* gcc.dg/vect/vect-22.c: Require vect_float.
[official-gcc.git] / gcc / ada / sem_ch13.adb
blobc15866038577e99f98e437769f4efa5408fa31cc
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT COMPILER COMPONENTS --
4 -- --
5 -- S E M _ C H 1 3 --
6 -- --
7 -- B o d y --
8 -- --
9 -- Copyright (C) 1992-2005, Free Software Foundation, Inc. --
10 -- --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 2, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING. If not, write --
19 -- to the Free Software Foundation, 51 Franklin Street, Fifth Floor, --
20 -- Boston, MA 02110-1301, USA. --
21 -- --
22 -- GNAT was originally developed by the GNAT team at New York University. --
23 -- Extensive contributions were provided by Ada Core Technologies Inc. --
24 -- --
25 ------------------------------------------------------------------------------
27 with Atree; use Atree;
28 with Checks; use Checks;
29 with Einfo; use Einfo;
30 with Errout; use Errout;
31 with Exp_Tss; use Exp_Tss;
32 with Exp_Util; use Exp_Util;
33 with Lib; use Lib;
34 with Nlists; use Nlists;
35 with Nmake; use Nmake;
36 with Opt; use Opt;
37 with Restrict; use Restrict;
38 with Rident; use Rident;
39 with Rtsfind; use Rtsfind;
40 with Sem; use Sem;
41 with Sem_Ch8; use Sem_Ch8;
42 with Sem_Eval; use Sem_Eval;
43 with Sem_Res; use Sem_Res;
44 with Sem_Type; use Sem_Type;
45 with Sem_Util; use Sem_Util;
46 with Snames; use Snames;
47 with Stand; use Stand;
48 with Sinfo; use Sinfo;
49 with Table;
50 with Targparm; use Targparm;
51 with Ttypes; use Ttypes;
52 with Tbuild; use Tbuild;
53 with Urealp; use Urealp;
55 with GNAT.Heap_Sort_A; use GNAT.Heap_Sort_A;
57 package body Sem_Ch13 is
59 SSU : constant Pos := System_Storage_Unit;
60 -- Convenient short hand for commonly used constant
62 -----------------------
63 -- Local Subprograms --
64 -----------------------
66 procedure Alignment_Check_For_Esize_Change (Typ : Entity_Id);
67 -- This routine is called after setting the Esize of type entity Typ.
68 -- The purpose is to deal with the situation where an aligment has been
69 -- inherited from a derived type that is no longer appropriate for the
70 -- new Esize value. In this case, we reset the Alignment to unknown.
72 procedure Check_Component_Overlap (C1_Ent, C2_Ent : Entity_Id);
73 -- Given two entities for record components or discriminants, checks
74 -- if they hav overlapping component clauses and issues errors if so.
76 function Get_Alignment_Value (Expr : Node_Id) return Uint;
77 -- Given the expression for an alignment value, returns the corresponding
78 -- Uint value. If the value is inappropriate, then error messages are
79 -- posted as required, and a value of No_Uint is returned.
81 function Is_Operational_Item (N : Node_Id) return Boolean;
82 -- A specification for a stream attribute is allowed before the full
83 -- type is declared, as explained in AI-00137 and the corrigendum.
84 -- Attributes that do not specify a representation characteristic are
85 -- operational attributes.
87 function Address_Aliased_Entity (N : Node_Id) return Entity_Id;
88 -- If expression N is of the form E'Address, return E
90 procedure Mark_Aliased_Address_As_Volatile (N : Node_Id);
91 -- This is used for processing of an address representation clause. If
92 -- the expression N is of the form of K'Address, then the entity that
93 -- is associated with K is marked as volatile.
95 procedure New_Stream_Function
96 (N : Node_Id;
97 Ent : Entity_Id;
98 Subp : Entity_Id;
99 Nam : TSS_Name_Type);
100 -- Create a function renaming of a given stream attribute to the
101 -- designated subprogram and then in the tagged case, provide this as
102 -- a primitive operation, or in the non-tagged case make an appropriate
103 -- TSS entry. Used for Input. This is more properly an expansion activity
104 -- than just semantics, but the presence of user-defined stream functions
105 -- for limited types is a legality check, which is why this takes place
106 -- here rather than in exp_ch13, where it was previously. Nam indicates
107 -- the name of the TSS function to be generated.
109 -- To avoid elaboration anomalies with freeze nodes, for untagged types
110 -- we generate both a subprogram declaration and a subprogram renaming
111 -- declaration, so that the attribute specification is handled as a
112 -- renaming_as_body. For tagged types, the specification is one of the
113 -- primitive specs.
115 procedure New_Stream_Procedure
116 (N : Node_Id;
117 Ent : Entity_Id;
118 Subp : Entity_Id;
119 Nam : TSS_Name_Type;
120 Out_P : Boolean := False);
121 -- Create a procedure renaming of a given stream attribute to the
122 -- designated subprogram and then in the tagged case, provide this as
123 -- a primitive operation, or in the non-tagged case make an appropriate
124 -- TSS entry. Used for Read, Output, Write. Nam indicates the name of
125 -- the TSS procedure to be generated.
127 ----------------------------------------------
128 -- Table for Validate_Unchecked_Conversions --
129 ----------------------------------------------
131 -- The following table collects unchecked conversions for validation.
132 -- Entries are made by Validate_Unchecked_Conversion and then the
133 -- call to Validate_Unchecked_Conversions does the actual error
134 -- checking and posting of warnings. The reason for this delayed
135 -- processing is to take advantage of back-annotations of size and
136 -- alignment values peformed by the back end.
138 type UC_Entry is record
139 Enode : Node_Id; -- node used for posting warnings
140 Source : Entity_Id; -- source type for unchecked conversion
141 Target : Entity_Id; -- target type for unchecked conversion
142 end record;
144 package Unchecked_Conversions is new Table.Table (
145 Table_Component_Type => UC_Entry,
146 Table_Index_Type => Int,
147 Table_Low_Bound => 1,
148 Table_Initial => 50,
149 Table_Increment => 200,
150 Table_Name => "Unchecked_Conversions");
152 ----------------------------
153 -- Address_Aliased_Entity --
154 ----------------------------
156 function Address_Aliased_Entity (N : Node_Id) return Entity_Id is
157 begin
158 if Nkind (N) = N_Attribute_Reference
159 and then Attribute_Name (N) = Name_Address
160 then
161 declare
162 Nam : Node_Id := Prefix (N);
163 begin
164 while False
165 or else Nkind (Nam) = N_Selected_Component
166 or else Nkind (Nam) = N_Indexed_Component
167 loop
168 Nam := Prefix (Nam);
169 end loop;
171 if Is_Entity_Name (Nam) then
172 return Entity (Nam);
173 end if;
174 end;
175 end if;
177 return Empty;
178 end Address_Aliased_Entity;
180 --------------------------------------
181 -- Alignment_Check_For_Esize_Change --
182 --------------------------------------
184 procedure Alignment_Check_For_Esize_Change (Typ : Entity_Id) is
185 begin
186 -- If the alignment is known, and not set by a rep clause, and is
187 -- inconsistent with the size being set, then reset it to unknown,
188 -- we assume in this case that the size overrides the inherited
189 -- alignment, and that the alignment must be recomputed.
191 if Known_Alignment (Typ)
192 and then not Has_Alignment_Clause (Typ)
193 and then Esize (Typ) mod (Alignment (Typ) * SSU) /= 0
194 then
195 Init_Alignment (Typ);
196 end if;
197 end Alignment_Check_For_Esize_Change;
199 -----------------------
200 -- Analyze_At_Clause --
201 -----------------------
203 -- An at clause is replaced by the corresponding Address attribute
204 -- definition clause that is the preferred approach in Ada 95.
206 procedure Analyze_At_Clause (N : Node_Id) is
207 begin
208 Check_Restriction (No_Obsolescent_Features, N);
210 if Warn_On_Obsolescent_Feature then
211 Error_Msg_N
212 ("at clause is an obsolescent feature ('R'M 'J.7(2))?", N);
213 Error_Msg_N
214 ("\use address attribute definition clause instead?", N);
215 end if;
217 Rewrite (N,
218 Make_Attribute_Definition_Clause (Sloc (N),
219 Name => Identifier (N),
220 Chars => Name_Address,
221 Expression => Expression (N)));
222 Analyze_Attribute_Definition_Clause (N);
223 end Analyze_At_Clause;
225 -----------------------------------------
226 -- Analyze_Attribute_Definition_Clause --
227 -----------------------------------------
229 procedure Analyze_Attribute_Definition_Clause (N : Node_Id) is
230 Loc : constant Source_Ptr := Sloc (N);
231 Nam : constant Node_Id := Name (N);
232 Attr : constant Name_Id := Chars (N);
233 Expr : constant Node_Id := Expression (N);
234 Id : constant Attribute_Id := Get_Attribute_Id (Attr);
235 Ent : Entity_Id;
236 U_Ent : Entity_Id;
238 FOnly : Boolean := False;
239 -- Reset to True for subtype specific attribute (Alignment, Size)
240 -- and for stream attributes, i.e. those cases where in the call
241 -- to Rep_Item_Too_Late, FOnly is set True so that only the freezing
242 -- rules are checked. Note that the case of stream attributes is not
243 -- clear from the RM, but see AI95-00137. Also, the RM seems to
244 -- disallow Storage_Size for derived task types, but that is also
245 -- clearly unintentional.
247 procedure Analyze_Stream_TSS_Definition (TSS_Nam : TSS_Name_Type);
248 -- Common processing for 'Read, 'Write, 'Input and 'Output attribute
249 -- definition clauses.
251 procedure Analyze_Stream_TSS_Definition (TSS_Nam : TSS_Name_Type) is
252 Subp : Entity_Id := Empty;
253 I : Interp_Index;
254 It : Interp;
255 Pnam : Entity_Id;
257 Is_Read : constant Boolean := (TSS_Nam = TSS_Stream_Read);
259 function Has_Good_Profile (Subp : Entity_Id) return Boolean;
260 -- Return true if the entity is a subprogram with an appropriate
261 -- profile for the attribute being defined.
263 ----------------------
264 -- Has_Good_Profile --
265 ----------------------
267 function Has_Good_Profile (Subp : Entity_Id) return Boolean is
268 F : Entity_Id;
269 Is_Function : constant Boolean := (TSS_Nam = TSS_Stream_Input);
270 Expected_Ekind : constant array (Boolean) of Entity_Kind :=
271 (False => E_Procedure, True => E_Function);
272 Typ : Entity_Id;
274 begin
275 if Ekind (Subp) /= Expected_Ekind (Is_Function) then
276 return False;
277 end if;
279 F := First_Formal (Subp);
281 if No (F)
282 or else Ekind (Etype (F)) /= E_Anonymous_Access_Type
283 or else Designated_Type (Etype (F)) /=
284 Class_Wide_Type (RTE (RE_Root_Stream_Type))
285 then
286 return False;
287 end if;
289 if not Is_Function then
290 Next_Formal (F);
292 declare
293 Expected_Mode : constant array (Boolean) of Entity_Kind :=
294 (False => E_In_Parameter,
295 True => E_Out_Parameter);
296 begin
297 if Parameter_Mode (F) /= Expected_Mode (Is_Read) then
298 return False;
299 end if;
300 end;
302 Typ := Etype (F);
304 else
305 Typ := Etype (Subp);
306 end if;
308 return Base_Type (Typ) = Base_Type (Ent)
309 and then No (Next_Formal (F));
311 end Has_Good_Profile;
313 -- Start of processing for Analyze_Stream_TSS_Definition
315 begin
316 FOnly := True;
318 if not Is_Type (U_Ent) then
319 Error_Msg_N ("local name must be a subtype", Nam);
320 return;
321 end if;
323 Pnam := TSS (Base_Type (U_Ent), TSS_Nam);
325 if Present (Pnam) and then Has_Good_Profile (Pnam) then
326 Error_Msg_Sloc := Sloc (Pnam);
327 Error_Msg_Name_1 := Attr;
328 Error_Msg_N ("% attribute already defined #", Nam);
329 return;
330 end if;
332 Analyze (Expr);
334 if Is_Entity_Name (Expr) then
335 if not Is_Overloaded (Expr) then
336 if Has_Good_Profile (Entity (Expr)) then
337 Subp := Entity (Expr);
338 end if;
340 else
341 Get_First_Interp (Expr, I, It);
343 while Present (It.Nam) loop
344 if Has_Good_Profile (It.Nam) then
345 Subp := It.Nam;
346 exit;
347 end if;
349 Get_Next_Interp (I, It);
350 end loop;
351 end if;
352 end if;
354 if Present (Subp) then
355 if Is_Abstract (Subp) then
356 Error_Msg_N ("stream subprogram must not be abstract", Expr);
357 return;
358 end if;
360 Set_Entity (Expr, Subp);
361 Set_Etype (Expr, Etype (Subp));
363 if TSS_Nam = TSS_Stream_Input then
364 New_Stream_Function (N, U_Ent, Subp, TSS_Nam);
365 else
366 New_Stream_Procedure (N, U_Ent, Subp, TSS_Nam,
367 Out_P => Is_Read);
368 end if;
370 else
371 Error_Msg_Name_1 := Attr;
372 Error_Msg_N ("incorrect expression for% attribute", Expr);
373 end if;
374 end Analyze_Stream_TSS_Definition;
376 -- Start of processing for Analyze_Attribute_Definition_Clause
378 begin
379 Analyze (Nam);
380 Ent := Entity (Nam);
382 if Rep_Item_Too_Early (Ent, N) then
383 return;
384 end if;
386 -- Rep clause applies to full view of incomplete type or private type if
387 -- we have one (if not, this is a premature use of the type). However,
388 -- certain semantic checks need to be done on the specified entity (i.e.
389 -- the private view), so we save it in Ent.
391 if Is_Private_Type (Ent)
392 and then Is_Derived_Type (Ent)
393 and then not Is_Tagged_Type (Ent)
394 and then No (Full_View (Ent))
395 then
396 -- If this is a private type whose completion is a derivation from
397 -- another private type, there is no full view, and the attribute
398 -- belongs to the type itself, not its underlying parent.
400 U_Ent := Ent;
402 elsif Ekind (Ent) = E_Incomplete_Type then
404 -- The attribute applies to the full view, set the entity of the
405 -- attribute definition accordingly.
407 Ent := Underlying_Type (Ent);
408 U_Ent := Ent;
409 Set_Entity (Nam, Ent);
411 else
412 U_Ent := Underlying_Type (Ent);
413 end if;
415 -- Complete other routine error checks
417 if Etype (Nam) = Any_Type then
418 return;
420 elsif Scope (Ent) /= Current_Scope then
421 Error_Msg_N ("entity must be declared in this scope", Nam);
422 return;
424 elsif No (U_Ent) then
425 U_Ent := Ent;
427 elsif Is_Type (U_Ent)
428 and then not Is_First_Subtype (U_Ent)
429 and then Id /= Attribute_Object_Size
430 and then Id /= Attribute_Value_Size
431 and then not From_At_Mod (N)
432 then
433 Error_Msg_N ("cannot specify attribute for subtype", Nam);
434 return;
435 end if;
437 -- Switch on particular attribute
439 case Id is
441 -------------
442 -- Address --
443 -------------
445 -- Address attribute definition clause
447 when Attribute_Address => Address : begin
448 Analyze_And_Resolve (Expr, RTE (RE_Address));
450 if Present (Address_Clause (U_Ent)) then
451 Error_Msg_N ("address already given for &", Nam);
453 -- Case of address clause for subprogram
455 elsif Is_Subprogram (U_Ent) then
456 if Has_Homonym (U_Ent) then
457 Error_Msg_N
458 ("address clause cannot be given " &
459 "for overloaded subprogram",
460 Nam);
461 end if;
463 -- For subprograms, all address clauses are permitted,
464 -- and we mark the subprogram as having a deferred freeze
465 -- so that Gigi will not elaborate it too soon.
