1 /* Library support for -fsplit-stack. */
2 /* Copyright (C) 2009-2015 Free Software Foundation, Inc.
3 Contributed by Ian Lance Taylor <iant@google.com>.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
17 Under Section 7 of GPL version 3, you are granted additional
18 permissions described in the GCC Runtime Library Exception, version
19 3.1, as published by the Free Software Foundation.
21 You should have received a copy of the GNU General Public License and
22 a copy of the GCC Runtime Library Exception along with this program;
23 see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
24 <http://www.gnu.org/licenses/>. */
28 #include "coretypes.h"
30 #include "libgcc_tm.h"
32 /* If inhibit_libc is defined, we can not compile this file. The
33 effect is that people will not be able to use -fsplit-stack. That
34 is much better than failing the build particularly since people
35 will want to define inhibit_libc while building a compiler which
49 #include "generic-morestack.h"
51 typedef unsigned uintptr_type
__attribute__ ((mode (pointer
)));
53 /* This file contains subroutines that are used by code compiled with
56 /* Declare functions to avoid warnings--there is no header file for
57 these internal functions. We give most of these functions the
58 flatten attribute in order to minimize their stack usage--here we
59 must minimize stack usage even at the cost of code size, and in
60 general inlining everything will do that. */
63 __generic_morestack_set_initial_sp (void *sp
, size_t len
)
64 __attribute__ ((no_split_stack
, flatten
, visibility ("hidden")));
67 __generic_morestack (size_t *frame_size
, void *old_stack
, size_t param_size
)
68 __attribute__ ((no_split_stack
, flatten
, visibility ("hidden")));
71 __generic_releasestack (size_t *pavailable
)
72 __attribute__ ((no_split_stack
, flatten
, visibility ("hidden")));
75 __morestack_block_signals (void)
76 __attribute__ ((no_split_stack
, flatten
, visibility ("hidden")));
79 __morestack_unblock_signals (void)
80 __attribute__ ((no_split_stack
, flatten
, visibility ("hidden")));
83 __generic_findstack (void *stack
)
84 __attribute__ ((no_split_stack
, flatten
, visibility ("hidden")));
87 __morestack_load_mmap (void)
88 __attribute__ ((no_split_stack
, visibility ("hidden")));
91 __morestack_allocate_stack_space (size_t size
)
92 __attribute__ ((visibility ("hidden")));
94 /* These are functions which -fsplit-stack code can call. These are
95 not called by the compiler, and are not hidden. FIXME: These
96 should be in some header file somewhere, somehow. */
99 __splitstack_find (void *, void *, size_t *, void **, void **, void **)
100 __attribute__ ((visibility ("default")));
103 __splitstack_block_signals (int *, int *)
104 __attribute__ ((visibility ("default")));
107 __splitstack_getcontext (void *context
[10])
108 __attribute__ ((no_split_stack
, visibility ("default")));
111 __splitstack_setcontext (void *context
[10])
112 __attribute__ ((no_split_stack
, visibility ("default")));
115 __splitstack_makecontext (size_t, void *context
[10], size_t *)
116 __attribute__ ((visibility ("default")));
119 __splitstack_resetcontext (void *context
[10], size_t *)
120 __attribute__ ((visibility ("default")));
123 __splitstack_releasecontext (void *context
[10])
124 __attribute__ ((visibility ("default")));
127 __splitstack_block_signals_context (void *context
[10], int *, int *)
128 __attribute__ ((visibility ("default")));
131 __splitstack_find_context (void *context
[10], size_t *, void **, void **,
133 __attribute__ ((visibility ("default")));
135 /* These functions must be defined by the processor specific code. */
137 extern void *__morestack_get_guard (void)
138 __attribute__ ((no_split_stack
, visibility ("hidden")));
140 extern void __morestack_set_guard (void *)
141 __attribute__ ((no_split_stack
, visibility ("hidden")));
143 extern void *__morestack_make_guard (void *, size_t)
144 __attribute__ ((no_split_stack
, visibility ("hidden")));
146 /* When we allocate a stack segment we put this header at the
151 /* The previous stack segment--when a function running on this stack
152 segment returns, it will run on the previous one. */
153 struct stack_segment
*prev
;
154 /* The next stack segment, if it has been allocated--when a function
155 is running on this stack segment, the next one is not being
157 struct stack_segment
*next
;
158 /* The total size of this stack segment. */
160 /* The stack address when this stack was created. This is used when
161 popping the stack. */
163 /* A list of memory blocks allocated by dynamic stack
165 struct dynamic_allocation_blocks
*dynamic_allocation
;
166 /* A list of dynamic memory blocks no longer needed. */
167 struct dynamic_allocation_blocks
*free_dynamic_allocation
;
168 /* An extra pointer in case we need some more information some
173 /* This structure holds the (approximate) initial stack pointer and
174 size for the system supplied stack for a thread. This is set when
175 the thread is created. We also store a sigset_t here to hold the
176 signal mask while splitting the stack, since we don't want to store
177 that on the stack. */
181 /* The initial stack pointer. */
183 /* The stack length. */
185 /* A signal mask, put here so that the thread can use it without
186 needing stack space. */
188 /* Non-zero if we should not block signals. This is a reversed flag
189 so that the default zero value is the safe value. The type is
190 uintptr_type because it replaced one of the void * pointers in
192 uintptr_type dont_block_signals
;
193 /* Some extra space for later extensibility. */
197 /* A list of memory blocks allocated by dynamic stack allocation.
