* alias.c, c-common.h, c-incpath.c, c-incpath.h, expr.c,
[official-gcc.git] / gcc / config / pa / pa.h
blob9130d6177eeff0ebb23c548901cdf10e847db8ca
1 /* Definitions of target machine for GNU compiler, for the HP Spectrum.
2 Copyright (C) 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000,
3 2001, 2002, 2003, 2004, 2005 Free Software Foundation, Inc.
4 Contributed by Michael Tiemann (tiemann@cygnus.com) of Cygnus Support
5 and Tim Moore (moore@defmacro.cs.utah.edu) of the Center for
6 Software Science at the University of Utah.
8 This file is part of GCC.
10 GCC is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 2, or (at your option)
13 any later version.
15 GCC is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
20 You should have received a copy of the GNU General Public License
21 along with GCC; see the file COPYING. If not, write to
22 the Free Software Foundation, 59 Temple Place - Suite 330,
23 Boston, MA 02111-1307, USA. */
25 enum cmp_type /* comparison type */
27 CMP_SI, /* compare integers */
28 CMP_SF, /* compare single precision floats */
29 CMP_DF, /* compare double precision floats */
30 CMP_MAX /* max comparison type */
33 /* For long call handling. */
34 extern unsigned long total_code_bytes;
36 /* Which processor to schedule for. */
38 enum processor_type
40 PROCESSOR_700,
41 PROCESSOR_7100,
42 PROCESSOR_7100LC,
43 PROCESSOR_7200,
44 PROCESSOR_7300,
45 PROCESSOR_8000
48 /* Which architecture to generate code for. */
50 enum architecture_type
52 ARCHITECTURE_10,
53 ARCHITECTURE_11,
54 ARCHITECTURE_20
57 struct rtx_def;
59 /* For -march= option. */
60 extern const char *pa_arch_string;
61 extern enum architecture_type pa_arch;
63 /* For -mfixed-range= option. */
64 extern const char *pa_fixed_range_string;
66 /* For -mschedule= option. */
67 extern const char *pa_cpu_string;
68 extern enum processor_type pa_cpu;
70 /* For -munix= option. */
71 extern const char *pa_unix_string;
72 extern int flag_pa_unix;
74 #define pa_cpu_attr ((enum attr_cpu)pa_cpu)
76 /* Print subsidiary information on the compiler version in use. */
78 #define TARGET_VERSION fputs (" (hppa)", stderr);
80 /* Run-time compilation parameters selecting different hardware subsets. */
82 extern int target_flags;
84 /* compile code for HP-PA 1.1 ("Snake"). */
86 #define MASK_PA_11 1
88 /* Disable all FP registers (they all become fixed). This may be necessary
89 for compiling kernels which perform lazy context switching of FP regs.
90 Note if you use this option and try to perform floating point operations
91 the compiler will abort! */
93 #define MASK_DISABLE_FPREGS 2
94 #define TARGET_DISABLE_FPREGS (target_flags & MASK_DISABLE_FPREGS)
96 /* Generate code which assumes that all space register are equivalent.
97 Triggers aggressive unscaled index addressing and faster
98 builtin_return_address. */
99 #define MASK_NO_SPACE_REGS 4
100 #define TARGET_NO_SPACE_REGS (target_flags & MASK_NO_SPACE_REGS)
102 /* Allow unconditional jumps in the delay slots of call instructions. */
103 #define MASK_JUMP_IN_DELAY 8
104 #define TARGET_JUMP_IN_DELAY (target_flags & MASK_JUMP_IN_DELAY)
106 /* Disable indexed addressing modes. */
107 #define MASK_DISABLE_INDEXING 32
108 #define TARGET_DISABLE_INDEXING (target_flags & MASK_DISABLE_INDEXING)
110 /* Emit code which follows the new portable runtime calling conventions
111 HP wants everyone to use for ELF objects. If at all possible you want
112 to avoid this since it's a performance loss for non-prototyped code.
114 Note TARGET_PORTABLE_RUNTIME also forces all calls to use inline
115 long-call stubs which is quite expensive. */
116 #define MASK_PORTABLE_RUNTIME 64
117 #define TARGET_PORTABLE_RUNTIME (target_flags & MASK_PORTABLE_RUNTIME)
119 /* Emit directives only understood by GAS. This allows parameter
120 relocations to work for static functions. There is no way
121 to make them work the HP assembler at this time. */
122 #define MASK_GAS 128
123 #define TARGET_GAS (target_flags & MASK_GAS)
125 /* Emit code for processors which do not have an FPU. */
126 #define MASK_SOFT_FLOAT 256
127 #define TARGET_SOFT_FLOAT (target_flags & MASK_SOFT_FLOAT)
129 /* Use 3-insn load/store sequences for access to large data segments
130 in shared libraries on hpux10. */
131 #define MASK_LONG_LOAD_STORE 512
132 #define TARGET_LONG_LOAD_STORE (target_flags & MASK_LONG_LOAD_STORE)
134 /* Use a faster sequence for indirect calls. This assumes that calls
135 through function pointers will never cross a space boundary, and
136 that the executable is not dynamically linked. Such assumptions
137 are generally safe for building kernels and statically linked
138 executables. Code compiled with this option will fail miserably if
139 the executable is dynamically linked or uses nested functions! */
140 #define MASK_FAST_INDIRECT_CALLS 1024
141 #define TARGET_FAST_INDIRECT_CALLS (target_flags & MASK_FAST_INDIRECT_CALLS)
143 /* Generate code with big switch statements to avoid out of range branches
144 occurring within the switch table. */
145 #define MASK_BIG_SWITCH 2048
146 #define TARGET_BIG_SWITCH (target_flags & MASK_BIG_SWITCH)
148 /* Generate code for the HPPA 2.0 architecture. TARGET_PA_11 should also be
149 true when this is true. */
150 #define MASK_PA_20 4096
152 /* Generate cpp defines for server I/O. */
153 #define MASK_SIO 8192
154 #define TARGET_SIO (target_flags & MASK_SIO)
156 /* Assume GNU linker by default. */
157 #define MASK_GNU_LD 16384
158 #ifndef TARGET_GNU_LD
159 #define TARGET_GNU_LD (target_flags & MASK_GNU_LD)
160 #endif
162 /* Force generation of long calls. */
163 #define MASK_LONG_CALLS 32768
164 #ifndef TARGET_LONG_CALLS
165 #define TARGET_LONG_CALLS (target_flags & MASK_LONG_CALLS)
166 #endif
168 #ifndef TARGET_PA_10
169 #define TARGET_PA_10 (target_flags & (MASK_PA_11 | MASK_PA_20) == 0)
170 #endif
172 #ifndef TARGET_PA_11
173 #define TARGET_PA_11 (target_flags & MASK_PA_11)
174 #endif
176 #ifndef TARGET_PA_20
177 #define TARGET_PA_20 (target_flags & MASK_PA_20)
178 #endif
180 /* Generate code for the HPPA 2.0 architecture in 64bit mode. */
181 #ifndef TARGET_64BIT
182 #define TARGET_64BIT 0
183 #endif
185 /* Generate code for ELF32 ABI. */
186 #ifndef TARGET_ELF32
187 #define TARGET_ELF32 0
188 #endif
190 /* Generate code for SOM 32bit ABI. */
191 #ifndef TARGET_SOM
192 #define TARGET_SOM 0
193 #endif
195 /* HP-UX UNIX features. */
196 #ifndef TARGET_HPUX
197 #define TARGET_HPUX 0
198 #endif
200 /* HP-UX 10.10 UNIX 95 features. */
201 #ifndef TARGET_HPUX_10_10
202 #define TARGET_HPUX_10_10 0
203 #endif
205 /* HP-UX 11i multibyte and UNIX 98 extensions. */
206 #ifndef TARGET_HPUX_11_11
207 #define TARGET_HPUX_11_11 0
208 #endif
210 /* The following three defines are potential target switches. The current
211 defines are optimal given the current capabilities of GAS and GNU ld. */
213 /* Define to a C expression evaluating to true to use long absolute calls.
214 Currently, only the HP assembler and SOM linker support long absolute
215 calls. They are used only in non-pic code. */
216 #define TARGET_LONG_ABS_CALL (TARGET_SOM && !TARGET_GAS)
218 /* Define to a C expression evaluating to true to use long pic symbol
219 difference calls. This is a call variant similar to the long pic
220 pc-relative call. Long pic symbol difference calls are only used with
221 the HP SOM linker. Currently, only the HP assembler supports these
222 calls. GAS doesn't allow an arbitrary difference of two symbols. */
223 #define TARGET_LONG_PIC_SDIFF_CALL (!TARGET_GAS)
225 /* Define to a C expression evaluating to true to use long pic
226 pc-relative calls. Long pic pc-relative calls are only used with
227 GAS. Currently, they are usable for calls within a module but
228 not for external calls. */
229 #define TARGET_LONG_PIC_PCREL_CALL 0
231 /* Define to a C expression evaluating to true to use SOM secondary
232 definition symbols for weak support. Linker support for secondary
233 definition symbols is buggy prior to HP-UX 11.X. */
234 #define TARGET_SOM_SDEF 0
236 /* Define to a C expression evaluating to true to save the entry value
237 of SP in the current frame marker. This is normally unnecessary.
238 However, the HP-UX unwind library looks at the SAVE_SP callinfo flag.
239 HP compilers don't use this flag but it is supported by the assembler.
240 We set this flag to indicate that register %r3 has been saved at the
241 start of the frame. Thus, when the HP unwind library is used, we
242 need to generate additional code to save SP into the frame marker. */
243 #define TARGET_HPUX_UNWIND_LIBRARY 0
245 /* Macro to define tables used to set the flags. This is a
246 list in braces of target switches with each switch being
247 { "NAME", VALUE, "HELP_STRING" }. VALUE is the bits to set,
248 or minus the bits to clear. An empty string NAME is used to
249 identify the default VALUE. Do not mark empty strings for
250 translation. */
252 #define TARGET_SWITCHES \
253 {{ "snake", MASK_PA_11, \
254 N_("Generate PA1.1 code") }, \
255 { "nosnake", -(MASK_PA_11 | MASK_PA_20), \
256 N_("Generate PA1.0 code") }, \
257 { "pa-risc-1-0", -(MASK_PA_11 | MASK_PA_20), \
258 N_("Generate PA1.0 code") }, \
259 { "pa-risc-1-1", MASK_PA_11, \
260 N_("Generate PA1.1 code") }, \
261 { "pa-risc-2-0", MASK_PA_20, \
262 N_("Generate PA2.0 code (requires binutils 2.10 or later)") }, \
263 { "disable-fpregs", MASK_DISABLE_FPREGS, \
264 N_("Disable FP regs") }, \
265 { "no-disable-fpregs", -MASK_DISABLE_FPREGS, \
266 N_("Do not disable FP regs") }, \
267 { "no-space-regs", MASK_NO_SPACE_REGS, \
268 N_("Disable space regs") }, \
269 { "space-regs", -MASK_NO_SPACE_REGS, \
270 N_("Do not disable space regs") }, \
271 { "jump-in-delay", MASK_JUMP_IN_DELAY, \
272 N_("Put jumps in call delay slots") }, \
273 { "no-jump-in-delay", -MASK_JUMP_IN_DELAY, \
274 N_("Do not put jumps in call delay slots") }, \
275 { "disable-indexing", MASK_DISABLE_INDEXING, \
276 N_("Disable indexed addressing") }, \
277 { "no-disable-indexing", -MASK_DISABLE_INDEXING, \
278 N_("Do not disable indexed addressing") }, \
279 { "portable-runtime", MASK_PORTABLE_RUNTIME, \
280 N_("Use portable calling conventions") }, \
281 { "no-portable-runtime", -MASK_PORTABLE_RUNTIME, \
282 N_("Do not use portable calling conventions") }, \
283 { "gas", MASK_GAS, \
284 N_("Assume code will be assembled by GAS") }, \
285 { "no-gas", -MASK_GAS, \
286 N_("Do not assume code will be assembled by GAS") }, \
287 { "soft-float", MASK_SOFT_FLOAT, \
288 N_("Use software floating point") }, \
289 { "no-soft-float", -MASK_SOFT_FLOAT, \
290 N_("Do not use software floating point") }, \
291 { "long-load-store", MASK_LONG_LOAD_STORE, \
292 N_("Emit long load/store sequences") }, \
293 { "no-long-load-store", -MASK_LONG_LOAD_STORE, \
294 N_("Do not emit long load/store sequences") }, \
295 { "fast-indirect-calls", MASK_FAST_INDIRECT_CALLS, \
296 N_("Generate fast indirect calls") }, \
297 { "no-fast-indirect-calls", -MASK_FAST_INDIRECT_CALLS, \
298 N_("Do not generate fast indirect calls") }, \
299 { "big-switch", MASK_BIG_SWITCH, \
300 N_("Generate code for huge switch statements") }, \
301 { "no-big-switch", -MASK_BIG_SWITCH, \
302 N_("Do not generate code for huge switch statements") }, \
303 { "long-calls", MASK_LONG_CALLS, \
304 N_("Always generate long calls") }, \
305 { "no-long-calls", -MASK_LONG_CALLS, \
306 N_("Generate long calls only when needed") }, \
307 { "linker-opt", 0, \
308 N_("Enable linker optimizations") }, \
309 SUBTARGET_SWITCHES \
310 { "", TARGET_DEFAULT | TARGET_CPU_DEFAULT, \
311 NULL }}
313 #ifndef TARGET_DEFAULT
314 #define TARGET_DEFAULT (MASK_GAS | MASK_JUMP_IN_DELAY | MASK_BIG_SWITCH)
315 #endif
317 #ifndef TARGET_CPU_DEFAULT
318 #define TARGET_CPU_DEFAULT 0
319 #endif
321 #ifndef SUBTARGET_SWITCHES
322 #define SUBTARGET_SWITCHES
323 #endif
325 #ifndef TARGET_SCHED_DEFAULT
326 #define TARGET_SCHED_DEFAULT "8000"
327 #endif
329 #define TARGET_OPTIONS \
331 { "arch=", &pa_arch_string, \
332 N_("Specify PA-RISC architecture for code generation.\n" \
333 "Values are 1.0, 1.1 and 2.0."), 0}, \
334 { "fixed-range=", &pa_fixed_range_string, \
335 N_("Specify range of registers to make fixed."), 0}, \
336 { "schedule=", &pa_cpu_string, \
337 N_("Specify CPU for scheduling purposes."), 0}, \
338 SUBTARGET_OPTIONS \
341 #ifndef SUBTARGET_OPTIONS
342 #define SUBTARGET_OPTIONS
343 #endif
345 /* Support for a compile-time default CPU, et cetera. The rules are:
346 --with-schedule is ignored if -mschedule is specified.
