1 /* Lower complex number operations to scalar operations.
2 Copyright (C) 2004, 2005, 2006, 2007, 2008, 2009, 2010
3 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it
8 under the terms of the GNU General Public License as published by the
9 Free Software Foundation; either version 3, or (at your option) any
12 GCC is distributed in the hope that it will be useful, but WITHOUT
13 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
23 #include "coretypes.h"
27 #include "tree-flow.h"
29 #include "tree-iterator.h"
30 #include "tree-pass.h"
31 #include "tree-ssa-propagate.h"
34 /* For each complex ssa name, a lattice value. We're interested in finding
35 out whether a complex number is degenerate in some way, having only real
36 or only complex parts. */
46 /* The type complex_lattice_t holds combinations of the above
48 typedef int complex_lattice_t
;
50 #define PAIR(a, b) ((a) << 2 | (b))
52 DEF_VEC_I(complex_lattice_t
);
53 DEF_VEC_ALLOC_I(complex_lattice_t
, heap
);
55 static VEC(complex_lattice_t
, heap
) *complex_lattice_values
;
57 /* For each complex variable, a pair of variables for the components exists in
59 static htab_t complex_variable_components
;
61 /* For each complex SSA_NAME, a pair of ssa names for the components. */
62 static VEC(tree
, heap
) *complex_ssa_name_components
;
64 /* Lookup UID in the complex_variable_components hashtable and return the
67 cvc_lookup (unsigned int uid
)
69 struct int_tree_map
*h
, in
;
71 h
= (struct int_tree_map
*) htab_find_with_hash (complex_variable_components
, &in
, uid
);
72 return h
? h
->to
: NULL
;
75 /* Insert the pair UID, TO into the complex_variable_components hashtable. */
78 cvc_insert (unsigned int uid
, tree to
)
80 struct int_tree_map
*h
;
83 h
= XNEW (struct int_tree_map
);
86 loc
= htab_find_slot_with_hash (complex_variable_components
, h
,
88 *(struct int_tree_map
**) loc
= h
;
91 /* Return true if T is not a zero constant. In the case of real values,
92 we're only interested in +0.0. */
95 some_nonzerop (tree t
)
99 /* Operations with real or imaginary part of a complex number zero
100 cannot be treated the same as operations with a real or imaginary
101 operand if we care about the signs of zeros in the result. */
102 if (TREE_CODE (t
) == REAL_CST
&& !flag_signed_zeros
)
103 zerop
= REAL_VALUES_IDENTICAL (TREE_REAL_CST (t
), dconst0
);
104 else if (TREE_CODE (t
) == FIXED_CST
)
105 zerop
= fixed_zerop (t
);
106 else if (TREE_CODE (t
) == INTEGER_CST
)
107 zerop
= integer_zerop (t
);
113 /* Compute a lattice value from the components of a complex type REAL
116 static complex_lattice_t
117 find_lattice_value_parts (tree real
, tree imag
)
120 complex_lattice_t ret
;
122 r
= some_nonzerop (real
);
123 i
= some_nonzerop (imag
);
124 ret
= r
* ONLY_REAL
+ i
* ONLY_IMAG
;
126 /* ??? On occasion we could do better than mapping 0+0i to real, but we
127 certainly don't want to leave it UNINITIALIZED, which eventually gets
128 mapped to VARYING. */
129 if (ret
== UNINITIALIZED
)
136 /* Compute a lattice value from gimple_val T. */
138 static complex_lattice_t
139 find_lattice_value (tree t
)
143 switch (TREE_CODE (t
))
146 return VEC_index (complex_lattice_t
, complex_lattice_values
,
147 SSA_NAME_VERSION (t
));
150 real
= TREE_REALPART (t
);
151 imag
= TREE_IMAGPART (t
);
158 return find_lattice_value_parts (real
, imag
);
161 /* Determine if LHS is something for which we're interested in seeing
162 simulation results. */
165 is_complex_reg (tree lhs
)
167 return TREE_CODE (TREE_TYPE (lhs
)) == COMPLEX_TYPE
&& is_gimple_reg (lhs
);
170 /* Mark the incoming parameters to the function as VARYING. */
173 init_parameter_lattice_values (void)
177 for (parm
= DECL_ARGUMENTS (cfun
->decl
); parm
; parm
= DECL_CHAIN (parm
))
178 if (is_complex_reg (parm
)
179 && (ssa_name
= ssa_default_def (cfun
, parm
)) != NULL_TREE
)
180 VEC_replace (complex_lattice_t
, complex_lattice_values
,
181 SSA_NAME_VERSION (ssa_name
), VARYING
);
184 /* Initialize simulation state for each statement. Return false if we
185 found no statements we want to simulate, and thus there's nothing
186 for the entire pass to do. */
189 init_dont_simulate_again (void)
192 gimple_stmt_iterator gsi
;
194 bool saw_a_complex_op
= false;
198 for (gsi
= gsi_start_phis (bb
); !gsi_end_p (gsi
); gsi_next (&gsi
))
200 phi
= gsi_stmt (gsi
);
201 prop_set_simulate_again (phi
,
202 is_complex_reg (gimple_phi_result (phi
)));
205 for (gsi
= gsi_start_bb (bb
); !gsi_end_p (gsi
); gsi_next (&gsi
))
211 stmt
= gsi_stmt (gsi
);
212 op0
= op1
= NULL_TREE
;
214 /* Most control-altering statements must be initially
215 simulated, else we won't cover the entire cfg. */
216 sim_again_p
= stmt_ends_bb_p (stmt
);
218 switch (gimple_code (stmt
))
221 if (gimple_call_lhs (stmt
))
222 sim_again_p
= is_complex_reg (gimple_call_lhs (stmt
));
226 sim_again_p
