));
4182 #else
4183 return
4184 gen_rtx_MULT (mode, op0,
4185 CONST_DOUBLE_FROM_REAL_VALUE (1./d, mode));
4186 #endif
4189 #endif
4190 break;
4192 case UMOD:
4193 /* Handle modulus by power of two (mod with 1 handled below). */
4194 if (GET_CODE (op1) == CONST_INT
4195 && exact_log2 (INTVAL (op1)) > 0)
4196 return gen_rtx_AND (mode, op0, GEN_INT (INTVAL (op1) - 1));
4198 /* ... fall through ... */
4200 case MOD:
4201 if ((op0 == const0_rtx || op1 == const1_rtx)
4202 && ! side_effects_p (op0) && ! side_effects_p (op1))
4203 return const0_rtx;
4204 break;
4206 case ROTATERT:
4207 case ROTATE:
4208 /* Rotating ~0 always results in ~0. */
4209 if (GET_CODE (op0) == CONST_INT && width <= HOST_BITS_PER_WIDE_INT
4210 && (unsigned HOST_WIDE_INT) INTVAL (op0) == GET_MODE_MASK (mode)
4211 && ! side_effects_p (op1))
4212 return op0;
4214 /* ... fall through ... */
4216 case ASHIFT:
4217 case ASHIFTRT:
4218 case LSHIFTRT:
4219 if (op1 == const0_rtx)
4220 return op0;
4221 if (op0 == const0_rtx && ! side_effects_p (op1))
4222 return op0;
4223 break;
4225 case SMIN:
4226 if (width <= HOST_BITS_PER_WIDE_INT && GET_CODE (op1) == CONST_INT
4227 && INTVAL (op1) == (HOST_WIDE_INT) 1 << (width -1)
4228 && ! side_effects_p (op0))
4229 return op1;
4230 else if (rtx_equal_p (op0, op1) && ! side_effects_p (op0))
4231 return op0;
4232 break;
4234 case SMAX:
4235 if (width <= HOST_BITS_PER_WIDE_INT && GET_CODE (op1) == CONST_INT
4236 && ((unsigned HOST_WIDE_INT) INTVAL (op1)
4237 == (unsigned HOST_WIDE_INT) GET_MODE_MASK (mode) >> 1)
4238 && ! side_effects_p (op0))
4239 return op1;
4240 else if (rtx_equal_p (op0, op1) && ! side_effects_p (op0))
4241 return op0;
4242 break;
4244 case UMIN:
4245 if (op1 == const0_rtx && ! side_effects_p (op0))
4246 return op1;
4247 else if (rtx_equal_p (op0, op1) && ! side_effects_p (op0))
4248 return op0;
4249 break;
4251 case UMAX:
4252 if (op1 == constm1_rtx && ! side_effects_p (op0))
4253 return op1;
4254 else if (rtx_equal_p (op0, op1) && ! side_effects_p (op0))
4255 return op0;
4256 break;
4258 default:
4259 abort ();
4262 return 0;
4265 /* Get the integer argument values in two forms:
4266 zero-extended in ARG0, ARG1 and sign-extended in ARG0S, ARG1S. */
4268 arg0 = INTVAL (op0);
4269 arg1 = INTVAL (op1);
4271 if (width < HOST_BITS_PER_WIDE_INT)
4273 arg0 &= ((HOST_WIDE_INT) 1 << width) - 1;
4274 arg1 &= ((HOST_WIDE_INT) 1 << width) - 1;
4276 arg0s = arg0;
4277 if (arg0s & ((HOST_WIDE_INT) 1 << (width - 1)))
4278 arg0s |= ((HOST_WIDE_INT) (-1) << width);
4280 arg1s = arg1;
4281 if (arg1s & ((HOST_WIDE_INT) 1 << (width - 1)))
4282 arg1s |= ((HOST_WIDE_INT) (-1) << width);
4284 else
4286 arg0s = arg0;
4287 arg1s = arg1;
4290 /* Compute the value of the arithmetic. */
4292 switch (code)
4294 case PLUS:
4295 val = arg0s + arg1s;
4296 break;
4298 case MINUS:
4299 val = arg0s - arg1s;
4300 break;
4302 case MULT:
4303 val = arg0s * arg1s;
4304 break;
4306 case DIV:
4307 if (arg1s == 0)
4308 return 0;
4309 val = arg0s / arg1s;
4310 break;
4312 case MOD:
4313 if (arg1s == 0)
4314 return 0;
4315 val = arg0s % arg1s;
4316 break;
4318 case UDIV:
4319 if (arg1 == 0)
4320 return 0;
4321 val = (unsigned HOST_WIDE_INT) arg0 / arg1;
4322 break;
4324 case UMOD:
4325 if (arg1 == 0)
4326 return 0;
4327 val = (unsigned HOST_WIDE_INT) arg0 % arg1;
4328 break;
4330 case AND:
4331 val = arg0 & arg1;
4332 break;
4334 case IOR:
4335 val = arg0 | arg1;
4336 break;
4338 case XOR:
4339 val = arg0 ^ arg1;
4340 break;
4342 case LSHIFTRT:
4343 /* If shift count is undefined, don't fold it; let the machine do
4344 what it wants. But truncate it if the machine will do that. */
4345 if (arg1 < 0)
4346 return 0;
4348 #ifdef SHIFT_COUNT_TRUNCATED
4349 if (SHIFT_COUNT_TRUNCATED)
4350 arg1 %= width;
4351 #endif
4353 val = ((unsigned HOST_WIDE_INT) arg0) >> arg1;
4354 break;
4356 case ASHIFT:
4357 if (arg1 < 0)
4358 return 0;
4360 #ifdef SHIFT_COUNT_TRUNCATED
4361 if (SHIFT_COUNT_TRUNCATED)
4362 arg1 %= width;
4363 #endif
4365 val = ((unsigned HOST_WIDE_INT) arg0) << arg1;
4366 break;
4368 case ASHIFTRT:
4369 if (arg1 < 0)
4370 return 0;
4372 #ifdef SHIFT_COUNT_TRUNCATED
4373 if (SHIFT_COUNT_TRUNCATED)
4374 arg1 %= width;
4375 #endif
4377 val = arg0s >> arg1;
4379 /* Bootstrap compiler may not have sign extended the right shift.
4380 Manually extend the sign to insure bootstrap cc matches gcc. */
4381 if (arg0s < 0 && arg1 > 0)
4382 val |= ((HOST_WIDE_INT) -1) << (HOST_BITS_PER_WIDE_INT - arg1);
4384 break;
4386 case ROTATERT:
4387 if (arg1 < 0)
4388 return 0;
4390 arg1 %= width;
4391 val = ((((unsigned HOST_WIDE_INT) arg0) << (width - arg1))
4392 | (((unsigned HOST_WIDE_INT) arg0) >> arg1));
4393 break;
4395 case ROTATE:
4396 if (arg1 < 0)
4397 return 0;
4399 arg1 %= width;
4400 val = ((((unsigned HOST_WIDE_INT) arg0) << arg1)
4401 | (((unsigned HOST_WIDE_INT) arg0) >> (width - arg1)));
4402 break;
4404 case COMPARE:
4405 /* Do nothing here. */
4406 return 0;
4408 case SMIN:
4409 val = arg0s <= arg1s ? arg0s : arg1s;
4410 break;
4412 case UMIN:
4413 val = ((unsigned HOST_WIDE_INT) arg0
4414 <= (unsigned HOST_WIDE_INT) arg1 ? arg0 : arg1);
4415 break;
4417 case SMAX:
4418 val = arg0s > arg1s ? arg0s : arg1s;
4419 break;
4421 case UMAX:
4422 val = ((unsigned HOST_WIDE_INT) arg0
4423 > (unsigned HOST_WIDE_INT) arg1 ? arg0 : arg1);
4424 break;
4426 default:
4427 abort ();
4430 val = trunc_int_for_mode (val, mode);
4432 return GEN_INT (val);
4435 /* Simplify a PLUS or MINUS, at least one of whose operands may be another
4436 PLUS or MINUS.
4438 Rather than test for specific case, we do this by a brute-force method
4439 and do all possible simplifications until no more changes occur. Then
4440 we rebuild the operation. */
4442 static rtx
4443 simplify_plus_minus (code, mode, op0, op1)
4444 enum rtx_code code;
4445 enum machine_mode mode;
4446 rtx op0, op1;
4448 rtx ops[8];
4449 int negs[8];
4450 rtx result, tem;
4451 int n_ops = 2, input_ops = 2, input_consts = 0, n_consts = 0;
4452 int first = 1, negate = 0, changed;
4453 int i, j;
4455 bzero ((char *) ops, sizeof ops);
4457 /* Set up the two operands and then expand them until nothing has been
4458 changed. If we run out of room in our array, give up; this should
4459 almost never happen. */
4461 ops[0] = op0, ops[1] = op1, negs[0] = 0, negs[1] = (code == MINUS);
4463 changed = 1;
4464 while (changed)
4466 changed = 0;
4468 for (i = 0; i < n_ops; i++)
4469 switch (GET_CODE (ops[i]))
4471 case PLUS:
4472 case MINUS:
4473 if (n_ops == 7)
4474 return 0;
4476 ops[n_ops] = XEXP (ops[i], 1);
4477 negs[n_ops++] = GET_CODE (ops[i]) == MINUS ? !negs[i] : negs[i];
4478 ops[i] = XEXP (ops[i], 0);
4479 input_ops++;
4480 changed = 1;
4481 break;
4483 case NEG:
4484 ops[i] = XEXP (ops[i], 0);
4485 negs[i] = ! negs[i];
4486 changed = 1;
4487 break;
4489 case CONST:
4490 ops[i] = XEXP (ops[i], 0);
4491 input_consts++;
4492 changed = 1;
4493 break;
4495 case NOT:
4496 /* ~a -> (-a - 1) */
4497 if (n_ops != 7)
4499 ops[n_ops] = constm1_rtx;
4500 negs[n_ops++] = negs[i];
4501 ops[i] = XEXP (ops[i], 0);
4502 negs[i] = ! negs[i];
4503 changed = 1;
4505 break;
4507 case CONST_INT:
4508 if (negs[i])
4509 ops[i] = GEN_INT (- INTVAL (ops[i])), negs[i] = 0, changed = 1;
4510 break;
4512 default:
4513 break;
4517 /* If we only have two operands, we can't do anything. */
4518 if (n_ops <= 2)
4519 return 0;
4521 /* Now simplify each pair of operands until nothing changes. The first
4522 time through just simplify constants against each other. */
4524 changed = 1;
4525 while (changed)
4527 changed = first;
4529 for (i = 0; i < n_ops - 1; i++)
4530 for (j = i + 1; j < n_ops; j++)
4531 if (ops[i] != 0 && ops[j] != 0
4532 && (! first || (CONSTANT_P (ops[i]) && CONSTANT_P (ops[j]))))
4534 rtx lhs = ops[i], rhs = ops[j];
4535 enum rtx_code ncode = PLUS;
4537 if (negs[i] && ! negs[j])
4538 lhs = ops[j], rhs = ops[i], ncode = MINUS;
4539 else if (! negs[i] && negs[j])
4540 ncode = MINUS;
4542 tem = simplify_binary_operation (ncode, mode, lhs, rhs);
4543 if (tem)
4545 ops[i] = tem, ops[j] = 0;
4546 negs[i] = negs[i] && negs[j];
4547 if (GET_CODE (tem) == NEG)
4548 ops[i] = XEXP (tem, 0), negs[i] = ! negs[i];
4550 if (GET_CODE (ops[i]) == CONST_INT && negs[i])
4551 ops[i] = GEN_INT (- INTVAL (ops[i])), negs[i] = 0;
4552 changed = 1;
4556 first = 0;
4559 /* Pack all the operands to the lower-numbered entries and give up if
4560 we didn't reduce the number of operands we had. Make sure we
4561 count a CONST as two operands. If we have the same number of
4562 operands, but have made more CONSTs than we had, this is also
4563 an improvement, so accept it. */
4565 for (i = 0, j = 0; j < n_ops; j++)
4566 if (ops[j] != 0)
4568 ops[i] = ops[j], negs[i++] = negs[j];
4569 if (GET_CODE (ops[j]) == CONST)
4570 n_consts++;
4573 if (i + n_consts > input_ops
4574 || (i + n_consts == input_ops && n_consts <= input_consts))
4575 return 0;
4577 n_ops = i;
4579 /* If we have a CONST_INT, put it last. */
4580 for (i = 0; i < n_ops - 1; i++)
4581 if (GET_CODE (ops[i]) == CONST_INT)
4583 tem = ops[n_ops - 1], ops[n_ops - 1] = ops[i] , ops[i] = tem;
4584 j = negs[n_ops - 1], negs[n_ops - 1] = negs[i], negs[i] = j;
4587 /* Put a non-negated operand first. If there aren't any, make all
4588 operands positive and negate the whole thing later. */
4589 for (i = 0; i < n_ops && negs[i]; i++)
4592 if (i == n_ops)
4594 for (i = 0; i < n_ops; i++)
4595 negs[i] = 0;
4596 negate = 1;
4598 else if (i != 0)
4600 tem = ops[0], ops[0] = ops[i], ops[i] = tem;
4601 j = negs[0], negs[0] = negs[i], negs[i] = j;
4604 /* Now make the result by performing the requested operations. */
4605 result = ops[0];
4606 for (i = 1; i < n_ops; i++)
4607 result = cse_gen_binary (negs[i] ? MINUS : PLUS, mode, result, ops[i]);
4609 return negate ? gen_rtx_NEG (mode, result) : result;
4612 /* Make a binary operation by properly ordering the operands and
4613 seeing if the expression folds. */
4615 static rtx
4616 cse_gen_binary (code, mode, op0, op1)
4617 enum rtx_code code;
4618 enum machine_mode mode;
4619 rtx op0, op1;
4621 rtx tem;
4623 /* Put complex operands first and constants second if commutative. */
4624 if (GET_RTX_CLASS (code) == 'c'
4625 && ((CONSTANT_P (op0) && GET_CODE (op1) != CONST_INT)
4626 || (GET_RTX_CLASS (GET_CODE (op0)) == 'o'
4627 && GET_RTX_CLASS (GET_CODE (op1)) != 'o')
4628 || (GET_CODE (op0) == SUBREG
4629 && GET_RTX_CLASS (GET_CODE (SUBREG_REG (op0))) == 'o'
4630 && GET_RTX_CLASS (GET_CODE (op1)) != 'o')))
4631 tem = op0, op0 = op1, op1 = tem;
4633 /* If this simplifies, do it. */
4634 tem = simplify_binary_operation (code, mode, op0, op1);
4636 if (tem)
4637 return tem;
4639 /* Handle addition and subtraction of CONST_INT specially. Otherwise,
4640 just form the operation. */
4642 if (code == PLUS && GET_CODE (op1) == CONST_INT
4643 && GET_MODE (op0) != VOIDmode)
4644 return plus_constant (op0, INTVAL (op1));
4645 else if (code == MINUS && GET_CODE (op1) == CONST_INT
4646 && GET_MODE (op0) != VOIDmode)
4647 return plus_constant (op0, - INTVAL (op1));
4648 else
4649 return gen_rtx_fmt_ee (code, mode, op0, op1);
4652 struct cfc_args
4654 /* Input */
4655 rtx op0, op1;
4656 /* Output */
4657 int equal, op0lt, op1lt;
4660 static void
4661 check_fold_consts (data)
4662 PTR data;
4664 struct cfc_args * args = (struct cfc_args *) data;
4665 REAL_VALUE_TYPE d0, d1;
4667 REAL_VALUE_FROM_CONST_DOUBLE (d0, args->op0);
4668 REAL_VALUE_FROM_CONST_DOUBLE (d1, args->op1);
4669 args->equal = REAL_VALUES_EQUAL (d0, d1);
4670 args->op0lt = REAL_VALUES_LESS (d0, d1);
4671 args->op1lt = REAL_VALUES_LESS (d1, d0);
4674 /* Like simplify_binary_operation except used for relational operators.
4675 MODE is the mode of the operands, not that of the result. If MODE
4676 is VOIDmode, both operands must also be VOIDmode and we compare the
4677 operands in "infinite precision".
4679 If no simplification is possible, this function returns zero. Otherwise,
4680 it returns either const_true_rtx or const0_rtx. */
4683 simplify_relational_operation (code, mode, op0, op1)
4684 enum rtx_code code;
4685 enum machine_mode mode;
4686 rtx op0, op1;
4688 int equal, op0lt, op0ltu, op1lt, op1ltu;
4689 rtx tem;
4691 /* If op0 is a compare, extract the comparison arguments from it. */
4692 if (GET_CODE (op0) == COMPARE && op1 == const0_rtx)
4693 op1 = XEXP (op0, 1), op0 = XEXP (op0, 0);
4695 /* We can't simplify MODE_CC values since we don't know what the
4696 actual comparison is. */
4697 if (GET_MODE_CLASS (GET_MODE (op0)) == MODE_CC
4698 #ifdef HAVE_cc0
4699 || op0 == cc0_rtx
4700 #endif
4702 return 0;
4704 /* For integer comparisons of A and B maybe we can simplify A - B and can
4705 then simplify a comparison of that with zero. If A and B are both either
4706 a register or a CONST_INT, this can't help; testing for these cases will
4707 prevent infinite recursion here and speed things up.
4709 If CODE is an unsigned comparison, then we can never do this optimization,
4710 because it gives an incorrect result if the subtraction wraps around zero.
4711 ANSI C defines unsigned operations such that they never overflow, and
4712 thus such cases can not be ignored. */
4714 if (INTEGRAL_MODE_P (mode) && op1 != const0_rtx
4715 && ! ((GET_CODE (op0) == REG || GET_CODE (op0) == CONST_INT)
4716 && (GET_CODE (op1) == REG || GET_CODE (op1) == CONST_INT))
4717 && 0 != (tem = simplify_binary_operation (MINUS, mode, op0, op1))
4718 && code != GTU && code != GEU && code != LTU && code != LEU)
4719 return simplify_relational_operation (signed_condition (code),
4720 mode, tem, const0_rtx);
4722 /* For non-IEEE floating-point, if the two operands are equal, we know the
4723 result. */
4724 if (rtx_equal_p (op0, op1)
4725 && (TARGET_FLOAT_FORMAT != IEEE_FLOAT_FORMAT
4726 || ! FLOAT_MODE_P (GET_MODE (op0)) || flag_fast_math))
4727 equal = 1, op0lt = 0, op0ltu = 0, op1lt = 0, op1ltu = 0;
4729 /* If the operands are floating-point constants, see if we can fold
4730 the result. */
4731 #if ! defined (REAL_IS_NOT_DOUBLE) || defined (REAL_ARITHMETIC)
4732 else if (GET_CODE (op0) == CONST_DOUBLE && GET_CODE (op1) == CONST_DOUBLE
4733 && GET_MODE_CLASS (GET_MODE (op0)) == MODE_FLOAT)
4735 struct cfc_args args;
4737 /* Setup input for check_fold_consts() */
4738 args.op0 = op0;
4739 args.op1 = op1;
4741 if (do_float_handler(check_fold_consts, (PTR) &args) == 0)
4742 /* We got an exception from check_fold_consts() */
4743 return 0;
4745 /* Receive output from check_fold_consts() */
4746 equal = args.equal;
4747 op0lt = op0ltu = args.op0lt;
4748 op1lt = op1ltu = args.op1lt;
4750 #endif /* not REAL_IS_NOT_DOUBLE, or REAL_ARITHMETIC */
4752 /* Otherwise, see if the operands are both integers. */
4753 else if ((GET_MODE_CLASS (mode) == MODE_INT || mode == VOIDmode)
4754 && (GET_CODE (op0) == CONST_DOUBLE || GET_CODE (op0) == CONST_INT)
4755 && (GET_CODE (op1) == CONST_DOUBLE || GET_CODE (op1) == CONST_INT))
4757 int width = GET_MODE_BITSIZE (mode);
4758 HOST_WIDE_INT l0s, h0s, l1s, h1s;
4759 unsigned HOST_WIDE_INT l0u, h0u, l1u, h1u;
4761 /* Get the two words comprising each integer constant. */
4762 if (GET_CODE (op0) == CONST_DOUBLE)
4764 l0u = l0s = CONST_DOUBLE_LOW (op0);
4765 h0u = h0s = CONST_DOUBLE_HIGH (op0);
4767 else
4769 l0u = l0s = INTVAL (op0);
4770 h0u = h0s = l0s < 0 ? -1 : 0;
4773 if (GET_CODE (op1) == CONST_DOUBLE)
4775 l1u = l1s = CONST_DOUBLE_LOW (op1);
4776 h1u = h1s = CONST_DOUBLE_HIGH (op1);
4778 else
4780 l1u = l1s = INTVAL (op1);
4781 h1u = h1s = l1s < 0 ? -1 : 0;
4784 /* If WIDTH is nonzero and smaller than HOST_BITS_PER_WIDE_INT,
4785 we have to sign or zero-extend the values. */
4786 if (width != 0 && width <= HOST_BITS_PER_WIDE_INT)
4787 h0u = h1u = 0, h0s = l0s < 0 ? -1 : 0, h1s = l1s < 0 ? -1 : 0;
4789 if (width != 0 && width < HOST_BITS_PER_WIDE_INT)
4791 l0u &= ((HOST_WIDE_INT) 1 << width) - 1;
4792 l1u &= ((HOST_WIDE_INT) 1 << width) - 1;
4794 if (l0s & ((HOST_WIDE_INT) 1 << (width - 1)))
4795 l0s |= ((HOST_WIDE_INT) (-1) << width);
4797 if (l1s & ((HOST_WIDE_INT) 1 << (width - 1)))
4798 l1s |= ((HOST_WIDE_INT) (-1) << width);
4801 equal = (h0u == h1u && l0u == l1u);
4802 op0lt = (h0s < h1s || (h0s == h1s && l0s < l1s));
4803 op1lt = (h1s < h0s || (h1s == h0s && l1s < l0s));
4804 op0ltu = (h0u < h1u || (h0u == h1u && l0u < l1u));
4805 op1ltu = (h1u < h0u || (h1u == h0u && l1u < l0u));
4808 /* Otherwise, there are some code-specific tests we can make. */
4809 else
4811 switch (code)
4813 case EQ:
4814 /* References to the frame plus a constant or labels cannot
4815 be zero, but a SYMBOL_REF can due to #pragma weak. */
4816 if (((NONZERO_BASE_PLUS_P (op0) && op1 == const0_rtx)
4817 || GET_CODE (op0) == LABEL_REF)
4818 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
4819 /* On some machines, the ap reg can be 0 sometimes. */
4820 && op0 != arg_pointer_rtx
4821 #endif
4823 return const0_rtx;
4824 break;
4826 case NE:
4827 if (((NONZERO_BASE_PLUS_P (op0) && op1 == const0_rtx)
4828 || GET_CODE (op0) == LABEL_REF)
4829 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
4830 && op0 != arg_pointer_rtx
4831 #endif
4833 return const_true_rtx;
4834 break;
4836 case GEU:
4837 /* Unsigned values are never negative. */
4838 if (op1 == const0_rtx)
4839 return const_true_rtx;
4840 break;
4842 case LTU:
4843 if (op1 == const0_rtx)
4844 return const0_rtx;
4845 break;
4847 case LEU:
4848 /* Unsigned values are never greater than the largest
4849 unsigned value. */
4850 if (GET_CODE (op1) == CONST_INT
4851 && (unsigned HOST_WIDE_INT) INTVAL (op1) == GET_MODE_MASK (mode)
4852 && INTEGRAL_MODE_P (mode))
4853 return const_true_rtx;
4854 break;
4856 case GTU:
4857 if (GET_CODE (op1) == CONST_INT
4858 && (unsigned HOST_WIDE_INT) INTVAL (op1) == GET_MODE_MASK (mode)
4859 && INTEGRAL_MODE_P (mode))
4860 return const0_rtx;
4861 break;
4863 default:
4864 break;
4867 return 0;
4870 /* If we reach here, EQUAL, OP0LT, OP0LTU, OP1LT, and OP1LTU are set
4871 as appropriate. */
4872 switch (code)
4874 case EQ:
4875 return equal ? const_true_rtx : const0_rtx;
4876 case NE:
4877 return ! equal ? const_true_rtx : const0_rtx;
4878 case LT:
4879 return op0lt ? const_true_rtx : const0_rtx;
4880 case GT:
4881 return op1lt ? const_true_rtx : const0_rtx;
4882 case LTU:
4883 return op0ltu ? const_true_rtx : const0_rtx;
4884 case GTU:
4885 return op1ltu ? const_true_rtx : const0_rtx;
4886 case LE:
4887 return equal || op0lt ? const_true_rtx : const0_rtx;
4888 case GE:
4889 return equal || op1lt ? const_true_rtx : const0_rtx;
4890 case LEU:
4891 return equal || op0ltu ? const_true_rtx : const0_rtx;
4892 case GEU:
4893 return equal || op1ltu ? const_true_rtx : const0_rtx;
4894 default:
4895 abort ();
4899 /* Simplify CODE, an operation with result mode MODE and three operands,
4900 OP0, OP1, and OP2. OP0_MODE was the mode of OP0 before it became
4901 a constant. Return 0 if no simplifications is possible. */
4904 simplify_ternary_operation (code, mode, op0_mode, op0, op1, op2)
4905 enum rtx_code code;
4906 enum machine_mode mode, op0_mode;
4907 rtx op0, op1, op2;
4909 int width = GET_MODE_BITSIZE (mode);
4911 /* VOIDmode means "infinite" precision. */
4912 if (width == 0)
4913 width = HOST_BITS_PER_WIDE_INT;
4915 switch (code)
4917 case SIGN_EXTRACT:
4918 case ZERO_EXTRACT:
4919 if (GET_CODE (op0) == CONST_INT
4920 && GET_CODE (op1) == CONST_INT
4921 && GET_CODE (op2) == CONST_INT
4922 && INTVAL (op1) + INTVAL (op2) <= GET_MODE_BITSIZE (op0_mode)
4923 && width <= HOST_BITS_PER_WIDE_INT)
4925 /* Extracting a bit-field from a constant */
4926 HOST_WIDE_INT val = INTVAL (op0);
4928 if (BITS_BIG_ENDIAN)
4929 val >>= (GET_MODE_BITSIZE (op0_mode)
4930 - INTVAL (op2) - INTVAL (op1));
4931 else
4932 val >>= INTVAL (op2);
4934 if (HOST_BITS_PER_WIDE_INT != INTVAL (op1))
4936 /* First zero-extend. */
4937 val &= ((HOST_WIDE_INT) 1 << INTVAL (op1)) - 1;
4938 /* If desired, propagate sign bit. */
4939 if (code == SIGN_EXTRACT
4940 && (val & ((HOST_WIDE_INT) 1 << (INTVAL (op1) - 1))))
4941 val |= ~ (((HOST_WIDE_INT) 1 << INTVAL (op1)) - 1);
4944 /* Clear the bits that don't belong in our mode,
4945 unless they and our sign bit are all one.
