1 /* Vectorizer Specific Loop Manipulations
2 Copyright (C) 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010
3 Free Software Foundation, Inc.
4 Contributed by Dorit Naishlos <dorit@il.ibm.com>
5 and Ira Rosen <irar@il.ibm.com>
7 This file is part of GCC.
9 GCC is free software; you can redistribute it and/or modify it under
10 the terms of the GNU General Public License as published by the Free
11 Software Foundation; either version 3, or (at your option) any later
14 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
15 WARRANTY; without even the implied warranty of MERCHANTABILITY or
16 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
19 You should have received a copy of the GNU General Public License
20 along with GCC; see the file COPYING3. If not see
21 <http://www.gnu.org/licenses/>. */
25 #include "coretypes.h"
29 #include "basic-block.h"
30 #include "diagnostic.h"
31 #include "tree-flow.h"
32 #include "tree-dump.h"
34 #include "cfglayout.h"
37 #include "tree-scalar-evolution.h"
38 #include "tree-vectorizer.h"
39 #include "langhooks.h"
41 /*************************************************************************
42 Simple Loop Peeling Utilities
44 Utilities to support loop peeling for vectorization purposes.
45 *************************************************************************/
48 /* Renames the use *OP_P. */
51 rename_use_op (use_operand_p op_p
)
55 if (TREE_CODE (USE_FROM_PTR (op_p
)) != SSA_NAME
)
58 new_name
= get_current_def (USE_FROM_PTR (op_p
));
60 /* Something defined outside of the loop. */
64 /* An ordinary ssa name defined in the loop. */
66 SET_USE (op_p
, new_name
);
70 /* Renames the variables in basic block BB. */
73 rename_variables_in_bb (basic_block bb
)
75 gimple_stmt_iterator gsi
;
81 struct loop
*loop
= bb
->loop_father
;
83 for (gsi
= gsi_start_bb (bb
); !gsi_end_p (gsi
); gsi_next (&gsi
))
85 stmt
= gsi_stmt (gsi
);
86 FOR_EACH_SSA_USE_OPERAND (use_p
, stmt
, iter
, SSA_OP_ALL_USES
)
87 rename_use_op (use_p
);
90 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
92 if (!flow_bb_inside_loop_p (loop
, e
->dest
))
94 for (gsi
= gsi_start_phis (e
->dest
); !gsi_end_p (gsi
); gsi_next (&gsi
))
95 rename_use_op (PHI_ARG_DEF_PTR_FROM_EDGE (gsi_stmt (gsi
), e
));
100 /* Renames variables in new generated LOOP. */
103 rename_variables_in_loop (struct loop
*loop
)
108 bbs
= get_loop_body (loop
);
110 for (i
= 0; i
< loop
->num_nodes
; i
++)
111 rename_variables_in_bb (bbs
[i
]);
122 DEF_VEC_O(adjust_info
);
123 DEF_VEC_ALLOC_O_STACK(adjust_info
);
124 #define VEC_adjust_info_stack_alloc(alloc) VEC_stack_alloc (adjust_info, alloc)
126 /* A stack of values to be adjusted in debug stmts. We have to
127 process them LIFO, so that the closest substitution applies. If we
128 processed them FIFO, without the stack, we might substitute uses
129 with a PHI DEF that would soon become non-dominant, and when we got
130 to the suitable one, it wouldn't have anything to substitute any
132 static VEC(adjust_info
, stack
) *adjust_vec
;
134 /* Adjust any debug stmts that referenced AI->from values to use the
135 loop-closed AI->to, if the references are dominated by AI->bb and
136 not by the definition of AI->from. */
139 adjust_debug_stmts_now (adjust_info
*ai
)
141 basic_block bbphi
= ai
->bb
;
142 tree orig_def
= ai
->from
;
143 tree new_def
= ai
->to
;
144 imm_use_iterator imm_iter
;
146 basic_block bbdef
= gimple_bb (SSA_NAME_DEF_STMT (orig_def
));
148 gcc_assert (dom_info_available_p (CDI_DOMINATORS
));
150 /* Adjust any debug stmts that held onto non-loop-closed
152 FOR_EACH_IMM_USE_STMT (stmt
, imm_iter
, orig_def
)
157 if (!is_gimple_debug (stmt
))
160 gcc_assert (gimple_debug_bind_p (stmt
));
162 bbuse
= gimple_bb (stmt
);
165 || dominated_by_p (CDI_DOMINATORS
, bbuse
, bbphi
))
167 || dominated_by_p (CDI_DOMINATORS
, bbuse
, bbdef
)))
170 FOR_EACH_IMM_USE_ON_STMT (use_p
, imm_iter
)
171 SET_USE (use_p
, new_def
);
174 gimple_debug_bind_reset_value (stmt
);
181 /* Adjust debug stmts as scheduled before. */
184 adjust_vec_debug_stmts (void)
186 if (!MAY_HAVE_DEBUG_STMTS
)
189 gcc_assert (adjust_vec
);
191 while (!VEC_empty (adjust_info
, adjust_vec
))
193 adjust_debug_stmts_now (VEC_last (adjust_info
, adjust_vec
));
194 VEC_pop (adjust_info
, adjust_vec
);
197 VEC_free (adjust_info
, stack
, adjust_vec
);
200 /* Adjust any debug stmts that referenced FROM values to use the
201 loop-closed TO, if the references are dominated by BB and not by
202 the definition of FROM. If adjust_vec is non-NULL, adjustments
203 will be postponed until adjust_vec_debug_stmts is called. */
206 adjust_debug_stmts (tree from
, tree to
, basic_block bb
)
210 if (MAY_HAVE_DEBUG_STMTS
&& TREE_CODE (from
) == SSA_NAME
211 && SSA_NAME_VAR (from
) != gimple_vop (cfun
))
218 VEC_safe_push (adjust_info
, stack
, adjust_vec
, &ai
);
220 adjust_debug_stmts_now (&ai
);
224 /* Change E's phi arg in UPDATE_PHI to NEW_DEF, and record information
225 to adjust any debug stmts that referenced the old phi arg,
226 presumably non-loop-closed references left over from other
230 adjust_phi_and_debug_stmts (gimple update_phi
, edge e
, tree new_def
)
232 tree orig_def
= PHI_ARG_DEF_FROM_EDGE (update_phi
, e
);
234 SET_PHI_ARG_DEF (update_phi
, e
->dest_idx
, new_def
);
236 if (MAY_HAVE_DEBUG_STMTS
)
237 adjust_debug_stmts (orig_def
, PHI_RESULT (update_phi
),
238 gimple_bb (update_phi
));
242 /* Update the PHI nodes of NEW_LOOP.
244 NEW_LOOP is a duplicate of ORIG_LOOP.
245 AFTER indicates whether NEW_LOOP executes before or after ORIG_LOOP:
246 AFTER is true if NEW_LOOP executes after ORIG_LOOP, and false if it
247 executes before it. */
250 slpeel_update_phis_for_duplicate_loop (struct loop
*orig_loop
,
251 struct loop
*new_loop
, bool after
)
254 gimple phi_new
, phi_orig
;
256 edge orig_loop_latch
= loop_latch_edge (orig_loop
);
257 edge orig_entry_e
= loop_preheader_edge (orig_loop
);
258 edge new_loop_exit_e
= single_exit (new_loop
);
259 edge new_loop_entry_e
= loop_preheader_edge (new_loop
);
260 edge entry_arg_e
= (after
? orig_loop_latch
: orig_entry_e
);
261 gimple_stmt_iterator gsi_new
, gsi_orig
;
264 step 1. For each loop-header-phi:
265 Add the first phi argument for the phi in NEW_LOOP
266 (the one associated with the entry of NEW_LOOP)
268 step 2. For each loop-header-phi:
269 Add the second phi argument for the phi in NEW_LOOP
270 (the one associated with the latch of NEW_LOOP)
272 step 3. Update the phis in the successor block of NEW_LOOP.
274 case 1: NEW_LOOP was placed before ORIG_LOOP:
275 The successor block of NEW_LOOP is the header of ORIG_LOOP.
276 Updating the phis in the successor block can therefore be done
277 along with the scanning of the loop header phis, because the
278 header blocks of ORIG_LOOP and NEW_LOOP have exactly the same
279 phi nodes, organized in the same order.
281 case 2: NEW_LOOP was placed after ORIG_LOOP:
282 The successor block of NEW_LOOP is the original exit block of
283 ORIG_LOOP - the phis to be updated are the loop-closed-ssa phis.
284 We postpone updating these phis to a later stage (when
285 loop guards are added).
289 /* Scan the phis in the headers of the old and new loops
290 (they are organized in exactly the same order). */
292 for (gsi_new
= gsi_start_phis (new_loop
->header
),
293 gsi_orig
= gsi_start_phis (orig_loop
->header
);
294 !gsi_end_p (gsi_new
) && !gsi_end_p (gsi_orig
);
295 gsi_next (&gsi_new
), gsi_next (&gsi_orig
))
297 source_location locus
;
298 phi_new
= gsi_stmt (gsi_new
);
299 phi_orig
= gsi_stmt (gsi_orig
);
302 def
= PHI_ARG_DEF_FROM_EDGE (phi_orig
, entry_arg_e
);
303 locus
= gimple_phi_arg_location_from_edge (phi_orig
, entry_arg_e
);
304 add_phi_arg (phi_new
, def
, new_loop_entry_e
, locus
);
307 def
= PHI_ARG_DEF_FROM_EDGE (phi_orig
, orig_loop_latch
);
308 locus
= gimple_phi_arg_location_from_edge (phi_orig
, orig_loop_latch
);
309 if (TREE_CODE (def
) != SSA_NAME
)
312 new_ssa_name
= get_current_def (def
);
315 /* This only happens if there are no definitions
316 inside the loop. use the phi_result in this case. */
317 new_ssa_name
= PHI_RESULT (phi_new
);
320 /* An ordinary ssa name defined in the loop. */
321 add_phi_arg (phi_new
, new_ssa_name
, loop_latch_edge (new_loop
), locus
);
323 /* Drop any debug references outside the loop, if they would
324 become ill-formed SSA. */
325 adjust_debug_stmts (def
, NULL
, single_exit (orig_loop
)->dest
);
327 /* step 3 (case 1). */
330 gcc_assert (new_loop_exit_e
== orig_entry_e
);
331 adjust_phi_and_debug_stmts (phi_orig
, new_loop_exit_e
, new_ssa_name
);
337 /* Update PHI nodes for a guard of the LOOP.
340 - LOOP, GUARD_EDGE: LOOP is a loop for which we added guard code that
341 controls whether LOOP is to be executed. GUARD_EDGE is the edge that
342 originates from the guard-bb, skips LOOP and reaches the (unique) exit
343 bb of LOOP. This loop-exit-bb is an empty bb with one successor.
344 We denote this bb NEW_MERGE_BB because before the guard code was added
345 it had a single predecessor (the LOOP header), and now it became a merge
346 point of two paths - the path that ends with the LOOP exit-edge, and
347 the path that ends with GUARD_EDGE.
348 - NEW_EXIT_BB: New basic block that is added by this function between LOOP
349 and NEW_MERGE_BB. It is used to place loop-closed-ssa-form exit-phis.
351 ===> The CFG before the guard-code was added:
354 if (exit_loop) goto update_bb
355 else goto LOOP_header_bb
358 ==> The CFG after the guard-code was added:
360 if (LOOP_guard_condition) goto new_merge_bb
361 else goto LOOP_header_bb
364 if (exit_loop_condition) goto new_merge_bb
365 else goto LOOP_header_bb
370 ==> The CFG after this function:
372 if (LOOP_guard_condition) goto new_merge_bb
373 else goto LOOP_header_bb
376 if (exit_loop_condition) goto new_exit_bb
377 else goto LOOP_header_bb
384 1. creates and updates the relevant phi nodes to account for the new
385 incoming edge (GUARD_EDGE) into NEW_MERGE_BB. This involves:
386 1.1. Create phi nodes at NEW_MERGE_BB.