= is_complex_reg (gimple_assign_lhs (stmt
));
227 if (gimple_assign_rhs_code (stmt
) == REALPART_EXPR
228 || gimple_assign_rhs_code (stmt
) == IMAGPART_EXPR
)
229 op0
= TREE_OPERAND (gimple_assign_rhs1 (stmt
), 0);
231 op0
= gimple_assign_rhs1 (stmt
);
232 if (gimple_num_ops (stmt
) > 2)
233 op1
= gimple_assign_rhs2 (stmt
);
237 op0
= gimple_cond_lhs (stmt
);
238 op1
= gimple_cond_rhs (stmt
);
246 switch (gimple_expr_code (stmt
))
258 if (TREE_CODE (TREE_TYPE (op0
)) == COMPLEX_TYPE
259 || TREE_CODE (TREE_TYPE (op1
)) == COMPLEX_TYPE
)
260 saw_a_complex_op
= true;
265 if (TREE_CODE (TREE_TYPE (op0
)) == COMPLEX_TYPE
)
266 saw_a_complex_op
= true;
271 /* The total store transformation performed during
272 gimplification creates such uninitialized loads
273 and we need to lower the statement to be able
275 if (TREE_CODE (op0
) == SSA_NAME
276 && ssa_undefined_value_p (op0
))
277 saw_a_complex_op
= true;
284 prop_set_simulate_again (stmt
, sim_again_p
);
288 return saw_a_complex_op
;
292 /* Evaluate statement STMT against the complex lattice defined above. */
294 static enum ssa_prop_result
295 complex_visit_stmt (gimple stmt
, edge
*taken_edge_p ATTRIBUTE_UNUSED
,
298 complex_lattice_t new_l
, old_l
, op1_l
, op2_l
;
302 lhs
= gimple_get_lhs (stmt
);
303 /* Skip anything but GIMPLE_ASSIGN and GIMPLE_CALL with a lhs. */
305 return SSA_PROP_VARYING
;
307 /* These conditions should be satisfied due to the initial filter
308 set up in init_dont_simulate_again. */
309 gcc_assert (TREE_CODE (lhs
) == SSA_NAME
);
310 gcc_assert (TREE_CODE (TREE_TYPE (lhs
)) == COMPLEX_TYPE
);
313 ver
= SSA_NAME_VERSION (lhs
);
314 old_l
= VEC_index (complex_lattice_t
, complex_lattice_values
, ver
);
316 switch (gimple_expr_code (stmt
))
320 new_l
= find_lattice_value (gimple_assign_rhs1 (stmt
));
324 new_l
= find_lattice_value_parts (gimple_assign_rhs1 (stmt
),
325 gimple_assign_rhs2 (stmt
));
330 op1_l
= find_lattice_value (gimple_assign_rhs1 (stmt
));
331 op2_l
= find_lattice_value (gimple_assign_rhs2 (stmt
));
333 /* We've set up the lattice values such that IOR neatly
335 new_l
= op1_l
| op2_l
;
344 op1_l
= find_lattice_value (gimple_assign_rhs1 (stmt
));
345 op2_l
= find_lattice_value (gimple_assign_rhs2 (stmt
));
347 /* Obviously, if either varies, so does the result. */
348 if (op1_l
== VARYING
|| op2_l
== VARYING
)
350 /* Don't prematurely promote variables if we've not yet seen
352 else if (op1_l
== UNINITIALIZED
)
354 else if (op2_l
== UNINITIALIZED
)
358 /* At this point both numbers have only one component. If the
359 numbers are of opposite kind, the result is imaginary,
360 otherwise the result is real. The add/subtract translates
361 the real/imag from/to 0/1; the ^ performs the comparison. */
362 new_l
= ((op1_l
- ONLY_REAL
) ^ (op2_l
- ONLY_REAL
)) + ONLY_REAL
;
364 /* Don't allow the lattice value to flip-flop indefinitely. */
371 new_l
= find_lattice_value (gimple_assign_rhs1 (stmt
));
379 /* If nothing changed this round, let the propagator know. */
381 return SSA_PROP_NOT_INTERESTING
;
383 VEC_replace (complex_lattice_t
, complex_lattice_values
, ver
, new_l
);
384 return new_l
== VARYING
? SSA_PROP_VARYING
: SSA_PROP_INTERESTING
;
387 /* Evaluate a PHI node against the complex lattice defined above. */
389 static enum ssa_prop_result
390 complex_visit_phi (gimple phi
)
392 complex_lattice_t new_l
, old_l
;
397 lhs
= gimple_phi_result (phi
);
399 /* This condition should be satisfied due to the initial filter
400 set up in init_dont_simulate_again. */
401 gcc_assert (TREE_CODE (TREE_TYPE (lhs
)) == COMPLEX_TYPE
);
403 /* We've set up the lattice values such that IOR neatly models PHI meet. */
404 new_l
= UNINITIALIZED
;
405 for (i
= gimple_phi_num_args (phi
) - 1; i
>= 0; --i
)
406 new_l
|= find_lattice_value (gimple_phi_arg_def (phi
, i
));
408 ver
= SSA_NAME_VERSION (lhs
);
409 old_l
= VEC_index (complex_lattice_t
, complex_lattice_values
, ver
);
412 return SSA_PROP_NOT_INTERESTING
;
414 VEC_replace (complex_lattice_t
, complex_lattice_values
, ver
, new_l
);
415 return new_l
== VARYING
? SSA_PROP_VARYING
: SSA_PROP_INTERESTING
;
418 /* Create one backing variable for a complex component of ORIG. */
421 create_one_component_var (tree type
, tree orig
, const char *prefix
,
422 const char *suffix
, enum tree_code code
)
424 tree r
= create_tmp_var (type
, prefix
);
426 DECL_SOURCE_LOCATION (r
) = DECL_SOURCE_LOCATION (orig
);
427 DECL_ARTIFICIAL (r
) = 1;
429 if (DECL_NAME (orig
) && !DECL_IGNORED_P (orig
))
431 const char *name
= IDENTIFIER_POINTER (DECL_NAME (orig
));
433 DECL_NAME (r
) = get_identifier (ACONCAT ((name
, suffix
, NULL
)));
435 SET_DECL_DEBUG_EXPR (r
, build1 (code
, type
, orig
));
436 DECL_DEBUG_EXPR_IS_FROM (r
) = 1;
437 DECL_IGNORED_P (r
) = 0;
438 TREE_NO_WARNING (r
) = TREE_NO_WARNING (orig
);
442 DECL_IGNORED_P (r
) = 1;
443 TREE_NO_WARNING (r
) = 1;