347 --with-arch is ignored if -march is specified. */
348 #define OPTION_DEFAULT_SPECS \
349 {"arch", "%{!march=*:-march=%(VALUE)}" }, \
350 {"schedule", "%{!mschedule=*:-mschedule=%(VALUE)}" }
352 /* Specify the dialect of assembler to use. New mnemonics is dialect one
353 and the old mnemonics are dialect zero. */
354 #define ASSEMBLER_DIALECT (TARGET_PA_20 ? 1 : 0)
356 #define OVERRIDE_OPTIONS override_options ()
358 /* Override some settings from dbxelf.h. */
360 /* We do not have to be compatible with dbx, so we enable gdb extensions
361 by default. */
362 #define DEFAULT_GDB_EXTENSIONS 1
364 /* This used to be zero (no max length), but big enums and such can
365 cause huge strings which killed gas.
367 We also have to avoid lossage in dbxout.c -- it does not compute the
368 string size accurately, so we are real conservative here. */
369 #undef DBX_CONTIN_LENGTH
370 #define DBX_CONTIN_LENGTH 3000
372 /* GDB always assumes the current function's frame begins at the value
373 of the stack pointer upon entry to the current function. Accessing
374 local variables and parameters passed on the stack is done using the
375 base of the frame + an offset provided by GCC.
377 For functions which have frame pointers this method works fine;
378 the (frame pointer) == (stack pointer at function entry) and GCC provides
379 an offset relative to the frame pointer.
381 This loses for functions without a frame pointer; GCC provides an offset
382 which is relative to the stack pointer after adjusting for the function's
383 frame size. GDB would prefer the offset to be relative to the value of
384 the stack pointer at the function's entry. Yuk! */
385 #define DEBUGGER_AUTO_OFFSET(X) \
386 ((GET_CODE (X) == PLUS ? INTVAL (XEXP (X, 1)) : 0) \
387 + (frame_pointer_needed ? 0 : compute_frame_size (get_frame_size (), 0)))
389 #define DEBUGGER_ARG_OFFSET(OFFSET, X) \
390 ((GET_CODE (X) == PLUS ? OFFSET : 0) \
391 + (frame_pointer_needed ? 0 : compute_frame_size (get_frame_size (), 0)))
393 #define TARGET_CPU_CPP_BUILTINS() \
394 do { \
395 builtin_assert("cpu=hppa"); \
396 builtin_assert("machine=hppa"); \
397 builtin_define("__hppa"); \
398 builtin_define("__hppa__"); \
399 if (TARGET_PA_20) \
400 builtin_define("_PA_RISC2_0"); \
401 else if (TARGET_PA_11) \
402 builtin_define("_PA_RISC1_1"); \
403 else \
404 builtin_define("_PA_RISC1_0"); \
405 } while (0)
407 /* An old set of OS defines for various BSD-like systems. */
408 #define TARGET_OS_CPP_BUILTINS() \
409 do \
411 builtin_define_std ("REVARGV"); \
412 builtin_define_std ("hp800"); \
413 builtin_define_std ("hp9000"); \
414 builtin_define_std ("hp9k8"); \
415 if (!c_dialect_cxx () && !flag_iso) \
416 builtin_define ("hppa"); \
417 builtin_define_std ("spectrum"); \
418 builtin_define_std ("unix"); \
419 builtin_assert ("system=bsd"); \
420 builtin_assert ("system=unix"); \
422 while (0)
424 #define CC1_SPEC "%{pg:} %{p:}"
426 #define LINK_SPEC "%{mlinker-opt:-O} %{!shared:-u main} %{shared:-b}"
428 /* We don't want -lg. */
429 #ifndef LIB_SPEC
430 #define LIB_SPEC "%{!p:%{!pg:-lc}}%{p:-lc_p}%{pg:-lc_p}"
431 #endif
433 /* This macro defines command-line switches that modify the default
434 target name.
436 The definition is be an initializer for an array of structures. Each
437 array element has have three elements: the switch name, one of the
438 enumeration codes ADD or DELETE to indicate whether the string should be
439 inserted or deleted, and the string to be inserted or deleted. */
440 #define MODIFY_TARGET_NAME {{"-32", DELETE, "64"}, {"-64", ADD, "64"}}
442 /* Make gcc agree with <machine/ansi.h> */
444 #define SIZE_TYPE "unsigned int"
445 #define PTRDIFF_TYPE "int"
446 #define WCHAR_TYPE "unsigned int"
447 #define WCHAR_TYPE_SIZE 32
449 /* Show we can debug even without a frame pointer. */
450 #define CAN_DEBUG_WITHOUT_FP
452 /* target machine storage layout */
453 typedef struct machine_function GTY(())
455 /* Flag indicating that a .NSUBSPA directive has been output for
456 this function. */
457 int in_nsubspa;
458 } machine_function;
460 /* Define this macro if it is advisable to hold scalars in registers
461 in a wider mode than that declared by the program. In such cases,
462 the value is constrained to be within the bounds of the declared
463 type, but kept valid in the wider mode. The signedness of the
464 extension may differ from that of the type. */
466 #define PROMOTE_MODE(MODE,UNSIGNEDP,TYPE) \
467 if (GET_MODE_CLASS (MODE) == MODE_INT \
468 && GET_MODE_SIZE (MODE) < UNITS_PER_WORD) \
469 (MODE) = word_mode;
471 /* Define this if most significant bit is lowest numbered
472 in instructions that operate on numbered bit-fields. */
473 #define BITS_BIG_ENDIAN 1
475 /* Define this if most significant byte of a word is the lowest numbered. */
476 /* That is true on the HP-PA. */
477 #define BYTES_BIG_ENDIAN 1
479 /* Define this if most significant word of a multiword number is lowest
480 numbered. */
481 #define WORDS_BIG_ENDIAN 1
483 #define MAX_BITS_PER_WORD 64
485 /* Width of a word, in units (bytes). */
486 #define UNITS_PER_WORD (TARGET_64BIT ? 8 : 4)
488 /* Minimum number of units in a word. If this is undefined, the default
489 is UNITS_PER_WORD. Otherwise, it is the constant value that is the
490 smallest value that UNITS_PER_WORD can have at run-time.
492 FIXME: This needs to be 4 when TARGET_64BIT is true to suppress the
493 building of various TImode routines in libgcc. The HP runtime
494 specification doesn't provide the alignment requirements and calling
495 conventions for TImode variables. */
496 #define MIN_UNITS_PER_WORD 4
498 /* Allocation boundary (in *bits*) for storing arguments in argument list. */
499 #define PARM_BOUNDARY BITS_PER_WORD
501 /* Largest alignment required for any stack parameter, in bits.
502 Don't define this if it is equal to PARM_BOUNDARY */
503 #define MAX_PARM_BOUNDARY BIGGEST_ALIGNMENT
505 /* Boundary (in *bits*) on which stack pointer is always aligned;
506 certain optimizations in combine depend on this.
508 The HP-UX runtime documents mandate 64-byte and 16-byte alignment for
509 the stack on the 32 and 64-bit ports, respectively. However, we
510 are only guaranteed that the stack is aligned to BIGGEST_ALIGNMENT
511 in main. Thus, we treat the former as the preferred alignment. */
512 #define STACK_BOUNDARY BIGGEST_ALIGNMENT
513 #define PREFERRED_STACK_BOUNDARY (TARGET_64BIT ? 128 : 512)
515 /* Allocation boundary (in *bits*) for the code of a function. */
516 #define FUNCTION_BOUNDARY BITS_PER_WORD
518 /* Alignment of field after `int : 0' in a structure. */
519 #define EMPTY_FIELD_BOUNDARY 32
521 /* Every structure's size must be a multiple of this. */
522 #define STRUCTURE_SIZE_BOUNDARY 8
524 /* A bit-field declared as `int' forces `int' alignment for the struct. */
525 #define PCC_BITFIELD_TYPE_MATTERS 1
527 /* No data type wants to be aligned rounder than this. */
528 #define BIGGEST_ALIGNMENT (2 * BITS_PER_WORD)
530 /* Get around hp-ux assembler bug, and make strcpy of constants fast. */
531 #define CONSTANT_ALIGNMENT(CODE, TYPEALIGN) \
532 ((TYPEALIGN) < 32 ? 32 : (TYPEALIGN))
534 /* Make arrays of chars word-aligned for the same reasons. */
535 #define DATA_ALIGNMENT(TYPE, ALIGN) \
536 (TREE_CODE (TYPE) == ARRAY_TYPE \
537 && TYPE_MODE (TREE_TYPE (TYPE)) == QImode \
538 && (ALIGN) < BITS_PER_WORD ? BITS_PER_WORD : (ALIGN))
540 /* Set this nonzero if move instructions will actually fail to work
541 when given unaligned data. */
542 #define STRICT_ALIGNMENT 1
544 /* Value is 1 if it is a good idea to tie two pseudo registers
545 when one has mode MODE1 and one has mode MODE2.
546 If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
547 for any hard reg, then this must be 0 for correct output. */
548 #define MODES_TIEABLE_P(MODE1, MODE2) \
549 (GET_MODE_CLASS (MODE1) == GET_MODE_CLASS (MODE2))
551 /* Specify the registers used for certain standard purposes.
552 The values of these macros are register numbers. */
554 /* The HP-PA pc isn't overloaded on a register that the compiler knows about. */
555 /* #define PC_REGNUM */
557 /* Register to use for pushing function arguments. */
558 #define STACK_POINTER_REGNUM 30
560 /* Base register for access to local variables of the function. */
561 #define FRAME_POINTER_REGNUM 3
563 /* Value should be nonzero if functions must have frame pointers. */
564 #define FRAME_POINTER_REQUIRED \
565 (current_function_calls_alloca)
567 /* C statement to store the difference between the frame pointer
568 and the stack pointer values immediately after the function prologue.