198 This is used for code that calls alloca or uses variably sized
201 struct dynamic_allocation_blocks
203 /* The next block in the list. */
204 struct dynamic_allocation_blocks
*next
;
205 /* The size of the allocated memory. */
207 /* The allocated memory. */
211 /* These thread local global variables must be shared by all split
212 stack code across shared library boundaries. Therefore, they have
213 default visibility. They have extensibility fields if needed for
214 new versions. If more radical changes are needed, new code can be
215 written using new variable names, while still using the existing
216 variables in a backward compatible manner. Symbol versioning is
217 also used, although, since these variables are only referenced by
218 code in this file and generic-morestack-thread.c, it is likely that
219 simply using new names will suffice. */
221 /* The first stack segment allocated for this thread. */
223 __thread
struct stack_segment
*__morestack_segments
224 __attribute__ ((visibility ("default")));
226 /* The stack segment that we think we are currently using. This will
227 be correct in normal usage, but will be incorrect if an exception
228 unwinds into a different stack segment or if longjmp jumps to a
229 different stack segment. */
231 __thread
struct stack_segment
*__morestack_current_segment
232 __attribute__ ((visibility ("default")));
234 /* The initial stack pointer and size for this thread. */
236 __thread
struct initial_sp __morestack_initial_sp
237 __attribute__ ((visibility ("default")));
239 /* A static signal mask, to avoid taking up stack space. */
241 static sigset_t __morestack_fullmask
;
243 /* Convert an integer to a decimal string without using much stack
244 space. Return a pointer to the part of the buffer to use. We this
245 instead of sprintf because sprintf will require too much stack
249 print_int (int val
, char *buf
, int buflen
, size_t *print_len
)
255 uval
= (unsigned int) val
;
268 buf
[i
] = '0' + (uval
% 10);
271 while (uval
!= 0 && i
> 0);
280 *print_len
= buflen
- i
;
284 /* Print the string MSG/LEN, the errno number ERR, and a newline on
285 stderr. Then crash. */
288 __morestack_fail (const char *, size_t, int) __attribute__ ((noreturn
));
291 __morestack_fail (const char *msg
, size_t len
, int err
)
294 static const char nl
[] = "\n";
296 union { char *p
; const char *cp
; } const_cast;
299 iov
[0].iov_base
= const_cast.p
;
300 iov
[0].iov_len
= len
;
301 /* We can't call strerror, because it may try to translate the error
302 message, and that would use too much stack space. */
303 iov
[1].iov_base
= print_int (err
, buf
, sizeof buf
, &iov
[1].iov_len
);
304 const_cast.cp
= &nl
[0];
305 iov
[2].iov_base
= const_cast.p
;
306 iov
[2].iov_len
= sizeof nl
- 1;
307 /* FIXME: On systems without writev we need to issue three write
308 calls, or punt on printing errno. For now this is irrelevant
309 since stack splitting only works on GNU/Linux anyhow. */
314 /* Allocate a new stack segment. FRAME_SIZE is the required frame
317 static struct stack_segment
*
318 allocate_segment (size_t frame_size
)
320 static unsigned int static_pagesize
;
321 static int use_guard_page
;
322 unsigned int pagesize
;
323 unsigned int overhead
;
324 unsigned int allocate
;
326 struct stack_segment
*pss
;
328 pagesize
= static_pagesize
;
333 pagesize
= getpagesize ();
335 #ifdef __GCC_HAVE_SYNC_COMPARE_AND_SWAP_4
336 p
= __sync_val_compare_and_swap (&static_pagesize
, 0, pagesize
);
338 /* Just hope this assignment is atomic. */
339 static_pagesize
= pagesize
;
343 use_guard_page