449 /* Retrieve a value for a complex component of VAR. */
452 get_component_var (tree var
, bool imag_p
)
454 size_t decl_index
= DECL_UID (var
) * 2 + imag_p
;
455 tree ret
= cvc_lookup (decl_index
);
459 ret
= create_one_component_var (TREE_TYPE (TREE_TYPE (var
)), var
,
460 imag_p
? "CI" : "CR",
461 imag_p
? "$imag" : "$real",
462 imag_p
? IMAGPART_EXPR
: REALPART_EXPR
);
463 cvc_insert (decl_index
, ret
);
469 /* Retrieve a value for a complex component of SSA_NAME. */
472 get_component_ssa_name (tree ssa_name
, bool imag_p
)
474 complex_lattice_t lattice
= find_lattice_value (ssa_name
);
475 size_t ssa_name_index
;
478 if (lattice
== (imag_p
? ONLY_REAL
: ONLY_IMAG
))
480 tree inner_type
= TREE_TYPE (TREE_TYPE (ssa_name
));
481 if (SCALAR_FLOAT_TYPE_P (inner_type
))
482 return build_real (inner_type
, dconst0
);
484 return build_int_cst (inner_type
, 0);
487 ssa_name_index
= SSA_NAME_VERSION (ssa_name
) * 2 + imag_p
;
488 ret
= VEC_index (tree
, complex_ssa_name_components
, ssa_name_index
);
491 if (SSA_NAME_VAR (ssa_name
))
492 ret
= get_component_var (SSA_NAME_VAR (ssa_name
), imag_p
);
494 ret
= TREE_TYPE (TREE_TYPE (ssa_name
));
495 ret
= make_ssa_name (ret
, NULL
);
497 /* Copy some properties from the original. In particular, whether it
498 is used in an abnormal phi, and whether it's uninitialized. */
499 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (ret
)
500 = SSA_NAME_OCCURS_IN_ABNORMAL_PHI (ssa_name
);
501 if (SSA_NAME_IS_DEFAULT_DEF (ssa_name
)
502 && TREE_CODE (SSA_NAME_VAR (ssa_name
)) == VAR_DECL
)
504 SSA_NAME_DEF_STMT (ret
) = SSA_NAME_DEF_STMT (ssa_name
);
505 set_ssa_default_def (cfun
, SSA_NAME_VAR (ret
), ret
);
508 VEC_replace (tree
, complex_ssa_name_components
, ssa_name_index
, ret
);
514 /* Set a value for a complex component of SSA_NAME, return a
515 gimple_seq of stuff that needs doing. */
518 set_component_ssa_name (tree ssa_name
, bool imag_p
, tree value
)
520 complex_lattice_t lattice
= find_lattice_value (ssa_name
);
521 size_t ssa_name_index
;
526 /* We know the value must be zero, else there's a bug in our lattice
527 analysis. But the value may well be a variable known to contain
528 zero. We should be safe ignoring it. */
529 if (lattice
== (imag_p
? ONLY_REAL
: ONLY_IMAG
))
532 /* If we've already assigned an SSA_NAME to this component, then this
533 means that our walk of the basic blocks found a use before the set.
534 This is fine. Now we should create an initialization for the value
535 we created earlier. */
536 ssa_name_index
= SSA_NAME_VERSION (ssa_name
) * 2 + imag_p
;
537 comp
= VEC_index (tree
, complex_ssa_name_components
, ssa_name_index
);
541 /* If we've nothing assigned, and the value we're given is already stable,
542 then install that as the value for this SSA_NAME. This preemptively
543 copy-propagates the value, which avoids unnecessary memory allocation. */
544 else if (is_gimple_min_invariant (value
)
545 && !SSA_NAME_OCCURS_IN_ABNORMAL_PHI (ssa_name
))
547 VEC_replace (tree
, complex_ssa_name_components
, ssa_name_index
, value
);
550 else if (TREE_CODE (value
) == SSA_NAME
551 && !SSA_NAME_OCCURS_IN_ABNORMAL_PHI (ssa_name
))
553 /* Replace an anonymous base value with the variable from cvc_lookup.
554 This should result in better debug info. */
555 if (SSA_NAME_VAR (ssa_name
)
556 && (!SSA_NAME_VAR (value
) || DECL_IGNORED_P (SSA_NAME_VAR (value
)))
557 && !DECL_IGNORED_P (SSA_NAME_VAR (ssa_name
)))
559 comp
= get_component_var (SSA_NAME_VAR (ssa_name
), imag_p
);
560 replace_ssa_name_symbol (value
, comp
);
563 VEC_replace (tree
, complex_ssa_name_components
, ssa_name_index
, value
);
567 /* Finally, we need to stabilize the result by installing the value into
570 comp
= get_component_ssa_name (ssa_name
, imag_p
);
572 /* Do all the work to assign VALUE to COMP. */
574 value
= force_gimple_operand (value
, &list
, false, NULL
);
575 last
= gimple_build_assign (comp
, value
);
576 gimple_seq_add_stmt (&list
, last
);
577 gcc_assert (SSA_NAME_DEF_STMT (comp
) == last
);
582 /* Extract the real or imaginary part of a complex variable or constant.
583 Make sure that it's a proper gimple_val and gimplify it if not.
584 Emit any new code before gsi. */
587 extract_component (gimple_stmt_iterator
*gsi
, tree t
, bool imagpart_p
,
590 switch (TREE_CODE (t
))
593 return imagpart_p
? TREE_IMAGPART (t
) : TREE_REALPART (t
);
603 case VIEW_CONVERT_EXPR
:
606 tree inner_type
= TREE_TYPE (TREE_TYPE (t
));
608 t
= build1 ((imagpart_p
? IMAGPART_EXPR
: REALPART_EXPR
),
609 inner_type
, unshare_expr (t
));
612 t
= force_gimple_operand_gsi (gsi
, t
, true, NULL
, true,
619 return get_component_ssa_name (t
, imagpart_p
);
626 /* Update the complex components of the ssa name on the lhs of STMT. */
629 update_complex_components (gimple_stmt_iterator
*gsi
, gimple stmt
, tree r
,
635 lhs
= gimple_get_lhs (stmt
);
637 list
