http://gcc.gnu.org/ml/gcc-patches/2008-02/msg00140.html
[official-gcc.git] / gcc / emit-rtl.c
blob1a9239ab8a599d127ecd6352831e2fecb2b7f0e8
1 /* Emit RTL for the GCC expander.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007
4 Free Software Foundation, Inc.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
23 /* Middle-to-low level generation of rtx code and insns.
25 This file contains support functions for creating rtl expressions
26 and manipulating them in the doubly-linked chain of insns.
28 The patterns of the insns are created by machine-dependent
29 routines in insn-emit.c, which is generated automatically from
30 the machine description. These routines make the individual rtx's
31 of the pattern with `gen_rtx_fmt_ee' and others in genrtl.[ch],
32 which are automatically generated from rtl.def; what is machine
33 dependent is the kind of rtx's they make and what arguments they
34 use. */
36 #include "config.h"
37 #include "system.h"
38 #include "coretypes.h"
39 #include "tm.h"
40 #include "toplev.h"
41 #include "rtl.h"
42 #include "tree.h"
43 #include "tm_p.h"
44 #include "flags.h"
45 #include "function.h"
46 #include "expr.h"
47 #include "regs.h"
48 #include "hard-reg-set.h"
49 #include "hashtab.h"
50 #include "insn-config.h"
51 #include "recog.h"
52 #include "real.h"
53 #include "fixed-value.h"
54 #include "bitmap.h"
55 #include "basic-block.h"
56 #include "ggc.h"
57 #include "debug.h"
58 #include "langhooks.h"
59 #include "tree-pass.h"
60 #include "df.h"
62 /* Commonly used modes. */
64 enum machine_mode byte_mode; /* Mode whose width is BITS_PER_UNIT. */
65 enum machine_mode word_mode; /* Mode whose width is BITS_PER_WORD. */
66 enum machine_mode double_mode; /* Mode whose width is DOUBLE_TYPE_SIZE. */
67 enum machine_mode ptr_mode; /* Mode whose width is POINTER_SIZE. */
70 /* This is *not* reset after each function. It gives each CODE_LABEL
71 in the entire compilation a unique label number. */
73 static GTY(()) int label_num = 1;
75 /* Nonzero means do not generate NOTEs for source line numbers. */
77 static int no_line_numbers;
79 /* Commonly used rtx's, so that we only need space for one copy.
80 These are initialized once for the entire compilation.
81 All of these are unique; no other rtx-object will be equal to any
82 of these. */
84 rtx global_rtl[GR_MAX];
86 /* Commonly used RTL for hard registers. These objects are not necessarily
87 unique, so we allocate them separately from global_rtl. They are
88 initialized once per compilation unit, then copied into regno_reg_rtx
89 at the beginning of each function. */
90 static GTY(()) rtx static_regno_reg_rtx[FIRST_PSEUDO_REGISTER];
92 /* We record floating-point CONST_DOUBLEs in each floating-point mode for
93 the values of 0, 1, and 2. For the integer entries and VOIDmode, we
94 record a copy of const[012]_rtx. */
96 rtx const_tiny_rtx[3][(int) MAX_MACHINE_MODE];
98 rtx const_true_rtx;
100 REAL_VALUE_TYPE dconst0;
101 REAL_VALUE_TYPE dconst1;
102 REAL_VALUE_TYPE dconst2;
103 REAL_VALUE_TYPE dconst3;
104 REAL_VALUE_TYPE dconst10;
105 REAL_VALUE_TYPE dconstm1;
106 REAL_VALUE_TYPE dconstm2;
107 REAL_VALUE_TYPE dconsthalf;
108 REAL_VALUE_TYPE dconstthird;
109 REAL_VALUE_TYPE dconstsqrt2;
110 REAL_VALUE_TYPE dconste;
112 /* Record fixed-point constant 0 and 1. */
113 FIXED_VALUE_TYPE fconst0[MAX_FCONST0];
114 FIXED_VALUE_TYPE fconst1[MAX_FCONST1];
116 /* All references to the following fixed hard registers go through
117 these unique rtl objects. On machines where the frame-pointer and
118 arg-pointer are the same register, they use the same unique object.
120 After register allocation, other rtl objects which used to be pseudo-regs
121 may be clobbered to refer to the frame-pointer register.
122 But references that were originally to the frame-pointer can be
123 distinguished from the others because they contain frame_pointer_rtx.
125 When to use frame_pointer_rtx and hard_frame_pointer_rtx is a little
126 tricky: until register elimination has taken place hard_frame_pointer_rtx
127 should be used if it is being set, and frame_pointer_rtx otherwise. After
128 register elimination hard_frame_pointer_rtx should always be used.
129 On machines where the two registers are same (most) then these are the
130 same.
132 In an inline procedure, the stack and frame pointer rtxs may not be
133 used for anything else. */
134 rtx static_chain_rtx; /* (REG:Pmode STATIC_CHAIN_REGNUM) */
135 rtx static_chain_incoming_rtx; /* (REG:Pmode STATIC_CHAIN_INCOMING_REGNUM) */
136 rtx pic_offset_table_rtx; /* (REG:Pmode PIC_OFFSET_TABLE_REGNUM) */
138 /* This is used to implement __builtin_return_address for some machines.
139 See for instance the MIPS port. */
140 rtx return_address_pointer_rtx; /* (REG:Pmode RETURN_ADDRESS_POINTER_REGNUM) */
142 /* We make one copy of (const_int C) where C is in
143 [- MAX_SAVED_CONST_INT, MAX_SAVED_CONST_INT]
144 to save space during the compilation and simplify comparisons of
145 integers. */
147 rtx const_int_rtx[MAX_SAVED_CONST_INT * 2 + 1];
149 /* A hash table storing CONST_INTs whose absolute value is greater
150 than MAX_SAVED_CONST_INT. */
152 static GTY ((if_marked ("ggc_marked_p"), param_is (struct rtx_def)))
153 htab_t const_int_htab;
155 /* A hash table storing memory attribute structures. */
156 static GTY ((if_marked ("ggc_marked_p"), param_is (struct mem_attrs)))
157 htab_t mem_attrs_htab;
159 /* A hash table storing register attribute structures. */
160 static GTY ((if_marked ("ggc_marked_p"), param_is (struct reg_attrs)))
161 htab_t reg_attrs_htab;
163 /* A hash table storing all CONST_DOUBLEs. */
164 static GTY ((if_marked ("ggc_marked_p"), param_is (struct rtx_def)))
165 htab_t const_double_htab;
167 /* A hash table storing all CONST_FIXEDs. */
168 static GTY ((if_marked ("ggc_marked_p"), param_is (struct rtx_def)))
169 htab_t const_fixed_htab;
171 #define first_insn (cfun->emit->x_first_insn)
172 #define last_insn (cfun->emit->x_last_insn)
173 #define cur_insn_uid (cfun->emit->x_cur_insn_uid)
174 #define last_location (cfun->emit->x_last_location)
175 #define first_label_num (cfun->emit->x_first_label_num)
177 static rtx make_call_insn_raw (rtx);
178 static rtx change_address_1 (rtx, enum machine_mode, rtx, int);
179 static void set_used_decls (tree);
180 static void mark_label_nuses (rtx);
181 static hashval_t const_int_htab_hash (const void *);
182 static int const_int_htab_eq (const void *, const void *);
183 static hashval_t const_double_htab_hash (const void *);
184 static int const_double_htab_eq (const void *, const void *);
185 static rtx lookup_const_double (rtx);
186 static hashval_t const_fixed_htab_hash (const void *);
187 static int const_fixed_htab_eq (const void *, const void *);
188 static rtx lookup_const_fixed (rtx);
189 static hashval_t mem_attrs_htab_hash (const void *);
190 static int mem_attrs_htab_eq (const void *, const void *);
191 static mem_attrs *get_mem_attrs (alias_set_type, tree, rtx, rtx, unsigned int,
192 enum machine_mode);
193 static hashval_t reg_attrs_htab_hash (const void *);
194 static int reg_attrs_htab_eq (const void *, const void *);
195 static reg_attrs *get_reg_attrs (tree, int);
196 static tree component_ref_for_mem_expr (tree);
197 static rtx gen_const_vector (enum machine_mode, int);
198 static void copy_rtx_if_shared_1 (rtx *orig);
200 /* Probability of the conditional branch currently proceeded by try_split.
201 Set to -1 otherwise. */
202 int split_branch_probability = -1;
204 /* Returns a hash code for X (which is a really a CONST_INT). */
206 static hashval_t
207 const_int_htab_hash (const void *x)
209 return (hashval_t) INTVAL ((const_rtx) x);
212 /* Returns nonzero if the value represented by X (which is really a
213 CONST_INT) is the same as that given by Y (which is really a
214 HOST_WIDE_INT *). */
216 static int
217 const_int_htab_eq (const void *x, const void *y)
219 return (INTVAL ((const_rtx) x) == *((const HOST_WIDE_INT *) y));
222 /* Returns a hash code for X (which is really a CONST_DOUBLE). */
223 static hashval_t
224 const_double_htab_hash (const void *x)
226 const_rtx const value = (const_rtx) x;
227 hashval_t h;
229 if (GET_MODE (value) == VOIDmode)
230 h = CONST_DOUBLE_LOW (value) ^ CONST_DOUBLE_HIGH (value);
231 else
233 h = real_hash (CONST_DOUBLE_REAL_VALUE (value));
234 /* MODE is used in the comparison, so it should be in the hash. */
235 h ^= GET_MODE (value);
237 return h;
240 /* Returns nonzero if the value represented by X (really a ...)
241 is the same as that represented by Y (really a ...) */
242 static int
243 const_double_htab_eq (const void *x, const void *y)
245 const_rtx const a = (const_rtx)x, b = (const_rtx)y;
247 if (GET_MODE (a) != GET_MODE (b))
248 return 0;
249 if (GET_MODE (a) == VOIDmode)
250 return (CONST_DOUBLE_LOW (a) == CONST_DOUBLE_LOW (b)
251 && CONST_DOUBLE_HIGH (a) == CONST_DOUBLE_HIGH (b));
252 else
253 return real_identical (CONST_DOUBLE_REAL_VALUE (a),
254 CONST_DOUBLE_REAL_VALUE (b));
257 /* Returns a hash code for X (which is really a CONST_FIXED). */
259 static hashval_t
260 const_fixed_htab_hash (const void *x)
262 const_rtx const value = (const_rtx) x;
263 hashval_t h;
265 h = fixed_hash (CONST_FIXED_VALUE (value));
266 /* MODE is used in the comparison, so it should be in the hash. */
267 h ^= GET_MODE (value);
268 return h;
271 /* Returns nonzero if the value represented by X (really a ...)
272 is the same as that represented by Y (really a ...). */
274 static int
275 const_fixed_htab_eq (const void *x, const void *y)
277 const_rtx const a = (const_rtx) x, b = (const_rtx) y;
279 if (GET_MODE (a) != GET_MODE (b))
280 return 0;
281 return fixed_identical (CONST_FIXED_VALUE (a), CONST_FIXED_VALUE (b));
284 /* Returns a hash code for X (which is a really a mem_attrs *). */
286 static hashval_t
287 mem_attrs_htab_hash (const void *x)
289 const mem_attrs *const p = (const mem_attrs *) x;
291 return (p->alias ^ (p->align * 1000)
292 ^ ((p->offset ? INTVAL (p->offset) : 0) * 50000)
293 ^ ((p->size ? INTVAL (p->size) : 0) * 2500000)
294 ^ (size_t) iterative_hash_expr (p->expr, 0));
297 /* Returns nonzero if the value represented by X (which is really a
298 mem_attrs *) is the same as that given by Y (which is also really a
299 mem_attrs *). */
301 static int
302 mem_attrs_htab_eq (const void *x, const void *y)
304 const mem_attrs *const p = (const mem_attrs *) x;
305 const mem_attrs *const q = (const mem_attrs *) y;
307 return (p->alias == q->alias && p->offset == q->offset
308 && p->size == q->size && p->align == q->align
309 && (p->expr == q->expr
310 || (p->expr != NULL_TREE && q->expr != NULL_TREE
311 && operand_equal_p (p->expr, q->expr, 0))));
314 /* Allocate a new mem_attrs structure and insert it into the hash table if
315 one identical to it is not already in the table. We are doing this for
316 MEM of mode MODE. */
318 static mem_attrs *
319 get_mem_attrs (alias_set_type alias, tree expr, rtx offset, rtx size,
320 unsigned int align, enum machine_mode mode)
322 mem_attrs attrs;
323 void **slot;
325 /* If everything is the default, we can just return zero.
326 This must match what the corresponding MEM_* macros return when the
327 field is not present. */
328 if (alias == 0 && expr == 0 && offset == 0
329 && (size == 0
330 || (mode != BLKmode && GET_MODE_SIZE (mode) == INTVAL (size)))
331 && (STRICT_ALIGNMENT && mode != BLKmode
332 ? align == GET_MODE_ALIGNMENT (mode) : align == BITS_PER_UNIT))
333 return 0;
335 attrs.alias = alias;
336 attrs.expr = expr;
337 attrs.offset = offset;
338 attrs.size = size;
339 attrs.align = align;
341 slot = htab_find_slot (mem_attrs_htab, &attrs, INSERT);
342 if (*slot == 0)
344 *slot = ggc_alloc (sizeof (mem_attrs));
345 memcpy (*slot, &attrs, sizeof (mem_attrs));
348 return *slot;
351 /* Returns a hash code for X (which is a really a reg_attrs *). */
353 static hashval_t
354 reg_attrs_htab_hash (const void *x)
356 const reg_attrs *const p = (const reg_attrs *) x;
358 return ((p->offset * 1000) ^ (long) p->decl);
361 /* Returns nonzero if the value represented by X (which is really a
362 reg_attrs *) is the same as that given by Y (which is also really a
363 reg_attrs *). */
365 static int
366 reg_attrs_htab_eq (const void *x, const void *y)
368 const reg_attrs *const p = (const reg_attrs *) x;
369 const reg_attrs *const q = (const reg_attrs *) y;
371 return (p->decl == q->decl && p->offset == q->offset);
373 /* Allocate a new reg_attrs structure and insert it into the hash table if
374 one identical to it is not already in the table. We are doing this for
375 MEM of mode MODE. */
377 static reg_attrs *
378 get_reg_attrs (tree decl, int offset)
380 reg_attrs attrs;
381 void **slot;
383 /* If everything is the default, we can just return zero. */
384 if (decl == 0 && offset == 0)
385 return 0;
387 attrs.decl = decl;
388 attrs.offset = offset;
390 slot = htab_find_slot (reg_attrs_htab, &attrs, INSERT);
391 if (*slot == 0)
393 *slot = ggc_alloc (sizeof (reg_attrs));
394 memcpy (*slot, &attrs, sizeof (reg_attrs));
397 return *slot;
401 #if !HAVE_blockage
402 /* Generate an empty ASM_INPUT, which is used to block attempts to schedule
403 across this insn. */
406 gen_blockage (void)
408 rtx x = gen_rtx_ASM_INPUT (VOIDmode, "");
409 MEM_VOLATILE_P (x) = true;
410 return x;
412 #endif
415 /* Generate a new REG rtx. Make sure ORIGINAL_REGNO is set properly, and
416 don't attempt to share with the various global pieces of rtl (such as
417 frame_pointer_rtx). */
420 gen_raw_REG (enum machine_mode mode, int regno)
422 rtx x = gen_rtx_raw_REG (mode, regno);
423 ORIGINAL_REGNO (x) = regno;
424 return x;
427 /* There are some RTL codes that require special attention; the generation
428 functions do the raw handling. If you add to this list, modify
429 special_rtx in gengenrtl.c as well. */
432 gen_rtx_CONST_INT (enum machine_mode mode ATTRIBUTE_UNUSED, HOST_WIDE_INT arg)
434 void **slot;
436 if (arg >= - MAX_SAVED_CONST_INT && arg <= MAX_SAVED_CONST_INT)
437 return const_int_rtx[arg + MAX_SAVED_CONST_INT];
439 #if STORE_FLAG_VALUE != 1 && STORE_FLAG_VALUE != -1
440 if (const_true_rtx && arg == STORE_FLAG_VALUE)
441 return const_true_rtx;
442 #endif
444 /* Look up the CONST_INT in the hash table. */
445 slot = htab_find_slot_with_hash (const_int_htab, &arg,
446 (hashval_t) arg, INSERT);
447 if (*slot == 0)
448 *slot = gen_rtx_raw_CONST_INT (VOIDmode, arg);
450 return (rtx) *slot;
454 gen_int_mode (HOST_WIDE_INT c, enum machine_mode mode)
456 return GEN_INT (trunc_int_for_mode (c, mode));
459 /* CONST_DOUBLEs might be created from pairs of integers, or from
460 REAL_VALUE_TYPEs. Also, their length is known only at run time,
461 so we cannot use gen_rtx_raw_CONST_DOUBLE. */
463 /* Determine whether REAL, a CONST_DOUBLE, already exists in the
464 hash table. If so, return its counterpart; otherwise add it
465 to the hash table and return it. */
466 static rtx
467 lookup_const_double (rtx real)
469 void **slot = htab_find_slot (const_double_htab, real, INSERT);
470 if (*slot == 0)
471 *slot = real;
473 return (rtx) *slot;
476 /* Return a CONST_DOUBLE rtx for a floating-point value specified by
477 VALUE in mode MODE. */
479 const_double_from_real_value (REAL_VALUE_TYPE value, enum machine_mode mode)
481 rtx real = rtx_alloc (CONST_DOUBLE);
482 PUT_MODE (real, mode);
484 real->u.rv = value;
486 return lookup_const_double (real);
489 /* Determine whether FIXED, a CONST_FIXED, already exists in the
490 hash table. If so, return its counterpart; otherwise add it
491 to the hash table and return it. */
493 static rtx
494 lookup_const_fixed (rtx fixed)
496 void **slot = htab_find_slot (const_fixed_htab, fixed, INSERT);
497 if (*slot == 0)
498 *slot = fixed;
500 return (rtx) *slot;
503 /* Return a CONST_FIXED rtx for a fixed-point value specified by
504 VALUE in mode MODE. */
507 const_fixed_from_fixed_value (FIXED_VALUE_TYPE value, enum machine_mode mode)
509 rtx fixed = rtx_alloc (CONST_FIXED);
510 PUT_MODE (fixed, mode);
512 fixed->u.fv = value;
514 return lookup_const_fixed (fixed);
517 /* Return a CONST_DOUBLE or CONST_INT for a value specified as a pair
518 of ints: I0 is the low-order word and I1 is the high-order word.
519 Do not use this routine for non-integer modes; convert to
520 REAL_VALUE_TYPE and use CONST_DOUBLE_FROM_REAL_VALUE. */
523 immed_double_const (HOST_WIDE_INT i0, HOST_WIDE_INT i1, enum machine_mode mode)
525 rtx value;
526 unsigned int i;
528 /* There are the following cases (note that there are no modes with
529 HOST_BITS_PER_WIDE_INT < GET_MODE_BITSIZE (mode) < 2 * HOST_BITS_PER_WIDE_INT):
531 1) If GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT, then we use
532 gen_int_mode.
533 2) GET_MODE_BITSIZE (mode) == 2 * HOST_BITS_PER_WIDE_INT, but the value of
534 the integer fits into HOST_WIDE_INT anyway (i.e., i1 consists only
535 from copies of the sign bit, and sign of i0 and i1 are the same), then
536 we return a CONST_INT for i0.
537 3) Otherwise, we create a CONST_DOUBLE for i0 and i1. */
538 if (mode != VOIDmode)
540 gcc_assert (GET_MODE_CLASS (mode) == MODE_INT
541 || GET_MODE_CLASS (mode) == MODE_PARTIAL_INT
542 /* We can get a 0 for an error mark. */
543 || GET_MODE_CLASS (mode) == MODE_VECTOR_INT
544 || GET_MODE_CLASS (mode) == MODE_VECTOR_FLOAT);
546 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
547 return gen_int_mode (i0, mode);
549 gcc_assert (GET_MODE_BITSIZE (mode) == 2 * HOST_BITS_PER_WIDE_INT);
552 /* If this integer fits in one word, return a CONST_INT. */
553 if ((i1 == 0 && i0 >= 0) || (i1 == ~0 && i0 < 0))
554 return GEN_INT (i0);
556 /* We use VOIDmode for integers. */
557 value = rtx_alloc (CONST_DOUBLE);
558 PUT_MODE (value, VOIDmode);
560 CONST_DOUBLE_LOW (value) = i0;
561 CONST_DOUBLE_HIGH (value) = i1;
563 for (i = 2; i < (sizeof CONST_DOUBLE_FORMAT - 1); i++)
564 XWINT (value, i) = 0;
566 return lookup_const_double (value);
570 gen_rtx_REG (enum machine_mode mode, unsigned int regno)
572 /* In case the MD file explicitly references the frame pointer, have
573 all such references point to the same frame pointer. This is
574 used during frame pointer elimination to distinguish the explicit
575 references to these registers from pseudos that happened to be
576 assigned to them.
578 If we have eliminated the frame pointer or arg pointer, we will
579 be using it as a normal register, for example as a spill
580 register. In such cases, we might be accessing it in a mode that
581 is not Pmode and therefore cannot use the pre-allocated rtx.
583 Also don't do this when we are making new REGs in reload, since
584 we don't want to get confused with the real pointers. */
586 if (mode == Pmode && !reload_in_progress)
588 if (regno == FRAME_POINTER_REGNUM
589 && (!reload_completed || frame_pointer_needed))
590 return frame_pointer_rtx;
591 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
592 if (regno == HARD_FRAME_POINTER_REGNUM
593 && (!reload_completed || frame_pointer_needed))
594 return hard_frame_pointer_rtx;
595 #endif
596 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM && HARD_FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
597 if (regno == ARG_POINTER_REGNUM)
598 return arg_pointer_rtx;
599 #endif
600 #ifdef RETURN_ADDRESS_POINTER_REGNUM
601 if (regno == RETURN_ADDRESS_POINTER_REGNUM)
602 return return_address_pointer_rtx;
603 #endif
604 if (regno == (unsigned) PIC_OFFSET_TABLE_REGNUM
605 && fixed_regs[PIC_OFFSET_TABLE_REGNUM])
606 return pic_offset_table_rtx;
607 if (regno == STACK_POINTER_REGNUM)
608 return stack_pointer_rtx;
611 #if 0
612 /* If the per-function register table has been set up, try to re-use
613 an existing entry in that table to avoid useless generation of RTL.
615 This code is disabled for now until we can fix the various backends
616 which depend on having non-shared hard registers in some cases. Long
617 term we want to re-enable this code as it can significantly cut down
618 on the amount of useless RTL that gets generated.