387 1.2. Update the phi nodes at the successor of NEW_MERGE_BB (denoted
388 UPDATE_BB). UPDATE_BB was the exit-bb of LOOP before NEW_MERGE_BB
389 2. preserves loop-closed-ssa-form by creating the required phi nodes
390 at the exit of LOOP (i.e, in NEW_EXIT_BB).
392 There are two flavors to this function:
394 slpeel_update_phi_nodes_for_guard1:
395 Here the guard controls whether we enter or skip LOOP, where LOOP is a
396 prolog_loop (loop1 below), and the new phis created in NEW_MERGE_BB are
397 for variables that have phis in the loop header.
399 slpeel_update_phi_nodes_for_guard2:
400 Here the guard controls whether we enter or skip LOOP, where LOOP is an
401 epilog_loop (loop2 below), and the new phis created in NEW_MERGE_BB are
402 for variables that have phis in the loop exit.
404 I.E., the overall structure is:
407 guard1 (goto loop1/merge1_bb)
410 guard2 (goto merge1_bb/merge2_bb)
417 slpeel_update_phi_nodes_for_guard1 takes care of creating phis in
418 loop1_exit_bb and merge1_bb. These are entry phis (phis for the vars
419 that have phis in loop1->header).
421 slpeel_update_phi_nodes_for_guard2 takes care of creating phis in
422 loop2_exit_bb and merge2_bb. These are exit phis (phis for the vars
423 that have phis in next_bb). It also adds some of these phis to
426 slpeel_update_phi_nodes_for_guard1 is always called before
427 slpeel_update_phi_nodes_for_guard2. They are both needed in order
428 to create correct data-flow and loop-closed-ssa-form.
430 Generally slpeel_update_phi_nodes_for_guard1 creates phis for variables
431 that change between iterations of a loop (and therefore have a phi-node
432 at the loop entry), whereas slpeel_update_phi_nodes_for_guard2 creates
433 phis for variables that are used out of the loop (and therefore have
434 loop-closed exit phis). Some variables may be both updated between
435 iterations and used after the loop. This is why in loop1_exit_bb we
436 may need both entry_phis (created by slpeel_update_phi_nodes_for_guard1)
437 and exit phis (created by slpeel_update_phi_nodes_for_guard2).
439 - IS_NEW_LOOP: if IS_NEW_LOOP is true, then LOOP is a newly created copy of
440 an original loop. i.e., we have:
443 guard_bb (goto LOOP/new_merge)
449 If IS_NEW_LOOP is false, then LOOP is an original loop, in which case we
453 guard_bb (goto LOOP/new_merge)
459 The SSA names defined in the original loop have a current
460 reaching definition that that records the corresponding new
461 ssa-name used in the new duplicated loop copy.
464 /* Function slpeel_update_phi_nodes_for_guard1
467 - GUARD_EDGE, LOOP, IS_NEW_LOOP, NEW_EXIT_BB - as explained above.
468 - DEFS - a bitmap of ssa names to mark new names for which we recorded
471 In the context of the overall structure, we have:
474 guard1 (goto loop1/merge1_bb)
477 guard2 (goto merge1_bb/merge2_bb)
484 For each name updated between loop iterations (i.e - for each name that has
485 an entry (loop-header) phi in LOOP) we create a new phi in:
486 1. merge1_bb (to account for the edge from guard1)
487 2. loop1_exit_bb (an exit-phi to keep LOOP in loop-closed form)
491 slpeel_update_phi_nodes_for_guard1 (edge guard_edge
, struct loop
*loop
,
492 bool is_new_loop
, basic_block
*new_exit_bb
,
495 gimple orig_phi
, new_phi
;
496 gimple update_phi
, update_phi2
;
497 tree guard_arg
, loop_arg
;
498 basic_block new_merge_bb
= guard_edge
->dest
;
499 edge e
= EDGE_SUCC (new_merge_bb
, 0);
500 basic_block update_bb
= e
->dest
;
501 basic_block orig_bb
= loop
->header
;
503 tree current_new_name
;
504 gimple_stmt_iterator gsi_orig
, gsi_update
;
506 /* Create new bb between loop and new_merge_bb. */
507 *new_exit_bb
= split_edge (single_exit (loop
));
509 new_exit_e
= EDGE_SUCC (*new_exit_bb
, 0);
511 for (gsi_orig
= gsi_start_phis (orig_bb
),
512 gsi_update
= gsi_start_phis (update_bb
);
513 !gsi_end_p (gsi_orig
) && !gsi_end_p (gsi_update
);
514 gsi_next (&gsi_orig
), gsi_next (&gsi_update
))
516 source_location loop_locus
, guard_locus
;;
517 orig_phi
= gsi_stmt (gsi_orig
);
518 update_phi
= gsi_stmt (gsi_update
);
520 /** 1. Handle new-merge-point phis **/
522 /* 1.1. Generate new phi node in NEW_MERGE_BB: */
523 new_phi
= create_phi_node (SSA_NAME_VAR (PHI_RESULT (orig_phi
)),
526 /* 1.2. NEW_MERGE_BB has two incoming edges: GUARD_EDGE and the exit-edge
527 of LOOP. Set the two phi args in NEW_PHI for these edges: */
528 loop_arg
= PHI_ARG_DEF_FROM_EDGE (orig_phi
, EDGE_SUCC (loop
->latch
, 0));
529 loop_locus
= gimple_phi_arg_location_from_edge (orig_phi
,
530 EDGE_SUCC (loop
->latch
,
532 guard_arg
= PHI_ARG_DEF_FROM_EDGE (orig_phi
, loop_preheader_edge (loop
));
534 = gimple_phi_arg_location_from_edge (orig_phi
,
535 loop_preheader_edge (loop
));
537 add_phi_arg (new_phi
, loop_arg
, new_exit_e
, loop_locus
);
538 add_phi_arg (new_phi
, guard_arg
, guard_edge
, guard_locus
);
540 /* 1.3. Update phi in successor block. */
541 gcc_assert (PHI_ARG_DEF_FROM_EDGE (update_phi
, e
) == loop_arg
542 || PHI_ARG_DEF_FROM_EDGE (update_phi
, e
) == guard_arg
);
543 adjust_phi_and_debug_stmts (update_phi
, e
, PHI_RESULT (new_phi
));
544 update_phi2
= new_phi
;
547 /** 2. Handle loop-closed-ssa-form phis **/
549 if (!is_gimple_reg (PHI_RESULT (orig_phi
)))
552 /* 2.1. Generate new phi node in NEW_EXIT_BB: */
553 new_phi
= create_phi_node (SSA_NAME_VAR (PHI_RESULT (orig_phi
)),
556 /* 2.2. NEW_EXIT_BB has one incoming edge: the exit-edge of the loop. */
557 add_phi_arg (new_phi
, loop_arg
, single_exit (loop
), loop_locus
);
559 /* 2.3. Update phi in successor of NEW_EXIT_BB: */
560 gcc_assert (PHI_ARG_DEF_FROM_EDGE (update_phi2
, new_exit_e
) == loop_arg
);
561 adjust_phi_and_debug_stmts (update_phi2
, new_exit_e
,
562 PHI_RESULT (new_phi
));
564 /* 2.4. Record the newly created name with set_current_def.
565 We want to find a name such that
566 name = get_current_def (orig_loop_name)
567 and to set its current definition as follows:
568 set_current_def (name, new_phi_name)
570 If LOOP is a new loop then loop_arg is already the name we're
571 looking for. If LOOP is the original loop, then loop_arg is
572 the orig_loop_name and the relevant name is recorded in its
573 current reaching definition. */
575 current_new_name
= loop_arg
;
578 current_new_name
= get_current_def (loop_arg
);
579 /* current_def is not available only if the variable does not
580 change inside the loop, in which case we also don't care
581 about recording a current_def for it because we won't be
582 trying to create loop-exit-phis for it. */
583 if (!current_new_name
)
586 gcc_assert (get_current_def (current_new_name
) == NULL_TREE
);
588 set_current_def (current_new_name
, PHI_RESULT (new_phi
));
589 bitmap_set_bit (*defs
, SSA_NAME_VERSION (current_new_name
));
594 /* Function slpeel_update_phi_nodes_for_guard2
597 - GUARD_EDGE, LOOP, IS_NEW_LOOP, NEW_EXIT_BB - as explained above.
599 In the context of the overall structure, we have:
602 guard1 (goto loop1/merge1_bb)
605 guard2 (goto merge1_bb/merge2_bb)
612 For each name used out side the loop (i.e - for each name that has an exit
613 phi in next_bb) we create a new phi in:
614 1. merge2_bb (to account for the edge from guard_bb)
615 2. loop2_exit_bb (an exit-phi to keep LOOP in loop-closed form)
616 3. guard2 bb (an exit phi to keep the preceding loop in loop-closed form),
617 if needed (if it wasn't handled by slpeel_update_phis_nodes_for_phi1).
621 slpeel_update_phi_nodes_for_guard2 (edge guard_edge
, struct loop
*loop
,
622 bool is_new_loop
, basic_block
*new_exit_bb
)
624 gimple orig_phi
, new_phi
;
625 gimple update_phi
, update_phi2
;
626 tree guard_arg
, loop_arg
;
627 basic_block new_merge_bb
= guard_edge
->dest
;
628 edge e
= EDGE_SUCC (new_merge_bb
, 0);
629 basic_block update_bb
= e
->dest
;
631 tree orig_def
, orig_def_new_name
;
632 tree new_name
, new_name2
;
634 gimple_stmt_iterator gsi
;
636 /* Create new bb between loop and new_merge_bb. */
637 *new_exit_bb
= split_edge (single_exit (loop
));
639 new_exit_e
= EDGE_SUCC (*new_exit_bb
, 0);
641 for (gsi
= gsi_start_phis (update_bb
); !gsi_end_p (gsi
); gsi_next (&gsi
))
643 update_phi
= gsi_stmt (gsi
);
644 orig_phi
= update_phi
;
645 orig_def
= PHI_ARG_DEF_FROM_EDGE (orig_phi
, e
);
646 /* This loop-closed-phi actually doesn't represent a use
647 out of the loop - the phi arg is a constant. */
648 if (TREE_CODE (orig_def
) != SSA_NAME
)
650 orig_def_new_name
= get_current_def (orig_def
);
653 /** 1. Handle new-merge-point phis **/
655 /* 1.1. Generate new phi node in NEW_MERGE_BB: */
656 new_phi
= create_phi_node (SSA_NAME_VAR (PHI_RESULT (orig_phi
)),
659 /* 1.2. NEW_MERGE_BB has two incoming edges: GUARD_EDGE and the exit-edge
660 of LOOP. Set the two PHI args in NEW_PHI for these edges: */
662 new_name2
= NULL_TREE
;
663 if (orig_def_new_name
)
665 new_name
= orig_def_new_name
;
666 /* Some variables have both loop-entry-phis and loop-exit-phis.
