[AArch64] Describe the 'BSL' RTL pattern more accurately.
[official-gcc.git] / gcc / resource.c
blob6051313732e4bb5278cb4eaf265a3a39fa0f3036
1 /* Definitions for computing resource usage of specific insns.
2 Copyright (C) 1999-2013 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "tm.h"
24 #include "diagnostic-core.h"
25 #include "rtl.h"
26 #include "tm_p.h"
27 #include "hard-reg-set.h"
28 #include "function.h"
29 #include "regs.h"
30 #include "flags.h"
31 #include "output.h"
32 #include "resource.h"
33 #include "except.h"
34 #include "insn-attr.h"
35 #include "params.h"
36 #include "df.h"
38 /* This structure is used to record liveness information at the targets or
39 fallthrough insns of branches. We will most likely need the information
40 at targets again, so save them in a hash table rather than recomputing them
41 each time. */
43 struct target_info
45 int uid; /* INSN_UID of target. */
46 struct target_info *next; /* Next info for same hash bucket. */
47 HARD_REG_SET live_regs; /* Registers live at target. */
48 int block; /* Basic block number containing target. */
49 int bb_tick; /* Generation count of basic block info. */
52 #define TARGET_HASH_PRIME 257
54 /* Indicates what resources are required at the beginning of the epilogue. */
55 static struct resources start_of_epilogue_needs;
57 /* Indicates what resources are required at function end. */
58 static struct resources end_of_function_needs;
60 /* Define the hash table itself. */
61 static struct target_info **target_hash_table = NULL;
63 /* For each basic block, we maintain a generation number of its basic
64 block info, which is updated each time we move an insn from the
65 target of a jump. This is the generation number indexed by block
66 number. */
68 static int *bb_ticks;
70 /* Marks registers possibly live at the current place being scanned by
71 mark_target_live_regs. Also used by update_live_status. */
73 static HARD_REG_SET current_live_regs;
75 /* Marks registers for which we have seen a REG_DEAD note but no assignment.
76 Also only used by the next two functions. */
78 static HARD_REG_SET pending_dead_regs;
80 static void update_live_status (rtx, const_rtx, void *);
81 static int find_basic_block (rtx, int);
82 static rtx next_insn_no_annul (rtx);
83 static rtx find_dead_or_set_registers (rtx, struct resources*,
84 rtx*, int, struct resources,
85 struct resources);
87 /* Utility function called from mark_target_live_regs via note_stores.
88 It deadens any CLOBBERed registers and livens any SET registers. */
90 static void
91 update_live_status (rtx dest, const_rtx x, void *data ATTRIBUTE_UNUSED)
93 int first_regno, last_regno;
94 int i;
96 if (!REG_P (dest)
97 && (GET_CODE (dest) != SUBREG || !REG_P (SUBREG_REG (dest))))
98 return;
100 if (GET_CODE (dest) == SUBREG)
102 first_regno = subreg_regno (dest);
103 last_regno = first_regno + subreg_nregs (dest);
106 else
108 first_regno = REGNO (dest);
109 last_regno = END_HARD_REGNO (dest);
112 if (GET_CODE (x) == CLOBBER)
113 for (i = first_regno; i < last_regno; i++)
114 CLEAR_HARD_REG_BIT (current_live_regs, i);
115 else
116 for (i = first_regno; i < last_regno; i++)
118 SET_HARD_REG_BIT (current_live_regs, i);
119 CLEAR_HARD_REG_BIT (pending_dead_regs, i);
123 /* Find the number of the basic block with correct live register
124 information that starts closest to INSN. Return -1 if we couldn't
125 find such a basic block or the beginning is more than
126 SEARCH_LIMIT instructions before INSN. Use SEARCH_LIMIT = -1 for
127 an unlimited search.
129 The delay slot filling code destroys the control-flow graph so,
130 instead of finding the basic block containing INSN, we search
131 backwards toward a BARRIER where the live register information is
132 correct. */
134 static int
135 find_basic_block (rtx insn, int search_limit)
137 /* Scan backwards to the previous BARRIER. Then see if we can find a
138 label that starts a basic block. Return the basic block number. */
139 for (insn = prev_nonnote_insn (insn);
140 insn && !BARRIER_P (insn) && search_limit != 0;
141 insn = prev_nonnote_insn (insn), --search_limit)
144 /* The closest BARRIER is too far away. */
145 if (search_limit == 0)
146 return -1;
148 /* The start of the function. */
149 else if (insn == 0)
150 return ENTRY_BLOCK_PTR->next_bb->index;
152 /* See if any of the upcoming CODE_LABELs start a basic block. If we reach
153 anything other than a CODE_LABEL or note, we can't find this code. */
154 for (insn = next_nonnote_insn (insn);
155 insn && LABEL_P (insn);
156 insn = next_nonnote_insn (insn))
157 if (BLOCK_FOR_INSN (insn))
158 return BLOCK_FOR_INSN (insn)->index;
160 return -1;
163 /* Similar to next_insn, but ignores insns in the delay slots of
164 an annulled branch. */
166 static rtx
167 next_insn_no_annul (rtx insn)
169 if (insn)