620 We'll also need to fix some code that runs after reload that wants to
621 set ORIGINAL_REGNO. */
623 if (cfun
624 && cfun->emit
625 && regno_reg_rtx
626 && regno < FIRST_PSEUDO_REGISTER
627 && reg_raw_mode[regno] == mode)
628 return regno_reg_rtx[regno];
629 #endif
631 return gen_raw_REG (mode, regno);
635 gen_rtx_MEM (enum machine_mode mode, rtx addr)
637 rtx rt = gen_rtx_raw_MEM (mode, addr);
639 /* This field is not cleared by the mere allocation of the rtx, so
640 we clear it here. */
641 MEM_ATTRS (rt) = 0;
643 return rt;
646 /* Generate a memory referring to non-trapping constant memory. */
649 gen_const_mem (enum machine_mode mode, rtx addr)
651 rtx mem = gen_rtx_MEM (mode, addr);
652 MEM_READONLY_P (mem) = 1;
653 MEM_NOTRAP_P (mem) = 1;
654 return mem;
657 /* Generate a MEM referring to fixed portions of the frame, e.g., register
658 save areas. */
661 gen_frame_mem (enum machine_mode mode, rtx addr)
663 rtx mem = gen_rtx_MEM (mode, addr);
664 MEM_NOTRAP_P (mem) = 1;
665 set_mem_alias_set (mem, get_frame_alias_set ());
666 return mem;
669 /* Generate a MEM referring to a temporary use of the stack, not part
670 of the fixed stack frame. For example, something which is pushed
671 by a target splitter. */
673 gen_tmp_stack_mem (enum machine_mode mode, rtx addr)
675 rtx mem = gen_rtx_MEM (mode, addr);
676 MEM_NOTRAP_P (mem) = 1;
677 if (!current_function_calls_alloca)
678 set_mem_alias_set (mem, get_frame_alias_set ());
679 return mem;
682 /* We want to create (subreg:OMODE (obj:IMODE) OFFSET). Return true if
683 this construct would be valid, and false otherwise. */
685 bool
686 validate_subreg (enum machine_mode omode, enum machine_mode imode,
687 const_rtx reg, unsigned int offset)
689 unsigned int isize = GET_MODE_SIZE (imode);
690 unsigned int osize = GET_MODE_SIZE (omode);
692 /* All subregs must be aligned. */
693 if (offset % osize != 0)
694 return false;
696 /* The subreg offset cannot be outside the inner object. */
697 if (offset >= isize)
698 return false;
700 /* ??? This should not be here. Temporarily continue to allow word_mode
701 subregs of anything. The most common offender is (subreg:SI (reg:DF)).
702 Generally, backends are doing something sketchy but it'll take time to
703 fix them all. */
704 if (omode == word_mode)
706 /* ??? Similarly, e.g. with (subreg:DF (reg:TI)). Though store_bit_field
707 is the culprit here, and not the backends. */
708 else if (osize >= UNITS_PER_WORD && isize >= osize)
710 /* Allow component subregs of complex and vector. Though given the below
711 extraction rules, it's not always clear what that means. */
712 else if ((COMPLEX_MODE_P (imode) || VECTOR_MODE_P (imode))
713 && GET_MODE_INNER (imode) == omode)
715 /* ??? x86 sse code makes heavy use of *paradoxical* vector subregs,
716 i.e. (subreg:V4SF (reg:SF) 0). This surely isn't the cleanest way to
717 represent this. It's questionable if this ought to be represented at
718 all -- why can't this all be hidden in post-reload splitters that make
719 arbitrarily mode changes to the registers themselves. */
720 else if (VECTOR_MODE_P (omode) && GET_MODE_INNER (omode) == imode)
722 /* Subregs involving floating point modes are not allowed to
723 change size. Therefore (subreg:DI (reg:DF) 0) is fine, but
724 (subreg:SI (reg:DF) 0) isn't. */
725 else if (FLOAT_MODE_P (imode) || FLOAT_MODE_P (omode))
727 if (isize != osize)
728 return false;
731 /* Paradoxical subregs must have offset zero. */
732 if (osize > isize)
733 return offset == 0;
735 /* This is a normal subreg. Verify that the offset is representable. */
737 /* For hard registers, we already have most of these rules collected in
738 subreg_offset_representable_p. */
739 if (reg && REG_P (reg) && HARD_REGISTER_P (reg))
741 unsigned int regno = REGNO (reg);
743 #ifdef CANNOT_CHANGE_MODE_CLASS
744 if ((COMPLEX_MODE_P (imode) || VECTOR_MODE_P (imode))
745 && GET_MODE_INNER (imode) == omode)
747 else if (REG_CANNOT_CHANGE_MODE_P (regno, imode, omode))
748 return false;
749 #endif
751 return subreg_offset_representable_p (regno, imode, offset, omode);
754 /* For pseudo registers, we want most of the same checks. Namely:
755 If the register no larger than a word, the subreg must be lowpart.
756 If the register is larger than a word, the subreg must be the lowpart
757 of a subword. A subreg does *not* perform arbitrary bit extraction.
758 Given that we've already checked mode/offset alignment, we only have
759 to check subword subregs here. */
760 if (osize < UNITS_PER_WORD)
762 enum machine_mode wmode = isize > UNITS_PER_WORD ? word_mode : imode;
763 unsigned int low_off = subreg_lowpart_offset (omode, wmode);
764 if (offset % UNITS_PER_WORD != low_off)
765 return false;
767 return true;
771 gen_rtx_SUBREG (enum machine_mode mode, rtx reg, int offset)
773 gcc_assert (validate_subreg (mode, GET_MODE (reg), reg, offset));
774 return gen_rtx_raw_SUBREG (mode, reg, offset);
777 /* Generate a SUBREG representing the least-significant part of REG if MODE
778 is smaller than mode of REG, otherwise paradoxical SUBREG. */
781 gen_lowpart_SUBREG (enum machine_mode mode, rtx reg)
783 enum machine_mode inmode;
785 inmode = GET_MODE (reg);
786 if (inmode == VOIDmode)
787 inmode = mode;
788 return gen_rtx_SUBREG (mode, reg,
789 subreg_lowpart_offset (mode, inmode));
792 /* gen_rtvec (n, [rt1, ..., rtn])
794 ** This routine creates an rtvec and stores within it the
795 ** pointers to rtx's which are its arguments.
798 /*VARARGS1*/
799 rtvec
800 gen_rtvec (int n, ...)
802 int i, save_n;
803 rtx *vector;
804 va_list p;
806 va_start (p, n);
808 if (n == 0)
809 return NULL_RTVEC; /* Don't allocate an empty rtvec... */
811 vector = alloca (n * sizeof (rtx));
813 for (i = 0; i < n; i++)
814 vector[i] = va_arg (p, rtx);
816 /* The definition of VA_* in K&R C causes `n' to go out of scope. */
817 save_n = n;
818 va_end (p);
820 return gen_rtvec_v (save_n, vector);
823 rtvec
824 gen_rtvec_v (int n, rtx *argp)
826 int i;
827 rtvec rt_val;
829 if (n == 0)
830 return NULL_RTVEC; /* Don't allocate an empty rtvec... */
832 rt_val = rtvec_alloc (n); /* Allocate an rtvec... */
834 for (i = 0; i < n; i++)
835 rt_val->elem[i] = *argp++;
837 return rt_val;
840 /* Return the number of bytes between the start of an OUTER_MODE
841 in-memory value and the start of an INNER_MODE in-memory value,
842 given that the former is a lowpart of the latter. It may be a
843 paradoxical lowpart, in which case the offset will be negative
844 on big-endian targets. */
847 byte_lowpart_offset (enum machine_mode outer_mode,
848 enum machine_mode inner_mode)
850 if (GET_MODE_SIZE (outer_mode) < GET_MODE_SIZE (inner_mode))
851 return subreg_lowpart_offset (outer_mode, inner_mode);
852 else
853 return -subreg_lowpart_offset (inner_mode, outer_mode);
856 /* Generate a REG rtx for a new pseudo register of mode MODE.
857 This pseudo is assigned the next sequential register number. */
860 gen_reg_rtx (enum machine_mode mode)
862 struct function *f = cfun;
863 rtx val;
865 gcc_assert (can_create_pseudo_p ());
867 if (generating_concat_p
868 && (GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT
869 || GET_MODE_CLASS (mode) == MODE_COMPLEX_INT))
871 /* For complex modes, don't make a single pseudo.
872 Instead, make a CONCAT of two pseudos.
873 This allows noncontiguous allocation of the real and imaginary parts,
874 which makes much better code. Besides, allocating DCmode
875 pseudos overstrains reload on some machines like the 386. */
876 rtx realpart, imagpart;
877 enum machine_mode partmode = GET_MODE_INNER (mode);
879 realpart = gen_reg_rtx (partmode);
880 imagpart = gen_reg_rtx (partmode);
881 return gen_rtx_CONCAT (mode, realpart, imagpart);
884 /* Make sure regno_pointer_align, and regno_reg_rtx are large
885 enough to have an element for this pseudo reg number. */
887 if (reg_rtx_no == f->emit->regno_pointer_align_length)
889 int old_size = f->emit->regno_pointer_align_length;
890 char *new;
891 rtx *new1;
893 new = ggc_realloc (f->emit->regno_pointer_align, old_size * 2);
894 memset (new + old_size, 0, old_size);
895 f->emit->regno_pointer_align = (unsigned char *) new;
897 new1 = ggc_realloc (f->emit->x_regno_reg_rtx,
898 old_size * 2 * sizeof (rtx));
899 memset (new1 + old_size, 0, old_size * sizeof (rtx));
900 regno_reg_rtx = new1;
902 f->emit->regno_pointer_align_length = old_size * 2;
905 val = gen_raw_REG (mode, reg_rtx_no);
906 regno_reg_rtx[reg_rtx_no++] = val;
907 return val;
910 /* Update NEW with the same attributes as REG, but with OFFSET added
911 to the REG_OFFSET. */
913 static void
914 update_reg_offset (rtx new, rtx reg, int offset)
916 REG_ATTRS (new) = get_reg_attrs (REG_EXPR (reg),
917 REG_OFFSET (reg) + offset);
920 /* Generate a register with same attributes as REG, but with OFFSET
921 added to the REG_OFFSET. */
924 gen_rtx_REG_offset (rtx reg, enum machine_mode mode, unsigned int regno,
925 int offset)
927 rtx new = gen_rtx_REG (mode, regno);
929 update_reg_offset (new, reg, offset);
930 return new;
933 /* Generate a new pseudo-register with the same attributes as REG, but
934 with OFFSET added to the REG_OFFSET. */
937 gen_reg_rtx_offset (rtx reg, enum machine_mode mode, int offset)
939 rtx new = gen_reg_rtx (mode);
941 update_reg_offset (new, reg, offset);
942 return new;
945 /* Adjust REG in-place so that it has mode MODE. It is assumed that the
946 new register is a (possibly paradoxical) lowpart of the old one. */
948 void
949 adjust_reg_mode (rtx reg, enum machine_mode mode)
951 update_reg_offset (reg, reg, byte_lowpart_offset (mode, GET_MODE (reg)));
952 PUT_MODE (reg, mode);
955 /* Copy REG's attributes from X, if X has any attributes. If REG and X
956 have different modes, REG is a (possibly paradoxical) lowpart of X. */
958 void
959 set_reg_attrs_from_value (rtx reg, rtx x)
961 int offset;
963 offset = byte_lowpart_offset (GET_MODE (reg), GET_MODE (x));
964 if (MEM_P (x) && MEM_OFFSET (x) && GET_CODE (MEM_OFFSET (x)) == CONST_INT)
965 REG_ATTRS (reg)
966 = get_reg_attrs (MEM_EXPR (x), INTVAL (MEM_OFFSET (x)) + offset);
967 if (REG_P (x) && REG_ATTRS (x))
968 update_reg_offset (reg, x, offset);
971 /* Set the register attributes for registers contained in PARM_RTX.
972 Use needed values from memory attributes of MEM. */
974 void
975 set_reg_attrs_for_parm (rtx parm_rtx, rtx mem)
977 if (REG_P (parm_rtx))
978 set_reg_attrs_from_value (parm_rtx, mem);
979 else if (GET_CODE (parm_rtx) == PARALLEL)
981 /* Check for a NULL entry in the first slot, used to indicate that the
982 parameter goes both on the stack and in registers. */
983 int i = XEXP (XVECEXP (parm_rtx, 0, 0), 0) ? 0 : 1;
984 for (; i < XVECLEN (parm_rtx, 0); i++)
986 rtx x = XVECEXP (parm_rtx, 0, i);
987 if (REG_P (XEXP (x, 0)))
988 REG_ATTRS (XEXP (x, 0))
989 = get_reg_attrs (MEM_EXPR (mem),
990 INTVAL (XEXP (x, 1)));
995 /* Set the REG_ATTRS for registers in value X, given that X represents
996 decl T. */
998 static void
999 set_reg_attrs_for_decl_rtl (tree t, rtx x)
1001 if (GET_CODE (x) == SUBREG)
1003 gcc_assert (subreg_lowpart_p (x));
1004 x = SUBREG_REG (x);
1006 if (REG_P (x))
1007 REG_ATTRS (x)
1008 = get_reg_attrs (t, byte_lowpart_offset (GET_MODE (x),
1009 DECL_MODE (t)));
1010 if (GET_CODE (x) == CONCAT)
1012 if (REG_P (XEXP (x, 0)))
1013 REG_ATTRS (XEXP (x, 0)) = get_reg_attrs (t, 0);
1014 if (REG_P (XEXP (x, 1)))
1015 REG_ATTRS (XEXP (x, 1))
1016 = get_reg_attrs (t, GET_MODE_UNIT_SIZE (GET_MODE (XEXP (x, 0))));
1018 if (GET_CODE (x) == PARALLEL)
1020 int i, start;
1022 /* Check for a NULL entry, used to indicate that the parameter goes
1023 both on the stack and in registers. */
1024 if (XEXP (XVECEXP (x, 0, 0), 0))
1025 start = 0;
1026 else
1027 start = 1;
1029 for (i = start; i < XVECLEN (x, 0); i++)
1031 rtx y = XVECEXP (x, 0, i);
1032 if (REG_P (XEXP (y, 0)))
1033 REG_ATTRS (XEXP (y, 0)) = get_reg_attrs (t, INTVAL (XEXP (y, 1)));
1038 /* Assign the RTX X to declaration T. */
1040 void
1041 set_decl_rtl (tree t, rtx x)
1043 DECL_WRTL_CHECK (t)->decl_with_rtl.rtl = x;
1044 if (x)
1045 set_reg_attrs_for_decl_rtl (t, x);
1048 /* Assign the RTX X to parameter declaration T. BY_REFERENCE_P is true
1049 if the ABI requires the parameter to be passed by reference. */
1051 void
1052 set_decl_incoming_rtl (tree t, rtx x, bool by_reference_p)
1054 DECL_INCOMING_RTL (t) = x;
1055 if (x && !by_reference_p)
1056 set_reg_attrs_for_decl_rtl (t, x);
1059 /* Identify REG (which may be a CONCAT) as a user register. */
1061 void
1062 mark_user_reg (rtx reg)
1064 if (GET_CODE (reg) == CONCAT)
1066 REG_USERVAR_P (XEXP (reg, 0)) = 1;
1067 REG_USERVAR_P (XEXP (reg, 1)) = 1;
1069 else
1071 gcc_assert (REG_P (reg));
1072 REG_USERVAR_P (reg) = 1;
1076 /* Identify REG as a probable pointer register and show its alignment
1077 as ALIGN, if nonzero. */
1079 void
1080 mark_reg_pointer (rtx reg, int align)
1082 if (! REG_POINTER (reg))
1084 REG_POINTER (reg) = 1;
1086 if (align)
1087 REGNO_POINTER_ALIGN (REGNO (reg)) = align;
1089 else if (align && align < REGNO_POINTER_ALIGN (REGNO (reg)))
1090 /* We can no-longer be sure just how aligned this pointer is. */
1091 REGNO_POINTER_ALIGN (REGNO (reg)) = align;
1094 /* Return 1 plus largest pseudo reg number used in the current function. */
1097 max_reg_num (void)
1099 return reg_rtx_no;
1102 /* Return 1 + the largest label number used so far in the current function. */
1105 max_label_num (void)
1107 return label_num;
1110 /* Return first label number used in this function (if any were used). */
1113 get_first_label_num (void)
1115 return first_label_num;
1118 /* If the rtx for label was created during the expansion of a nested
1119 function, then first_label_num won't include this label number.
1120 Fix this now so that array indicies work later. */
1122 void
1123 maybe_set_first_label_num (rtx x)
1125 if (CODE_LABEL_NUMBER (x) < first_label_num)
1126 first_label_num = CODE_LABEL_NUMBER (x);
1129 /* Return a value representing some low-order bits of X, where the number
1130 of low-order bits is given by MODE. Note that no conversion is done
1131 between floating-point and fixed-point values, rather, the bit
1132 representation is returned.
1134 This function handles the cases in common between gen_lowpart, below,
1135 and two variants in cse.c and combine.c. These are the cases that can
1136 be safely handled at all points in the compilation.
1138 If this is not a case we can handle, return 0. */
1141 gen_lowpart_common (enum machine_mode mode, rtx x)
1143 int msize = GET_MODE_SIZE (mode);
1144 int xsize;
1145 int offset = 0;
1146 enum machine_mode innermode;
1148 /* Unfortunately, this routine doesn't take a parameter for the mode of X,
1149 so we have to make one up. Yuk. */
1150 innermode = GET_MODE (x);
1151 if (GET_CODE (x) == CONST_INT
1152 && msize * BITS_PER_UNIT <= HOST_BITS_PER_WIDE_INT)
1153 innermode = mode_for_size (HOST_BITS_PER_WIDE_INT, MODE_INT, 0);
1154 else if (innermode == VOIDmode)
1155 innermode = mode_for_size (HOST_BITS_PER_WIDE_INT * 2, MODE_INT, 0);
1157 xsize = GET_MODE_SIZE (innermode);
1159 gcc_assert (innermode != VOIDmode && innermode != BLKmode);
1161 if (innermode == mode)
1162 return x;
1164 /* MODE must occupy no more words than the mode of X. */
1165 if ((msize + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD
1166 > ((xsize + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD))
1167 return 0;
1169 /* Don't allow generating paradoxical FLOAT_MODE subregs. */
1170 if (SCALAR_FLOAT_MODE_P (mode) && msize > xsize)
1171 return 0;
1173 offset = subreg_lowpart_offset (mode, innermode);
1175 if ((GET_CODE (x) == ZERO_EXTEND || GET_CODE (x) == SIGN_EXTEND)
1176 && (GET_MODE_CLASS (mode) == MODE_INT
1177 || GET_MODE_CLASS (mode) == MODE_PARTIAL_INT))
1179 /* If we are getting the low-order part of something that has been
1180 sign- or zero-extended, we can either just use the object being
1181 extended or make a narrower extension. If we want an even smaller
1182 piece than the size of the object being extended, call ourselves
1183 recursively.
1185 This case is used mostly by combine and cse. */
1187 if (GET_MODE (XEXP (x, 0)) == mode)
1188 return XEXP (x, 0);
1189 else if (msize < GET_MODE_SIZE (GET_MODE (XEXP (x, 0))))
1190 return gen_lowpart_common (mode, XEXP (x, 0));
1191 else if (msize < xsize)
1192 return gen_rtx_fmt_e (GET_CODE (x), mode, XEXP (x, 0));
1194 else if (GET_CODE (x) == SUBREG || REG_P (x)
1195 || GET_CODE (x) == CONCAT || GET_CODE (x) == CONST_VECTOR
1196 || GET_CODE (x) == CONST_DOUBLE || GET_CODE (x) == CONST_INT)
1197 return simplify_gen_subreg (mode, x, innermode, offset);
1199 /* Otherwise, we can't do this. */
1200 return 0;
1204 gen_highpart (enum machine_mode mode, rtx x)
1206 unsigned int msize = GET_MODE_SIZE (mode);
1207 rtx result;
1209 /* This case loses if X is a subreg. To catch bugs early,
1210 complain if an invalid MODE is used even in other cases. */
1211 gcc_assert (msize <= UNITS_PER_WORD
1212 || msize == (unsigned int) GET_MODE_UNIT_SIZE (GET_MODE (x)));
1214 result = simplify_gen_subreg (mode, x, GET_MODE (x),
1215 subreg_highpart_offset (mode, GET_MODE (x)));
1216 gcc_assert (result);
1218 /* simplify_gen_subreg is not guaranteed to return a valid operand for
1219 the target if we have a MEM. gen_highpart must return a valid operand,
1220 emitting code if necessary to do so. */
1221 if (MEM_P (result))
1223 result = validize_mem (result);
1224 gcc_assert (result);
1227 return result;
1230 /* Like gen_highpart, but accept mode of EXP operand in case EXP can
1231 be VOIDmode constant. */
1233 gen_highpart_mode (enum machine_mode outermode, enum machine_mode innermode, rtx exp)
1235 if (GET_MODE (exp) != VOIDmode)
1237 gcc_assert (GET_MODE (exp) == innermode);
1238 return gen_highpart (outermode, exp);
1240 return simplify_gen_subreg (outermode, exp, innermode,
1241 subreg_highpart_offset (outermode, innermode));
1244 /* Return the SUBREG_BYTE for an OUTERMODE lowpart of an INNERMODE value. */
1246 unsigned int
1247 subreg_lowpart_offset (enum machine_mode outermode, enum machine_mode innermode)
1249 unsigned int offset = 0;
1250 int difference = (GET_MODE_SIZE (innermode) - GET_MODE_SIZE (outermode));
1252 if (difference > 0)
1254 if (WORDS_BIG_ENDIAN)
1255 offset += (difference / UNITS_PER_WORD) * UNITS_PER_WORD;
1256 if (BYTES_BIG_ENDIAN)
1257 offset += difference % UNITS_PER_WORD;
1260 return offset;
1263 /* Return offset in bytes to get OUTERMODE high part
1264 of the value in mode INNERMODE stored in memory in target format. */
1265 unsigned int
1266 subreg_highpart_offset (enum machine_mode outermode, enum machine_mode innermode)
1268 unsigned int offset = 0;
1269 int difference = (GET_MODE_SIZE (innermode) - GET_MODE_SIZE (outermode));
1271 gcc_assert (GET_MODE_SIZE (innermode) >= GET_MODE_SIZE (outermode));
1273 if (difference > 0)
1275 if (! WORDS_BIG_ENDIAN)
1276 offset += (difference / UNITS_PER_WORD) * UNITS_PER_WORD;
1277 if (! BYTES_BIG_ENDIAN)
1278 offset += difference % UNITS_PER_WORD;
1281 return offset;
1284 /* Return 1 iff X, assumed to be a SUBREG,
1285 refers to the least significant part of its containing reg.