= getenv ("SPLIT_STACK_GUARD") != 0;
345 /* FIXME: I'm not sure this assert should be in the released
347 assert (p
== 0 || p
== pagesize
);
350 overhead
= sizeof (struct stack_segment
);
353 if (allocate
< MINSIGSTKSZ
)
354 allocate
= ((MINSIGSTKSZ
+ overhead
+ pagesize
- 1)
356 if (allocate
< frame_size
)
357 allocate
= ((frame_size
+ overhead
+ pagesize
- 1)
361 allocate
+= pagesize
;
363 /* FIXME: If this binary requires an executable stack, then we need
364 to set PROT_EXEC. Unfortunately figuring that out is complicated
365 and target dependent. We would need to use dl_iterate_phdr to
366 see if there is any object which does not have a PT_GNU_STACK
367 phdr, though only for architectures which use that mechanism. */
368 space
= mmap (NULL
, allocate
, PROT_READ
| PROT_WRITE
,
369 MAP_ANONYMOUS
| MAP_PRIVATE
, -1, 0);
370 if (space
== MAP_FAILED
)
372 static const char msg
[] =
373 "unable to allocate additional stack space: errno ";
374 __morestack_fail (msg
, sizeof msg
- 1, errno
);
381 #ifdef __LIBGCC_STACK_GROWS_DOWNWARD__
383 space
= (char *) space
+ pagesize
;
385 guard
= space
+ allocate
- pagesize
;
388 mprotect (guard
, pagesize
, PROT_NONE
);
389 allocate
-= pagesize
;
392 pss
= (struct stack_segment
*) space
;
396 pss
->size
= allocate
- overhead
;
397 pss
->dynamic_allocation
= NULL
;
398 pss
->free_dynamic_allocation
= NULL
;
404 /* Free a list of dynamic blocks. */
407 free_dynamic_blocks (struct dynamic_allocation_blocks
*p
)
411 struct dynamic_allocation_blocks
*next
;
420 /* Merge two lists of dynamic blocks. */
422 static struct dynamic_allocation_blocks
*
423 merge_dynamic_blocks (struct dynamic_allocation_blocks
*a
,
424 struct dynamic_allocation_blocks
*b
)
426 struct dynamic_allocation_blocks
**pp
;
432 for (pp
= &a
->next
; *pp
!= NULL
; pp
= &(*pp
)->next
)
438 /* Release stack segments. If FREE_DYNAMIC is non-zero, we also free
439 any dynamic blocks. Otherwise we return them. */
441 struct dynamic_allocation_blocks
*
442 __morestack_release_segments (struct stack_segment
**pp
, int free_dynamic
)
444 struct dynamic_allocation_blocks
*ret
;
445 struct stack_segment
*pss
;
451 struct stack_segment
*next
;
452 unsigned int allocate
;
456 if (pss
->dynamic_allocation
!= NULL
457 || pss
->free_dynamic_allocation
!= NULL
)
461 free_dynamic_blocks (pss
->dynamic_allocation
);
462 free_dynamic_blocks (pss
->free_dynamic_allocation
);
466 ret
= merge_dynamic_blocks (pss
->dynamic_allocation
, ret
);
467 ret
= merge_dynamic_blocks (pss
->free_dynamic_allocation
, ret
);
471 allocate
= pss
->size
+ sizeof (struct stack_segment
);
472 if (munmap (pss
, allocate
) < 0)
474 static const char msg
[] = "munmap of stack space failed: errno ";
475 __morestack_fail (msg
, sizeof msg
- 1, errno
);
485 /* This function is called by a processor specific function to set the
486 initial stack pointer for a thread. The operating system will
487 always create a stack for a thread. Here we record a stack pointer
488 near the base of that stack. The size argument lets the processor
489 specific code estimate how much stack space is available on this
493 __generic_morestack_set_initial_sp (void *sp
, size_t len
)
495 /* The stack pointer most likely starts on a page boundary. Adjust
496 to the nearest 512 byte boundary. It's not essential that we be
497 precise here; getting it wrong will just leave some stack space
499 #ifdef __LIBGCC_STACK_GROWS_DOWNWARD__
500 sp
= (void *) ((((__UINTPTR_TYPE__
) sp
+ 511U) / 512U) * 512U);
502 sp
= (void *) ((((__UINTPTR_TYPE__
) sp
- 511U) / 512U) * 512U);
505 __morestack_initial_sp
.sp
= sp
;