467 -- Above needs more comments, what is too soon about???
469 Set_Has_Delayed_Freeze (U_Ent);
471 -- Case of address clause for entry
473 elsif Ekind (U_Ent) = E_Entry then
474 if Nkind (Parent (N)) = N_Task_Body then
475 Error_Msg_N
476 ("entry address must be specified in task spec", Nam);
477 end if;
479 -- For entries, we require a constant address
481 Check_Constant_Address_Clause (Expr, U_Ent);
483 if Is_Task_Type (Scope (U_Ent))
484 and then Comes_From_Source (Scope (U_Ent))
485 then
486 Error_Msg_N
487 ("?entry address declared for entry in task type", N);
488 Error_Msg_N
489 ("\?only one task can be declared of this type", N);
490 end if;
492 Check_Restriction (No_Obsolescent_Features, N);
494 if Warn_On_Obsolescent_Feature then
495 Error_Msg_N
496 ("attaching interrupt to task entry is an " &
497 "obsolescent feature ('R'M 'J.7.1)?", N);
498 Error_Msg_N
499 ("\use interrupt procedure instead?", N);
500 end if;
502 -- Case of an address clause for a controlled object:
503 -- erroneous execution.
505 elsif Is_Controlled (Etype (U_Ent)) then
506 Error_Msg_NE
507 ("?controlled object& must not be overlaid", Nam, U_Ent);
508 Error_Msg_N
509 ("\?Program_Error will be raised at run time", Nam);
510 Insert_Action (Declaration_Node (U_Ent),
511 Make_Raise_Program_Error (Loc,
512 Reason => PE_Overlaid_Controlled_Object));
514 -- Case of address clause for a (non-controlled) object
516 elsif
517 Ekind (U_Ent) = E_Variable
518 or else
519 Ekind (U_Ent) = E_Constant
520 then
521 declare
522 Expr : constant Node_Id := Expression (N);
523 Aent : constant Entity_Id := Address_Aliased_Entity (Expr);
525 begin
526 -- Exported variables cannot have an address clause,
527 -- because this cancels the effect of the pragma Export
529 if Is_Exported (U_Ent) then
530 Error_Msg_N
531 ("cannot export object with address clause", Nam);
533 -- Overlaying controlled objects is erroneous
535 elsif Present (Aent)
536 and then Is_Controlled (Etype (Aent))
537 then
538 Error_Msg_N
539 ("?controlled object must not be overlaid", Expr);
540 Error_Msg_N
541 ("\?Program_Error will be raised at run time", Expr);
542 Insert_Action (Declaration_Node (U_Ent),
543 Make_Raise_Program_Error (Loc,
544 Reason => PE_Overlaid_Controlled_Object));
546 elsif Present (Aent)
547 and then Ekind (U_Ent) = E_Constant
548 and then Ekind (Aent) /= E_Constant
549 then
550 Error_Msg_N ("constant overlays a variable?", Expr);
552 elsif Present (Renamed_Object (U_Ent)) then
553 Error_Msg_N
554 ("address clause not allowed"
555 & " for a renaming declaration ('R'M 13.1(6))", Nam);
557 -- Imported variables can have an address clause, but then
558 -- the import is pretty meaningless except to suppress
559 -- initializations, so we do not need such variables to
560 -- be statically allocated (and in fact it causes trouble
561 -- if the address clause is a local value).
563 elsif Is_Imported (U_Ent) then
564 Set_Is_Statically_Allocated (U_Ent, False);
565 end if;
567 -- We mark a possible modification of a variable with an
568 -- address clause, since it is likely aliasing is occurring.
570 Note_Possible_Modification (Nam);
572 -- Here we are checking for explicit overlap of one
573 -- variable by another, and if we find this, then we
574 -- mark the overlapped variable as also being aliased.
576 -- First case is where we have an explicit
578 -- for J'Address use K'Address;
580 -- In this case, we mark K as volatile
582 Mark_Aliased_Address_As_Volatile (Expr);
584 -- Second case is where we have a constant whose
585 -- definition is of the form of an adress as in:
587 -- A : constant Address := K'Address;
588 -- ...
589 -- for B'Address use A;
591 -- In this case we also mark K as volatile
593 if Is_Entity_Name (Expr) then
594 declare
595 Ent : constant Entity_Id := Entity (Expr);
596 Decl : constant Node_Id := Declaration_Node (Ent);
598 begin
599 if Ekind (Ent) = E_Constant
600 and then Nkind (Decl) = N_Object_Declaration
601 and then Present (Expression (Decl))
602 then
603 Mark_Aliased_Address_As_Volatile
604 (Expression (Decl));
605 end if;
606 end;
607 end if;
609 -- Legality checks on the address clause for initialized
610 -- objects is deferred until the freeze point, because
611 -- a subsequent pragma might indicate that the object is
612 -- imported and thus not initialized.
614 Set_Has_Delayed_Freeze (U_Ent);
616 if Is_Exported (U_Ent) then
617 Error_Msg_N
618 ("& cannot be exported if an address clause is given",
619 Nam);
620 Error_Msg_N
621 ("\define and export a variable " &
622 "that holds its address instead",
623 Nam);
624 end if;
626 -- Entity has delayed freeze, so we will generate
627 -- an alignment check at the freeze point.
629 Set_Check_Address_Alignment
630 (N, not Range_Checks_Suppressed (U_Ent));
632 -- Kill the size check code, since we are not allocating
633 -- the variable, it is somewhere else.
635 Kill_Size_Check_Code (U_Ent);
636 end;
638 -- Not a valid entity for an address clause
640 else
641 Error_Msg_N ("address cannot be given for &", Nam);
642 end if;
643 end Address;
645 ---------------
646 -- Alignment --
647 ---------------
649 -- Alignment attribute definition clause
651 when Attribute_Alignment => Alignment_Block : declare
652 Align : constant Uint := Get_Alignment_Value (Expr);
654 begin
655 FOnly := True;
657 if not Is_Type (U_Ent)
658 and then Ekind (U_Ent) /= E_Variable
659 and then Ekind (U_Ent) /= E_Constant
660 then
661 Error_Msg_N ("alignment cannot be given for &", Nam);
663 elsif Has_Alignment_Clause (U_Ent) then
664 Error_Msg_Sloc := Sloc (Alignment_Clause (U_Ent));
665 Error_Msg_N ("alignment clause previously given#", N);
667 elsif Align /= No_Uint then
668 Set_Has_Alignment_Clause (U_Ent);
669 Set_Alignment (U_Ent, Align);
670 end if;
671 end Alignment_Block;
673 ---------------
674 -- Bit_Order --
675 ---------------
677 -- Bit_Order attribute definition clause
679 when Attribute_Bit_Order => Bit_Order : declare
680 begin
681 if not Is_Record_Type (U_Ent) then
682 Error_Msg_N
683 ("Bit_Order can only be defined for record type", Nam);
685 else
686 Analyze_And_Resolve (Expr, RTE (RE_Bit_Order));
688 if Etype (Expr) = Any_Type then
689 return;
691 elsif not Is_Static_Expression (Expr) then
692 Flag_Non_Static_Expr
693 ("Bit_Order requires static expression!", Expr);
695 else
696 if (Expr_Value (Expr) = 0) /= Bytes_Big_Endian then
697 Set_Reverse_Bit_Order (U_Ent, True);
698 end if;
699 end if;
700 end if;
701 end Bit_Order;
703 --------------------
704 -- Component_Size --
705 --------------------
707 -- Component_Size attribute definition clause
709 when Attribute_Component_Size => Component_Size_Case : declare
710 Csize : constant Uint := Static_Integer (Expr);
711 Btype : Entity_Id;
712 Biased : Boolean;
713 New_Ctyp : Entity_Id;
714 Decl : Node_Id;
716 begin
717 if not Is_Array_Type (U_Ent) then
718 Error_Msg_N ("component size requires array type", Nam);
719 return;
720 end if;
722 Btype := Base_Type (U_Ent);
724 if Has_Component_Size_Clause (Btype) then
725 Error_Msg_N
726 ("component size clase for& previously given", Nam);
728 elsif Csize /= No_Uint then
729 Check_Size (Expr, Component_Type (Btype), Csize, Biased);
731 if Has_Aliased_Components (Btype)
732 and then Csize < 32
733 and then Csize /= 8
734 and then Csize /= 16
735 then
736 Error_Msg_N
737 ("component size incorrect for aliased components", N);
738 return;
739 end if;
741 -- For the biased case, build a declaration for a subtype
742 -- that will be used to represent the biased subtype that
743 -- reflects the biased representation of components. We need
744 -- this subtype to get proper conversions on referencing
745 -- elements of the array.
747 if Biased then
748 New_Ctyp :=
749 Make_Defining_Identifier (Loc,
750 Chars => New_External_Name (Chars (U_Ent), 'C', 0, 'T'));
752 Decl :=
753 Make_Subtype_Declaration (Loc,
754 Defining_Identifier => New_Ctyp,
755 Subtype_Indication =>
756 New_Occurrence_Of (Component_Type (Btype), Loc));
758 Set_Parent (Decl, N);
759 Analyze (Decl, Suppress => All_Checks);
761 Set_Has_Delayed_Freeze (New_Ctyp, False);
762 Set_Esize (New_Ctyp, Csize);
763 Set_RM_Size (New_Ctyp, Csize);
764 Init_Alignment (New_Ctyp);
765 Set_Has_Biased_Representation (New_Ctyp, True);
766 Set_Is_Itype (New_Ctyp, True);
767 Set_Associated_Node_For_Itype (New_Ctyp, U_Ent);
769 Set_Component_Type (Btype, New_Ctyp);
770 end if;
772 Set_Component_Size (Btype, Csize);
773 Set_Has_Component_Size_Clause (Btype, True);
774 Set_Has_Non_Standard_Rep (Btype, True);
775 end if;
776 end Component_Size_Case;
778 ------------------
779 -- External_Tag --
780 ------------------
782 when Attribute_External_Tag => External_Tag :
783 begin
784 if not Is_Tagged_Type (U_Ent) then
785 Error_Msg_N ("should be a tagged type", Nam);
786 end if;
788 Analyze_And_Resolve (Expr, Standard_String);
790 if not Is_Static_Expression (Expr) then
791 Flag_Non_Static_Expr
792 ("static string required for tag name!", Nam);
793 end if;
795 Set_Has_External_Tag_Rep_Clause (U_Ent);
796 end External_Tag;
798 -----------
799 -- Input --
800 -----------
802 when Attribute_Input =>
803 Analyze_Stream_TSS_Definition (TSS_Stream_Input);
804 Set_Has_Specified_Stream_Input (Ent);
806 -------------------
807 -- Machine_Radix --
808 -------------------
810 -- Machine radix attribute definition clause
812 when Attribute_Machine_Radix => Machine_Radix : declare
813 Radix : constant Uint := Static_Integer (Expr);
815 begin
816 if not Is_Decimal_Fixed_Point_Type (U_Ent) then
817 Error_Msg_N ("decimal fixed-point type expected for &", Nam);
819 elsif Has_Machine_Radix_Clause (U_Ent) then
820 Error_Msg_Sloc := Sloc (Alignment_Clause (U_Ent));
821 Error_Msg_N ("machine radix clause previously given#", N);
823 elsif Radix /= No_Uint then
824 Set_Has_Machine_Radix_Clause (U_Ent);
825 Set_Has_Non_Standard_Rep (Base_Type (U_Ent));
827 if Radix = 2 then
828 null;
829 elsif Radix = 10 then
830 Set_Machine_Radix_10 (U_Ent);
831 else
832 Error_Msg_N ("machine radix value must be 2 or 10", Expr);
833 end if;
834 end if;
835 end Machine_Radix;
837 -----------------
838 -- Object_Size --
839 -----------------
841 -- Object_Size attribute definition clause
843 when Attribute_Object_Size => Object_Size : declare
844 Size : constant Uint := Static_Integer (Expr);
845 Biased : Boolean;
847 begin
848 if not Is_Type (U_Ent) then
849 Error_Msg_N ("Object_Size cannot be given for &", Nam);
851 elsif Has_Object_Size_Clause (U_Ent) then
852 Error_Msg_N ("Object_Size already given for &", Nam);
854 else
855 Check_Size (Expr, U_Ent, Size, Biased);
857 if Size /= 8
858 and then
859 Size /= 16
860 and then
861 Size /= 32
862 and then
863 UI_Mod (Size, 64) /= 0
864 then
865 Error_Msg_N
866 ("Object_Size must be 8, 16, 32, or multiple of 64",
867 Expr);
868 end if;
870 Set_Esize (U_Ent, Size);
871 Set_Has_Object_Size_Clause (U_Ent);
872 Alignment_Check_For_Esize_Change (U_Ent);
873 end if;
874 end Object_Size;
876 ------------
877 -- Output --
878 ------------
880 when Attribute_Output =>
881 Analyze_Stream_TSS_Definition (TSS_Stream_Output);
882 Set_Has_Specified_Stream_Output (Ent);
884 ----------
885 -- Read --
886 ----------
888 when Attribute_Read =>
889 Analyze_Stream_TSS_Definition (TSS_Stream_Read);
890 Set_Has_Specified_Stream_Read (Ent);
892 ----------
893 -- Size --
894 ----------
896 -- Size attribute definition clause
898 when Attribute_Size => Size : declare
899 Size : constant Uint := Static_Integer (Expr);
900 Etyp : Entity_Id;
901 Biased : Boolean;
903 begin
904 FOnly := True;
906 if Has_Size_Clause (U_Ent) then
907 Error_Msg_N ("size already given for &", Nam);
909 elsif not Is_Type (U_Ent)
910 and then Ekind (U_Ent) /= E_Variable
911 and then Ekind (U_Ent) /= E_Constant
912 then
913 Error_Msg_N ("size cannot be given for &", Nam);
915 elsif Is_Array_Type (U_Ent)
916 and then not Is_Constrained (U_Ent)
917 then
918 Error_Msg_N
919 ("size cannot be given for unconstrained array", Nam);
921 elsif Size /= No_Uint then
922 if Is_Type (U_Ent) then
923 Etyp := U_Ent;
924 else
925 Etyp := Etype (U_Ent);
926 end if;
928 -- Check size, note that Gigi is in charge of checking
929 -- that the size of an array or record type is OK. Also
930 -- we do not check the size in the ordinary fixed-point
931 -- case, since it is too early to do so (there may be a
932 -- subsequent small clause that affects the size). We can
933 -- check the size if a small clause has already been given.
935 if not Is_Ordinary_Fixed_Point_Type (U_Ent)
936 or else Has_Small_Clause (U_Ent)
937 then
938 Check_Size (Expr, Etyp, Size, Biased);
939 Set_Has_Biased_Representation (U_Ent, Biased);
940 end if;
942 -- For types set RM_Size and Esize if possible
944 if Is_Type (U_Ent) then
945 Set_RM_Size (U_Ent, Size);
947 -- For scalar types, increase Object_Size to power of 2,
948 -- but not less than a storage unit in any case (i.e.,
949 -- normally this means it will be byte addressable).
951 if Is_Scalar_Type (U_Ent) then
952 if Size <= System_Storage_Unit then
953 Init_Esize (U_Ent, System_Storage_Unit);
954 elsif Size <= 16 then
955 Init_Esize (U_Ent, 16);
956 elsif Size <= 32 then
957 Init_Esize (U_Ent, 32);
958 else
959 Set_Esize (U_Ent, (Size + 63) / 64 * 64);
960 end if;
962 -- For all other types, object size = value size. The
963 -- backend will adjust as needed.
