* typeck.c (more_qualified_p): Remove.
[official-gcc.git] / gcc / combine.c
blob984c45e10ea6e1dc82c8742003772b0118f73614
1 /* Optimize by combining instructions for GNU compiler.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004, 2005 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
22 /* This module is essentially the "combiner" phase of the U. of Arizona
23 Portable Optimizer, but redone to work on our list-structured
24 representation for RTL instead of their string representation.
26 The LOG_LINKS of each insn identify the most recent assignment
27 to each REG used in the insn. It is a list of previous insns,
28 each of which contains a SET for a REG that is used in this insn
29 and not used or set in between. LOG_LINKs never cross basic blocks.
30 They were set up by the preceding pass (lifetime analysis).
32 We try to combine each pair of insns joined by a logical link.
33 We also try to combine triples of insns A, B and C when
34 C has a link back to B and B has a link back to A.
36 LOG_LINKS does not have links for use of the CC0. They don't
37 need to, because the insn that sets the CC0 is always immediately
38 before the insn that tests it. So we always regard a branch
39 insn as having a logical link to the preceding insn. The same is true
40 for an insn explicitly using CC0.
42 We check (with use_crosses_set_p) to avoid combining in such a way
43 as to move a computation to a place where its value would be different.
45 Combination is done by mathematically substituting the previous
46 insn(s) values for the regs they set into the expressions in
47 the later insns that refer to these regs. If the result is a valid insn
48 for our target machine, according to the machine description,
49 we install it, delete the earlier insns, and update the data flow
50 information (LOG_LINKS and REG_NOTES) for what we did.
52 There are a few exceptions where the dataflow information created by
53 flow.c aren't completely updated:
55 - reg_live_length is not updated
56 - a LOG_LINKS entry that refers to an insn with multiple SETs may be
57 removed because there is no way to know which register it was
58 linking
60 To simplify substitution, we combine only when the earlier insn(s)
61 consist of only a single assignment. To simplify updating afterward,
62 we never combine when a subroutine call appears in the middle.
64 Since we do not represent assignments to CC0 explicitly except when that
65 is all an insn does, there is no LOG_LINKS entry in an insn that uses
66 the condition code for the insn that set the condition code.
67 Fortunately, these two insns must be consecutive.
68 Therefore, every JUMP_INSN is taken to have an implicit logical link
69 to the preceding insn. This is not quite right, since non-jumps can
70 also use the condition code; but in practice such insns would not
71 combine anyway. */
73 #include "config.h"
74 #include "system.h"
75 #include "coretypes.h"
76 #include "tm.h"
77 #include "rtl.h"
78 #include "tree.h"
79 #include "tm_p.h"
80 #include "flags.h"
81 #include "regs.h"
82 #include "hard-reg-set.h"
83 #include "basic-block.h"
84 #include "insn-config.h"
85 #include "function.h"
86 /* Include expr.h after insn-config.h so we get HAVE_conditional_move. */
87 #include "expr.h"
88 #include "insn-attr.h"
89 #include "recog.h"
90 #include "real.h"
91 #include "toplev.h"
92 #include "target.h"
93 #include "rtlhooks-def.h"
94 /* Include output.h for dump_file. */
95 #include "output.h"
96 #include "params.h"
98 /* Number of attempts to combine instructions in this function. */
100 static int combine_attempts;
102 /* Number of attempts that got as far as substitution in this function. */
104 static int combine_merges;
106 /* Number of instructions combined with added SETs in this function. */
108 static int combine_extras;
110 /* Number of instructions combined in this function. */
112 static int combine_successes;
114 /* Totals over entire compilation. */
116 static int total_attempts, total_merges, total_extras, total_successes;
119 /* Vector mapping INSN_UIDs to cuids.
120 The cuids are like uids but increase monotonically always.
121 Combine always uses cuids so that it can compare them.
122 But actually renumbering the uids, which we used to do,
123 proves to be a bad idea because it makes it hard to compare
124 the dumps produced by earlier passes with those from later passes. */
126 static int *uid_cuid;
127 static int max_uid_cuid;
129 /* Get the cuid of an insn. */
131 #define INSN_CUID(INSN) \
132 (INSN_UID (INSN) > max_uid_cuid ? insn_cuid (INSN) : uid_cuid[INSN_UID (INSN)])
134 /* In case BITS_PER_WORD == HOST_BITS_PER_WIDE_INT, shifting by
135 BITS_PER_WORD would invoke undefined behavior. Work around it. */
137 #define UWIDE_SHIFT_LEFT_BY_BITS_PER_WORD(val) \
138 (((unsigned HOST_WIDE_INT) (val) << (BITS_PER_WORD - 1)) << 1)
140 /* Maximum register number, which is the size of the tables below. */
142 static unsigned int combine_max_regno;
144 struct reg_stat {
145 /* Record last point of death of (hard or pseudo) register n. */
146 rtx last_death;
148 /* Record last point of modification of (hard or pseudo) register n. */
149 rtx last_set;
151 /* The next group of fields allows the recording of the last value assigned
152 to (hard or pseudo) register n. We use this information to see if an
153 operation being processed is redundant given a prior operation performed
154 on the register. For example, an `and' with a constant is redundant if
155 all the zero bits are already known to be turned off.
157 We use an approach similar to that used by cse, but change it in the
158 following ways:
160 (1) We do not want to reinitialize at each label.
161 (2) It is useful, but not critical, to know the actual value assigned
162 to a register. Often just its form is helpful.
164 Therefore, we maintain the following fields:
166 last_set_value the last value assigned
167 last_set_label records the value of label_tick when the
168 register was assigned
169 last_set_table_tick records the value of label_tick when a
170 value using the register is assigned
171 last_set_invalid set to nonzero when it is not valid
172 to use the value of this register in some
173 register's value
175 To understand the usage of these tables, it is important to understand
176 the distinction between the value in last_set_value being valid and
177 the register being validly contained in some other expression in the
178 table.
180 (The next two parameters are out of date).
182 reg_stat[i].last_set_value is valid if it is nonzero, and either
183 reg_n_sets[i] is 1 or reg_stat[i].last_set_label == label_tick.
185 Register I may validly appear in any expression returned for the value
186 of another register if reg_n_sets[i] is 1. It may also appear in the
187 value for register J if reg_stat[j].last_set_invalid is zero, or
188 reg_stat[i].last_set_label < reg_stat[j].last_set_label.
190 If an expression is found in the table containing a register which may
191 not validly appear in an expression, the register is replaced by
192 something that won't match, (clobber (const_int 0)). */
194 /* Record last value assigned to (hard or pseudo) register n. */
196 rtx last_set_value;
198 /* Record the value of label_tick when an expression involving register n
199 is placed in last_set_value. */
201 int last_set_table_tick;
203 /* Record the value of label_tick when the value for register n is placed in
204 last_set_value. */
206 int last_set_label;
208 /* These fields are maintained in parallel with last_set_value and are
209 used to store the mode in which the register was last set, the bits
210 that were known to be zero when it was last set, and the number of
211 sign bits copies it was known to have when it was last set. */
213 unsigned HOST_WIDE_INT last_set_nonzero_bits;
214 char last_set_sign_bit_copies;
215 ENUM_BITFIELD(machine_mode) last_set_mode : 8;
217 /* Set nonzero if references to register n in expressions should not be
218 used. last_set_invalid is set nonzero when this register is being
219 assigned to and last_set_table_tick == label_tick. */
221 char last_set_invalid;
223 /* Some registers that are set more than once and used in more than one
224 basic block are nevertheless always set in similar ways. For example,
225 a QImode register may be loaded from memory in two places on a machine
226 where byte loads zero extend.
228 We record in the following fields if a register has some leading bits
229 that are always equal to the sign bit, and what we know about the
230 nonzero bits of a register, specifically which bits are known to be
231 zero.
233 If an entry is zero, it means that we don't know anything special. */
235 unsigned char sign_bit_copies;
237 unsigned HOST_WIDE_INT nonzero_bits;
240 static struct reg_stat *reg_stat;
242 /* Record the cuid of the last insn that invalidated memory
243 (anything that writes memory, and subroutine calls, but not pushes). */
245 static int mem_last_set;
247 /* Record the cuid of the last CALL_INSN
248 so we can tell whether a potential combination crosses any calls. */
250 static int last_call_cuid;
252 /* When `subst' is called, this is the insn that is being modified
253 (by combining in a previous insn). The PATTERN of this insn
254 is still the old pattern partially modified and it should not be
255 looked at, but this may be used to examine the successors of the insn
256 to judge whether a simplification is valid. */
258 static rtx subst_insn;
260 /* This is the lowest CUID that `subst' is currently dealing with.
261 get_last_value will not return a value if the register was set at or
262 after this CUID. If not for this mechanism, we could get confused if
263 I2 or I1 in try_combine were an insn that used the old value of a register
264 to obtain a new value. In that case, we might erroneously get the
265 new value of the register when we wanted the old one. */
267 static int subst_low_cuid;
269 /* This contains any hard registers that are used in newpat; reg_dead_at_p
270 must consider all these registers to be always live. */
272 static HARD_REG_SET newpat_used_regs;
274 /* This is an insn to which a LOG_LINKS entry has been added. If this
275 insn is the earlier than I2 or I3, combine should rescan starting at
276 that location. */
278 static rtx added_links_insn;
280 /* Basic block in which we are performing combines. */
281 static basic_block this_basic_block;
283 /* A bitmap indicating which blocks had registers go dead at entry.
284 After combine, we'll need to re-do global life analysis with
285 those blocks as starting points. */
286 static sbitmap refresh_blocks;
288 /* The following array records the insn_rtx_cost for every insn
289 in the instruction stream. */
291 static int *uid_insn_cost;
293 /* Length of the currently allocated uid_insn_cost array. */
295 static int last_insn_cost;
297 /* Incremented for each label. */
299 static int label_tick;
301 /* Mode used to compute significance in reg_stat[].nonzero_bits. It is the
302 largest integer mode that can fit in HOST_BITS_PER_WIDE_INT. */
304 static enum machine_mode nonzero_bits_mode;
306 /* Nonzero when reg_stat[].nonzero_bits and reg_stat[].sign_bit_copies can
307 be safely used. It is zero while computing them and after combine has
308 completed. This former test prevents propagating values based on
309 previously set values, which can be incorrect if a variable is modified
310 in a loop. */
312 static int nonzero_sign_valid;
315 /* Record one modification to rtl structure
316 to be undone by storing old_contents into *where.
317 is_int is 1 if the contents are an int. */
319 struct undo
321 struct undo *next;
322 int is_int;
323 union {rtx r; int i;} old_contents;
324 union {rtx *r; int *i;} where;
327 /* Record a bunch of changes to be undone, up to MAX_UNDO of them.
328 num_undo says how many are currently recorded.
330 other_insn is nonzero if we have modified some other insn in the process
331 of working on subst_insn. It must be verified too. */
333 struct undobuf
335 struct undo *undos;
336 struct undo *frees;
337 rtx other_insn;
340 static struct undobuf undobuf;
342 /* Number of times the pseudo being substituted for
343 was found and replaced. */
345 static int n_occurrences;
347 static rtx reg_nonzero_bits_for_combine (rtx, enum machine_mode, rtx,
348 enum machine_mode,
349 unsigned HOST_WIDE_INT,
350 unsigned HOST_WIDE_INT *);
351 static rtx reg_num_sign_bit_copies_for_combine (rtx, enum machine_mode, rtx,
352 enum machine_mode,
353 unsigned int, unsigned int *);
354 static void do_SUBST (rtx *, rtx);
355 static void do_SUBST_INT (int *, int);
356 static void init_reg_last (void);
357 static void setup_incoming_promotions (void);
358 static void set_nonzero_bits_and_sign_copies (rtx, rtx, void *);
359 static int cant_combine_insn_p (rtx);
360 static int can_combine_p (rtx, rtx, rtx, rtx, rtx *, rtx *);
361 static int combinable_i3pat (rtx, rtx *, rtx, rtx, int, rtx *);
362 static int contains_muldiv (rtx);
363 static rtx try_combine (rtx, rtx, rtx, int *);
364 static void undo_all (void);
365 static void undo_commit (void);
366 static rtx *find_split_point (rtx *, rtx);
367 static rtx subst (rtx, rtx, rtx, int, int);
368 static rtx combine_simplify_rtx (rtx, enum machine_mode, int);
369 static rtx simplify_if_then_else (rtx);
370 static rtx simplify_set (rtx);
371 static rtx simplify_logical (rtx);
372 static rtx expand_compound_operation (rtx);
373 static rtx expand_field_assignment (rtx);
374 static rtx make_extraction (enum machine_mode, rtx, HOST_WIDE_INT,
375 rtx, unsigned HOST_WIDE_INT, int, int, int);
376 static rtx extract_left_shift (rtx, int);
377 static rtx make_compound_operation (rtx, enum rtx_code);
378 static int get_pos_from_mask (unsigned HOST_WIDE_INT,
379 unsigned HOST_WIDE_INT *);
380 static rtx force_to_mode (rtx, enum machine_mode,
381 unsigned HOST_WIDE_INT, rtx, int);
382 static rtx if_then_else_cond (rtx, rtx *, rtx *);
383 static rtx known_cond (rtx, enum rtx_code, rtx, rtx);
384 static int rtx_equal_for_field_assignment_p (rtx, rtx);
385 static rtx make_field_assignment (rtx);
386 static rtx apply_distributive_law (rtx);
387 static rtx simplify_and_const_int (rtx, enum machine_mode, rtx,
388 unsigned HOST_WIDE_INT);
389 static int merge_outer_ops (enum rtx_code *, HOST_WIDE_INT *, enum rtx_code,
390 HOST_WIDE_INT, enum machine_mode, int *);
391 static rtx simplify_shift_const (rtx, enum rtx_code, enum machine_mode, rtx,
392 int);
393 static int recog_for_combine (rtx *, rtx, rtx *);
394 static rtx gen_lowpart_for_combine (enum machine_mode, rtx);
395 static rtx gen_binary (enum rtx_code, enum machine_mode, rtx, rtx);
396 static enum rtx_code simplify_comparison (enum rtx_code, rtx *, rtx *);
397 static void update_table_tick (rtx);
398 static void record_value_for_reg (rtx, rtx, rtx);
399 static void check_promoted_subreg (rtx, rtx);
400 static void record_dead_and_set_regs_1 (rtx, rtx, void *);
401 static void record_dead_and_set_regs (rtx);
402 static int get_last_value_validate (rtx *, rtx, int, int);
403 static rtx get_last_value (rtx);
404 static int use_crosses_set_p (rtx, int);
405 static void reg_dead_at_p_1 (rtx, rtx, void *);
406 static int reg_dead_at_p (rtx, rtx);
407 static void move_deaths (rtx, rtx, int, rtx, rtx *);
408 static int reg_bitfield_target_p (rtx, rtx);
409 static void distribute_notes (rtx, rtx, rtx, rtx);
410 static void distribute_links (rtx);
411 static void mark_used_regs_combine (rtx);
412 static int insn_cuid (rtx);
413 static void record_promoted_value (rtx, rtx);
414 static rtx reversed_comparison (rtx, enum machine_mode, rtx, rtx);
415 static enum rtx_code combine_reversed_comparison_code (rtx);
416 static int unmentioned_reg_p_1 (rtx *, void *);
417 static bool unmentioned_reg_p (rtx, rtx);
420 /* It is not safe to use ordinary gen_lowpart in combine.
421 See comments in gen_lowpart_for_combine. */
422 #undef RTL_HOOKS_GEN_LOWPART
423 #define RTL_HOOKS_GEN_LOWPART gen_lowpart_for_combine
425 #undef RTL_HOOKS_REG_NONZERO_REG_BITS
426 #define RTL_HOOKS_REG_NONZERO_REG_BITS reg_nonzero_bits_for_combine
428 #undef RTL_HOOKS_REG_NUM_SIGN_BIT_COPIES
429 #define RTL_HOOKS_REG_NUM_SIGN_BIT_COPIES reg_num_sign_bit_copies_for_combine
431 static const struct rtl_hooks combine_rtl_hooks = RTL_HOOKS_INITIALIZER;
434 /* Substitute NEWVAL, an rtx expression, into INTO, a place in some
435 insn. The substitution can be undone by undo_all. If INTO is already
436 set to NEWVAL, do not record this change. Because computing NEWVAL might
437 also call SUBST, we have to compute it before we put anything into
438 the undo table. */
440 static void
441 do_SUBST (rtx *into, rtx newval)
443 struct undo *buf;
444 rtx oldval = *into;
446 if (oldval == newval)
447 return;
449 /* We'd like to catch as many invalid transformations here as
450 possible. Unfortunately, there are way too many mode changes
451 that are perfectly valid, so we'd waste too much effort for
452 little gain doing the checks here. Focus on catching invalid
453 transformations involving integer constants. */
454 if (GET_MODE_CLASS (GET_MODE (oldval)) == MODE_INT
455 && GET_CODE (newval) == CONST_INT)
457 /* Sanity check that we're replacing oldval with a CONST_INT
458 that is a valid sign-extension for the original mode. */
459 gcc_assert (INTVAL (newval)
460 == trunc_int_for_mode (INTVAL (newval), GET_MODE (oldval)));
462 /* Replacing the operand of a SUBREG or a ZERO_EXTEND with a
463 CONST_INT is not valid, because after the replacement, the
464 original mode would be gone. Unfortunately, we can't tell
465 when do_SUBST is called to replace the operand thereof, so we
466 perform this test on oldval instead, checking whether an
467 invalid replacement took place before we got here. */
468 gcc_assert (!(GET_CODE (oldval) == SUBREG
469 && GET_CODE (SUBREG_REG (oldval)) == CONST_INT));
470 gcc_assert (!(GET_CODE (oldval) == ZERO_EXTEND
471 && GET_CODE (XEXP (oldval, 0)) == CONST_INT));
474 if (undobuf.frees)
475 buf = undobuf.frees, undobuf.frees = buf->next;
476 else
477 buf = xmalloc (sizeof (struct undo));
479 buf->is_int = 0;
480 buf->where.r = into;
481 buf->old_contents.r = oldval;
482 *into = newval;
484 buf->next = undobuf.undos, undobuf.undos = buf;
487 #define SUBST(INTO, NEWVAL) do_SUBST(&(INTO), (NEWVAL))
489 /* Similar to SUBST, but NEWVAL is an int expression. Note that substitution
490 for the value of a HOST_WIDE_INT value (including CONST_INT) is
491 not safe. */
493 static void
494 do_SUBST_INT (int *into, int newval)
496 struct undo *buf;
497 int oldval = *into;
499 if (oldval == newval)
500 return;
502 if (undobuf.frees)
503 buf = undobuf.frees, undobuf.frees = buf->next;
504 else
505 buf = xmalloc (sizeof (struct undo));
507 buf->is_int = 1;
508 buf->where.i = into;
509 buf->old_contents.i = oldval;
510 *into = newval;
512 buf->next = undobuf.undos, undobuf.undos = buf;
515 #define SUBST_INT(INTO, NEWVAL) do_SUBST_INT(&(INTO), (NEWVAL))
517 /* Subroutine of try_combine. Determine whether the combine replacement
518 patterns NEWPAT and NEWI2PAT are cheaper according to insn_rtx_cost
519 that the original instruction sequence I1, I2 and I3. Note that I1
520 and/or NEWI2PAT may be NULL_RTX. This function returns false, if the
521 costs of all instructions can be estimated, and the replacements are
522 more expensive than the original sequence. */
524 static bool
525 combine_validate_cost (rtx i1, rtx i2, rtx i3, rtx newpat, rtx newi2pat)
527 int i1_cost, i2_cost, i3_cost;
528 int new_i2_cost, new_i3_cost;
529 int old_cost, new_cost;
531 /* Lookup the original insn_rtx_costs. */
532 i2_cost = INSN_UID (i2) <= last_insn_cost
533 ? uid_insn_cost[INSN_UID (i2)] : 0;
534 i3_cost = INSN_UID (i3) <= last_insn_cost
535 ? uid_insn_cost[INSN_UID (i3)] : 0;
537 if (i1)
539 i1_cost = INSN_UID (i1) <= last_insn_cost
540 ? uid_insn_cost[INSN_UID (i1)] : 0;
541 old_cost = (i1_cost > 0 && i2_cost > 0 && i3_cost > 0)
542 ? i1_cost + i2_cost + i3_cost : 0;
544 else
546 old_cost = (i2_cost > 0 && i3_cost > 0) ? i2_cost + i3_cost : 0;
547 i1_cost = 0;
550 /* Calculate the replacement insn_rtx_costs. */
551 new_i3_cost = insn_rtx_cost (newpat);
552 if (newi2pat)
554 new_i2_cost = insn_rtx_cost (newi2pat);
555 new_cost = (new_i2_cost > 0 && new_i3_cost > 0)
556 ? new_i2_cost + new_i3_cost : 0;
558 else
560 new_cost = new_i3_cost;
561 new_i2_cost = 0;
564 if (undobuf.other_insn)
566 int old_other_cost, new_other_cost;
568 old_other_cost = (INSN_UID (undobuf.other_insn) <= last_insn_cost
569 ? uid_insn_cost[INSN_UID (undobuf.other_insn)] : 0);
570 new_other_cost = insn_rtx_cost (PATTERN (undobuf.other_insn));
571 if (old_other_cost > 0 && new_other_cost > 0)
573 old_cost += old_other_cost;
574 new_cost += new_other_cost;
576 else
577 old_cost = 0;
580 /* Disallow this recombination if both new_cost and old_cost are
581 greater than zero, and new_cost is greater than old cost. */
582 if (old_cost > 0
583 && new_cost > old_cost)
585 if (dump_file)
587 if (i1)
589 fprintf (dump_file,
590 "rejecting combination of insns %d, %d and %d\n",
591 INSN_UID (i1), INSN_UID (i2), INSN_UID (i3));
592 fprintf (dump_file, "original costs %d + %d + %d = %d\n",
593 i1_cost, i2_cost, i3_cost, old_cost);
595 else
597 fprintf (dump_file,
598 "rejecting combination of insns %d and %d\n",
599 INSN_UID (i2), INSN_UID (i3));
600 fprintf (dump_file, "original costs %d + %d = %d\n",
601 i2_cost, i3_cost, old_cost);
604 if (newi2pat)
606 fprintf (dump_file, "replacement costs %d + %d = %d\n",
607 new_i2_cost, new_i3_cost, new_cost);
609 else
610 fprintf (dump_file, "replacement cost %d\n", new_cost);
613 return false;
616 /* Update the uid_insn_cost array with the replacement costs. */
617 uid_insn_cost[INSN_UID (i2)] = new_i2_cost;
618 uid_insn_cost[INSN_UID (i3)] = new_i3_cost;
619 if (i1)
620 uid_insn_cost[INSN_UID (i1)] = 0;
622 return true;
625 /* Main entry point for combiner. F is the first insn of the function.
626 NREGS is the first unused pseudo-reg number.
628 Return nonzero if the combiner has turned an indirect jump
629 instruction into a direct jump. */
631 combine_instructions (rtx f, unsigned int nregs)
633 rtx insn, next;
634 #ifdef HAVE_cc0
635 rtx prev;
636 #endif
637 int i;
638 rtx links, nextlinks;
640 int new_direct_jump_p = 0;
642 combine_attempts = 0;
643 combine_merges = 0;
644 combine_extras = 0;
645 combine_successes = 0;
647 combine_max_regno = nregs;
649 rtl_hooks = combine_rtl_hooks;
651 reg_stat = xcalloc (nregs, sizeof (struct reg_stat));
653 init_recog_no_volatile ();
655 /* Compute maximum uid value so uid_cuid can be allocated. */
657 for (insn = f, i = 0; insn; insn = NEXT_INSN (insn))
658 if (INSN_UID (insn) > i)
659 i = INSN_UID (insn);
661 uid_cuid = xmalloc ((i + 1) * sizeof (int));
662 max_uid_cuid = i;
664 nonzero_bits_mode = mode_for_size (HOST_BITS_PER_WIDE_INT, MODE_INT, 0);
666 /* Don't use reg_stat[].nonzero_bits when computing it. This can cause
667 problems when, for example, we have j <<= 1 in a loop. */
669 nonzero_sign_valid = 0;
671 /* Compute the mapping from uids to cuids.
672 Cuids are numbers assigned to insns, like uids,
673 except that cuids increase monotonically through the code.
675 Scan all SETs and see if we can deduce anything about what
676 bits are known to be zero for some registers and how many copies
677 of the sign bit are known to exist for those registers.
679 Also set any known values so that we can use it while searching
680 for what bits are known to be set. */
682 label_tick = 1;
684 setup_incoming_promotions ();
686 refresh_blocks = sbitmap_alloc (last_basic_block);
687 sbitmap_zero (refresh_blocks);
689 /* Allocate array of current insn_rtx_costs. */
690 uid_insn_cost = xcalloc (max_uid_cuid + 1, sizeof (int));
691 last_insn_cost = max_uid_cuid;
693 for (insn = f, i = 0; insn; insn = NEXT_INSN (insn))
695 uid_cuid[INSN_UID (insn)] = ++i;
696 subst_low_cuid = i;
697 subst_insn = insn;
699 if (INSN_P (insn))
701 note_stores (PATTERN (insn), set_nonzero_bits_and_sign_copies,
702 NULL);
703 record_dead_and_set_regs (insn);
705 #ifdef AUTO_INC_DEC
706 for (links = REG_NOTES (insn); links; links = XEXP (links, 1))
707 if (REG_NOTE_KIND (links) == REG_INC)
708 set_nonzero_bits_and_sign_copies (XEXP (links, 0), NULL_RTX,
709 NULL);
710 #endif
712 /* Record the current insn_rtx_cost of this instruction. */
713 if (NONJUMP_INSN_P (insn))
714 uid_insn_cost[INSN_UID (insn)] = insn_rtx_cost (PATTERN (insn));
715 if (dump_file)
716 fprintf(dump_file, "insn_cost %d: %d\n",
717 INSN_UID (insn), uid_insn_cost[INSN_UID (insn)]);
720 if (LABEL_P (insn))
721 label_tick++;
724 nonzero_sign_valid = 1;
726 /* Now scan all the insns in forward order. */
728 label_tick = 1;
729 last_call_cuid = 0;
730 mem_last_set = 0;
731 init_reg_last ();
732 setup_incoming_promotions ();
734 FOR_EACH_BB (this_basic_block)
736 for (insn = BB_HEAD (this_basic_block);
737 insn != NEXT_INSN (BB_END (this_basic_block));
738 insn = next ? next : NEXT_INSN (insn))
740 next = 0;
742 if (LABEL_P (insn))
743 label_tick++;
745 else if (INSN_P (insn))
747 /* See if we know about function return values before this
748 insn based upon SUBREG flags. */
749 check_promoted_subreg (insn, PATTERN (insn));
751 /* Try this insn with each insn it links back to. */
753 for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
754 if ((next = try_combine (insn, XEXP (links, 0),
755 NULL_RTX, &new_direct_jump_p)) != 0)
756 goto retry;
758 /* Try each sequence of three linked insns ending with this one. */
760 for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
762 rtx link = XEXP (links, 0);
764 /* If the linked insn has been replaced by a note, then there
765 is no point in pursuing this chain any further. */
766 if (NOTE_P (link))
767 continue;
769 for (nextlinks = LOG_LINKS (link);
770 nextlinks;
771 nextlinks = XEXP (nextlinks, 1))
772 if ((next = try_combine (insn, link,
773 XEXP (nextlinks, 0),
774 &new_direct_jump_p)) != 0)
775 goto retry;
778 #ifdef HAVE_cc0
779 /* Try to combine a jump insn that uses CC0
780 with a preceding insn that sets CC0, and maybe with its
781 logical predecessor as well.
782 This is how we make decrement-and-branch insns.
783 We need this special code because data flow connections
784 via CC0 do not get entered in LOG_LINKS. */
786 if (JUMP_P (insn)
787 && (prev = prev_nonnote_insn (insn)) != 0
788 && NONJUMP_INSN_P (prev)
789 && sets_cc0_p (PATTERN (prev)))
791 if ((next = try_combine (insn, prev,
792 NULL_RTX, &new_direct_jump_p)) != 0)
793 goto retry;
795 for (nextlinks = LOG_LINKS (prev); nextlinks;
796 nextlinks = XEXP (nextlinks, 1))
797 if ((next = try_combine (insn, prev,
798 XEXP (nextlinks, 0),
799 &new_direct_jump_p)) != 0)
800 goto retry;
803 /* Do the same for an insn that explicitly references CC0. */
804 if (NONJUMP_INSN_P (insn)
805 && (prev = prev_nonnote_insn (insn)) != 0
806 && NONJUMP_INSN_P (prev)
807 && sets_cc0_p (PATTERN (prev))
808 && GET_CODE (PATTERN (insn)) == SET
809 && reg_mentioned_p (cc0_rtx, SET_SRC (PATTERN (insn))))
811 if ((next = try_combine (insn, prev,
812 NULL_RTX, &new_direct_jump_p)) != 0)
813 goto retry;
815 for (nextlinks = LOG_LINKS (prev); nextlinks;
816 nextlinks = XEXP (nextlinks, 1))
817 if ((next = try_combine (insn, prev,
818 XEXP (nextlinks, 0),
819 &new_direct_jump_p)) != 0)
820 goto retry;
823 /* Finally, see if any of the insns that this insn links to
824 explicitly references CC0. If so, try this insn, that insn,
825 and its predecessor if it sets CC0. */
826 for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
827 if (NONJUMP_INSN_P (XEXP (links, 0))
828 && GET_CODE (PATTERN (XEXP (links, 0))) == SET
829 && reg_mentioned_p (cc0_rtx, SET_SRC (PATTERN (XEXP (links, 0))))
830 && (prev = prev_nonnote_insn (XEXP (links, 0))) != 0
831 && NONJUMP_INSN_P (prev)
832 && sets_cc0_p (PATTERN (prev))
833 && (next = try_combine (insn, XEXP (links, 0),
834 prev, &new_direct_jump_p)) != 0)
835 goto retry;
836 #endif
838 /* Try combining an insn with two different insns whose results it
839 uses. */
840 for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
841 for (nextlinks = XEXP (links, 1); nextlinks;
842 nextlinks = XEXP (nextlinks, 1))
843 if ((next = try_combine (insn, XEXP (links, 0),
844 XEXP (nextlinks, 0),
845 &new_direct_jump_p)) != 0)
846 goto retry;
848 /* Try this insn with each REG_EQUAL note it links back to. */
849 for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
851 rtx set, note;
852 rtx temp = XEXP (links, 0);
853 if ((set = single_set (temp)) != 0
854 && (note = find_reg_equal_equiv_note (temp)) != 0
855 && GET_CODE (XEXP (note, 0)) != EXPR_LIST
856 /* Avoid using a register that may already been marked
857 dead by an earlier instruction. */
858 && ! unmentioned_reg_p (XEXP (note, 0), SET_SRC (set)))
860 /* Temporarily replace the set's source with the
861 contents of the REG_EQUAL note. The insn will
862 be deleted or recognized by try_combine. */
863 rtx orig = SET_SRC (set);
864 SET_SRC (set) = XEXP (note, 0);
865 next = try_combine (insn, temp, NULL_RTX,
866 &new_direct_jump_p);
867 if (next)
868 goto retry;
869 SET_SRC (set) = orig;
873 if (!NOTE_P (insn))
874 record_dead_and_set_regs (insn);
876 retry:
881 clear_bb_flags ();
883 EXECUTE_IF_SET_IN_SBITMAP (refresh_blocks, 0, i,
884 BASIC_BLOCK (i)->flags |= BB_DIRTY);
885 new_direct_jump_p |= purge_all_dead_edges (0);
886 delete_noop_moves ();
888 update_life_info_in_dirty_blocks (UPDATE_LIFE_GLOBAL_RM_NOTES,
889 PROP_DEATH_NOTES | PROP_SCAN_DEAD_CODE
890 | PROP_KILL_DEAD_CODE);
892 /* Clean up. */
893 sbitmap_free (refresh_blocks);
894 free (uid_insn_cost);
895 free (reg_stat);
896 free (uid_cuid);
899 struct undo *undo, *next;
900 for (undo = undobuf.frees; undo; undo = next)
902 next = undo->next;
903 free (undo);
905 undobuf.frees = 0;
908 total_attempts += combine_attempts;
909 total_merges += combine_merges;
910 total_extras += combine_extras;
911 total_successes += combine_successes;
913 nonzero_sign_valid = 0;
914 rtl_hooks = general_rtl_hooks;
916 /* Make recognizer allow volatile MEMs again. */
917 init_recog ();
919 return new_direct_jump_p;
922 /* Wipe the last_xxx fields of reg_stat in preparation for another pass. */
924 static void
925 init_reg_last (void)
927 unsigned int i;
928 for (i = 0; i < combine_max_regno; i++)
929 memset (reg_stat + i, 0, offsetof (struct reg_stat, sign_bit_copies));
932 /* Set up any promoted values for incoming argument registers. */
934 static void
935 setup_incoming_promotions (void)
937 unsigned int regno;
938 rtx reg;
939 enum machine_mode mode;
940 int unsignedp;
941 rtx first = get_insns ();
943 if (targetm.calls.promote_function_args (TREE_TYPE (cfun->decl)))
945 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
946 /* Check whether this register can hold an incoming pointer
947 argument. FUNCTION_ARG_REGNO_P tests outgoing register
948 numbers, so translate if necessary due to register windows. */
949 if (FUNCTION_ARG_REGNO_P (OUTGOING_REGNO (regno))
950 && (reg = promoted_input_arg (regno, &mode, &unsignedp)) != 0)
952 record_value_for_reg
953 (reg, first, gen_rtx_fmt_e ((unsignedp ? ZERO_EXTEND
954 : SIGN_EXTEND),
955 GET_MODE (reg),
956 gen_rtx_CLOBBER (mode, const0_rtx)));
961 /* Called via note_stores. If X is a pseudo that is narrower than
962 HOST_BITS_PER_WIDE_INT and is being set, record what bits are known zero.
964 If we are setting only a portion of X and we can't figure out what
965 portion, assume all bits will be used since we don't know what will
966 be happening.
968 Similarly, set how many bits of X are known to be copies of the sign bit
969 at all locations in the function. This is the smallest number implied
970 by any set of X. */
972 static void
973 set_nonzero_bits_and_sign_copies (rtx x, rtx set,
974 void *data ATTRIBUTE_UNUSED)
976 unsigned int num;
978 if (REG_P (x)
979 && REGNO (x) >= FIRST_PSEUDO_REGISTER
980 /* If this register is undefined at the start of the file, we can't
981 say what its contents were. */
982 && ! REGNO_REG_SET_P (ENTRY_BLOCK_PTR->next_bb->global_live_at_start, REGNO (x))
983 && GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT)
985 if (set == 0 || GET_CODE (set) == CLOBBER)
987 reg_stat[REGNO (x)].nonzero_bits = GET_MODE_MASK (GET_MODE (x));
988 reg_stat[REGNO (x)].sign_bit_copies = 1;
989 return;
992 /* If this is a complex assignment, see if we can convert it into a
993 simple assignment. */
994 set = expand_field_assignment (set);
996 /* If this is a simple assignment, or we have a paradoxical SUBREG,
997 set what we know about X. */
999 if (SET_DEST (set) == x
1000 || (GET_CODE (SET_DEST (set)) == SUBREG
1001 && (GET_MODE_SIZE (GET_MODE (SET_DEST (set)))
1002 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (set)))))
1003 && SUBREG_REG (SET_DEST (set)) == x))
1005 rtx src = SET_SRC (set);
1007 #ifdef SHORT_IMMEDIATES_SIGN_EXTEND
1008 /* If X is narrower than a word and SRC is a non-negative
1009 constant that would appear negative in the mode of X,
1010 sign-extend it for use in reg_stat[].nonzero_bits because some
1011 machines (maybe most) will actually do the sign-extension
1012 and this is the conservative approach.
1014 ??? For 2.5, try to tighten up the MD files in this regard
1015 instead of this kludge. */
1017 if (GET_MODE_BITSIZE (GET_MODE (x)) < BITS_PER_WORD
1018 && GET_CODE (src) == CONST_INT
1019 && INTVAL (src) > 0
1020 && 0 != (INTVAL (src)
1021 & ((HOST_WIDE_INT) 1
1022 << (GET_MODE_BITSIZE (GET_MODE (x)) - 1))))
1023 src = GEN_INT (INTVAL (src)
1024 | ((HOST_WIDE_INT) (-1)
1025 << GET_MODE_BITSIZE (GET_MODE (x))));
1026 #endif
1028 /* Don't call nonzero_bits if it cannot change anything. */
1029 if (reg_stat[REGNO (x)].nonzero_bits != ~(unsigned HOST_WIDE_INT) 0)
1030 reg_stat[REGNO (x)].nonzero_bits
1031 |= nonzero_bits (src, nonzero_bits_mode);
1032 num = num_sign_bit_copies (SET_SRC (set), GET_MODE (x));
1033 if (reg_stat[REGNO (x)].sign_bit_copies == 0
1034 || reg_stat[REGNO (x)].sign_bit_copies > num)
1035 reg_stat[REGNO (x)].sign_bit_copies = num;
1037 else
1039 reg_stat[REGNO (x)].nonzero_bits = GET_MODE_MASK (GET_MODE (x));
1040 reg_stat[REGNO (x)].sign_bit_copies = 1;
1045 /* See if INSN can be combined into I3. PRED and SUCC are optionally
1046 insns that were previously combined into I3 or that will be combined
1047 into the merger of INSN and I3.
1049 Return 0 if the combination is not allowed for any reason.
1051 If the combination is allowed, *PDEST will be set to the single
1052 destination of INSN and *PSRC to the single source, and this function
1053 will return 1. */
1055 static int
1056 can_combine_p (rtx insn, rtx i3, rtx pred ATTRIBUTE_UNUSED, rtx succ,
1057 rtx *pdest, rtx *psrc)
1059 int i;
1060 rtx set = 0, src, dest;
1061 rtx p;
1062 #ifdef AUTO_INC_DEC
1063 rtx link;
1064 #endif
1065 int all_adjacent = (succ ? (next_active_insn (insn) == succ
1066 && next_active_insn (succ) == i3)
1067 : next_active_insn (insn) == i3);
1069 /* Can combine only if previous insn is a SET of a REG, a SUBREG or CC0.
1070 or a PARALLEL consisting of such a SET and CLOBBERs.
1072 If INSN has CLOBBER parallel parts, ignore them for our processing.
1073 By definition, these happen during the execution of the insn. When it
1074 is merged with another insn, all bets are off. If they are, in fact,
1075 needed and aren't also supplied in I3, they may be added by
1076 recog_for_combine. Otherwise, it won't match.
1078 We can also ignore a SET whose SET_DEST is mentioned in a REG_UNUSED
1079 note.
1081 Get the source and destination of INSN. If more than one, can't
1082 combine. */
1084 if (GET_CODE (PATTERN (insn)) == SET)
1085 set = PATTERN (insn);
1086 else if (GET_CODE (PATTERN (insn)) == PARALLEL
1087 && GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) == SET)
1089 for (i = 0; i < XVECLEN (PATTERN (insn), 0); i++)
1091 rtx elt = XVECEXP (PATTERN (insn), 0, i);
1092 rtx note;
1094 switch (GET_CODE (elt))
1096 /* This is important to combine floating point insns
1097 for the SH4 port. */
1098 case USE:
1099 /* Combining an isolated USE doesn't make sense.
1100 We depend here on combinable_i3pat to reject them. */
1101 /* The code below this loop only verifies that the inputs of
1102 the SET in INSN do not change. We call reg_set_between_p
1103 to verify that the REG in the USE does not change between
1104 I3 and INSN.
1105 If the USE in INSN was for a pseudo register, the matching
1106 insn pattern will likely match any register; combining this
1107 with any other USE would only be safe if we knew that the
1108 used registers have identical values, or if there was
1109 something to tell them apart, e.g. different modes. For
1110 now, we forgo such complicated tests and simply disallow
1111 combining of USES of pseudo registers with any other USE. */
1112 if (REG_P (XEXP (elt, 0))
1113 && GET_CODE (PATTERN (i3)) == PARALLEL)
1115 rtx i3pat = PATTERN (i3);
1116 int i = XVECLEN (i3pat, 0) - 1;
1117 unsigned int regno = REGNO (XEXP (elt, 0));
1121 rtx i3elt = XVECEXP (i3pat, 0, i);
1123 if (GET_CODE (i3elt) == USE
1124 && REG_P (XEXP (i3elt, 0))
1125 && (REGNO (XEXP (i3elt, 0)) == regno
1126 ? reg_set_between_p (XEXP (elt, 0),
1127 PREV_INSN (insn), i3)
1128 : regno >= FIRST_PSEUDO_REGISTER))
1129 return 0;
1131 while (--i >= 0);
1133 break;
1135 /* We can ignore CLOBBERs. */
1136 case CLOBBER:
1137 break;
1139 case SET:
1140 /* Ignore SETs whose result isn't used but not those that
1141 have side-effects. */
1142 if (find_reg_note (insn, REG_UNUSED, SET_DEST (elt))
1143 && (!(note = find_reg_note (insn, REG_EH_REGION, NULL_RTX))
1144 || INTVAL (XEXP (note, 0)) <= 0)
1145 && ! side_effects_p (elt))
1146 break;
1148 /* If we have already found a SET, this is a second one and
1149 so we cannot combine with this insn. */
1150 if (set)
1151 return 0;
1153 set = elt;
1154 break;
1156 default:
1157 /* Anything else means we can't combine. */
1158 return 0;
1162 if (set == 0
1163 /* If SET_SRC is an ASM_OPERANDS we can't throw away these CLOBBERs,
1164 so don't do anything with it. */
1165 || GET_CODE (SET_SRC (set)) == ASM_OPERANDS)
1166 return 0;
1168 else
1169 return 0;
1171 if (set == 0)
1172 return 0;
1174 set = expand_field_assignment (set);
1175 src = SET_SRC (set), dest = SET_DEST (set);
1177 /* Don't eliminate a store in the stack pointer. */
1178 if (dest == stack_pointer_rtx
1179 /* Don't combine with an insn that sets a register to itself if it has
1180 a REG_EQUAL note. This may be part of a REG_NO_CONFLICT sequence. */
1181 || (rtx_equal_p (src, dest) && find_reg_note (insn, REG_EQUAL, NULL_RTX))
1182 /* Can't merge an ASM_OPERANDS. */
1183 || GET_CODE (src) == ASM_OPERANDS
1184 /* Can't merge a function call. */
1185 || GET_CODE (src) == CALL
1186 /* Don't eliminate a function call argument. */
1187 || (CALL_P (i3)
1188 && (find_reg_fusage (i3, USE, dest)
1189 || (REG_P (dest)
1190 && REGNO (dest) < FIRST_PSEUDO_REGISTER
1191 && global_regs[REGNO (dest)])))
1192 /* Don't substitute into an incremented register. */
1193 || FIND_REG_INC_NOTE (i3, dest)
1194 || (succ && FIND_REG_INC_NOTE (succ, dest))
1195 /* Don't substitute into a non-local goto, this confuses CFG. */
1196 || (JUMP_P (i3) && find_reg_note (i3, REG_NON_LOCAL_GOTO, NULL_RTX))
1197 #if 0
1198 /* Don't combine the end of a libcall into anything. */
1199 /* ??? This gives worse code, and appears to be unnecessary, since no
1200 pass after flow uses REG_LIBCALL/REG_RETVAL notes. Local-alloc does
1201 use REG_RETVAL notes for noconflict blocks, but other code here
1202 makes sure that those insns don't disappear. */
1203 || find_reg_note (insn, REG_RETVAL, NULL_RTX)
1204 #endif
1205 /* Make sure that DEST is not used after SUCC but before I3. */
1206 || (succ && ! all_adjacent
1207 && reg_used_between_p (dest, succ, i3))
1208 /* Make sure that the value that is to be substituted for the register
1209 does not use any registers whose values alter in between. However,
1210 If the insns are adjacent, a use can't cross a set even though we
1211 think it might (this can happen for a sequence of insns each setting
1212 the same destination; last_set of that register might point to
1213 a NOTE). If INSN has a REG_EQUIV note, the register is always
1214 equivalent to the memory so the substitution is valid even if there
1215 are intervening stores. Also, don't move a volatile asm or
1216 UNSPEC_VOLATILE across any other insns. */
1217 || (! all_adjacent
1218 && (((!MEM_P (src)
1219 || ! find_reg_note (insn, REG_EQUIV, src))
1220 && use_crosses_set_p (src, INSN_CUID (insn)))
1221 || (GET_CODE (src) == ASM_OPERANDS && MEM_VOLATILE_P (src))
1222 || GET_CODE (src) == UNSPEC_VOLATILE))
1223 /* If there is a REG_NO_CONFLICT note for DEST in I3 or SUCC, we get
1224 better register allocation by not doing the combine. */
1225 || find_reg_note (i3, REG_NO_CONFLICT, dest)
1226 || (succ && find_reg_note (succ, REG_NO_CONFLICT, dest))
1227 /* Don't combine across a CALL_INSN, because that would possibly
1228 change whether the life span of some REGs crosses calls or not,
1229 and it is a pain to update that information.
1230 Exception: if source is a constant, moving it later can't hurt.
1231 Accept that special case, because it helps -fforce-addr a lot. */
1232 || (INSN_CUID (insn) < last_call_cuid && ! CONSTANT_P (src)))
1233 return 0;
1235 /* DEST must either be a REG or CC0. */
1236 if (REG_P (dest))
1238 /* If register alignment is being enforced for multi-word items in all
1239 cases except for parameters, it is possible to have a register copy
1240 insn referencing a hard register that is not allowed to contain the
1241 mode being copied and which would not be valid as an operand of most
1242 insns. Eliminate this problem by not combining with such an insn.
1244 Also, on some machines we don't want to extend the life of a hard
1245 register. */
1247 if (REG_P (src)
1248 && ((REGNO (dest) < FIRST_PSEUDO_REGISTER
1249 && ! HARD_REGNO_MODE_OK (REGNO (dest), GET_MODE (dest)))
1250 /* Don't extend the life of a hard register unless it is
1251 user variable (if we have few registers) or it can't
1252 fit into the desired register (meaning something special
1253 is going on).
1254 Also avoid substituting a return register into I3, because
1255 reload can't handle a conflict with constraints of other
1256 inputs. */
1257 || (REGNO (src) < FIRST_PSEUDO_REGISTER
1258 && ! HARD_REGNO_MODE_OK (REGNO (src), GET_MODE (src)))))
1259 return 0;
1261 else if (GET_CODE (dest) != CC0)
1262 return 0;
1265 if (GET_CODE (PATTERN (i3)) == PARALLEL)
1266 for (i = XVECLEN (PATTERN (i3), 0) - 1; i >= 0; i--)
1267 if (GET_CODE (XVECEXP (PATTERN (i3), 0, i)) == CLOBBER)
1269 /* Don't substitute for a register intended as a clobberable
1270 operand. */
1271 rtx reg = XEXP (XVECEXP (PATTERN (i3), 0, i), 0);
1272 if (rtx_equal_p (reg, dest))
1273 return 0;
1275 /* If the clobber represents an earlyclobber operand, we must not
1276 substitute an expression containing the clobbered register.
1277 As we do not analyse the constraint strings here, we have to
1278 make the conservative assumption. However, if the register is
1279 a fixed hard reg, the clobber cannot represent any operand;
1280 we leave it up to the machine description to either accept or
1281 reject use-and-clobber patterns. */
1282 if (!REG_P (reg)
1283 || REGNO (reg) >= FIRST_PSEUDO_REGISTER
1284 || !fixed_regs[REGNO (reg)])
1285 if (reg_overlap_mentioned_p (reg, src))
1286 return 0;
1289 /* If INSN contains anything volatile, or is an `asm' (whether volatile
1290 or not), reject, unless nothing volatile comes between it and I3 */
1292 if (GET_CODE (src) == ASM_OPERANDS || volatile_refs_p (src))
1294 /* Make sure succ doesn't contain a volatile reference. */
1295 if (succ != 0 && volatile_refs_p (PATTERN (succ)))
1296 return 0;
1298 for (p = NEXT_INSN (insn); p != i3; p = NEXT_INSN (p))
1299 if (INSN_P (p) && p != succ && volatile_refs_p (PATTERN (p)))
1300 return 0;
1303 /* If INSN is an asm, and DEST is a hard register, reject, since it has
1304 to be an explicit register variable, and was chosen for a reason. */
1306 if (GET_CODE (src) == ASM_OPERANDS
1307 && REG_P (dest) && REGNO (dest) < FIRST_PSEUDO_REGISTER)
1308 return 0;
1310 /* If there are any volatile insns between INSN and I3, reject, because
1311 they might affect machine state. */
1313 for (p = NEXT_INSN (insn); p != i3; p = NEXT_INSN (p))
1314 if (INSN_P (p) && p != succ && volatile_insn_p (PATTERN (p)))
1315 return 0;
1317 /* If INSN or I2 contains an autoincrement or autodecrement,
1318 make sure that register is not used between there and I3,
1319 and not already used in I3 either.
1320 Also insist that I3 not be a jump; if it were one
1321 and the incremented register were spilled, we would lose. */
1323 #ifdef AUTO_INC_DEC
1324 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1325 if (REG_NOTE_KIND (link) == REG_INC
1326 && (JUMP_P (i3)
1327 || reg_used_between_p (XEXP (link, 0), insn, i3)
1328 || reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i3))))
1329 return 0;
1330 #endif
1332 #ifdef HAVE_cc0
1333 /* Don't combine an insn that follows a CC0-setting insn.
1334 An insn that uses CC0 must not be separated from the one that sets it.
1335 We do, however, allow I2 to follow a CC0-setting insn if that insn
1336 is passed as I1; in that case it will be deleted also.
1337 We also allow combining in this case if all the insns are adjacent
1338 because that would leave the two CC0 insns adjacent as well.
1339 It would be more logical to test whether CC0 occurs inside I1 or I2,
1340 but that would be much slower, and this ought to be equivalent. */
1342 p = prev_nonnote_insn (insn);
1343 if (p && p != pred && NONJUMP_INSN_P (p) && sets_cc0_p (PATTERN (p))
1344 && ! all_adjacent)
1345 return 0;
1346 #endif
1348 /* If we get here, we have passed all the tests and the combination is
1349 to be allowed. */
1351 *pdest = dest;
1352 *psrc = src;
1354 return 1;
1357 /* LOC is the location within I3 that contains its pattern or the component
1358 of a PARALLEL of the pattern. We validate that it is valid for combining.
1360 One problem is if I3 modifies its output, as opposed to replacing it
1361 entirely, we can't allow the output to contain I2DEST or I1DEST as doing
1362 so would produce an insn that is not equivalent to the original insns.
1364 Consider:
1366 (set (reg:DI 101) (reg:DI 100))
1367 (set (subreg:SI (reg:DI 101) 0) <foo>)
1369 This is NOT equivalent to:
1371 (parallel [(set (subreg:SI (reg:DI 100) 0) <foo>)
1372 (set (reg:DI 101) (reg:DI 100))])
1374 Not only does this modify 100 (in which case it might still be valid
1375 if 100 were dead in I2), it sets 101 to the ORIGINAL value of 100.
1377 We can also run into a problem if I2 sets a register that I1
1378 uses and I1 gets directly substituted into I3 (not via I2). In that
1379 case, we would be getting the wrong value of I2DEST into I3, so we
1380 must reject the combination. This case occurs when I2 and I1 both
1381 feed into I3, rather than when I1 feeds into I2, which feeds into I3.
1382 If I1_NOT_IN_SRC is nonzero, it means that finding I1 in the source
1383 of a SET must prevent combination from occurring.
1385 Before doing the above check, we first try to expand a field assignment
1386 into a set of logical operations.
1388 If PI3_DEST_KILLED is nonzero, it is a pointer to a location in which
1389 we place a register that is both set and used within I3. If more than one
1390 such register is detected, we fail.
1392 Return 1 if the combination is valid, zero otherwise. */
1394 static int
1395 combinable_i3pat (rtx i3, rtx *loc, rtx i2dest, rtx i1dest,
1396 int i1_not_in_src, rtx *pi3dest_killed)
1398 rtx x = *loc;
1400 if (GET_CODE (x) == SET)
1402 rtx set = x ;
1403 rtx dest = SET_DEST (set);
1404 rtx src = SET_SRC (set);
1405 rtx inner_dest = dest;
1407 while (GET_CODE (inner_dest) == STRICT_LOW_PART
1408 || GET_CODE (inner_dest) == SUBREG
1409 || GET_CODE (inner_dest) == ZERO_EXTRACT)
1410 inner_dest = XEXP (inner_dest, 0);
1412 /* Check for the case where I3 modifies its output, as discussed
1413 above. We don't want to prevent pseudos from being combined
1414 into the address of a MEM, so only prevent the combination if
1415 i1 or i2 set the same MEM. */
1416 if ((inner_dest != dest &&
1417 (!MEM_P (inner_dest)
1418 || rtx_equal_p (i2dest, inner_dest)
1419 || (i1dest && rtx_equal_p (i1dest, inner_dest)))
1420 && (reg_overlap_mentioned_p (i2dest, inner_dest)
1421 || (i1dest && reg_overlap_mentioned_p (i1dest, inner_dest))))
1423 /* This is the same test done in can_combine_p except we can't test
1424 all_adjacent; we don't have to, since this instruction will stay
1425 in place, thus we are not considering increasing the lifetime of
1426 INNER_DEST.
1428 Also, if this insn sets a function argument, combining it with
1429 something that might need a spill could clobber a previous
1430 function argument; the all_adjacent test in can_combine_p also
1431 checks this; here, we do a more specific test for this case. */
1433 || (REG_P (inner_dest)
1434 && REGNO (inner_dest) < FIRST_PSEUDO_REGISTER
1435 && (! HARD_REGNO_MODE_OK (REGNO (inner_dest),
1436 GET_MODE (inner_dest))))
1437 || (i1_not_in_src && reg_overlap_mentioned_p (i1dest, src)))
1438 return 0;
1440 /* If DEST is used in I3, it is being killed in this insn,
1441 so record that for later.
1442 Never add REG_DEAD notes for the FRAME_POINTER_REGNUM or the
1443 STACK_POINTER_REGNUM, since these are always considered to be
1444 live. Similarly for ARG_POINTER_REGNUM if it is fixed. */
1445 if (pi3dest_killed && REG_P (dest)
1446 && reg_referenced_p (dest, PATTERN (i3))
1447 && REGNO (dest) != FRAME_POINTER_REGNUM
1448 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
1449 && REGNO (dest) != HARD_FRAME_POINTER_REGNUM
1450 #endif
1451 #if ARG_POINTER_REGNUM != FRAME_POINTER_REGNUM
1452 && (REGNO (dest) != ARG_POINTER_REGNUM
1453 || ! fixed_regs [REGNO (dest)])
1454 #endif
1455 && REGNO (dest) != STACK_POINTER_REGNUM)
1457 if (*pi3dest_killed)
1458 return 0;
1460 *pi3dest_killed = dest;
1464 else if (GET_CODE (x) == PARALLEL)
1466 int i;
1468 for (i = 0; i < XVECLEN (x, 0); i++)
1469 if (! combinable_i3pat (i3, &XVECEXP (x, 0, i), i2dest, i1dest,
1470 i1_not_in_src, pi3dest_killed))
1471 return 0;
1474 return 1;
1477 /* Return 1 if X is an arithmetic expression that contains a multiplication
1478 and division. We don't count multiplications by powers of two here. */
1480 static int
1481 contains_muldiv (rtx x)
1483 switch (GET_CODE (x))
1485 case MOD: case DIV: case UMOD: case UDIV:
1486 return 1;
1488 case MULT:
1489 return ! (GET_CODE (XEXP (x, 1)) == CONST_INT
1490 && exact_log2 (INTVAL (XEXP (x, 1))) >= 0);
1491 default:
1492 if (BINARY_P (x))
1493 return contains_muldiv (XEXP (x, 0))
1494 || contains_muldiv (XEXP (x, 1));
1496 if (UNARY_P (x))
1497 return contains_muldiv (XEXP (x, 0));
1499 return 0;
1503 /* Determine whether INSN can be used in a combination. Return nonzero if
1504 not. This is used in try_combine to detect early some cases where we
1505 can't perform combinations. */
1507 static int
1508 cant_combine_insn_p (rtx insn)
1510 rtx set;
1511 rtx src, dest;
1513 /* If this isn't really an insn, we can't do anything.
1514 This can occur when flow deletes an insn that it has merged into an
1515 auto-increment address. */
1516 if (! INSN_P (insn))
1517 return 1;
1519 /* Never combine loads and stores involving hard regs that are likely
1520 to be spilled. The register allocator can usually handle such
1521 reg-reg moves by tying. If we allow the combiner to make
1522 substitutions of likely-spilled regs, we may abort in reload.
1523 As an exception, we allow combinations involving fixed regs; these are
1524 not available to the register allocator so there's no risk involved. */
1526 set = single_set (insn);
1527 if (! set)
1528 return 0;
1529 src = SET_SRC (set);
1530 dest = SET_DEST (set);
1531 if (GET_CODE (src) == SUBREG)
1532 src = SUBREG_REG (src);
1533 if (GET_CODE (dest) == SUBREG)
1534 dest = SUBREG_REG (dest);
1535 if (REG_P (src) && REG_P (dest)
1536 && ((REGNO (src) < FIRST_PSEUDO_REGISTER
1537 && ! fixed_regs[REGNO (src)]
1538 && CLASS_LIKELY_SPILLED_P (REGNO_REG_CLASS (REGNO (src))))
1539 || (REGNO (dest) < FIRST_PSEUDO_REGISTER
1540 && ! fixed_regs[REGNO (dest)]
1541 && CLASS_LIKELY_SPILLED_P (REGNO_REG_CLASS (REGNO (dest))))))
1542 return 1;
1544 return 0;
1547 /* Adjust INSN after we made a change to its destination.
1549 Changing the destination can invalidate notes that say something about
1550 the results of the insn and a LOG_LINK pointing to the insn. */
1552 static void
1553 adjust_for_new_dest (rtx insn)
1555 rtx *loc;
1557 /* For notes, be conservative and simply remove them. */
1558 loc = &REG_NOTES (insn);
1559 while (*loc)
1561 enum reg_note kind = REG_NOTE_KIND (*loc);
1562 if (kind == REG_EQUAL || kind == REG_EQUIV)
1563 *loc = XEXP (*loc, 1);
1564 else
1565 loc = &XEXP (*loc, 1);
1568 /* The new insn will have a destination that was previously the destination
1569 of an insn just above it. Call distribute_links to make a LOG_LINK from
1570 the next use of that destination. */
1571 distribute_links (gen_rtx_INSN_LIST (VOIDmode, insn, NULL_RTX));
1574 /* Try to combine the insns I1 and I2 into I3.
1575 Here I1 and I2 appear earlier than I3.
1576 I1 can be zero; then we combine just I2 into I3.
1578 If we are combining three insns and the resulting insn is not recognized,
1579 try splitting it into two insns. If that happens, I2 and I3 are retained
1580 and I1 is pseudo-deleted by turning it into a NOTE. Otherwise, I1 and I2
1581 are pseudo-deleted.
1583 Return 0 if the combination does not work. Then nothing is changed.
1584 If we did the combination, return the insn at which combine should
1585 resume scanning.
1587 Set NEW_DIRECT_JUMP_P to a nonzero value if try_combine creates a
1588 new direct jump instruction. */
1590 static rtx
1591 try_combine (rtx i3, rtx i2, rtx i1, int *new_direct_jump_p)
1593 /* New patterns for I3 and I2, respectively. */
1594 rtx newpat, newi2pat = 0;
1595 int substed_i2 = 0, substed_i1 = 0;
1596 /* Indicates need to preserve SET in I1 or I2 in I3 if it is not dead. */
1597 int added_sets_1, added_sets_2;
1598 /* Total number of SETs to put into I3. */
1599 int total_sets;
1600 /* Nonzero if I2's body now appears in I3. */
1601 int i2_is_used;
1602 /* INSN_CODEs for new I3, new I2, and user of condition code. */
1603 int insn_code_number, i2_code_number = 0, other_code_number = 0;
1604 /* Contains I3 if the destination of I3 is used in its source, which means
1605 that the old life of I3 is being killed. If that usage is placed into
1606 I2 and not in I3, a REG_DEAD note must be made. */
1607 rtx i3dest_killed = 0;
1608 /* SET_DEST and SET_SRC of I2 and I1. */
1609 rtx i2dest, i2src, i1dest = 0, i1src = 0;
1610 /* PATTERN (I2), or a copy of it in certain cases. */
1611 rtx i2pat;
1612 /* Indicates if I2DEST or I1DEST is in I2SRC or I1_SRC. */
1613 int i2dest_in_i2src = 0, i1dest_in_i1src = 0, i2dest_in_i1src = 0;
1614 int i1_feeds_i3 = 0;
1615 /* Notes that must be added to REG_NOTES in I3 and I2. */
1616 rtx new_i3_notes, new_i2_notes;
1617 /* Notes that we substituted I3 into I2 instead of the normal case. */
1618 int i3_subst_into_i2 = 0;
1619 /* Notes that I1, I2 or I3 is a MULT operation. */
1620 int have_mult = 0;
1621 int swap_i2i3 = 0;
1623 int maxreg;
1624 rtx temp;
1625 rtx link;
1626 int i;
1628 /* Exit early if one of the insns involved can't be used for
1629 combinations. */
1630 if (cant_combine_insn_p (i3)
1631 || cant_combine_insn_p (i2)
1632 || (i1 && cant_combine_insn_p (i1))
1633 /* We also can't do anything if I3 has a
1634 REG_LIBCALL note since we don't want to disrupt the contiguity of a
1635 libcall. */
1636 #if 0
1637 /* ??? This gives worse code, and appears to be unnecessary, since no
1638 pass after flow uses REG_LIBCALL/REG_RETVAL notes. */
1639 || find_reg_note (i3, REG_LIBCALL, NULL_RTX)
1640 #endif
1642 return 0;
1644 combine_attempts++;
1645 undobuf.other_insn = 0;
1647 /* Reset the hard register usage information. */
1648 CLEAR_HARD_REG_SET (newpat_used_regs);
1650 /* If I1 and I2 both feed I3, they can be in any order. To simplify the
1651 code below, set I1 to be the earlier of the two insns. */
1652 if (i1 && INSN_CUID (i1) > INSN_CUID (i2))
1653 temp = i1, i1 = i2, i2 = temp;
1655 added_links_insn = 0;
1657 /* First check for one important special-case that the code below will
1658 not handle. Namely, the case where I1 is zero, I2 is a PARALLEL
1659 and I3 is a SET whose SET_SRC is a SET_DEST in I2. In that case,
1660 we may be able to replace that destination with the destination of I3.
1661 This occurs in the common code where we compute both a quotient and
1662 remainder into a structure, in which case we want to do the computation
1663 directly into the structure to avoid register-register copies.
1665 Note that this case handles both multiple sets in I2 and also
1666 cases where I2 has a number of CLOBBER or PARALLELs.