4946 So we get either a reasonable negative value or a reasonable
4947 unsigned value for this mode. */
4948 if (width < HOST_BITS_PER_WIDE_INT
4949 && ((val & ((HOST_WIDE_INT) (-1) << (width - 1)))
4950 != ((HOST_WIDE_INT) (-1) << (width - 1))))
4951 val &= ((HOST_WIDE_INT) 1 << width) - 1;
4953 return GEN_INT (val);
4955 break;
4957 case IF_THEN_ELSE:
4958 if (GET_CODE (op0) == CONST_INT)
4959 return op0 != const0_rtx ? op1 : op2;
4961 /* Convert a == b ? b : a to "a". */
4962 if (GET_CODE (op0) == NE && ! side_effects_p (op0)
4963 && rtx_equal_p (XEXP (op0, 0), op1)
4964 && rtx_equal_p (XEXP (op0, 1), op2))
4965 return op1;
4966 else if (GET_CODE (op0) == EQ && ! side_effects_p (op0)
4967 && rtx_equal_p (XEXP (op0, 1), op1)
4968 && rtx_equal_p (XEXP (op0, 0), op2))
4969 return op2;
4970 else if (GET_RTX_CLASS (GET_CODE (op0)) == '<' && ! side_effects_p (op0))
4972 rtx temp;
4973 temp = simplify_relational_operation (GET_CODE (op0), op0_mode,
4974 XEXP (op0, 0), XEXP (op0, 1));
4975 /* See if any simplifications were possible. */
4976 if (temp == const0_rtx)
4977 return op2;
4978 else if (temp == const1_rtx)
4979 return op1;
4981 break;
4983 default:
4984 abort ();
4987 return 0;
4990 /* If X is a nontrivial arithmetic operation on an argument
4991 for which a constant value can be determined, return
4992 the result of operating on that value, as a constant.
4993 Otherwise, return X, possibly with one or more operands
4994 modified by recursive calls to this function.
4996 If X is a register whose contents are known, we do NOT
4997 return those contents here. equiv_constant is called to
4998 perform that task.
5000 INSN is the insn that we may be modifying. If it is 0, make a copy
5001 of X before modifying it. */
5003 static rtx
5004 fold_rtx (x, insn)
5005 rtx x;
5006 rtx insn;
5008 register enum rtx_code code;
5009 register enum machine_mode mode;
5010 register const char *fmt;
5011 register int i;
5012 rtx new = 0;
5013 int copied = 0;
5014 int must_swap = 0;
5016 /* Folded equivalents of first two operands of X. */
5017 rtx folded_arg0;
5018 rtx folded_arg1;
5020 /* Constant equivalents of first three operands of X;
5021 0 when no such equivalent is known. */
5022 rtx const_arg0;
5023 rtx const_arg1;
5024 rtx const_arg2;
5026 /* The mode of the first operand of X. We need this for sign and zero
5027 extends. */
5028 enum machine_mode mode_arg0;
5030 if (x == 0)
5031 return x;
5033 mode = GET_MODE (x);
5034 code = GET_CODE (x);
5035 switch (code)
5037 case CONST:
5038 case CONST_INT:
5039 case CONST_DOUBLE:
5040 case SYMBOL_REF:
5041 case LABEL_REF:
5042 case REG:
5043 /* No use simplifying an EXPR_LIST
5044 since they are used only for lists of args
5045 in a function call's REG_EQUAL note. */
5046 case EXPR_LIST:
5047 /* Changing anything inside an ADDRESSOF is incorrect; we don't
5048 want to (e.g.,) make (addressof (const_int 0)) just because
5049 the location is known to be zero. */
5050 case ADDRESSOF:
5051 return x;
5053 #ifdef HAVE_cc0
5054 case CC0:
5055 return prev_insn_cc0;
5056 #endif
5058 case PC:
5059 /* If the next insn is a CODE_LABEL followed by a jump table,
5060 PC's value is a LABEL_REF pointing to that label. That
5061 lets us fold switch statements on the Vax. */
5062 if (insn && GET_CODE (insn) == JUMP_INSN)
5064 rtx next = next_nonnote_insn (insn);
5066 if (next && GET_CODE (next) == CODE_LABEL
5067 && NEXT_INSN (next) != 0
5068 && GET_CODE (NEXT_INSN (next)) == JUMP_INSN
5069 && (GET_CODE (PATTERN (NEXT_INSN (next))) == ADDR_VEC
5070 || GET_CODE (PATTERN (NEXT_INSN (next))) == ADDR_DIFF_VEC))
5071 return gen_rtx_LABEL_REF (Pmode, next);
5073 break;
5075 case SUBREG:
5076 /* See if we previously assigned a constant value to this SUBREG. */
5077 if ((new = lookup_as_function (x, CONST_INT)) != 0
5078 || (new = lookup_as_function (x, CONST_DOUBLE)) != 0)
5079 return new;
5081 /* If this is a paradoxical SUBREG, we have no idea what value the
5082 extra bits would have. However, if the operand is equivalent
5083 to a SUBREG whose operand is the same as our mode, and all the
5084 modes are within a word, we can just use the inner operand
5085 because these SUBREGs just say how to treat the register.
5087 Similarly if we find an integer constant. */
5089 if (GET_MODE_SIZE (mode) > GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
5091 enum machine_mode imode = GET_MODE (SUBREG_REG (x));
5092 struct table_elt *elt;
5094 if (GET_MODE_SIZE (mode) <= UNITS_PER_WORD
5095 && GET_MODE_SIZE (imode) <= UNITS_PER_WORD
5096 && (elt = lookup (SUBREG_REG (x), HASH (SUBREG_REG (x), imode),
5097 imode)) != 0)
5098 for (elt = elt->first_same_value;
5099 elt; elt = elt->next_same_value)
5101 if (CONSTANT_P (elt->exp)
5102 && GET_MODE (elt->exp) == VOIDmode)
5103 return elt->exp;
5105 if (GET_CODE (elt->exp) == SUBREG
5106 && GET_MODE (SUBREG_REG (elt->exp)) == mode
5107 && exp_equiv_p (elt->exp, elt->exp, 1, 0))
5108 return copy_rtx (SUBREG_REG (elt->exp));
5111 return x;
5114 /* Fold SUBREG_REG. If it changed, see if we can simplify the SUBREG.
5115 We might be able to if the SUBREG is extracting a single word in an
5116 integral mode or extracting the low part. */
5118 folded_arg0 = fold_rtx (SUBREG_REG (x), insn);
5119 const_arg0 = equiv_constant (folded_arg0);
5120 if (const_arg0)
5121 folded_arg0 = const_arg0;
5123 if (folded_arg0 != SUBREG_REG (x))
5125 new = 0;
5127 if (GET_MODE_CLASS (mode) == MODE_INT
5128 && GET_MODE_SIZE (mode) == UNITS_PER_WORD
5129 && GET_MODE (SUBREG_REG (x)) != VOIDmode)
5130 new = operand_subword (folded_arg0, SUBREG_WORD (x), 0,
5131 GET_MODE (SUBREG_REG (x)));
5132 if (new == 0 && subreg_lowpart_p (x))
5133 new = gen_lowpart_if_possible (mode, folded_arg0);
5134 if (new)
5135 return new;
5138 /* If this is a narrowing SUBREG and our operand is a REG, see if
5139 we can find an equivalence for REG that is an arithmetic operation
5140 in a wider mode where both operands are paradoxical SUBREGs
5141 from objects of our result mode. In that case, we couldn't report
5142 an equivalent value for that operation, since we don't know what the
5143 extra bits will be. But we can find an equivalence for this SUBREG
5144 by folding that operation is the narrow mode. This allows us to
5145 fold arithmetic in narrow modes when the machine only supports
5146 word-sized arithmetic.
5148 Also look for a case where we have a SUBREG whose operand is the
5149 same as our result. If both modes are smaller than a word, we
5150 are simply interpreting a register in different modes and we
5151 can use the inner value. */
5153 if (GET_CODE (folded_arg0) == REG
5154 && GET_MODE_SIZE (mode) < GET_MODE_SIZE (GET_MODE (folded_arg0))
5155 && subreg_lowpart_p (x))
5157 struct table_elt *elt;
5159 /* We can use HASH here since we know that canon_hash won't be
5160 called. */
5161 elt = lookup (folded_arg0,
5162 HASH (folded_arg0, GET_MODE (folded_arg0)),
5163 GET_MODE (folded_arg0));
5165 if (elt)
5166 elt = elt->first_same_value;
5168 for (; elt; elt = elt->next_same_value)
5170 enum rtx_code eltcode = GET_CODE (elt->exp);
5172 /* Just check for unary and binary operations. */
5173 if (GET_RTX_CLASS (GET_CODE (elt->exp)) == '1'
5174 && GET_CODE (elt->exp) != SIGN_EXTEND
5175 && GET_CODE (elt->exp) != ZERO_EXTEND
5176 && GET_CODE (XEXP (elt->exp, 0)) == SUBREG
5177 && GET_MODE (SUBREG_REG (XEXP (elt->exp, 0))) == mode)
5179 rtx op0 = SUBREG_REG (XEXP (elt->exp, 0));
5181 if (GET_CODE (op0) != REG && ! CONSTANT_P (op0))
5182 op0 = fold_rtx (op0, NULL_RTX);
5184 op0 = equiv_constant (op0);
5185 if (op0)
5186 new = simplify_unary_operation (GET_CODE (elt->exp), mode,
5187 op0, mode);
5189 else if ((GET_RTX_CLASS (GET_CODE (elt->exp)) == '2'
5190 || GET_RTX_CLASS (GET_CODE (elt->exp)) == 'c')
5191 && eltcode != DIV && eltcode != MOD
5192 && eltcode != UDIV && eltcode != UMOD
5193 && eltcode != ASHIFTRT && eltcode != LSHIFTRT
5194 && eltcode != ROTATE && eltcode != ROTATERT
5195 && ((GET_CODE (XEXP (elt->exp, 0)) == SUBREG
5196 && (GET_MODE (SUBREG_REG (XEXP (elt->exp, 0)))
5197 == mode))
5198 || CONSTANT_P (XEXP (elt->exp, 0)))
5199 && ((GET_CODE (XEXP (elt->exp, 1)) == SUBREG
5200 && (GET_MODE (SUBREG_REG (XEXP (elt->exp, 1)))
5201 == mode))
5202 || CONSTANT_P (XEXP (elt->exp, 1))))
5204 rtx op0 = gen_lowpart_common (mode, XEXP (elt->exp, 0));
5205 rtx op1 = gen_lowpart_common (mode, XEXP (elt->exp, 1));
5207 if (op0 && GET_CODE (op0) != REG && ! CONSTANT_P (op0))
5208 op0 = fold_rtx (op0, NULL_RTX);
5210 if (op0)
5211 op0 = equiv_constant (op0);
5213 if (op1 && GET_CODE (op1) != REG && ! CONSTANT_P (op1))
5214 op1 = fold_rtx (op1, NULL_RTX);
5216 if (op1)
5217 op1 = equiv_constant (op1);
5219 /* If we are looking for the low SImode part of
5220 (ashift:DI c (const_int 32)), it doesn't work
5221 to compute that in SImode, because a 32-bit shift
5222 in SImode is unpredictable. We know the value is 0. */
5223 if (op0 && op1
5224 && GET_CODE (elt->exp) == ASHIFT
5225 && GET_CODE (op1) == CONST_INT
5226 && INTVAL (op1) >= GET_MODE_BITSIZE (mode))
5228 if (INTVAL (op1) < GET_MODE_BITSIZE (GET_MODE (elt->exp)))
5230 /* If the count fits in the inner mode's width,
5231 but exceeds the outer mode's width,
5232 the value will get truncated to 0
5233 by the subreg. */
5234 new = const0_rtx;
5235 else
5236 /* If the count exceeds even the inner mode's width,
5237 don't fold this expression. */
5238 new = 0;
5240 else if (op0 && op1)
5241 new = simplify_binary_operation (GET_CODE (elt->exp), mode,
5242 op0, op1);
5245 else if (GET_CODE (elt->exp) == SUBREG
5246 && GET_MODE (SUBREG_REG (elt->exp)) == mode
5247 && (GET_MODE_SIZE (GET_MODE (folded_arg0))
5248 <= UNITS_PER_WORD)
5249 && exp_equiv_p (elt->exp, elt->exp, 1, 0))
5250 new = copy_rtx (SUBREG_REG (elt->exp));
5252 if (new)
5253 return new;
5257 return x;
5259 case NOT:
5260 case NEG:
5261 /* If we have (NOT Y), see if Y is known to be (NOT Z).
5262 If so, (NOT Y) simplifies to Z. Similarly for NEG. */
5263 new = lookup_as_function (XEXP (x, 0), code);
5264 if (new)
5265 return fold_rtx (copy_rtx (XEXP (new, 0)), insn);
5266 break;
5268 case MEM:
5269 /* If we are not actually processing an insn, don't try to find the
5270 best address. Not only don't we care, but we could modify the
5271 MEM in an invalid way since we have no insn to validate against. */
5272 if (insn != 0)
5273 find_best_addr (insn, &XEXP (x, 0));
5276 /* Even if we don't fold in the insn itself,
5277 we can safely do so here, in hopes of getting a constant. */
5278 rtx addr = fold_rtx (XEXP (x, 0), NULL_RTX);
5279 rtx base = 0;
5280 HOST_WIDE_INT offset = 0;
5282 if (GET_CODE (addr) == REG
5283 && REGNO_QTY_VALID_P (REGNO (addr))
5284 && GET_MODE (addr) == qty_mode[REG_QTY (REGNO (addr))]
5285 && qty_const[REG_QTY (REGNO (addr))] != 0)
5286 addr = qty_const[REG_QTY (REGNO (addr))];
5288 /* If address is constant, split it into a base and integer offset. */
5289 if (GET_CODE (addr) == SYMBOL_REF || GET_CODE (addr) == LABEL_REF)
5290 base = addr;
5291 else if (GET_CODE (addr) == CONST && GET_CODE (XEXP (addr, 0)) == PLUS
5292 && GET_CODE (XEXP (XEXP (addr, 0), 1)) == CONST_INT)
5294 base = XEXP (XEXP (addr, 0), 0);
5295 offset = INTVAL (XEXP (XEXP (addr, 0), 1));
5297 else if (GET_CODE (addr) == LO_SUM
5298 && GET_CODE (XEXP (addr, 1)) == SYMBOL_REF)
5299 base = XEXP (addr, 1);
5300 else if (GET_CODE (addr) == ADDRESSOF)
5301 return change_address (x, VOIDmode, addr);
5303 /* If this is a constant pool reference, we can fold it into its
5304 constant to allow better value tracking. */
5305 if (base && GET_CODE (base) == SYMBOL_REF
5306 && CONSTANT_POOL_ADDRESS_P (base))
5308 rtx constant = get_pool_constant (base);
5309 enum machine_mode const_mode = get_pool_mode (base);
5310 rtx new;
5312 if (CONSTANT_P (constant) && GET_CODE (constant) != CONST_INT)
5313 constant_pool_entries_cost = COST (constant);
5315 /* If we are loading the full constant, we have an equivalence. */
5316 if (offset == 0 && mode == const_mode)
5317 return constant;
5319 /* If this actually isn't a constant (weird!), we can't do
5320 anything. Otherwise, handle the two most common cases:
5321 extracting a word from a multi-word constant, and extracting
5322 the low-order bits. Other cases don't seem common enough to
5323 worry about. */
5324 if (! CONSTANT_P (constant))
5325 return x;
5327 if (GET_MODE_CLASS (mode) == MODE_INT
5328 && GET_MODE_SIZE (mode) == UNITS_PER_WORD
5329 && offset % UNITS_PER_WORD == 0
5330 && (new = operand_subword (constant,
5331 offset / UNITS_PER_WORD,
5332 0, const_mode)) != 0)
5333 return new;
5335 if (((BYTES_BIG_ENDIAN
5336 && offset == GET_MODE_SIZE (GET_MODE (constant)) - 1)
5337 || (! BYTES_BIG_ENDIAN && offset == 0))
5338 && (new = gen_lowpart_if_possible (mode, constant)) != 0)
5339 return new;
5342 /* If this is a reference to a label at a known position in a jump
5343 table, we also know its value. */
5344 if (base && GET_CODE (base) == LABEL_REF)
5346 rtx label = XEXP (base, 0);
5347 rtx table_insn = NEXT_INSN (label);
5349 if (table_insn && GET_CODE (table_insn) == JUMP_INSN
5350 && GET_CODE (PATTERN (table_insn)) == ADDR_VEC)
5352 rtx table = PATTERN (table_insn);
5354 if (offset >= 0
5355 && (offset / GET_MODE_SIZE (GET_MODE (table))
5356 < XVECLEN (table, 0)))
5357 return XVECEXP (table, 0,
5358 offset / GET_MODE_SIZE (GET_MODE (table)));
5360 if (table_insn && GET_CODE (table_insn) == JUMP_INSN
5361 && GET_CODE (PATTERN (table_insn)) == ADDR_DIFF_VEC)
5363 rtx table = PATTERN (table_insn);
5365 if (offset >= 0
5366 && (offset / GET_MODE_SIZE (GET_MODE (table))
5367 < XVECLEN (table, 1)))
5369 offset /= GET_MODE_SIZE (GET_MODE (table));
5370 new = gen_rtx_MINUS (Pmode, XVECEXP (table, 1, offset),
5371 XEXP (table, 0));
5373 if (GET_MODE (table) != Pmode)
5374 new = gen_rtx_TRUNCATE (GET_MODE (table), new);
5376 /* Indicate this is a constant. This isn't a
5377 valid form of CONST, but it will only be used
5378 to fold the next insns and then discarded, so
5379 it should be safe.
5381 Note this expression must be explicitly discarded,
5382 by cse_insn, else it may end up in a REG_EQUAL note
5383 and "escape" to cause problems elsewhere. */
5384 return gen_rtx_CONST (GET_MODE (new), new);
5389 return x;
5392 case ASM_OPERANDS:
5393 for (i = XVECLEN (x, 3) - 1; i >= 0; i--)
5394 validate_change (insn, &XVECEXP (x, 3, i),
5395 fold_rtx (XVECEXP (x, 3, i), insn), 0);
5396 break;
5398 default:
5399 break;
5402 const_arg0 = 0;
5403 const_arg1 = 0;
5404 const_arg2 = 0;
5405 mode_arg0 = VOIDmode;
5407 /* Try folding our operands.
5408 Then see which ones have constant values known. */
5410 fmt = GET_RTX_FORMAT (code);
5411 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
5412 if (fmt[i] == 'e')
5414 rtx arg = XEXP (x, i);
5415 rtx folded_arg = arg, const_arg = 0;
5416 enum machine_mode mode_arg = GET_MODE (arg);
5417 rtx cheap_arg, expensive_arg;
5418 rtx replacements[2];
5419 int j;
5421 /* Most arguments are cheap, so handle them specially. */
5422 switch (GET_CODE (arg))
5424 case REG:
5425 /* This is the same as calling equiv_constant; it is duplicated
5426 here for speed. */
5427 if (REGNO_QTY_VALID_P (REGNO (arg))
5428 && qty_const[REG_QTY (REGNO (arg))] != 0
5429 && GET_CODE (qty_const[REG_QTY (REGNO (arg))]) != REG
5430 && GET_CODE (qty_const[REG_QTY (REGNO (arg))]) != PLUS)
5431 const_arg
5432 = gen_lowpart_if_possible (GET_MODE (arg),
5433 qty_const[REG_QTY (REGNO (arg))]);
5434 break;
5436 case CONST:
5437 case CONST_INT:
5438 case SYMBOL_REF:
5439 case LABEL_REF:
5440 case CONST_DOUBLE:
5441 const_arg = arg;
5442 break;
5444 #ifdef HAVE_cc0
5445 case CC0:
5446 folded_arg = prev_insn_cc0;
5447 mode_arg = prev_insn_cc0_mode;
5448 const_arg = equiv_constant (folded_arg);
5449 break;
5450 #endif
5452 default:
5453 folded_arg = fold_rtx (arg, insn);
5454 const_arg = equiv_constant (folded_arg);
5457 /* For the first three operands, see if the operand
5458 is constant or equivalent to a constant. */
5459 switch (i)
5461 case 0:
5462 folded_arg0 = folded_arg;
5463 const_arg0 = const_arg;
5464 mode_arg0 = mode_arg;
5465 break;
5466 case 1:
5467 folded_arg1 = folded_arg;
5468 const_arg1 = const_arg;
5469 break;
5470 case 2:
5471 const_arg2 = const_arg;
5472 break;
5475 /* Pick the least expensive of the folded argument and an
5476 equivalent constant argument. */
5477 if (const_arg == 0 || const_arg == folded_arg
5478 || COST (const_arg) > COST (folded_arg))
5479 cheap_arg = folded_arg, expensive_arg = const_arg;
5480 else
5481 cheap_arg = const_arg, expensive_arg = folded_arg;
5483 /* Try to replace the operand with the cheapest of the two
5484 possibilities. If it doesn't work and this is either of the first
5485 two operands of a commutative operation, try swapping them.