570 Note, we always pretend that this is a leaf function because if
571 it's not, there's no point in trying to eliminate the
572 frame pointer. If it is a leaf function, we guessed right! */
573 #define INITIAL_FRAME_POINTER_OFFSET(VAR) \
574 do {(VAR) = - compute_frame_size (get_frame_size (), 0);} while (0)
576 /* Base register for access to arguments of the function. */
577 #define ARG_POINTER_REGNUM (TARGET_64BIT ? 29 : 3)
579 /* Register in which static-chain is passed to a function. */
580 #define STATIC_CHAIN_REGNUM (TARGET_64BIT ? 31 : 29)
582 /* Register used to address the offset table for position-independent
583 data references. */
584 #define PIC_OFFSET_TABLE_REGNUM \
585 (flag_pic ? (TARGET_64BIT ? 27 : 19) : INVALID_REGNUM)
587 #define PIC_OFFSET_TABLE_REG_CALL_CLOBBERED 1
589 /* Function to return the rtx used to save the pic offset table register
590 across function calls. */
591 extern struct rtx_def *hppa_pic_save_rtx (void);
593 #define DEFAULT_PCC_STRUCT_RETURN 0
595 /* Register in which address to store a structure value
596 is passed to a function. */
597 #define PA_STRUCT_VALUE_REGNUM 28
599 /* Describe how we implement __builtin_eh_return. */
600 #define EH_RETURN_DATA_REGNO(N) \
601 ((N) < 3 ? (N) + 20 : (N) == 3 ? 31 : INVALID_REGNUM)
602 #define EH_RETURN_STACKADJ_RTX gen_rtx_REG (Pmode, 29)
603 #define EH_RETURN_HANDLER_RTX \
604 gen_rtx_MEM (word_mode, \
605 gen_rtx_PLUS (word_mode, frame_pointer_rtx, \
606 TARGET_64BIT ? GEN_INT (-16) : GEN_INT (-20)))
609 /* Offset from the argument pointer register value to the top of
610 stack. This is different from FIRST_PARM_OFFSET because of the
611 frame marker. */
612 #define ARG_POINTER_CFA_OFFSET(FNDECL) 0
614 /* The letters I, J, K, L and M in a register constraint string
615 can be used to stand for particular ranges of immediate operands.
616 This macro defines what the ranges are.
617 C is the letter, and VALUE is a constant value.
618 Return 1 if VALUE is in the range specified by C.
620 `I' is used for the 11 bit constants.
621 `J' is used for the 14 bit constants.
622 `K' is used for values that can be moved with a zdepi insn.
623 `L' is used for the 5 bit constants.
624 `M' is used for 0.
625 `N' is used for values with the least significant 11 bits equal to zero
626 and when sign extended from 32 to 64 bits the
627 value does not change.
628 `O' is used for numbers n such that n+1 is a power of 2.
631 #define CONST_OK_FOR_LETTER_P(VALUE, C) \
632 ((C) == 'I' ? VAL_11_BITS_P (VALUE) \
633 : (C) == 'J' ? VAL_14_BITS_P (VALUE) \
634 : (C) == 'K' ? zdepi_cint_p (VALUE) \
635 : (C) == 'L' ? VAL_5_BITS_P (VALUE) \
636 : (C) == 'M' ? (VALUE) == 0 \
637 : (C) == 'N' ? (((VALUE) & (((HOST_WIDE_INT) -1 << 31) | 0x7ff)) == 0 \
638 || (((VALUE) & (((HOST_WIDE_INT) -1 << 31) | 0x7ff)) \
639 == (HOST_WIDE_INT) -1 << 31)) \
640 : (C) == 'O' ? (((VALUE) & ((VALUE) + 1)) == 0) \
641 : (C) == 'P' ? and_mask_p (VALUE) \
642 : 0)
644 /* Similar, but for floating or large integer constants, and defining letters
645 G and H. Here VALUE is the CONST_DOUBLE rtx itself.
647 For PA, `G' is the floating-point constant zero. `H' is undefined. */
649 #define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C) \
650 ((C) == 'G' ? (GET_MODE_CLASS (GET_MODE (VALUE)) == MODE_FLOAT \
651 && (VALUE) == CONST0_RTX (GET_MODE (VALUE))) \
652 : 0)
654 /* The class value for index registers, and the one for base regs. */
655 #define INDEX_REG_CLASS GENERAL_REGS
656 #define BASE_REG_CLASS GENERAL_REGS
658 #define FP_REG_CLASS_P(CLASS) \
659 ((CLASS) == FP_REGS || (CLASS) == FPUPPER_REGS)
661 /* True if register is floating-point. */
662 #define FP_REGNO_P(N) ((N) >= FP_REG_FIRST && (N) <= FP_REG_LAST)
664 /* Given an rtx X being reloaded into a reg required to be
665 in class CLASS, return the class of reg to actually use.
666 In general this is just CLASS; but on some machines
667 in some cases it is preferable to use a more restrictive class. */
668 #define PREFERRED_RELOAD_CLASS(X,CLASS) (CLASS)
670 /* Return the register class of a scratch register needed to copy
671 IN into a register in CLASS in MODE, or a register in CLASS in MODE
672 to IN. If it can be done directly NO_REGS is returned.
674 Avoid doing any work for the common case calls. */
675 #define SECONDARY_RELOAD_CLASS(CLASS,MODE,IN) \
676 ((CLASS == BASE_REG_CLASS && GET_CODE (IN) == REG \
677 && REGNO (IN) < FIRST_PSEUDO_REGISTER) \
678 ? NO_REGS : secondary_reload_class (CLASS, MODE, IN))
680 #define MAYBE_FP_REG_CLASS_P(CLASS) \
681 reg_classes_intersect_p ((CLASS), FP_REGS)
683 /* On the PA it is not possible to directly move data between
684 GENERAL_REGS and FP_REGS. */
685 #define SECONDARY_MEMORY_NEEDED(CLASS1, CLASS2, MODE) \
686 (MAYBE_FP_REG_CLASS_P (CLASS1) != FP_REG_CLASS_P (CLASS2) \
687 || MAYBE_FP_REG_CLASS_P (CLASS2) != FP_REG_CLASS_P (CLASS1))
689 /* Return the stack location to use for secondary memory needed reloads. */
690 #define SECONDARY_MEMORY_NEEDED_RTX(MODE) \
691 gen_rtx_MEM (MODE, gen_rtx_PLUS (Pmode, stack_pointer_rtx, GEN_INT (-16)))
694 /* Stack layout; function entry, exit and calling. */
696 /* Define this if pushing a word on the stack
697 makes the stack pointer a smaller address. */
698 /* #define STACK_GROWS_DOWNWARD */
700 /* Believe it or not. */
701 #define ARGS_GROW_DOWNWARD
703 /* Define this if the nominal address of the stack frame
704 is at the high-address end of the local variables;
705 that is, each additional local variable allocated
706 goes at a more negative offset in the frame. */
707 /* #define FRAME_GROWS_DOWNWARD */
709 /* Offset within stack frame to start allocating local variables at.
710 If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
711 first local allocated. Otherwise, it is the offset to the BEGINNING
712 of the first local allocated.
714 On the 32-bit ports, we reserve one slot for the previous frame
715 pointer and one fill slot. The fill slot is for compatibility
716 with HP compiled programs. On the 64-bit ports, we reserve one
717 slot for the previous frame pointer. */
718 #define STARTING_FRAME_OFFSET 8
720 /* Define STACK_ALIGNMENT_NEEDED to zero to disable final alignment
721 of the stack. The default is to align it to STACK_BOUNDARY. */
722 #define STACK_ALIGNMENT_NEEDED 0
724 /* If we generate an insn to push BYTES bytes,
725 this says how many the stack pointer really advances by.
726 On the HP-PA, don't define this because there are no push insns. */
727 /* #define PUSH_ROUNDING(BYTES) */
729 /* Offset of first parameter from the argument pointer register value.
730 This value will be negated because the arguments grow down.
731 Also note that on STACK_GROWS_UPWARD machines (such as this one)
732 this is the distance from the frame pointer to the end of the first
733 argument, not it's beginning. To get the real offset of the first
734 argument, the size of the argument must be added. */
736 #define FIRST_PARM_OFFSET(FNDECL) (TARGET_64BIT ? -64 : -32)
738 /* When a parameter is passed in a register, stack space is still
739 allocated for it. */
740 #define REG_PARM_STACK_SPACE(DECL) (TARGET_64BIT ? 64 : 16)
742 /* Define this if the above stack space is to be considered part of the
743 space allocated by the caller. */
744 #define OUTGOING_REG_PARM_STACK_SPACE
746 /* Keep the stack pointer constant throughout the function.
747 This is both an optimization and a necessity: longjmp
748 doesn't behave itself when the stack pointer moves within
749 the function! */
750 #define ACCUMULATE_OUTGOING_ARGS 1
752 /* The weird HPPA calling conventions require a minimum of 48 bytes on
753 the stack: 16 bytes for register saves, and 32 bytes for magic.
754 This is the difference between the logical top of stack and the
755 actual sp.
757 On the 64-bit port, the HP C compiler allocates a 48-byte frame
758 marker, although the runtime documentation only describes a 16
759 byte marker. For compatibility, we allocate 48 bytes. */
760 #define STACK_POINTER_OFFSET \
761 (TARGET_64BIT ? -(current_function_outgoing_args_size + 48): -32)
763 #define STACK_DYNAMIC_OFFSET(FNDECL) \
764 (TARGET_64BIT \
765 ? (STACK_POINTER_OFFSET) \
766 : ((STACK_POINTER_OFFSET) - current_function_outgoing_args_size))
768 /* Value is 1 if returning from a function call automatically
769 pops the arguments described by the number-of-args field in the call.
770 FUNDECL is the declaration node of the function (as a tree),
771 FUNTYPE is the data type of the function (as a tree),
772 or for a library call it is an identifier node for the subroutine name. */
774 #define RETURN_POPS_ARGS(FUNDECL,FUNTYPE,SIZE) 0
776 /* Define how to find the value returned by a function.
777 VALTYPE is the data type of the value (as a tree).
778 If the precise function being called is known, FUNC is its FUNCTION_DECL;
779 otherwise, FUNC is 0. */
781 #define FUNCTION_VALUE(VALTYPE, FUNC) function_value (VALTYPE, FUNC)
783 /* Define how to find the value returned by a library function
784 assuming the value has mode MODE. */
786 #define LIBCALL_VALUE(MODE) \
787 gen_rtx_REG (MODE, \
788 (! TARGET_SOFT_FLOAT \
789 && ((MODE) == SFmode || (MODE) == DFmode) ? 32 : 28))
791 /* 1 if N is a possible register number for a function value
792 as seen by the caller. */
794 #define FUNCTION_VALUE_REGNO_P(N) \
795 ((N) == 28 || (! TARGET_SOFT_FLOAT && (N) == 32))
798 /* Define a data type for recording info about an argument list
799 during the scan of that argument list. This data type should
800 hold all necessary information about the function itself
801 and about the args processed so far, enough to enable macros
802 such as FUNCTION_ARG to determine where the next arg should go.
804 On the HP-PA, the WORDS field holds the number of words
805 of arguments scanned so far (including the invisible argument,
806 if any, which holds the structure-value-address). Thus, 4 or
807 more means all following args should go on the stack.
809 The INCOMING field tracks whether this is an "incoming" or
810 "outgoing" argument.
812 The INDIRECT field indicates whether this is is an indirect
813 call or not.
815 The NARGS_PROTOTYPE field indicates that an argument does not
816 have a prototype when it less than or equal to 0. */
818 struct hppa_args {int words, nargs_prototype, incoming, indirect; };
820 #define CUMULATIVE_ARGS struct hppa_args
822 /* Initialize a variable CUM of type CUMULATIVE_ARGS
823 for a call to a function whose data type is FNTYPE.
824 For a library call, FNTYPE is 0. */
826 #define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, FNDECL, N_NAMED_ARGS) \
827 (CUM).words = 0, \
828 (CUM).incoming = 0, \
829 (CUM).indirect = (FNTYPE) && !(FNDECL), \
830 (CUM).nargs_prototype = (FNTYPE && TYPE_ARG_TYPES (FNTYPE) \
831 ? (list_length (TYPE_ARG_TYPES (FNTYPE)) - 1 \
832 + (TYPE_MODE (TREE_TYPE (FNTYPE)) == BLKmode \
833 || pa_return_in_memory (TREE_TYPE (FNTYPE), 0))) \
834 : 0)
838 /* Similar, but when scanning the definition of a procedure. We always
839 set NARGS_PROTOTYPE large so we never return a PARALLEL. */
841 #define INIT_CUMULATIVE_INCOMING_ARGS(CUM,FNTYPE,IGNORE) \
842 (CUM).words = 0, \
843 (CUM).incoming = 1, \
844 (CUM).indirect = 0, \
845 (CUM).nargs_prototype = 1000
847 /* Figure out the size in words of the function argument. The size
848 returned by this macro should always be greater than zero because
849 we pass variable and zero sized objects by reference. */
851 #define FUNCTION_ARG_SIZE(MODE, TYPE) \
852 ((((MODE) != BLKmode \
853 ? (HOST_WIDE_INT) GET_MODE_SIZE (MODE) \
854 : int_size_in_bytes (TYPE)) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
856 /* Update the data in CUM to advance over an argument
857 of mode MODE and data type TYPE.