1668 We make very conservative checks below and only try to handle the
1669 most common cases of this. For example, we only handle the case
1670 where I2 and I3 are adjacent to avoid making difficult register
1671 usage tests. */
1673 if (i1 == 0 && NONJUMP_INSN_P (i3) && GET_CODE (PATTERN (i3)) == SET
1674 && REG_P (SET_SRC (PATTERN (i3)))
1675 && REGNO (SET_SRC (PATTERN (i3))) >= FIRST_PSEUDO_REGISTER
1676 && find_reg_note (i3, REG_DEAD, SET_SRC (PATTERN (i3)))
1677 && GET_CODE (PATTERN (i2)) == PARALLEL
1678 && ! side_effects_p (SET_DEST (PATTERN (i3)))
1679 /* If the dest of I3 is a ZERO_EXTRACT or STRICT_LOW_PART, the code
1680 below would need to check what is inside (and reg_overlap_mentioned_p
1681 doesn't support those codes anyway). Don't allow those destinations;
1682 the resulting insn isn't likely to be recognized anyway. */
1683 && GET_CODE (SET_DEST (PATTERN (i3))) != ZERO_EXTRACT
1684 && GET_CODE (SET_DEST (PATTERN (i3))) != STRICT_LOW_PART
1685 && ! reg_overlap_mentioned_p (SET_SRC (PATTERN (i3)),
1686 SET_DEST (PATTERN (i3)))
1687 && next_real_insn (i2) == i3)
1689 rtx p2 = PATTERN (i2);
1691 /* Make sure that the destination of I3,
1692 which we are going to substitute into one output of I2,
1693 is not used within another output of I2. We must avoid making this:
1694 (parallel [(set (mem (reg 69)) ...)
1695 (set (reg 69) ...)])
1696 which is not well-defined as to order of actions.
1697 (Besides, reload can't handle output reloads for this.)
1699 The problem can also happen if the dest of I3 is a memory ref,
1700 if another dest in I2 is an indirect memory ref. */
1701 for (i = 0; i < XVECLEN (p2, 0); i++)
1702 if ((GET_CODE (XVECEXP (p2, 0, i)) == SET
1703 || GET_CODE (XVECEXP (p2, 0, i)) == CLOBBER)
1704 && reg_overlap_mentioned_p (SET_DEST (PATTERN (i3)),
1705 SET_DEST (XVECEXP (p2, 0, i))))
1706 break;
1708 if (i == XVECLEN (p2, 0))
1709 for (i = 0; i < XVECLEN (p2, 0); i++)
1710 if ((GET_CODE (XVECEXP (p2, 0, i)) == SET
1711 || GET_CODE (XVECEXP (p2, 0, i)) == CLOBBER)
1712 && SET_DEST (XVECEXP (p2, 0, i)) == SET_SRC (PATTERN (i3)))
1714 combine_merges++;
1716 subst_insn = i3;
1717 subst_low_cuid = INSN_CUID (i2);
1719 added_sets_2 = added_sets_1 = 0;
1720 i2dest = SET_SRC (PATTERN (i3));
1722 /* Replace the dest in I2 with our dest and make the resulting
1723 insn the new pattern for I3. Then skip to where we
1724 validate the pattern. Everything was set up above. */
1725 SUBST (SET_DEST (XVECEXP (p2, 0, i)),
1726 SET_DEST (PATTERN (i3)));
1728 newpat = p2;
1729 i3_subst_into_i2 = 1;
1730 goto validate_replacement;
1734 /* If I2 is setting a double-word pseudo to a constant and I3 is setting
1735 one of those words to another constant, merge them by making a new
1736 constant. */
1737 if (i1 == 0
1738 && (temp = single_set (i2)) != 0
1739 && (GET_CODE (SET_SRC (temp)) == CONST_INT
1740 || GET_CODE (SET_SRC (temp)) == CONST_DOUBLE)
1741 && REG_P (SET_DEST (temp))
1742 && GET_MODE_CLASS (GET_MODE (SET_DEST (temp))) == MODE_INT
1743 && GET_MODE_SIZE (GET_MODE (SET_DEST (temp))) == 2 * UNITS_PER_WORD
1744 && GET_CODE (PATTERN (i3)) == SET
1745 && GET_CODE (SET_DEST (PATTERN (i3))) == SUBREG
1746 && SUBREG_REG (SET_DEST (PATTERN (i3))) == SET_DEST (temp)
1747 && GET_MODE_CLASS (GET_MODE (SET_DEST (PATTERN (i3)))) == MODE_INT
1748 && GET_MODE_SIZE (GET_MODE (SET_DEST (PATTERN (i3)))) == UNITS_PER_WORD
1749 && GET_CODE (SET_SRC (PATTERN (i3))) == CONST_INT)
1751 HOST_WIDE_INT lo, hi;
1753 if (GET_CODE (SET_SRC (temp)) == CONST_INT)
1754 lo = INTVAL (SET_SRC (temp)), hi = lo < 0 ? -1 : 0;
1755 else
1757 lo = CONST_DOUBLE_LOW (SET_SRC (temp));
1758 hi = CONST_DOUBLE_HIGH (SET_SRC (temp));
1761 if (subreg_lowpart_p (SET_DEST (PATTERN (i3))))
1763 /* We don't handle the case of the target word being wider
1764 than a host wide int. */
1765 gcc_assert (HOST_BITS_PER_WIDE_INT >= BITS_PER_WORD);
1767 lo &= ~(UWIDE_SHIFT_LEFT_BY_BITS_PER_WORD (1) - 1);
1768 lo |= (INTVAL (SET_SRC (PATTERN (i3)))
1769 & (UWIDE_SHIFT_LEFT_BY_BITS_PER_WORD (1) - 1));
1771 else if (HOST_BITS_PER_WIDE_INT == BITS_PER_WORD)
1772 hi = INTVAL (SET_SRC (PATTERN (i3)));
1773 else if (HOST_BITS_PER_WIDE_INT >= 2 * BITS_PER_WORD)
1775 int sign = -(int) ((unsigned HOST_WIDE_INT) lo
1776 >> (HOST_BITS_PER_WIDE_INT - 1));
1778 lo &= ~ (UWIDE_SHIFT_LEFT_BY_BITS_PER_WORD
1779 (UWIDE_SHIFT_LEFT_BY_BITS_PER_WORD (1) - 1));
1780 lo |= (UWIDE_SHIFT_LEFT_BY_BITS_PER_WORD
1781 (INTVAL (SET_SRC (PATTERN (i3)))));
1782 if (hi == sign)
1783 hi = lo < 0 ? -1 : 0;
1785 else
1786 /* We don't handle the case of the higher word not fitting
1787 entirely in either hi or lo. */
1788 gcc_unreachable ();
1790 combine_merges++;
1791 subst_insn = i3;
1792 subst_low_cuid = INSN_CUID (i2);
1793 added_sets_2 = added_sets_1 = 0;
1794 i2dest = SET_DEST (temp);
1796 SUBST (SET_SRC (temp),
1797 immed_double_const (lo, hi, GET_MODE (SET_DEST (temp))));
1799 newpat = PATTERN (i2);
1800 goto validate_replacement;
1803 #ifndef HAVE_cc0
1804 /* If we have no I1 and I2 looks like:
1805 (parallel [(set (reg:CC X) (compare:CC OP (const_int 0)))
1806 (set Y OP)])
1807 make up a dummy I1 that is
1808 (set Y OP)
1809 and change I2 to be
1810 (set (reg:CC X) (compare:CC Y (const_int 0)))
1812 (We can ignore any trailing CLOBBERs.)
1814 This undoes a previous combination and allows us to match a branch-and-
1815 decrement insn. */
1817 if (i1 == 0 && GET_CODE (PATTERN (i2)) == PARALLEL
1818 && XVECLEN (PATTERN (i2), 0) >= 2
1819 && GET_CODE (XVECEXP (PATTERN (i2), 0, 0)) == SET
1820 && (GET_MODE_CLASS (GET_MODE (SET_DEST (XVECEXP (PATTERN (i2), 0, 0))))
1821 == MODE_CC)
1822 && GET_CODE (SET_SRC (XVECEXP (PATTERN (i2), 0, 0))) == COMPARE
1823 && XEXP (SET_SRC (XVECEXP (PATTERN (i2), 0, 0)), 1) == const0_rtx
1824 && GET_CODE (XVECEXP (PATTERN (i2), 0, 1)) == SET
1825 && REG_P (SET_DEST (XVECEXP (PATTERN (i2), 0, 1)))
1826 && rtx_equal_p (XEXP (SET_SRC (XVECEXP (PATTERN (i2), 0, 0)), 0),
1827 SET_SRC (XVECEXP (PATTERN (i2), 0, 1))))
1829 for (i = XVECLEN (PATTERN (i2), 0) - 1; i >= 2; i--)
1830 if (GET_CODE (XVECEXP (PATTERN (i2), 0, i)) != CLOBBER)
1831 break;
1833 if (i == 1)
1835 /* We make I1 with the same INSN_UID as I2. This gives it
1836 the same INSN_CUID for value tracking. Our fake I1 will
1837 never appear in the insn stream so giving it the same INSN_UID
1838 as I2 will not cause a problem. */
1840 i1 = gen_rtx_INSN (VOIDmode, INSN_UID (i2), NULL_RTX, i2,
1841 BLOCK_FOR_INSN (i2), INSN_LOCATOR (i2),
1842 XVECEXP (PATTERN (i2), 0, 1), -1, NULL_RTX,
1843 NULL_RTX);
1845 SUBST (PATTERN (i2), XVECEXP (PATTERN (i2), 0, 0));
1846 SUBST (XEXP (SET_SRC (PATTERN (i2)), 0),
1847 SET_DEST (PATTERN (i1)));
1850 #endif
1852 /* Verify that I2 and I1 are valid for combining. */
1853 if (! can_combine_p (i2, i3, i1, NULL_RTX, &i2dest, &i2src)
1854 || (i1 && ! can_combine_p (i1, i3, NULL_RTX, i2, &i1dest, &i1src)))
1856 undo_all ();
1857 return 0;
1860 /* Record whether I2DEST is used in I2SRC and similarly for the other
1861 cases. Knowing this will help in register status updating below. */
1862 i2dest_in_i2src = reg_overlap_mentioned_p (i2dest, i2src);
1863 i1dest_in_i1src = i1 && reg_overlap_mentioned_p (i1dest, i1src);
1864 i2dest_in_i1src = i1 && reg_overlap_mentioned_p (i2dest, i1src);
1866 /* See if I1 directly feeds into I3. It does if I1DEST is not used
1867 in I2SRC. */
1868 i1_feeds_i3 = i1 && ! reg_overlap_mentioned_p (i1dest, i2src);
1870 /* Ensure that I3's pattern can be the destination of combines. */
1871 if (! combinable_i3pat (i3, &PATTERN (i3), i2dest, i1dest,
1872 i1 && i2dest_in_i1src && i1_feeds_i3,
1873 &i3dest_killed))
1875 undo_all ();
1876 return 0;
1879 /* See if any of the insns is a MULT operation. Unless one is, we will
1880 reject a combination that is, since it must be slower. Be conservative
1881 here. */
1882 if (GET_CODE (i2src) == MULT
1883 || (i1 != 0 && GET_CODE (i1src) == MULT)
1884 || (GET_CODE (PATTERN (i3)) == SET
1885 && GET_CODE (SET_SRC (PATTERN (i3))) == MULT))
1886 have_mult = 1;
1888 /* If I3 has an inc, then give up if I1 or I2 uses the reg that is inc'd.
1889 We used to do this EXCEPT in one case: I3 has a post-inc in an
1890 output operand. However, that exception can give rise to insns like
1891 mov r3,(r3)+
1892 which is a famous insn on the PDP-11 where the value of r3 used as the
1893 source was model-dependent. Avoid this sort of thing. */
1895 #if 0
1896 if (!(GET_CODE (PATTERN (i3)) == SET
1897 && REG_P (SET_SRC (PATTERN (i3)))
1898 && MEM_P (SET_DEST (PATTERN (i3)))
1899 && (GET_CODE (XEXP (SET_DEST (PATTERN (i3)), 0)) == POST_INC
1900 || GET_CODE (XEXP (SET_DEST (PATTERN (i3)), 0)) == POST_DEC)))
1901 /* It's not the exception. */
1902 #endif
1903 #ifdef AUTO_INC_DEC
1904 for (link = REG_NOTES (i3); link; link = XEXP (link, 1))
1905 if (REG_NOTE_KIND (link) == REG_INC
1906 && (reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i2))
1907 || (i1 != 0
1908 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i1)))))
1910 undo_all ();
1911 return 0;
1913 #endif
1915 /* See if the SETs in I1 or I2 need to be kept around in the merged
1916 instruction: whenever the value set there is still needed past I3.
1917 For the SETs in I2, this is easy: we see if I2DEST dies or is set in I3.
1919 For the SET in I1, we have two cases: If I1 and I2 independently
1920 feed into I3, the set in I1 needs to be kept around if I1DEST dies
1921 or is set in I3. Otherwise (if I1 feeds I2 which feeds I3), the set
1922 in I1 needs to be kept around unless I1DEST dies or is set in either
1923 I2 or I3. We can distinguish these cases by seeing if I2SRC mentions
1924 I1DEST. If so, we know I1 feeds into I2. */
1926 added_sets_2 = ! dead_or_set_p (i3, i2dest);
1928 added_sets_1
1929 = i1 && ! (i1_feeds_i3 ? dead_or_set_p (i3, i1dest)
1930 : (dead_or_set_p (i3, i1dest) || dead_or_set_p (i2, i1dest)));
1932 /* If the set in I2 needs to be kept around, we must make a copy of
1933 PATTERN (I2), so that when we substitute I1SRC for I1DEST in
1934 PATTERN (I2), we are only substituting for the original I1DEST, not into
1935 an already-substituted copy. This also prevents making self-referential
1936 rtx. If I2 is a PARALLEL, we just need the piece that assigns I2SRC to
1937 I2DEST. */
1939 i2pat = (GET_CODE (PATTERN (i2)) == PARALLEL
1940 ? gen_rtx_SET (VOIDmode, i2dest, i2src)
1941 : PATTERN (i2));
1943 if (added_sets_2)
1944 i2pat = copy_rtx (i2pat);
1946 combine_merges++;
1948 /* Substitute in the latest insn for the regs set by the earlier ones. */
1950 maxreg = max_reg_num ();
1952 subst_insn = i3;
1954 /* It is possible that the source of I2 or I1 may be performing an
1955 unneeded operation, such as a ZERO_EXTEND of something that is known
1956 to have the high part zero. Handle that case by letting subst look at
1957 the innermost one of them.
1959 Another way to do this would be to have a function that tries to
1960 simplify a single insn instead of merging two or more insns. We don't
1961 do this because of the potential of infinite loops and because
1962 of the potential extra memory required. However, doing it the way
1963 we are is a bit of a kludge and doesn't catch all cases.
1965 But only do this if -fexpensive-optimizations since it slows things down
1966 and doesn't usually win. */
1968 if (flag_expensive_optimizations)
1970 /* Pass pc_rtx so no substitutions are done, just simplifications. */
1971 if (i1)
1973 subst_low_cuid = INSN_CUID (i1);
1974 i1src = subst (i1src, pc_rtx, pc_rtx, 0, 0);
1976 else
1978 subst_low_cuid = INSN_CUID (i2);
1979 i2src = subst (i2src, pc_rtx, pc_rtx, 0, 0);
1983 #ifndef HAVE_cc0
1984 /* Many machines that don't use CC0 have insns that can both perform an
1985 arithmetic operation and set the condition code. These operations will
1986 be represented as a PARALLEL with the first element of the vector
1987 being a COMPARE of an arithmetic operation with the constant zero.
1988 The second element of the vector will set some pseudo to the result
1989 of the same arithmetic operation. If we simplify the COMPARE, we won't
1990 match such a pattern and so will generate an extra insn. Here we test
1991 for this case, where both the comparison and the operation result are
1992 needed, and make the PARALLEL by just replacing I2DEST in I3SRC with
1993 I2SRC. Later we will make the PARALLEL that contains I2. */
1995 if (i1 == 0 && added_sets_2 && GET_CODE (PATTERN (i3)) == SET
1996 && GET_CODE (SET_SRC (PATTERN (i3))) == COMPARE
1997 && XEXP (SET_SRC (PATTERN (i3)), 1) == const0_rtx
1998 && rtx_equal_p (XEXP (SET_SRC (PATTERN (i3)), 0), i2dest))
2000 #ifdef SELECT_CC_MODE
2001 rtx *cc_use;
2002 enum machine_mode compare_mode;
2003 #endif
2005 newpat = PATTERN (i3);
2006 SUBST (XEXP (SET_SRC (newpat), 0), i2src);
2008 i2_is_used = 1;
2010 #ifdef SELECT_CC_MODE
2011 /* See if a COMPARE with the operand we substituted in should be done
2012 with the mode that is currently being used. If not, do the same
2013 processing we do in `subst' for a SET; namely, if the destination
2014 is used only once, try to replace it with a register of the proper
2015 mode and also replace the COMPARE. */
2016 if (undobuf.other_insn == 0
2017 && (cc_use = find_single_use (SET_DEST (newpat), i3,
2018 &undobuf.other_insn))
2019 && ((compare_mode = SELECT_CC_MODE (GET_CODE (*cc_use),
2020 i2src, const0_rtx))
2021 != GET_MODE (SET_DEST (newpat))))
2023 unsigned int regno = REGNO (SET_DEST (newpat));
2024 rtx new_dest = gen_rtx_REG (compare_mode, regno);
2026 if (regno < FIRST_PSEUDO_REGISTER
2027 || (REG_N_SETS (regno) == 1 && ! added_sets_2
2028 && ! REG_USERVAR_P (SET_DEST (newpat))))
2030 if (regno >= FIRST_PSEUDO_REGISTER)
2031 SUBST (regno_reg_rtx[regno], new_dest);
2033 SUBST (SET_DEST (newpat), new_dest);
2034 SUBST (XEXP (*cc_use, 0), new_dest);
2035 SUBST (SET_SRC (newpat),
2036 gen_rtx_COMPARE (compare_mode, i2src, const0_rtx));
2038 else
2039 undobuf.other_insn = 0;
2041 #endif
2043 else
2044 #endif
2046 n_occurrences = 0; /* `subst' counts here */
2048 /* If I1 feeds into I2 (not into I3) and I1DEST is in I1SRC, we
2049 need to make a unique copy of I2SRC each time we substitute it
2050 to avoid self-referential rtl. */
2052 subst_low_cuid = INSN_CUID (i2);
2053 newpat = subst (PATTERN (i3), i2dest, i2src, 0,
2054 ! i1_feeds_i3 && i1dest_in_i1src);
2055 substed_i2 = 1;
2057 /* Record whether i2's body now appears within i3's body. */
2058 i2_is_used = n_occurrences;
2061 /* If we already got a failure, don't try to do more. Otherwise,
2062 try to substitute in I1 if we have it. */
2064 if (i1 && GET_CODE (newpat) != CLOBBER)
2066 /* Before we can do this substitution, we must redo the test done
2067 above (see detailed comments there) that ensures that I1DEST
2068 isn't mentioned in any SETs in NEWPAT that are field assignments. */
2070 if (! combinable_i3pat (NULL_RTX, &newpat, i1dest, NULL_RTX,
2071 0, (rtx*) 0))
2073 undo_all ();
2074 return 0;
2077 n_occurrences = 0;
2078 subst_low_cuid = INSN_CUID (i1);
2079 newpat = subst (newpat, i1dest, i1src, 0, 0);
2080 substed_i1 = 1;
2083 /* Fail if an autoincrement side-effect has been duplicated. Be careful
2084 to count all the ways that I2SRC and I1SRC can be used. */
2085 if ((FIND_REG_INC_NOTE (i2, NULL_RTX) != 0
2086 && i2_is_used + added_sets_2 > 1)
2087 || (i1 != 0 && FIND_REG_INC_NOTE (i1, NULL_RTX) != 0
2088 && (n_occurrences + added_sets_1 + (added_sets_2 && ! i1_feeds_i3)
2089 > 1))
2090 /* Fail if we tried to make a new register (we used to abort, but there's
2091 really no reason to). */
2092 || max_reg_num () != maxreg
2093 /* Fail if we couldn't do something and have a CLOBBER. */
2094 || GET_CODE (newpat) == CLOBBER
2095 /* Fail if this new pattern is a MULT and we didn't have one before
2096 at the outer level. */
2097 || (GET_CODE (newpat) == SET && GET_CODE (SET_SRC (newpat)) == MULT
2098 && ! have_mult))
2100 undo_all ();
2101 return 0;
2104 /* If the actions of the earlier insns must be kept
2105 in addition to substituting them into the latest one,
2106 we must make a new PARALLEL for the latest insn
2107 to hold additional the SETs. */
2109 if (added_sets_1 || added_sets_2)
2111 combine_extras++;
2113 if (GET_CODE (newpat) == PARALLEL)
2115 rtvec old = XVEC (newpat, 0);
2116 total_sets = XVECLEN (newpat, 0) + added_sets_1 + added_sets_2;
2117 newpat = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (total_sets));
2118 memcpy (XVEC (newpat, 0)->elem, &old->elem[0],
2119 sizeof (old->elem[0]) * old->num_elem);
2121 else
2123 rtx old = newpat;
2124 total_sets = 1 + added_sets_1 + added_sets_2;
2125 newpat = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (total_sets));
2126 XVECEXP (newpat, 0, 0) = old;
2129 if (added_sets_1)
2130 XVECEXP (newpat, 0, --total_sets)
2131 = (GET_CODE (PATTERN (i1)) == PARALLEL
2132 ? gen_rtx_SET (VOIDmode, i1dest, i1src) : PATTERN (i1));
2134 if (added_sets_2)
2136 /* If there is no I1, use I2's body as is. We used to also not do
2137 the subst call below if I2 was substituted into I3,
2138 but that could lose a simplification. */
2139 if (i1 == 0)
2140 XVECEXP (newpat, 0, --total_sets) = i2pat;
2141 else
2142 /* See comment where i2pat is assigned. */
2143 XVECEXP (newpat, 0, --total_sets)
2144 = subst (i2pat, i1dest, i1src, 0, 0);
2148 /* We come here when we are replacing a destination in I2 with the
2149 destination of I3. */
2150 validate_replacement:
2152 /* Note which hard regs this insn has as inputs. */
2153 mark_used_regs_combine (newpat);
2155 /* Is the result of combination a valid instruction? */
2156 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
2158 /* If the result isn't valid, see if it is a PARALLEL of two SETs where
2159 the second SET's destination is a register that is unused and isn't
2160 marked as an instruction that might trap in an EH region. In that case,
2161 we just need the first SET. This can occur when simplifying a divmod
2162 insn. We *must* test for this case here because the code below that
2163 splits two independent SETs doesn't handle this case correctly when it
2164 updates the register status.
2166 It's pointless doing this if we originally had two sets, one from
2167 i3, and one from i2. Combining then splitting the parallel results
2168 in the original i2 again plus an invalid insn (which we delete).
2169 The net effect is only to move instructions around, which makes
2170 debug info less accurate.
2172 Also check the case where the first SET's destination is unused.
2173 That would not cause incorrect code, but does cause an unneeded
2174 insn to remain. */
2176 if (insn_code_number < 0
2177 && !(added_sets_2 && i1 == 0)
2178 && GET_CODE (newpat) == PARALLEL
2179 && XVECLEN (newpat, 0) == 2
2180 && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
2181 && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
2182 && asm_noperands (newpat) < 0)
2184 rtx set0 = XVECEXP (newpat, 0, 0);
2185 rtx set1 = XVECEXP (newpat, 0, 1);
2186 rtx note;
2188 if (((REG_P (SET_DEST (set1))
2189 && find_reg_note (i3, REG_UNUSED, SET_DEST (set1)))
2190 || (GET_CODE (SET_DEST (set1)) == SUBREG
2191 && find_reg_note (i3, REG_UNUSED, SUBREG_REG (SET_DEST (set1)))))
2192 && (!(note = find_reg_note (i3, REG_EH_REGION, NULL_RTX))
2193 || INTVAL (XEXP (note, 0)) <= 0)
2194 && ! side_effects_p (SET_SRC (set1)))
2196 newpat = set0;
2197 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
2200 else if (((REG_P (SET_DEST (set0))
2201 && find_reg_note (i3, REG_UNUSED, SET_DEST (set0)))
2202 || (GET_CODE (SET_DEST (set0)) == SUBREG
2203 && find_reg_note (i3, REG_UNUSED,
2204 SUBREG_REG (SET_DEST (set0)))))
2205 && (!(note = find_reg_note (i3, REG_EH_REGION, NULL_RTX))
2206 || INTVAL (XEXP (note, 0)) <= 0)
2207 && ! side_effects_p (SET_SRC (set0)))
2209 newpat = set1;
2210 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
2212 if (insn_code_number >= 0)
2214 /* If we will be able to accept this, we have made a
2215 change to the destination of I3. This requires us to
2216 do a few adjustments. */
2218 PATTERN (i3) = newpat;
2219 adjust_for_new_dest (i3);
2224 /* If we were combining three insns and the result is a simple SET
2225 with no ASM_OPERANDS that wasn't recognized, try to split it into two
2226 insns. There are two ways to do this. It can be split using a
2227 machine-specific method (like when you have an addition of a large
2228 constant) or by combine in the function find_split_point. */
2230 if (i1 && insn_code_number < 0 && GET_CODE (newpat) == SET
2231 && asm_noperands (newpat) < 0)
2233 rtx m_split, *split;
2234 rtx ni2dest = i2dest;
2236 /* See if the MD file can split NEWPAT. If it can't, see if letting it
2237 use I2DEST as a scratch register will help. In the latter case,
2238 convert I2DEST to the mode of the source of NEWPAT if we can. */
2240 m_split = split_insns (newpat, i3);
2242 /* We can only use I2DEST as a scratch reg if it doesn't overlap any
2243 inputs of NEWPAT. */
2245 /* ??? If I2DEST is not safe, and I1DEST exists, then it would be
2246 possible to try that as a scratch reg. This would require adding
2247 more code to make it work though. */
2249 if (m_split == 0 && ! reg_overlap_mentioned_p (ni2dest, newpat))
2251 /* If I2DEST is a hard register or the only use of a pseudo,
2252 we can change its mode. */
2253 if (GET_MODE (SET_DEST (newpat)) != GET_MODE (i2dest)
2254 && GET_MODE (SET_DEST (newpat)) != VOIDmode
2255 && REG_P (i2dest)
2256 && (REGNO (i2dest) < FIRST_PSEUDO_REGISTER
2257 || (REG_N_SETS (REGNO (i2dest)) == 1 && ! added_sets_2
2258 && ! REG_USERVAR_P (i2dest))))
2259 ni2dest = gen_rtx_REG (GET_MODE (SET_DEST (newpat)),
2260 REGNO (i2dest));
2262 m_split = split_insns (gen_rtx_PARALLEL
2263 (VOIDmode,
2264 gen_rtvec (2, newpat,
2265 gen_rtx_CLOBBER (VOIDmode,
2266 ni2dest))),
2267 i3);
2268 /* If the split with the mode-changed register didn't work, try
2269 the original register. */
2270 if (! m_split && ni2dest != i2dest)
2272 ni2dest = i2dest;
2273 m_split = split_insns (gen_rtx_PARALLEL
2274 (VOIDmode,
2275 gen_rtvec (2, newpat,
2276 gen_rtx_CLOBBER (VOIDmode,
2277 i2dest))),
2278 i3);
2282 if (m_split && NEXT_INSN (m_split) == NULL_RTX)
2284 m_split = PATTERN (m_split);
2285 insn_code_number = recog_for_combine (&m_split, i3, &new_i3_notes);
2286 if (insn_code_number >= 0)
2287 newpat = m_split;
2289 else if (m_split && NEXT_INSN (NEXT_INSN (m_split)) == NULL_RTX
2290 && (next_real_insn (i2) == i3
2291 || ! use_crosses_set_p (PATTERN (m_split), INSN_CUID (i2))))
2293 rtx i2set, i3set;
2294 rtx newi3pat = PATTERN (NEXT_INSN (m_split));
2295 newi2pat = PATTERN (m_split);
2297 i3set = single_set (NEXT_INSN (m_split));
2298 i2set = single_set (m_split);
2300 /* In case we changed the mode of I2DEST, replace it in the
2301 pseudo-register table here. We can't do it above in case this
2302 code doesn't get executed and we do a split the other way. */
2304 if (REGNO (i2dest) >= FIRST_PSEUDO_REGISTER)
2305 SUBST (regno_reg_rtx[REGNO (i2dest)], ni2dest);
2307 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
2309 /* If I2 or I3 has multiple SETs, we won't know how to track
2310 register status, so don't use these insns. If I2's destination
2311 is used between I2 and I3, we also can't use these insns. */
2313 if (i2_code_number >= 0 && i2set && i3set
2314 && (next_real_insn (i2) == i3
2315 || ! reg_used_between_p (SET_DEST (i2set), i2, i3)))
2316 insn_code_number = recog_for_combine (&newi3pat, i3,
2317 &new_i3_notes);
2318 if (insn_code_number >= 0)
2319 newpat = newi3pat;
2321 /* It is possible that both insns now set the destination of I3.
2322 If so, we must show an extra use of it. */
2324 if (insn_code_number >= 0)
2326 rtx new_i3_dest = SET_DEST (i3set);
2327 rtx new_i2_dest = SET_DEST (i2set);
2329 while (GET_CODE (new_i3_dest) == ZERO_EXTRACT
2330 || GET_CODE (new_i3_dest) == STRICT_LOW_PART
2331 || GET_CODE (new_i3_dest) == SUBREG)
2332 new_i3_dest = XEXP (new_i3_dest, 0);
2334 while (GET_CODE (new_i2_dest) == ZERO_EXTRACT
2335 || GET_CODE (new_i2_dest) == STRICT_LOW_PART
2336 || GET_CODE (new_i2_dest) == SUBREG)
2337 new_i2_dest = XEXP (new_i2_dest, 0);
2339 if (REG_P (new_i3_dest)
2340 && REG_P (new_i2_dest)
2341 && REGNO (new_i3_dest) == REGNO (new_i2_dest))
2342 REG_N_SETS (REGNO (new_i2_dest))++;
2346 /* If we can split it and use I2DEST, go ahead and see if that
2347 helps things be recognized. Verify that none of the registers
2348 are set between I2 and I3. */
2349 if (insn_code_number < 0 && (split = find_split_point (&newpat, i3)) != 0
2350 #ifdef HAVE_cc0
2351 && REG_P (i2dest)
2352 #endif
2353 /* We need I2DEST in the proper mode. If it is a hard register
2354 or the only use of a pseudo, we can change its mode. */
2355 && (GET_MODE (*split) == GET_MODE (i2dest)
2356 || GET_MODE (*split) == VOIDmode
2357 || REGNO (i2dest) < FIRST_PSEUDO_REGISTER
2358 || (REG_N_SETS (REGNO (i2dest)) == 1 && ! added_sets_2
2359 && ! REG_USERVAR_P (i2dest)))
2360 && (next_real_insn (i2) == i3
2361 || ! use_crosses_set_p (*split, INSN_CUID (i2)))
2362 /* We can't overwrite I2DEST if its value is still used by
2363 NEWPAT. */
2364 && ! reg_referenced_p (i2dest, newpat))
2366 rtx newdest = i2dest;
2367 enum rtx_code split_code = GET_CODE (*split);
2368 enum machine_mode split_mode = GET_MODE (*split);
2370 /* Get NEWDEST as a register in the proper mode. We have already
2371 validated that we can do this. */
2372 if (GET_MODE (i2dest) != split_mode && split_mode != VOIDmode)
2374 newdest = gen_rtx_REG (split_mode, REGNO (i2dest));
2376 if (REGNO (i2dest) >= FIRST_PSEUDO_REGISTER)
2377 SUBST (regno_reg_rtx[REGNO (i2dest)], newdest);
2380 /* If *SPLIT is a (mult FOO (const_int pow2)), convert it to
2381 an ASHIFT. This can occur if it was inside a PLUS and hence
2382 appeared to be a memory address. This is a kludge. */
2383 if (split_code == MULT
2384 && GET_CODE (XEXP (*split, 1)) == CONST_INT
2385 && INTVAL (XEXP (*split, 1)) > 0
2386 && (i = exact_log2 (INTVAL (XEXP (*split, 1)))) >= 0)
2388 SUBST (*split, gen_rtx_ASHIFT (split_mode,
2389 XEXP (*split, 0), GEN_INT (i)));
2390 /* Update split_code because we may not have a multiply
2391 anymore. */
2392 split_code = GET_CODE (*split);
2395 #ifdef INSN_SCHEDULING
2396 /* If *SPLIT is a paradoxical SUBREG, when we split it, it should
2397 be written as a ZERO_EXTEND. */
2398 if (split_code == SUBREG && MEM_P (SUBREG_REG (*split)))
2400 #ifdef LOAD_EXTEND_OP
2401 /* Or as a SIGN_EXTEND if LOAD_EXTEND_OP says that that's
2402 what it really is. */
2403 if (LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (*split)))
2404 == SIGN_EXTEND)
2405 SUBST (*split, gen_rtx_SIGN_EXTEND (split_mode,
2406 SUBREG_REG (*split)));
2407 else
2408 #endif
2409 SUBST (*split, gen_rtx_ZERO_EXTEND (split_mode,
2410 SUBREG_REG (*split)));
2412 #endif
2414 newi2pat = gen_rtx_SET (VOIDmode, newdest, *split);
2415 SUBST (*split, newdest);
2416 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
2418 /* If the split point was a MULT and we didn't have one before,
2419 don't use one now. */
2420 if (i2_code_number >= 0 && ! (split_code == MULT && ! have_mult))
2421 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
2425 /* Check for a case where we loaded from memory in a narrow mode and
2426 then sign extended it, but we need both registers. In that case,
2427 we have a PARALLEL with both loads from the same memory location.
2428 We can split this into a load from memory followed by a register-register
2429 copy. This saves at least one insn, more if register allocation can
2430 eliminate the copy.
2432 We cannot do this if the destination of the first assignment is a
2433 condition code register or cc0. We eliminate this case by making sure
2434 the SET_DEST and SET_SRC have the same mode.
2436 We cannot do this if the destination of the second assignment is
2437 a register that we have already assumed is zero-extended. Similarly
2438 for a SUBREG of such a register. */
2440 else if (i1 && insn_code_number < 0 && asm_noperands (newpat) < 0
2441 && GET_CODE (newpat) == PARALLEL
2442 && XVECLEN (newpat, 0) == 2
2443 && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
2444 && GET_CODE (SET_SRC (XVECEXP (newpat, 0, 0))) == SIGN_EXTEND
2445 && (GET_MODE (SET_DEST (XVECEXP (newpat, 0, 0)))
2446 == GET_MODE (SET_SRC (XVECEXP (newpat, 0, 0))))
2447 && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
2448 && rtx_equal_p (SET_SRC (XVECEXP (newpat, 0, 1)),
2449 XEXP (SET_SRC (XVECEXP (newpat, 0, 0)), 0))
2450 && ! use_crosses_set_p (SET_SRC (XVECEXP (newpat, 0, 1)),
2451 INSN_CUID (i2))
2452 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != ZERO_EXTRACT
2453 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != STRICT_LOW_PART
2454 && ! (temp = SET_DEST (XVECEXP (newpat, 0, 1)),
2455 (REG_P (temp)
2456 && reg_stat[REGNO (temp)].nonzero_bits != 0
2457 && GET_MODE_BITSIZE (GET_MODE (temp)) < BITS_PER_WORD
2458 && GET_MODE_BITSIZE (GET_MODE (temp)) < HOST_BITS_PER_INT
2459 && (reg_stat[REGNO (temp)].nonzero_bits
2460 != GET_MODE_MASK (word_mode))))
2461 && ! (GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) == SUBREG
2462 && (temp = SUBREG_REG (SET_DEST (XVECEXP (newpat, 0, 1))),
2463 (REG_P (temp)
2464 && reg_stat[REGNO (temp)].nonzero_bits != 0
2465 && GET_MODE_BITSIZE (GET_MODE (temp)) < BITS_PER_WORD
2466 && GET_MODE_BITSIZE (GET_MODE (temp)) < HOST_BITS_PER_INT
2467 && (reg_stat[REGNO (temp)].nonzero_bits
2468 != GET_MODE_MASK (word_mode)))))
2469 && ! reg_overlap_mentioned_p (SET_DEST (XVECEXP (newpat, 0, 1)),
2470 SET_SRC (XVECEXP (newpat, 0, 1)))
2471 && ! find_reg_note (i3, REG_UNUSED,
2472 SET_DEST (XVECEXP (newpat, 0, 0))))
2474 rtx ni2dest;
2476 newi2pat = XVECEXP (newpat, 0, 0);
2477 ni2dest = SET_DEST (XVECEXP (newpat, 0, 0));
2478 newpat = XVECEXP (newpat, 0, 1);
2479 SUBST (SET_SRC (newpat),
2480 gen_lowpart (GET_MODE (SET_SRC (newpat)), ni2dest));
2481 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
2483 if (i2_code_number >= 0)
2484 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
2486 if (insn_code_number >= 0)
2487 swap_i2i3 = 1;
2490 /* Similarly, check for a case where we have a PARALLEL of two independent
2491 SETs but we started with three insns. In this case, we can do the sets
2492 as two separate insns. This case occurs when some SET allows two
2493 other insns to combine, but the destination of that SET is still live. */
2495 else if (i1 && insn_code_number < 0 && asm_noperands (newpat) < 0
2496 && GET_CODE (newpat) == PARALLEL
2497 && XVECLEN (newpat, 0) == 2
2498 && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
2499 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 0))) != ZERO_EXTRACT
2500 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 0))) != STRICT_LOW_PART
2501 && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
2502 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != ZERO_EXTRACT
2503 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != STRICT_LOW_PART
2504 && ! use_crosses_set_p (SET_SRC (XVECEXP (newpat, 0, 1)),
2505 INSN_CUID (i2))
2506 /* Don't pass sets with (USE (MEM ...)) dests to the following. */
2507 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != USE
2508 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 0))) != USE
2509 && ! reg_referenced_p (SET_DEST (XVECEXP (newpat, 0, 1)),
2510 XVECEXP (newpat, 0, 0))
2511 && ! reg_referenced_p (SET_DEST (XVECEXP (newpat, 0, 0)),
2512 XVECEXP (newpat, 0, 1))
2513 && ! (contains_muldiv (SET_SRC (XVECEXP (newpat, 0, 0)))
2514 && contains_muldiv (SET_SRC (XVECEXP (newpat, 0, 1)))))
2516 /* Normally, it doesn't matter which of the two is done first,
2517 but it does if one references cc0. In that case, it has to
2518 be first. */
2519 #ifdef HAVE_cc0
2520 if (reg_referenced_p (cc0_rtx, XVECEXP (newpat, 0, 0)))
2522 newi2pat = XVECEXP (newpat, 0, 0);
2523 newpat = XVECEXP (newpat, 0, 1);
2525 else
2526 #endif
2528 newi2pat = XVECEXP (newpat, 0, 1);
2529 newpat = XVECEXP (newpat, 0, 0);
2532 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
2534 if (i2_code_number >= 0)
2535 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
2538 /* If it still isn't recognized, fail and change things back the way they
2539 were. */
2540 if ((insn_code_number < 0
2541 /* Is the result a reasonable ASM_OPERANDS? */
2542 && (! check_asm_operands (newpat) || added_sets_1 || added_sets_2)))
2544 undo_all ();
2545 return 0;
2548 /* If we had to change another insn, make sure it is valid also. */
2549 if (undobuf.other_insn)
2551 rtx other_pat = PATTERN (undobuf.other_insn);
2552 rtx new_other_notes;
2553 rtx note, next;
2555 CLEAR_HARD_REG_SET (newpat_used_regs);
2557 other_code_number = recog_for_combine (&other_pat, undobuf.other_insn,
2558 &new_other_notes);
2560 if (other_code_number < 0 && ! check_asm_operands (other_pat))
2562 undo_all ();
2563 return 0;
2566 PATTERN (undobuf.other_insn) = other_pat;
2568 /* If any of the notes in OTHER_INSN were REG_UNUSED, ensure that they
2569 are still valid. Then add any non-duplicate notes added by
2570 recog_for_combine. */
2571 for (note = REG_NOTES (undobuf.other_insn); note; note = next)
2573 next = XEXP (note, 1);
2575 if (REG_NOTE_KIND (note) == REG_UNUSED
2576 && ! reg_set_p (XEXP (note, 0), PATTERN (undobuf.other_insn)))
2578 if (REG_P (XEXP (note, 0)))
2579 REG_N_DEATHS (REGNO (XEXP (note, 0)))--;
2581 remove_note (undobuf.other_insn, note);
2585 for (note = new_other_notes; note; note = XEXP (note, 1))
2586 if (REG_P (XEXP (note, 0)))
2587 REG_N_DEATHS (REGNO (XEXP (note, 0)))++;
2589 distribute_notes (new_other_notes, undobuf.other_insn,
2590 undobuf.other_insn, NULL_RTX);
2592 #ifdef HAVE_cc0
2593 /* If I2 is the CC0 setter and I3 is the CC0 user then check whether
2594 they are adjacent to each other or not. */
2596 rtx p = prev_nonnote_insn (i3);
2597 if (p && p != i2 && NONJUMP_INSN_P (p) && newi2pat
2598 && sets_cc0_p (newi2pat))
2600 undo_all ();
2601 return 0;
2604 #endif
2606 /* Only allow this combination if insn_rtx_costs reports that the
2607 replacement instructions are cheaper than the originals. */
2608 if (!combine_validate_cost (i1, i2, i3, newpat, newi2pat))
2610 undo_all ();
2611 return 0;
2614 /* We now know that we can do this combination. Merge the insns and
2615 update the status of registers and LOG_LINKS. */
2617 if (swap_i2i3)
2619 rtx insn;
2620 rtx link;
2621 rtx ni2dest;
2623 /* I3 now uses what used to be its destination and which is now
2624 I2's destination. This requires us to do a few adjustments. */
2625 PATTERN (i3) = newpat;
2626 adjust_for_new_dest (i3);
2628 /* We need a LOG_LINK from I3 to I2. But we used to have one,
2629 so we still will.
2631 However, some later insn might be using I2's dest and have
2632 a LOG_LINK pointing at I3. We must remove this link.
2633 The simplest way to remove the link is to point it at I1,
2634 which we know will be a NOTE. */
2636 /* newi2pat is usually a SET here; however, recog_for_combine might
2637 have added some clobbers. */
2638 if (GET_CODE (newi2pat) == PARALLEL)
2639 ni2dest = SET_DEST (XVECEXP (newi2pat, 0, 0));
2640 else
2641 ni2dest = SET_DEST (newi2pat);
2643 for (insn = NEXT_INSN (i3);
2644 insn && (this_basic_block->next_bb == EXIT_BLOCK_PTR
2645 || insn != BB_HEAD (this_basic_block->next_bb));
2646 insn = NEXT_INSN (insn))
2648 if (INSN_P (insn) && reg_referenced_p (ni2dest, PATTERN (insn)))
2650 for (link = LOG_LINKS (insn); link;
2651 link = XEXP (link, 1))
2652 if (XEXP (link, 0) == i3)
2653 XEXP (link, 0) = i1;
2655 break;
2661 rtx i3notes, i2notes, i1notes = 0;
2662 rtx i3links, i2links, i1links = 0;
2663 rtx midnotes = 0;
2664 unsigned int regno;
2666 /* Get the old REG_NOTES and LOG_LINKS from all our insns and
2667 clear them. */
2668 i3notes = REG_NOTES (i3), i3links = LOG_LINKS (i3);
2669 i2notes = REG_NOTES (i2), i2links = LOG_LINKS (i2);
2670 if (i1)
2671 i1notes = REG_NOTES (i1), i1links = LOG_LINKS (i1);
2673 /* Ensure that we do not have something that should not be shared but
2674 occurs multiple times in the new insns. Check this by first
2675 resetting all the `used' flags and then copying anything is shared. */
2677 reset_used_flags (i3notes);
2678 reset_used_flags (i2notes);
2679 reset_used_flags (i1notes);
2680 reset_used_flags (newpat);
2681 reset_used_flags (newi2pat);
2682 if (undobuf.other_insn)
2683 reset_used_flags (PATTERN (undobuf.other_insn));
2685 i3notes = copy_rtx_if_shared (i3notes);
2686 i2notes = copy_rtx_if_shared (i2notes);
2687 i1notes = copy_rtx_if_shared (i1notes);
2688 newpat = copy_rtx_if_shared (newpat);
2689 newi2pat = copy_rtx_if_shared (newi2pat);
2690 if (undobuf.other_insn)
2691 reset_used_flags (PATTERN (undobuf.other_insn));
2693 INSN_CODE (i3) = insn_code_number;
2694 PATTERN (i3) = newpat;
2696 if (CALL_P (i3) && CALL_INSN_FUNCTION_USAGE (i3))
2698 rtx call_usage = CALL_INSN_FUNCTION_USAGE (i3);
2700 reset_used_flags (call_usage);
2701 call_usage = copy_rtx (call_usage);
2703 if (substed_i2)
2704 replace_rtx (call_usage, i2dest, i2src);
2706 if (substed_i1)
2707 replace_rtx (call_usage, i1dest, i1src);
2709 CALL_INSN_FUNCTION_USAGE (i3) = call_usage;
2712 if (undobuf.other_insn)
2713 INSN_CODE (undobuf.other_insn) = other_code_number;
2715 /* We had one special case above where I2 had more than one set and
2716 we replaced a destination of one of those sets with the destination
2717 of I3. In that case, we have to update LOG_LINKS of insns later
2718 in this basic block. Note that this (expensive) case is rare.
2720 Also, in this case, we must pretend that all REG_NOTEs for I2
2721 actually came from I3, so that REG_UNUSED notes from I2 will be
2722 properly handled. */
2724 if (i3_subst_into_i2)
2726 for (i = 0; i < XVECLEN (PATTERN (i2), 0); i++)
2727 if (GET_CODE (XVECEXP (PATTERN (i2), 0, i)) != USE
2728 && REG_P (SET_DEST (XVECEXP (PATTERN (i2), 0, i)))
2729 && SET_DEST (XVECEXP (PATTERN (i2), 0, i)) != i2dest
2730 && ! find_reg_note (i2, REG_UNUSED,
2731 SET_DEST (XVECEXP (PATTERN (i2), 0, i))))
2732 for (temp = NEXT_INSN (i2);
2733 temp && (this_basic_block->next_bb == EXIT_BLOCK_PTR
2734 || BB_HEAD (this_basic_block) != temp);
2735 temp = NEXT_INSN (temp))
2736 if (temp != i3 && INSN_P (temp))
2737 for (link = LOG_LINKS (temp); link; link = XEXP (link, 1))
2738 if (XEXP (link, 0) == i2)
2739 XEXP (link, 0) = i3;
2741 if (i3notes)
2743 rtx link = i3notes;
2744 while (XEXP (link, 1))
2745 link = XEXP (link, 1);
2746 XEXP (link, 1) = i2notes;
2748 else
2749 i3notes = i2notes;
2750 i2notes = 0;
2753 LOG_LINKS (i3) = 0;
2754 REG_NOTES (i3) = 0;
2755 LOG_LINKS (i2) = 0;
2756 REG_NOTES (i2) = 0;
2758 if (newi2pat)
2760 INSN_CODE (i2) = i2_code_number;
2761 PATTERN (i2) = newi2pat;
2763 else
2764 SET_INSN_DELETED (i2);
2766 if (i1)
2768 LOG_LINKS (i1) = 0;
2769 REG_NOTES (i1) = 0;
2770 SET_INSN_DELETED (i1);
2773 /* Get death notes for everything that is now used in either I3 or
2774 I2 and used to die in a previous insn. If we built two new
2775 patterns, move from I1 to I2 then I2 to I3 so that we get the
2776 proper movement on registers that I2 modifies. */
2778 if (newi2pat)
2780 move_deaths (newi2pat, NULL_RTX, INSN_CUID (i1), i2, &midnotes);
2781 move_deaths (newpat, newi2pat, INSN_CUID (i1), i3, &midnotes);
2783 else
2784 move_deaths (newpat, NULL_RTX, i1 ? INSN_CUID (i1) : INSN_CUID (i2),
2785 i3, &midnotes);
2787 /* Distribute all the LOG_LINKS and REG_NOTES from I1, I2, and I3. */
2788 if (i3notes)
2789 distribute_notes (i3notes, i3, i3, newi2pat ? i2 : NULL_RTX);
2790 if (i2notes)
2791 distribute_notes (i2notes, i2, i3, newi2pat ? i2 : NULL_RTX);
2792 if (i1notes)
2793 distribute_notes (i1notes, i1, i3, newi2pat ? i2 : NULL_RTX);
2794 if (midnotes)
2795 distribute_notes (midnotes, NULL_RTX, i3, newi2pat ? i2 : NULL_RTX);
2797 /* Distribute any notes added to I2 or I3 by recog_for_combine. We
2798 know these are REG_UNUSED and want them to go to the desired insn,
2799 so we always pass it as i3. We have not counted the notes in
2800 reg_n_deaths yet, so we need to do so now. */
2802 if (newi2pat && new_i2_notes)
2804 for (temp = new_i2_notes; temp; temp = XEXP (temp, 1))
2805 if (REG_P (XEXP (temp, 0)))
2806 REG_N_DEATHS (REGNO (XEXP (temp, 0)))++;
2808 distribute_notes (new_i2_notes, i2, i2, NULL_RTX);
2811 if (new_i3_notes)
2813 for (temp = new_i3_notes; temp; temp = XEXP (temp, 1))
2814 if (REG_P (XEXP (temp, 0)))
2815 REG_N_DEATHS (REGNO (XEXP (temp, 0)))++;
2817 distribute_notes (new_i3_notes, i3, i3, NULL_RTX);
2820 /* If I3DEST was used in I3SRC, it really died in I3. We may need to
2821 put a REG_DEAD note for it somewhere. If NEWI2PAT exists and sets
2822 I3DEST, the death must be somewhere before I2, not I3. If we passed I3
2823 in that case, it might delete I2. Similarly for I2 and I1.
2824 Show an additional death due to the REG_DEAD note we make here. If
2825 we discard it in distribute_notes, we will decrement it again. */
2827 if (i3dest_killed)
2829 if (REG_P (i3dest_killed))
2830 REG_N_DEATHS (REGNO (i3dest_killed))++;
2832 if (newi2pat && reg_set_p (i3dest_killed, newi2pat))
2833 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i3dest_killed,
2834 NULL_RTX),
2835 NULL_RTX, i2, NULL_RTX);
2836 else
2837 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i3dest_killed,
2838 NULL_RTX),
2839 NULL_RTX, i3, newi2pat ? i2 : NULL_RTX);
2842 if (i2dest_in_i2src)
2844 if (REG_P (i2dest))
2845 REG_N_DEATHS (REGNO (i2dest))++;
2847 if (newi2pat && reg_set_p (i2dest, newi2pat))
2848 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i2dest, NULL_RTX),
2849 NULL_RTX, i2, NULL_RTX);
2850 else
2851 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i2dest, NULL_RTX),
2852 NULL_RTX, i3, newi2pat ? i2 : NULL_RTX);
2855 if (i1dest_in_i1src)
2857 if (REG_P (i1dest))
2858 REG_N_DEATHS (REGNO (i1dest))++;
2860 if (newi2pat && reg_set_p (i1dest, newi2pat))
2861 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i1dest, NULL_RTX),
2862 NULL_RTX, i2, NULL_RTX);
2863 else
2864 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i1dest, NULL_RTX),
2865 NULL_RTX, i3, newi2pat ? i2 : NULL_RTX);
2868 distribute_links (i3links);
2869 distribute_links (i2links);
2870 distribute_links (i1links);
2872 if (REG_P (i2dest))
2874 rtx link;
2875 rtx i2_insn = 0, i2_val = 0, set;
2877 /* The insn that used to set this register doesn't exist, and
2878 this life of the register may not exist either. See if one of
2879 I3's links points to an insn that sets I2DEST. If it does,
2880 that is now the last known value for I2DEST. If we don't update
2881 this and I2 set the register to a value that depended on its old
2882 contents, we will get confused. If this insn is used, thing
2883 will be set correctly in combine_instructions. */
2885 for (link = LOG_LINKS (i3); link; link = XEXP (link, 1))
2886 if ((set = single_set (XEXP (link, 0))) != 0
2887 && rtx_equal_p (i2dest, SET_DEST (set)))
2888 i2_insn = XEXP (link, 0), i2_val = SET_SRC (set);
2890 record_value_for_reg (i2dest, i2_insn, i2_val);
2892 /* If the reg formerly set in I2 died only once and that was in I3,
2893 zero its use count so it won't make `reload' do any work. */
2894 if (! added_sets_2
2895 && (newi2pat == 0 || ! reg_mentioned_p (i2dest, newi2pat))
2896 && ! i2dest_in_i2src)
2898 regno = REGNO (i2dest);
2899 REG_N_SETS (regno)--;
2903 if (i1 && REG_P (i1dest))
2905 rtx link;
2906 rtx i1_insn = 0, i1_val = 0, set;
2908 for (link = LOG_LINKS (i3); link; link = XEXP (link, 1))
2909 if ((set = single_set (XEXP (link, 0))) != 0
2910 && rtx_equal_p (i1dest, SET_DEST (set)))
2911 i1_insn = XEXP (link, 0), i1_val = SET_SRC (set);
2913 record_value_for_reg (i1dest, i1_insn, i1_val);
2915 regno = REGNO (i1dest);
2916 if (! added_sets_1 && ! i1dest_in_i1src)
2917 REG_N_SETS (regno)--;
2920 /* Update reg_stat[].nonzero_bits et al for any changes that may have
2921 been made to this insn. The order of
2922 set_nonzero_bits_and_sign_copies() is important. Because newi2pat
2923 can affect nonzero_bits of newpat */
2924 if (newi2pat)
2925 note_stores (newi2pat, set_nonzero_bits_and_sign_copies, NULL);
2926 note_stores (newpat, set_nonzero_bits_and_sign_copies, NULL);
2928 /* Set new_direct_jump_p if a new return or simple jump instruction
2929 has been created.
2931 If I3 is now an unconditional jump, ensure that it has a
2932 BARRIER following it since it may have initially been a
2933 conditional jump. It may also be the last nonnote insn. */
2935 if (returnjump_p (i3) || any_uncondjump_p (i3))
2937 *new_direct_jump_p = 1;
2938 mark_jump_label (PATTERN (i3), i3, 0);
2940 if ((temp = next_nonnote_insn (i3)) == NULL_RTX
2941 || !BARRIER_P (temp))
2942 emit_barrier_after (i3);
2945 if (undobuf.other_insn != NULL_RTX
2946 && (returnjump_p (undobuf.other_insn)
2947 || any_uncondjump_p (undobuf.other_insn)))
2949 *new_direct_jump_p = 1;
2951 if ((temp = next_nonnote_insn (undobuf.other_insn)) == NULL_RTX
2952 || !BARRIER_P (temp))
2953 emit_barrier_after (undobuf.other_insn);
2956 /* An NOOP jump does not need barrier, but it does need cleaning up
2957 of CFG. */
2958 if (GET_CODE (newpat) == SET
2959 && SET_SRC (newpat) == pc_rtx
2960 && SET_DEST (newpat) == pc_rtx)
2961 *new_direct_jump_p = 1;
2964 combine_successes++;
2965 undo_commit ();
2967 if (added_links_insn
2968 && (newi2pat == 0 || INSN_CUID (added_links_insn) < INSN_CUID (i2))
2969 && INSN_CUID (added_links_insn) < INSN_CUID (i3))
2970 return added_links_insn;
2971 else
2972 return newi2pat ? i2 : i3;
2975 /* Undo all the modifications recorded in undobuf. */
2977 static void
2978 undo_all (void)
2980 struct undo *undo, *next;
2982 for (undo = undobuf.undos; undo; undo = next)
2984 next = undo->next;
2985 if (undo->is_int)
2986 *undo->where.i = undo->old_contents.i;
2987 else
2988 *undo->where.r = undo->old_contents.r;
2990 undo->next = undobuf.frees;
2991 undobuf.frees = undo;
2994 undobuf.undos = 0;
2997 /* We've committed to accepting the changes we made. Move all
2998 of the undos to the free list. */
3000 static void
3001 undo_commit (void)
3003 struct undo *undo, *next;
3005 for (undo = undobuf.undos; undo; undo = next)
3007 next = undo->next;
3008 undo->next = undobuf.frees;
3009 undobuf.frees = undo;
3011 undobuf.undos = 0;
3015 /* Find the innermost point within the rtx at LOC, possibly LOC itself,
3016 where we have an arithmetic expression and return that point. LOC will
3017 be inside INSN.
3019 try_combine will call this function to see if an insn can be split into
3020 two insns. */
3022 static rtx *
3023 find_split_point (rtx *loc, rtx insn)
3025 rtx x = *loc;
3026 enum rtx_code code = GET_CODE (x);
3027 rtx *split;
3028 unsigned HOST_WIDE_INT len = 0;
3029 HOST_WIDE_INT pos = 0;
3030 int unsignedp = 0;
3031 rtx inner = NULL_RTX;
3033 /* First special-case some codes. */
3034 switch (code)
3036 case SUBREG:
3037 #ifdef INSN_SCHEDULING
3038 /* If we are making a paradoxical SUBREG invalid, it becomes a split
3039 point. */
3040 if (MEM_P (SUBREG_REG (x)))
3041 return loc;
3042 #endif
3043 return find_split_point (&SUBREG_REG (x), insn);
3045 case MEM:
3046 #ifdef HAVE_lo_sum
3047 /* If we have (mem (const ..)) or (mem (symbol_ref ...)), split it
3048 using LO_SUM and HIGH. */
3049 if (GET_CODE (XEXP (x, 0)) == CONST
3050 || GET_CODE (XEXP (x, 0)) == SYMBOL_REF)
3052 SUBST (XEXP (x, 0),
3053 gen_rtx_LO_SUM (Pmode,
3054 gen_rtx_HIGH (Pmode, XEXP (x, 0)),
3055 XEXP (x, 0)));
3056 return &XEXP (XEXP (x, 0), 0);
3058 #endif
3060 /* If we have a PLUS whose second operand is a constant and the
3061 address is not valid, perhaps will can split it up using
3062 the machine-specific way to split large constants. We use
3063 the first pseudo-reg (one of the virtual regs) as a placeholder;
3064 it will not remain in the result. */
3065 if (GET_CODE (XEXP (x, 0)) == PLUS
3066 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
3067 && ! memory_address_p (GET_MODE (x), XEXP (x, 0)))
3069 rtx reg = regno_reg_rtx[FIRST_PSEUDO_REGISTER];
3070 rtx seq = split_insns (gen_rtx_SET (VOIDmode, reg, XEXP (x, 0)),
3071 subst_insn);
3073 /* This should have produced two insns, each of which sets our
3074 placeholder. If the source of the second is a valid address,
3075 we can make put both sources together and make a split point
3076 in the middle. */
3078 if (seq
3079 && NEXT_INSN (seq) != NULL_RTX
3080 && NEXT_INSN (NEXT_INSN (seq)) == NULL_RTX
3081 && NONJUMP_INSN_P (seq)
3082 && GET_CODE (PATTERN (seq)) == SET
3083 && SET_DEST (PATTERN (seq)) == reg
3084 && ! reg_mentioned_p (reg,
3085 SET_SRC (PATTERN (seq)))
3086 && NONJUMP_INSN_P (NEXT_INSN (seq))
3087 && GET_CODE (PATTERN (NEXT_INSN (seq))) == SET
3088 && SET_DEST (PATTERN (NEXT_INSN (seq))) == reg
3089 && memory_address_p (GET_MODE (x),
3090 SET_SRC (PATTERN (NEXT_INSN (seq)))))
3092 rtx src1 = SET_SRC (PATTERN (seq));
3093 rtx src2 = SET_SRC (PATTERN (NEXT_INSN (seq)));
3095 /* Replace the placeholder in SRC2 with SRC1. If we can
3096 find where in SRC2 it was placed, that can become our
3097 split point and we can replace this address with SRC2.
3098 Just try two obvious places. */
3100 src2 = replace_rtx (src2, reg, src1);
3101 split = 0;
3102 if (XEXP (src2, 0) == src1)
3103 split = &XEXP (src2, 0);
3104 else if (GET_RTX_FORMAT (GET_CODE (XEXP (src2, 0)))[0] == 'e'
3105 && XEXP (XEXP (src2, 0), 0) == src1)
3106 split = &XEXP (XEXP (src2, 0), 0);
3108 if (split)
3110 SUBST (XEXP (x, 0), src2);
3111 return split;
3115 /* If that didn't work, perhaps the first operand is complex and
3116 needs to be computed separately, so make a split point there.
3117 This will occur on machines that just support REG + CONST
3118 and have a constant moved through some previous computation. */
3120 else if (!OBJECT_P (XEXP (XEXP (x, 0), 0))
3121 && ! (GET_CODE (XEXP (XEXP (x, 0), 0)) == SUBREG
3122 && OBJECT_P (SUBREG_REG (XEXP (XEXP (x, 0), 0)))))
3123 return &XEXP (XEXP (x, 0), 0);
3125 break;
3127 case SET:
3128 #ifdef HAVE_cc0
3129 /* If SET_DEST is CC0 and SET_SRC is not an operand, a COMPARE, or a
3130 ZERO_EXTRACT, the most likely reason why this doesn't match is that
3131 we need to put the operand into a register. So split at that
3132 point. */
3134 if (SET_DEST (x) == cc0_rtx
3135 && GET_CODE (SET_SRC (x)) != COMPARE
3136 && GET_CODE (SET_SRC (x)) != ZERO_EXTRACT
3137 && !OBJECT_P (SET_SRC (x))
3138 && ! (GET_CODE (SET_SRC (x)) == SUBREG
3139 && OBJECT_P (SUBREG_REG (SET_SRC (x)))))
3140 return &SET_SRC (x);
3141 #endif
3143 /* See if we can split SET_SRC as it stands. */
3144 split = find_split_point (&SET_SRC (x), insn);
3145 if (split && split != &SET_SRC (x))
3146 return split;
3148 /* See if we can split SET_DEST as it stands. */
3149 split = find_split_point (&SET_DEST (x), insn);
3150 if (split && split != &SET_DEST (x))
3151 return split;
3153 /* See if this is a bitfield assignment with everything constant. If
3154 so, this is an IOR of an AND, so split it into that. */
3155 if (GET_CODE (SET_DEST (x)) == ZERO_EXTRACT
3156 && (GET_MODE_BITSIZE (GET_MODE (XEXP (SET_DEST (x), 0)))
3157 <= HOST_BITS_PER_WIDE_INT)
3158 && GET_CODE (XEXP (SET_DEST (x), 1)) == CONST_INT
3159 && GET_CODE (XEXP (SET_DEST (x), 2)) == CONST_INT
3160 && GET_CODE (SET_SRC (x)) == CONST_INT
3161 && ((INTVAL (XEXP (SET_DEST (x), 1))
3162 + INTVAL (XEXP (SET_DEST (x), 2)))
3163 <= GET_MODE_BITSIZE (GET_MODE (XEXP (SET_DEST (x), 0))))
3164 && ! side_effects_p (XEXP (SET_DEST (x), 0)))
3166 HOST_WIDE_INT pos = INTVAL (XEXP (SET_DEST (x), 2));
3167 unsigned HOST_WIDE_INT len = INTVAL (XEXP (SET_DEST (x), 1));
3168 unsigned HOST_WIDE_INT src = INTVAL (SET_SRC (x));
3169 rtx dest = XEXP (SET_DEST (x), 0);
3170 enum machine_mode mode = GET_MODE (dest);
3171 unsigned HOST_WIDE_INT mask = ((HOST_WIDE_INT) 1 << len) - 1;
3173 if (BITS_BIG_ENDIAN)
3174 pos = GET_MODE_BITSIZE (mode) - len - pos;
3176 if (src == mask)
3177 SUBST (SET_SRC (x),
3178 gen_binary (IOR, mode, dest, GEN_INT (src << pos)));
3179 else
3180 SUBST (SET_SRC (x),
3181 gen_binary (IOR, mode,
3182 gen_binary (AND, mode, dest,
3183 gen_int_mode (~(mask << pos),
3184 mode)),
3185 GEN_INT (src << pos)));
3187 SUBST (SET_DEST (x), dest);
3189 split = find_split_point (&SET_SRC (x), insn);
3190 if (split && split != &SET_SRC (x))
3191 return split;
3194 /* Otherwise, see if this is an operation that we can split into two.