5486 If THAT fails, try the more expensive, provided it is cheaper
5487 than what is already there. */
5489 if (cheap_arg == XEXP (x, i))
5490 continue;
5492 if (insn == 0 && ! copied)
5494 x = copy_rtx (x);
5495 copied = 1;
5498 replacements[0] = cheap_arg, replacements[1] = expensive_arg;
5499 for (j = 0;
5500 j < 2 && replacements[j]
5501 && COST (replacements[j]) < COST (XEXP (x, i));
5502 j++)
5504 if (validate_change (insn, &XEXP (x, i), replacements[j], 0))
5505 break;
5507 if (code == NE || code == EQ || GET_RTX_CLASS (code) == 'c')
5509 validate_change (insn, &XEXP (x, i), XEXP (x, 1 - i), 1);
5510 validate_change (insn, &XEXP (x, 1 - i), replacements[j], 1);
5512 if (apply_change_group ())
5514 /* Swap them back to be invalid so that this loop can
5515 continue and flag them to be swapped back later. */
5516 rtx tem;
5518 tem = XEXP (x, 0); XEXP (x, 0) = XEXP (x, 1);
5519 XEXP (x, 1) = tem;
5520 must_swap = 1;
5521 break;
5527 else
5529 if (fmt[i] == 'E')
5530 /* Don't try to fold inside of a vector of expressions.
5531 Doing nothing is harmless. */
5532 {;}
5535 /* If a commutative operation, place a constant integer as the second
5536 operand unless the first operand is also a constant integer. Otherwise,
5537 place any constant second unless the first operand is also a constant. */
5539 if (code == EQ || code == NE || GET_RTX_CLASS (code) == 'c')
5541 if (must_swap || (const_arg0
5542 && (const_arg1 == 0
5543 || (GET_CODE (const_arg0) == CONST_INT
5544 && GET_CODE (const_arg1) != CONST_INT))))
5546 register rtx tem = XEXP (x, 0);
5548 if (insn == 0 && ! copied)
5550 x = copy_rtx (x);
5551 copied = 1;
5554 validate_change (insn, &XEXP (x, 0), XEXP (x, 1), 1);
5555 validate_change (insn, &XEXP (x, 1), tem, 1);
5556 if (apply_change_group ())
5558 tem = const_arg0, const_arg0 = const_arg1, const_arg1 = tem;
5559 tem = folded_arg0, folded_arg0 = folded_arg1, folded_arg1 = tem;
5564 /* If X is an arithmetic operation, see if we can simplify it. */
5566 switch (GET_RTX_CLASS (code))
5568 case '1':
5570 int is_const = 0;
5572 /* We can't simplify extension ops unless we know the
5573 original mode. */
5574 if ((code == ZERO_EXTEND || code == SIGN_EXTEND)
5575 && mode_arg0 == VOIDmode)
5576 break;
5578 /* If we had a CONST, strip it off and put it back later if we
5579 fold. */
5580 if (const_arg0 != 0 && GET_CODE (const_arg0) == CONST)
5581 is_const = 1, const_arg0 = XEXP (const_arg0, 0);
5583 new = simplify_unary_operation (code, mode,
5584 const_arg0 ? const_arg0 : folded_arg0,
5585 mode_arg0);
5586 if (new != 0 && is_const)
5587 new = gen_rtx_CONST (mode, new);
5589 break;
5591 case '<':
5592 /* See what items are actually being compared and set FOLDED_ARG[01]
5593 to those values and CODE to the actual comparison code. If any are
5594 constant, set CONST_ARG0 and CONST_ARG1 appropriately. We needn't
5595 do anything if both operands are already known to be constant. */
5597 if (const_arg0 == 0 || const_arg1 == 0)
5599 struct table_elt *p0, *p1;
5600 rtx true = const_true_rtx, false = const0_rtx;
5601 enum machine_mode mode_arg1;
5603 #ifdef FLOAT_STORE_FLAG_VALUE
5604 if (GET_MODE_CLASS (mode) == MODE_FLOAT)
5606 true = CONST_DOUBLE_FROM_REAL_VALUE (FLOAT_STORE_FLAG_VALUE,
5607 mode);
5608 false = CONST0_RTX (mode);
5610 #endif
5612 code = find_comparison_args (code, &folded_arg0, &folded_arg1,
5613 &mode_arg0, &mode_arg1);
5614 const_arg0 = equiv_constant (folded_arg0);
5615 const_arg1 = equiv_constant (folded_arg1);
5617 /* If the mode is VOIDmode or a MODE_CC mode, we don't know
5618 what kinds of things are being compared, so we can't do
5619 anything with this comparison. */
5621 if (mode_arg0 == VOIDmode || GET_MODE_CLASS (mode_arg0) == MODE_CC)
5622 break;
5624 /* If we do not now have two constants being compared, see
5625 if we can nevertheless deduce some things about the
5626 comparison. */
5627 if (const_arg0 == 0 || const_arg1 == 0)
5629 /* Is FOLDED_ARG0 frame-pointer plus a constant? Or
5630 non-explicit constant? These aren't zero, but we
5631 don't know their sign. */
5632 if (const_arg1 == const0_rtx
5633 && (NONZERO_BASE_PLUS_P (folded_arg0)
5634 #if 0 /* Sad to say, on sysvr4, #pragma weak can make a symbol address
5635 come out as 0. */
5636 || GET_CODE (folded_arg0) == SYMBOL_REF
5637 #endif
5638 || GET_CODE (folded_arg0) == LABEL_REF
5639 || GET_CODE (folded_arg0) == CONST))
5641 if (code == EQ)
5642 return false;
5643 else if (code == NE)
5644 return true;
5647 /* See if the two operands are the same. We don't do this
5648 for IEEE floating-point since we can't assume x == x
5649 since x might be a NaN. */
5651 if ((TARGET_FLOAT_FORMAT != IEEE_FLOAT_FORMAT
5652 || ! FLOAT_MODE_P (mode_arg0) || flag_fast_math)
5653 && (folded_arg0 == folded_arg1
5654 || (GET_CODE (folded_arg0) == REG
5655 && GET_CODE (folded_arg1) == REG
5656 && (REG_QTY (REGNO (folded_arg0))
5657 == REG_QTY (REGNO (folded_arg1))))
5658 || ((p0 = lookup (folded_arg0,
5659 (safe_hash (folded_arg0, mode_arg0)
5660 % NBUCKETS), mode_arg0))
5661 && (p1 = lookup (folded_arg1,
5662 (safe_hash (folded_arg1, mode_arg0)
5663 % NBUCKETS), mode_arg0))
5664 && p0->first_same_value == p1->first_same_value)))
5665 return ((code == EQ || code == LE || code == GE
5666 || code == LEU || code == GEU)
5667 ? true : false);
5669 /* If FOLDED_ARG0 is a register, see if the comparison we are
5670 doing now is either the same as we did before or the reverse
5671 (we only check the reverse if not floating-point). */
5672 else if (GET_CODE (folded_arg0) == REG)
5674 int qty = REG_QTY (REGNO (folded_arg0));
5676 if (REGNO_QTY_VALID_P (REGNO (folded_arg0))
5677 && (comparison_dominates_p (qty_comparison_code[qty], code)
5678 || (comparison_dominates_p (qty_comparison_code[qty],
5679 reverse_condition (code))
5680 && ! FLOAT_MODE_P (mode_arg0)))
5681 && (rtx_equal_p (qty_comparison_const[qty], folded_arg1)
5682 || (const_arg1
5683 && rtx_equal_p (qty_comparison_const[qty],
5684 const_arg1))
5685 || (GET_CODE (folded_arg1) == REG
5686 && (REG_QTY (REGNO (folded_arg1))
5687 == qty_comparison_qty[qty]))))
5688 return (comparison_dominates_p (qty_comparison_code[qty],
5689 code)
5690 ? true : false);
5695 /* If we are comparing against zero, see if the first operand is
5696 equivalent to an IOR with a constant. If so, we may be able to
5697 determine the result of this comparison. */
5699 if (const_arg1 == const0_rtx)
5701 rtx y = lookup_as_function (folded_arg0, IOR);
5702 rtx inner_const;
5704 if (y != 0
5705 && (inner_const = equiv_constant (XEXP (y, 1))) != 0
5706 && GET_CODE (inner_const) == CONST_INT
5707 && INTVAL (inner_const) != 0)
5709 int sign_bitnum = GET_MODE_BITSIZE (mode_arg0) - 1;
5710 int has_sign = (HOST_BITS_PER_WIDE_INT >= sign_bitnum
5711 && (INTVAL (inner_const)
5712 & ((HOST_WIDE_INT) 1 << sign_bitnum)));
5713 rtx true = const_true_rtx, false = const0_rtx;
5715 #ifdef FLOAT_STORE_FLAG_VALUE
5716 if (GET_MODE_CLASS (mode) == MODE_FLOAT)
5718 true = CONST_DOUBLE_FROM_REAL_VALUE (FLOAT_STORE_FLAG_VALUE,
5719 mode);
5720 false = CONST0_RTX (mode);
5722 #endif
5724 switch (code)
5726 case EQ:
5727 return false;
5728 case NE:
5729 return true;
5730 case LT: case LE:
5731 if (has_sign)
5732 return true;
5733 break;
5734 case GT: case GE:
5735 if (has_sign)
5736 return false;
5737 break;
5738 default:
5739 break;
5744 new = simplify_relational_operation (code, mode_arg0,
5745 const_arg0 ? const_arg0 : folded_arg0,
5746 const_arg1 ? const_arg1 : folded_arg1);
5747 #ifdef FLOAT_STORE_FLAG_VALUE
5748 if (new != 0 && GET_MODE_CLASS (mode) == MODE_FLOAT)
5749 new = ((new == const0_rtx) ? CONST0_RTX (mode)
5750 : CONST_DOUBLE_FROM_REAL_VALUE (FLOAT_STORE_FLAG_VALUE, mode));
5751 #endif
5752 break;
5754 case '2':
5755 case 'c':
5756 switch (code)
5758 case PLUS:
5759 /* If the second operand is a LABEL_REF, see if the first is a MINUS
5760 with that LABEL_REF as its second operand. If so, the result is
5761 the first operand of that MINUS. This handles switches with an
5762 ADDR_DIFF_VEC table. */
5763 if (const_arg1 && GET_CODE (const_arg1) == LABEL_REF)
5765 rtx y
5766 = GET_CODE (folded_arg0) == MINUS ? folded_arg0
5767 : lookup_as_function (folded_arg0, MINUS);
5769 if (y != 0 && GET_CODE (XEXP (y, 1)) == LABEL_REF
5770 && XEXP (XEXP (y, 1), 0) == XEXP (const_arg1, 0))
5771 return XEXP (y, 0);
5773 /* Now try for a CONST of a MINUS like the above. */
5774 if ((y = (GET_CODE (folded_arg0) == CONST ? folded_arg0
5775 : lookup_as_function (folded_arg0, CONST))) != 0
5776 && GET_CODE (XEXP (y, 0)) == MINUS
5777 && GET_CODE (XEXP (XEXP (y, 0), 1)) == LABEL_REF
5778 && XEXP (XEXP (XEXP (y, 0),1), 0) == XEXP (const_arg1, 0))
5779 return XEXP (XEXP (y, 0), 0);
5782 /* Likewise if the operands are in the other order. */
5783 if (const_arg0 && GET_CODE (const_arg0) == LABEL_REF)
5785 rtx y
5786 = GET_CODE (folded_arg1) == MINUS ? folded_arg1
5787 : lookup_as_function (folded_arg1, MINUS);
5789 if (y != 0 && GET_CODE (XEXP (y, 1)) == LABEL_REF
5790 && XEXP (XEXP (y, 1), 0) == XEXP (const_arg0, 0))
5791 return XEXP (y, 0);
5793 /* Now try for a CONST of a MINUS like the above. */
5794 if ((y = (GET_CODE (folded_arg1) == CONST ? folded_arg1
5795 : lookup_as_function (folded_arg1, CONST))) != 0
5796 && GET_CODE (XEXP (y, 0)) == MINUS
5797 && GET_CODE (XEXP (XEXP (y, 0), 1)) == LABEL_REF
5798 && XEXP (XEXP (XEXP (y, 0),1), 0) == XEXP (const_arg0, 0))
5799 return XEXP (XEXP (y, 0), 0);
5802 /* If second operand is a register equivalent to a negative
5803 CONST_INT, see if we can find a register equivalent to the
5804 positive constant. Make a MINUS if so. Don't do this for
5805 a non-negative constant since we might then alternate between
5806 chosing positive and negative constants. Having the positive
5807 constant previously-used is the more common case. Be sure
5808 the resulting constant is non-negative; if const_arg1 were
5809 the smallest negative number this would overflow: depending
5810 on the mode, this would either just be the same value (and
5811 hence not save anything) or be incorrect. */
5812 if (const_arg1 != 0 && GET_CODE (const_arg1) == CONST_INT
5813 && INTVAL (const_arg1) < 0
5814 /* This used to test
5816 - INTVAL (const_arg1) >= 0
5818 But The Sun V5.0 compilers mis-compiled that test. So
5819 instead we test for the problematic value in a more direct
5820 manner and hope the Sun compilers get it correct. */
5821 && INTVAL (const_arg1) !=
5822 ((HOST_WIDE_INT) 1 << (HOST_BITS_PER_WIDE_INT - 1))
5823 && GET_CODE (folded_arg1) == REG)
5825 rtx new_const = GEN_INT (- INTVAL (const_arg1));
5826 struct table_elt *p
5827 = lookup (new_const, safe_hash (new_const, mode) % NBUCKETS,
5828 mode);
5830 if (p)
5831 for (p = p->first_same_value; p; p = p->next_same_value)
5832 if (GET_CODE (p->exp) == REG)
5833 return cse_gen_binary (MINUS, mode, folded_arg0,
5834 canon_reg (p->exp, NULL_RTX));
5836 goto from_plus;
5838 case MINUS:
5839 /* If we have (MINUS Y C), see if Y is known to be (PLUS Z C2).
5840 If so, produce (PLUS Z C2-C). */
5841 if (const_arg1 != 0 && GET_CODE (const_arg1) == CONST_INT)
5843 rtx y = lookup_as_function (XEXP (x, 0), PLUS);
5844 if (y && GET_CODE (XEXP (y, 1)) == CONST_INT)
5845 return fold_rtx (plus_constant (copy_rtx (y),
5846 -INTVAL (const_arg1)),
5847 NULL_RTX);
5850 /* ... fall through ... */
5852 from_plus:
5853 case SMIN: case SMAX: case UMIN: case UMAX:
5854 case IOR: case AND: case XOR:
5855 case MULT: case DIV: case UDIV:
5856 case ASHIFT: case LSHIFTRT: case ASHIFTRT:
5857 /* If we have (<op> <reg> <const_int>) for an associative OP and REG
5858 is known to be of similar form, we may be able to replace the
5859 operation with a combined operation. This may eliminate the
5860 intermediate operation if every use is simplified in this way.
5861 Note that the similar optimization done by combine.c only works
5862 if the intermediate operation's result has only one reference. */
5864 if (GET_CODE (folded_arg0) == REG
5865 && const_arg1 && GET_CODE (const_arg1) == CONST_INT)
5867 int is_shift
5868 = (code == ASHIFT || code == ASHIFTRT || code == LSHIFTRT);
5869 rtx y = lookup_as_function (folded_arg0, code);
5870 rtx inner_const;
5871 enum rtx_code associate_code;
5872 rtx new_const;
5874 if (y == 0
5875 || 0 == (inner_const
5876 = equiv_constant (fold_rtx (XEXP (y, 1), 0)))
5877 || GET_CODE (inner_const) != CONST_INT
5878 /* If we have compiled a statement like
5879 "if (x == (x & mask1))", and now are looking at
5880 "x & mask2", we will have a case where the first operand
5881 of Y is the same as our first operand. Unless we detect
5882 this case, an infinite loop will result. */
5883 || XEXP (y, 0) == folded_arg0)
5884 break;
5886 /* Don't associate these operations if they are a PLUS with the
5887 same constant and it is a power of two. These might be doable
5888 with a pre- or post-increment. Similarly for two subtracts of
5889 identical powers of two with post decrement. */
5891 if (code == PLUS && INTVAL (const_arg1) == INTVAL (inner_const)
5892 && ((HAVE_PRE_INCREMENT
5893 && exact_log2 (INTVAL (const_arg1)) >= 0)
5894 || (HAVE_POST_INCREMENT
5895 && exact_log2 (INTVAL (const_arg1)) >= 0)
5896 || (HAVE_PRE_DECREMENT
5897 && exact_log2 (- INTVAL (const_arg1)) >= 0)
5898 || (HAVE_POST_DECREMENT
5899 && exact_log2 (- INTVAL (const_arg1)) >= 0)))
5900 break;
5902 /* Compute the code used to compose the constants. For example,
5903 A/C1/C2 is A/(C1 * C2), so if CODE == DIV, we want MULT. */
5905 associate_code
5906 = (code == MULT || code == DIV || code == UDIV ? MULT
5907 : is_shift || code == PLUS || code == MINUS ? PLUS : code);
5909 new_const = simplify_binary_operation (associate_code, mode,
5910 const_arg1, inner_const);
5912 if (new_const == 0)
5913 break;
5915 /* If we are associating shift operations, don't let this
5916 produce a shift of the size of the object or larger.
5917 This could occur when we follow a sign-extend by a right
5918 shift on a machine that does a sign-extend as a pair
5919 of shifts. */
5921 if (is_shift && GET_CODE (new_const) == CONST_INT
5922 && INTVAL (new_const) >= GET_MODE_BITSIZE (mode))
5924 /* As an exception, we can turn an ASHIFTRT of this
5925 form into a shift of the number of bits - 1. */
5926 if (code == ASHIFTRT)
5927 new_const = GEN_INT (GET_MODE_BITSIZE (mode) - 1);
5928 else
5929 break;
5932 y = copy_rtx (XEXP (y, 0));
5934 /* If Y contains our first operand (the most common way this
5935 can happen is if Y is a MEM), we would do into an infinite
5936 loop if we tried to fold it. So don't in that case. */
5938 if (! reg_mentioned_p (folded_arg0, y))
5939 y = fold_rtx (y, insn);
5941 return cse_gen_binary (code, mode, y, new_const);
5943 break;
5945 default:
5946 break;
5949 new = simplify_binary_operation (code, mode,
5950 const_arg0 ? const_arg0 : folded_arg0,
5951 const_arg1 ? const_arg1 : folded_arg1);
5952 break;
5954 case 'o':
5955 /* (lo_sum (high X) X) is simply X. */
5956 if (code == LO_SUM && const_arg0 != 0
5957 && GET_CODE (const_arg0) == HIGH
5958 && rtx_equal_p (XEXP (const_arg0, 0), const_arg1))
5959 return const_arg1;
5960 break;
5962 case '3':
5963 case 'b':
5964 new = simplify_ternary_operation (code, mode, mode_arg0,
5965 const_arg0 ? const_arg0 : folded_arg0,
5966 const_arg1 ? const_arg1 : folded_arg1,
5967 const_arg2 ? const_arg2 : XEXP (x, 2));
5968 break;
5970 case 'x':
5971 /* Always eliminate CONSTANT_P_RTX at this stage. */
5972 if (code == CONSTANT_P_RTX)
5973 return (const_arg0 ? const1_rtx : const0_rtx);
5974 break;
5977 return new ? new : x;
5980 /* Return a constant value currently equivalent to X.
5981 Return 0 if we don't know one. */
5983 static rtx
5984 equiv_constant (x)
5985 rtx x;
5987 if (GET_CODE (x) == REG
5988 && REGNO_QTY_VALID_P (REGNO (x))
5989 && qty_const[REG_QTY (REGNO (x))])
5990 x = gen_lowpart_if_possible (GET_MODE (x), qty_const[REG_QTY (REGNO (x))]);
5992 if (x == 0 || CONSTANT_P (x))
5993 return x;
5995 /* If X is a MEM, try to fold it outside the context of any insn to see if
5996 it might be equivalent to a constant. That handles the case where it
5997 is a constant-pool reference. Then try to look it up in the hash table
5998 in case it is something whose value we have seen before. */
6000 if (GET_CODE (x) == MEM)
6002 struct table_elt *elt;
6004 x = fold_rtx (x, NULL_RTX);
6005 if (CONSTANT_P (x))
6006 return x;
6008 elt = lookup (x, safe_hash (x, GET_MODE (x)) % NBUCKETS, GET_MODE (x));
6009 if (elt == 0)
6010 return 0;
6012 for (elt = elt->first_same_value; elt; elt = elt->next_same_value)
6013 if (elt->is_const && CONSTANT_P (elt->exp))
6014 return elt->exp;
6017 return 0;
6020 /* Assuming that X is an rtx (e.g., MEM, REG or SUBREG) for a fixed-point
6021 number, return an rtx (MEM, SUBREG, or CONST_INT) that refers to the
6022 least-significant part of X.
6023 MODE specifies how big a part of X to return.
6025 If the requested operation cannot be done, 0 is returned.
6027 This is similar to gen_lowpart in emit-rtl.c. */
6030 gen_lowpart_if_possible (mode, x)
6031 enum machine_mode mode;
6032 register rtx x;
6034 rtx result = gen_lowpart_common (mode, x);
6036 if (result)
6037 return result;
6038 else if (GET_CODE (x) == MEM)
6040 /* This is the only other case we handle. */
6041 register int offset = 0;
6042 rtx new;
6044 if (WORDS_BIG_ENDIAN)
6045 offset = (MAX (GET_MODE_SIZE (GET_MODE (x)), UNITS_PER_WORD)
6046 - MAX (GET_MODE_SIZE (mode), UNITS_PER_WORD));
6047 if (BYTES_BIG_ENDIAN)
6048 /* Adjust the address so that the address-after-the-data is
6049 unchanged. */
6050 offset -= (MIN (UNITS_PER_WORD, GET_MODE_SIZE (mode))
6051 - MIN (UNITS_PER_WORD, GET_MODE_SIZE (GET_MODE (x))));
6052 new = gen_rtx_MEM (mode, plus_constant (XEXP (x, 0), offset));
6053 if (! memory_address_p (mode, XEXP (new, 0)))
6054 return 0;
6055 RTX_UNCHANGING_P (new) = RTX_UNCHANGING_P (x);
6056 MEM_COPY_ATTRIBUTES (new, x);
6057 return new;
6059 else
6060 return 0;
6063 /* Given INSN, a jump insn, TAKEN indicates if we are following the "taken"
6064 branch. It will be zero if not.
6066 In certain cases, this can cause us to add an equivalence. For example,
6067 if we are following the taken case of
6068 if (i == 2)
6069 we can add the fact that `i' and '2' are now equivalent.
6071 In any case, we can record that this comparison was passed. If the same
6072 comparison is seen later, we will know its value. */
6074 static void
6075 record_jump_equiv (insn, taken)
6076 rtx insn;
6077 int taken;
6079 int cond_known_true;
6080 rtx op0, op1;
6081 enum machine_mode mode, mode0, mode1;
6082 int reversed_nonequality = 0;
6083 enum rtx_code code;
6085 /* Ensure this is the right kind of insn. */
6086 if (! condjump_p (insn) || simplejump_p (insn))
6087 return;
6089 /* See if this jump condition is known true or false. */
6090 if (taken)
6091 cond_known_true = (XEXP (SET_SRC (PATTERN (insn)), 2) == pc_rtx);
6092 else
6093 cond_known_true = (XEXP (SET_SRC (PATTERN (insn)), 1) == pc_rtx);
6095 /* Get the type of comparison being done and the operands being compared.
6096 If we had to reverse a non-equality condition, record that fact so we
6097 know that it isn't valid for floating-point. */
6098 code = GET_CODE (XEXP (SET_SRC (PATTERN (insn)), 0));
6099 op0 = fold_rtx (XEXP (XEXP (SET_SRC (PATTERN (insn)), 0), 0), insn);
6100 op1 = fold_rtx (XEXP (XEXP (SET_SRC (PATTERN (insn)), 0), 1), insn);
6102 code = find_comparison_args (code, &op0, &op1, &mode0, &mode1);
6103 if (! cond_known_true)
6105 reversed_nonequality = (code != EQ && code != NE);
6106 code = reverse_condition (code);
6109 /* The mode is the mode of the non-constant. */
6110 mode = mode0;
6111 if (mode1 != VOIDmode)
6112 mode = mode1;
6114 record_jump_cond (code, mode, op0, op1, reversed_nonequality);
6117 /* We know that comparison CODE applied to OP0 and OP1 in MODE is true.