506 __morestack_initial_sp
.len
= len
;
507 sigemptyset (&__morestack_initial_sp
.mask
);
509 sigfillset (&__morestack_fullmask
);
510 #if defined(__GLIBC__) && defined(__linux__)
511 /* In glibc, the first two real time signals are used by the NPTL
512 threading library. By taking them out of the set of signals, we
513 avoiding copying the signal mask in pthread_sigmask. More
514 importantly, pthread_sigmask uses less stack space on x86_64. */
515 sigdelset (&__morestack_fullmask
, __SIGRTMIN
);
516 sigdelset (&__morestack_fullmask
, __SIGRTMIN
+ 1);
520 /* This function is called by a processor specific function which is
521 run in the prologue when more stack is needed. The processor
522 specific function handles the details of saving registers and
523 frobbing the actual stack pointer. This function is responsible
524 for allocating a new stack segment and for copying a parameter
525 block from the old stack to the new one. On function entry
526 *PFRAME_SIZE is the size of the required stack frame--the returned
527 stack must be at least this large. On function exit *PFRAME_SIZE
528 is the amount of space remaining on the allocated stack. OLD_STACK
529 points at the parameters the old stack (really the current one
530 while this function is running). OLD_STACK is saved so that it can
531 be returned by a later call to __generic_releasestack. PARAM_SIZE
532 is the size in bytes of parameters to copy to the new stack. This
533 function returns a pointer to the new stack segment, pointing to
534 the memory after the parameters have been copied. The returned
535 value minus the returned *PFRAME_SIZE (or plus if the stack grows
536 upward) is the first address on the stack which should not be used.
538 This function is running on the old stack and has only a limited
539 amount of stack space available. */
542 __generic_morestack (size_t *pframe_size
, void *old_stack
, size_t param_size
)
544 size_t frame_size
= *pframe_size
;
545 struct stack_segment
*current
;
546 struct stack_segment
**pp
;
547 struct dynamic_allocation_blocks
*dynamic
;
554 current
= __morestack_current_segment
;
556 pp
= current
!= NULL
? ¤t
->next
: &__morestack_segments
;
557 if (*pp
!= NULL
&& (*pp
)->size
< frame_size
)
558 dynamic
= __morestack_release_segments (pp
, 0);
565 current
= allocate_segment (frame_size
+ param_size
);
566 current
->prev
= __morestack_current_segment
;
570 current
->old_stack
= old_stack
;
572 __morestack_current_segment
= current
;
576 /* Move the free blocks onto our list. We don't want to call
577 free here, as we are short on stack space. */
578 current
->free_dynamic_allocation
=
579 merge_dynamic_blocks (dynamic
, current
->free_dynamic_allocation
);
582 *pframe_size
= current
->size
- param_size
;
584 /* Align the returned stack to a 32-byte boundary. */
585 aligned
= (param_size
+ 31) & ~ (size_t) 31;
587 #ifdef __LIBGCC_STACK_GROWS_DOWNWARD__
589 char *bottom
= (char *) (current
+ 1) + current
->size
;
590 to
= bottom
- aligned
;
591 ret
= bottom
- aligned
;
595 to
+= aligned
- param_size
;
596 ret
= (char *) (current
+ 1) + aligned
;
599 /* We don't call memcpy to avoid worrying about the dynamic linker
600 trying to resolve it. */
601 from
= (char *) old_stack
;
602 for (i
= 0; i
< param_size
; i
++)
608 /* This function is called by a processor specific function when it is
609 ready to release a stack segment. We don't actually release the
610 stack segment, we just move back to the previous one. The current
611 stack segment will still be available if we need it in
612 __generic_morestack. This returns a pointer to the new stack