965 else
966 Set_Esize (U_Ent, Size);
967 end if;
969 Alignment_Check_For_Esize_Change (U_Ent);
971 -- For objects, set Esize only
973 else
974 if Is_Elementary_Type (Etyp) then
975 if Size /= System_Storage_Unit
976 and then
977 Size /= System_Storage_Unit * 2
978 and then
979 Size /= System_Storage_Unit * 4
980 and then
981 Size /= System_Storage_Unit * 8
982 then
983 Error_Msg_Uint_1 := UI_From_Int (System_Storage_Unit);
984 Error_Msg_N
985 ("size for primitive object must be a power of 2"
986 & " and at least ^", N);
987 end if;
988 end if;
990 Set_Esize (U_Ent, Size);
991 end if;
993 Set_Has_Size_Clause (U_Ent);
994 end if;
995 end Size;
997 -----------
998 -- Small --
999 -----------
1001 -- Small attribute definition clause
1003 when Attribute_Small => Small : declare
1004 Implicit_Base : constant Entity_Id := Base_Type (U_Ent);
1005 Small : Ureal;
1007 begin
1008 Analyze_And_Resolve (Expr, Any_Real);
1010 if Etype (Expr) = Any_Type then
1011 return;
1013 elsif not Is_Static_Expression (Expr) then
1014 Flag_Non_Static_Expr
1015 ("small requires static expression!", Expr);
1016 return;
1018 else
1019 Small := Expr_Value_R (Expr);
1021 if Small <= Ureal_0 then
1022 Error_Msg_N ("small value must be greater than zero", Expr);
1023 return;
1024 end if;
1026 end if;
1028 if not Is_Ordinary_Fixed_Point_Type (U_Ent) then
1029 Error_Msg_N
1030 ("small requires an ordinary fixed point type", Nam);
1032 elsif Has_Small_Clause (U_Ent) then
1033 Error_Msg_N ("small already given for &", Nam);
1035 elsif Small > Delta_Value (U_Ent) then
1036 Error_Msg_N
1037 ("small value must not be greater then delta value", Nam);
1039 else
1040 Set_Small_Value (U_Ent, Small);
1041 Set_Small_Value (Implicit_Base, Small);
1042 Set_Has_Small_Clause (U_Ent);
1043 Set_Has_Small_Clause (Implicit_Base);
1044 Set_Has_Non_Standard_Rep (Implicit_Base);
1045 end if;
1046 end Small;
1048 ------------------
1049 -- Storage_Size --
1050 ------------------
1052 -- Storage_Size attribute definition clause
1054 when Attribute_Storage_Size => Storage_Size : declare
1055 Btype : constant Entity_Id := Base_Type (U_Ent);
1056 Sprag : Node_Id;
1058 begin
1059 if Is_Task_Type (U_Ent) then
1060 Check_Restriction (No_Obsolescent_Features, N);
1062 if Warn_On_Obsolescent_Feature then
1063 Error_Msg_N
1064 ("storage size clause for task is an " &
1065 "obsolescent feature ('R'M 'J.9)?", N);
1066 Error_Msg_N
1067 ("\use Storage_Size pragma instead?", N);
1068 end if;
1070 FOnly := True;
1071 end if;
1073 if not Is_Access_Type (U_Ent)
1074 and then Ekind (U_Ent) /= E_Task_Type
1075 then
1076 Error_Msg_N ("storage size cannot be given for &", Nam);
1078 elsif Is_Access_Type (U_Ent) and Is_Derived_Type (U_Ent) then
1079 Error_Msg_N
1080 ("storage size cannot be given for a derived access type",
1081 Nam);
1083 elsif Has_Storage_Size_Clause (Btype) then
1084 Error_Msg_N ("storage size already given for &", Nam);
1086 else
1087 Analyze_And_Resolve (Expr, Any_Integer);
1089 if Is_Access_Type (U_Ent) then
1091 if Present (Associated_Storage_Pool (U_Ent)) then
1092 Error_Msg_N ("storage pool already given for &", Nam);
1093 return;
1094 end if;
1096 if Compile_Time_Known_Value (Expr)
1097 and then Expr_Value (Expr) = 0
1098 then
1099 Set_No_Pool_Assigned (Btype);
1100 end if;
1102 else -- Is_Task_Type (U_Ent)
1103 Sprag := Get_Rep_Pragma (Btype, Name_Storage_Size);
1105 if Present (Sprag) then
1106 Error_Msg_Sloc := Sloc (Sprag);
1107 Error_Msg_N
1108 ("Storage_Size already specified#", Nam);
1109 return;
1110 end if;
1111 end if;
1113 Set_Has_Storage_Size_Clause (Btype);
1114 end if;
1115 end Storage_Size;
1117 ------------------
1118 -- Storage_Pool --
1119 ------------------
1121 -- Storage_Pool attribute definition clause
1123 when Attribute_Storage_Pool => Storage_Pool : declare
1124 Pool : Entity_Id;
1125 T : Entity_Id;
1127 begin
1128 if Ekind (U_Ent) /= E_Access_Type
1129 and then Ekind (U_Ent) /= E_General_Access_Type
1130 then
1131 Error_Msg_N (
1132 "storage pool can only be given for access types", Nam);
1133 return;
1135 elsif Is_Derived_Type (U_Ent) then
1136 Error_Msg_N
1137 ("storage pool cannot be given for a derived access type",
1138 Nam);
1140 elsif Has_Storage_Size_Clause (U_Ent) then
1141 Error_Msg_N ("storage size already given for &", Nam);
1142 return;
1144 elsif Present (Associated_Storage_Pool (U_Ent)) then
1145 Error_Msg_N ("storage pool already given for &", Nam);
1146 return;
1147 end if;
1149 Analyze_And_Resolve
1150 (Expr, Class_Wide_Type (RTE (RE_Root_Storage_Pool)));
1152 if Nkind (Expr) = N_Type_Conversion then
1153 T := Etype (Expression (Expr));
1154 else
1155 T := Etype (Expr);
1156 end if;
1158 -- The Stack_Bounded_Pool is used internally for implementing
1159 -- access types with a Storage_Size. Since it only work
1160 -- properly when used on one specific type, we need to check
1161 -- that it is not highjacked improperly:
1162 -- type T is access Integer;
1163 -- for T'Storage_Size use n;
1164 -- type Q is access Float;
1165 -- for Q'Storage_Size use T'Storage_Size; -- incorrect
1167 if Base_Type (T) = RTE (RE_Stack_Bounded_Pool) then
1168 Error_Msg_N ("non-sharable internal Pool", Expr);
1169 return;
1170 end if;
1172 -- If the argument is a name that is not an entity name, then
1173 -- we construct a renaming operation to define an entity of
1174 -- type storage pool.
1176 if not Is_Entity_Name (Expr)
1177 and then Is_Object_Reference (Expr)
1178 then
1179 Pool :=
1180 Make_Defining_Identifier (Loc,
1181 Chars => New_Internal_Name ('P'));
1183 declare
1184 Rnode : constant Node_Id :=
1185 Make_Object_Renaming_Declaration (Loc,
1186 Defining_Identifier => Pool,
1187 Subtype_Mark =>
1188 New_Occurrence_Of (Etype (Expr), Loc),
1189 Name => Expr);
1191 begin
1192 Insert_Before (N, Rnode);
1193 Analyze (Rnode);
1194 Set_Associated_Storage_Pool (U_Ent, Pool);
1195 end;
1197 elsif Is_Entity_Name (Expr) then
1198 Pool := Entity (Expr);
1200 -- If pool is a renamed object, get original one. This can
1201 -- happen with an explicit renaming, and within instances.
1203 while Present (Renamed_Object (Pool))
1204 and then Is_Entity_Name (Renamed_Object (Pool))
1205 loop
1206 Pool := Entity (Renamed_Object (Pool));
1207 end loop;
1209 if Present (Renamed_Object (Pool))
1210 and then Nkind (Renamed_Object (Pool)) = N_Type_Conversion
1211 and then Is_Entity_Name (Expression (Renamed_Object (Pool)))
1212 then
1213 Pool := Entity (Expression (Renamed_Object (Pool)));
1214 end if;
1216 Set_Associated_Storage_Pool (U_Ent, Pool);
1218 elsif Nkind (Expr) = N_Type_Conversion
1219 and then Is_Entity_Name (Expression (Expr))
1220 and then Nkind (Original_Node (Expr)) = N_Attribute_Reference
1221 then
1222 Pool := Entity (Expression (Expr));
1223 Set_Associated_Storage_Pool (U_Ent, Pool);
1225 else
1226 Error_Msg_N ("incorrect reference to a Storage Pool", Expr);
1227 return;
1228 end if;
1229 end Storage_Pool;
1231 -----------------
1232 -- Stream_Size --
1233 -----------------
1235 when Attribute_Stream_Size => Stream_Size : declare
1236 Size : constant Uint := Static_Integer (Expr);
1238 begin
1239 if Has_Stream_Size_Clause (U_Ent) then
1240 Error_Msg_N ("Stream_Size already given for &", Nam);
1242 elsif Is_Elementary_Type (U_Ent) then
1243 if Size /= System_Storage_Unit
1244 and then
1245 Size /= System_Storage_Unit * 2
1246 and then
1247 Size /= System_Storage_Unit * 4
1248 and then
1249 Size /= System_Storage_Unit * 8
1250 then
1251 Error_Msg_Uint_1 := UI_From_Int (System_Storage_Unit);
1252 Error_Msg_N
1253 ("stream size for elementary type must be a"
1254 & " power of 2 and at least ^", N);
1256 elsif RM_Size (U_Ent) > Size then
1257 Error_Msg_Uint_1 := RM_Size (U_Ent);
1258 Error_Msg_N
1259 ("stream size for elementary type must be a"
1260 & " power of 2 and at least ^", N);
1261 end if;
1263 Set_Has_Stream_Size_Clause (U_Ent);
1265 else
1266 Error_Msg_N ("Stream_Size cannot be given for &", Nam);
1267 end if;
1268 end Stream_Size;
1270 ----------------
1271 -- Value_Size --
1272 ----------------
1274 -- Value_Size attribute definition clause
1276 when Attribute_Value_Size => Value_Size : declare
1277 Size : constant Uint := Static_Integer (Expr);
1278 Biased : Boolean;
1280 begin
1281 if not Is_Type (U_Ent) then
1282 Error_Msg_N ("Value_Size cannot be given for &", Nam);
1284 elsif Present
1285 (Get_Attribute_Definition_Clause
1286 (U_Ent, Attribute_Value_Size))
1287 then
1288 Error_Msg_N ("Value_Size already given for &", Nam);
1290 else
1291 if Is_Elementary_Type (U_Ent) then
1292 Check_Size (Expr, U_Ent, Size, Biased);
1293 Set_Has_Biased_Representation (U_Ent, Biased);
1294 end if;
1296 Set_RM_Size (U_Ent, Size);
1297 end if;
1298 end Value_Size;
1300 -----------
1301 -- Write --
1302 -----------
1304 when Attribute_Write =>
1305 Analyze_Stream_TSS_Definition (TSS_Stream_Write);
1306 Set_Has_Specified_Stream_Write (Ent);
1308 -- All other attributes cannot be set
1310 when others =>
1311 Error_Msg_N
1312 ("attribute& cannot be set with definition clause", N);
1313 end case;
1315 -- The test for the type being frozen must be performed after
1316 -- any expression the clause has been analyzed since the expression
1317 -- itself might cause freezing that makes the clause illegal.
1319 if Rep_Item_Too_Late (U_Ent, N, FOnly) then
1320 return;
1321 end if;
1322 end Analyze_Attribute_Definition_Clause;
1324 ----------------------------
1325 -- Analyze_Code_Statement --
1326 ----------------------------
1328 procedure Analyze_Code_Statement (N : Node_Id) is
1329 HSS : constant Node_Id := Parent (N);
1330 SBody : constant Node_Id := Parent (HSS);
1331 Subp : constant Entity_Id := Current_Scope;
1332 Stmt : Node_Id;
1333 Decl : Node_Id;
1334 StmtO : Node_Id;
1335 DeclO : Node_Id;
1337 begin
1338 -- Analyze and check we get right type, note that this implements the
1339 -- requirement (RM 13.8(1)) that Machine_Code be with'ed, since that
1340 -- is the only way that Asm_Insn could possibly be visible.
1342 Analyze_And_Resolve (Expression (N));
1344 if Etype (Expression (N)) = Any_Type then
1345 return;
1346 elsif Etype (Expression (N)) /= RTE (RE_Asm_Insn) then
1347 Error_Msg_N ("incorrect type for code statement", N);
1348 return;
1349 end if;
1351 -- Make sure we appear in the handled statement sequence of a
1352 -- subprogram (RM 13.8(3)).
1354 if Nkind (HSS) /= N_Handled_Sequence_Of_Statements
1355 or else Nkind (SBody) /= N_Subprogram_Body
1356 then
1357 Error_Msg_N
1358 ("code statement can only appear in body of subprogram", N);
1359 return;
1360 end if;
1362 -- Do remaining checks (RM 13.8(3)) if not already done
1364 if not Is_Machine_Code_Subprogram (Subp) then
1365 Set_Is_Machine_Code_Subprogram (Subp);
1367 -- No exception handlers allowed
1369 if Present (Exception_Handlers (HSS)) then
1370 Error_Msg_N
1371 ("exception handlers not permitted in machine code subprogram",
1372 First (Exception_Handlers (HSS)));
1373 end if;
1375 -- No declarations other than use clauses and pragmas (we allow
1376 -- certain internally generated declarations as well).
1378 Decl := First (Declarations (SBody));
1379 while Present (Decl) loop
1380 DeclO := Original_Node (Decl);
1381 if Comes_From_Source (DeclO)
1382 and then Nkind (DeclO) /= N_Pragma
1383 and then Nkind (DeclO) /= N_Use_Package_Clause
1384 and then Nkind (DeclO) /= N_Use_Type_Clause
1385 and then Nkind (DeclO) /= N_Implicit_Label_Declaration
1386 then
1387 Error_Msg_N
1388 ("this declaration not allowed in machine code subprogram",
1389 DeclO);
1390 end if;
1392 Next (Decl);
1393 end loop;
1395 -- No statements other than code statements, pragmas, and labels.
1396 -- Again we allow certain internally generated statements.
1398 Stmt := First (Statements (HSS));
1399 while Present (Stmt) loop
1400 StmtO := Original_Node (Stmt);
1401 if Comes_From_Source (StmtO)
1402 and then Nkind (StmtO) /= N_Pragma
1403 and then Nkind (StmtO) /= N_Label
1404 and then Nkind (StmtO) /= N_Code_Statement
1405 then
1406 Error_Msg_N
1407 ("this statement is not allowed in machine code subprogram",
1408 StmtO);
1409 end if;
1411 Next (Stmt);
1412 end loop;
1413 end if;
1414 end Analyze_Code_Statement;
1416 -----------------------------------------------
1417 -- Analyze_Enumeration_Representation_Clause --
1418 -----------------------------------------------
1420 procedure Analyze_Enumeration_Representation_Clause (N : Node_Id) is
1421 Ident : constant Node_Id := Identifier (N);
1422 Aggr : constant Node_Id := Array_Aggregate (N);
1423 Enumtype : Entity_Id;
1424 Elit : Entity_Id;
1425 Expr : Node_Id;
1426 Assoc : Node_Id;
1427 Choice : Node_Id;
1428 Val : Uint;
1429 Err : Boolean := False;
1431 Lo : constant Uint := Expr_Value (Type_Low_Bound (Universal_Integer));
1432 Hi : constant Uint := Expr_Value (Type_High_Bound (Universal_Integer));
1433 Min : Uint;
1434 Max : Uint;
1436 begin
1437 -- First some basic error checks
1439 Find_Type (Ident);
1440 Enumtype := Entity (Ident);
1442 if Enumtype = Any_Type
1443 or else Rep_Item_Too_Early (Enumtype, N)
1444 then
1445 return;
1446 else
1447 Enumtype := Underlying_Type (Enumtype);
1448 end if;
1450 if not Is_Enumeration_Type (Enumtype) then
1451 Error_Msg_NE
1452 ("enumeration type required, found}",
1453 Ident, First_Subtype (Enumtype));
1454 return;
1455 end if;
1457 -- Ignore rep clause on generic actual type. This will already have
1458 -- been flagged on the template as an error, and this is the safest
1459 -- way to ensure we don't get a junk cascaded message in the instance.