667 Such variables were given yet newer names by phis placed in
668 guard_bb by slpeel_update_phi_nodes_for_guard1. I.e:
669 new_name2 = get_current_def (get_current_def (orig_name)). */
670 new_name2
= get_current_def (new_name
);
675 guard_arg
= orig_def
;
680 guard_arg
= new_name
;
684 guard_arg
= new_name2
;
686 add_phi_arg (new_phi
, loop_arg
, new_exit_e
, UNKNOWN_LOCATION
);
687 add_phi_arg (new_phi
, guard_arg
, guard_edge
, UNKNOWN_LOCATION
);
689 /* 1.3. Update phi in successor block. */
690 gcc_assert (PHI_ARG_DEF_FROM_EDGE (update_phi
, e
) == orig_def
);
691 adjust_phi_and_debug_stmts (update_phi
, e
, PHI_RESULT (new_phi
));
692 update_phi2
= new_phi
;
695 /** 2. Handle loop-closed-ssa-form phis **/
697 /* 2.1. Generate new phi node in NEW_EXIT_BB: */
698 new_phi
= create_phi_node (SSA_NAME_VAR (PHI_RESULT (orig_phi
)),
701 /* 2.2. NEW_EXIT_BB has one incoming edge: the exit-edge of the loop. */
702 add_phi_arg (new_phi
, loop_arg
, single_exit (loop
), UNKNOWN_LOCATION
);
704 /* 2.3. Update phi in successor of NEW_EXIT_BB: */
705 gcc_assert (PHI_ARG_DEF_FROM_EDGE (update_phi2
, new_exit_e
) == loop_arg
);
706 adjust_phi_and_debug_stmts (update_phi2
, new_exit_e
,
707 PHI_RESULT (new_phi
));
710 /** 3. Handle loop-closed-ssa-form phis for first loop **/
712 /* 3.1. Find the relevant names that need an exit-phi in
713 GUARD_BB, i.e. names for which
714 slpeel_update_phi_nodes_for_guard1 had not already created a
715 phi node. This is the case for names that are used outside
716 the loop (and therefore need an exit phi) but are not updated
717 across loop iterations (and therefore don't have a
720 slpeel_update_phi_nodes_for_guard1 is responsible for
721 creating loop-exit phis in GUARD_BB for names that have a
722 loop-header-phi. When such a phi is created we also record
723 the new name in its current definition. If this new name
724 exists, then guard_arg was set to this new name (see 1.2
725 above). Therefore, if guard_arg is not this new name, this
726 is an indication that an exit-phi in GUARD_BB was not yet
727 created, so we take care of it here. */
728 if (guard_arg
== new_name2
)
732 /* 3.2. Generate new phi node in GUARD_BB: */
733 new_phi
= create_phi_node (SSA_NAME_VAR (PHI_RESULT (orig_phi
)),
736 /* 3.3. GUARD_BB has one incoming edge: */
737 gcc_assert (EDGE_COUNT (guard_edge
->src
->preds
) == 1);
738 add_phi_arg (new_phi
, arg
, EDGE_PRED (guard_edge
->src
, 0),
741 /* 3.4. Update phi in successor of GUARD_BB: */
742 gcc_assert (PHI_ARG_DEF_FROM_EDGE (update_phi2
, guard_edge
)
744 adjust_phi_and_debug_stmts (update_phi2
, guard_edge
,
745 PHI_RESULT (new_phi
));
750 /* Make the LOOP iterate NITERS times. This is done by adding a new IV
751 that starts at zero, increases by one and its limit is NITERS.
753 Assumption: the exit-condition of LOOP is the last stmt in the loop. */
756 slpeel_make_loop_iterate_ntimes (struct loop
*loop
, tree niters
)
758 tree indx_before_incr
, indx_after_incr
;
761 edge exit_edge
= single_exit (loop
);
762 gimple_stmt_iterator loop_cond_gsi
;
763 gimple_stmt_iterator incr_gsi
;
765 tree init
= build_int_cst (TREE_TYPE (niters
), 0);
766 tree step
= build_int_cst (TREE_TYPE (niters
), 1);
770 orig_cond
= get_loop_exit_condition (loop
);
771 gcc_assert (orig_cond
);
772 loop_cond_gsi
= gsi_for_stmt (orig_cond
);
774 standard_iv_increment_position (loop
, &incr_gsi
, &insert_after
);
775 create_iv (init
, step
, NULL_TREE
, loop
,
776 &incr_gsi
, insert_after
, &indx_before_incr
, &indx_after_incr
);
778 indx_after_incr
= force_gimple_operand_gsi (&loop_cond_gsi
, indx_after_incr
,
779 true, NULL_TREE
, true,
781 niters
= force_gimple_operand_gsi (&loop_cond_gsi
, niters
, true, NULL_TREE
,
782 true, GSI_SAME_STMT
);
784 code
= (exit_edge
->flags
& EDGE_TRUE_VALUE
) ? GE_EXPR
: LT_EXPR
;
785 cond_stmt
= gimple_build_cond (code
, indx_after_incr
, niters
, NULL_TREE
,
788 gsi_insert_before (&loop_cond_gsi
, cond_stmt
, GSI_SAME_STMT
);
790 /* Remove old loop exit test: */
791 gsi_remove (&loop_cond_gsi
, true);
793 loop_loc
= find_loop_location (loop
);
794 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
796 if (loop_loc
!= UNKNOWN_LOC
)
797 fprintf (dump_file
, "\nloop at %s:%d: ",
798 LOC_FILE (loop_loc
), LOC_LINE (loop_loc
));
799 print_gimple_stmt (dump_file
, cond_stmt
, 0, TDF_SLIM
);
802 loop
->nb_iterations
= niters
;
806 /* Given LOOP this function generates a new copy of it and puts it
807 on E which is either the entry or exit of LOOP. */
810 slpeel_tree_duplicate_loop_to_edge_cfg (struct loop
*loop
, edge e
)
812 struct loop
*new_loop
;
813 basic_block
*new_bbs
, *bbs
;
816 basic_block exit_dest
;
820 gimple_stmt_iterator gsi
;
822 at_exit
= (e
== single_exit (loop
));
823 if (!at_exit
&& e
!= loop_preheader_edge (loop
))
826 bbs
= get_loop_body (loop
);
828 /* Check whether duplication is possible. */
829 if (!can_copy_bbs_p (bbs
, loop
->num_nodes
))
835 /* Generate new loop structure. */
836 new_loop
= duplicate_loop (loop
, loop_outer (loop
));
843 exit_dest
= single_exit (loop
)->dest
;
844 was_imm_dom
= (get_immediate_dominator (CDI_DOMINATORS
,
845 exit_dest
) == loop
->header
?
848 new_bbs
= XNEWVEC (basic_block
, loop
->num_nodes
);
850 exit
= single_exit (loop
);
851 copy_bbs (bbs
, loop
->num_nodes
, new_bbs
,
852 &exit
, 1, &new_exit
, NULL
,
855 /* Duplicating phi args at exit bbs as coming
856 also from exit of duplicated loop. */
857 for (gsi
= gsi_start_phis (exit_dest
); !gsi_end_p (gsi
); gsi_next (&gsi
))
859 phi
= gsi_stmt (gsi
);
860 phi_arg
= PHI_ARG_DEF_FROM_EDGE (phi
, single_exit (loop
));
863 edge new_loop_exit_edge
;
864 source_location locus
;
866 locus
= gimple_phi_arg_location_from_edge (phi
, single_exit (loop
));
867 if (EDGE_SUCC (new_loop
->header
, 0)->dest
== new_loop
->latch
)
868 new_loop_exit_edge
= EDGE_SUCC (new_loop
->header
, 1);
870 new_loop_exit_edge
= EDGE_SUCC (new_loop
->header
, 0);
872 add_phi_arg (phi
, phi_arg
, new_loop_exit_edge
, locus
);
876 if (at_exit
) /* Add the loop copy at exit. */
878 redirect_edge_and_branch_force (e
, new_loop
->header
);
879 PENDING_STMT (e
) = NULL
;
880 set_immediate_dominator (CDI_DOMINATORS
, new_loop
->header
, e
->src
);
882 set_immediate_dominator (CDI_DOMINATORS
, exit_dest
, new_loop
->header
);
884 else /* Add the copy at entry. */
887 edge entry_e
= loop_preheader_edge (loop
);
888 basic_block preheader
= entry_e
->src
;
890 if (!flow_bb_inside_loop_p (new_loop
,
891 EDGE_SUCC (new_loop
->header
, 0)->dest
))
892 new_exit_e
= EDGE_SUCC (new_loop
->header
, 0);
894 new_exit_e
= EDGE_SUCC (new_loop
->header
, 1);
896 redirect_edge_and_branch_force (new_exit_e
, loop
->header
);
897 PENDING_STMT (new_exit_e
) = NULL
;
898 set_immediate_dominator (CDI_DOMINATORS
, loop
->header
,
901 /* We have to add phi args to the loop->header here as coming
902 from new_exit_e edge. */
903 for (gsi
= gsi_start_phis (loop
->header
);
907 phi
= gsi_stmt (gsi
);
908 phi_arg
= PHI_ARG_DEF_FROM_EDGE (phi
, entry_e
);
910 add_phi_arg (phi
, phi_arg
, new_exit_e
,
911 gimple_phi_arg_location_from_edge (phi
, entry_e
));
914 redirect_edge_and_branch_force (entry_e
, new_loop
->header
);
915 PENDING_STMT (entry_e
) = NULL
;
916 set_immediate_dominator (CDI_DOMINATORS
, new_loop
->header
, preheader
);
926 /* Given the condition statement COND, put it as the last statement
927 of GUARD_BB; EXIT_BB is the basic block to skip the loop;
928 Assumes that this is the single exit of the guarded loop.
929 Returns the skip edge, inserts new stmts on the COND_EXPR_STMT_LIST. */
932 slpeel_add_loop_guard (basic_block guard_bb
, tree cond
,
933 gimple_seq cond_expr_stmt_list
,
934 basic_block exit_bb
, basic_block dom_bb
)
936 gimple_stmt_iterator gsi
;
939 gimple_seq gimplify_stmt_list
= NULL
;
941 enter_e
= EDGE_SUCC (guard_bb
, 0);
942 enter_e
->flags
&= ~EDGE_FALLTHRU
;
943 enter_e
->flags
|= EDGE_FALSE_VALUE
;
944 gsi
= gsi_last_bb (guard_bb
);
946 cond
= force_gimple_operand (cond
, &gimplify_stmt_list
, true, NULL_TREE
);
947 if (gimplify_stmt_list
)
948 gimple_seq_add_seq (&cond_expr_stmt_list
, gimplify_stmt_list
);
949 cond_stmt
= gimple_build_cond (NE_EXPR
,
950 cond
, build_int_cst (TREE_TYPE (cond
), 0),
951 NULL_TREE
, NULL_TREE
);
952 if (cond_expr_stmt_list
)
953 gsi_insert_seq_after (&gsi
, cond_expr_stmt_list
, GSI_NEW_STMT
);
955 gsi
= gsi_last_bb (guard_bb
);
956 gsi_insert_after (&gsi
, cond_stmt
, GSI_NEW_STMT
);
958 /* Add new edge to connect guard block to the merge/loop-exit block. */
959 new_e
= make_edge (guard_bb
, exit_bb
, EDGE_TRUE_VALUE
);
960 set_immediate_dominator (CDI_DOMINATORS
, exit_bb
, dom_bb
);
965 /* This function verifies that the following restrictions apply to LOOP:
967 (2) it consists of exactly 2 basic blocks - header, and an empty latch.
968 (3) it is single entry, single exit
969 (4) its exit condition is the last stmt in the header
970 (5) E is the entry/exit edge of LOOP.