= set_component_ssa_name (lhs
, false, r
);
639 gsi_insert_seq_after (gsi
, list
, GSI_CONTINUE_LINKING
);
641 list
= set_component_ssa_name (lhs
, true, i
);
643 gsi_insert_seq_after (gsi
, list
, GSI_CONTINUE_LINKING
);
647 update_complex_components_on_edge (edge e
, tree lhs
, tree r
, tree i
)
651 list
= set_component_ssa_name (lhs
, false, r
);
653 gsi_insert_seq_on_edge (e
, list
);
655 list
= set_component_ssa_name (lhs
, true, i
);
657 gsi_insert_seq_on_edge (e
, list
);
661 /* Update an assignment to a complex variable in place. */
664 update_complex_assignment (gimple_stmt_iterator
*gsi
, tree r
, tree i
)
668 gimple_assign_set_rhs_with_ops (gsi
, COMPLEX_EXPR
, r
, i
);
669 stmt
= gsi_stmt (*gsi
);
671 if (maybe_clean_eh_stmt (stmt
))
672 gimple_purge_dead_eh_edges (gimple_bb (stmt
));
674 if (gimple_in_ssa_p (cfun
))
675 update_complex_components (gsi
, gsi_stmt (*gsi
), r
, i
);
679 /* Generate code at the entry point of the function to initialize the
680 component variables for a complex parameter. */
683 update_parameter_components (void)
685 edge entry_edge
= single_succ_edge (ENTRY_BLOCK_PTR
);
688 for (parm
= DECL_ARGUMENTS (cfun
->decl
); parm
; parm
= DECL_CHAIN (parm
))
690 tree type
= TREE_TYPE (parm
);
693 if (TREE_CODE (type
) != COMPLEX_TYPE
|| !is_gimple_reg (parm
))
696 type
= TREE_TYPE (type
);
697 ssa_name
= ssa_default_def (cfun
, parm
);
701 r
= build1 (REALPART_EXPR
, type
, ssa_name
);
702 i
= build1 (IMAGPART_EXPR
, type
, ssa_name
);
703 update_complex_components_on_edge (entry_edge
, ssa_name
, r
, i
);
707 /* Generate code to set the component variables of a complex variable
708 to match the PHI statements in block BB. */
711 update_phi_components (basic_block bb
)
713 gimple_stmt_iterator gsi
;
715 for (gsi
= gsi_start_phis (bb
); !gsi_end_p (gsi
); gsi_next (&gsi
))
717 gimple phi
= gsi_stmt (gsi
);
719 if (is_complex_reg (gimple_phi_result (phi
)))
722 gimple pr
= NULL
, pi
= NULL
;
725 lr
= get_component_ssa_name (gimple_phi_result (phi
), false);
726 if (TREE_CODE (lr
) == SSA_NAME
)
727 pr
= create_phi_node (lr
, bb
);
729 li
= get_component_ssa_name (gimple_phi_result (phi
), true);
730 if (TREE_CODE (li
) == SSA_NAME
)
731 pi
= create_phi_node (li
, bb
);
733 for (i
= 0, n
= gimple_phi_num_args (phi
); i
< n
; ++i
)
735 tree comp
, arg
= gimple_phi_arg_def (phi
, i
);
738 comp
= extract_component (NULL
, arg
, false, false);
739 SET_PHI_ARG_DEF (pr
, i
, comp
);
743 comp
= extract_component (NULL
, arg
, true, false);
744 SET_PHI_ARG_DEF (pi
, i
, comp
);
751 /* Expand a complex move to scalars. */
754 expand_complex_move (gimple_stmt_iterator
*gsi
, tree type
)
756 tree inner_type
= TREE_TYPE (type
);
758 gimple stmt
= gsi_stmt (*gsi
);
760 if (is_gimple_assign (stmt
))
762 lhs
= gimple_assign_lhs (stmt
);
763 if (gimple_num_ops (stmt
) == 2)
764 rhs
= gimple_assign_rhs1 (stmt
);
768 else if (is_gimple_call (stmt
))
770 lhs
= gimple_call_lhs (stmt
);
776 if (TREE_CODE (lhs
) == SSA_NAME
)
778 if (is_ctrl_altering_stmt (stmt
))
782 /* The value is not assigned on the exception edges, so we need not
783 concern ourselves there. We do need to update on the fallthru
785 e
= find_fallthru_edge (gsi_bb (*gsi
)->succs
);
789 r
= build1 (REALPART_EXPR
, inner_type
, lhs
);
790 i
= build1 (IMAGPART_EXPR
, inner_type
, lhs
);
791 update_complex_components_on_edge (e
, lhs
, r
, i
);
793 else if (is_gimple_call (stmt
)
794 || gimple_has_side_effects (stmt
)
795 || gimple_assign_rhs_code (stmt
) == PAREN_EXPR
)
797 r
= build1 (REALPART_EXPR
, inner_type
, lhs
);
798 i
= build1 (IMAGPART_EXPR
, inner_type
, lhs
);
799 update_complex_components (gsi
, stmt
, r
, i
);
803 if (gimple_assign_rhs_code (stmt
) != COMPLEX_EXPR
)
805 r
= extract_component (gsi
, rhs
, 0, true);
806 i
= extract_component (gsi
, rhs
, 1, true);
810 r
= gimple_assign_rhs1 (stmt
);
811 i
= gimple_assign_rhs2 (stmt
);
813 update_complex_assignment (gsi
, r
, i
);
816 else if (rhs
&& TREE_CODE (rhs
) == SSA_NAME
&& !TREE_SIDE_EFFECTS (lhs
))
821 r
= extract_component (gsi
, rhs
, 0, false);
822 i
= extract_component (gsi
, rhs
, 1, false);
824 x
= build1 (REALPART_EXPR
, inner_type
, unshare_expr (lhs
));
825 t
= gimple_build_assign (x
, r
);
826 gsi_insert_before (gsi
, t
, GSI_SAME_STMT
);
828 if (stmt
== gsi_stmt (*gsi
))
830 x
= build1 (IMAGPART_EXPR
, inner_type
, unshare_expr (lhs
));
831 gimple_assign_set_lhs (stmt
, x
);
832 gimple_assign_set_rhs1 (stmt
, i
);
836 x
= build1 (IMAGPART_EXPR
, inner_type
, unshare_expr (lhs
));
837 t
= gimple_build_assign (x
, i
);
838 gsi_insert_before (gsi
, t
, GSI_SAME_STMT
);
840 stmt
= gsi_stmt (*gsi
);
841 gcc_assert (gimple_code (stmt
) == GIMPLE_RETURN
);
842 gimple_return_set_retval (stmt
, lhs
);
849 /* Expand complex addition to scalars:
850 a + b = (ar + br) + i(ai + bi)
851 a - b = (ar - br) + i(ai + bi)