858 (TYPE is null for libcalls where that information may not be available.) */
860 #define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
861 { (CUM).nargs_prototype--; \
862 (CUM).words += FUNCTION_ARG_SIZE(MODE, TYPE) \
863 + (((CUM).words & 01) && (TYPE) != 0 \
864 && FUNCTION_ARG_SIZE(MODE, TYPE) > 1); \
867 /* Determine where to put an argument to a function.
868 Value is zero to push the argument on the stack,
869 or a hard register in which to store the argument.
871 MODE is the argument's machine mode.
872 TYPE is the data type of the argument (as a tree).
873 This is null for libcalls where that information may
874 not be available.
875 CUM is a variable of type CUMULATIVE_ARGS which gives info about
876 the preceding args and about the function being called.
877 NAMED is nonzero if this argument is a named parameter
878 (otherwise it is an extra parameter matching an ellipsis).
880 On the HP-PA the first four words of args are normally in registers
881 and the rest are pushed. But any arg that won't entirely fit in regs
882 is pushed.
884 Arguments passed in registers are either 1 or 2 words long.
886 The caller must make a distinction between calls to explicitly named
887 functions and calls through pointers to functions -- the conventions
888 are different! Calls through pointers to functions only use general
889 registers for the first four argument words.
891 Of course all this is different for the portable runtime model
892 HP wants everyone to use for ELF. Ugh. Here's a quick description
893 of how it's supposed to work.
895 1) callee side remains unchanged. It expects integer args to be
896 in the integer registers, float args in the float registers and
897 unnamed args in integer registers.
899 2) caller side now depends on if the function being called has
900 a prototype in scope (rather than if it's being called indirectly).
902 2a) If there is a prototype in scope, then arguments are passed
903 according to their type (ints in integer registers, floats in float
904 registers, unnamed args in integer registers.
906 2b) If there is no prototype in scope, then floating point arguments
907 are passed in both integer and float registers. egad.
909 FYI: The portable parameter passing conventions are almost exactly like
910 the standard parameter passing conventions on the RS6000. That's why
911 you'll see lots of similar code in rs6000.h. */
913 /* If defined, a C expression which determines whether, and in which
914 direction, to pad out an argument with extra space. */
915 #define FUNCTION_ARG_PADDING(MODE, TYPE) function_arg_padding ((MODE), (TYPE))
917 /* Specify padding for the last element of a block move between registers
918 and memory.
920 The 64-bit runtime specifies that objects need to be left justified
921 (i.e., the normal justification for a big endian target). The 32-bit
922 runtime specifies right justification for objects smaller than 64 bits.
923 We use a DImode register in the parallel for 5 to 7 byte structures
924 so that there is only one element. This allows the object to be
925 correctly padded. */
926 #define BLOCK_REG_PADDING(MODE, TYPE, FIRST) \
927 function_arg_padding ((MODE), (TYPE))
929 /* Do not expect to understand this without reading it several times. I'm
930 tempted to try and simply it, but I worry about breaking something. */
932 #define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
933 function_arg (&CUM, MODE, TYPE, NAMED)
935 /* If defined, a C expression that gives the alignment boundary, in
936 bits, of an argument with the specified mode and type. If it is
937 not defined, `PARM_BOUNDARY' is used for all arguments. */
939 /* Arguments larger than one word are double word aligned. */
941 #define FUNCTION_ARG_BOUNDARY(MODE, TYPE) \
942 (((TYPE) \
943 ? (integer_zerop (TYPE_SIZE (TYPE)) \
944 || !TREE_CONSTANT (TYPE_SIZE (TYPE)) \
945 || int_size_in_bytes (TYPE) <= UNITS_PER_WORD) \
946 : GET_MODE_SIZE(MODE) <= UNITS_PER_WORD) \
947 ? PARM_BOUNDARY : MAX_PARM_BOUNDARY)
950 extern GTY(()) rtx hppa_compare_op0;
951 extern GTY(()) rtx hppa_compare_op1;
952 extern enum cmp_type hppa_branch_type;
954 /* On HPPA, we emit profiling code as rtl via PROFILE_HOOK rather than
955 as assembly via FUNCTION_PROFILER. Just output a local label.
956 We can't use the function label because the GAS SOM target can't
957 handle the difference of a global symbol and a local symbol. */
959 #ifndef FUNC_BEGIN_PROLOG_LABEL
960 #define FUNC_BEGIN_PROLOG_LABEL "LFBP"
961 #endif
963 #define FUNCTION_PROFILER(FILE, LABEL) \
964 (*targetm.asm_out.internal_label) (FILE, FUNC_BEGIN_PROLOG_LABEL, LABEL)
966 #define PROFILE_HOOK(label_no) hppa_profile_hook (label_no)
967 void hppa_profile_hook (int label_no);
969 /* The profile counter if emitted must come before the prologue. */
970 #define PROFILE_BEFORE_PROLOGUE 1
972 /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
973 the stack pointer does not matter. The value is tested only in
974 functions that have frame pointers.
975 No definition is equivalent to always zero. */
977 extern int may_call_alloca;
979 #define EXIT_IGNORE_STACK \
980 (get_frame_size () != 0 \
981 || current_function_calls_alloca || current_function_outgoing_args_size)
983 /* Output assembler code for a block containing the constant parts
984 of a trampoline, leaving space for the variable parts.\
986 The trampoline sets the static chain pointer to STATIC_CHAIN_REGNUM
987 and then branches to the specified routine.
989 This code template is copied from text segment to stack location
990 and then patched with INITIALIZE_TRAMPOLINE to contain
991 valid values, and then entered as a subroutine.
993 It is best to keep this as small as possible to avoid having to
994 flush multiple lines in the cache. */
996 #define TRAMPOLINE_TEMPLATE(FILE) \
998 if (!TARGET_64BIT) \
1000 fputs ("\tldw 36(%r22),%r21\n", FILE); \
1001 fputs ("\tbb,>=,n %r21,30,.+16\n", FILE); \
1002 if (ASSEMBLER_DIALECT == 0) \
1003 fputs ("\tdepi 0,31,2,%r21\n", FILE); \
1004 else \
1005 fputs ("\tdepwi 0,31,2,%r21\n", FILE); \
1006 fputs ("\tldw 4(%r21),%r19\n", FILE); \
1007 fputs ("\tldw 0(%r21),%r21\n", FILE); \
1008 if (TARGET_PA_20) \
1010 fputs ("\tbve (%r21)\n", FILE); \
1011 fputs ("\tldw 40(%r22),%r29\n", FILE); \
1012 fputs ("\t.word 0\n", FILE); \
1013 fputs ("\t.word 0\n", FILE); \
1015 else \
1017 fputs ("\tldsid (%r21),%r1\n", FILE); \
1018 fputs ("\tmtsp %r1,%sr0\n", FILE); \
1019 fputs ("\tbe 0(%sr0,%r21)\n", FILE); \
1020 fputs ("\tldw 40(%r22),%r29\n", FILE); \
1022 fputs ("\t.word 0\n", FILE); \
1023 fputs ("\t.word 0\n", FILE); \
1024 fputs ("\t.word 0\n", FILE); \
1025 fputs ("\t.word 0\n", FILE); \
1027 else \
1029 fputs ("\t.dword 0\n", FILE); \
1030 fputs ("\t.dword 0\n", FILE); \
1031 fputs ("\t.dword 0\n", FILE); \
1032 fputs ("\t.dword 0\n", FILE); \
1033 fputs ("\tmfia %r31\n", FILE); \
1034 fputs ("\tldd 24(%r31),%r1\n", FILE); \
1035 fputs ("\tldd 24(%r1),%r27\n", FILE); \
1036 fputs ("\tldd 16(%r1),%r1\n", FILE); \
1037 fputs ("\tbve (%r1)\n", FILE); \
1038 fputs ("\tldd 32(%r31),%r31\n", FILE); \
1039 fputs ("\t.dword 0 ; fptr\n", FILE); \
1040 fputs ("\t.dword 0 ; static link\n", FILE); \
1044 /* Length in units of the trampoline for entering a nested function. */
1046 #define TRAMPOLINE_SIZE (TARGET_64BIT ? 72 : 52)
1048 /* Length in units of the trampoline instruction code. */
1050 #define TRAMPOLINE_CODE_SIZE (TARGET_64BIT ? 24 : (TARGET_PA_20 ? 32 : 40))
1052 /* Minimum length of a cache line. A length of 16 will work on all
1053 PA-RISC processors. All PA 1.1 processors have a cache line of
1054 32 bytes. Most but not all PA 2.0 processors have a cache line
1055 of 64 bytes. As cache flushes are expensive and we don't support
1056 PA 1.0, we use a minimum length of 32. */
1058 #define MIN_CACHELINE_SIZE 32
1060 /* Emit RTL insns to initialize the variable parts of a trampoline.
1061 FNADDR is an RTX for the address of the function's pure code.
1062 CXT is an RTX for the static chain value for the function.
1064 Move the function address to the trampoline template at offset 36.
1065 Move the static chain value to trampoline template at offset 40.
1066 Move the trampoline address to trampoline template at offset 44.
1067 Move r19 to trampoline template at offset 48. The latter two
1068 words create a plabel for the indirect call to the trampoline.
1070 A similar sequence is used for the 64-bit port but the plabel is
1071 at the beginning of the trampoline.
1073 Finally, the cache entries for the trampoline code are flushed.
1074 This is necessary to ensure that the trampoline instruction sequence
1075 is written to memory prior to any attempts at prefetching the code
1076 sequence. */
1078 #define INITIALIZE_TRAMPOLINE(TRAMP, FNADDR, CXT) \
1080 rtx start_addr = gen_reg_rtx (Pmode); \
1081 rtx end_addr = gen_reg_rtx (Pmode); \
1082 rtx line_length = gen_reg_rtx (Pmode); \
1083 rtx tmp; \
1085 if (!TARGET_64BIT) \
1087 tmp = memory_address (Pmode, plus_constant ((TRAMP), 36)); \
1088 emit_move_insn (gen_rtx_MEM (Pmode, tmp), (FNADDR)); \
1089 tmp = memory_address (Pmode, plus_constant ((TRAMP), 40)); \
1090 emit_move_insn (gen_rtx_MEM (Pmode, tmp), (CXT)); \
1092 /* Create a fat pointer for the trampoline. */ \
1093 tmp = memory_address (Pmode, plus_constant ((TRAMP), 44)); \
1094 emit_move_insn (gen_rtx_MEM (Pmode, tmp), (TRAMP)); \
1095 tmp = memory_address (Pmode, plus_constant ((TRAMP), 48)); \
1096 emit_move_insn (gen_rtx_MEM (Pmode, tmp), \
1097 gen_rtx_REG (Pmode, 19)); \
1099 /* fdc and fic only use registers for the address to flush, \
1100 they do not accept integer displacements. We align the \
1101 start and end addresses to the beginning of their respective \
1102 cache lines to minimize the number of lines flushed. */ \
1103 tmp = force_reg (Pmode, (TRAMP)); \
1104 emit_insn (gen_andsi3 (start_addr, tmp, \
1105 GEN_INT (-MIN_CACHELINE_SIZE))); \
1106 tmp = force_reg (Pmode, \
1107 plus_constant (tmp, TRAMPOLINE_CODE_SIZE - 1)); \
1108 emit_insn (gen_andsi3 (end_addr, tmp, \
1109 GEN_INT (-MIN_CACHELINE_SIZE))); \
1110 emit_move_insn (line_length, GEN_INT (MIN_CACHELINE_SIZE)); \
1111 emit_insn (gen_dcacheflush (start_addr, end_addr, line_length)); \
1112 emit_insn (gen_icacheflush (start_addr, end_addr, line_length, \
1113 gen_reg_rtx (Pmode), \
1114 gen_reg_rtx (Pmode))); \
1116 else \
1118 tmp = memory_address (Pmode, plus_constant ((TRAMP), 56)); \
1119 emit_move_insn (gen_rtx_MEM (Pmode, tmp), (FNADDR)); \
1120 tmp = memory_address (Pmode, plus_constant ((TRAMP), 64)); \
1121 emit_move_insn (gen_rtx_MEM (Pmode, tmp), (CXT)); \
1123 /* Create a fat pointer for the trampoline. */ \
1124 tmp = memory_address (Pmode, plus_constant ((TRAMP), 16)); \
1125 emit_move_insn (gen_rtx_MEM (Pmode, tmp), \
1126 force_reg (Pmode, plus_constant ((TRAMP), 32))); \
1127 tmp = memory_address (Pmode, plus_constant ((TRAMP), 24)); \
1128 emit_move_insn (gen_rtx_MEM (Pmode, tmp), \
1129 gen_rtx_REG (Pmode, 27)); \
1131 /* fdc and fic only use registers for the address to flush, \
1132 they do not accept integer displacements. We align the \
1133 start and end addresses to the beginning of their respective \
1134 cache lines to minimize the number of lines flushed. */ \
1135 tmp = force_reg (Pmode, plus_constant ((TRAMP), 32)); \
1136 emit_insn (gen_anddi3 (start_addr, tmp, \
1137 GEN_INT (-MIN_CACHELINE_SIZE))); \
1138 tmp = force_reg (Pmode, \
1139 plus_constant (tmp, TRAMPOLINE_CODE_SIZE - 1)); \
1140 emit_insn (gen_anddi3 (end_addr, tmp, \
1141 GEN_INT (-MIN_CACHELINE_SIZE))); \
1142 emit_move_insn (line_length, GEN_INT (MIN_CACHELINE_SIZE)); \
1143 emit_insn (gen_dcacheflush (start_addr, end_addr, line_length)); \
1144 emit_insn (gen_icacheflush (start_addr, end_addr, line_length, \
1145 gen_reg_rtx (Pmode), \
1146 gen_reg_rtx (Pmode))); \
1150 /* Perform any machine-specific adjustment in the address of the trampoline.