171 /* If INSN is an annulled branch, skip any insns from the target
172 of the branch. */
173 if (JUMP_P (insn)
174 && INSN_ANNULLED_BRANCH_P (insn)
175 && NEXT_INSN (PREV_INSN (insn)) != insn)
177 rtx next = NEXT_INSN (insn);
179 while ((NONJUMP_INSN_P (next) || JUMP_P (next) || CALL_P (next))
180 && INSN_FROM_TARGET_P (next))
182 insn = next;
183 next = NEXT_INSN (insn);
187 insn = NEXT_INSN (insn);
188 if (insn && NONJUMP_INSN_P (insn)
189 && GET_CODE (PATTERN (insn)) == SEQUENCE)
190 insn = XVECEXP (PATTERN (insn), 0, 0);
193 return insn;
196 /* Given X, some rtl, and RES, a pointer to a `struct resource', mark
197 which resources are referenced by the insn. If INCLUDE_DELAYED_EFFECTS
198 is TRUE, resources used by the called routine will be included for
199 CALL_INSNs. */
201 void
202 mark_referenced_resources (rtx x, struct resources *res,
203 bool include_delayed_effects)
205 enum rtx_code code = GET_CODE (x);
206 int i, j;
207 unsigned int r;
208 const char *format_ptr;
210 /* Handle leaf items for which we set resource flags. Also, special-case
211 CALL, SET and CLOBBER operators. */
212 switch (code)
214 case CONST:
215 CASE_CONST_ANY:
216 case PC:
217 case SYMBOL_REF:
218 case LABEL_REF:
219 return;
221 case SUBREG:
222 if (!REG_P (SUBREG_REG (x)))
223 mark_referenced_resources (SUBREG_REG (x), res, false);
224 else
226 unsigned int regno = subreg_regno (x);
227 unsigned int last_regno = regno + subreg_nregs (x);
229 gcc_assert (last_regno <= FIRST_PSEUDO_REGISTER);
230 for (r = regno; r < last_regno; r++)
231 SET_HARD_REG_BIT (res->regs, r);
233 return;
235 case REG:
236 gcc_assert (HARD_REGISTER_P (x));
237 add_to_hard_reg_set (&res->regs, GET_MODE (x), REGNO (x));
238 return;
240 case MEM:
241 /* If this memory shouldn't change, it really isn't referencing
242 memory. */
243 if (MEM_READONLY_P (x))
244 res->unch_memory = 1;
245 else
246 res->memory = 1;
247 res->volatil |= MEM_VOLATILE_P (x);
249 /* Mark registers used to access memory. */
250 mark_referenced_resources (XEXP (x, 0), res, false);
251 return;
253 case CC0:
254 res->cc = 1;
255 return;
257 case UNSPEC_VOLATILE:
258 case TRAP_IF:
259 case ASM_INPUT:
260 /* Traditional asm's are always volatile. */
261 res->volatil = 1;
262 break;
264 case ASM_OPERANDS:
265 res->volatil |= MEM_VOLATILE_P (x);
267 /* For all ASM_OPERANDS, we must traverse the vector of input operands.
268 We can not just fall through here since then we would be confused
269 by the ASM_INPUT rtx inside ASM_OPERANDS, which do not indicate
270 traditional asms unlike their normal usage. */
272 for (i = 0; i < ASM_OPERANDS_INPUT_LENGTH (x); i++)
273 mark_referenced_resources (ASM_OPERANDS_INPUT (x, i), res, false);
274 return;
276 case CALL:
277 /* The first operand will be a (MEM (xxx)) but doesn't really reference
278 memory. The second operand may be referenced, though. */
279 mark_referenced_resources (XEXP (XEXP (x, 0), 0), res, false);
280 mark_referenced_resources (XEXP (x, 1), res, false);
281 return;
283 case SET:
284 /* Usually, the first operand of SET is set, not referenced. But
285 registers used to access memory are referenced. SET_DEST is
286 also referenced if it is a ZERO_EXTRACT. */
288 mark_referenced_resources (SET_SRC (x), res, false);
290 x = SET_DEST (x);
291 if (GET_CODE (x) == ZERO_EXTRACT
292 || GET_CODE (x) == STRICT_LOW_PART)
293 mark_referenced_resources (x, res, false);
294 else if (GET_CODE (x) == SUBREG)
295 x = SUBREG_REG (x);
296 if (MEM_P (x))
297 mark_referenced_resources (XEXP (x, 0), res, false);
298 return;
300 case CLOBBER:
301 return;
303 case CALL_INSN:
304 if (include_delayed_effects)
306 /* A CALL references memory, the frame pointer if it exists, the
307 stack pointer, any global registers and any registers given in
308 USE insns immediately in front of the CALL.
310 However, we may have moved some of the parameter loading insns
311 into the delay slot of this CALL. If so, the USE's for them
312 don't count and should be skipped. */
313 rtx insn = PREV_INSN (x);
314 rtx sequence = 0;
315 int seq_size = 0;
316 int i;
318 /* If we are part of a delay slot sequence, point at the SEQUENCE. */
319 if (NEXT_INSN (insn) != x)
321 sequence = PATTERN (NEXT_INSN (insn));
322 seq_size = XVECLEN (sequence, 0);
323 gcc_assert (GET_CODE (sequence) == SEQUENCE);
326 res->memory = 1;
327 SET_HARD_REG_BIT (res->regs, STACK_POINTER_REGNUM);
328 if (frame_pointer_needed)
330 SET_HARD_REG_BIT (res->regs, FRAME_POINTER_REGNUM);
331 #if !HARD_FRAME_POINTER_IS_FRAME_POINTER
332 SET_HARD_REG_BIT (res->regs, HARD_FRAME_POINTER_REGNUM);
333 #endif
336 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
337 if (global_regs[i])
338 SET_HARD_REG_BIT (res->regs, i);
340 /* Check for a REG_SETJMP. If it exists, then we must
341 assume that this call can need any register.