1286 If X is not a SUBREG, always return 1 (it is its own low part!). */
1289 subreg_lowpart_p (const_rtx x)
1291 if (GET_CODE (x) != SUBREG)
1292 return 1;
1293 else if (GET_MODE (SUBREG_REG (x)) == VOIDmode)
1294 return 0;
1296 return (subreg_lowpart_offset (GET_MODE (x), GET_MODE (SUBREG_REG (x)))
1297 == SUBREG_BYTE (x));
1300 /* Return subword OFFSET of operand OP.
1301 The word number, OFFSET, is interpreted as the word number starting
1302 at the low-order address. OFFSET 0 is the low-order word if not
1303 WORDS_BIG_ENDIAN, otherwise it is the high-order word.
1305 If we cannot extract the required word, we return zero. Otherwise,
1306 an rtx corresponding to the requested word will be returned.
1308 VALIDATE_ADDRESS is nonzero if the address should be validated. Before
1309 reload has completed, a valid address will always be returned. After
1310 reload, if a valid address cannot be returned, we return zero.
1312 If VALIDATE_ADDRESS is zero, we simply form the required address; validating
1313 it is the responsibility of the caller.
1315 MODE is the mode of OP in case it is a CONST_INT.
1317 ??? This is still rather broken for some cases. The problem for the
1318 moment is that all callers of this thing provide no 'goal mode' to
1319 tell us to work with. This exists because all callers were written
1320 in a word based SUBREG world.
1321 Now use of this function can be deprecated by simplify_subreg in most
1322 cases.
1326 operand_subword (rtx op, unsigned int offset, int validate_address, enum machine_mode mode)
1328 if (mode == VOIDmode)
1329 mode = GET_MODE (op);
1331 gcc_assert (mode != VOIDmode);
1333 /* If OP is narrower than a word, fail. */
1334 if (mode != BLKmode
1335 && (GET_MODE_SIZE (mode) < UNITS_PER_WORD))
1336 return 0;
1338 /* If we want a word outside OP, return zero. */
1339 if (mode != BLKmode
1340 && (offset + 1) * UNITS_PER_WORD > GET_MODE_SIZE (mode))
1341 return const0_rtx;
1343 /* Form a new MEM at the requested address. */
1344 if (MEM_P (op))
1346 rtx new = adjust_address_nv (op, word_mode, offset * UNITS_PER_WORD);
1348 if (! validate_address)
1349 return new;
1351 else if (reload_completed)
1353 if (! strict_memory_address_p (word_mode, XEXP (new, 0)))
1354 return 0;
1356 else
1357 return replace_equiv_address (new, XEXP (new, 0));
1360 /* Rest can be handled by simplify_subreg. */
1361 return simplify_gen_subreg (word_mode, op, mode, (offset * UNITS_PER_WORD));
1364 /* Similar to `operand_subword', but never return 0. If we can't
1365 extract the required subword, put OP into a register and try again.
1366 The second attempt must succeed. We always validate the address in
1367 this case.
1369 MODE is the mode of OP, in case it is CONST_INT. */
1372 operand_subword_force (rtx op, unsigned int offset, enum machine_mode mode)
1374 rtx result = operand_subword (op, offset, 1, mode);
1376 if (result)
1377 return result;
1379 if (mode != BLKmode && mode != VOIDmode)
1381 /* If this is a register which can not be accessed by words, copy it
1382 to a pseudo register. */
1383 if (REG_P (op))
1384 op = copy_to_reg (op);
1385 else
1386 op = force_reg (mode, op);
1389 result = operand_subword (op, offset, 1, mode);
1390 gcc_assert (result);
1392 return result;
1395 /* Within a MEM_EXPR, we care about either (1) a component ref of a decl,
1396 or (2) a component ref of something variable. Represent the later with
1397 a NULL expression. */
1399 static tree
1400 component_ref_for_mem_expr (tree ref)
1402 tree inner = TREE_OPERAND (ref, 0);
1404 if (TREE_CODE (inner) == COMPONENT_REF)
1405 inner = component_ref_for_mem_expr (inner);
1406 else
1408 /* Now remove any conversions: they don't change what the underlying
1409 object is. Likewise for SAVE_EXPR. */
1410 while (TREE_CODE (inner) == NOP_EXPR || TREE_CODE (inner) == CONVERT_EXPR
1411 || TREE_CODE (inner) == NON_LVALUE_EXPR
1412 || TREE_CODE (inner) == VIEW_CONVERT_EXPR
1413 || TREE_CODE (inner) == SAVE_EXPR)
1414 inner = TREE_OPERAND (inner, 0);
1416 if (! DECL_P (inner))
1417 inner = NULL_TREE;
1420 if (inner == TREE_OPERAND (ref, 0))
1421 return ref;
1422 else
1423 return build3 (COMPONENT_REF, TREE_TYPE (ref), inner,
1424 TREE_OPERAND (ref, 1), NULL_TREE);
1427 /* Returns 1 if both MEM_EXPR can be considered equal
1428 and 0 otherwise. */
1431 mem_expr_equal_p (const_tree expr1, const_tree expr2)
1433 if (expr1 == expr2)
1434 return 1;
1436 if (! expr1 || ! expr2)
1437 return 0;
1439 if (TREE_CODE (expr1) != TREE_CODE (expr2))
1440 return 0;
1442 if (TREE_CODE (expr1) == COMPONENT_REF)
1443 return
1444 mem_expr_equal_p (TREE_OPERAND (expr1, 0),
1445 TREE_OPERAND (expr2, 0))
1446 && mem_expr_equal_p (TREE_OPERAND (expr1, 1), /* field decl */
1447 TREE_OPERAND (expr2, 1));
1449 if (INDIRECT_REF_P (expr1))
1450 return mem_expr_equal_p (TREE_OPERAND (expr1, 0),
1451 TREE_OPERAND (expr2, 0));
1453 /* ARRAY_REFs, ARRAY_RANGE_REFs and BIT_FIELD_REFs should already
1454 have been resolved here. */
1455 gcc_assert (DECL_P (expr1));
1457 /* Decls with different pointers can't be equal. */
1458 return 0;
1461 /* Given REF, a MEM, and T, either the type of X or the expression
1462 corresponding to REF, set the memory attributes. OBJECTP is nonzero
1463 if we are making a new object of this type. BITPOS is nonzero if
1464 there is an offset outstanding on T that will be applied later. */
1466 void
1467 set_mem_attributes_minus_bitpos (rtx ref, tree t, int objectp,
1468 HOST_WIDE_INT bitpos)
1470 alias_set_type alias = MEM_ALIAS_SET (ref);
1471 tree expr = MEM_EXPR (ref);
1472 rtx offset = MEM_OFFSET (ref);
1473 rtx size = MEM_SIZE (ref);
1474 unsigned int align = MEM_ALIGN (ref);
1475 HOST_WIDE_INT apply_bitpos = 0;
1476 tree type;
1478 /* It can happen that type_for_mode was given a mode for which there
1479 is no language-level type. In which case it returns NULL, which
1480 we can see here. */
1481 if (t == NULL_TREE)
1482 return;
1484 type = TYPE_P (t) ? t : TREE_TYPE (t);
1485 if (type == error_mark_node)
1486 return;
1488 /* If we have already set DECL_RTL = ref, get_alias_set will get the
1489 wrong answer, as it assumes that DECL_RTL already has the right alias
1490 info. Callers should not set DECL_RTL until after the call to
1491 set_mem_attributes. */
1492 gcc_assert (!DECL_P (t) || ref != DECL_RTL_IF_SET (t));
1494 /* Get the alias set from the expression or type (perhaps using a
1495 front-end routine) and use it. */
1496 alias = get_alias_set (t);
1498 MEM_VOLATILE_P (ref) |= TYPE_VOLATILE (type);
1499 MEM_IN_STRUCT_P (ref)
1500 = AGGREGATE_TYPE_P (type) || TREE_CODE (type) == COMPLEX_TYPE;
1501 MEM_POINTER (ref) = POINTER_TYPE_P (type);
1503 /* If we are making an object of this type, or if this is a DECL, we know
1504 that it is a scalar if the type is not an aggregate. */
1505 if ((objectp || DECL_P (t))
1506 && ! AGGREGATE_TYPE_P (type)
1507 && TREE_CODE (type) != COMPLEX_TYPE)
1508 MEM_SCALAR_P (ref) = 1;
1510 /* We can set the alignment from the type if we are making an object,
1511 this is an INDIRECT_REF, or if TYPE_ALIGN_OK. */
1512 if (objectp || TREE_CODE (t) == INDIRECT_REF
1513 || TREE_CODE (t) == ALIGN_INDIRECT_REF
1514 || TYPE_ALIGN_OK (type))
1515 align = MAX (align, TYPE_ALIGN (type));
1516 else
1517 if (TREE_CODE (t) == MISALIGNED_INDIRECT_REF)
1519 if (integer_zerop (TREE_OPERAND (t, 1)))
1520 /* We don't know anything about the alignment. */
1521 align = BITS_PER_UNIT;
1522 else
1523 align = tree_low_cst (TREE_OPERAND (t, 1), 1);
1526 /* If the size is known, we can set that. */
1527 if (TYPE_SIZE_UNIT (type) && host_integerp (TYPE_SIZE_UNIT (type), 1))
1528 size = GEN_INT (tree_low_cst (TYPE_SIZE_UNIT (type), 1));
1530 /* If T is not a type, we may be able to deduce some more information about
1531 the expression. */
1532 if (! TYPE_P (t))
1534 tree base;
1536 if (TREE_THIS_VOLATILE (t))
1537 MEM_VOLATILE_P (ref) = 1;
1539 /* Now remove any conversions: they don't change what the underlying
1540 object is. Likewise for SAVE_EXPR. */
1541 while (TREE_CODE (t) == NOP_EXPR || TREE_CODE (t) == CONVERT_EXPR
1542 || TREE_CODE (t) == NON_LVALUE_EXPR
1543 || TREE_CODE (t) == VIEW_CONVERT_EXPR
1544 || TREE_CODE (t) == SAVE_EXPR)
1545 t = TREE_OPERAND (t, 0);
1547 /* We may look through structure-like accesses for the purposes of
1548 examining TREE_THIS_NOTRAP, but not array-like accesses. */
1549 base = t;
1550 while (TREE_CODE (base) == COMPONENT_REF
1551 || TREE_CODE (base) == REALPART_EXPR
1552 || TREE_CODE (base) == IMAGPART_EXPR
1553 || TREE_CODE (base) == BIT_FIELD_REF)
1554 base = TREE_OPERAND (base, 0);
1556 if (DECL_P (base))
1558 if (CODE_CONTAINS_STRUCT (TREE_CODE (base), TS_DECL_WITH_VIS))
1559 MEM_NOTRAP_P (ref) = !DECL_WEAK (base);
1560 else
1561 MEM_NOTRAP_P (ref) = 1;
1563 else
1564 MEM_NOTRAP_P (ref) = TREE_THIS_NOTRAP (base);
1566 base = get_base_address (base);
1567 if (base && DECL_P (base)
1568 && TREE_READONLY (base)
1569 && (TREE_STATIC (base) || DECL_EXTERNAL (base)))
1571 tree base_type = TREE_TYPE (base);
1572 gcc_assert (!(base_type && TYPE_NEEDS_CONSTRUCTING (base_type))
1573 || DECL_ARTIFICIAL (base));
1574 MEM_READONLY_P (ref) = 1;
1577 /* If this expression uses it's parent's alias set, mark it such
1578 that we won't change it. */
1579 if (component_uses_parent_alias_set (t))
1580 MEM_KEEP_ALIAS_SET_P (ref) = 1;
1582 /* If this is a decl, set the attributes of the MEM from it. */
1583 if (DECL_P (t))
1585 expr = t;
1586 offset = const0_rtx;
1587 apply_bitpos = bitpos;
1588 size = (DECL_SIZE_UNIT (t)
1589 && host_integerp (DECL_SIZE_UNIT (t), 1)
1590 ? GEN_INT (tree_low_cst (DECL_SIZE_UNIT (t), 1)) : 0);
1591 align = DECL_ALIGN (t);
1594 /* If this is a constant, we know the alignment. */
1595 else if (CONSTANT_CLASS_P (t))
1597 align = TYPE_ALIGN (type);
1598 #ifdef CONSTANT_ALIGNMENT
1599 align = CONSTANT_ALIGNMENT (t, align);
1600 #endif
1603 /* If this is a field reference and not a bit-field, record it. */
1604 /* ??? There is some information that can be gleened from bit-fields,
1605 such as the word offset in the structure that might be modified.
1606 But skip it for now. */
1607 else if (TREE_CODE (t) == COMPONENT_REF
1608 && ! DECL_BIT_FIELD (TREE_OPERAND (t, 1)))
1610 expr = component_ref_for_mem_expr (t);
1611 offset = const0_rtx;
1612 apply_bitpos = bitpos;
1613 /* ??? Any reason the field size would be different than
1614 the size we got from the type? */
1617 /* If this is an array reference, look for an outer field reference. */
1618 else if (TREE_CODE (t) == ARRAY_REF)
1620 tree off_tree = size_zero_node;
1621 /* We can't modify t, because we use it at the end of the
1622 function. */
1623 tree t2 = t;
1627 tree index = TREE_OPERAND (t2, 1);
1628 tree low_bound = array_ref_low_bound (t2);
1629 tree unit_size = array_ref_element_size (t2);
1631 /* We assume all arrays have sizes that are a multiple of a byte.
1632 First subtract the lower bound, if any, in the type of the
1633 index, then convert to sizetype and multiply by the size of
1634 the array element. */
1635 if (! integer_zerop (low_bound))
1636 index = fold_build2 (MINUS_EXPR, TREE_TYPE (index),
1637 index, low_bound);
1639 off_tree = size_binop (PLUS_EXPR,
1640 size_binop (MULT_EXPR,
1641 fold_convert (sizetype,
1642 index),
1643 unit_size),
1644 off_tree);
1645 t2 = TREE_OPERAND (t2, 0);
1647 while (TREE_CODE (t2) == ARRAY_REF);
1649 if (DECL_P (t2))
1651 expr = t2;
1652 offset = NULL;
1653 if (host_integerp (off_tree, 1))
1655 HOST_WIDE_INT ioff = tree_low_cst (off_tree, 1);
1656 HOST_WIDE_INT aoff = (ioff & -ioff) * BITS_PER_UNIT;
1657 align = DECL_ALIGN (t2);
1658 if (aoff && (unsigned HOST_WIDE_INT) aoff < align)
1659 align = aoff;
1660 offset = GEN_INT (ioff);
1661 apply_bitpos = bitpos;
1664 else if (TREE_CODE (t2) == COMPONENT_REF)
1666 expr = component_ref_for_mem_expr (t2);
1667 if (host_integerp (off_tree, 1))
1669 offset = GEN_INT (tree_low_cst (off_tree, 1));
1670 apply_bitpos = bitpos;
1672 /* ??? Any reason the field size would be different than
1673 the size we got from the type? */
1675 else if (flag_argument_noalias > 1
1676 && (INDIRECT_REF_P (t2))
1677 && TREE_CODE (TREE_OPERAND (t2, 0)) == PARM_DECL)
1679 expr = t2;
1680 offset = NULL;
1684 /* If this is a Fortran indirect argument reference, record the
1685 parameter decl. */
1686 else if (flag_argument_noalias > 1
1687 && (INDIRECT_REF_P (t))
1688 && TREE_CODE (TREE_OPERAND (t, 0)) == PARM_DECL)
1690 expr = t;
1691 offset = NULL;
1695 /* If we modified OFFSET based on T, then subtract the outstanding
1696 bit position offset. Similarly, increase the size of the accessed
1697 object to contain the negative offset. */
1698 if (apply_bitpos)
1700 offset = plus_constant (offset, -(apply_bitpos / BITS_PER_UNIT));
1701 if (size)
1702 size = plus_constant (size, apply_bitpos / BITS_PER_UNIT);
1705 if (TREE_CODE (t) == ALIGN_INDIRECT_REF)
1707 /* Force EXPR and OFFSE to NULL, since we don't know exactly what
1708 we're overlapping. */
1709 offset = NULL;
1710 expr = NULL;
1713 /* Now set the attributes we computed above. */
1714 MEM_ATTRS (ref)
1715 = get_mem_attrs (alias, expr, offset, size, align, GET_MODE (ref));
1717 /* If this is already known to be a scalar or aggregate, we are done. */
1718 if (MEM_IN_STRUCT_P (ref) || MEM_SCALAR_P (ref))
1719 return;
1721 /* If it is a reference into an aggregate, this is part of an aggregate.
1722 Otherwise we don't know. */
1723 else if (TREE_CODE (t) == COMPONENT_REF || TREE_CODE (t) == ARRAY_REF
1724 || TREE_CODE (t) == ARRAY_RANGE_REF
1725 || TREE_CODE (t) == BIT_FIELD_REF)
1726 MEM_IN_STRUCT_P (ref) = 1;
1729 void
1730 set_mem_attributes (rtx ref, tree t, int objectp)
1732 set_mem_attributes_minus_bitpos (ref, t, objectp, 0);
1735 /* Set MEM to the decl that REG refers to. */
1737 void
1738 set_mem_attrs_from_reg (rtx mem, rtx reg)
1740 MEM_ATTRS (mem)
1741 = get_mem_attrs (MEM_ALIAS_SET (mem), REG_EXPR (reg),
1742 GEN_INT (REG_OFFSET (reg)),
1743 MEM_SIZE (mem), MEM_ALIGN (mem), GET_MODE (mem));
1746 /* Set the alias set of MEM to SET. */
1748 void
1749 set_mem_alias_set (rtx mem, alias_set_type set)
1751 #ifdef ENABLE_CHECKING
1752 /* If the new and old alias sets don't conflict, something is wrong. */
1753 gcc_assert (alias_sets_conflict_p (set, MEM_ALIAS_SET (mem)));
1754 #endif
1756 MEM_ATTRS (mem) = get_mem_attrs (set, MEM_EXPR (mem), MEM_OFFSET (mem),
1757 MEM_SIZE (mem), MEM_ALIGN (mem),
1758 GET_MODE (mem));
1761 /* Set the alignment of MEM to ALIGN bits. */
1763 void
1764 set_mem_align (rtx mem, unsigned int align)
1766 MEM_ATTRS (mem) = get_mem_attrs (MEM_ALIAS_SET (mem), MEM_EXPR (mem),
1767 MEM_OFFSET (mem), MEM_SIZE (mem), align,
1768 GET_MODE (mem));
1771 /* Set the expr for MEM to EXPR. */
1773 void
1774 set_mem_expr (rtx mem, tree expr)
1776 MEM_ATTRS (mem)
1777 = get_mem_attrs (MEM_ALIAS_SET (mem), expr, MEM_OFFSET (mem),
1778 MEM_SIZE (mem), MEM_ALIGN (mem), GET_MODE (mem));
1781 /* Set the offset of MEM to OFFSET. */
1783 void
1784 set_mem_offset (rtx mem, rtx offset)
1786 MEM_ATTRS (mem) = get_mem_attrs (MEM_ALIAS_SET (mem), MEM_EXPR (mem),
1787 offset, MEM_SIZE (mem), MEM_ALIGN (mem),
1788 GET_MODE (mem));
1791 /* Set the size of MEM to SIZE. */
1793 void
1794 set_mem_size (rtx mem, rtx size)
1796 MEM_ATTRS (mem) = get_mem_attrs (MEM_ALIAS_SET (mem), MEM_EXPR (mem),
1797 MEM_OFFSET (mem), size, MEM_ALIGN (mem),
1798 GET_MODE (mem));
1801 /* Return a memory reference like MEMREF, but with its mode changed to MODE
1802 and its address changed to ADDR. (VOIDmode means don't change the mode.
1803 NULL for ADDR means don't change the address.) VALIDATE is nonzero if the
1804 returned memory location is required to be valid. The memory
1805 attributes are not changed. */
1807 static rtx
1808 change_address_1 (rtx memref, enum machine_mode mode, rtx addr, int validate)
1810 rtx new;
1812 gcc_assert (MEM_P (memref));
1813 if (mode == VOIDmode)
1814 mode = GET_MODE (memref);
1815 if (addr == 0)
1816 addr = XEXP (memref, 0);
1817 if (mode == GET_MODE (memref) && addr == XEXP (memref, 0)
1818 && (!validate || memory_address_p (mode, addr)))
1819 return memref;
1821 if (validate)
1823 if (reload_in_progress || reload_completed)
1824 gcc_assert (memory_address_p (mode, addr));
1825 else
1826 addr = memory_address (mode, addr);
1829 if (rtx_equal_p (addr, XEXP (memref, 0)) && mode == GET_MODE (memref))
1830 return memref;
1832 new = gen_rtx_MEM (mode, addr);
1833 MEM_COPY_ATTRIBUTES (new, memref);
1834 return new;
1837 /* Like change_address_1 with VALIDATE nonzero, but we are not saying in what
1838 way we are changing MEMREF, so we only preserve the alias set. */
1841 change_address (rtx memref, enum machine_mode mode, rtx addr)
1843 rtx new = change_address_1 (memref, mode, addr, 1), size;
1844 enum machine_mode mmode = GET_MODE (new);
1845 unsigned int align;
1847 size = mmode == BLKmode ? 0 : GEN_INT (GET_MODE_SIZE (mmode));
1848 align = mmode == BLKmode ? BITS_PER_UNIT : GET_MODE_ALIGNMENT (mmode);
1850 /* If there are no changes, just return the original memory reference. */
1851 if (new == memref)
1853 if (MEM_ATTRS (memref) == 0
1854 || (MEM_EXPR (memref) == NULL
1855 && MEM_OFFSET (memref) == NULL
1856 && MEM_SIZE (memref) == size
1857 && MEM_ALIGN (memref) == align))
1858 return new;
1860 new = gen_rtx_MEM (mmode, XEXP (memref, 0));
1861 MEM_COPY_ATTRIBUTES (new, memref);
1864 MEM_ATTRS (new)
1865 = get_mem_attrs (MEM_ALIAS_SET (memref), 0, 0, size, align, mmode);
1867 return new;
1870 /* Return a memory reference like MEMREF, but with its mode changed
1871 to MODE and its address offset by OFFSET bytes. If VALIDATE is
1872 nonzero, the memory address is forced to be valid.