1151 ADDR contains the address that was passed to INITIALIZE_TRAMPOLINE.
1152 Adjust the trampoline address to point to the plabel at offset 44. */
1154 #define TRAMPOLINE_ADJUST_ADDRESS(ADDR) \
1155 if (!TARGET_64BIT) (ADDR) = memory_address (Pmode, plus_constant ((ADDR), 46))
1157 /* Implement `va_start' for varargs and stdarg. */
1159 #define EXPAND_BUILTIN_VA_START(valist, nextarg) \
1160 hppa_va_start (valist, nextarg)
1162 /* Addressing modes, and classification of registers for them.
1164 Using autoincrement addressing modes on PA8000 class machines is
1165 not profitable. */
1167 #define HAVE_POST_INCREMENT (pa_cpu < PROCESSOR_8000)
1168 #define HAVE_POST_DECREMENT (pa_cpu < PROCESSOR_8000)
1170 #define HAVE_PRE_DECREMENT (pa_cpu < PROCESSOR_8000)
1171 #define HAVE_PRE_INCREMENT (pa_cpu < PROCESSOR_8000)
1173 /* Macros to check register numbers against specific register classes. */
1175 /* The following macros assume that X is a hard or pseudo reg number.
1176 They give nonzero only if X is a hard reg of the suitable class
1177 or a pseudo reg currently allocated to a suitable hard reg.
1178 Since they use reg_renumber, they are safe only once reg_renumber
1179 has been allocated, which happens in local-alloc.c. */
1181 #define REGNO_OK_FOR_INDEX_P(X) \
1182 ((X) && ((X) < 32 \
1183 || (X >= FIRST_PSEUDO_REGISTER \
1184 && reg_renumber \
1185 && (unsigned) reg_renumber[X] < 32)))
1186 #define REGNO_OK_FOR_BASE_P(X) \
1187 ((X) && ((X) < 32 \
1188 || (X >= FIRST_PSEUDO_REGISTER \
1189 && reg_renumber \
1190 && (unsigned) reg_renumber[X] < 32)))
1191 #define REGNO_OK_FOR_FP_P(X) \
1192 (FP_REGNO_P (X) \
1193 || (X >= FIRST_PSEUDO_REGISTER \
1194 && reg_renumber \
1195 && FP_REGNO_P (reg_renumber[X])))
1197 /* Now macros that check whether X is a register and also,
1198 strictly, whether it is in a specified class.
1200 These macros are specific to the HP-PA, and may be used only
1201 in code for printing assembler insns and in conditions for
1202 define_optimization. */
1204 /* 1 if X is an fp register. */
1206 #define FP_REG_P(X) (REG_P (X) && REGNO_OK_FOR_FP_P (REGNO (X)))
1208 /* Maximum number of registers that can appear in a valid memory address. */
1210 #define MAX_REGS_PER_ADDRESS 2
1212 /* Recognize any constant value that is a valid address except
1213 for symbolic addresses. We get better CSE by rejecting them
1214 here and allowing hppa_legitimize_address to break them up. We
1215 use most of the constants accepted by CONSTANT_P, except CONST_DOUBLE. */
1217 #define CONSTANT_ADDRESS_P(X) \
1218 ((GET_CODE (X) == LABEL_REF || GET_CODE (X) == SYMBOL_REF \
1219 || GET_CODE (X) == CONST_INT || GET_CODE (X) == CONST \
1220 || GET_CODE (X) == HIGH) \
1221 && (reload_in_progress || reload_completed || ! symbolic_expression_p (X)))
1223 /* A C expression that is nonzero if we are using the new HP assembler. */
1225 #ifndef NEW_HP_ASSEMBLER
1226 #define NEW_HP_ASSEMBLER 0
1227 #endif
1229 /* The macros below define the immediate range for CONST_INTS on
1230 the 64-bit port. Constants in this range can be loaded in three
1231 instructions using a ldil/ldo/depdi sequence. Constants outside
1232 this range are forced to the constant pool prior to reload. */
1234 #define MAX_LEGIT_64BIT_CONST_INT ((HOST_WIDE_INT) 32 << 31)
1235 #define MIN_LEGIT_64BIT_CONST_INT ((HOST_WIDE_INT) -32 << 31)
1236 #define LEGITIMATE_64BIT_CONST_INT_P(X) \
1237 ((X) >= MIN_LEGIT_64BIT_CONST_INT && (X) < MAX_LEGIT_64BIT_CONST_INT)
1239 /* A C expression that is nonzero if X is a legitimate constant for an
1240 immediate operand.
1242 We include all constant integers and constant doubles, but not
1243 floating-point, except for floating-point zero. We reject LABEL_REFs
1244 if we're not using gas or the new HP assembler.
1246 In 64-bit mode, we reject CONST_DOUBLES. We also reject CONST_INTS
1247 that need more than three instructions to load prior to reload. This
1248 limit is somewhat arbitrary. It takes three instructions to load a
1249 CONST_INT from memory but two are memory accesses. It may be better
1250 to increase the allowed range for CONST_INTS. We may also be able
1251 to handle CONST_DOUBLES. */
1253 #define LEGITIMATE_CONSTANT_P(X) \
1254 ((GET_MODE_CLASS (GET_MODE (X)) != MODE_FLOAT \
1255 || (X) == CONST0_RTX (GET_MODE (X))) \
1256 && (NEW_HP_ASSEMBLER || TARGET_GAS || GET_CODE (X) != LABEL_REF) \
1257 && !(TARGET_64BIT && GET_CODE (X) == CONST_DOUBLE) \
1258 && !(TARGET_64BIT && GET_CODE (X) == CONST_INT \
1259 && !(HOST_BITS_PER_WIDE_INT <= 32 \
1260 || (reload_in_progress || reload_completed) \
1261 || LEGITIMATE_64BIT_CONST_INT_P (INTVAL (X)) \
1262 || cint_ok_for_move (INTVAL (X)))) \
1263 && !function_label_operand (X, VOIDmode))
1265 /* Subroutines for EXTRA_CONSTRAINT.
1267 Return 1 iff OP is a pseudo which did not get a hard register and
1268 we are running the reload pass. */
1269 #define IS_RELOADING_PSEUDO_P(OP) \
1270 ((reload_in_progress \
1271 && GET_CODE (OP) == REG \
1272 && REGNO (OP) >= FIRST_PSEUDO_REGISTER \
1273 && reg_renumber [REGNO (OP)] < 0))
1275 /* Return 1 iff OP is a scaled or unscaled index address. */
1276 #define IS_INDEX_ADDR_P(OP) \
1277 (GET_CODE (OP) == PLUS \
1278 && GET_MODE (OP) == Pmode \
1279 && (GET_CODE (XEXP (OP, 0)) == MULT \
1280 || GET_CODE (XEXP (OP, 1)) == MULT \
1281 || (REG_P (XEXP (OP, 0)) \
1282 && REG_P (XEXP (OP, 1)))))
1284 /* Return 1 iff OP is a LO_SUM DLT address. */
1285 #define IS_LO_SUM_DLT_ADDR_P(OP) \
1286 (GET_CODE (OP) == LO_SUM \
1287 && GET_MODE (OP) == Pmode \
1288 && REG_P (XEXP (OP, 0)) \
1289 && REG_OK_FOR_BASE_P (XEXP (OP, 0)) \
1290 && GET_CODE (XEXP (OP, 1)) == UNSPEC)
1292 /* Optional extra constraints for this machine. Borrowed from sparc.h.
1294 `A' is a LO_SUM DLT memory operand.
1296 `Q' is any memory operand that isn't a symbolic, indexed or lo_sum
1297 memory operand. Note that an unassigned pseudo register is such a
1298 memory operand. Needed because reload will generate these things
1299 and then not re-recognize the insn, causing constrain_operands to
1300 fail.
1302 `R' is a scaled/unscaled indexed memory operand.
1304 `S' is the constant 31.
1306 `T' is for floating-point loads and stores.
1308 `U' is the constant 63.
1310 `W' is a register indirect memory operand. We could allow short
1311 displacements but GO_IF_LEGITIMATE_ADDRESS can't tell when a
1312 long displacement is valid. This is only used for prefetch
1313 instructions with the `sl' completer. */
1315 #define EXTRA_CONSTRAINT(OP, C) \
1316 ((C) == 'Q' ? \
1317 (IS_RELOADING_PSEUDO_P (OP) \
1318 || (GET_CODE (OP) == MEM \
1319 && (reload_in_progress \
1320 || memory_address_p (GET_MODE (OP), XEXP (OP, 0))) \
1321 && !symbolic_memory_operand (OP, VOIDmode) \
1322 && !IS_LO_SUM_DLT_ADDR_P (XEXP (OP, 0)) \
1323 && !IS_INDEX_ADDR_P (XEXP (OP, 0)))) \
1324 : ((C) == 'W' ? \
1325 (GET_CODE (OP) == MEM \
1326 && REG_P (XEXP (OP, 0)) \
1327 && REG_OK_FOR_BASE_P (XEXP (OP, 0))) \
1328 : ((C) == 'A' ? \
1329 (GET_CODE (OP) == MEM \
1330 && IS_LO_SUM_DLT_ADDR_P (XEXP (OP, 0))) \
1331 : ((C) == 'R' ? \
1332 (GET_CODE (OP) == MEM \
1333 && IS_INDEX_ADDR_P (XEXP (OP, 0))) \
1334 : ((C) == 'T' ? \
1335 (GET_CODE (OP) == MEM \
1336 && !IS_LO_SUM_DLT_ADDR_P (XEXP (OP, 0)) \
1337 && !IS_INDEX_ADDR_P (XEXP (OP, 0)) \
1338 /* Floating-point loads and stores are used to load \
1339 integer values as well as floating-point values. \
1340 They don't have the same set of REG+D address modes \
1341 as integer loads and stores. PA 1.x supports only \
1342 short displacements. PA 2.0 supports long displacements \
1343 but the base register needs to be aligned. \
1345 The checks in GO_IF_LEGITIMATE_ADDRESS for SFmode and \
1346 DFmode test the validity of an address for use in a \
1347 floating point load or store. So, we use SFmode/DFmode \
1348 to see if the address is valid for a floating-point \
1349 load/store operation. */ \
1350 && memory_address_p ((GET_MODE_SIZE (GET_MODE (OP)) == 4 \
1351 ? SFmode \
1352 : DFmode), \
1353 XEXP (OP, 0))) \
1354 : ((C) == 'S' ? \
1355 (GET_CODE (OP) == CONST_INT && INTVAL (OP) == 31) \
1356 : ((C) == 'U' ? \
1357 (GET_CODE (OP) == CONST_INT && INTVAL (OP) == 63) : 0)))))))
1360 /* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
1361 and check its validity for a certain class.
1362 We have two alternate definitions for each of them.
1363 The usual definition accepts all pseudo regs; the other rejects
1364 them unless they have been allocated suitable hard regs.
1365 The symbol REG_OK_STRICT causes the latter definition to be used.
1367 Most source files want to accept pseudo regs in the hope that
1368 they will get allocated to the class that the insn wants them to be in.