613 segment to use, which is the one saved by a previous call to
614 __generic_morestack. The processor specific function is then
615 responsible for actually updating the stack pointer. This sets
616 *PAVAILABLE to the amount of stack space now available. */
619 __generic_releasestack (size_t *pavailable
)
621 struct stack_segment
*current
;
624 current
= __morestack_current_segment
;
625 old_stack
= current
->old_stack
;
626 current
= current
->prev
;
627 __morestack_current_segment
= current
;
631 #ifdef __LIBGCC_STACK_GROWS_DOWNWARD__
632 *pavailable
= (char *) old_stack
- (char *) (current
+ 1);
634 *pavailable
= (char *) (current
+ 1) + current
->size
- (char *) old_stack
;
641 /* We have popped back to the original stack. */
642 #ifdef __LIBGCC_STACK_GROWS_DOWNWARD__
643 if ((char *) old_stack
>= (char *) __morestack_initial_sp
.sp
)
646 used
= (char *) __morestack_initial_sp
.sp
- (char *) old_stack
;
648 if ((char *) old_stack
<= (char *) __morestack_initial_sp
.sp
)
651 used
= (char *) old_stack
- (char *) __morestack_initial_sp
.sp
;
654 if (used
> __morestack_initial_sp
.len
)
657 *pavailable
= __morestack_initial_sp
.len
- used
;
663 /* Block signals while splitting the stack. This avoids trouble if we
664 try to invoke a signal handler which itself wants to split the
667 extern int pthread_sigmask (int, const sigset_t
*, sigset_t
*)
668 __attribute__ ((weak
));
671 __morestack_block_signals (void)
673 if (__morestack_initial_sp
.dont_block_signals
)
675 else if (pthread_sigmask
)
676 pthread_sigmask (SIG_BLOCK
, &__morestack_fullmask
,
677 &__morestack_initial_sp
.mask
);
679 sigprocmask (SIG_BLOCK
, &__morestack_fullmask
,
680 &__morestack_initial_sp
.mask
);
683 /* Unblock signals while splitting the stack. */
686 __morestack_unblock_signals (void)
688 if (__morestack_initial_sp
.dont_block_signals
)
690 else if (pthread_sigmask
)
691 pthread_sigmask (SIG_SETMASK
, &__morestack_initial_sp
.mask
, NULL
);
693 sigprocmask (SIG_SETMASK
, &__morestack_initial_sp
.mask
, NULL
);
696 /* This function is called to allocate dynamic stack space, for alloca
697 or a variably sized array. This is a regular function with
698 sufficient stack space, so we just use malloc to allocate the
699 space. We attach the allocated blocks to the current stack
700 segment, so that they will eventually be reused or freed. */
703 __morestack_allocate_stack_space (size_t size
)
705 struct stack_segment
*seg
, *current
;
706 struct dynamic_allocation_blocks
*p
;
708 /* We have to block signals to avoid getting confused if we get
709 interrupted by a signal whose handler itself uses alloca or a
710 variably sized array. */
711 __morestack_block_signals ();
713 /* Since we don't want to call free while we are low on stack space,
714 we may have a list of already allocated blocks waiting to be
715 freed. Release them all, unless we find one that is large
716 enough. We don't look at every block to see if one is large
717 enough, just the first one, because we aren't trying to build a
718 memory allocator here, we're just trying to speed up common
721 current
= __morestack_current_segment
;
723 for (seg
= __morestack_segments
; seg
!= NULL
; seg
= seg
->next
)
725 p
= seg
->free_dynamic_allocation
;
730 seg
->free_dynamic_allocation
= p
->next
;
734 free_dynamic_blocks (p
);
735 seg
->free_dynamic_allocation
= NULL
;
742 /* We need to allocate additional memory. */
743 p
= malloc (sizeof (*p
));
747 p
->block
= malloc (size
);
748 if (p
->block
== NULL
)
752 /* If we are still on the initial stack, then we have a space leak.