1873 If ADJUST is zero, OFFSET is only used to update MEM_ATTRS
1874 and caller is responsible for adjusting MEMREF base register. */
1877 adjust_address_1 (rtx memref, enum machine_mode mode, HOST_WIDE_INT offset,
1878 int validate, int adjust)
1880 rtx addr = XEXP (memref, 0);
1881 rtx new;
1882 rtx memoffset = MEM_OFFSET (memref);
1883 rtx size = 0;
1884 unsigned int memalign = MEM_ALIGN (memref);
1886 /* If there are no changes, just return the original memory reference. */
1887 if (mode == GET_MODE (memref) && !offset
1888 && (!validate || memory_address_p (mode, addr)))
1889 return memref;
1891 /* ??? Prefer to create garbage instead of creating shared rtl.
1892 This may happen even if offset is nonzero -- consider
1893 (plus (plus reg reg) const_int) -- so do this always. */
1894 addr = copy_rtx (addr);
1896 if (adjust)
1898 /* If MEMREF is a LO_SUM and the offset is within the alignment of the
1899 object, we can merge it into the LO_SUM. */
1900 if (GET_MODE (memref) != BLKmode && GET_CODE (addr) == LO_SUM
1901 && offset >= 0
1902 && (unsigned HOST_WIDE_INT) offset
1903 < GET_MODE_ALIGNMENT (GET_MODE (memref)) / BITS_PER_UNIT)
1904 addr = gen_rtx_LO_SUM (Pmode, XEXP (addr, 0),
1905 plus_constant (XEXP (addr, 1), offset));
1906 else
1907 addr = plus_constant (addr, offset);
1910 new = change_address_1 (memref, mode, addr, validate);
1912 /* Compute the new values of the memory attributes due to this adjustment.
1913 We add the offsets and update the alignment. */
1914 if (memoffset)
1915 memoffset = GEN_INT (offset + INTVAL (memoffset));
1917 /* Compute the new alignment by taking the MIN of the alignment and the
1918 lowest-order set bit in OFFSET, but don't change the alignment if OFFSET
1919 if zero. */
1920 if (offset != 0)
1921 memalign
1922 = MIN (memalign,
1923 (unsigned HOST_WIDE_INT) (offset & -offset) * BITS_PER_UNIT);
1925 /* We can compute the size in a number of ways. */
1926 if (GET_MODE (new) != BLKmode)
1927 size = GEN_INT (GET_MODE_SIZE (GET_MODE (new)));
1928 else if (MEM_SIZE (memref))
1929 size = plus_constant (MEM_SIZE (memref), -offset);
1931 MEM_ATTRS (new) = get_mem_attrs (MEM_ALIAS_SET (memref), MEM_EXPR (memref),
1932 memoffset, size, memalign, GET_MODE (new));
1934 /* At some point, we should validate that this offset is within the object,
1935 if all the appropriate values are known. */
1936 return new;
1939 /* Return a memory reference like MEMREF, but with its mode changed
1940 to MODE and its address changed to ADDR, which is assumed to be
1941 MEMREF offseted by OFFSET bytes. If VALIDATE is
1942 nonzero, the memory address is forced to be valid. */
1945 adjust_automodify_address_1 (rtx memref, enum machine_mode mode, rtx addr,
1946 HOST_WIDE_INT offset, int validate)
1948 memref = change_address_1 (memref, VOIDmode, addr, validate);
1949 return adjust_address_1 (memref, mode, offset, validate, 0);
1952 /* Return a memory reference like MEMREF, but whose address is changed by
1953 adding OFFSET, an RTX, to it. POW2 is the highest power of two factor
1954 known to be in OFFSET (possibly 1). */
1957 offset_address (rtx memref, rtx offset, unsigned HOST_WIDE_INT pow2)
1959 rtx new, addr = XEXP (memref, 0);
1961 new = simplify_gen_binary (PLUS, Pmode, addr, offset);
1963 /* At this point we don't know _why_ the address is invalid. It
1964 could have secondary memory references, multiplies or anything.
1966 However, if we did go and rearrange things, we can wind up not
1967 being able to recognize the magic around pic_offset_table_rtx.
1968 This stuff is fragile, and is yet another example of why it is
1969 bad to expose PIC machinery too early. */
1970 if (! memory_address_p (GET_MODE (memref), new)
1971 && GET_CODE (addr) == PLUS
1972 && XEXP (addr, 0) == pic_offset_table_rtx)
1974 addr = force_reg (GET_MODE (addr), addr);
1975 new = simplify_gen_binary (PLUS, Pmode, addr, offset);
1978 update_temp_slot_address (XEXP (memref, 0), new);
1979 new = change_address_1 (memref, VOIDmode, new, 1);
1981 /* If there are no changes, just return the original memory reference. */
1982 if (new == memref)
1983 return new;
1985 /* Update the alignment to reflect the offset. Reset the offset, which
1986 we don't know. */
1987 MEM_ATTRS (new)
1988 = get_mem_attrs (MEM_ALIAS_SET (memref), MEM_EXPR (memref), 0, 0,
1989 MIN (MEM_ALIGN (memref), pow2 * BITS_PER_UNIT),
1990 GET_MODE (new));
1991 return new;
1994 /* Return a memory reference like MEMREF, but with its address changed to
1995 ADDR. The caller is asserting that the actual piece of memory pointed
1996 to is the same, just the form of the address is being changed, such as
1997 by putting something into a register. */
2000 replace_equiv_address (rtx memref, rtx addr)
2002 /* change_address_1 copies the memory attribute structure without change
2003 and that's exactly what we want here. */
2004 update_temp_slot_address (XEXP (memref, 0), addr);
2005 return change_address_1 (memref, VOIDmode, addr, 1);
2008 /* Likewise, but the reference is not required to be valid. */
2011 replace_equiv_address_nv (rtx memref, rtx addr)
2013 return change_address_1 (memref, VOIDmode, addr, 0);
2016 /* Return a memory reference like MEMREF, but with its mode widened to
2017 MODE and offset by OFFSET. This would be used by targets that e.g.
2018 cannot issue QImode memory operations and have to use SImode memory
2019 operations plus masking logic. */
2022 widen_memory_access (rtx memref, enum machine_mode mode, HOST_WIDE_INT offset)
2024 rtx new = adjust_address_1 (memref, mode, offset, 1, 1);
2025 tree expr = MEM_EXPR (new);
2026 rtx memoffset = MEM_OFFSET (new);
2027 unsigned int size = GET_MODE_SIZE (mode);
2029 /* If there are no changes, just return the original memory reference. */
2030 if (new == memref)
2031 return new;
2033 /* If we don't know what offset we were at within the expression, then
2034 we can't know if we've overstepped the bounds. */
2035 if (! memoffset)
2036 expr = NULL_TREE;
2038 while (expr)
2040 if (TREE_CODE (expr) == COMPONENT_REF)
2042 tree field = TREE_OPERAND (expr, 1);
2043 tree offset = component_ref_field_offset (expr);
2045 if (! DECL_SIZE_UNIT (field))
2047 expr = NULL_TREE;
2048 break;
2051 /* Is the field at least as large as the access? If so, ok,
2052 otherwise strip back to the containing structure. */
2053 if (TREE_CODE (DECL_SIZE_UNIT (field)) == INTEGER_CST
2054 && compare_tree_int (DECL_SIZE_UNIT (field), size) >= 0
2055 && INTVAL (memoffset) >= 0)
2056 break;
2058 if (! host_integerp (offset, 1))
2060 expr = NULL_TREE;
2061 break;
2064 expr = TREE_OPERAND (expr, 0);
2065 memoffset
2066 = (GEN_INT (INTVAL (memoffset)
2067 + tree_low_cst (offset, 1)
2068 + (tree_low_cst (DECL_FIELD_BIT_OFFSET (field), 1)
2069 / BITS_PER_UNIT)));
2071 /* Similarly for the decl. */
2072 else if (DECL_P (expr)
2073 && DECL_SIZE_UNIT (expr)
2074 && TREE_CODE (DECL_SIZE_UNIT (expr)) == INTEGER_CST
2075 && compare_tree_int (DECL_SIZE_UNIT (expr), size) >= 0
2076 && (! memoffset || INTVAL (memoffset) >= 0))
2077 break;
2078 else
2080 /* The widened memory access overflows the expression, which means
2081 that it could alias another expression. Zap it. */
2082 expr = NULL_TREE;
2083 break;
2087 if (! expr)
2088 memoffset = NULL_RTX;
2090 /* The widened memory may alias other stuff, so zap the alias set. */
2091 /* ??? Maybe use get_alias_set on any remaining expression. */
2093 MEM_ATTRS (new) = get_mem_attrs (0, expr, memoffset, GEN_INT (size),
2094 MEM_ALIGN (new), mode);
2096 return new;
2099 /* Return a newly created CODE_LABEL rtx with a unique label number. */
2102 gen_label_rtx (void)
2104 return gen_rtx_CODE_LABEL (VOIDmode, 0, NULL_RTX, NULL_RTX,
2105 NULL, label_num++, NULL);
2108 /* For procedure integration. */
2110 /* Install new pointers to the first and last insns in the chain.
2111 Also, set cur_insn_uid to one higher than the last in use.
2112 Used for an inline-procedure after copying the insn chain. */
2114 void
2115 set_new_first_and_last_insn (rtx first, rtx last)
2117 rtx insn;
2119 first_insn = first;
2120 last_insn = last;
2121 cur_insn_uid = 0;
2123 for (insn = first; insn; insn = NEXT_INSN (insn))
2124 cur_insn_uid = MAX (cur_insn_uid, INSN_UID (insn));
2126 cur_insn_uid++;
2129 /* Go through all the RTL insn bodies and copy any invalid shared
2130 structure. This routine should only be called once. */
2132 static void
2133 unshare_all_rtl_1 (rtx insn)
2135 /* Unshare just about everything else. */
2136 unshare_all_rtl_in_chain (insn);
2138 /* Make sure the addresses of stack slots found outside the insn chain
2139 (such as, in DECL_RTL of a variable) are not shared
2140 with the insn chain.
2142 This special care is necessary when the stack slot MEM does not
2143 actually appear in the insn chain. If it does appear, its address
2144 is unshared from all else at that point. */
2145 stack_slot_list = copy_rtx_if_shared (stack_slot_list);
2148 /* Go through all the RTL insn bodies and copy any invalid shared
2149 structure, again. This is a fairly expensive thing to do so it
2150 should be done sparingly. */
2152 void
2153 unshare_all_rtl_again (rtx insn)
2155 rtx p;
2156 tree decl;
2158 for (p = insn; p; p = NEXT_INSN (p))
2159 if (INSN_P (p))
2161 reset_used_flags (PATTERN (p));
2162 reset_used_flags (REG_NOTES (p));
2165 /* Make sure that virtual stack slots are not shared. */
2166 set_used_decls (DECL_INITIAL (cfun->decl));
2168 /* Make sure that virtual parameters are not shared. */
2169 for (decl = DECL_ARGUMENTS (cfun->decl); decl; decl = TREE_CHAIN (decl))
2170 set_used_flags (DECL_RTL (decl));
2172 reset_used_flags (stack_slot_list);
2174 unshare_all_rtl_1 (insn);
2177 unsigned int
2178 unshare_all_rtl (void)
2180 unshare_all_rtl_1 (get_insns ());
2181 return 0;
2184 struct tree_opt_pass pass_unshare_all_rtl =
2186 "unshare", /* name */
2187 NULL, /* gate */
2188 unshare_all_rtl, /* execute */
2189 NULL, /* sub */
2190 NULL, /* next */
2191 0, /* static_pass_number */
2192 0, /* tv_id */
2193 0, /* properties_required */
2194 0, /* properties_provided */
2195 0, /* properties_destroyed */
2196 0, /* todo_flags_start */
2197 TODO_dump_func | TODO_verify_rtl_sharing, /* todo_flags_finish */
2198 0 /* letter */
2202 /* Check that ORIG is not marked when it should not be and mark ORIG as in use,
2203 Recursively does the same for subexpressions. */
2205 static void
2206 verify_rtx_sharing (rtx orig, rtx insn)
2208 rtx x = orig;
2209 int i;
2210 enum rtx_code code;
2211 const char *format_ptr;
2213 if (x == 0)
2214 return;
2216 code = GET_CODE (x);
2218 /* These types may be freely shared. */
2220 switch (code)
2222 case REG:
2223 case CONST_INT:
2224 case CONST_DOUBLE:
2225 case CONST_FIXED:
2226 case CONST_VECTOR:
2227 case SYMBOL_REF:
2228 case LABEL_REF:
2229 case CODE_LABEL:
2230 case PC:
2231 case CC0:
2232 case SCRATCH:
2233 return;
2234 /* SCRATCH must be shared because they represent distinct values. */
2235 case CLOBBER:
2236 if (REG_P (XEXP (x, 0)) && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER)
2237 return;
2238 break;
2240 case CONST:
2241 if (shared_const_p (orig))
2242 return;
2243 break;
2245 case MEM:
2246 /* A MEM is allowed to be shared if its address is constant. */
2247 if (CONSTANT_ADDRESS_P (XEXP (x, 0))
2248 || reload_completed || reload_in_progress)
2249 return;
2251 break;
2253 default:
2254 break;
2257 /* This rtx may not be shared. If it has already been seen,
2258 replace it with a copy of itself. */
2259 #ifdef ENABLE_CHECKING
2260 if (RTX_FLAG (x, used))
2262 error ("invalid rtl sharing found in the insn");
2263 debug_rtx (insn);
2264 error ("shared rtx");
2265 debug_rtx (x);
2266 internal_error ("internal consistency failure");
2268 #endif
2269 gcc_assert (!RTX_FLAG (x, used));
2271 RTX_FLAG (x, used) = 1;
2273 /* Now scan the subexpressions recursively. */
2275 format_ptr = GET_RTX_FORMAT (code);
2277 for (i = 0; i < GET_RTX_LENGTH (code); i++)
2279 switch (*format_ptr++)
2281 case 'e':
2282 verify_rtx_sharing (XEXP (x, i), insn);
2283 break;
2285 case 'E':
2286 if (XVEC (x, i) != NULL)
2288 int j;
2289 int len = XVECLEN (x, i);
2291 for (j = 0; j < len; j++)
2293 /* We allow sharing of ASM_OPERANDS inside single
2294 instruction. */
2295 if (j && GET_CODE (XVECEXP (x, i, j)) == SET
2296 && (GET_CODE (SET_SRC (XVECEXP (x, i, j)))
2297 == ASM_OPERANDS))
2298 verify_rtx_sharing (SET_DEST (XVECEXP (x, i, j)), insn);
2299 else
2300 verify_rtx_sharing (XVECEXP (x, i, j), insn);
2303 break;
2306 return;
2309 /* Go through all the RTL insn bodies and check that there is no unexpected
2310 sharing in between the subexpressions. */
2312 void
2313 verify_rtl_sharing (void)
2315 rtx p;
2317 for (p = get_insns (); p; p = NEXT_INSN (p))
2318 if (INSN_P (p))
2320 reset_used_flags (PATTERN (p));
2321 reset_used_flags (REG_NOTES (p));
2322 if (GET_CODE (PATTERN (p)) == SEQUENCE)
2324 int i;
2325 rtx q, sequence = PATTERN (p);
2327 for (i = 0; i < XVECLEN (sequence, 0); i++)
2329 q = XVECEXP (sequence, 0, i);
2330 gcc_assert (INSN_P (q));
2331 reset_used_flags (PATTERN (q));
2332 reset_used_flags (REG_NOTES (q));
2337 for (p = get_insns (); p; p = NEXT_INSN (p))
2338 if (INSN_P (p))
2340 verify_rtx_sharing (PATTERN (p), p);
2341 verify_rtx_sharing (REG_NOTES (p), p);
2345 /* Go through all the RTL insn bodies and copy any invalid shared structure.
2346 Assumes the mark bits are cleared at entry. */
2348 void
2349 unshare_all_rtl_in_chain (rtx insn)
2351 for (; insn; insn = NEXT_INSN (insn))
2352 if (INSN_P (insn))
2354 PATTERN (insn) = copy_rtx_if_shared (PATTERN (insn));
2355 REG_NOTES (insn) = copy_rtx_if_shared (REG_NOTES (insn));
2359 /* Go through all virtual stack slots of a function and mark them as
2360 shared. We never replace the DECL_RTLs themselves with a copy,
2361 but expressions mentioned into a DECL_RTL cannot be shared with
2362 expressions in the instruction stream.
2364 Note that reload may convert pseudo registers into memories in-place.
2365 Pseudo registers are always shared, but MEMs never are. Thus if we
2366 reset the used flags on MEMs in the instruction stream, we must set
2367 them again on MEMs that appear in DECL_RTLs. */
2369 static void
2370 set_used_decls (tree blk)
2372 tree t;
2374 /* Mark decls. */
2375 for (t = BLOCK_VARS (blk); t; t = TREE_CHAIN (t))
2376 if (DECL_RTL_SET_P (t))
2377 set_used_flags (DECL_RTL (t));
2379 /* Now process sub-blocks. */
2380 for (t = BLOCK_SUBBLOCKS (blk); t; t = BLOCK_CHAIN (t))
2381 set_used_decls (t);
2384 /* Mark ORIG as in use, and return a copy of it if it was already in use.
2385 Recursively does the same for subexpressions. Uses
2386 copy_rtx_if_shared_1 to reduce stack space. */
2389 copy_rtx_if_shared (rtx orig)
2391 copy_rtx_if_shared_1 (&orig);
2392 return orig;
2395 /* Mark *ORIG1 as in use, and set it to a copy of it if it was already in
2396 use. Recursively does the same for subexpressions. */
2398 static void
2399 copy_rtx_if_shared_1 (rtx *orig1)
2401 rtx x;
2402 int i;
2403 enum rtx_code code;
2404 rtx *last_ptr;
2405 const char *format_ptr;
2406 int copied = 0;
2407 int length;
2409 /* Repeat is used to turn tail-recursion into iteration. */
2410 repeat:
2411 x = *orig1;
2413 if (x == 0)
2414 return;
2416 code = GET_CODE (x);
2418 /* These types may be freely shared. */
2420 switch (code)
2422 case REG:
2423 case CONST_INT:
2424 case CONST_DOUBLE:
2425 case CONST_FIXED:
2426 case CONST_VECTOR:
2427 case SYMBOL_REF:
2428 case LABEL_REF:
2429 case CODE_LABEL:
2430 case PC:
2431 case CC0:
2432 case SCRATCH:
2433 /* SCRATCH must be shared because they represent distinct values. */
2434 return;
2435 case CLOBBER:
2436 if (REG_P (XEXP (x, 0)) && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER)
2437 return;
2438 break;
2440 case CONST:
2441 if (shared_const_p (x))
2442 return;
2443 break;
2445 case INSN:
2446 case JUMP_INSN:
2447 case CALL_INSN:
2448 case NOTE:
2449 case BARRIER:
2450 /* The chain of insns is not being copied. */
2451 return;
2453 default:
2454 break;
2457 /* This rtx may not be shared. If it has already been seen,
2458 replace it with a copy of itself. */
2460 if (RTX_FLAG (x, used))
2462 x = shallow_copy_rtx (x);
2463 copied = 1;
2465 RTX_FLAG (x, used) = 1;
2467 /* Now scan the subexpressions recursively.
2468 We can store any replaced subexpressions directly into X
2469 since we know X is not shared! Any vectors in X
2470 must be copied if X was copied. */
2472 format_ptr = GET_RTX_FORMAT (code);
2473 length = GET_RTX_LENGTH (code);
2474 last_ptr = NULL;
2476 for (i = 0; i < length; i++)
2478 switch (*format_ptr++)
2480 case 'e':
2481 if (last_ptr)
2482 copy_rtx_if_shared_1 (last_ptr);
2483 last_ptr = &XEXP (x, i);
2484 break;
2486 case 'E':
2487 if (XVEC (x, i) != NULL)
2489 int j;
2490 int len = XVECLEN (x, i);
2492 /* Copy the vector iff I copied the rtx and the length
2493 is nonzero. */
2494 if (copied && len > 0)
2495 XVEC (x, i) = gen_rtvec_v (len, XVEC (x, i)->elem);
2497 /* Call recursively on all inside the vector. */
2498 for (j = 0; j < len; j++)
2500 if (last_ptr)
2501 copy_rtx_if_shared_1 (last_ptr);
2502 last_ptr = &XVECEXP (x, i, j);
2505 break;
2508 *orig1 = x;
2509 if (last_ptr)
2511 orig1 = last_ptr;
2512 goto repeat;
2514 return;
2517 /* Clear all the USED bits in X to allow copy_rtx_if_shared to be used
2518 to look for shared sub-parts. */
2520 void
2521 reset_used_flags (rtx x)
2523 int i, j;
2524 enum rtx_code code;
2525 const char *format_ptr;
2526 int length;
2528 /* Repeat is used to turn tail-recursion into iteration. */
2529 repeat:
2530 if (x == 0)
2531 return;
2533 code = GET_CODE (x);
2535 /* These types may be freely shared so we needn't do any resetting
2536 for them. */
2538 switch (code)
2540 case REG:
2541 case CONST_INT:
2542 case CONST_DOUBLE:
2543 case CONST_FIXED:
2544 case CONST_VECTOR:
2545 case SYMBOL_REF:
2546 case CODE_LABEL:
2547 case PC:
2548 case CC0:
2549 return;
2551 case INSN:
2552 case JUMP_INSN:
2553 case CALL_INSN:
2554 case NOTE:
2555 case LABEL_REF:
2556 case BARRIER:
2557 /* The chain of insns is not being copied. */
2558 return;
2560 default:
2561 break;
2564 RTX_FLAG (x, used) = 0;
2566 format_ptr = GET_RTX_FORMAT (code);
2567 length = GET_RTX_LENGTH (code);
2569 for (i = 0; i < length; i++)
2571 switch (*format_ptr++)
2573 case 'e':
2574 if (i == length-1)
2576 x = XEXP (x, i);
2577 goto repeat;
2579 reset_used_flags (XEXP (x, i));
2580 break;
2582 case 'E':
2583 for (j = 0; j < XVECLEN (x, i); j++)
2584 reset_used_flags (XVECEXP (x, i, j));
2585 break;
2590 /* Set all the USED bits in X to allow copy_rtx_if_shared to be used
2591 to look for shared sub-parts. */
2593 void
2594 set_used_flags (rtx x)
2596 int i, j;
2597 enum rtx_code code;
2598 const char *format_ptr;
2600 if (x == 0)
2601 return;
2603 code = GET_CODE (x);
2605 /* These types may be freely shared so we needn't do any resetting
2606 for them. */
2608 switch (code)
2610 case REG:
2611 case CONST_INT:
2612 case CONST_DOUBLE:
2613 case CONST_FIXED:
2614 case CONST_VECTOR:
2615 case SYMBOL_REF:
2616 case CODE_LABEL:
2617 case PC:
2618 case CC0:
2619 return;
2621 case INSN:
2622 case JUMP_INSN:
2623 case CALL_INSN:
2624 case NOTE:
2625 case LABEL_REF:
2626 case BARRIER:
2627 /* The chain of insns is not being copied. */
2628 return;
2630 default:
2631 break;
2634 RTX_FLAG (x, used) = 1;
2636 format_ptr = GET_RTX_FORMAT (code);
2637 for (i = 0; i < GET_RTX_LENGTH (code); i++)
2639 switch (*format_ptr++)
2641 case 'e':
2642 set_used_flags (XEXP (x, i));
2643 break;
2645 case 'E':
2646 for (j = 0; j < XVECLEN (x, i); j++)
2647 set_used_flags (XVECEXP (x, i, j));
2648 break;
2653 /* Copy X if necessary so that it won't be altered by changes in OTHER.