855 expand_complex_addition (gimple_stmt_iterator
*gsi
, tree inner_type
,
856 tree ar
, tree ai
, tree br
, tree bi
,
858 complex_lattice_t al
, complex_lattice_t bl
)
862 switch (PAIR (al
, bl
))
864 case PAIR (ONLY_REAL
, ONLY_REAL
):
865 rr
= gimplify_build2 (gsi
, code
, inner_type
, ar
, br
);
869 case PAIR (ONLY_REAL
, ONLY_IMAG
):
871 if (code
== MINUS_EXPR
)
872 ri
= gimplify_build2 (gsi
, MINUS_EXPR
, inner_type
, ai
, bi
);
877 case PAIR (ONLY_IMAG
, ONLY_REAL
):
878 if (code
== MINUS_EXPR
)
879 rr
= gimplify_build2 (gsi
, MINUS_EXPR
, inner_type
, ar
, br
);
885 case PAIR (ONLY_IMAG
, ONLY_IMAG
):
887 ri
= gimplify_build2 (gsi
, code
, inner_type
, ai
, bi
);
890 case PAIR (VARYING
, ONLY_REAL
):
891 rr
= gimplify_build2 (gsi
, code
, inner_type
, ar
, br
);
895 case PAIR (VARYING
, ONLY_IMAG
):
897 ri
= gimplify_build2 (gsi
, code
, inner_type
, ai
, bi
);
900 case PAIR (ONLY_REAL
, VARYING
):
901 if (code
== MINUS_EXPR
)
903 rr
= gimplify_build2 (gsi
, code
, inner_type
, ar
, br
);
907 case PAIR (ONLY_IMAG
, VARYING
):
908 if (code
== MINUS_EXPR
)
911 ri
= gimplify_build2 (gsi
, code
, inner_type
, ai
, bi
);
914 case PAIR (VARYING
, VARYING
):
916 rr
= gimplify_build2 (gsi
, code
, inner_type
, ar
, br
);
917 ri
= gimplify_build2 (gsi
, code
, inner_type
, ai
, bi
);
924 update_complex_assignment (gsi
, rr
, ri
);
927 /* Expand a complex multiplication or division to a libcall to the c99
928 compliant routines. */
931 expand_complex_libcall (gimple_stmt_iterator
*gsi
, tree ar
, tree ai
,
932 tree br
, tree bi
, enum tree_code code
)
934 enum machine_mode mode
;
935 enum built_in_function bcode
;
937 gimple old_stmt
, stmt
;
939 old_stmt
= gsi_stmt (*gsi
);
940 lhs
= gimple_assign_lhs (old_stmt
);
941 type
= TREE_TYPE (lhs
);
943 mode
= TYPE_MODE (type
);
944 gcc_assert (GET_MODE_CLASS (mode
) == MODE_COMPLEX_FLOAT
);
946 if (code
== MULT_EXPR
)
947 bcode
= ((enum built_in_function
)
948 (BUILT_IN_COMPLEX_MUL_MIN
+ mode
- MIN_MODE_COMPLEX_FLOAT
));
949 else if (code
== RDIV_EXPR
)
950 bcode
= ((enum built_in_function
)
951 (BUILT_IN_COMPLEX_DIV_MIN
+ mode
- MIN_MODE_COMPLEX_FLOAT
));
954 fn
= builtin_decl_explicit (bcode
);
956 stmt
= gimple_build_call (fn
, 4, ar
, ai
, br
, bi
);
957 gimple_call_set_lhs (stmt
, lhs
);
959 gsi_replace (gsi
, stmt
, false);
961 if (maybe_clean_or_replace_eh_stmt (old_stmt
, stmt
))
962 gimple_purge_dead_eh_edges (gsi_bb (*gsi
));
964 if (gimple_in_ssa_p (cfun
))
966 type
= TREE_TYPE (type
);
967 update_complex_components (gsi
, stmt
,
968 build1 (REALPART_EXPR
, type
, lhs
),
969 build1 (IMAGPART_EXPR
, type
, lhs
));
970 SSA_NAME_DEF_STMT (lhs
) = stmt
;
974 /* Expand complex multiplication to scalars:
975 a * b = (ar*br - ai*bi) + i(ar*bi + br*ai)
979 expand_complex_multiplication (gimple_stmt_iterator
*gsi
, tree inner_type
,
980 tree ar
, tree ai
, tree br
, tree bi
,
981 complex_lattice_t al
, complex_lattice_t bl
)
987 complex_lattice_t tl
;
988 rr
= ar
, ar
= br
, br
= rr
;
989 ri
= ai
, ai
= bi
, bi
= ri
;
990 tl
= al
, al
= bl
, bl
= tl
;
993 switch (PAIR (al
, bl
))
995 case PAIR (ONLY_REAL
, ONLY_REAL
):
996 rr
= gimplify_build2 (gsi
, MULT_EXPR
, inner_type
, ar
, br
);
1000 case PAIR (ONLY_IMAG
, ONLY_REAL
):
1002 if (TREE_CODE (ai
) == REAL_CST
1003 && REAL_VALUES_IDENTICAL (TREE_REAL_CST (ai
), dconst1
))
1006 ri
= gimplify_build2 (gsi
, MULT_EXPR
, inner_type
, ai
, br
);
1009 case PAIR (ONLY_IMAG
, ONLY_IMAG
):
1010 rr
= gimplify_build2 (gsi
, MULT_EXPR
, inner_type
, ai
, bi
);
1011 rr
= gimplify_build1 (gsi
, NEGATE_EXPR
, inner_type
, rr
);
1015 case PAIR (VARYING
, ONLY_REAL
):
1016 rr
= gimplify_build2 (gsi
, MULT_EXPR
, inner_type
, ar
, br
);
1017 ri
= gimplify_build2 (gsi
, MULT_EXPR
, inner_type
, ai
, br
);
1020 case PAIR (VARYING
, ONLY_IMAG
):
1021 rr
= gimplify_build2 (gsi
, MULT_EXPR
, inner_type
, ai
, bi
);
1022 rr
= gimplify_build1 (gsi
, NEGATE_EXPR
, inner_type
, rr
);
1023 ri
= gimplify_build2 (gsi
, MULT_EXPR
, inner_type
, ar
, bi
);
1026 case PAIR (VARYING
, VARYING
):
1027 if (flag_complex_method
== 2 && SCALAR_FLOAT_TYPE_P (inner_type
))
1029 expand_complex_libcall (gsi
, ar
, ai
, br
, bi
, MULT_EXPR
);
1034 tree t1
, t2
, t3
, t4
;
1036 t1
= gimplify_build2 (gsi
, MULT_EXPR
, inner_type
, ar
, br
);
1037 t2
= gimplify_build2 (gsi
, MULT_EXPR
, inner_type
, ai
, bi
);
1038 t3
= gimplify_build2 (gsi
, MULT_EXPR
, inner_type
, ar
, bi
);
1040 /* Avoid expanding redundant multiplication for the common
1041 case of squaring a complex number. */
1042 if (ar
== br
&& ai
== bi
)
1045 t4
= gimplify_build2 (gsi
, MULT_EXPR
, inner_type
, ai
, br
);
1047 rr
= gimplify_build2 (gsi
, MINUS_EXPR
, inner_type
, t1
, t2
);
1048 ri
= gimplify_build2 (gsi
, PLUS_EXPR
, inner_type
, t3
, t4
);
1056 update_complex_assignment (gsi
, rr
, ri
);
1059 /* Keep this algorithm in sync with fold-const.c:const_binop().