1461 if Is_Generic_Actual_Type (Enumtype) then
1462 return;
1464 -- Type must be in current scope
1466 elsif Scope (Enumtype) /= Current_Scope then
1467 Error_Msg_N ("type must be declared in this scope", Ident);
1468 return;
1470 -- Type must be a first subtype
1472 elsif not Is_First_Subtype (Enumtype) then
1473 Error_Msg_N ("cannot give enumeration rep clause for subtype", N);
1474 return;
1476 -- Ignore duplicate rep clause
1478 elsif Has_Enumeration_Rep_Clause (Enumtype) then
1479 Error_Msg_N ("duplicate enumeration rep clause ignored", N);
1480 return;
1482 -- Don't allow rep clause for standard [wide_[wide_]]character
1484 elsif Root_Type (Enumtype) = Standard_Character
1485 or else Root_Type (Enumtype) = Standard_Wide_Character
1486 or else Root_Type (Enumtype) = Standard_Wide_Wide_Character
1487 then
1488 Error_Msg_N ("enumeration rep clause not allowed for this type", N);
1489 return;
1491 -- Check that the expression is a proper aggregate (no parentheses)
1493 elsif Paren_Count (Aggr) /= 0 then
1494 Error_Msg
1495 ("extra parentheses surrounding aggregate not allowed",
1496 First_Sloc (Aggr));
1497 return;
1499 -- All tests passed, so set rep clause in place
1501 else
1502 Set_Has_Enumeration_Rep_Clause (Enumtype);
1503 Set_Has_Enumeration_Rep_Clause (Base_Type (Enumtype));
1504 end if;
1506 -- Now we process the aggregate. Note that we don't use the normal
1507 -- aggregate code for this purpose, because we don't want any of the
1508 -- normal expansion activities, and a number of special semantic
1509 -- rules apply (including the component type being any integer type)
1511 Elit := First_Literal (Enumtype);
1513 -- First the positional entries if any
1515 if Present (Expressions (Aggr)) then
1516 Expr := First (Expressions (Aggr));
1517 while Present (Expr) loop
1518 if No (Elit) then
1519 Error_Msg_N ("too many entries in aggregate", Expr);
1520 return;
1521 end if;
1523 Val := Static_Integer (Expr);
1525 -- Err signals that we found some incorrect entries processing
1526 -- the list. The final checks for completeness and ordering are
1527 -- skipped in this case.
1529 if Val = No_Uint then
1530 Err := True;
1531 elsif Val < Lo or else Hi < Val then
1532 Error_Msg_N ("value outside permitted range", Expr);
1533 Err := True;
1534 end if;
1536 Set_Enumeration_Rep (Elit, Val);
1537 Set_Enumeration_Rep_Expr (Elit, Expr);
1538 Next (Expr);
1539 Next (Elit);
1540 end loop;
1541 end if;
1543 -- Now process the named entries if present
1545 if Present (Component_Associations (Aggr)) then
1546 Assoc := First (Component_Associations (Aggr));
1547 while Present (Assoc) loop
1548 Choice := First (Choices (Assoc));
1550 if Present (Next (Choice)) then
1551 Error_Msg_N
1552 ("multiple choice not allowed here", Next (Choice));
1553 Err := True;
1554 end if;
1556 if Nkind (Choice) = N_Others_Choice then
1557 Error_Msg_N ("others choice not allowed here", Choice);
1558 Err := True;
1560 elsif Nkind (Choice) = N_Range then
1561 -- ??? should allow zero/one element range here
1562 Error_Msg_N ("range not allowed here", Choice);
1563 Err := True;
1565 else
1566 Analyze_And_Resolve (Choice, Enumtype);
1568 if Is_Entity_Name (Choice)
1569 and then Is_Type (Entity (Choice))
1570 then
1571 Error_Msg_N ("subtype name not allowed here", Choice);
1572 Err := True;
1573 -- ??? should allow static subtype with zero/one entry
1575 elsif Etype (Choice) = Base_Type (Enumtype) then
1576 if not Is_Static_Expression (Choice) then
1577 Flag_Non_Static_Expr
1578 ("non-static expression used for choice!", Choice);
1579 Err := True;
1581 else
1582 Elit := Expr_Value_E (Choice);
1584 if Present (Enumeration_Rep_Expr (Elit)) then
1585 Error_Msg_Sloc := Sloc (Enumeration_Rep_Expr (Elit));
1586 Error_Msg_NE
1587 ("representation for& previously given#",
1588 Choice, Elit);
1589 Err := True;
1590 end if;
1592 Set_Enumeration_Rep_Expr (Elit, Choice);
1594 Expr := Expression (Assoc);
1595 Val := Static_Integer (Expr);
1597 if Val = No_Uint then
1598 Err := True;
1600 elsif Val < Lo or else Hi < Val then
1601 Error_Msg_N ("value outside permitted range", Expr);
1602 Err := True;
1603 end if;
1605 Set_Enumeration_Rep (Elit, Val);
1606 end if;
1607 end if;
1608 end if;
1610 Next (Assoc);
1611 end loop;
1612 end if;
1614 -- Aggregate is fully processed. Now we check that a full set of
1615 -- representations was given, and that they are in range and in order.
1616 -- These checks are only done if no other errors occurred.
1618 if not Err then
1619 Min := No_Uint;
1620 Max := No_Uint;
1622 Elit := First_Literal (Enumtype);
1623 while Present (Elit) loop
1624 if No (Enumeration_Rep_Expr (Elit)) then
1625 Error_Msg_NE ("missing representation for&!", N, Elit);
1627 else
1628 Val := Enumeration_Rep (Elit);
1630 if Min = No_Uint then
1631 Min := Val;
1632 end if;
1634 if Val /= No_Uint then
1635 if Max /= No_Uint and then Val <= Max then
1636 Error_Msg_NE
1637 ("enumeration value for& not ordered!",
1638 Enumeration_Rep_Expr (Elit), Elit);
1639 end if;
1641 Max := Val;
1642 end if;
1644 -- If there is at least one literal whose representation
1645 -- is not equal to the Pos value, then note that this
1646 -- enumeration type has a non-standard representation.
1648 if Val /= Enumeration_Pos (Elit) then
1649 Set_Has_Non_Standard_Rep (Base_Type (Enumtype));
1650 end if;
1651 end if;
1653 Next (Elit);
1654 end loop;
1656 -- Now set proper size information
1658 declare
1659 Minsize : Uint := UI_From_Int (Minimum_Size (Enumtype));
1661 begin
1662 if Has_Size_Clause (Enumtype) then
1663 if Esize (Enumtype) >= Minsize then
1664 null;
1666 else
1667 Minsize :=
1668 UI_From_Int (Minimum_Size (Enumtype, Biased => True));
1670 if Esize (Enumtype) < Minsize then
1671 Error_Msg_N ("previously given size is too small", N);
1673 else
1674 Set_Has_Biased_Representation (Enumtype);
1675 end if;
1676 end if;
1678 else
1679 Set_RM_Size (Enumtype, Minsize);
1680 Set_Enum_Esize (Enumtype);
1681 end if;
1683 Set_RM_Size (Base_Type (Enumtype), RM_Size (Enumtype));
1684 Set_Esize (Base_Type (Enumtype), Esize (Enumtype));
1685 Set_Alignment (Base_Type (Enumtype), Alignment (Enumtype));
1686 end;
1687 end if;
1689 -- We repeat the too late test in case it froze itself!
1691 if Rep_Item_Too_Late (Enumtype, N) then
1692 null;
1693 end if;
1694 end Analyze_Enumeration_Representation_Clause;
1696 ----------------------------
1697 -- Analyze_Free_Statement --
1698 ----------------------------
1700 procedure Analyze_Free_Statement (N : Node_Id) is
1701 begin
1702 Analyze (Expression (N));
1703 end Analyze_Free_Statement;
1705 ------------------------------------------
1706 -- Analyze_Record_Representation_Clause --
1707 ------------------------------------------
1709 procedure Analyze_Record_Representation_Clause (N : Node_Id) is
1710 Loc : constant Source_Ptr := Sloc (N);
1711 Ident : constant Node_Id := Identifier (N);
1712 Rectype : Entity_Id;
1713 Fent : Entity_Id;
1714 CC : Node_Id;
1715 Posit : Uint;
1716 Fbit : Uint;
1717 Lbit : Uint;
1718 Hbit : Uint := Uint_0;
1719 Comp : Entity_Id;
1720 Ocomp : Entity_Id;
1721 Biased : Boolean;
1723 Max_Bit_So_Far : Uint;
1724 -- Records the maximum bit position so far. If all field positions
1725 -- are monotonically increasing, then we can skip the circuit for
1726 -- checking for overlap, since no overlap is possible.
1728 Overlap_Check_Required : Boolean;
1729 -- Used to keep track of whether or not an overlap check is required
1731 Ccount : Natural := 0;
1732 -- Number of component clauses in record rep clause
1734 begin
1735 Find_Type (Ident);
1736 Rectype := Entity (Ident);
1738 if Rectype = Any_Type
1739 or else Rep_Item_Too_Early (Rectype, N)
1740 then
1741 return;
1742 else
1743 Rectype := Underlying_Type (Rectype);
1744 end if;
1746 -- First some basic error checks
1748 if not Is_Record_Type (Rectype) then
1749 Error_Msg_NE
1750 ("record type required, found}", Ident, First_Subtype (Rectype));
1751 return;
1753 elsif Is_Unchecked_Union (Rectype) then
1754 Error_Msg_N
1755 ("record rep clause not allowed for Unchecked_Union", N);
1757 elsif Scope (Rectype) /= Current_Scope then
1758 Error_Msg_N ("type must be declared in this scope", N);
1759 return;
1761 elsif not Is_First_Subtype (Rectype) then
1762 Error_Msg_N ("cannot give record rep clause for subtype", N);
1763 return;
1765 elsif Has_Record_Rep_Clause (Rectype) then
1766 Error_Msg_N ("duplicate record rep clause ignored", N);
1767 return;
1769 elsif Rep_Item_Too_Late (Rectype, N) then
1770 return;
1771 end if;
1773 if Present (Mod_Clause (N)) then
1774 declare
1775 Loc : constant Source_Ptr := Sloc (N);
1776 M : constant Node_Id := Mod_Clause (N);
1777 P : constant List_Id := Pragmas_Before (M);
1778 AtM_Nod : Node_Id;
1780 Mod_Val : Uint;
1781 pragma Warnings (Off, Mod_Val);
1783 begin
1784 Check_Restriction (No_Obsolescent_Features, Mod_Clause (N));
1786 if Warn_On_Obsolescent_Feature then
1787 Error_Msg_N
1788 ("mod clause is an obsolescent feature ('R'M 'J.8)?", N);
1789 Error_Msg_N
1790 ("\use alignment attribute definition clause instead?", N);
1791 end if;
1793 if Present (P) then
1794 Analyze_List (P);
1795 end if;
1797 -- In ASIS_Mode mode, expansion is disabled, but we must
1798 -- convert the Mod clause into an alignment clause anyway, so
1799 -- that the back-end can compute and back-annotate properly the
1800 -- size and alignment of types that may include this record.
1802 if Operating_Mode = Check_Semantics
1803 and then ASIS_Mode
1804 then
1805 AtM_Nod :=
1806 Make_Attribute_Definition_Clause (Loc,
1807 Name => New_Reference_To (Base_Type (Rectype), Loc),
1808 Chars => Name_Alignment,
1809 Expression => Relocate_Node (Expression (M)));
1811 Set_From_At_Mod (AtM_Nod);
1812 Insert_After (N, AtM_Nod);
1813 Mod_Val := Get_Alignment_Value (Expression (AtM_Nod));
1814 Set_Mod_Clause (N, Empty);
1816 else
1817 -- Get the alignment value to perform error checking
1819 Mod_Val := Get_Alignment_Value (Expression (M));
1821 end if;
1822 end;
1823 end if;
1825 -- Clear any existing component clauses for the type (this happens
1826 -- with derived types, where we are now overriding the original)
1828 Fent := First_Entity (Rectype);
1830 Comp := Fent;
1831 while Present (Comp) loop
1832 if Ekind (Comp) = E_Component
1833 or else Ekind (Comp) = E_Discriminant
1834 then
1835 Set_Component_Clause (Comp, Empty);
1836 end if;
1838 Next_Entity (Comp);
1839 end loop;
1841 -- All done if no component clauses
1843 CC := First (Component_Clauses (N));
1845 if No (CC) then
1846 return;
1847 end if;
1849 -- If a tag is present, then create a component clause that places
1850 -- it at the start of the record (otherwise gigi may place it after
1851 -- other fields that have rep clauses).
1853 if Nkind (Fent) = N_Defining_Identifier
1854 and then Chars (Fent) = Name_uTag
1855 then
1856 Set_Component_Bit_Offset (Fent, Uint_0);
1857 Set_Normalized_Position (Fent, Uint_0);
1858 Set_Normalized_First_Bit (Fent, Uint_0);
1859 Set_Normalized_Position_Max (Fent, Uint_0);
1860 Init_Esize (Fent, System_Address_Size);
1862 Set_Component_Clause (Fent,
1863 Make_Component_Clause (Loc,
1864 Component_Name =>
1865 Make_Identifier (Loc,
1866 Chars => Name_uTag),
1868 Position =>
1869 Make_Integer_Literal (Loc,
1870 Intval => Uint_0),
1872 First_Bit =>
1873 Make_Integer_Literal (Loc,
1874 Intval => Uint_0),
1876 Last_Bit =>
1877 Make_Integer_Literal (Loc,
1878 UI_From_Int (System_Address_Size))));
1880 Ccount := Ccount + 1;
1881 end if;
1883 -- A representation like this applies to the base type
1885 Set_Has_Record_Rep_Clause (Base_Type (Rectype));
1886 Set_Has_Non_Standard_Rep (Base_Type (Rectype));
1887 Set_Has_Specified_Layout (Base_Type (Rectype));
1889 Max_Bit_So_Far := Uint_Minus_1;
1890 Overlap_Check_Required := False;
1892 -- Process the component clauses
1894 while Present (CC) loop
1896 -- If pragma, just analyze it
1898 if Nkind (CC) = N_Pragma then
1899 Analyze (CC);
1901 -- Processing for real component clause
1903 else
1904 Ccount := Ccount + 1;
1905 Posit := Static_Integer (Position (CC));
1906 Fbit := Static_Integer (First_Bit (CC));
1907 Lbit := Static_Integer (Last_Bit (CC));
1909 if Posit /= No_Uint
1910 and then Fbit /= No_Uint
1911 and then Lbit /= No_Uint
1912 then
1913 if Posit < 0 then
1914 Error_Msg_N
1915 ("position cannot be negative", Position (CC));
1917 elsif Fbit < 0 then
1918 Error_Msg_N
1919 ("first bit cannot be negative", First_Bit (CC));
1921 -- Values look OK, so find the corresponding record component
1922 -- Even though the syntax allows an attribute reference for
1923 -- implementation-defined components, GNAT does not allow the
1924 -- tag to get an explicit position.