974 slpeel_can_duplicate_loop_p (const struct loop
*loop
, const_edge e
)
976 edge exit_e
= single_exit (loop
);
977 edge entry_e
= loop_preheader_edge (loop
);
978 gimple orig_cond
= get_loop_exit_condition (loop
);
979 gimple_stmt_iterator loop_exit_gsi
= gsi_last_bb (exit_e
->src
);
981 if (need_ssa_update_p (cfun
))
985 /* All loops have an outer scope; the only case loop->outer is NULL is for
986 the function itself. */
987 || !loop_outer (loop
)
988 || loop
->num_nodes
!= 2
989 || !empty_block_p (loop
->latch
)
990 || !single_exit (loop
)
991 /* Verify that new loop exit condition can be trivially modified. */
992 || (!orig_cond
|| orig_cond
!= gsi_stmt (loop_exit_gsi
))
993 || (e
!= exit_e
&& e
!= entry_e
))
999 #ifdef ENABLE_CHECKING
1001 slpeel_verify_cfg_after_peeling (struct loop
*first_loop
,
1002 struct loop
*second_loop
)
1004 basic_block loop1_exit_bb
= single_exit (first_loop
)->dest
;
1005 basic_block loop2_entry_bb
= loop_preheader_edge (second_loop
)->src
;
1006 basic_block loop1_entry_bb
= loop_preheader_edge (first_loop
)->src
;
1008 /* A guard that controls whether the second_loop is to be executed or skipped
1009 is placed in first_loop->exit. first_loop->exit therefore has two
1010 successors - one is the preheader of second_loop, and the other is a bb
1013 gcc_assert (EDGE_COUNT (loop1_exit_bb
->succs
) == 2);
1015 /* 1. Verify that one of the successors of first_loop->exit is the preheader
1018 /* The preheader of new_loop is expected to have two predecessors:
1019 first_loop->exit and the block that precedes first_loop. */
1021 gcc_assert (EDGE_COUNT (loop2_entry_bb
->preds
) == 2
1022 && ((EDGE_PRED (loop2_entry_bb
, 0)->src
== loop1_exit_bb
1023 && EDGE_PRED (loop2_entry_bb
, 1)->src
== loop1_entry_bb
)
1024 || (EDGE_PRED (loop2_entry_bb
, 1)->src
== loop1_exit_bb
1025 && EDGE_PRED (loop2_entry_bb
, 0)->src
== loop1_entry_bb
)));
1027 /* Verify that the other successor of first_loop->exit is after the
1033 /* If the run time cost model check determines that vectorization is
1034 not profitable and hence scalar loop should be generated then set
1035 FIRST_NITERS to prologue peeled iterations. This will allow all the
1036 iterations to be executed in the prologue peeled scalar loop. */
1039 set_prologue_iterations (basic_block bb_before_first_loop
,
1045 basic_block cond_bb
, then_bb
;
1046 tree var
, prologue_after_cost_adjust_name
;
1047 gimple_stmt_iterator gsi
;
1049 edge e_true
, e_false
, e_fallthru
;
1051 gimple_seq gimplify_stmt_list
= NULL
, stmts
= NULL
;
1052 tree cost_pre_condition
= NULL_TREE
;
1053 tree scalar_loop_iters
=
1054 unshare_expr (LOOP_VINFO_NITERS_UNCHANGED (loop_vec_info_for_loop (loop
)));
1056 e
= single_pred_edge (bb_before_first_loop
);
1057 cond_bb
= split_edge(e
);
1059 e
= single_pred_edge (bb_before_first_loop
);
1060 then_bb
= split_edge(e
);
1061 set_immediate_dominator (CDI_DOMINATORS
, then_bb
, cond_bb
);
1063 e_false
= make_single_succ_edge (cond_bb
, bb_before_first_loop
,
1065 set_immediate_dominator (CDI_DOMINATORS
, bb_before_first_loop
, cond_bb
);
1067 e_true
= EDGE_PRED (then_bb
, 0);
1068 e_true
->flags
&= ~EDGE_FALLTHRU
;
1069 e_true
->flags
|= EDGE_TRUE_VALUE
;
1071 e_fallthru
= EDGE_SUCC (then_bb
, 0);
1073 cost_pre_condition
=
1074 fold_build2 (LE_EXPR
, boolean_type_node
, scalar_loop_iters
,
1075 build_int_cst (TREE_TYPE (scalar_loop_iters
), th
));
1076 cost_pre_condition
=
1077 force_gimple_operand (cost_pre_condition
, &gimplify_stmt_list
,
1079 cond_stmt
= gimple_build_cond (NE_EXPR
, cost_pre_condition
,
1080 build_int_cst (TREE_TYPE (cost_pre_condition
),
1081 0), NULL_TREE
, NULL_TREE
);
1083 gsi
= gsi_last_bb (cond_bb
);
1084 if (gimplify_stmt_list
)
1085 gsi_insert_seq_after (&gsi
, gimplify_stmt_list
, GSI_NEW_STMT
);
1087 gsi
= gsi_last_bb (cond_bb
);
1088 gsi_insert_after (&gsi
, cond_stmt
, GSI_NEW_STMT
);
1090 var
= create_tmp_var (TREE_TYPE (scalar_loop_iters
),
1091 "prologue_after_cost_adjust");
1092 add_referenced_var (var
);
1093 prologue_after_cost_adjust_name
=
1094 force_gimple_operand (scalar_loop_iters
, &stmts
, false, var
);
1096 gsi
= gsi_last_bb (then_bb
);
1098 gsi_insert_seq_after (&gsi
, stmts
, GSI_NEW_STMT
);
1100 newphi
= create_phi_node (var
, bb_before_first_loop
);
1101 add_phi_arg (newphi
, prologue_after_cost_adjust_name
, e_fallthru
,
1103 add_phi_arg (newphi
, first_niters
, e_false
, UNKNOWN_LOCATION
);
1105 first_niters
= PHI_RESULT (newphi
);
1109 /* Function slpeel_tree_peel_loop_to_edge.
1111 Peel the first (last) iterations of LOOP into a new prolog (epilog) loop
1112 that is placed on the entry (exit) edge E of LOOP. After this transformation
1113 we have two loops one after the other - first-loop iterates FIRST_NITERS
1114 times, and second-loop iterates the remainder NITERS - FIRST_NITERS times.
1115 If the cost model indicates that it is profitable to emit a scalar
1116 loop instead of the vector one, then the prolog (epilog) loop will iterate
1117 for the entire unchanged scalar iterations of the loop.
1120 - LOOP: the loop to be peeled.
1121 - E: the exit or entry edge of LOOP.
1122 If it is the entry edge, we peel the first iterations of LOOP. In this
1123 case first-loop is LOOP, and second-loop is the newly created loop.
1124 If it is the exit edge, we peel the last iterations of LOOP. In this
1125 case, first-loop is the newly created loop, and second-loop is LOOP.
1126 - NITERS: the number of iterations that LOOP iterates.
1127 - FIRST_NITERS: the number of iterations that the first-loop should iterate.
1128 - UPDATE_FIRST_LOOP_COUNT: specified whether this function is responsible
1129 for updating the loop bound of the first-loop to FIRST_NITERS. If it
1130 is false, the caller of this function may want to take care of this
1131 (this can be useful if we don't want new stmts added to first-loop).
1132 - TH: cost model profitability threshold of iterations for vectorization.
1133 - CHECK_PROFITABILITY: specify whether cost model check has not occurred
1134 during versioning and hence needs to occur during
1135 prologue generation or whether cost model check
1136 has not occurred during prologue generation and hence
1137 needs to occur during epilogue generation.
1141 The function returns a pointer to the new loop-copy, or NULL if it failed
1142 to perform the transformation.
1144 The function generates two if-then-else guards: one before the first loop,
1145 and the other before the second loop:
1147 if (FIRST_NITERS == 0) then skip the first loop,
1148 and go directly to the second loop.
1149 The second guard is:
1150 if (FIRST_NITERS == NITERS) then skip the second loop.
1152 If the optional COND_EXPR and COND_EXPR_STMT_LIST arguments are given
1153 then the generated condition is combined with COND_EXPR and the
1154 statements in COND_EXPR_STMT_LIST are emitted together with it.
1156 FORNOW only simple loops are supported (see slpeel_can_duplicate_loop_p).
1157 FORNOW the resulting code will not be in loop-closed-ssa form.
1161 slpeel_tree_peel_loop_to_edge (struct loop
*loop
,
1162 edge e
, tree first_niters
,
1163 tree niters
, bool update_first_loop_count
,
1164 unsigned int th
, bool check_profitability
,
1165 tree cond_expr
, gimple_seq cond_expr_stmt_list
)
1167 struct loop
*new_loop
= NULL
, *first_loop
, *second_loop
;
1169 tree pre_condition
= NULL_TREE
;
1171 basic_block bb_before_second_loop
, bb_after_second_loop
;
1172 basic_block bb_before_first_loop
;
1173 basic_block bb_between_loops
;
1174 basic_block new_exit_bb
;
1175 edge exit_e
= single_exit (loop
);
1177 tree cost_pre_condition
= NULL_TREE
;
1179 if (!slpeel_can_duplicate_loop_p (loop
, e
))
1182 /* We have to initialize cfg_hooks. Then, when calling
1183 cfg_hooks->split_edge, the function tree_split_edge
1184 is actually called and, when calling cfg_hooks->duplicate_block,
1185 the function tree_duplicate_bb is called. */
1186 gimple_register_cfg_hooks ();
1189 /* 1. Generate a copy of LOOP and put it on E (E is the entry/exit of LOOP).
1190 Resulting CFG would be:
1203 if (!(new_loop
= slpeel_tree_duplicate_loop_to_edge_cfg (loop
, e
)))
1205 loop_loc
= find_loop_location (loop
);
1206 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
1208 if (loop_loc
!= UNKNOWN_LOC
)
1209 fprintf (dump_file
, "\n%s:%d: note: ",
1210 LOC_FILE (loop_loc
), LOC_LINE (loop_loc
));
1211 fprintf (dump_file
, "tree_duplicate_loop_to_edge_cfg failed.\n");
1216 if (MAY_HAVE_DEBUG_STMTS
)
1218 gcc_assert (!adjust_vec
);
1219 adjust_vec
= VEC_alloc (adjust_info
, stack
, 32);
1224 /* NEW_LOOP was placed after LOOP. */
1226 second_loop
= new_loop
;
1230 /* NEW_LOOP was placed before LOOP. */
1231 first_loop
= new_loop
;
1235 definitions
= ssa_names_to_replace ();
1236 slpeel_update_phis_for_duplicate_loop (loop
, new_loop
, e
== exit_e
);
1237 rename_variables_in_loop (new_loop
);
1240 /* 2. Add the guard code in one of the following ways:
1242 2.a Add the guard that controls whether the first loop is executed.
1243 This occurs when this function is invoked for prologue or epilogue
1244 generation and when the cost model check can be done at compile time.
1246 Resulting CFG would be:
1248 bb_before_first_loop:
1249 if (FIRST_NITERS == 0) GOTO bb_before_second_loop
1256 bb_before_second_loop:
1264 2.b Add the cost model check that allows the prologue
1265 to iterate for the entire unchanged scalar
1266 iterations of the loop in the event that the cost
1267 model indicates that the scalar loop is more
1268 profitable than the vector one. This occurs when
1269 this function is invoked for prologue generation
1270 and the cost model check needs to be done at run
1273 Resulting CFG after prologue peeling would be:
1275 if (scalar_loop_iterations <= th)
1276 FIRST_NITERS = scalar_loop_iterations
1278 bb_before_first_loop:
1279 if (FIRST_NITERS == 0) GOTO bb_before_second_loop
1286 bb_before_second_loop:
1294 2.c Add the cost model check that allows the epilogue
1295 to iterate for the entire unchanged scalar
1296 iterations of the loop in the event that the cost
1297 model indicates that the scalar loop is more
1298 profitable than the vector one. This occurs when
1299 this function is invoked for epilogue generation
1300 and the cost model check needs to be done at run
1301 time. This check is combined with any pre-existing
1302 check in COND_EXPR to avoid versioning.
1304 Resulting CFG after prologue peeling would be:
1306 bb_before_first_loop:
1307 if ((scalar_loop_iterations <= th)
1309 FIRST_NITERS == 0) GOTO bb_before_second_loop
1316 bb_before_second_loop:
1325 bb_before_first_loop
= split_edge (loop_preheader_edge (first_loop
));
1326 bb_before_second_loop
= split_edge (single_exit (first_loop
));
1328 /* Epilogue peeling. */
1329 if (!update_first_loop_count
)
1332 fold_build2 (LE_EXPR
, boolean_type_node
, first_niters
,
1333 build_int_cst (TREE_TYPE (first_niters
), 0));
1334 if (check_profitability
)
1336 tree scalar_loop_iters
1337 = unshare_expr (LOOP_VINFO_NITERS_UNCHANGED
1338 (loop_vec_info_for_loop (loop
)));
1339 cost_pre_condition
=
1340 fold_build2 (LE_EXPR
, boolean_type_node
, scalar_loop_iters
,
1341 build_int_cst (TREE_TYPE (scalar_loop_iters
), th
));
1343 pre_condition
= fold_build2 (TRUTH_OR_EXPR
, boolean_type_node
,
1344 cost_pre_condition
, pre_condition
);
1349 fold_build2 (TRUTH_OR_EXPR
, boolean_type_node
,
1351 fold_build1 (TRUTH_NOT_EXPR
, boolean_type_node
,
1356 /* Prologue peeling. */
1359 if (check_profitability
)
1360 set_prologue_iterations (bb_before_first_loop
, first_niters
,
1364 fold_build2 (LE_EXPR
, boolean_type_node
, first_niters
,
1365 build_int_cst (TREE_TYPE (first_niters
), 0));
1368 skip_e
= slpeel_add_loop_guard (bb_before_first_loop
, pre_condition
,
1369 cond_expr_stmt_list
,
1370 bb_before_second_loop
, bb_before_first_loop
);
1371 slpeel_update_phi_nodes_for_guard1 (skip_e
, first_loop
,
1372 first_loop
== new_loop
,
1373 &new_exit_bb
, &definitions
);
1376 /* 3. Add the guard that controls whether the second loop is executed.