1369 Source files for reload pass need to be strict.
1370 After reload, it makes no difference, since pseudo regs have
1371 been eliminated by then. */
1373 #ifndef REG_OK_STRICT
1375 /* Nonzero if X is a hard reg that can be used as an index
1376 or if it is a pseudo reg. */
1377 #define REG_OK_FOR_INDEX_P(X) \
1378 (REGNO (X) && (REGNO (X) < 32 || REGNO (X) >= FIRST_PSEUDO_REGISTER))
1379 /* Nonzero if X is a hard reg that can be used as a base reg
1380 or if it is a pseudo reg. */
1381 #define REG_OK_FOR_BASE_P(X) \
1382 (REGNO (X) && (REGNO (X) < 32 || REGNO (X) >= FIRST_PSEUDO_REGISTER))
1384 #else
1386 /* Nonzero if X is a hard reg that can be used as an index. */
1387 #define REG_OK_FOR_INDEX_P(X) REGNO_OK_FOR_INDEX_P (REGNO (X))
1388 /* Nonzero if X is a hard reg that can be used as a base reg. */
1389 #define REG_OK_FOR_BASE_P(X) REGNO_OK_FOR_BASE_P (REGNO (X))
1391 #endif
1393 /* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression that is a
1394 valid memory address for an instruction. The MODE argument is the
1395 machine mode for the MEM expression that wants to use this address.
1397 On HP PA-RISC, the legitimate address forms are REG+SMALLINT,
1398 REG+REG, and REG+(REG*SCALE). The indexed address forms are only
1399 available with floating point loads and stores, and integer loads.
1400 We get better code by allowing indexed addresses in the initial
1401 RTL generation.
1403 The acceptance of indexed addresses as legitimate implies that we
1404 must provide patterns for doing indexed integer stores, or the move
1405 expanders must force the address of an indexed store to a register.
1406 We have adopted the latter approach.
1408 Another function of GO_IF_LEGITIMATE_ADDRESS is to ensure that
1409 the base register is a valid pointer for indexed instructions.
1410 On targets that have non-equivalent space registers, we have to
1411 know at the time of assembler output which register in a REG+REG
1412 pair is the base register. The REG_POINTER flag is sometimes lost
1413 in reload and the following passes, so it can't be relied on during
1414 code generation. Thus, we either have to canonicalize the order
1415 of the registers in REG+REG indexed addresses, or treat REG+REG
1416 addresses separately and provide patterns for both permutations.
1418 The latter approach requires several hundred additional lines of
1419 code in pa.md. The downside to canonicalizing is that a PLUS
1420 in the wrong order can't combine to form to make a scaled indexed
1421 memory operand. As we won't need to canonicalize the operands if
1422 the REG_POINTER lossage can be fixed, it seems better canonicalize.
1424 We initially break out scaled indexed addresses in canonical order
1425 in emit_move_sequence. LEGITIMIZE_ADDRESS also canonicalizes
1426 scaled indexed addresses during RTL generation. However, fold_rtx
1427 has its own opinion on how the operands of a PLUS should be ordered.
1428 If one of the operands is equivalent to a constant, it will make
1429 that operand the second operand. As the base register is likely to
1430 be equivalent to a SYMBOL_REF, we have made it the second operand.
1432 GO_IF_LEGITIMATE_ADDRESS accepts REG+REG as legitimate when the
1433 operands are in the order INDEX+BASE on targets with non-equivalent
1434 space registers, and in any order on targets with equivalent space
1435 registers. It accepts both MULT+BASE and BASE+MULT for scaled indexing.
1437 We treat a SYMBOL_REF as legitimate if it is part of the current
1438 function's constant-pool, because such addresses can actually be
1439 output as REG+SMALLINT.
1441 Note we only allow 5 bit immediates for access to a constant address;
1442 doing so avoids losing for loading/storing a FP register at an address
1443 which will not fit in 5 bits. */
1445 #define VAL_5_BITS_P(X) ((unsigned HOST_WIDE_INT)(X) + 0x10 < 0x20)
1446 #define INT_5_BITS(X) VAL_5_BITS_P (INTVAL (X))
1448 #define VAL_U5_BITS_P(X) ((unsigned HOST_WIDE_INT)(X) < 0x20)
1449 #define INT_U5_BITS(X) VAL_U5_BITS_P (INTVAL (X))
1451 #define VAL_11_BITS_P(X) ((unsigned HOST_WIDE_INT)(X) + 0x400 < 0x800)
1452 #define INT_11_BITS(X) VAL_11_BITS_P (INTVAL (X))
1454 #define VAL_14_BITS_P(X) ((unsigned HOST_WIDE_INT)(X) + 0x2000 < 0x4000)
1455 #define INT_14_BITS(X) VAL_14_BITS_P (INTVAL (X))
1457 #if HOST_BITS_PER_WIDE_INT > 32
1458 #define VAL_32_BITS_P(X) \
1459 ((unsigned HOST_WIDE_INT)(X) + ((unsigned HOST_WIDE_INT) 1 << 31) \
1460 < (unsigned HOST_WIDE_INT) 2 << 31)
1461 #else
1462 #define VAL_32_BITS_P(X) 1
1463 #endif
1464 #define INT_32_BITS(X) VAL_32_BITS_P (INTVAL (X))
1466 /* These are the modes that we allow for scaled indexing. */
1467 #define MODE_OK_FOR_SCALED_INDEXING_P(MODE) \
1468 ((TARGET_64BIT && (MODE) == DImode) \
1469 || (MODE) == SImode \
1470 || (MODE) == HImode \
1471 || (!TARGET_SOFT_FLOAT && ((MODE) == DFmode || (MODE) == SFmode)))
1473 /* These are the modes that we allow for unscaled indexing. */
1474 #define MODE_OK_FOR_UNSCALED_INDEXING_P(MODE) \
1475 ((TARGET_64BIT && (MODE) == DImode) \
1476 || (MODE) == SImode \
1477 || (MODE) == HImode \
1478 || (MODE) == QImode \
1479 || (!TARGET_SOFT_FLOAT && ((MODE) == DFmode || (MODE) == SFmode)))
1481 #define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
1483 if ((REG_P (X) && REG_OK_FOR_BASE_P (X)) \
1484 || ((GET_CODE (X) == PRE_DEC || GET_CODE (X) == POST_DEC \
1485 || GET_CODE (X) == PRE_INC || GET_CODE (X) == POST_INC) \
1486 && REG_P (XEXP (X, 0)) \
1487 && REG_OK_FOR_BASE_P (XEXP (X, 0)))) \
1488 goto ADDR; \
1489 else if (GET_CODE (X) == PLUS) \
1491 rtx base = 0, index = 0; \
1492 if (REG_P (XEXP (X, 1)) \
1493 && REG_OK_FOR_BASE_P (XEXP (X, 1))) \
1494 base = XEXP (X, 1), index = XEXP (X, 0); \
1495 else if (REG_P (XEXP (X, 0)) \
1496 && REG_OK_FOR_BASE_P (XEXP (X, 0))) \
1497 base = XEXP (X, 0), index = XEXP (X, 1); \
1498 if (base \
1499 && GET_CODE (index) == CONST_INT \
1500 && ((INT_14_BITS (index) \
1501 && (((MODE) != DImode \
1502 && (MODE) != SFmode \
1503 && (MODE) != DFmode) \
1504 /* The base register for DImode loads and stores \
1505 with long displacements must be aligned because \
1506 the lower three bits in the displacement are \
1507 assumed to be zero. */ \
1508 || ((MODE) == DImode \
1509 && (!TARGET_64BIT \
1510 || (INTVAL (index) % 8) == 0)) \
1511 /* Similarly, the base register for SFmode/DFmode \
1512 loads and stores with long displacements must \
1513 be aligned. \
1515 FIXME: the ELF32 linker clobbers the LSB of \
1516 the FP register number in PA 2.0 floating-point \
1517 insns with long displacements. This is because \
1518 R_PARISC_DPREL14WR and other relocations like \
1519 it are not supported. For now, we reject long \
1520 displacements on this target. */ \
1521 || (((MODE) == SFmode || (MODE) == DFmode) \
1522 && (TARGET_SOFT_FLOAT \
1523 || (TARGET_PA_20 \
1524 && !TARGET_ELF32 \
1525 && (INTVAL (index) \
1526 % GET_MODE_SIZE (MODE)) == 0))))) \
1527 || INT_5_BITS (index))) \
1528 goto ADDR; \
1529 if (!TARGET_DISABLE_INDEXING \
1530 /* Only accept the "canonical" INDEX+BASE operand order \
1531 on targets with non-equivalent space registers. */ \
1532 && (TARGET_NO_SPACE_REGS \
1533 ? (base && REG_P (index)) \
1534 : (base == XEXP (X, 1) && REG_P (index) \
1535 && REG_POINTER (base) && !REG_POINTER (index))) \
1536 && MODE_OK_FOR_UNSCALED_INDEXING_P (MODE) \
1537 && REG_OK_FOR_INDEX_P (index) \
1538 && borx_reg_operand (base, Pmode) \
1539 && borx_reg_operand (index, Pmode)) \
1540 goto ADDR; \
1541 if (!TARGET_DISABLE_INDEXING \
1542 && base \
1543 && GET_CODE (index) == MULT \
1544 && MODE_OK_FOR_SCALED_INDEXING_P (MODE) \
1545 && REG_P (XEXP (index, 0)) \
1546 && GET_MODE (XEXP (index, 0)) == Pmode \
1547 && REG_OK_FOR_INDEX_P (XEXP (index, 0)) \
1548 && GET_CODE (XEXP (index, 1)) == CONST_INT \
1549 && INTVAL (XEXP (index, 1)) \
1550 == (HOST_WIDE_INT) GET_MODE_SIZE (MODE) \
1551 && borx_reg_operand (base, Pmode)) \
1552 goto ADDR; \
1554 else if (GET_CODE (X) == LO_SUM \
1555 && GET_CODE (XEXP (X, 0)) == REG \
1556 && REG_OK_FOR_BASE_P (XEXP (X, 0)) \
1557 && CONSTANT_P (XEXP (X, 1)) \
1558 && (TARGET_SOFT_FLOAT \
1559 /* We can allow symbolic LO_SUM addresses for PA2.0. */ \
1560 || (TARGET_PA_20 \
1561 && !TARGET_ELF32 \
1562 && GET_CODE (XEXP (X, 1)) != CONST_INT) \
1563 || ((MODE) != SFmode \
1564 && (MODE) != DFmode))) \
1565 goto ADDR; \
1566 else if (GET_CODE (X) == LO_SUM \
1567 && GET_CODE (XEXP (X, 0)) == SUBREG \
1568 && GET_CODE (SUBREG_REG (XEXP (X, 0))) == REG \
1569 && REG_OK_FOR_BASE_P (SUBREG_REG (XEXP (X, 0))) \
1570 && CONSTANT_P (XEXP (X, 1)) \
1571 && (TARGET_SOFT_FLOAT \
1572 /* We can allow symbolic LO_SUM addresses for PA2.0. */ \
1573 || (TARGET_PA_20 \
1574 && !TARGET_ELF32 \
1575 && GET_CODE (XEXP (X, 1)) != CONST_INT) \
1576 || ((MODE) != SFmode \
1577 && (MODE) != DFmode))) \
1578 goto ADDR; \
1579 else if (GET_CODE (X) == LABEL_REF \
1580 || (GET_CODE (X) == CONST_INT \
1581 && INT_5_BITS (X))) \
1582 goto ADDR; \
1583 /* Needed for -fPIC */ \
1584 else if (GET_CODE (X) == LO_SUM \
1585 && GET_CODE (XEXP (X, 0)) == REG \
1586 && REG_OK_FOR_BASE_P (XEXP (X, 0)) \
1587 && GET_CODE (XEXP (X, 1)) == UNSPEC \
1588 && (TARGET_SOFT_FLOAT \
1589 || (TARGET_PA_20 && !TARGET_ELF32) \
1590 || ((MODE) != SFmode \
1591 && (MODE) != DFmode))) \
1592 goto ADDR; \
1595 /* Look for machine dependent ways to make the invalid address AD a
1596 valid address.
1598 For the PA, transform:
1600 memory(X + <large int>)
1602 into:
1604 if (<large int> & mask) >= 16
1605 Y = (<large int> & ~mask) + mask + 1 Round up.
1606 else
1607 Y = (<large int> & ~mask) Round down.
1608 Z = X + Y
1609 memory (Z + (<large int> - Y));
1611 This makes reload inheritance and reload_cse work better since Z
1612 can be reused.