2654 Return X or the rtx for the pseudo reg the value of X was copied into.
2655 OTHER must be valid as a SET_DEST. */
2658 make_safe_from (rtx x, rtx other)
2660 while (1)
2661 switch (GET_CODE (other))
2663 case SUBREG:
2664 other = SUBREG_REG (other);
2665 break;
2666 case STRICT_LOW_PART:
2667 case SIGN_EXTEND:
2668 case ZERO_EXTEND:
2669 other = XEXP (other, 0);
2670 break;
2671 default:
2672 goto done;
2674 done:
2675 if ((MEM_P (other)
2676 && ! CONSTANT_P (x)
2677 && !REG_P (x)
2678 && GET_CODE (x) != SUBREG)
2679 || (REG_P (other)
2680 && (REGNO (other) < FIRST_PSEUDO_REGISTER
2681 || reg_mentioned_p (other, x))))
2683 rtx temp = gen_reg_rtx (GET_MODE (x));
2684 emit_move_insn (temp, x);
2685 return temp;
2687 return x;
2690 /* Emission of insns (adding them to the doubly-linked list). */
2692 /* Return the first insn of the current sequence or current function. */
2695 get_insns (void)
2697 return first_insn;
2700 /* Specify a new insn as the first in the chain. */
2702 void
2703 set_first_insn (rtx insn)
2705 gcc_assert (!PREV_INSN (insn));
2706 first_insn = insn;
2709 /* Return the last insn emitted in current sequence or current function. */
2712 get_last_insn (void)
2714 return last_insn;
2717 /* Specify a new insn as the last in the chain. */
2719 void
2720 set_last_insn (rtx insn)
2722 gcc_assert (!NEXT_INSN (insn));
2723 last_insn = insn;
2726 /* Return the last insn emitted, even if it is in a sequence now pushed. */
2729 get_last_insn_anywhere (void)
2731 struct sequence_stack *stack;
2732 if (last_insn)
2733 return last_insn;
2734 for (stack = seq_stack; stack; stack = stack->next)
2735 if (stack->last != 0)
2736 return stack->last;
2737 return 0;
2740 /* Return the first nonnote insn emitted in current sequence or current
2741 function. This routine looks inside SEQUENCEs. */
2744 get_first_nonnote_insn (void)
2746 rtx insn = first_insn;
2748 if (insn)
2750 if (NOTE_P (insn))
2751 for (insn = next_insn (insn);
2752 insn && NOTE_P (insn);
2753 insn = next_insn (insn))
2754 continue;
2755 else
2757 if (NONJUMP_INSN_P (insn)
2758 && GET_CODE (PATTERN (insn)) == SEQUENCE)
2759 insn = XVECEXP (PATTERN (insn), 0, 0);
2763 return insn;
2766 /* Return the last nonnote insn emitted in current sequence or current
2767 function. This routine looks inside SEQUENCEs. */
2770 get_last_nonnote_insn (void)
2772 rtx insn = last_insn;
2774 if (insn)
2776 if (NOTE_P (insn))
2777 for (insn = previous_insn (insn);
2778 insn && NOTE_P (insn);
2779 insn = previous_insn (insn))
2780 continue;
2781 else
2783 if (NONJUMP_INSN_P (insn)
2784 && GET_CODE (PATTERN (insn)) == SEQUENCE)
2785 insn = XVECEXP (PATTERN (insn), 0,
2786 XVECLEN (PATTERN (insn), 0) - 1);
2790 return insn;
2793 /* Return a number larger than any instruction's uid in this function. */
2796 get_max_uid (void)
2798 return cur_insn_uid;
2801 /* Return the next insn. If it is a SEQUENCE, return the first insn
2802 of the sequence. */
2805 next_insn (rtx insn)
2807 if (insn)
2809 insn = NEXT_INSN (insn);
2810 if (insn && NONJUMP_INSN_P (insn)
2811 && GET_CODE (PATTERN (insn)) == SEQUENCE)
2812 insn = XVECEXP (PATTERN (insn), 0, 0);
2815 return insn;
2818 /* Return the previous insn. If it is a SEQUENCE, return the last insn
2819 of the sequence. */
2822 previous_insn (rtx insn)
2824 if (insn)
2826 insn = PREV_INSN (insn);
2827 if (insn && NONJUMP_INSN_P (insn)
2828 && GET_CODE (PATTERN (insn)) == SEQUENCE)
2829 insn = XVECEXP (PATTERN (insn), 0, XVECLEN (PATTERN (insn), 0) - 1);
2832 return insn;
2835 /* Return the next insn after INSN that is not a NOTE. This routine does not
2836 look inside SEQUENCEs. */
2839 next_nonnote_insn (rtx insn)
2841 while (insn)
2843 insn = NEXT_INSN (insn);
2844 if (insn == 0 || !NOTE_P (insn))
2845 break;
2848 return insn;
2851 /* Return the previous insn before INSN that is not a NOTE. This routine does
2852 not look inside SEQUENCEs. */
2855 prev_nonnote_insn (rtx insn)
2857 while (insn)
2859 insn = PREV_INSN (insn);
2860 if (insn == 0 || !NOTE_P (insn))
2861 break;
2864 return insn;
2867 /* Return the next INSN, CALL_INSN or JUMP_INSN after INSN;
2868 or 0, if there is none. This routine does not look inside
2869 SEQUENCEs. */
2872 next_real_insn (rtx insn)
2874 while (insn)
2876 insn = NEXT_INSN (insn);
2877 if (insn == 0 || INSN_P (insn))
2878 break;
2881 return insn;
2884 /* Return the last INSN, CALL_INSN or JUMP_INSN before INSN;
2885 or 0, if there is none. This routine does not look inside
2886 SEQUENCEs. */
2889 prev_real_insn (rtx insn)
2891 while (insn)
2893 insn = PREV_INSN (insn);
2894 if (insn == 0 || INSN_P (insn))
2895 break;
2898 return insn;
2901 /* Return the last CALL_INSN in the current list, or 0 if there is none.
2902 This routine does not look inside SEQUENCEs. */
2905 last_call_insn (void)
2907 rtx insn;
2909 for (insn = get_last_insn ();
2910 insn && !CALL_P (insn);
2911 insn = PREV_INSN (insn))
2914 return insn;
2917 /* Find the next insn after INSN that really does something. This routine
2918 does not look inside SEQUENCEs. Until reload has completed, this is the
2919 same as next_real_insn. */
2922 active_insn_p (const_rtx insn)
2924 return (CALL_P (insn) || JUMP_P (insn)
2925 || (NONJUMP_INSN_P (insn)
2926 && (! reload_completed
2927 || (GET_CODE (PATTERN (insn)) != USE
2928 && GET_CODE (PATTERN (insn)) != CLOBBER))));
2932 next_active_insn (rtx insn)
2934 while (insn)
2936 insn = NEXT_INSN (insn);
2937 if (insn == 0 || active_insn_p (insn))
2938 break;
2941 return insn;
2944 /* Find the last insn before INSN that really does something. This routine
2945 does not look inside SEQUENCEs. Until reload has completed, this is the
2946 same as prev_real_insn. */
2949 prev_active_insn (rtx insn)
2951 while (insn)
2953 insn = PREV_INSN (insn);
2954 if (insn == 0 || active_insn_p (insn))
2955 break;
2958 return insn;
2961 /* Return the next CODE_LABEL after the insn INSN, or 0 if there is none. */
2964 next_label (rtx insn)
2966 while (insn)
2968 insn = NEXT_INSN (insn);
2969 if (insn == 0 || LABEL_P (insn))
2970 break;
2973 return insn;
2976 /* Return the last CODE_LABEL before the insn INSN, or 0 if there is none. */
2979 prev_label (rtx insn)
2981 while (insn)
2983 insn = PREV_INSN (insn);
2984 if (insn == 0 || LABEL_P (insn))
2985 break;
2988 return insn;
2991 /* Return the last label to mark the same position as LABEL. Return null
2992 if LABEL itself is null. */
2995 skip_consecutive_labels (rtx label)
2997 rtx insn;
2999 for (insn = label; insn != 0 && !INSN_P (insn); insn = NEXT_INSN (insn))
3000 if (LABEL_P (insn))
3001 label = insn;
3003 return label;
3006 #ifdef HAVE_cc0
3007 /* INSN uses CC0 and is being moved into a delay slot. Set up REG_CC_SETTER
3008 and REG_CC_USER notes so we can find it. */
3010 void
3011 link_cc0_insns (rtx insn)
3013 rtx user = next_nonnote_insn (insn);
3015 if (NONJUMP_INSN_P (user) && GET_CODE (PATTERN (user)) == SEQUENCE)
3016 user = XVECEXP (PATTERN (user), 0, 0);
3018 REG_NOTES (user) = gen_rtx_INSN_LIST (REG_CC_SETTER, insn,
3019 REG_NOTES (user));
3020 REG_NOTES (insn) = gen_rtx_INSN_LIST (REG_CC_USER, user, REG_NOTES (insn));
3023 /* Return the next insn that uses CC0 after INSN, which is assumed to
3024 set it. This is the inverse of prev_cc0_setter (i.e., prev_cc0_setter
3025 applied to the result of this function should yield INSN).
3027 Normally, this is simply the next insn. However, if a REG_CC_USER note
3028 is present, it contains the insn that uses CC0.
3030 Return 0 if we can't find the insn. */
3033 next_cc0_user (rtx insn)
3035 rtx note = find_reg_note (insn, REG_CC_USER, NULL_RTX);
3037 if (note)
3038 return XEXP (note, 0);
3040 insn = next_nonnote_insn (insn);
3041 if (insn && NONJUMP_INSN_P (insn) && GET_CODE (PATTERN (insn)) == SEQUENCE)
3042 insn = XVECEXP (PATTERN (insn), 0, 0);
3044 if (insn && INSN_P (insn) && reg_mentioned_p (cc0_rtx, PATTERN (insn)))
3045 return insn;
3047 return 0;
3050 /* Find the insn that set CC0 for INSN. Unless INSN has a REG_CC_SETTER
3051 note, it is the previous insn. */
3054 prev_cc0_setter (rtx insn)
3056 rtx note = find_reg_note (insn, REG_CC_SETTER, NULL_RTX);
3058 if (note)
3059 return XEXP (note, 0);
3061 insn = prev_nonnote_insn (insn);
3062 gcc_assert (sets_cc0_p (PATTERN (insn)));
3064 return insn;
3066 #endif
3068 #ifdef AUTO_INC_DEC
3069 /* Find a RTX_AUTOINC class rtx which matches DATA. */
3071 static int
3072 find_auto_inc (rtx *xp, void *data)
3074 rtx x = *xp;
3075 rtx reg = data;
3077 if (GET_RTX_CLASS (GET_CODE (x)) != RTX_AUTOINC)
3078 return 0;
3080 switch (GET_CODE (x))
3082 case PRE_DEC:
3083 case PRE_INC:
3084 case POST_DEC:
3085 case POST_INC:
3086 case PRE_MODIFY:
3087 case POST_MODIFY:
3088 if (rtx_equal_p (reg, XEXP (x, 0)))
3089 return 1;
3090 break;
3092 default:
3093 gcc_unreachable ();
3095 return -1;
3097 #endif
3099 /* Increment the label uses for all labels present in rtx. */
3101 static void
3102 mark_label_nuses (rtx x)
3104 enum rtx_code code;
3105 int i, j;
3106 const char *fmt;
3108 code = GET_CODE (x);
3109 if (code == LABEL_REF && LABEL_P (XEXP (x, 0)))
3110 LABEL_NUSES (XEXP (x, 0))++;
3112 fmt = GET_RTX_FORMAT (code);
3113 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3115 if (fmt[i] == 'e')
3116 mark_label_nuses (XEXP (x, i));
3117 else if (fmt[i] == 'E')
3118 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3119 mark_label_nuses (XVECEXP (x, i, j));
3124 /* Try splitting insns that can be split for better scheduling.
3125 PAT is the pattern which might split.
3126 TRIAL is the insn providing PAT.
3127 LAST is nonzero if we should return the last insn of the sequence produced.
3129 If this routine succeeds in splitting, it returns the first or last
3130 replacement insn depending on the value of LAST. Otherwise, it
3131 returns TRIAL. If the insn to be returned can be split, it will be. */
3134 try_split (rtx pat, rtx trial, int last)
3136 rtx before = PREV_INSN (trial);
3137 rtx after = NEXT_INSN (trial);
3138 int has_barrier = 0;
3139 rtx tem, note_retval, note_libcall;
3140 rtx note, seq;
3141 int probability;
3142 rtx insn_last, insn;
3143 int njumps = 0;
3145 if (any_condjump_p (trial)
3146 && (note = find_reg_note (trial, REG_BR_PROB, 0)))
3147 split_branch_probability = INTVAL (XEXP (note, 0));
3148 probability = split_branch_probability;
3150 seq = split_insns (pat, trial);
3152 split_branch_probability = -1;
3154 /* If we are splitting a JUMP_INSN, it might be followed by a BARRIER.
3155 We may need to handle this specially. */
3156 if (after && BARRIER_P (after))
3158 has_barrier = 1;
3159 after = NEXT_INSN (after);
3162 if (!seq)
3163 return trial;
3165 /* Avoid infinite loop if any insn of the result matches
3166 the original pattern. */
3167 insn_last = seq;
3168 while (1)
3170 if (INSN_P (insn_last)
3171 && rtx_equal_p (PATTERN (insn_last), pat))
3172 return trial;
3173 if (!NEXT_INSN (insn_last))
3174 break;
3175 insn_last = NEXT_INSN (insn_last);
3178 /* We will be adding the new sequence to the function. The splitters
3179 may have introduced invalid RTL sharing, so unshare the sequence now. */
3180 unshare_all_rtl_in_chain (seq);
3182 /* Mark labels. */
3183 for (insn = insn_last; insn ; insn = PREV_INSN (insn))
3185 if (JUMP_P (insn))
3187 mark_jump_label (PATTERN (insn), insn, 0);
3188 njumps++;
3189 if (probability != -1
3190 && any_condjump_p (insn)
3191 && !find_reg_note (insn, REG_BR_PROB, 0))
3193 /* We can preserve the REG_BR_PROB notes only if exactly
3194 one jump is created, otherwise the machine description
3195 is responsible for this step using
3196 split_branch_probability variable. */
3197 gcc_assert (njumps == 1);
3198 REG_NOTES (insn)
3199 = gen_rtx_EXPR_LIST (REG_BR_PROB,
3200 GEN_INT (probability),
3201 REG_NOTES (insn));
3206 /* If we are splitting a CALL_INSN, look for the CALL_INSN
3207 in SEQ and copy our CALL_INSN_FUNCTION_USAGE to it. */
3208 if (CALL_P (trial))
3210 for (insn = insn_last; insn ; insn = PREV_INSN (insn))
3211 if (CALL_P (insn))
3213 rtx *p = &CALL_INSN_FUNCTION_USAGE (insn);
3214 while (*p)
3215 p = &XEXP (*p, 1);
3216 *p = CALL_INSN_FUNCTION_USAGE (trial);
3217 SIBLING_CALL_P (insn) = SIBLING_CALL_P (trial);
3221 /* Copy notes, particularly those related to the CFG. */
3222 for (note = REG_NOTES (trial); note; note = XEXP (note, 1))
3224 switch (REG_NOTE_KIND (note))
3226 case REG_EH_REGION:
3227 for (insn = insn_last; insn != NULL_RTX; insn = PREV_INSN (insn))
3229 if (CALL_P (insn)
3230 || (flag_non_call_exceptions && INSN_P (insn)
3231 && may_trap_p (PATTERN (insn))))
3232 REG_NOTES (insn)
3233 = gen_rtx_EXPR_LIST (REG_EH_REGION,
3234 XEXP (note, 0),
3235 REG_NOTES (insn));
3237 break;
3239 case REG_NORETURN:
3240 case REG_SETJMP:
3241 for (insn = insn_last; insn != NULL_RTX; insn = PREV_INSN (insn))
3243 if (CALL_P (insn))
3244 REG_NOTES (insn)
3245 = gen_rtx_EXPR_LIST (REG_NOTE_KIND (note),
3246 XEXP (note, 0),
3247 REG_NOTES (insn));
3249 break;
3251 case REG_NON_LOCAL_GOTO:
3252 for (insn = insn_last; insn != NULL_RTX; insn = PREV_INSN (insn))
3254 if (JUMP_P (insn))
3255 REG_NOTES (insn)
3256 = gen_rtx_EXPR_LIST (REG_NOTE_KIND (note),
3257 XEXP (note, 0),
3258 REG_NOTES (insn));
3260 break;
3262 #ifdef AUTO_INC_DEC
3263 case REG_INC:
3264 for (insn = insn_last; insn != NULL_RTX; insn = PREV_INSN (insn))
3266 rtx reg = XEXP (note, 0);
3267 if (!FIND_REG_INC_NOTE (insn, reg)
3268 && for_each_rtx (&PATTERN (insn), find_auto_inc, reg) > 0)
3269 REG_NOTES (insn) = gen_rtx_EXPR_LIST (REG_INC, reg,
3270 REG_NOTES (insn));
3272 break;
3273 #endif
3275 case REG_LIBCALL:
3276 /* Relink the insns with REG_LIBCALL note and with REG_RETVAL note
3277 after split. */
3278 REG_NOTES (insn_last)
3279 = gen_rtx_INSN_LIST (REG_LIBCALL,
3280 XEXP (note, 0),
3281 REG_NOTES (insn_last));
3283 note_retval = find_reg_note (XEXP (note, 0), REG_RETVAL, NULL);
3284 XEXP (note_retval, 0) = insn_last;
3285 break;
3287 case REG_RETVAL:
3288 /* Relink the insns with REG_LIBCALL note and with REG_RETVAL note
3289 after split. */
3290 REG_NOTES (insn_last)
3291 = gen_rtx_INSN_LIST (REG_RETVAL,
3292 XEXP (note, 0),
3293 REG_NOTES (insn_last));
3295 note_libcall = find_reg_note (XEXP (note, 0), REG_LIBCALL, NULL);
3296 XEXP (note_libcall, 0) = insn_last;
3297 break;
3299 default:
3300 break;
3304 /* If there are LABELS inside the split insns increment the
3305 usage count so we don't delete the label. */
3306 if (INSN_P (trial))
3308 insn = insn_last;
3309 while (insn != NULL_RTX)
3311 /* JUMP_P insns have already been "marked" above. */
3312 if (NONJUMP_INSN_P (insn))
3313 mark_label_nuses (PATTERN (insn));
3315 insn = PREV_INSN (insn);
3319 tem = emit_insn_after_setloc (seq, trial, INSN_LOCATOR (trial));
3321 delete_insn (trial);
3322 if (has_barrier)
3323 emit_barrier_after (tem);
3325 /* Recursively call try_split for each new insn created; by the
3326 time control returns here that insn will be fully split, so
3327 set LAST and continue from the insn after the one returned.
3328 We can't use next_active_insn here since AFTER may be a note.
3329 Ignore deleted insns, which can be occur if not optimizing. */
3330 for (tem = NEXT_INSN (before); tem != after; tem = NEXT_INSN (tem))
3331 if (! INSN_DELETED_P (tem) && INSN_P (tem))
3332 tem = try_split (PATTERN (tem), tem, 1);
3334 /* Return either the first or the last insn, depending on which was
3335 requested. */
3336 return last
3337 ? (after ? PREV_INSN (after) : last_insn)
3338 : NEXT_INSN (before);
3341 /* Make and return an INSN rtx, initializing all its slots.
3342 Store PATTERN in the pattern slots. */
3345 make_insn_raw (rtx pattern)
3347 rtx insn;
3349 insn = rtx_alloc (INSN);
3351 INSN_UID (insn) = cur_insn_uid++;
3352 PATTERN (insn) = pattern;
3353 INSN_CODE (insn) = -1;
3354 REG_NOTES (insn) = NULL;
3355 INSN_LOCATOR (insn) = curr_insn_locator ();
3356 BLOCK_FOR_INSN (insn) = NULL;
3358 #ifdef ENABLE_RTL_CHECKING
3359 if (insn
3360 && INSN_P (insn)
3361 && (returnjump_p (insn)
3362 || (GET_CODE (insn) == SET
3363 && SET_DEST (insn) == pc_rtx)))
3365 warning (0, "ICE: emit_insn used where emit_jump_insn needed:\n");
3366 debug_rtx (insn);
3368 #endif
3370 return insn;
3373 /* Like `make_insn_raw' but make a JUMP_INSN instead of an insn. */
3376 make_jump_insn_raw (rtx pattern)
3378 rtx insn;
3380 insn = rtx_alloc (JUMP_INSN);
3381 INSN_UID (insn) = cur_insn_uid++;
3383 PATTERN (insn) = pattern;
3384 INSN_CODE (insn) = -1;
3385 REG_NOTES (insn) = NULL;
3386 JUMP_LABEL (insn) = NULL;
3387 INSN_LOCATOR (insn) = curr_insn_locator ();
3388 BLOCK_FOR_INSN (insn) = NULL;
3390 return insn;
3393 /* Like `make_insn_raw' but make a CALL_INSN instead of an insn. */
3395 static rtx
3396 make_call_insn_raw (rtx pattern)
3398 rtx insn;
3400 insn = rtx_alloc (CALL_INSN);
3401 INSN_UID (insn) = cur_insn_uid++;
3403 PATTERN (insn) = pattern;
3404 INSN_CODE (insn) = -1;
3405 REG_NOTES (insn) = NULL;
3406 CALL_INSN_FUNCTION_USAGE (insn) = NULL;
3407 INSN_LOCATOR (insn) = curr_insn_locator ();
3408 BLOCK_FOR_INSN (insn) = NULL;
3410 return insn;
3413 /* Add INSN to the end of the doubly-linked list.