1926 elsif Nkind (Component_Name (CC)) = N_Attribute_Reference then
1927 if Attribute_Name (Component_Name (CC)) = Name_Tag then
1928 Error_Msg_N ("position of tag cannot be specified", CC);
1929 else
1930 Error_Msg_N ("illegal component name", CC);
1931 end if;
1933 else
1934 Comp := First_Entity (Rectype);
1935 while Present (Comp) loop
1936 exit when Chars (Comp) = Chars (Component_Name (CC));
1937 Next_Entity (Comp);
1938 end loop;
1940 if No (Comp) then
1942 -- Maybe component of base type that is absent from
1943 -- statically constrained first subtype.
1945 Comp := First_Entity (Base_Type (Rectype));
1946 while Present (Comp) loop
1947 exit when Chars (Comp) = Chars (Component_Name (CC));
1948 Next_Entity (Comp);
1949 end loop;
1950 end if;
1952 if No (Comp) then
1953 Error_Msg_N
1954 ("component clause is for non-existent field", CC);
1956 elsif Present (Component_Clause (Comp)) then
1957 Error_Msg_Sloc := Sloc (Component_Clause (Comp));
1958 Error_Msg_N
1959 ("component clause previously given#", CC);
1961 else
1962 -- Update Fbit and Lbit to the actual bit number
1964 Fbit := Fbit + UI_From_Int (SSU) * Posit;
1965 Lbit := Lbit + UI_From_Int (SSU) * Posit;
1967 if Fbit <= Max_Bit_So_Far then
1968 Overlap_Check_Required := True;
1969 else
1970 Max_Bit_So_Far := Lbit;
1971 end if;
1973 if Has_Size_Clause (Rectype)
1974 and then Esize (Rectype) <= Lbit
1975 then
1976 Error_Msg_N
1977 ("bit number out of range of specified size",
1978 Last_Bit (CC));
1979 else
1980 Set_Component_Clause (Comp, CC);
1981 Set_Component_Bit_Offset (Comp, Fbit);
1982 Set_Esize (Comp, 1 + (Lbit - Fbit));
1983 Set_Normalized_First_Bit (Comp, Fbit mod SSU);
1984 Set_Normalized_Position (Comp, Fbit / SSU);
1986 Set_Normalized_Position_Max
1987 (Fent, Normalized_Position (Fent));
1989 if Is_Tagged_Type (Rectype)
1990 and then Fbit < System_Address_Size
1991 then
1992 Error_Msg_NE
1993 ("component overlaps tag field of&",
1994 CC, Rectype);
1995 end if;
1997 -- This information is also set in the corresponding
1998 -- component of the base type, found by accessing the
1999 -- Original_Record_Component link if it is present.
2001 Ocomp := Original_Record_Component (Comp);
2003 if Hbit < Lbit then
2004 Hbit := Lbit;
2005 end if;
2007 Check_Size
2008 (Component_Name (CC),
2009 Etype (Comp),
2010 Esize (Comp),
2011 Biased);
2013 Set_Has_Biased_Representation (Comp, Biased);
2015 if Present (Ocomp) then
2016 Set_Component_Clause (Ocomp, CC);
2017 Set_Component_Bit_Offset (Ocomp, Fbit);
2018 Set_Normalized_First_Bit (Ocomp, Fbit mod SSU);
2019 Set_Normalized_Position (Ocomp, Fbit / SSU);
2020 Set_Esize (Ocomp, 1 + (Lbit - Fbit));
2022 Set_Normalized_Position_Max
2023 (Ocomp, Normalized_Position (Ocomp));
2025 Set_Has_Biased_Representation
2026 (Ocomp, Has_Biased_Representation (Comp));
2027 end if;
2029 if Esize (Comp) < 0 then
2030 Error_Msg_N ("component size is negative", CC);
2031 end if;
2032 end if;
2033 end if;
2034 end if;
2035 end if;
2036 end if;
2038 Next (CC);
2039 end loop;
2041 -- Now that we have processed all the component clauses, check for
2042 -- overlap. We have to leave this till last, since the components
2043 -- can appear in any arbitrary order in the representation clause.
2045 -- We do not need this check if all specified ranges were monotonic,
2046 -- as recorded by Overlap_Check_Required being False at this stage.
2048 -- This first section checks if there are any overlapping entries
2049 -- at all. It does this by sorting all entries and then seeing if
2050 -- there are any overlaps. If there are none, then that is decisive,
2051 -- but if there are overlaps, they may still be OK (they may result
2052 -- from fields in different variants).
2054 if Overlap_Check_Required then
2055 Overlap_Check1 : declare
2057 OC_Fbit : array (0 .. Ccount) of Uint;
2058 -- First-bit values for component clauses, the value is the
2059 -- offset of the first bit of the field from start of record.
2060 -- The zero entry is for use in sorting.
2062 OC_Lbit : array (0 .. Ccount) of Uint;
2063 -- Last-bit values for component clauses, the value is the
2064 -- offset of the last bit of the field from start of record.
2065 -- The zero entry is for use in sorting.
2067 OC_Count : Natural := 0;
2068 -- Count of entries in OC_Fbit and OC_Lbit
2070 function OC_Lt (Op1, Op2 : Natural) return Boolean;
2071 -- Compare routine for Sort (See GNAT.Heap_Sort_A)
2073 procedure OC_Move (From : Natural; To : Natural);
2074 -- Move routine for Sort (see GNAT.Heap_Sort_A)
2076 function OC_Lt (Op1, Op2 : Natural) return Boolean is
2077 begin
2078 return OC_Fbit (Op1) < OC_Fbit (Op2);
2079 end OC_Lt;
2081 procedure OC_Move (From : Natural; To : Natural) is
2082 begin
2083 OC_Fbit (To) := OC_Fbit (From);
2084 OC_Lbit (To) := OC_Lbit (From);
2085 end OC_Move;
2087 begin
2088 CC := First (Component_Clauses (N));
2089 while Present (CC) loop
2090 if Nkind (CC) /= N_Pragma then
2091 Posit := Static_Integer (Position (CC));
2092 Fbit := Static_Integer (First_Bit (CC));
2093 Lbit := Static_Integer (Last_Bit (CC));
2095 if Posit /= No_Uint
2096 and then Fbit /= No_Uint
2097 and then Lbit /= No_Uint
2098 then
2099 OC_Count := OC_Count + 1;
2100 Posit := Posit * SSU;
2101 OC_Fbit (OC_Count) := Fbit + Posit;
2102 OC_Lbit (OC_Count) := Lbit + Posit;
2103 end if;
2104 end if;
2106 Next (CC);
2107 end loop;
2109 Sort
2110 (OC_Count,
2111 OC_Move'Unrestricted_Access,
2112 OC_Lt'Unrestricted_Access);
2114 Overlap_Check_Required := False;
2115 for J in 1 .. OC_Count - 1 loop
2116 if OC_Lbit (J) >= OC_Fbit (J + 1) then
2117 Overlap_Check_Required := True;
2118 exit;
2119 end if;
2120 end loop;
2121 end Overlap_Check1;
2122 end if;
2124 -- If Overlap_Check_Required is still True, then we have to do
2125 -- the full scale overlap check, since we have at least two fields
2126 -- that do overlap, and we need to know if that is OK since they
2127 -- are in the same variant, or whether we have a definite problem
2129 if Overlap_Check_Required then
2130 Overlap_Check2 : declare
2131 C1_Ent, C2_Ent : Entity_Id;
2132 -- Entities of components being checked for overlap
2134 Clist : Node_Id;
2135 -- Component_List node whose Component_Items are being checked
2137 Citem : Node_Id;
2138 -- Component declaration for component being checked
2140 begin
2141 C1_Ent := First_Entity (Base_Type (Rectype));
2143 -- Loop through all components in record. For each component check
2144 -- for overlap with any of the preceding elements on the component
2145 -- list containing the component, and also, if the component is in
2146 -- a variant, check against components outside the case structure.
2147 -- This latter test is repeated recursively up the variant tree.
2149 Main_Component_Loop : while Present (C1_Ent) loop
2150 if Ekind (C1_Ent) /= E_Component
2151 and then Ekind (C1_Ent) /= E_Discriminant
2152 then
2153 goto Continue_Main_Component_Loop;
2154 end if;
2156 -- Skip overlap check if entity has no declaration node. This
2157 -- happens with discriminants in constrained derived types.
2158 -- Probably we are missing some checks as a result, but that
2159 -- does not seem terribly serious ???
2161 if No (Declaration_Node (C1_Ent)) then
2162 goto Continue_Main_Component_Loop;
2163 end if;
2165 Clist := Parent (List_Containing (Declaration_Node (C1_Ent)));
2167 -- Loop through component lists that need checking. Check the
2168 -- current component list and all lists in variants above us.
2170 Component_List_Loop : loop
2172 -- If derived type definition, go to full declaration
2173 -- If at outer level, check discriminants if there are any
2175 if Nkind (Clist) = N_Derived_Type_Definition then
2176 Clist := Parent (Clist);
2177 end if;
2179 -- Outer level of record definition, check discriminants
2181 if Nkind (Clist) = N_Full_Type_Declaration
2182 or else Nkind (Clist) = N_Private_Type_Declaration
2183 then
2184 if Has_Discriminants (Defining_Identifier (Clist)) then
2185 C2_Ent :=
2186 First_Discriminant (Defining_Identifier (Clist));
2188 while Present (C2_Ent) loop
2189 exit when C1_Ent = C2_Ent;
2190 Check_Component_Overlap (C1_Ent, C2_Ent);
2191 Next_Discriminant (C2_Ent);
2192 end loop;
2193 end if;
2195 -- Record extension case
2197 elsif Nkind (Clist) = N_Derived_Type_Definition then
2198 Clist := Empty;
2200 -- Otherwise check one component list
2202 else
2203 Citem := First (Component_Items (Clist));
2205 while Present (Citem) loop
2206 if Nkind (Citem) = N_Component_Declaration then
2207 C2_Ent := Defining_Identifier (Citem);
2208 exit when C1_Ent = C2_Ent;
2209 Check_Component_Overlap (C1_Ent, C2_Ent);
2210 end if;
2212 Next (Citem);
2213 end loop;
2214 end if;
2216 -- Check for variants above us (the parent of the Clist can
2217 -- be a variant, in which case its parent is a variant part,
2218 -- and the parent of the variant part is a component list
2219 -- whose components must all be checked against the current
2220 -- component for overlap.
2222 if Nkind (Parent (Clist)) = N_Variant then
2223 Clist := Parent (Parent (Parent (Clist)));
2225 -- Check for possible discriminant part in record, this is
2226 -- treated essentially as another level in the recursion.
2227 -- For this case we have the parent of the component list
2228 -- is the record definition, and its parent is the full
2229 -- type declaration which contains the discriminant
2230 -- specifications.
2232 elsif Nkind (Parent (Clist)) = N_Record_Definition then
2233 Clist := Parent (Parent ((Clist)));
2235 -- If neither of these two cases, we are at the top of
2236 -- the tree
2238 else
2239 exit Component_List_Loop;
2240 end if;
2241 end loop Component_List_Loop;
2243 <<Continue_Main_Component_Loop>>
2244 Next_Entity (C1_Ent);
2246 end loop Main_Component_Loop;
2247 end Overlap_Check2;
2248 end if;
2250 -- For records that have component clauses for all components, and
2251 -- whose size is less than or equal to 32, we need to know the size
2252 -- in the front end to activate possible packed array processing
2253 -- where the component type is a record.
2255 -- At this stage Hbit + 1 represents the first unused bit from all
2256 -- the component clauses processed, so if the component clauses are
2257 -- complete, then this is the length of the record.
2259 -- For records longer than System.Storage_Unit, and for those where
2260 -- not all components have component clauses, the back end determines
2261 -- the length (it may for example be appopriate to round up the size
2262 -- to some convenient boundary, based on alignment considerations etc).
2264 if Unknown_RM_Size (Rectype)
2265 and then Hbit + 1 <= 32
2266 then
2267 -- Nothing to do if at least one component with no component clause
2269 Comp := First_Entity (Rectype);
2270 while Present (Comp) loop
2271 if Ekind (Comp) = E_Component
2272 or else Ekind (Comp) = E_Discriminant
2273 then
2274 if No (Component_Clause (Comp)) then
2275 return;
2276 end if;
2277 end if;
2279 Next_Entity (Comp);
2280 end loop;
2282 -- If we fall out of loop, all components have component clauses
2283 -- and so we can set the size to the maximum value.
2285 Set_RM_Size (Rectype, Hbit + 1);
2286 end if;
2287 end Analyze_Record_Representation_Clause;
2289 -----------------------------
2290 -- Check_Component_Overlap --
2291 -----------------------------
2293 procedure Check_Component_Overlap (C1_Ent, C2_Ent : Entity_Id) is
2294 begin
2295 if Present (Component_Clause (C1_Ent))
2296 and then Present (Component_Clause (C2_Ent))
2297 then
2298 -- Exclude odd case where we have two tag fields in the same
2299 -- record, both at location zero. This seems a bit strange,
2300 -- but it seems to happen in some circumstances ???
2302 if Chars (C1_Ent) = Name_uTag
2303 and then Chars (C2_Ent) = Name_uTag
2304 then
2305 return;
2306 end if;
2308 -- Here we check if the two fields overlap
2310 declare
2311 S1 : constant Uint := Component_Bit_Offset (C1_Ent);
2312 S2 : constant Uint := Component_Bit_Offset (C2_Ent);
2313 E1 : constant Uint := S1 + Esize (C1_Ent);
2314 E2 : constant Uint := S2 + Esize (C2_Ent);
2316 begin
2317 if E2 <= S1 or else E1 <= S2 then
2318 null;
2319 else
2320 Error_Msg_Node_2 :=
2321 Component_Name (Component_Clause (C2_Ent));
2322 Error_Msg_Sloc := Sloc (Error_Msg_Node_2);
2323 Error_Msg_Node_1 :=
2324 Component_Name (Component_Clause (C1_Ent));
2325 Error_Msg_N
2326 ("component& overlaps & #",
2327 Component_Name (Component_Clause (C1_Ent)));
2328 end if;
2329 end;
2330 end if;
2331 end Check_Component_Overlap;
2333 -----------------------------------
2334 -- Check_Constant_Address_Clause --
2335 -----------------------------------
2337 procedure Check_Constant_Address_Clause
2338 (Expr : Node_Id;
2339 U_Ent : Entity_Id)
2341 procedure Check_At_Constant_Address (Nod : Node_Id);
2342 -- Checks that the given node N represents a name whose 'Address
2343 -- is constant (in the same sense as OK_Constant_Address_Clause,
2344 -- i.e. the address value is the same at the point of declaration
2345 -- of U_Ent and at the time of elaboration of the address clause.
2347 procedure Check_Expr_Constants (Nod : Node_Id);
2348 -- Checks that Nod meets the requirements for a constant address
2349 -- clause in the sense of the enclosing procedure.
2351 procedure Check_List_Constants (Lst : List_Id);
2352 -- Check that all elements of list Lst meet the requirements for a
2353 -- constant address clause in the sense of the enclosing procedure.