1377 Resulting CFG would be:
1379 bb_before_first_loop:
1380 if (FIRST_NITERS == 0) GOTO bb_before_second_loop (skip first loop)
1388 if (FIRST_NITERS == NITERS) GOTO bb_after_second_loop (skip second loop)
1389 GOTO bb_before_second_loop
1391 bb_before_second_loop:
1397 bb_after_second_loop:
1402 bb_between_loops
= new_exit_bb
;
1403 bb_after_second_loop
= split_edge (single_exit (second_loop
));
1406 fold_build2 (EQ_EXPR
, boolean_type_node
, first_niters
, niters
);
1407 skip_e
= slpeel_add_loop_guard (bb_between_loops
, pre_condition
, NULL
,
1408 bb_after_second_loop
, bb_before_first_loop
);
1409 slpeel_update_phi_nodes_for_guard2 (skip_e
, second_loop
,
1410 second_loop
== new_loop
, &new_exit_bb
);
1412 /* 4. Make first-loop iterate FIRST_NITERS times, if requested.
1414 if (update_first_loop_count
)
1415 slpeel_make_loop_iterate_ntimes (first_loop
, first_niters
);
1417 adjust_vec_debug_stmts ();
1419 BITMAP_FREE (definitions
);
1420 delete_update_ssa ();
1425 /* Function vect_get_loop_location.
1427 Extract the location of the loop in the source code.
1428 If the loop is not well formed for vectorization, an estimated
1429 location is calculated.
1430 Return the loop location if succeed and NULL if not. */
1433 find_loop_location (struct loop
*loop
)
1437 gimple_stmt_iterator si
;
1442 stmt
= get_loop_exit_condition (loop
);
1444 if (stmt
&& gimple_location (stmt
) != UNKNOWN_LOC
)
1445 return gimple_location (stmt
);
1447 /* If we got here the loop is probably not "well formed",
1448 try to estimate the loop location */
1455 for (si
= gsi_start_bb (bb
); !gsi_end_p (si
); gsi_next (&si
))
1457 stmt
= gsi_stmt (si
);
1458 if (gimple_location (stmt
) != UNKNOWN_LOC
)
1459 return gimple_location (stmt
);
1466 /* This function builds ni_name = number of iterations loop executes
1467 on the loop preheader. If SEQ is given the stmt is instead emitted
1471 vect_build_loop_niters (loop_vec_info loop_vinfo
, gimple_seq seq
)
1474 gimple_seq stmts
= NULL
;
1476 struct loop
*loop
= LOOP_VINFO_LOOP (loop_vinfo
);
1477 tree ni
= unshare_expr (LOOP_VINFO_NITERS (loop_vinfo
));
1479 var
= create_tmp_var (TREE_TYPE (ni
), "niters");
1480 add_referenced_var (var
);
1481 ni_name
= force_gimple_operand (ni
, &stmts
, false, var
);
1483 pe
= loop_preheader_edge (loop
);
1487 gimple_seq_add_seq (&seq
, stmts
);
1490 basic_block new_bb
= gsi_insert_seq_on_edge_immediate (pe
, stmts
);
1491 gcc_assert (!new_bb
);
1499 /* This function generates the following statements:
1501 ni_name = number of iterations loop executes
1502 ratio = ni_name / vf
1503 ratio_mult_vf_name = ratio * vf
1505 and places them at the loop preheader edge or in COND_EXPR_STMT_LIST
1506 if that is non-NULL. */
1509 vect_generate_tmps_on_preheader (loop_vec_info loop_vinfo
,
1511 tree
*ratio_mult_vf_name_ptr
,
1512 tree
*ratio_name_ptr
,
1513 gimple_seq cond_expr_stmt_list
)
1522 tree ratio_mult_vf_name
;
1523 struct loop
*loop
= LOOP_VINFO_LOOP (loop_vinfo
);
1524 tree ni
= LOOP_VINFO_NITERS (loop_vinfo
);
1525 int vf
= LOOP_VINFO_VECT_FACTOR (loop_vinfo
);
1528 pe
= loop_preheader_edge (loop
);
1530 /* Generate temporary variable that contains
1531 number of iterations loop executes. */
1533 ni_name
= vect_build_loop_niters (loop_vinfo
, cond_expr_stmt_list
);
1534 log_vf
= build_int_cst (TREE_TYPE (ni
), exact_log2 (vf
));
1536 /* Create: ratio = ni >> log2(vf) */
1538 ratio_name
= fold_build2 (RSHIFT_EXPR
, TREE_TYPE (ni_name
), ni_name
, log_vf
);
1539 if (!is_gimple_val (ratio_name
))
1541 var
= create_tmp_var (TREE_TYPE (ni
), "bnd");
1542 add_referenced_var (var
);
1545 ratio_name
= force_gimple_operand (ratio_name
, &stmts
, true, var
);
1546 if (cond_expr_stmt_list
)
1547 gimple_seq_add_seq (&cond_expr_stmt_list
, stmts
);
1550 pe
= loop_preheader_edge (loop
);
1551 new_bb
= gsi_insert_seq_on_edge_immediate (pe
, stmts
);
1552 gcc_assert (!new_bb
);
1556 /* Create: ratio_mult_vf = ratio << log2 (vf). */
1558 ratio_mult_vf_name
= fold_build2 (LSHIFT_EXPR
, TREE_TYPE (ratio_name
),
1559 ratio_name
, log_vf
);
1560 if (!is_gimple_val (ratio_mult_vf_name
))
1562 var
= create_tmp_var (TREE_TYPE (ni
), "ratio_mult_vf");
1563 add_referenced_var (var
);
1566 ratio_mult_vf_name
= force_gimple_operand (ratio_mult_vf_name
, &stmts
,
1568 if (cond_expr_stmt_list
)
1569 gimple_seq_add_seq (&cond_expr_stmt_list
, stmts
);
1572 pe
= loop_preheader_edge (loop
);
1573 new_bb
= gsi_insert_seq_on_edge_immediate (pe
, stmts
);
1574 gcc_assert (!new_bb
);
1578 *ni_name_ptr
= ni_name
;
1579 *ratio_mult_vf_name_ptr
= ratio_mult_vf_name
;
1580 *ratio_name_ptr
= ratio_name
;
1585 /* Function vect_can_advance_ivs_p
1587 In case the number of iterations that LOOP iterates is unknown at compile
1588 time, an epilog loop will be generated, and the loop induction variables
1589 (IVs) will be "advanced" to the value they are supposed to take just before
1590 the epilog loop. Here we check that the access function of the loop IVs
1591 and the expression that represents the loop bound are simple enough.
1592 These restrictions will be relaxed in the future. */
1595 vect_can_advance_ivs_p (loop_vec_info loop_vinfo
)
1597 struct loop
*loop
= LOOP_VINFO_LOOP (loop_vinfo
);
1598 basic_block bb
= loop
->header
;
1600 gimple_stmt_iterator gsi
;
1602 /* Analyze phi functions of the loop header. */
1604 if (vect_print_dump_info (REPORT_DETAILS
))
1605 fprintf (vect_dump
, "vect_can_advance_ivs_p:");
1607 for (gsi
= gsi_start_phis (bb
); !gsi_end_p (gsi
); gsi_next (&gsi
))
1609 tree access_fn
= NULL
;
1610 tree evolution_part
;
1612 phi
= gsi_stmt (gsi
);
1613 if (vect_print_dump_info (REPORT_DETAILS
))
1615 fprintf (vect_dump
, "Analyze phi: ");
1616 print_gimple_stmt (vect_dump
, phi
, 0, TDF_SLIM
);
1619 /* Skip virtual phi's. The data dependences that are associated with
1620 virtual defs/uses (i.e., memory accesses) are analyzed elsewhere. */
1622 if (!is_gimple_reg (SSA_NAME_VAR (PHI_RESULT (phi
))))
1624 if (vect_print_dump_info (REPORT_DETAILS
))
1625 fprintf (vect_dump
, "virtual phi. skip.");
1629 /* Skip reduction phis. */
1631 if (STMT_VINFO_DEF_TYPE (vinfo_for_stmt (phi
)) == vect_reduction_def
)
1633 if (vect_print_dump_info (REPORT_DETAILS
))
1634 fprintf (vect_dump
, "reduc phi. skip.");
1638 /* Analyze the evolution function. */
1640 access_fn
= instantiate_parameters
1641 (loop
, analyze_scalar_evolution (loop
, PHI_RESULT (phi
)));
1645 if (vect_print_dump_info (REPORT_DETAILS
))
1646 fprintf (vect_dump
, "No Access function.");
1650 if (vect_print_dump_info (REPORT_DETAILS
))
1652 fprintf (vect_dump
, "Access function of PHI: ");
1653 print_generic_expr (vect_dump
, access_fn
, TDF_SLIM
);
1656 evolution_part
= evolution_part_in_loop_num (access_fn
, loop
->num
);
1658 if (evolution_part
== NULL_TREE
)
1660 if (vect_print_dump_info (REPORT_DETAILS
))
1661 fprintf (vect_dump
, "No evolution.");
1665 /* FORNOW: We do not transform initial conditions of IVs
1666 which evolution functions are a polynomial of degree >= 2. */
1668 if (tree_is_chrec (evolution_part
))
1676 /* Function vect_update_ivs_after_vectorizer.
1678 "Advance" the induction variables of LOOP to the value they should take
1679 after the execution of LOOP. This is currently necessary because the
1680 vectorizer does not handle induction variables that are used after the
1681 loop. Such a situation occurs when the last iterations of LOOP are
1683 1. We introduced new uses after LOOP for IVs that were not originally used
1684 after LOOP: the IVs of LOOP are now used by an epilog loop.
1685 2. LOOP is going to be vectorized; this means that it will iterate N/VF
1686 times, whereas the loop IVs should be bumped N times.
1689 - LOOP - a loop that is going to be vectorized. The last few iterations
1690 of LOOP were peeled.
1691 - NITERS - the number of iterations that LOOP executes (before it is
1692 vectorized). i.e, the number of times the ivs should be bumped.
1693 - UPDATE_E - a successor edge of LOOP->exit that is on the (only) path
1694 coming out from LOOP on which there are uses of the LOOP ivs
1695 (this is the path from LOOP->exit to epilog_loop->preheader).
1697 The new definitions of the ivs are placed in LOOP->exit.
1698 The phi args associated with the edge UPDATE_E in the bb
1699 UPDATE_E->dest are updated accordingly.
1701 Assumption 1: Like the rest of the vectorizer, this function assumes
1702 a single loop exit that has a single predecessor.
1704 Assumption 2: The phi nodes in the LOOP header and in update_bb are
1705 organized in the same order.
1707 Assumption 3: The access function of the ivs is simple enough (see
1708 vect_can_advance_ivs_p). This assumption will be relaxed in the future.
1710 Assumption 4: Exactly one of the successors of LOOP exit-bb is on a path
1711 coming out of LOOP on which the ivs of LOOP are used (this is the path
1712 that leads to the epilog loop; other paths skip the epilog loop). This
1713 path starts with the edge UPDATE_E, and its destination (denoted update_bb)
1714 needs to have its phis updated.