1061 Expand complex division to scalars, straightforward algorithm.
1062 a / b = ((ar*br + ai*bi)/t) + i((ai*br - ar*bi)/t)
1067 expand_complex_div_straight (gimple_stmt_iterator
*gsi
, tree inner_type
,
1068 tree ar
, tree ai
, tree br
, tree bi
,
1069 enum tree_code code
)
1071 tree rr
, ri
, div
, t1
, t2
, t3
;
1073 t1
= gimplify_build2 (gsi
, MULT_EXPR
, inner_type
, br
, br
);
1074 t2
= gimplify_build2 (gsi
, MULT_EXPR
, inner_type
, bi
, bi
);
1075 div
= gimplify_build2 (gsi
, PLUS_EXPR
, inner_type
, t1
, t2
);
1077 t1
= gimplify_build2 (gsi
, MULT_EXPR
, inner_type
, ar
, br
);
1078 t2
= gimplify_build2 (gsi
, MULT_EXPR
, inner_type
, ai
, bi
);
1079 t3
= gimplify_build2 (gsi
, PLUS_EXPR
, inner_type
, t1
, t2
);
1080 rr
= gimplify_build2 (gsi
, code
, inner_type
, t3
, div
);
1082 t1
= gimplify_build2 (gsi
, MULT_EXPR
, inner_type
, ai
, br
);
1083 t2
= gimplify_build2 (gsi
, MULT_EXPR
, inner_type
, ar
, bi
);
1084 t3
= gimplify_build2 (gsi
, MINUS_EXPR
, inner_type
, t1
, t2
);
1085 ri
= gimplify_build2 (gsi
, code
, inner_type
, t3
, div
);
1087 update_complex_assignment (gsi
, rr
, ri
);
1090 /* Keep this algorithm in sync with fold-const.c:const_binop().
1092 Expand complex division to scalars, modified algorithm to minimize
1093 overflow with wide input ranges. */
1096 expand_complex_div_wide (gimple_stmt_iterator
*gsi
, tree inner_type
,
1097 tree ar
, tree ai
, tree br
, tree bi
,
1098 enum tree_code code
)
1100 tree rr
, ri
, ratio
, div
, t1
, t2
, tr
, ti
, compare
;
1101 basic_block bb_cond
, bb_true
, bb_false
, bb_join
;
1104 /* Examine |br| < |bi|, and branch. */
1105 t1
= gimplify_build1 (gsi
, ABS_EXPR
, inner_type
, br
);
1106 t2
= gimplify_build1 (gsi
, ABS_EXPR
, inner_type
, bi
);
1107 compare
= fold_build2_loc (gimple_location (gsi_stmt (*gsi
)),
1108 LT_EXPR
, boolean_type_node
, t1
, t2
);
1109 STRIP_NOPS (compare
);
1111 bb_cond
= bb_true
= bb_false
= bb_join
= NULL
;
1112 rr
= ri
= tr
= ti
= NULL
;
1113 if (TREE_CODE (compare
) != INTEGER_CST
)
1119 tmp
= create_tmp_var (boolean_type_node
, NULL
);
1120 stmt
= gimple_build_assign (tmp
, compare
);
1121 if (gimple_in_ssa_p (cfun
))
1123 tmp
= make_ssa_name (tmp
, stmt
);
1124 gimple_assign_set_lhs (stmt
, tmp
);
1127 gsi_insert_before (gsi
, stmt
, GSI_SAME_STMT
);
1129 cond
= fold_build2_loc (gimple_location (stmt
),
1130 EQ_EXPR
, boolean_type_node
, tmp
, boolean_true_node
);
1131 stmt
= gimple_build_cond_from_tree (cond
, NULL_TREE
, NULL_TREE
);
1132 gsi_insert_before (gsi
, stmt
, GSI_SAME_STMT
);
1134 /* Split the original block, and create the TRUE and FALSE blocks. */
1135 e
= split_block (gsi_bb (*gsi
), stmt
);
1138 bb_true
= create_empty_bb (bb_cond
);
1139 bb_false
= create_empty_bb (bb_true
);
1141 /* Wire the blocks together. */
1142 e
->flags
= EDGE_TRUE_VALUE
;
1143 redirect_edge_succ (e
, bb_true
);
1144 make_edge (bb_cond
, bb_false
, EDGE_FALSE_VALUE
);
1145 make_edge (bb_true
, bb_join
, EDGE_FALLTHRU
);
1146 make_edge (bb_false
, bb_join
, EDGE_FALLTHRU
);
1148 /* Update dominance info. Note that bb_join's data was
1149 updated by split_block. */
1150 if (dom_info_available_p (CDI_DOMINATORS
))
1152 set_immediate_dominator (CDI_DOMINATORS
, bb_true
, bb_cond
);
1153 set_immediate_dominator (CDI_DOMINATORS
, bb_false
, bb_cond
);
1156 rr
= create_tmp_reg (inner_type
, NULL
);
1157 ri
= create_tmp_reg (inner_type
, NULL
);
1160 /* In the TRUE branch, we compute
1162 div = (br * ratio) + bi;
1163 tr = (ar * ratio) + ai;
1164 ti = (ai * ratio) - ar;
1167 if (bb_true
|| integer_nonzerop (compare
))
1171 *gsi
= gsi_last_bb (bb_true
);
1172 gsi_insert_after (gsi
, gimple_build_nop (), GSI_NEW_STMT
);
1175 ratio
= gimplify_build2 (gsi
, code
, inner_type
, br
, bi
);
1177 t1
= gimplify_build2 (gsi
, MULT_EXPR
, inner_type
, br
, ratio
);
1178 div
= gimplify_build2 (gsi
, PLUS_EXPR
, inner_type
, t1
, bi
);
1180 t1
= gimplify_build2 (gsi
, MULT_EXPR
, inner_type
, ar
, ratio
);
1181 tr
= gimplify_build2 (gsi
, PLUS_EXPR
, inner_type
, t1
, ai
);
1183 t1
= gimplify_build2 (gsi
, MULT_EXPR
, inner_type
, ai
, ratio
);
1184 ti
= gimplify_build2 (gsi
, MINUS_EXPR
, inner_type
, t1
, ar
);
1186 tr
= gimplify_build2 (gsi
, code
, inner_type
, tr
, div
);
1187 ti
= gimplify_build2 (gsi
, code
, inner_type
, ti
, div
);
1191 stmt
= gimple_build_assign (rr
, tr
);
1192 gsi_insert_before (gsi
, stmt
, GSI_SAME_STMT
);
1193 stmt
= gimple_build_assign (ri
, ti
);
1194 gsi_insert_before (gsi
, stmt
, GSI_SAME_STMT
);
1195 gsi_remove (gsi
, true);
1199 /* In the FALSE branch, we compute
1201 divisor = (d * ratio) + c;
1202 tr = (b * ratio) + a;
1203 ti = b - (a * ratio);
1206 if (bb_false
|| integer_zerop (compare
))
1210 *gsi
= gsi_last_bb (bb_false
);
1211 gsi_insert_after (gsi