3195 If so, try to split that. */
3196 code = GET_CODE (SET_SRC (x));
3198 switch (code)
3200 case AND:
3201 /* If we are AND'ing with a large constant that is only a single
3202 bit and the result is only being used in a context where we
3203 need to know if it is zero or nonzero, replace it with a bit
3204 extraction. This will avoid the large constant, which might
3205 have taken more than one insn to make. If the constant were
3206 not a valid argument to the AND but took only one insn to make,
3207 this is no worse, but if it took more than one insn, it will
3208 be better. */
3210 if (GET_CODE (XEXP (SET_SRC (x), 1)) == CONST_INT
3211 && REG_P (XEXP (SET_SRC (x), 0))
3212 && (pos = exact_log2 (INTVAL (XEXP (SET_SRC (x), 1)))) >= 7
3213 && REG_P (SET_DEST (x))
3214 && (split = find_single_use (SET_DEST (x), insn, (rtx*) 0)) != 0
3215 && (GET_CODE (*split) == EQ || GET_CODE (*split) == NE)
3216 && XEXP (*split, 0) == SET_DEST (x)
3217 && XEXP (*split, 1) == const0_rtx)
3219 rtx extraction = make_extraction (GET_MODE (SET_DEST (x)),
3220 XEXP (SET_SRC (x), 0),
3221 pos, NULL_RTX, 1, 1, 0, 0);
3222 if (extraction != 0)
3224 SUBST (SET_SRC (x), extraction);
3225 return find_split_point (loc, insn);
3228 break;
3230 case NE:
3231 /* If STORE_FLAG_VALUE is -1, this is (NE X 0) and only one bit of X
3232 is known to be on, this can be converted into a NEG of a shift. */
3233 if (STORE_FLAG_VALUE == -1 && XEXP (SET_SRC (x), 1) == const0_rtx
3234 && GET_MODE (SET_SRC (x)) == GET_MODE (XEXP (SET_SRC (x), 0))
3235 && 1 <= (pos = exact_log2
3236 (nonzero_bits (XEXP (SET_SRC (x), 0),
3237 GET_MODE (XEXP (SET_SRC (x), 0))))))
3239 enum machine_mode mode = GET_MODE (XEXP (SET_SRC (x), 0));
3241 SUBST (SET_SRC (x),
3242 gen_rtx_NEG (mode,
3243 gen_rtx_LSHIFTRT (mode,
3244 XEXP (SET_SRC (x), 0),
3245 GEN_INT (pos))));
3247 split = find_split_point (&SET_SRC (x), insn);
3248 if (split && split != &SET_SRC (x))
3249 return split;
3251 break;
3253 case SIGN_EXTEND:
3254 inner = XEXP (SET_SRC (x), 0);
3256 /* We can't optimize if either mode is a partial integer
3257 mode as we don't know how many bits are significant
3258 in those modes. */
3259 if (GET_MODE_CLASS (GET_MODE (inner)) == MODE_PARTIAL_INT
3260 || GET_MODE_CLASS (GET_MODE (SET_SRC (x))) == MODE_PARTIAL_INT)
3261 break;
3263 pos = 0;
3264 len = GET_MODE_BITSIZE (GET_MODE (inner));
3265 unsignedp = 0;
3266 break;
3268 case SIGN_EXTRACT:
3269 case ZERO_EXTRACT:
3270 if (GET_CODE (XEXP (SET_SRC (x), 1)) == CONST_INT
3271 && GET_CODE (XEXP (SET_SRC (x), 2)) == CONST_INT)
3273 inner = XEXP (SET_SRC (x), 0);
3274 len = INTVAL (XEXP (SET_SRC (x), 1));
3275 pos = INTVAL (XEXP (SET_SRC (x), 2));
3277 if (BITS_BIG_ENDIAN)
3278 pos = GET_MODE_BITSIZE (GET_MODE (inner)) - len - pos;
3279 unsignedp = (code == ZERO_EXTRACT);
3281 break;
3283 default:
3284 break;
3287 if (len && pos >= 0 && pos + len <= GET_MODE_BITSIZE (GET_MODE (inner)))
3289 enum machine_mode mode = GET_MODE (SET_SRC (x));
3291 /* For unsigned, we have a choice of a shift followed by an
3292 AND or two shifts. Use two shifts for field sizes where the
3293 constant might be too large. We assume here that we can
3294 always at least get 8-bit constants in an AND insn, which is
3295 true for every current RISC. */
3297 if (unsignedp && len <= 8)
3299 SUBST (SET_SRC (x),
3300 gen_rtx_AND (mode,
3301 gen_rtx_LSHIFTRT
3302 (mode, gen_lowpart (mode, inner),
3303 GEN_INT (pos)),
3304 GEN_INT (((HOST_WIDE_INT) 1 << len) - 1)));
3306 split = find_split_point (&SET_SRC (x), insn);
3307 if (split && split != &SET_SRC (x))
3308 return split;
3310 else
3312 SUBST (SET_SRC (x),
3313 gen_rtx_fmt_ee
3314 (unsignedp ? LSHIFTRT : ASHIFTRT, mode,
3315 gen_rtx_ASHIFT (mode,
3316 gen_lowpart (mode, inner),
3317 GEN_INT (GET_MODE_BITSIZE (mode)
3318 - len - pos)),
3319 GEN_INT (GET_MODE_BITSIZE (mode) - len)));
3321 split = find_split_point (&SET_SRC (x), insn);
3322 if (split && split != &SET_SRC (x))
3323 return split;
3327 /* See if this is a simple operation with a constant as the second
3328 operand. It might be that this constant is out of range and hence
3329 could be used as a split point. */
3330 if (BINARY_P (SET_SRC (x))
3331 && CONSTANT_P (XEXP (SET_SRC (x), 1))
3332 && (OBJECT_P (XEXP (SET_SRC (x), 0))
3333 || (GET_CODE (XEXP (SET_SRC (x), 0)) == SUBREG
3334 && OBJECT_P (SUBREG_REG (XEXP (SET_SRC (x), 0))))))
3335 return &XEXP (SET_SRC (x), 1);
3337 /* Finally, see if this is a simple operation with its first operand
3338 not in a register. The operation might require this operand in a
3339 register, so return it as a split point. We can always do this
3340 because if the first operand were another operation, we would have
3341 already found it as a split point. */
3342 if ((BINARY_P (SET_SRC (x)) || UNARY_P (SET_SRC (x)))
3343 && ! register_operand (XEXP (SET_SRC (x), 0), VOIDmode))
3344 return &XEXP (SET_SRC (x), 0);
3346 return 0;
3348 case AND:
3349 case IOR:
3350 /* We write NOR as (and (not A) (not B)), but if we don't have a NOR,
3351 it is better to write this as (not (ior A B)) so we can split it.
3352 Similarly for IOR. */
3353 if (GET_CODE (XEXP (x, 0)) == NOT && GET_CODE (XEXP (x, 1)) == NOT)
3355 SUBST (*loc,
3356 gen_rtx_NOT (GET_MODE (x),
3357 gen_rtx_fmt_ee (code == IOR ? AND : IOR,
3358 GET_MODE (x),
3359 XEXP (XEXP (x, 0), 0),
3360 XEXP (XEXP (x, 1), 0))));
3361 return find_split_point (loc, insn);
3364 /* Many RISC machines have a large set of logical insns. If the
3365 second operand is a NOT, put it first so we will try to split the
3366 other operand first. */
3367 if (GET_CODE (XEXP (x, 1)) == NOT)
3369 rtx tem = XEXP (x, 0);
3370 SUBST (XEXP (x, 0), XEXP (x, 1));
3371 SUBST (XEXP (x, 1), tem);
3373 break;
3375 default:
3376 break;
3379 /* Otherwise, select our actions depending on our rtx class. */
3380 switch (GET_RTX_CLASS (code))
3382 case RTX_BITFIELD_OPS: /* This is ZERO_EXTRACT and SIGN_EXTRACT. */
3383 case RTX_TERNARY:
3384 split = find_split_point (&XEXP (x, 2), insn);
3385 if (split)
3386 return split;
3387 /* ... fall through ... */
3388 case RTX_BIN_ARITH:
3389 case RTX_COMM_ARITH:
3390 case RTX_COMPARE:
3391 case RTX_COMM_COMPARE:
3392 split = find_split_point (&XEXP (x, 1), insn);
3393 if (split)
3394 return split;
3395 /* ... fall through ... */
3396 case RTX_UNARY:
3397 /* Some machines have (and (shift ...) ...) insns. If X is not
3398 an AND, but XEXP (X, 0) is, use it as our split point. */
3399 if (GET_CODE (x) != AND && GET_CODE (XEXP (x, 0)) == AND)
3400 return &XEXP (x, 0);
3402 split = find_split_point (&XEXP (x, 0), insn);
3403 if (split)
3404 return split;
3405 return loc;
3407 default:
3408 /* Otherwise, we don't have a split point. */
3409 return 0;
3413 /* Throughout X, replace FROM with TO, and return the result.
3414 The result is TO if X is FROM;
3415 otherwise the result is X, but its contents may have been modified.
3416 If they were modified, a record was made in undobuf so that
3417 undo_all will (among other things) return X to its original state.
3419 If the number of changes necessary is too much to record to undo,
3420 the excess changes are not made, so the result is invalid.
3421 The changes already made can still be undone.
3422 undobuf.num_undo is incremented for such changes, so by testing that
3423 the caller can tell whether the result is valid.
3425 `n_occurrences' is incremented each time FROM is replaced.
3427 IN_DEST is nonzero if we are processing the SET_DEST of a SET.
3429 UNIQUE_COPY is nonzero if each substitution must be unique. We do this
3430 by copying if `n_occurrences' is nonzero. */
3432 static rtx
3433 subst (rtx x, rtx from, rtx to, int in_dest, int unique_copy)
3435 enum rtx_code code = GET_CODE (x);
3436 enum machine_mode op0_mode = VOIDmode;
3437 const char *fmt;
3438 int len, i;
3439 rtx new;
3441 /* Two expressions are equal if they are identical copies of a shared
3442 RTX or if they are both registers with the same register number
3443 and mode. */
3445 #define COMBINE_RTX_EQUAL_P(X,Y) \
3446 ((X) == (Y) \
3447 || (REG_P (X) && REG_P (Y) \
3448 && REGNO (X) == REGNO (Y) && GET_MODE (X) == GET_MODE (Y)))
3450 if (! in_dest && COMBINE_RTX_EQUAL_P (x, from))
3452 n_occurrences++;
3453 return (unique_copy && n_occurrences > 1 ? copy_rtx (to) : to);
3456 /* If X and FROM are the same register but different modes, they will
3457 not have been seen as equal above. However, flow.c will make a
3458 LOG_LINKS entry for that case. If we do nothing, we will try to
3459 rerecognize our original insn and, when it succeeds, we will
3460 delete the feeding insn, which is incorrect.
3462 So force this insn not to match in this (rare) case. */
3463 if (! in_dest && code == REG && REG_P (from)
3464 && REGNO (x) == REGNO (from))
3465 return gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
3467 /* If this is an object, we are done unless it is a MEM or LO_SUM, both
3468 of which may contain things that can be combined. */
3469 if (code != MEM && code != LO_SUM && OBJECT_P (x))
3470 return x;
3472 /* It is possible to have a subexpression appear twice in the insn.
3473 Suppose that FROM is a register that appears within TO.
3474 Then, after that subexpression has been scanned once by `subst',
3475 the second time it is scanned, TO may be found. If we were
3476 to scan TO here, we would find FROM within it and create a
3477 self-referent rtl structure which is completely wrong. */
3478 if (COMBINE_RTX_EQUAL_P (x, to))
3479 return to;
3481 /* Parallel asm_operands need special attention because all of the
3482 inputs are shared across the arms. Furthermore, unsharing the
3483 rtl results in recognition failures. Failure to handle this case
3484 specially can result in circular rtl.
3486 Solve this by doing a normal pass across the first entry of the
3487 parallel, and only processing the SET_DESTs of the subsequent
3488 entries. Ug. */
3490 if (code == PARALLEL
3491 && GET_CODE (XVECEXP (x, 0, 0)) == SET
3492 && GET_CODE (SET_SRC (XVECEXP (x, 0, 0))) == ASM_OPERANDS)
3494 new = subst (XVECEXP (x, 0, 0), from, to, 0, unique_copy);
3496 /* If this substitution failed, this whole thing fails. */
3497 if (GET_CODE (new) == CLOBBER
3498 && XEXP (new, 0) == const0_rtx)
3499 return new;
3501 SUBST (XVECEXP (x, 0, 0), new);
3503 for (i = XVECLEN (x, 0) - 1; i >= 1; i--)
3505 rtx dest = SET_DEST (XVECEXP (x, 0, i));
3507 if (!REG_P (dest)
3508 && GET_CODE (dest) != CC0
3509 && GET_CODE (dest) != PC)
3511 new = subst (dest, from, to, 0, unique_copy);
3513 /* If this substitution failed, this whole thing fails. */
3514 if (GET_CODE (new) == CLOBBER
3515 && XEXP (new, 0) == const0_rtx)
3516 return new;
3518 SUBST (SET_DEST (XVECEXP (x, 0, i)), new);
3522 else
3524 len = GET_RTX_LENGTH (code);
3525 fmt = GET_RTX_FORMAT (code);
3527 /* We don't need to process a SET_DEST that is a register, CC0,
3528 or PC, so set up to skip this common case. All other cases
3529 where we want to suppress replacing something inside a
3530 SET_SRC are handled via the IN_DEST operand. */
3531 if (code == SET
3532 && (REG_P (SET_DEST (x))
3533 || GET_CODE (SET_DEST (x)) == CC0
3534 || GET_CODE (SET_DEST (x)) == PC))
3535 fmt = "ie";
3537 /* Get the mode of operand 0 in case X is now a SIGN_EXTEND of a
3538 constant. */
3539 if (fmt[0] == 'e')
3540 op0_mode = GET_MODE (XEXP (x, 0));
3542 for (i = 0; i < len; i++)
3544 if (fmt[i] == 'E')
3546 int j;
3547 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3549 if (COMBINE_RTX_EQUAL_P (XVECEXP (x, i, j), from))
3551 new = (unique_copy && n_occurrences
3552 ? copy_rtx (to) : to);
3553 n_occurrences++;
3555 else
3557 new = subst (XVECEXP (x, i, j), from, to, 0,
3558 unique_copy);
3560 /* If this substitution failed, this whole thing
3561 fails. */
3562 if (GET_CODE (new) == CLOBBER
3563 && XEXP (new, 0) == const0_rtx)
3564 return new;
3567 SUBST (XVECEXP (x, i, j), new);
3570 else if (fmt[i] == 'e')
3572 /* If this is a register being set, ignore it. */
3573 new = XEXP (x, i);
3574 if (in_dest
3575 && i == 0
3576 && (((code == SUBREG || code == ZERO_EXTRACT)
3577 && REG_P (new))
3578 || code == STRICT_LOW_PART))
3581 else if (COMBINE_RTX_EQUAL_P (XEXP (x, i), from))
3583 /* In general, don't install a subreg involving two
3584 modes not tieable. It can worsen register
3585 allocation, and can even make invalid reload
3586 insns, since the reg inside may need to be copied
3587 from in the outside mode, and that may be invalid
3588 if it is an fp reg copied in integer mode.
3590 We allow two exceptions to this: It is valid if
3591 it is inside another SUBREG and the mode of that
3592 SUBREG and the mode of the inside of TO is
3593 tieable and it is valid if X is a SET that copies
3594 FROM to CC0. */
3596 if (GET_CODE (to) == SUBREG
3597 && ! MODES_TIEABLE_P (GET_MODE (to),
3598 GET_MODE (SUBREG_REG (to)))
3599 && ! (code == SUBREG
3600 && MODES_TIEABLE_P (GET_MODE (x),
3601 GET_MODE (SUBREG_REG (to))))
3602 #ifdef HAVE_cc0
3603 && ! (code == SET && i == 1 && XEXP (x, 0) == cc0_rtx)
3604 #endif
3606 return gen_rtx_CLOBBER (VOIDmode, const0_rtx);
3608 #ifdef CANNOT_CHANGE_MODE_CLASS
3609 if (code == SUBREG
3610 && REG_P (to)
3611 && REGNO (to) < FIRST_PSEUDO_REGISTER
3612 && REG_CANNOT_CHANGE_MODE_P (REGNO (to),
3613 GET_MODE (to),
3614 GET_MODE (x)))
3615 return gen_rtx_CLOBBER (VOIDmode, const0_rtx);
3616 #endif
3618 new = (unique_copy && n_occurrences ? copy_rtx (to) : to);
3619 n_occurrences++;
3621 else
3622 /* If we are in a SET_DEST, suppress most cases unless we
3623 have gone inside a MEM, in which case we want to
3624 simplify the address. We assume here that things that
3625 are actually part of the destination have their inner
3626 parts in the first expression. This is true for SUBREG,
3627 STRICT_LOW_PART, and ZERO_EXTRACT, which are the only
3628 things aside from REG and MEM that should appear in a
3629 SET_DEST. */
3630 new = subst (XEXP (x, i), from, to,
3631 (((in_dest
3632 && (code == SUBREG || code == STRICT_LOW_PART
3633 || code == ZERO_EXTRACT))
3634 || code == SET)
3635 && i == 0), unique_copy);
3637 /* If we found that we will have to reject this combination,
3638 indicate that by returning the CLOBBER ourselves, rather than
3639 an expression containing it. This will speed things up as
3640 well as prevent accidents where two CLOBBERs are considered
3641 to be equal, thus producing an incorrect simplification. */
3643 if (GET_CODE (new) == CLOBBER && XEXP (new, 0) == const0_rtx)
3644 return new;
3646 if (GET_CODE (x) == SUBREG
3647 && (GET_CODE (new) == CONST_INT
3648 || GET_CODE (new) == CONST_DOUBLE))
3650 enum machine_mode mode = GET_MODE (x);
3652 x = simplify_subreg (GET_MODE (x), new,
3653 GET_MODE (SUBREG_REG (x)),
3654 SUBREG_BYTE (x));
3655 if (! x)
3656 x = gen_rtx_CLOBBER (mode, const0_rtx);
3658 else if (GET_CODE (new) == CONST_INT
3659 && GET_CODE (x) == ZERO_EXTEND)
3661 x = simplify_unary_operation (ZERO_EXTEND, GET_MODE (x),
3662 new, GET_MODE (XEXP (x, 0)));
3663 gcc_assert (x);
3665 else
3666 SUBST (XEXP (x, i), new);
3671 /* Try to simplify X. If the simplification changed the code, it is likely
3672 that further simplification will help, so loop, but limit the number
3673 of repetitions that will be performed. */
3675 for (i = 0; i < 4; i++)
3677 /* If X is sufficiently simple, don't bother trying to do anything
3678 with it. */
3679 if (code != CONST_INT && code != REG && code != CLOBBER)
3680 x = combine_simplify_rtx (x, op0_mode, in_dest);
3682 if (GET_CODE (x) == code)
3683 break;
3685 code = GET_CODE (x);
3687 /* We no longer know the original mode of operand 0 since we
3688 have changed the form of X) */
3689 op0_mode = VOIDmode;
3692 return x;
3695 /* Simplify X, a piece of RTL. We just operate on the expression at the
3696 outer level; call `subst' to simplify recursively. Return the new
3697 expression.
3699 OP0_MODE is the original mode of XEXP (x, 0). IN_DEST is nonzero
3700 if we are inside a SET_DEST. */
3702 static rtx
3703 combine_simplify_rtx (rtx x, enum machine_mode op0_mode, int in_dest)
3705 enum rtx_code code = GET_CODE (x);
3706 enum machine_mode mode = GET_MODE (x);
3707 rtx temp;
3708 rtx reversed;
3709 int i;
3711 /* If this is a commutative operation, put a constant last and a complex
3712 expression first. We don't need to do this for comparisons here. */
3713 if (COMMUTATIVE_ARITH_P (x)
3714 && swap_commutative_operands_p (XEXP (x, 0), XEXP (x, 1)))
3716 temp = XEXP (x, 0);
3717 SUBST (XEXP (x, 0), XEXP (x, 1));
3718 SUBST (XEXP (x, 1), temp);
3721 /* If this is a PLUS, MINUS, or MULT, and the first operand is the
3722 sign extension of a PLUS with a constant, reverse the order of the sign
3723 extension and the addition. Note that this not the same as the original
3724 code, but overflow is undefined for signed values. Also note that the
3725 PLUS will have been partially moved "inside" the sign-extension, so that
3726 the first operand of X will really look like:
3727 (ashiftrt (plus (ashift A C4) C5) C4).
3728 We convert this to
3729 (plus (ashiftrt (ashift A C4) C2) C4)
3730 and replace the first operand of X with that expression. Later parts
3731 of this function may simplify the expression further.
3733 For example, if we start with (mult (sign_extend (plus A C1)) C2),
3734 we swap the SIGN_EXTEND and PLUS. Later code will apply the
3735 distributive law to produce (plus (mult (sign_extend X) C1) C3).
3737 We do this to simplify address expressions. */
3739 if ((code == PLUS || code == MINUS || code == MULT)
3740 && GET_CODE (XEXP (x, 0)) == ASHIFTRT
3741 && GET_CODE (XEXP (XEXP (x, 0), 0)) == PLUS
3742 && GET_CODE (XEXP (XEXP (XEXP (x, 0), 0), 0)) == ASHIFT
3743 && GET_CODE (XEXP (XEXP (XEXP (XEXP (x, 0), 0), 0), 1)) == CONST_INT
3744 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
3745 && XEXP (XEXP (XEXP (XEXP (x, 0), 0), 0), 1) == XEXP (XEXP (x, 0), 1)
3746 && GET_CODE (XEXP (XEXP (XEXP (x, 0), 0), 1)) == CONST_INT
3747 && (temp = simplify_binary_operation (ASHIFTRT, mode,
3748 XEXP (XEXP (XEXP (x, 0), 0), 1),
3749 XEXP (XEXP (x, 0), 1))) != 0)
3751 rtx new
3752 = simplify_shift_const (NULL_RTX, ASHIFT, mode,
3753 XEXP (XEXP (XEXP (XEXP (x, 0), 0), 0), 0),
3754 INTVAL (XEXP (XEXP (x, 0), 1)));
3756 new = simplify_shift_const (NULL_RTX, ASHIFTRT, mode, new,
3757 INTVAL (XEXP (XEXP (x, 0), 1)));
3759 SUBST (XEXP (x, 0), gen_binary (PLUS, mode, new, temp));
3762 /* If this is a simple operation applied to an IF_THEN_ELSE, try
3763 applying it to the arms of the IF_THEN_ELSE. This often simplifies
3764 things. Check for cases where both arms are testing the same
3765 condition.
3767 Don't do anything if all operands are very simple. */
3769 if ((BINARY_P (x)
3770 && ((!OBJECT_P (XEXP (x, 0))
3771 && ! (GET_CODE (XEXP (x, 0)) == SUBREG
3772 && OBJECT_P (SUBREG_REG (XEXP (x, 0)))))
3773 || (!OBJECT_P (XEXP (x, 1))
3774 && ! (GET_CODE (XEXP (x, 1)) == SUBREG
3775 && OBJECT_P (SUBREG_REG (XEXP (x, 1)))))))
3776 || (UNARY_P (x)
3777 && (!OBJECT_P (XEXP (x, 0))
3778 && ! (GET_CODE (XEXP (x, 0)) == SUBREG
3779 && OBJECT_P (SUBREG_REG (XEXP (x, 0)))))))
3781 rtx cond, true_rtx, false_rtx;
3783 cond = if_then_else_cond (x, &true_rtx, &false_rtx);
3784 if (cond != 0
3785 /* If everything is a comparison, what we have is highly unlikely
3786 to be simpler, so don't use it. */
3787 && ! (COMPARISON_P (x)
3788 && (COMPARISON_P (true_rtx) || COMPARISON_P (false_rtx))))
3790 rtx cop1 = const0_rtx;
3791 enum rtx_code cond_code = simplify_comparison (NE, &cond, &cop1);
3793 if (cond_code == NE && COMPARISON_P (cond))
3794 return x;
3796 /* Simplify the alternative arms; this may collapse the true and
3797 false arms to store-flag values. Be careful to use copy_rtx
3798 here since true_rtx or false_rtx might share RTL with x as a
3799 result of the if_then_else_cond call above. */
3800 true_rtx = subst (copy_rtx (true_rtx), pc_rtx, pc_rtx, 0, 0);
3801 false_rtx = subst (copy_rtx (false_rtx), pc_rtx, pc_rtx, 0, 0);
3803 /* If true_rtx and false_rtx are not general_operands, an if_then_else
3804 is unlikely to be simpler. */
3805 if (general_operand (true_rtx, VOIDmode)
3806 && general_operand (false_rtx, VOIDmode))
3808 enum rtx_code reversed;
3810 /* Restarting if we generate a store-flag expression will cause
3811 us to loop. Just drop through in this case. */
3813 /* If the result values are STORE_FLAG_VALUE and zero, we can
3814 just make the comparison operation. */
3815 if (true_rtx == const_true_rtx && false_rtx == const0_rtx)
3816 x = gen_binary (cond_code, mode, cond, cop1);
3817 else if (true_rtx == const0_rtx && false_rtx == const_true_rtx
3818 && ((reversed = reversed_comparison_code_parts
3819 (cond_code, cond, cop1, NULL))
3820 != UNKNOWN))
3821 x = gen_binary (reversed, mode, cond, cop1);
3823 /* Likewise, we can make the negate of a comparison operation
3824 if the result values are - STORE_FLAG_VALUE and zero. */
3825 else if (GET_CODE (true_rtx) == CONST_INT
3826 && INTVAL (true_rtx) == - STORE_FLAG_VALUE
3827 && false_rtx == const0_rtx)
3828 x = simplify_gen_unary (NEG, mode,
3829 gen_binary (cond_code, mode, cond,
3830 cop1),
3831 mode);
3832 else if (GET_CODE (false_rtx) == CONST_INT
3833 && INTVAL (false_rtx) == - STORE_FLAG_VALUE
3834 && true_rtx == const0_rtx
3835 && ((reversed = reversed_comparison_code_parts
3836 (cond_code, cond, cop1, NULL))
3837 != UNKNOWN))
3838 x = simplify_gen_unary (NEG, mode,
3839 gen_binary (reversed, mode,
3840 cond, cop1),
3841 mode);
3842 else
3843 return gen_rtx_IF_THEN_ELSE (mode,
3844 gen_binary (cond_code, VOIDmode,
3845 cond, cop1),
3846 true_rtx, false_rtx);
3848 code = GET_CODE (x);
3849 op0_mode = VOIDmode;
3854 /* Try to fold this expression in case we have constants that weren't
3855 present before. */
3856 temp = 0;
3857 switch (GET_RTX_CLASS (code))
3859 case RTX_UNARY:
3860 if (op0_mode == VOIDmode)
3861 op0_mode = GET_MODE (XEXP (x, 0));
3862 temp = simplify_unary_operation (code, mode, XEXP (x, 0), op0_mode);
3863 break;
3864 case RTX_COMPARE:
3865 case RTX_COMM_COMPARE:
3867 enum machine_mode cmp_mode = GET_MODE (XEXP (x, 0));
3868 if (cmp_mode == VOIDmode)
3870 cmp_mode = GET_MODE (XEXP (x, 1));
3871 if (cmp_mode == VOIDmode)
3872 cmp_mode = op0_mode;
3874 temp = simplify_relational_operation (code, mode, cmp_mode,
3875 XEXP (x, 0), XEXP (x, 1));
3877 break;
3878 case RTX_COMM_ARITH:
3879 case RTX_BIN_ARITH:
3880 temp = simplify_binary_operation (code, mode, XEXP (x, 0), XEXP (x, 1));
3881 break;
3882 case RTX_BITFIELD_OPS:
3883 case RTX_TERNARY:
3884 temp = simplify_ternary_operation (code, mode, op0_mode, XEXP (x, 0),
3885 XEXP (x, 1), XEXP (x, 2));
3886 break;
3887 default:
3888 break;
3891 if (temp)
3893 x = temp;
3894 code = GET_CODE (temp);
3895 op0_mode = VOIDmode;
3896 mode = GET_MODE (temp);
3899 /* First see if we can apply the inverse distributive law. */
3900 if (code == PLUS || code == MINUS
3901 || code == AND || code == IOR || code == XOR)
3903 x = apply_distributive_law (x);
3904 code = GET_CODE (x);
3905 op0_mode = VOIDmode;
3908 /* If CODE is an associative operation not otherwise handled, see if we
3909 can associate some operands. This can win if they are constants or
3910 if they are logically related (i.e. (a & b) & a). */
3911 if ((code == PLUS || code == MINUS || code == MULT || code == DIV
3912 || code == AND || code == IOR || code == XOR
3913 || code == SMAX || code == SMIN || code == UMAX || code == UMIN)
3914 && ((INTEGRAL_MODE_P (mode) && code != DIV)
3915 || (flag_unsafe_math_optimizations && FLOAT_MODE_P (mode))))
3917 if (GET_CODE (XEXP (x, 0)) == code)
3919 rtx other = XEXP (XEXP (x, 0), 0);
3920 rtx inner_op0 = XEXP (XEXP (x, 0), 1);
3921 rtx inner_op1 = XEXP (x, 1);
3922 rtx inner;
3924 /* Make sure we pass the constant operand if any as the second
3925 one if this is a commutative operation. */
3926 if (CONSTANT_P (inner_op0) && COMMUTATIVE_ARITH_P (x))
3928 rtx tem = inner_op0;
3929 inner_op0 = inner_op1;
3930 inner_op1 = tem;
3932 inner = simplify_binary_operation (code == MINUS ? PLUS
3933 : code == DIV ? MULT
3934 : code,
3935 mode, inner_op0, inner_op1);
3937 /* For commutative operations, try the other pair if that one
3938 didn't simplify. */
3939 if (inner == 0 && COMMUTATIVE_ARITH_P (x))
3941 other = XEXP (XEXP (x, 0), 1);
3942 inner = simplify_binary_operation (code, mode,
3943 XEXP (XEXP (x, 0), 0),
3944 XEXP (x, 1));
3947 if (inner)
3948 return gen_binary (code, mode, other, inner);
3952 /* A little bit of algebraic simplification here. */
3953 switch (code)
3955 case MEM:
3956 /* Ensure that our address has any ASHIFTs converted to MULT in case
3957 address-recognizing predicates are called later. */
3958 temp = make_compound_operation (XEXP (x, 0), MEM);
3959 SUBST (XEXP (x, 0), temp);
3960 break;
3962 case SUBREG:
3963 if (op0_mode == VOIDmode)
3964 op0_mode = GET_MODE (SUBREG_REG (x));
3966 /* See if this can be moved to simplify_subreg. */
3967 if (CONSTANT_P (SUBREG_REG (x))
3968 && subreg_lowpart_offset (mode, op0_mode) == SUBREG_BYTE (x)
3969 /* Don't call gen_lowpart if the inner mode
3970 is VOIDmode and we cannot simplify it, as SUBREG without
3971 inner mode is invalid. */
3972 && (GET_MODE (SUBREG_REG (x)) != VOIDmode
3973 || gen_lowpart_common (mode, SUBREG_REG (x))))
3974 return gen_lowpart (mode, SUBREG_REG (x));
3976 if (GET_MODE_CLASS (GET_MODE (SUBREG_REG (x))) == MODE_CC)
3977 break;
3979 rtx temp;
3980 temp = simplify_subreg (mode, SUBREG_REG (x), op0_mode,
3981 SUBREG_BYTE (x));
3982 if (temp)
3983 return temp;
3986 /* Don't change the mode of the MEM if that would change the meaning
3987 of the address. Similarly, don't allow widening, as that may
3988 access memory outside the defined object or using an address
3989 that is invalid for a wider mode. */
3990 if (MEM_P (SUBREG_REG (x))
3991 && (MEM_VOLATILE_P (SUBREG_REG (x))
3992 || mode_dependent_address_p (XEXP (SUBREG_REG (x), 0))
3993 || (GET_MODE_SIZE (mode)
3994 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))))
3995 return gen_rtx_CLOBBER (mode, const0_rtx);
3997 /* Note that we cannot do any narrowing for non-constants since
3998 we might have been counting on using the fact that some bits were
3999 zero. We now do this in the SET. */
4001 break;
4003 case NOT:
4004 if (GET_CODE (XEXP (x, 0)) == SUBREG
4005 && subreg_lowpart_p (XEXP (x, 0))
4006 && (GET_MODE_SIZE (GET_MODE (XEXP (x, 0)))
4007 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (XEXP (x, 0)))))
4008 && GET_CODE (SUBREG_REG (XEXP (x, 0))) == ASHIFT
4009 && XEXP (SUBREG_REG (XEXP (x, 0)), 0) == const1_rtx)
4011 enum machine_mode inner_mode = GET_MODE (SUBREG_REG (XEXP (x, 0)));
4013 x = gen_rtx_ROTATE (inner_mode,
4014 simplify_gen_unary (NOT, inner_mode, const1_rtx,
4015 inner_mode),
4016 XEXP (SUBREG_REG (XEXP (x, 0)), 1));
4017 return gen_lowpart (mode, x);
4020 /* Apply De Morgan's laws to reduce number of patterns for machines
4021 with negating logical insns (and-not, nand, etc.). If result has
4022 only one NOT, put it first, since that is how the patterns are
4023 coded. */
4025 if (GET_CODE (XEXP (x, 0)) == IOR || GET_CODE (XEXP (x, 0)) == AND)
4027 rtx in1 = XEXP (XEXP (x, 0), 0), in2 = XEXP (XEXP (x, 0), 1);
4028 enum machine_mode op_mode;
4030 op_mode = GET_MODE (in1);
4031 in1 = simplify_gen_unary (NOT, op_mode, in1, op_mode);
4033 op_mode = GET_MODE (in2);
4034 if (op_mode == VOIDmode)
4035 op_mode = mode;
4036 in2 = simplify_gen_unary (NOT, op_mode, in2, op_mode);
4038 if (GET_CODE (in2) == NOT && GET_CODE (in1) != NOT)
4040 rtx tem = in2;
4041 in2 = in1; in1 = tem;
4044 return gen_rtx_fmt_ee (GET_CODE (XEXP (x, 0)) == IOR ? AND : IOR,
4045 mode, in1, in2);
4047 break;
4049 case NEG:
4050 /* (neg (xor A 1)) is (plus A -1) if A is known to be either 0 or 1. */
4051 if (GET_CODE (XEXP (x, 0)) == XOR
4052 && XEXP (XEXP (x, 0), 1) == const1_rtx
4053 && nonzero_bits (XEXP (XEXP (x, 0), 0), mode) == 1)
4054 return gen_binary (PLUS, mode, XEXP (XEXP (x, 0), 0), constm1_rtx);
4056 temp = expand_compound_operation (XEXP (x, 0));
4058 /* For C equal to the width of MODE minus 1, (neg (ashiftrt X C)) can be
4059 replaced by (lshiftrt X C). This will convert
4060 (neg (sign_extract X 1 Y)) to (zero_extract X 1 Y). */
4062 if (GET_CODE (temp) == ASHIFTRT
4063 && GET_CODE (XEXP (temp, 1)) == CONST_INT
4064 && INTVAL (XEXP (temp, 1)) == GET_MODE_BITSIZE (mode) - 1)
4065 return simplify_shift_const (temp, LSHIFTRT, mode, XEXP (temp, 0),
4066 INTVAL (XEXP (temp, 1)));
4068 /* If X has only a single bit that might be nonzero, say, bit I, convert
4069 (neg X) to (ashiftrt (ashift X C-I) C-I) where C is the bitsize of
4070 MODE minus 1. This will convert (neg (zero_extract X 1 Y)) to
4071 (sign_extract X 1 Y). But only do this if TEMP isn't a register
4072 or a SUBREG of one since we'd be making the expression more
4073 complex if it was just a register. */
4075 if (!REG_P (temp)
4076 && ! (GET_CODE (temp) == SUBREG
4077 && REG_P (SUBREG_REG (temp)))
4078 && (i = exact_log2 (nonzero_bits (temp, mode))) >= 0)
4080 rtx temp1 = simplify_shift_const
4081 (NULL_RTX, ASHIFTRT, mode,
4082 simplify_shift_const (NULL_RTX, ASHIFT, mode, temp,
4083 GET_MODE_BITSIZE (mode) - 1 - i),
4084 GET_MODE_BITSIZE (mode) - 1 - i);
4086 /* If all we did was surround TEMP with the two shifts, we
4087 haven't improved anything, so don't use it. Otherwise,
4088 we are better off with TEMP1. */
4089 if (GET_CODE (temp1) != ASHIFTRT
4090 || GET_CODE (XEXP (temp1, 0)) != ASHIFT
4091 || XEXP (XEXP (temp1, 0), 0) != temp)
4092 return temp1;
4094 break;
4096 case TRUNCATE:
4097 /* We can't handle truncation to a partial integer mode here
4098 because we don't know the real bitsize of the partial
4099 integer mode. */
4100 if (GET_MODE_CLASS (mode) == MODE_PARTIAL_INT)
4101 break;
4103 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4104 && TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (mode),
4105 GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))))
4106 SUBST (XEXP (x, 0),
4107 force_to_mode (XEXP (x, 0), GET_MODE (XEXP (x, 0)),
4108 GET_MODE_MASK (mode), NULL_RTX, 0));
4110 /* (truncate:SI ({sign,zero}_extend:DI foo:SI)) == foo:SI. */
4111 if ((GET_CODE (XEXP (x, 0)) == SIGN_EXTEND
4112 || GET_CODE (XEXP (x, 0)) == ZERO_EXTEND)
4113 && GET_MODE (XEXP (XEXP (x, 0), 0)) == mode)
4114 return XEXP (XEXP (x, 0), 0);
4116 /* (truncate:SI (OP:DI ({sign,zero}_extend:DI foo:SI))) is
4117 (OP:SI foo:SI) if OP is NEG or ABS. */
4118 if ((GET_CODE (XEXP (x, 0)) == ABS
4119 || GET_CODE (XEXP (x, 0)) == NEG)
4120 && (GET_CODE (XEXP (XEXP (x, 0), 0)) == SIGN_EXTEND
4121 || GET_CODE (XEXP (XEXP (x, 0), 0)) == ZERO_EXTEND)
4122 && GET_MODE (XEXP (XEXP (XEXP (x, 0), 0), 0)) == mode)
4123 return simplify_gen_unary (GET_CODE (XEXP (x, 0)), mode,
4124 XEXP (XEXP (XEXP (x, 0), 0), 0), mode);
4126 /* (truncate:SI (subreg:DI (truncate:SI X) 0)) is
4127 (truncate:SI x). */
4128 if (GET_CODE (XEXP (x, 0)) == SUBREG
4129 && GET_CODE (SUBREG_REG (XEXP (x, 0))) == TRUNCATE
4130 && subreg_lowpart_p (XEXP (x, 0)))
4131 return SUBREG_REG (XEXP (x, 0));
4133 /* If we know that the value is already truncated, we can
4134 replace the TRUNCATE with a SUBREG if TRULY_NOOP_TRUNCATION
4135 is nonzero for the corresponding modes. But don't do this
4136 for an (LSHIFTRT (MULT ...)) since this will cause problems
4137 with the umulXi3_highpart patterns. */
4138 if (TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (mode),
4139 GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0))))
4140 && num_sign_bit_copies (XEXP (x, 0), GET_MODE (XEXP (x, 0)))
4141 >= (unsigned int) (GET_MODE_BITSIZE (mode) + 1)
4142 && ! (GET_CODE (XEXP (x, 0)) == LSHIFTRT
4143 && GET_CODE (XEXP (XEXP (x, 0), 0)) == MULT))
4144 return gen_lowpart (mode, XEXP (x, 0));
4146 /* A truncate of a comparison can be replaced with a subreg if
4147 STORE_FLAG_VALUE permits. This is like the previous test,
4148 but it works even if the comparison is done in a mode larger
4149 than HOST_BITS_PER_WIDE_INT. */
4150 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4151 && COMPARISON_P (XEXP (x, 0))
4152 && ((HOST_WIDE_INT) STORE_FLAG_VALUE & ~GET_MODE_MASK (mode)) == 0)
4153 return gen_lowpart (mode, XEXP (x, 0));
4155 /* Similarly, a truncate of a register whose value is a
4156 comparison can be replaced with a subreg if STORE_FLAG_VALUE
4157 permits. */
4158 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4159 && ((HOST_WIDE_INT) STORE_FLAG_VALUE & ~GET_MODE_MASK (mode)) == 0
4160 && (temp = get_last_value (XEXP (x, 0)))
4161 && COMPARISON_P (temp))
4162 return gen_lowpart (mode, XEXP (x, 0));
4164 break;
4166 case FLOAT_TRUNCATE:
4167 /* (float_truncate:SF (float_extend:DF foo:SF)) = foo:SF. */
4168 if (GET_CODE (XEXP (x, 0)) == FLOAT_EXTEND
4169 && GET_MODE (XEXP (XEXP (x, 0), 0)) == mode)
4170 return XEXP (XEXP (x, 0), 0);
4172 /* (float_truncate:SF (float_truncate:DF foo:XF))
4173 = (float_truncate:SF foo:XF).
4174 This may eliminate double rounding, so it is unsafe.
4176 (float_truncate:SF (float_extend:XF foo:DF))
4177 = (float_truncate:SF foo:DF).
4179 (float_truncate:DF (float_extend:XF foo:SF))
4180 = (float_extend:SF foo:DF). */
4181 if ((GET_CODE (XEXP (x, 0)) == FLOAT_TRUNCATE
4182 && flag_unsafe_math_optimizations)
4183 || GET_CODE (XEXP (x, 0)) == FLOAT_EXTEND)
4184 return simplify_gen_unary (GET_MODE_SIZE (GET_MODE (XEXP (XEXP (x, 0),
4185 0)))
4186 > GET_MODE_SIZE (mode)
4187 ? FLOAT_TRUNCATE : FLOAT_EXTEND,
4188 mode,
4189 XEXP (XEXP (x, 0), 0), mode);
4191 /* (float_truncate (float x)) is (float x) */
4192 if (GET_CODE (XEXP (x, 0)) == FLOAT
4193 && (flag_unsafe_math_optimizations
4194 || ((unsigned)significand_size (GET_MODE (XEXP (x, 0)))
4195 >= (GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (x, 0), 0)))
4196 - num_sign_bit_copies (XEXP (XEXP (x, 0), 0),
4197 GET_MODE (XEXP (XEXP (x, 0), 0)))))))
4198 return simplify_gen_unary (FLOAT, mode,
4199 XEXP (XEXP (x, 0), 0),
4200 GET_MODE (XEXP (XEXP (x, 0), 0)));
4202 /* (float_truncate:SF (OP:DF (float_extend:DF foo:sf))) is
4203 (OP:SF foo:SF) if OP is NEG or ABS. */
4204 if ((GET_CODE (XEXP (x, 0)) == ABS
4205 || GET_CODE (XEXP (x, 0)) == NEG)
4206 && GET_CODE (XEXP (XEXP (x, 0), 0)) == FLOAT_EXTEND
4207 && GET_MODE (XEXP (XEXP (XEXP (x, 0), 0), 0)) == mode)
4208 return simplify_gen_unary (GET_CODE (XEXP (x, 0)), mode,
4209 XEXP (XEXP (XEXP (x, 0), 0), 0), mode);
4211 /* (float_truncate:SF (subreg:DF (float_truncate:SF X) 0))
4212 is (float_truncate:SF x). */
4213 if (GET_CODE (XEXP (x, 0)) == SUBREG
4214 && subreg_lowpart_p (XEXP (x, 0))
4215 && GET_CODE (SUBREG_REG (XEXP (x, 0))) == FLOAT_TRUNCATE)
4216 return SUBREG_REG (XEXP (x, 0));
4217 break;
4218 case FLOAT_EXTEND:
4219 /* (float_extend (float_extend x)) is (float_extend x)
4221 (float_extend (float x)) is (float x) assuming that double
4222 rounding can't happen.
4224 if (GET_CODE (XEXP (x, 0)) == FLOAT_EXTEND
4225 || (GET_CODE (XEXP (x, 0)) == FLOAT
4226 && ((unsigned)significand_size (GET_MODE (XEXP (x, 0)))
4227 >= (GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (x, 0), 0)))
4228 - num_sign_bit_copies (XEXP (XEXP (x, 0), 0),
4229 GET_MODE (XEXP (XEXP (x, 0), 0)))))))
4230 return simplify_gen_unary (GET_CODE (XEXP (x, 0)), mode,
4231 XEXP (XEXP (x, 0), 0),
4232 GET_MODE (XEXP (XEXP (x, 0), 0)));
4234 break;
4235 #ifdef HAVE_cc0
4236 case COMPARE:
4237 /* Convert (compare FOO (const_int 0)) to FOO unless we aren't
4238 using cc0, in which case we want to leave it as a COMPARE
4239 so we can distinguish it from a register-register-copy. */
4240 if (XEXP (x, 1) == const0_rtx)
4241 return XEXP (x, 0);
4243 /* x - 0 is the same as x unless x's mode has signed zeros and
4244 allows rounding towards -infinity. Under those conditions,
4245 0 - 0 is -0. */
4246 if (!(HONOR_SIGNED_ZEROS (GET_MODE (XEXP (x, 0)))
4247 && HONOR_SIGN_DEPENDENT_ROUNDING (GET_MODE (XEXP (x, 0))))
4248 && XEXP (x, 1) == CONST0_RTX (GET_MODE (XEXP (x, 0))))
4249 return XEXP (x, 0);
4250 break;
4251 #endif
4253 case CONST:
4254 /* (const (const X)) can become (const X). Do it this way rather than
4255 returning the inner CONST since CONST can be shared with a
4256 REG_EQUAL note. */
4257 if (GET_CODE (XEXP (x, 0)) == CONST)
4258 SUBST (XEXP (x, 0), XEXP (XEXP (x, 0), 0));
4259 break;
4261 #ifdef HAVE_lo_sum
4262 case LO_SUM:
4263 /* Convert (lo_sum (high FOO) FOO) to FOO. This is necessary so we
4264 can add in an offset. find_split_point will split this address up
4265 again if it doesn't match. */
4266 if (GET_CODE (XEXP (x, 0)) == HIGH
4267 && rtx_equal_p (XEXP (XEXP (x, 0), 0), XEXP (x, 1)))
4268 return XEXP (x, 1);
4269 break;
4270 #endif
4272 case PLUS:
4273 /* Canonicalize (plus (mult (neg B) C) A) to (minus A (mult B C)).
4275 if (GET_CODE (XEXP (x, 0)) == MULT
4276 && GET_CODE (XEXP (XEXP (x, 0), 0)) == NEG)
4278 rtx in1, in2;
4280 in1 = XEXP (XEXP (XEXP (x, 0), 0), 0);
4281 in2 = XEXP (XEXP (x, 0), 1);
4282 return gen_binary (MINUS, mode, XEXP (x, 1),
4283 gen_binary (MULT, mode, in1, in2));
4286 /* If we have (plus (plus (A const) B)), associate it so that CONST is
4287 outermost. That's because that's the way indexed addresses are
4288 supposed to appear. This code used to check many more cases, but
4289 they are now checked elsewhere. */
4290 if (GET_CODE (XEXP (x, 0)) == PLUS
4291 && CONSTANT_ADDRESS_P (XEXP (XEXP (x, 0), 1)))
4292 return gen_binary (PLUS, mode,
4293 gen_binary (PLUS, mode, XEXP (XEXP (x, 0), 0),
4294 XEXP (x, 1)),
4295 XEXP (XEXP (x, 0), 1));
4297 /* (plus (xor (and <foo> (const_int pow2 - 1)) <c>) <-c>)
4298 when c is (const_int (pow2 + 1) / 2) is a sign extension of a
4299 bit-field and can be replaced by either a sign_extend or a
4300 sign_extract. The `and' may be a zero_extend and the two
4301 <c>, -<c> constants may be reversed. */
4302 if (GET_CODE (XEXP (x, 0)) == XOR
4303 && GET_CODE (XEXP (x, 1)) == CONST_INT
4304 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
4305 && INTVAL (XEXP (x, 1)) == -INTVAL (XEXP (XEXP (x, 0), 1))
4306 && ((i = exact_log2 (INTVAL (XEXP (XEXP (x, 0), 1)))) >= 0
4307 || (i = exact_log2 (INTVAL (XEXP (x, 1)))) >= 0)
4308 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4309 && ((GET_CODE (XEXP (XEXP (x, 0), 0)) == AND
4310 && GET_CODE (XEXP (XEXP (XEXP (x, 0), 0), 1)) == CONST_INT
4311 && (INTVAL (XEXP (XEXP (XEXP (x, 0), 0), 1))
4312 == ((HOST_WIDE_INT) 1 << (i + 1)) - 1))
4313 || (GET_CODE (XEXP (XEXP (x, 0), 0)) == ZERO_EXTEND
4314 && (GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (XEXP (x, 0), 0), 0)))
4315 == (unsigned int) i + 1))))
4316 return simplify_shift_const
4317 (NULL_RTX, ASHIFTRT, mode,
4318 simplify_shift_const (NULL_RTX, ASHIFT, mode,
4319 XEXP (XEXP (XEXP (x, 0), 0), 0),
4320 GET_MODE_BITSIZE (mode) - (i + 1)),
4321 GET_MODE_BITSIZE (mode) - (i + 1));
4323 /* (plus (comparison A B) C) can become (neg (rev-comp A B)) if
4324 C is 1 and STORE_FLAG_VALUE is -1 or if C is -1 and STORE_FLAG_VALUE
4325 is 1. This produces better code than the alternative immediately
4326 below. */
4327 if (COMPARISON_P (XEXP (x, 0))
4328 && ((STORE_FLAG_VALUE == -1 && XEXP (x, 1) == const1_rtx)
4329 || (STORE_FLAG_VALUE == 1 && XEXP (x, 1) == constm1_rtx))
4330 && (reversed = reversed_comparison (XEXP (x, 0), mode,
4331 XEXP (XEXP (x, 0), 0),
4332 XEXP (XEXP (x, 0), 1))))
4333 return
4334 simplify_gen_unary (NEG, mode, reversed, mode);
4336 /* If only the low-order bit of X is possibly nonzero, (plus x -1)
4337 can become (ashiftrt (ashift (xor x 1) C) C) where C is
4338 the bitsize of the mode - 1. This allows simplification of
4339 "a = (b & 8) == 0;" */
4340 if (XEXP (x, 1) == constm1_rtx
4341 && !REG_P (XEXP (x, 0))
4342 && ! (GET_CODE (XEXP (x, 0)) == SUBREG
4343 && REG_P (SUBREG_REG (XEXP (x, 0))))
4344 && nonzero_bits (XEXP (x, 0), mode) == 1)
4345 return simplify_shift_const (NULL_RTX, ASHIFTRT, mode,
4346 simplify_shift_const (NULL_RTX, ASHIFT, mode,
4347 gen_rtx_XOR (mode, XEXP (x, 0), const1_rtx),
4348 GET_MODE_BITSIZE (mode) - 1),
4349 GET_MODE_BITSIZE (mode) - 1);
4351 /* If we are adding two things that have no bits in common, convert
4352 the addition into an IOR. This will often be further simplified,
4353 for example in cases like ((a & 1) + (a & 2)), which can
4354 become a & 3. */
4356 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4357 && (nonzero_bits (XEXP (x, 0), mode)
4358 & nonzero_bits (XEXP (x, 1), mode)) == 0)
4360 /* Try to simplify the expression further. */
4361 rtx tor = gen_binary (IOR, mode, XEXP (x, 0), XEXP (x, 1));
4362 temp = combine_simplify_rtx (tor, mode, in_dest);
4364 /* If we could, great. If not, do not go ahead with the IOR
4365 replacement, since PLUS appears in many special purpose
4366 address arithmetic instructions. */
4367 if (GET_CODE (temp) != CLOBBER && temp != tor)
4368 return temp;
4370 break;
4372 case MINUS:
4373 /* If STORE_FLAG_VALUE is 1, (minus 1 (comparison foo bar)) can be done
4374 by reversing the comparison code if valid. */
4375 if (STORE_FLAG_VALUE == 1
4376 && XEXP (x, 0) == const1_rtx
4377 && COMPARISON_P (XEXP (x, 1))
4378 && (reversed = reversed_comparison (XEXP (x, 1), mode,
4379 XEXP (XEXP (x, 1), 0),
4380 XEXP (XEXP (x, 1), 1))))
4381 return reversed;
4383 /* (minus <foo> (and <foo> (const_int -pow2))) becomes
4384 (and <foo> (const_int pow2-1)) */
4385 if (GET_CODE (XEXP (x, 1)) == AND
4386 && GET_CODE (XEXP (XEXP (x, 1), 1)) == CONST_INT
4387 && exact_log2 (-INTVAL (XEXP (XEXP (x, 1), 1))) >= 0
4388 && rtx_equal_p (XEXP (XEXP (x, 1), 0), XEXP (x, 0)))
4389 return simplify_and_const_int (NULL_RTX, mode, XEXP (x, 0),
4390 -INTVAL (XEXP (XEXP (x, 1), 1)) - 1);
4392 /* Canonicalize (minus A (mult (neg B) C)) to (plus (mult B C) A).
4394 if (GET_CODE (XEXP (x, 1)) == MULT
4395 && GET_CODE (XEXP (XEXP (x, 1), 0)) == NEG)
4397 rtx in1, in2;
4399 in1 = XEXP (XEXP (XEXP (x, 1), 0), 0);
4400 in2 = XEXP (XEXP (x, 1), 1);
4401 return gen_binary (PLUS, mode, gen_binary (MULT, mode, in1, in2),
4402 XEXP (x, 0));
4405 /* Canonicalize (minus (neg A) (mult B C)) to
4406 (minus (mult (neg B) C) A). */
4407 if (GET_CODE (XEXP (x, 1)) == MULT
4408 && GET_CODE (XEXP (x, 0)) == NEG)
4410 rtx in1, in2;
4412 in1 = simplify_gen_unary (NEG, mode, XEXP (XEXP (x, 1), 0), mode);
4413 in2 = XEXP (XEXP (x, 1), 1);
4414 return gen_binary (MINUS, mode, gen_binary (MULT, mode, in1, in2),
4415 XEXP (XEXP (x, 0), 0));
4418 /* Canonicalize (minus A (plus B C)) to (minus (minus A B) C) for
4419 integers. */
4420 if (GET_CODE (XEXP (x, 1)) == PLUS && INTEGRAL_MODE_P (mode))
4421 return gen_binary (MINUS, mode,
4422 gen_binary (MINUS, mode, XEXP (x, 0),
4423 XEXP (XEXP (x, 1), 0)),
4424 XEXP (XEXP (x, 1), 1));
4425 break;
4427 case MULT:
4428 /* If we have (mult (plus A B) C), apply the distributive law and then
4429 the inverse distributive law to see if things simplify. This
4430 occurs mostly in addresses, often when unrolling loops. */
4432 if (GET_CODE (XEXP (x, 0)) == PLUS)
4434 x = apply_distributive_law
4435 (gen_binary (PLUS, mode,
4436 gen_binary (MULT, mode,
4437 XEXP (XEXP (x, 0), 0), XEXP (x, 1)),
4438 gen_binary (MULT, mode,
4439 XEXP (XEXP (x, 0), 1),
4440 copy_rtx (XEXP (x, 1)))));
4442 if (GET_CODE (x) != MULT)
4443 return x;
4445 /* Try simplify a*(b/c) as (a*b)/c. */
4446 if (FLOAT_MODE_P (mode) && flag_unsafe_math_optimizations
4447 && GET_CODE (XEXP (x, 0)) == DIV)
4449 rtx tem = simplify_binary_operation (MULT, mode,
4450 XEXP (XEXP (x, 0), 0),
4451 XEXP (x, 1));
4452 if (tem)
4453 return gen_binary (DIV, mode, tem, XEXP (XEXP (x, 0), 1));
4455 break;
4457 case UDIV:
4458 /* If this is a divide by a power of two, treat it as a shift if
4459 its first operand is a shift. */
4460 if (GET_CODE (XEXP (x, 1)) == CONST_INT
4461 && (i = exact_log2 (INTVAL (XEXP (x, 1)))) >= 0
4462 && (GET_CODE (XEXP (x, 0)) == ASHIFT
4463 || GET_CODE (XEXP (x, 0)) == LSHIFTRT
4464 || GET_CODE (XEXP (x, 0)) == ASHIFTRT
4465 || GET_CODE (XEXP (x, 0)) == ROTATE
4466 || GET_CODE (XEXP (x, 0)) == ROTATERT))
4467 return simplify_shift_const (NULL_RTX, LSHIFTRT, mode, XEXP (x, 0), i);
4468 break;
4470 case EQ: case NE:
4471 case GT: case GTU: case GE: case GEU:
4472 case LT: case LTU: case LE: case LEU:
4473 case UNEQ: case LTGT:
4474 case UNGT: case UNGE:
4475 case UNLT: case UNLE:
4476 case UNORDERED: case ORDERED:
4477 /* If the first operand is a condition code, we can't do anything
4478 with it. */
4479 if (GET_CODE (XEXP (x, 0)) == COMPARE
4480 || (GET_MODE_CLASS (GET_MODE (XEXP (x, 0))) != MODE_CC
4481 && ! CC0_P (XEXP (x, 0))))
4483 rtx op0 = XEXP (x, 0);
4484 rtx op1 = XEXP (x, 1);
4485 enum rtx_code new_code;
4487 if (GET_CODE (op0) == COMPARE)
4488 op1 = XEXP (op0, 1), op0 = XEXP (op0, 0);
4490 /* Simplify our comparison, if possible. */
4491 new_code = simplify_comparison (code, &op0, &op1);
4493 /* If STORE_FLAG_VALUE is 1, we can convert (ne x 0) to simply X
4494 if only the low-order bit is possibly nonzero in X (such as when
4495 X is a ZERO_EXTRACT of one bit). Similarly, we can convert EQ to
4496 (xor X 1) or (minus 1 X); we use the former. Finally, if X is
4497 known to be either 0 or -1, NE becomes a NEG and EQ becomes
4498 (plus X 1).
4500 Remove any ZERO_EXTRACT we made when thinking this was a
4501 comparison. It may now be simpler to use, e.g., an AND. If a
4502 ZERO_EXTRACT is indeed appropriate, it will be placed back by
4503 the call to make_compound_operation in the SET case. */
4505 if (STORE_FLAG_VALUE == 1
4506 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
4507 && op1 == const0_rtx
4508 && mode == GET_MODE (op0)
4509 && nonzero_bits (op0, mode) == 1)
4510 return gen_lowpart (mode,
4511 expand_compound_operation (op0));
4513 else if (STORE_FLAG_VALUE == 1
4514 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
4515 && op1 == const0_rtx
4516 && mode == GET_MODE (op0)
4517 && (num_sign_bit_copies (op0, mode)
4518 == GET_MODE_BITSIZE (mode)))
4520 op0 = expand_compound_operation (op0);
4521 return simplify_gen_unary (NEG, mode,
4522 gen_lowpart (mode, op0),
4523 mode);
4526 else if (STORE_FLAG_VALUE == 1
4527 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
4528 && op1 == const0_rtx
4529 && mode == GET_MODE (op0)
4530 && nonzero_bits (op0, mode) == 1)
4532 op0 = expand_compound_operation (op0);
4533 return gen_binary (XOR, mode,
4534 gen_lowpart (mode, op0),
4535 const1_rtx);
4538 else if (STORE_FLAG_VALUE == 1
4539 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
4540 && op1 == const0_rtx
4541 && mode == GET_MODE (op0)
4542 && (num_sign_bit_copies (op0, mode)
4543 == GET_MODE_BITSIZE (mode)))
4545 op0 = expand_compound_operation (op0);
4546 return plus_constant (gen_lowpart (mode, op0), 1);
4549 /* If STORE_FLAG_VALUE is -1, we have cases similar to
4550 those above. */
4551 if (STORE_FLAG_VALUE == -1
4552 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
4553 && op1 == const0_rtx
4554 && (num_sign_bit_copies (op0, mode)
4555 == GET_MODE_BITSIZE (mode)))
4556 return gen_lowpart (mode,
4557 expand_compound_operation (op0));
4559 else if (STORE_FLAG_VALUE == -1
4560 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
4561 && op1 == const0_rtx
4562 && mode == GET_MODE (op0)
4563 && nonzero_bits (op0, mode) == 1)
4565 op0 = expand_compound_operation (op0);
4566 return simplify_gen_unary (NEG, mode,
4567 gen_lowpart (mode, op0),
4568 mode);
4571 else if (STORE_FLAG_VALUE == -1
4572 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
4573 && op1 == const0_rtx
4574 && mode == GET_MODE (op0)
4575 && (num_sign_bit_copies (op0, mode)
4576 == GET_MODE_BITSIZE (mode)))
4578 op0 = expand_compound_operation (op0);
4579 return simplify_gen_unary (NOT, mode,
4580 gen_lowpart (mode, op0),
4581 mode);
4584 /* If X is 0/1, (eq X 0) is X-1. */
4585 else if (STORE_FLAG_VALUE == -1
4586 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
4587 && op1 == const0_rtx
4588 && mode == GET_MODE (op0)
4589 && nonzero_bits (op0, mode) == 1)
4591 op0 = expand_compound_operation (op0);
4592 return plus_constant (gen_lowpart (mode, op0), -1);
4595 /* If STORE_FLAG_VALUE says to just test the sign bit and X has just
4596 one bit that might be nonzero, we can convert (ne x 0) to
4597 (ashift x c) where C puts the bit in the sign bit. Remove any
4598 AND with STORE_FLAG_VALUE when we are done, since we are only
4599 going to test the sign bit. */
4600 if (new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
4601 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4602 && ((STORE_FLAG_VALUE & GET_MODE_MASK (mode))
4603 == (unsigned HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE (mode) - 1))
4604 && op1 == const0_rtx
4605 && mode == GET_MODE (op0)
4606 && (i = exact_log2 (nonzero_bits (op0, mode))) >= 0)
4608 x = simplify_shift_const (NULL_RTX, ASHIFT, mode,
4609 expand_compound_operation (op0),
4610 GET_MODE_BITSIZE (mode) - 1 - i);
4611 if (GET_CODE (x) == AND && XEXP (x, 1) == const_true_rtx)
4612 return XEXP (x, 0);
4613 else
4614 return x;
4617 /* If the code changed, return a whole new comparison. */
4618 if (new_code != code)
4619 return gen_rtx_fmt_ee (new_code, mode, op0, op1);
4621 /* Otherwise, keep this operation, but maybe change its operands.