1718 vect_update_ivs_after_vectorizer (loop_vec_info loop_vinfo
, tree niters
,
1721 struct loop
*loop
= LOOP_VINFO_LOOP (loop_vinfo
);
1722 basic_block exit_bb
= single_exit (loop
)->dest
;
1724 gimple_stmt_iterator gsi
, gsi1
;
1725 basic_block update_bb
= update_e
->dest
;
1727 /* gcc_assert (vect_can_advance_ivs_p (loop_vinfo)); */
1729 /* Make sure there exists a single-predecessor exit bb: */
1730 gcc_assert (single_pred_p (exit_bb
));
1732 for (gsi
= gsi_start_phis (loop
->header
), gsi1
= gsi_start_phis (update_bb
);
1733 !gsi_end_p (gsi
) && !gsi_end_p (gsi1
);
1734 gsi_next (&gsi
), gsi_next (&gsi1
))
1736 tree access_fn
= NULL
;
1737 tree evolution_part
;
1739 tree step_expr
, off
;
1741 tree var
, ni
, ni_name
;
1742 gimple_stmt_iterator last_gsi
;
1744 phi
= gsi_stmt (gsi
);
1745 phi1
= gsi_stmt (gsi1
);
1746 if (vect_print_dump_info (REPORT_DETAILS
))
1748 fprintf (vect_dump
, "vect_update_ivs_after_vectorizer: phi: ");
1749 print_gimple_stmt (vect_dump
, phi
, 0, TDF_SLIM
);
1752 /* Skip virtual phi's. */
1753 if (!is_gimple_reg (SSA_NAME_VAR (PHI_RESULT (phi
))))
1755 if (vect_print_dump_info (REPORT_DETAILS
))
1756 fprintf (vect_dump
, "virtual phi. skip.");
1760 /* Skip reduction phis. */
1761 if (STMT_VINFO_DEF_TYPE (vinfo_for_stmt (phi
)) == vect_reduction_def
)
1763 if (vect_print_dump_info (REPORT_DETAILS
))
1764 fprintf (vect_dump
, "reduc phi. skip.");
1768 access_fn
= analyze_scalar_evolution (loop
, PHI_RESULT (phi
));
1769 gcc_assert (access_fn
);
1770 /* We can end up with an access_fn like
1771 (short int) {(short unsigned int) i_49, +, 1}_1
1772 for further analysis we need to strip the outer cast but we
1773 need to preserve the original type. */
1774 type
= TREE_TYPE (access_fn
);
1775 STRIP_NOPS (access_fn
);
1777 unshare_expr (evolution_part_in_loop_num (access_fn
, loop
->num
));
1778 gcc_assert (evolution_part
!= NULL_TREE
);
1780 /* FORNOW: We do not support IVs whose evolution function is a polynomial
1781 of degree >= 2 or exponential. */
1782 gcc_assert (!tree_is_chrec (evolution_part
));
1784 step_expr
= evolution_part
;
1785 init_expr
= unshare_expr (initial_condition_in_loop_num (access_fn
,
1787 init_expr
= fold_convert (type
, init_expr
);
1789 off
= fold_build2 (MULT_EXPR
, TREE_TYPE (step_expr
),
1790 fold_convert (TREE_TYPE (step_expr
), niters
),
1792 if (POINTER_TYPE_P (TREE_TYPE (init_expr
)))
1793 ni
= fold_build2 (POINTER_PLUS_EXPR
, TREE_TYPE (init_expr
),
1795 fold_convert (sizetype
, off
));
1797 ni
= fold_build2 (PLUS_EXPR
, TREE_TYPE (init_expr
),
1799 fold_convert (TREE_TYPE (init_expr
), off
));
1801 var
= create_tmp_var (TREE_TYPE (init_expr
), "tmp");
1802 add_referenced_var (var
);
1804 last_gsi
= gsi_last_bb (exit_bb
);
1805 ni_name
= force_gimple_operand_gsi (&last_gsi
, ni
, false, var
,
1806 true, GSI_SAME_STMT
);
1808 /* Fix phi expressions in the successor bb. */
1809 adjust_phi_and_debug_stmts (phi1
, update_e
, ni_name
);
1813 /* Return the more conservative threshold between the
1814 min_profitable_iters returned by the cost model and the user
1815 specified threshold, if provided. */
1818 conservative_cost_threshold (loop_vec_info loop_vinfo
,
1819 int min_profitable_iters
)
1822 int min_scalar_loop_bound
;
1824 min_scalar_loop_bound
= ((PARAM_VALUE (PARAM_MIN_VECT_LOOP_BOUND
)
1825 * LOOP_VINFO_VECT_FACTOR (loop_vinfo
)) - 1);
1827 /* Use the cost model only if it is more conservative than user specified
1829 th
= (unsigned) min_scalar_loop_bound
;
1830 if (min_profitable_iters
1831 && (!min_scalar_loop_bound
1832 || min_profitable_iters
> min_scalar_loop_bound
))
1833 th
= (unsigned) min_profitable_iters
;
1835 if (th
&& vect_print_dump_info (REPORT_COST
))
1836 fprintf (vect_dump
, "Profitability threshold is %u loop iterations.", th
);
1841 /* Function vect_do_peeling_for_loop_bound
1843 Peel the last iterations of the loop represented by LOOP_VINFO.
1844 The peeled iterations form a new epilog loop. Given that the loop now
1845 iterates NITERS times, the new epilog loop iterates
1846 NITERS % VECTORIZATION_FACTOR times.
1848 The original loop will later be made to iterate
1849 NITERS / VECTORIZATION_FACTOR times (this value is placed into RATIO).
1851 COND_EXPR and COND_EXPR_STMT_LIST are combined with a new generated
1855 vect_do_peeling_for_loop_bound (loop_vec_info loop_vinfo
, tree
*ratio
,
1856 tree cond_expr
, gimple_seq cond_expr_stmt_list
)
1858 tree ni_name
, ratio_mult_vf_name
;
1859 struct loop
*loop
= LOOP_VINFO_LOOP (loop_vinfo
);
1860 struct loop
*new_loop
;
1862 basic_block preheader
;
1864 bool check_profitability
= false;
1865 unsigned int th
= 0;
1866 int min_profitable_iters
;
1868 if (vect_print_dump_info (REPORT_DETAILS
))
1869 fprintf (vect_dump
, "=== vect_do_peeling_for_loop_bound ===");
1871 initialize_original_copy_tables ();
1873 /* Generate the following variables on the preheader of original loop:
1875 ni_name = number of iteration the original loop executes
1876 ratio = ni_name / vf
1877 ratio_mult_vf_name = ratio * vf */
1878 vect_generate_tmps_on_preheader (loop_vinfo
, &ni_name
,
1879 &ratio_mult_vf_name
, ratio
,
1880 cond_expr_stmt_list
);
1882 loop_num
= loop
->num
;
1884 /* If cost model check not done during versioning and
1885 peeling for alignment. */
1886 if (!LOOP_REQUIRES_VERSIONING_FOR_ALIGNMENT (loop_vinfo
)
1887 && !LOOP_REQUIRES_VERSIONING_FOR_ALIAS (loop_vinfo
)
1888 && !LOOP_PEELING_FOR_ALIGNMENT (loop_vinfo
)
1891 check_profitability
= true;
1893 /* Get profitability threshold for vectorized loop. */
1894 min_profitable_iters
= LOOP_VINFO_COST_MODEL_MIN_ITERS (loop_vinfo
);
1896 th
= conservative_cost_threshold (loop_vinfo
,
1897 min_profitable_iters
);
1900 new_loop
= slpeel_tree_peel_loop_to_edge (loop
, single_exit (loop
),
1901 ratio_mult_vf_name
, ni_name
, false,
1902 th
, check_profitability
,
1903 cond_expr
, cond_expr_stmt_list
);
1904 gcc_assert (new_loop
);
1905 gcc_assert (loop_num
== loop
->num
);
1906 #ifdef ENABLE_CHECKING
1907 slpeel_verify_cfg_after_peeling (loop
, new_loop
);
1910 /* A guard that controls whether the new_loop is to be executed or skipped
1911 is placed in LOOP->exit. LOOP->exit therefore has two successors - one
1912 is the preheader of NEW_LOOP, where the IVs from LOOP are used. The other
1913 is a bb after NEW_LOOP, where these IVs are not used. Find the edge that
1914 is on the path where the LOOP IVs are used and need to be updated. */
1916 preheader
= loop_preheader_edge (new_loop
)->src
;
1917 if (EDGE_PRED (preheader
, 0)->src
== single_exit (loop
)->dest
)
1918 update_e
= EDGE_PRED (preheader
, 0);
1920 update_e
= EDGE_PRED (preheader
, 1);
1922 /* Update IVs of original loop as if they were advanced
1923 by ratio_mult_vf_name steps. */
1924 vect_update_ivs_after_vectorizer (loop_vinfo
, ratio_mult_vf_name
, update_e
);
1926 /* After peeling we have to reset scalar evolution analyzer. */
1929 free_original_copy_tables ();
1933 /* Function vect_gen_niters_for_prolog_loop
1935 Set the number of iterations for the loop represented by LOOP_VINFO
1936 to the minimum between LOOP_NITERS (the original iteration count of the loop)
1937 and the misalignment of DR - the data reference recorded in
1938 LOOP_VINFO_UNALIGNED_DR (LOOP_VINFO). As a result, after the execution of
1939 this loop, the data reference DR will refer to an aligned location.
1941 The following computation is generated:
1943 If the misalignment of DR is known at compile time:
1944 addr_mis = int mis = DR_MISALIGNMENT (dr);
1945 Else, compute address misalignment in bytes:
1946 addr_mis = addr & (vectype_size - 1)
1948 prolog_niters = min (LOOP_NITERS, ((VF - addr_mis/elem_size)&(VF-1))/step)
1950 (elem_size = element type size; an element is the scalar element whose type
1951 is the inner type of the vectype)
1953 When the step of the data-ref in the loop is not 1 (as in interleaved data
1954 and SLP), the number of iterations of the prolog must be divided by the step
1955 (which is equal to the size of interleaved group).
1957 The above formulas assume that VF == number of elements in the vector. This
1958 may not hold when there are multiple-types in the loop.