, gimple_build_nop (), GSI_NEW_STMT
);
1214 ratio
= gimplify_build2 (gsi
, code
, inner_type
, bi
, br
);
1216 t1
= gimplify_build2 (gsi
, MULT_EXPR
, inner_type
, bi
, ratio
);
1217 div
= gimplify_build2 (gsi
, PLUS_EXPR
, inner_type
, t1
, br
);
1219 t1
= gimplify_build2 (gsi
, MULT_EXPR
, inner_type
, ai
, ratio
);
1220 tr
= gimplify_build2 (gsi
, PLUS_EXPR
, inner_type
, t1
, ar
);
1222 t1
= gimplify_build2 (gsi
, MULT_EXPR
, inner_type
, ar
, ratio
);
1223 ti
= gimplify_build2 (gsi
, MINUS_EXPR
, inner_type
, ai
, t1
);
1225 tr
= gimplify_build2 (gsi
, code
, inner_type
, tr
, div
);
1226 ti
= gimplify_build2 (gsi
, code
, inner_type
, ti
, div
);
1230 stmt
= gimple_build_assign (rr
, tr
);
1231 gsi_insert_before (gsi
, stmt
, GSI_SAME_STMT
);
1232 stmt
= gimple_build_assign (ri
, ti
);
1233 gsi_insert_before (gsi
, stmt
, GSI_SAME_STMT
);
1234 gsi_remove (gsi
, true);
1239 *gsi
= gsi_start_bb (bb_join
);
1243 update_complex_assignment (gsi
, rr
, ri
);
1246 /* Expand complex division to scalars. */
1249 expand_complex_division (gimple_stmt_iterator
*gsi
, tree inner_type
,
1250 tree ar
, tree ai
, tree br
, tree bi
,
1251 enum tree_code code
,
1252 complex_lattice_t al
, complex_lattice_t bl
)
1256 switch (PAIR (al
, bl
))
1258 case PAIR (ONLY_REAL
, ONLY_REAL
):
1259 rr
= gimplify_build2 (gsi
, code
, inner_type
, ar
, br
);
1263 case PAIR (ONLY_REAL
, ONLY_IMAG
):
1265 ri
= gimplify_build2 (gsi
, code
, inner_type
, ar
, bi
);
1266 ri
= gimplify_build1 (gsi
, NEGATE_EXPR
, inner_type
, ri
);
1269 case PAIR (ONLY_IMAG
, ONLY_REAL
):
1271 ri
= gimplify_build2 (gsi
, code
, inner_type
, ai
, br
);
1274 case PAIR (ONLY_IMAG
, ONLY_IMAG
):
1275 rr
= gimplify_build2 (gsi
, code
, inner_type
, ai
, bi
);
1279 case PAIR (VARYING
, ONLY_REAL
):
1280 rr
= gimplify_build2 (gsi
, code
, inner_type
, ar
, br
);
1281 ri
= gimplify_build2 (gsi
, code
, inner_type
, ai
, br
);
1284 case PAIR (VARYING
, ONLY_IMAG
):
1285 rr
= gimplify_build2 (gsi
, code
, inner_type
, ai
, bi
);
1286 ri
= gimplify_build2 (gsi
, code
, inner_type
, ar
, bi
);
1287 ri
= gimplify_build1 (gsi
, NEGATE_EXPR
, inner_type
, ri
);
1289 case PAIR (ONLY_REAL
, VARYING
):
1290 case PAIR (ONLY_IMAG
, VARYING
):
1291 case PAIR (VARYING
, VARYING
):
1292 switch (flag_complex_method
)
1295 /* straightforward implementation of complex divide acceptable. */
1296 expand_complex_div_straight (gsi
, inner_type
, ar
, ai
, br
, bi
, code
);
1300 if (SCALAR_FLOAT_TYPE_P (inner_type
))
1302 expand_complex_libcall (gsi
, ar
, ai
, br
, bi
, code
);
1308 /* wide ranges of inputs must work for complex divide. */
1309 expand_complex_div_wide (gsi
, inner_type
, ar
, ai
, br
, bi
, code
);
1321 update_complex_assignment (gsi
, rr
, ri
);
1324 /* Expand complex negation to scalars:
1329 expand_complex_negation (gimple_stmt_iterator
*gsi
, tree inner_type
,
1334 rr
= gimplify_build1 (gsi
, NEGATE_EXPR
, inner_type
, ar
);
1335 ri
= gimplify_build1 (gsi
, NEGATE_EXPR
, inner_type
, ai
);
1337 update_complex_assignment (gsi
, rr
, ri
);
1340 /* Expand complex conjugate to scalars:
1345 expand_complex_conjugate (gimple_stmt_iterator
*gsi
, tree inner_type
,
1350 ri
= gimplify_build1 (gsi
, NEGATE_EXPR
, inner_type
, ai
);
1352 update_complex_assignment (gsi
, ar
, ri
);
1355 /* Expand complex comparison (EQ or NE only). */
1358 expand_complex_comparison (gimple_stmt_iterator
*gsi
, tree ar
, tree ai
,
1359 tree br
, tree bi
, enum tree_code code
)
1361 tree cr
, ci
, cc
, type
;
1364 cr
= gimplify_build2 (gsi
, code
, boolean_type_node
, ar
, br
);
1365 ci
= gimplify_build2 (gsi
, code
, boolean_type_node
, ai
, bi
);
1366 cc
= gimplify_build2 (gsi
,
1367 (code
== EQ_EXPR
? TRUTH_AND_EXPR
: TRUTH_OR_EXPR
),
1368 boolean_type_node
, cr
, ci
);
1370 stmt
= gsi_stmt (*gsi
);
1372 switch (gimple_code (stmt
))
1375 type
= TREE_TYPE (gimple_return_retval (stmt
));
1376 gimple_return_set_retval (stmt
, fold_convert (type
, cc
));
1380 type
= TREE_TYPE (gimple_assign_lhs (stmt
));
1381 gimple_assign_set_rhs_from_tree (gsi
, fold_convert (type
, cc
));
1382 stmt
= gsi_stmt (*gsi
);
1386 gimple_cond_set_code (stmt
, EQ_EXPR
);
1387 gimple_cond_set_lhs (stmt
, cc
);
1388 gimple_cond_set_rhs (stmt
, boolean_true_node
);
1399 /* Process one statement. If we identify a complex operation, expand it. */
1402 expand_complex_operations_1 (gimple_stmt_iterator
*gsi
)
1404 gimple stmt
= gsi_stmt (*gsi
);
1405 tree type
, inner_type
, lhs
;
1406 tree ac
, ar
, ai
, bc
, br
, bi
;
1407 complex_lattice_t al
, bl
;
1408 enum tree_code code
;
1410 lhs
= gimple_get_lhs (stmt
);
1411 if (!lhs
&& gimple_code (stmt
) != GIMPLE_COND
)
1414 type
= TREE_TYPE (gimple_op (stmt
, 0));
1415 code
= gimple_expr_code (stmt
);
1417 /* Initial filter for operations we handle. */