6118 REVERSED_NONEQUALITY is nonzero if CODE had to be swapped.
6119 Make any useful entries we can with that information. Called from
6120 above function and called recursively. */
6122 static void
6123 record_jump_cond (code, mode, op0, op1, reversed_nonequality)
6124 enum rtx_code code;
6125 enum machine_mode mode;
6126 rtx op0, op1;
6127 int reversed_nonequality;
6129 unsigned op0_hash, op1_hash;
6130 int op0_in_memory, op0_in_struct, op1_in_memory, op1_in_struct;
6131 struct table_elt *op0_elt, *op1_elt;
6133 /* If OP0 and OP1 are known equal, and either is a paradoxical SUBREG,
6134 we know that they are also equal in the smaller mode (this is also
6135 true for all smaller modes whether or not there is a SUBREG, but
6136 is not worth testing for with no SUBREG). */
6138 /* Note that GET_MODE (op0) may not equal MODE. */
6139 if (code == EQ && GET_CODE (op0) == SUBREG
6140 && (GET_MODE_SIZE (GET_MODE (op0))
6141 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (op0)))))
6143 enum machine_mode inner_mode = GET_MODE (SUBREG_REG (op0));
6144 rtx tem = gen_lowpart_if_possible (inner_mode, op1);
6146 record_jump_cond (code, mode, SUBREG_REG (op0),
6147 tem ? tem : gen_rtx_SUBREG (inner_mode, op1, 0),
6148 reversed_nonequality);
6151 if (code == EQ && GET_CODE (op1) == SUBREG
6152 && (GET_MODE_SIZE (GET_MODE (op1))
6153 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (op1)))))
6155 enum machine_mode inner_mode = GET_MODE (SUBREG_REG (op1));
6156 rtx tem = gen_lowpart_if_possible (inner_mode, op0);
6158 record_jump_cond (code, mode, SUBREG_REG (op1),
6159 tem ? tem : gen_rtx_SUBREG (inner_mode, op0, 0),
6160 reversed_nonequality);
6163 /* Similarly, if this is an NE comparison, and either is a SUBREG
6164 making a smaller mode, we know the whole thing is also NE. */
6166 /* Note that GET_MODE (op0) may not equal MODE;
6167 if we test MODE instead, we can get an infinite recursion
6168 alternating between two modes each wider than MODE. */
6170 if (code == NE && GET_CODE (op0) == SUBREG
6171 && subreg_lowpart_p (op0)
6172 && (GET_MODE_SIZE (GET_MODE (op0))
6173 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (op0)))))
6175 enum machine_mode inner_mode = GET_MODE (SUBREG_REG (op0));
6176 rtx tem = gen_lowpart_if_possible (inner_mode, op1);
6178 record_jump_cond (code, mode, SUBREG_REG (op0),
6179 tem ? tem : gen_rtx_SUBREG (inner_mode, op1, 0),
6180 reversed_nonequality);
6183 if (code == NE && GET_CODE (op1) == SUBREG
6184 && subreg_lowpart_p (op1)
6185 && (GET_MODE_SIZE (GET_MODE (op1))
6186 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (op1)))))
6188 enum machine_mode inner_mode = GET_MODE (SUBREG_REG (op1));
6189 rtx tem = gen_lowpart_if_possible (inner_mode, op0);
6191 record_jump_cond (code, mode, SUBREG_REG (op1),
6192 tem ? tem : gen_rtx_SUBREG (inner_mode, op0, 0),
6193 reversed_nonequality);
6196 /* Hash both operands. */
6198 do_not_record = 0;
6199 hash_arg_in_memory = 0;
6200 hash_arg_in_struct = 0;
6201 op0_hash = HASH (op0, mode);
6202 op0_in_memory = hash_arg_in_memory;
6203 op0_in_struct = hash_arg_in_struct;
6205 if (do_not_record)
6206 return;
6208 do_not_record = 0;
6209 hash_arg_in_memory = 0;
6210 hash_arg_in_struct = 0;
6211 op1_hash = HASH (op1, mode);
6212 op1_in_memory = hash_arg_in_memory;
6213 op1_in_struct = hash_arg_in_struct;
6215 if (do_not_record)
6216 return;
6218 /* Look up both operands. */
6219 op0_elt = lookup (op0, op0_hash, mode);
6220 op1_elt = lookup (op1, op1_hash, mode);
6222 /* If both operands are already equivalent or if they are not in the
6223 table but are identical, do nothing. */
6224 if ((op0_elt != 0 && op1_elt != 0
6225 && op0_elt->first_same_value == op1_elt->first_same_value)
6226 || op0 == op1 || rtx_equal_p (op0, op1))
6227 return;
6229 /* If we aren't setting two things equal all we can do is save this
6230 comparison. Similarly if this is floating-point. In the latter
6231 case, OP1 might be zero and both -0.0 and 0.0 are equal to it.
6232 If we record the equality, we might inadvertently delete code
6233 whose intent was to change -0 to +0. */
6235 if (code != EQ || FLOAT_MODE_P (GET_MODE (op0)))
6237 /* If we reversed a floating-point comparison, if OP0 is not a
6238 register, or if OP1 is neither a register or constant, we can't
6239 do anything. */
6241 if (GET_CODE (op1) != REG)
6242 op1 = equiv_constant (op1);
6244 if ((reversed_nonequality && FLOAT_MODE_P (mode))
6245 || GET_CODE (op0) != REG || op1 == 0)
6246 return;
6248 /* Put OP0 in the hash table if it isn't already. This gives it a
6249 new quantity number. */
6250 if (op0_elt == 0)
6252 if (insert_regs (op0, NULL_PTR, 0))
6254 rehash_using_reg (op0);
6255 op0_hash = HASH (op0, mode);
6257 /* If OP0 is contained in OP1, this changes its hash code
6258 as well. Faster to rehash than to check, except
6259 for the simple case of a constant. */
6260 if (! CONSTANT_P (op1))
6261 op1_hash = HASH (op1,mode);
6264 op0_elt = insert (op0, NULL_PTR, op0_hash, mode);
6265 op0_elt->in_memory = op0_in_memory;
6266 op0_elt->in_struct = op0_in_struct;
6269 qty_comparison_code[REG_QTY (REGNO (op0))] = code;
6270 if (GET_CODE (op1) == REG)
6272 /* Look it up again--in case op0 and op1 are the same. */
6273 op1_elt = lookup (op1, op1_hash, mode);
6275 /* Put OP1 in the hash table so it gets a new quantity number. */
6276 if (op1_elt == 0)
6278 if (insert_regs (op1, NULL_PTR, 0))
6280 rehash_using_reg (op1);
6281 op1_hash = HASH (op1, mode);
6284 op1_elt = insert (op1, NULL_PTR, op1_hash, mode);
6285 op1_elt->in_memory = op1_in_memory;
6286 op1_elt->in_struct = op1_in_struct;
6289 qty_comparison_qty[REG_QTY (REGNO (op0))] = REG_QTY (REGNO (op1));
6290 qty_comparison_const[REG_QTY (REGNO (op0))] = 0;
6292 else
6294 qty_comparison_qty[REG_QTY (REGNO (op0))] = -1;
6295 qty_comparison_const[REG_QTY (REGNO (op0))] = op1;
6298 return;
6301 /* If either side is still missing an equivalence, make it now,
6302 then merge the equivalences. */
6304 if (op0_elt == 0)
6306 if (insert_regs (op0, NULL_PTR, 0))
6308 rehash_using_reg (op0);
6309 op0_hash = HASH (op0, mode);
6312 op0_elt = insert (op0, NULL_PTR, op0_hash, mode);
6313 op0_elt->in_memory = op0_in_memory;
6314 op0_elt->in_struct = op0_in_struct;
6317 if (op1_elt == 0)
6319 if (insert_regs (op1, NULL_PTR, 0))
6321 rehash_using_reg (op1);
6322 op1_hash = HASH (op1, mode);
6325 op1_elt = insert (op1, NULL_PTR, op1_hash, mode);
6326 op1_elt->in_memory = op1_in_memory;
6327 op1_elt->in_struct = op1_in_struct;
6330 merge_equiv_classes (op0_elt, op1_elt);
6331 last_jump_equiv_class = op0_elt;
6334 /* CSE processing for one instruction.
6335 First simplify sources and addresses of all assignments
6336 in the instruction, using previously-computed equivalents values.
6337 Then install the new sources and destinations in the table
6338 of available values.
6340 If LIBCALL_INSN is nonzero, don't record any equivalence made in
6341 the insn. It means that INSN is inside libcall block. In this
6342 case LIBCALL_INSN is the corresponding insn with REG_LIBCALL. */
6344 /* Data on one SET contained in the instruction. */
6346 struct set
6348 /* The SET rtx itself. */
6349 rtx rtl;
6350 /* The SET_SRC of the rtx (the original value, if it is changing). */
6351 rtx src;
6352 /* The hash-table element for the SET_SRC of the SET. */
6353 struct table_elt *src_elt;
6354 /* Hash value for the SET_SRC. */
6355 unsigned src_hash;
6356 /* Hash value for the SET_DEST. */
6357 unsigned dest_hash;
6358 /* The SET_DEST, with SUBREG, etc., stripped. */
6359 rtx inner_dest;
6360 /* Nonzero if the SET_SRC is in memory. */
6361 char src_in_memory;
6362 /* Nonzero if the SET_SRC is in a structure. */
6363 char src_in_struct;
6364 /* Nonzero if the SET_SRC contains something
6365 whose value cannot be predicted and understood. */
6366 char src_volatile;
6367 /* Original machine mode, in case it becomes a CONST_INT. */
6368 enum machine_mode mode;
6369 /* A constant equivalent for SET_SRC, if any. */
6370 rtx src_const;
6371 /* Hash value of constant equivalent for SET_SRC. */
6372 unsigned src_const_hash;
6373 /* Table entry for constant equivalent for SET_SRC, if any. */
6374 struct table_elt *src_const_elt;
6377 static void
6378 cse_insn (insn, libcall_insn)
6379 rtx insn;
6380 rtx libcall_insn;
6382 register rtx x = PATTERN (insn);
6383 register int i;
6384 rtx tem;
6385 register int n_sets = 0;
6387 #ifdef HAVE_cc0
6388 /* Records what this insn does to set CC0. */
6389 rtx this_insn_cc0 = 0;
6390 enum machine_mode this_insn_cc0_mode = VOIDmode;
6391 #endif
6393 rtx src_eqv = 0;
6394 struct table_elt *src_eqv_elt = 0;
6395 int src_eqv_volatile = 0;
6396 int src_eqv_in_memory = 0;
6397 int src_eqv_in_struct = 0;
6398 unsigned src_eqv_hash = 0;
6400 struct set *sets = NULL_PTR;
6402 this_insn = insn;
6404 /* Find all the SETs and CLOBBERs in this instruction.
6405 Record all the SETs in the array `set' and count them.
6406 Also determine whether there is a CLOBBER that invalidates
6407 all memory references, or all references at varying addresses. */
6409 if (GET_CODE (insn) == CALL_INSN)
6411 for (tem = CALL_INSN_FUNCTION_USAGE (insn); tem; tem = XEXP (tem, 1))
6412 if (GET_CODE (XEXP (tem, 0)) == CLOBBER)
6413 invalidate (SET_DEST (XEXP (tem, 0)), VOIDmode);
6416 if (GET_CODE (x) == SET)
6418 sets = (struct set *) alloca (sizeof (struct set));
6419 sets[0].rtl = x;
6421 /* Ignore SETs that are unconditional jumps.
6422 They never need cse processing, so this does not hurt.
6423 The reason is not efficiency but rather
6424 so that we can test at the end for instructions
6425 that have been simplified to unconditional jumps
6426 and not be misled by unchanged instructions
6427 that were unconditional jumps to begin with. */
6428 if (SET_DEST (x) == pc_rtx
6429 && GET_CODE (SET_SRC (x)) == LABEL_REF)
6432 /* Don't count call-insns, (set (reg 0) (call ...)), as a set.
6433 The hard function value register is used only once, to copy to
6434 someplace else, so it isn't worth cse'ing (and on 80386 is unsafe)!
6435 Ensure we invalidate the destination register. On the 80386 no
6436 other code would invalidate it since it is a fixed_reg.
6437 We need not check the return of apply_change_group; see canon_reg. */
6439 else if (GET_CODE (SET_SRC (x)) == CALL)
6441 canon_reg (SET_SRC (x), insn);
6442 apply_change_group ();
6443 fold_rtx (SET_SRC (x), insn);
6444 invalidate (SET_DEST (x), VOIDmode);
6446 else
6447 n_sets = 1;
6449 else if (GET_CODE (x) == PARALLEL)
6451 register int lim = XVECLEN (x, 0);
6453 sets = (struct set *) alloca (lim * sizeof (struct set));
6455 /* Find all regs explicitly clobbered in this insn,
6456 and ensure they are not replaced with any other regs
6457 elsewhere in this insn.
6458 When a reg that is clobbered is also used for input,
6459 we should presume that that is for a reason,
6460 and we should not substitute some other register
6461 which is not supposed to be clobbered.
6462 Therefore, this loop cannot be merged into the one below
6463 because a CALL may precede a CLOBBER and refer to the
6464 value clobbered. We must not let a canonicalization do
6465 anything in that case. */
6466 for (i = 0; i < lim; i++)
6468 register rtx y = XVECEXP (x, 0, i);
6469 if (GET_CODE (y) == CLOBBER)
6471 rtx clobbered = XEXP (y, 0);
6473 if (GET_CODE (clobbered) == REG
6474 || GET_CODE (clobbered) == SUBREG)
6475 invalidate (clobbered, VOIDmode);
6476 else if (GET_CODE (clobbered) == STRICT_LOW_PART
6477 || GET_CODE (clobbered) == ZERO_EXTRACT)
6478 invalidate (XEXP (clobbered, 0), GET_MODE (clobbered));
6482 for (i = 0; i < lim; i++)
6484 register rtx y = XVECEXP (x, 0, i);
6485 if (GET_CODE (y) == SET)
6487 /* As above, we ignore unconditional jumps and call-insns and
6488 ignore the result of apply_change_group. */
6489 if (GET_CODE (SET_SRC (y)) == CALL)
6491 canon_reg (SET_SRC (y), insn);
6492 apply_change_group ();
6493 fold_rtx (SET_SRC (y), insn);
6494 invalidate (SET_DEST (y), VOIDmode);
6496 else if (SET_DEST (y) == pc_rtx
6497 && GET_CODE (SET_SRC (y)) == LABEL_REF)
6499 else
6500 sets[n_sets++].rtl = y;
6502 else if (GET_CODE (y) == CLOBBER)
6504 /* If we clobber memory, canon the address.
6505 This does nothing when a register is clobbered
6506 because we have already invalidated the reg. */
6507 if (GET_CODE (XEXP (y, 0)) == MEM)
6508 canon_reg (XEXP (y, 0), NULL_RTX);
6510 else if (GET_CODE (y) == USE
6511 && ! (GET_CODE (XEXP (y, 0)) == REG
6512 && REGNO (XEXP (y, 0)) < FIRST_PSEUDO_REGISTER))
6513 canon_reg (y, NULL_RTX);
6514 else if (GET_CODE (y) == CALL)
6516 /* The result of apply_change_group can be ignored; see
6517 canon_reg. */
6518 canon_reg (y, insn);
6519 apply_change_group ();
6520 fold_rtx (y, insn);
6524 else if (GET_CODE (x) == CLOBBER)
6526 if (GET_CODE (XEXP (x, 0)) == MEM)
6527 canon_reg (XEXP (x, 0), NULL_RTX);
6530 /* Canonicalize a USE of a pseudo register or memory location. */
6531 else if (GET_CODE (x) == USE
6532 && ! (GET_CODE (XEXP (x, 0)) == REG
6533 && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER))
6534 canon_reg (XEXP (x, 0), NULL_RTX);
6535 else if (GET_CODE (x) == CALL)
6537 /* The result of apply_change_group can be ignored; see canon_reg. */
6538 canon_reg (x, insn);
6539 apply_change_group ();
6540 fold_rtx (x, insn);
6543 /* Store the equivalent value in SRC_EQV, if different, or if the DEST
6544 is a STRICT_LOW_PART. The latter condition is necessary because SRC_EQV
6545 is handled specially for this case, and if it isn't set, then there will
6546 be no equivalence for the destination. */
6547 if (n_sets == 1 && REG_NOTES (insn) != 0
6548 && (tem = find_reg_note (insn, REG_EQUAL, NULL_RTX)) != 0
6549 && (! rtx_equal_p (XEXP (tem, 0), SET_SRC (sets[0].rtl))
6550 || GET_CODE (SET_DEST (sets[0].rtl)) == STRICT_LOW_PART))
6551 src_eqv = canon_reg (XEXP (tem, 0), NULL_RTX);
6553 /* Canonicalize sources and addresses of destinations.
6554 We do this in a separate pass to avoid problems when a MATCH_DUP is
6555 present in the insn pattern. In that case, we want to ensure that
6556 we don't break the duplicate nature of the pattern. So we will replace
6557 both operands at the same time. Otherwise, we would fail to find an
6558 equivalent substitution in the loop calling validate_change below.
6560 We used to suppress canonicalization of DEST if it appears in SRC,
6561 but we don't do this any more. */
6563 for (i = 0; i < n_sets; i++)
6565 rtx dest = SET_DEST (sets[i].rtl);
6566 rtx src = SET_SRC (sets[i].rtl);
6567 rtx new = canon_reg (src, insn);
6568 int insn_code;
6570 if ((GET_CODE (new) == REG && GET_CODE (src) == REG
6571 && ((REGNO (new) < FIRST_PSEUDO_REGISTER)
6572 != (REGNO (src) < FIRST_PSEUDO_REGISTER)))
6573 || (insn_code = recog_memoized (insn)) < 0
6574 || insn_data[insn_code].n_dups > 0)
6575 validate_change (insn, &SET_SRC (sets[i].rtl), new, 1);
6576 else
6577 SET_SRC (sets[i].rtl) = new;
6579 if (GET_CODE (dest) == ZERO_EXTRACT || GET_CODE (dest) == SIGN_EXTRACT)
6581 validate_change (insn, &XEXP (dest, 1),
6582 canon_reg (XEXP (dest, 1), insn), 1);
6583 validate_change (insn, &XEXP (dest, 2),
6584 canon_reg (XEXP (dest, 2), insn), 1);
6587 while (GET_CODE (dest) == SUBREG || GET_CODE (dest) == STRICT_LOW_PART
6588 || GET_CODE (dest) == ZERO_EXTRACT
6589 || GET_CODE (dest) == SIGN_EXTRACT)
6590 dest = XEXP (dest, 0);
6592 if (GET_CODE (dest) == MEM)
6593 canon_reg (dest, insn);
6596 /* Now that we have done all the replacements, we can apply the change
6597 group and see if they all work. Note that this will cause some
6598 canonicalizations that would have worked individually not to be applied
6599 because some other canonicalization didn't work, but this should not
6600 occur often.
6602 The result of apply_change_group can be ignored; see canon_reg. */
6604 apply_change_group ();
6606 /* Set sets[i].src_elt to the class each source belongs to.
6607 Detect assignments from or to volatile things
6608 and set set[i] to zero so they will be ignored
6609 in the rest of this function.
6611 Nothing in this loop changes the hash table or the register chains. */
6613 for (i = 0; i < n_sets; i++)
6615 register rtx src, dest;
6616 register rtx src_folded;
6617 register struct table_elt *elt = 0, *p;
6618 enum machine_mode mode;
6619 rtx src_eqv_here;
6620 rtx src_const = 0;
6621 rtx src_related = 0;
6622 struct table_elt *src_const_elt = 0;
6623 int src_cost = 10000, src_eqv_cost = 10000, src_folded_cost = 10000;
6624 int src_related_cost = 10000, src_elt_cost = 10000;
6625 /* Set non-zero if we need to call force_const_mem on with the
6626 contents of src_folded before using it. */
6627 int src_folded_force_flag = 0;
6629 dest = SET_DEST (sets[i].rtl);
6630 src = SET_SRC (sets[i].rtl);
6632 /* If SRC is a constant that has no machine mode,
6633 hash it with the destination's machine mode.
6634 This way we can keep different modes separate. */
6636 mode = GET_MODE (src) == VOIDmode ? GET_MODE (dest) : GET_MODE (src);
6637 sets[i].mode = mode;
6639 if (src_eqv)
6641 enum machine_mode eqvmode = mode;
6642 if (GET_CODE (dest) == STRICT_LOW_PART)
6643 eqvmode = GET_MODE (SUBREG_REG (XEXP (dest, 0)));
6644 do_not_record = 0;
6645 hash_arg_in_memory = 0;
6646 hash_arg_in_struct = 0;
6647 src_eqv = fold_rtx (src_eqv, insn);
6648 src_eqv_hash = HASH (src_eqv, eqvmode);
6650 /* Find the equivalence class for the equivalent expression. */
6652 if (!do_not_record)
6653 src_eqv_elt = lookup (src_eqv, src_eqv_hash, eqvmode);
6655 src_eqv_volatile = do_not_record;
6656 src_eqv_in_memory = hash_arg_in_memory;
6657 src_eqv_in_struct = hash_arg_in_struct;
6660 /* If this is a STRICT_LOW_PART assignment, src_eqv corresponds to the
6661 value of the INNER register, not the destination. So it is not
6662 a valid substitution for the source. But save it for later. */
6663 if (GET_CODE (dest) == STRICT_LOW_PART)
6664 src_eqv_here = 0;
6665 else
6666 src_eqv_here = src_eqv;
6668 /* Simplify and foldable subexpressions in SRC. Then get the fully-
6669 simplified result, which may not necessarily be valid. */
6670 src_folded = fold_rtx (src, insn);
6672 #if 0
6673 /* ??? This caused bad code to be generated for the m68k port with -O2.
6674 Suppose src is (CONST_INT -1), and that after truncation src_folded
6675 is (CONST_INT 3). Suppose src_folded is then used for src_const.
6676 At the end we will add src and src_const to the same equivalence
6677 class. We now have 3 and -1 on the same equivalence class. This
6678 causes later instructions to be mis-optimized. */
6679 /* If storing a constant in a bitfield, pre-truncate the constant
6680 so we will be able to record it later. */
6681 if (GET_CODE (SET_DEST (sets[i].rtl)) == ZERO_EXTRACT
6682 || GET_CODE (SET_DEST (sets[i].rtl)) == SIGN_EXTRACT)
6684 rtx width = XEXP (SET_DEST (sets[i].rtl), 1);
6686 if (GET_CODE (src) == CONST_INT
6687 && GET_CODE (width) == CONST_INT
6688 && INTVAL (width) < HOST_BITS_PER_WIDE_INT
6689 && (INTVAL (src) & ((HOST_WIDE_INT) (-1) << INTVAL (width))))
6690 src_folded
6691 = GEN_INT (INTVAL (src) & (((HOST_WIDE_INT) 1
6692 << INTVAL (width)) - 1));
6694 #endif
6696 /* Compute SRC's hash code, and also notice if it
6697 should not be recorded at all. In that case,
6698 prevent any further processing of this assignment. */
6699 do_not_record = 0;
6700 hash_arg_in_memory = 0;
6701 hash_arg_in_struct = 0;
6703 sets[i].src = src;
6704 sets[i].src_hash = HASH (src, mode);
6705 sets[i].src_volatile = do_not_record;
6706 sets[i].src_in_memory = hash_arg_in_memory;
6707 sets[i].src_in_struct = hash_arg_in_struct;
6709 /* If SRC is a MEM, there is a REG_EQUIV note for SRC, and DEST is
6710 a pseudo that is set more than once, do not record SRC. Using
6711 SRC as a replacement for anything else will be incorrect in that
6712 situation. Note that this usually occurs only for stack slots,
6713 in which case all the RTL would be referring to SRC, so we don't
6714 lose any optimization opportunities by not having SRC in the
6715 hash table. */
6717 if (GET_CODE (src) == MEM
6718 && find_reg_note (insn, REG_EQUIV, src) != 0
6719 && GET_CODE (dest) == REG
6720 && REGNO (dest) >= FIRST_PSEUDO_REGISTER
6721 && REG_N_SETS (REGNO (dest)) != 1)
6722 sets[i].src_volatile = 1;
6724 #if 0
6725 /* It is no longer clear why we used to do this, but it doesn't
6726 appear to still be needed. So let's try without it since this
6727 code hurts cse'ing widened ops. */
6728 /* If source is a perverse subreg (such as QI treated as an SI),
6729 treat it as volatile. It may do the work of an SI in one context
6730 where the extra bits are not being used, but cannot replace an SI
6731 in general. */
6732 if (GET_CODE (src) == SUBREG
6733 && (GET_MODE_SIZE (GET_MODE (src))
6734 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (src)))))
6735 sets[i].src_volatile = 1;
6736 #endif
6738 /* Locate all possible equivalent forms for SRC. Try to replace
6739 SRC in the insn with each cheaper equivalent.
6741 We have the following types of equivalents: SRC itself, a folded
6742 version, a value given in a REG_EQUAL note, or a value related
6743 to a constant.