4622 This also converts (ne (compare FOO BAR) 0) to (ne FOO BAR). */
4623 SUBST (XEXP (x, 0), op0);
4624 SUBST (XEXP (x, 1), op1);
4626 break;
4628 case IF_THEN_ELSE:
4629 return simplify_if_then_else (x);
4631 case ZERO_EXTRACT:
4632 case SIGN_EXTRACT:
4633 case ZERO_EXTEND:
4634 case SIGN_EXTEND:
4635 /* If we are processing SET_DEST, we are done. */
4636 if (in_dest)
4637 return x;
4639 return expand_compound_operation (x);
4641 case SET:
4642 return simplify_set (x);
4644 case AND:
4645 case IOR:
4646 case XOR:
4647 return simplify_logical (x);
4649 case ABS:
4650 /* (abs (neg <foo>)) -> (abs <foo>) */
4651 if (GET_CODE (XEXP (x, 0)) == NEG)
4652 SUBST (XEXP (x, 0), XEXP (XEXP (x, 0), 0));
4654 /* If the mode of the operand is VOIDmode (i.e. if it is ASM_OPERANDS),
4655 do nothing. */
4656 if (GET_MODE (XEXP (x, 0)) == VOIDmode)
4657 break;
4659 /* If operand is something known to be positive, ignore the ABS. */
4660 if (GET_CODE (XEXP (x, 0)) == FFS || GET_CODE (XEXP (x, 0)) == ABS
4661 || ((GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))
4662 <= HOST_BITS_PER_WIDE_INT)
4663 && ((nonzero_bits (XEXP (x, 0), GET_MODE (XEXP (x, 0)))
4664 & ((HOST_WIDE_INT) 1
4665 << (GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0))) - 1)))
4666 == 0)))
4667 return XEXP (x, 0);
4669 /* If operand is known to be only -1 or 0, convert ABS to NEG. */
4670 if (num_sign_bit_copies (XEXP (x, 0), mode) == GET_MODE_BITSIZE (mode))
4671 return gen_rtx_NEG (mode, XEXP (x, 0));
4673 break;
4675 case FFS:
4676 /* (ffs (*_extend <X>)) = (ffs <X>) */
4677 if (GET_CODE (XEXP (x, 0)) == SIGN_EXTEND
4678 || GET_CODE (XEXP (x, 0)) == ZERO_EXTEND)
4679 SUBST (XEXP (x, 0), XEXP (XEXP (x, 0), 0));
4680 break;
4682 case POPCOUNT:
4683 case PARITY:
4684 /* (pop* (zero_extend <X>)) = (pop* <X>) */
4685 if (GET_CODE (XEXP (x, 0)) == ZERO_EXTEND)
4686 SUBST (XEXP (x, 0), XEXP (XEXP (x, 0), 0));
4687 break;
4689 case FLOAT:
4690 /* (float (sign_extend <X>)) = (float <X>). */
4691 if (GET_CODE (XEXP (x, 0)) == SIGN_EXTEND)
4692 SUBST (XEXP (x, 0), XEXP (XEXP (x, 0), 0));
4693 break;
4695 case ASHIFT:
4696 case LSHIFTRT:
4697 case ASHIFTRT:
4698 case ROTATE:
4699 case ROTATERT:
4700 /* If this is a shift by a constant amount, simplify it. */
4701 if (GET_CODE (XEXP (x, 1)) == CONST_INT)
4702 return simplify_shift_const (x, code, mode, XEXP (x, 0),
4703 INTVAL (XEXP (x, 1)));
4705 else if (SHIFT_COUNT_TRUNCATED && !REG_P (XEXP (x, 1)))
4706 SUBST (XEXP (x, 1),
4707 force_to_mode (XEXP (x, 1), GET_MODE (XEXP (x, 1)),
4708 ((HOST_WIDE_INT) 1
4709 << exact_log2 (GET_MODE_BITSIZE (GET_MODE (x))))
4710 - 1,
4711 NULL_RTX, 0));
4712 break;
4714 case VEC_SELECT:
4716 rtx op0 = XEXP (x, 0);
4717 rtx op1 = XEXP (x, 1);
4718 int len;
4720 gcc_assert (GET_CODE (op1) == PARALLEL);
4721 len = XVECLEN (op1, 0);
4722 if (len == 1
4723 && GET_CODE (XVECEXP (op1, 0, 0)) == CONST_INT
4724 && GET_CODE (op0) == VEC_CONCAT)
4726 int offset = INTVAL (XVECEXP (op1, 0, 0)) * GET_MODE_SIZE (GET_MODE (x));
4728 /* Try to find the element in the VEC_CONCAT. */
4729 for (;;)
4731 if (GET_MODE (op0) == GET_MODE (x))
4732 return op0;
4733 if (GET_CODE (op0) == VEC_CONCAT)
4735 HOST_WIDE_INT op0_size = GET_MODE_SIZE (GET_MODE (XEXP (op0, 0)));
4736 if (op0_size < offset)
4737 op0 = XEXP (op0, 0);
4738 else
4740 offset -= op0_size;
4741 op0 = XEXP (op0, 1);
4744 else
4745 break;
4750 break;
4752 default:
4753 break;
4756 return x;
4759 /* Simplify X, an IF_THEN_ELSE expression. Return the new expression. */
4761 static rtx
4762 simplify_if_then_else (rtx x)
4764 enum machine_mode mode = GET_MODE (x);
4765 rtx cond = XEXP (x, 0);
4766 rtx true_rtx = XEXP (x, 1);
4767 rtx false_rtx = XEXP (x, 2);
4768 enum rtx_code true_code = GET_CODE (cond);
4769 int comparison_p = COMPARISON_P (cond);
4770 rtx temp;
4771 int i;
4772 enum rtx_code false_code;
4773 rtx reversed;
4775 /* Simplify storing of the truth value. */
4776 if (comparison_p && true_rtx == const_true_rtx && false_rtx == const0_rtx)
4777 return gen_binary (true_code, mode, XEXP (cond, 0), XEXP (cond, 1));
4779 /* Also when the truth value has to be reversed. */
4780 if (comparison_p
4781 && true_rtx == const0_rtx && false_rtx == const_true_rtx
4782 && (reversed = reversed_comparison (cond, mode, XEXP (cond, 0),
4783 XEXP (cond, 1))))
4784 return reversed;
4786 /* Sometimes we can simplify the arm of an IF_THEN_ELSE if a register used
4787 in it is being compared against certain values. Get the true and false
4788 comparisons and see if that says anything about the value of each arm. */
4790 if (comparison_p
4791 && ((false_code = combine_reversed_comparison_code (cond))
4792 != UNKNOWN)
4793 && REG_P (XEXP (cond, 0)))
4795 HOST_WIDE_INT nzb;
4796 rtx from = XEXP (cond, 0);
4797 rtx true_val = XEXP (cond, 1);
4798 rtx false_val = true_val;
4799 int swapped = 0;
4801 /* If FALSE_CODE is EQ, swap the codes and arms. */
4803 if (false_code == EQ)
4805 swapped = 1, true_code = EQ, false_code = NE;
4806 temp = true_rtx, true_rtx = false_rtx, false_rtx = temp;
4809 /* If we are comparing against zero and the expression being tested has
4810 only a single bit that might be nonzero, that is its value when it is
4811 not equal to zero. Similarly if it is known to be -1 or 0. */
4813 if (true_code == EQ && true_val == const0_rtx
4814 && exact_log2 (nzb = nonzero_bits (from, GET_MODE (from))) >= 0)
4815 false_code = EQ, false_val = GEN_INT (nzb);
4816 else if (true_code == EQ && true_val == const0_rtx
4817 && (num_sign_bit_copies (from, GET_MODE (from))
4818 == GET_MODE_BITSIZE (GET_MODE (from))))
4819 false_code = EQ, false_val = constm1_rtx;
4821 /* Now simplify an arm if we know the value of the register in the
4822 branch and it is used in the arm. Be careful due to the potential
4823 of locally-shared RTL. */
4825 if (reg_mentioned_p (from, true_rtx))
4826 true_rtx = subst (known_cond (copy_rtx (true_rtx), true_code,
4827 from, true_val),
4828 pc_rtx, pc_rtx, 0, 0);
4829 if (reg_mentioned_p (from, false_rtx))
4830 false_rtx = subst (known_cond (copy_rtx (false_rtx), false_code,
4831 from, false_val),
4832 pc_rtx, pc_rtx, 0, 0);
4834 SUBST (XEXP (x, 1), swapped ? false_rtx : true_rtx);
4835 SUBST (XEXP (x, 2), swapped ? true_rtx : false_rtx);
4837 true_rtx = XEXP (x, 1);
4838 false_rtx = XEXP (x, 2);
4839 true_code = GET_CODE (cond);
4842 /* If we have (if_then_else FOO (pc) (label_ref BAR)) and FOO can be
4843 reversed, do so to avoid needing two sets of patterns for
4844 subtract-and-branch insns. Similarly if we have a constant in the true
4845 arm, the false arm is the same as the first operand of the comparison, or
4846 the false arm is more complicated than the true arm. */
4848 if (comparison_p
4849 && combine_reversed_comparison_code (cond) != UNKNOWN
4850 && (true_rtx == pc_rtx
4851 || (CONSTANT_P (true_rtx)
4852 && GET_CODE (false_rtx) != CONST_INT && false_rtx != pc_rtx)
4853 || true_rtx == const0_rtx
4854 || (OBJECT_P (true_rtx) && !OBJECT_P (false_rtx))
4855 || (GET_CODE (true_rtx) == SUBREG && OBJECT_P (SUBREG_REG (true_rtx))
4856 && !OBJECT_P (false_rtx))
4857 || reg_mentioned_p (true_rtx, false_rtx)
4858 || rtx_equal_p (false_rtx, XEXP (cond, 0))))
4860 true_code = reversed_comparison_code (cond, NULL);
4861 SUBST (XEXP (x, 0),
4862 reversed_comparison (cond, GET_MODE (cond), XEXP (cond, 0),
4863 XEXP (cond, 1)));
4865 SUBST (XEXP (x, 1), false_rtx);
4866 SUBST (XEXP (x, 2), true_rtx);
4868 temp = true_rtx, true_rtx = false_rtx, false_rtx = temp;
4869 cond = XEXP (x, 0);
4871 /* It is possible that the conditional has been simplified out. */
4872 true_code = GET_CODE (cond);
4873 comparison_p = COMPARISON_P (cond);
4876 /* If the two arms are identical, we don't need the comparison. */
4878 if (rtx_equal_p (true_rtx, false_rtx) && ! side_effects_p (cond))
4879 return true_rtx;
4881 /* Convert a == b ? b : a to "a". */
4882 if (true_code == EQ && ! side_effects_p (cond)
4883 && !HONOR_NANS (mode)
4884 && rtx_equal_p (XEXP (cond, 0), false_rtx)
4885 && rtx_equal_p (XEXP (cond, 1), true_rtx))
4886 return false_rtx;
4887 else if (true_code == NE && ! side_effects_p (cond)
4888 && !HONOR_NANS (mode)
4889 && rtx_equal_p (XEXP (cond, 0), true_rtx)
4890 && rtx_equal_p (XEXP (cond, 1), false_rtx))
4891 return true_rtx;
4893 /* Look for cases where we have (abs x) or (neg (abs X)). */
4895 if (GET_MODE_CLASS (mode) == MODE_INT
4896 && GET_CODE (false_rtx) == NEG
4897 && rtx_equal_p (true_rtx, XEXP (false_rtx, 0))
4898 && comparison_p
4899 && rtx_equal_p (true_rtx, XEXP (cond, 0))
4900 && ! side_effects_p (true_rtx))
4901 switch (true_code)
4903 case GT:
4904 case GE:
4905 return simplify_gen_unary (ABS, mode, true_rtx, mode);
4906 case LT:
4907 case LE:
4908 return
4909 simplify_gen_unary (NEG, mode,
4910 simplify_gen_unary (ABS, mode, true_rtx, mode),
4911 mode);
4912 default:
4913 break;
4916 /* Look for MIN or MAX. */
4918 if ((! FLOAT_MODE_P (mode) || flag_unsafe_math_optimizations)
4919 && comparison_p
4920 && rtx_equal_p (XEXP (cond, 0), true_rtx)
4921 && rtx_equal_p (XEXP (cond, 1), false_rtx)
4922 && ! side_effects_p (cond))
4923 switch (true_code)
4925 case GE:
4926 case GT:
4927 return gen_binary (SMAX, mode, true_rtx, false_rtx);
4928 case LE:
4929 case LT:
4930 return gen_binary (SMIN, mode, true_rtx, false_rtx);
4931 case GEU:
4932 case GTU:
4933 return gen_binary (UMAX, mode, true_rtx, false_rtx);
4934 case LEU:
4935 case LTU:
4936 return gen_binary (UMIN, mode, true_rtx, false_rtx);
4937 default:
4938 break;
4941 /* If we have (if_then_else COND (OP Z C1) Z) and OP is an identity when its
4942 second operand is zero, this can be done as (OP Z (mult COND C2)) where
4943 C2 = C1 * STORE_FLAG_VALUE. Similarly if OP has an outer ZERO_EXTEND or
4944 SIGN_EXTEND as long as Z is already extended (so we don't destroy it).
4945 We can do this kind of thing in some cases when STORE_FLAG_VALUE is
4946 neither 1 or -1, but it isn't worth checking for. */
4948 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
4949 && comparison_p
4950 && GET_MODE_CLASS (mode) == MODE_INT
4951 && ! side_effects_p (x))
4953 rtx t = make_compound_operation (true_rtx, SET);
4954 rtx f = make_compound_operation (false_rtx, SET);
4955 rtx cond_op0 = XEXP (cond, 0);
4956 rtx cond_op1 = XEXP (cond, 1);
4957 enum rtx_code op = UNKNOWN, extend_op = UNKNOWN;
4958 enum machine_mode m = mode;
4959 rtx z = 0, c1 = NULL_RTX;
4961 if ((GET_CODE (t) == PLUS || GET_CODE (t) == MINUS
4962 || GET_CODE (t) == IOR || GET_CODE (t) == XOR
4963 || GET_CODE (t) == ASHIFT
4964 || GET_CODE (t) == LSHIFTRT || GET_CODE (t) == ASHIFTRT)
4965 && rtx_equal_p (XEXP (t, 0), f))
4966 c1 = XEXP (t, 1), op = GET_CODE (t), z = f;
4968 /* If an identity-zero op is commutative, check whether there
4969 would be a match if we swapped the operands. */
4970 else if ((GET_CODE (t) == PLUS || GET_CODE (t) == IOR
4971 || GET_CODE (t) == XOR)
4972 && rtx_equal_p (XEXP (t, 1), f))
4973 c1 = XEXP (t, 0), op = GET_CODE (t), z = f;
4974 else if (GET_CODE (t) == SIGN_EXTEND
4975 && (GET_CODE (XEXP (t, 0)) == PLUS
4976 || GET_CODE (XEXP (t, 0)) == MINUS
4977 || GET_CODE (XEXP (t, 0)) == IOR
4978 || GET_CODE (XEXP (t, 0)) == XOR
4979 || GET_CODE (XEXP (t, 0)) == ASHIFT
4980 || GET_CODE (XEXP (t, 0)) == LSHIFTRT
4981 || GET_CODE (XEXP (t, 0)) == ASHIFTRT)
4982 && GET_CODE (XEXP (XEXP (t, 0), 0)) == SUBREG
4983 && subreg_lowpart_p (XEXP (XEXP (t, 0), 0))
4984 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 0)), f)
4985 && (num_sign_bit_copies (f, GET_MODE (f))
4986 > (unsigned int)
4987 (GET_MODE_BITSIZE (mode)
4988 - GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (t, 0), 0))))))
4990 c1 = XEXP (XEXP (t, 0), 1); z = f; op = GET_CODE (XEXP (t, 0));
4991 extend_op = SIGN_EXTEND;
4992 m = GET_MODE (XEXP (t, 0));
4994 else if (GET_CODE (t) == SIGN_EXTEND
4995 && (GET_CODE (XEXP (t, 0)) == PLUS
4996 || GET_CODE (XEXP (t, 0)) == IOR
4997 || GET_CODE (XEXP (t, 0)) == XOR)
4998 && GET_CODE (XEXP (XEXP (t, 0), 1)) == SUBREG
4999 && subreg_lowpart_p (XEXP (XEXP (t, 0), 1))
5000 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 1)), f)
5001 && (num_sign_bit_copies (f, GET_MODE (f))
5002 > (unsigned int)
5003 (GET_MODE_BITSIZE (mode)
5004 - GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (t, 0), 1))))))
5006 c1 = XEXP (XEXP (t, 0), 0); z = f; op = GET_CODE (XEXP (t, 0));
5007 extend_op = SIGN_EXTEND;
5008 m = GET_MODE (XEXP (t, 0));
5010 else if (GET_CODE (t) == ZERO_EXTEND
5011 && (GET_CODE (XEXP (t, 0)) == PLUS
5012 || GET_CODE (XEXP (t, 0)) == MINUS
5013 || GET_CODE (XEXP (t, 0)) == IOR
5014 || GET_CODE (XEXP (t, 0)) == XOR
5015 || GET_CODE (XEXP (t, 0)) == ASHIFT
5016 || GET_CODE (XEXP (t, 0)) == LSHIFTRT
5017 || GET_CODE (XEXP (t, 0)) == ASHIFTRT)
5018 && GET_CODE (XEXP (XEXP (t, 0), 0)) == SUBREG
5019 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
5020 && subreg_lowpart_p (XEXP (XEXP (t, 0), 0))
5021 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 0)), f)
5022 && ((nonzero_bits (f, GET_MODE (f))
5023 & ~GET_MODE_MASK (GET_MODE (XEXP (XEXP (t, 0), 0))))
5024 == 0))
5026 c1 = XEXP (XEXP (t, 0), 1); z = f; op = GET_CODE (XEXP (t, 0));
5027 extend_op = ZERO_EXTEND;
5028 m = GET_MODE (XEXP (t, 0));
5030 else if (GET_CODE (t) == ZERO_EXTEND
5031 && (GET_CODE (XEXP (t, 0)) == PLUS
5032 || GET_CODE (XEXP (t, 0)) == IOR
5033 || GET_CODE (XEXP (t, 0)) == XOR)
5034 && GET_CODE (XEXP (XEXP (t, 0), 1)) == SUBREG
5035 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
5036 && subreg_lowpart_p (XEXP (XEXP (t, 0), 1))
5037 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 1)), f)
5038 && ((nonzero_bits (f, GET_MODE (f))
5039 & ~GET_MODE_MASK (GET_MODE (XEXP (XEXP (t, 0), 1))))
5040 == 0))
5042 c1 = XEXP (XEXP (t, 0), 0); z = f; op = GET_CODE (XEXP (t, 0));
5043 extend_op = ZERO_EXTEND;
5044 m = GET_MODE (XEXP (t, 0));
5047 if (z)
5049 temp = subst (gen_binary (true_code, m, cond_op0, cond_op1),
5050 pc_rtx, pc_rtx, 0, 0);
5051 temp = gen_binary (MULT, m, temp,
5052 gen_binary (MULT, m, c1, const_true_rtx));
5053 temp = subst (temp, pc_rtx, pc_rtx, 0, 0);
5054 temp = gen_binary (op, m, gen_lowpart (m, z), temp);
5056 if (extend_op != UNKNOWN)
5057 temp = simplify_gen_unary (extend_op, mode, temp, m);
5059 return temp;
5063 /* If we have (if_then_else (ne A 0) C1 0) and either A is known to be 0 or
5064 1 and C1 is a single bit or A is known to be 0 or -1 and C1 is the
5065 negation of a single bit, we can convert this operation to a shift. We
5066 can actually do this more generally, but it doesn't seem worth it. */
5068 if (true_code == NE && XEXP (cond, 1) == const0_rtx
5069 && false_rtx == const0_rtx && GET_CODE (true_rtx) == CONST_INT
5070 && ((1 == nonzero_bits (XEXP (cond, 0), mode)
5071 && (i = exact_log2 (INTVAL (true_rtx))) >= 0)
5072 || ((num_sign_bit_copies (XEXP (cond, 0), mode)
5073 == GET_MODE_BITSIZE (mode))
5074 && (i = exact_log2 (-INTVAL (true_rtx))) >= 0)))
5075 return
5076 simplify_shift_const (NULL_RTX, ASHIFT, mode,
5077 gen_lowpart (mode, XEXP (cond, 0)), i);
5079 /* (IF_THEN_ELSE (NE REG 0) (0) (8)) is REG for nonzero_bits (REG) == 8. */
5080 if (true_code == NE && XEXP (cond, 1) == const0_rtx
5081 && false_rtx == const0_rtx && GET_CODE (true_rtx) == CONST_INT
5082 && GET_MODE (XEXP (cond, 0)) == mode
5083 && (INTVAL (true_rtx) & GET_MODE_MASK (mode))
5084 == nonzero_bits (XEXP (cond, 0), mode)
5085 && (i = exact_log2 (INTVAL (true_rtx) & GET_MODE_MASK (mode))) >= 0)
5086 return XEXP (cond, 0);
5088 return x;
5091 /* Simplify X, a SET expression. Return the new expression. */
5093 static rtx
5094 simplify_set (rtx x)
5096 rtx src = SET_SRC (x);
5097 rtx dest = SET_DEST (x);
5098 enum machine_mode mode
5099 = GET_MODE (src) != VOIDmode ? GET_MODE (src) : GET_MODE (dest);
5100 rtx other_insn;
5101 rtx *cc_use;
5103 /* (set (pc) (return)) gets written as (return). */
5104 if (GET_CODE (dest) == PC && GET_CODE (src) == RETURN)
5105 return src;
5107 /* Now that we know for sure which bits of SRC we are using, see if we can
5108 simplify the expression for the object knowing that we only need the
5109 low-order bits. */
5111 if (GET_MODE_CLASS (mode) == MODE_INT
5112 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
5114 src = force_to_mode (src, mode, ~(HOST_WIDE_INT) 0, NULL_RTX, 0);
5115 SUBST (SET_SRC (x), src);
5118 /* If we are setting CC0 or if the source is a COMPARE, look for the use of
5119 the comparison result and try to simplify it unless we already have used
5120 undobuf.other_insn. */
5121 if ((GET_MODE_CLASS (mode) == MODE_CC
5122 || GET_CODE (src) == COMPARE
5123 || CC0_P (dest))
5124 && (cc_use = find_single_use (dest, subst_insn, &other_insn)) != 0
5125 && (undobuf.other_insn == 0 || other_insn == undobuf.other_insn)
5126 && COMPARISON_P (*cc_use)
5127 && rtx_equal_p (XEXP (*cc_use, 0), dest))
5129 enum rtx_code old_code = GET_CODE (*cc_use);
5130 enum rtx_code new_code;
5131 rtx op0, op1, tmp;
5132 int other_changed = 0;
5133 enum machine_mode compare_mode = GET_MODE (dest);
5135 if (GET_CODE (src) == COMPARE)
5136 op0 = XEXP (src, 0), op1 = XEXP (src, 1);
5137 else
5138 op0 = src, op1 = CONST0_RTX (GET_MODE (src));
5140 tmp = simplify_relational_operation (old_code, compare_mode, VOIDmode,
5141 op0, op1);
5142 if (!tmp)
5143 new_code = old_code;
5144 else if (!CONSTANT_P (tmp))
5146 new_code = GET_CODE (tmp);
5147 op0 = XEXP (tmp, 0);
5148 op1 = XEXP (tmp, 1);
5150 else
5152 rtx pat = PATTERN (other_insn);
5153 undobuf.other_insn = other_insn;
5154 SUBST (*cc_use, tmp);
5156 /* Attempt to simplify CC user. */
5157 if (GET_CODE (pat) == SET)
5159 rtx new = simplify_rtx (SET_SRC (pat));
5160 if (new != NULL_RTX)
5161 SUBST (SET_SRC (pat), new);
5164 /* Convert X into a no-op move. */
5165 SUBST (SET_DEST (x), pc_rtx);
5166 SUBST (SET_SRC (x), pc_rtx);
5167 return x;
5170 /* Simplify our comparison, if possible. */
5171 new_code = simplify_comparison (new_code, &op0, &op1);
5173 #ifdef SELECT_CC_MODE
5174 /* If this machine has CC modes other than CCmode, check to see if we
5175 need to use a different CC mode here. */
5176 if (GET_MODE_CLASS (GET_MODE (op0)) == MODE_CC)
5177 compare_mode = GET_MODE (op0);
5178 else
5179 compare_mode = SELECT_CC_MODE (new_code, op0, op1);
5181 #ifndef HAVE_cc0
5182 /* If the mode changed, we have to change SET_DEST, the mode in the
5183 compare, and the mode in the place SET_DEST is used. If SET_DEST is
5184 a hard register, just build new versions with the proper mode. If it
5185 is a pseudo, we lose unless it is only time we set the pseudo, in
5186 which case we can safely change its mode. */
5187 if (compare_mode != GET_MODE (dest))
5189 unsigned int regno = REGNO (dest);
5190 rtx new_dest = gen_rtx_REG (compare_mode, regno);
5192 if (regno < FIRST_PSEUDO_REGISTER
5193 || (REG_N_SETS (regno) == 1 && ! REG_USERVAR_P (dest)))
5195 if (regno >= FIRST_PSEUDO_REGISTER)
5196 SUBST (regno_reg_rtx[regno], new_dest);
5198 SUBST (SET_DEST (x), new_dest);
5199 SUBST (XEXP (*cc_use, 0), new_dest);
5200 other_changed = 1;
5202 dest = new_dest;
5205 #endif /* cc0 */
5206 #endif /* SELECT_CC_MODE */
5208 /* If the code changed, we have to build a new comparison in
5209 undobuf.other_insn. */
5210 if (new_code != old_code)
5212 int other_changed_previously = other_changed;
5213 unsigned HOST_WIDE_INT mask;
5215 SUBST (*cc_use, gen_rtx_fmt_ee (new_code, GET_MODE (*cc_use),
5216 dest, const0_rtx));
5217 other_changed = 1;
5219 /* If the only change we made was to change an EQ into an NE or
5220 vice versa, OP0 has only one bit that might be nonzero, and OP1
5221 is zero, check if changing the user of the condition code will
5222 produce a valid insn. If it won't, we can keep the original code
5223 in that insn by surrounding our operation with an XOR. */
5225 if (((old_code == NE && new_code == EQ)
5226 || (old_code == EQ && new_code == NE))
5227 && ! other_changed_previously && op1 == const0_rtx
5228 && GET_MODE_BITSIZE (GET_MODE (op0)) <= HOST_BITS_PER_WIDE_INT
5229 && exact_log2 (mask = nonzero_bits (op0, GET_MODE (op0))) >= 0)
5231 rtx pat = PATTERN (other_insn), note = 0;
5233 if ((recog_for_combine (&pat, other_insn, &note) < 0
5234 && ! check_asm_operands (pat)))
5236 PUT_CODE (*cc_use, old_code);
5237 other_changed = 0;
5239 op0 = gen_binary (XOR, GET_MODE (op0), op0, GEN_INT (mask));
5244 if (other_changed)
5245 undobuf.other_insn = other_insn;
5247 #ifdef HAVE_cc0
5248 /* If we are now comparing against zero, change our source if
5249 needed. If we do not use cc0, we always have a COMPARE. */
5250 if (op1 == const0_rtx && dest == cc0_rtx)
5252 SUBST (SET_SRC (x), op0);
5253 src = op0;
5255 else
5256 #endif
5258 /* Otherwise, if we didn't previously have a COMPARE in the
5259 correct mode, we need one. */
5260 if (GET_CODE (src) != COMPARE || GET_MODE (src) != compare_mode)
5262 SUBST (SET_SRC (x), gen_rtx_COMPARE (compare_mode, op0, op1));
5263 src = SET_SRC (x);
5265 else
5267 /* Otherwise, update the COMPARE if needed. */
5268 SUBST (XEXP (src, 0), op0);
5269 SUBST (XEXP (src, 1), op1);
5272 else
5274 /* Get SET_SRC in a form where we have placed back any
5275 compound expressions. Then do the checks below. */
5276 src = make_compound_operation (src, SET);
5277 SUBST (SET_SRC (x), src);
5280 /* If we have (set x (subreg:m1 (op:m2 ...) 0)) with OP being some operation,
5281 and X being a REG or (subreg (reg)), we may be able to convert this to
5282 (set (subreg:m2 x) (op)).
5284 We can always do this if M1 is narrower than M2 because that means that
5285 we only care about the low bits of the result.
5287 However, on machines without WORD_REGISTER_OPERATIONS defined, we cannot
5288 perform a narrower operation than requested since the high-order bits will
5289 be undefined. On machine where it is defined, this transformation is safe
5290 as long as M1 and M2 have the same number of words. */
5292 if (GET_CODE (src) == SUBREG && subreg_lowpart_p (src)
5293 && !OBJECT_P (SUBREG_REG (src))
5294 && (((GET_MODE_SIZE (GET_MODE (src)) + (UNITS_PER_WORD - 1))
5295 / UNITS_PER_WORD)
5296 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (src)))
5297 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD))
5298 #ifndef WORD_REGISTER_OPERATIONS
5299 && (GET_MODE_SIZE (GET_MODE (src))
5300 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (src))))
5301 #endif
5302 #ifdef CANNOT_CHANGE_MODE_CLASS
5303 && ! (REG_P (dest) && REGNO (dest) < FIRST_PSEUDO_REGISTER
5304 && REG_CANNOT_CHANGE_MODE_P (REGNO (dest),
5305 GET_MODE (SUBREG_REG (src)),
5306 GET_MODE (src)))
5307 #endif
5308 && (REG_P (dest)
5309 || (GET_CODE (dest) == SUBREG
5310 && REG_P (SUBREG_REG (dest)))))
5312 SUBST (SET_DEST (x),
5313 gen_lowpart (GET_MODE (SUBREG_REG (src)),
5314 dest));
5315 SUBST (SET_SRC (x), SUBREG_REG (src));
5317 src = SET_SRC (x), dest = SET_DEST (x);
5320 #ifdef HAVE_cc0
5321 /* If we have (set (cc0) (subreg ...)), we try to remove the subreg
5322 in SRC. */
5323 if (dest == cc0_rtx
5324 && GET_CODE (src) == SUBREG
5325 && subreg_lowpart_p (src)
5326 && (GET_MODE_BITSIZE (GET_MODE (src))
5327 < GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (src)))))
5329 rtx inner = SUBREG_REG (src);
5330 enum machine_mode inner_mode = GET_MODE (inner);
5332 /* Here we make sure that we don't have a sign bit on. */
5333 if (GET_MODE_BITSIZE (inner_mode) <= HOST_BITS_PER_WIDE_INT
5334 && (nonzero_bits (inner, inner_mode)
5335 < ((unsigned HOST_WIDE_INT) 1
5336 << (GET_MODE_BITSIZE (GET_MODE (src)) - 1))))
5338 SUBST (SET_SRC (x), inner);
5339 src = SET_SRC (x);
5342 #endif
5344 #ifdef LOAD_EXTEND_OP
5345 /* If we have (set FOO (subreg:M (mem:N BAR) 0)) with M wider than N, this
5346 would require a paradoxical subreg. Replace the subreg with a
5347 zero_extend to avoid the reload that would otherwise be required. */
5349 if (GET_CODE (src) == SUBREG && subreg_lowpart_p (src)
5350 && LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (src))) != UNKNOWN
5351 && SUBREG_BYTE (src) == 0
5352 && (GET_MODE_SIZE (GET_MODE (src))
5353 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (src))))
5354 && MEM_P (SUBREG_REG (src)))
5356 SUBST (SET_SRC (x),
5357 gen_rtx_fmt_e (LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (src))),
5358 GET_MODE (src), SUBREG_REG (src)));
5360 src = SET_SRC (x);
5362 #endif
5364 /* If we don't have a conditional move, SET_SRC is an IF_THEN_ELSE, and we
5365 are comparing an item known to be 0 or -1 against 0, use a logical
5366 operation instead. Check for one of the arms being an IOR of the other
5367 arm with some value. We compute three terms to be IOR'ed together. In
5368 practice, at most two will be nonzero. Then we do the IOR's. */
5370 if (GET_CODE (dest) != PC
5371 && GET_CODE (src) == IF_THEN_ELSE
5372 && GET_MODE_CLASS (GET_MODE (src)) == MODE_INT
5373 && (GET_CODE (XEXP (src, 0)) == EQ || GET_CODE (XEXP (src, 0)) == NE)
5374 && XEXP (XEXP (src, 0), 1) == const0_rtx
5375 && GET_MODE (src) == GET_MODE (XEXP (XEXP (src, 0), 0))
5376 #ifdef HAVE_conditional_move
5377 && ! can_conditionally_move_p (GET_MODE (src))
5378 #endif
5379 && (num_sign_bit_copies (XEXP (XEXP (src, 0), 0),
5380 GET_MODE (XEXP (XEXP (src, 0), 0)))
5381 == GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (src, 0), 0))))
5382 && ! side_effects_p (src))
5384 rtx true_rtx = (GET_CODE (XEXP (src, 0)) == NE
5385 ? XEXP (src, 1) : XEXP (src, 2));
5386 rtx false_rtx = (GET_CODE (XEXP (src, 0)) == NE
5387 ? XEXP (src, 2) : XEXP (src, 1));
5388 rtx term1 = const0_rtx, term2, term3;
5390 if (GET_CODE (true_rtx) == IOR
5391 && rtx_equal_p (XEXP (true_rtx, 0), false_rtx))
5392 term1 = false_rtx, true_rtx = XEXP (true_rtx, 1), false_rtx = const0_rtx;
5393 else if (GET_CODE (true_rtx) == IOR
5394 && rtx_equal_p (XEXP (true_rtx, 1), false_rtx))
5395 term1 = false_rtx, true_rtx = XEXP (true_rtx, 0), false_rtx = const0_rtx;
5396 else if (GET_CODE (false_rtx) == IOR
5397 && rtx_equal_p (XEXP (false_rtx, 0), true_rtx))
5398 term1 = true_rtx, false_rtx = XEXP (false_rtx, 1), true_rtx = const0_rtx;
5399 else if (GET_CODE (false_rtx) == IOR
5400 && rtx_equal_p (XEXP (false_rtx, 1), true_rtx))
5401 term1 = true_rtx, false_rtx = XEXP (false_rtx, 0), true_rtx = const0_rtx;
5403 term2 = gen_binary (AND, GET_MODE (src),
5404 XEXP (XEXP (src, 0), 0), true_rtx);
5405 term3 = gen_binary (AND, GET_MODE (src),
5406 simplify_gen_unary (NOT, GET_MODE (src),
5407 XEXP (XEXP (src, 0), 0),
5408 GET_MODE (src)),
5409 false_rtx);
5411 SUBST (SET_SRC (x),
5412 gen_binary (IOR, GET_MODE (src),
5413 gen_binary (IOR, GET_MODE (src), term1, term2),
5414 term3));
5416 src = SET_SRC (x);
5419 /* If either SRC or DEST is a CLOBBER of (const_int 0), make this
5420 whole thing fail. */
5421 if (GET_CODE (src) == CLOBBER && XEXP (src, 0) == const0_rtx)
5422 return src;
5423 else if (GET_CODE (dest) == CLOBBER && XEXP (dest, 0) == const0_rtx)
5424 return dest;
5425 else
5426 /* Convert this into a field assignment operation, if possible. */
5427 return make_field_assignment (x);
5430 /* Simplify, X, and AND, IOR, or XOR operation, and return the simplified
5431 result. */
5433 static rtx
5434 simplify_logical (rtx x)
5436 enum machine_mode mode = GET_MODE (x);
5437 rtx op0 = XEXP (x, 0);
5438 rtx op1 = XEXP (x, 1);
5439 rtx reversed;
5441 switch (GET_CODE (x))
5443 case AND:
5444 /* Convert (A ^ B) & A to A & (~B) since the latter is often a single
5445 insn (and may simplify more). */
5446 if (GET_CODE (op0) == XOR
5447 && rtx_equal_p (XEXP (op0, 0), op1)
5448 && ! side_effects_p (op1))
5449 x = gen_binary (AND, mode,
5450 simplify_gen_unary (NOT, mode, XEXP (op0, 1), mode),
5451 op1);
5453 if (GET_CODE (op0) == XOR
5454 && rtx_equal_p (XEXP (op0, 1), op1)
5455 && ! side_effects_p (op1))
5456 x = gen_binary (AND, mode,
5457 simplify_gen_unary (NOT, mode, XEXP (op0, 0), mode),
5458 op1);
5460 /* Similarly for (~(A ^ B)) & A. */
5461 if (GET_CODE (op0) == NOT
5462 && GET_CODE (XEXP (op0, 0)) == XOR
5463 && rtx_equal_p (XEXP (XEXP (op0, 0), 0), op1)
5464 && ! side_effects_p (op1))
5465 x = gen_binary (AND, mode, XEXP (XEXP (op0, 0), 1), op1);
5467 if (GET_CODE (op0) == NOT
5468 && GET_CODE (XEXP (op0, 0)) == XOR
5469 && rtx_equal_p (XEXP (XEXP (op0, 0), 1), op1)
5470 && ! side_effects_p (op1))
5471 x = gen_binary (AND, mode, XEXP (XEXP (op0, 0), 0), op1);
5473 /* We can call simplify_and_const_int only if we don't lose
5474 any (sign) bits when converting INTVAL (op1) to
5475 "unsigned HOST_WIDE_INT". */
5476 if (GET_CODE (op1) == CONST_INT
5477 && (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
5478 || INTVAL (op1) > 0))
5480 x = simplify_and_const_int (x, mode, op0, INTVAL (op1));
5482 /* If we have (ior (and (X C1) C2)) and the next restart would be
5483 the last, simplify this by making C1 as small as possible
5484 and then exit. Only do this if C1 actually changes: for now
5485 this only saves memory but, should this transformation be
5486 moved to simplify-rtx.c, we'd risk unbounded recursion there. */
5487 if (GET_CODE (x) == IOR && GET_CODE (op0) == AND
5488 && GET_CODE (XEXP (op0, 1)) == CONST_INT
5489 && GET_CODE (op1) == CONST_INT
5490 && (INTVAL (XEXP (op0, 1)) & INTVAL (op1)) != 0)
5491 return gen_binary (IOR, mode,
5492 gen_binary (AND, mode, XEXP (op0, 0),
5493 GEN_INT (INTVAL (XEXP (op0, 1))
5494 & ~INTVAL (op1))), op1);
5496 if (GET_CODE (x) != AND)
5497 return x;
5499 op0 = XEXP (x, 0);
5500 op1 = XEXP (x, 1);
5503 /* Convert (A | B) & A to A. */
5504 if (GET_CODE (op0) == IOR
5505 && (rtx_equal_p (XEXP (op0, 0), op1)
5506 || rtx_equal_p (XEXP (op0, 1), op1))
5507 && ! side_effects_p (XEXP (op0, 0))
5508 && ! side_effects_p (XEXP (op0, 1)))
5509 return op1;
5511 /* In the following group of tests (and those in case IOR below),
5512 we start with some combination of logical operations and apply
5513 the distributive law followed by the inverse distributive law.
5514 Most of the time, this results in no change. However, if some of
5515 the operands are the same or inverses of each other, simplifications
5516 will result.
5518 For example, (and (ior A B) (not B)) can occur as the result of
5519 expanding a bit field assignment. When we apply the distributive
5520 law to this, we get (ior (and (A (not B))) (and (B (not B)))),
5521 which then simplifies to (and (A (not B))).
5523 If we have (and (ior A B) C), apply the distributive law and then
5524 the inverse distributive law to see if things simplify. */
5526 if (GET_CODE (op0) == IOR || GET_CODE (op0) == XOR)
5528 x = apply_distributive_law
5529 (gen_binary (GET_CODE (op0), mode,
5530 gen_binary (AND, mode, XEXP (op0, 0), op1),
5531 gen_binary (AND, mode, XEXP (op0, 1),
5532 copy_rtx (op1))));
5533 if (GET_CODE (x) != AND)
5534 return x;
5537 if (GET_CODE (op1) == IOR || GET_CODE (op1) == XOR)
5538 return apply_distributive_law
5539 (gen_binary (GET_CODE (op1), mode,
5540 gen_binary (AND, mode, XEXP (op1, 0), op0),
5541 gen_binary (AND, mode, XEXP (op1, 1),
5542 copy_rtx (op0))));
5544 /* Similarly, taking advantage of the fact that
5545 (and (not A) (xor B C)) == (xor (ior A B) (ior A C)) */
5547 if (GET_CODE (op0) == NOT && GET_CODE (op1) == XOR)
5548 return apply_distributive_law
5549 (gen_binary (XOR, mode,
5550 gen_binary (IOR, mode, XEXP (op0, 0), XEXP (op1, 0)),
5551 gen_binary (IOR, mode, copy_rtx (XEXP (op0, 0)),
5552 XEXP (op1, 1))));
5554 else if (GET_CODE (op1) == NOT && GET_CODE (op0) == XOR)
5555 return apply_distributive_law
5556 (gen_binary (XOR, mode,
5557 gen_binary (IOR, mode, XEXP (op1, 0), XEXP (op0, 0)),
5558 gen_binary (IOR, mode, copy_rtx (XEXP (op1, 0)), XEXP (op0, 1))));
5559 break;
5561 case IOR:
5562 /* (ior A C) is C if all bits of A that might be nonzero are on in C. */
5563 if (GET_CODE (op1) == CONST_INT
5564 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
5565 && (nonzero_bits (op0, mode) & ~INTVAL (op1)) == 0)
5566 return op1;
5568 /* Convert (A & B) | A to A. */
5569 if (GET_CODE (op0) == AND
5570 && (rtx_equal_p (XEXP (op0, 0), op1)
5571 || rtx_equal_p (XEXP (op0, 1), op1))
5572 && ! side_effects_p (XEXP (op0, 0))
5573 && ! side_effects_p (XEXP (op0, 1)))
5574 return op1;
5576 /* If we have (ior (and A B) C), apply the distributive law and then
5577 the inverse distributive law to see if things simplify. */
5579 if (GET_CODE (op0) == AND)
5581 x = apply_distributive_law
5582 (gen_binary (AND, mode,
5583 gen_binary (IOR, mode, XEXP (op0, 0), op1),
5584 gen_binary (IOR, mode, XEXP (op0, 1),
5585 copy_rtx (op1))));
5587 if (GET_CODE (x) != IOR)
5588 return x;
5591 if (GET_CODE (op1) == AND)
5593 x = apply_distributive_law
5594 (gen_binary (AND, mode,
5595 gen_binary (IOR, mode, XEXP (op1, 0), op0),
5596 gen_binary (IOR, mode, XEXP (op1, 1),
5597 copy_rtx (op0))));
5599 if (GET_CODE (x) != IOR)
5600 return x;
5603 /* Convert (ior (ashift A CX) (lshiftrt A CY)) where CX+CY equals the
5604 mode size to (rotate A CX). */
5606 if (((GET_CODE (op0) == ASHIFT && GET_CODE (op1) == LSHIFTRT)
5607 || (GET_CODE (op1) == ASHIFT && GET_CODE (op0) == LSHIFTRT))
5608 && rtx_equal_p (XEXP (op0, 0), XEXP (op1, 0))
5609 && GET_CODE (XEXP (op0, 1)) == CONST_INT
5610 && GET_CODE (XEXP (op1, 1)) == CONST_INT
5611 && (INTVAL (XEXP (op0, 1)) + INTVAL (XEXP (op1, 1))
5612 == GET_MODE_BITSIZE (mode)))
5613 return gen_rtx_ROTATE (mode, XEXP (op0, 0),
5614 (GET_CODE (op0) == ASHIFT
5615 ? XEXP (op0, 1) : XEXP (op1, 1)));
5617 /* If OP0 is (ashiftrt (plus ...) C), it might actually be
5618 a (sign_extend (plus ...)). If so, OP1 is a CONST_INT, and the PLUS
5619 does not affect any of the bits in OP1, it can really be done
5620 as a PLUS and we can associate. We do this by seeing if OP1
5621 can be safely shifted left C bits. */
5622 if (GET_CODE (op1) == CONST_INT && GET_CODE (op0) == ASHIFTRT
5623 && GET_CODE (XEXP (op0, 0)) == PLUS
5624 && GET_CODE (XEXP (XEXP (op0, 0), 1)) == CONST_INT
5625 && GET_CODE (XEXP (op0, 1)) == CONST_INT
5626 && INTVAL (XEXP (op0, 1)) < HOST_BITS_PER_WIDE_INT)
5628 int count = INTVAL (XEXP (op0, 1));
5629 HOST_WIDE_INT mask = INTVAL (op1) << count;
5631 if (mask >> count == INTVAL (op1)
5632 && (mask & nonzero_bits (XEXP (op0, 0), mode)) == 0)
5634 SUBST (XEXP (XEXP (op0, 0), 1),
5635 GEN_INT (INTVAL (XEXP (XEXP (op0, 0), 1)) | mask));
5636 return op0;
5639 break;
5641 case XOR:
5642 /* If we are XORing two things that have no bits in common,
5643 convert them into an IOR. This helps to detect rotation encoded
5644 using those methods and possibly other simplifications. */
5646 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
5647 && (nonzero_bits (op0, mode)
5648 & nonzero_bits (op1, mode)) == 0)
5649 return (gen_binary (IOR, mode, op0, op1));
5651 /* Convert (XOR (NOT x) (NOT y)) to (XOR x y).
5652 Also convert (XOR (NOT x) y) to (NOT (XOR x y)), similarly for
5653 (NOT y). */
5655 int num_negated = 0;
5657 if (GET_CODE (op0) == NOT)
5658 num_negated++, op0 = XEXP (op0, 0);
5659 if (GET_CODE (op1) == NOT)
5660 num_negated++, op1 = XEXP (op1, 0);
5662 if (num_negated == 2)
5664 SUBST (XEXP (x, 0), op0);
5665 SUBST (XEXP (x, 1), op1);
5667 else if (num_negated == 1)
5668 return
5669 simplify_gen_unary (NOT, mode, gen_binary (XOR, mode, op0, op1),
5670 mode);
5673 /* Convert (xor (and A B) B) to (and (not A) B). The latter may
5674 correspond to a machine insn or result in further simplifications
5675 if B is a constant. */
5677 if (GET_CODE (op0) == AND
5678 && rtx_equal_p (XEXP (op0, 1), op1)
5679 && ! side_effects_p (op1))
5680 return gen_binary (AND, mode,
5681 simplify_gen_unary (NOT, mode, XEXP (op0, 0), mode),
5682 op1);
5684 else if (GET_CODE (op0) == AND
5685 && rtx_equal_p (XEXP (op0, 0), op1)
5686 && ! side_effects_p (op1))
5687 return gen_binary (AND, mode,
5688 simplify_gen_unary (NOT, mode, XEXP (op0, 1), mode),
5689 op1);
5691 /* (xor (comparison foo bar) (const_int 1)) can become the reversed
5692 comparison if STORE_FLAG_VALUE is 1. */
5693 if (STORE_FLAG_VALUE == 1
5694 && op1 == const1_rtx
5695 && COMPARISON_P (op0)
5696 && (reversed = reversed_comparison (op0, mode, XEXP (op0, 0),
5697 XEXP (op0, 1))))
5698 return reversed;
5700 /* (lshiftrt foo C) where C is the number of bits in FOO minus 1
5701 is (lt foo (const_int 0)), so we can perform the above
5702 simplification if STORE_FLAG_VALUE is 1. */
5704 if (STORE_FLAG_VALUE == 1
5705 && op1 == const1_rtx
5706 && GET_CODE (op0) == LSHIFTRT
5707 && GET_CODE (XEXP (op0, 1)) == CONST_INT
5708 && INTVAL (XEXP (op0, 1)) == GET_MODE_BITSIZE (mode) - 1)
5709 return gen_rtx_GE (mode, XEXP (op0, 0), const0_rtx);
5711 /* (xor (comparison foo bar) (const_int sign-bit))
5712 when STORE_FLAG_VALUE is the sign bit. */
5713 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
5714 && ((STORE_FLAG_VALUE & GET_MODE_MASK (mode))
5715 == (unsigned HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE (mode) - 1))
5716 && op1 == const_true_rtx
5717 && COMPARISON_P (op0)
5718 && (reversed = reversed_comparison (op0, mode, XEXP (op0, 0),
5719 XEXP (op0, 1))))
5720 return reversed;
5722 break;
5724 default:
5725 gcc_unreachable ();
5728 return x;
5731 /* We consider ZERO_EXTRACT, SIGN_EXTRACT, and SIGN_EXTEND as "compound
5732 operations" because they can be replaced with two more basic operations.
5733 ZERO_EXTEND is also considered "compound" because it can be replaced with
5734 an AND operation, which is simpler, though only one operation.
5736 The function expand_compound_operation is called with an rtx expression
5737 and will convert it to the appropriate shifts and AND operations,
5738 simplifying at each stage.
5740 The function make_compound_operation is called to convert an expression
5741 consisting of shifts and ANDs into the equivalent compound expression.
5742 It is the inverse of this function, loosely speaking. */
5744 static rtx
5745 expand_compound_operation (rtx x)
5747 unsigned HOST_WIDE_INT pos = 0, len;
5748 int unsignedp = 0;
5749 unsigned int modewidth;
5750 rtx tem;
5752 switch (GET_CODE (x))
5754 case ZERO_EXTEND:
5755 unsignedp = 1;
5756 case SIGN_EXTEND:
5757 /* We can't necessarily use a const_int for a multiword mode;
5758 it depends on implicitly extending the value.
5759 Since we don't know the right way to extend it,
5760 we can't tell whether the implicit way is right.
5762 Even for a mode that is no wider than a const_int,
5763 we can't win, because we need to sign extend one of its bits through
5764 the rest of it, and we don't know which bit. */
5765 if (GET_CODE (XEXP (x, 0)) == CONST_INT)
5766 return x;
5768 /* Return if (subreg:MODE FROM 0) is not a safe replacement for
5769 (zero_extend:MODE FROM) or (sign_extend:MODE FROM). It is for any MEM
5770 because (SUBREG (MEM...)) is guaranteed to cause the MEM to be
5771 reloaded. If not for that, MEM's would very rarely be safe.
5773 Reject MODEs bigger than a word, because we might not be able
5774 to reference a two-register group starting with an arbitrary register
5775 (and currently gen_lowpart might crash for a SUBREG). */
5777 if (GET_MODE_SIZE (GET_MODE (XEXP (x, 0))) > UNITS_PER_WORD)
5778 return x;
5780 /* Reject MODEs that aren't scalar integers because turning vector
5781 or complex modes into shifts causes problems. */
5783 if (! SCALAR_INT_MODE_P (GET_MODE (XEXP (x, 0))))
5784 return x;
5786 len = GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)));
5787 /* If the inner object has VOIDmode (the only way this can happen
5788 is if it is an ASM_OPERANDS), we can't do anything since we don't
5789 know how much masking to do. */
5790 if (len == 0)
5791 return x;
5793 break;
5795 case ZERO_EXTRACT:
5796 unsignedp = 1;
5798 /* ... fall through ... */
5800 case SIGN_EXTRACT:
5801 /* If the operand is a CLOBBER, just return it. */
5802 if (GET_CODE (XEXP (x, 0)) == CLOBBER)
5803 return XEXP (x, 0);
5805 if (GET_CODE (XEXP (x, 1)) != CONST_INT
5806 || GET_CODE (XEXP (x, 2)) != CONST_INT
5807 || GET_MODE (XEXP (x, 0)) == VOIDmode)
5808 return x;
5810 /* Reject MODEs that aren't scalar integers because turning vector
5811 or complex modes into shifts causes problems. */
5813 if (! SCALAR_INT_MODE_P (GET_MODE (XEXP (x, 0))))
5814 return x;
5816 len = INTVAL (XEXP (x, 1));
5817 pos = INTVAL (XEXP (x, 2));
5819 /* If this goes outside the object being extracted, replace the object
5820 with a (use (mem ...)) construct that only combine understands
5821 and is used only for this purpose. */
5822 if (len + pos > GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0))))
5823 SUBST (XEXP (x, 0), gen_rtx_USE (GET_MODE (x), XEXP (x, 0)));
5825 if (BITS_BIG_ENDIAN)
5826 pos = GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0))) - len - pos;
5828 break;
5830 default:
5831 return x;
5833 /* Convert sign extension to zero extension, if we know that the high
5834 bit is not set, as this is easier to optimize. It will be converted
5835 back to cheaper alternative in make_extraction. */
5836 if (GET_CODE (x) == SIGN_EXTEND
5837 && (GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
5838 && ((nonzero_bits (XEXP (x, 0), GET_MODE (XEXP (x, 0)))
5839 & ~(((unsigned HOST_WIDE_INT)
5840 GET_MODE_MASK (GET_MODE (XEXP (x, 0))))
5841 >> 1))
5842 == 0)))
5844 rtx temp = gen_rtx_ZERO_EXTEND (GET_MODE (x), XEXP (x, 0));
5845 rtx temp2 = expand_compound_operation (temp);
5847 /* Make sure this is a profitable operation. */
5848 if (rtx_cost (x, SET) > rtx_cost (temp2, SET))
5849 return temp2;
5850 else if (rtx_cost (x, SET) > rtx_cost (temp, SET))
5851 return temp;
5852 else
5853 return x;
5856 /* We can optimize some special cases of ZERO_EXTEND. */
5857 if (GET_CODE (x) == ZERO_EXTEND)
5859 /* (zero_extend:DI (truncate:SI foo:DI)) is just foo:DI if we
5860 know that the last value didn't have any inappropriate bits
5861 set. */
5862 if (GET_CODE (XEXP (x, 0)) == TRUNCATE
5863 && GET_MODE (XEXP (XEXP (x, 0), 0)) == GET_MODE (x)
5864 && GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
5865 && (nonzero_bits (XEXP (XEXP (x, 0), 0), GET_MODE (x))
5866 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
5867 return XEXP (XEXP (x, 0), 0);
5869 /* Likewise for (zero_extend:DI (subreg:SI foo:DI 0)). */
5870 if (GET_CODE (XEXP (x, 0)) == SUBREG
5871 && GET_MODE (SUBREG_REG (XEXP (x, 0))) == GET_MODE (x)
5872 && subreg_lowpart_p (XEXP (x, 0))
5873 && GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
5874 && (nonzero_bits (SUBREG_REG (XEXP (x, 0)), GET_MODE (x))
5875 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
5876 return SUBREG_REG (XEXP (x, 0));
5878 /* (zero_extend:DI (truncate:SI foo:DI)) is just foo:DI when foo
5879 is a comparison and STORE_FLAG_VALUE permits. This is like
5880 the first case, but it works even when GET_MODE (x) is larger
5881 than HOST_WIDE_INT. */
5882 if (GET_CODE (XEXP (x, 0)) == TRUNCATE
5883 && GET_MODE (XEXP (XEXP (x, 0), 0)) == GET_MODE (x)
5884 && COMPARISON_P (XEXP (XEXP (x, 0), 0))
5885 && (GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))
5886 <= HOST_BITS_PER_WIDE_INT)
5887 && ((HOST_WIDE_INT) STORE_FLAG_VALUE
5888 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
5889 return XEXP (XEXP (x, 0), 0);
5891 /* Likewise for (zero_extend:DI (subreg:SI foo:DI 0)). */
5892 if (GET_CODE (XEXP (x, 0)) == SUBREG
5893 && GET_MODE (SUBREG_REG (XEXP (x, 0))) == GET_MODE (x)
5894 && subreg_lowpart_p (XEXP (x, 0))
5895 && COMPARISON_P (SUBREG_REG (XEXP (x, 0)))
5896 && (GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))
5897 <= HOST_BITS_PER_WIDE_INT)
5898 && ((HOST_WIDE_INT) STORE_FLAG_VALUE
5899 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
5900 return SUBREG_REG (XEXP (x, 0));
5904 /* If we reach here, we want to return a pair of shifts. The inner
5905 shift is a left shift of BITSIZE - POS - LEN bits. The outer
5906 shift is a right shift of BITSIZE - LEN bits. It is arithmetic or
5907 logical depending on the value of UNSIGNEDP.
5909 If this was a ZERO_EXTEND or ZERO_EXTRACT, this pair of shifts will be
5910 converted into an AND of a shift.
5912 We must check for the case where the left shift would have a negative
5913 count. This can happen in a case like (x >> 31) & 255 on machines
5914 that can't shift by a constant. On those machines, we would first
5915 combine the shift with the AND to produce a variable-position
5916 extraction. Then the constant of 31 would be substituted in to produce
5917 a such a position. */
5919 modewidth = GET_MODE_BITSIZE (GET_MODE (x));
5920 if (modewidth + len >= pos)
5921 tem = simplify_shift_const (NULL_RTX, unsignedp ? LSHIFTRT : ASHIFTRT,
5922 GET_MODE (x),
5923 simplify_shift_const (NULL_RTX, ASHIFT,
5924 GET_MODE (x),
5925 XEXP (x, 0),
5926 modewidth - pos - len),
5927 modewidth - len);
5929 else if (unsignedp && len < HOST_BITS_PER_WIDE_INT)
5930 tem = simplify_and_const_int (NULL_RTX, GET_MODE (x),
5931 simplify_shift_const (NULL_RTX, LSHIFTRT,
5932 GET_MODE (x),
5933 XEXP (x, 0), pos),
5934 ((HOST_WIDE_INT) 1 << len) - 1);
5935 else
5936 /* Any other cases we can't handle. */
5937 return x;
5939 /* If we couldn't do this for some reason, return the original
5940 expression. */
5941 if (GET_CODE (tem) == CLOBBER)
5942 return x;
5944 return tem;
5947 /* X is a SET which contains an assignment of one object into
5948 a part of another (such as a bit-field assignment, STRICT_LOW_PART,
5949 or certain SUBREGS). If possible, convert it into a series of
5950 logical operations.
5952 We half-heartedly support variable positions, but do not at all
5953 support variable lengths. */
5955 static rtx
5956 expand_field_assignment (rtx x)
5958 rtx inner;
5959 rtx pos; /* Always counts from low bit. */
5960 int len;
5961 rtx mask;
5962 enum machine_mode compute_mode;
5964 /* Loop until we find something we can't simplify. */
5965 while (1)
5967 if (GET_CODE (SET_DEST (x)) == STRICT_LOW_PART
5968 && GET_CODE (XEXP (SET_DEST (x), 0)) == SUBREG)
5970 inner = SUBREG_REG (XEXP (SET_DEST (x), 0));
5971 len = GET_MODE_BITSIZE (GET_MODE (XEXP (SET_DEST (x), 0)));
5972 pos = GEN_INT (subreg_lsb (XEXP (SET_DEST (x), 0)));
5974 else if (GET_CODE (SET_DEST (x)) == ZERO_EXTRACT
5975 && GET_CODE (XEXP (SET_DEST (x), 1)) == CONST_INT)
5977 inner = XEXP (SET_DEST (x), 0);
5978 len = INTVAL (XEXP (SET_DEST (x), 1));
5979 pos = XEXP (SET_DEST (x), 2);
5981 /* If the position is constant and spans the width of INNER,
5982 surround INNER with a USE to indicate this. */
5983 if (GET_CODE (pos) == CONST_INT
5984 && INTVAL (pos) + len > GET_MODE_BITSIZE (GET_MODE (inner)))
5985 inner = gen_rtx_USE (GET_MODE (SET_DEST (x)), inner);
5987 if (BITS_BIG_ENDIAN)
5989 if (GET_CODE (pos) == CONST_INT)
5990 pos = GEN_INT (GET_MODE_BITSIZE (GET_MODE (inner)) - len
5991 - INTVAL (pos));
5992 else if (GET_CODE (pos) == MINUS
5993 && GET_CODE (XEXP (pos, 1)) == CONST_INT
5994 && (INTVAL (XEXP (pos, 1))
5995 == GET_MODE_BITSIZE (GET_MODE (inner)) - len))
5996 /* If position is ADJUST - X, new position is X. */
5997 pos = XEXP (pos, 0);
5998 else
5999 pos = gen_binary (MINUS, GET_MODE (pos),
6000 GEN_INT (GET_MODE_BITSIZE (GET_MODE (inner))
6001 - len),
6002 pos);
6006 /* A SUBREG between two modes that occupy the same numbers of words
6007 can be done by moving the SUBREG to the source. */
6008 else if (GET_CODE (SET_DEST (x)) == SUBREG
6009 /* We need SUBREGs to compute nonzero_bits properly. */
6010 && nonzero_sign_valid
6011 && (((GET_MODE_SIZE (GET_MODE (SET_DEST (x)))
6012 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
6013 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (x))))
6014 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)))
6016 x = gen_rtx_SET (VOIDmode, SUBREG_REG (SET_DEST (x)),
6017 gen_lowpart
6018 (GET_MODE (SUBREG_REG (SET_DEST (x))),
6019 SET_SRC (x)));
6020 continue;
6022 else
6023 break;
6025 while (GET_CODE (inner) == SUBREG && subreg_lowpart_p (inner))
6026 inner = SUBREG_REG (inner);
6028 compute_mode = GET_MODE (inner);
6030 /* Don't attempt bitwise arithmetic on non scalar integer modes. */
6031 if (! SCALAR_INT_MODE_P (compute_mode))
6033 enum machine_mode imode;
6035 /* Don't do anything for vector or complex integral types. */
6036 if (! FLOAT_MODE_P (compute_mode))
6037 break;
6039 /* Try to find an integral mode to pun with. */
6040 imode = mode_for_size (GET_MODE_BITSIZE (compute_mode), MODE_INT, 0);
6041 if (imode == BLKmode)
6042 break;
6044 compute_mode = imode;
6045 inner = gen_lowpart (imode, inner);
6048 /* Compute a mask of LEN bits, if we can do this on the host machine. */
6049 if (len < HOST_BITS_PER_WIDE_INT)
6050 mask = GEN_INT (((HOST_WIDE_INT) 1 << len) - 1);
6051 else
6052 break;
6054 /* Now compute the equivalent expression. Make a copy of INNER
6055 for the SET_DEST in case it is a MEM into which we will substitute;
6056 we don't want shared RTL in that case. */
6057 x = gen_rtx_SET
6058 (VOIDmode, copy_rtx (inner),
6059 gen_binary (IOR, compute_mode,
6060 gen_binary (AND, compute_mode,
6061 simplify_gen_unary (NOT, compute_mode,
6062 gen_binary (ASHIFT,
6063 compute_mode,
6064 mask, pos),
6065 compute_mode),
6066 inner),
6067 gen_binary (ASHIFT, compute_mode,
6068 gen_binary (AND, compute_mode,
6069 gen_lowpart
6070 (compute_mode, SET_SRC (x)),
6071 mask),
6072 pos)));
6075 return x;
6078 /* Return an RTX for a reference to LEN bits of INNER. If POS_RTX is nonzero,
6079 it is an RTX that represents a variable starting position; otherwise,
6080 POS is the (constant) starting bit position (counted from the LSB).
6082 INNER may be a USE. This will occur when we started with a bitfield
6083 that went outside the boundary of the object in memory, which is
6084 allowed on most machines. To isolate this case, we produce a USE
6085 whose mode is wide enough and surround the MEM with it. The only
6086 code that understands the USE is this routine. If it is not removed,
6087 it will cause the resulting insn not to match.