343 This is done to be more conservative about how we handle setjmp.
344 We assume that they both use and set all registers. Using all
345 registers ensures that a register will not be considered dead
346 just because it crosses a setjmp call. A register should be
347 considered dead only if the setjmp call returns nonzero. */
348 if (find_reg_note (x, REG_SETJMP, NULL))
349 SET_HARD_REG_SET (res->regs);
352 rtx link;
354 for (link = CALL_INSN_FUNCTION_USAGE (x);
355 link;
356 link = XEXP (link, 1))
357 if (GET_CODE (XEXP (link, 0)) == USE)
359 for (i = 1; i < seq_size; i++)
361 rtx slot_pat = PATTERN (XVECEXP (sequence, 0, i));
362 if (GET_CODE (slot_pat) == SET
363 && rtx_equal_p (SET_DEST (slot_pat),
364 XEXP (XEXP (link, 0), 0)))
365 break;
367 if (i >= seq_size)
368 mark_referenced_resources (XEXP (XEXP (link, 0), 0),
369 res, false);
374 /* ... fall through to other INSN processing ... */
376 case INSN:
377 case JUMP_INSN:
379 #ifdef INSN_REFERENCES_ARE_DELAYED
380 if (! include_delayed_effects
381 && INSN_REFERENCES_ARE_DELAYED (x))
382 return;
383 #endif
385 /* No special processing, just speed up. */
386 mark_referenced_resources (PATTERN (x), res, include_delayed_effects);
387 return;
389 default:
390 break;
393 /* Process each sub-expression and flag what it needs. */
394 format_ptr = GET_RTX_FORMAT (code);
395 for (i = 0; i < GET_RTX_LENGTH (code); i++)
396 switch (*format_ptr++)
398 case 'e':
399 mark_referenced_resources (XEXP (x, i), res, include_delayed_effects);
400 break;
402 case 'E':
403 for (j = 0; j < XVECLEN (x, i); j++)
404 mark_referenced_resources (XVECEXP (x, i, j), res,
405 include_delayed_effects);
406 break;
410 /* A subroutine of mark_target_live_regs. Search forward from TARGET
411 looking for registers that are set before they are used. These are dead.
412 Stop after passing a few conditional jumps, and/or a small
413 number of unconditional branches. */
415 static rtx
416 find_dead_or_set_registers (rtx target, struct resources *res,
417 rtx *jump_target, int jump_count,
418 struct resources set, struct resources needed)
420 HARD_REG_SET scratch;
421 rtx insn, next;
422 rtx jump_insn = 0;
423 int i;
425 for (insn = target; insn; insn = next)
427 rtx this_jump_insn = insn;
429 next = NEXT_INSN (insn);
431 /* If this instruction can throw an exception, then we don't
432 know where we might end up next. That means that we have to
433 assume that whatever we have already marked as live really is
434 live. */
435 if (can_throw_internal (insn))
436 break;
438 switch (GET_CODE (insn))
440 case CODE_LABEL:
441 /* After a label, any pending dead registers that weren't yet
442 used can be made dead. */
443 AND_COMPL_HARD_REG_SET (pending_dead_regs, needed.regs);
444 AND_COMPL_HARD_REG_SET (res->regs, pending_dead_regs);
445 CLEAR_HARD_REG_SET (pending_dead_regs);
447 continue;
449 case BARRIER:
450 case NOTE:
451 continue;
453 case INSN:
454 if (GET_CODE (PATTERN (insn)) == USE)
456 /* If INSN is a USE made by update_block, we care about the
457 underlying insn. Any registers set by the underlying insn
458 are live since the insn is being done somewhere else. */
459 if (INSN_P (XEXP (PATTERN (insn), 0)))
460 mark_set_resources (XEXP (PATTERN (insn), 0), res, 0,
461 MARK_SRC_DEST_CALL);
463 /* All other USE insns are to be ignored. */
464 continue;
466 else if (GET_CODE (PATTERN (insn)) == CLOBBER)
467 continue;
468 else if (GET_CODE (PATTERN (insn)) == SEQUENCE)
470 /* An unconditional jump can be used to fill the delay slot
471 of a call, so search for a JUMP_INSN in any position. */
472 for (i = 0; i < XVECLEN (PATTERN (insn), 0); i++)
474 this_jump_insn = XVECEXP (PATTERN (insn), 0, i);
475 if (JUMP_P (this_jump_insn))
476 break;
480 default:
481 break;
484 if (JUMP_P (this_jump_insn))
486 if (jump_count++ < 10)
488 if (any_uncondjump_p (this_jump_insn)
489 || ANY_RETURN_P (PATTERN (this_jump_insn)))
491 next = JUMP_LABEL (this_jump_insn);
492 if (ANY_RETURN_P (next))
493 next = NULL_RTX;
494 if (jump_insn == 0)
496 jump_insn = insn;
497 if (jump_target)
498 *jump_target = JUMP_LABEL (this_jump_insn);
501 else if (any_condjump_p (this_jump_insn))
503 struct resources target_set, target_res;
504 struct resources fallthrough_res;
506 /* We can handle conditional branches here by following
507 both paths, and then IOR the results of the two paths
508 together, which will give us registers that are dead
509 on both paths. Since this is expensive, we give it
510 a much higher cost than unconditional branches. The
511 cost was chosen so that we will follow at most 1