1614 There may be more opportunities to improve code with this hook. */
1615 #define LEGITIMIZE_RELOAD_ADDRESS(AD, MODE, OPNUM, TYPE, IND, WIN) \
1616 do { \
1617 long offset, newoffset, mask; \
1618 rtx new, temp = NULL_RTX; \
1620 mask = (GET_MODE_CLASS (MODE) == MODE_FLOAT \
1621 ? (TARGET_PA_20 && !TARGET_ELF32 ? 0x3fff : 0x1f) : 0x3fff); \
1623 if (optimize && GET_CODE (AD) == PLUS) \
1624 temp = simplify_binary_operation (PLUS, Pmode, \
1625 XEXP (AD, 0), XEXP (AD, 1)); \
1627 new = temp ? temp : AD; \
1629 if (optimize \
1630 && GET_CODE (new) == PLUS \
1631 && GET_CODE (XEXP (new, 0)) == REG \
1632 && GET_CODE (XEXP (new, 1)) == CONST_INT) \
1634 offset = INTVAL (XEXP ((new), 1)); \
1636 /* Choose rounding direction. Round up if we are >= halfway. */ \
1637 if ((offset & mask) >= ((mask + 1) / 2)) \
1638 newoffset = (offset & ~mask) + mask + 1; \
1639 else \
1640 newoffset = offset & ~mask; \
1642 /* Ensure that long displacements are aligned. */ \
1643 if (!VAL_5_BITS_P (newoffset) \
1644 && GET_MODE_CLASS (MODE) == MODE_FLOAT) \
1645 newoffset &= ~(GET_MODE_SIZE (MODE) -1); \
1647 if (newoffset != 0 && VAL_14_BITS_P (newoffset)) \
1649 temp = gen_rtx_PLUS (Pmode, XEXP (new, 0), \
1650 GEN_INT (newoffset)); \
1651 AD = gen_rtx_PLUS (Pmode, temp, GEN_INT (offset - newoffset));\
1652 push_reload (XEXP (AD, 0), 0, &XEXP (AD, 0), 0, \
1653 BASE_REG_CLASS, Pmode, VOIDmode, 0, 0, \
1654 (OPNUM), (TYPE)); \
1655 goto WIN; \
1658 } while (0)
1663 /* Try machine-dependent ways of modifying an illegitimate address
1664 to be legitimate. If we find one, return the new, valid address.
1665 This macro is used in only one place: `memory_address' in explow.c.
1667 OLDX is the address as it was before break_out_memory_refs was called.
1668 In some cases it is useful to look at this to decide what needs to be done.
1670 MODE and WIN are passed so that this macro can use
1671 GO_IF_LEGITIMATE_ADDRESS.
1673 It is always safe for this macro to do nothing. It exists to recognize
1674 opportunities to optimize the output. */
1676 #define LEGITIMIZE_ADDRESS(X, OLDX, MODE, WIN) \
1677 { rtx orig_x = (X); \
1678 (X) = hppa_legitimize_address (X, OLDX, MODE); \
1679 if ((X) != orig_x && memory_address_p (MODE, X)) \
1680 goto WIN; }
1682 /* Go to LABEL if ADDR (a legitimate address expression)
1683 has an effect that depends on the machine mode it is used for. */
1685 #define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR,LABEL) \
1686 if (GET_CODE (ADDR) == PRE_DEC \
1687 || GET_CODE (ADDR) == POST_DEC \
1688 || GET_CODE (ADDR) == PRE_INC \
1689 || GET_CODE (ADDR) == POST_INC) \
1690 goto LABEL
1692 #define TARGET_ASM_SELECT_SECTION pa_select_section
1694 /* Return a nonzero value if DECL has a section attribute. */
1695 #define IN_NAMED_SECTION_P(DECL) \
1696 ((TREE_CODE (DECL) == FUNCTION_DECL || TREE_CODE (DECL) == VAR_DECL) \
1697 && DECL_SECTION_NAME (DECL) != NULL_TREE)
1699 /* The following extra sections and extra section functions are only used
1700 for SOM, but they must be provided unconditionally because pa.c's calls
1701 to the functions might not get optimized out when other object formats
1702 are in use. */
1704 #define EXTRA_SECTIONS \
1705 in_som_readonly_data, \
1706 in_som_one_only_readonly_data, \
1707 in_som_one_only_data
1709 #define EXTRA_SECTION_FUNCTIONS \
1710 SOM_READONLY_DATA_SECTION_FUNCTION \
1711 SOM_ONE_ONLY_READONLY_DATA_SECTION_FUNCTION \
1712 SOM_ONE_ONLY_DATA_SECTION_FUNCTION \
1713 FORGET_SECTION_FUNCTION
1715 /* SOM puts readonly data in the default $LIT$ subspace when PIC code
1716 is not being generated. */
1717 #define SOM_READONLY_DATA_SECTION_FUNCTION \
1718 void \
1719 som_readonly_data_section (void) \
1721 if (!TARGET_SOM) \
1722 return; \
1723 if (in_section != in_som_readonly_data) \
1725 in_section = in_som_readonly_data; \
1726 fputs ("\t.SPACE $TEXT$\n\t.SUBSPA $LIT$\n", asm_out_file); \
1730 /* When secondary definitions are not supported, SOM makes readonly data one
1731 only by creating a new $LIT$ subspace in $TEXT$ with the comdat flag. */
1732 #define SOM_ONE_ONLY_READONLY_DATA_SECTION_FUNCTION \
1733 void \
1734 som_one_only_readonly_data_section (void) \
1736 if (!TARGET_SOM) \
1737 return; \
1738 in_section = in_som_one_only_readonly_data; \
1739 fputs ("\t.SPACE $TEXT$\n" \
1740 "\t.NSUBSPA $LIT$,QUAD=0,ALIGN=8,ACCESS=0x2c,SORT=16,COMDAT\n",\
1741 asm_out_file); \
1744 /* When secondary definitions are not supported, SOM makes data one only by
1745 creating a new $DATA$ subspace in $PRIVATE$ with the comdat flag. */
1746 #define SOM_ONE_ONLY_DATA_SECTION_FUNCTION \
1747 void \
1748 som_one_only_data_section (void) \
1750 if (!TARGET_SOM) \
1751 return; \
1752 in_section = in_som_one_only_data; \
1753 fputs ("\t.SPACE $PRIVATE$\n" \
1754 "\t.NSUBSPA $DATA$,QUAD=1,ALIGN=8,ACCESS=31,SORT=24,COMDAT\n", \
1755 asm_out_file); \
1758 #define FORGET_SECTION_FUNCTION \
1759 void \
1760 forget_section (void) \
1762 in_section = no_section; \
1765 /* Define this macro if references to a symbol must be treated
1766 differently depending on something about the variable or
1767 function named by the symbol (such as what section it is in).
1769 The macro definition, if any, is executed immediately after the
1770 rtl for DECL or other node is created.
1771 The value of the rtl will be a `mem' whose address is a
1772 `symbol_ref'.
1774 The usual thing for this macro to do is to a flag in the
1775 `symbol_ref' (such as `SYMBOL_REF_FLAG') or to store a modified
1776 name string in the `symbol_ref' (if one bit is not enough
1777 information).
1779 On the HP-PA we use this to indicate if a symbol is in text or
1780 data space. Also, function labels need special treatment. */
1782 #define TEXT_SPACE_P(DECL)\
1783 (TREE_CODE (DECL) == FUNCTION_DECL \
1784 || (TREE_CODE (DECL) == VAR_DECL \
1785 && TREE_READONLY (DECL) && ! TREE_SIDE_EFFECTS (DECL) \
1786 && (! DECL_INITIAL (DECL) || ! reloc_needed (DECL_INITIAL (DECL))) \
1787 && !flag_pic) \
1788 || CONSTANT_CLASS_P (DECL))
1790 #define FUNCTION_NAME_P(NAME) (*(NAME) == '@')
1792 /* Specify the machine mode that this machine uses for the index in the
1793 tablejump instruction. For small tables, an element consists of a
1794 ia-relative branch and its delay slot. When -mbig-switch is specified,
1795 we use a 32-bit absolute address for non-pic code, and a 32-bit offset
1796 for both 32 and 64-bit pic code. */
1797 #define CASE_VECTOR_MODE (TARGET_BIG_SWITCH ? SImode : DImode)
1799 /* Jump tables must be 32-bit aligned, no matter the size of the element. */
1800 #define ADDR_VEC_ALIGN(ADDR_VEC) 2
1802 /* Define this as 1 if `char' should by default be signed; else as 0. */
1803 #define DEFAULT_SIGNED_CHAR 1
1805 /* Max number of bytes we can move from memory to memory
1806 in one reasonably fast instruction. */
1807 #define MOVE_MAX 8
1809 /* Higher than the default as we prefer to use simple move insns
1810 (better scheduling and delay slot filling) and because our
1811 built-in block move is really a 2X unrolled loop.
1813 Believe it or not, this has to be big enough to allow for copying all
1814 arguments passed in registers to avoid infinite recursion during argument
1815 setup for a function call. Why? Consider how we copy the stack slots
1816 reserved for parameters when they may be trashed by a call. */
1817 #define MOVE_RATIO (TARGET_64BIT ? 8 : 4)
1819 /* Define if operations between registers always perform the operation
1820 on the full register even if a narrower mode is specified. */
1821 #define WORD_REGISTER_OPERATIONS
1823 /* Define if loading in MODE, an integral mode narrower than BITS_PER_WORD
1824 will either zero-extend or sign-extend. The value of this macro should
1825 be the code that says which one of the two operations is implicitly
1826 done, UNKNOWN if none. */
1827 #define LOAD_EXTEND_OP(MODE) ZERO_EXTEND
1829 /* Nonzero if access to memory by bytes is slow and undesirable. */
1830 #define SLOW_BYTE_ACCESS 1
1832 /* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
1833 is done just by pretending it is already truncated. */
1834 #define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
1836 /* Specify the machine mode that pointers have.
1837 After generation of rtl, the compiler makes no further distinction
1838 between pointers and any other objects of this machine mode. */
1839 #define Pmode word_mode
1841 /* Given a comparison code (EQ, NE, etc.) and the first operand of a COMPARE,
1842 return the mode to be used for the comparison. For floating-point, CCFPmode
1843 should be used. CC_NOOVmode should be used when the first operand is a
1844 PLUS, MINUS, or NEG. CCmode should be used when no special processing is
1845 needed. */
1846 #define SELECT_CC_MODE(OP,X,Y) \
1847 (GET_MODE_CLASS (GET_MODE (X)) == MODE_FLOAT ? CCFPmode : CCmode) \
1849 /* A function address in a call instruction
1850 is a byte address (for indexing purposes)
1851 so give the MEM rtx a byte's mode. */
1852 #define FUNCTION_MODE SImode
1854 /* Define this if addresses of constant functions
1855 shouldn't be put through pseudo regs where they can be cse'd.
1856 Desirable on machines where ordinary constants are expensive
1857 but a CALL with constant address is cheap. */
1858 #define NO_FUNCTION_CSE
1860 /* Define this to be nonzero if shift instructions ignore all but the low-order
1861 few bits. */
1862 #define SHIFT_COUNT_TRUNCATED 1
1864 /* Compute extra cost of moving data between one register class
1865 and another.
1867 Make moves from SAR so expensive they should never happen. We used to
1868 have 0xffff here, but that generates overflow in rare cases.
1870 Copies involving a FP register and a non-FP register are relatively
1871 expensive because they must go through memory.
1873 Other copies are reasonably cheap. */
1874 #define REGISTER_MOVE_COST(MODE, CLASS1, CLASS2) \
1875 (CLASS1 == SHIFT_REGS ? 0x100 \
1876 : FP_REG_CLASS_P (CLASS1) && ! FP_REG_CLASS_P (CLASS2) ? 16 \
1877 : FP_REG_CLASS_P (CLASS2) && ! FP_REG_CLASS_P (CLASS1) ? 16 \
1878 : 2)
1880 /* Adjust the cost of branches. */
1881 #define BRANCH_COST (pa_cpu == PROCESSOR_8000 ? 2 : 1)
1883 /* Handling the special cases is going to get too complicated for a macro,
1884 just call `pa_adjust_insn_length' to do the real work. */
1885 #define ADJUST_INSN_LENGTH(INSN, LENGTH) \
1886 LENGTH += pa_adjust_insn_length (INSN, LENGTH);
1888 /* Millicode insns are actually function calls with some special
1889 constraints on arguments and register usage.
1891 Millicode calls always expect their arguments in the integer argument
1892 registers, and always return their result in %r29 (ret1). They
1893 are expected to clobber their arguments, %r1, %r29, and the return
1894 pointer which is %r31 on 32-bit and %r2 on 64-bit, and nothing else.
1896 This macro tells reorg that the references to arguments and
1897 millicode calls do not appear to happen until after the millicode call.
