arm.md (movsi): Use can_create_pseudo_p instead of no_new_pseudos.
[official-gcc.git] / gcc / cfganal.c
blob18cef5e98f23ca88cba55b9b9d0f61c2ec63eebf
1 /* Control flow graph analysis code for GNU compiler.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2003, 2004, 2005, 2006, 2007 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
20 02110-1301, USA. */
22 /* This file contains various simple utilities to analyze the CFG. */
23 #include "config.h"
24 #include "system.h"
25 #include "coretypes.h"
26 #include "tm.h"
27 #include "rtl.h"
28 #include "obstack.h"
29 #include "hard-reg-set.h"
30 #include "basic-block.h"
31 #include "insn-config.h"
32 #include "recog.h"
33 #include "toplev.h"
34 #include "tm_p.h"
35 #include "timevar.h"
37 /* Store the data structures necessary for depth-first search. */
38 struct depth_first_search_dsS {
39 /* stack for backtracking during the algorithm */
40 basic_block *stack;
42 /* number of edges in the stack. That is, positions 0, ..., sp-1
43 have edges. */
44 unsigned int sp;
46 /* record of basic blocks already seen by depth-first search */
47 sbitmap visited_blocks;
49 typedef struct depth_first_search_dsS *depth_first_search_ds;
51 static void flow_dfs_compute_reverse_init (depth_first_search_ds);
52 static void flow_dfs_compute_reverse_add_bb (depth_first_search_ds,
53 basic_block);
54 static basic_block flow_dfs_compute_reverse_execute (depth_first_search_ds,
55 basic_block);
56 static void flow_dfs_compute_reverse_finish (depth_first_search_ds);
57 static bool flow_active_insn_p (rtx);
59 /* Like active_insn_p, except keep the return value clobber around
60 even after reload. */
62 static bool
63 flow_active_insn_p (rtx insn)
65 if (active_insn_p (insn))
66 return true;
68 /* A clobber of the function return value exists for buggy
69 programs that fail to return a value. Its effect is to
70 keep the return value from being live across the entire
71 function. If we allow it to be skipped, we introduce the
72 possibility for register lifetime confusion. */
73 if (GET_CODE (PATTERN (insn)) == CLOBBER
74 && REG_P (XEXP (PATTERN (insn), 0))
75 && REG_FUNCTION_VALUE_P (XEXP (PATTERN (insn), 0)))
76 return true;
78 return false;
81 /* Return true if the block has no effect and only forwards control flow to
82 its single destination. */
84 bool
85 forwarder_block_p (basic_block bb)
87 rtx insn;
89 if (bb == EXIT_BLOCK_PTR || bb == ENTRY_BLOCK_PTR
90 || !single_succ_p (bb))
91 return false;
93 for (insn = BB_HEAD (bb); insn != BB_END (bb); insn = NEXT_INSN (insn))
94 if (INSN_P (insn) && flow_active_insn_p (insn))
95 return false;
97 return (!INSN_P (insn)
98 || (JUMP_P (insn) && simplejump_p (insn))
99 || !flow_active_insn_p (insn));
102 /* Return nonzero if we can reach target from src by falling through. */
104 bool
105 can_fallthru (basic_block src, basic_block target)
107 rtx insn = BB_END (src);
108 rtx insn2;
109 edge e;
110 edge_iterator ei;
112 if (target == EXIT_BLOCK_PTR)
113 return true;
114 if (src->next_bb != target)
115 return 0;
116 FOR_EACH_EDGE (e, ei, src->succs)
117 if (e->dest == EXIT_BLOCK_PTR
118 && e->flags & EDGE_FALLTHRU)
119 return 0;
121 insn2 = BB_HEAD (target);
122 if (insn2 && !active_insn_p (insn2))
123 insn2 = next_active_insn (insn2);
125 /* ??? Later we may add code to move jump tables offline. */
126 return next_active_insn (insn) == insn2;
129 /* Return nonzero if we could reach target from src by falling through,
130 if the target was made adjacent. If we already have a fall-through
131 edge to the exit block, we can't do that. */
132 bool
133 could_fall_through (basic_block src, basic_block target)
135 edge e;
136 edge_iterator ei;
138 if (target == EXIT_BLOCK_PTR)
139 return true;
140 FOR_EACH_EDGE (e, ei, src->succs)
141 if (e->dest == EXIT_BLOCK_PTR
142 && e->flags & EDGE_FALLTHRU)
143 return 0;
144 return true;
147 /* Mark the back edges in DFS traversal.