3414 INSN may be an INSN, JUMP_INSN, CALL_INSN, CODE_LABEL, BARRIER or NOTE. */
3416 void
3417 add_insn (rtx insn)
3419 PREV_INSN (insn) = last_insn;
3420 NEXT_INSN (insn) = 0;
3422 if (NULL != last_insn)
3423 NEXT_INSN (last_insn) = insn;
3425 if (NULL == first_insn)
3426 first_insn = insn;
3428 last_insn = insn;
3431 /* Add INSN into the doubly-linked list after insn AFTER. This and
3432 the next should be the only functions called to insert an insn once
3433 delay slots have been filled since only they know how to update a
3434 SEQUENCE. */
3436 void
3437 add_insn_after (rtx insn, rtx after, basic_block bb)
3439 rtx next = NEXT_INSN (after);
3441 gcc_assert (!optimize || !INSN_DELETED_P (after));
3443 NEXT_INSN (insn) = next;
3444 PREV_INSN (insn) = after;
3446 if (next)
3448 PREV_INSN (next) = insn;
3449 if (NONJUMP_INSN_P (next) && GET_CODE (PATTERN (next)) == SEQUENCE)
3450 PREV_INSN (XVECEXP (PATTERN (next), 0, 0)) = insn;
3452 else if (last_insn == after)
3453 last_insn = insn;
3454 else
3456 struct sequence_stack *stack = seq_stack;
3457 /* Scan all pending sequences too. */
3458 for (; stack; stack = stack->next)
3459 if (after == stack->last)
3461 stack->last = insn;
3462 break;
3465 gcc_assert (stack);
3468 if (!BARRIER_P (after)
3469 && !BARRIER_P (insn)
3470 && (bb = BLOCK_FOR_INSN (after)))
3472 set_block_for_insn (insn, bb);
3473 if (INSN_P (insn))
3474 df_insn_rescan (insn);
3475 /* Should not happen as first in the BB is always
3476 either NOTE or LABEL. */
3477 if (BB_END (bb) == after
3478 /* Avoid clobbering of structure when creating new BB. */
3479 && !BARRIER_P (insn)
3480 && !NOTE_INSN_BASIC_BLOCK_P (insn))
3481 BB_END (bb) = insn;
3484 NEXT_INSN (after) = insn;
3485 if (NONJUMP_INSN_P (after) && GET_CODE (PATTERN (after)) == SEQUENCE)
3487 rtx sequence = PATTERN (after);
3488 NEXT_INSN (XVECEXP (sequence, 0, XVECLEN (sequence, 0) - 1)) = insn;
3492 /* Add INSN into the doubly-linked list before insn BEFORE. This and
3493 the previous should be the only functions called to insert an insn
3494 once delay slots have been filled since only they know how to
3495 update a SEQUENCE. If BB is NULL, an attempt is made to infer the
3496 bb from before. */
3498 void
3499 add_insn_before (rtx insn, rtx before, basic_block bb)
3501 rtx prev = PREV_INSN (before);
3503 gcc_assert (!optimize || !INSN_DELETED_P (before));
3505 PREV_INSN (insn) = prev;
3506 NEXT_INSN (insn) = before;
3508 if (prev)
3510 NEXT_INSN (prev) = insn;
3511 if (NONJUMP_INSN_P (prev) && GET_CODE (PATTERN (prev)) == SEQUENCE)
3513 rtx sequence = PATTERN (prev);
3514 NEXT_INSN (XVECEXP (sequence, 0, XVECLEN (sequence, 0) - 1)) = insn;
3517 else if (first_insn == before)
3518 first_insn = insn;
3519 else
3521 struct sequence_stack *stack = seq_stack;
3522 /* Scan all pending sequences too. */
3523 for (; stack; stack = stack->next)
3524 if (before == stack->first)
3526 stack->first = insn;
3527 break;
3530 gcc_assert (stack);
3533 if (!bb
3534 && !BARRIER_P (before)
3535 && !BARRIER_P (insn))
3536 bb = BLOCK_FOR_INSN (before);
3538 if (bb)
3540 set_block_for_insn (insn, bb);
3541 if (INSN_P (insn))
3542 df_insn_rescan (insn);
3543 /* Should not happen as first in the BB is always either NOTE or
3544 LABEL. */
3545 gcc_assert (BB_HEAD (bb) != insn
3546 /* Avoid clobbering of structure when creating new BB. */
3547 || BARRIER_P (insn)
3548 || NOTE_INSN_BASIC_BLOCK_P (insn));
3551 PREV_INSN (before) = insn;
3552 if (NONJUMP_INSN_P (before) && GET_CODE (PATTERN (before)) == SEQUENCE)
3553 PREV_INSN (XVECEXP (PATTERN (before), 0, 0)) = insn;
3557 /* Replace insn with an deleted instruction note. */
3559 void set_insn_deleted (rtx insn)
3561 df_insn_delete (BLOCK_FOR_INSN (insn), INSN_UID (insn));
3562 PUT_CODE (insn, NOTE);
3563 NOTE_KIND (insn) = NOTE_INSN_DELETED;
3567 /* Remove an insn from its doubly-linked list. This function knows how
3568 to handle sequences. */
3569 void
3570 remove_insn (rtx insn)
3572 rtx next = NEXT_INSN (insn);
3573 rtx prev = PREV_INSN (insn);
3574 basic_block bb;
3576 /* Later in the code, the block will be marked dirty. */
3577 df_insn_delete (NULL, INSN_UID (insn));
3579 if (prev)
3581 NEXT_INSN (prev) = next;
3582 if (NONJUMP_INSN_P (prev) && GET_CODE (PATTERN (prev)) == SEQUENCE)
3584 rtx sequence = PATTERN (prev);
3585 NEXT_INSN (XVECEXP (sequence, 0, XVECLEN (sequence, 0) - 1)) = next;
3588 else if (first_insn == insn)
3589 first_insn = next;
3590 else
3592 struct sequence_stack *stack = seq_stack;
3593 /* Scan all pending sequences too. */
3594 for (; stack; stack = stack->next)
3595 if (insn == stack->first)
3597 stack->first = next;
3598 break;
3601 gcc_assert (stack);
3604 if (next)
3606 PREV_INSN (next) = prev;
3607 if (NONJUMP_INSN_P (next) && GET_CODE (PATTERN (next)) == SEQUENCE)
3608 PREV_INSN (XVECEXP (PATTERN (next), 0, 0)) = prev;
3610 else if (last_insn == insn)
3611 last_insn = prev;
3612 else
3614 struct sequence_stack *stack = seq_stack;
3615 /* Scan all pending sequences too. */
3616 for (; stack; stack = stack->next)
3617 if (insn == stack->last)
3619 stack->last = prev;
3620 break;
3623 gcc_assert (stack);
3625 if (!BARRIER_P (insn)
3626 && (bb = BLOCK_FOR_INSN (insn)))
3628 if (INSN_P (insn))
3629 df_set_bb_dirty (bb);
3630 if (BB_HEAD (bb) == insn)
3632 /* Never ever delete the basic block note without deleting whole
3633 basic block. */
3634 gcc_assert (!NOTE_P (insn));
3635 BB_HEAD (bb) = next;
3637 if (BB_END (bb) == insn)
3638 BB_END (bb) = prev;
3642 /* Append CALL_FUSAGE to the CALL_INSN_FUNCTION_USAGE for CALL_INSN. */
3644 void
3645 add_function_usage_to (rtx call_insn, rtx call_fusage)
3647 gcc_assert (call_insn && CALL_P (call_insn));
3649 /* Put the register usage information on the CALL. If there is already
3650 some usage information, put ours at the end. */
3651 if (CALL_INSN_FUNCTION_USAGE (call_insn))
3653 rtx link;
3655 for (link = CALL_INSN_FUNCTION_USAGE (call_insn); XEXP (link, 1) != 0;
3656 link = XEXP (link, 1))
3659 XEXP (link, 1) = call_fusage;
3661 else
3662 CALL_INSN_FUNCTION_USAGE (call_insn) = call_fusage;
3665 /* Delete all insns made since FROM.
3666 FROM becomes the new last instruction. */
3668 void
3669 delete_insns_since (rtx from)
3671 if (from == 0)
3672 first_insn = 0;
3673 else
3674 NEXT_INSN (from) = 0;
3675 last_insn = from;
3678 /* This function is deprecated, please use sequences instead.
3680 Move a consecutive bunch of insns to a different place in the chain.
3681 The insns to be moved are those between FROM and TO.
3682 They are moved to a new position after the insn AFTER.
3683 AFTER must not be FROM or TO or any insn in between.
3685 This function does not know about SEQUENCEs and hence should not be
3686 called after delay-slot filling has been done. */
3688 void
3689 reorder_insns_nobb (rtx from, rtx to, rtx after)
3691 /* Splice this bunch out of where it is now. */
3692 if (PREV_INSN (from))
3693 NEXT_INSN (PREV_INSN (from)) = NEXT_INSN (to);
3694 if (NEXT_INSN (to))
3695 PREV_INSN (NEXT_INSN (to)) = PREV_INSN (from);
3696 if (last_insn == to)
3697 last_insn = PREV_INSN (from);
3698 if (first_insn == from)
3699 first_insn = NEXT_INSN (to);
3701 /* Make the new neighbors point to it and it to them. */
3702 if (NEXT_INSN (after))
3703 PREV_INSN (NEXT_INSN (after)) = to;
3705 NEXT_INSN (to) = NEXT_INSN (after);
3706 PREV_INSN (from) = after;
3707 NEXT_INSN (after) = from;
3708 if (after == last_insn)
3709 last_insn = to;
3712 /* Same as function above, but take care to update BB boundaries. */
3713 void
3714 reorder_insns (rtx from, rtx to, rtx after)
3716 rtx prev = PREV_INSN (from);
3717 basic_block bb, bb2;
3719 reorder_insns_nobb (from, to, after);
3721 if (!BARRIER_P (after)
3722 && (bb = BLOCK_FOR_INSN (after)))
3724 rtx x;
3725 df_set_bb_dirty (bb);
3727 if (!BARRIER_P (from)
3728 && (bb2 = BLOCK_FOR_INSN (from)))
3730 if (BB_END (bb2) == to)
3731 BB_END (bb2) = prev;
3732 df_set_bb_dirty (bb2);
3735 if (BB_END (bb) == after)
3736 BB_END (bb) = to;
3738 for (x = from; x != NEXT_INSN (to); x = NEXT_INSN (x))
3739 if (!BARRIER_P (x))
3741 set_block_for_insn (x, bb);
3742 df_insn_change_bb (x);
3748 /* Emit insn(s) of given code and pattern
3749 at a specified place within the doubly-linked list.
3751 All of the emit_foo global entry points accept an object
3752 X which is either an insn list or a PATTERN of a single
3753 instruction.
3755 There are thus a few canonical ways to generate code and
3756 emit it at a specific place in the instruction stream. For
3757 example, consider the instruction named SPOT and the fact that
3758 we would like to emit some instructions before SPOT. We might
3759 do it like this:
3761 start_sequence ();
3762 ... emit the new instructions ...
3763 insns_head = get_insns ();
3764 end_sequence ();
3766 emit_insn_before (insns_head, SPOT);
3768 It used to be common to generate SEQUENCE rtl instead, but that
3769 is a relic of the past which no longer occurs. The reason is that
3770 SEQUENCE rtl results in much fragmented RTL memory since the SEQUENCE
3771 generated would almost certainly die right after it was created. */
3773 /* Make X be output before the instruction BEFORE. */
3776 emit_insn_before_noloc (rtx x, rtx before, basic_block bb)
3778 rtx last = before;
3779 rtx insn;
3781 gcc_assert (before);
3783 if (x == NULL_RTX)
3784 return last;
3786 switch (GET_CODE (x))
3788 case INSN:
3789 case JUMP_INSN:
3790 case CALL_INSN:
3791 case CODE_LABEL:
3792 case BARRIER:
3793 case NOTE:
3794 insn = x;
3795 while (insn)
3797 rtx next = NEXT_INSN (insn);
3798 add_insn_before (insn, before, bb);
3799 last = insn;
3800 insn = next;
3802 break;
3804 #ifdef ENABLE_RTL_CHECKING
3805 case SEQUENCE:
3806 gcc_unreachable ();
3807 break;
3808 #endif
3810 default:
3811 last = make_insn_raw (x);
3812 add_insn_before (last, before, bb);
3813 break;
3816 return last;
3819 /* Make an instruction with body X and code JUMP_INSN
3820 and output it before the instruction BEFORE. */
3823 emit_jump_insn_before_noloc (rtx x, rtx before)
3825 rtx insn, last = NULL_RTX;
3827 gcc_assert (before);
3829 switch (GET_CODE (x))
3831 case INSN:
3832 case JUMP_INSN:
3833 case CALL_INSN:
3834 case CODE_LABEL:
3835 case BARRIER:
3836 case NOTE:
3837 insn = x;
3838 while (insn)
3840 rtx next = NEXT_INSN (insn);
3841 add_insn_before (insn, before, NULL);
3842 last = insn;
3843 insn = next;
3845 break;
3847 #ifdef ENABLE_RTL_CHECKING
3848 case SEQUENCE:
3849 gcc_unreachable ();
3850 break;
3851 #endif
3853 default:
3854 last = make_jump_insn_raw (x);
3855 add_insn_before (last, before, NULL);
3856 break;
3859 return last;
3862 /* Make an instruction with body X and code CALL_INSN
3863 and output it before the instruction BEFORE. */
3866 emit_call_insn_before_noloc (rtx x, rtx before)
3868 rtx last = NULL_RTX, insn;
3870 gcc_assert (before);
3872 switch (GET_CODE (x))
3874 case INSN:
3875 case JUMP_INSN:
3876 case CALL_INSN:
3877 case CODE_LABEL:
3878 case BARRIER:
3879 case NOTE:
3880 insn = x;
3881 while (insn)
3883 rtx next = NEXT_INSN (insn);
3884 add_insn_before (insn, before, NULL);
3885 last = insn;
3886 insn = next;
3888 break;
3890 #ifdef ENABLE_RTL_CHECKING
3891 case SEQUENCE:
3892 gcc_unreachable ();
3893 break;
3894 #endif
3896 default:
3897 last = make_call_insn_raw (x);
3898 add_insn_before (last, before, NULL);
3899 break;
3902 return last;
3905 /* Make an insn of code BARRIER
3906 and output it before the insn BEFORE. */
3909 emit_barrier_before (rtx before)
3911 rtx insn = rtx_alloc (BARRIER);
3913 INSN_UID (insn) = cur_insn_uid++;
3915 add_insn_before (insn, before, NULL);
3916 return insn;
3919 /* Emit the label LABEL before the insn BEFORE. */
3922 emit_label_before (rtx label, rtx before)
3924 /* This can be called twice for the same label as a result of the
3925 confusion that follows a syntax error! So make it harmless. */
3926 if (INSN_UID (label) == 0)
3928 INSN_UID (label) = cur_insn_uid++;
3929 add_insn_before (label, before, NULL);
3932 return label;
3935 /* Emit a note of subtype SUBTYPE before the insn BEFORE. */
3938 emit_note_before (enum insn_note subtype, rtx before)
3940 rtx note = rtx_alloc (NOTE);
3941 INSN_UID (note) = cur_insn_uid++;
3942 NOTE_KIND (note) = subtype;
3943 BLOCK_FOR_INSN (note) = NULL;
3944 memset (&NOTE_DATA (note), 0, sizeof (NOTE_DATA (note)));
3946 add_insn_before (note, before, NULL);
3947 return note;
3950 /* Helper for emit_insn_after, handles lists of instructions
3951 efficiently. */
3953 static rtx
3954 emit_insn_after_1 (rtx first, rtx after, basic_block bb)
3956 rtx last;
3957 rtx after_after;
3958 if (!bb && !BARRIER_P (after))
3959 bb = BLOCK_FOR_INSN (after);
3961 if (bb)
3963 df_set_bb_dirty (bb);
3964 for (last = first; NEXT_INSN (last); last = NEXT_INSN (last))
3965 if (!BARRIER_P (last))
3967 set_block_for_insn (last, bb);
3968 df_insn_rescan (last);
3970 if (!BARRIER_P (last))
3972 set_block_for_insn (last, bb);
3973 df_insn_rescan (last);
3975 if (BB_END (bb) == after)
3976 BB_END (bb) = last;
3978 else
3979 for (last = first; NEXT_INSN (last); last = NEXT_INSN (last))
3980 continue;
3982 after_after = NEXT_INSN (after);
3984 NEXT_INSN (after) = first;
3985 PREV_INSN (first) = after;
3986 NEXT_INSN (last) = after_after;
3987 if (after_after)
3988 PREV_INSN (after_after) = last;
3990 if (after == last_insn)
3991 last_insn = last;
3992 return last;
3995 /* Make X be output after the insn AFTER and set the BB of insn. If
3996 BB is NULL, an attempt is made to infer the BB from AFTER. */
3999 emit_insn_after_noloc (rtx x, rtx after, basic_block bb)
4001 rtx last = after;
4003 gcc_assert (after);
4005 if (x == NULL_RTX)
4006 return last;
4008 switch (GET_CODE (x))
4010 case INSN:
4011 case JUMP_INSN:
4012 case CALL_INSN:
4013 case CODE_LABEL:
4014 case BARRIER:
4015 case NOTE:
4016 last = emit_insn_after_1 (x, after, bb);
4017 break;
4019 #ifdef ENABLE_RTL_CHECKING
4020 case SEQUENCE:
4021 gcc_unreachable ();
4022 break;
4023 #endif
4025 default:
4026 last = make_insn_raw (x);
4027 add_insn_after (last, after, bb);
4028 break;
4031 return last;
4035 /* Make an insn of code JUMP_INSN with body X
4036 and output it after the insn AFTER. */
4039 emit_jump_insn_after_noloc (rtx x, rtx after)
4041 rtx last;
4043 gcc_assert (after);
4045 switch (GET_CODE (x))
4047 case INSN:
4048 case JUMP_INSN:
4049 case CALL_INSN:
4050 case CODE_LABEL:
4051 case BARRIER:
4052 case NOTE:
4053 last = emit_insn_after_1 (x, after, NULL);
4054 break;
4056 #ifdef ENABLE_RTL_CHECKING
4057 case SEQUENCE:
4058 gcc_unreachable ();
4059 break;
4060 #endif
4062 default:
4063 last = make_jump_insn_raw (x);
4064 add_insn_after (last, after, NULL);
4065 break;
4068 return last;
4071 /* Make an instruction with body X and code CALL_INSN
4072 and output it after the instruction AFTER. */
4075 emit_call_insn_after_noloc (rtx x, rtx after)
4077 rtx last;
4079 gcc_assert (after);
4081 switch (GET_CODE (x))
4083 case INSN:
4084 case JUMP_INSN:
4085 case CALL_INSN:
4086 case CODE_LABEL:
4087 case BARRIER:
4088 case NOTE:
4089 last = emit_insn_after_1 (x, after, NULL);
4090 break;
4092 #ifdef ENABLE_RTL_CHECKING
4093 case SEQUENCE:
4094 gcc_unreachable ();
4095 break;
4096 #endif
4098 default:
4099 last = make_call_insn_raw (x);
4100 add_insn_after (last, after, NULL);
4101 break;
4104 return last;
4107 /* Make an insn of code BARRIER
4108 and output it after the insn AFTER. */
4111 emit_barrier_after (rtx after)
4113 rtx insn = rtx_alloc (BARRIER);
4115 INSN_UID (insn) = cur_insn_uid++;
4117 add_insn_after (insn, after, NULL);
4118 return insn;
4121 /* Emit the label LABEL after the insn AFTER. */
4124 emit_label_after (rtx label, rtx after)
4126 /* This can be called twice for the same label
4127 as a result of the confusion that follows a syntax error!