756 p
->next
= current
->dynamic_allocation
;
757 current
->dynamic_allocation
= p
;
760 __morestack_unblock_signals ();
765 /* Find the stack segment for STACK and return the amount of space
766 available. This is used when unwinding the stack because of an
767 exception, in order to reset the stack guard correctly. */
770 __generic_findstack (void *stack
)
772 struct stack_segment
*pss
;
775 for (pss
= __morestack_current_segment
; pss
!= NULL
; pss
= pss
->prev
)
777 if ((char *) pss
< (char *) stack
778 && (char *) pss
+ pss
->size
> (char *) stack
)
780 __morestack_current_segment
= pss
;
781 #ifdef __LIBGCC_STACK_GROWS_DOWNWARD__
782 return (char *) stack
- (char *) (pss
+ 1);
784 return (char *) (pss
+ 1) + pss
->size
- (char *) stack
;
789 /* We have popped back to the original stack. */
791 if (__morestack_initial_sp
.sp
== NULL
)
794 #ifdef __LIBGCC_STACK_GROWS_DOWNWARD__
795 if ((char *) stack
>= (char *) __morestack_initial_sp
.sp
)
798 used
= (char *) __morestack_initial_sp
.sp
- (char *) stack
;
800 if ((char *) stack
<= (char *) __morestack_initial_sp
.sp
)
803 used
= (char *) stack
- (char *) __morestack_initial_sp
.sp
;
806 if (used
> __morestack_initial_sp
.len
)
809 return __morestack_initial_sp
.len
- used
;
812 /* This function is called at program startup time to make sure that
813 mmap, munmap, and getpagesize are resolved if linking dynamically.
814 We want to resolve them while we have enough stack for them, rather
815 than calling into the dynamic linker while low on stack space. */
818 __morestack_load_mmap (void)
820 /* Call with bogus values to run faster. We don't care if the call
821 fails. Pass __MORESTACK_CURRENT_SEGMENT to make sure that any
822 TLS accessor function is resolved. */
823 mmap (__morestack_current_segment
, 0, PROT_READ
, MAP_ANONYMOUS
, -1, 0);
824 mprotect (NULL
, 0, 0);
825 munmap (0, getpagesize ());
828 /* This function may be used to iterate over the stack segments.
829 This can be called like this.
830 void *next_segment = NULL;
831 void *next_sp = NULL;
832 void *initial_sp = NULL;
835 while ((stack = __splitstack_find (next_segment, next_sp, &stack_size,
836 &next_segment, &next_sp,
837 &initial_sp)) != NULL)
839 // Stack segment starts at stack and is stack_size bytes long.
842 There is no way to iterate over the stack segments of a different
843 thread. However, what is permitted is for one thread to call this
844 with the first two values NULL, to pass next_segment, next_sp, and
845 initial_sp to a different thread, and then to suspend one way or
846 another. A different thread may run the subsequent
847 __morestack_find iterations. Of course, this will only work if the
848 first thread is suspended during the __morestack_find iterations.
849 If not, the second thread will be looking at the stack while it is
850 changing, and anything could happen.
852 FIXME: This should be declared in some header file, but where? */
855 __splitstack_find (void *segment_arg
, void *sp
, size_t *len
,
856 void **next_segment
, void **next_sp
,
859 struct stack_segment
*segment
;
863 if (segment_arg
== (void *) (uintptr_type
) 1)
865 char *isp
= (char *) *initial_sp
;
870 *next_segment
= (void *) (uintptr_type
) 2;
872 #ifdef __LIBGCC_STACK_GROWS_DOWNWARD__
873 if ((char *) sp
>= isp
)
875 *len
= (char *) isp
- (char *) sp
;
878 if ((char *) sp
<= (char *) isp
)
880 *len
= (char *) sp
- (char *) isp
;
884 else if (segment_arg
== (void *) (uintptr_type
) 2)
886 else if (segment_arg
!= NULL
)
887 segment
= (struct stack_segment
*) segment_arg
;
890 *initial_sp
= __morestack_initial_sp
.sp
;
891 segment
= __morestack_current_segment
;
892 sp
= (void *) &segment
;
896 return __splitstack_find ((void *) (uintptr_type
) 1, sp
, len
,
897 next_segment
, next_sp
, initial_sp
);
898 if ((char *) sp
>= (char *) (segment
+ 1)
899 && (char *) sp
<= (char *) (segment
+ 1) + segment
->size
)
901 segment
= segment
->prev
;
905 if (segment
->prev
== NULL
)
906 *next_segment
= (void *) (uintptr_type
) 1;
908 *next_segment
= segment
->prev
;