148 Return nonzero if a loop (natural or otherwise) is present.
149 Inspired by Depth_First_Search_PP described in:
151 Advanced Compiler Design and Implementation
152 Steven Muchnick
153 Morgan Kaufmann, 1997
155 and heavily borrowed from pre_and_rev_post_order_compute. */
157 bool
158 mark_dfs_back_edges (void)
160 edge_iterator *stack;
161 int *pre;
162 int *post;
163 int sp;
164 int prenum = 1;
165 int postnum = 1;
166 sbitmap visited;
167 bool found = false;
169 /* Allocate the preorder and postorder number arrays. */
170 pre = XCNEWVEC (int, last_basic_block);
171 post = XCNEWVEC (int, last_basic_block);
173 /* Allocate stack for back-tracking up CFG. */
174 stack = XNEWVEC (edge_iterator, n_basic_blocks + 1);
175 sp = 0;
177 /* Allocate bitmap to track nodes that have been visited. */
178 visited = sbitmap_alloc (last_basic_block);
180 /* None of the nodes in the CFG have been visited yet. */
181 sbitmap_zero (visited);
183 /* Push the first edge on to the stack. */
184 stack[sp++] = ei_start (ENTRY_BLOCK_PTR->succs);
186 while (sp)
188 edge_iterator ei;
189 basic_block src;
190 basic_block dest;
192 /* Look at the edge on the top of the stack. */
193 ei = stack[sp - 1];
194 src = ei_edge (ei)->src;
195 dest = ei_edge (ei)->dest;
196 ei_edge (ei)->flags &= ~EDGE_DFS_BACK;
198 /* Check if the edge destination has been visited yet. */
199 if (dest != EXIT_BLOCK_PTR && ! TEST_BIT (visited, dest->index))
201 /* Mark that we have visited the destination. */
202 SET_BIT (visited, dest->index);
204 pre[dest->index] = prenum++;
205 if (EDGE_COUNT (dest->succs) > 0)
207 /* Since the DEST node has been visited for the first
208 time, check its successors. */
209 stack[sp++] = ei_start (dest->succs);
211 else
212 post[dest->index] = postnum++;
214 else
216 if (dest != EXIT_BLOCK_PTR && src != ENTRY_BLOCK_PTR
217 && pre[src->index] >= pre[dest->index]
218 && post[dest->index] == 0)
219 ei_edge (ei)->flags |= EDGE_DFS_BACK, found = true;
221 if (ei_one_before_end_p (ei) && src != ENTRY_BLOCK_PTR)
222 post[src->index] = postnum++;
224 if (!ei_one_before_end_p (ei))
225 ei_next (&stack[sp - 1]);
226 else
227 sp--;
231 free (pre);
232 free (post);
233 free (stack);
234 sbitmap_free (visited);
236 return found;
239 /* Set the flag EDGE_CAN_FALLTHRU for edges that can be fallthru. */
241 void
242 set_edge_can_fallthru_flag (void)
244 basic_block bb;
246 FOR_EACH_BB (bb)
248 edge e;
249 edge_iterator ei;
251 FOR_EACH_EDGE (e, ei, bb->succs)
253 e->flags &= ~EDGE_CAN_FALLTHRU;
255 /* The FALLTHRU edge is also CAN_FALLTHRU edge. */
256 if (e->flags & EDGE_FALLTHRU)
257 e->flags |= EDGE_CAN_FALLTHRU;
260 /* If the BB ends with an invertible condjump all (2) edges are
261 CAN_FALLTHRU edges. */
262 if (EDGE_COUNT (bb->succs) != 2)
263 continue;
264 if (!any_condjump_p (BB_END (bb)))
265 continue;
266 if (!invert_jump (BB_END (bb), JUMP_LABEL (BB_END (bb)), 0))
267 continue;
268 invert_jump (BB_END (bb), JUMP_LABEL (BB_END (bb)), 0);
269 EDGE_SUCC (bb, 0)->flags |= EDGE_CAN_FALLTHRU;
270 EDGE_SUCC (bb, 1)->flags |= EDGE_CAN_FALLTHRU;
274 /* Find unreachable blocks. An unreachable block will have 0 in
275 the reachable bit in block->flags. A nonzero value indicates the
276 block is reachable. */
278 void
279 find_unreachable_blocks (void)
281 edge e;
282 edge_iterator ei;
283 basic_block *tos, *worklist, bb;
285 tos = worklist = XNEWVEC (basic_block, n_basic_blocks);
287 /* Clear all the reachability flags. */
289 FOR_EACH_BB (bb)
290 bb->flags &= ~BB_REACHABLE;
292 /* Add our starting points to the worklist. Almost always there will
293 be only one. It isn't inconceivable that we might one day directly
294 support Fortran alternate entry points. */
296 FOR_EACH_EDGE (e, ei, ENTRY_BLOCK_PTR->succs)
298 *tos++ = e->dest;
300 /* Mark the block reachable. */
301 e->dest->flags |= BB_REACHABLE;
304 /* Iterate: find everything reachable from what we've already seen. */
306 while (tos != worklist)
308 basic_block b = *--tos;
310 FOR_EACH_EDGE (e, ei, b->succs)
312 basic_block dest = e->dest;
314 if (!(dest->flags & BB_REACHABLE))
316 *tos++ = dest;
317 dest->flags |= BB_REACHABLE;
322 free (worklist);
325 /* Functions to access an edge list with a vector representation.