512 conditional branch. */
514 jump_count += 4;
515 if (jump_count >= 10)
516 break;
518 mark_referenced_resources (insn, &needed, true);
520 /* For an annulled branch, mark_set_resources ignores slots
521 filled by instructions from the target. This is correct
522 if the branch is not taken. Since we are following both
523 paths from the branch, we must also compute correct info
524 if the branch is taken. We do this by inverting all of
525 the INSN_FROM_TARGET_P bits, calling mark_set_resources,
526 and then inverting the INSN_FROM_TARGET_P bits again. */
528 if (GET_CODE (PATTERN (insn)) == SEQUENCE
529 && INSN_ANNULLED_BRANCH_P (this_jump_insn))
531 for (i = 1; i < XVECLEN (PATTERN (insn), 0); i++)
532 INSN_FROM_TARGET_P (XVECEXP (PATTERN (insn), 0, i))
533 = ! INSN_FROM_TARGET_P (XVECEXP (PATTERN (insn), 0, i));
535 target_set = set;
536 mark_set_resources (insn, &target_set, 0,
537 MARK_SRC_DEST_CALL);
539 for (i = 1; i < XVECLEN (PATTERN (insn), 0); i++)
540 INSN_FROM_TARGET_P (XVECEXP (PATTERN (insn), 0, i))
541 = ! INSN_FROM_TARGET_P (XVECEXP (PATTERN (insn), 0, i));
543 mark_set_resources (insn, &set, 0, MARK_SRC_DEST_CALL);
545 else
547 mark_set_resources (insn, &set, 0, MARK_SRC_DEST_CALL);
548 target_set = set;
551 target_res = *res;
552 COPY_HARD_REG_SET (scratch, target_set.regs);
553 AND_COMPL_HARD_REG_SET (scratch, needed.regs);
554 AND_COMPL_HARD_REG_SET (target_res.regs, scratch);
556 fallthrough_res = *res;
557 COPY_HARD_REG_SET (scratch, set.regs);
558 AND_COMPL_HARD_REG_SET (scratch, needed.regs);
559 AND_COMPL_HARD_REG_SET (fallthrough_res.regs, scratch);
561 if (!ANY_RETURN_P (JUMP_LABEL (this_jump_insn)))
562 find_dead_or_set_registers (JUMP_LABEL (this_jump_insn),
563 &target_res, 0, jump_count,
564 target_set, needed);
565 find_dead_or_set_registers (next,
566 &fallthrough_res, 0, jump_count,
567 set, needed);
568 IOR_HARD_REG_SET (fallthrough_res.regs, target_res.regs);
569 AND_HARD_REG_SET (res->regs, fallthrough_res.regs);
570 break;
572 else
573 break;
575 else
577 /* Don't try this optimization if we expired our jump count
578 above, since that would mean there may be an infinite loop
579 in the function being compiled. */
580 jump_insn = 0;
581 break;
585 mark_referenced_resources (insn, &needed, true);
586 mark_set_resources (insn, &set, 0, MARK_SRC_DEST_CALL);
588 COPY_HARD_REG_SET (scratch, set.regs);
589 AND_COMPL_HARD_REG_SET (scratch, needed.regs);
590 AND_COMPL_HARD_REG_SET (res->regs, scratch);
593 return jump_insn;
596 /* Given X, a part of an insn, and a pointer to a `struct resource',
597 RES, indicate which resources are modified by the insn. If
598 MARK_TYPE is MARK_SRC_DEST_CALL, also mark resources potentially
599 set by the called routine.
601 If IN_DEST is nonzero, it means we are inside a SET. Otherwise,
602 objects are being referenced instead of set.
604 We never mark the insn as modifying the condition code unless it explicitly
605 SETs CC0 even though this is not totally correct. The reason for this is
606 that we require a SET of CC0 to immediately precede the reference to CC0.
607 So if some other insn sets CC0 as a side-effect, we know it cannot affect
608 our computation and thus may be placed in a delay slot. */
610 void
611 mark_set_resources (rtx x, struct resources *res, int in_dest,
612 enum mark_resource_type mark_type)
614 enum rtx_code code;
615 int i, j;
616 unsigned int r;
617 const char *format_ptr;
619 restart:
621 code = GET_CODE (x);
623 switch (code)
625 case NOTE:
626 case BARRIER:
627 case CODE_LABEL:
628 case USE:
629 CASE_CONST_ANY:
630 case LABEL_REF:
631 case SYMBOL_REF:
632 case CONST:
633 case PC:
634 /* These don't set any resources. */
635 return;
637 case CC0:
638 if (in_dest)
639 res->cc = 1;
640 return;
642 case CALL_INSN:
643 /* Called routine modifies the condition code, memory, any registers
644 that aren't saved across calls, global registers and anything
645 explicitly CLOBBERed immediately after the CALL_INSN. */
647 if (mark_type == MARK_SRC_DEST_CALL)
649 rtx link;
651 res->cc = res->memory = 1;
653 IOR_HARD_REG_SET (res->regs, regs_invalidated_by_call);
655 for (link = CALL_INSN_FUNCTION_USAGE (x);
656 link; link = XEXP (link, 1))
657 if (GET_CODE (XEXP (link, 0)) == CLOBBER)
658 mark_set_resources (SET_DEST (XEXP (link, 0)), res, 1,
659 MARK_SRC_DEST);
661 /* Check for a REG_SETJMP. If it exists, then we must
662 assume that this call can clobber any register. */
663 if (find_reg_note (x, REG_SETJMP, NULL))
664 SET_HARD_REG_SET (res->regs);