6745 Each of these equivalents may be part of an additional class
6746 of equivalents (if more than one is in the table, they must be in
6747 the same class; we check for this).
6749 If the source is volatile, we don't do any table lookups.
6751 We note any constant equivalent for possible later use in a
6752 REG_NOTE. */
6754 if (!sets[i].src_volatile)
6755 elt = lookup (src, sets[i].src_hash, mode);
6757 sets[i].src_elt = elt;
6759 if (elt && src_eqv_here && src_eqv_elt)
6761 if (elt->first_same_value != src_eqv_elt->first_same_value)
6763 /* The REG_EQUAL is indicating that two formerly distinct
6764 classes are now equivalent. So merge them. */
6765 merge_equiv_classes (elt, src_eqv_elt);
6766 src_eqv_hash = HASH (src_eqv, elt->mode);
6767 src_eqv_elt = lookup (src_eqv, src_eqv_hash, elt->mode);
6770 src_eqv_here = 0;
6773 else if (src_eqv_elt)
6774 elt = src_eqv_elt;
6776 /* Try to find a constant somewhere and record it in `src_const'.
6777 Record its table element, if any, in `src_const_elt'. Look in
6778 any known equivalences first. (If the constant is not in the
6779 table, also set `sets[i].src_const_hash'). */
6780 if (elt)
6781 for (p = elt->first_same_value; p; p = p->next_same_value)
6782 if (p->is_const)
6784 src_const = p->exp;
6785 src_const_elt = elt;
6786 break;
6789 if (src_const == 0
6790 && (CONSTANT_P (src_folded)
6791 /* Consider (minus (label_ref L1) (label_ref L2)) as
6792 "constant" here so we will record it. This allows us
6793 to fold switch statements when an ADDR_DIFF_VEC is used. */
6794 || (GET_CODE (src_folded) == MINUS
6795 && GET_CODE (XEXP (src_folded, 0)) == LABEL_REF
6796 && GET_CODE (XEXP (src_folded, 1)) == LABEL_REF)))
6797 src_const = src_folded, src_const_elt = elt;
6798 else if (src_const == 0 && src_eqv_here && CONSTANT_P (src_eqv_here))
6799 src_const = src_eqv_here, src_const_elt = src_eqv_elt;
6801 /* If we don't know if the constant is in the table, get its
6802 hash code and look it up. */
6803 if (src_const && src_const_elt == 0)
6805 sets[i].src_const_hash = HASH (src_const, mode);
6806 src_const_elt = lookup (src_const, sets[i].src_const_hash, mode);
6809 sets[i].src_const = src_const;
6810 sets[i].src_const_elt = src_const_elt;
6812 /* If the constant and our source are both in the table, mark them as
6813 equivalent. Otherwise, if a constant is in the table but the source
6814 isn't, set ELT to it. */
6815 if (src_const_elt && elt
6816 && src_const_elt->first_same_value != elt->first_same_value)
6817 merge_equiv_classes (elt, src_const_elt);
6818 else if (src_const_elt && elt == 0)
6819 elt = src_const_elt;
6821 /* See if there is a register linearly related to a constant
6822 equivalent of SRC. */
6823 if (src_const
6824 && (GET_CODE (src_const) == CONST
6825 || (src_const_elt && src_const_elt->related_value != 0)))
6827 src_related = use_related_value (src_const, src_const_elt);
6828 if (src_related)
6830 struct table_elt *src_related_elt
6831 = lookup (src_related, HASH (src_related, mode), mode);
6832 if (src_related_elt && elt)
6834 if (elt->first_same_value
6835 != src_related_elt->first_same_value)
6836 /* This can occur when we previously saw a CONST
6837 involving a SYMBOL_REF and then see the SYMBOL_REF
6838 twice. Merge the involved classes. */
6839 merge_equiv_classes (elt, src_related_elt);
6841 src_related = 0;
6842 src_related_elt = 0;
6844 else if (src_related_elt && elt == 0)
6845 elt = src_related_elt;
6849 /* See if we have a CONST_INT that is already in a register in a
6850 wider mode. */
6852 if (src_const && src_related == 0 && GET_CODE (src_const) == CONST_INT
6853 && GET_MODE_CLASS (mode) == MODE_INT
6854 && GET_MODE_BITSIZE (mode) < BITS_PER_WORD)
6856 enum machine_mode wider_mode;
6858 for (wider_mode = GET_MODE_WIDER_MODE (mode);
6859 GET_MODE_BITSIZE (wider_mode) <= BITS_PER_WORD
6860 && src_related == 0;
6861 wider_mode = GET_MODE_WIDER_MODE (wider_mode))
6863 struct table_elt *const_elt
6864 = lookup (src_const, HASH (src_const, wider_mode), wider_mode);
6866 if (const_elt == 0)
6867 continue;
6869 for (const_elt = const_elt->first_same_value;
6870 const_elt; const_elt = const_elt->next_same_value)
6871 if (GET_CODE (const_elt->exp) == REG)
6873 src_related = gen_lowpart_if_possible (mode,
6874 const_elt->exp);
6875 break;
6880 /* Another possibility is that we have an AND with a constant in
6881 a mode narrower than a word. If so, it might have been generated
6882 as part of an "if" which would narrow the AND. If we already
6883 have done the AND in a wider mode, we can use a SUBREG of that
6884 value. */
6886 if (flag_expensive_optimizations && ! src_related
6887 && GET_CODE (src) == AND && GET_CODE (XEXP (src, 1)) == CONST_INT
6888 && GET_MODE_SIZE (mode) < UNITS_PER_WORD)
6890 enum machine_mode tmode;
6891 rtx new_and = gen_rtx_AND (VOIDmode, NULL_RTX, XEXP (src, 1));
6893 for (tmode = GET_MODE_WIDER_MODE (mode);
6894 GET_MODE_SIZE (tmode) <= UNITS_PER_WORD;
6895 tmode = GET_MODE_WIDER_MODE (tmode))
6897 rtx inner = gen_lowpart_if_possible (tmode, XEXP (src, 0));
6898 struct table_elt *larger_elt;
6900 if (inner)
6902 PUT_MODE (new_and, tmode);
6903 XEXP (new_and, 0) = inner;
6904 larger_elt = lookup (new_and, HASH (new_and, tmode), tmode);
6905 if (larger_elt == 0)
6906 continue;
6908 for (larger_elt = larger_elt->first_same_value;
6909 larger_elt; larger_elt = larger_elt->next_same_value)
6910 if (GET_CODE (larger_elt->exp) == REG)
6912 src_related
6913 = gen_lowpart_if_possible (mode, larger_elt->exp);
6914 break;
6917 if (src_related)
6918 break;
6923 #ifdef LOAD_EXTEND_OP
6924 /* See if a MEM has already been loaded with a widening operation;
6925 if it has, we can use a subreg of that. Many CISC machines
6926 also have such operations, but this is only likely to be
6927 beneficial these machines. */
6929 if (flag_expensive_optimizations && src_related == 0
6930 && (GET_MODE_SIZE (mode) < UNITS_PER_WORD)
6931 && GET_MODE_CLASS (mode) == MODE_INT
6932 && GET_CODE (src) == MEM && ! do_not_record
6933 && LOAD_EXTEND_OP (mode) != NIL)
6935 enum machine_mode tmode;
6937 /* Set what we are trying to extend and the operation it might
6938 have been extended with. */
6939 PUT_CODE (memory_extend_rtx, LOAD_EXTEND_OP (mode));
6940 XEXP (memory_extend_rtx, 0) = src;
6942 for (tmode = GET_MODE_WIDER_MODE (mode);
6943 GET_MODE_SIZE (tmode) <= UNITS_PER_WORD;
6944 tmode = GET_MODE_WIDER_MODE (tmode))
6946 struct table_elt *larger_elt;
6948 PUT_MODE (memory_extend_rtx, tmode);
6949 larger_elt = lookup (memory_extend_rtx,
6950 HASH (memory_extend_rtx, tmode), tmode);
6951 if (larger_elt == 0)
6952 continue;
6954 for (larger_elt = larger_elt->first_same_value;
6955 larger_elt; larger_elt = larger_elt->next_same_value)
6956 if (GET_CODE (larger_elt->exp) == REG)
6958 src_related = gen_lowpart_if_possible (mode,
6959 larger_elt->exp);
6960 break;
6963 if (src_related)
6964 break;
6967 #endif /* LOAD_EXTEND_OP */
6969 if (src == src_folded)
6970 src_folded = 0;
6972 /* At this point, ELT, if non-zero, points to a class of expressions
6973 equivalent to the source of this SET and SRC, SRC_EQV, SRC_FOLDED,
6974 and SRC_RELATED, if non-zero, each contain additional equivalent
6975 expressions. Prune these latter expressions by deleting expressions
6976 already in the equivalence class.
6978 Check for an equivalent identical to the destination. If found,
6979 this is the preferred equivalent since it will likely lead to
6980 elimination of the insn. Indicate this by placing it in
6981 `src_related'. */
6983 if (elt) elt = elt->first_same_value;
6984 for (p = elt; p; p = p->next_same_value)
6986 enum rtx_code code = GET_CODE (p->exp);
6988 /* If the expression is not valid, ignore it. Then we do not
6989 have to check for validity below. In most cases, we can use
6990 `rtx_equal_p', since canonicalization has already been done. */
6991 if (code != REG && ! exp_equiv_p (p->exp, p->exp, 1, 0))
6992 continue;
6994 /* Also skip paradoxical subregs, unless that's what we're
6995 looking for. */
6996 if (code == SUBREG
6997 && (GET_MODE_SIZE (GET_MODE (p->exp))
6998 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (p->exp))))
6999 && ! (src != 0
7000 && GET_CODE (src) == SUBREG
7001 && GET_MODE (src) == GET_MODE (p->exp)
7002 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (src)))
7003 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (p->exp))))))
7004 continue;
7006 if (src && GET_CODE (src) == code && rtx_equal_p (src, p->exp))
7007 src = 0;
7008 else if (src_folded && GET_CODE (src_folded) == code
7009 && rtx_equal_p (src_folded, p->exp))
7010 src_folded = 0;
7011 else if (src_eqv_here && GET_CODE (src_eqv_here) == code
7012 && rtx_equal_p (src_eqv_here, p->exp))
7013 src_eqv_here = 0;
7014 else if (src_related && GET_CODE (src_related) == code
7015 && rtx_equal_p (src_related, p->exp))
7016 src_related = 0;
7018 /* This is the same as the destination of the insns, we want
7019 to prefer it. Copy it to src_related. The code below will
7020 then give it a negative cost. */
7021 if (GET_CODE (dest) == code && rtx_equal_p (p->exp, dest))
7022 src_related = dest;
7026 /* Find the cheapest valid equivalent, trying all the available
7027 possibilities. Prefer items not in the hash table to ones
7028 that are when they are equal cost. Note that we can never
7029 worsen an insn as the current contents will also succeed.
7030 If we find an equivalent identical to the destination, use it as best,
7031 since this insn will probably be eliminated in that case. */
7032 if (src)
7034 if (rtx_equal_p (src, dest))
7035 src_cost = -1;
7036 else
7037 src_cost = COST (src);
7040 if (src_eqv_here)
7042 if (rtx_equal_p (src_eqv_here, dest))
7043 src_eqv_cost = -1;
7044 else
7045 src_eqv_cost = COST (src_eqv_here);
7048 if (src_folded)
7050 if (rtx_equal_p (src_folded, dest))
7051 src_folded_cost = -1;
7052 else
7053 src_folded_cost = COST (src_folded);
7056 if (src_related)
7058 if (rtx_equal_p (src_related, dest))
7059 src_related_cost = -1;
7060 else
7061 src_related_cost = COST (src_related);
7064 /* If this was an indirect jump insn, a known label will really be
7065 cheaper even though it looks more expensive. */
7066 if (dest == pc_rtx && src_const && GET_CODE (src_const) == LABEL_REF)
7067 src_folded = src_const, src_folded_cost = -1;
7069 /* Terminate loop when replacement made. This must terminate since
7070 the current contents will be tested and will always be valid. */
7071 while (1)
7073 rtx trial, old_src;
7075 /* Skip invalid entries. */
7076 while (elt && GET_CODE (elt->exp) != REG
7077 && ! exp_equiv_p (elt->exp, elt->exp, 1, 0))
7078 elt = elt->next_same_value;
7080 /* A paradoxical subreg would be bad here: it'll be the right
7081 size, but later may be adjusted so that the upper bits aren't
7082 what we want. So reject it. */
7083 if (elt != 0
7084 && GET_CODE (elt->exp) == SUBREG
7085 && (GET_MODE_SIZE (GET_MODE (elt->exp))
7086 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (elt->exp))))
7087 /* It is okay, though, if the rtx we're trying to match
7088 will ignore any of the bits we can't predict. */
7089 && ! (src != 0
7090 && GET_CODE (src) == SUBREG
7091 && GET_MODE (src) == GET_MODE (elt->exp)
7092 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (src)))
7093 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (elt->exp))))))
7095 elt = elt->next_same_value;
7096 continue;
7099 if (elt) src_elt_cost = elt->cost;
7101 /* Find cheapest and skip it for the next time. For items
7102 of equal cost, use this order:
7103 src_folded, src, src_eqv, src_related and hash table entry. */
7104 if (src_folded_cost <= src_cost
7105 && src_folded_cost <= src_eqv_cost
7106 && src_folded_cost <= src_related_cost
7107 && src_folded_cost <= src_elt_cost)
7109 trial = src_folded, src_folded_cost = 10000;
7110 if (src_folded_force_flag)
7111 trial = force_const_mem (mode, trial);
7113 else if (src_cost <= src_eqv_cost
7114 && src_cost <= src_related_cost
7115 && src_cost <= src_elt_cost)
7116 trial = src, src_cost = 10000;
7117 else if (src_eqv_cost <= src_related_cost
7118 && src_eqv_cost <= src_elt_cost)
7119 trial = copy_rtx (src_eqv_here), src_eqv_cost = 10000;
7120 else if (src_related_cost <= src_elt_cost)
7121 trial = copy_rtx (src_related), src_related_cost = 10000;
7122 else
7124 trial = copy_rtx (elt->exp);
7125 elt = elt->next_same_value;
7126 src_elt_cost = 10000;
7129 /* We don't normally have an insn matching (set (pc) (pc)), so
7130 check for this separately here. We will delete such an
7131 insn below.
7133 Tablejump insns contain a USE of the table, so simply replacing
7134 the operand with the constant won't match. This is simply an
7135 unconditional branch, however, and is therefore valid. Just
7136 insert the substitution here and we will delete and re-emit
7137 the insn later. */
7139 /* Keep track of the original SET_SRC so that we can fix notes
7140 on libcall instructions. */
7141 old_src = SET_SRC (sets[i].rtl);
7143 if (n_sets == 1 && dest == pc_rtx
7144 && (trial == pc_rtx
7145 || (GET_CODE (trial) == LABEL_REF
7146 && ! condjump_p (insn))))
7148 /* If TRIAL is a label in front of a jump table, we are
7149 really falling through the switch (this is how casesi
7150 insns work), so we must branch around the table. */
7151 if (GET_CODE (trial) == CODE_LABEL
7152 && NEXT_INSN (trial) != 0
7153 && GET_CODE (NEXT_INSN (trial)) == JUMP_INSN
7154 && (GET_CODE (PATTERN (NEXT_INSN (trial))) == ADDR_DIFF_VEC
7155 || GET_CODE (PATTERN (NEXT_INSN (trial))) == ADDR_VEC))
7157 trial = gen_rtx_LABEL_REF (Pmode, get_label_after (trial));
7159 SET_SRC (sets[i].rtl) = trial;
7160 cse_jumps_altered = 1;
7161 break;
7164 /* Look for a substitution that makes a valid insn. */
7165 else if (validate_change (insn, &SET_SRC (sets[i].rtl), trial, 0))
7167 /* If we just made a substitution inside a libcall, then we
7168 need to make the same substitution in any notes attached
7169 to the RETVAL insn. */
7170 if (libcall_insn
7171 && (GET_CODE (old_src) == REG
7172 || GET_CODE (old_src) == SUBREG
7173 || GET_CODE (old_src) == MEM))
7174 replace_rtx (REG_NOTES (libcall_insn), old_src,
7175 canon_reg (SET_SRC (sets[i].rtl), insn));
7177 /* The result of apply_change_group can be ignored; see
7178 canon_reg. */
7180 validate_change (insn, &SET_SRC (sets[i].rtl),
7181 canon_reg (SET_SRC (sets[i].rtl), insn),
7183 apply_change_group ();
7184 break;
7187 /* If we previously found constant pool entries for
7188 constants and this is a constant, try making a
7189 pool entry. Put it in src_folded unless we already have done
7190 this since that is where it likely came from. */
7192 else if (constant_pool_entries_cost
7193 && CONSTANT_P (trial)
7194 && ! (GET_CODE (trial) == CONST
7195 && GET_CODE (XEXP (trial, 0)) == TRUNCATE)
7196 && (src_folded == 0
7197 || (GET_CODE (src_folded) != MEM
7198 && ! src_folded_force_flag))
7199 && GET_MODE_CLASS (mode) != MODE_CC
7200 && mode != VOIDmode)
7202 src_folded_force_flag = 1;
7203 src_folded = trial;
7204 src_folded_cost = constant_pool_entries_cost;
7208 src = SET_SRC (sets[i].rtl);
7210 /* In general, it is good to have a SET with SET_SRC == SET_DEST.
7211 However, there is an important exception: If both are registers
7212 that are not the head of their equivalence class, replace SET_SRC
7213 with the head of the class. If we do not do this, we will have
7214 both registers live over a portion of the basic block. This way,
7215 their lifetimes will likely abut instead of overlapping. */
7216 if (GET_CODE (dest) == REG
7217 && REGNO_QTY_VALID_P (REGNO (dest))
7218 && qty_mode[REG_QTY (REGNO (dest))] == GET_MODE (dest)
7219 && qty_first_reg[REG_QTY (REGNO (dest))] != REGNO (dest)
7220 && GET_CODE (src) == REG && REGNO (src) == REGNO (dest)
7221 /* Don't do this if the original insn had a hard reg as
7222 SET_SRC or SET_DEST. */
7223 && (GET_CODE (sets[i].src) != REG
7224 || REGNO (sets[i].src) >= FIRST_PSEUDO_REGISTER)
7225 && (GET_CODE (dest) != REG || REGNO (dest) >= FIRST_PSEUDO_REGISTER))
7226 /* We can't call canon_reg here because it won't do anything if
7227 SRC is a hard register. */
7229 int first = qty_first_reg[REG_QTY (REGNO (src))];
7230 rtx new_src
7231 = (first >= FIRST_PSEUDO_REGISTER
7232 ? regno_reg_rtx[first] : gen_rtx_REG (GET_MODE (src), first));
7234 /* We must use validate-change even for this, because this
7235 might be a special no-op instruction, suitable only to
7236 tag notes onto. */
7237 if (validate_change (insn, &SET_SRC (sets[i].rtl), new_src, 0))
7239 src = new_src;
7240 /* If we had a constant that is cheaper than what we are now
7241 setting SRC to, use that constant. We ignored it when we
7242 thought we could make this into a no-op. */
7243 if (src_const && COST (src_const) < COST (src)
7244 && validate_change (insn, &SET_SRC (sets[i].rtl), src_const,
7246 src = src_const;
7250 /* If we made a change, recompute SRC values. */
7251 if (src != sets[i].src)
7253 do_not_record = 0;
7254 hash_arg_in_memory = 0;
7255 hash_arg_in_struct = 0;
7256 sets[i].src = src;
7257 sets[i].src_hash = HASH (src, mode);
7258 sets[i].src_volatile = do_not_record;
7259 sets[i].src_in_memory = hash_arg_in_memory;
7260 sets[i].src_in_struct = hash_arg_in_struct;
7261 sets[i].src_elt = lookup (src, sets[i].src_hash, mode);
7264 /* If this is a single SET, we are setting a register, and we have an
7265 equivalent constant, we want to add a REG_NOTE. We don't want
7266 to write a REG_EQUAL note for a constant pseudo since verifying that
7267 that pseudo hasn't been eliminated is a pain. Such a note also
7268 won't help anything.
7270 Avoid a REG_EQUAL note for (CONST (MINUS (LABEL_REF) (LABEL_REF)))
7271 which can be created for a reference to a compile time computable
7272 entry in a jump table. */
7274 if (n_sets == 1 && src_const && GET_CODE (dest) == REG
7275 && GET_CODE (src_const) != REG
7276 && ! (GET_CODE (src_const) == CONST
7277 && GET_CODE (XEXP (src_const, 0)) == MINUS
7278 && GET_CODE (XEXP (XEXP (src_const, 0), 0)) == LABEL_REF
7279 && GET_CODE (XEXP (XEXP (src_const, 0), 1)) == LABEL_REF))
7281 tem = find_reg_note (insn, REG_EQUAL, NULL_RTX);
7283 /* Make sure that the rtx is not shared with any other insn. */
7284 src_const = copy_rtx (src_const);
7286 /* Record the actual constant value in a REG_EQUAL note, making
7287 a new one if one does not already exist. */
7288 if (tem)
7289 XEXP (tem, 0) = src_const;
7290 else
7291 REG_NOTES (insn) = gen_rtx_EXPR_LIST (REG_EQUAL,
7292 src_const, REG_NOTES (insn));
7294 /* If storing a constant value in a register that
7295 previously held the constant value 0,
7296 record this fact with a REG_WAS_0 note on this insn.
7298 Note that the *register* is required to have previously held 0,
7299 not just any register in the quantity and we must point to the
7300 insn that set that register to zero.
7302 Rather than track each register individually, we just see if
7303 the last set for this quantity was for this register. */
7305 if (REGNO_QTY_VALID_P (REGNO (dest))
7306 && qty_const[REG_QTY (REGNO (dest))] == const0_rtx)
7308 /* See if we previously had a REG_WAS_0 note. */
7309 rtx note = find_reg_note (insn, REG_WAS_0, NULL_RTX);
7310 rtx const_insn = qty_const_insn[REG_QTY (REGNO (dest))];
7312 if ((tem = single_set (const_insn)) != 0
7313 && rtx_equal_p (SET_DEST (tem), dest))
7315 if (note)
7316 XEXP (note, 0) = const_insn;
7317 else
7318 REG_NOTES (insn)
7319 = gen_rtx_INSN_LIST (REG_WAS_0, const_insn,
7320 REG_NOTES (insn));
7325 /* Now deal with the destination. */
7326 do_not_record = 0;
7328 /* Look within any SIGN_EXTRACT or ZERO_EXTRACT
7329 to the MEM or REG within it. */
7330 while (GET_CODE (dest) == SIGN_EXTRACT
7331 || GET_CODE (dest) == ZERO_EXTRACT
7332 || GET_CODE (dest) == SUBREG
7333 || GET_CODE (dest) == STRICT_LOW_PART)
7334 dest = XEXP (dest, 0);
7336 sets[i].inner_dest = dest;
7338 if (GET_CODE (dest) == MEM)
7340 #ifdef PUSH_ROUNDING
7341 /* Stack pushes invalidate the stack pointer. */
7342 rtx addr = XEXP (dest, 0);
7343 if ((GET_CODE (addr) == PRE_DEC || GET_CODE (addr) == PRE_INC
7344 || GET_CODE (addr) == POST_DEC || GET_CODE (addr) == POST_INC)
7345 && XEXP (addr, 0) == stack_pointer_rtx)
7346 invalidate (stack_pointer_rtx, Pmode);
7347 #endif
7348 dest = fold_rtx (dest, insn);
7351 /* Compute the hash code of the destination now,
7352 before the effects of this instruction are recorded,
7353 since the register values used in the address computation
7354 are those before this instruction. */
7355 sets[i].dest_hash = HASH (dest, mode);
7357 /* Don't enter a bit-field in the hash table
7358 because the value in it after the store
7359 may not equal what was stored, due to truncation. */
7361 if (GET_CODE (SET_DEST (sets[i].rtl)) == ZERO_EXTRACT
7362 || GET_CODE (SET_DEST (sets[i].rtl)) == SIGN_EXTRACT)
7364 rtx width = XEXP (SET_DEST (sets[i].rtl), 1);
7366 if (src_const != 0 && GET_CODE (src_const) == CONST_INT
7367 && GET_CODE (width) == CONST_INT
7368 && INTVAL (width) < HOST_BITS_PER_WIDE_INT
7369 && ! (INTVAL (src_const)
7370 & ((HOST_WIDE_INT) (-1) << INTVAL (width))))
7371 /* Exception: if the value is constant,
7372 and it won't be truncated, record it. */
7374 else
7376 /* This is chosen so that the destination will be invalidated
7377 but no new value will be recorded.