2355 -------------------------------
2356 -- Check_At_Constant_Address --
2357 -------------------------------
2359 procedure Check_At_Constant_Address (Nod : Node_Id) is
2360 begin
2361 if Is_Entity_Name (Nod) then
2362 if Present (Address_Clause (Entity ((Nod)))) then
2363 Error_Msg_NE
2364 ("invalid address clause for initialized object &!",
2365 Nod, U_Ent);
2366 Error_Msg_NE
2367 ("address for& cannot" &
2368 " depend on another address clause! ('R'M 13.1(22))!",
2369 Nod, U_Ent);
2371 elsif In_Same_Source_Unit (Entity (Nod), U_Ent)
2372 and then Sloc (U_Ent) < Sloc (Entity (Nod))
2373 then
2374 Error_Msg_NE
2375 ("invalid address clause for initialized object &!",
2376 Nod, U_Ent);
2377 Error_Msg_Name_1 := Chars (Entity (Nod));
2378 Error_Msg_Name_2 := Chars (U_Ent);
2379 Error_Msg_N
2380 ("\% must be defined before % ('R'M 13.1(22))!",
2381 Nod);
2382 end if;
2384 elsif Nkind (Nod) = N_Selected_Component then
2385 declare
2386 T : constant Entity_Id := Etype (Prefix (Nod));
2388 begin
2389 if (Is_Record_Type (T)
2390 and then Has_Discriminants (T))
2391 or else
2392 (Is_Access_Type (T)
2393 and then Is_Record_Type (Designated_Type (T))
2394 and then Has_Discriminants (Designated_Type (T)))
2395 then
2396 Error_Msg_NE
2397 ("invalid address clause for initialized object &!",
2398 Nod, U_Ent);
2399 Error_Msg_N
2400 ("\address cannot depend on component" &
2401 " of discriminated record ('R'M 13.1(22))!",
2402 Nod);
2403 else
2404 Check_At_Constant_Address (Prefix (Nod));
2405 end if;
2406 end;
2408 elsif Nkind (Nod) = N_Indexed_Component then
2409 Check_At_Constant_Address (Prefix (Nod));
2410 Check_List_Constants (Expressions (Nod));
2412 else
2413 Check_Expr_Constants (Nod);
2414 end if;
2415 end Check_At_Constant_Address;
2417 --------------------------
2418 -- Check_Expr_Constants --
2419 --------------------------
2421 procedure Check_Expr_Constants (Nod : Node_Id) is
2422 Loc_U_Ent : constant Source_Ptr := Sloc (U_Ent);
2423 Ent : Entity_Id := Empty;
2425 begin
2426 if Nkind (Nod) in N_Has_Etype
2427 and then Etype (Nod) = Any_Type
2428 then
2429 return;
2430 end if;
2432 case Nkind (Nod) is
2433 when N_Empty | N_Error =>
2434 return;
2436 when N_Identifier | N_Expanded_Name =>
2437 Ent := Entity (Nod);
2439 -- We need to look at the original node if it is different
2440 -- from the node, since we may have rewritten things and
2441 -- substituted an identifier representing the rewrite.
2443 if Original_Node (Nod) /= Nod then
2444 Check_Expr_Constants (Original_Node (Nod));
2446 -- If the node is an object declaration without initial
2447 -- value, some code has been expanded, and the expression
2448 -- is not constant, even if the constituents might be
2449 -- acceptable, as in A'Address + offset.
2451 if Ekind (Ent) = E_Variable
2452 and then Nkind (Declaration_Node (Ent))
2453 = N_Object_Declaration
2454 and then
2455 No (Expression (Declaration_Node (Ent)))
2456 then
2457 Error_Msg_NE
2458 ("invalid address clause for initialized object &!",
2459 Nod, U_Ent);
2461 -- If entity is constant, it may be the result of expanding
2462 -- a check. We must verify that its declaration appears
2463 -- before the object in question, else we also reject the
2464 -- address clause.
2466 elsif Ekind (Ent) = E_Constant
2467 and then In_Same_Source_Unit (Ent, U_Ent)
2468 and then Sloc (Ent) > Loc_U_Ent
2469 then
2470 Error_Msg_NE
2471 ("invalid address clause for initialized object &!",
2472 Nod, U_Ent);
2473 end if;
2475 return;
2476 end if;
2478 -- Otherwise look at the identifier and see if it is OK
2480 if Ekind (Ent) = E_Named_Integer
2481 or else
2482 Ekind (Ent) = E_Named_Real
2483 or else
2484 Is_Type (Ent)
2485 then
2486 return;
2488 elsif
2489 Ekind (Ent) = E_Constant
2490 or else
2491 Ekind (Ent) = E_In_Parameter
2492 then
2493 -- This is the case where we must have Ent defined
2494 -- before U_Ent. Clearly if they are in different
2495 -- units this requirement is met since the unit
2496 -- containing Ent is already processed.
2498 if not In_Same_Source_Unit (Ent, U_Ent) then
2499 return;
2501 -- Otherwise location of Ent must be before the
2502 -- location of U_Ent, that's what prior defined means.
2504 elsif Sloc (Ent) < Loc_U_Ent then
2505 return;
2507 else
2508 Error_Msg_NE
2509 ("invalid address clause for initialized object &!",
2510 Nod, U_Ent);
2511 Error_Msg_Name_1 := Chars (Ent);
2512 Error_Msg_Name_2 := Chars (U_Ent);
2513 Error_Msg_N
2514 ("\% must be defined before % ('R'M 13.1(22))!",
2515 Nod);
2516 end if;
2518 elsif Nkind (Original_Node (Nod)) = N_Function_Call then
2519 Check_Expr_Constants (Original_Node (Nod));
2521 else
2522 Error_Msg_NE
2523 ("invalid address clause for initialized object &!",
2524 Nod, U_Ent);
2526 if Comes_From_Source (Ent) then
2527 Error_Msg_Name_1 := Chars (Ent);
2528 Error_Msg_N
2529 ("\reference to variable% not allowed"
2530 & " ('R'M 13.1(22))!", Nod);
2531 else
2532 Error_Msg_N
2533 ("non-static expression not allowed"
2534 & " ('R'M 13.1(22))!", Nod);
2535 end if;
2536 end if;
2538 when N_Integer_Literal =>
2540 -- If this is a rewritten unchecked conversion, in a system
2541 -- where Address is an integer type, always use the base type
2542 -- for a literal value. This is user-friendly and prevents
2543 -- order-of-elaboration issues with instances of unchecked
2544 -- conversion.
2546 if Nkind (Original_Node (Nod)) = N_Function_Call then
2547 Set_Etype (Nod, Base_Type (Etype (Nod)));
2548 end if;
2550 when N_Real_Literal |
2551 N_String_Literal |
2552 N_Character_Literal =>
2553 return;
2555 when N_Range =>
2556 Check_Expr_Constants (Low_Bound (Nod));
2557 Check_Expr_Constants (High_Bound (Nod));
2559 when N_Explicit_Dereference =>
2560 Check_Expr_Constants (Prefix (Nod));
2562 when N_Indexed_Component =>
2563 Check_Expr_Constants (Prefix (Nod));
2564 Check_List_Constants (Expressions (Nod));
2566 when N_Slice =>
2567 Check_Expr_Constants (Prefix (Nod));
2568 Check_Expr_Constants (Discrete_Range (Nod));
2570 when N_Selected_Component =>
2571 Check_Expr_Constants (Prefix (Nod));
2573 when N_Attribute_Reference =>
2575 if Attribute_Name (Nod) = Name_Address
2576 or else
2577 Attribute_Name (Nod) = Name_Access
2578 or else
2579 Attribute_Name (Nod) = Name_Unchecked_Access
2580 or else
2581 Attribute_Name (Nod) = Name_Unrestricted_Access
2582 then
2583 Check_At_Constant_Address (Prefix (Nod));
2585 else
2586 Check_Expr_Constants (Prefix (Nod));
2587 Check_List_Constants (Expressions (Nod));
2588 end if;
2590 when N_Aggregate =>
2591 Check_List_Constants (Component_Associations (Nod));
2592 Check_List_Constants (Expressions (Nod));
2594 when N_Component_Association =>
2595 Check_Expr_Constants (Expression (Nod));
2597 when N_Extension_Aggregate =>
2598 Check_Expr_Constants (Ancestor_Part (Nod));
2599 Check_List_Constants (Component_Associations (Nod));
2600 Check_List_Constants (Expressions (Nod));
2602 when N_Null =>
2603 return;
2605 when N_Binary_Op | N_And_Then | N_Or_Else | N_In | N_Not_In =>
2606 Check_Expr_Constants (Left_Opnd (Nod));
2607 Check_Expr_Constants (Right_Opnd (Nod));
2609 when N_Unary_Op =>
2610 Check_Expr_Constants (Right_Opnd (Nod));
2612 when N_Type_Conversion |
2613 N_Qualified_Expression |
2614 N_Allocator =>
2615 Check_Expr_Constants (Expression (Nod));
2617 when N_Unchecked_Type_Conversion =>
2618 Check_Expr_Constants (Expression (Nod));
2620 -- If this is a rewritten unchecked conversion, subtypes
2621 -- in this node are those created within the instance.
2622 -- To avoid order of elaboration issues, replace them
2623 -- with their base types. Note that address clauses can
2624 -- cause order of elaboration problems because they are
2625 -- elaborated by the back-end at the point of definition,
2626 -- and may mention entities declared in between (as long
2627 -- as everything is static). It is user-friendly to allow
2628 -- unchecked conversions in this context.
2630 if Nkind (Original_Node (Nod)) = N_Function_Call then
2631 Set_Etype (Expression (Nod),
2632 Base_Type (Etype (Expression (Nod))));
2633 Set_Etype (Nod, Base_Type (Etype (Nod)));
2634 end if;
2636 when N_Function_Call =>
2637 if not Is_Pure (Entity (Name (Nod))) then
2638 Error_Msg_NE
2639 ("invalid address clause for initialized object &!",
2640 Nod, U_Ent);
2642 Error_Msg_NE
2643 ("\function & is not pure ('R'M 13.1(22))!",
2644 Nod, Entity (Name (Nod)));
2646 else
2647 Check_List_Constants (Parameter_Associations (Nod));
2648 end if;
2650 when N_Parameter_Association =>
2651 Check_Expr_Constants (Explicit_Actual_Parameter (Nod));
2653 when others =>
2654 Error_Msg_NE
2655 ("invalid address clause for initialized object &!",
2656 Nod, U_Ent);
2657 Error_Msg_NE
2658 ("\must be constant defined before& ('R'M 13.1(22))!",
2659 Nod, U_Ent);
2660 end case;
2661 end Check_Expr_Constants;
2663 --------------------------
2664 -- Check_List_Constants --
2665 --------------------------
2667 procedure Check_List_Constants (Lst : List_Id) is
2668 Nod1 : Node_Id;
2670 begin
2671 if Present (Lst) then
2672 Nod1 := First (Lst);
2673 while Present (Nod1) loop
2674 Check_Expr_Constants (Nod1);
2675 Next (Nod1);
2676 end loop;
2677 end if;
2678 end Check_List_Constants;
2680 -- Start of processing for Check_Constant_Address_Clause
2682 begin
2683 Check_Expr_Constants (Expr);
2684 end Check_Constant_Address_Clause;
2686 ----------------
2687 -- Check_Size --
2688 ----------------
2690 procedure Check_Size
2691 (N : Node_Id;
2692 T : Entity_Id;
2693 Siz : Uint;
2694 Biased : out Boolean)
2696 UT : constant Entity_Id := Underlying_Type (T);
2697 M : Uint;
2699 begin
2700 Biased := False;
2702 -- Dismiss cases for generic types or types with previous errors
2704 if No (UT)
2705 or else UT = Any_Type
2706 or else Is_Generic_Type (UT)
2707 or else Is_Generic_Type (Root_Type (UT))
2708 then
2709 return;
2711 -- Check case of bit packed array
2713 elsif Is_Array_Type (UT)
2714 and then Known_Static_Component_Size (UT)
2715 and then Is_Bit_Packed_Array (UT)
2716 then
2717 declare
2718 Asiz : Uint;
2719 Indx : Node_Id;
2720 Ityp : Entity_Id;
2722 begin
2723 Asiz := Component_Size (UT);
2724 Indx := First_Index (UT);
2725 loop
2726 Ityp := Etype (Indx);
2728 -- If non-static bound, then we are not in the business of
2729 -- trying to check the length, and indeed an error will be
2730 -- issued elsewhere, since sizes of non-static array types
2731 -- cannot be set implicitly or explicitly.
2733 if not Is_Static_Subtype (Ityp) then
2734 return;
2735 end if;
2737 -- Otherwise accumulate next dimension
2739 Asiz := Asiz * (Expr_Value (Type_High_Bound (Ityp)) -
2740 Expr_Value (Type_Low_Bound (Ityp)) +
2741 Uint_1);
2743 Next_Index (Indx);
2744 exit when No (Indx);
2745 end loop;
2747 if Asiz <= Siz then
2748 return;
2749 else
2750 Error_Msg_Uint_1 := Asiz;
2751 Error_Msg_NE
2752 ("size for& too small, minimum allowed is ^", N, T);
2753 Set_Esize (T, Asiz);
2754 Set_RM_Size (T, Asiz);
2755 end if;
2756 end;
2758 -- All other composite types are ignored
2760 elsif Is_Composite_Type (UT) then
2761 return;
2763 -- For fixed-point types, don't check minimum if type is not frozen,
2764 -- since we don't know all the characteristics of the type that can
2765 -- affect the size (e.g. a specified small) till freeze time.
2767 elsif Is_Fixed_Point_Type (UT)
2768 and then not Is_Frozen (UT)
2769 then
2770 null;
2772 -- Cases for which a minimum check is required
2774 else
2775 -- Ignore if specified size is correct for the type
2777 if Known_Esize (UT) and then Siz = Esize (UT) then
2778 return;
2779 end if;
2781 -- Otherwise get minimum size
2783 M := UI_From_Int (Minimum_Size (UT));
2785 if Siz < M then
2787 -- Size is less than minimum size, but one possibility remains
2788 -- that we can manage with the new size if we bias the type
2790 M := UI_From_Int (Minimum_Size (UT, Biased => True));
2792 if Siz < M then
2793 Error_Msg_Uint_1 := M;
2794 Error_Msg_NE
2795 ("size for& too small, minimum allowed is ^", N, T);
2796 Set_Esize (T, M);
2797 Set_RM_Size (T, M);
2798 else
2799 Biased := True;
2800 end if;
2801 end if;
2802 end if;
2803 end Check_Size;
2805 -------------------------
2806 -- Get_Alignment_Value --
2807 -------------------------
2809 function Get_Alignment_Value (Expr : Node_Id) return Uint is
2810 Align : constant Uint := Static_Integer (Expr);
2812 begin
2813 if Align = No_Uint then
2814 return No_Uint;
2816 elsif Align <= 0 then
2817 Error_Msg_N ("alignment value must be positive", Expr);
2818 return No_Uint;
2820 else
2821 for J in Int range 0 .. 64 loop
2822 declare
2823 M : constant Uint := Uint_2 ** J;
2825 begin
2826 exit when M = Align;
2828 if M > Align then
2829 Error_Msg_N
2830 ("alignment value must be power of 2", Expr);
2831 return No_Uint;
2832 end if;
2833 end;
2834 end loop;
2836 return Align;
2837 end if;
2838 end Get_Alignment_Value;
2840 ----------------
2841 -- Initialize --
2842 ----------------
2844 procedure Initialize is
2845 begin
2846 Unchecked_Conversions.Init;
2847 end Initialize;
2849 -------------------------
2850 -- Is_Operational_Item --
2851 -------------------------
2853 function Is_Operational_Item (N : Node_Id) return Boolean is
2854 begin
2855 if Nkind (N) /= N_Attribute_Definition_Clause then
2856 return False;
2857 else
2858 declare
2859 Id : constant Attribute_Id := Get_Attribute_Id (Chars (N));
2861 begin
2862 return Id = Attribute_Input
2863 or else Id = Attribute_Output
2864 or else Id = Attribute_Read
2865 or else Id = Attribute_Write
2866 or else Id = Attribute_External_Tag;
2867 end;
2868 end if;
2869 end Is_Operational_Item;
2871 --------------------------------------
2872 -- Mark_Aliased_Address_As_Volatile --
2873 --------------------------------------
2875 procedure Mark_Aliased_Address_As_Volatile (N : Node_Id) is
2876 Ent : constant Entity_Id := Address_Aliased_Entity (N);
2878 begin
2879 if Present (Ent) then
2880 Set_Treat_As_Volatile (Ent);
2881 end if;
2882 end Mark_Aliased_Address_As_Volatile;
2884 ------------------
2885 -- Minimum_Size --
2886 ------------------
2888 function Minimum_Size
2889 (T : Entity_Id;
2890 Biased : Boolean := False) return Nat
2892 Lo : Uint := No_Uint;
2893 Hi : Uint := No_Uint;
2894 LoR : Ureal := No_Ureal;
2895 HiR : Ureal := No_Ureal;
2896 LoSet : Boolean := False;
2897 HiSet : Boolean := False;
2898 B : Uint;
2899 S : Nat;
2900 Ancest : Entity_Id;
2901 R_Typ : constant Entity_Id := Root_Type (T);
2903 begin
2904 -- If bad type, return 0
2906 if T = Any_Type then
2907 return 0;
2909 -- For generic types, just return zero. There cannot be any legitimate
2910 -- need to know such a size, but this routine may be called with a
2911 -- generic type as part of normal processing.