4128 So make it harmless. */
4129 if (INSN_UID (label) == 0)
4131 INSN_UID (label) = cur_insn_uid++;
4132 add_insn_after (label, after, NULL);
4135 return label;
4138 /* Emit a note of subtype SUBTYPE after the insn AFTER. */
4141 emit_note_after (enum insn_note subtype, rtx after)
4143 rtx note = rtx_alloc (NOTE);
4144 INSN_UID (note) = cur_insn_uid++;
4145 NOTE_KIND (note) = subtype;
4146 BLOCK_FOR_INSN (note) = NULL;
4147 memset (&NOTE_DATA (note), 0, sizeof (NOTE_DATA (note)));
4148 add_insn_after (note, after, NULL);
4149 return note;
4152 /* Like emit_insn_after_noloc, but set INSN_LOCATOR according to SCOPE. */
4154 emit_insn_after_setloc (rtx pattern, rtx after, int loc)
4156 rtx last = emit_insn_after_noloc (pattern, after, NULL);
4158 if (pattern == NULL_RTX || !loc)
4159 return last;
4161 after = NEXT_INSN (after);
4162 while (1)
4164 if (active_insn_p (after) && !INSN_LOCATOR (after))
4165 INSN_LOCATOR (after) = loc;
4166 if (after == last)
4167 break;
4168 after = NEXT_INSN (after);
4170 return last;
4173 /* Like emit_insn_after_noloc, but set INSN_LOCATOR according to AFTER. */
4175 emit_insn_after (rtx pattern, rtx after)
4177 if (INSN_P (after))
4178 return emit_insn_after_setloc (pattern, after, INSN_LOCATOR (after));
4179 else
4180 return emit_insn_after_noloc (pattern, after, NULL);
4183 /* Like emit_jump_insn_after_noloc, but set INSN_LOCATOR according to SCOPE. */
4185 emit_jump_insn_after_setloc (rtx pattern, rtx after, int loc)
4187 rtx last = emit_jump_insn_after_noloc (pattern, after);
4189 if (pattern == NULL_RTX || !loc)
4190 return last;
4192 after = NEXT_INSN (after);
4193 while (1)
4195 if (active_insn_p (after) && !INSN_LOCATOR (after))
4196 INSN_LOCATOR (after) = loc;
4197 if (after == last)
4198 break;
4199 after = NEXT_INSN (after);
4201 return last;
4204 /* Like emit_jump_insn_after_noloc, but set INSN_LOCATOR according to AFTER. */
4206 emit_jump_insn_after (rtx pattern, rtx after)
4208 if (INSN_P (after))
4209 return emit_jump_insn_after_setloc (pattern, after, INSN_LOCATOR (after));
4210 else
4211 return emit_jump_insn_after_noloc (pattern, after);
4214 /* Like emit_call_insn_after_noloc, but set INSN_LOCATOR according to SCOPE. */
4216 emit_call_insn_after_setloc (rtx pattern, rtx after, int loc)
4218 rtx last = emit_call_insn_after_noloc (pattern, after);
4220 if (pattern == NULL_RTX || !loc)
4221 return last;
4223 after = NEXT_INSN (after);
4224 while (1)
4226 if (active_insn_p (after) && !INSN_LOCATOR (after))
4227 INSN_LOCATOR (after) = loc;
4228 if (after == last)
4229 break;
4230 after = NEXT_INSN (after);
4232 return last;
4235 /* Like emit_call_insn_after_noloc, but set INSN_LOCATOR according to AFTER. */
4237 emit_call_insn_after (rtx pattern, rtx after)
4239 if (INSN_P (after))
4240 return emit_call_insn_after_setloc (pattern, after, INSN_LOCATOR (after));
4241 else
4242 return emit_call_insn_after_noloc (pattern, after);
4245 /* Like emit_insn_before_noloc, but set INSN_LOCATOR according to SCOPE. */
4247 emit_insn_before_setloc (rtx pattern, rtx before, int loc)
4249 rtx first = PREV_INSN (before);
4250 rtx last = emit_insn_before_noloc (pattern, before, NULL);
4252 if (pattern == NULL_RTX || !loc)
4253 return last;
4255 if (!first)
4256 first = get_insns ();
4257 else
4258 first = NEXT_INSN (first);
4259 while (1)
4261 if (active_insn_p (first) && !INSN_LOCATOR (first))
4262 INSN_LOCATOR (first) = loc;
4263 if (first == last)
4264 break;
4265 first = NEXT_INSN (first);
4267 return last;
4270 /* Like emit_insn_before_noloc, but set INSN_LOCATOR according to BEFORE. */
4272 emit_insn_before (rtx pattern, rtx before)
4274 if (INSN_P (before))
4275 return emit_insn_before_setloc (pattern, before, INSN_LOCATOR (before));
4276 else
4277 return emit_insn_before_noloc (pattern, before, NULL);
4280 /* like emit_insn_before_noloc, but set insn_locator according to scope. */
4282 emit_jump_insn_before_setloc (rtx pattern, rtx before, int loc)
4284 rtx first = PREV_INSN (before);
4285 rtx last = emit_jump_insn_before_noloc (pattern, before);
4287 if (pattern == NULL_RTX)
4288 return last;
4290 first = NEXT_INSN (first);
4291 while (1)
4293 if (active_insn_p (first) && !INSN_LOCATOR (first))
4294 INSN_LOCATOR (first) = loc;
4295 if (first == last)
4296 break;
4297 first = NEXT_INSN (first);
4299 return last;
4302 /* Like emit_jump_insn_before_noloc, but set INSN_LOCATOR according to BEFORE. */
4304 emit_jump_insn_before (rtx pattern, rtx before)
4306 if (INSN_P (before))
4307 return emit_jump_insn_before_setloc (pattern, before, INSN_LOCATOR (before));
4308 else
4309 return emit_jump_insn_before_noloc (pattern, before);
4312 /* like emit_insn_before_noloc, but set insn_locator according to scope. */
4314 emit_call_insn_before_setloc (rtx pattern, rtx before, int loc)
4316 rtx first = PREV_INSN (before);
4317 rtx last = emit_call_insn_before_noloc (pattern, before);
4319 if (pattern == NULL_RTX)
4320 return last;
4322 first = NEXT_INSN (first);
4323 while (1)
4325 if (active_insn_p (first) && !INSN_LOCATOR (first))
4326 INSN_LOCATOR (first) = loc;
4327 if (first == last)
4328 break;
4329 first = NEXT_INSN (first);
4331 return last;
4334 /* like emit_call_insn_before_noloc,
4335 but set insn_locator according to before. */
4337 emit_call_insn_before (rtx pattern, rtx before)
4339 if (INSN_P (before))
4340 return emit_call_insn_before_setloc (pattern, before, INSN_LOCATOR (before));
4341 else
4342 return emit_call_insn_before_noloc (pattern, before);
4345 /* Take X and emit it at the end of the doubly-linked
4346 INSN list.
4348 Returns the last insn emitted. */
4351 emit_insn (rtx x)
4353 rtx last = last_insn;
4354 rtx insn;
4356 if (x == NULL_RTX)
4357 return last;
4359 switch (GET_CODE (x))
4361 case INSN:
4362 case JUMP_INSN:
4363 case CALL_INSN:
4364 case CODE_LABEL:
4365 case BARRIER:
4366 case NOTE:
4367 insn = x;
4368 while (insn)
4370 rtx next = NEXT_INSN (insn);
4371 add_insn (insn);
4372 last = insn;
4373 insn = next;
4375 break;
4377 #ifdef ENABLE_RTL_CHECKING
4378 case SEQUENCE:
4379 gcc_unreachable ();
4380 break;
4381 #endif
4383 default:
4384 last = make_insn_raw (x);
4385 add_insn (last);
4386 break;
4389 return last;
4392 /* Make an insn of code JUMP_INSN with pattern X
4393 and add it to the end of the doubly-linked list. */
4396 emit_jump_insn (rtx x)
4398 rtx last = NULL_RTX, insn;
4400 switch (GET_CODE (x))
4402 case INSN:
4403 case JUMP_INSN:
4404 case CALL_INSN:
4405 case CODE_LABEL:
4406 case BARRIER:
4407 case NOTE:
4408 insn = x;
4409 while (insn)
4411 rtx next = NEXT_INSN (insn);
4412 add_insn (insn);
4413 last = insn;
4414 insn = next;
4416 break;
4418 #ifdef ENABLE_RTL_CHECKING
4419 case SEQUENCE:
4420 gcc_unreachable ();
4421 break;
4422 #endif
4424 default:
4425 last = make_jump_insn_raw (x);
4426 add_insn (last);
4427 break;
4430 return last;
4433 /* Make an insn of code CALL_INSN with pattern X
4434 and add it to the end of the doubly-linked list. */
4437 emit_call_insn (rtx x)
4439 rtx insn;
4441 switch (GET_CODE (x))
4443 case INSN:
4444 case JUMP_INSN:
4445 case CALL_INSN:
4446 case CODE_LABEL:
4447 case BARRIER:
4448 case NOTE:
4449 insn = emit_insn (x);
4450 break;
4452 #ifdef ENABLE_RTL_CHECKING
4453 case SEQUENCE:
4454 gcc_unreachable ();
4455 break;
4456 #endif
4458 default:
4459 insn = make_call_insn_raw (x);
4460 add_insn (insn);
4461 break;
4464 return insn;
4467 /* Add the label LABEL to the end of the doubly-linked list. */
4470 emit_label (rtx label)
4472 /* This can be called twice for the same label
4473 as a result of the confusion that follows a syntax error!
4474 So make it harmless. */
4475 if (INSN_UID (label) == 0)
4477 INSN_UID (label) = cur_insn_uid++;
4478 add_insn (label);
4480 return label;
4483 /* Make an insn of code BARRIER
4484 and add it to the end of the doubly-linked list. */
4487 emit_barrier (void)
4489 rtx barrier = rtx_alloc (BARRIER);
4490 INSN_UID (barrier) = cur_insn_uid++;
4491 add_insn (barrier);
4492 return barrier;
4495 /* Emit a copy of note ORIG. */
4498 emit_note_copy (rtx orig)
4500 rtx note;
4502 note = rtx_alloc (NOTE);
4504 INSN_UID (note) = cur_insn_uid++;
4505 NOTE_DATA (note) = NOTE_DATA (orig);
4506 NOTE_KIND (note) = NOTE_KIND (orig);
4507 BLOCK_FOR_INSN (note) = NULL;
4508 add_insn (note);
4510 return note;
4513 /* Make an insn of code NOTE or type NOTE_NO
4514 and add it to the end of the doubly-linked list. */
4517 emit_note (enum insn_note kind)
4519 rtx note;
4521 note = rtx_alloc (NOTE);
4522 INSN_UID (note) = cur_insn_uid++;
4523 NOTE_KIND (note) = kind;
4524 memset (&NOTE_DATA (note), 0, sizeof (NOTE_DATA (note)));
4525 BLOCK_FOR_INSN (note) = NULL;
4526 add_insn (note);
4527 return note;
4530 /* Cause next statement to emit a line note even if the line number
4531 has not changed. */
4533 void
4534 force_next_line_note (void)
4536 #ifdef USE_MAPPED_LOCATION
4537 last_location = -1;
4538 #else
4539 last_location.line = -1;
4540 #endif
4543 /* Place a note of KIND on insn INSN with DATUM as the datum. If a
4544 note of this type already exists, remove it first. */
4547 set_unique_reg_note (rtx insn, enum reg_note kind, rtx datum)
4549 rtx note = find_reg_note (insn, kind, NULL_RTX);
4550 rtx new_note = NULL;
4552 switch (kind)
4554 case REG_EQUAL:
4555 case REG_EQUIV:
4556 /* Don't add REG_EQUAL/REG_EQUIV notes if the insn
4557 has multiple sets (some callers assume single_set
4558 means the insn only has one set, when in fact it
4559 means the insn only has one * useful * set). */
4560 if (GET_CODE (PATTERN (insn)) == PARALLEL && multiple_sets (insn))
4562 gcc_assert (!note);
4563 return NULL_RTX;
4566 /* Don't add ASM_OPERAND REG_EQUAL/REG_EQUIV notes.
4567 It serves no useful purpose and breaks eliminate_regs. */
4568 if (GET_CODE (datum) == ASM_OPERANDS)
4569 return NULL_RTX;
4571 if (note)
4573 XEXP (note, 0) = datum;
4574 df_notes_rescan (insn);
4575 return note;
4577 break;
4579 default:
4580 if (note)
4582 XEXP (note, 0) = datum;
4583 return note;
4585 break;
4588 new_note = gen_rtx_EXPR_LIST (kind, datum, REG_NOTES (insn));
4589 REG_NOTES (insn) = new_note;
4591 switch (kind)
4593 case REG_EQUAL:
4594 case REG_EQUIV:
4595 df_notes_rescan (insn);
4596 break;
4597 default:
4598 break;
4601 return REG_NOTES (insn);
4604 /* Return an indication of which type of insn should have X as a body.
4605 The value is CODE_LABEL, INSN, CALL_INSN or JUMP_INSN. */
4607 static enum rtx_code
4608 classify_insn (rtx x)
4610 if (LABEL_P (x))
4611 return CODE_LABEL;
4612 if (GET_CODE (x) == CALL)
4613 return CALL_INSN;
4614 if (GET_CODE (x) == RETURN)
4615 return JUMP_INSN;
4616 if (GET_CODE (x) == SET)
4618 if (SET_DEST (x) == pc_rtx)
4619 return JUMP_INSN;
4620 else if (GET_CODE (SET_SRC (x)) == CALL)
4621 return CALL_INSN;
4622 else
4623 return INSN;
4625 if (GET_CODE (x) == PARALLEL)
4627 int j;
4628 for (j = XVECLEN (x, 0) - 1; j >= 0; j--)
4629 if (GET_CODE (XVECEXP (x, 0, j)) == CALL)
4630 return CALL_INSN;
4631 else if (GET_CODE (XVECEXP (x, 0, j)) == SET
4632 && SET_DEST (XVECEXP (x, 0, j)) == pc_rtx)
4633 return JUMP_INSN;
4634 else if (GET_CODE (XVECEXP (x, 0, j)) == SET
4635 && GET_CODE (SET_SRC (XVECEXP (x, 0, j))) == CALL)
4636 return CALL_INSN;
4638 return INSN;
4641 /* Emit the rtl pattern X as an appropriate kind of insn.
4642 If X is a label, it is simply added into the insn chain. */
4645 emit (rtx x)
4647 enum rtx_code code = classify_insn (x);
4649 switch (code)
4651 case CODE_LABEL:
4652 return emit_label (x);
4653 case INSN:
4654 return emit_insn (x);
4655 case JUMP_INSN:
4657 rtx insn = emit_jump_insn (x);
4658 if (any_uncondjump_p (insn) || GET_CODE (x) == RETURN)
4659 return emit_barrier ();
4660 return insn;
4662 case CALL_INSN:
4663 return emit_call_insn (x);
4664 default:
4665 gcc_unreachable ();
4669 /* Space for free sequence stack entries. */
4670 static GTY ((deletable)) struct sequence_stack *free_sequence_stack;
4672 /* Begin emitting insns to a sequence. If this sequence will contain
4673 something that might cause the compiler to pop arguments to function
4674 calls (because those pops have previously been deferred; see
4675 INHIBIT_DEFER_POP for more details), use do_pending_stack_adjust
4676 before calling this function. That will ensure that the deferred
4677 pops are not accidentally emitted in the middle of this sequence. */
4679 void
4680 start_sequence (void)
4682 struct sequence_stack *tem;
4684 if (free_sequence_stack != NULL)
4686 tem = free_sequence_stack;
4687 free_sequence_stack = tem->next;
4689 else
4690 tem = ggc_alloc (sizeof (struct sequence_stack));
4692 tem->next = seq_stack;
4693 tem->first = first_insn;
4694 tem->last = last_insn;
4696 seq_stack = tem;
4698 first_insn = 0;
4699 last_insn = 0;
4702 /* Set up the insn chain starting with FIRST as the current sequence,
4703 saving the previously current one. See the documentation for
4704 start_sequence for more information about how to use this function. */
4706 void
4707 push_to_sequence (rtx first)
4709 rtx last;
4711 start_sequence ();
4713 for (last = first; last && NEXT_INSN (last); last = NEXT_INSN (last));
4715 first_insn = first;
4716 last_insn = last;
4719 /* Like push_to_sequence, but take the last insn as an argument to avoid
4720 looping through the list. */
4722 void
4723 push_to_sequence2 (rtx first, rtx last)
4725 start_sequence ();
4727 first_insn = first;
4728 last_insn = last;
4731 /* Set up the outer-level insn chain
4732 as the current sequence, saving the previously current one. */
4734 void
4735 push_topmost_sequence (void)
4737 struct sequence_stack *stack, *top = NULL;
4739 start_sequence ();
4741 for (stack = seq_stack; stack; stack = stack->next)
4742 top = stack;
4744 first_insn = top->first;
4745 last_insn = top->last;
4748 /* After emitting to the outer-level insn chain, update the outer-level
4749 insn chain, and restore the previous saved state. */
4751 void
4752 pop_topmost_sequence (void)
4754 struct sequence_stack *stack, *top = NULL;
4756 for (stack = seq_stack; stack; stack = stack->next)
4757 top = stack;
4759 top->first = first_insn;
4760 top->last = last_insn;
4762 end_sequence ();
4765 /* After emitting to a sequence, restore previous saved state.
4767 To get the contents of the sequence just made, you must call
4768 `get_insns' *before* calling here.
4770 If the compiler might have deferred popping arguments while
4771 generating this sequence, and this sequence will not be immediately
4772 inserted into the instruction stream, use do_pending_stack_adjust
4773 before calling get_insns. That will ensure that the deferred
4774 pops are inserted into this sequence, and not into some random
4775 location in the instruction stream. See INHIBIT_DEFER_POP for more
4776 information about deferred popping of arguments. */
4778 void
4779 end_sequence (void)
4781 struct sequence_stack *tem = seq_stack;
4783 first_insn = tem->first;
4784 last_insn = tem->last;
4785 seq_stack = tem->next;
4787 memset (tem, 0, sizeof (*tem));
4788 tem->next = free_sequence_stack;
4789 free_sequence_stack = tem;
4792 /* Return 1 if currently emitting into a sequence. */
4795 in_sequence_p (void)
4797 return seq_stack != 0;
4800 /* Put the various virtual registers into REGNO_REG_RTX. */
4802 static void
4803 init_virtual_regs (struct emit_status *es)
4805 rtx *ptr = es->x_regno_reg_rtx;
4806 ptr[VIRTUAL_INCOMING_ARGS_REGNUM] = virtual_incoming_args_rtx;
4807 ptr[VIRTUAL_STACK_VARS_REGNUM] = virtual_stack_vars_rtx;
4808 ptr[VIRTUAL_STACK_DYNAMIC_REGNUM] = virtual_stack_dynamic_rtx;
4809 ptr[VIRTUAL_OUTGOING_ARGS_REGNUM] = virtual_outgoing_args_rtx;
4810 ptr[VIRTUAL_CFA_REGNUM] = virtual_cfa_rtx;
4814 /* Used by copy_insn_1 to avoid copying SCRATCHes more than once. */
4815 static rtx copy_insn_scratch_in[MAX_RECOG_OPERANDS];
4816 static rtx copy_insn_scratch_out[MAX_RECOG_OPERANDS];
4817 static int copy_insn_n_scratches;
4819 /* When an insn is being copied by copy_insn_1, this is nonzero if we have
4820 copied an ASM_OPERANDS.
4821 In that case, it is the original input-operand vector. */
4822 static rtvec orig_asm_operands_vector;
4824 /* When an insn is being copied by copy_insn_1, this is nonzero if we have
4825 copied an ASM_OPERANDS.
4826 In that case, it is the copied input-operand vector. */
4827 static rtvec copy_asm_operands_vector;
4829 /* Likewise for the constraints vector. */
4830 static rtvec orig_asm_constraints_vector;
4831 static rtvec copy_asm_constraints_vector;
4833 /* Recursively create a new copy of an rtx for copy_insn.
4834 This function differs from copy_rtx in that it handles SCRATCHes and
4835 ASM_OPERANDs properly.
4836 Normally, this function is not used directly; use copy_insn as front end.
4837 However, you could first copy an insn pattern with copy_insn and then use
4838 this function afterwards to properly copy any REG_NOTEs containing
4839 SCRATCHes. */
4842 copy_insn_1 (rtx orig)
4844 rtx copy;
4845 int i, j;
4846 RTX_CODE code;
4847 const char *format_ptr;
4849 code = GET_CODE (orig);
4851 switch (code)
4853 case REG:
4854 case CONST_INT:
4855 case CONST_DOUBLE:
4856 case CONST_FIXED:
4857 case CONST_VECTOR:
4858 case SYMBOL_REF:
4859 case CODE_LABEL:
4860 case PC:
4861 case CC0:
4862 return orig;
4863 case CLOBBER:
4864 if (REG_P (XEXP (orig, 0)) && REGNO (XEXP (orig, 0)) < FIRST_PSEUDO_REGISTER)
4865 return orig;
4866 break;
4868 case SCRATCH:
4869 for (i = 0; i < copy_insn_n_scratches; i++)
4870 if (copy_insn_scratch_in[i] == orig)
4871 return copy_insn_scratch_out[i];
4872 break;
4874 case CONST:
4875 if (shared_const_p (orig))
4876 return orig;
4877 break;
4879 /* A MEM with a constant address is not sharable. The problem is that
4880 the constant address may need to be reloaded. If the mem is shared,
4881 then reloading one copy of this mem will cause all copies to appear
4882 to have been reloaded. */
4884 default:
4885 break;
4888 /* Copy the various flags, fields, and other information. We assume
4889 that all fields need copying, and then clear the fields that should
4890 not be copied. That is the sensible default behavior, and forces
4891 us to explicitly document why we are *not* copying a flag. */
4892 copy = shallow_copy_rtx (orig);
4894 /* We do not copy the USED flag, which is used as a mark bit during
4895 walks over the RTL. */
4896 RTX_FLAG (copy, used) = 0;
4898 /* We do not copy JUMP, CALL, or FRAME_RELATED for INSNs. */
4899 if (INSN_P (orig))
4901 RTX_FLAG (copy, jump) = 0;
4902 RTX_FLAG (copy, call) = 0;
4903 RTX_FLAG (copy, frame_related) = 0;
4906 format_ptr = GET_RTX_FORMAT (GET_CODE (copy));
4908 for (i = 0; i < GET_RTX_LENGTH (GET_CODE (copy)); i++)
4909 switch (*format_ptr++)
4911 case 'e':
4912 if (XEXP (orig, i) != NULL)
4913 XEXP (copy, i) = copy_insn_1 (XEXP (orig, i));
4914 break;
4916 case 'E':
4917 case 'V':
4918 if (XVEC (orig, i) == orig_asm_constraints_vector)
4919 XVEC (copy, i) = copy_asm_constraints_vector;
4920 else if (XVEC (orig, i) == orig_asm_operands_vector)
4921 XVEC (copy, i) = copy_asm_operands_vector;
4922 else if (XVEC (orig, i) != NULL)
4924 XVEC (copy, i) = rtvec_alloc (XVECLEN (orig, i));
4925 for (j = 0; j < XVECLEN (copy, i); j++)
4926 XVECEXP (copy, i, j) = copy_insn_1 (XVECEXP (orig, i, j));
4928 break;
4930 case 't':
4931 case 'w':
4932 case 'i':
4933 case 's':
4934 case 'S':
4935 case 'u':
4936 case '0':
4937 /* These are left unchanged. */
4938 break;
4940 default:
4941 gcc_unreachable ();
4944 if (code == SCRATCH)
4946 i = copy_insn_n_scratches++;
4947 gcc_assert (i < MAX_RECOG_OPERANDS);
4948 copy_insn_scratch_in[i] = orig;
4949 copy_insn_scratch_out[i] = copy;
4951 else if (code == ASM_OPERANDS)
4953 orig_asm_operands_vector = ASM_OPERANDS_INPUT_VEC (orig);
4954 copy_asm_operands_vector = ASM_OPERANDS_INPUT_VEC (copy);
4955 orig_asm_constraints_vector = ASM_OPERANDS_INPUT_CONSTRAINT_VEC (orig);
4956 copy_asm_constraints_vector = ASM_OPERANDS_INPUT_CONSTRAINT_VEC (copy);
4959 return copy;
4962 /* Create a new copy of an rtx.