7378 We must invalidate because sometimes constant
7379 values can be recorded for bitfields. */
7380 sets[i].src_elt = 0;
7381 sets[i].src_volatile = 1;
7382 src_eqv = 0;
7383 src_eqv_elt = 0;
7387 /* If only one set in a JUMP_INSN and it is now a no-op, we can delete
7388 the insn. */
7389 else if (n_sets == 1 && dest == pc_rtx && src == pc_rtx)
7391 /* One less use of the label this insn used to jump to. */
7392 if (JUMP_LABEL (insn) != 0)
7393 --LABEL_NUSES (JUMP_LABEL (insn));
7394 PUT_CODE (insn, NOTE);
7395 NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED;
7396 NOTE_SOURCE_FILE (insn) = 0;
7397 cse_jumps_altered = 1;
7398 /* No more processing for this set. */
7399 sets[i].rtl = 0;
7402 /* If this SET is now setting PC to a label, we know it used to
7403 be a conditional or computed branch. So we see if we can follow
7404 it. If it was a computed branch, delete it and re-emit. */
7405 else if (dest == pc_rtx && GET_CODE (src) == LABEL_REF)
7407 /* If this is not in the format for a simple branch and
7408 we are the only SET in it, re-emit it. */
7409 if (! simplejump_p (insn) && n_sets == 1)
7411 rtx new = emit_jump_insn_before (gen_jump (XEXP (src, 0)), insn);
7412 JUMP_LABEL (new) = XEXP (src, 0);
7413 LABEL_NUSES (XEXP (src, 0))++;
7414 insn = new;
7416 else
7417 /* Otherwise, force rerecognition, since it probably had
7418 a different pattern before.
7419 This shouldn't really be necessary, since whatever
7420 changed the source value above should have done this.
7421 Until the right place is found, might as well do this here. */
7422 INSN_CODE (insn) = -1;
7424 never_reached_warning (insn);
7426 /* Now emit a BARRIER after the unconditional jump. Do not bother
7427 deleting any unreachable code, let jump/flow do that. */
7428 if (NEXT_INSN (insn) != 0
7429 && GET_CODE (NEXT_INSN (insn)) != BARRIER)
7430 emit_barrier_after (insn);
7432 cse_jumps_altered = 1;
7433 sets[i].rtl = 0;
7436 /* If destination is volatile, invalidate it and then do no further
7437 processing for this assignment. */
7439 else if (do_not_record)
7441 if (GET_CODE (dest) == REG || GET_CODE (dest) == SUBREG
7442 || GET_CODE (dest) == MEM)
7443 invalidate (dest, VOIDmode);
7444 else if (GET_CODE (dest) == STRICT_LOW_PART
7445 || GET_CODE (dest) == ZERO_EXTRACT)
7446 invalidate (XEXP (dest, 0), GET_MODE (dest));
7447 sets[i].rtl = 0;
7450 if (sets[i].rtl != 0 && dest != SET_DEST (sets[i].rtl))
7451 sets[i].dest_hash = HASH (SET_DEST (sets[i].rtl), mode);
7453 #ifdef HAVE_cc0
7454 /* If setting CC0, record what it was set to, or a constant, if it
7455 is equivalent to a constant. If it is being set to a floating-point
7456 value, make a COMPARE with the appropriate constant of 0. If we
7457 don't do this, later code can interpret this as a test against
7458 const0_rtx, which can cause problems if we try to put it into an
7459 insn as a floating-point operand. */
7460 if (dest == cc0_rtx)
7462 this_insn_cc0 = src_const && mode != VOIDmode ? src_const : src;
7463 this_insn_cc0_mode = mode;
7464 if (FLOAT_MODE_P (mode))
7465 this_insn_cc0 = gen_rtx_COMPARE (VOIDmode, this_insn_cc0,
7466 CONST0_RTX (mode));
7468 #endif
7471 /* Now enter all non-volatile source expressions in the hash table
7472 if they are not already present.
7473 Record their equivalence classes in src_elt.
7474 This way we can insert the corresponding destinations into
7475 the same classes even if the actual sources are no longer in them
7476 (having been invalidated). */
7478 if (src_eqv && src_eqv_elt == 0 && sets[0].rtl != 0 && ! src_eqv_volatile
7479 && ! rtx_equal_p (src_eqv, SET_DEST (sets[0].rtl)))
7481 register struct table_elt *elt;
7482 register struct table_elt *classp = sets[0].src_elt;
7483 rtx dest = SET_DEST (sets[0].rtl);
7484 enum machine_mode eqvmode = GET_MODE (dest);
7486 if (GET_CODE (dest) == STRICT_LOW_PART)
7488 eqvmode = GET_MODE (SUBREG_REG (XEXP (dest, 0)));
7489 classp = 0;
7491 if (insert_regs (src_eqv, classp, 0))
7493 rehash_using_reg (src_eqv);
7494 src_eqv_hash = HASH (src_eqv, eqvmode);
7496 elt = insert (src_eqv, classp, src_eqv_hash, eqvmode);
7497 elt->in_memory = src_eqv_in_memory;
7498 elt->in_struct = src_eqv_in_struct;
7499 src_eqv_elt = elt;
7501 /* Check to see if src_eqv_elt is the same as a set source which
7502 does not yet have an elt, and if so set the elt of the set source
7503 to src_eqv_elt. */
7504 for (i = 0; i < n_sets; i++)
7505 if (sets[i].rtl && sets[i].src_elt == 0
7506 && rtx_equal_p (SET_SRC (sets[i].rtl), src_eqv))
7507 sets[i].src_elt = src_eqv_elt;
7510 for (i = 0; i < n_sets; i++)
7511 if (sets[i].rtl && ! sets[i].src_volatile
7512 && ! rtx_equal_p (SET_SRC (sets[i].rtl), SET_DEST (sets[i].rtl)))
7514 if (GET_CODE (SET_DEST (sets[i].rtl)) == STRICT_LOW_PART)
7516 /* REG_EQUAL in setting a STRICT_LOW_PART
7517 gives an equivalent for the entire destination register,
7518 not just for the subreg being stored in now.
7519 This is a more interesting equivalence, so we arrange later
7520 to treat the entire reg as the destination. */
7521 sets[i].src_elt = src_eqv_elt;
7522 sets[i].src_hash = src_eqv_hash;
7524 else
7526 /* Insert source and constant equivalent into hash table, if not
7527 already present. */
7528 register struct table_elt *classp = src_eqv_elt;
7529 register rtx src = sets[i].src;
7530 register rtx dest = SET_DEST (sets[i].rtl);
7531 enum machine_mode mode
7532 = GET_MODE (src) == VOIDmode ? GET_MODE (dest) : GET_MODE (src);
7534 /* Don't put a hard register source into the table if this is
7535 the last insn of a libcall. */
7536 if (sets[i].src_elt == 0
7537 && (GET_CODE (src) != REG
7538 || REGNO (src) >= FIRST_PSEUDO_REGISTER
7539 || ! find_reg_note (insn, REG_RETVAL, NULL_RTX)))
7541 register struct table_elt *elt;
7543 /* Note that these insert_regs calls cannot remove
7544 any of the src_elt's, because they would have failed to
7545 match if not still valid. */
7546 if (insert_regs (src, classp, 0))
7548 rehash_using_reg (src);
7549 sets[i].src_hash = HASH (src, mode);
7551 elt = insert (src, classp, sets[i].src_hash, mode);
7552 elt->in_memory = sets[i].src_in_memory;
7553 elt->in_struct = sets[i].src_in_struct;
7554 sets[i].src_elt = classp = elt;
7557 if (sets[i].src_const && sets[i].src_const_elt == 0
7558 && src != sets[i].src_const
7559 && ! rtx_equal_p (sets[i].src_const, src))
7560 sets[i].src_elt = insert (sets[i].src_const, classp,
7561 sets[i].src_const_hash, mode);
7564 else if (sets[i].src_elt == 0)
7565 /* If we did not insert the source into the hash table (e.g., it was
7566 volatile), note the equivalence class for the REG_EQUAL value, if any,
7567 so that the destination goes into that class. */
7568 sets[i].src_elt = src_eqv_elt;
7570 invalidate_from_clobbers (x);
7572 /* Some registers are invalidated by subroutine calls. Memory is
7573 invalidated by non-constant calls. */
7575 if (GET_CODE (insn) == CALL_INSN)
7577 if (! CONST_CALL_P (insn))
7578 invalidate_memory ();
7579 invalidate_for_call ();
7582 /* Now invalidate everything set by this instruction.
7583 If a SUBREG or other funny destination is being set,
7584 sets[i].rtl is still nonzero, so here we invalidate the reg
7585 a part of which is being set. */
7587 for (i = 0; i < n_sets; i++)
7588 if (sets[i].rtl)
7590 /* We can't use the inner dest, because the mode associated with
7591 a ZERO_EXTRACT is significant. */
7592 register rtx dest = SET_DEST (sets[i].rtl);
7594 /* Needed for registers to remove the register from its
7595 previous quantity's chain.
7596 Needed for memory if this is a nonvarying address, unless
7597 we have just done an invalidate_memory that covers even those. */
7598 if (GET_CODE (dest) == REG || GET_CODE (dest) == SUBREG
7599 || GET_CODE (dest) == MEM)
7600 invalidate (dest, VOIDmode);
7601 else if (GET_CODE (dest) == STRICT_LOW_PART
7602 || GET_CODE (dest) == ZERO_EXTRACT)
7603 invalidate (XEXP (dest, 0), GET_MODE (dest));
7606 /* A volatile ASM invalidates everything. */
7607 if (GET_CODE (insn) == INSN
7608 && GET_CODE (PATTERN (insn)) == ASM_OPERANDS
7609 && MEM_VOLATILE_P (PATTERN (insn)))
7610 flush_hash_table ();
7612 /* Make sure registers mentioned in destinations
7613 are safe for use in an expression to be inserted.
7614 This removes from the hash table
7615 any invalid entry that refers to one of these registers.
7617 We don't care about the return value from mention_regs because
7618 we are going to hash the SET_DEST values unconditionally. */
7620 for (i = 0; i < n_sets; i++)
7622 if (sets[i].rtl)
7624 rtx x = SET_DEST (sets[i].rtl);
7626 if (GET_CODE (x) != REG)
7627 mention_regs (x);
7628 else
7630 /* We used to rely on all references to a register becoming
7631 inaccessible when a register changes to a new quantity,
7632 since that changes the hash code. However, that is not
7633 safe, since after NBUCKETS new quantities we get a
7634 hash 'collision' of a register with its own invalid
7635 entries. And since SUBREGs have been changed not to
7636 change their hash code with the hash code of the register,
7637 it wouldn't work any longer at all. So we have to check
7638 for any invalid references lying around now.
7639 This code is similar to the REG case in mention_regs,
7640 but it knows that reg_tick has been incremented, and
7641 it leaves reg_in_table as -1 . */
7642 register int regno = REGNO (x);
7643 register int endregno
7644 = regno + (regno >= FIRST_PSEUDO_REGISTER ? 1
7645 : HARD_REGNO_NREGS (regno, GET_MODE (x)));
7646 int i;
7648 for (i = regno; i < endregno; i++)
7650 if (REG_IN_TABLE (i) >= 0)
7652 remove_invalid_refs (i);
7653 REG_IN_TABLE (i) = -1;
7660 /* We may have just removed some of the src_elt's from the hash table.
7661 So replace each one with the current head of the same class. */
7663 for (i = 0; i < n_sets; i++)
7664 if (sets[i].rtl)
7666 if (sets[i].src_elt && sets[i].src_elt->first_same_value == 0)
7667 /* If elt was removed, find current head of same class,
7668 or 0 if nothing remains of that class. */
7670 register struct table_elt *elt = sets[i].src_elt;
7672 while (elt && elt->prev_same_value)
7673 elt = elt->prev_same_value;
7675 while (elt && elt->first_same_value == 0)
7676 elt = elt->next_same_value;
7677 sets[i].src_elt = elt ? elt->first_same_value : 0;
7681 /* Now insert the destinations into their equivalence classes. */
7683 for (i = 0; i < n_sets; i++)
7684 if (sets[i].rtl)
7686 register rtx dest = SET_DEST (sets[i].rtl);
7687 rtx inner_dest = sets[i].inner_dest;
7688 register struct table_elt *elt;
7690 /* Don't record value if we are not supposed to risk allocating
7691 floating-point values in registers that might be wider than
7692 memory. */
7693 if ((flag_float_store
7694 && GET_CODE (dest) == MEM
7695 && FLOAT_MODE_P (GET_MODE (dest)))
7696 /* Don't record BLKmode values, because we don't know the
7697 size of it, and can't be sure that other BLKmode values
7698 have the same or smaller size. */
7699 || GET_MODE (dest) == BLKmode
7700 /* Don't record values of destinations set inside a libcall block
7701 since we might delete the libcall. Things should have been set
7702 up so we won't want to reuse such a value, but we play it safe
7703 here. */
7704 || libcall_insn
7705 /* If we didn't put a REG_EQUAL value or a source into the hash
7706 table, there is no point is recording DEST. */
7707 || sets[i].src_elt == 0
7708 /* If DEST is a paradoxical SUBREG and SRC is a ZERO_EXTEND
7709 or SIGN_EXTEND, don't record DEST since it can cause
7710 some tracking to be wrong.
7712 ??? Think about this more later. */
7713 || (GET_CODE (dest) == SUBREG
7714 && (GET_MODE_SIZE (GET_MODE (dest))
7715 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest))))
7716 && (GET_CODE (sets[i].src) == SIGN_EXTEND
7717 || GET_CODE (sets[i].src) == ZERO_EXTEND)))
7718 continue;
7720 /* STRICT_LOW_PART isn't part of the value BEING set,
7721 and neither is the SUBREG inside it.
7722 Note that in this case SETS[I].SRC_ELT is really SRC_EQV_ELT. */
7723 if (GET_CODE (dest) == STRICT_LOW_PART)
7724 dest = SUBREG_REG (XEXP (dest, 0));
7726 if (GET_CODE (dest) == REG || GET_CODE (dest) == SUBREG)
7727 /* Registers must also be inserted into chains for quantities. */
7728 if (insert_regs (dest, sets[i].src_elt, 1))
7730 /* If `insert_regs' changes something, the hash code must be
7731 recalculated. */
7732 rehash_using_reg (dest);
7733 sets[i].dest_hash = HASH (dest, GET_MODE (dest));
7736 if (GET_CODE (inner_dest) == MEM
7737 && GET_CODE (XEXP (inner_dest, 0)) == ADDRESSOF)
7738 /* Given (SET (MEM (ADDRESSOF (X))) Y) we don't want to say
7739 that (MEM (ADDRESSOF (X))) is equivalent to Y.
7740 Consider the case in which the address of the MEM is
7741 passed to a function, which alters the MEM. Then, if we
7742 later use Y instead of the MEM we'll miss the update. */
7743 elt = insert (dest, 0, sets[i].dest_hash, GET_MODE (dest));
7744 else
7745 elt = insert (dest, sets[i].src_elt,
7746 sets[i].dest_hash, GET_MODE (dest));
7748 elt->in_memory = (GET_CODE (sets[i].inner_dest) == MEM
7749 && (! RTX_UNCHANGING_P (sets[i].inner_dest)
7750 || FIXED_BASE_PLUS_P (XEXP (sets[i].inner_dest,
7751 0))));
7753 if (elt->in_memory)
7755 /* This implicitly assumes a whole struct
7756 need not have MEM_IN_STRUCT_P.
7757 But a whole struct is *supposed* to have MEM_IN_STRUCT_P. */
7758 elt->in_struct = (MEM_IN_STRUCT_P (sets[i].inner_dest)
7759 || sets[i].inner_dest != SET_DEST (sets[i].rtl));
7762 /* If we have (set (subreg:m1 (reg:m2 foo) 0) (bar:m1)), M1 is no
7763 narrower than M2, and both M1 and M2 are the same number of words,
7764 we are also doing (set (reg:m2 foo) (subreg:m2 (bar:m1) 0)) so
7765 make that equivalence as well.
7767 However, BAR may have equivalences for which gen_lowpart_if_possible
7768 will produce a simpler value than gen_lowpart_if_possible applied to
7769 BAR (e.g., if BAR was ZERO_EXTENDed from M2), so we will scan all
7770 BAR's equivalences. If we don't get a simplified form, make
7771 the SUBREG. It will not be used in an equivalence, but will
7772 cause two similar assignments to be detected.
7774 Note the loop below will find SUBREG_REG (DEST) since we have
7775 already entered SRC and DEST of the SET in the table. */
7777 if (GET_CODE (dest) == SUBREG
7778 && (((GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest))) - 1)
7779 / UNITS_PER_WORD)
7780 == (GET_MODE_SIZE (GET_MODE (dest)) - 1)/ UNITS_PER_WORD)
7781 && (GET_MODE_SIZE (GET_MODE (dest))
7782 >= GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest))))
7783 && sets[i].src_elt != 0)
7785 enum machine_mode new_mode = GET_MODE (SUBREG_REG (dest));
7786 struct table_elt *elt, *classp = 0;
7788 for (elt = sets[i].src_elt->first_same_value; elt;
7789 elt = elt->next_same_value)
7791 rtx new_src = 0;
7792 unsigned src_hash;
7793 struct table_elt *src_elt;
7795 /* Ignore invalid entries. */
7796 if (GET_CODE (elt->exp) != REG
7797 && ! exp_equiv_p (elt->exp, elt->exp, 1, 0))
7798 continue;
7800 new_src = gen_lowpart_if_possible (new_mode, elt->exp);
7801 if (new_src == 0)
7802 new_src = gen_rtx_SUBREG (new_mode, elt->exp, 0);
7804 src_hash = HASH (new_src, new_mode);
7805 src_elt = lookup (new_src, src_hash, new_mode);
7807 /* Put the new source in the hash table is if isn't
7808 already. */
7809 if (src_elt == 0)
7811 if (insert_regs (new_src, classp, 0))
7813 rehash_using_reg (new_src);
7814 src_hash = HASH (new_src, new_mode);
7816 src_elt = insert (new_src, classp, src_hash, new_mode);
7817 src_elt->in_memory = elt->in_memory;
7818 src_elt->in_struct = elt->in_struct;
7820 else if (classp && classp != src_elt->first_same_value)
7821 /* Show that two things that we've seen before are
7822 actually the same. */
7823 merge_equiv_classes (src_elt, classp);
7825 classp = src_elt->first_same_value;
7826 /* Ignore invalid entries. */
7827 while (classp
7828 && GET_CODE (classp->exp) != REG
7829 && ! exp_equiv_p (classp->exp, classp->exp, 1, 0))
7830 classp = classp->next_same_value;
7835 /* Special handling for (set REG0 REG1)
7836 where REG0 is the "cheapest", cheaper than REG1.
7837 After cse, REG1 will probably not be used in the sequel,
7838 so (if easily done) change this insn to (set REG1 REG0) and
7839 replace REG1 with REG0 in the previous insn that computed their value.
7840 Then REG1 will become a dead store and won't cloud the situation
7841 for later optimizations.
7843 Do not make this change if REG1 is a hard register, because it will
7844 then be used in the sequel and we may be changing a two-operand insn
7845 into a three-operand insn.
7847 Also do not do this if we are operating on a copy of INSN.
7849 Also don't do this if INSN ends a libcall; this would cause an unrelated
7850 register to be set in the middle of a libcall, and we then get bad code
7851 if the libcall is deleted. */
7853 if (n_sets == 1 && sets[0].rtl && GET_CODE (SET_DEST (sets[0].rtl)) == REG
7854 && NEXT_INSN (PREV_INSN (insn)) == insn
7855 && GET_CODE (SET_SRC (sets[0].rtl)) == REG
7856 && REGNO (SET_SRC (sets[0].rtl)) >= FIRST_PSEUDO_REGISTER
7857 && REGNO_QTY_VALID_P (REGNO (SET_SRC (sets[0].rtl)))
7858 && (qty_first_reg[REG_QTY (REGNO (SET_SRC (sets[0].rtl)))]
7859 == REGNO (SET_DEST (sets[0].rtl)))
7860 && ! find_reg_note (insn, REG_RETVAL, NULL_RTX))
7862 rtx prev = PREV_INSN (insn);
7863 while (prev && GET_CODE (prev) == NOTE)
7864 prev = PREV_INSN (prev);
7866 if (prev && GET_CODE (prev) == INSN && GET_CODE (PATTERN (prev)) == SET
7867 && SET_DEST (PATTERN (prev)) == SET_SRC (sets[0].rtl))
7869 rtx dest = SET_DEST (sets[0].rtl);
7870 rtx note = find_reg_note (prev, REG_EQUIV, NULL_RTX);
7872 validate_change (prev, & SET_DEST (PATTERN (prev)), dest, 1);
7873 validate_change (insn, & SET_DEST (sets[0].rtl),
7874 SET_SRC (sets[0].rtl), 1);
7875 validate_change (insn, & SET_SRC (sets[0].rtl), dest, 1);
7876 apply_change_group ();
7878 /* If REG1 was equivalent to a constant, REG0 is not. */
7879 if (note)
7880 PUT_REG_NOTE_KIND (note, REG_EQUAL);
7882 /* If there was a REG_WAS_0 note on PREV, remove it. Move
7883 any REG_WAS_0 note on INSN to PREV. */
7884 note = find_reg_note (prev, REG_WAS_0, NULL_RTX);
7885 if (note)
7886 remove_note (prev, note);
7888 note = find_reg_note (insn, REG_WAS_0, NULL_RTX);
7889 if (note)
7891 remove_note (insn, note);
7892 XEXP (note, 1) = REG_NOTES (prev);
7893 REG_NOTES (prev) = note;
7896 /* If INSN has a REG_EQUAL note, and this note mentions REG0,
7897 then we must delete it, because the value in REG0 has changed. */
7898 note = find_reg_note (insn, REG_EQUAL, NULL_RTX);
7899 if (note && reg_mentioned_p (dest, XEXP (note, 0)))
7900 remove_note (insn, note);
7904 /* If this is a conditional jump insn, record any known equivalences due to
7905 the condition being tested. */
7907 last_jump_equiv_class = 0;
7908 if (GET_CODE (insn) == JUMP_INSN
7909 && n_sets == 1 && GET_CODE (x) == SET
7910 && GET_CODE (SET_SRC (x)) == IF_THEN_ELSE)
7911 record_jump_equiv (insn, 0);
7913 #ifdef HAVE_cc0
7914 /* If the previous insn set CC0 and this insn no longer references CC0,
7915 delete the previous insn. Here we use the fact that nothing expects CC0
7916 to be valid over an insn, which is true until the final pass. */
7917 if (prev_insn && GET_CODE (prev_insn) == INSN
7918 && (tem = single_set (prev_insn)) != 0
7919 && SET_DEST (tem) == cc0_rtx
7920 && ! reg_mentioned_p (cc0_rtx, x))
7922 PUT_CODE (prev_insn, NOTE);
7923 NOTE_LINE_NUMBER (prev_insn) = NOTE_INSN_DELETED;
7924 NOTE_SOURCE_FILE (prev_insn) = 0;
7927 prev_insn_cc0 = this_insn_cc0;
7928 prev_insn_cc0_mode = this_insn_cc0_mode;
7929 #endif
7931 prev_insn = insn;
7934 /* Remove from the hash table all expressions that reference memory. */
7935 static void
7936 invalidate_memory ()
7938 register int i;
7939 register struct table_elt *p, *next;
7941 for (i = 0; i < NBUCKETS; i++)
7942 for (p = table[i]; p; p = next)
7944 next = p->next_same_hash;
7945 if (p->in_memory)
7946 remove_from_table (p, i);
7950 /* XXX ??? The name of this function bears little resemblance to
7951 what this function actually does. FIXME. */
7952 static int
7953 note_mem_written (addr)
7954 register rtx addr;
7956 /* Pushing or popping the stack invalidates just the stack pointer. */
7957 if ((GET_CODE (addr) == PRE_DEC || GET_CODE (addr) == PRE_INC
7958 || GET_CODE (addr) == POST_DEC || GET_CODE (addr) == POST_INC)
7959 && GET_CODE (XEXP (addr, 0)) == REG
7960 && REGNO (XEXP (addr, 0)) == STACK_POINTER_REGNUM)
7962 if (REG_TICK (STACK_POINTER_REGNUM) >= 0)
7963 REG_TICK (STACK_POINTER_REGNUM)++;
7965 /* This should be *very* rare. */
7966 if (TEST_HARD_REG_BIT (hard_regs_in_table, STACK_POINTER_REGNUM))
7967 invalidate (stack_pointer_rtx, VOIDmode);
7968 return 1;
7970 return 0;
7973 /* Perform invalidation on the basis of everything about an insn
7974 except for invalidating the actual places that are SET in it.