667 /* ... and also what its RTL says it modifies, if anything. */
669 case JUMP_INSN:
670 case INSN:
672 /* An insn consisting of just a CLOBBER (or USE) is just for flow
673 and doesn't actually do anything, so we ignore it. */
675 #ifdef INSN_SETS_ARE_DELAYED
676 if (mark_type != MARK_SRC_DEST_CALL
677 && INSN_SETS_ARE_DELAYED (x))
678 return;
679 #endif
681 x = PATTERN (x);
682 if (GET_CODE (x) != USE && GET_CODE (x) != CLOBBER)
683 goto restart;
684 return;
686 case SET:
687 /* If the source of a SET is a CALL, this is actually done by
688 the called routine. So only include it if we are to include the
689 effects of the calling routine. */
691 mark_set_resources (SET_DEST (x), res,
692 (mark_type == MARK_SRC_DEST_CALL
693 || GET_CODE (SET_SRC (x)) != CALL),
694 mark_type);
696 mark_set_resources (SET_SRC (x), res, 0, MARK_SRC_DEST);
697 return;
699 case CLOBBER:
700 mark_set_resources (XEXP (x, 0), res, 1, MARK_SRC_DEST);
701 return;
703 case SEQUENCE:
705 rtx control = XVECEXP (x, 0, 0);
706 bool annul_p = JUMP_P (control) && INSN_ANNULLED_BRANCH_P (control);
708 mark_set_resources (control, res, 0, mark_type);
709 for (i = XVECLEN (x, 0) - 1; i >= 0; --i)
711 rtx elt = XVECEXP (x, 0, i);
712 if (!annul_p && INSN_FROM_TARGET_P (elt))
713 mark_set_resources (elt, res, 0, mark_type);
716 return;
718 case POST_INC:
719 case PRE_INC:
720 case POST_DEC:
721 case PRE_DEC:
722 mark_set_resources (XEXP (x, 0), res, 1, MARK_SRC_DEST);
723 return;
725 case PRE_MODIFY:
726 case POST_MODIFY:
727 mark_set_resources (XEXP (x, 0), res, 1, MARK_SRC_DEST);
728 mark_set_resources (XEXP (XEXP (x, 1), 0), res, 0, MARK_SRC_DEST);
729 mark_set_resources (XEXP (XEXP (x, 1), 1), res, 0, MARK_SRC_DEST);
730 return;
732 case SIGN_EXTRACT:
733 case ZERO_EXTRACT:
734 mark_set_resources (XEXP (x, 0), res, in_dest, MARK_SRC_DEST);
735 mark_set_resources (XEXP (x, 1), res, 0, MARK_SRC_DEST);
736 mark_set_resources (XEXP (x, 2), res, 0, MARK_SRC_DEST);
737 return;
739 case MEM:
740 if (in_dest)
742 res->memory = 1;
743 res->unch_memory |= MEM_READONLY_P (x);
744 res->volatil |= MEM_VOLATILE_P (x);
747 mark_set_resources (XEXP (x, 0), res, 0, MARK_SRC_DEST);
748 return;
750 case SUBREG:
751 if (in_dest)
753 if (!REG_P (SUBREG_REG (x)))
754 mark_set_resources (SUBREG_REG (x), res, in_dest, mark_type);
755 else
757 unsigned int regno = subreg_regno (x);
758 unsigned int last_regno = regno + subreg_nregs (x);
760 gcc_assert (last_regno <= FIRST_PSEUDO_REGISTER);
761 for (r = regno; r < last_regno; r++)
762 SET_HARD_REG_BIT (res->regs, r);
765 return;
767 case REG:
768 if (in_dest)
770 gcc_assert (HARD_REGISTER_P (x));
771 add_to_hard_reg_set (&res->regs, GET_MODE (x), REGNO (x));
773 return;
775 case UNSPEC_VOLATILE:
776 case ASM_INPUT:
777 /* Traditional asm's are always volatile. */
778 res->volatil = 1;
779 return;
781 case TRAP_IF:
782 res->volatil = 1;
783 break;
785 case ASM_OPERANDS:
786 res->volatil |= MEM_VOLATILE_P (x);
788 /* For all ASM_OPERANDS, we must traverse the vector of input operands.
789 We can not just fall through here since then we would be confused
790 by the ASM_INPUT rtx inside ASM_OPERANDS, which do not indicate
791 traditional asms unlike their normal usage. */
793 for (i = 0; i < ASM_OPERANDS_INPUT_LENGTH (x); i++)
794 mark_set_resources (ASM_OPERANDS_INPUT (x, i), res, in_dest,
795 MARK_SRC_DEST);
796 return;
798 default:
799 break;
802 /* Process each sub-expression and flag what it needs. */
803 format_ptr = GET_RTX_FORMAT (code);
804 for (i = 0; i < GET_RTX_LENGTH (code); i++)
805 switch (*format_ptr++)
807 case 'e':
808 mark_set_resources (XEXP (x, i), res, in_dest, mark_type);
809 break;
811 case 'E':
812 for (j = 0; j < XVECLEN (x, i); j++)
813 mark_set_resources (XVECEXP (x, i, j), res, in_dest, mark_type);
814 break;
818 /* Return TRUE if INSN is a return, possibly with a filled delay slot. */
820 static bool
821 return_insn_p (const_rtx insn)
823 if (JUMP_P (insn) && ANY_RETURN_P (PATTERN (insn)))
824 return true;
826 if (NONJUMP_INSN_P (insn) && GET_CODE (PATTERN (insn)) == SEQUENCE)
827 return return_insn_p (XVECEXP (PATTERN (insn), 0, 0));
829 return false;
832 /* Set the resources that are live at TARGET.
834 If TARGET is zero, we refer to the end of the current function and can
835 return our precomputed value.
837 Otherwise, we try to find out what is live by consulting the basic block
838 information. This is tricky, because we must consider the actions of
839 reload and jump optimization, which occur after the basic block information
840 has been computed.