2913 elsif Is_Generic_Type (R_Typ)
2914 or else R_Typ = Any_Type
2915 then
2916 return 0;
2918 -- Access types. Normally an access type cannot have a size smaller
2919 -- than the size of System.Address. The exception is on VMS, where
2920 -- we have short and long addresses, and it is possible for an access
2921 -- type to have a short address size (and thus be less than the size
2922 -- of System.Address itself). We simply skip the check for VMS, and
2923 -- leave the back end to do the check.
2925 elsif Is_Access_Type (T) then
2926 if OpenVMS_On_Target then
2927 return 0;
2928 else
2929 return System_Address_Size;
2930 end if;
2932 -- Floating-point types
2934 elsif Is_Floating_Point_Type (T) then
2935 return UI_To_Int (Esize (R_Typ));
2937 -- Discrete types
2939 elsif Is_Discrete_Type (T) then
2941 -- The following loop is looking for the nearest compile time
2942 -- known bounds following the ancestor subtype chain. The idea
2943 -- is to find the most restrictive known bounds information.
2945 Ancest := T;
2946 loop
2947 if Ancest = Any_Type or else Etype (Ancest) = Any_Type then
2948 return 0;
2949 end if;
2951 if not LoSet then
2952 if Compile_Time_Known_Value (Type_Low_Bound (Ancest)) then
2953 Lo := Expr_Rep_Value (Type_Low_Bound (Ancest));
2954 LoSet := True;
2955 exit when HiSet;
2956 end if;
2957 end if;
2959 if not HiSet then
2960 if Compile_Time_Known_Value (Type_High_Bound (Ancest)) then
2961 Hi := Expr_Rep_Value (Type_High_Bound (Ancest));
2962 HiSet := True;
2963 exit when LoSet;
2964 end if;
2965 end if;
2967 Ancest := Ancestor_Subtype (Ancest);
2969 if No (Ancest) then
2970 Ancest := Base_Type (T);
2972 if Is_Generic_Type (Ancest) then
2973 return 0;
2974 end if;
2975 end if;
2976 end loop;
2978 -- Fixed-point types. We can't simply use Expr_Value to get the
2979 -- Corresponding_Integer_Value values of the bounds, since these
2980 -- do not get set till the type is frozen, and this routine can
2981 -- be called before the type is frozen. Similarly the test for
2982 -- bounds being static needs to include the case where we have
2983 -- unanalyzed real literals for the same reason.
2985 elsif Is_Fixed_Point_Type (T) then
2987 -- The following loop is looking for the nearest compile time
2988 -- known bounds following the ancestor subtype chain. The idea
2989 -- is to find the most restrictive known bounds information.
2991 Ancest := T;
2992 loop
2993 if Ancest = Any_Type or else Etype (Ancest) = Any_Type then
2994 return 0;
2995 end if;
2997 if not LoSet then
2998 if Nkind (Type_Low_Bound (Ancest)) = N_Real_Literal
2999 or else Compile_Time_Known_Value (Type_Low_Bound (Ancest))
3000 then
3001 LoR := Expr_Value_R (Type_Low_Bound (Ancest));
3002 LoSet := True;
3003 exit when HiSet;
3004 end if;
3005 end if;
3007 if not HiSet then
3008 if Nkind (Type_High_Bound (Ancest)) = N_Real_Literal
3009 or else Compile_Time_Known_Value (Type_High_Bound (Ancest))
3010 then
3011 HiR := Expr_Value_R (Type_High_Bound (Ancest));
3012 HiSet := True;
3013 exit when LoSet;
3014 end if;
3015 end if;
3017 Ancest := Ancestor_Subtype (Ancest);
3019 if No (Ancest) then
3020 Ancest := Base_Type (T);
3022 if Is_Generic_Type (Ancest) then
3023 return 0;
3024 end if;
3025 end if;
3026 end loop;
3028 Lo := UR_To_Uint (LoR / Small_Value (T));
3029 Hi := UR_To_Uint (HiR / Small_Value (T));
3031 -- No other types allowed
3033 else
3034 raise Program_Error;
3035 end if;
3037 -- Fall through with Hi and Lo set. Deal with biased case
3039 if (Biased and then not Is_Fixed_Point_Type (T))
3040 or else Has_Biased_Representation (T)
3041 then
3042 Hi := Hi - Lo;
3043 Lo := Uint_0;
3044 end if;
3046 -- Signed case. Note that we consider types like range 1 .. -1 to be
3047 -- signed for the purpose of computing the size, since the bounds
3048 -- have to be accomodated in the base type.
3050 if Lo < 0 or else Hi < 0 then
3051 S := 1;
3052 B := Uint_1;
3054 -- S = size, B = 2 ** (size - 1) (can accommodate -B .. +(B - 1))
3055 -- Note that we accommodate the case where the bounds cross. This
3056 -- can happen either because of the way the bounds are declared
3057 -- or because of the algorithm in Freeze_Fixed_Point_Type.
3059 while Lo < -B
3060 or else Hi < -B
3061 or else Lo >= B
3062 or else Hi >= B
3063 loop
3064 B := Uint_2 ** S;
3065 S := S + 1;
3066 end loop;
3068 -- Unsigned case
3070 else
3071 -- If both bounds are positive, make sure that both are represen-
3072 -- table in the case where the bounds are crossed. This can happen
3073 -- either because of the way the bounds are declared, or because of
3074 -- the algorithm in Freeze_Fixed_Point_Type.
3076 if Lo > Hi then
3077 Hi := Lo;
3078 end if;
3080 -- S = size, (can accommodate 0 .. (2**size - 1))
3082 S := 0;
3083 while Hi >= Uint_2 ** S loop
3084 S := S + 1;
3085 end loop;
3086 end if;
3088 return S;
3089 end Minimum_Size;
3091 -------------------------
3092 -- New_Stream_Function --
3093 -------------------------
3095 procedure New_Stream_Function
3096 (N : Node_Id;
3097 Ent : Entity_Id;
3098 Subp : Entity_Id;
3099 Nam : TSS_Name_Type)
3101 Loc : constant Source_Ptr := Sloc (N);
3102 Sname : constant Name_Id := Make_TSS_Name (Base_Type (Ent), Nam);
3103 Subp_Id : Entity_Id;
3104 Subp_Decl : Node_Id;
3105 F : Entity_Id;
3106 Etyp : Entity_Id;
3108 function Build_Spec return Node_Id;
3109 -- Used for declaration and renaming declaration, so that this is
3110 -- treated as a renaming_as_body.
3112 ----------------
3113 -- Build_Spec --
3114 ----------------
3116 function Build_Spec return Node_Id is
3117 begin
3118 Subp_Id := Make_Defining_Identifier (Loc, Sname);
3120 return
3121 Make_Function_Specification (Loc,
3122 Defining_Unit_Name => Subp_Id,
3123 Parameter_Specifications =>
3124 New_List (
3125 Make_Parameter_Specification (Loc,
3126 Defining_Identifier =>
3127 Make_Defining_Identifier (Loc, Name_S),
3128 Parameter_Type =>
3129 Make_Access_Definition (Loc,
3130 Subtype_Mark =>
3131 New_Reference_To (
3132 Designated_Type (Etype (F)), Loc)))),
3134 Result_Definition =>
3135 New_Reference_To (Etyp, Loc));
3136 end Build_Spec;
3138 -- Start of processing for New_Stream_Function
3140 begin
3141 F := First_Formal (Subp);
3142 Etyp := Etype (Subp);
3144 if not Is_Tagged_Type (Ent) then
3145 Subp_Decl :=
3146 Make_Subprogram_Declaration (Loc,
3147 Specification => Build_Spec);
3148 Insert_Action (N, Subp_Decl);
3149 end if;
3151 Subp_Decl :=
3152 Make_Subprogram_Renaming_Declaration (Loc,
3153 Specification => Build_Spec,
3154 Name => New_Reference_To (Subp, Loc));
3156 if Is_Tagged_Type (Ent) then
3157 Set_TSS (Base_Type (Ent), Subp_Id);
3158 else
3159 Insert_Action (N, Subp_Decl);
3160 Copy_TSS (Subp_Id, Base_Type (Ent));
3161 end if;
3162 end New_Stream_Function;
3164 --------------------------
3165 -- New_Stream_Procedure --
3166 --------------------------
3168 procedure New_Stream_Procedure
3169 (N : Node_Id;
3170 Ent : Entity_Id;
3171 Subp : Entity_Id;
3172 Nam : TSS_Name_Type;
3173 Out_P : Boolean := False)
3175 Loc : constant Source_Ptr := Sloc (N);
3176 Sname : constant Name_Id := Make_TSS_Name (Base_Type (Ent), Nam);
3177 Subp_Id : Entity_Id;
3178 Subp_Decl : Node_Id;
3179 F : Entity_Id;
3180 Etyp : Entity_Id;
3182 function Build_Spec return Node_Id;
3183 -- Used for declaration and renaming declaration, so that this is
3184 -- treated as a renaming_as_body.
3186 ----------------
3187 -- Build_Spec --
3188 ----------------
3190 function Build_Spec return Node_Id is
3191 begin
3192 Subp_Id := Make_Defining_Identifier (Loc, Sname);
3194 return
3195 Make_Procedure_Specification (Loc,
3196 Defining_Unit_Name => Subp_Id,
3197 Parameter_Specifications =>
3198 New_List (
3199 Make_Parameter_Specification (Loc,
3200 Defining_Identifier =>
3201 Make_Defining_Identifier (Loc, Name_S),
3202 Parameter_Type =>
3203 Make_Access_Definition (Loc,
3204 Subtype_Mark =>
3205 New_Reference_To (
3206 Designated_Type (Etype (F)), Loc))),
3208 Make_Parameter_Specification (Loc,
3209 Defining_Identifier =>
3210 Make_Defining_Identifier (Loc, Name_V),
3211 Out_Present => Out_P,
3212 Parameter_Type =>
3213 New_Reference_To (Etyp, Loc))));
3214 end Build_Spec;
3216 -- Start of processing for New_Stream_Procedure
3218 begin
3219 F := First_Formal (Subp);
3220 Etyp := Etype (Next_Formal (F));
3222 if not Is_Tagged_Type (Ent) then
3223 Subp_Decl :=
3224 Make_Subprogram_Declaration (Loc,
3225 Specification => Build_Spec);
3226 Insert_Action (N, Subp_Decl);
3227 end if;
3229 Subp_Decl :=
3230 Make_Subprogram_Renaming_Declaration (Loc,
3231 Specification => Build_Spec,
3232 Name => New_Reference_To (Subp, Loc));
3234 if Is_Tagged_Type (Ent) then
3235 Set_TSS (Base_Type (Ent), Subp_Id);
3236 else
3237 Insert_Action (N, Subp_Decl);
3238 Copy_TSS (Subp_Id, Base_Type (Ent));
3239 end if;
3240 end New_Stream_Procedure;
3242 ------------------------
3243 -- Rep_Item_Too_Early --
3244 ------------------------
3246 function Rep_Item_Too_Early (T : Entity_Id; N : Node_Id) return Boolean is
3247 begin
3248 -- Cannot apply rep items that are not operational items
3249 -- to generic types
3251 if Is_Operational_Item (N) then
3252 return False;
3254 elsif Is_Type (T)
3255 and then Is_Generic_Type (Root_Type (T))
3256 then
3257 Error_Msg_N
3258 ("representation item not allowed for generic type", N);
3259 return True;
3260 end if;
3262 -- Otherwise check for incompleted type
3264 if Is_Incomplete_Or_Private_Type (T)
3265 and then No (Underlying_Type (T))
3266 then
3267 Error_Msg_N
3268 ("representation item must be after full type declaration", N);
3269 return True;
3271 -- If the type has incompleted components, a representation clause is
3272 -- illegal but stream attributes and Convention pragmas are correct.
3274 elsif Has_Private_Component (T) then
3275 if Nkind (N) = N_Pragma then
3276 return False;
3277 else
3278 Error_Msg_N
3279 ("representation item must appear after type is fully defined",
3281 return True;
3282 end if;
3283 else
3284 return False;
3285 end if;
3286 end Rep_Item_Too_Early;
3288 -----------------------
3289 -- Rep_Item_Too_Late --
3290 -----------------------
3292 function Rep_Item_Too_Late
3293 (T : Entity_Id;
3294 N : Node_Id;
3295 FOnly : Boolean := False) return Boolean
3297 S : Entity_Id;
3298 Parent_Type : Entity_Id;
3300 procedure Too_Late;
3301 -- Output the too late message. Note that this is not considered a
3302 -- serious error, since the effect is simply that we ignore the
3303 -- representation clause in this case.
3305 --------------
3306 -- Too_Late --
3307 --------------
3309 procedure Too_Late is
3310 begin
3311 Error_Msg_N ("|representation item appears too late!", N);
3312 end Too_Late;
3314 -- Start of processing for Rep_Item_Too_Late
3316 begin
3317 -- First make sure entity is not frozen (RM 13.1(9)). Exclude imported
3318 -- types, which may be frozen if they appear in a representation clause
3319 -- for a local type.
3321 if Is_Frozen (T)
3322 and then not From_With_Type (T)
3323 then
3324 Too_Late;
3325 S := First_Subtype (T);
3327 if Present (Freeze_Node (S)) then
3328 Error_Msg_NE
3329 ("?no more representation items for }!", Freeze_Node (S), S);
3330 end if;
3332 return True;
3334 -- Check for case of non-tagged derived type whose parent either has
3335 -- primitive operations, or is a by reference type (RM 13.1(10)).
3337 elsif Is_Type (T)
3338 and then not FOnly
3339 and then Is_Derived_Type (T)
3340 and then not Is_Tagged_Type (T)
3341 then
3342 Parent_Type := Etype (Base_Type (T));
3344 if Has_Primitive_Operations (Parent_Type) then
3345 Too_Late;
3346 Error_Msg_NE
3347 ("primitive operations already defined for&!", N, Parent_Type);
3348 return True;
3350 elsif Is_By_Reference_Type (Parent_Type) then
3351 Too_Late;
3352 Error_Msg_NE
3353 ("parent type & is a by reference type!", N, Parent_Type);
3354 return True;
3355 end if;
3356 end if;
3358 -- No error, link item into head of chain of rep items for the entity
3360 Record_Rep_Item (T, N);
3361 return False;
3362 end Rep_Item_Too_Late;
3364 -------------------------
3365 -- Same_Representation --
3366 -------------------------
3368 function Same_Representation (Typ1, Typ2 : Entity_Id) return Boolean is
3369 T1 : constant Entity_Id := Underlying_Type (Typ1);
3370 T2 : constant Entity_Id := Underlying_Type (Typ2);
3372 begin
3373 -- A quick check, if base types are the same, then we definitely have
3374 -- the same representation, because the subtype specific representation
3375 -- attributes (Size and Alignment) do not affect representation from
3376 -- the point of view of this test.