910 /* The old_stack value is the address of the function parameters of
911 the function which called __morestack. So if f1 called f2 which
912 called __morestack, the stack looks like this:
914 parameters <- old_stack
917 registers pushed by __morestack
919 The registers pushed by __morestack may not be visible on any
920 other stack, if we are being called by a signal handler
921 immediately after the call to __morestack_unblock_signals. We
922 want to adjust our return value to include those registers. This
923 is target dependent. */
925 nsp
= (char *) segment
->old_stack
;
929 /* We've reached the top of the stack. */
930 *next_segment
= (void *) (uintptr_type
) 2;
934 #if defined (__x86_64__)
935 nsp
-= 12 * sizeof (void *);
936 #elif defined (__i386__)
937 nsp
-= 6 * sizeof (void *);
939 #error "unrecognized target"
942 *next_sp
= (void *) nsp
;
945 #ifdef __LIBGCC_STACK_GROWS_DOWNWARD__
946 *len
= (char *) (segment
+ 1) + segment
->size
- (char *) sp
;
949 *len
= (char *) sp
- (char *) (segment
+ 1);
950 ret
= (void *) (segment
+ 1);
956 /* Tell the split stack code whether it has to block signals while
957 manipulating the stack. This is for programs in which some threads
958 block all signals. If a thread already blocks signals, there is no
959 need for the split stack code to block them as well. If NEW is not
960 NULL, then if *NEW is non-zero signals will be blocked while
961 splitting the stack, otherwise they will not. If OLD is not NULL,
962 *OLD will be set to the old value. */
965 __splitstack_block_signals (int *new, int *old
)
968 *old
= __morestack_initial_sp
.dont_block_signals
? 0 : 1;
970 __morestack_initial_sp
.dont_block_signals
= *new ? 0 : 1;
973 /* The offsets into the arrays used by __splitstack_getcontext and
974 __splitstack_setcontext. */
976 enum __splitstack_context_offsets
978 MORESTACK_SEGMENTS
= 0,
989 /* Get the current split stack context. This may be used for
990 coroutine switching, similar to getcontext. The argument should
991 have at least 10 void *pointers for extensibility, although we
992 don't currently use all of them. This would normally be called
993 immediately before a call to getcontext or swapcontext or
997 __splitstack_getcontext (void *context
[NUMBER_OFFSETS
])
999 memset (context
, 0, NUMBER_OFFSETS
* sizeof (void *));
1000 context
[MORESTACK_SEGMENTS
] = (void *) __morestack_segments
;
1001 context
[CURRENT_SEGMENT
] = (void *) __morestack_current_segment
;
1002 context
[CURRENT_STACK
] = (void *) &context
;
1003 context
[STACK_GUARD
] = __morestack_get_guard ();
1004 context
[INITIAL_SP
] = (void *) __morestack_initial_sp
.sp
;
1005 context
[INITIAL_SP_LEN
] = (void *) (uintptr_type
) __morestack_initial_sp
.len
;
1006 context
[BLOCK_SIGNALS
] = (void *) __morestack_initial_sp
.dont_block_signals
;
1009 /* Set the current split stack context. The argument should be a
1010 context previously passed to __splitstack_getcontext. This would
1011 normally be called immediately after a call to getcontext or
1012 swapcontext or setjmp if something jumped to it. */
1015 __splitstack_setcontext (void *context
[NUMBER_OFFSETS
])
1017 __morestack_segments
= (struct stack_segment
*) context
[MORESTACK_SEGMENTS
];
1018 __morestack_current_segment
=
1019 (struct stack_segment
*) context
[CURRENT_SEGMENT
];
1020 __morestack_set_guard (context
[STACK_GUARD
]);
1021 __morestack_initial_sp
.sp
= context
[INITIAL_SP
];
1022 __morestack_initial_sp
.len
= (size_t) context
[INITIAL_SP_LEN
];
1023 __morestack_initial_sp
.dont_block_signals
=
1024 (uintptr_type
) context
[BLOCK_SIGNALS
];
1027 /* Create a new split stack context. This will allocate a new stack
1028 segment which may be used by a coroutine. STACK_SIZE is the
1029 minimum size of the new stack. The caller is responsible for
1030 actually setting the stack pointer. This would normally be called
1031 before a call to makecontext, and the returned stack pointer and
1032 size would be used to set the uc_stack field. A function called
1033 via makecontext on a stack created by __splitstack_makecontext may