842 Accordingly, we proceed as follows::
844 We find the previous BARRIER and look at all immediately following labels
845 (with no intervening active insns) to see if any of them start a basic
846 block. If we hit the start of the function first, we use block 0.
848 Once we have found a basic block and a corresponding first insn, we can
849 accurately compute the live status (by starting at a label following a
850 BARRIER, we are immune to actions taken by reload and jump.) Then we
851 scan all insns between that point and our target. For each CLOBBER (or
852 for call-clobbered regs when we pass a CALL_INSN), mark the appropriate
853 registers are dead. For a SET, mark them as live.
855 We have to be careful when using REG_DEAD notes because they are not
856 updated by such things as find_equiv_reg. So keep track of registers
857 marked as dead that haven't been assigned to, and mark them dead at the
858 next CODE_LABEL since reload and jump won't propagate values across labels.
860 If we cannot find the start of a basic block (should be a very rare
861 case, if it can happen at all), mark everything as potentially live.
863 Next, scan forward from TARGET looking for things set or clobbered
864 before they are used. These are not live.
866 Because we can be called many times on the same target, save our results
867 in a hash table indexed by INSN_UID. This is only done if the function
868 init_resource_info () was invoked before we are called. */
870 void
871 mark_target_live_regs (rtx insns, rtx target, struct resources *res)
873 int b = -1;
874 unsigned int i;
875 struct target_info *tinfo = NULL;
876 rtx insn;
877 rtx jump_insn = 0;
878 rtx jump_target;
879 HARD_REG_SET scratch;
880 struct resources set, needed;
882 /* Handle end of function. */
883 if (target == 0 || ANY_RETURN_P (target))
885 *res = end_of_function_needs;
886 return;
889 /* Handle return insn. */
890 else if (return_insn_p (target))
892 *res = end_of_function_needs;
893 mark_referenced_resources (target, res, false);
894 return;
897 /* We have to assume memory is needed, but the CC isn't. */
898 res->memory = 1;
899 res->volatil = res->unch_memory = 0;
900 res->cc = 0;
902 /* See if we have computed this value already. */
903 if (target_hash_table != NULL)
905 for (tinfo = target_hash_table[INSN_UID (target) % TARGET_HASH_PRIME];
906 tinfo; tinfo = tinfo->next)
907 if (tinfo->uid == INSN_UID (target))
908 break;
910 /* Start by getting the basic block number. If we have saved
911 information, we can get it from there unless the insn at the
912 start of the basic block has been deleted. */
913 if (tinfo && tinfo->block != -1
914 && ! INSN_DELETED_P (BB_HEAD (BASIC_BLOCK (tinfo->block))))
915 b = tinfo->block;
918 if (b == -1)
919 b = find_basic_block (target, MAX_DELAY_SLOT_LIVE_SEARCH);
921 if (target_hash_table != NULL)
923 if (tinfo)
925 /* If the information is up-to-date, use it. Otherwise, we will
926 update it below. */
927 if (b == tinfo->block && b != -1 && tinfo->bb_tick == bb_ticks[b])
929 COPY_HARD_REG_SET (res->regs, tinfo->live_regs);
930 return;
933 else
935 /* Allocate a place to put our results and chain it into the
936 hash table. */
937 tinfo = XNEW (struct target_info);
938 tinfo->uid = INSN_UID (target);
939 tinfo->block = b;
940 tinfo->next
941 = target_hash_table[INSN_UID (target) % TARGET_HASH_PRIME];
942 target_hash_table[INSN_UID (target) % TARGET_HASH_PRIME] = tinfo;
946 CLEAR_HARD_REG_SET (pending_dead_regs);
948 /* If we found a basic block, get the live registers from it and update
949 them with anything set or killed between its start and the insn before
950 TARGET; this custom life analysis is really about registers so we need
951 to use the LR problem. Otherwise, we must assume everything is live. */
952 if (b != -1)
954 regset regs_live = DF_LR_IN (BASIC_BLOCK (b));
955 rtx start_insn, stop_insn;
957 /* Compute hard regs live at start of block. */
958 REG_SET_TO_HARD_REG_SET (current_live_regs, regs_live);
960 /* Get starting and ending insn, handling the case where each might
961 be a SEQUENCE. */
962 start_insn = (b == ENTRY_BLOCK_PTR->next_bb->index ?