7975 This includes the places CLOBBERed, and anything that might
7976 alias with something that is SET or CLOBBERed.
7978 X is the pattern of the insn. */
7980 static void
7981 invalidate_from_clobbers (x)
7982 rtx x;
7984 if (GET_CODE (x) == CLOBBER)
7986 rtx ref = XEXP (x, 0);
7987 if (ref)
7989 if (GET_CODE (ref) == REG || GET_CODE (ref) == SUBREG
7990 || GET_CODE (ref) == MEM)
7991 invalidate (ref, VOIDmode);
7992 else if (GET_CODE (ref) == STRICT_LOW_PART
7993 || GET_CODE (ref) == ZERO_EXTRACT)
7994 invalidate (XEXP (ref, 0), GET_MODE (ref));
7997 else if (GET_CODE (x) == PARALLEL)
7999 register int i;
8000 for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
8002 register rtx y = XVECEXP (x, 0, i);
8003 if (GET_CODE (y) == CLOBBER)
8005 rtx ref = XEXP (y, 0);
8006 if (GET_CODE (ref) == REG || GET_CODE (ref) == SUBREG
8007 || GET_CODE (ref) == MEM)
8008 invalidate (ref, VOIDmode);
8009 else if (GET_CODE (ref) == STRICT_LOW_PART
8010 || GET_CODE (ref) == ZERO_EXTRACT)
8011 invalidate (XEXP (ref, 0), GET_MODE (ref));
8017 /* Process X, part of the REG_NOTES of an insn. Look at any REG_EQUAL notes
8018 and replace any registers in them with either an equivalent constant
8019 or the canonical form of the register. If we are inside an address,
8020 only do this if the address remains valid.
8022 OBJECT is 0 except when within a MEM in which case it is the MEM.
8024 Return the replacement for X. */
8026 static rtx
8027 cse_process_notes (x, object)
8028 rtx x;
8029 rtx object;
8031 enum rtx_code code = GET_CODE (x);
8032 const char *fmt = GET_RTX_FORMAT (code);
8033 int i;
8035 switch (code)
8037 case CONST_INT:
8038 case CONST:
8039 case SYMBOL_REF:
8040 case LABEL_REF:
8041 case CONST_DOUBLE:
8042 case PC:
8043 case CC0:
8044 case LO_SUM:
8045 return x;
8047 case MEM:
8048 XEXP (x, 0) = cse_process_notes (XEXP (x, 0), x);
8049 return x;
8051 case EXPR_LIST:
8052 case INSN_LIST:
8053 if (REG_NOTE_KIND (x) == REG_EQUAL)
8054 XEXP (x, 0) = cse_process_notes (XEXP (x, 0), NULL_RTX);
8055 if (XEXP (x, 1))
8056 XEXP (x, 1) = cse_process_notes (XEXP (x, 1), NULL_RTX);
8057 return x;
8059 case SIGN_EXTEND:
8060 case ZERO_EXTEND:
8061 case SUBREG:
8063 rtx new = cse_process_notes (XEXP (x, 0), object);
8064 /* We don't substitute VOIDmode constants into these rtx,
8065 since they would impede folding. */
8066 if (GET_MODE (new) != VOIDmode)
8067 validate_change (object, &XEXP (x, 0), new, 0);
8068 return x;
8071 case REG:
8072 i = REG_QTY (REGNO (x));
8074 /* Return a constant or a constant register. */
8075 if (REGNO_QTY_VALID_P (REGNO (x))
8076 && qty_const[i] != 0
8077 && (CONSTANT_P (qty_const[i])
8078 || GET_CODE (qty_const[i]) == REG))
8080 rtx new = gen_lowpart_if_possible (GET_MODE (x), qty_const[i]);
8081 if (new)
8082 return new;
8085 /* Otherwise, canonicalize this register. */
8086 return canon_reg (x, NULL_RTX);
8088 default:
8089 break;
8092 for (i = 0; i < GET_RTX_LENGTH (code); i++)
8093 if (fmt[i] == 'e')
8094 validate_change (object, &XEXP (x, i),
8095 cse_process_notes (XEXP (x, i), object), 0);
8097 return x;
8100 /* Find common subexpressions between the end test of a loop and the beginning
8101 of the loop. LOOP_START is the CODE_LABEL at the start of a loop.
8103 Often we have a loop where an expression in the exit test is used
8104 in the body of the loop. For example "while (*p) *q++ = *p++;".
8105 Because of the way we duplicate the loop exit test in front of the loop,
8106 however, we don't detect that common subexpression. This will be caught
8107 when global cse is implemented, but this is a quite common case.
8109 This function handles the most common cases of these common expressions.
8110 It is called after we have processed the basic block ending with the
8111 NOTE_INSN_LOOP_END note that ends a loop and the previous JUMP_INSN
8112 jumps to a label used only once. */
8114 static void
8115 cse_around_loop (loop_start)
8116 rtx loop_start;
8118 rtx insn;
8119 int i;
8120 struct table_elt *p;
8122 /* If the jump at the end of the loop doesn't go to the start, we don't
8123 do anything. */
8124 for (insn = PREV_INSN (loop_start);
8125 insn && (GET_CODE (insn) == NOTE && NOTE_LINE_NUMBER (insn) >= 0);
8126 insn = PREV_INSN (insn))
8129 if (insn == 0
8130 || GET_CODE (insn) != NOTE
8131 || NOTE_LINE_NUMBER (insn) != NOTE_INSN_LOOP_BEG)
8132 return;
8134 /* If the last insn of the loop (the end test) was an NE comparison,
8135 we will interpret it as an EQ comparison, since we fell through
8136 the loop. Any equivalences resulting from that comparison are
8137 therefore not valid and must be invalidated. */
8138 if (last_jump_equiv_class)
8139 for (p = last_jump_equiv_class->first_same_value; p;
8140 p = p->next_same_value)
8142 if (GET_CODE (p->exp) == MEM || GET_CODE (p->exp) == REG
8143 || (GET_CODE (p->exp) == SUBREG
8144 && GET_CODE (SUBREG_REG (p->exp)) == REG))
8145 invalidate (p->exp, VOIDmode);
8146 else if (GET_CODE (p->exp) == STRICT_LOW_PART
8147 || GET_CODE (p->exp) == ZERO_EXTRACT)
8148 invalidate (XEXP (p->exp, 0), GET_MODE (p->exp));
8151 /* Process insns starting after LOOP_START until we hit a CALL_INSN or
8152 a CODE_LABEL (we could handle a CALL_INSN, but it isn't worth it).
8154 The only thing we do with SET_DEST is invalidate entries, so we
8155 can safely process each SET in order. It is slightly less efficient
8156 to do so, but we only want to handle the most common cases.
8158 The gen_move_insn call in cse_set_around_loop may create new pseudos.
8159 These pseudos won't have valid entries in any of the tables indexed
8160 by register number, such as reg_qty. We avoid out-of-range array
8161 accesses by not processing any instructions created after cse started. */
8163 for (insn = NEXT_INSN (loop_start);
8164 GET_CODE (insn) != CALL_INSN && GET_CODE (insn) != CODE_LABEL
8165 && INSN_UID (insn) < max_insn_uid
8166 && ! (GET_CODE (insn) == NOTE
8167 && NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_END);
8168 insn = NEXT_INSN (insn))
8170 if (GET_RTX_CLASS (GET_CODE (insn)) == 'i'
8171 && (GET_CODE (PATTERN (insn)) == SET
8172 || GET_CODE (PATTERN (insn)) == CLOBBER))
8173 cse_set_around_loop (PATTERN (insn), insn, loop_start);
8174 else if (GET_RTX_CLASS (GET_CODE (insn)) == 'i'
8175 && GET_CODE (PATTERN (insn)) == PARALLEL)
8176 for (i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
8177 if (GET_CODE (XVECEXP (PATTERN (insn), 0, i)) == SET
8178 || GET_CODE (XVECEXP (PATTERN (insn), 0, i)) == CLOBBER)
8179 cse_set_around_loop (XVECEXP (PATTERN (insn), 0, i), insn,
8180 loop_start);
8184 /* Process one SET of an insn that was skipped. We ignore CLOBBERs
8185 since they are done elsewhere. This function is called via note_stores. */
8187 static void
8188 invalidate_skipped_set (dest, set)
8189 rtx set;
8190 rtx dest;
8192 enum rtx_code code = GET_CODE (dest);
8194 if (code == MEM
8195 && ! note_mem_written (dest) /* If this is not a stack push ... */
8196 /* There are times when an address can appear varying and be a PLUS
8197 during this scan when it would be a fixed address were we to know
8198 the proper equivalences. So invalidate all memory if there is
8199 a BLKmode or nonscalar memory reference or a reference to a
8200 variable address. */
8201 && (MEM_IN_STRUCT_P (dest) || GET_MODE (dest) == BLKmode
8202 || cse_rtx_varies_p (XEXP (dest, 0))))
8204 invalidate_memory ();
8205 return;
8208 if (GET_CODE (set) == CLOBBER
8209 #ifdef HAVE_cc0
8210 || dest == cc0_rtx
8211 #endif
8212 || dest == pc_rtx)
8213 return;
8215 if (code == STRICT_LOW_PART || code == ZERO_EXTRACT)
8216 invalidate (XEXP (dest, 0), GET_MODE (dest));
8217 else if (code == REG || code == SUBREG || code == MEM)
8218 invalidate (dest, VOIDmode);
8221 /* Invalidate all insns from START up to the end of the function or the
8222 next label. This called when we wish to CSE around a block that is
8223 conditionally executed. */
8225 static void
8226 invalidate_skipped_block (start)
8227 rtx start;
8229 rtx insn;
8231 for (insn = start; insn && GET_CODE (insn) != CODE_LABEL;
8232 insn = NEXT_INSN (insn))
8234 if (GET_RTX_CLASS (GET_CODE (insn)) != 'i')
8235 continue;
8237 if (GET_CODE (insn) == CALL_INSN)
8239 if (! CONST_CALL_P (insn))
8240 invalidate_memory ();
8241 invalidate_for_call ();
8244 invalidate_from_clobbers (PATTERN (insn));
8245 note_stores (PATTERN (insn), invalidate_skipped_set);
8249 /* Used for communication between the following two routines; contains a
8250 value to be checked for modification. */
8252 static rtx cse_check_loop_start_value;
8254 /* If modifying X will modify the value in CSE_CHECK_LOOP_START_VALUE,
8255 indicate that fact by setting CSE_CHECK_LOOP_START_VALUE to 0. */
8257 static void
8258 cse_check_loop_start (x, set)
8259 rtx x;
8260 rtx set ATTRIBUTE_UNUSED;
8262 if (cse_check_loop_start_value == 0
8263 || GET_CODE (x) == CC0 || GET_CODE (x) == PC)
8264 return;
8266 if ((GET_CODE (x) == MEM && GET_CODE (cse_check_loop_start_value) == MEM)
8267 || reg_overlap_mentioned_p (x, cse_check_loop_start_value))
8268 cse_check_loop_start_value = 0;
8271 /* X is a SET or CLOBBER contained in INSN that was found near the start of
8272 a loop that starts with the label at LOOP_START.
8274 If X is a SET, we see if its SET_SRC is currently in our hash table.
8275 If so, we see if it has a value equal to some register used only in the
8276 loop exit code (as marked by jump.c).
8278 If those two conditions are true, we search backwards from the start of
8279 the loop to see if that same value was loaded into a register that still
8280 retains its value at the start of the loop.
8282 If so, we insert an insn after the load to copy the destination of that
8283 load into the equivalent register and (try to) replace our SET_SRC with that
8284 register.
8286 In any event, we invalidate whatever this SET or CLOBBER modifies. */
8288 static void
8289 cse_set_around_loop (x, insn, loop_start)
8290 rtx x;
8291 rtx insn;
8292 rtx loop_start;
8294 struct table_elt *src_elt;
8296 /* If this is a SET, see if we can replace SET_SRC, but ignore SETs that
8297 are setting PC or CC0 or whose SET_SRC is already a register. */
8298 if (GET_CODE (x) == SET
8299 && GET_CODE (SET_DEST (x)) != PC && GET_CODE (SET_DEST (x)) != CC0
8300 && GET_CODE (SET_SRC (x)) != REG)
8302 src_elt = lookup (SET_SRC (x),
8303 HASH (SET_SRC (x), GET_MODE (SET_DEST (x))),
8304 GET_MODE (SET_DEST (x)));
8306 if (src_elt)
8307 for (src_elt = src_elt->first_same_value; src_elt;
8308 src_elt = src_elt->next_same_value)
8309 if (GET_CODE (src_elt->exp) == REG && REG_LOOP_TEST_P (src_elt->exp)
8310 && COST (src_elt->exp) < COST (SET_SRC (x)))
8312 rtx p, set;
8314 /* Look for an insn in front of LOOP_START that sets
8315 something in the desired mode to SET_SRC (x) before we hit
8316 a label or CALL_INSN. */
8318 for (p = prev_nonnote_insn (loop_start);
8319 p && GET_CODE (p) != CALL_INSN
8320 && GET_CODE (p) != CODE_LABEL;
8321 p = prev_nonnote_insn (p))
8322 if ((set = single_set (p)) != 0
8323 && GET_CODE (SET_DEST (set)) == REG
8324 && GET_MODE (SET_DEST (set)) == src_elt->mode
8325 && rtx_equal_p (SET_SRC (set), SET_SRC (x)))
8327 /* We now have to ensure that nothing between P
8328 and LOOP_START modified anything referenced in
8329 SET_SRC (x). We know that nothing within the loop
8330 can modify it, or we would have invalidated it in
8331 the hash table. */
8332 rtx q;
8334 cse_check_loop_start_value = SET_SRC (x);
8335 for (q = p; q != loop_start; q = NEXT_INSN (q))
8336 if (GET_RTX_CLASS (GET_CODE (q)) == 'i')
8337 note_stores (PATTERN (q), cse_check_loop_start);
8339 /* If nothing was changed and we can replace our
8340 SET_SRC, add an insn after P to copy its destination
8341 to what we will be replacing SET_SRC with. */
8342 if (cse_check_loop_start_value
8343 && validate_change (insn, &SET_SRC (x),
8344 src_elt->exp, 0))
8346 /* If this creates new pseudos, this is unsafe,
8347 because the regno of new pseudo is unsuitable
8348 to index into reg_qty when cse_insn processes
8349 the new insn. Therefore, if a new pseudo was
8350 created, discard this optimization. */
8351 int nregs = max_reg_num ();
8352 rtx move
8353 = gen_move_insn (src_elt->exp, SET_DEST (set));
8354 if (nregs != max_reg_num ())
8356 if (! validate_change (insn, &SET_SRC (x),
8357 SET_SRC (set), 0))
8358 abort ();
8360 else
8361 emit_insn_after (move, p);
8363 break;
8368 /* Now invalidate anything modified by X. */
8369 note_mem_written (SET_DEST (x));
8371 /* See comment on similar code in cse_insn for explanation of these tests. */
8372 if (GET_CODE (SET_DEST (x)) == REG || GET_CODE (SET_DEST (x)) == SUBREG
8373 || GET_CODE (SET_DEST (x)) == MEM)
8374 invalidate (SET_DEST (x), VOIDmode);
8375 else if (GET_CODE (SET_DEST (x)) == STRICT_LOW_PART
8376 || GET_CODE (SET_DEST (x)) == ZERO_EXTRACT)
8377 invalidate (XEXP (SET_DEST (x), 0), GET_MODE (SET_DEST (x)));
8380 /* Find the end of INSN's basic block and return its range,
8381 the total number of SETs in all the insns of the block, the last insn of the
8382 block, and the branch path.
8384 The branch path indicates which branches should be followed. If a non-zero
8385 path size is specified, the block should be rescanned and a different set
8386 of branches will be taken. The branch path is only used if
8387 FLAG_CSE_FOLLOW_JUMPS or FLAG_CSE_SKIP_BLOCKS is non-zero.
8389 DATA is a pointer to a struct cse_basic_block_data, defined below, that is
8390 used to describe the block. It is filled in with the information about
8391 the current block. The incoming structure's branch path, if any, is used
8392 to construct the output branch path. */
8394 void
8395 cse_end_of_basic_block (insn, data, follow_jumps, after_loop, skip_blocks)
8396 rtx insn;
8397 struct cse_basic_block_data *data;
8398 int follow_jumps;
8399 int after_loop;
8400 int skip_blocks;
8402 rtx p = insn, q;
8403 int nsets = 0;
8404 int low_cuid = INSN_CUID (insn), high_cuid = INSN_CUID (insn);
8405 rtx next = GET_RTX_CLASS (GET_CODE (insn)) == 'i' ? insn : next_real_insn (insn);
8406 int path_size = data->path_size;
8407 int path_entry = 0;
8408 int i;
8410 /* Update the previous branch path, if any. If the last branch was
8411 previously TAKEN, mark it NOT_TAKEN. If it was previously NOT_TAKEN,
8412 shorten the path by one and look at the previous branch. We know that
8413 at least one branch must have been taken if PATH_SIZE is non-zero. */
8414 while (path_size > 0)
8416 if (data->path[path_size - 1].status != NOT_TAKEN)
8418 data->path[path_size - 1].status = NOT_TAKEN;
8419 break;
8421 else
8422 path_size--;
8425 /* Scan to end of this basic block. */
8426 while (p && GET_CODE (p) != CODE_LABEL)
8428 /* Don't cse out the end of a loop. This makes a difference
8429 only for the unusual loops that always execute at least once;
8430 all other loops have labels there so we will stop in any case.
8431 Cse'ing out the end of the loop is dangerous because it
8432 might cause an invariant expression inside the loop
8433 to be reused after the end of the loop. This would make it
8434 hard to move the expression out of the loop in loop.c,
8435 especially if it is one of several equivalent expressions
8436 and loop.c would like to eliminate it.
8438 If we are running after loop.c has finished, we can ignore
8439 the NOTE_INSN_LOOP_END. */
8441 if (! after_loop && GET_CODE (p) == NOTE
8442 && NOTE_LINE_NUMBER (p) == NOTE_INSN_LOOP_END)
8443 break;
8445 /* Don't cse over a call to setjmp; on some machines (eg vax)
8446 the regs restored by the longjmp come from
8447 a later time than the setjmp. */
8448 if (GET_CODE (p) == NOTE
8449 && NOTE_LINE_NUMBER (p) == NOTE_INSN_SETJMP)
8450 break;
8452 /* A PARALLEL can have lots of SETs in it,
8453 especially if it is really an ASM_OPERANDS. */
8454 if (GET_RTX_CLASS (GET_CODE (p)) == 'i'
8455 && GET_CODE (PATTERN (p)) == PARALLEL)
8456 nsets += XVECLEN (PATTERN (p), 0);
8457 else if (GET_CODE (p) != NOTE)
8458 nsets += 1;
8460 /* Ignore insns made by CSE; they cannot affect the boundaries of
8461 the basic block. */
8463 if (INSN_UID (p) <= max_uid && INSN_CUID (p) > high_cuid)
8464 high_cuid = INSN_CUID (p);
8465 if (INSN_UID (p) <= max_uid && INSN_CUID (p) < low_cuid)
8466 low_cuid = INSN_CUID (p);
8468 /* See if this insn is in our branch path. If it is and we are to
8469 take it, do so. */
8470 if (path_entry < path_size && data->path[path_entry].branch == p)
8472 if (data->path[path_entry].status != NOT_TAKEN)
8473 p = JUMP_LABEL (p);
8475 /* Point to next entry in path, if any. */
8476 path_entry++;
8479 /* If this is a conditional jump, we can follow it if -fcse-follow-jumps
8480 was specified, we haven't reached our maximum path length, there are
8481 insns following the target of the jump, this is the only use of the
8482 jump label, and the target label is preceded by a BARRIER.
8484 Alternatively, we can follow the jump if it branches around a
8485 block of code and there are no other branches into the block.
8486 In this case invalidate_skipped_block will be called to invalidate any
8487 registers set in the block when following the jump. */
8489 else if ((follow_jumps || skip_blocks) && path_size < PATHLENGTH - 1
8490 && GET_CODE (p) == JUMP_INSN
8491 && GET_CODE (PATTERN (p)) == SET
8492 && GET_CODE (SET_SRC (PATTERN (p))) == IF_THEN_ELSE
8493 && JUMP_LABEL (p) != 0
8494 && LABEL_NUSES (JUMP_LABEL (p)) == 1
8495 && NEXT_INSN (JUMP_LABEL (p)) != 0)
8497 for (q = PREV_INSN (JUMP_LABEL (p)); q; q = PREV_INSN (q))
8498 if ((GET_CODE (q) != NOTE
8499 || NOTE_LINE_NUMBER (q) == NOTE_INSN_LOOP_END
8500 || NOTE_LINE_NUMBER (q) == NOTE_INSN_SETJMP)
8501 && (GET_CODE (q) != CODE_LABEL || LABEL_NUSES (q) != 0))
8502 break;
8504 /* If we ran into a BARRIER, this code is an extension of the
8505 basic block when the branch is taken. */
8506 if (follow_jumps && q != 0 && GET_CODE (q) == BARRIER)
8508 /* Don't allow ourself to keep walking around an
8509 always-executed loop. */
8510 if (next_real_insn (q) == next)
8512 p = NEXT_INSN (p);
8513 continue;
8516 /* Similarly, don't put a branch in our path more than once. */
8517 for (i = 0; i < path_entry; i++)
8518 if (data->path[i].branch == p)
8519 break;
8521 if (i != path_entry)
8522 break;
8524 data->path[path_entry].branch = p;
8525 data->path[path_entry++].status = TAKEN;
8527 /* This branch now ends our path. It was possible that we
8528 didn't see this branch the last time around (when the
8529 insn in front of the target was a JUMP_INSN that was
8530 turned into a no-op). */
8531 path_size = path_entry;
8533 p = JUMP_LABEL (p);
8534 /* Mark block so we won't scan it again later. */
8535 PUT_MODE (NEXT_INSN (p), QImode);
8537 /* Detect a branch around a block of code. */
8538 else if (skip_blocks && q != 0 && GET_CODE (q) != CODE_LABEL)
8540 register rtx tmp;
8542 if (next_real_insn (q) == next)
8544 p = NEXT_INSN (p);
8545 continue;
8548 for (i = 0; i < path_entry; i++)
8549 if (data->path[i].branch == p)
8550 break;
8552 if (i != path_entry)
8553 break;
8555 /* This is no_labels_between_p (p, q) with an added check for
8556 reaching the end of a function (in case Q precedes P). */
8557 for (tmp = NEXT_INSN (p); tmp && tmp != q; tmp = NEXT_INSN (tmp))
8558 if (GET_CODE (tmp) == CODE_LABEL)
8559 break;
8561 if (tmp == q)
8563 data->path[path_entry].branch = p;
8564 data->path[path_entry++].status = AROUND;
8566 path_size = path_entry;
8568 p = JUMP_LABEL (p);
8569 /* Mark block so we won't scan it again later. */
8570 PUT_MODE (NEXT_INSN (p), QImode);
8574 p = NEXT_INSN (p);
8577 data->low_cuid = low_cuid;
8578 data->high_cuid = high_cuid;
8579 data->nsets = nsets;
8580 data->last = p;
8582 /* If all jumps in the path are not taken, set our path length to zero
8583 so a rescan won't be done. */
8584 for (i = path_size - 1; i >= 0; i--)
8585 if (data->path[i].status != NOT_TAKEN)
8586 break;
8588 if (i == -1)
8589 data->path_size = 0;
8590 else
8591 data->path_size = path_size;
8593 /* End the current branch path. */
8594 data->path[path_size].branch = 0;
8597 /* Perform cse on the instructions of a function.