1959 In this case, for some data-references in the loop the VF does not represent
1960 the number of elements that fit in the vector. Therefore, instead of VF we
1961 use TYPE_VECTOR_SUBPARTS. */
1964 vect_gen_niters_for_prolog_loop (loop_vec_info loop_vinfo
, tree loop_niters
,
1965 tree
*wide_prolog_niters
)
1967 struct data_reference
*dr
= LOOP_VINFO_UNALIGNED_DR (loop_vinfo
);
1968 struct loop
*loop
= LOOP_VINFO_LOOP (loop_vinfo
);
1971 tree iters
, iters_name
;
1974 gimple dr_stmt
= DR_STMT (dr
);
1975 stmt_vec_info stmt_info
= vinfo_for_stmt (dr_stmt
);
1976 tree vectype
= STMT_VINFO_VECTYPE (stmt_info
);
1977 int vectype_align
= TYPE_ALIGN (vectype
) / BITS_PER_UNIT
;
1978 tree niters_type
= TREE_TYPE (loop_niters
);
1980 int element_size
= GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (DR_REF (dr
))));
1981 int nelements
= TYPE_VECTOR_SUBPARTS (vectype
);
1983 if (STMT_VINFO_STRIDED_ACCESS (stmt_info
))
1984 step
= DR_GROUP_SIZE (vinfo_for_stmt (DR_GROUP_FIRST_DR (stmt_info
)));
1986 pe
= loop_preheader_edge (loop
);
1988 if (LOOP_PEELING_FOR_ALIGNMENT (loop_vinfo
) > 0)
1990 int byte_misalign
= LOOP_PEELING_FOR_ALIGNMENT (loop_vinfo
);
1991 int elem_misalign
= byte_misalign
/ element_size
;
1993 if (vect_print_dump_info (REPORT_DETAILS
))
1994 fprintf (vect_dump
, "known alignment = %d.", byte_misalign
);
1996 iters
= build_int_cst (niters_type
,
1997 (((nelements
- elem_misalign
) & (nelements
- 1)) / step
));
2001 gimple_seq new_stmts
= NULL
;
2002 tree start_addr
= vect_create_addr_base_for_vector_ref (dr_stmt
,
2003 &new_stmts
, NULL_TREE
, loop
);
2004 tree ptr_type
= TREE_TYPE (start_addr
);
2005 tree size
= TYPE_SIZE (ptr_type
);
2006 tree type
= lang_hooks
.types
.type_for_size (tree_low_cst (size
, 1), 1);
2007 tree vectype_size_minus_1
= build_int_cst (type
, vectype_align
- 1);
2008 tree elem_size_log
=
2009 build_int_cst (type
, exact_log2 (vectype_align
/nelements
));
2010 tree nelements_minus_1
= build_int_cst (type
, nelements
- 1);
2011 tree nelements_tree
= build_int_cst (type
, nelements
);
2015 new_bb
= gsi_insert_seq_on_edge_immediate (pe
, new_stmts
);
2016 gcc_assert (!new_bb
);
2018 /* Create: byte_misalign = addr & (vectype_size - 1) */
2020 fold_build2 (BIT_AND_EXPR
, type
, fold_convert (type
, start_addr
), vectype_size_minus_1
);
2022 /* Create: elem_misalign = byte_misalign / element_size */
2024 fold_build2 (RSHIFT_EXPR
, type
, byte_misalign
, elem_size_log
);
2026 /* Create: (niters_type) (nelements - elem_misalign)&(nelements - 1) */
2027 iters
= fold_build2 (MINUS_EXPR
, type
, nelements_tree
, elem_misalign
);
2028 iters
= fold_build2 (BIT_AND_EXPR
, type
, iters
, nelements_minus_1
);
2029 iters
= fold_convert (niters_type
, iters
);
2032 /* Create: prolog_loop_niters = min (iters, loop_niters) */
2033 /* If the loop bound is known at compile time we already verified that it is
2034 greater than vf; since the misalignment ('iters') is at most vf, there's
2035 no need to generate the MIN_EXPR in this case. */
2036 if (TREE_CODE (loop_niters
) != INTEGER_CST
)
2037 iters
= fold_build2 (MIN_EXPR
, niters_type
, iters
, loop_niters
);
2039 if (vect_print_dump_info (REPORT_DETAILS
))
2041 fprintf (vect_dump
, "niters for prolog loop: ");
2042 print_generic_expr (vect_dump
, iters
, TDF_SLIM
);
2045 var
= create_tmp_var (niters_type
, "prolog_loop_niters");
2046 add_referenced_var (var
);
2048 iters_name
= force_gimple_operand (iters
, &stmts
, false, var
);
2049 if (types_compatible_p (sizetype
, niters_type
))
2050 *wide_prolog_niters
= iters_name
;
2053 gimple_seq seq
= NULL
;
2054 tree wide_iters
= fold_convert (sizetype
, iters
);
2055 var
= create_tmp_var (sizetype
, "prolog_loop_niters");
2056 add_referenced_var (var
);
2057 *wide_prolog_niters
= force_gimple_operand (wide_iters
, &seq
, false,
2060 gimple_seq_add_seq (&stmts
, seq
);
2063 /* Insert stmt on loop preheader edge. */
2066 basic_block new_bb
= gsi_insert_seq_on_edge_immediate (pe
, stmts
);
2067 gcc_assert (!new_bb
);
2074 /* Function vect_update_init_of_dr
2076 NITERS iterations were peeled from LOOP. DR represents a data reference
2077 in LOOP. This function updates the information recorded in DR to
2078 account for the fact that the first NITERS iterations had already been
2079 executed. Specifically, it updates the OFFSET field of DR. */
2082 vect_update_init_of_dr (struct data_reference
*dr
, tree niters
)
2084 tree offset
= DR_OFFSET (dr
);
2086 niters
= fold_build2 (MULT_EXPR
, sizetype
,
2087 fold_convert (sizetype
, niters
),
2088 fold_convert (sizetype
, DR_STEP (dr
)));
2089 offset
= fold_build2 (PLUS_EXPR
, sizetype
,
2090 fold_convert (sizetype
, offset
), niters
);
2091 DR_OFFSET (dr
) = offset
;
2095 /* Function vect_update_inits_of_drs
2097 NITERS iterations were peeled from the loop represented by LOOP_VINFO.
2098 This function updates the information recorded for the data references in
2099 the loop to account for the fact that the first NITERS iterations had
2100 already been executed. Specifically, it updates the initial_condition of
2101 the access_function of all the data_references in the loop. */
2104 vect_update_inits_of_drs (loop_vec_info loop_vinfo
, tree niters
)
2107 VEC (data_reference_p
, heap
) *datarefs
= LOOP_VINFO_DATAREFS (loop_vinfo
);
2108 struct data_reference
*dr
;
2110 if (vect_print_dump_info (REPORT_DETAILS
))
2111 fprintf (vect_dump
, "=== vect_update_inits_of_dr ===");
2113 for (i
= 0; VEC_iterate (data_reference_p
, datarefs
, i
, dr
); i
++)
2114 vect_update_init_of_dr (dr
, niters
);
2118 /* Function vect_do_peeling_for_alignment
2120 Peel the first 'niters' iterations of the loop represented by LOOP_VINFO.
2121 'niters' is set to the misalignment of one of the data references in the
2122 loop, thereby forcing it to refer to an aligned location at the beginning
2123 of the execution of this loop. The data reference for which we are
2124 peeling is recorded in LOOP_VINFO_UNALIGNED_DR. */
2127 vect_do_peeling_for_alignment (loop_vec_info loop_vinfo
)
2129 struct loop
*loop
= LOOP_VINFO_LOOP (loop_vinfo
);
2130 tree niters_of_prolog_loop
, ni_name
;
2132 tree wide_prolog_niters
;
2133 struct loop
*new_loop
;
2134 unsigned int th
= 0;
2135 int min_profitable_iters
;
2137 if (vect_print_dump_info (REPORT_DETAILS
))
2138 fprintf (vect_dump
, "=== vect_do_peeling_for_alignment ===");
2140 initialize_original_copy_tables ();
2142 ni_name
= vect_build_loop_niters (loop_vinfo
, NULL
);
2143 niters_of_prolog_loop
= vect_gen_niters_for_prolog_loop (loop_vinfo
, ni_name
,
2144 &wide_prolog_niters
);
2147 /* Get profitability threshold for vectorized loop. */
2148 min_profitable_iters
= LOOP_VINFO_COST_MODEL_MIN_ITERS (loop_vinfo
);
2149 th
= conservative_cost_threshold (loop_vinfo
,
2150 min_profitable_iters
);
2152 /* Peel the prolog loop and iterate it niters_of_prolog_loop. */
2154 slpeel_tree_peel_loop_to_edge (loop
, loop_preheader_edge (loop
),
2155 niters_of_prolog_loop
, ni_name
, true,
2156 th
, true, NULL_TREE
, NULL
);
2158 gcc_assert (new_loop
);
2159 #ifdef ENABLE_CHECKING
2160 slpeel_verify_cfg_after_peeling (new_loop
, loop
);
2163 /* Update number of times loop executes. */
2164 n_iters
= LOOP_VINFO_NITERS (loop_vinfo
);
2165 LOOP_VINFO_NITERS (loop_vinfo
) = fold_build2 (MINUS_EXPR
,
2166 TREE_TYPE (n_iters
), n_iters
, niters_of_prolog_loop
);
2168 /* Update the init conditions of the access functions of all data refs. */
2169 vect_update_inits_of_drs (loop_vinfo
, wide_prolog_niters
);
2171 /* After peeling we have to reset scalar evolution analyzer. */
2174 free_original_copy_tables ();
2178 /* Function vect_create_cond_for_align_checks.
2180 Create a conditional expression that represents the alignment checks for
2181 all of data references (array element references) whose alignment must be
2185 COND_EXPR - input conditional expression. New conditions will be chained
2186 with logical AND operation.
2187 LOOP_VINFO - two fields of the loop information are used.
2188 LOOP_VINFO_PTR_MASK is the mask used to check the alignment.
2189 LOOP_VINFO_MAY_MISALIGN_STMTS contains the refs to be checked.
2192 COND_EXPR_STMT_LIST - statements needed to construct the conditional
2194 The returned value is the conditional expression to be used in the if
2195 statement that controls which version of the loop gets executed at runtime.
2197 The algorithm makes two assumptions:
2198 1) The number of bytes "n" in a vector is a power of 2.
2199 2) An address "a" is aligned if a%n is zero and that this
2200 test can be done as a&(n-1) == 0. For example, for 16
2201 byte vectors the test is a&0xf == 0. */
2204 vect_create_cond_for_align_checks (loop_vec_info loop_vinfo
,
2206 gimple_seq
*cond_expr_stmt_list
)
2208 struct loop
*loop
= LOOP_VINFO_LOOP (loop_vinfo
);
2209 VEC(gimple
,heap
) *may_misalign_stmts
2210 = LOOP_VINFO_MAY_MISALIGN_STMTS (loop_vinfo
);
2212 int mask
= LOOP_VINFO_PTR_MASK (loop_vinfo
);
2216 tree int_ptrsize_type
;
2218 tree or_tmp_name
= NULL_TREE
;
2219 tree and_tmp
, and_tmp_name
;
2222 tree part_cond_expr
;
2224 /* Check that mask is one less than a power of 2, i.e., mask is
2225 all zeros followed by all ones. */
2226 gcc_assert ((mask
!= 0) && ((mask
& (mask
+1)) == 0));
2228 /* CHECKME: what is the best integer or unsigned type to use to hold a
2229 cast from a pointer value? */
2230 psize
= TYPE_SIZE (ptr_type_node
);
2232 = lang_hooks
.types
.type_for_size (tree_low_cst (psize
, 1), 0);
2234 /* Create expression (mask & (dr_1 || ... || dr_n)) where dr_i is the address
2235 of the first vector of the i'th data reference. */
2237 for (i
= 0; VEC_iterate (gimple
, may_misalign_stmts
, i
, ref_stmt
); i
++)
2239 gimple_seq new_stmt_list
= NULL
;
2241 tree addr_tmp
, addr_tmp_name
;
2242 tree or_tmp
, new_or_tmp_name
;
2243 gimple addr_stmt
, or_stmt
;
2245 /* create: addr_tmp = (int)(address_of_first_vector) */
2247 vect_create_addr_base_for_vector_ref (ref_stmt
, &new_stmt_list
,
2249 if (new_stmt_list
!= NULL
)
2250 gimple_seq_add_seq (cond_expr_stmt_list
, new_stmt_list
);
2252 sprintf (tmp_name
, "%s%d", "addr2int", i
);
2253 addr_tmp
= create_tmp_var (int_ptrsize_type
, tmp_name
);
2254 add_referenced_var (addr_tmp
);
2255 addr_tmp_name
= make_ssa_name (addr_tmp
, NULL
);
2256 addr_stmt
= gimple_build_assign_with_ops (NOP_EXPR
, addr_tmp_name
,
2257 addr_base
, NULL_TREE
);
2258 SSA_NAME_DEF_STMT (addr_tmp_name
) = addr_stmt
;
2259 gimple_seq_add_stmt (cond_expr_stmt_list
, addr_stmt
);
2261 /* The addresses are OR together. */
2263 if (or_tmp_name
!= NULL_TREE
)
2265 /* create: or_tmp = or_tmp | addr_tmp */
2266 sprintf (tmp_name
, "%s%d", "orptrs", i
);
2267 or_tmp
= create_tmp_var (int_ptrsize_type
, tmp_name
);
2268 add_referenced_var (or_tmp
);
2269 new_or_tmp_name
= make_ssa_name (or_tmp
, NULL
);
2270 or_stmt
= gimple_build_assign_with_ops (BIT_IOR_EXPR
,
2272 or_tmp_name
, addr_tmp_name
);
2273 SSA_NAME_DEF_STMT (new_or_tmp_name
) = or_stmt
;
2274 gimple_seq_add_stmt (cond_expr_stmt_list
, or_stmt
);
2275 or_tmp_name
= new_or_tmp_name
;
2278 or_tmp_name
= addr_tmp_name
;
2282 mask_cst
= build_int_cst (int_ptrsize_type
, mask
);
2284 /* create: and_tmp = or_tmp & mask */
2285 and_tmp
= create_tmp_var (int_ptrsize_type
, "andmask" );
2286 add_referenced_var (and_tmp
);
2287 and_tmp_name
= make_ssa_name (and_tmp
, NULL
);
2289 and_stmt
= gimple_build_assign_with_ops (BIT_AND_EXPR
, and_tmp_name
,
2290 or_tmp_name
, mask_cst
);
2291 SSA_NAME_DEF_STMT (and_tmp_name
) = and_stmt
;
2292 gimple_seq_add_stmt (cond_expr_stmt_list
, and_stmt
);
2294 /* Make and_tmp the left operand of the conditional test against zero.