326 Enough data is kept such that given an index number, the
327 pred and succ that edge represents can be determined, or
328 given a pred and a succ, its index number can be returned.
329 This allows algorithms which consume a lot of memory to
330 represent the normally full matrix of edge (pred,succ) with a
331 single indexed vector, edge (EDGE_INDEX (pred, succ)), with no
332 wasted space in the client code due to sparse flow graphs. */
334 /* This functions initializes the edge list. Basically the entire
335 flowgraph is processed, and all edges are assigned a number,
336 and the data structure is filled in. */
338 struct edge_list *
339 create_edge_list (void)
341 struct edge_list *elist;
342 edge e;
343 int num_edges;
344 int block_count;
345 basic_block bb;
346 edge_iterator ei;
348 block_count = n_basic_blocks; /* Include the entry and exit blocks. */
350 num_edges = 0;
352 /* Determine the number of edges in the flow graph by counting successor
353 edges on each basic block. */
354 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, EXIT_BLOCK_PTR, next_bb)
356 num_edges += EDGE_COUNT (bb->succs);
359 elist = XNEW (struct edge_list);
360 elist->num_blocks = block_count;
361 elist->num_edges = num_edges;
362 elist->index_to_edge = XNEWVEC (edge, num_edges);
364 num_edges = 0;
366 /* Follow successors of blocks, and register these edges. */
367 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, EXIT_BLOCK_PTR, next_bb)
368 FOR_EACH_EDGE (e, ei, bb->succs)
369 elist->index_to_edge[num_edges++] = e;
371 return elist;
374 /* This function free's memory associated with an edge list. */
376 void
377 free_edge_list (struct edge_list *elist)
379 if (elist)
381 free (elist->index_to_edge);
382 free (elist);
386 /* This function provides debug output showing an edge list. */
388 void
389 print_edge_list (FILE *f, struct edge_list *elist)
391 int x;
393 fprintf (f, "Compressed edge list, %d BBs + entry & exit, and %d edges\n",
394 elist->num_blocks, elist->num_edges);
396 for (x = 0; x < elist->num_edges; x++)
398 fprintf (f, " %-4d - edge(", x);
399 if (INDEX_EDGE_PRED_BB (elist, x) == ENTRY_BLOCK_PTR)
400 fprintf (f, "entry,");
401 else
402 fprintf (f, "%d,", INDEX_EDGE_PRED_BB (elist, x)->index);
404 if (INDEX_EDGE_SUCC_BB (elist, x) == EXIT_BLOCK_PTR)
405 fprintf (f, "exit)\n");
406 else
407 fprintf (f, "%d)\n", INDEX_EDGE_SUCC_BB (elist, x)->index);
411 /* This function provides an internal consistency check of an edge list,
412 verifying that all edges are present, and that there are no
413 extra edges. */
415 void
416 verify_edge_list (FILE *f, struct edge_list *elist)
418 int pred, succ, index;
419 edge e;
420 basic_block bb, p, s;
421 edge_iterator ei;
423 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, EXIT_BLOCK_PTR, next_bb)
425 FOR_EACH_EDGE (e, ei, bb->succs)
427 pred = e->src->index;
428 succ = e->dest->index;
429 index = EDGE_INDEX (elist, e->src, e->dest);
430 if (index == EDGE_INDEX_NO_EDGE)