1423 case TRUNC_DIV_EXPR
:
1425 case FLOOR_DIV_EXPR
:
1426 case ROUND_DIV_EXPR
:
1430 if (TREE_CODE (type
) != COMPLEX_TYPE
)
1432 inner_type
= TREE_TYPE (type
);
1437 /* Note, both GIMPLE_ASSIGN and GIMPLE_COND may have an EQ_EXPR
1438 subocde, so we need to access the operands using gimple_op. */
1439 inner_type
= TREE_TYPE (gimple_op (stmt
, 1));
1440 if (TREE_CODE (inner_type
) != COMPLEX_TYPE
)
1448 /* GIMPLE_COND may also fallthru here, but we do not need to
1449 do anything with it. */
1450 if (gimple_code (stmt
) == GIMPLE_COND
)
1453 if (TREE_CODE (type
) == COMPLEX_TYPE
)
1454 expand_complex_move (gsi
, type
);
1455 else if (is_gimple_assign (stmt
)
1456 && (gimple_assign_rhs_code (stmt
) == REALPART_EXPR
1457 || gimple_assign_rhs_code (stmt
) == IMAGPART_EXPR
)
1458 && TREE_CODE (lhs
) == SSA_NAME
)
1460 rhs
= gimple_assign_rhs1 (stmt
);
1461 rhs
= extract_component (gsi
, TREE_OPERAND (rhs
, 0),
1462 gimple_assign_rhs_code (stmt
)
1465 gimple_assign_set_rhs_from_tree (gsi
, rhs
);
1466 stmt
= gsi_stmt (*gsi
);
1473 /* Extract the components of the two complex values. Make sure and
1474 handle the common case of the same value used twice specially. */
1475 if (is_gimple_assign (stmt
))
1477 ac
= gimple_assign_rhs1 (stmt
);
1478 bc
= (gimple_num_ops (stmt
) > 2) ? gimple_assign_rhs2 (stmt
) : NULL
;
1480 /* GIMPLE_CALL can not get here. */
1483 ac
= gimple_cond_lhs (stmt
);
1484 bc
= gimple_cond_rhs (stmt
);
1487 ar
= extract_component (gsi
, ac
, false, true);
1488 ai
= extract_component (gsi
, ac
, true, true);
1494 br
= extract_component (gsi
, bc
, 0, true);
1495 bi
= extract_component (gsi
, bc
, 1, true);
1498 br
= bi
= NULL_TREE
;
1500 if (gimple_in_ssa_p (cfun
))
1502 al
= find_lattice_value (ac
);
1503 if (al
== UNINITIALIZED
)
1506 if (TREE_CODE_CLASS (code
) == tcc_unary
)
1512 bl
= find_lattice_value (bc
);
1513 if (bl
== UNINITIALIZED
)
1524 expand_complex_addition (gsi
, inner_type
, ar
, ai
, br
, bi
, code
, al
, bl
);
1528 expand_complex_multiplication (gsi
, inner_type
, ar
, ai
, br
, bi
, al
, bl
);
1531 case TRUNC_DIV_EXPR
:
1533 case FLOOR_DIV_EXPR
:
1534 case ROUND_DIV_EXPR
:
1536 expand_complex_division (gsi
, inner_type
, ar
, ai
, br
, bi
, code
, al
, bl
);
1540 expand_complex_negation (gsi
, inner_type
, ar
, ai
);
1544 expand_complex_conjugate (gsi
, inner_type
, ar
, ai
);
1549 expand_complex_comparison (gsi
, ar
, ai
, br
, bi
, code
);
1558 /* Entry point for complex operation lowering during optimization. */
1561 tree_lower_complex (void)
1563 int old_last_basic_block
;
1564 gimple_stmt_iterator gsi
;
1567 if (!init_dont_simulate_again ())
1570 complex_lattice_values
= VEC_alloc (complex_lattice_t
, heap
, num_ssa_names
);
1571 VEC_safe_grow_cleared (complex_lattice_t
, heap
,
1572 complex_lattice_values
, num_ssa_names
);
1574 init_parameter_lattice_values ();
1575 ssa_propagate (complex_visit_stmt
, complex_visit_phi
);
1577 complex_variable_components
= htab_create (10, int_tree_map_hash
,
1578 int_tree_map_eq
, free
);
1580 complex_ssa_name_components
= VEC_alloc (tree
, heap
, 2*num_ssa_names
);
1581 VEC_safe_grow_cleared (tree
, heap
, complex_ssa_name_components
,
1584 update_parameter_components ();
1586 /* ??? Ideally we'd traverse the blocks in breadth-first order. */
1587 old_last_basic_block
= last_basic_block
;
1590 if (bb
->index
>= old_last_basic_block
)
1593 update_phi_components (bb
);
1594 for (gsi
= gsi_start_bb (bb
); !gsi_end_p (gsi
); gsi_next (&gsi
))
1595 expand_complex_operations_1 (&gsi
);
1598 gsi_commit_edge_inserts ();
1600 htab_delete (complex_variable_components
);
1601 VEC_free (tree
, heap
, complex_ssa_name_components
);
1602 VEC_free (complex_lattice_t
, heap
, complex_lattice_values
);
1606 struct gimple_opt_pass pass_lower_complex
=
1610 "cplxlower", /* name */
1612 tree_lower_complex
, /* execute */
1615 0, /* static_pass_number */
1616 TV_NONE
, /* tv_id */
1617 PROP_ssa
, /* properties_required */
1618 PROP_gimple_lcx
, /* properties_provided */
1619 0, /* properties_destroyed */
1620 0, /* todo_flags_start */
1623 | TODO_verify_stmts
/* todo_flags_finish */
1629 gate_no_optimization (void)
1631 /* With errors, normal optimization passes are not run. If we don't
1632 lower complex operations at all, rtl expansion will abort. */
1633 return !(cfun
->curr_properties
& PROP_gimple_lcx
);
1636 struct gimple_opt_pass pass_lower_complex_O0
=
1640 "cplxlower0", /* name */
1641 gate_no_optimization
, /* gate */
1642 tree_lower_complex
, /* execute */
1645 0, /* static_pass_number */
1646 TV_NONE
, /* tv_id */
1647 PROP_cfg
, /* properties_required */
1648 PROP_gimple_lcx
, /* properties_provided */
1649 0, /* properties_destroyed */
1650 0, /* todo_flags_start */
1653 | TODO_verify_stmts
/* todo_flags_finish */