4963 This function differs from copy_rtx in that it handles SCRATCHes and
4964 ASM_OPERANDs properly.
4965 INSN doesn't really have to be a full INSN; it could be just the
4966 pattern. */
4968 copy_insn (rtx insn)
4970 copy_insn_n_scratches = 0;
4971 orig_asm_operands_vector = 0;
4972 orig_asm_constraints_vector = 0;
4973 copy_asm_operands_vector = 0;
4974 copy_asm_constraints_vector = 0;
4975 return copy_insn_1 (insn);
4978 /* Initialize data structures and variables in this file
4979 before generating rtl for each function. */
4981 void
4982 init_emit (void)
4984 struct function *f = cfun;
4986 f->emit = ggc_alloc (sizeof (struct emit_status));
4987 first_insn = NULL;
4988 last_insn = NULL;
4989 cur_insn_uid = 1;
4990 reg_rtx_no = LAST_VIRTUAL_REGISTER + 1;
4991 last_location = UNKNOWN_LOCATION;
4992 first_label_num = label_num;
4993 seq_stack = NULL;
4995 /* Init the tables that describe all the pseudo regs. */
4997 f->emit->regno_pointer_align_length = LAST_VIRTUAL_REGISTER + 101;
4999 f->emit->regno_pointer_align
5000 = ggc_alloc_cleared (f->emit->regno_pointer_align_length
5001 * sizeof (unsigned char));
5003 regno_reg_rtx
5004 = ggc_alloc (f->emit->regno_pointer_align_length * sizeof (rtx));
5006 /* Put copies of all the hard registers into regno_reg_rtx. */
5007 memcpy (regno_reg_rtx,
5008 static_regno_reg_rtx,
5009 FIRST_PSEUDO_REGISTER * sizeof (rtx));
5011 /* Put copies of all the virtual register rtx into regno_reg_rtx. */
5012 init_virtual_regs (f->emit);
5014 /* Indicate that the virtual registers and stack locations are
5015 all pointers. */
5016 REG_POINTER (stack_pointer_rtx) = 1;
5017 REG_POINTER (frame_pointer_rtx) = 1;
5018 REG_POINTER (hard_frame_pointer_rtx) = 1;
5019 REG_POINTER (arg_pointer_rtx) = 1;
5021 REG_POINTER (virtual_incoming_args_rtx) = 1;
5022 REG_POINTER (virtual_stack_vars_rtx) = 1;
5023 REG_POINTER (virtual_stack_dynamic_rtx) = 1;
5024 REG_POINTER (virtual_outgoing_args_rtx) = 1;
5025 REG_POINTER (virtual_cfa_rtx) = 1;
5027 #ifdef STACK_BOUNDARY
5028 REGNO_POINTER_ALIGN (STACK_POINTER_REGNUM) = STACK_BOUNDARY;
5029 REGNO_POINTER_ALIGN (FRAME_POINTER_REGNUM) = STACK_BOUNDARY;
5030 REGNO_POINTER_ALIGN (HARD_FRAME_POINTER_REGNUM) = STACK_BOUNDARY;
5031 REGNO_POINTER_ALIGN (ARG_POINTER_REGNUM) = STACK_BOUNDARY;
5033 REGNO_POINTER_ALIGN (VIRTUAL_INCOMING_ARGS_REGNUM) = STACK_BOUNDARY;
5034 REGNO_POINTER_ALIGN (VIRTUAL_STACK_VARS_REGNUM) = STACK_BOUNDARY;
5035 REGNO_POINTER_ALIGN (VIRTUAL_STACK_DYNAMIC_REGNUM) = STACK_BOUNDARY;
5036 REGNO_POINTER_ALIGN (VIRTUAL_OUTGOING_ARGS_REGNUM) = STACK_BOUNDARY;
5037 REGNO_POINTER_ALIGN (VIRTUAL_CFA_REGNUM) = BITS_PER_WORD;
5038 #endif
5040 #ifdef INIT_EXPANDERS
5041 INIT_EXPANDERS;
5042 #endif
5045 /* Generate a vector constant for mode MODE and constant value CONSTANT. */
5047 static rtx
5048 gen_const_vector (enum machine_mode mode, int constant)
5050 rtx tem;
5051 rtvec v;
5052 int units, i;
5053 enum machine_mode inner;
5055 units = GET_MODE_NUNITS (mode);
5056 inner = GET_MODE_INNER (mode);
5058 gcc_assert (!DECIMAL_FLOAT_MODE_P (inner));
5060 v = rtvec_alloc (units);
5062 /* We need to call this function after we set the scalar const_tiny_rtx
5063 entries. */
5064 gcc_assert (const_tiny_rtx[constant][(int) inner]);
5066 for (i = 0; i < units; ++i)
5067 RTVEC_ELT (v, i) = const_tiny_rtx[constant][(int) inner];
5069 tem = gen_rtx_raw_CONST_VECTOR (mode, v);
5070 return tem;
5073 /* Generate a vector like gen_rtx_raw_CONST_VEC, but use the zero vector when
5074 all elements are zero, and the one vector when all elements are one. */
5076 gen_rtx_CONST_VECTOR (enum machine_mode mode, rtvec v)
5078 enum machine_mode inner = GET_MODE_INNER (mode);
5079 int nunits = GET_MODE_NUNITS (mode);
5080 rtx x;
5081 int i;
5083 /* Check to see if all of the elements have the same value. */
5084 x = RTVEC_ELT (v, nunits - 1);
5085 for (i = nunits - 2; i >= 0; i--)
5086 if (RTVEC_ELT (v, i) != x)
5087 break;
5089 /* If the values are all the same, check to see if we can use one of the
5090 standard constant vectors. */
5091 if (i == -1)
5093 if (x == CONST0_RTX (inner))
5094 return CONST0_RTX (mode);
5095 else if (x == CONST1_RTX (inner))
5096 return CONST1_RTX (mode);
5099 return gen_rtx_raw_CONST_VECTOR (mode, v);
5102 /* Initialise global register information required by all functions. */
5104 void
5105 init_emit_regs (void)
5107 int i;
5109 /* Reset register attributes */
5110 htab_empty (reg_attrs_htab);
5112 /* We need reg_raw_mode, so initialize the modes now. */
5113 init_reg_modes_target ();
5115 /* Assign register numbers to the globally defined register rtx. */
5116 pc_rtx = gen_rtx_PC (VOIDmode);
5117 cc0_rtx = gen_rtx_CC0 (VOIDmode);
5118 stack_pointer_rtx = gen_raw_REG (Pmode, STACK_POINTER_REGNUM);
5119 frame_pointer_rtx = gen_raw_REG (Pmode, FRAME_POINTER_REGNUM);
5120 hard_frame_pointer_rtx = gen_raw_REG (Pmode, HARD_FRAME_POINTER_REGNUM);
5121 arg_pointer_rtx = gen_raw_REG (Pmode, ARG_POINTER_REGNUM);
5122 virtual_incoming_args_rtx =
5123 gen_raw_REG (Pmode, VIRTUAL_INCOMING_ARGS_REGNUM);
5124 virtual_stack_vars_rtx =
5125 gen_raw_REG (Pmode, VIRTUAL_STACK_VARS_REGNUM);
5126 virtual_stack_dynamic_rtx =
5127 gen_raw_REG (Pmode, VIRTUAL_STACK_DYNAMIC_REGNUM);
5128 virtual_outgoing_args_rtx =
5129 gen_raw_REG (Pmode, VIRTUAL_OUTGOING_ARGS_REGNUM);
5130 virtual_cfa_rtx = gen_raw_REG (Pmode, VIRTUAL_CFA_REGNUM);
5132 /* Initialize RTL for commonly used hard registers. These are
5133 copied into regno_reg_rtx as we begin to compile each function. */
5134 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
5135 static_regno_reg_rtx[i] = gen_raw_REG (reg_raw_mode[i], i);
5137 #ifdef RETURN_ADDRESS_POINTER_REGNUM
5138 return_address_pointer_rtx
5139 = gen_raw_REG (Pmode, RETURN_ADDRESS_POINTER_REGNUM);
5140 #endif
5142 #ifdef STATIC_CHAIN_REGNUM
5143 static_chain_rtx = gen_rtx_REG (Pmode, STATIC_CHAIN_REGNUM);
5145 #ifdef STATIC_CHAIN_INCOMING_REGNUM
5146 if (STATIC_CHAIN_INCOMING_REGNUM != STATIC_CHAIN_REGNUM)
5147 static_chain_incoming_rtx
5148 = gen_rtx_REG (Pmode, STATIC_CHAIN_INCOMING_REGNUM);
5149 else
5150 #endif
5151 static_chain_incoming_rtx = static_chain_rtx;
5152 #endif
5154 #ifdef STATIC_CHAIN
5155 static_chain_rtx = STATIC_CHAIN;
5157 #ifdef STATIC_CHAIN_INCOMING
5158 static_chain_incoming_rtx = STATIC_CHAIN_INCOMING;
5159 #else
5160 static_chain_incoming_rtx = static_chain_rtx;
5161 #endif
5162 #endif
5164 if ((unsigned) PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM)
5165 pic_offset_table_rtx = gen_raw_REG (Pmode, PIC_OFFSET_TABLE_REGNUM);
5166 else
5167 pic_offset_table_rtx = NULL_RTX;
5170 /* Create some permanent unique rtl objects shared between all functions.
5171 LINE_NUMBERS is nonzero if line numbers are to be generated. */
5173 void
5174 init_emit_once (int line_numbers)
5176 int i;
5177 enum machine_mode mode;
5178 enum machine_mode double_mode;
5180 /* Initialize the CONST_INT, CONST_DOUBLE, CONST_FIXED, and memory attribute
5181 hash tables. */
5182 const_int_htab = htab_create_ggc (37, const_int_htab_hash,
5183 const_int_htab_eq, NULL);
5185 const_double_htab = htab_create_ggc (37, const_double_htab_hash,
5186 const_double_htab_eq, NULL);
5188 const_fixed_htab = htab_create_ggc (37, const_fixed_htab_hash,
5189 const_fixed_htab_eq, NULL);
5191 mem_attrs_htab = htab_create_ggc (37, mem_attrs_htab_hash,
5192 mem_attrs_htab_eq, NULL);
5193 reg_attrs_htab = htab_create_ggc (37, reg_attrs_htab_hash,
5194 reg_attrs_htab_eq, NULL);
5196 no_line_numbers = ! line_numbers;
5198 /* Compute the word and byte modes. */
5200 byte_mode = VOIDmode;
5201 word_mode = VOIDmode;
5202 double_mode = VOIDmode;
5204 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
5205 mode != VOIDmode;
5206 mode = GET_MODE_WIDER_MODE (mode))
5208 if (GET_MODE_BITSIZE (mode) == BITS_PER_UNIT
5209 && byte_mode == VOIDmode)
5210 byte_mode = mode;
5212 if (GET_MODE_BITSIZE (mode) == BITS_PER_WORD
5213 && word_mode == VOIDmode)
5214 word_mode = mode;
5217 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT);
5218 mode != VOIDmode;
5219 mode = GET_MODE_WIDER_MODE (mode))
5221 if (GET_MODE_BITSIZE (mode) == DOUBLE_TYPE_SIZE
5222 && double_mode == VOIDmode)
5223 double_mode = mode;
5226 ptr_mode = mode_for_size (POINTER_SIZE, GET_MODE_CLASS (Pmode), 0);
5228 #ifdef INIT_EXPANDERS
5229 /* This is to initialize {init|mark|free}_machine_status before the first
5230 call to push_function_context_to. This is needed by the Chill front
5231 end which calls push_function_context_to before the first call to
5232 init_function_start. */
5233 INIT_EXPANDERS;
5234 #endif
5236 /* Create the unique rtx's for certain rtx codes and operand values. */
5238 /* Don't use gen_rtx_CONST_INT here since gen_rtx_CONST_INT in this case
5239 tries to use these variables. */
5240 for (i = - MAX_SAVED_CONST_INT; i <= MAX_SAVED_CONST_INT; i++)
5241 const_int_rtx[i + MAX_SAVED_CONST_INT] =
5242 gen_rtx_raw_CONST_INT (VOIDmode, (HOST_WIDE_INT) i);
5244 if (STORE_FLAG_VALUE >= - MAX_SAVED_CONST_INT
5245 && STORE_FLAG_VALUE <= MAX_SAVED_CONST_INT)
5246 const_true_rtx = const_int_rtx[STORE_FLAG_VALUE + MAX_SAVED_CONST_INT];
5247 else
5248 const_true_rtx = gen_rtx_CONST_INT (VOIDmode, STORE_FLAG_VALUE);
5250 REAL_VALUE_FROM_INT (dconst0, 0, 0, double_mode);
5251 REAL_VALUE_FROM_INT (dconst1, 1, 0, double_mode);
5252 REAL_VALUE_FROM_INT (dconst2, 2, 0, double_mode);
5253 REAL_VALUE_FROM_INT (dconst3, 3, 0, double_mode);
5254 REAL_VALUE_FROM_INT (dconst10, 10, 0, double_mode);
5255 REAL_VALUE_FROM_INT (dconstm1, -1, -1, double_mode);
5256 REAL_VALUE_FROM_INT (dconstm2, -2, -1, double_mode);
5258 dconsthalf = dconst1;
5259 SET_REAL_EXP (&dconsthalf, REAL_EXP (&dconsthalf) - 1);
5261 real_arithmetic (&dconstthird, RDIV_EXPR, &dconst1, &dconst3);
5263 /* Initialize mathematical constants for constant folding builtins.
5264 These constants need to be given to at least 160 bits precision. */
5265 real_from_string (&dconstsqrt2,
5266 "1.4142135623730950488016887242096980785696718753769480731766797379907");
5267 real_from_string (&dconste,
5268 "2.7182818284590452353602874713526624977572470936999595749669676277241");
5270 for (i = 0; i < (int) ARRAY_SIZE (const_tiny_rtx); i++)
5272 REAL_VALUE_TYPE *r =
5273 (i == 0 ? &dconst0 : i == 1 ? &dconst1 : &dconst2);
5275 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT);
5276 mode != VOIDmode;
5277 mode = GET_MODE_WIDER_MODE (mode))
5278 const_tiny_rtx[i][(int) mode] =
5279 CONST_DOUBLE_FROM_REAL_VALUE (*r, mode);
5281 for (mode = GET_CLASS_NARROWEST_MODE (MODE_DECIMAL_FLOAT);
5282 mode != VOIDmode;
5283 mode = GET_MODE_WIDER_MODE (mode))
5284 const_tiny_rtx[i][(int) mode] =
5285 CONST_DOUBLE_FROM_REAL_VALUE (*r, mode);
5287 const_tiny_rtx[i][(int) VOIDmode] = GEN_INT (i);
5289 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
5290 mode != VOIDmode;
5291 mode = GET_MODE_WIDER_MODE (mode))
5292 const_tiny_rtx[i][(int) mode] = GEN_INT (i);
5294 for (mode = GET_CLASS_NARROWEST_MODE (MODE_PARTIAL_INT);
5295 mode != VOIDmode;
5296 mode = GET_MODE_WIDER_MODE (mode))
5297 const_tiny_rtx[i][(int) mode] = GEN_INT (i);
5300 for (mode = GET_CLASS_NARROWEST_MODE (MODE_COMPLEX_INT);
5301 mode != VOIDmode;
5302 mode = GET_MODE_WIDER_MODE (mode))
5304 rtx inner = const_tiny_rtx[0][(int)GET_MODE_INNER (mode)];
5305 const_tiny_rtx[0][(int) mode] = gen_rtx_CONCAT (mode, inner, inner);
5308 for (mode = GET_CLASS_NARROWEST_MODE (MODE_COMPLEX_FLOAT);
5309 mode != VOIDmode;
5310 mode = GET_MODE_WIDER_MODE (mode))
5312 rtx inner = const_tiny_rtx[0][(int)GET_MODE_INNER (mode)];
5313 const_tiny_rtx[0][(int) mode] = gen_rtx_CONCAT (mode, inner, inner);
5316 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_INT);
5317 mode != VOIDmode;
5318 mode = GET_MODE_WIDER_MODE (mode))
5320 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
5321 const_tiny_rtx[1][(int) mode] = gen_const_vector (mode, 1);
5324 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_FLOAT);
5325 mode != VOIDmode;
5326 mode = GET_MODE_WIDER_MODE (mode))
5328 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
5329 const_tiny_rtx[1][(int) mode] = gen_const_vector (mode, 1);
5332 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FRACT);
5333 mode != VOIDmode;
5334 mode = GET_MODE_WIDER_MODE (mode))
5336 FCONST0(mode).data.high = 0;
5337 FCONST0(mode).data.low = 0;
5338 FCONST0(mode).mode = mode;
5339 const_tiny_rtx[0][(int) mode] = CONST_FIXED_FROM_FIXED_VALUE (
5340 FCONST0 (mode), mode);
5343 for (mode = GET_CLASS_NARROWEST_MODE (MODE_UFRACT);
5344 mode != VOIDmode;
5345 mode = GET_MODE_WIDER_MODE (mode))
5347 FCONST0(mode).data.high = 0;
5348 FCONST0(mode).data.low = 0;
5349 FCONST0(mode).mode = mode;
5350 const_tiny_rtx[0][(int) mode] = CONST_FIXED_FROM_FIXED_VALUE (
5351 FCONST0 (mode), mode);
5354 for (mode = GET_CLASS_NARROWEST_MODE (MODE_ACCUM);
5355 mode != VOIDmode;
5356 mode = GET_MODE_WIDER_MODE (mode))
5358 FCONST0(mode).data.high = 0;
5359 FCONST0(mode).data.low = 0;
5360 FCONST0(mode).mode = mode;
5361 const_tiny_rtx[0][(int) mode] = CONST_FIXED_FROM_FIXED_VALUE (
5362 FCONST0 (mode), mode);
5364 /* We store the value 1. */
5365 FCONST1(mode).data.high = 0;
5366 FCONST1(mode).data.low = 0;
5367 FCONST1(mode).mode = mode;
5368 lshift_double (1, 0, GET_MODE_FBIT (mode),
5369 2 * HOST_BITS_PER_WIDE_INT,
5370 &FCONST1(mode).data.low,
5371 &FCONST1(mode).data.high,
5372 SIGNED_FIXED_POINT_MODE_P (mode));
5373 const_tiny_rtx[1][(int) mode] = CONST_FIXED_FROM_FIXED_VALUE (
5374 FCONST1 (mode), mode);
5377 for (mode = GET_CLASS_NARROWEST_MODE (MODE_UACCUM);
5378 mode != VOIDmode;
5379 mode = GET_MODE_WIDER_MODE (mode))
5381 FCONST0(mode).data.high = 0;
5382 FCONST0(mode).data.low = 0;
5383 FCONST0(mode).mode = mode;
5384 const_tiny_rtx[0][(int) mode] = CONST_FIXED_FROM_FIXED_VALUE (
5385 FCONST0 (mode), mode);
5387 /* We store the value 1. */
5388 FCONST1(mode).data.high = 0;
5389 FCONST1(mode).data.low = 0;
5390 FCONST1(mode).mode = mode;
5391 lshift_double (1, 0, GET_MODE_FBIT (mode),
5392 2 * HOST_BITS_PER_WIDE_INT,
5393 &FCONST1(mode).data.low,
5394 &FCONST1(mode).data.high,
5395 SIGNED_FIXED_POINT_MODE_P (mode));
5396 const_tiny_rtx[1][(int) mode] = CONST_FIXED_FROM_FIXED_VALUE (
5397 FCONST1 (mode), mode);
5400 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_FRACT);
5401 mode != VOIDmode;
5402 mode = GET_MODE_WIDER_MODE (mode))
5404 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
5407 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_UFRACT);
5408 mode != VOIDmode;
5409 mode = GET_MODE_WIDER_MODE (mode))
5411 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
5414 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_ACCUM);
5415 mode != VOIDmode;
5416 mode = GET_MODE_WIDER_MODE (mode))
5418 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
5419 const_tiny_rtx[1][(int) mode] = gen_const_vector (mode, 1);
5422 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_UACCUM);
5423 mode != VOIDmode;
5424 mode = GET_MODE_WIDER_MODE (mode))
5426 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
5427 const_tiny_rtx[1][(int) mode] = gen_const_vector (mode, 1);
5430 for (i = (int) CCmode; i < (int) MAX_MACHINE_MODE; ++i)
5431 if (GET_MODE_CLASS ((enum machine_mode) i) == MODE_CC)
5432 const_tiny_rtx[0][i] = const0_rtx;
5434 const_tiny_rtx[0][(int) BImode] = const0_rtx;
5435 if (STORE_FLAG_VALUE == 1)
5436 const_tiny_rtx[1][(int) BImode] = const1_rtx;
5439 /* Produce exact duplicate of insn INSN after AFTER.
5440 Care updating of libcall regions if present. */
5443 emit_copy_of_insn_after (rtx insn, rtx after)
5445 rtx new;
5446 rtx note1, note2, link;
5448 switch (GET_CODE (insn))
5450 case INSN:
5451 new = emit_insn_after (copy_insn (PATTERN (insn)), after);
5452 break;
5454 case JUMP_INSN:
5455 new = emit_jump_insn_after (copy_insn (PATTERN (insn)), after);
5456 break;
5458 case CALL_INSN:
5459 new = emit_call_insn_after (copy_insn (PATTERN (insn)), after);
5460 if (CALL_INSN_FUNCTION_USAGE (insn))
5461 CALL_INSN_FUNCTION_USAGE (new)
5462 = copy_insn (CALL_INSN_FUNCTION_USAGE (insn));
5463 SIBLING_CALL_P (new) = SIBLING_CALL_P (insn);
5464 CONST_OR_PURE_CALL_P (new) = CONST_OR_PURE_CALL_P (insn);
5465 break;
5467 default:
5468 gcc_unreachable ();
5471 /* Update LABEL_NUSES. */
5472 mark_jump_label (PATTERN (new), new, 0);
5474 INSN_LOCATOR (new) = INSN_LOCATOR (insn);
5476 /* If the old insn is frame related, then so is the new one. This is
5477 primarily needed for IA-64 unwind info which marks epilogue insns,
5478 which may be duplicated by the basic block reordering code. */
5479 RTX_FRAME_RELATED_P (new) = RTX_FRAME_RELATED_P (insn);
5481 /* Copy all REG_NOTES except REG_LABEL_OPERAND since mark_jump_label
5482 will make them. REG_LABEL_TARGETs are created there too, but are
5483 supposed to be sticky, so we copy them. */
5484 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
5485 if (REG_NOTE_KIND (link) != REG_LABEL_OPERAND)
5487 if (GET_CODE (link) == EXPR_LIST)
5488 REG_NOTES (new)
5489 = gen_rtx_EXPR_LIST (REG_NOTE_KIND (link),
5490 copy_insn_1 (XEXP (link, 0)), REG_NOTES (new));
5491 else
5492 REG_NOTES (new)
5493 = gen_rtx_INSN_LIST (REG_NOTE_KIND (link),
5494 XEXP (link, 0), REG_NOTES (new));
5497 /* Fix the libcall sequences. */
5498 if ((note1 = find_reg_note (new, REG_RETVAL, NULL_RTX)) != NULL)
5500 rtx p = new;
5501 while ((note2 = find_reg_note (p, REG_LIBCALL, NULL_RTX)) == NULL)
5502 p = PREV_INSN (p);
5503 XEXP (note1, 0) = p;
5504 XEXP (note2, 0) = new;
5506 INSN_CODE (new) = INSN_CODE (insn);
5507 return new;
5510 static GTY((deletable)) rtx hard_reg_clobbers [NUM_MACHINE_MODES][FIRST_PSEUDO_REGISTER];
5512 gen_hard_reg_clobber (enum machine_mode mode, unsigned int regno)
5514 if (hard_reg_clobbers[mode][regno])
5515 return hard_reg_clobbers[mode][regno];
5516 else
5517 return (hard_reg_clobbers[mode][regno] =
5518 gen_rtx_CLOBBER (VOIDmode, gen_rtx_REG (mode, regno)));
5521 #include "gt-emit-rtl.h"