963 insns : BB_HEAD (BASIC_BLOCK (b)));
964 stop_insn = target;
966 if (NONJUMP_INSN_P (start_insn)
967 && GET_CODE (PATTERN (start_insn)) == SEQUENCE)
968 start_insn = XVECEXP (PATTERN (start_insn), 0, 0);
970 if (NONJUMP_INSN_P (stop_insn)
971 && GET_CODE (PATTERN (stop_insn)) == SEQUENCE)
972 stop_insn = next_insn (PREV_INSN (stop_insn));
974 for (insn = start_insn; insn != stop_insn;
975 insn = next_insn_no_annul (insn))
977 rtx link;
978 rtx real_insn = insn;
979 enum rtx_code code = GET_CODE (insn);
981 if (DEBUG_INSN_P (insn))
982 continue;
984 /* If this insn is from the target of a branch, it isn't going to
985 be used in the sequel. If it is used in both cases, this
986 test will not be true. */
987 if ((code == INSN || code == JUMP_INSN || code == CALL_INSN)
988 && INSN_FROM_TARGET_P (insn))
989 continue;
991 /* If this insn is a USE made by update_block, we care about the
992 underlying insn. */
993 if (code == INSN
994 && GET_CODE (PATTERN (insn)) == USE
995 && INSN_P (XEXP (PATTERN (insn), 0)))
996 real_insn = XEXP (PATTERN (insn), 0);
998 if (CALL_P (real_insn))
1000 /* CALL clobbers all call-used regs that aren't fixed except
1001 sp, ap, and fp. Do this before setting the result of the
1002 call live. */
1003 AND_COMPL_HARD_REG_SET (current_live_regs,
1004 regs_invalidated_by_call);
1006 /* A CALL_INSN sets any global register live, since it may
1007 have been modified by the call. */
1008 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1009 if (global_regs[i])
1010 SET_HARD_REG_BIT (current_live_regs, i);
1013 /* Mark anything killed in an insn to be deadened at the next
1014 label. Ignore USE insns; the only REG_DEAD notes will be for
1015 parameters. But they might be early. A CALL_INSN will usually
1016 clobber registers used for parameters. It isn't worth bothering
1017 with the unlikely case when it won't. */
1018 if ((NONJUMP_INSN_P (real_insn)
1019 && GET_CODE (PATTERN (real_insn)) != USE
1020 && GET_CODE (PATTERN (real_insn)) != CLOBBER)
1021 || JUMP_P (real_insn)
1022 || CALL_P (real_insn))
1024 for (link = REG_NOTES (real_insn); link; link = XEXP (link, 1))
1025 if (REG_NOTE_KIND (link) == REG_DEAD
1026 && REG_P (XEXP (link, 0))
1027 && REGNO (XEXP (link, 0)) < FIRST_PSEUDO_REGISTER)
1028 add_to_hard_reg_set (&pending_dead_regs,
1029 GET_MODE (XEXP (link, 0)),
1030 REGNO (XEXP (link, 0)));
1032 note_stores (PATTERN (real_insn), update_live_status, NULL);
1034 /* If any registers were unused after this insn, kill them.
1035 These notes will always be accurate. */
1036 for (link = REG_NOTES (real_insn); link; link = XEXP (link, 1))
1037 if (REG_NOTE_KIND (link) == REG_UNUSED
1038 && REG_P (XEXP (link, 0))
1039 && REGNO (XEXP (link, 0)) < FIRST_PSEUDO_REGISTER)
1040 remove_from_hard_reg_set (&current_live_regs,
1041 GET_MODE (XEXP (link, 0)),
1042 REGNO (XEXP (link, 0)));
1045 else if (LABEL_P (real_insn))
1047 basic_block bb;
1049 /* A label clobbers the pending dead registers since neither
1050 reload nor jump will propagate a value across a label. */
1051 AND_COMPL_HARD_REG_SET (current_live_regs, pending_dead_regs);
1052 CLEAR_HARD_REG_SET (pending_dead_regs);
1054 /* We must conservatively assume that all registers that used
1055 to be live here still are. The fallthrough edge may have
1056 left a live register uninitialized. */
1057 bb = BLOCK_FOR_INSN (real_insn);
1058 if (bb)
1060 HARD_REG_SET extra_live;
1062 REG_SET_TO_HARD_REG_SET (extra_live, DF_LR_IN (bb));
1063 IOR_HARD_REG_SET (current_live_regs, extra_live);
1067 /* The beginning of the epilogue corresponds to the end of the
1068 RTL chain when there are no epilogue insns. Certain resources
1069 are implicitly required at that point. */
1070 else if (NOTE_P (real_insn)
1071 && NOTE_KIND (real_insn) == NOTE_INSN_EPILOGUE_BEG)
1072 IOR_HARD_REG_SET (current_live_regs, start_of_epilogue_needs.regs);
1075 COPY_HARD_REG_SET (res->regs, current_live_regs);
1076 if (tinfo != NULL)
1078 tinfo->block = b;
1079 tinfo->bb_tick = bb_ticks[b];
1082 else
1083 /* We didn't find the start of a basic block. Assume everything
1084 in use. This should happen only extremely rarely. */
1085 SET_HARD_REG_SET (res->regs);
1087 CLEAR_RESOURCE (&set);
1088 CLEAR_RESOURCE (&needed);
1090 jump_insn = find_dead_or_set_registers (target, res, &jump_target, 0,
1091 set, needed);
1093 /* If we hit an unconditional branch, we have another way of finding out
1094 what is live: we can see what is live at the branch target and include
1095 anything used but not set before the branch. We add the live
1096 resources found using the test below to those found until now. */
1098 if (jump_insn)
1100 struct resources new_resources;
1101 rtx stop_insn = next_active_insn (jump_insn);
1103 if (!ANY_RETURN_P (jump_target))
1104 jump_target = next_active_insn (jump_target);
1105 mark_target_live_regs (insns, jump_target, &new_resources);
1106 CLEAR_RESOURCE (&set);
1107 CLEAR_RESOURCE (&needed);
1109 /* Include JUMP_INSN in the needed registers. */
1110 for (insn = target; insn != stop_insn; insn = next_active_insn (insn))
1112 mark_referenced_resources (insn, &needed, true);
1114 COPY_HARD_REG_SET (scratch, needed.regs);
1115 AND_COMPL_HARD_REG_SET (scratch, set.regs);
1116 IOR_HARD_REG_SET (new_resources.regs, scratch);
1118 mark_set_resources (insn, &set, 0, MARK_SRC_DEST_CALL);
1121 IOR_HARD_REG_SET (res->regs, new_resources.regs);
1124 if (tinfo != NULL)
1126 COPY_HARD_REG_SET (tinfo->live_regs, res->regs);
1130 /* Initialize the resources required by mark_target_live_regs ().