432 fprintf (f, "*p* No index for edge from %d to %d\n", pred, succ);
433 continue;
436 if (INDEX_EDGE_PRED_BB (elist, index)->index != pred)
437 fprintf (f, "*p* Pred for index %d should be %d not %d\n",
438 index, pred, INDEX_EDGE_PRED_BB (elist, index)->index);
439 if (INDEX_EDGE_SUCC_BB (elist, index)->index != succ)
440 fprintf (f, "*p* Succ for index %d should be %d not %d\n",
441 index, succ, INDEX_EDGE_SUCC_BB (elist, index)->index);
445 /* We've verified that all the edges are in the list, now lets make sure
446 there are no spurious edges in the list. */
448 FOR_BB_BETWEEN (p, ENTRY_BLOCK_PTR, EXIT_BLOCK_PTR, next_bb)
449 FOR_BB_BETWEEN (s, ENTRY_BLOCK_PTR->next_bb, NULL, next_bb)
451 int found_edge = 0;
453 FOR_EACH_EDGE (e, ei, p->succs)
454 if (e->dest == s)
456 found_edge = 1;
457 break;
460 FOR_EACH_EDGE (e, ei, s->preds)
461 if (e->src == p)
463 found_edge = 1;
464 break;
467 if (EDGE_INDEX (elist, p, s)
468 == EDGE_INDEX_NO_EDGE && found_edge != 0)
469 fprintf (f, "*** Edge (%d, %d) appears to not have an index\n",
470 p->index, s->index);
471 if (EDGE_INDEX (elist, p, s)
472 != EDGE_INDEX_NO_EDGE && found_edge == 0)
473 fprintf (f, "*** Edge (%d, %d) has index %d, but there is no edge\n",
474 p->index, s->index, EDGE_INDEX (elist, p, s));
478 /* Given PRED and SUCC blocks, return the edge which connects the blocks.
479 If no such edge exists, return NULL. */
481 edge
482 find_edge (basic_block pred, basic_block succ)
484 edge e;
485 edge_iterator ei;
487 if (EDGE_COUNT (pred->succs) <= EDGE_COUNT (succ->preds))
489 FOR_EACH_EDGE (e, ei, pred->succs)
490 if (e->dest == succ)
491 return e;
493 else
495 FOR_EACH_EDGE (e, ei, succ->preds)
496 if (e->src == pred)
497 return e;
500 return NULL;
503 /* This routine will determine what, if any, edge there is between
504 a specified predecessor and successor. */
507 find_edge_index (struct edge_list *edge_list, basic_block pred, basic_block succ)
509 int x;
511 for (x = 0; x < NUM_EDGES (edge_list); x++)
512 if (INDEX_EDGE_PRED_BB (edge_list, x) == pred
513 && INDEX_EDGE_SUCC_BB (edge_list, x) == succ)
514 return x;
516 return (EDGE_INDEX_NO_EDGE);
519 /* Dump the list of basic blocks in the bitmap NODES. */
521 void
522 flow_nodes_print (const char *str, const sbitmap nodes, FILE *file)
524 unsigned int node = 0;
525 sbitmap_iterator sbi;
527 if (! nodes)
528 return;
530 fprintf (file, "%s { ", str);
531 EXECUTE_IF_SET_IN_SBITMAP (nodes, 0, node, sbi)
532 fprintf (file, "%d ", node);
533 fputs ("}\n", file);
536 /* Dump the list of edges in the array EDGE_LIST. */
538 void
539 flow_edge_list_print (const char *str, const edge *edge_list, int num_edges, FILE *file)
541 int i;
543 if (! edge_list)
544 return;
546 fprintf (file, "%s { ", str);
547 for (i = 0; i < num_edges; i++)
548 fprintf (file, "%d->%d ", edge_list[i]->src->index,
549 edge_list[i]->dest->index);
551 fputs ("}\n", file);
555 /* This routine will remove any fake predecessor edges for a basic block.