1034 not return. Note that the returned pointer points to the lowest
1035 address in the stack space, and thus may not be the value to which
1036 to set the stack pointer. */
1039 __splitstack_makecontext (size_t stack_size
, void *context
[NUMBER_OFFSETS
],
1042 struct stack_segment
*segment
;
1045 memset (context
, 0, NUMBER_OFFSETS
* sizeof (void *));
1046 segment
= allocate_segment (stack_size
);
1047 context
[MORESTACK_SEGMENTS
] = segment
;
1048 context
[CURRENT_SEGMENT
] = segment
;
1049 #ifdef __LIBGCC_STACK_GROWS_DOWNWARD__
1050 initial_sp
= (void *) ((char *) (segment
+ 1) + segment
->size
);
1052 initial_sp
= (void *) (segment
+ 1);
1054 context
[STACK_GUARD
] = __morestack_make_guard (initial_sp
, segment
->size
);
1055 context
[INITIAL_SP
] = NULL
;
1056 context
[INITIAL_SP_LEN
] = 0;
1057 *size
= segment
->size
;
1058 return (void *) (segment
+ 1);
1061 /* Given an existing split stack context, reset it back to the start
1062 of the stack. Return the stack pointer and size, appropriate for
1063 use with makecontext. This may be used if a coroutine exits, in
1064 order to reuse the stack segments for a new coroutine. */
1067 __splitstack_resetcontext (void *context
[10], size_t *size
)
1069 struct stack_segment
*segment
;
1071 size_t initial_size
;
1074 /* Reset the context assuming that MORESTACK_SEGMENTS, INITIAL_SP
1075 and INITIAL_SP_LEN are correct. */
1077 segment
= context
[MORESTACK_SEGMENTS
];
1078 context
[CURRENT_SEGMENT
] = segment
;
1079 context
[CURRENT_STACK
] = NULL
;
1080 if (segment
== NULL
)
1082 initial_sp
= context
[INITIAL_SP
];
1083 initial_size
= (uintptr_type
) context
[INITIAL_SP_LEN
];
1085 #ifdef __LIBGCC_STACK_GROWS_DOWNWARD__
1086 ret
= (void *) ((char *) ret
- initial_size
);
1091 #ifdef __LIBGCC_STACK_GROWS_DOWNWARD__
1092 initial_sp
= (void *) ((char *) (segment
+ 1) + segment
->size
);
1094 initial_sp
= (void *) (segment
+ 1);
1096 initial_size
= segment
->size
;
1097 ret
= (void *) (segment
+ 1);
1099 context
[STACK_GUARD
] = __morestack_make_guard (initial_sp
, initial_size
);
1100 context
[BLOCK_SIGNALS
] = NULL
;
1101 *size
= initial_size
;
1105 /* Release all the memory associated with a splitstack context. This
1106 may be used if a coroutine exits and the associated stack should be
1110 __splitstack_releasecontext (void *context
[10])
1112 __morestack_release_segments (((struct stack_segment
**)
1113 &context
[MORESTACK_SEGMENTS
]),
1117 /* Like __splitstack_block_signals, but operating on CONTEXT, rather
1118 than on the current state. */
1121 __splitstack_block_signals_context (void *context
[NUMBER_OFFSETS
], int *new,
1125 *old
= ((uintptr_type
) context
[BLOCK_SIGNALS
]) != 0 ? 0 : 1;
1127 context
[BLOCK_SIGNALS
] = (void *) (uintptr_type
) (*new ? 0 : 1);
1130 /* Find the stack segments associated with a split stack context.
1131 This will return the address of the first stack segment and set
1132 *STACK_SIZE to its size. It will set next_segment, next_sp, and
1133 initial_sp which may be passed to __splitstack_find to find the
1134 remaining segments. */
1137 __splitstack_find_context (void *context
[NUMBER_OFFSETS
], size_t *stack_size
,
1138 void **next_segment
, void **next_sp
,
1142 struct stack_segment
*segment
;
1144 *initial_sp
= context
[INITIAL_SP
];
1146 sp
= context
[CURRENT_STACK
];
1149 /* Most likely this context was created but was never used. The
1150 value 2 is a code used by __splitstack_find to mean that we
1151 have reached the end of the list of stacks. */
1152 *next_segment
= (void *) (uintptr_type
) 2;
1158 segment
= context
[CURRENT_SEGMENT
];
1159 if (segment
== NULL
)
1161 /* Most likely this context was saved by a thread which was not
1162 created using __splistack_makecontext and which has never
1163 split the stack. The value 1 is a code used by
1164 __splitstack_find to look at the initial stack. */
1165 segment
= (struct stack_segment
*) (uintptr_type
) 1;
1168 return __splitstack_find (segment
, sp
, stack_size
, next_segment
, next_sp
,
1172 #endif /* !defined (inhibit_libc) */