1898 This allows reorg to put insns which set the argument registers into the
1899 delay slot of the millicode call -- thus they act more like traditional
1900 CALL_INSNs.
1902 Note we cannot consider side effects of the insn to be delayed because
1903 the branch and link insn will clobber the return pointer. If we happened
1904 to use the return pointer in the delay slot of the call, then we lose.
1906 get_attr_type will try to recognize the given insn, so make sure to
1907 filter out things it will not accept -- SEQUENCE, USE and CLOBBER insns
1908 in particular. */
1909 #define INSN_REFERENCES_ARE_DELAYED(X) (insn_refs_are_delayed (X))
1912 /* Control the assembler format that we output. */
1914 /* A C string constant describing how to begin a comment in the target
1915 assembler language. The compiler assumes that the comment will end at
1916 the end of the line. */
1918 #define ASM_COMMENT_START ";"
1920 /* Output to assembler file text saying following lines
1921 may contain character constants, extra white space, comments, etc. */
1923 #define ASM_APP_ON ""
1925 /* Output to assembler file text saying following lines
1926 no longer contain unusual constructs. */
1928 #define ASM_APP_OFF ""
1930 /* This is how to output the definition of a user-level label named NAME,
1931 such as the label on a static function or variable NAME. */
1933 #define ASM_OUTPUT_LABEL(FILE, NAME) \
1934 do { assemble_name (FILE, NAME); \
1935 fputc ('\n', FILE); } while (0)
1937 /* This is how to output a reference to a user-level label named NAME.
1938 `assemble_name' uses this. */
1940 #define ASM_OUTPUT_LABELREF(FILE,NAME) \
1941 do { \
1942 const char *xname = (NAME); \
1943 if (FUNCTION_NAME_P (NAME)) \
1944 xname += 1; \
1945 if (xname[0] == '*') \
1946 xname += 1; \
1947 else \
1948 fputs (user_label_prefix, FILE); \
1949 fputs (xname, FILE); \
1950 } while (0)
1952 /* This is how to store into the string LABEL
1953 the symbol_ref name of an internal numbered label where
1954 PREFIX is the class of label and NUM is the number within the class.
1955 This is suitable for output with `assemble_name'. */
1957 #define ASM_GENERATE_INTERNAL_LABEL(LABEL,PREFIX,NUM) \
1958 sprintf (LABEL, "*%c$%s%04ld", (PREFIX)[0], (PREFIX) + 1, (long)(NUM))
1960 #define TARGET_ASM_GLOBALIZE_LABEL pa_globalize_label
1962 #define ASM_OUTPUT_ASCII(FILE, P, SIZE) \
1963 output_ascii ((FILE), (P), (SIZE))
1965 /* Jump tables are always placed in the text section. Technically, it
1966 is possible to put them in the readonly data section when -mbig-switch
1967 is specified. This has the benefit of getting the table out of .text
1968 and reducing branch lengths as a result. The downside is that an
1969 additional insn (addil) is needed to access the table when generating
1970 PIC code. The address difference table also has to use 32-bit
1971 pc-relative relocations. Currently, GAS does not support these
1972 relocations, although it is easily modified to do this operation.
1973 The table entries need to look like "$L1+(.+8-$L0)-$PIC_pcrel$0"
1974 when using ELF GAS. A simple difference can be used when using
1975 SOM GAS or the HP assembler. The final downside is GDB complains
1976 about the nesting of the label for the table when debugging. */
1978 #define JUMP_TABLES_IN_TEXT_SECTION 1
1980 /* This is how to output an element of a case-vector that is absolute. */
1982 #define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \
1983 if (TARGET_BIG_SWITCH) \
1984 fprintf (FILE, "\t.word L$%04d\n", VALUE); \
1985 else \
1986 fprintf (FILE, "\tb L$%04d\n\tnop\n", VALUE)
1988 /* This is how to output an element of a case-vector that is relative.
1989 Since we always place jump tables in the text section, the difference
1990 is absolute and requires no relocation. */
1992 #define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \
1993 if (TARGET_BIG_SWITCH) \
1994 fprintf (FILE, "\t.word L$%04d-L$%04d\n", VALUE, REL); \
1995 else \
1996 fprintf (FILE, "\tb L$%04d\n\tnop\n", VALUE)
1998 /* This is how to output an assembler line that says to advance the
1999 location counter to a multiple of 2**LOG bytes. */
2001 #define ASM_OUTPUT_ALIGN(FILE,LOG) \
2002 fprintf (FILE, "\t.align %d\n", (1<<(LOG)))
2004 #define ASM_OUTPUT_SKIP(FILE,SIZE) \
2005 fprintf (FILE, "\t.blockz "HOST_WIDE_INT_PRINT_UNSIGNED"\n", \
2006 (unsigned HOST_WIDE_INT)(SIZE))
2008 /* This says how to output an assembler line to define an uninitialized
2009 global variable with size SIZE (in bytes) and alignment ALIGN (in bits).
2010 This macro exists to properly support languages like C++ which do not
2011 have common data. */
2013 #define ASM_OUTPUT_ALIGNED_BSS(FILE, DECL, NAME, SIZE, ALIGN) \
2014 pa_asm_output_aligned_bss (FILE, NAME, SIZE, ALIGN)
2016 /* This says how to output an assembler line to define a global common symbol
2017 with size SIZE (in bytes) and alignment ALIGN (in bits). */
2019 #define ASM_OUTPUT_ALIGNED_COMMON(FILE, NAME, SIZE, ALIGN) \
2020 pa_asm_output_aligned_common (FILE, NAME, SIZE, ALIGN)
2022 /* This says how to output an assembler line to define a local common symbol
2023 with size SIZE (in bytes) and alignment ALIGN (in bits). This macro
2024 controls how the assembler definitions of uninitialized static variables
2025 are output. */
2027 #define ASM_OUTPUT_ALIGNED_LOCAL(FILE, NAME, SIZE, ALIGN) \
2028 pa_asm_output_aligned_local (FILE, NAME, SIZE, ALIGN)
2031 #define ASM_PN_FORMAT "%s___%lu"
2033 /* All HP assemblers use "!" to separate logical lines. */
2034 #define IS_ASM_LOGICAL_LINE_SEPARATOR(C) ((C) == '!')
2036 #define PRINT_OPERAND_PUNCT_VALID_P(CHAR) \
2037 ((CHAR) == '@' || (CHAR) == '#' || (CHAR) == '*' || (CHAR) == '^')
2039 /* Print operand X (an rtx) in assembler syntax to file FILE.
2040 CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified.
2041 For `%' followed by punctuation, CODE is the punctuation and X is null.
2043 On the HP-PA, the CODE can be `r', meaning this is a register-only operand
2044 and an immediate zero should be represented as `r0'.
2046 Several % codes are defined:
2047 O an operation
2048 C compare conditions
2049 N extract conditions
2050 M modifier to handle preincrement addressing for memory refs.
2051 F modifier to handle preincrement addressing for fp memory refs */
2053 #define PRINT_OPERAND(FILE, X, CODE) print_operand (FILE, X, CODE)
2056 /* Print a memory address as an operand to reference that memory location. */
2058 #define PRINT_OPERAND_ADDRESS(FILE, ADDR) \
2059 { register rtx addr = ADDR; \
2060 register rtx base; \
2061 int offset; \
2062 switch (GET_CODE (addr)) \
2064 case REG: \
2065 fprintf (FILE, "0(%s)", reg_names [REGNO (addr)]); \
2066 break; \
2067 case PLUS: \
2068 if (GET_CODE (XEXP (addr, 0)) == CONST_INT) \
2069 offset = INTVAL (XEXP (addr, 0)), base = XEXP (addr, 1); \
2070 else if (GET_CODE (XEXP (addr, 1)) == CONST_INT) \
2071 offset = INTVAL (XEXP (addr, 1)), base = XEXP (addr, 0); \
2072 else \
2073 abort (); \
2074 fprintf (FILE, "%d(%s)", offset, reg_names [REGNO (base)]); \
2075 break; \
2076 case LO_SUM: \
2077 if (!symbolic_operand (XEXP (addr, 1), VOIDmode)) \
2078 fputs ("R'", FILE); \
2079 else if (flag_pic == 0) \
2080 fputs ("RR'", FILE); \
2081 else \
2082 fputs ("RT'", FILE); \
2083 output_global_address (FILE, XEXP (addr, 1), 0); \
2084 fputs ("(", FILE); \
2085 output_operand (XEXP (addr, 0), 0); \
2086 fputs (")", FILE); \
2087 break; \
2088 case CONST_INT: \
2089 fprintf (FILE, HOST_WIDE_INT_PRINT_DEC "(%%r0)", INTVAL (addr)); \
2090 break; \
2091 default: \
2092 output_addr_const (FILE, addr); \
2096 /* Find the return address associated with the frame given by
2097 FRAMEADDR. */
2098 #define RETURN_ADDR_RTX(COUNT, FRAMEADDR) \
2099 (return_addr_rtx (COUNT, FRAMEADDR))
2101 /* Used to mask out junk bits from the return address, such as
2102 processor state, interrupt status, condition codes and the like. */
2103 #define MASK_RETURN_ADDR \
2104 /* The privilege level is in the two low order bits, mask em out \
2105 of the return address. */ \
2106 (GEN_INT (-4))
2108 /* The number of Pmode words for the setjmp buffer. */
2109 #define JMP_BUF_SIZE 50
2111 #define PREDICATE_CODES \
2112 {"reg_or_0_operand", {SUBREG, REG, CONST_INT, CONST_DOUBLE}}, \
2113 {"call_operand_address", {LABEL_REF, SYMBOL_REF, CONST_INT, \
2114 CONST_DOUBLE, CONST, HIGH}}, \
2115 {"indexed_memory_operand", {SUBREG, MEM}}, \
2116 {"symbolic_operand", {SYMBOL_REF, LABEL_REF, CONST}}, \
2117 {"symbolic_memory_operand", {SUBREG, MEM}}, \
2118 {"reg_before_reload_operand", {REG, MEM}}, \
2119 {"reg_or_0_or_nonsymb_mem_operand", {SUBREG, REG, MEM, CONST_INT, \
2120 CONST_DOUBLE}}, \
2121 {"move_dest_operand", {SUBREG, REG, MEM}}, \
2122 {"move_src_operand", {SUBREG, REG, CONST_INT, MEM}}, \
2123 {"prefetch_cc_operand", {MEM}}, \
2124 {"prefetch_nocc_operand", {MEM}}, \
2125 {"reg_or_cint_move_operand", {SUBREG, REG, CONST_INT}}, \
2126 {"pic_label_operand", {LABEL_REF, CONST}}, \
2127 {"fp_reg_operand", {REG}}, \
2128 {"arith_operand", {SUBREG, REG, CONST_INT}}, \
2129 {"arith11_operand", {SUBREG, REG, CONST_INT}}, \
2130 {"pre_cint_operand", {CONST_INT}}, \
2131 {"post_cint_operand", {CONST_INT}}, \
2132 {"arith_double_operand", {SUBREG, REG, CONST_DOUBLE}}, \
2133 {"ireg_or_int5_operand", {CONST_INT, REG}}, \
2134 {"int5_operand", {CONST_INT}}, \
2135 {"uint5_operand", {CONST_INT}}, \
2136 {"int11_operand", {CONST_INT}}, \
2137 {"uint32_operand", {CONST_INT, \
2138 HOST_BITS_PER_WIDE_INT > 32 ? 0 : CONST_DOUBLE}}, \
2139 {"arith5_operand", {SUBREG, REG, CONST_INT}}, \
2140 {"and_operand", {SUBREG, REG, CONST_INT}}, \
2141 {"ior_operand", {CONST_INT}}, \
2142 {"lhs_lshift_cint_operand", {CONST_INT}}, \
2143 {"lhs_lshift_operand", {SUBREG, REG, CONST_INT}}, \
2144 {"arith32_operand", {SUBREG, REG, CONST_INT}}, \
2145 {"pc_or_label_operand", {PC, LABEL_REF}}, \
2146 {"plus_xor_ior_operator", {PLUS, XOR, IOR}}, \
2147 {"shadd_operand", {CONST_INT}}, \
2148 {"div_operand", {REG, CONST_INT}}, \
2149 {"ireg_operand", {REG}}, \
2150 {"cmpib_comparison_operator", {EQ, NE, LT, LE, LEU, \
2151 GT, GTU, GE}}, \
2152 {"movb_comparison_operator", {EQ, NE, LT, GE}},
2154 /* We need a libcall to canonicalize function pointers on TARGET_ELF32. */
2155 #define CANONICALIZE_FUNCPTR_FOR_COMPARE_LIBCALL \
2156 "__canonicalize_funcptr_for_compare"