2295 if and_tmp has a nonzero bit then some address is unaligned. */
2296 ptrsize_zero
= build_int_cst (int_ptrsize_type
, 0);
2297 part_cond_expr
= fold_build2 (EQ_EXPR
, boolean_type_node
,
2298 and_tmp_name
, ptrsize_zero
);
2300 *cond_expr
= fold_build2 (TRUTH_AND_EXPR
, boolean_type_node
,
2301 *cond_expr
, part_cond_expr
);
2303 *cond_expr
= part_cond_expr
;
2307 /* Function vect_vfa_segment_size.
2309 Create an expression that computes the size of segment
2310 that will be accessed for a data reference. The functions takes into
2311 account that realignment loads may access one more vector.
2314 DR: The data reference.
2315 VECT_FACTOR: vectorization factor.
2317 Return an expression whose value is the size of segment which will be
2321 vect_vfa_segment_size (struct data_reference
*dr
, tree vect_factor
)
2323 tree segment_length
= fold_build2 (MULT_EXPR
, integer_type_node
,
2324 DR_STEP (dr
), vect_factor
);
2326 if (vect_supportable_dr_alignment (dr
) == dr_explicit_realign_optimized
)
2328 tree vector_size
= TYPE_SIZE_UNIT
2329 (STMT_VINFO_VECTYPE (vinfo_for_stmt (DR_STMT (dr
))));
2331 segment_length
= fold_build2 (PLUS_EXPR
, integer_type_node
,
2332 segment_length
, vector_size
);
2334 return fold_convert (sizetype
, segment_length
);
2338 /* Function vect_create_cond_for_alias_checks.
2340 Create a conditional expression that represents the run-time checks for
2341 overlapping of address ranges represented by a list of data references
2342 relations passed as input.
2345 COND_EXPR - input conditional expression. New conditions will be chained
2346 with logical AND operation.
2347 LOOP_VINFO - field LOOP_VINFO_MAY_ALIAS_STMTS contains the list of ddrs
2351 COND_EXPR - conditional expression.
2352 COND_EXPR_STMT_LIST - statements needed to construct the conditional
2356 The returned value is the conditional expression to be used in the if
2357 statement that controls which version of the loop gets executed at runtime.
2361 vect_create_cond_for_alias_checks (loop_vec_info loop_vinfo
,
2363 gimple_seq
* cond_expr_stmt_list
)
2365 struct loop
*loop
= LOOP_VINFO_LOOP (loop_vinfo
);
2366 VEC (ddr_p
, heap
) * may_alias_ddrs
=
2367 LOOP_VINFO_MAY_ALIAS_DDRS (loop_vinfo
);
2369 build_int_cst (integer_type_node
, LOOP_VINFO_VECT_FACTOR (loop_vinfo
));
2373 tree part_cond_expr
;
2375 /* Create expression
2376 ((store_ptr_0 + store_segment_length_0) < load_ptr_0)
2377 || (load_ptr_0 + load_segment_length_0) < store_ptr_0))
2381 ((store_ptr_n + store_segment_length_n) < load_ptr_n)
2382 || (load_ptr_n + load_segment_length_n) < store_ptr_n)) */
2384 if (VEC_empty (ddr_p
, may_alias_ddrs
))
2387 for (i
= 0; VEC_iterate (ddr_p
, may_alias_ddrs
, i
, ddr
); i
++)
2389 struct data_reference
*dr_a
, *dr_b
;
2390 gimple dr_group_first_a
, dr_group_first_b
;
2391 tree addr_base_a
, addr_base_b
;
2392 tree segment_length_a
, segment_length_b
;
2393 gimple stmt_a
, stmt_b
;
2396 stmt_a
= DR_STMT (DDR_A (ddr
));
2397 dr_group_first_a
= DR_GROUP_FIRST_DR (vinfo_for_stmt (stmt_a
));
2398 if (dr_group_first_a
)
2400 stmt_a
= dr_group_first_a
;
2401 dr_a
= STMT_VINFO_DATA_REF (vinfo_for_stmt (stmt_a
));
2405 stmt_b
= DR_STMT (DDR_B (ddr
));
2406 dr_group_first_b
= DR_GROUP_FIRST_DR (vinfo_for_stmt (stmt_b
));
2407 if (dr_group_first_b
)
2409 stmt_b
= dr_group_first_b
;
2410 dr_b
= STMT_VINFO_DATA_REF (vinfo_for_stmt (stmt_b
));
2414 vect_create_addr_base_for_vector_ref (stmt_a
, cond_expr_stmt_list
,
2417 vect_create_addr_base_for_vector_ref (stmt_b
, cond_expr_stmt_list
,
2420 segment_length_a
= vect_vfa_segment_size (dr_a
, vect_factor
);
2421 segment_length_b
= vect_vfa_segment_size (dr_b
, vect_factor
);
2423 if (vect_print_dump_info (REPORT_DR_DETAILS
))
2426 "create runtime check for data references ");
2427 print_generic_expr (vect_dump
, DR_REF (dr_a
), TDF_SLIM
);
2428 fprintf (vect_dump
, " and ");
2429 print_generic_expr (vect_dump
, DR_REF (dr_b
), TDF_SLIM
);
2434 fold_build2 (TRUTH_OR_EXPR
, boolean_type_node
,
2435 fold_build2 (LT_EXPR
, boolean_type_node
,
2436 fold_build2 (POINTER_PLUS_EXPR
, TREE_TYPE (addr_base_a
),
2440 fold_build2 (LT_EXPR
, boolean_type_node
,
2441 fold_build2 (POINTER_PLUS_EXPR
, TREE_TYPE (addr_base_b
),
2447 *cond_expr
= fold_build2 (TRUTH_AND_EXPR
, boolean_type_node
,
2448 *cond_expr
, part_cond_expr
);
2450 *cond_expr
= part_cond_expr
;
2453 if (vect_print_dump_info (REPORT_VECTORIZED_LOCATIONS
))
2454 fprintf (vect_dump
, "created %u versioning for alias checks.\n",
2455 VEC_length (ddr_p
, may_alias_ddrs
));
2459 /* Function vect_loop_versioning.
2461 If the loop has data references that may or may not be aligned or/and
2462 has data reference relations whose independence was not proven then
2463 two versions of the loop need to be generated, one which is vectorized
2464 and one which isn't. A test is then generated to control which of the
2465 loops is executed. The test checks for the alignment of all of the
2466 data references that may or may not be aligned. An additional
2467 sequence of runtime tests is generated for each pairs of DDRs whose
2468 independence was not proven. The vectorized version of loop is
2469 executed only if both alias and alignment tests are passed.
2471 The test generated to check which version of loop is executed
2472 is modified to also check for profitability as indicated by the
2473 cost model initially.
2475 The versioning precondition(s) are placed in *COND_EXPR and
2476 *COND_EXPR_STMT_LIST. If DO_VERSIONING is true versioning is
2477 also performed, otherwise only the conditions are generated. */
2480 vect_loop_versioning (loop_vec_info loop_vinfo
, bool do_versioning
,
2481 tree
*cond_expr
, gimple_seq
*cond_expr_stmt_list
)
2483 struct loop
*loop
= LOOP_VINFO_LOOP (loop_vinfo
);
2484 basic_block condition_bb
;
2485 gimple_stmt_iterator gsi
, cond_exp_gsi
;
2486 basic_block merge_bb
;
2487 basic_block new_exit_bb
;
2489 gimple orig_phi
, new_phi
;
2491 unsigned prob
= 4 * REG_BR_PROB_BASE
/ 5;
2492 gimple_seq gimplify_stmt_list
= NULL
;
2493 tree scalar_loop_iters
= LOOP_VINFO_NITERS (loop_vinfo
);
2494 int min_profitable_iters
= 0;
2497 /* Get profitability threshold for vectorized loop. */
2498 min_profitable_iters
= LOOP_VINFO_COST_MODEL_MIN_ITERS (loop_vinfo
);
2500 th
= conservative_cost_threshold (loop_vinfo
,
2501 min_profitable_iters
);
2504 fold_build2 (GT_EXPR
, boolean_type_node
, scalar_loop_iters
,
2505 build_int_cst (TREE_TYPE (scalar_loop_iters
), th
));
2507 *cond_expr
= force_gimple_operand (*cond_expr
, cond_expr_stmt_list
,
2510 if (LOOP_REQUIRES_VERSIONING_FOR_ALIGNMENT (loop_vinfo
))
2511 vect_create_cond_for_align_checks (loop_vinfo
, cond_expr
,
2512 cond_expr_stmt_list
);
2514 if (LOOP_REQUIRES_VERSIONING_FOR_ALIAS (loop_vinfo
))
2515 vect_create_cond_for_alias_checks (loop_vinfo
, cond_expr
,
2516 cond_expr_stmt_list
);
2519 fold_build2 (NE_EXPR
, boolean_type_node
, *cond_expr
, integer_zero_node
);
2521 force_gimple_operand (*cond_expr
, &gimplify_stmt_list
, true, NULL_TREE
);
2522 gimple_seq_add_seq (cond_expr_stmt_list
, gimplify_stmt_list
);
2524 /* If we only needed the extra conditions and a new loop copy
2529 initialize_original_copy_tables ();
2530 loop_version (loop
, *cond_expr
, &condition_bb
,
2531 prob
, prob
, REG_BR_PROB_BASE
- prob
, true);
2532 free_original_copy_tables();
2534 /* Loop versioning violates an assumption we try to maintain during
2535 vectorization - that the loop exit block has a single predecessor.
2536 After versioning, the exit block of both loop versions is the same
2537 basic block (i.e. it has two predecessors). Just in order to simplify
2538 following transformations in the vectorizer, we fix this situation
2539 here by adding a new (empty) block on the exit-edge of the loop,
2540 with the proper loop-exit phis to maintain loop-closed-form. */
2542 merge_bb
= single_exit (loop
)->dest
;
2543 gcc_assert (EDGE_COUNT (merge_bb
->preds
) == 2);
2544 new_exit_bb
= split_edge (single_exit (loop
));
2545 new_exit_e
= single_exit (loop
);
2546 e
= EDGE_SUCC (new_exit_bb
, 0);
2548 for (gsi
= gsi_start_phis (merge_bb
); !gsi_end_p (gsi
); gsi_next (&gsi
))
2550 orig_phi
= gsi_stmt (gsi
);
2551 new_phi
= create_phi_node (SSA_NAME_VAR (PHI_RESULT (orig_phi
)),
2553 arg
= PHI_ARG_DEF_FROM_EDGE (orig_phi
, e
);
2554 add_phi_arg (new_phi
, arg
, new_exit_e
,
2555 gimple_phi_arg_location_from_edge (orig_phi
, e
));
2556 adjust_phi_and_debug_stmts (orig_phi
, e
, PHI_RESULT (new_phi
));
2559 /* End loop-exit-fixes after versioning. */
2561 update_ssa (TODO_update_ssa
);
2562 if (*cond_expr_stmt_list
)
2564 cond_exp_gsi
= gsi_last_bb (condition_bb
);
2565 gsi_insert_seq_before (&cond_exp_gsi
, *cond_expr_stmt_list
,
2567 *cond_expr_stmt_list
= NULL
;
2569 *cond_expr
= NULL_TREE
;