3378 if Base_Type (T1) = Base_Type (T2) then
3379 return True;
3381 elsif Is_Private_Type (Base_Type (T2))
3382 and then Base_Type (T1) = Full_View (Base_Type (T2))
3383 then
3384 return True;
3385 end if;
3387 -- Tagged types never have differing representations
3389 if Is_Tagged_Type (T1) then
3390 return True;
3391 end if;
3393 -- Representations are definitely different if conventions differ
3395 if Convention (T1) /= Convention (T2) then
3396 return False;
3397 end if;
3399 -- Representations are different if component alignments differ
3401 if (Is_Record_Type (T1) or else Is_Array_Type (T1))
3402 and then
3403 (Is_Record_Type (T2) or else Is_Array_Type (T2))
3404 and then Component_Alignment (T1) /= Component_Alignment (T2)
3405 then
3406 return False;
3407 end if;
3409 -- For arrays, the only real issue is component size. If we know the
3410 -- component size for both arrays, and it is the same, then that's
3411 -- good enough to know we don't have a change of representation.
3413 if Is_Array_Type (T1) then
3414 if Known_Component_Size (T1)
3415 and then Known_Component_Size (T2)
3416 and then Component_Size (T1) = Component_Size (T2)
3417 then
3418 return True;
3419 end if;
3420 end if;
3422 -- Types definitely have same representation if neither has non-standard
3423 -- representation since default representations are always consistent.
3424 -- If only one has non-standard representation, and the other does not,
3425 -- then we consider that they do not have the same representation. They
3426 -- might, but there is no way of telling early enough.
3428 if Has_Non_Standard_Rep (T1) then
3429 if not Has_Non_Standard_Rep (T2) then
3430 return False;
3431 end if;
3432 else
3433 return not Has_Non_Standard_Rep (T2);
3434 end if;
3436 -- Here the two types both have non-standard representation, and we
3437 -- need to determine if they have the same non-standard representation
3439 -- For arrays, we simply need to test if the component sizes are the
3440 -- same. Pragma Pack is reflected in modified component sizes, so this
3441 -- check also deals with pragma Pack.
3443 if Is_Array_Type (T1) then
3444 return Component_Size (T1) = Component_Size (T2);
3446 -- Tagged types always have the same representation, because it is not
3447 -- possible to specify different representations for common fields.
3449 elsif Is_Tagged_Type (T1) then
3450 return True;
3452 -- Case of record types
3454 elsif Is_Record_Type (T1) then
3456 -- Packed status must conform
3458 if Is_Packed (T1) /= Is_Packed (T2) then
3459 return False;
3461 -- Otherwise we must check components. Typ2 maybe a constrained
3462 -- subtype with fewer components, so we compare the components
3463 -- of the base types.
3465 else
3466 Record_Case : declare
3467 CD1, CD2 : Entity_Id;
3469 function Same_Rep return Boolean;
3470 -- CD1 and CD2 are either components or discriminants. This
3471 -- function tests whether the two have the same representation
3473 --------------
3474 -- Same_Rep --
3475 --------------
3477 function Same_Rep return Boolean is
3478 begin
3479 if No (Component_Clause (CD1)) then
3480 return No (Component_Clause (CD2));
3482 else
3483 return
3484 Present (Component_Clause (CD2))
3485 and then
3486 Component_Bit_Offset (CD1) = Component_Bit_Offset (CD2)
3487 and then
3488 Esize (CD1) = Esize (CD2);
3489 end if;
3490 end Same_Rep;
3492 -- Start processing for Record_Case
3494 begin
3495 if Has_Discriminants (T1) then
3496 CD1 := First_Discriminant (T1);
3497 CD2 := First_Discriminant (T2);
3499 -- The number of discriminants may be different if the
3500 -- derived type has fewer (constrained by values). The
3501 -- invisible discriminants retain the representation of
3502 -- the original, so the discrepancy does not per se
3503 -- indicate a different representation.
3505 while Present (CD1)
3506 and then Present (CD2)
3507 loop
3508 if not Same_Rep then
3509 return False;
3510 else
3511 Next_Discriminant (CD1);
3512 Next_Discriminant (CD2);
3513 end if;
3514 end loop;
3515 end if;
3517 CD1 := First_Component (Underlying_Type (Base_Type (T1)));
3518 CD2 := First_Component (Underlying_Type (Base_Type (T2)));
3520 while Present (CD1) loop
3521 if not Same_Rep then
3522 return False;
3523 else
3524 Next_Component (CD1);
3525 Next_Component (CD2);
3526 end if;
3527 end loop;
3529 return True;
3530 end Record_Case;
3531 end if;
3533 -- For enumeration types, we must check each literal to see if the
3534 -- representation is the same. Note that we do not permit enumeration
3535 -- reprsentation clauses for Character and Wide_Character, so these
3536 -- cases were already dealt with.
3538 elsif Is_Enumeration_Type (T1) then
3540 Enumeration_Case : declare
3541 L1, L2 : Entity_Id;
3543 begin
3544 L1 := First_Literal (T1);
3545 L2 := First_Literal (T2);
3547 while Present (L1) loop
3548 if Enumeration_Rep (L1) /= Enumeration_Rep (L2) then
3549 return False;
3550 else
3551 Next_Literal (L1);
3552 Next_Literal (L2);
3553 end if;
3554 end loop;
3556 return True;
3558 end Enumeration_Case;
3560 -- Any other types have the same representation for these purposes
3562 else
3563 return True;
3564 end if;
3565 end Same_Representation;
3567 --------------------
3568 -- Set_Enum_Esize --
3569 --------------------
3571 procedure Set_Enum_Esize (T : Entity_Id) is
3572 Lo : Uint;
3573 Hi : Uint;
3574 Sz : Nat;
3576 begin
3577 Init_Alignment (T);
3579 -- Find the minimum standard size (8,16,32,64) that fits
3581 Lo := Enumeration_Rep (Entity (Type_Low_Bound (T)));
3582 Hi := Enumeration_Rep (Entity (Type_High_Bound (T)));
3584 if Lo < 0 then
3585 if Lo >= -Uint_2**07 and then Hi < Uint_2**07 then
3586 Sz := Standard_Character_Size; -- May be > 8 on some targets
3588 elsif Lo >= -Uint_2**15 and then Hi < Uint_2**15 then
3589 Sz := 16;
3591 elsif Lo >= -Uint_2**31 and then Hi < Uint_2**31 then
3592 Sz := 32;
3594 else pragma Assert (Lo >= -Uint_2**63 and then Hi < Uint_2**63);
3595 Sz := 64;
3596 end if;
3598 else
3599 if Hi < Uint_2**08 then
3600 Sz := Standard_Character_Size; -- May be > 8 on some targets
3602 elsif Hi < Uint_2**16 then
3603 Sz := 16;
3605 elsif Hi < Uint_2**32 then
3606 Sz := 32;
3608 else pragma Assert (Hi < Uint_2**63);
3609 Sz := 64;
3610 end if;
3611 end if;
3613 -- That minimum is the proper size unless we have a foreign convention
3614 -- and the size required is 32 or less, in which case we bump the size
3615 -- up to 32. This is required for C and C++ and seems reasonable for
3616 -- all other foreign conventions.
3618 if Has_Foreign_Convention (T)
3619 and then Esize (T) < Standard_Integer_Size
3620 then
3621 Init_Esize (T, Standard_Integer_Size);
3623 else
3624 Init_Esize (T, Sz);
3625 end if;
3626 end Set_Enum_Esize;
3628 -----------------------------------
3629 -- Validate_Unchecked_Conversion --
3630 -----------------------------------
3632 procedure Validate_Unchecked_Conversion
3633 (N : Node_Id;
3634 Act_Unit : Entity_Id)
3636 Source : Entity_Id;
3637 Target : Entity_Id;
3638 Vnode : Node_Id;
3640 begin
3641 -- Obtain source and target types. Note that we call Ancestor_Subtype
3642 -- here because the processing for generic instantiation always makes
3643 -- subtypes, and we want the original frozen actual types.
3645 -- If we are dealing with private types, then do the check on their
3646 -- fully declared counterparts if the full declarations have been
3647 -- encountered (they don't have to be visible, but they must exist!)
3649 Source := Ancestor_Subtype (Etype (First_Formal (Act_Unit)));
3651 if Is_Private_Type (Source)
3652 and then Present (Underlying_Type (Source))
3653 then
3654 Source := Underlying_Type (Source);
3655 end if;
3657 Target := Ancestor_Subtype (Etype (Act_Unit));
3659 -- If either type is generic, the instantiation happens within a
3660 -- generic unit, and there is nothing to check. The proper check
3661 -- will happen when the enclosing generic is instantiated.
3663 if Is_Generic_Type (Source) or else Is_Generic_Type (Target) then
3664 return;
3665 end if;
3667 if Is_Private_Type (Target)
3668 and then Present (Underlying_Type (Target))
3669 then
3670 Target := Underlying_Type (Target);
3671 end if;
3673 -- Source may be unconstrained array, but not target
3675 if Is_Array_Type (Target)
3676 and then not Is_Constrained (Target)
3677 then
3678 Error_Msg_N
3679 ("unchecked conversion to unconstrained array not allowed", N);
3680 return;
3681 end if;
3683 -- Make entry in unchecked conversion table for later processing
3684 -- by Validate_Unchecked_Conversions, which will check sizes and
3685 -- alignments (using values set by the back-end where possible).
3686 -- This is only done if the appropriate warning is active
3688 if Warn_On_Unchecked_Conversion then
3689 Unchecked_Conversions.Append
3690 (New_Val => UC_Entry'
3691 (Enode => N,
3692 Source => Source,
3693 Target => Target));
3695 -- If both sizes are known statically now, then back end annotation
3696 -- is not required to do a proper check but if either size is not
3697 -- known statically, then we need the annotation.
3699 if Known_Static_RM_Size (Source)
3700 and then Known_Static_RM_Size (Target)
3701 then
3702 null;
3703 else
3704 Back_Annotate_Rep_Info := True;
3705 end if;
3706 end if;
3708 -- If unchecked conversion to access type, and access type is
3709 -- declared in the same unit as the unchecked conversion, then
3710 -- set the No_Strict_Aliasing flag (no strict aliasing is
3711 -- implicit in this situation).
3713 if Is_Access_Type (Target) and then
3714 In_Same_Source_Unit (Target, N)
3715 then
3716 Set_No_Strict_Aliasing (Implementation_Base_Type (Target));
3717 end if;
3719 -- Generate N_Validate_Unchecked_Conversion node for back end in
3720 -- case the back end needs to perform special validation checks.
3722 -- Shouldn't this be in exp_ch13, since the check only gets done
3723 -- if we have full expansion and the back end is called ???
3725 Vnode :=
3726 Make_Validate_Unchecked_Conversion (Sloc (N));
3727 Set_Source_Type (Vnode, Source);
3728 Set_Target_Type (Vnode, Target);
3730 -- If the unchecked conversion node is in a list, just insert before
3731 -- it. If not we have some strange case, not worth bothering about.
3733 if Is_List_Member (N) then
3734 Insert_After (N, Vnode);
3735 end if;
3736 end Validate_Unchecked_Conversion;
3738 ------------------------------------
3739 -- Validate_Unchecked_Conversions --
3740 ------------------------------------
3742 procedure Validate_Unchecked_Conversions is
3743 begin
3744 for N in Unchecked_Conversions.First .. Unchecked_Conversions.Last loop
3745 declare
3746 T : UC_Entry renames Unchecked_Conversions.Table (N);
3748 Enode : constant Node_Id := T.Enode;
3749 Source : constant Entity_Id := T.Source;
3750 Target : constant Entity_Id := T.Target;
3752 Source_Siz : Uint;
3753 Target_Siz : Uint;
3755 begin
3756 -- This validation check, which warns if we have unequal sizes
3757 -- for unchecked conversion, and thus potentially implementation
3758 -- dependent semantics, is one of the few occasions on which we
3759 -- use the official RM size instead of Esize. See description
3760 -- in Einfo "Handling of Type'Size Values" for details.
3762 if Serious_Errors_Detected = 0
3763 and then Known_Static_RM_Size (Source)
3764 and then Known_Static_RM_Size (Target)
3765 then
3766 Source_Siz := RM_Size (Source);
3767 Target_Siz := RM_Size (Target);
3769 if Source_Siz /= Target_Siz then
3770 Error_Msg_N
3771 ("types for unchecked conversion have different sizes?",
3772 Enode);
3774 if All_Errors_Mode then
3775 Error_Msg_Name_1 := Chars (Source);
3776 Error_Msg_Uint_1 := Source_Siz;
3777 Error_Msg_Name_2 := Chars (Target);
3778 Error_Msg_Uint_2 := Target_Siz;
3779 Error_Msg_N
3780 ("\size of % is ^, size of % is ^?", Enode);
3782 Error_Msg_Uint_1 := UI_Abs (Source_Siz - Target_Siz);
3784 if Is_Discrete_Type (Source)
3785 and then Is_Discrete_Type (Target)
3786 then
3787 if Source_Siz > Target_Siz then
3788 Error_Msg_N
3789 ("\^ high order bits of source will be ignored?",
3790 Enode);
3792 elsif Is_Unsigned_Type (Source) then
3793 Error_Msg_N
3794 ("\source will be extended with ^ high order " &
3795 "zero bits?", Enode);
3797 else
3798 Error_Msg_N
3799 ("\source will be extended with ^ high order " &
3800 "sign bits?",
3801 Enode);
3802 end if;
3804 elsif Source_Siz < Target_Siz then
3805 if Is_Discrete_Type (Target) then
3806 if Bytes_Big_Endian then
3807 Error_Msg_N
3808 ("\target value will include ^ undefined " &
3809 "low order bits?",
3810 Enode);
3811 else
3812 Error_Msg_N
3813 ("\target value will include ^ undefined " &
3814 "high order bits?",
3815 Enode);
3816 end if;
3818 else
3819 Error_Msg_N
3820 ("\^ trailing bits of target value will be " &
3821 "undefined?", Enode);
3822 end if;
3824 else pragma Assert (Source_Siz > Target_Siz);
3825 Error_Msg_N
3826 ("\^ trailing bits of source will be ignored?",
3827 Enode);
3828 end if;
3829 end if;
3830 end if;
3831 end if;
3833 -- If both types are access types, we need to check the alignment.
3834 -- If the alignment of both is specified, we can do it here.
3836 if Serious_Errors_Detected = 0
3837 and then Ekind (Source) in Access_Kind
3838 and then Ekind (Target) in Access_Kind
3839 and then Target_Strict_Alignment
3840 and then Present (Designated_Type (Source))
3841 and then Present (Designated_Type (Target))
3842 then
3843 declare
3844 D_Source : constant Entity_Id := Designated_Type (Source);
3845 D_Target : constant Entity_Id := Designated_Type (Target);
3847 begin
3848 if Known_Alignment (D_Source)
3849 and then Known_Alignment (D_Target)
3850 then
3851 declare
3852 Source_Align : constant Uint := Alignment (D_Source);
3853 Target_Align : constant Uint := Alignment (D_Target);
3855 begin
3856 if Source_Align < Target_Align
3857 and then not Is_Tagged_Type (D_Source)
3858 then
3859 Error_Msg_Uint_1 := Target_Align;
3860 Error_Msg_Uint_2 := Source_Align;
3861 Error_Msg_Node_2 := D_Source;
3862 Error_Msg_NE
3863 ("alignment of & (^) is stricter than " &
3864 "alignment of & (^)?", Enode, D_Target);
3866 if All_Errors_Mode then
3867 Error_Msg_N
3868 ("\resulting access value may have invalid " &
3869 "alignment?", Enode);
3870 end if;
3871 end if;
3872 end;
3873 end if;
3874 end;
3875 end if;
3876 end;
3877 end loop;
3878 end Validate_Unchecked_Conversions;
3880 end Sem_Ch13;