6089 UNSIGNEDP is nonzero for an unsigned reference and zero for a
6090 signed reference.
6092 IN_DEST is nonzero if this is a reference in the destination of a
6093 SET. This is used when a ZERO_ or SIGN_EXTRACT isn't needed. If nonzero,
6094 a STRICT_LOW_PART will be used, if zero, ZERO_EXTEND or SIGN_EXTEND will
6095 be used.
6097 IN_COMPARE is nonzero if we are in a COMPARE. This means that a
6098 ZERO_EXTRACT should be built even for bits starting at bit 0.
6100 MODE is the desired mode of the result (if IN_DEST == 0).
6102 The result is an RTX for the extraction or NULL_RTX if the target
6103 can't handle it. */
6105 static rtx
6106 make_extraction (enum machine_mode mode, rtx inner, HOST_WIDE_INT pos,
6107 rtx pos_rtx, unsigned HOST_WIDE_INT len, int unsignedp,
6108 int in_dest, int in_compare)
6110 /* This mode describes the size of the storage area
6111 to fetch the overall value from. Within that, we
6112 ignore the POS lowest bits, etc. */
6113 enum machine_mode is_mode = GET_MODE (inner);
6114 enum machine_mode inner_mode;
6115 enum machine_mode wanted_inner_mode = byte_mode;
6116 enum machine_mode wanted_inner_reg_mode = word_mode;
6117 enum machine_mode pos_mode = word_mode;
6118 enum machine_mode extraction_mode = word_mode;
6119 enum machine_mode tmode = mode_for_size (len, MODE_INT, 1);
6120 int spans_byte = 0;
6121 rtx new = 0;
6122 rtx orig_pos_rtx = pos_rtx;
6123 HOST_WIDE_INT orig_pos;
6125 /* Get some information about INNER and get the innermost object. */
6126 if (GET_CODE (inner) == USE)
6127 /* (use:SI (mem:QI foo)) stands for (mem:SI foo). */
6128 /* We don't need to adjust the position because we set up the USE
6129 to pretend that it was a full-word object. */
6130 spans_byte = 1, inner = XEXP (inner, 0);
6131 else if (GET_CODE (inner) == SUBREG && subreg_lowpart_p (inner))
6133 /* If going from (subreg:SI (mem:QI ...)) to (mem:QI ...),
6134 consider just the QI as the memory to extract from.
6135 The subreg adds or removes high bits; its mode is
6136 irrelevant to the meaning of this extraction,
6137 since POS and LEN count from the lsb. */
6138 if (MEM_P (SUBREG_REG (inner)))
6139 is_mode = GET_MODE (SUBREG_REG (inner));
6140 inner = SUBREG_REG (inner);
6142 else if (GET_CODE (inner) == ASHIFT
6143 && GET_CODE (XEXP (inner, 1)) == CONST_INT
6144 && pos_rtx == 0 && pos == 0
6145 && len > (unsigned HOST_WIDE_INT) INTVAL (XEXP (inner, 1)))
6147 /* We're extracting the least significant bits of an rtx
6148 (ashift X (const_int C)), where LEN > C. Extract the
6149 least significant (LEN - C) bits of X, giving an rtx
6150 whose mode is MODE, then shift it left C times. */
6151 new = make_extraction (mode, XEXP (inner, 0),
6152 0, 0, len - INTVAL (XEXP (inner, 1)),
6153 unsignedp, in_dest, in_compare);
6154 if (new != 0)
6155 return gen_rtx_ASHIFT (mode, new, XEXP (inner, 1));
6158 inner_mode = GET_MODE (inner);
6160 if (pos_rtx && GET_CODE (pos_rtx) == CONST_INT)
6161 pos = INTVAL (pos_rtx), pos_rtx = 0;
6163 /* See if this can be done without an extraction. We never can if the
6164 width of the field is not the same as that of some integer mode. For
6165 registers, we can only avoid the extraction if the position is at the
6166 low-order bit and this is either not in the destination or we have the
6167 appropriate STRICT_LOW_PART operation available.
6169 For MEM, we can avoid an extract if the field starts on an appropriate
6170 boundary and we can change the mode of the memory reference. However,
6171 we cannot directly access the MEM if we have a USE and the underlying
6172 MEM is not TMODE. This combination means that MEM was being used in a
6173 context where bits outside its mode were being referenced; that is only
6174 valid in bit-field insns. */
6176 if (tmode != BLKmode
6177 && ! (spans_byte && inner_mode != tmode)
6178 && ((pos_rtx == 0 && (pos % BITS_PER_WORD) == 0
6179 && !MEM_P (inner)
6180 && (! in_dest
6181 || (REG_P (inner)
6182 && have_insn_for (STRICT_LOW_PART, tmode))))
6183 || (MEM_P (inner) && pos_rtx == 0
6184 && (pos
6185 % (STRICT_ALIGNMENT ? GET_MODE_ALIGNMENT (tmode)
6186 : BITS_PER_UNIT)) == 0
6187 /* We can't do this if we are widening INNER_MODE (it
6188 may not be aligned, for one thing). */
6189 && GET_MODE_BITSIZE (inner_mode) >= GET_MODE_BITSIZE (tmode)
6190 && (inner_mode == tmode
6191 || (! mode_dependent_address_p (XEXP (inner, 0))
6192 && ! MEM_VOLATILE_P (inner))))))
6194 /* If INNER is a MEM, make a new MEM that encompasses just the desired
6195 field. If the original and current mode are the same, we need not
6196 adjust the offset. Otherwise, we do if bytes big endian.
6198 If INNER is not a MEM, get a piece consisting of just the field
6199 of interest (in this case POS % BITS_PER_WORD must be 0). */
6201 if (MEM_P (inner))
6203 HOST_WIDE_INT offset;
6205 /* POS counts from lsb, but make OFFSET count in memory order. */
6206 if (BYTES_BIG_ENDIAN)
6207 offset = (GET_MODE_BITSIZE (is_mode) - len - pos) / BITS_PER_UNIT;
6208 else
6209 offset = pos / BITS_PER_UNIT;
6211 new = adjust_address_nv (inner, tmode, offset);
6213 else if (REG_P (inner))
6215 if (tmode != inner_mode)
6217 /* We can't call gen_lowpart in a DEST since we
6218 always want a SUBREG (see below) and it would sometimes
6219 return a new hard register. */
6220 if (pos || in_dest)
6222 HOST_WIDE_INT final_word = pos / BITS_PER_WORD;
6224 if (WORDS_BIG_ENDIAN
6225 && GET_MODE_SIZE (inner_mode) > UNITS_PER_WORD)
6226 final_word = ((GET_MODE_SIZE (inner_mode)
6227 - GET_MODE_SIZE (tmode))
6228 / UNITS_PER_WORD) - final_word;
6230 final_word *= UNITS_PER_WORD;
6231 if (BYTES_BIG_ENDIAN &&
6232 GET_MODE_SIZE (inner_mode) > GET_MODE_SIZE (tmode))
6233 final_word += (GET_MODE_SIZE (inner_mode)
6234 - GET_MODE_SIZE (tmode)) % UNITS_PER_WORD;
6236 /* Avoid creating invalid subregs, for example when
6237 simplifying (x>>32)&255. */
6238 if (final_word >= GET_MODE_SIZE (inner_mode))
6239 return NULL_RTX;
6241 new = gen_rtx_SUBREG (tmode, inner, final_word);
6243 else
6244 new = gen_lowpart (tmode, inner);
6246 else
6247 new = inner;
6249 else
6250 new = force_to_mode (inner, tmode,
6251 len >= HOST_BITS_PER_WIDE_INT
6252 ? ~(unsigned HOST_WIDE_INT) 0
6253 : ((unsigned HOST_WIDE_INT) 1 << len) - 1,
6254 NULL_RTX, 0);
6256 /* If this extraction is going into the destination of a SET,
6257 make a STRICT_LOW_PART unless we made a MEM. */
6259 if (in_dest)
6260 return (MEM_P (new) ? new
6261 : (GET_CODE (new) != SUBREG
6262 ? gen_rtx_CLOBBER (tmode, const0_rtx)
6263 : gen_rtx_STRICT_LOW_PART (VOIDmode, new)));
6265 if (mode == tmode)
6266 return new;
6268 if (GET_CODE (new) == CONST_INT)
6269 return gen_int_mode (INTVAL (new), mode);
6271 /* If we know that no extraneous bits are set, and that the high
6272 bit is not set, convert the extraction to the cheaper of
6273 sign and zero extension, that are equivalent in these cases. */
6274 if (flag_expensive_optimizations
6275 && (GET_MODE_BITSIZE (tmode) <= HOST_BITS_PER_WIDE_INT
6276 && ((nonzero_bits (new, tmode)
6277 & ~(((unsigned HOST_WIDE_INT)
6278 GET_MODE_MASK (tmode))
6279 >> 1))
6280 == 0)))
6282 rtx temp = gen_rtx_ZERO_EXTEND (mode, new);
6283 rtx temp1 = gen_rtx_SIGN_EXTEND (mode, new);
6285 /* Prefer ZERO_EXTENSION, since it gives more information to
6286 backends. */
6287 if (rtx_cost (temp, SET) <= rtx_cost (temp1, SET))
6288 return temp;
6289 return temp1;
6292 /* Otherwise, sign- or zero-extend unless we already are in the
6293 proper mode. */
6295 return (gen_rtx_fmt_e (unsignedp ? ZERO_EXTEND : SIGN_EXTEND,
6296 mode, new));
6299 /* Unless this is a COMPARE or we have a funny memory reference,
6300 don't do anything with zero-extending field extracts starting at
6301 the low-order bit since they are simple AND operations. */
6302 if (pos_rtx == 0 && pos == 0 && ! in_dest
6303 && ! in_compare && ! spans_byte && unsignedp)
6304 return 0;
6306 /* Unless we are allowed to span bytes or INNER is not MEM, reject this if
6307 we would be spanning bytes or if the position is not a constant and the
6308 length is not 1. In all other cases, we would only be going outside
6309 our object in cases when an original shift would have been
6310 undefined. */
6311 if (! spans_byte && MEM_P (inner)
6312 && ((pos_rtx == 0 && pos + len > GET_MODE_BITSIZE (is_mode))
6313 || (pos_rtx != 0 && len != 1)))
6314 return 0;
6316 /* Get the mode to use should INNER not be a MEM, the mode for the position,
6317 and the mode for the result. */
6318 if (in_dest && mode_for_extraction (EP_insv, -1) != MAX_MACHINE_MODE)
6320 wanted_inner_reg_mode = mode_for_extraction (EP_insv, 0);
6321 pos_mode = mode_for_extraction (EP_insv, 2);
6322 extraction_mode = mode_for_extraction (EP_insv, 3);
6325 if (! in_dest && unsignedp
6326 && mode_for_extraction (EP_extzv, -1) != MAX_MACHINE_MODE)
6328 wanted_inner_reg_mode = mode_for_extraction (EP_extzv, 1);
6329 pos_mode = mode_for_extraction (EP_extzv, 3);
6330 extraction_mode = mode_for_extraction (EP_extzv, 0);
6333 if (! in_dest && ! unsignedp
6334 && mode_for_extraction (EP_extv, -1) != MAX_MACHINE_MODE)
6336 wanted_inner_reg_mode = mode_for_extraction (EP_extv, 1);
6337 pos_mode = mode_for_extraction (EP_extv, 3);
6338 extraction_mode = mode_for_extraction (EP_extv, 0);
6341 /* Never narrow an object, since that might not be safe. */
6343 if (mode != VOIDmode
6344 && GET_MODE_SIZE (extraction_mode) < GET_MODE_SIZE (mode))
6345 extraction_mode = mode;
6347 if (pos_rtx && GET_MODE (pos_rtx) != VOIDmode
6348 && GET_MODE_SIZE (pos_mode) < GET_MODE_SIZE (GET_MODE (pos_rtx)))
6349 pos_mode = GET_MODE (pos_rtx);
6351 /* If this is not from memory, the desired mode is wanted_inner_reg_mode;
6352 if we have to change the mode of memory and cannot, the desired mode is
6353 EXTRACTION_MODE. */
6354 if (!MEM_P (inner))
6355 wanted_inner_mode = wanted_inner_reg_mode;
6356 else if (inner_mode != wanted_inner_mode
6357 && (mode_dependent_address_p (XEXP (inner, 0))
6358 || MEM_VOLATILE_P (inner)))
6359 wanted_inner_mode = extraction_mode;
6361 orig_pos = pos;
6363 if (BITS_BIG_ENDIAN)
6365 /* POS is passed as if BITS_BIG_ENDIAN == 0, so we need to convert it to
6366 BITS_BIG_ENDIAN style. If position is constant, compute new
6367 position. Otherwise, build subtraction.
6368 Note that POS is relative to the mode of the original argument.
6369 If it's a MEM we need to recompute POS relative to that.
6370 However, if we're extracting from (or inserting into) a register,
6371 we want to recompute POS relative to wanted_inner_mode. */
6372 int width = (MEM_P (inner)
6373 ? GET_MODE_BITSIZE (is_mode)
6374 : GET_MODE_BITSIZE (wanted_inner_mode));
6376 if (pos_rtx == 0)
6377 pos = width - len - pos;
6378 else
6379 pos_rtx
6380 = gen_rtx_MINUS (GET_MODE (pos_rtx), GEN_INT (width - len), pos_rtx);
6381 /* POS may be less than 0 now, but we check for that below.
6382 Note that it can only be less than 0 if !MEM_P (inner). */
6385 /* If INNER has a wider mode, make it smaller. If this is a constant
6386 extract, try to adjust the byte to point to the byte containing
6387 the value. */
6388 if (wanted_inner_mode != VOIDmode
6389 && GET_MODE_SIZE (wanted_inner_mode) < GET_MODE_SIZE (is_mode)
6390 && ((MEM_P (inner)
6391 && (inner_mode == wanted_inner_mode
6392 || (! mode_dependent_address_p (XEXP (inner, 0))
6393 && ! MEM_VOLATILE_P (inner))))))
6395 int offset = 0;
6397 /* The computations below will be correct if the machine is big
6398 endian in both bits and bytes or little endian in bits and bytes.
6399 If it is mixed, we must adjust. */
6401 /* If bytes are big endian and we had a paradoxical SUBREG, we must
6402 adjust OFFSET to compensate. */
6403 if (BYTES_BIG_ENDIAN
6404 && ! spans_byte
6405 && GET_MODE_SIZE (inner_mode) < GET_MODE_SIZE (is_mode))
6406 offset -= GET_MODE_SIZE (is_mode) - GET_MODE_SIZE (inner_mode);
6408 /* If this is a constant position, we can move to the desired byte. */
6409 if (pos_rtx == 0)
6411 offset += pos / BITS_PER_UNIT;
6412 pos %= GET_MODE_BITSIZE (wanted_inner_mode);
6415 if (BYTES_BIG_ENDIAN != BITS_BIG_ENDIAN
6416 && ! spans_byte
6417 && is_mode != wanted_inner_mode)
6418 offset = (GET_MODE_SIZE (is_mode)
6419 - GET_MODE_SIZE (wanted_inner_mode) - offset);
6421 if (offset != 0 || inner_mode != wanted_inner_mode)
6422 inner = adjust_address_nv (inner, wanted_inner_mode, offset);
6425 /* If INNER is not memory, we can always get it into the proper mode. If we
6426 are changing its mode, POS must be a constant and smaller than the size
6427 of the new mode. */
6428 else if (!MEM_P (inner))
6430 if (GET_MODE (inner) != wanted_inner_mode
6431 && (pos_rtx != 0
6432 || orig_pos + len > GET_MODE_BITSIZE (wanted_inner_mode)))
6433 return 0;
6435 inner = force_to_mode (inner, wanted_inner_mode,
6436 pos_rtx
6437 || len + orig_pos >= HOST_BITS_PER_WIDE_INT
6438 ? ~(unsigned HOST_WIDE_INT) 0
6439 : ((((unsigned HOST_WIDE_INT) 1 << len) - 1)
6440 << orig_pos),
6441 NULL_RTX, 0);
6444 /* Adjust mode of POS_RTX, if needed. If we want a wider mode, we
6445 have to zero extend. Otherwise, we can just use a SUBREG. */
6446 if (pos_rtx != 0
6447 && GET_MODE_SIZE (pos_mode) > GET_MODE_SIZE (GET_MODE (pos_rtx)))
6449 rtx temp = gen_rtx_ZERO_EXTEND (pos_mode, pos_rtx);
6451 /* If we know that no extraneous bits are set, and that the high
6452 bit is not set, convert extraction to cheaper one - either
6453 SIGN_EXTENSION or ZERO_EXTENSION, that are equivalent in these
6454 cases. */
6455 if (flag_expensive_optimizations
6456 && (GET_MODE_BITSIZE (GET_MODE (pos_rtx)) <= HOST_BITS_PER_WIDE_INT
6457 && ((nonzero_bits (pos_rtx, GET_MODE (pos_rtx))
6458 & ~(((unsigned HOST_WIDE_INT)
6459 GET_MODE_MASK (GET_MODE (pos_rtx)))
6460 >> 1))
6461 == 0)))
6463 rtx temp1 = gen_rtx_SIGN_EXTEND (pos_mode, pos_rtx);
6465 /* Prefer ZERO_EXTENSION, since it gives more information to
6466 backends. */
6467 if (rtx_cost (temp1, SET) < rtx_cost (temp, SET))
6468 temp = temp1;
6470 pos_rtx = temp;
6472 else if (pos_rtx != 0
6473 && GET_MODE_SIZE (pos_mode) < GET_MODE_SIZE (GET_MODE (pos_rtx)))
6474 pos_rtx = gen_lowpart (pos_mode, pos_rtx);
6476 /* Make POS_RTX unless we already have it and it is correct. If we don't
6477 have a POS_RTX but we do have an ORIG_POS_RTX, the latter must
6478 be a CONST_INT. */
6479 if (pos_rtx == 0 && orig_pos_rtx != 0 && INTVAL (orig_pos_rtx) == pos)
6480 pos_rtx = orig_pos_rtx;
6482 else if (pos_rtx == 0)
6483 pos_rtx = GEN_INT (pos);
6485 /* Make the required operation. See if we can use existing rtx. */
6486 new = gen_rtx_fmt_eee (unsignedp ? ZERO_EXTRACT : SIGN_EXTRACT,
6487 extraction_mode, inner, GEN_INT (len), pos_rtx);
6488 if (! in_dest)
6489 new = gen_lowpart (mode, new);
6491 return new;
6494 /* See if X contains an ASHIFT of COUNT or more bits that can be commuted
6495 with any other operations in X. Return X without that shift if so. */
6497 static rtx
6498 extract_left_shift (rtx x, int count)
6500 enum rtx_code code = GET_CODE (x);
6501 enum machine_mode mode = GET_MODE (x);
6502 rtx tem;
6504 switch (code)
6506 case ASHIFT:
6507 /* This is the shift itself. If it is wide enough, we will return
6508 either the value being shifted if the shift count is equal to
6509 COUNT or a shift for the difference. */
6510 if (GET_CODE (XEXP (x, 1)) == CONST_INT
6511 && INTVAL (XEXP (x, 1)) >= count)
6512 return simplify_shift_const (NULL_RTX, ASHIFT, mode, XEXP (x, 0),
6513 INTVAL (XEXP (x, 1)) - count);
6514 break;
6516 case NEG: case NOT:
6517 if ((tem = extract_left_shift (XEXP (x, 0), count)) != 0)
6518 return simplify_gen_unary (code, mode, tem, mode);
6520 break;
6522 case PLUS: case IOR: case XOR: case AND:
6523 /* If we can safely shift this constant and we find the inner shift,
6524 make a new operation. */
6525 if (GET_CODE (XEXP (x, 1)) == CONST_INT
6526 && (INTVAL (XEXP (x, 1)) & ((((HOST_WIDE_INT) 1 << count)) - 1)) == 0
6527 && (tem = extract_left_shift (XEXP (x, 0), count)) != 0)
6528 return gen_binary (code, mode, tem,
6529 GEN_INT (INTVAL (XEXP (x, 1)) >> count));
6531 break;
6533 default:
6534 break;
6537 return 0;
6540 /* Look at the expression rooted at X. Look for expressions
6541 equivalent to ZERO_EXTRACT, SIGN_EXTRACT, ZERO_EXTEND, SIGN_EXTEND.
6542 Form these expressions.
6544 Return the new rtx, usually just X.
6546 Also, for machines like the VAX that don't have logical shift insns,
6547 try to convert logical to arithmetic shift operations in cases where
6548 they are equivalent. This undoes the canonicalizations to logical
6549 shifts done elsewhere.
6551 We try, as much as possible, to re-use rtl expressions to save memory.
6553 IN_CODE says what kind of expression we are processing. Normally, it is
6554 SET. In a memory address (inside a MEM, PLUS or minus, the latter two
6555 being kludges), it is MEM. When processing the arguments of a comparison
6556 or a COMPARE against zero, it is COMPARE. */
6558 static rtx
6559 make_compound_operation (rtx x, enum rtx_code in_code)
6561 enum rtx_code code = GET_CODE (x);
6562 enum machine_mode mode = GET_MODE (x);
6563 int mode_width = GET_MODE_BITSIZE (mode);
6564 rtx rhs, lhs;
6565 enum rtx_code next_code;
6566 int i;
6567 rtx new = 0;
6568 rtx tem;
6569 const char *fmt;
6571 /* Select the code to be used in recursive calls. Once we are inside an
6572 address, we stay there. If we have a comparison, set to COMPARE,
6573 but once inside, go back to our default of SET. */
6575 next_code = (code == MEM || code == PLUS || code == MINUS ? MEM
6576 : ((code == COMPARE || COMPARISON_P (x))
6577 && XEXP (x, 1) == const0_rtx) ? COMPARE
6578 : in_code == COMPARE ? SET : in_code);
6580 /* Process depending on the code of this operation. If NEW is set
6581 nonzero, it will be returned. */
6583 switch (code)
6585 case ASHIFT:
6586 /* Convert shifts by constants into multiplications if inside
6587 an address. */
6588 if (in_code == MEM && GET_CODE (XEXP (x, 1)) == CONST_INT
6589 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT
6590 && INTVAL (XEXP (x, 1)) >= 0)
6592 new = make_compound_operation (XEXP (x, 0), next_code);
6593 new = gen_rtx_MULT (mode, new,
6594 GEN_INT ((HOST_WIDE_INT) 1
6595 << INTVAL (XEXP (x, 1))));
6597 break;
6599 case AND:
6600 /* If the second operand is not a constant, we can't do anything
6601 with it. */
6602 if (GET_CODE (XEXP (x, 1)) != CONST_INT)
6603 break;
6605 /* If the constant is a power of two minus one and the first operand
6606 is a logical right shift, make an extraction. */
6607 if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
6608 && (i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0)
6610 new = make_compound_operation (XEXP (XEXP (x, 0), 0), next_code);
6611 new = make_extraction (mode, new, 0, XEXP (XEXP (x, 0), 1), i, 1,
6612 0, in_code == COMPARE);
6615 /* Same as previous, but for (subreg (lshiftrt ...)) in first op. */
6616 else if (GET_CODE (XEXP (x, 0)) == SUBREG
6617 && subreg_lowpart_p (XEXP (x, 0))
6618 && GET_CODE (SUBREG_REG (XEXP (x, 0))) == LSHIFTRT
6619 && (i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0)
6621 new = make_compound_operation (XEXP (SUBREG_REG (XEXP (x, 0)), 0),
6622 next_code);
6623 new = make_extraction (GET_MODE (SUBREG_REG (XEXP (x, 0))), new, 0,
6624 XEXP (SUBREG_REG (XEXP (x, 0)), 1), i, 1,
6625 0, in_code == COMPARE);
6627 /* Same as previous, but for (xor/ior (lshiftrt...) (lshiftrt...)). */
6628 else if ((GET_CODE (XEXP (x, 0)) == XOR
6629 || GET_CODE (XEXP (x, 0)) == IOR)
6630 && GET_CODE (XEXP (XEXP (x, 0), 0)) == LSHIFTRT
6631 && GET_CODE (XEXP (XEXP (x, 0), 1)) == LSHIFTRT
6632 && (i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0)
6634 /* Apply the distributive law, and then try to make extractions. */
6635 new = gen_rtx_fmt_ee (GET_CODE (XEXP (x, 0)), mode,
6636 gen_rtx_AND (mode, XEXP (XEXP (x, 0), 0),
6637 XEXP (x, 1)),
6638 gen_rtx_AND (mode, XEXP (XEXP (x, 0), 1),
6639 XEXP (x, 1)));
6640 new = make_compound_operation (new, in_code);
6643 /* If we are have (and (rotate X C) M) and C is larger than the number
6644 of bits in M, this is an extraction. */
6646 else if (GET_CODE (XEXP (x, 0)) == ROTATE
6647 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
6648 && (i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0
6649 && i <= INTVAL (XEXP (XEXP (x, 0), 1)))
6651 new = make_compound_operation (XEXP (XEXP (x, 0), 0), next_code);
6652 new = make_extraction (mode, new,
6653 (GET_MODE_BITSIZE (mode)
6654 - INTVAL (XEXP (XEXP (x, 0), 1))),
6655 NULL_RTX, i, 1, 0, in_code == COMPARE);
6658 /* On machines without logical shifts, if the operand of the AND is
6659 a logical shift and our mask turns off all the propagated sign
6660 bits, we can replace the logical shift with an arithmetic shift. */
6661 else if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
6662 && !have_insn_for (LSHIFTRT, mode)
6663 && have_insn_for (ASHIFTRT, mode)
6664 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
6665 && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
6666 && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT
6667 && mode_width <= HOST_BITS_PER_WIDE_INT)
6669 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
6671 mask >>= INTVAL (XEXP (XEXP (x, 0), 1));
6672 if ((INTVAL (XEXP (x, 1)) & ~mask) == 0)
6673 SUBST (XEXP (x, 0),
6674 gen_rtx_ASHIFTRT (mode,
6675 make_compound_operation
6676 (XEXP (XEXP (x, 0), 0), next_code),
6677 XEXP (XEXP (x, 0), 1)));
6680 /* If the constant is one less than a power of two, this might be
6681 representable by an extraction even if no shift is present.
6682 If it doesn't end up being a ZERO_EXTEND, we will ignore it unless
6683 we are in a COMPARE. */
6684 else if ((i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0)
6685 new = make_extraction (mode,
6686 make_compound_operation (XEXP (x, 0),
6687 next_code),
6688 0, NULL_RTX, i, 1, 0, in_code == COMPARE);
6690 /* If we are in a comparison and this is an AND with a power of two,
6691 convert this into the appropriate bit extract. */
6692 else if (in_code == COMPARE
6693 && (i = exact_log2 (INTVAL (XEXP (x, 1)))) >= 0)
6694 new = make_extraction (mode,
6695 make_compound_operation (XEXP (x, 0),
6696 next_code),
6697 i, NULL_RTX, 1, 1, 0, 1);
6699 break;
6701 case LSHIFTRT:
6702 /* If the sign bit is known to be zero, replace this with an
6703 arithmetic shift. */
6704 if (have_insn_for (ASHIFTRT, mode)
6705 && ! have_insn_for (LSHIFTRT, mode)
6706 && mode_width <= HOST_BITS_PER_WIDE_INT
6707 && (nonzero_bits (XEXP (x, 0), mode) & (1 << (mode_width - 1))) == 0)
6709 new = gen_rtx_ASHIFTRT (mode,
6710 make_compound_operation (XEXP (x, 0),
6711 next_code),
6712 XEXP (x, 1));
6713 break;
6716 /* ... fall through ... */
6718 case ASHIFTRT:
6719 lhs = XEXP (x, 0);
6720 rhs = XEXP (x, 1);
6722 /* If we have (ashiftrt (ashift foo C1) C2) with C2 >= C1,
6723 this is a SIGN_EXTRACT. */
6724 if (GET_CODE (rhs) == CONST_INT
6725 && GET_CODE (lhs) == ASHIFT
6726 && GET_CODE (XEXP (lhs, 1)) == CONST_INT
6727 && INTVAL (rhs) >= INTVAL (XEXP (lhs, 1)))
6729 new = make_compound_operation (XEXP (lhs, 0), next_code);
6730 new = make_extraction (mode, new,
6731 INTVAL (rhs) - INTVAL (XEXP (lhs, 1)),
6732 NULL_RTX, mode_width - INTVAL (rhs),
6733 code == LSHIFTRT, 0, in_code == COMPARE);
6734 break;
6737 /* See if we have operations between an ASHIFTRT and an ASHIFT.
6738 If so, try to merge the shifts into a SIGN_EXTEND. We could
6739 also do this for some cases of SIGN_EXTRACT, but it doesn't
6740 seem worth the effort; the case checked for occurs on Alpha. */
6742 if (!OBJECT_P (lhs)
6743 && ! (GET_CODE (lhs) == SUBREG
6744 && (OBJECT_P (SUBREG_REG (lhs))))
6745 && GET_CODE (rhs) == CONST_INT
6746 && INTVAL (rhs) < HOST_BITS_PER_WIDE_INT
6747 && (new = extract_left_shift (lhs, INTVAL (rhs))) != 0)
6748 new = make_extraction (mode, make_compound_operation (new, next_code),
6749 0, NULL_RTX, mode_width - INTVAL (rhs),
6750 code == LSHIFTRT, 0, in_code == COMPARE);
6752 break;
6754 case SUBREG:
6755 /* Call ourselves recursively on the inner expression. If we are
6756 narrowing the object and it has a different RTL code from
6757 what it originally did, do this SUBREG as a force_to_mode. */
6759 tem = make_compound_operation (SUBREG_REG (x), in_code);
6760 if (GET_CODE (tem) != GET_CODE (SUBREG_REG (x))
6761 && GET_MODE_SIZE (mode) < GET_MODE_SIZE (GET_MODE (tem))
6762 && subreg_lowpart_p (x))
6764 rtx newer = force_to_mode (tem, mode, ~(HOST_WIDE_INT) 0,
6765 NULL_RTX, 0);
6767 /* If we have something other than a SUBREG, we might have
6768 done an expansion, so rerun ourselves. */
6769 if (GET_CODE (newer) != SUBREG)
6770 newer = make_compound_operation (newer, in_code);
6772 return newer;
6775 /* If this is a paradoxical subreg, and the new code is a sign or
6776 zero extension, omit the subreg and widen the extension. If it
6777 is a regular subreg, we can still get rid of the subreg by not
6778 widening so much, or in fact removing the extension entirely. */
6779 if ((GET_CODE (tem) == SIGN_EXTEND
6780 || GET_CODE (tem) == ZERO_EXTEND)
6781 && subreg_lowpart_p (x))
6783 if (GET_MODE_SIZE (mode) > GET_MODE_SIZE (GET_MODE (tem))
6784 || (GET_MODE_SIZE (mode) >
6785 GET_MODE_SIZE (GET_MODE (XEXP (tem, 0)))))
6787 if (! SCALAR_INT_MODE_P (mode))
6788 break;
6789 tem = gen_rtx_fmt_e (GET_CODE (tem), mode, XEXP (tem, 0));
6791 else
6792 tem = gen_lowpart (mode, XEXP (tem, 0));
6793 return tem;
6795 break;
6797 default:
6798 break;
6801 if (new)
6803 x = gen_lowpart (mode, new);
6804 code = GET_CODE (x);
6807 /* Now recursively process each operand of this operation. */
6808 fmt = GET_RTX_FORMAT (code);
6809 for (i = 0; i < GET_RTX_LENGTH (code); i++)
6810 if (fmt[i] == 'e')
6812 new = make_compound_operation (XEXP (x, i), next_code);
6813 SUBST (XEXP (x, i), new);
6816 return x;
6819 /* Given M see if it is a value that would select a field of bits
6820 within an item, but not the entire word. Return -1 if not.
6821 Otherwise, return the starting position of the field, where 0 is the
6822 low-order bit.
6824 *PLEN is set to the length of the field. */
6826 static int
6827 get_pos_from_mask (unsigned HOST_WIDE_INT m, unsigned HOST_WIDE_INT *plen)
6829 /* Get the bit number of the first 1 bit from the right, -1 if none. */
6830 int pos = exact_log2 (m & -m);
6831 int len = 0;
6833 if (pos >= 0)
6834 /* Now shift off the low-order zero bits and see if we have a
6835 power of two minus 1. */
6836 len = exact_log2 ((m >> pos) + 1);
6838 if (len <= 0)
6839 pos = -1;
6841 *plen = len;
6842 return pos;
6845 /* See if X can be simplified knowing that we will only refer to it in
6846 MODE and will only refer to those bits that are nonzero in MASK.
6847 If other bits are being computed or if masking operations are done
6848 that select a superset of the bits in MASK, they can sometimes be
6849 ignored.
6851 Return a possibly simplified expression, but always convert X to
6852 MODE. If X is a CONST_INT, AND the CONST_INT with MASK.
6854 Also, if REG is nonzero and X is a register equal in value to REG,
6855 replace X with REG.
6857 If JUST_SELECT is nonzero, don't optimize by noticing that bits in MASK
6858 are all off in X. This is used when X will be complemented, by either
6859 NOT, NEG, or XOR. */
6861 static rtx
6862 force_to_mode (rtx x, enum machine_mode mode, unsigned HOST_WIDE_INT mask,
6863 rtx reg, int just_select)
6865 enum rtx_code code = GET_CODE (x);
6866 int next_select = just_select || code == XOR || code == NOT || code == NEG;
6867 enum machine_mode op_mode;
6868 unsigned HOST_WIDE_INT fuller_mask, nonzero;
6869 rtx op0, op1, temp;
6871 /* If this is a CALL or ASM_OPERANDS, don't do anything. Some of the
6872 code below will do the wrong thing since the mode of such an
6873 expression is VOIDmode.
6875 Also do nothing if X is a CLOBBER; this can happen if X was
6876 the return value from a call to gen_lowpart. */
6877 if (code == CALL || code == ASM_OPERANDS || code == CLOBBER)
6878 return x;
6880 /* We want to perform the operation is its present mode unless we know
6881 that the operation is valid in MODE, in which case we do the operation
6882 in MODE. */
6883 op_mode = ((GET_MODE_CLASS (mode) == GET_MODE_CLASS (GET_MODE (x))
6884 && have_insn_for (code, mode))
6885 ? mode : GET_MODE (x));
6887 /* It is not valid to do a right-shift in a narrower mode
6888 than the one it came in with. */
6889 if ((code == LSHIFTRT || code == ASHIFTRT)
6890 && GET_MODE_BITSIZE (mode) < GET_MODE_BITSIZE (GET_MODE (x)))
6891 op_mode = GET_MODE (x);
6893 /* Truncate MASK to fit OP_MODE. */
6894 if (op_mode)
6895 mask &= GET_MODE_MASK (op_mode);
6897 /* When we have an arithmetic operation, or a shift whose count we
6898 do not know, we need to assume that all bits up to the highest-order
6899 bit in MASK will be needed. This is how we form such a mask. */
6900 if (mask & ((unsigned HOST_WIDE_INT) 1 << (HOST_BITS_PER_WIDE_INT - 1)))
6901 fuller_mask = ~(unsigned HOST_WIDE_INT) 0;
6902 else
6903 fuller_mask = (((unsigned HOST_WIDE_INT) 1 << (floor_log2 (mask) + 1))
6904 - 1);
6906 /* Determine what bits of X are guaranteed to be (non)zero. */
6907 nonzero = nonzero_bits (x, mode);
6909 /* If none of the bits in X are needed, return a zero. */
6910 if (! just_select && (nonzero & mask) == 0)
6911 x = const0_rtx;
6913 /* If X is a CONST_INT, return a new one. Do this here since the
6914 test below will fail. */
6915 if (GET_CODE (x) == CONST_INT)
6917 if (SCALAR_INT_MODE_P (mode))
6918 return gen_int_mode (INTVAL (x) & mask, mode);
6919 else
6921 x = GEN_INT (INTVAL (x) & mask);
6922 return gen_lowpart_common (mode, x);
6926 /* If X is narrower than MODE and we want all the bits in X's mode, just
6927 get X in the proper mode. */
6928 if (GET_MODE_SIZE (GET_MODE (x)) < GET_MODE_SIZE (mode)
6929 && (GET_MODE_MASK (GET_MODE (x)) & ~mask) == 0)
6930 return gen_lowpart (mode, x);
6932 switch (code)
6934 case CLOBBER:
6935 /* If X is a (clobber (const_int)), return it since we know we are
6936 generating something that won't match. */
6937 return x;
6939 case USE:
6940 /* X is a (use (mem ..)) that was made from a bit-field extraction that
6941 spanned the boundary of the MEM. If we are now masking so it is
6942 within that boundary, we don't need the USE any more. */
6943 if (! BITS_BIG_ENDIAN
6944 && (mask & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
6945 return force_to_mode (XEXP (x, 0), mode, mask, reg, next_select);
6946 break;
6948 case SIGN_EXTEND:
6949 case ZERO_EXTEND:
6950 case ZERO_EXTRACT:
6951 case SIGN_EXTRACT:
6952 x = expand_compound_operation (x);
6953 if (GET_CODE (x) != code)
6954 return force_to_mode (x, mode, mask, reg, next_select);
6955 break;
6957 case REG:
6958 if (reg != 0 && (rtx_equal_p (get_last_value (reg), x)
6959 || rtx_equal_p (reg, get_last_value (x))))
6960 x = reg;
6961 break;
6963 case SUBREG:
6964 if (subreg_lowpart_p (x)
6965 /* We can ignore the effect of this SUBREG if it narrows the mode or
6966 if the constant masks to zero all the bits the mode doesn't
6967 have. */
6968 && ((GET_MODE_SIZE (GET_MODE (x))
6969 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
6970 || (0 == (mask
6971 & GET_MODE_MASK (GET_MODE (x))
6972 & ~GET_MODE_MASK (GET_MODE (SUBREG_REG (x)))))))
6973 return force_to_mode (SUBREG_REG (x), mode, mask, reg, next_select);
6974 break;
6976 case AND:
6977 /* If this is an AND with a constant, convert it into an AND
6978 whose constant is the AND of that constant with MASK. If it
6979 remains an AND of MASK, delete it since it is redundant. */
6981 if (GET_CODE (XEXP (x, 1)) == CONST_INT)
6983 x = simplify_and_const_int (x, op_mode, XEXP (x, 0),
6984 mask & INTVAL (XEXP (x, 1)));
6986 /* If X is still an AND, see if it is an AND with a mask that
6987 is just some low-order bits. If so, and it is MASK, we don't
6988 need it. */
6990 if (GET_CODE (x) == AND && GET_CODE (XEXP (x, 1)) == CONST_INT
6991 && ((INTVAL (XEXP (x, 1)) & GET_MODE_MASK (GET_MODE (x)))
6992 == mask))
6993 x = XEXP (x, 0);
6995 /* If it remains an AND, try making another AND with the bits
6996 in the mode mask that aren't in MASK turned on. If the
6997 constant in the AND is wide enough, this might make a
6998 cheaper constant. */
7000 if (GET_CODE (x) == AND && GET_CODE (XEXP (x, 1)) == CONST_INT
7001 && GET_MODE_MASK (GET_MODE (x)) != mask
7002 && GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT)
7004 HOST_WIDE_INT cval = (INTVAL (XEXP (x, 1))
7005 | (GET_MODE_MASK (GET_MODE (x)) & ~mask));
7006 int width = GET_MODE_BITSIZE (GET_MODE (x));
7007 rtx y;
7009 /* If MODE is narrower than HOST_WIDE_INT and CVAL is a negative
7010 number, sign extend it. */
7011 if (width > 0 && width < HOST_BITS_PER_WIDE_INT
7012 && (cval & ((HOST_WIDE_INT) 1 << (width - 1))) != 0)
7013 cval |= (HOST_WIDE_INT) -1 << width;
7015 y = gen_binary (AND, GET_MODE (x), XEXP (x, 0), GEN_INT (cval));
7016 if (rtx_cost (y, SET) < rtx_cost (x, SET))
7017 x = y;
7020 break;
7023 goto binop;
7025 case PLUS:
7026 /* In (and (plus FOO C1) M), if M is a mask that just turns off
7027 low-order bits (as in an alignment operation) and FOO is already
7028 aligned to that boundary, mask C1 to that boundary as well.
7029 This may eliminate that PLUS and, later, the AND. */
7032 unsigned int width = GET_MODE_BITSIZE (mode);
7033 unsigned HOST_WIDE_INT smask = mask;
7035 /* If MODE is narrower than HOST_WIDE_INT and mask is a negative
7036 number, sign extend it. */
7038 if (width < HOST_BITS_PER_WIDE_INT
7039 && (smask & ((HOST_WIDE_INT) 1 << (width - 1))) != 0)
7040 smask |= (HOST_WIDE_INT) -1 << width;
7042 if (GET_CODE (XEXP (x, 1)) == CONST_INT
7043 && exact_log2 (- smask) >= 0
7044 && (nonzero_bits (XEXP (x, 0), mode) & ~smask) == 0
7045 && (INTVAL (XEXP (x, 1)) & ~smask) != 0)
7046 return force_to_mode (plus_constant (XEXP (x, 0),
7047 (INTVAL (XEXP (x, 1)) & smask)),
7048 mode, smask, reg, next_select);
7051 /* ... fall through ... */
7053 case MULT:
7054 /* For PLUS, MINUS and MULT, we need any bits less significant than the
7055 most significant bit in MASK since carries from those bits will
7056 affect the bits we are interested in. */
7057 mask = fuller_mask;
7058 goto binop;
7060 case MINUS:
7061 /* If X is (minus C Y) where C's least set bit is larger than any bit
7062 in the mask, then we may replace with (neg Y). */
7063 if (GET_CODE (XEXP (x, 0)) == CONST_INT
7064 && (((unsigned HOST_WIDE_INT) (INTVAL (XEXP (x, 0))
7065 & -INTVAL (XEXP (x, 0))))
7066 > mask))
7068 x = simplify_gen_unary (NEG, GET_MODE (x), XEXP (x, 1),
7069 GET_MODE (x));
7070 return force_to_mode (x, mode, mask, reg, next_select);
7073 /* Similarly, if C contains every bit in the fuller_mask, then we may
7074 replace with (not Y). */
7075 if (GET_CODE (XEXP (x, 0)) == CONST_INT
7076 && ((INTVAL (XEXP (x, 0)) | (HOST_WIDE_INT) fuller_mask)
7077 == INTVAL (XEXP (x, 0))))
7079 x = simplify_gen_unary (NOT, GET_MODE (x),
7080 XEXP (x, 1), GET_MODE (x));
7081 return force_to_mode (x, mode, mask, reg, next_select);
7084 mask = fuller_mask;
7085 goto binop;
7087 case IOR:
7088 case XOR:
7089 /* If X is (ior (lshiftrt FOO C1) C2), try to commute the IOR and
7090 LSHIFTRT so we end up with an (and (lshiftrt (ior ...) ...) ...)
7091 operation which may be a bitfield extraction. Ensure that the
7092 constant we form is not wider than the mode of X. */
7094 if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
7095 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
7096 && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
7097 && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT
7098 && GET_CODE (XEXP (x, 1)) == CONST_INT
7099 && ((INTVAL (XEXP (XEXP (x, 0), 1))
7100 + floor_log2 (INTVAL (XEXP (x, 1))))
7101 < GET_MODE_BITSIZE (GET_MODE (x)))
7102 && (INTVAL (XEXP (x, 1))
7103 & ~nonzero_bits (XEXP (x, 0), GET_MODE (x))) == 0)
7105 temp = GEN_INT ((INTVAL (XEXP (x, 1)) & mask)
7106 << INTVAL (XEXP (XEXP (x, 0), 1)));
7107 temp = gen_binary (GET_CODE (x), GET_MODE (x),
7108 XEXP (XEXP (x, 0), 0), temp);
7109 x = gen_binary (LSHIFTRT, GET_MODE (x), temp,
7110 XEXP (XEXP (x, 0), 1));
7111 return force_to_mode (x, mode, mask, reg, next_select);
7114 binop:
7115 /* For most binary operations, just propagate into the operation and
7116 change the mode if we have an operation of that mode. */
7118 op0 = gen_lowpart (op_mode,
7119 force_to_mode (XEXP (x, 0), mode, mask,
7120 reg, next_select));
7121 op1 = gen_lowpart (op_mode,
7122 force_to_mode (XEXP (x, 1), mode, mask,
7123 reg, next_select));
7125 if (op_mode != GET_MODE (x) || op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
7126 x = gen_binary (code, op_mode, op0, op1);
7127 break;
7129 case ASHIFT:
7130 /* For left shifts, do the same, but just for the first operand.
7131 However, we cannot do anything with shifts where we cannot
7132 guarantee that the counts are smaller than the size of the mode
7133 because such a count will have a different meaning in a
7134 wider mode. */
7136 if (! (GET_CODE (XEXP (x, 1)) == CONST_INT
7137 && INTVAL (XEXP (x, 1)) >= 0
7138 && INTVAL (XEXP (x, 1)) < GET_MODE_BITSIZE (mode))
7139 && ! (GET_MODE (XEXP (x, 1)) != VOIDmode
7140 && (nonzero_bits (XEXP (x, 1), GET_MODE (XEXP (x, 1)))
7141 < (unsigned HOST_WIDE_INT) GET_MODE_BITSIZE (mode))))
7142 break;
7144 /* If the shift count is a constant and we can do arithmetic in
7145 the mode of the shift, refine which bits we need. Otherwise, use the
7146 conservative form of the mask. */
7147 if (GET_CODE (XEXP (x, 1)) == CONST_INT
7148 && INTVAL (XEXP (x, 1)) >= 0
7149 && INTVAL (XEXP (x, 1)) < GET_MODE_BITSIZE (op_mode)
7150 && GET_MODE_BITSIZE (op_mode) <= HOST_BITS_PER_WIDE_INT)
7151 mask >>= INTVAL (XEXP (x, 1));
7152 else
7153 mask = fuller_mask;
7155 op0 = gen_lowpart (op_mode,
7156 force_to_mode (XEXP (x, 0), op_mode,
7157 mask, reg, next_select));
7159 if (op_mode != GET_MODE (x) || op0 != XEXP (x, 0))
7160 x = gen_binary (code, op_mode, op0, XEXP (x, 1));
7161 break;
7163 case LSHIFTRT:
7164 /* Here we can only do something if the shift count is a constant,
7165 this shift constant is valid for the host, and we can do arithmetic
7166 in OP_MODE. */
7168 if (GET_CODE (XEXP (x, 1)) == CONST_INT
7169 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT
7170 && GET_MODE_BITSIZE (op_mode) <= HOST_BITS_PER_WIDE_INT)
7172 rtx inner = XEXP (x, 0);
7173 unsigned HOST_WIDE_INT inner_mask;
7175 /* Select the mask of the bits we need for the shift operand. */
7176 inner_mask = mask << INTVAL (XEXP (x, 1));
7178 /* We can only change the mode of the shift if we can do arithmetic
7179 in the mode of the shift and INNER_MASK is no wider than the
7180 width of X's mode. */
7181 if ((inner_mask & ~GET_MODE_MASK (GET_MODE (x))) != 0)
7182 op_mode = GET_MODE (x);
7184 inner = force_to_mode (inner, op_mode, inner_mask, reg, next_select);
7186 if (GET_MODE (x) != op_mode || inner != XEXP (x, 0))
7187 x = gen_binary (LSHIFTRT, op_mode, inner, XEXP (x, 1));
7190 /* If we have (and (lshiftrt FOO C1) C2) where the combination of the
7191 shift and AND produces only copies of the sign bit (C2 is one less
7192 than a power of two), we can do this with just a shift. */
7194 if (GET_CODE (x) == LSHIFTRT
7195 && GET_CODE (XEXP (x, 1)) == CONST_INT
7196 /* The shift puts one of the sign bit copies in the least significant
7197 bit. */
7198 && ((INTVAL (XEXP (x, 1))
7199 + num_sign_bit_copies (XEXP (x, 0), GET_MODE (XEXP (x, 0))))
7200 >= GET_MODE_BITSIZE (GET_MODE (x)))
7201 && exact_log2 (mask + 1) >= 0
7202 /* Number of bits left after the shift must be more than the mask
7203 needs. */
7204 && ((INTVAL (XEXP (x, 1)) + exact_log2 (mask + 1))
7205 <= GET_MODE_BITSIZE (GET_MODE (x)))
7206 /* Must be more sign bit copies than the mask needs. */
7207 && ((int) num_sign_bit_copies (XEXP (x, 0), GET_MODE (XEXP (x, 0)))
7208 >= exact_log2 (mask + 1)))
7209 x = gen_binary (LSHIFTRT, GET_MODE (x), XEXP (x, 0),
7210 GEN_INT (GET_MODE_BITSIZE (GET_MODE (x))
7211 - exact_log2 (mask + 1)));
7213 goto shiftrt;
7215 case ASHIFTRT:
7216 /* If we are just looking for the sign bit, we don't need this shift at
7217 all, even if it has a variable count. */
7218 if (GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
7219 && (mask == ((unsigned HOST_WIDE_INT) 1
7220 << (GET_MODE_BITSIZE (GET_MODE (x)) - 1))))
7221 return force_to_mode (XEXP (x, 0), mode, mask, reg, next_select);
7223 /* If this is a shift by a constant, get a mask that contains those bits
7224 that are not copies of the sign bit. We then have two cases: If
7225 MASK only includes those bits, this can be a logical shift, which may
7226 allow simplifications. If MASK is a single-bit field not within
7227 those bits, we are requesting a copy of the sign bit and hence can
7228 shift the sign bit to the appropriate location. */
7230 if (GET_CODE (XEXP (x, 1)) == CONST_INT && INTVAL (XEXP (x, 1)) >= 0
7231 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT)
7233 int i = -1;
7235 /* If the considered data is wider than HOST_WIDE_INT, we can't
7236 represent a mask for all its bits in a single scalar.
7237 But we only care about the lower bits, so calculate these. */
7239 if (GET_MODE_BITSIZE (GET_MODE (x)) > HOST_BITS_PER_WIDE_INT)
7241 nonzero = ~(HOST_WIDE_INT) 0;
7243 /* GET_MODE_BITSIZE (GET_MODE (x)) - INTVAL (XEXP (x, 1))
7244 is the number of bits a full-width mask would have set.
7245 We need only shift if these are fewer than nonzero can
7246 hold. If not, we must keep all bits set in nonzero. */
7248 if (GET_MODE_BITSIZE (GET_MODE (x)) - INTVAL (XEXP (x, 1))
7249 < HOST_BITS_PER_WIDE_INT)
7250 nonzero >>= INTVAL (XEXP (x, 1))
7251 + HOST_BITS_PER_WIDE_INT
7252 - GET_MODE_BITSIZE (GET_MODE (x)) ;
7254 else
7256 nonzero = GET_MODE_MASK (GET_MODE (x));
7257 nonzero >>= INTVAL (XEXP (x, 1));
7260 if ((mask & ~nonzero) == 0
7261 || (i = exact_log2 (mask)) >= 0)
7263 x = simplify_shift_const
7264 (x, LSHIFTRT, GET_MODE (x), XEXP (x, 0),
7265 i < 0 ? INTVAL (XEXP (x, 1))
7266 : GET_MODE_BITSIZE (GET_MODE (x)) - 1 - i);
7268 if (GET_CODE (x) != ASHIFTRT)
7269 return force_to_mode (x, mode, mask, reg, next_select);
7273 /* If MASK is 1, convert this to an LSHIFTRT. This can be done
7274 even if the shift count isn't a constant. */
7275 if (mask == 1)
7276 x = gen_binary (LSHIFTRT, GET_MODE (x), XEXP (x, 0), XEXP (x, 1));
7278 shiftrt:
7280 /* If this is a zero- or sign-extension operation that just affects bits
7281 we don't care about, remove it. Be sure the call above returned
7282 something that is still a shift. */
7284 if ((GET_CODE (x) == LSHIFTRT || GET_CODE (x) == ASHIFTRT)
7285 && GET_CODE (XEXP (x, 1)) == CONST_INT
7286 && INTVAL (XEXP (x, 1)) >= 0
7287 && (INTVAL (XEXP (x, 1))
7288 <= GET_MODE_BITSIZE (GET_MODE (x)) - (floor_log2 (mask) + 1))
7289 && GET_CODE (XEXP (x, 0)) == ASHIFT
7290 && XEXP (XEXP (x, 0), 1) == XEXP (x, 1))
7291 return force_to_mode (XEXP (XEXP (x, 0), 0), mode, mask,
7292 reg, next_select);
7294 break;
7296 case ROTATE:
7297 case ROTATERT:
7298 /* If the shift count is constant and we can do computations
7299 in the mode of X, compute where the bits we care about are.
7300 Otherwise, we can't do anything. Don't change the mode of
7301 the shift or propagate MODE into the shift, though. */
7302 if (GET_CODE (XEXP (x, 1)) == CONST_INT
7303 && INTVAL (XEXP (x, 1)) >= 0)
7305 temp = simplify_binary_operation (code == ROTATE ? ROTATERT : ROTATE,
7306 GET_MODE (x), GEN_INT (mask),
7307 XEXP (x, 1));
7308 if (temp && GET_CODE (temp) == CONST_INT)
7309 SUBST (XEXP (x, 0),
7310 force_to_mode (XEXP (x, 0), GET_MODE (x),
7311 INTVAL (temp), reg, next_select));
7313 break;
7315 case NEG:
7316 /* If we just want the low-order bit, the NEG isn't needed since it
7317 won't change the low-order bit. */
7318 if (mask == 1)
7319 return force_to_mode (XEXP (x, 0), mode, mask, reg, just_select);
7321 /* We need any bits less significant than the most significant bit in
7322 MASK since carries from those bits will affect the bits we are
7323 interested in. */
7324 mask = fuller_mask;
7325 goto unop;
7327 case NOT:
7328 /* (not FOO) is (xor FOO CONST), so if FOO is an LSHIFTRT, we can do the
7329 same as the XOR case above. Ensure that the constant we form is not
7330 wider than the mode of X. */
7332 if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
7333 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
7334 && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
7335 && (INTVAL (XEXP (XEXP (x, 0), 1)) + floor_log2 (mask)
7336 < GET_MODE_BITSIZE (GET_MODE (x)))
7337 && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT)
7339 temp = gen_int_mode (mask << INTVAL (XEXP (XEXP (x, 0), 1)),
7340 GET_MODE (x));
7341 temp = gen_binary (XOR, GET_MODE (x), XEXP (XEXP (x, 0), 0), temp);
7342 x = gen_binary (LSHIFTRT, GET_MODE (x), temp, XEXP (XEXP (x, 0), 1));
7344 return force_to_mode (x, mode, mask, reg, next_select);
7347 /* (and (not FOO) CONST) is (not (or FOO (not CONST))), so we must
7348 use the full mask inside the NOT. */
7349 mask = fuller_mask;
7351 unop:
7352 op0 = gen_lowpart (op_mode,
7353 force_to_mode (XEXP (x, 0), mode, mask,
7354 reg, next_select));
7355 if (op_mode != GET_MODE (x) || op0 != XEXP (x, 0))
7356 x = simplify_gen_unary (code, op_mode, op0, op_mode);
7357 break;
7359 case NE:
7360 /* (and (ne FOO 0) CONST) can be (and FOO CONST) if CONST is included
7361 in STORE_FLAG_VALUE and FOO has a single bit that might be nonzero,
7362 which is equal to STORE_FLAG_VALUE. */
7363 if ((mask & ~STORE_FLAG_VALUE) == 0 && XEXP (x, 1) == const0_rtx
7364 && GET_MODE (XEXP (x, 0)) == mode
7365 && exact_log2 (nonzero_bits (XEXP (x, 0), mode)) >= 0
7366 && (nonzero_bits (XEXP (x, 0), mode)
7367 == (unsigned HOST_WIDE_INT) STORE_FLAG_VALUE))
7368 return force_to_mode (XEXP (x, 0), mode, mask, reg, next_select);
7370 break;
7372 case IF_THEN_ELSE:
7373 /* We have no way of knowing if the IF_THEN_ELSE can itself be
7374 written in a narrower mode. We play it safe and do not do so. */
7376 SUBST (XEXP (x, 1),
7377 gen_lowpart (GET_MODE (x),
7378 force_to_mode (XEXP (x, 1), mode,
7379 mask, reg, next_select)));
7380 SUBST (XEXP (x, 2),
7381 gen_lowpart (GET_MODE (x),
7382 force_to_mode (XEXP (x, 2), mode,
7383 mask, reg, next_select)));
7384 break;
7386 default:
7387 break;
7390 /* Ensure we return a value of the proper mode. */
7391 return gen_lowpart (mode, x);
7394 /* Return nonzero if X is an expression that has one of two values depending on
7395 whether some other value is zero or nonzero. In that case, we return the
7396 value that is being tested, *PTRUE is set to the value if the rtx being
7397 returned has a nonzero value, and *PFALSE is set to the other alternative.
7399 If we return zero, we set *PTRUE and *PFALSE to X. */
7401 static rtx
7402 if_then_else_cond (rtx x, rtx *ptrue, rtx *pfalse)
7404 enum machine_mode mode = GET_MODE (x);
7405 enum rtx_code code = GET_CODE (x);
7406 rtx cond0, cond1, true0, true1, false0, false1;
7407 unsigned HOST_WIDE_INT nz;
7409 /* If we are comparing a value against zero, we are done. */
7410 if ((code == NE || code == EQ)
7411 && XEXP (x, 1) == const0_rtx)
7413 *ptrue = (code == NE) ? const_true_rtx : const0_rtx;
7414 *pfalse = (code == NE) ? const0_rtx : const_true_rtx;
7415 return XEXP (x, 0);
7418 /* If this is a unary operation whose operand has one of two values, apply
7419 our opcode to compute those values. */
7420 else if (UNARY_P (x)
7421 && (cond0 = if_then_else_cond (XEXP (x, 0), &true0, &false0)) != 0)
7423 *ptrue = simplify_gen_unary (code, mode, true0, GET_MODE (XEXP (x, 0)));
7424 *pfalse = simplify_gen_unary (code, mode, false0,
7425 GET_MODE (XEXP (x, 0)));
7426 return cond0;
7429 /* If this is a COMPARE, do nothing, since the IF_THEN_ELSE we would
7430 make can't possibly match and would suppress other optimizations. */
7431 else if (code == COMPARE)
7434 /* If this is a binary operation, see if either side has only one of two
7435 values. If either one does or if both do and they are conditional on
7436 the same value, compute the new true and false values. */
7437 else if (BINARY_P (x))
7439 cond0 = if_then_else_cond (XEXP (x, 0), &true0, &false0);
7440 cond1 = if_then_else_cond (XEXP (x, 1), &true1, &false1);
7442 if ((cond0 != 0 || cond1 != 0)
7443 && ! (cond0 != 0 && cond1 != 0 && ! rtx_equal_p (cond0, cond1)))
7445 /* If if_then_else_cond returned zero, then true/false are the
7446 same rtl. We must copy one of them to prevent invalid rtl
7447 sharing. */
7448 if (cond0 == 0)
7449 true0 = copy_rtx (true0);
7450 else if (cond1 == 0)
7451 true1 = copy_rtx (true1);
7453 *ptrue = gen_binary (code, mode, true0, true1);
7454 *pfalse = gen_binary (code, mode, false0, false1);
7455 return cond0 ? cond0 : cond1;
7458 /* See if we have PLUS, IOR, XOR, MINUS or UMAX, where one of the
7459 operands is zero when the other is nonzero, and vice-versa,
7460 and STORE_FLAG_VALUE is 1 or -1. */
7462 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
7463 && (code == PLUS || code == IOR || code == XOR || code == MINUS
7464 || code == UMAX)
7465 && GET_CODE (XEXP (x, 0)) == MULT && GET_CODE (XEXP (x, 1)) == MULT)
7467 rtx op0 = XEXP (XEXP (x, 0), 1);
7468 rtx op1 = XEXP (XEXP (x, 1), 1);
7470 cond0 = XEXP (XEXP (x, 0), 0);
7471 cond1 = XEXP (XEXP (x, 1), 0);
7473 if (COMPARISON_P (cond0)
7474 && COMPARISON_P (cond1)
7475 && ((GET_CODE (cond0) == combine_reversed_comparison_code (cond1)
7476 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 0))
7477 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 1)))
7478 || ((swap_condition (GET_CODE (cond0))
7479 == combine_reversed_comparison_code (cond1))
7480 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 1))
7481 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 0))))
7482 && ! side_effects_p (x))
7484 *ptrue = gen_binary (MULT, mode, op0, const_true_rtx);
7485 *pfalse = gen_binary (MULT, mode,
7486 (code == MINUS
7487 ? simplify_gen_unary (NEG, mode, op1,
7488 mode)
7489 : op1),
7490 const_true_rtx);
7491 return cond0;
7495 /* Similarly for MULT, AND and UMIN, except that for these the result
7496 is always zero. */
7497 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
7498 && (code == MULT || code == AND || code == UMIN)
7499 && GET_CODE (XEXP (x, 0)) == MULT && GET_CODE (XEXP (x, 1)) == MULT)
7501 cond0 = XEXP (XEXP (x, 0), 0);
7502 cond1 = XEXP (XEXP (x, 1), 0);
7504 if (COMPARISON_P (cond0)
7505 && COMPARISON_P (cond1)
7506 && ((GET_CODE (cond0) == combine_reversed_comparison_code (cond1)
7507 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 0))
7508 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 1)))
7509 || ((swap_condition (GET_CODE (cond0))
7510 == combine_reversed_comparison_code (cond1))
7511 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 1))
7512 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 0))))
7513 && ! side_effects_p (x))
7515 *ptrue = *pfalse = const0_rtx;
7516 return cond0;
7521 else if (code == IF_THEN_ELSE)
7523 /* If we have IF_THEN_ELSE already, extract the condition and
7524 canonicalize it if it is NE or EQ. */
7525 cond0 = XEXP (x, 0);
7526 *ptrue = XEXP (x, 1), *pfalse = XEXP (x, 2);
7527 if (GET_CODE (cond0) == NE && XEXP (cond0, 1) == const0_rtx)
7528 return XEXP (cond0, 0);
7529 else if (GET_CODE (cond0) == EQ && XEXP (cond0, 1) == const0_rtx)
7531 *ptrue = XEXP (x, 2), *pfalse = XEXP (x, 1);
7532 return XEXP (cond0, 0);
7534 else
7535 return cond0;
7538 /* If X is a SUBREG, we can narrow both the true and false values
7539 if the inner expression, if there is a condition. */
7540 else if (code == SUBREG
7541 && 0 != (cond0 = if_then_else_cond (SUBREG_REG (x),
7542 &true0, &false0)))
7544 true0 = simplify_gen_subreg (mode, true0,
7545 GET_MODE (SUBREG_REG (x)), SUBREG_BYTE (x));
7546 false0 = simplify_gen_subreg (mode, false0,
7547 GET_MODE (SUBREG_REG (x)), SUBREG_BYTE (x));
7548 if (true0 && false0)
7550 *ptrue = true0;
7551 *pfalse = false0;
7552 return cond0;
7556 /* If X is a constant, this isn't special and will cause confusions
7557 if we treat it as such. Likewise if it is equivalent to a constant. */
7558 else if (CONSTANT_P (x)
7559 || ((cond0 = get_last_value (x)) != 0 && CONSTANT_P (cond0)))
7562 /* If we're in BImode, canonicalize on 0 and STORE_FLAG_VALUE, as that
7563 will be least confusing to the rest of the compiler. */
7564 else if (mode == BImode)
7566 *ptrue = GEN_INT (STORE_FLAG_VALUE), *pfalse = const0_rtx;
7567 return x;
7570 /* If X is known to be either 0 or -1, those are the true and
7571 false values when testing X. */
7572 else if (x == constm1_rtx || x == const0_rtx
7573 || (mode != VOIDmode
7574 && num_sign_bit_copies (x, mode) == GET_MODE_BITSIZE (mode)))
7576 *ptrue = constm1_rtx, *pfalse = const0_rtx;
7577 return x;
7580 /* Likewise for 0 or a single bit. */
7581 else if (SCALAR_INT_MODE_P (mode)
7582 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
7583 && exact_log2 (nz = nonzero_bits (x, mode)) >= 0)
7585 *ptrue = gen_int_mode (nz, mode), *pfalse = const0_rtx;
7586 return x;
7589 /* Otherwise fail; show no condition with true and false values the same. */
7590 *ptrue = *pfalse = x;
7591 return 0;
7594 /* Return the value of expression X given the fact that condition COND
7595 is known to be true when applied to REG as its first operand and VAL
7596 as its second. X is known to not be shared and so can be modified in
7597 place.