1131 This should be invoked before the first call to mark_target_live_regs. */
1133 void
1134 init_resource_info (rtx epilogue_insn)
1136 int i;
1137 basic_block bb;
1139 /* Indicate what resources are required to be valid at the end of the current
1140 function. The condition code never is and memory always is.
1141 The stack pointer is needed unless EXIT_IGNORE_STACK is true
1142 and there is an epilogue that restores the original stack pointer
1143 from the frame pointer. Registers used to return the function value
1144 are needed. Registers holding global variables are needed. */
1146 end_of_function_needs.cc = 0;
1147 end_of_function_needs.memory = 1;
1148 end_of_function_needs.unch_memory = 0;
1149 CLEAR_HARD_REG_SET (end_of_function_needs.regs);
1151 if (frame_pointer_needed)
1153 SET_HARD_REG_BIT (end_of_function_needs.regs, FRAME_POINTER_REGNUM);
1154 #if !HARD_FRAME_POINTER_IS_FRAME_POINTER
1155 SET_HARD_REG_BIT (end_of_function_needs.regs, HARD_FRAME_POINTER_REGNUM);
1156 #endif
1158 if (!(frame_pointer_needed
1159 && EXIT_IGNORE_STACK
1160 && epilogue_insn
1161 && !crtl->sp_is_unchanging))
1162 SET_HARD_REG_BIT (end_of_function_needs.regs, STACK_POINTER_REGNUM);
1164 if (crtl->return_rtx != 0)
1165 mark_referenced_resources (crtl->return_rtx,
1166 &end_of_function_needs, true);
1168 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1169 if (global_regs[i]
1170 #ifdef EPILOGUE_USES
1171 || EPILOGUE_USES (i)
1172 #endif
1174 SET_HARD_REG_BIT (end_of_function_needs.regs, i);
1176 /* The registers required to be live at the end of the function are
1177 represented in the flow information as being dead just prior to
1178 reaching the end of the function. For example, the return of a value
1179 might be represented by a USE of the return register immediately
1180 followed by an unconditional jump to the return label where the
1181 return label is the end of the RTL chain. The end of the RTL chain
1182 is then taken to mean that the return register is live.
1184 This sequence is no longer maintained when epilogue instructions are
1185 added to the RTL chain. To reconstruct the original meaning, the
1186 start of the epilogue (NOTE_INSN_EPILOGUE_BEG) is regarded as the
1187 point where these registers become live (start_of_epilogue_needs).
1188 If epilogue instructions are present, the registers set by those
1189 instructions won't have been processed by flow. Thus, those
1190 registers are additionally required at the end of the RTL chain
1191 (end_of_function_needs). */
1193 start_of_epilogue_needs = end_of_function_needs;
1195 while ((epilogue_insn = next_nonnote_insn (epilogue_insn)))
1197 mark_set_resources (epilogue_insn, &end_of_function_needs, 0,
1198 MARK_SRC_DEST_CALL);
1199 if (return_insn_p (epilogue_insn))
1200 break;
1203 /* Allocate and initialize the tables used by mark_target_live_regs. */
1204 target_hash_table = XCNEWVEC (struct target_info *, TARGET_HASH_PRIME);
1205 bb_ticks = XCNEWVEC (int, last_basic_block);
1207 /* Set the BLOCK_FOR_INSN of each label that starts a basic block. */
1208 FOR_EACH_BB (bb)
1209 if (LABEL_P (BB_HEAD (bb)))
1210 BLOCK_FOR_INSN (BB_HEAD (bb)) = bb;
1213 /* Free up the resources allocated to mark_target_live_regs (). This
1214 should be invoked after the last call to mark_target_live_regs (). */
1216 void
1217 free_resource_info (void)
1219 basic_block bb;
1221 if (target_hash_table != NULL)
1223 int i;
1225 for (i = 0; i < TARGET_HASH_PRIME; ++i)
1227 struct target_info *ti = target_hash_table[i];
1229 while (ti)
1231 struct target_info *next = ti->next;
1232 free (ti);
1233 ti = next;
1237 free (target_hash_table);
1238 target_hash_table = NULL;
1241 if (bb_ticks != NULL)
1243 free (bb_ticks);
1244 bb_ticks = NULL;
1247 FOR_EACH_BB (bb)
1248 if (LABEL_P (BB_HEAD (bb)))
1249 BLOCK_FOR_INSN (BB_HEAD (bb)) = NULL;
1252 /* Clear any hashed information that we have stored for INSN. */
1254 void
1255 clear_hashed_info_for_insn (rtx insn)
1257 struct target_info *tinfo;
1259 if (target_hash_table != NULL)
1261 for (tinfo = target_hash_table[INSN_UID (insn) % TARGET_HASH_PRIME];
1262 tinfo; tinfo = tinfo->next)
1263 if (tinfo->uid == INSN_UID (insn))
1264 break;
1266 if (tinfo)
1267 tinfo->block = -1;
1271 /* Increment the tick count for the basic block that contains INSN. */
1273 void
1274 incr_ticks_for_insn (rtx insn)
1276 int b = find_basic_block (insn, MAX_DELAY_SLOT_LIVE_SEARCH);
1278 if (b != -1)
1279 bb_ticks[b]++;
1282 /* Add TRIAL to the set of resources used at the end of the current
1283 function. */
1284 void
1285 mark_end_of_function_resources (rtx trial, bool include_delayed_effects)
1287 mark_referenced_resources (trial, &end_of_function_needs,
1288 include_delayed_effects);