8598 F is the first instruction.
8599 NREGS is one plus the highest pseudo-reg number used in the instruction.
8601 AFTER_LOOP is 1 if this is the cse call done after loop optimization
8602 (only if -frerun-cse-after-loop).
8604 Returns 1 if jump_optimize should be redone due to simplifications
8605 in conditional jump instructions. */
8608 cse_main (f, nregs, after_loop, file)
8609 rtx f;
8610 int nregs;
8611 int after_loop;
8612 FILE *file;
8614 struct cse_basic_block_data val;
8615 register rtx insn = f;
8616 register int i;
8618 cse_jumps_altered = 0;
8619 recorded_label_ref = 0;
8620 constant_pool_entries_cost = 0;
8621 val.path_size = 0;
8623 init_recog ();
8624 init_alias_analysis ();
8626 max_reg = nregs;
8628 max_insn_uid = get_max_uid ();
8630 reg_next_eqv = (int *) alloca (nregs * sizeof (int));
8631 reg_prev_eqv = (int *) alloca (nregs * sizeof (int));
8633 #ifdef LOAD_EXTEND_OP
8635 /* Allocate scratch rtl here. cse_insn will fill in the memory reference
8636 and change the code and mode as appropriate. */
8637 memory_extend_rtx = gen_rtx_ZERO_EXTEND (VOIDmode, NULL_RTX);
8638 #endif
8640 /* Discard all the free elements of the previous function
8641 since they are allocated in the temporarily obstack. */
8642 bzero ((char *) table, sizeof table);
8643 free_element_chain = 0;
8644 n_elements_made = 0;
8646 /* Find the largest uid. */
8648 max_uid = get_max_uid ();
8649 uid_cuid = (int *) alloca ((max_uid + 1) * sizeof (int));
8650 bzero ((char *) uid_cuid, (max_uid + 1) * sizeof (int));
8652 /* Compute the mapping from uids to cuids.
8653 CUIDs are numbers assigned to insns, like uids,
8654 except that cuids increase monotonically through the code.
8655 Don't assign cuids to line-number NOTEs, so that the distance in cuids
8656 between two insns is not affected by -g. */
8658 for (insn = f, i = 0; insn; insn = NEXT_INSN (insn))
8660 if (GET_CODE (insn) != NOTE
8661 || NOTE_LINE_NUMBER (insn) < 0)
8662 INSN_CUID (insn) = ++i;
8663 else
8664 /* Give a line number note the same cuid as preceding insn. */
8665 INSN_CUID (insn) = i;
8668 /* Initialize which registers are clobbered by calls. */
8670 CLEAR_HARD_REG_SET (regs_invalidated_by_call);
8672 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
8673 if ((call_used_regs[i]
8674 /* Used to check !fixed_regs[i] here, but that isn't safe;
8675 fixed regs are still call-clobbered, and sched can get
8676 confused if they can "live across calls".
8678 The frame pointer is always preserved across calls. The arg
8679 pointer is if it is fixed. The stack pointer usually is, unless
8680 RETURN_POPS_ARGS, in which case an explicit CLOBBER
8681 will be present. If we are generating PIC code, the PIC offset
8682 table register is preserved across calls. */
8684 && i != STACK_POINTER_REGNUM
8685 && i != FRAME_POINTER_REGNUM
8686 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
8687 && i != HARD_FRAME_POINTER_REGNUM
8688 #endif
8689 #if ARG_POINTER_REGNUM != FRAME_POINTER_REGNUM
8690 && ! (i == ARG_POINTER_REGNUM && fixed_regs[i])
8691 #endif
8692 #if defined (PIC_OFFSET_TABLE_REGNUM) && !defined (PIC_OFFSET_TABLE_REG_CALL_CLOBBERED)
8693 && ! (i == PIC_OFFSET_TABLE_REGNUM && flag_pic)
8694 #endif
8696 || global_regs[i])
8697 SET_HARD_REG_BIT (regs_invalidated_by_call, i);
8699 if (ggc_p)
8700 ggc_push_context ();
8702 /* Loop over basic blocks.
8703 Compute the maximum number of qty's needed for each basic block
8704 (which is 2 for each SET). */
8705 insn = f;
8706 while (insn)
8708 cse_end_of_basic_block (insn, &val, flag_cse_follow_jumps, after_loop,
8709 flag_cse_skip_blocks);
8711 /* If this basic block was already processed or has no sets, skip it. */
8712 if (val.nsets == 0 || GET_MODE (insn) == QImode)
8714 PUT_MODE (insn, VOIDmode);
8715 insn = (val.last ? NEXT_INSN (val.last) : 0);
8716 val.path_size = 0;
8717 continue;
8720 cse_basic_block_start = val.low_cuid;
8721 cse_basic_block_end = val.high_cuid;
8722 max_qty = val.nsets * 2;
8724 if (file)
8725 fnotice (file, ";; Processing block from %d to %d, %d sets.\n",
8726 INSN_UID (insn), val.last ? INSN_UID (val.last) : 0,
8727 val.nsets);
8729 /* Make MAX_QTY bigger to give us room to optimize
8730 past the end of this basic block, if that should prove useful. */
8731 if (max_qty < 500)
8732 max_qty = 500;
8734 max_qty += max_reg;
8736 /* If this basic block is being extended by following certain jumps,
8737 (see `cse_end_of_basic_block'), we reprocess the code from the start.
8738 Otherwise, we start after this basic block. */
8739 if (val.path_size > 0)
8740 cse_basic_block (insn, val.last, val.path, 0);
8741 else
8743 int old_cse_jumps_altered = cse_jumps_altered;
8744 rtx temp;
8746 /* When cse changes a conditional jump to an unconditional
8747 jump, we want to reprocess the block, since it will give
8748 us a new branch path to investigate. */
8749 cse_jumps_altered = 0;
8750 temp = cse_basic_block (insn, val.last, val.path, ! after_loop);
8751 if (cse_jumps_altered == 0
8752 || (flag_cse_follow_jumps == 0 && flag_cse_skip_blocks == 0))
8753 insn = temp;
8755 cse_jumps_altered |= old_cse_jumps_altered;
8758 if (ggc_p)
8759 ggc_collect ();
8761 #ifdef USE_C_ALLOCA
8762 alloca (0);
8763 #endif
8766 if (ggc_p)
8767 ggc_pop_context ();
8769 /* Tell refers_to_mem_p that qty_const info is not available. */
8770 qty_const = 0;
8772 if (max_elements_made < n_elements_made)
8773 max_elements_made = n_elements_made;
8775 return cse_jumps_altered || recorded_label_ref;
8778 /* Process a single basic block. FROM and TO and the limits of the basic
8779 block. NEXT_BRANCH points to the branch path when following jumps or
8780 a null path when not following jumps.
8782 AROUND_LOOP is non-zero if we are to try to cse around to the start of a
8783 loop. This is true when we are being called for the last time on a
8784 block and this CSE pass is before loop.c. */
8786 static rtx
8787 cse_basic_block (from, to, next_branch, around_loop)
8788 register rtx from, to;
8789 struct branch_path *next_branch;
8790 int around_loop;
8792 register rtx insn;
8793 int to_usage = 0;
8794 rtx libcall_insn = NULL_RTX;
8795 int num_insns = 0;
8797 /* Each of these arrays is undefined before max_reg, so only allocate
8798 the space actually needed and adjust the start below. */
8800 qty_first_reg = (int *) alloca ((max_qty - max_reg) * sizeof (int));
8801 qty_last_reg = (int *) alloca ((max_qty - max_reg) * sizeof (int));
8802 qty_mode = (enum machine_mode *) alloca ((max_qty - max_reg)
8803 * sizeof (enum machine_mode));
8804 qty_const = (rtx *) alloca ((max_qty - max_reg) * sizeof (rtx));
8805 qty_const_insn = (rtx *) alloca ((max_qty - max_reg) * sizeof (rtx));
8806 qty_comparison_code
8807 = (enum rtx_code *) alloca ((max_qty - max_reg) * sizeof (enum rtx_code));
8808 qty_comparison_qty = (int *) alloca ((max_qty - max_reg) * sizeof (int));
8809 qty_comparison_const = (rtx *) alloca ((max_qty - max_reg) * sizeof (rtx));
8811 qty_first_reg -= max_reg;
8812 qty_last_reg -= max_reg;
8813 qty_mode -= max_reg;
8814 qty_const -= max_reg;
8815 qty_const_insn -= max_reg;
8816 qty_comparison_code -= max_reg;
8817 qty_comparison_qty -= max_reg;
8818 qty_comparison_const -= max_reg;
8820 new_basic_block ();
8822 /* TO might be a label. If so, protect it from being deleted. */
8823 if (to != 0 && GET_CODE (to) == CODE_LABEL)
8824 ++LABEL_NUSES (to);
8826 for (insn = from; insn != to; insn = NEXT_INSN (insn))
8828 register enum rtx_code code = GET_CODE (insn);
8830 /* If we have processed 1,000 insns, flush the hash table to
8831 avoid extreme quadratic behavior. We must not include NOTEs
8832 in the count since there may be more or them when generating
8833 debugging information. If we clear the table at different
8834 times, code generated with -g -O might be different than code
8835 generated with -O but not -g.
8837 ??? This is a real kludge and needs to be done some other way.
8838 Perhaps for 2.9. */
8839 if (code != NOTE && num_insns++ > 1000)
8841 flush_hash_table ();
8842 num_insns = 0;
8845 /* See if this is a branch that is part of the path. If so, and it is
8846 to be taken, do so. */
8847 if (next_branch->branch == insn)
8849 enum taken status = next_branch++->status;
8850 if (status != NOT_TAKEN)
8852 if (status == TAKEN)
8853 record_jump_equiv (insn, 1);
8854 else
8855 invalidate_skipped_block (NEXT_INSN (insn));
8857 /* Set the last insn as the jump insn; it doesn't affect cc0.
8858 Then follow this branch. */
8859 #ifdef HAVE_cc0
8860 prev_insn_cc0 = 0;
8861 #endif
8862 prev_insn = insn;
8863 insn = JUMP_LABEL (insn);
8864 continue;
8868 if (GET_MODE (insn) == QImode)
8869 PUT_MODE (insn, VOIDmode);
8871 if (GET_RTX_CLASS (code) == 'i')
8873 rtx p;
8875 /* Process notes first so we have all notes in canonical forms when
8876 looking for duplicate operations. */
8878 if (REG_NOTES (insn))
8879 REG_NOTES (insn) = cse_process_notes (REG_NOTES (insn), NULL_RTX);
8881 /* Track when we are inside in LIBCALL block. Inside such a block,
8882 we do not want to record destinations. The last insn of a
8883 LIBCALL block is not considered to be part of the block, since
8884 its destination is the result of the block and hence should be
8885 recorded. */
8887 if ((p = find_reg_note (insn, REG_LIBCALL, NULL_RTX)))
8888 libcall_insn = XEXP (p, 0);
8889 else if (find_reg_note (insn, REG_RETVAL, NULL_RTX))
8890 libcall_insn = NULL_RTX;
8892 cse_insn (insn, libcall_insn);
8895 /* If INSN is now an unconditional jump, skip to the end of our
8896 basic block by pretending that we just did the last insn in the
8897 basic block. If we are jumping to the end of our block, show
8898 that we can have one usage of TO. */
8900 if (simplejump_p (insn))
8902 if (to == 0)
8903 return 0;
8905 if (JUMP_LABEL (insn) == to)
8906 to_usage = 1;
8908 /* Maybe TO was deleted because the jump is unconditional.
8909 If so, there is nothing left in this basic block. */
8910 /* ??? Perhaps it would be smarter to set TO
8911 to whatever follows this insn,
8912 and pretend the basic block had always ended here. */
8913 if (INSN_DELETED_P (to))
8914 break;
8916 insn = PREV_INSN (to);
8919 /* See if it is ok to keep on going past the label
8920 which used to end our basic block. Remember that we incremented
8921 the count of that label, so we decrement it here. If we made
8922 a jump unconditional, TO_USAGE will be one; in that case, we don't
8923 want to count the use in that jump. */
8925 if (to != 0 && NEXT_INSN (insn) == to
8926 && GET_CODE (to) == CODE_LABEL && --LABEL_NUSES (to) == to_usage)
8928 struct cse_basic_block_data val;
8929 rtx prev;
8931 insn = NEXT_INSN (to);
8933 /* If TO was the last insn in the function, we are done. */
8934 if (insn == 0)
8935 return 0;
8937 /* If TO was preceded by a BARRIER we are done with this block
8938 because it has no continuation. */
8939 prev = prev_nonnote_insn (to);
8940 if (prev && GET_CODE (prev) == BARRIER)
8941 return insn;
8943 /* Find the end of the following block. Note that we won't be
8944 following branches in this case. */
8945 to_usage = 0;
8946 val.path_size = 0;
8947 cse_end_of_basic_block (insn, &val, 0, 0, 0);
8949 /* If the tables we allocated have enough space left
8950 to handle all the SETs in the next basic block,
8951 continue through it. Otherwise, return,
8952 and that block will be scanned individually. */
8953 if (val.nsets * 2 + next_qty > max_qty)
8954 break;
8956 cse_basic_block_start = val.low_cuid;
8957 cse_basic_block_end = val.high_cuid;
8958 to = val.last;
8960 /* Prevent TO from being deleted if it is a label. */
8961 if (to != 0 && GET_CODE (to) == CODE_LABEL)
8962 ++LABEL_NUSES (to);
8964 /* Back up so we process the first insn in the extension. */
8965 insn = PREV_INSN (insn);
8969 if (next_qty > max_qty)
8970 abort ();
8972 /* If we are running before loop.c, we stopped on a NOTE_INSN_LOOP_END, and
8973 the previous insn is the only insn that branches to the head of a loop,
8974 we can cse into the loop. Don't do this if we changed the jump
8975 structure of a loop unless we aren't going to be following jumps. */
8977 if ((cse_jumps_altered == 0
8978 || (flag_cse_follow_jumps == 0 && flag_cse_skip_blocks == 0))
8979 && around_loop && to != 0
8980 && GET_CODE (to) == NOTE && NOTE_LINE_NUMBER (to) == NOTE_INSN_LOOP_END
8981 && GET_CODE (PREV_INSN (to)) == JUMP_INSN
8982 && JUMP_LABEL (PREV_INSN (to)) != 0
8983 && LABEL_NUSES (JUMP_LABEL (PREV_INSN (to))) == 1)
8984 cse_around_loop (JUMP_LABEL (PREV_INSN (to)));
8986 return to ? NEXT_INSN (to) : 0;
8989 /* Count the number of times registers are used (not set) in X.
8990 COUNTS is an array in which we accumulate the count, INCR is how much
8991 we count each register usage.
8993 Don't count a usage of DEST, which is the SET_DEST of a SET which
8994 contains X in its SET_SRC. This is because such a SET does not
8995 modify the liveness of DEST. */
8997 static void
8998 count_reg_usage (x, counts, dest, incr)
8999 rtx x;
9000 int *counts;
9001 rtx dest;
9002 int incr;
9004 enum rtx_code code;
9005 const char *fmt;
9006 int i, j;
9008 if (x == 0)
9009 return;
9011 switch (code = GET_CODE (x))
9013 case REG:
9014 if (x != dest)
9015 counts[REGNO (x)] += incr;
9016 return;
9018 case PC:
9019 case CC0:
9020 case CONST:
9021 case CONST_INT:
9022 case CONST_DOUBLE:
9023 case SYMBOL_REF:
9024 case LABEL_REF:
9025 return;
9027 case CLOBBER:
9028 /* If we are clobbering a MEM, mark any registers inside the address
9029 as being used. */
9030 if (GET_CODE (XEXP (x, 0)) == MEM)
9031 count_reg_usage (XEXP (XEXP (x, 0), 0), counts, NULL_RTX, incr);
9032 return;
9034 case SET:
9035 /* Unless we are setting a REG, count everything in SET_DEST. */
9036 if (GET_CODE (SET_DEST (x)) != REG)
9037 count_reg_usage (SET_DEST (x), counts, NULL_RTX, incr);
9039 /* If SRC has side-effects, then we can't delete this insn, so the
9040 usage of SET_DEST inside SRC counts.
9042 ??? Strictly-speaking, we might be preserving this insn
9043 because some other SET has side-effects, but that's hard
9044 to do and can't happen now. */
9045 count_reg_usage (SET_SRC (x), counts,
9046 side_effects_p (SET_SRC (x)) ? NULL_RTX : SET_DEST (x),
9047 incr);
9048 return;
9050 case CALL_INSN:
9051 count_reg_usage (CALL_INSN_FUNCTION_USAGE (x), counts, NULL_RTX, incr);
9053 /* ... falls through ... */
9054 case INSN:
9055 case JUMP_INSN:
9056 count_reg_usage (PATTERN (x), counts, NULL_RTX, incr);
9058 /* Things used in a REG_EQUAL note aren't dead since loop may try to
9059 use them. */
9061 count_reg_usage (REG_NOTES (x), counts, NULL_RTX, incr);
9062 return;
9064 case EXPR_LIST:
9065 case INSN_LIST:
9066 if (REG_NOTE_KIND (x) == REG_EQUAL
9067 || (REG_NOTE_KIND (x) != REG_NONNEG && GET_CODE (XEXP (x,0)) == USE))
9068 count_reg_usage (XEXP (x, 0), counts, NULL_RTX, incr);
9069 count_reg_usage (XEXP (x, 1), counts, NULL_RTX, incr);
9070 return;
9072 default:
9073 break;
9076 fmt = GET_RTX_FORMAT (code);
9077 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
9079 if (fmt[i] == 'e')
9080 count_reg_usage (XEXP (x, i), counts, dest, incr);
9081 else if (fmt[i] == 'E')
9082 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
9083 count_reg_usage (XVECEXP (x, i, j), counts, dest, incr);
9087 /* Scan all the insns and delete any that are dead; i.e., they store a register
9088 that is never used or they copy a register to itself.
9090 This is used to remove insns made obviously dead by cse, loop or other
9091 optimizations. It improves the heuristics in loop since it won't try to
9092 move dead invariants out of loops or make givs for dead quantities. The
9093 remaining passes of the compilation are also sped up. */
9095 void
9096 delete_trivially_dead_insns (insns, nreg)
9097 rtx insns;
9098 int nreg;
9100 int *counts = (int *) alloca (nreg * sizeof (int));
9101 rtx insn, prev;
9102 #ifdef HAVE_cc0
9103 rtx tem;
9104 #endif
9105 int i;
9106 int in_libcall = 0, dead_libcall = 0;
9108 /* First count the number of times each register is used. */
9109 bzero ((char *) counts, sizeof (int) * nreg);
9110 for (insn = next_real_insn (insns); insn; insn = next_real_insn (insn))
9111 count_reg_usage (insn, counts, NULL_RTX, 1);
9113 /* Go from the last insn to the first and delete insns that only set unused
9114 registers or copy a register to itself. As we delete an insn, remove
9115 usage counts for registers it uses.
9117 The first jump optimization pass may leave a real insn as the last
9118 insn in the function. We must not skip that insn or we may end
9119 up deleting code that is not really dead. */
9120 insn = get_last_insn ();
9121 if (GET_RTX_CLASS (GET_CODE (insn)) != 'i')
9122 insn = prev_real_insn (insn);
9124 for ( ; insn; insn = prev)
9126 int live_insn = 0;
9127 rtx note;
9129 prev = prev_real_insn (insn);
9131 /* Don't delete any insns that are part of a libcall block unless
9132 we can delete the whole libcall block.
9134 Flow or loop might get confused if we did that. Remember
9135 that we are scanning backwards. */
9136 if (find_reg_note (insn, REG_RETVAL, NULL_RTX))
9138 in_libcall = 1;
9139 live_insn = 1;
9140 dead_libcall = 0;
9142 /* See if there's a REG_EQUAL note on this insn and try to
9143 replace the source with the REG_EQUAL expression.
9145 We assume that insns with REG_RETVALs can only be reg->reg
9146 copies at this point. */
9147 note = find_reg_note (insn, REG_EQUAL, NULL_RTX);
9148 if (note)
9150 rtx set = single_set (insn);
9151 if (set
9152 && validate_change (insn, &SET_SRC (set), XEXP (note, 0), 0))
9154 remove_note (insn,
9155 find_reg_note (insn, REG_RETVAL, NULL_RTX));
9156 dead_libcall = 1;
9160 else if (in_libcall)
9161 live_insn = ! dead_libcall;
9162 else if (GET_CODE (PATTERN (insn)) == SET)
9164 if (GET_CODE (SET_DEST (PATTERN (insn))) == REG
9165 && SET_DEST (PATTERN (insn)) == SET_SRC (PATTERN (insn)))
9168 #ifdef HAVE_cc0
9169 else if (GET_CODE (SET_DEST (PATTERN (insn))) == CC0
9170 && ! side_effects_p (SET_SRC (PATTERN (insn)))
9171 && ((tem = next_nonnote_insn (insn)) == 0
9172 || GET_RTX_CLASS (GET_CODE (tem)) != 'i'
9173 || ! reg_referenced_p (cc0_rtx, PATTERN (tem))))
9175 #endif
9176 else if (GET_CODE (SET_DEST (PATTERN (insn))) != REG
9177 || REGNO (SET_DEST (PATTERN (insn))) < FIRST_PSEUDO_REGISTER
9178 || counts[REGNO (SET_DEST (PATTERN (insn)))] != 0
9179 || side_effects_p (SET_SRC (PATTERN (insn)))
9180 /* An ADDRESSOF expression can turn into a use of the
9181 internal arg pointer, so always consider the
9182 internal arg pointer live. If it is truly dead,
9183 flow will delete the initializing insn. */
9184 || (SET_DEST (PATTERN (insn))
9185 == current_function_internal_arg_pointer))
9186 live_insn = 1;
9188 else if (GET_CODE (PATTERN (insn)) == PARALLEL)
9189 for (i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
9191 rtx elt = XVECEXP (PATTERN (insn), 0, i);
9193 if (GET_CODE (elt) == SET)
9195 if (GET_CODE (SET_DEST (elt)) == REG
9196 && SET_DEST (elt) == SET_SRC (elt))
9199 #ifdef HAVE_cc0
9200 else if (GET_CODE (SET_DEST (elt)) == CC0
9201 && ! side_effects_p (SET_SRC (elt))
9202 && ((tem = next_nonnote_insn (insn)) == 0
9203 || GET_RTX_CLASS (GET_CODE (tem)) != 'i'
9204 || ! reg_referenced_p (cc0_rtx, PATTERN (tem))))
9206 #endif
9207 else if (GET_CODE (SET_DEST (elt)) != REG
9208 || REGNO (SET_DEST (elt)) < FIRST_PSEUDO_REGISTER
9209 || counts[REGNO (SET_DEST (elt))] != 0
9210 || side_effects_p (SET_SRC (elt))
9211 /* An ADDRESSOF expression can turn into a use of the
9212 internal arg pointer, so always consider the
9213 internal arg pointer live. If it is truly dead,
9214 flow will delete the initializing insn. */
9215 || (SET_DEST (elt)
9216 == current_function_internal_arg_pointer))
9217 live_insn = 1;
9219 else if (GET_CODE (elt) != CLOBBER && GET_CODE (elt) != USE)
9220 live_insn = 1;
9222 else
9223 live_insn = 1;
9225 /* If this is a dead insn, delete it and show registers in it aren't
9226 being used. */
9228 if (! live_insn)
9230 count_reg_usage (insn, counts, NULL_RTX, -1);
9231 delete_insn (insn);
9234 if (find_reg_note (insn, REG_LIBCALL, NULL_RTX))
9236 in_libcall = 0;
9237 dead_libcall = 0;