7599 We only handle the simplest cases, and specifically those cases that
7600 arise with IF_THEN_ELSE expressions. */
7602 static rtx
7603 known_cond (rtx x, enum rtx_code cond, rtx reg, rtx val)
7605 enum rtx_code code = GET_CODE (x);
7606 rtx temp;
7607 const char *fmt;
7608 int i, j;
7610 if (side_effects_p (x))
7611 return x;
7613 /* If either operand of the condition is a floating point value,
7614 then we have to avoid collapsing an EQ comparison. */
7615 if (cond == EQ
7616 && rtx_equal_p (x, reg)
7617 && ! FLOAT_MODE_P (GET_MODE (x))
7618 && ! FLOAT_MODE_P (GET_MODE (val)))
7619 return val;
7621 if (cond == UNEQ && rtx_equal_p (x, reg))
7622 return val;
7624 /* If X is (abs REG) and we know something about REG's relationship
7625 with zero, we may be able to simplify this. */
7627 if (code == ABS && rtx_equal_p (XEXP (x, 0), reg) && val == const0_rtx)
7628 switch (cond)
7630 case GE: case GT: case EQ:
7631 return XEXP (x, 0);
7632 case LT: case LE:
7633 return simplify_gen_unary (NEG, GET_MODE (XEXP (x, 0)),
7634 XEXP (x, 0),
7635 GET_MODE (XEXP (x, 0)));
7636 default:
7637 break;
7640 /* The only other cases we handle are MIN, MAX, and comparisons if the
7641 operands are the same as REG and VAL. */
7643 else if (COMPARISON_P (x) || COMMUTATIVE_ARITH_P (x))
7645 if (rtx_equal_p (XEXP (x, 0), val))
7646 cond = swap_condition (cond), temp = val, val = reg, reg = temp;
7648 if (rtx_equal_p (XEXP (x, 0), reg) && rtx_equal_p (XEXP (x, 1), val))
7650 if (COMPARISON_P (x))
7652 if (comparison_dominates_p (cond, code))
7653 return const_true_rtx;
7655 code = combine_reversed_comparison_code (x);
7656 if (code != UNKNOWN
7657 && comparison_dominates_p (cond, code))
7658 return const0_rtx;
7659 else
7660 return x;
7662 else if (code == SMAX || code == SMIN
7663 || code == UMIN || code == UMAX)
7665 int unsignedp = (code == UMIN || code == UMAX);
7667 /* Do not reverse the condition when it is NE or EQ.
7668 This is because we cannot conclude anything about
7669 the value of 'SMAX (x, y)' when x is not equal to y,
7670 but we can when x equals y. */
7671 if ((code == SMAX || code == UMAX)
7672 && ! (cond == EQ || cond == NE))
7673 cond = reverse_condition (cond);
7675 switch (cond)
7677 case GE: case GT:
7678 return unsignedp ? x : XEXP (x, 1);
7679 case LE: case LT:
7680 return unsignedp ? x : XEXP (x, 0);
7681 case GEU: case GTU:
7682 return unsignedp ? XEXP (x, 1) : x;
7683 case LEU: case LTU:
7684 return unsignedp ? XEXP (x, 0) : x;
7685 default:
7686 break;
7691 else if (code == SUBREG)
7693 enum machine_mode inner_mode = GET_MODE (SUBREG_REG (x));
7694 rtx new, r = known_cond (SUBREG_REG (x), cond, reg, val);
7696 if (SUBREG_REG (x) != r)
7698 /* We must simplify subreg here, before we lose track of the
7699 original inner_mode. */
7700 new = simplify_subreg (GET_MODE (x), r,
7701 inner_mode, SUBREG_BYTE (x));
7702 if (new)
7703 return new;
7704 else
7705 SUBST (SUBREG_REG (x), r);
7708 return x;
7710 /* We don't have to handle SIGN_EXTEND here, because even in the
7711 case of replacing something with a modeless CONST_INT, a
7712 CONST_INT is already (supposed to be) a valid sign extension for
7713 its narrower mode, which implies it's already properly
7714 sign-extended for the wider mode. Now, for ZERO_EXTEND, the
7715 story is different. */
7716 else if (code == ZERO_EXTEND)
7718 enum machine_mode inner_mode = GET_MODE (XEXP (x, 0));
7719 rtx new, r = known_cond (XEXP (x, 0), cond, reg, val);
7721 if (XEXP (x, 0) != r)
7723 /* We must simplify the zero_extend here, before we lose
7724 track of the original inner_mode. */
7725 new = simplify_unary_operation (ZERO_EXTEND, GET_MODE (x),
7726 r, inner_mode);
7727 if (new)
7728 return new;
7729 else
7730 SUBST (XEXP (x, 0), r);
7733 return x;
7736 fmt = GET_RTX_FORMAT (code);
7737 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
7739 if (fmt[i] == 'e')
7740 SUBST (XEXP (x, i), known_cond (XEXP (x, i), cond, reg, val));
7741 else if (fmt[i] == 'E')
7742 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
7743 SUBST (XVECEXP (x, i, j), known_cond (XVECEXP (x, i, j),
7744 cond, reg, val));
7747 return x;
7750 /* See if X and Y are equal for the purposes of seeing if we can rewrite an
7751 assignment as a field assignment. */
7753 static int
7754 rtx_equal_for_field_assignment_p (rtx x, rtx y)
7756 if (x == y || rtx_equal_p (x, y))
7757 return 1;
7759 if (x == 0 || y == 0 || GET_MODE (x) != GET_MODE (y))
7760 return 0;
7762 /* Check for a paradoxical SUBREG of a MEM compared with the MEM.
7763 Note that all SUBREGs of MEM are paradoxical; otherwise they
7764 would have been rewritten. */
7765 if (MEM_P (x) && GET_CODE (y) == SUBREG
7766 && MEM_P (SUBREG_REG (y))
7767 && rtx_equal_p (SUBREG_REG (y),
7768 gen_lowpart (GET_MODE (SUBREG_REG (y)), x)))
7769 return 1;
7771 if (MEM_P (y) && GET_CODE (x) == SUBREG
7772 && MEM_P (SUBREG_REG (x))
7773 && rtx_equal_p (SUBREG_REG (x),
7774 gen_lowpart (GET_MODE (SUBREG_REG (x)), y)))
7775 return 1;
7777 /* We used to see if get_last_value of X and Y were the same but that's
7778 not correct. In one direction, we'll cause the assignment to have
7779 the wrong destination and in the case, we'll import a register into this
7780 insn that might have already have been dead. So fail if none of the
7781 above cases are true. */
7782 return 0;
7785 /* See if X, a SET operation, can be rewritten as a bit-field assignment.
7786 Return that assignment if so.
7788 We only handle the most common cases. */
7790 static rtx
7791 make_field_assignment (rtx x)
7793 rtx dest = SET_DEST (x);
7794 rtx src = SET_SRC (x);
7795 rtx assign;
7796 rtx rhs, lhs;
7797 HOST_WIDE_INT c1;
7798 HOST_WIDE_INT pos;
7799 unsigned HOST_WIDE_INT len;
7800 rtx other;
7801 enum machine_mode mode;
7803 /* If SRC was (and (not (ashift (const_int 1) POS)) DEST), this is
7804 a clear of a one-bit field. We will have changed it to
7805 (and (rotate (const_int -2) POS) DEST), so check for that. Also check
7806 for a SUBREG. */
7808 if (GET_CODE (src) == AND && GET_CODE (XEXP (src, 0)) == ROTATE
7809 && GET_CODE (XEXP (XEXP (src, 0), 0)) == CONST_INT
7810 && INTVAL (XEXP (XEXP (src, 0), 0)) == -2
7811 && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
7813 assign = make_extraction (VOIDmode, dest, 0, XEXP (XEXP (src, 0), 1),
7814 1, 1, 1, 0);
7815 if (assign != 0)
7816 return gen_rtx_SET (VOIDmode, assign, const0_rtx);
7817 return x;
7820 else if (GET_CODE (src) == AND && GET_CODE (XEXP (src, 0)) == SUBREG
7821 && subreg_lowpart_p (XEXP (src, 0))
7822 && (GET_MODE_SIZE (GET_MODE (XEXP (src, 0)))
7823 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (XEXP (src, 0)))))
7824 && GET_CODE (SUBREG_REG (XEXP (src, 0))) == ROTATE
7825 && GET_CODE (XEXP (SUBREG_REG (XEXP (src, 0)), 0)) == CONST_INT
7826 && INTVAL (XEXP (SUBREG_REG (XEXP (src, 0)), 0)) == -2
7827 && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
7829 assign = make_extraction (VOIDmode, dest, 0,
7830 XEXP (SUBREG_REG (XEXP (src, 0)), 1),
7831 1, 1, 1, 0);
7832 if (assign != 0)
7833 return gen_rtx_SET (VOIDmode, assign, const0_rtx);
7834 return x;
7837 /* If SRC is (ior (ashift (const_int 1) POS) DEST), this is a set of a
7838 one-bit field. */
7839 else if (GET_CODE (src) == IOR && GET_CODE (XEXP (src, 0)) == ASHIFT
7840 && XEXP (XEXP (src, 0), 0) == const1_rtx
7841 && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
7843 assign = make_extraction (VOIDmode, dest, 0, XEXP (XEXP (src, 0), 1),
7844 1, 1, 1, 0);
7845 if (assign != 0)
7846 return gen_rtx_SET (VOIDmode, assign, const1_rtx);
7847 return x;
7850 /* The other case we handle is assignments into a constant-position
7851 field. They look like (ior/xor (and DEST C1) OTHER). If C1 represents
7852 a mask that has all one bits except for a group of zero bits and
7853 OTHER is known to have zeros where C1 has ones, this is such an
7854 assignment. Compute the position and length from C1. Shift OTHER
7855 to the appropriate position, force it to the required mode, and
7856 make the extraction. Check for the AND in both operands. */
7858 if (GET_CODE (src) != IOR && GET_CODE (src) != XOR)
7859 return x;
7861 rhs = expand_compound_operation (XEXP (src, 0));
7862 lhs = expand_compound_operation (XEXP (src, 1));
7864 if (GET_CODE (rhs) == AND
7865 && GET_CODE (XEXP (rhs, 1)) == CONST_INT
7866 && rtx_equal_for_field_assignment_p (XEXP (rhs, 0), dest))
7867 c1 = INTVAL (XEXP (rhs, 1)), other = lhs;
7868 else if (GET_CODE (lhs) == AND
7869 && GET_CODE (XEXP (lhs, 1)) == CONST_INT
7870 && rtx_equal_for_field_assignment_p (XEXP (lhs, 0), dest))
7871 c1 = INTVAL (XEXP (lhs, 1)), other = rhs;
7872 else
7873 return x;
7875 pos = get_pos_from_mask ((~c1) & GET_MODE_MASK (GET_MODE (dest)), &len);
7876 if (pos < 0 || pos + len > GET_MODE_BITSIZE (GET_MODE (dest))
7877 || GET_MODE_BITSIZE (GET_MODE (dest)) > HOST_BITS_PER_WIDE_INT
7878 || (c1 & nonzero_bits (other, GET_MODE (dest))) != 0)
7879 return x;
7881 assign = make_extraction (VOIDmode, dest, pos, NULL_RTX, len, 1, 1, 0);
7882 if (assign == 0)
7883 return x;
7885 /* The mode to use for the source is the mode of the assignment, or of
7886 what is inside a possible STRICT_LOW_PART. */
7887 mode = (GET_CODE (assign) == STRICT_LOW_PART
7888 ? GET_MODE (XEXP (assign, 0)) : GET_MODE (assign));
7890 /* Shift OTHER right POS places and make it the source, restricting it
7891 to the proper length and mode. */
7893 src = force_to_mode (simplify_shift_const (NULL_RTX, LSHIFTRT,
7894 GET_MODE (src), other, pos),
7895 mode,
7896 GET_MODE_BITSIZE (mode) >= HOST_BITS_PER_WIDE_INT
7897 ? ~(unsigned HOST_WIDE_INT) 0
7898 : ((unsigned HOST_WIDE_INT) 1 << len) - 1,
7899 dest, 0);
7901 /* If SRC is masked by an AND that does not make a difference in
7902 the value being stored, strip it. */
7903 if (GET_CODE (assign) == ZERO_EXTRACT
7904 && GET_CODE (XEXP (assign, 1)) == CONST_INT
7905 && INTVAL (XEXP (assign, 1)) < HOST_BITS_PER_WIDE_INT
7906 && GET_CODE (src) == AND
7907 && GET_CODE (XEXP (src, 1)) == CONST_INT
7908 && ((unsigned HOST_WIDE_INT) INTVAL (XEXP (src, 1))
7909 == ((unsigned HOST_WIDE_INT) 1 << INTVAL (XEXP (assign, 1))) - 1))
7910 src = XEXP (src, 0);
7912 return gen_rtx_SET (VOIDmode, assign, src);
7915 /* See if X is of the form (+ (* a c) (* b c)) and convert to (* (+ a b) c)
7916 if so. */
7918 static rtx
7919 apply_distributive_law (rtx x)
7921 enum rtx_code code = GET_CODE (x);
7922 enum rtx_code inner_code;
7923 rtx lhs, rhs, other;
7924 rtx tem;
7926 /* Distributivity is not true for floating point as it can change the
7927 value. So we don't do it unless -funsafe-math-optimizations. */
7928 if (FLOAT_MODE_P (GET_MODE (x))
7929 && ! flag_unsafe_math_optimizations)
7930 return x;
7932 /* The outer operation can only be one of the following: */
7933 if (code != IOR && code != AND && code != XOR
7934 && code != PLUS && code != MINUS)
7935 return x;
7937 lhs = XEXP (x, 0);
7938 rhs = XEXP (x, 1);
7940 /* If either operand is a primitive we can't do anything, so get out
7941 fast. */
7942 if (OBJECT_P (lhs) || OBJECT_P (rhs))
7943 return x;
7945 lhs = expand_compound_operation (lhs);
7946 rhs = expand_compound_operation (rhs);
7947 inner_code = GET_CODE (lhs);
7948 if (inner_code != GET_CODE (rhs))
7949 return x;
7951 /* See if the inner and outer operations distribute. */
7952 switch (inner_code)
7954 case LSHIFTRT:
7955 case ASHIFTRT:
7956 case AND:
7957 case IOR:
7958 /* These all distribute except over PLUS. */
7959 if (code == PLUS || code == MINUS)
7960 return x;
7961 break;
7963 case MULT:
7964 if (code != PLUS && code != MINUS)
7965 return x;
7966 break;
7968 case ASHIFT:
7969 /* This is also a multiply, so it distributes over everything. */
7970 break;
7972 case SUBREG:
7973 /* Non-paradoxical SUBREGs distributes over all operations, provided
7974 the inner modes and byte offsets are the same, this is an extraction
7975 of a low-order part, we don't convert an fp operation to int or
7976 vice versa, and we would not be converting a single-word
7977 operation into a multi-word operation. The latter test is not
7978 required, but it prevents generating unneeded multi-word operations.
7979 Some of the previous tests are redundant given the latter test, but
7980 are retained because they are required for correctness.
7982 We produce the result slightly differently in this case. */
7984 if (GET_MODE (SUBREG_REG (lhs)) != GET_MODE (SUBREG_REG (rhs))
7985 || SUBREG_BYTE (lhs) != SUBREG_BYTE (rhs)
7986 || ! subreg_lowpart_p (lhs)
7987 || (GET_MODE_CLASS (GET_MODE (lhs))
7988 != GET_MODE_CLASS (GET_MODE (SUBREG_REG (lhs))))
7989 || (GET_MODE_SIZE (GET_MODE (lhs))
7990 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (lhs))))
7991 || GET_MODE_SIZE (GET_MODE (SUBREG_REG (lhs))) > UNITS_PER_WORD)
7992 return x;
7994 tem = gen_binary (code, GET_MODE (SUBREG_REG (lhs)),
7995 SUBREG_REG (lhs), SUBREG_REG (rhs));
7996 return gen_lowpart (GET_MODE (x), tem);
7998 default:
7999 return x;
8002 /* Set LHS and RHS to the inner operands (A and B in the example
8003 above) and set OTHER to the common operand (C in the example).
8004 There is only one way to do this unless the inner operation is
8005 commutative. */
8006 if (COMMUTATIVE_ARITH_P (lhs)
8007 && rtx_equal_p (XEXP (lhs, 0), XEXP (rhs, 0)))
8008 other = XEXP (lhs, 0), lhs = XEXP (lhs, 1), rhs = XEXP (rhs, 1);
8009 else if (COMMUTATIVE_ARITH_P (lhs)
8010 && rtx_equal_p (XEXP (lhs, 0), XEXP (rhs, 1)))
8011 other = XEXP (lhs, 0), lhs = XEXP (lhs, 1), rhs = XEXP (rhs, 0);
8012 else if (COMMUTATIVE_ARITH_P (lhs)
8013 && rtx_equal_p (XEXP (lhs, 1), XEXP (rhs, 0)))
8014 other = XEXP (lhs, 1), lhs = XEXP (lhs, 0), rhs = XEXP (rhs, 1);
8015 else if (rtx_equal_p (XEXP (lhs, 1), XEXP (rhs, 1)))
8016 other = XEXP (lhs, 1), lhs = XEXP (lhs, 0), rhs = XEXP (rhs, 0);
8017 else
8018 return x;
8020 /* Form the new inner operation, seeing if it simplifies first. */
8021 tem = gen_binary (code, GET_MODE (x), lhs, rhs);
8023 /* There is one exception to the general way of distributing:
8024 (a | c) ^ (b | c) -> (a ^ b) & ~c */
8025 if (code == XOR && inner_code == IOR)
8027 inner_code = AND;
8028 other = simplify_gen_unary (NOT, GET_MODE (x), other, GET_MODE (x));
8031 /* We may be able to continuing distributing the result, so call
8032 ourselves recursively on the inner operation before forming the
8033 outer operation, which we return. */
8034 return gen_binary (inner_code, GET_MODE (x),
8035 apply_distributive_law (tem), other);
8038 /* We have X, a logical `and' of VAROP with the constant CONSTOP, to be done
8039 in MODE.
8041 Return an equivalent form, if different from X. Otherwise, return X. If
8042 X is zero, we are to always construct the equivalent form. */
8044 static rtx
8045 simplify_and_const_int (rtx x, enum machine_mode mode, rtx varop,
8046 unsigned HOST_WIDE_INT constop)
8048 unsigned HOST_WIDE_INT nonzero;
8049 int i;
8051 /* Simplify VAROP knowing that we will be only looking at some of the
8052 bits in it.
8054 Note by passing in CONSTOP, we guarantee that the bits not set in
8055 CONSTOP are not significant and will never be examined. We must
8056 ensure that is the case by explicitly masking out those bits
8057 before returning. */
8058 varop = force_to_mode (varop, mode, constop, NULL_RTX, 0);
8060 /* If VAROP is a CLOBBER, we will fail so return it. */
8061 if (GET_CODE (varop) == CLOBBER)
8062 return varop;
8064 /* If VAROP is a CONST_INT, then we need to apply the mask in CONSTOP
8065 to VAROP and return the new constant. */
8066 if (GET_CODE (varop) == CONST_INT)
8067 return GEN_INT (trunc_int_for_mode (INTVAL (varop) & constop, mode));
8069 /* See what bits may be nonzero in VAROP. Unlike the general case of
8070 a call to nonzero_bits, here we don't care about bits outside
8071 MODE. */
8073 nonzero = nonzero_bits (varop, mode) & GET_MODE_MASK (mode);
8075 /* Turn off all bits in the constant that are known to already be zero.
8076 Thus, if the AND isn't needed at all, we will have CONSTOP == NONZERO_BITS
8077 which is tested below. */
8079 constop &= nonzero;
8081 /* If we don't have any bits left, return zero. */
8082 if (constop == 0)
8083 return const0_rtx;
8085 /* If VAROP is a NEG of something known to be zero or 1 and CONSTOP is
8086 a power of two, we can replace this with an ASHIFT. */
8087 if (GET_CODE (varop) == NEG && nonzero_bits (XEXP (varop, 0), mode) == 1
8088 && (i = exact_log2 (constop)) >= 0)
8089 return simplify_shift_const (NULL_RTX, ASHIFT, mode, XEXP (varop, 0), i);
8091 /* If VAROP is an IOR or XOR, apply the AND to both branches of the IOR
8092 or XOR, then try to apply the distributive law. This may eliminate
8093 operations if either branch can be simplified because of the AND.
8094 It may also make some cases more complex, but those cases probably
8095 won't match a pattern either with or without this. */
8097 if (GET_CODE (varop) == IOR || GET_CODE (varop) == XOR)
8098 return
8099 gen_lowpart
8100 (mode,
8101 apply_distributive_law
8102 (gen_binary (GET_CODE (varop), GET_MODE (varop),
8103 simplify_and_const_int (NULL_RTX, GET_MODE (varop),
8104 XEXP (varop, 0), constop),
8105 simplify_and_const_int (NULL_RTX, GET_MODE (varop),
8106 XEXP (varop, 1), constop))));
8108 /* If VAROP is PLUS, and the constant is a mask of low bite, distribute
8109 the AND and see if one of the operands simplifies to zero. If so, we
8110 may eliminate it. */
8112 if (GET_CODE (varop) == PLUS
8113 && exact_log2 (constop + 1) >= 0)
8115 rtx o0, o1;
8117 o0 = simplify_and_const_int (NULL_RTX, mode, XEXP (varop, 0), constop);
8118 o1 = simplify_and_const_int (NULL_RTX, mode, XEXP (varop, 1), constop);
8119 if (o0 == const0_rtx)
8120 return o1;
8121 if (o1 == const0_rtx)
8122 return o0;
8125 /* Get VAROP in MODE. Try to get a SUBREG if not. Don't make a new SUBREG
8126 if we already had one (just check for the simplest cases). */
8127 if (x && GET_CODE (XEXP (x, 0)) == SUBREG
8128 && GET_MODE (XEXP (x, 0)) == mode
8129 && SUBREG_REG (XEXP (x, 0)) == varop)
8130 varop = XEXP (x, 0);
8131 else
8132 varop = gen_lowpart (mode, varop);
8134 /* If we can't make the SUBREG, try to return what we were given. */
8135 if (GET_CODE (varop) == CLOBBER)
8136 return x ? x : varop;
8138 /* If we are only masking insignificant bits, return VAROP. */
8139 if (constop == nonzero)
8140 x = varop;
8141 else
8143 /* Otherwise, return an AND. */
8144 constop = trunc_int_for_mode (constop, mode);
8145 /* See how much, if any, of X we can use. */
8146 if (x == 0 || GET_CODE (x) != AND || GET_MODE (x) != mode)
8147 x = gen_binary (AND, mode, varop, GEN_INT (constop));
8149 else
8151 if (GET_CODE (XEXP (x, 1)) != CONST_INT
8152 || (unsigned HOST_WIDE_INT) INTVAL (XEXP (x, 1)) != constop)
8153 SUBST (XEXP (x, 1), GEN_INT (constop));
8155 SUBST (XEXP (x, 0), varop);
8159 return x;
8162 /* Given a REG, X, compute which bits in X can be nonzero.
8163 We don't care about bits outside of those defined in MODE.
8165 For most X this is simply GET_MODE_MASK (GET_MODE (MODE)), but if X is
8166 a shift, AND, or zero_extract, we can do better. */
8168 static rtx
8169 reg_nonzero_bits_for_combine (rtx x, enum machine_mode mode,
8170 rtx known_x ATTRIBUTE_UNUSED,
8171 enum machine_mode known_mode ATTRIBUTE_UNUSED,
8172 unsigned HOST_WIDE_INT known_ret ATTRIBUTE_UNUSED,
8173 unsigned HOST_WIDE_INT *nonzero)
8175 rtx tem;
8177 /* If X is a register whose nonzero bits value is current, use it.
8178 Otherwise, if X is a register whose value we can find, use that
8179 value. Otherwise, use the previously-computed global nonzero bits
8180 for this register. */
8182 if (reg_stat[REGNO (x)].last_set_value != 0
8183 && (reg_stat[REGNO (x)].last_set_mode == mode
8184 || (GET_MODE_CLASS (reg_stat[REGNO (x)].last_set_mode) == MODE_INT
8185 && GET_MODE_CLASS (mode) == MODE_INT))
8186 && (reg_stat[REGNO (x)].last_set_label == label_tick
8187 || (REGNO (x) >= FIRST_PSEUDO_REGISTER
8188 && REG_N_SETS (REGNO (x)) == 1
8189 && ! REGNO_REG_SET_P (ENTRY_BLOCK_PTR->next_bb->global_live_at_start,
8190 REGNO (x))))
8191 && INSN_CUID (reg_stat[REGNO (x)].last_set) < subst_low_cuid)
8193 *nonzero &= reg_stat[REGNO (x)].last_set_nonzero_bits;
8194 return NULL;
8197 tem = get_last_value (x);
8199 if (tem)
8201 #ifdef SHORT_IMMEDIATES_SIGN_EXTEND
8202 /* If X is narrower than MODE and TEM is a non-negative
8203 constant that would appear negative in the mode of X,
8204 sign-extend it for use in reg_nonzero_bits because some
8205 machines (maybe most) will actually do the sign-extension
8206 and this is the conservative approach.
8208 ??? For 2.5, try to tighten up the MD files in this regard
8209 instead of this kludge. */
8211 if (GET_MODE_BITSIZE (GET_MODE (x)) < GET_MODE_BITSIZE (mode)
8212 && GET_CODE (tem) == CONST_INT
8213 && INTVAL (tem) > 0
8214 && 0 != (INTVAL (tem)
8215 & ((HOST_WIDE_INT) 1
8216 << (GET_MODE_BITSIZE (GET_MODE (x)) - 1))))
8217 tem = GEN_INT (INTVAL (tem)
8218 | ((HOST_WIDE_INT) (-1)
8219 << GET_MODE_BITSIZE (GET_MODE (x))));
8220 #endif
8221 return tem;
8223 else if (nonzero_sign_valid && reg_stat[REGNO (x)].nonzero_bits)
8225 unsigned HOST_WIDE_INT mask = reg_stat[REGNO (x)].nonzero_bits;
8227 if (GET_MODE_BITSIZE (GET_MODE (x)) < GET_MODE_BITSIZE (mode))
8228 /* We don't know anything about the upper bits. */
8229 mask |= GET_MODE_MASK (mode) ^ GET_MODE_MASK (GET_MODE (x));
8230 *nonzero &= mask;
8233 return NULL;
8236 /* Return the number of bits at the high-order end of X that are known to
8237 be equal to the sign bit. X will be used in mode MODE; if MODE is
8238 VOIDmode, X will be used in its own mode. The returned value will always
8239 be between 1 and the number of bits in MODE. */
8241 static rtx
8242 reg_num_sign_bit_copies_for_combine (rtx x, enum machine_mode mode,
8243 rtx known_x ATTRIBUTE_UNUSED,
8244 enum machine_mode known_mode
8245 ATTRIBUTE_UNUSED,
8246 unsigned int known_ret ATTRIBUTE_UNUSED,
8247 unsigned int *result)
8249 rtx tem;
8251 if (reg_stat[REGNO (x)].last_set_value != 0
8252 && reg_stat[REGNO (x)].last_set_mode == mode
8253 && (reg_stat[REGNO (x)].last_set_label == label_tick
8254 || (REGNO (x) >= FIRST_PSEUDO_REGISTER
8255 && REG_N_SETS (REGNO (x)) == 1
8256 && ! REGNO_REG_SET_P (ENTRY_BLOCK_PTR->next_bb->global_live_at_start,
8257 REGNO (x))))
8258 && INSN_CUID (reg_stat[REGNO (x)].last_set) < subst_low_cuid)
8260 *result = reg_stat[REGNO (x)].last_set_sign_bit_copies;
8261 return NULL;
8264 tem = get_last_value (x);
8265 if (tem != 0)
8266 return tem;
8268 if (nonzero_sign_valid && reg_stat[REGNO (x)].sign_bit_copies != 0
8269 && GET_MODE_BITSIZE (GET_MODE (x)) == GET_MODE_BITSIZE (mode))
8270 *result = reg_stat[REGNO (x)].sign_bit_copies;
8272 return NULL;
8275 /* Return the number of "extended" bits there are in X, when interpreted
8276 as a quantity in MODE whose signedness is indicated by UNSIGNEDP. For
8277 unsigned quantities, this is the number of high-order zero bits.
8278 For signed quantities, this is the number of copies of the sign bit
8279 minus 1. In both case, this function returns the number of "spare"
8280 bits. For example, if two quantities for which this function returns
8281 at least 1 are added, the addition is known not to overflow.
8283 This function will always return 0 unless called during combine, which
8284 implies that it must be called from a define_split. */
8286 unsigned int
8287 extended_count (rtx x, enum machine_mode mode, int unsignedp)
8289 if (nonzero_sign_valid == 0)
8290 return 0;
8292 return (unsignedp
8293 ? (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
8294 ? (unsigned int) (GET_MODE_BITSIZE (mode) - 1
8295 - floor_log2 (nonzero_bits (x, mode)))
8296 : 0)
8297 : num_sign_bit_copies (x, mode) - 1);
8300 /* This function is called from `simplify_shift_const' to merge two
8301 outer operations. Specifically, we have already found that we need
8302 to perform operation *POP0 with constant *PCONST0 at the outermost
8303 position. We would now like to also perform OP1 with constant CONST1
8304 (with *POP0 being done last).
8306 Return 1 if we can do the operation and update *POP0 and *PCONST0 with
8307 the resulting operation. *PCOMP_P is set to 1 if we would need to
8308 complement the innermost operand, otherwise it is unchanged.
8310 MODE is the mode in which the operation will be done. No bits outside
8311 the width of this mode matter. It is assumed that the width of this mode
8312 is smaller than or equal to HOST_BITS_PER_WIDE_INT.
8314 If *POP0 or OP1 are UNKNOWN, it means no operation is required. Only NEG, PLUS,
8315 IOR, XOR, and AND are supported. We may set *POP0 to SET if the proper
8316 result is simply *PCONST0.
8318 If the resulting operation cannot be expressed as one operation, we
8319 return 0 and do not change *POP0, *PCONST0, and *PCOMP_P. */
8321 static int
8322 merge_outer_ops (enum rtx_code *pop0, HOST_WIDE_INT *pconst0, enum rtx_code op1, HOST_WIDE_INT const1, enum machine_mode mode, int *pcomp_p)
8324 enum rtx_code op0 = *pop0;
8325 HOST_WIDE_INT const0 = *pconst0;
8327 const0 &= GET_MODE_MASK (mode);
8328 const1 &= GET_MODE_MASK (mode);
8330 /* If OP0 is an AND, clear unimportant bits in CONST1. */
8331 if (op0 == AND)
8332 const1 &= const0;
8334 /* If OP0 or OP1 is UNKNOWN, this is easy. Similarly if they are the same or
8335 if OP0 is SET. */
8337 if (op1 == UNKNOWN || op0 == SET)
8338 return 1;
8340 else if (op0 == UNKNOWN)
8341 op0 = op1, const0 = const1;
8343 else if (op0 == op1)
8345 switch (op0)
8347 case AND:
8348 const0 &= const1;
8349 break;
8350 case IOR:
8351 const0 |= const1;
8352 break;
8353 case XOR:
8354 const0 ^= const1;
8355 break;
8356 case PLUS:
8357 const0 += const1;
8358 break;
8359 case NEG:
8360 op0 = UNKNOWN;
8361 break;
8362 default:
8363 break;
8367 /* Otherwise, if either is a PLUS or NEG, we can't do anything. */
8368 else if (op0 == PLUS || op1 == PLUS || op0 == NEG || op1 == NEG)
8369 return 0;
8371 /* If the two constants aren't the same, we can't do anything. The
8372 remaining six cases can all be done. */
8373 else if (const0 != const1)
8374 return 0;
8376 else
8377 switch (op0)
8379 case IOR:
8380 if (op1 == AND)
8381 /* (a & b) | b == b */
8382 op0 = SET;
8383 else /* op1 == XOR */
8384 /* (a ^ b) | b == a | b */
8386 break;
8388 case XOR:
8389 if (op1 == AND)
8390 /* (a & b) ^ b == (~a) & b */
8391 op0 = AND, *pcomp_p = 1;
8392 else /* op1 == IOR */
8393 /* (a | b) ^ b == a & ~b */
8394 op0 = AND, const0 = ~const0;
8395 break;
8397 case AND:
8398 if (op1 == IOR)
8399 /* (a | b) & b == b */
8400 op0 = SET;
8401 else /* op1 == XOR */
8402 /* (a ^ b) & b) == (~a) & b */
8403 *pcomp_p = 1;
8404 break;
8405 default:
8406 break;
8409 /* Check for NO-OP cases. */
8410 const0 &= GET_MODE_MASK (mode);
8411 if (const0 == 0
8412 && (op0 == IOR || op0 == XOR || op0 == PLUS))
8413 op0 = UNKNOWN;
8414 else if (const0 == 0 && op0 == AND)
8415 op0 = SET;
8416 else if ((unsigned HOST_WIDE_INT) const0 == GET_MODE_MASK (mode)
8417 && op0 == AND)
8418 op0 = UNKNOWN;
8420 /* ??? Slightly redundant with the above mask, but not entirely.
8421 Moving this above means we'd have to sign-extend the mode mask
8422 for the final test. */
8423 const0 = trunc_int_for_mode (const0, mode);
8425 *pop0 = op0;
8426 *pconst0 = const0;
8428 return 1;
8431 /* Simplify a shift of VAROP by COUNT bits. CODE says what kind of shift.
8432 The result of the shift is RESULT_MODE. X, if nonzero, is an expression
8433 that we started with.
8435 The shift is normally computed in the widest mode we find in VAROP, as
8436 long as it isn't a different number of words than RESULT_MODE. Exceptions
8437 are ASHIFTRT and ROTATE, which are always done in their original mode, */
8439 static rtx
8440 simplify_shift_const (rtx x, enum rtx_code code,
8441 enum machine_mode result_mode, rtx varop,
8442 int orig_count)
8444 enum rtx_code orig_code = code;
8445 unsigned int count;
8446 int signed_count;
8447 enum machine_mode mode = result_mode;
8448 enum machine_mode shift_mode, tmode;
8449 unsigned int mode_words
8450 = (GET_MODE_SIZE (mode) + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD;
8451 /* We form (outer_op (code varop count) (outer_const)). */
8452 enum rtx_code outer_op = UNKNOWN;
8453 HOST_WIDE_INT outer_const = 0;
8454 rtx const_rtx;
8455 int complement_p = 0;
8456 rtx new;
8458 /* Make sure and truncate the "natural" shift on the way in. We don't
8459 want to do this inside the loop as it makes it more difficult to
8460 combine shifts. */
8461 if (SHIFT_COUNT_TRUNCATED)
8462 orig_count &= GET_MODE_BITSIZE (mode) - 1;
8464 /* If we were given an invalid count, don't do anything except exactly
8465 what was requested. */
8467 if (orig_count < 0 || orig_count >= (int) GET_MODE_BITSIZE (mode))
8469 if (x)
8470 return x;
8472 return gen_rtx_fmt_ee (code, mode, varop, GEN_INT (orig_count));
8475 count = orig_count;
8477 /* Unless one of the branches of the `if' in this loop does a `continue',
8478 we will `break' the loop after the `if'. */
8480 while (count != 0)
8482 /* If we have an operand of (clobber (const_int 0)), just return that
8483 value. */
8484 if (GET_CODE (varop) == CLOBBER)
8485 return varop;
8487 /* If we discovered we had to complement VAROP, leave. Making a NOT
8488 here would cause an infinite loop. */
8489 if (complement_p)
8490 break;
8492 /* Convert ROTATERT to ROTATE. */
8493 if (code == ROTATERT)
8495 unsigned int bitsize = GET_MODE_BITSIZE (result_mode);;
8496 code = ROTATE;
8497 if (VECTOR_MODE_P (result_mode))
8498 count = bitsize / GET_MODE_NUNITS (result_mode) - count;
8499 else
8500 count = bitsize - count;
8503 /* We need to determine what mode we will do the shift in. If the
8504 shift is a right shift or a ROTATE, we must always do it in the mode
8505 it was originally done in. Otherwise, we can do it in MODE, the
8506 widest mode encountered. */
8507 shift_mode
8508 = (code == ASHIFTRT || code == LSHIFTRT || code == ROTATE
8509 ? result_mode : mode);
8511 /* Handle cases where the count is greater than the size of the mode
8512 minus 1. For ASHIFT, use the size minus one as the count (this can
8513 occur when simplifying (lshiftrt (ashiftrt ..))). For rotates,
8514 take the count modulo the size. For other shifts, the result is
8515 zero.
8517 Since these shifts are being produced by the compiler by combining
8518 multiple operations, each of which are defined, we know what the
8519 result is supposed to be. */
8521 if (count > (unsigned int) (GET_MODE_BITSIZE (shift_mode) - 1))
8523 if (code == ASHIFTRT)
8524 count = GET_MODE_BITSIZE (shift_mode) - 1;
8525 else if (code == ROTATE || code == ROTATERT)
8526 count %= GET_MODE_BITSIZE (shift_mode);
8527 else
8529 /* We can't simply return zero because there may be an
8530 outer op. */
8531 varop = const0_rtx;
8532 count = 0;
8533 break;
8537 /* An arithmetic right shift of a quantity known to be -1 or 0
8538 is a no-op. */
8539 if (code == ASHIFTRT
8540 && (num_sign_bit_copies (varop, shift_mode)
8541 == GET_MODE_BITSIZE (shift_mode)))
8543 count = 0;
8544 break;
8547 /* If we are doing an arithmetic right shift and discarding all but
8548 the sign bit copies, this is equivalent to doing a shift by the
8549 bitsize minus one. Convert it into that shift because it will often
8550 allow other simplifications. */
8552 if (code == ASHIFTRT
8553 && (count + num_sign_bit_copies (varop, shift_mode)
8554 >= GET_MODE_BITSIZE (shift_mode)))
8555 count = GET_MODE_BITSIZE (shift_mode) - 1;
8557 /* We simplify the tests below and elsewhere by converting
8558 ASHIFTRT to LSHIFTRT if we know the sign bit is clear.
8559 `make_compound_operation' will convert it to an ASHIFTRT for
8560 those machines (such as VAX) that don't have an LSHIFTRT. */
8561 if (GET_MODE_BITSIZE (shift_mode) <= HOST_BITS_PER_WIDE_INT
8562 && code == ASHIFTRT
8563 && ((nonzero_bits (varop, shift_mode)
8564 & ((HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE (shift_mode) - 1)))
8565 == 0))
8566 code = LSHIFTRT;
8568 if (code == LSHIFTRT
8569 && GET_MODE_BITSIZE (shift_mode) <= HOST_BITS_PER_WIDE_INT
8570 && !(nonzero_bits (varop, shift_mode) >> count))
8571 varop = const0_rtx;
8572 if (code == ASHIFT
8573 && GET_MODE_BITSIZE (shift_mode) <= HOST_BITS_PER_WIDE_INT
8574 && !((nonzero_bits (varop, shift_mode) << count)
8575 & GET_MODE_MASK (shift_mode)))
8576 varop = const0_rtx;
8578 switch (GET_CODE (varop))
8580 case SIGN_EXTEND:
8581 case ZERO_EXTEND:
8582 case SIGN_EXTRACT:
8583 case ZERO_EXTRACT:
8584 new = expand_compound_operation (varop);
8585 if (new != varop)
8587 varop = new;
8588 continue;
8590 break;
8592 case MEM:
8593 /* If we have (xshiftrt (mem ...) C) and C is MODE_WIDTH
8594 minus the width of a smaller mode, we can do this with a
8595 SIGN_EXTEND or ZERO_EXTEND from the narrower memory location. */
8596 if ((code == ASHIFTRT || code == LSHIFTRT)
8597 && ! mode_dependent_address_p (XEXP (varop, 0))
8598 && ! MEM_VOLATILE_P (varop)
8599 && (tmode = mode_for_size (GET_MODE_BITSIZE (mode) - count,
8600 MODE_INT, 1)) != BLKmode)
8602 new = adjust_address_nv (varop, tmode,
8603 BYTES_BIG_ENDIAN ? 0
8604 : count / BITS_PER_UNIT);
8606 varop = gen_rtx_fmt_e (code == ASHIFTRT ? SIGN_EXTEND
8607 : ZERO_EXTEND, mode, new);
8608 count = 0;
8609 continue;
8611 break;
8613 case USE:
8614 /* Similar to the case above, except that we can only do this if
8615 the resulting mode is the same as that of the underlying
8616 MEM and adjust the address depending on the *bits* endianness
8617 because of the way that bit-field extract insns are defined. */
8618 if ((code == ASHIFTRT || code == LSHIFTRT)
8619 && (tmode = mode_for_size (GET_MODE_BITSIZE (mode) - count,
8620 MODE_INT, 1)) != BLKmode
8621 && tmode == GET_MODE (XEXP (varop, 0)))
8623 if (BITS_BIG_ENDIAN)
8624 new = XEXP (varop, 0);
8625 else
8627 new = copy_rtx (XEXP (varop, 0));
8628 SUBST (XEXP (new, 0),
8629 plus_constant (XEXP (new, 0),
8630 count / BITS_PER_UNIT));
8633 varop = gen_rtx_fmt_e (code == ASHIFTRT ? SIGN_EXTEND
8634 : ZERO_EXTEND, mode, new);
8635 count = 0;
8636 continue;
8638 break;
8640 case SUBREG:
8641 /* If VAROP is a SUBREG, strip it as long as the inner operand has
8642 the same number of words as what we've seen so far. Then store
8643 the widest mode in MODE. */
8644 if (subreg_lowpart_p (varop)
8645 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (varop)))
8646 > GET_MODE_SIZE (GET_MODE (varop)))
8647 && (unsigned int) ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (varop)))
8648 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
8649 == mode_words)
8651 varop = SUBREG_REG (varop);
8652 if (GET_MODE_SIZE (GET_MODE (varop)) > GET_MODE_SIZE (mode))
8653 mode = GET_MODE (varop);
8654 continue;
8656 break;
8658 case MULT:
8659 /* Some machines use MULT instead of ASHIFT because MULT
8660 is cheaper. But it is still better on those machines to
8661 merge two shifts into one. */
8662 if (GET_CODE (XEXP (varop, 1)) == CONST_INT
8663 && exact_log2 (INTVAL (XEXP (varop, 1))) >= 0)
8665 varop
8666 = gen_binary (ASHIFT, GET_MODE (varop), XEXP (varop, 0),
8667 GEN_INT (exact_log2 (INTVAL (XEXP (varop, 1)))));
8668 continue;
8670 break;
8672 case UDIV:
8673 /* Similar, for when divides are cheaper. */
8674 if (GET_CODE (XEXP (varop, 1)) == CONST_INT
8675 && exact_log2 (INTVAL (XEXP (varop, 1))) >= 0)
8677 varop
8678 = gen_binary (LSHIFTRT, GET_MODE (varop), XEXP (varop, 0),
8679 GEN_INT (exact_log2 (INTVAL (XEXP (varop, 1)))));
8680 continue;
8682 break;
8684 case ASHIFTRT:
8685 /* If we are extracting just the sign bit of an arithmetic
8686 right shift, that shift is not needed. However, the sign
8687 bit of a wider mode may be different from what would be
8688 interpreted as the sign bit in a narrower mode, so, if
8689 the result is narrower, don't discard the shift. */
8690 if (code == LSHIFTRT
8691 && count == (unsigned int) (GET_MODE_BITSIZE (result_mode) - 1)
8692 && (GET_MODE_BITSIZE (result_mode)
8693 >= GET_MODE_BITSIZE (GET_MODE (varop))))
8695 varop = XEXP (varop, 0);
8696 continue;
8699 /* ... fall through ... */
8701 case LSHIFTRT:
8702 case ASHIFT:
8703 case ROTATE:
8704 /* Here we have two nested shifts. The result is usually the
8705 AND of a new shift with a mask. We compute the result below. */
8706 if (GET_CODE (XEXP (varop, 1)) == CONST_INT
8707 && INTVAL (XEXP (varop, 1)) >= 0
8708 && INTVAL (XEXP (varop, 1)) < GET_MODE_BITSIZE (GET_MODE (varop))
8709 && GET_MODE_BITSIZE (result_mode) <= HOST_BITS_PER_WIDE_INT
8710 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
8712 enum rtx_code first_code = GET_CODE (varop);
8713 unsigned int first_count = INTVAL (XEXP (varop, 1));
8714 unsigned HOST_WIDE_INT mask;
8715 rtx mask_rtx;
8717 /* We have one common special case. We can't do any merging if
8718 the inner code is an ASHIFTRT of a smaller mode. However, if
8719 we have (ashift:M1 (subreg:M1 (ashiftrt:M2 FOO C1) 0) C2)
8720 with C2 == GET_MODE_BITSIZE (M1) - GET_MODE_BITSIZE (M2),
8721 we can convert it to
8722 (ashiftrt:M1 (ashift:M1 (and:M1 (subreg:M1 FOO 0 C2) C3) C1).
8723 This simplifies certain SIGN_EXTEND operations. */
8724 if (code == ASHIFT && first_code == ASHIFTRT
8725 && count == (unsigned int)
8726 (GET_MODE_BITSIZE (result_mode)
8727 - GET_MODE_BITSIZE (GET_MODE (varop))))
8729 /* C3 has the low-order C1 bits zero. */
8731 mask = (GET_MODE_MASK (mode)
8732 & ~(((HOST_WIDE_INT) 1 << first_count) - 1));
8734 varop = simplify_and_const_int (NULL_RTX, result_mode,
8735 XEXP (varop, 0), mask);
8736 varop = simplify_shift_const (NULL_RTX, ASHIFT, result_mode,
8737 varop, count);
8738 count = first_count;
8739 code = ASHIFTRT;
8740 continue;
8743 /* If this was (ashiftrt (ashift foo C1) C2) and FOO has more
8744 than C1 high-order bits equal to the sign bit, we can convert
8745 this to either an ASHIFT or an ASHIFTRT depending on the
8746 two counts.
8748 We cannot do this if VAROP's mode is not SHIFT_MODE. */
8750 if (code == ASHIFTRT && first_code == ASHIFT
8751 && GET_MODE (varop) == shift_mode
8752 && (num_sign_bit_copies (XEXP (varop, 0), shift_mode)
8753 > first_count))
8755 varop = XEXP (varop, 0);
8757 signed_count = count - first_count;
8758 if (signed_count < 0)
8759 count = -signed_count, code = ASHIFT;
8760 else
8761 count = signed_count;
8763 continue;
8766 /* There are some cases we can't do. If CODE is ASHIFTRT,
8767 we can only do this if FIRST_CODE is also ASHIFTRT.
8769 We can't do the case when CODE is ROTATE and FIRST_CODE is
8770 ASHIFTRT.
8772 If the mode of this shift is not the mode of the outer shift,
8773 we can't do this if either shift is a right shift or ROTATE.
8775 Finally, we can't do any of these if the mode is too wide
8776 unless the codes are the same.
8778 Handle the case where the shift codes are the same
8779 first. */
8781 if (code == first_code)
8783 if (GET_MODE (varop) != result_mode
8784 && (code == ASHIFTRT || code == LSHIFTRT
8785 || code == ROTATE))
8786 break;
8788 count += first_count;
8789 varop = XEXP (varop, 0);
8790 continue;
8793 if (code == ASHIFTRT
8794 || (code == ROTATE && first_code == ASHIFTRT)
8795 || GET_MODE_BITSIZE (mode) > HOST_BITS_PER_WIDE_INT
8796 || (GET_MODE (varop) != result_mode
8797 && (first_code == ASHIFTRT || first_code == LSHIFTRT
8798 || first_code == ROTATE
8799 || code == ROTATE)))
8800 break;
8802 /* To compute the mask to apply after the shift, shift the
8803 nonzero bits of the inner shift the same way the
8804 outer shift will. */
8806 mask_rtx = GEN_INT (nonzero_bits (varop, GET_MODE (varop)));
8808 mask_rtx
8809 = simplify_binary_operation (code, result_mode, mask_rtx,
8810 GEN_INT (count));
8812 /* Give up if we can't compute an outer operation to use. */
8813 if (mask_rtx == 0
8814 || GET_CODE (mask_rtx) != CONST_INT
8815 || ! merge_outer_ops (&outer_op, &outer_const, AND,
8816 INTVAL (mask_rtx),
8817 result_mode, &complement_p))
8818 break;
8820 /* If the shifts are in the same direction, we add the
8821 counts. Otherwise, we subtract them. */
8822 signed_count = count;
8823 if ((code == ASHIFTRT || code == LSHIFTRT)
8824 == (first_code == ASHIFTRT || first_code == LSHIFTRT))
8825 signed_count += first_count;
8826 else
8827 signed_count -= first_count;
8829 /* If COUNT is positive, the new shift is usually CODE,
8830 except for the two exceptions below, in which case it is
8831 FIRST_CODE. If the count is negative, FIRST_CODE should
8832 always be used */
8833 if (signed_count > 0
8834 && ((first_code == ROTATE && code == ASHIFT)
8835 || (first_code == ASHIFTRT && code == LSHIFTRT)))
8836 code = first_code, count = signed_count;
8837 else if (signed_count < 0)
8838 code = first_code, count = -signed_count;
8839 else
8840 count = signed_count;
8842 varop = XEXP (varop, 0);
8843 continue;
8846 /* If we have (A << B << C) for any shift, we can convert this to
8847 (A << C << B). This wins if A is a constant. Only try this if
8848 B is not a constant. */
8850 else if (GET_CODE (varop) == code
8851 && GET_CODE (XEXP (varop, 1)) != CONST_INT
8852 && 0 != (new
8853 = simplify_binary_operation (code, mode,
8854 XEXP (varop, 0),
8855 GEN_INT (count))))
8857 varop = gen_rtx_fmt_ee (code, mode, new, XEXP (varop, 1));
8858 count = 0;
8859 continue;
8861 break;
8863 case NOT:
8864 /* Make this fit the case below. */
8865 varop = gen_rtx_XOR (mode, XEXP (varop, 0),
8866 GEN_INT (GET_MODE_MASK (mode)));
8867 continue;
8869 case IOR:
8870 case AND:
8871 case XOR:
8872 /* If we have (xshiftrt (ior (plus X (const_int -1)) X) C)
8873 with C the size of VAROP - 1 and the shift is logical if
8874 STORE_FLAG_VALUE is 1 and arithmetic if STORE_FLAG_VALUE is -1,
8875 we have an (le X 0) operation. If we have an arithmetic shift
8876 and STORE_FLAG_VALUE is 1 or we have a logical shift with
8877 STORE_FLAG_VALUE of -1, we have a (neg (le X 0)) operation. */
8879 if (GET_CODE (varop) == IOR && GET_CODE (XEXP (varop, 0)) == PLUS
8880 && XEXP (XEXP (varop, 0), 1) == constm1_rtx
8881 && (STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
8882 && (code == LSHIFTRT || code == ASHIFTRT)
8883 && count == (unsigned int)
8884 (GET_MODE_BITSIZE (GET_MODE (varop)) - 1)
8885 && rtx_equal_p (XEXP (XEXP (varop, 0), 0), XEXP (varop, 1)))
8887 count = 0;
8888 varop = gen_rtx_LE (GET_MODE (varop), XEXP (varop, 1),
8889 const0_rtx);
8891 if (STORE_FLAG_VALUE == 1 ? code == ASHIFTRT : code == LSHIFTRT)
8892 varop = gen_rtx_NEG (GET_MODE (varop), varop);
8894 continue;
8897 /* If we have (shift (logical)), move the logical to the outside
8898 to allow it to possibly combine with another logical and the
8899 shift to combine with another shift. This also canonicalizes to
8900 what a ZERO_EXTRACT looks like. Also, some machines have
8901 (and (shift)) insns. */
8903 if (GET_CODE (XEXP (varop, 1)) == CONST_INT
8904 /* We can't do this if we have (ashiftrt (xor)) and the
8905 constant has its sign bit set in shift_mode. */
8906 && !(code == ASHIFTRT && GET_CODE (varop) == XOR
8907 && 0 > trunc_int_for_mode (INTVAL (XEXP (varop, 1)),
8908 shift_mode))
8909 && (new = simplify_binary_operation (code, result_mode,
8910 XEXP (varop, 1),
8911 GEN_INT (count))) != 0
8912 && GET_CODE (new) == CONST_INT
8913 && merge_outer_ops (&outer_op, &outer_const, GET_CODE (varop),
8914 INTVAL (new), result_mode, &complement_p))
8916 varop = XEXP (varop, 0);
8917 continue;
8920 /* If we can't do that, try to simplify the shift in each arm of the
8921 logical expression, make a new logical expression, and apply
8922 the inverse distributive law. This also can't be done
8923 for some (ashiftrt (xor)). */
8924 if (GET_CODE (XEXP (varop, 1)) == CONST_INT
8925 && !(code == ASHIFTRT && GET_CODE (varop) == XOR
8926 && 0 > trunc_int_for_mode (INTVAL (XEXP (varop, 1)),
8927 shift_mode)))
8929 rtx lhs = simplify_shift_const (NULL_RTX, code, shift_mode,
8930 XEXP (varop, 0), count);
8931 rtx rhs = simplify_shift_const (NULL_RTX, code, shift_mode,
8932 XEXP (varop, 1), count);
8934 varop = gen_binary (GET_CODE (varop), shift_mode, lhs, rhs);
8935 varop = apply_distributive_law (varop);
8937 count = 0;
8938 continue;
8940 break;
8942 case EQ:
8943 /* Convert (lshiftrt (eq FOO 0) C) to (xor FOO 1) if STORE_FLAG_VALUE
8944 says that the sign bit can be tested, FOO has mode MODE, C is
8945 GET_MODE_BITSIZE (MODE) - 1, and FOO has only its low-order bit
8946 that may be nonzero. */
8947 if (code == LSHIFTRT
8948 && XEXP (varop, 1) == const0_rtx
8949 && GET_MODE (XEXP (varop, 0)) == result_mode
8950 && count == (unsigned int) (GET_MODE_BITSIZE (result_mode) - 1)
8951 && GET_MODE_BITSIZE (result_mode) <= HOST_BITS_PER_WIDE_INT
8952 && ((STORE_FLAG_VALUE
8953 & ((HOST_WIDE_INT) 1
8954 < (GET_MODE_BITSIZE (result_mode) - 1))))
8955 && nonzero_bits (XEXP (varop, 0), result_mode) == 1
8956 && merge_outer_ops (&outer_op, &outer_const, XOR,
8957 (HOST_WIDE_INT) 1, result_mode,
8958 &complement_p))
8960 varop = XEXP (varop, 0);
8961 count = 0;
8962 continue;
8964 break;
8966 case NEG:
8967 /* (lshiftrt (neg A) C) where A is either 0 or 1 and C is one less
8968 than the number of bits in the mode is equivalent to A. */
8969 if (code == LSHIFTRT
8970 && count == (unsigned int) (GET_MODE_BITSIZE (result_mode) - 1)
8971 && nonzero_bits (XEXP (varop, 0), result_mode) == 1)
8973 varop = XEXP (varop, 0);
8974 count = 0;
8975 continue;
8978 /* NEG commutes with ASHIFT since it is multiplication. Move the
8979 NEG outside to allow shifts to combine. */
8980 if (code == ASHIFT
8981 && merge_outer_ops (&outer_op, &outer_const, NEG,
8982 (HOST_WIDE_INT) 0, result_mode,
8983 &complement_p))
8985 varop = XEXP (varop, 0);
8986 continue;
8988 break;
8990 case PLUS:
8991 /* (lshiftrt (plus A -1) C) where A is either 0 or 1 and C
8992 is one less than the number of bits in the mode is
8993 equivalent to (xor A 1). */
8994 if (code == LSHIFTRT
8995 && count == (unsigned int) (GET_MODE_BITSIZE (result_mode) - 1)
8996 && XEXP (varop, 1) == constm1_rtx
8997 && nonzero_bits (XEXP (varop, 0), result_mode) == 1
8998 && merge_outer_ops (&outer_op, &outer_const, XOR,
8999 (HOST_WIDE_INT) 1, result_mode,
9000 &complement_p))
9002 count = 0;
9003 varop = XEXP (varop, 0);
9004 continue;
9007 /* If we have (xshiftrt (plus FOO BAR) C), and the only bits
9008 that might be nonzero in BAR are those being shifted out and those
9009 bits are known zero in FOO, we can replace the PLUS with FOO.
9010 Similarly in the other operand order. This code occurs when
9011 we are computing the size of a variable-size array. */
9013 if ((code == ASHIFTRT || code == LSHIFTRT)
9014 && count < HOST_BITS_PER_WIDE_INT
9015 && nonzero_bits (XEXP (varop, 1), result_mode) >> count == 0
9016 && (nonzero_bits (XEXP (varop, 1), result_mode)
9017 & nonzero_bits (XEXP (varop, 0), result_mode)) == 0)
9019 varop = XEXP (varop, 0);
9020 continue;
9022 else if ((code == ASHIFTRT || code == LSHIFTRT)
9023 && count < HOST_BITS_PER_WIDE_INT
9024 && GET_MODE_BITSIZE (result_mode) <= HOST_BITS_PER_WIDE_INT
9025 && 0 == (nonzero_bits (XEXP (varop, 0), result_mode)
9026 >> count)
9027 && 0 == (nonzero_bits (XEXP (varop, 0), result_mode)
9028 & nonzero_bits (XEXP (varop, 1),
9029 result_mode)))
9031 varop = XEXP (varop, 1);
9032 continue;
9035 /* (ashift (plus foo C) N) is (plus (ashift foo N) C'). */
9036 if (code == ASHIFT
9037 && GET_CODE (XEXP (varop, 1)) == CONST_INT
9038 && (new = simplify_binary_operation (ASHIFT, result_mode,
9039 XEXP (varop, 1),
9040 GEN_INT (count))) != 0
9041 && GET_CODE (new) == CONST_INT
9042 && merge_outer_ops (&outer_op, &outer_const, PLUS,
9043 INTVAL (new), result_mode, &complement_p))
9045 varop = XEXP (varop, 0);
9046 continue;
9049 /* Check for 'PLUS signbit', which is the canonical form of 'XOR
9050 signbit', and attempt to change the PLUS to an XOR and move it to
9051 the outer operation as is done above in the AND/IOR/XOR case
9052 leg for shift(logical). See details in logical handling above
9053 for reasoning in doing so. */
9054 if (code == LSHIFTRT
9055 && GET_CODE (XEXP (varop, 1)) == CONST_INT
9056 && mode_signbit_p (result_mode, XEXP (varop, 1))
9057 && (new = simplify_binary_operation (code, result_mode,
9058 XEXP (varop, 1),
9059 GEN_INT (count))) != 0
9060 && GET_CODE (new) == CONST_INT
9061 && merge_outer_ops (&outer_op, &outer_const, XOR,
9062 INTVAL (new), result_mode, &complement_p))
9064 varop = XEXP (varop, 0);
9065 continue;
9068 break;
9070 case MINUS:
9071 /* If we have (xshiftrt (minus (ashiftrt X C)) X) C)
9072 with C the size of VAROP - 1 and the shift is logical if
9073 STORE_FLAG_VALUE is 1 and arithmetic if STORE_FLAG_VALUE is -1,
9074 we have a (gt X 0) operation. If the shift is arithmetic with
9075 STORE_FLAG_VALUE of 1 or logical with STORE_FLAG_VALUE == -1,
9076 we have a (neg (gt X 0)) operation. */
9078 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
9079 && GET_CODE (XEXP (varop, 0)) == ASHIFTRT
9080 && count == (unsigned int)
9081 (GET_MODE_BITSIZE (GET_MODE (varop)) - 1)
9082 && (code == LSHIFTRT || code == ASHIFTRT)
9083 && GET_CODE (XEXP (XEXP (varop, 0), 1)) == CONST_INT
9084 && (unsigned HOST_WIDE_INT) INTVAL (XEXP (XEXP (varop, 0), 1))
9085 == count
9086 && rtx_equal_p (XEXP (XEXP (varop, 0), 0), XEXP (varop, 1)))
9088 count = 0;
9089 varop = gen_rtx_GT (GET_MODE (varop), XEXP (varop, 1),
9090 const0_rtx);
9092 if (STORE_FLAG_VALUE == 1 ? code == ASHIFTRT : code == LSHIFTRT)
9093 varop = gen_rtx_NEG (GET_MODE (varop), varop);
9095 continue;
9097 break;
9099 case TRUNCATE:
9100 /* Change (lshiftrt (truncate (lshiftrt))) to (truncate (lshiftrt))
9101 if the truncate does not affect the value. */
9102 if (code == LSHIFTRT
9103 && GET_CODE (XEXP (varop, 0)) == LSHIFTRT
9104 && GET_CODE (XEXP (XEXP (varop, 0), 1)) == CONST_INT
9105 && (INTVAL (XEXP (XEXP (varop, 0), 1))
9106 >= (GET_MODE_BITSIZE (GET_MODE (XEXP (varop, 0)))
9107 - GET_MODE_BITSIZE (GET_MODE (varop)))))
9109 rtx varop_inner = XEXP (varop, 0);
9111 varop_inner
9112 = gen_rtx_LSHIFTRT (GET_MODE (varop_inner),
9113 XEXP (varop_inner, 0),
9114 GEN_INT
9115 (count + INTVAL (XEXP (varop_inner, 1))));
9116 varop = gen_rtx_TRUNCATE (GET_MODE (varop), varop_inner);
9117 count = 0;
9118 continue;
9120 break;
9122 default:
9123 break;
9126 break;
9129 /* We need to determine what mode to do the shift in. If the shift is
9130 a right shift or ROTATE, we must always do it in the mode it was
9131 originally done in. Otherwise, we can do it in MODE, the widest mode
9132 encountered. The code we care about is that of the shift that will
9133 actually be done, not the shift that was originally requested. */
9134 shift_mode
9135 = (code == ASHIFTRT || code == LSHIFTRT || code == ROTATE
9136 ? result_mode : mode);
9138 /* We have now finished analyzing the shift. The result should be
9139 a shift of type CODE with SHIFT_MODE shifting VAROP COUNT places. If
9140 OUTER_OP is non-UNKNOWN, it is an operation that needs to be applied
9141 to the result of the shift. OUTER_CONST is the relevant constant,
9142 but we must turn off all bits turned off in the shift.
9144 If we were passed a value for X, see if we can use any pieces of
9145 it. If not, make new rtx. */
9147 if (x && GET_RTX_CLASS (GET_CODE (x)) == RTX_BIN_ARITH
9148 && GET_CODE (XEXP (x, 1)) == CONST_INT
9149 && (unsigned HOST_WIDE_INT) INTVAL (XEXP (x, 1)) == count)
9150 const_rtx = XEXP (x, 1);
9151 else
9152 const_rtx = GEN_INT (count);
9154 if (x && GET_CODE (XEXP (x, 0)) == SUBREG
9155 && GET_MODE (XEXP (x, 0)) == shift_mode
9156 && SUBREG_REG (XEXP (x, 0)) == varop)
9157 varop = XEXP (x, 0);
9158 else if (GET_MODE (varop) != shift_mode)
9159 varop = gen_lowpart (shift_mode, varop);
9161 /* If we can't make the SUBREG, try to return what we were given. */
9162 if (GET_CODE (varop) == CLOBBER)
9163 return x ? x : varop;
9165 new = simplify_binary_operation (code, shift_mode, varop, const_rtx);
9166 if (new != 0)
9167 x = new;
9168 else
9169 x = gen_rtx_fmt_ee (code, shift_mode, varop, const_rtx);
9171 /* If we have an outer operation and we just made a shift, it is
9172 possible that we could have simplified the shift were it not
9173 for the outer operation. So try to do the simplification
9174 recursively. */
9176 if (outer_op != UNKNOWN && GET_CODE (x) == code
9177 && GET_CODE (XEXP (x, 1)) == CONST_INT)
9178 x = simplify_shift_const (x, code, shift_mode, XEXP (x, 0),
9179 INTVAL (XEXP (x, 1)));
9181 /* If we were doing an LSHIFTRT in a wider mode than it was originally,
9182 turn off all the bits that the shift would have turned off. */
9183 if (orig_code == LSHIFTRT && result_mode != shift_mode)
9184 x = simplify_and_const_int (NULL_RTX, shift_mode, x,
9185 GET_MODE_MASK (result_mode) >> orig_count);
9187 /* Do the remainder of the processing in RESULT_MODE. */
9188 x = gen_lowpart (result_mode, x);
9190 /* If COMPLEMENT_P is set, we have to complement X before doing the outer
9191 operation. */
9192 if (complement_p)
9193 x = simplify_gen_unary (NOT, result_mode, x, result_mode);
9195 if (outer_op != UNKNOWN)
9197 if (GET_MODE_BITSIZE (result_mode) < HOST_BITS_PER_WIDE_INT)
9198 outer_const = trunc_int_for_mode (outer_const, result_mode);
9200 if (outer_op == AND)
9201 x = simplify_and_const_int (NULL_RTX, result_mode, x, outer_const);
9202 else if (outer_op == SET)
9203 /* This means that we have determined that the result is
9204 equivalent to a constant. This should be rare. */
9205 x = GEN_INT (outer_const);
9206 else if (GET_RTX_CLASS (outer_op) == RTX_UNARY)
9207 x = simplify_gen_unary (outer_op, result_mode, x, result_mode);
9208 else
9209 x = gen_binary (outer_op, result_mode, x, GEN_INT (outer_const));
9212 return x;
9215 /* Like recog, but we receive the address of a pointer to a new pattern.
9216 We try to match the rtx that the pointer points to.
9217 If that fails, we may try to modify or replace the pattern,
9218 storing the replacement into the same pointer object.
9220 Modifications include deletion or addition of CLOBBERs.
9222 PNOTES is a pointer to a location where any REG_UNUSED notes added for
9223 the CLOBBERs are placed.
9225 The value is the final insn code from the pattern ultimately matched,
9226 or -1. */
9228 static int
9229 recog_for_combine (rtx *pnewpat, rtx insn, rtx *pnotes)
9231 rtx pat = *pnewpat;
9232 int insn_code_number;
9233 int num_clobbers_to_add = 0;
9234 int i;
9235 rtx notes = 0;
9236 rtx old_notes, old_pat;
9238 /* If PAT is a PARALLEL, check to see if it contains the CLOBBER
9239 we use to indicate that something didn't match. If we find such a
9240 thing, force rejection. */
9241 if (GET_CODE (pat) == PARALLEL)
9242 for (i = XVECLEN (pat, 0) - 1; i >= 0; i--)
9243 if (GET_CODE (XVECEXP (pat, 0, i)) == CLOBBER
9244 && XEXP (XVECEXP (pat, 0, i), 0) == const0_rtx)
9245 return -1;
9247 old_pat = PATTERN (insn);
9248 old_notes = REG_NOTES (insn);
9249 PATTERN (insn) = pat;
9250 REG_NOTES (insn) = 0;
9252 insn_code_number = recog (pat, insn, &num_clobbers_to_add);
9254 /* If it isn't, there is the possibility that we previously had an insn
9255 that clobbered some register as a side effect, but the combined
9256 insn doesn't need to do that. So try once more without the clobbers
9257 unless this represents an ASM insn. */
9259 if (insn_code_number < 0 && ! check_asm_operands (pat)
9260 && GET_CODE (pat) == PARALLEL)
9262 int pos;
9264 for (pos = 0, i = 0; i < XVECLEN (pat, 0); i++)
9265 if (GET_CODE (XVECEXP (pat, 0, i)) != CLOBBER)
9267 if (i != pos)
9268 SUBST (XVECEXP (pat, 0, pos), XVECEXP (pat, 0, i));
9269 pos++;
9272 SUBST_INT (XVECLEN (pat, 0), pos);
9274 if (pos == 1)
9275 pat = XVECEXP (pat, 0, 0);
9277 PATTERN (insn) = pat;
9278 insn_code_number = recog (pat, insn, &num_clobbers_to_add);
9280 PATTERN (insn) = old_pat;
9281 REG_NOTES (insn) = old_notes;
9283 /* Recognize all noop sets, these will be killed by followup pass. */
9284 if (insn_code_number < 0 && GET_CODE (pat) == SET && set_noop_p (pat))
9285 insn_code_number = NOOP_MOVE_INSN_CODE, num_clobbers_to_add = 0;
9287 /* If we had any clobbers to add, make a new pattern than contains
9288 them. Then check to make sure that all of them are dead. */
9289 if (num_clobbers_to_add)
9291 rtx newpat = gen_rtx_PARALLEL (VOIDmode,
9292 rtvec_alloc (GET_CODE (pat) == PARALLEL
9293 ? (XVECLEN (pat, 0)
9294 + num_clobbers_to_add)
9295 : num_clobbers_to_add + 1));
9297 if (GET_CODE (pat) == PARALLEL)
9298 for (i = 0; i < XVECLEN (pat, 0); i++)
9299 XVECEXP (newpat, 0, i) = XVECEXP (pat, 0, i);
9300 else
9301 XVECEXP (newpat, 0, 0) = pat;
9303 add_clobbers (newpat, insn_code_number);
9305 for (i = XVECLEN (newpat, 0) - num_clobbers_to_add;
9306 i < XVECLEN (newpat, 0); i++)
9308 if (REG_P (XEXP (XVECEXP (newpat, 0, i), 0))
9309 && ! reg_dead_at_p (XEXP (XVECEXP (newpat, 0, i), 0), insn))
9310 return -1;
9311 notes = gen_rtx_EXPR_LIST (REG_UNUSED,
9312 XEXP (XVECEXP (newpat, 0, i), 0), notes);
9314 pat = newpat;
9317 *pnewpat = pat;
9318 *pnotes = notes;
9320 return insn_code_number;
9323 /* Like gen_lowpart_general but for use by combine. In combine it
9324 is not possible to create any new pseudoregs. However, it is
9325 safe to create invalid memory addresses, because combine will
9326 try to recognize them and all they will do is make the combine
9327 attempt fail.
9329 If for some reason this cannot do its job, an rtx
9330 (clobber (const_int 0)) is returned.
9331 An insn containing that will not be recognized. */
9333 static rtx
9334 gen_lowpart_for_combine (enum machine_mode omode, rtx x)
9336 enum machine_mode imode = GET_MODE (x);
9337 unsigned int osize = GET_MODE_SIZE (omode);
9338 unsigned int isize = GET_MODE_SIZE (imode);
9339 rtx result;
9341 if (omode == imode)
9342 return x;
9344 /* Return identity if this is a CONST or symbolic reference. */
9345 if (omode == Pmode
9346 && (GET_CODE (x) == CONST
9347 || GET_CODE (x) == SYMBOL_REF
9348 || GET_CODE (x) == LABEL_REF))
9349 return x;
9351 /* We can only support MODE being wider than a word if X is a
9352 constant integer or has a mode the same size. */
9353 if (GET_MODE_SIZE (omode) > UNITS_PER_WORD
9354 && ! ((imode == VOIDmode
9355 && (GET_CODE (x) == CONST_INT
9356 || GET_CODE (x) == CONST_DOUBLE))
9357 || isize == osize))
9358 goto fail;
9360 /* X might be a paradoxical (subreg (mem)). In that case, gen_lowpart
9361 won't know what to do. So we will strip off the SUBREG here and
9362 process normally. */
9363 if (GET_CODE (x) == SUBREG && MEM_P (SUBREG_REG (x)))
9365 x = SUBREG_REG (x);
9367 /* For use in case we fall down into the address adjustments
9368 further below, we need to adjust the known mode and size of
9369 x; imode and isize, since we just adjusted x. */
9370 imode = GET_MODE (x);
9372 if (imode == omode)
9373 return x;
9375 isize = GET_MODE_SIZE (imode);
9378 result = gen_lowpart_common (omode, x);
9380 #ifdef CANNOT_CHANGE_MODE_CLASS
9381 if (result != 0 && GET_CODE (result) == SUBREG)
9382 record_subregs_of_mode (result);
9383 #endif
9385 if (result)
9386 return result;
9388 if (MEM_P (x))
9390 int offset = 0;
9392 /* Refuse to work on a volatile memory ref or one with a mode-dependent
9393 address. */
9394 if (MEM_VOLATILE_P (x) || mode_dependent_address_p (XEXP (x, 0)))
9395 goto fail;
9397 /* If we want to refer to something bigger than the original memref,
9398 generate a paradoxical subreg instead. That will force a reload
9399 of the original memref X. */
9400 if (isize < osize)
9401 return gen_rtx_SUBREG (omode, x, 0);
9403 if (WORDS_BIG_ENDIAN)
9404 offset = MAX (isize, UNITS_PER_WORD) - MAX (osize, UNITS_PER_WORD);
9406 /* Adjust the address so that the address-after-the-data is unchanged. */
9407 if (BYTES_BIG_ENDIAN)
9408 offset -= MIN (UNITS_PER_WORD, osize) - MIN (UNITS_PER_WORD, isize);
9410 return adjust_address_nv (x, omode, offset);
9413 /* If X is a comparison operator, rewrite it in a new mode. This
9414 probably won't match, but may allow further simplifications. */
9415 else if (COMPARISON_P (x))
9416 return gen_rtx_fmt_ee (GET_CODE (x), omode, XEXP (x, 0), XEXP (x, 1));
9418 /* If we couldn't simplify X any other way, just enclose it in a
9419 SUBREG. Normally, this SUBREG won't match, but some patterns may
9420 include an explicit SUBREG or we may simplify it further in combine. */
9421 else
9423 int offset = 0;
9424 rtx res;
9426 offset = subreg_lowpart_offset (omode, imode);
9427 if (imode == VOIDmode)
9429 imode = int_mode_for_mode (omode);
9430 x = gen_lowpart_common (imode, x);
9431 if (x == NULL)
9432 goto fail;
9434 res = simplify_gen_subreg (omode, x, imode, offset);
9435 if (res)
9436 return res;
9439 fail:
9440 return gen_rtx_CLOBBER (imode, const0_rtx);
9443 /* These routines make binary and unary operations by first seeing if they
9444 fold; if not, a new expression is allocated. */
9446 static rtx
9447 gen_binary (enum rtx_code code, enum machine_mode mode, rtx op0, rtx op1)
9449 rtx result;
9450 rtx tem;
9452 if (GET_CODE (op0) == CLOBBER)
9453 return op0;
9454 else if (GET_CODE (op1) == CLOBBER)
9455 return op1;
9457 if (GET_RTX_CLASS (code) == RTX_COMM_ARITH
9458 && swap_commutative_operands_p (op0, op1))
9459 tem = op0, op0 = op1, op1 = tem;
9461 if (GET_RTX_CLASS (code) == RTX_COMPARE
9462 || GET_RTX_CLASS (code) == RTX_COMM_COMPARE)
9464 enum machine_mode op_mode = GET_MODE (op0);
9466 /* Strip the COMPARE from (REL_OP (compare X Y) 0) to get
9467 just (REL_OP X Y). */
9468 if (GET_CODE (op0) == COMPARE && op1 == const0_rtx)
9470 op1 = XEXP (op0, 1);
9471 op0 = XEXP (op0, 0);
9472 op_mode = GET_MODE (op0);
9475 if (op_mode == VOIDmode)
9476 op_mode = GET_MODE (op1);
9477 result = simplify_relational_operation (code, mode, op_mode, op0, op1);
9479 else
9480 result = simplify_binary_operation (code, mode, op0, op1);
9482 if (result)
9483 return result;
9485 /* Put complex operands first and constants second. */
9486 if (GET_RTX_CLASS (code) == RTX_COMM_ARITH
9487 && swap_commutative_operands_p (op0, op1))
9488 return gen_rtx_fmt_ee (code, mode, op1, op0);
9490 /* If we are turning off bits already known off in OP0, we need not do
9491 an AND. */
9492 else if (code == AND && GET_CODE (op1) == CONST_INT
9493 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
9494 && (nonzero_bits (op0, mode) & ~INTVAL (op1)) == 0)
9495 return op0;
9497 return gen_rtx_fmt_ee (code, mode, op0, op1);
9500 /* Simplify a comparison between *POP0 and *POP1 where CODE is the
9501 comparison code that will be tested.
9503 The result is a possibly different comparison code to use. *POP0 and
9504 *POP1 may be updated.
9506 It is possible that we might detect that a comparison is either always
9507 true or always false. However, we do not perform general constant
9508 folding in combine, so this knowledge isn't useful. Such tautologies
9509 should have been detected earlier. Hence we ignore all such cases. */
9511 static enum rtx_code
9512 simplify_comparison (enum rtx_code code, rtx *pop0, rtx *pop1)
9514 rtx op0 = *pop0;
9515 rtx op1 = *pop1;
9516 rtx tem, tem1;
9517 int i;
9518 enum machine_mode mode, tmode;
9520 /* Try a few ways of applying the same transformation to both operands. */
9521 while (1)
9523 #ifndef WORD_REGISTER_OPERATIONS
9524 /* The test below this one won't handle SIGN_EXTENDs on these machines,
9525 so check specially. */
9526 if (code != GTU && code != GEU && code != LTU && code != LEU
9527 && GET_CODE (op0) == ASHIFTRT && GET_CODE (op1) == ASHIFTRT
9528 && GET_CODE (XEXP (op0, 0)) == ASHIFT
9529 && GET_CODE (XEXP (op1, 0)) == ASHIFT
9530 && GET_CODE (XEXP (XEXP (op0, 0), 0)) == SUBREG
9531 && GET_CODE (XEXP (XEXP (op1, 0), 0)) == SUBREG
9532 && (GET_MODE (SUBREG_REG (XEXP (XEXP (op0, 0), 0)))
9533 == GET_MODE (SUBREG_REG (XEXP (XEXP (op1, 0), 0))))
9534 && GET_CODE (XEXP (op0, 1)) == CONST_INT
9535 && XEXP (op0, 1) == XEXP (op1, 1)
9536 && XEXP (op0, 1) == XEXP (XEXP (op0, 0), 1)
9537 && XEXP (op0, 1) == XEXP (XEXP (op1, 0), 1)
9538 && (INTVAL (XEXP (op0, 1))
9539 == (GET_MODE_BITSIZE (GET_MODE (op0))
9540 - (GET_MODE_BITSIZE
9541 (GET_MODE (SUBREG_REG (XEXP (XEXP (op0, 0), 0))))))))
9543 op0 = SUBREG_REG (XEXP (XEXP (op0, 0), 0));
9544 op1 = SUBREG_REG (XEXP (XEXP (op1, 0), 0));
9546 #endif
9548 /* If both operands are the same constant shift, see if we can ignore the
9549 shift. We can if the shift is a rotate or if the bits shifted out of
9550 this shift are known to be zero for both inputs and if the type of
9551 comparison is compatible with the shift. */
9552 if (GET_CODE (op0) == GET_CODE (op1)
9553 && GET_MODE_BITSIZE (GET_MODE (op0)) <= HOST_BITS_PER_WIDE_INT
9554 && ((GET_CODE (op0) == ROTATE && (code == NE || code == EQ))
9555 || ((GET_CODE (op0) == LSHIFTRT || GET_CODE (op0) == ASHIFT)
9556 && (code != GT && code != LT && code != GE && code != LE))
9557 || (GET_CODE (op0) == ASHIFTRT
9558 && (code != GTU && code != LTU
9559 && code != GEU && code != LEU)))
9560 && GET_CODE (XEXP (op0, 1)) == CONST_INT
9561 && INTVAL (XEXP (op0, 1)) >= 0
9562 && INTVAL (XEXP (op0, 1)) < HOST_BITS_PER_WIDE_INT
9563 && XEXP (op0, 1) == XEXP (op1, 1))
9565 enum machine_mode mode = GET_MODE (op0);
9566 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
9567 int shift_count = INTVAL (XEXP (op0, 1));
9569 if (GET_CODE (op0) == LSHIFTRT || GET_CODE (op0) == ASHIFTRT)
9570 mask &= (mask >> shift_count) << shift_count;
9571 else if (GET_CODE (op0) == ASHIFT)
9572 mask = (mask & (mask << shift_count)) >> shift_count;
9574 if ((nonzero_bits (XEXP (op0, 0), mode) & ~mask) == 0
9575 && (nonzero_bits (XEXP (op1, 0), mode) & ~mask) == 0)
9576 op0 = XEXP (op0, 0), op1 = XEXP (op1, 0);
9577 else
9578 break;
9581 /* If both operands are AND's of a paradoxical SUBREG by constant, the
9582 SUBREGs are of the same mode, and, in both cases, the AND would
9583 be redundant if the comparison was done in the narrower mode,
9584 do the comparison in the narrower mode (e.g., we are AND'ing with 1
9585 and the operand's possibly nonzero bits are 0xffffff01; in that case
9586 if we only care about QImode, we don't need the AND). This case
9587 occurs if the output mode of an scc insn is not SImode and
9588 STORE_FLAG_VALUE == 1 (e.g., the 386).
9590 Similarly, check for a case where the AND's are ZERO_EXTEND
9591 operations from some narrower mode even though a SUBREG is not
9592 present. */
9594 else if (GET_CODE (op0) == AND && GET_CODE (op1) == AND
9595 && GET_CODE (XEXP (op0, 1)) == CONST_INT
9596 && GET_CODE (XEXP (op1, 1)) == CONST_INT)
9598 rtx inner_op0 = XEXP (op0, 0);
9599 rtx inner_op1 = XEXP (op1, 0);
9600 HOST_WIDE_INT c0 = INTVAL (XEXP (op0, 1));
9601 HOST_WIDE_INT c1 = INTVAL (XEXP (op1, 1));
9602 int changed = 0;
9604 if (GET_CODE (inner_op0) == SUBREG && GET_CODE (inner_op1) == SUBREG
9605 && (GET_MODE_SIZE (GET_MODE (inner_op0))
9606 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (inner_op0))))
9607 && (GET_MODE (SUBREG_REG (inner_op0))
9608 == GET_MODE (SUBREG_REG (inner_op1)))
9609 && (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (inner_op0)))
9610 <= HOST_BITS_PER_WIDE_INT)
9611 && (0 == ((~c0) & nonzero_bits (SUBREG_REG (inner_op0),
9612 GET_MODE (SUBREG_REG (inner_op0)))))
9613 && (0 == ((~c1) & nonzero_bits (SUBREG_REG (inner_op1),
9614 GET_MODE (SUBREG_REG (inner_op1))))))
9616 op0 = SUBREG_REG (inner_op0);
9617 op1 = SUBREG_REG (inner_op1);
9619 /* The resulting comparison is always unsigned since we masked
9620 off the original sign bit. */
9621 code = unsigned_condition (code);
9623 changed = 1;
9626 else if (c0 == c1)
9627 for (tmode = GET_CLASS_NARROWEST_MODE
9628 (GET_MODE_CLASS (GET_MODE (op0)));
9629 tmode != GET_MODE (op0); tmode = GET_MODE_WIDER_MODE (tmode))
9630 if ((unsigned HOST_WIDE_INT) c0 == GET_MODE_MASK (tmode))
9632 op0 = gen_lowpart (tmode, inner_op0);
9633 op1 = gen_lowpart (tmode, inner_op1);
9634 code = unsigned_condition (code);
9635 changed = 1;
9636 break;
9639 if (! changed)
9640 break;
9643 /* If both operands are NOT, we can strip off the outer operation
9644 and adjust the comparison code for swapped operands; similarly for
9645 NEG, except that this must be an equality comparison. */
9646 else if ((GET_CODE (op0) == NOT && GET_CODE (op1) == NOT)
9647 || (GET_CODE (op0) == NEG && GET_CODE (op1) == NEG
9648 && (code == EQ || code == NE)))
9649 op0 = XEXP (op0, 0), op1 = XEXP (op1, 0), code = swap_condition (code);
9651 else
9652 break;
9655 /* If the first operand is a constant, swap the operands and adjust the
9656 comparison code appropriately, but don't do this if the second operand
9657 is already a constant integer. */
9658 if (swap_commutative_operands_p (op0, op1))
9660 tem = op0, op0 = op1, op1 = tem;
9661 code = swap_condition (code);
9664 /* We now enter a loop during which we will try to simplify the comparison.
9665 For the most part, we only are concerned with comparisons with zero,
9666 but some things may really be comparisons with zero but not start
9667 out looking that way. */
9669 while (GET_CODE (op1) == CONST_INT)
9671 enum machine_mode mode = GET_MODE (op0);
9672 unsigned int mode_width = GET_MODE_BITSIZE (mode);
9673 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
9674 int equality_comparison_p;
9675 int sign_bit_comparison_p;
9676 int unsigned_comparison_p;
9677 HOST_WIDE_INT const_op;
9679 /* We only want to handle integral modes. This catches VOIDmode,
9680 CCmode, and the floating-point modes. An exception is that we
9681 can handle VOIDmode if OP0 is a COMPARE or a comparison
9682 operation. */
9684 if (GET_MODE_CLASS (mode) != MODE_INT
9685 && ! (mode == VOIDmode
9686 && (GET_CODE (op0) == COMPARE || COMPARISON_P (op0))))
9687 break;
9689 /* Get the constant we are comparing against and turn off all bits
9690 not on in our mode. */
9691 const_op = INTVAL (op1);
9692 if (mode != VOIDmode)
9693 const_op = trunc_int_for_mode (const_op, mode);
9694 op1 = GEN_INT (const_op);
9696 /* If we are comparing against a constant power of two and the value
9697 being compared can only have that single bit nonzero (e.g., it was
9698 `and'ed with that bit), we can replace this with a comparison
9699 with zero. */
9700 if (const_op
9701 && (code == EQ || code == NE || code == GE || code == GEU
9702 || code == LT || code == LTU)
9703 && mode_width <= HOST_BITS_PER_WIDE_INT
9704 && exact_log2 (const_op) >= 0
9705 && nonzero_bits (op0, mode) == (unsigned HOST_WIDE_INT) const_op)
9707 code = (code == EQ || code == GE || code == GEU ? NE : EQ);
9708 op1 = const0_rtx, const_op = 0;
9711 /* Similarly, if we are comparing a value known to be either -1 or
9712 0 with -1, change it to the opposite comparison against zero. */
9714 if (const_op == -1
9715 && (code == EQ || code == NE || code == GT || code == LE
9716 || code == GEU || code == LTU)
9717 && num_sign_bit_copies (op0, mode) == mode_width)
9719 code = (code == EQ || code == LE || code == GEU ? NE : EQ);
9720 op1 = const0_rtx, const_op = 0;
9723 /* Do some canonicalizations based on the comparison code. We prefer
9724 comparisons against zero and then prefer equality comparisons.
9725 If we can reduce the size of a constant, we will do that too. */
9727 switch (code)
9729 case LT:
9730 /* < C is equivalent to <= (C - 1) */
9731 if (const_op > 0)
9733 const_op -= 1;
9734 op1 = GEN_INT (const_op);
9735 code = LE;
9736 /* ... fall through to LE case below. */
9738 else
9739 break;
9741 case LE:
9742 /* <= C is equivalent to < (C + 1); we do this for C < 0 */
9743 if (const_op < 0)
9745 const_op += 1;
9746 op1 = GEN_INT (const_op);
9747 code = LT;
9750 /* If we are doing a <= 0 comparison on a value known to have
9751 a zero sign bit, we can replace this with == 0. */
9752 else if (const_op == 0
9753 && mode_width <= HOST_BITS_PER_WIDE_INT
9754 && (nonzero_bits (op0, mode)
9755 & ((HOST_WIDE_INT) 1 << (mode_width - 1))) == 0)
9756 code = EQ;
9757 break;
9759 case GE:
9760 /* >= C is equivalent to > (C - 1). */
9761 if (const_op > 0)
9763 const_op -= 1;
9764 op1 = GEN_INT (const_op);
9765 code = GT;
9766 /* ... fall through to GT below. */
9768 else
9769 break;
9771 case GT:
9772 /* > C is equivalent to >= (C + 1); we do this for C < 0. */
9773 if (const_op < 0)
9775 const_op += 1;
9776 op1 = GEN_INT (const_op);
9777 code = GE;
9780 /* If we are doing a > 0 comparison on a value known to have
9781 a zero sign bit, we can replace this with != 0. */
9782 else if (const_op == 0
9783 && mode_width <= HOST_BITS_PER_WIDE_INT
9784 && (nonzero_bits (op0, mode)
9785 & ((HOST_WIDE_INT) 1 << (mode_width - 1))) == 0)
9786 code = NE;
9787 break;
9789 case LTU:
9790 /* < C is equivalent to <= (C - 1). */
9791 if (const_op > 0)
9793 const_op -= 1;
9794 op1 = GEN_INT (const_op);
9795 code = LEU;
9796 /* ... fall through ... */
9799 /* (unsigned) < 0x80000000 is equivalent to >= 0. */
9800 else if ((mode_width <= HOST_BITS_PER_WIDE_INT)
9801 && (const_op == (HOST_WIDE_INT) 1 << (mode_width - 1)))
9803 const_op = 0, op1 = const0_rtx;
9804 code = GE;
9805 break;
9807 else
9808 break;
9810 case LEU:
9811 /* unsigned <= 0 is equivalent to == 0 */
9812 if (const_op == 0)
9813 code = EQ;
9815 /* (unsigned) <= 0x7fffffff is equivalent to >= 0. */
9816 else if ((mode_width <= HOST_BITS_PER_WIDE_INT)
9817 && (const_op == ((HOST_WIDE_INT) 1 << (mode_width - 1)) - 1))
9819 const_op = 0, op1 = const0_rtx;
9820 code = GE;
9822 break;
9824 case GEU:
9825 /* >= C is equivalent to > (C - 1). */
9826 if (const_op > 1)
9828 const_op -= 1;
9829 op1 = GEN_INT (const_op);
9830 code = GTU;
9831 /* ... fall through ... */
9834 /* (unsigned) >= 0x80000000 is equivalent to < 0. */
9835 else if ((mode_width <= HOST_BITS_PER_WIDE_INT)
9836 && (const_op == (HOST_WIDE_INT) 1 << (mode_width - 1)))
9838 const_op = 0, op1 = const0_rtx;
9839 code = LT;
9840 break;
9842 else
9843 break;
9845 case GTU:
9846 /* unsigned > 0 is equivalent to != 0 */
9847 if (const_op == 0)
9848 code = NE;
9850 /* (unsigned) > 0x7fffffff is equivalent to < 0. */
9851 else if ((mode_width <= HOST_BITS_PER_WIDE_INT)
9852 && (const_op == ((HOST_WIDE_INT) 1 << (mode_width - 1)) - 1))
9854 const_op = 0, op1 = const0_rtx;
9855 code = LT;
9857 break;
9859 default:
9860 break;
9863 /* Compute some predicates to simplify code below. */
9865 equality_comparison_p = (code == EQ || code == NE);
9866 sign_bit_comparison_p = ((code == LT || code == GE) && const_op == 0);
9867 unsigned_comparison_p = (code == LTU || code == LEU || code == GTU
9868 || code == GEU);
9870 /* If this is a sign bit comparison and we can do arithmetic in
9871 MODE, say that we will only be needing the sign bit of OP0. */
9872 if (sign_bit_comparison_p
9873 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
9874 op0 = force_to_mode (op0, mode,
9875 ((HOST_WIDE_INT) 1
9876 << (GET_MODE_BITSIZE (mode) - 1)),
9877 NULL_RTX, 0);
9879 /* Now try cases based on the opcode of OP0. If none of the cases
9880 does a "continue", we exit this loop immediately after the
9881 switch. */
9883 switch (GET_CODE (op0))
9885 case ZERO_EXTRACT:
9886 /* If we are extracting a single bit from a variable position in
9887 a constant that has only a single bit set and are comparing it
9888 with zero, we can convert this into an equality comparison
9889 between the position and the location of the single bit. */
9890 /* Except we can't if SHIFT_COUNT_TRUNCATED is set, since we might
9891 have already reduced the shift count modulo the word size. */
9892 if (!SHIFT_COUNT_TRUNCATED
9893 && GET_CODE (XEXP (op0, 0)) == CONST_INT
9894 && XEXP (op0, 1) == const1_rtx
9895 && equality_comparison_p && const_op == 0
9896 && (i = exact_log2 (INTVAL (XEXP (op0, 0)))) >= 0)
9898 if (BITS_BIG_ENDIAN)
9900 enum machine_mode new_mode
9901 = mode_for_extraction (EP_extzv, 1);
9902 if (new_mode == MAX_MACHINE_MODE)
9903 i = BITS_PER_WORD - 1 - i;
9904 else
9906 mode = new_mode;
9907 i = (GET_MODE_BITSIZE (mode) - 1 - i);
9911 op0 = XEXP (op0, 2);
9912 op1 = GEN_INT (i);
9913 const_op = i;
9915 /* Result is nonzero iff shift count is equal to I. */
9916 code = reverse_condition (code);
9917 continue;
9920 /* ... fall through ... */
9922 case SIGN_EXTRACT:
9923 tem = expand_compound_operation (op0);
9924 if (tem != op0)
9926 op0 = tem;
9927 continue;
9929 break;
9931 case NOT:
9932 /* If testing for equality, we can take the NOT of the constant. */
9933 if (equality_comparison_p
9934 && (tem = simplify_unary_operation (NOT, mode, op1, mode)) != 0)
9936 op0 = XEXP (op0, 0);
9937 op1 = tem;
9938 continue;
9941 /* If just looking at the sign bit, reverse the sense of the
9942 comparison. */
9943 if (sign_bit_comparison_p)
9945 op0 = XEXP (op0, 0);
9946 code = (code == GE ? LT : GE);
9947 continue;
9949 break;
9951 case NEG:
9952 /* If testing for equality, we can take the NEG of the constant. */
9953 if (equality_comparison_p
9954 && (tem = simplify_unary_operation (NEG, mode, op1, mode)) != 0)
9956 op0 = XEXP (op0, 0);
9957 op1 = tem;
9958 continue;
9961 /* The remaining cases only apply to comparisons with zero. */
9962 if (const_op != 0)
9963 break;
9965 /* When X is ABS or is known positive,
9966 (neg X) is < 0 if and only if X != 0. */
9968 if (sign_bit_comparison_p
9969 && (GET_CODE (XEXP (op0, 0)) == ABS
9970 || (mode_width <= HOST_BITS_PER_WIDE_INT
9971 && (nonzero_bits (XEXP (op0, 0), mode)
9972 & ((HOST_WIDE_INT) 1 << (mode_width - 1))) == 0)))
9974 op0 = XEXP (op0, 0);
9975 code = (code == LT ? NE : EQ);
9976 continue;
9979 /* If we have NEG of something whose two high-order bits are the
9980 same, we know that "(-a) < 0" is equivalent to "a > 0". */
9981 if (num_sign_bit_copies (op0, mode) >= 2)
9983 op0 = XEXP (op0, 0);
9984 code = swap_condition (code);
9985 continue;
9987 break;
9989 case ROTATE:
9990 /* If we are testing equality and our count is a constant, we
9991 can perform the inverse operation on our RHS. */
9992 if (equality_comparison_p && GET_CODE (XEXP (op0, 1)) == CONST_INT
9993 && (tem = simplify_binary_operation (ROTATERT, mode,
9994 op1, XEXP (op0, 1))) != 0)
9996 op0 = XEXP (op0, 0);
9997 op1 = tem;
9998 continue;
10001 /* If we are doing a < 0 or >= 0 comparison, it means we are testing
10002 a particular bit. Convert it to an AND of a constant of that
10003 bit. This will be converted into a ZERO_EXTRACT. */
10004 if (const_op == 0 && sign_bit_comparison_p
10005 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10006 && mode_width <= HOST_BITS_PER_WIDE_INT)
10008 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0),
10009 ((HOST_WIDE_INT) 1
10010 << (mode_width - 1
10011 - INTVAL (XEXP (op0, 1)))));
10012 code = (code == LT ? NE : EQ);
10013 continue;
10016 /* Fall through. */
10018 case ABS:
10019 /* ABS is ignorable inside an equality comparison with zero. */
10020 if (const_op == 0 && equality_comparison_p)
10022 op0 = XEXP (op0, 0);
10023 continue;
10025 break;
10027 case SIGN_EXTEND:
10028 /* Can simplify (compare (zero/sign_extend FOO) CONST)
10029 to (compare FOO CONST) if CONST fits in FOO's mode and we
10030 are either testing inequality or have an unsigned comparison
10031 with ZERO_EXTEND or a signed comparison with SIGN_EXTEND. */
10032 if (! unsigned_comparison_p
10033 && (GET_MODE_BITSIZE (GET_MODE (XEXP (op0, 0)))
10034 <= HOST_BITS_PER_WIDE_INT)
10035 && ((unsigned HOST_WIDE_INT) const_op
10036 < (((unsigned HOST_WIDE_INT) 1
10037 << (GET_MODE_BITSIZE (GET_MODE (XEXP (op0, 0))) - 1)))))
10039 op0 = XEXP (op0, 0);
10040 continue;
10042 break;
10044 case SUBREG:
10045 /* Check for the case where we are comparing A - C1 with C2, that is
10047 (subreg:MODE (plus (A) (-C1))) op (C2)
10049 with C1 a constant, and try to lift the SUBREG, i.e. to do the
10050 comparison in the wider mode. One of the following two conditions
10051 must be true in order for this to be valid:
10053 1. The mode extension results in the same bit pattern being added
10054 on both sides and the comparison is equality or unsigned. As
10055 C2 has been truncated to fit in MODE, the pattern can only be
10056 all 0s or all 1s.
10058 2. The mode extension results in the sign bit being copied on
10059 each side.
10061 The difficulty here is that we have predicates for A but not for
10062 (A - C1) so we need to check that C1 is within proper bounds so
10063 as to perturbate A as little as possible. */
10065 if (mode_width <= HOST_BITS_PER_WIDE_INT
10066 && subreg_lowpart_p (op0)
10067 && GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (op0))) > mode_width
10068 && GET_CODE (SUBREG_REG (op0)) == PLUS
10069 && GET_CODE (XEXP (SUBREG_REG (op0), 1)) == CONST_INT)
10071 enum machine_mode inner_mode = GET_MODE (SUBREG_REG (op0));
10072 rtx a = XEXP (SUBREG_REG (op0), 0);
10073 HOST_WIDE_INT c1 = -INTVAL (XEXP (SUBREG_REG (op0), 1));
10075 if ((c1 > 0
10076 && (unsigned HOST_WIDE_INT) c1
10077 < (unsigned HOST_WIDE_INT) 1 << (mode_width - 1)
10078 && (equality_comparison_p || unsigned_comparison_p)
10079 /* (A - C1) zero-extends if it is positive and sign-extends
10080 if it is negative, C2 both zero- and sign-extends. */
10081 && ((0 == (nonzero_bits (a, inner_mode)
10082 & ~GET_MODE_MASK (mode))
10083 && const_op >= 0)
10084 /* (A - C1) sign-extends if it is positive and 1-extends
10085 if it is negative, C2 both sign- and 1-extends. */
10086 || (num_sign_bit_copies (a, inner_mode)
10087 > (unsigned int) (GET_MODE_BITSIZE (inner_mode)
10088 - mode_width)
10089 && const_op < 0)))
10090 || ((unsigned HOST_WIDE_INT) c1
10091 < (unsigned HOST_WIDE_INT) 1 << (mode_width - 2)
10092 /* (A - C1) always sign-extends, like C2. */
10093 && num_sign_bit_copies (a, inner_mode)
10094 > (unsigned int) (GET_MODE_BITSIZE (inner_mode)
10095 - mode_width - 1)))
10097 op0 = SUBREG_REG (op0);
10098 continue;
10102 /* If the inner mode is narrower and we are extracting the low part,
10103 we can treat the SUBREG as if it were a ZERO_EXTEND. */
10104 if (subreg_lowpart_p (op0)
10105 && GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (op0))) < mode_width)
10106 /* Fall through */ ;
10107 else
10108 break;
10110 /* ... fall through ... */
10112 case ZERO_EXTEND:
10113 if ((unsigned_comparison_p || equality_comparison_p)
10114 && (GET_MODE_BITSIZE (GET_MODE (XEXP (op0, 0)))
10115 <= HOST_BITS_PER_WIDE_INT)
10116 && ((unsigned HOST_WIDE_INT) const_op
10117 < GET_MODE_MASK (GET_MODE (XEXP (op0, 0)))))
10119 op0 = XEXP (op0, 0);
10120 continue;
10122 break;
10124 case PLUS:
10125 /* (eq (plus X A) B) -> (eq X (minus B A)). We can only do
10126 this for equality comparisons due to pathological cases involving
10127 overflows. */
10128 if (equality_comparison_p
10129 && 0 != (tem = simplify_binary_operation (MINUS, mode,
10130 op1, XEXP (op0, 1))))
10132 op0 = XEXP (op0, 0);
10133 op1 = tem;
10134 continue;
10137 /* (plus (abs X) (const_int -1)) is < 0 if and only if X == 0. */
10138 if (const_op == 0 && XEXP (op0, 1) == constm1_rtx
10139 && GET_CODE (XEXP (op0, 0)) == ABS && sign_bit_comparison_p)
10141 op0 = XEXP (XEXP (op0, 0), 0);
10142 code = (code == LT ? EQ : NE);
10143 continue;
10145 break;
10147 case MINUS:
10148 /* We used to optimize signed comparisons against zero, but that
10149 was incorrect. Unsigned comparisons against zero (GTU, LEU)
10150 arrive here as equality comparisons, or (GEU, LTU) are
10151 optimized away. No need to special-case them. */
10153 /* (eq (minus A B) C) -> (eq A (plus B C)) or
10154 (eq B (minus A C)), whichever simplifies. We can only do
10155 this for equality comparisons due to pathological cases involving
10156 overflows. */
10157 if (equality_comparison_p
10158 && 0 != (tem = simplify_binary_operation (PLUS, mode,
10159 XEXP (op0, 1), op1)))
10161 op0 = XEXP (op0, 0);
10162 op1 = tem;
10163 continue;
10166 if (equality_comparison_p
10167 && 0 != (tem = simplify_binary_operation (MINUS, mode,
10168 XEXP (op0, 0), op1)))
10170 op0 = XEXP (op0, 1);
10171 op1 = tem;
10172 continue;
10175 /* The sign bit of (minus (ashiftrt X C) X), where C is the number
10176 of bits in X minus 1, is one iff X > 0. */
10177 if (sign_bit_comparison_p && GET_CODE (XEXP (op0, 0)) == ASHIFTRT
10178 && GET_CODE (XEXP (XEXP (op0, 0), 1)) == CONST_INT
10179 && (unsigned HOST_WIDE_INT) INTVAL (XEXP (XEXP (op0, 0), 1))
10180 == mode_width - 1
10181 && rtx_equal_p (XEXP (XEXP (op0, 0), 0), XEXP (op0, 1)))
10183 op0 = XEXP (op0, 1);
10184 code = (code == GE ? LE : GT);
10185 continue;
10187 break;
10189 case XOR:
10190 /* (eq (xor A B) C) -> (eq A (xor B C)). This is a simplification
10191 if C is zero or B is a constant. */
10192 if (equality_comparison_p
10193 && 0 != (tem = simplify_binary_operation (XOR, mode,
10194 XEXP (op0, 1), op1)))
10196 op0 = XEXP (op0, 0);
10197 op1 = tem;
10198 continue;
10200 break;
10202 case EQ: case NE:
10203 case UNEQ: case LTGT:
10204 case LT: case LTU: case UNLT: case LE: case LEU: case UNLE:
10205 case GT: case GTU: case UNGT: case GE: case GEU: case UNGE:
10206 case UNORDERED: case ORDERED:
10207 /* We can't do anything if OP0 is a condition code value, rather
10208 than an actual data value. */
10209 if (const_op != 0
10210 || CC0_P (XEXP (op0, 0))
10211 || GET_MODE_CLASS (GET_MODE (XEXP (op0, 0))) == MODE_CC)
10212 break;
10214 /* Get the two operands being compared. */
10215 if (GET_CODE (XEXP (op0, 0)) == COMPARE)
10216 tem = XEXP (XEXP (op0, 0), 0), tem1 = XEXP (XEXP (op0, 0), 1);
10217 else
10218 tem = XEXP (op0, 0), tem1 = XEXP (op0, 1);
10220 /* Check for the cases where we simply want the result of the
10221 earlier test or the opposite of that result. */
10222 if (code == NE || code == EQ
10223 || (GET_MODE_BITSIZE (GET_MODE (op0)) <= HOST_BITS_PER_WIDE_INT
10224 && GET_MODE_CLASS (GET_MODE (op0)) == MODE_INT
10225 && (STORE_FLAG_VALUE
10226 & (((HOST_WIDE_INT) 1
10227 << (GET_MODE_BITSIZE (GET_MODE (op0)) - 1))))
10228 && (code == LT || code == GE)))
10230 enum rtx_code new_code;
10231 if (code == LT || code == NE)
10232 new_code = GET_CODE (op0);
10233 else
10234 new_code = combine_reversed_comparison_code (op0);
10236 if (new_code != UNKNOWN)
10238 code = new_code;
10239 op0 = tem;
10240 op1 = tem1;
10241 continue;
10244 break;
10246 case IOR:
10247 /* The sign bit of (ior (plus X (const_int -1)) X) is nonzero
10248 iff X <= 0. */
10249 if (sign_bit_comparison_p && GET_CODE (XEXP (op0, 0)) == PLUS
10250 && XEXP (XEXP (op0, 0), 1) == constm1_rtx
10251 && rtx_equal_p (XEXP (XEXP (op0, 0), 0), XEXP (op0, 1)))
10253 op0 = XEXP (op0, 1);
10254 code = (code == GE ? GT : LE);
10255 continue;
10257 break;
10259 case AND:
10260 /* Convert (and (xshift 1 X) Y) to (and (lshiftrt Y X) 1). This
10261 will be converted to a ZERO_EXTRACT later. */
10262 if (const_op == 0 && equality_comparison_p
10263 && GET_CODE (XEXP (op0, 0)) == ASHIFT
10264 && XEXP (XEXP (op0, 0), 0) == const1_rtx)
10266 op0 = simplify_and_const_int
10267 (op0, mode, gen_rtx_LSHIFTRT (mode,
10268 XEXP (op0, 1),
10269 XEXP (XEXP (op0, 0), 1)),
10270 (HOST_WIDE_INT) 1);
10271 continue;
10274 /* If we are comparing (and (lshiftrt X C1) C2) for equality with
10275 zero and X is a comparison and C1 and C2 describe only bits set
10276 in STORE_FLAG_VALUE, we can compare with X. */
10277 if (const_op == 0 && equality_comparison_p
10278 && mode_width <= HOST_BITS_PER_WIDE_INT
10279 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10280 && GET_CODE (XEXP (op0, 0)) == LSHIFTRT
10281 && GET_CODE (XEXP (XEXP (op0, 0), 1)) == CONST_INT
10282 && INTVAL (XEXP (XEXP (op0, 0), 1)) >= 0
10283 && INTVAL (XEXP (XEXP (op0, 0), 1)) < HOST_BITS_PER_WIDE_INT)
10285 mask = ((INTVAL (XEXP (op0, 1)) & GET_MODE_MASK (mode))
10286 << INTVAL (XEXP (XEXP (op0, 0), 1)));
10287 if ((~STORE_FLAG_VALUE & mask) == 0
10288 && (COMPARISON_P (XEXP (XEXP (op0, 0), 0))
10289 || ((tem = get_last_value (XEXP (XEXP (op0, 0), 0))) != 0
10290 && COMPARISON_P (tem))))
10292 op0 = XEXP (XEXP (op0, 0), 0);
10293 continue;
10297 /* If we are doing an equality comparison of an AND of a bit equal
10298 to the sign bit, replace this with a LT or GE comparison of
10299 the underlying value. */
10300 if (equality_comparison_p
10301 && const_op == 0
10302 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10303 && mode_width <= HOST_BITS_PER_WIDE_INT
10304 && ((INTVAL (XEXP (op0, 1)) & GET_MODE_MASK (mode))
10305 == (unsigned HOST_WIDE_INT) 1 << (mode_width - 1)))
10307 op0 = XEXP (op0, 0);
10308 code = (code == EQ ? GE : LT);
10309 continue;
10312 /* If this AND operation is really a ZERO_EXTEND from a narrower
10313 mode, the constant fits within that mode, and this is either an
10314 equality or unsigned comparison, try to do this comparison in
10315 the narrower mode. */
10316 if ((equality_comparison_p || unsigned_comparison_p)
10317 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10318 && (i = exact_log2 ((INTVAL (XEXP (op0, 1))
10319 & GET_MODE_MASK (mode))
10320 + 1)) >= 0
10321 && const_op >> i == 0
10322 && (tmode = mode_for_size (i, MODE_INT, 1)) != BLKmode)
10324 op0 = gen_lowpart (tmode, XEXP (op0, 0));
10325 continue;
10328 /* If this is (and:M1 (subreg:M2 X 0) (const_int C1)) where C1
10329 fits in both M1 and M2 and the SUBREG is either paradoxical
10330 or represents the low part, permute the SUBREG and the AND
10331 and try again. */
10332 if (GET_CODE (XEXP (op0, 0)) == SUBREG)
10334 unsigned HOST_WIDE_INT c1;
10335 tmode = GET_MODE (SUBREG_REG (XEXP (op0, 0)));
10336 /* Require an integral mode, to avoid creating something like
10337 (AND:SF ...). */
10338 if (SCALAR_INT_MODE_P (tmode)
10339 /* It is unsafe to commute the AND into the SUBREG if the
10340 SUBREG is paradoxical and WORD_REGISTER_OPERATIONS is
10341 not defined. As originally written the upper bits
10342 have a defined value due to the AND operation.
10343 However, if we commute the AND inside the SUBREG then
10344 they no longer have defined values and the meaning of
10345 the code has been changed. */
10346 && (0
10347 #ifdef WORD_REGISTER_OPERATIONS
10348 || (mode_width > GET_MODE_BITSIZE (tmode)
10349 && mode_width <= BITS_PER_WORD)
10350 #endif
10351 || (mode_width <= GET_MODE_BITSIZE (tmode)
10352 && subreg_lowpart_p (XEXP (op0, 0))))
10353 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10354 && mode_width <= HOST_BITS_PER_WIDE_INT
10355 && GET_MODE_BITSIZE (tmode) <= HOST_BITS_PER_WIDE_INT
10356 && ((c1 = INTVAL (XEXP (op0, 1))) & ~mask) == 0
10357 && (c1 & ~GET_MODE_MASK (tmode)) == 0
10358 && c1 != mask
10359 && c1 != GET_MODE_MASK (tmode))
10361 op0 = gen_binary (AND, tmode,
10362 SUBREG_REG (XEXP (op0, 0)),
10363 gen_int_mode (c1, tmode));
10364 op0 = gen_lowpart (mode, op0);
10365 continue;
10369 /* Convert (ne (and (not X) 1) 0) to (eq (and X 1) 0). */
10370 if (const_op == 0 && equality_comparison_p
10371 && XEXP (op0, 1) == const1_rtx
10372 && GET_CODE (XEXP (op0, 0)) == NOT)
10374 op0 = simplify_and_const_int
10375 (NULL_RTX, mode, XEXP (XEXP (op0, 0), 0), (HOST_WIDE_INT) 1);
10376 code = (code == NE ? EQ : NE);
10377 continue;
10380 /* Convert (ne (and (lshiftrt (not X)) 1) 0) to
10381 (eq (and (lshiftrt X) 1) 0).
10382 Also handle the case where (not X) is expressed using xor. */
10383 if (const_op == 0 && equality_comparison_p
10384 && XEXP (op0, 1) == const1_rtx
10385 && GET_CODE (XEXP (op0, 0)) == LSHIFTRT)
10387 rtx shift_op = XEXP (XEXP (op0, 0), 0);
10388 rtx shift_count = XEXP (XEXP (op0, 0), 1);
10390 if (GET_CODE (shift_op) == NOT
10391 || (GET_CODE (shift_op) == XOR
10392 && GET_CODE (XEXP (shift_op, 1)) == CONST_INT
10393 && GET_CODE (shift_count) == CONST_INT
10394 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
10395 && (INTVAL (XEXP (shift_op, 1))
10396 == (HOST_WIDE_INT) 1 << INTVAL (shift_count))))
10398 op0 = simplify_and_const_int
10399 (NULL_RTX, mode,
10400 gen_rtx_LSHIFTRT (mode, XEXP (shift_op, 0), shift_count),
10401 (HOST_WIDE_INT) 1);
10402 code = (code == NE ? EQ : NE);
10403 continue;
10406 break;
10408 case ASHIFT:
10409 /* If we have (compare (ashift FOO N) (const_int C)) and
10410 the high order N bits of FOO (N+1 if an inequality comparison)
10411 are known to be zero, we can do this by comparing FOO with C
10412 shifted right N bits so long as the low-order N bits of C are
10413 zero. */
10414 if (GET_CODE (XEXP (op0, 1)) == CONST_INT
10415 && INTVAL (XEXP (op0, 1)) >= 0
10416 && ((INTVAL (XEXP (op0, 1)) + ! equality_comparison_p)
10417 < HOST_BITS_PER_WIDE_INT)
10418 && ((const_op
10419 & (((HOST_WIDE_INT) 1 << INTVAL (XEXP (op0, 1))) - 1)) == 0)
10420 && mode_width <= HOST_BITS_PER_WIDE_INT
10421 && (nonzero_bits (XEXP (op0, 0), mode)
10422 & ~(mask >> (INTVAL (XEXP (op0, 1))
10423 + ! equality_comparison_p))) == 0)
10425 /* We must perform a logical shift, not an arithmetic one,
10426 as we want the top N bits of C to be zero. */
10427 unsigned HOST_WIDE_INT temp = const_op & GET_MODE_MASK (mode);
10429 temp >>= INTVAL (XEXP (op0, 1));
10430 op1 = gen_int_mode (temp, mode);
10431 op0 = XEXP (op0, 0);
10432 continue;
10435 /* If we are doing a sign bit comparison, it means we are testing
10436 a particular bit. Convert it to the appropriate AND. */
10437 if (sign_bit_comparison_p && GET_CODE (XEXP (op0, 1)) == CONST_INT
10438 && mode_width <= HOST_BITS_PER_WIDE_INT)
10440 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0),
10441 ((HOST_WIDE_INT) 1
10442 << (mode_width - 1
10443 - INTVAL (XEXP (op0, 1)))));
10444 code = (code == LT ? NE : EQ);
10445 continue;
10448 /* If this an equality comparison with zero and we are shifting
10449 the low bit to the sign bit, we can convert this to an AND of the
10450 low-order bit. */
10451 if (const_op == 0 && equality_comparison_p
10452 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10453 && (unsigned HOST_WIDE_INT) INTVAL (XEXP (op0, 1))
10454 == mode_width - 1)
10456 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0),
10457 (HOST_WIDE_INT) 1);
10458 continue;
10460 break;
10462 case ASHIFTRT:
10463 /* If this is an equality comparison with zero, we can do this
10464 as a logical shift, which might be much simpler. */
10465 if (equality_comparison_p && const_op == 0
10466 && GET_CODE (XEXP (op0, 1)) == CONST_INT)
10468 op0 = simplify_shift_const (NULL_RTX, LSHIFTRT, mode,
10469 XEXP (op0, 0),
10470 INTVAL (XEXP (op0, 1)));
10471 continue;
10474 /* If OP0 is a sign extension and CODE is not an unsigned comparison,
10475 do the comparison in a narrower mode. */
10476 if (! unsigned_comparison_p
10477 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10478 && GET_CODE (XEXP (op0, 0)) == ASHIFT
10479 && XEXP (op0, 1) == XEXP (XEXP (op0, 0), 1)
10480 && (tmode = mode_for_size (mode_width - INTVAL (XEXP (op0, 1)),
10481 MODE_INT, 1)) != BLKmode
10482 && (((unsigned HOST_WIDE_INT) const_op
10483 + (GET_MODE_MASK (tmode) >> 1) + 1)
10484 <= GET_MODE_MASK (tmode)))
10486 op0 = gen_lowpart (tmode, XEXP (XEXP (op0, 0), 0));
10487 continue;
10490 /* Likewise if OP0 is a PLUS of a sign extension with a
10491 constant, which is usually represented with the PLUS
10492 between the shifts. */
10493 if (! unsigned_comparison_p
10494 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10495 && GET_CODE (XEXP (op0, 0)) == PLUS
10496 && GET_CODE (XEXP (XEXP (op0, 0), 1)) == CONST_INT
10497 && GET_CODE (XEXP (XEXP (op0, 0), 0)) == ASHIFT
10498 && XEXP (op0, 1) == XEXP (XEXP (XEXP (op0, 0), 0), 1)
10499 && (tmode = mode_for_size (mode_width - INTVAL (XEXP (op0, 1)),
10500 MODE_INT, 1)) != BLKmode
10501 && (((unsigned HOST_WIDE_INT) const_op
10502 + (GET_MODE_MASK (tmode) >> 1) + 1)
10503 <= GET_MODE_MASK (tmode)))
10505 rtx inner = XEXP (XEXP (XEXP (op0, 0), 0), 0);
10506 rtx add_const = XEXP (XEXP (op0, 0), 1);
10507 rtx new_const = gen_binary (ASHIFTRT, GET_MODE (op0), add_const,
10508 XEXP (op0, 1));
10510 op0 = gen_binary (PLUS, tmode,
10511 gen_lowpart (tmode, inner),
10512 new_const);
10513 continue;
10516 /* ... fall through ... */
10517 case LSHIFTRT:
10518 /* If we have (compare (xshiftrt FOO N) (const_int C)) and
10519 the low order N bits of FOO are known to be zero, we can do this
10520 by comparing FOO with C shifted left N bits so long as no
10521 overflow occurs. */
10522 if (GET_CODE (XEXP (op0, 1)) == CONST_INT
10523 && INTVAL (XEXP (op0, 1)) >= 0
10524 && INTVAL (XEXP (op0, 1)) < HOST_BITS_PER_WIDE_INT
10525 && mode_width <= HOST_BITS_PER_WIDE_INT
10526 && (nonzero_bits (XEXP (op0, 0), mode)
10527 & (((HOST_WIDE_INT) 1 << INTVAL (XEXP (op0, 1))) - 1)) == 0
10528 && (((unsigned HOST_WIDE_INT) const_op
10529 + (GET_CODE (op0) != LSHIFTRT
10530 ? ((GET_MODE_MASK (mode) >> INTVAL (XEXP (op0, 1)) >> 1)
10531 + 1)
10532 : 0))
10533 <= GET_MODE_MASK (mode) >> INTVAL (XEXP (op0, 1))))
10535 /* If the shift was logical, then we must make the condition
10536 unsigned. */
10537 if (GET_CODE (op0) == LSHIFTRT)
10538 code = unsigned_condition (code);
10540 const_op <<= INTVAL (XEXP (op0, 1));
10541 op1 = GEN_INT (const_op);
10542 op0 = XEXP (op0, 0);
10543 continue;
10546 /* If we are using this shift to extract just the sign bit, we
10547 can replace this with an LT or GE comparison. */
10548 if (const_op == 0
10549 && (equality_comparison_p || sign_bit_comparison_p)
10550 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10551 && (unsigned HOST_WIDE_INT) INTVAL (XEXP (op0, 1))
10552 == mode_width - 1)
10554 op0 = XEXP (op0, 0);
10555 code = (code == NE || code == GT ? LT : GE);
10556 continue;
10558 break;
10560 default:
10561 break;
10564 break;
10567 /* Now make any compound operations involved in this comparison. Then,
10568 check for an outmost SUBREG on OP0 that is not doing anything or is
10569 paradoxical. The latter transformation must only be performed when
10570 it is known that the "extra" bits will be the same in op0 and op1 or
10571 that they don't matter. There are three cases to consider:
10573 1. SUBREG_REG (op0) is a register. In this case the bits are don't
10574 care bits and we can assume they have any convenient value. So
10575 making the transformation is safe.
10577 2. SUBREG_REG (op0) is a memory and LOAD_EXTEND_OP is not defined.
10578 In this case the upper bits of op0 are undefined. We should not make
10579 the simplification in that case as we do not know the contents of
10580 those bits.
10582 3. SUBREG_REG (op0) is a memory and LOAD_EXTEND_OP is defined and not
10583 UNKNOWN. In that case we know those bits are zeros or ones. We must
10584 also be sure that they are the same as the upper bits of op1.
10586 We can never remove a SUBREG for a non-equality comparison because
10587 the sign bit is in a different place in the underlying object. */
10589 op0 = make_compound_operation (op0, op1 == const0_rtx ? COMPARE : SET);
10590 op1 = make_compound_operation (op1, SET);
10592 if (GET_CODE (op0) == SUBREG && subreg_lowpart_p (op0)
10593 && GET_MODE_CLASS (GET_MODE (op0)) == MODE_INT
10594 && GET_MODE_CLASS (GET_MODE (SUBREG_REG (op0))) == MODE_INT
10595 && (code == NE || code == EQ))
10597 if (GET_MODE_SIZE (GET_MODE (op0))
10598 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (op0))))
10600 /* For paradoxical subregs, allow case 1 as above. Case 3 isn't
10601 implemented. */
10602 if (REG_P (SUBREG_REG (op0)))
10604 op0 = SUBREG_REG (op0);
10605 op1 = gen_lowpart (GET_MODE (op0), op1);
10608 else if ((GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (op0)))
10609 <= HOST_BITS_PER_WIDE_INT)
10610 && (nonzero_bits (SUBREG_REG (op0),
10611 GET_MODE (SUBREG_REG (op0)))
10612 & ~GET_MODE_MASK (GET_MODE (op0))) == 0)
10614 tem = gen_lowpart (GET_MODE (SUBREG_REG (op0)), op1);
10616 if ((nonzero_bits (tem, GET_MODE (SUBREG_REG (op0)))
10617 & ~GET_MODE_MASK (GET_MODE (op0))) == 0)
10618 op0 = SUBREG_REG (op0), op1 = tem;
10622 /* We now do the opposite procedure: Some machines don't have compare
10623 insns in all modes. If OP0's mode is an integer mode smaller than a
10624 word and we can't do a compare in that mode, see if there is a larger
10625 mode for which we can do the compare. There are a number of cases in
10626 which we can use the wider mode. */
10628 mode = GET_MODE (op0);
10629 if (mode != VOIDmode && GET_MODE_CLASS (mode) == MODE_INT
10630 && GET_MODE_SIZE (mode) < UNITS_PER_WORD
10631 && ! have_insn_for (COMPARE, mode))
10632 for (tmode = GET_MODE_WIDER_MODE (mode);
10633 (tmode != VOIDmode
10634 && GET_MODE_BITSIZE (tmode) <= HOST_BITS_PER_WIDE_INT);
10635 tmode = GET_MODE_WIDER_MODE (tmode))
10636 if (have_insn_for (COMPARE, tmode))
10638 int zero_extended;
10640 /* If the only nonzero bits in OP0 and OP1 are those in the
10641 narrower mode and this is an equality or unsigned comparison,
10642 we can use the wider mode. Similarly for sign-extended
10643 values, in which case it is true for all comparisons. */
10644 zero_extended = ((code == EQ || code == NE
10645 || code == GEU || code == GTU
10646 || code == LEU || code == LTU)
10647 && (nonzero_bits (op0, tmode)
10648 & ~GET_MODE_MASK (mode)) == 0
10649 && ((GET_CODE (op1) == CONST_INT
10650 || (nonzero_bits (op1, tmode)
10651 & ~GET_MODE_MASK (mode)) == 0)));
10653 if (zero_extended
10654 || ((num_sign_bit_copies (op0, tmode)
10655 > (unsigned int) (GET_MODE_BITSIZE (tmode)
10656 - GET_MODE_BITSIZE (mode)))
10657 && (num_sign_bit_copies (op1, tmode)
10658 > (unsigned int) (GET_MODE_BITSIZE (tmode)
10659 - GET_MODE_BITSIZE (mode)))))
10661 /* If OP0 is an AND and we don't have an AND in MODE either,
10662 make a new AND in the proper mode. */
10663 if (GET_CODE (op0) == AND
10664 && !have_insn_for (AND, mode))
10665 op0 = gen_binary (AND, tmode,
10666 gen_lowpart (tmode,
10667 XEXP (op0, 0)),
10668 gen_lowpart (tmode,
10669 XEXP (op0, 1)));
10671 op0 = gen_lowpart (tmode, op0);
10672 if (zero_extended && GET_CODE (op1) == CONST_INT)
10673 op1 = GEN_INT (INTVAL (op1) & GET_MODE_MASK (mode));
10674 op1 = gen_lowpart (tmode, op1);
10675 break;
10678 /* If this is a test for negative, we can make an explicit
10679 test of the sign bit. */
10681 if (op1 == const0_rtx && (code == LT || code == GE)
10682 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
10684 op0 = gen_binary (AND, tmode,
10685 gen_lowpart (tmode, op0),
10686 GEN_INT ((HOST_WIDE_INT) 1
10687 << (GET_MODE_BITSIZE (mode) - 1)));
10688 code = (code == LT) ? NE : EQ;
10689 break;
10693 #ifdef CANONICALIZE_COMPARISON
10694 /* If this machine only supports a subset of valid comparisons, see if we
10695 can convert an unsupported one into a supported one. */
10696 CANONICALIZE_COMPARISON (code, op0, op1);
10697 #endif
10699 *pop0 = op0;
10700 *pop1 = op1;
10702 return code;
10705 /* Like jump.c' reversed_comparison_code, but use combine infrastructure for
10706 searching backward. */
10707 static enum rtx_code
10708 combine_reversed_comparison_code (rtx exp)
10710 enum rtx_code code1 = reversed_comparison_code (exp, NULL);
10711 rtx x;
10713 if (code1 != UNKNOWN
10714 || GET_MODE_CLASS (GET_MODE (XEXP (exp, 0))) != MODE_CC)
10715 return code1;
10716 /* Otherwise try and find where the condition codes were last set and
10717 use that. */
10718 x = get_last_value (XEXP (exp, 0));
10719 if (!x || GET_CODE (x) != COMPARE)
10720 return UNKNOWN;
10721 return reversed_comparison_code_parts (GET_CODE (exp),
10722 XEXP (x, 0), XEXP (x, 1), NULL);
10725 /* Return comparison with reversed code of EXP and operands OP0 and OP1.
10726 Return NULL_RTX in case we fail to do the reversal. */
10727 static rtx
10728 reversed_comparison (rtx exp, enum machine_mode mode, rtx op0, rtx op1)
10730 enum rtx_code reversed_code = combine_reversed_comparison_code (exp);
10731 if (reversed_code == UNKNOWN)
10732 return NULL_RTX;
10733 else
10734 return gen_binary (reversed_code, mode, op0, op1);
10737 /* Utility function for record_value_for_reg. Count number of
10738 rtxs in X. */
10739 static int
10740 count_rtxs (rtx x)
10742 enum rtx_code code = GET_CODE (x);
10743 const char *fmt;
10744 int i, ret = 1;
10746 if (GET_RTX_CLASS (code) == '2'
10747 || GET_RTX_CLASS (code) == 'c')
10749 rtx x0 = XEXP (x, 0);
10750 rtx x1 = XEXP (x, 1);
10752 if (x0 == x1)
10753 return 1 + 2 * count_rtxs (x0);
10755 if ((GET_RTX_CLASS (GET_CODE (x1)) == '2'
10756 || GET_RTX_CLASS (GET_CODE (x1)) == 'c')
10757 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
10758 return 2 + 2 * count_rtxs (x0)
10759 + count_rtxs (x == XEXP (x1, 0)
10760 ? XEXP (x1, 1) : XEXP (x1, 0));
10762 if ((GET_RTX_CLASS (GET_CODE (x0)) == '2'
10763 || GET_RTX_CLASS (GET_CODE (x0)) == 'c')
10764 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
10765 return 2 + 2 * count_rtxs (x1)
10766 + count_rtxs (x == XEXP (x0, 0)
10767 ? XEXP (x0, 1) : XEXP (x0, 0));
10770 fmt = GET_RTX_FORMAT (code);
10771 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
10772 if (fmt[i] == 'e')
10773 ret += count_rtxs (XEXP (x, i));
10775 return ret;
10778 /* Utility function for following routine. Called when X is part of a value
10779 being stored into last_set_value. Sets last_set_table_tick
10780 for each register mentioned. Similar to mention_regs in cse.c */
10782 static void
10783 update_table_tick (rtx x)
10785 enum rtx_code code = GET_CODE (x);
10786 const char *fmt = GET_RTX_FORMAT (code);
10787 int i;
10789 if (code == REG)
10791 unsigned int regno = REGNO (x);
10792 unsigned int endregno
10793 = regno + (regno < FIRST_PSEUDO_REGISTER
10794 ? hard_regno_nregs[regno][GET_MODE (x)] : 1);
10795 unsigned int r;
10797 for (r = regno; r < endregno; r++)
10798 reg_stat[r].last_set_table_tick = label_tick;
10800 return;
10803 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
10804 /* Note that we can't have an "E" in values stored; see
10805 get_last_value_validate. */
10806 if (fmt[i] == 'e')
10808 /* Check for identical subexpressions. If x contains
10809 identical subexpression we only have to traverse one of
10810 them. */
10811 if (i == 0 && ARITHMETIC_P (x))
10813 /* Note that at this point x1 has already been
10814 processed. */
10815 rtx x0 = XEXP (x, 0);
10816 rtx x1 = XEXP (x, 1);
10818 /* If x0 and x1 are identical then there is no need to
10819 process x0. */
10820 if (x0 == x1)
10821 break;
10823 /* If x0 is identical to a subexpression of x1 then while
10824 processing x1, x0 has already been processed. Thus we
10825 are done with x. */
10826 if (ARITHMETIC_P (x1)
10827 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
10828 break;
10830 /* If x1 is identical to a subexpression of x0 then we
10831 still have to process the rest of x0. */
10832 if (ARITHMETIC_P (x0)
10833 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
10835 update_table_tick (XEXP (x0, x1 == XEXP (x0, 0) ? 1 : 0));
10836 break;
10840 update_table_tick (XEXP (x, i));
10844 /* Record that REG is set to VALUE in insn INSN. If VALUE is zero, we
10845 are saying that the register is clobbered and we no longer know its
10846 value. If INSN is zero, don't update reg_stat[].last_set; this is
10847 only permitted with VALUE also zero and is used to invalidate the
10848 register. */
10850 static void
10851 record_value_for_reg (rtx reg, rtx insn, rtx value)
10853 unsigned int regno = REGNO (reg);
10854 unsigned int endregno
10855 = regno + (regno < FIRST_PSEUDO_REGISTER
10856 ? hard_regno_nregs[regno][GET_MODE (reg)] : 1);
10857 unsigned int i;
10859 /* If VALUE contains REG and we have a previous value for REG, substitute
10860 the previous value. */
10861 if (value && insn && reg_overlap_mentioned_p (reg, value))
10863 rtx tem;
10865 /* Set things up so get_last_value is allowed to see anything set up to
10866 our insn. */
10867 subst_low_cuid = INSN_CUID (insn);
10868 tem = get_last_value (reg);
10870 /* If TEM is simply a binary operation with two CLOBBERs as operands,
10871 it isn't going to be useful and will take a lot of time to process,
10872 so just use the CLOBBER. */
10874 if (tem)
10876 if (ARITHMETIC_P (tem)
10877 && GET_CODE (XEXP (tem, 0)) == CLOBBER
10878 && GET_CODE (XEXP (tem, 1)) == CLOBBER)
10879 tem = XEXP (tem, 0);
10880 else if (count_occurrences (value, reg, 1) >= 2)
10882 /* If there are two or more occurrences of REG in VALUE,
10883 prevent the value from growing too much. */
10884 if (count_rtxs (tem) > MAX_LAST_VALUE_RTL)
10885 tem = gen_rtx_CLOBBER (GET_MODE (tem), const0_rtx);
10888 value = replace_rtx (copy_rtx (value), reg, tem);
10892 /* For each register modified, show we don't know its value, that
10893 we don't know about its bitwise content, that its value has been
10894 updated, and that we don't know the location of the death of the
10895 register. */
10896 for (i = regno; i < endregno; i++)
10898 if (insn)
10899 reg_stat[i].last_set = insn;
10901 reg_stat[i].last_set_value = 0;
10902 reg_stat[i].last_set_mode = 0;
10903 reg_stat[i].last_set_nonzero_bits = 0;
10904 reg_stat[i].last_set_sign_bit_copies = 0;
10905 reg_stat[i].last_death = 0;
10908 /* Mark registers that are being referenced in this value. */
10909 if (value)
10910 update_table_tick (value);
10912 /* Now update the status of each register being set.
10913 If someone is using this register in this block, set this register
10914 to invalid since we will get confused between the two lives in this
10915 basic block. This makes using this register always invalid. In cse, we
10916 scan the table to invalidate all entries using this register, but this
10917 is too much work for us. */
10919 for (i = regno; i < endregno; i++)
10921 reg_stat[i].last_set_label = label_tick;
10922 if (value && reg_stat[i].last_set_table_tick == label_tick)
10923 reg_stat[i].last_set_invalid = 1;
10924 else
10925 reg_stat[i].last_set_invalid = 0;
10928 /* The value being assigned might refer to X (like in "x++;"). In that
10929 case, we must replace it with (clobber (const_int 0)) to prevent
10930 infinite loops. */
10931 if (value && ! get_last_value_validate (&value, insn,
10932 reg_stat[regno].last_set_label, 0))
10934 value = copy_rtx (value);
10935 if (! get_last_value_validate (&value, insn,
10936 reg_stat[regno].last_set_label, 1))
10937 value = 0;
10940 /* For the main register being modified, update the value, the mode, the
10941 nonzero bits, and the number of sign bit copies. */
10943 reg_stat[regno].last_set_value = value;
10945 if (value)
10947 enum machine_mode mode = GET_MODE (reg);
10948 subst_low_cuid = INSN_CUID (insn);
10949 reg_stat[regno].last_set_mode = mode;
10950 if (GET_MODE_CLASS (mode) == MODE_INT
10951 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
10952 mode = nonzero_bits_mode;
10953 reg_stat[regno].last_set_nonzero_bits = nonzero_bits (value, mode);
10954 reg_stat[regno].last_set_sign_bit_copies
10955 = num_sign_bit_copies (value, GET_MODE (reg));
10959 /* Called via note_stores from record_dead_and_set_regs to handle one
10960 SET or CLOBBER in an insn. DATA is the instruction in which the
10961 set is occurring. */
10963 static void
10964 record_dead_and_set_regs_1 (rtx dest, rtx setter, void *data)
10966 rtx record_dead_insn = (rtx) data;
10968 if (GET_CODE (dest) == SUBREG)
10969 dest = SUBREG_REG (dest);
10971 if (REG_P (dest))
10973 /* If we are setting the whole register, we know its value. Otherwise
10974 show that we don't know the value. We can handle SUBREG in
10975 some cases. */
10976 if (GET_CODE (setter) == SET && dest == SET_DEST (setter))
10977 record_value_for_reg (dest, record_dead_insn, SET_SRC (setter));
10978 else if (GET_CODE (setter) == SET
10979 && GET_CODE (SET_DEST (setter)) == SUBREG
10980 && SUBREG_REG (SET_DEST (setter)) == dest
10981 && GET_MODE_BITSIZE (GET_MODE (dest)) <= BITS_PER_WORD
10982 && subreg_lowpart_p (SET_DEST (setter)))
10983 record_value_for_reg (dest, record_dead_insn,
10984 gen_lowpart (GET_MODE (dest),
10985 SET_SRC (setter)));
10986 else
10987 record_value_for_reg (dest, record_dead_insn, NULL_RTX);
10989 else if (MEM_P (dest)
10990 /* Ignore pushes, they clobber nothing. */
10991 && ! push_operand (dest, GET_MODE (dest)))
10992 mem_last_set = INSN_CUID (record_dead_insn);
10995 /* Update the records of when each REG was most recently set or killed
10996 for the things done by INSN. This is the last thing done in processing
10997 INSN in the combiner loop.
10999 We update reg_stat[], in particular fields last_set, last_set_value,
11000 last_set_mode, last_set_nonzero_bits, last_set_sign_bit_copies,
11001 last_death, and also the similar information mem_last_set (which insn
11002 most recently modified memory) and last_call_cuid (which insn was the
11003 most recent subroutine call). */
11005 static void
11006 record_dead_and_set_regs (rtx insn)
11008 rtx link;
11009 unsigned int i;
11011 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
11013 if (REG_NOTE_KIND (link) == REG_DEAD
11014 && REG_P (XEXP (link, 0)))
11016 unsigned int regno = REGNO (XEXP (link, 0));
11017 unsigned int endregno
11018 = regno + (regno < FIRST_PSEUDO_REGISTER
11019 ? hard_regno_nregs[regno][GET_MODE (XEXP (link, 0))]
11020 : 1);
11022 for (i = regno; i < endregno; i++)
11023 reg_stat[i].last_death = insn;
11025 else if (REG_NOTE_KIND (link) == REG_INC)
11026 record_value_for_reg (XEXP (link, 0), insn, NULL_RTX);
11029 if (CALL_P (insn))
11031 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
11032 if (TEST_HARD_REG_BIT (regs_invalidated_by_call, i))
11034 reg_stat[i].last_set_value = 0;
11035 reg_stat[i].last_set_mode = 0;
11036 reg_stat[i].last_set_nonzero_bits = 0;
11037 reg_stat[i].last_set_sign_bit_copies = 0;
11038 reg_stat[i].last_death = 0;
11041 last_call_cuid = mem_last_set = INSN_CUID (insn);
11043 /* Don't bother recording what this insn does. It might set the
11044 return value register, but we can't combine into a call
11045 pattern anyway, so there's no point trying (and it may cause
11046 a crash, if e.g. we wind up asking for last_set_value of a
11047 SUBREG of the return value register). */
11048 return;
11051 note_stores (PATTERN (insn), record_dead_and_set_regs_1, insn);
11054 /* If a SUBREG has the promoted bit set, it is in fact a property of the
11055 register present in the SUBREG, so for each such SUBREG go back and
11056 adjust nonzero and sign bit information of the registers that are
11057 known to have some zero/sign bits set.
11059 This is needed because when combine blows the SUBREGs away, the
11060 information on zero/sign bits is lost and further combines can be
11061 missed because of that. */
11063 static void
11064 record_promoted_value (rtx insn, rtx subreg)
11066 rtx links, set;
11067 unsigned int regno = REGNO (SUBREG_REG (subreg));
11068 enum machine_mode mode = GET_MODE (subreg);
11070 if (GET_MODE_BITSIZE (mode) > HOST_BITS_PER_WIDE_INT)
11071 return;
11073 for (links = LOG_LINKS (insn); links;)
11075 insn = XEXP (links, 0);
11076 set = single_set (insn);
11078 if (! set || !REG_P (SET_DEST (set))
11079 || REGNO (SET_DEST (set)) != regno
11080 || GET_MODE (SET_DEST (set)) != GET_MODE (SUBREG_REG (subreg)))
11082 links = XEXP (links, 1);
11083 continue;
11086 if (reg_stat[regno].last_set == insn)
11088 if (SUBREG_PROMOTED_UNSIGNED_P (subreg) > 0)
11089 reg_stat[regno].last_set_nonzero_bits &= GET_MODE_MASK (mode);
11092 if (REG_P (SET_SRC (set)))
11094 regno = REGNO (SET_SRC (set));
11095 links = LOG_LINKS (insn);
11097 else
11098 break;
11102 /* Scan X for promoted SUBREGs. For each one found,
11103 note what it implies to the registers used in it. */
11105 static void
11106 check_promoted_subreg (rtx insn, rtx x)
11108 if (GET_CODE (x) == SUBREG && SUBREG_PROMOTED_VAR_P (x)
11109 && REG_P (SUBREG_REG (x)))
11110 record_promoted_value (insn, x);
11111 else
11113 const char *format = GET_RTX_FORMAT (GET_CODE (x));
11114 int i, j;
11116 for (i = 0; i < GET_RTX_LENGTH (GET_CODE (x)); i++)
11117 switch (format[i])
11119 case 'e':
11120 check_promoted_subreg (insn, XEXP (x, i));
11121 break;
11122 case 'V':
11123 case 'E':
11124 if (XVEC (x, i) != 0)
11125 for (j = 0; j < XVECLEN (x, i); j++)
11126 check_promoted_subreg (insn, XVECEXP (x, i, j));
11127 break;
11132 /* Utility routine for the following function. Verify that all the registers
11133 mentioned in *LOC are valid when *LOC was part of a value set when
11134 label_tick == TICK. Return 0 if some are not.
11136 If REPLACE is nonzero, replace the invalid reference with
11137 (clobber (const_int 0)) and return 1. This replacement is useful because
11138 we often can get useful information about the form of a value (e.g., if
11139 it was produced by a shift that always produces -1 or 0) even though
11140 we don't know exactly what registers it was produced from. */
11142 static int
11143 get_last_value_validate (rtx *loc, rtx insn, int tick, int replace)
11145 rtx x = *loc;
11146 const char *fmt = GET_RTX_FORMAT (GET_CODE (x));
11147 int len = GET_RTX_LENGTH (GET_CODE (x));
11148 int i;
11150 if (REG_P (x))
11152 unsigned int regno = REGNO (x);
11153 unsigned int endregno
11154 = regno + (regno < FIRST_PSEUDO_REGISTER
11155 ? hard_regno_nregs[regno][GET_MODE (x)] : 1);
11156 unsigned int j;
11158 for (j = regno; j < endregno; j++)
11159 if (reg_stat[j].last_set_invalid
11160 /* If this is a pseudo-register that was only set once and not
11161 live at the beginning of the function, it is always valid. */
11162 || (! (regno >= FIRST_PSEUDO_REGISTER
11163 && REG_N_SETS (regno) == 1
11164 && (! REGNO_REG_SET_P
11165 (ENTRY_BLOCK_PTR->next_bb->global_live_at_start, regno)))
11166 && reg_stat[j].last_set_label > tick))
11168 if (replace)
11169 *loc = gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
11170 return replace;
11173 return 1;
11175 /* If this is a memory reference, make sure that there were
11176 no stores after it that might have clobbered the value. We don't
11177 have alias info, so we assume any store invalidates it. */
11178 else if (MEM_P (x) && !MEM_READONLY_P (x)
11179 && INSN_CUID (insn) <= mem_last_set)
11181 if (replace)
11182 *loc = gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
11183 return replace;
11186 for (i = 0; i < len; i++)
11188 if (fmt[i] == 'e')
11190 /* Check for identical subexpressions. If x contains
11191 identical subexpression we only have to traverse one of
11192 them. */
11193 if (i == 1 && ARITHMETIC_P (x))
11195 /* Note that at this point x0 has already been checked
11196 and found valid. */
11197 rtx x0 = XEXP (x, 0);
11198 rtx x1 = XEXP (x, 1);
11200 /* If x0 and x1 are identical then x is also valid. */
11201 if (x0 == x1)
11202 return 1;
11204 /* If x1 is identical to a subexpression of x0 then
11205 while checking x0, x1 has already been checked. Thus
11206 it is valid and so as x. */
11207 if (ARITHMETIC_P (x0)
11208 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
11209 return 1;
11211 /* If x0 is identical to a subexpression of x1 then x is
11212 valid iff the rest of x1 is valid. */
11213 if (ARITHMETIC_P (x1)
11214 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
11215 return
11216 get_last_value_validate (&XEXP (x1,
11217 x0 == XEXP (x1, 0) ? 1 : 0),
11218 insn, tick, replace);
11221 if (get_last_value_validate (&XEXP (x, i), insn, tick,
11222 replace) == 0)
11223 return 0;
11225 /* Don't bother with these. They shouldn't occur anyway. */
11226 else if (fmt[i] == 'E')
11227 return 0;
11230 /* If we haven't found a reason for it to be invalid, it is valid. */
11231 return 1;
11234 /* Get the last value assigned to X, if known. Some registers
11235 in the value may be replaced with (clobber (const_int 0)) if their value
11236 is known longer known reliably. */
11238 static rtx
11239 get_last_value (rtx x)
11241 unsigned int regno;
11242 rtx value;
11244 /* If this is a non-paradoxical SUBREG, get the value of its operand and
11245 then convert it to the desired mode. If this is a paradoxical SUBREG,
11246 we cannot predict what values the "extra" bits might have. */
11247 if (GET_CODE (x) == SUBREG
11248 && subreg_lowpart_p (x)
11249 && (GET_MODE_SIZE (GET_MODE (x))
11250 <= GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
11251 && (value = get_last_value (SUBREG_REG (x))) != 0)
11252 return gen_lowpart (GET_MODE (x), value);
11254 if (!REG_P (x))
11255 return 0;
11257 regno = REGNO (x);
11258 value = reg_stat[regno].last_set_value;
11260 /* If we don't have a value, or if it isn't for this basic block and
11261 it's either a hard register, set more than once, or it's a live
11262 at the beginning of the function, return 0.
11264 Because if it's not live at the beginning of the function then the reg
11265 is always set before being used (is never used without being set).
11266 And, if it's set only once, and it's always set before use, then all
11267 uses must have the same last value, even if it's not from this basic
11268 block. */
11270 if (value == 0
11271 || (reg_stat[regno].last_set_label != label_tick
11272 && (regno < FIRST_PSEUDO_REGISTER
11273 || REG_N_SETS (regno) != 1
11274 || (REGNO_REG_SET_P
11275 (ENTRY_BLOCK_PTR->next_bb->global_live_at_start, regno)))))
11276 return 0;
11278 /* If the value was set in a later insn than the ones we are processing,
11279 we can't use it even if the register was only set once. */
11280 if (INSN_CUID (reg_stat[regno].last_set) >= subst_low_cuid)
11281 return 0;
11283 /* If the value has all its registers valid, return it. */
11284 if (get_last_value_validate (&value, reg_stat[regno].last_set,
11285 reg_stat[regno].last_set_label, 0))
11286 return value;
11288 /* Otherwise, make a copy and replace any invalid register with
11289 (clobber (const_int 0)). If that fails for some reason, return 0. */
11291 value = copy_rtx (value);
11292 if (get_last_value_validate (&value, reg_stat[regno].last_set,
11293 reg_stat[regno].last_set_label, 1))
11294 return value;
11296 return 0;
11299 /* Return nonzero if expression X refers to a REG or to memory
11300 that is set in an instruction more recent than FROM_CUID. */
11302 static int
11303 use_crosses_set_p (rtx x, int from_cuid)
11305 const char *fmt;
11306 int i;
11307 enum rtx_code code = GET_CODE (x);
11309 if (code == REG)
11311 unsigned int regno = REGNO (x);
11312 unsigned endreg = regno + (regno < FIRST_PSEUDO_REGISTER
11313 ? hard_regno_nregs[regno][GET_MODE (x)] : 1);
11315 #ifdef PUSH_ROUNDING
11316 /* Don't allow uses of the stack pointer to be moved,
11317 because we don't know whether the move crosses a push insn. */
11318 if (regno == STACK_POINTER_REGNUM && PUSH_ARGS)
11319 return 1;
11320 #endif
11321 for (; regno < endreg; regno++)
11322 if (reg_stat[regno].last_set
11323 && INSN_CUID (reg_stat[regno].last_set) > from_cuid)
11324 return 1;
11325 return 0;
11328 if (code == MEM && mem_last_set > from_cuid)
11329 return 1;
11331 fmt = GET_RTX_FORMAT (code);
11333 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
11335 if (fmt[i] == 'E')
11337 int j;
11338 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
11339 if (use_crosses_set_p (XVECEXP (x, i, j), from_cuid))
11340 return 1;
11342 else if (fmt[i] == 'e'
11343 && use_crosses_set_p (XEXP (x, i), from_cuid))
11344 return 1;
11346 return 0;
11349 /* Define three variables used for communication between the following
11350 routines. */
11352 static unsigned int reg_dead_regno, reg_dead_endregno;
11353 static int reg_dead_flag;
11355 /* Function called via note_stores from reg_dead_at_p.
11357 If DEST is within [reg_dead_regno, reg_dead_endregno), set
11358 reg_dead_flag to 1 if X is a CLOBBER and to -1 it is a SET. */
11360 static void
11361 reg_dead_at_p_1 (rtx dest, rtx x, void *data ATTRIBUTE_UNUSED)
11363 unsigned int regno, endregno;
11365 if (!REG_P (dest))
11366 return;
11368 regno = REGNO (dest);
11369 endregno = regno + (regno < FIRST_PSEUDO_REGISTER
11370 ? hard_regno_nregs[regno][GET_MODE (dest)] : 1);
11372 if (reg_dead_endregno > regno && reg_dead_regno < endregno)
11373 reg_dead_flag = (GET_CODE (x) == CLOBBER) ? 1 : -1;
11376 /* Return nonzero if REG is known to be dead at INSN.
11378 We scan backwards from INSN. If we hit a REG_DEAD note or a CLOBBER
11379 referencing REG, it is dead. If we hit a SET referencing REG, it is
11380 live. Otherwise, see if it is live or dead at the start of the basic
11381 block we are in. Hard regs marked as being live in NEWPAT_USED_REGS
11382 must be assumed to be always live. */
11384 static int
11385 reg_dead_at_p (rtx reg, rtx insn)
11387 basic_block block;
11388 unsigned int i;
11390 /* Set variables for reg_dead_at_p_1. */
11391 reg_dead_regno = REGNO (reg);
11392 reg_dead_endregno = reg_dead_regno + (reg_dead_regno < FIRST_PSEUDO_REGISTER
11393 ? hard_regno_nregs[reg_dead_regno]
11394 [GET_MODE (reg)]
11395 : 1);
11397 reg_dead_flag = 0;
11399 /* Check that reg isn't mentioned in NEWPAT_USED_REGS. For fixed registers
11400 we allow the machine description to decide whether use-and-clobber
11401 patterns are OK. */
11402 if (reg_dead_regno < FIRST_PSEUDO_REGISTER)
11404 for (i = reg_dead_regno; i < reg_dead_endregno; i++)
11405 if (!fixed_regs[i] && TEST_HARD_REG_BIT (newpat_used_regs, i))
11406 return 0;
11409 /* Scan backwards until we find a REG_DEAD note, SET, CLOBBER, label, or
11410 beginning of function. */
11411 for (; insn && !LABEL_P (insn) && !BARRIER_P (insn);
11412 insn = prev_nonnote_insn (insn))
11414 note_stores (PATTERN (insn), reg_dead_at_p_1, NULL);
11415 if (reg_dead_flag)
11416 return reg_dead_flag == 1 ? 1 : 0;
11418 if (find_regno_note (insn, REG_DEAD, reg_dead_regno))
11419 return 1;
11422 /* Get the basic block that we were in. */
11423 if (insn == 0)
11424 block = ENTRY_BLOCK_PTR->next_bb;
11425 else
11427 FOR_EACH_BB (block)
11428 if (insn == BB_HEAD (block))
11429 break;
11431 if (block == EXIT_BLOCK_PTR)
11432 return 0;
11435 for (i = reg_dead_regno; i < reg_dead_endregno; i++)
11436 if (REGNO_REG_SET_P (block->global_live_at_start, i))
11437 return 0;
11439 return 1;
11442 /* Note hard registers in X that are used. This code is similar to
11443 that in flow.c, but much simpler since we don't care about pseudos. */
11445 static void
11446 mark_used_regs_combine (rtx x)
11448 RTX_CODE code = GET_CODE (x);
11449 unsigned int regno;
11450 int i;
11452 switch (code)
11454 case LABEL_REF:
11455 case SYMBOL_REF:
11456 case CONST_INT:
11457 case CONST:
11458 case CONST_DOUBLE:
11459 case CONST_VECTOR:
11460 case PC:
11461 case ADDR_VEC:
11462 case ADDR_DIFF_VEC:
11463 case ASM_INPUT:
11464 #ifdef HAVE_cc0
11465 /* CC0 must die in the insn after it is set, so we don't need to take
11466 special note of it here. */
11467 case CC0:
11468 #endif
11469 return;
11471 case CLOBBER:
11472 /* If we are clobbering a MEM, mark any hard registers inside the
11473 address as used. */
11474 if (MEM_P (XEXP (x, 0)))
11475 mark_used_regs_combine (XEXP (XEXP (x, 0), 0));
11476 return;
11478 case REG:
11479 regno = REGNO (x);
11480 /* A hard reg in a wide mode may really be multiple registers.
11481 If so, mark all of them just like the first. */
11482 if (regno < FIRST_PSEUDO_REGISTER)
11484 unsigned int endregno, r;
11486 /* None of this applies to the stack, frame or arg pointers. */
11487 if (regno == STACK_POINTER_REGNUM
11488 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
11489 || regno == HARD_FRAME_POINTER_REGNUM
11490 #endif
11491 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
11492 || (regno == ARG_POINTER_REGNUM && fixed_regs[regno])
11493 #endif
11494 || regno == FRAME_POINTER_REGNUM)
11495 return;
11497 endregno = regno + hard_regno_nregs[regno][GET_MODE (x)];
11498 for (r = regno; r < endregno; r++)
11499 SET_HARD_REG_BIT (newpat_used_regs, r);
11501 return;
11503 case SET:
11505 /* If setting a MEM, or a SUBREG of a MEM, then note any hard regs in
11506 the address. */
11507 rtx testreg = SET_DEST (x);
11509 while (GET_CODE (testreg) == SUBREG
11510 || GET_CODE (testreg) == ZERO_EXTRACT
11511 || GET_CODE (testreg) == STRICT_LOW_PART)
11512 testreg = XEXP (testreg, 0);
11514 if (MEM_P (testreg))
11515 mark_used_regs_combine (XEXP (testreg, 0));
11517 mark_used_regs_combine (SET_SRC (x));
11519 return;
11521 default:
11522 break;
11525 /* Recursively scan the operands of this expression. */
11528 const char *fmt = GET_RTX_FORMAT (code);
11530 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
11532 if (fmt[i] == 'e')
11533 mark_used_regs_combine (XEXP (x, i));
11534 else if (fmt[i] == 'E')
11536 int j;
11538 for (j = 0; j < XVECLEN (x, i); j++)
11539 mark_used_regs_combine (XVECEXP (x, i, j));
11545 /* Remove register number REGNO from the dead registers list of INSN.
11547 Return the note used to record the death, if there was one. */
11550 remove_death (unsigned int regno, rtx insn)
11552 rtx note = find_regno_note (insn, REG_DEAD, regno);
11554 if (note)
11556 REG_N_DEATHS (regno)--;
11557 remove_note (insn, note);
11560 return note;
11563 /* For each register (hardware or pseudo) used within expression X, if its
11564 death is in an instruction with cuid between FROM_CUID (inclusive) and
11565 TO_INSN (exclusive), put a REG_DEAD note for that register in the
11566 list headed by PNOTES.
11568 That said, don't move registers killed by maybe_kill_insn.
11570 This is done when X is being merged by combination into TO_INSN. These
11571 notes will then be distributed as needed. */
11573 static void
11574 move_deaths (rtx x, rtx maybe_kill_insn, int from_cuid, rtx to_insn,
11575 rtx *pnotes)
11577 const char *fmt;
11578 int len, i;
11579 enum rtx_code code = GET_CODE (x);
11581 if (code == REG)
11583 unsigned int regno = REGNO (x);
11584 rtx where_dead = reg_stat[regno].last_death;
11585 rtx before_dead, after_dead;
11587 /* Don't move the register if it gets killed in between from and to. */
11588 if (maybe_kill_insn && reg_set_p (x, maybe_kill_insn)
11589 && ! reg_referenced_p (x, maybe_kill_insn))
11590 return;
11592 /* WHERE_DEAD could be a USE insn made by combine, so first we
11593 make sure that we have insns with valid INSN_CUID values. */
11594 before_dead = where_dead;
11595 while (before_dead && INSN_UID (before_dead) > max_uid_cuid)
11596 before_dead = PREV_INSN (before_dead);
11598 after_dead = where_dead;
11599 while (after_dead && INSN_UID (after_dead) > max_uid_cuid)
11600 after_dead = NEXT_INSN (after_dead);
11602 if (before_dead && after_dead
11603 && INSN_CUID (before_dead) >= from_cuid
11604 && (INSN_CUID (after_dead) < INSN_CUID (to_insn)
11605 || (where_dead != after_dead
11606 && INSN_CUID (after_dead) == INSN_CUID (to_insn))))
11608 rtx note = remove_death (regno, where_dead);
11610 /* It is possible for the call above to return 0. This can occur
11611 when last_death points to I2 or I1 that we combined with.
11612 In that case make a new note.
11614 We must also check for the case where X is a hard register
11615 and NOTE is a death note for a range of hard registers
11616 including X. In that case, we must put REG_DEAD notes for
11617 the remaining registers in place of NOTE. */
11619 if (note != 0 && regno < FIRST_PSEUDO_REGISTER
11620 && (GET_MODE_SIZE (GET_MODE (XEXP (note, 0)))
11621 > GET_MODE_SIZE (GET_MODE (x))))
11623 unsigned int deadregno = REGNO (XEXP (note, 0));
11624 unsigned int deadend
11625 = (deadregno + hard_regno_nregs[deadregno]
11626 [GET_MODE (XEXP (note, 0))]);
11627 unsigned int ourend
11628 = regno + hard_regno_nregs[regno][GET_MODE (x)];
11629 unsigned int i;
11631 for (i = deadregno; i < deadend; i++)
11632 if (i < regno || i >= ourend)
11633 REG_NOTES (where_dead)
11634 = gen_rtx_EXPR_LIST (REG_DEAD,
11635 regno_reg_rtx[i],
11636 REG_NOTES (where_dead));
11639 /* If we didn't find any note, or if we found a REG_DEAD note that
11640 covers only part of the given reg, and we have a multi-reg hard
11641 register, then to be safe we must check for REG_DEAD notes
11642 for each register other than the first. They could have
11643 their own REG_DEAD notes lying around. */
11644 else if ((note == 0
11645 || (note != 0
11646 && (GET_MODE_SIZE (GET_MODE (XEXP (note, 0)))
11647 < GET_MODE_SIZE (GET_MODE (x)))))
11648 && regno < FIRST_PSEUDO_REGISTER
11649 && hard_regno_nregs[regno][GET_MODE (x)] > 1)
11651 unsigned int ourend
11652 = regno + hard_regno_nregs[regno][GET_MODE (x)];
11653 unsigned int i, offset;
11654 rtx oldnotes = 0;
11656 if (note)
11657 offset = hard_regno_nregs[regno][GET_MODE (XEXP (note, 0))];
11658 else
11659 offset = 1;
11661 for (i = regno + offset; i < ourend; i++)
11662 move_deaths (regno_reg_rtx[i],
11663 maybe_kill_insn, from_cuid, to_insn, &oldnotes);
11666 if (note != 0 && GET_MODE (XEXP (note, 0)) == GET_MODE (x))
11668 XEXP (note, 1) = *pnotes;
11669 *pnotes = note;
11671 else
11672 *pnotes = gen_rtx_EXPR_LIST (REG_DEAD, x, *pnotes);
11674 REG_N_DEATHS (regno)++;
11677 return;
11680 else if (GET_CODE (x) == SET)
11682 rtx dest = SET_DEST (x);
11684 move_deaths (SET_SRC (x), maybe_kill_insn, from_cuid, to_insn, pnotes);
11686 /* In the case of a ZERO_EXTRACT, a STRICT_LOW_PART, or a SUBREG
11687 that accesses one word of a multi-word item, some
11688 piece of everything register in the expression is used by
11689 this insn, so remove any old death. */
11690 /* ??? So why do we test for equality of the sizes? */
11692 if (GET_CODE (dest) == ZERO_EXTRACT
11693 || GET_CODE (dest) == STRICT_LOW_PART
11694 || (GET_CODE (dest) == SUBREG
11695 && (((GET_MODE_SIZE (GET_MODE (dest))
11696 + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
11697 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest)))
11698 + UNITS_PER_WORD - 1) / UNITS_PER_WORD))))
11700 move_deaths (dest, maybe_kill_insn, from_cuid, to_insn, pnotes);
11701 return;
11704 /* If this is some other SUBREG, we know it replaces the entire
11705 value, so use that as the destination. */
11706 if (GET_CODE (dest) == SUBREG)
11707 dest = SUBREG_REG (dest);
11709 /* If this is a MEM, adjust deaths of anything used in the address.
11710 For a REG (the only other possibility), the entire value is
11711 being replaced so the old value is not used in this insn. */
11713 if (MEM_P (dest))
11714 move_deaths (XEXP (dest, 0), maybe_kill_insn, from_cuid,
11715 to_insn, pnotes);
11716 return;
11719 else if (GET_CODE (x) == CLOBBER)
11720 return;
11722 len = GET_RTX_LENGTH (code);
11723 fmt = GET_RTX_FORMAT (code);
11725 for (i = 0; i < len; i++)
11727 if (fmt[i] == 'E')
11729 int j;
11730 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
11731 move_deaths (XVECEXP (x, i, j), maybe_kill_insn, from_cuid,
11732 to_insn, pnotes);
11734 else if (fmt[i] == 'e')
11735 move_deaths (XEXP (x, i), maybe_kill_insn, from_cuid, to_insn, pnotes);
11739 /* Return 1 if X is the target of a bit-field assignment in BODY, the
11740 pattern of an insn. X must be a REG. */
11742 static int
11743 reg_bitfield_target_p (rtx x, rtx body)
11745 int i;
11747 if (GET_CODE (body) == SET)
11749 rtx dest = SET_DEST (body);
11750 rtx target;
11751 unsigned int regno, tregno, endregno, endtregno;
11753 if (GET_CODE (dest) == ZERO_EXTRACT)
11754 target = XEXP (dest, 0);
11755 else if (GET_CODE (dest) == STRICT_LOW_PART)
11756 target = SUBREG_REG (XEXP (dest, 0));
11757 else
11758 return 0;
11760 if (GET_CODE (target) == SUBREG)
11761 target = SUBREG_REG (target);
11763 if (!REG_P (target))
11764 return 0;
11766 tregno = REGNO (target), regno = REGNO (x);
11767 if (tregno >= FIRST_PSEUDO_REGISTER || regno >= FIRST_PSEUDO_REGISTER)
11768 return target == x;
11770 endtregno = tregno + hard_regno_nregs[tregno][GET_MODE (target)];
11771 endregno = regno + hard_regno_nregs[regno][GET_MODE (x)];
11773 return endregno > tregno && regno < endtregno;
11776 else if (GET_CODE (body) == PARALLEL)
11777 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
11778 if (reg_bitfield_target_p (x, XVECEXP (body, 0, i)))
11779 return 1;
11781 return 0;
11784 /* Given a chain of REG_NOTES originally from FROM_INSN, try to place them
11785 as appropriate. I3 and I2 are the insns resulting from the combination
11786 insns including FROM (I2 may be zero).
11788 Each note in the list is either ignored or placed on some insns, depending
11789 on the type of note. */
11791 static void
11792 distribute_notes (rtx notes, rtx from_insn, rtx i3, rtx i2)
11794 rtx note, next_note;
11795 rtx tem;
11797 for (note = notes; note; note = next_note)
11799 rtx place = 0, place2 = 0;
11801 /* If this NOTE references a pseudo register, ensure it references
11802 the latest copy of that register. */
11803 if (XEXP (note, 0) && REG_P (XEXP (note, 0))
11804 && REGNO (XEXP (note, 0)) >= FIRST_PSEUDO_REGISTER)
11805 XEXP (note, 0) = regno_reg_rtx[REGNO (XEXP (note, 0))];
11807 next_note = XEXP (note, 1);
11808 switch (REG_NOTE_KIND (note))
11810 case REG_BR_PROB:
11811 case REG_BR_PRED:
11812 /* Doesn't matter much where we put this, as long as it's somewhere.
11813 It is preferable to keep these notes on branches, which is most
11814 likely to be i3. */
11815 place = i3;
11816 break;
11818 case REG_VALUE_PROFILE:
11819 /* Just get rid of this note, as it is unused later anyway. */
11820 break;
11822 case REG_NON_LOCAL_GOTO:
11823 if (JUMP_P (i3))
11824 place = i3;
11825 else
11827 gcc_assert (i2 && JUMP_P (i2));
11828 place = i2;
11830 break;
11832 case REG_EH_REGION:
11833 /* These notes must remain with the call or trapping instruction. */
11834 if (CALL_P (i3))
11835 place = i3;
11836 else if (i2 && CALL_P (i2))
11837 place = i2;
11838 else
11840 gcc_assert (flag_non_call_exceptions);
11841 if (may_trap_p (i3))
11842 place = i3;
11843 else if (i2 && may_trap_p (i2))
11844 place = i2;
11845 /* ??? Otherwise assume we've combined things such that we
11846 can now prove that the instructions can't trap. Drop the
11847 note in this case. */
11849 break;
11851 case REG_ALWAYS_RETURN:
11852 case REG_NORETURN:
11853 case REG_SETJMP:
11854 /* These notes must remain with the call. It should not be
11855 possible for both I2 and I3 to be a call. */
11856 if (CALL_P (i3))
11857 place = i3;
11858 else
11860 gcc_assert (i2 && CALL_P (i2));
11861 place = i2;
11863 break;
11865 case REG_UNUSED:
11866 /* Any clobbers for i3 may still exist, and so we must process
11867 REG_UNUSED notes from that insn.
11869 Any clobbers from i2 or i1 can only exist if they were added by
11870 recog_for_combine. In that case, recog_for_combine created the
11871 necessary REG_UNUSED notes. Trying to keep any original
11872 REG_UNUSED notes from these insns can cause incorrect output
11873 if it is for the same register as the original i3 dest.
11874 In that case, we will notice that the register is set in i3,
11875 and then add a REG_UNUSED note for the destination of i3, which
11876 is wrong. However, it is possible to have REG_UNUSED notes from
11877 i2 or i1 for register which were both used and clobbered, so
11878 we keep notes from i2 or i1 if they will turn into REG_DEAD
11879 notes. */
11881 /* If this register is set or clobbered in I3, put the note there
11882 unless there is one already. */
11883 if (reg_set_p (XEXP (note, 0), PATTERN (i3)))
11885 if (from_insn != i3)
11886 break;
11888 if (! (REG_P (XEXP (note, 0))
11889 ? find_regno_note (i3, REG_UNUSED, REGNO (XEXP (note, 0)))
11890 : find_reg_note (i3, REG_UNUSED, XEXP (note, 0))))
11891 place = i3;
11893 /* Otherwise, if this register is used by I3, then this register
11894 now dies here, so we must put a REG_DEAD note here unless there
11895 is one already. */
11896 else if (reg_referenced_p (XEXP (note, 0), PATTERN (i3))
11897 && ! (REG_P (XEXP (note, 0))
11898 ? find_regno_note (i3, REG_DEAD,
11899 REGNO (XEXP (note, 0)))
11900 : find_reg_note (i3, REG_DEAD, XEXP (note, 0))))
11902 PUT_REG_NOTE_KIND (note, REG_DEAD);
11903 place = i3;
11905 break;
11907 case REG_EQUAL:
11908 case REG_EQUIV:
11909 case REG_NOALIAS:
11910 /* These notes say something about results of an insn. We can
11911 only support them if they used to be on I3 in which case they
11912 remain on I3. Otherwise they are ignored.
11914 If the note refers to an expression that is not a constant, we
11915 must also ignore the note since we cannot tell whether the
11916 equivalence is still true. It might be possible to do
11917 slightly better than this (we only have a problem if I2DEST
11918 or I1DEST is present in the expression), but it doesn't
11919 seem worth the trouble. */
11921 if (from_insn == i3
11922 && (XEXP (note, 0) == 0 || CONSTANT_P (XEXP (note, 0))))
11923 place = i3;
11924 break;
11926 case REG_INC:
11927 case REG_NO_CONFLICT:
11928 /* These notes say something about how a register is used. They must
11929 be present on any use of the register in I2 or I3. */
11930 if (reg_mentioned_p (XEXP (note, 0), PATTERN (i3)))
11931 place = i3;
11933 if (i2 && reg_mentioned_p (XEXP (note, 0), PATTERN (i2)))
11935 if (place)
11936 place2 = i2;
11937 else
11938 place = i2;
11940 break;
11942 case REG_LABEL:
11943 /* This can show up in several ways -- either directly in the
11944 pattern, or hidden off in the constant pool with (or without?)
11945 a REG_EQUAL note. */
11946 /* ??? Ignore the without-reg_equal-note problem for now. */
11947 if (reg_mentioned_p (XEXP (note, 0), PATTERN (i3))
11948 || ((tem = find_reg_note (i3, REG_EQUAL, NULL_RTX))
11949 && GET_CODE (XEXP (tem, 0)) == LABEL_REF
11950 && XEXP (XEXP (tem, 0), 0) == XEXP (note, 0)))
11951 place = i3;
11953 if (i2
11954 && (reg_mentioned_p (XEXP (note, 0), PATTERN (i2))
11955 || ((tem = find_reg_note (i2, REG_EQUAL, NULL_RTX))
11956 && GET_CODE (XEXP (tem, 0)) == LABEL_REF
11957 && XEXP (XEXP (tem, 0), 0) == XEXP (note, 0))))
11959 if (place)
11960 place2 = i2;
11961 else
11962 place = i2;
11965 /* Don't attach REG_LABEL note to a JUMP_INSN. Add
11966 a JUMP_LABEL instead or decrement LABEL_NUSES. */
11967 if (place && JUMP_P (place))
11969 rtx label = JUMP_LABEL (place);
11971 if (!label)
11972 JUMP_LABEL (place) = XEXP (note, 0);
11973 else
11975 gcc_assert (label == XEXP (note, 0));
11976 if (LABEL_P (label))
11977 LABEL_NUSES (label)--;
11979 place = 0;
11981 if (place2 && JUMP_P (place2))
11983 rtx label = JUMP_LABEL (place2);
11985 if (!label)
11986 JUMP_LABEL (place2) = XEXP (note, 0);
11987 else
11989 gcc_assert (label == XEXP (note, 0));
11990 if (LABEL_P (label))
11991 LABEL_NUSES (label)--;
11993 place2 = 0;
11995 break;
11997 case REG_NONNEG:
11998 /* This note says something about the value of a register prior
11999 to the execution of an insn. It is too much trouble to see
12000 if the note is still correct in all situations. It is better
12001 to simply delete it. */
12002 break;
12004 case REG_RETVAL:
12005 /* If the insn previously containing this note still exists,
12006 put it back where it was. Otherwise move it to the previous
12007 insn. Adjust the corresponding REG_LIBCALL note. */
12008 if (!NOTE_P (from_insn))
12009 place = from_insn;
12010 else
12012 tem = find_reg_note (XEXP (note, 0), REG_LIBCALL, NULL_RTX);
12013 place = prev_real_insn (from_insn);
12014 if (tem && place)
12015 XEXP (tem, 0) = place;
12016 /* If we're deleting the last remaining instruction of a
12017 libcall sequence, don't add the notes. */
12018 else if (XEXP (note, 0) == from_insn)
12019 tem = place = 0;
12020 /* Don't add the dangling REG_RETVAL note. */
12021 else if (! tem)
12022 place = 0;
12024 break;
12026 case REG_LIBCALL:
12027 /* This is handled similarly to REG_RETVAL. */
12028 if (!NOTE_P (from_insn))
12029 place = from_insn;
12030 else
12032 tem = find_reg_note (XEXP (note, 0), REG_RETVAL, NULL_RTX);
12033 place = next_real_insn (from_insn);
12034 if (tem && place)
12035 XEXP (tem, 0) = place;
12036 /* If we're deleting the last remaining instruction of a
12037 libcall sequence, don't add the notes. */
12038 else if (XEXP (note, 0) == from_insn)
12039 tem = place = 0;
12040 /* Don't add the dangling REG_LIBCALL note. */
12041 else if (! tem)
12042 place = 0;
12044 break;
12046 case REG_DEAD:
12047 /* If the register is used as an input in I3, it dies there.
12048 Similarly for I2, if it is nonzero and adjacent to I3.
12050 If the register is not used as an input in either I3 or I2
12051 and it is not one of the registers we were supposed to eliminate,
12052 there are two possibilities. We might have a non-adjacent I2
12053 or we might have somehow eliminated an additional register
12054 from a computation. For example, we might have had A & B where
12055 we discover that B will always be zero. In this case we will
12056 eliminate the reference to A.
12058 In both cases, we must search to see if we can find a previous
12059 use of A and put the death note there. */
12061 if (from_insn
12062 && CALL_P (from_insn)
12063 && find_reg_fusage (from_insn, USE, XEXP (note, 0)))
12064 place = from_insn;
12065 else if (reg_referenced_p (XEXP (note, 0), PATTERN (i3)))
12066 place = i3;
12067 else if (i2 != 0 && next_nonnote_insn (i2) == i3
12068 && reg_referenced_p (XEXP (note, 0), PATTERN (i2)))
12069 place = i2;
12071 if (place == 0)
12073 basic_block bb = this_basic_block;
12075 for (tem = PREV_INSN (i3); place == 0; tem = PREV_INSN (tem))
12077 if (! INSN_P (tem))
12079 if (tem == BB_HEAD (bb))
12080 break;
12081 continue;
12084 /* If the register is being set at TEM, see if that is all
12085 TEM is doing. If so, delete TEM. Otherwise, make this
12086 into a REG_UNUSED note instead. Don't delete sets to
12087 global register vars. */
12088 if ((REGNO (XEXP (note, 0)) >= FIRST_PSEUDO_REGISTER
12089 || !global_regs[REGNO (XEXP (note, 0))])
12090 && reg_set_p (XEXP (note, 0), PATTERN (tem)))
12092 rtx set = single_set (tem);
12093 rtx inner_dest = 0;
12094 #ifdef HAVE_cc0
12095 rtx cc0_setter = NULL_RTX;
12096 #endif
12098 if (set != 0)
12099 for (inner_dest = SET_DEST (set);
12100 (GET_CODE (inner_dest) == STRICT_LOW_PART
12101 || GET_CODE (inner_dest) == SUBREG
12102 || GET_CODE (inner_dest) == ZERO_EXTRACT);
12103 inner_dest = XEXP (inner_dest, 0))
12106 /* Verify that it was the set, and not a clobber that
12107 modified the register.
12109 CC0 targets must be careful to maintain setter/user
12110 pairs. If we cannot delete the setter due to side
12111 effects, mark the user with an UNUSED note instead
12112 of deleting it. */
12114 if (set != 0 && ! side_effects_p (SET_SRC (set))
12115 && rtx_equal_p (XEXP (note, 0), inner_dest)
12116 #ifdef HAVE_cc0
12117 && (! reg_mentioned_p (cc0_rtx, SET_SRC (set))
12118 || ((cc0_setter = prev_cc0_setter (tem)) != NULL
12119 && sets_cc0_p (PATTERN (cc0_setter)) > 0))
12120 #endif
12123 /* Move the notes and links of TEM elsewhere.
12124 This might delete other dead insns recursively.
12125 First set the pattern to something that won't use
12126 any register. */
12127 rtx old_notes = REG_NOTES (tem);
12129 PATTERN (tem) = pc_rtx;
12130 REG_NOTES (tem) = NULL;
12132 distribute_notes (old_notes, tem, tem, NULL_RTX);
12133 distribute_links (LOG_LINKS (tem));
12135 SET_INSN_DELETED (tem);
12137 #ifdef HAVE_cc0
12138 /* Delete the setter too. */
12139 if (cc0_setter)
12141 PATTERN (cc0_setter) = pc_rtx;
12142 old_notes = REG_NOTES (cc0_setter);
12143 REG_NOTES (cc0_setter) = NULL;
12145 distribute_notes (old_notes, cc0_setter,
12146 cc0_setter, NULL_RTX);
12147 distribute_links (LOG_LINKS (cc0_setter));
12149 SET_INSN_DELETED (cc0_setter);
12151 #endif
12153 else
12155 PUT_REG_NOTE_KIND (note, REG_UNUSED);
12157 /* If there isn't already a REG_UNUSED note, put one
12158 here. Do not place a REG_DEAD note, even if
12159 the register is also used here; that would not
12160 match the algorithm used in lifetime analysis
12161 and can cause the consistency check in the
12162 scheduler to fail. */
12163 if (! find_regno_note (tem, REG_UNUSED,
12164 REGNO (XEXP (note, 0))))
12165 place = tem;
12166 break;
12169 else if (reg_referenced_p (XEXP (note, 0), PATTERN (tem))
12170 || (CALL_P (tem)
12171 && find_reg_fusage (tem, USE, XEXP (note, 0))))
12173 place = tem;
12175 /* If we are doing a 3->2 combination, and we have a
12176 register which formerly died in i3 and was not used
12177 by i2, which now no longer dies in i3 and is used in
12178 i2 but does not die in i2, and place is between i2
12179 and i3, then we may need to move a link from place to
12180 i2. */
12181 if (i2 && INSN_UID (place) <= max_uid_cuid
12182 && INSN_CUID (place) > INSN_CUID (i2)
12183 && from_insn
12184 && INSN_CUID (from_insn) > INSN_CUID (i2)
12185 && reg_referenced_p (XEXP (note, 0), PATTERN (i2)))
12187 rtx links = LOG_LINKS (place);
12188 LOG_LINKS (place) = 0;
12189 distribute_links (links);
12191 break;
12194 if (tem == BB_HEAD (bb))
12195 break;
12198 /* We haven't found an insn for the death note and it
12199 is still a REG_DEAD note, but we have hit the beginning
12200 of the block. If the existing life info says the reg
12201 was dead, there's nothing left to do. Otherwise, we'll
12202 need to do a global life update after combine. */
12203 if (REG_NOTE_KIND (note) == REG_DEAD && place == 0
12204 && REGNO_REG_SET_P (bb->global_live_at_start,
12205 REGNO (XEXP (note, 0))))
12206 SET_BIT (refresh_blocks, this_basic_block->index);
12209 /* If the register is set or already dead at PLACE, we needn't do
12210 anything with this note if it is still a REG_DEAD note.
12211 We check here if it is set at all, not if is it totally replaced,
12212 which is what `dead_or_set_p' checks, so also check for it being
12213 set partially. */
12215 if (place && REG_NOTE_KIND (note) == REG_DEAD)
12217 unsigned int regno = REGNO (XEXP (note, 0));
12219 /* Similarly, if the instruction on which we want to place
12220 the note is a noop, we'll need do a global live update
12221 after we remove them in delete_noop_moves. */
12222 if (noop_move_p (place))
12223 SET_BIT (refresh_blocks, this_basic_block->index);
12225 if (dead_or_set_p (place, XEXP (note, 0))
12226 || reg_bitfield_target_p (XEXP (note, 0), PATTERN (place)))
12228 /* Unless the register previously died in PLACE, clear
12229 last_death. [I no longer understand why this is
12230 being done.] */
12231 if (reg_stat[regno].last_death != place)
12232 reg_stat[regno].last_death = 0;
12233 place = 0;
12235 else
12236 reg_stat[regno].last_death = place;
12238 /* If this is a death note for a hard reg that is occupying
12239 multiple registers, ensure that we are still using all
12240 parts of the object. If we find a piece of the object
12241 that is unused, we must arrange for an appropriate REG_DEAD
12242 note to be added for it. However, we can't just emit a USE
12243 and tag the note to it, since the register might actually
12244 be dead; so we recourse, and the recursive call then finds
12245 the previous insn that used this register. */
12247 if (place && regno < FIRST_PSEUDO_REGISTER
12248 && hard_regno_nregs[regno][GET_MODE (XEXP (note, 0))] > 1)
12250 unsigned int endregno
12251 = regno + hard_regno_nregs[regno]
12252 [GET_MODE (XEXP (note, 0))];
12253 int all_used = 1;
12254 unsigned int i;
12256 for (i = regno; i < endregno; i++)
12257 if ((! refers_to_regno_p (i, i + 1, PATTERN (place), 0)
12258 && ! find_regno_fusage (place, USE, i))
12259 || dead_or_set_regno_p (place, i))
12260 all_used = 0;
12262 if (! all_used)
12264 /* Put only REG_DEAD notes for pieces that are
12265 not already dead or set. */
12267 for (i = regno; i < endregno;
12268 i += hard_regno_nregs[i][reg_raw_mode[i]])
12270 rtx piece = regno_reg_rtx[i];
12271 basic_block bb = this_basic_block;
12273 if (! dead_or_set_p (place, piece)
12274 && ! reg_bitfield_target_p (piece,
12275 PATTERN (place)))
12277 rtx new_note
12278 = gen_rtx_EXPR_LIST (REG_DEAD, piece, NULL_RTX);
12280 distribute_notes (new_note, place, place,
12281 NULL_RTX);
12283 else if (! refers_to_regno_p (i, i + 1,
12284 PATTERN (place), 0)
12285 && ! find_regno_fusage (place, USE, i))
12286 for (tem = PREV_INSN (place); ;
12287 tem = PREV_INSN (tem))
12289 if (! INSN_P (tem))
12291 if (tem == BB_HEAD (bb))
12293 SET_BIT (refresh_blocks,
12294 this_basic_block->index);
12295 break;
12297 continue;
12299 if (dead_or_set_p (tem, piece)
12300 || reg_bitfield_target_p (piece,
12301 PATTERN (tem)))
12303 REG_NOTES (tem)
12304 = gen_rtx_EXPR_LIST (REG_UNUSED, piece,
12305 REG_NOTES (tem));
12306 break;
12312 place = 0;
12316 break;
12318 default:
12319 /* Any other notes should not be present at this point in the
12320 compilation. */
12321 gcc_unreachable ();
12324 if (place)
12326 XEXP (note, 1) = REG_NOTES (place);
12327 REG_NOTES (place) = note;
12329 else if ((REG_NOTE_KIND (note) == REG_DEAD
12330 || REG_NOTE_KIND (note) == REG_UNUSED)
12331 && REG_P (XEXP (note, 0)))
12332 REG_N_DEATHS (REGNO (XEXP (note, 0)))--;
12334 if (place2)
12336 if ((REG_NOTE_KIND (note) == REG_DEAD
12337 || REG_NOTE_KIND (note) == REG_UNUSED)
12338 && REG_P (XEXP (note, 0)))
12339 REG_N_DEATHS (REGNO (XEXP (note, 0)))++;
12341 REG_NOTES (place2) = gen_rtx_fmt_ee (GET_CODE (note),
12342 REG_NOTE_KIND (note),
12343 XEXP (note, 0),
12344 REG_NOTES (place2));
12349 /* Similarly to above, distribute the LOG_LINKS that used to be present on
12350 I3, I2, and I1 to new locations. This is also called to add a link
12351 pointing at I3 when I3's destination is changed. */
12353 static void
12354 distribute_links (rtx links)
12356 rtx link, next_link;
12358 for (link = links; link; link = next_link)
12360 rtx place = 0;
12361 rtx insn;
12362 rtx set, reg;
12364 next_link = XEXP (link, 1);
12366 /* If the insn that this link points to is a NOTE or isn't a single
12367 set, ignore it. In the latter case, it isn't clear what we
12368 can do other than ignore the link, since we can't tell which
12369 register it was for. Such links wouldn't be used by combine
12370 anyway.
12372 It is not possible for the destination of the target of the link to
12373 have been changed by combine. The only potential of this is if we
12374 replace I3, I2, and I1 by I3 and I2. But in that case the
12375 destination of I2 also remains unchanged. */
12377 if (NOTE_P (XEXP (link, 0))
12378 || (set = single_set (XEXP (link, 0))) == 0)
12379 continue;
12381 reg = SET_DEST (set);
12382 while (GET_CODE (reg) == SUBREG || GET_CODE (reg) == ZERO_EXTRACT
12383 || GET_CODE (reg) == STRICT_LOW_PART)
12384 reg = XEXP (reg, 0);
12386 /* A LOG_LINK is defined as being placed on the first insn that uses
12387 a register and points to the insn that sets the register. Start
12388 searching at the next insn after the target of the link and stop
12389 when we reach a set of the register or the end of the basic block.
12391 Note that this correctly handles the link that used to point from
12392 I3 to I2. Also note that not much searching is typically done here
12393 since most links don't point very far away. */
12395 for (insn = NEXT_INSN (XEXP (link, 0));
12396 (insn && (this_basic_block->next_bb == EXIT_BLOCK_PTR
12397 || BB_HEAD (this_basic_block->next_bb) != insn));
12398 insn = NEXT_INSN (insn))
12399 if (INSN_P (insn) && reg_overlap_mentioned_p (reg, PATTERN (insn)))
12401 if (reg_referenced_p (reg, PATTERN (insn)))
12402 place = insn;
12403 break;
12405 else if (CALL_P (insn)
12406 && find_reg_fusage (insn, USE, reg))
12408 place = insn;
12409 break;
12411 else if (INSN_P (insn) && reg_set_p (reg, insn))
12412 break;
12414 /* If we found a place to put the link, place it there unless there
12415 is already a link to the same insn as LINK at that point. */
12417 if (place)
12419 rtx link2;
12421 for (link2 = LOG_LINKS (place); link2; link2 = XEXP (link2, 1))
12422 if (XEXP (link2, 0) == XEXP (link, 0))
12423 break;
12425 if (link2 == 0)
12427 XEXP (link, 1) = LOG_LINKS (place);
12428 LOG_LINKS (place) = link;
12430 /* Set added_links_insn to the earliest insn we added a
12431 link to. */
12432 if (added_links_insn == 0
12433 || INSN_CUID (added_links_insn) > INSN_CUID (place))
12434 added_links_insn = place;
12440 /* Subroutine of unmentioned_reg_p and callback from for_each_rtx.
12441 Check whether the expression pointer to by LOC is a register or
12442 memory, and if so return 1 if it isn't mentioned in the rtx EXPR.
12443 Otherwise return zero. */
12445 static int
12446 unmentioned_reg_p_1 (rtx *loc, void *expr)
12448 rtx x = *loc;
12450 if (x != NULL_RTX
12451 && (REG_P (x) || MEM_P (x))
12452 && ! reg_mentioned_p (x, (rtx) expr))
12453 return 1;
12454 return 0;
12457 /* Check for any register or memory mentioned in EQUIV that is not
12458 mentioned in EXPR. This is used to restrict EQUIV to "specializations"
12459 of EXPR where some registers may have been replaced by constants. */
12461 static bool
12462 unmentioned_reg_p (rtx equiv, rtx expr)
12464 return for_each_rtx (&equiv, unmentioned_reg_p_1, expr);
12467 /* Compute INSN_CUID for INSN, which is an insn made by combine. */
12469 static int
12470 insn_cuid (rtx insn)
12472 while (insn != 0 && INSN_UID (insn) > max_uid_cuid
12473 && NONJUMP_INSN_P (insn) && GET_CODE (PATTERN (insn)) == USE)
12474 insn = NEXT_INSN (insn);
12476 gcc_assert (INSN_UID (insn) <= max_uid_cuid);
12478 return INSN_CUID (insn);
12481 void
12482 dump_combine_stats (FILE *file)
12484 fnotice
12485 (file,
12486 ";; Combiner statistics: %d attempts, %d substitutions (%d requiring new space),\n;; %d successes.\n\n",
12487 combine_attempts, combine_merges, combine_extras, combine_successes);
12490 void
12491 dump_combine_total_stats (FILE *file)
12493 fnotice
12494 (file,
12495 "\n;; Combiner totals: %d attempts, %d substitutions (%d requiring new space),\n;; %d successes.\n",
12496 total_attempts, total_merges, total_extras, total_successes);