556 When the edge is removed, it is also removed from whatever successor
557 list it is in. */
559 static void
560 remove_fake_predecessors (basic_block bb)
562 edge e;
563 edge_iterator ei;
565 for (ei = ei_start (bb->preds); (e = ei_safe_edge (ei)); )
567 if ((e->flags & EDGE_FAKE) == EDGE_FAKE)
568 remove_edge (e);
569 else
570 ei_next (&ei);
574 /* This routine will remove all fake edges from the flow graph. If
575 we remove all fake successors, it will automatically remove all
576 fake predecessors. */
578 void
579 remove_fake_edges (void)
581 basic_block bb;
583 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR->next_bb, NULL, next_bb)
584 remove_fake_predecessors (bb);
587 /* This routine will remove all fake edges to the EXIT_BLOCK. */
589 void
590 remove_fake_exit_edges (void)
592 remove_fake_predecessors (EXIT_BLOCK_PTR);
596 /* This function will add a fake edge between any block which has no
597 successors, and the exit block. Some data flow equations require these
598 edges to exist. */
600 void
601 add_noreturn_fake_exit_edges (void)
603 basic_block bb;
605 FOR_EACH_BB (bb)
606 if (EDGE_COUNT (bb->succs) == 0)
607 make_single_succ_edge (bb, EXIT_BLOCK_PTR, EDGE_FAKE);
610 /* This function adds a fake edge between any infinite loops to the
611 exit block. Some optimizations require a path from each node to
612 the exit node.
614 See also Morgan, Figure 3.10, pp. 82-83.
616 The current implementation is ugly, not attempting to minimize the
617 number of inserted fake edges. To reduce the number of fake edges
618 to insert, add fake edges from _innermost_ loops containing only
619 nodes not reachable from the exit block. */
621 void
622 connect_infinite_loops_to_exit (void)
624 basic_block unvisited_block = EXIT_BLOCK_PTR;
625 struct depth_first_search_dsS dfs_ds;
627 /* Perform depth-first search in the reverse graph to find nodes
628 reachable from the exit block. */
629 flow_dfs_compute_reverse_init (&dfs_ds);
630 flow_dfs_compute_reverse_add_bb (&dfs_ds, EXIT_BLOCK_PTR);
632 /* Repeatedly add fake edges, updating the unreachable nodes. */
633 while (1)
635 unvisited_block = flow_dfs_compute_reverse_execute (&dfs_ds,
636 unvisited_block);
637 if (!unvisited_block)
638 break;
640 make_edge (unvisited_block, EXIT_BLOCK_PTR, EDGE_FAKE);
641 flow_dfs_compute_reverse_add_bb (&dfs_ds, unvisited_block);
644 flow_dfs_compute_reverse_finish (&dfs_ds);
645 return;
648 /* Compute reverse top sort order. This is computing a post order
649 numbering of the graph. If INCLUDE_ENTRY_EXIT is true, then then
650 ENTRY_BLOCK and EXIT_BLOCK are included. If DELETE_UNREACHABLE is
651 true, unreachable blocks are deleted. */
654 post_order_compute (int *post_order, bool include_entry_exit,
655 bool delete_unreachable)
657 edge_iterator *stack;
658 int sp;
659 int post_order_num = 0;
660 sbitmap visited;
661 int count;
663 if (include_entry_exit)
664 post_order[post_order_num++] = EXIT_BLOCK;
666 /* Allocate stack for back-tracking up CFG. */
667 stack = XNEWVEC (edge_iterator, n_basic_blocks + 1);
668 sp = 0;
670 /* Allocate bitmap to track nodes that have been visited. */
671 visited = sbitmap_alloc (last_basic_block);
673 /* None of the nodes in the CFG have been visited yet. */
674 sbitmap_zero (visited);
676 /* Push the first edge on to the stack. */
677 stack[sp++] = ei_start (ENTRY_BLOCK_PTR->succs);
679 while (sp)
681 edge_iterator ei;
682 basic_block src;
683 basic_block dest;
685 /* Look at the edge on the top of the stack. */
686 ei = stack[sp - 1];
687 src = ei_edge (ei)->src;
688 dest = ei_edge (ei)->dest;
690 /* Check if the edge destination has been visited yet. */
691 if (dest != EXIT_BLOCK_PTR && ! TEST_BIT (visited, dest->index))
693 /* Mark that we have visited the destination. */
694 SET_BIT (visited, dest->index);
696 if (EDGE_COUNT (dest->succs) > 0)
697 /* Since the DEST node has been visited for the first
698 time, check its successors. */
699 stack[sp++] = ei_start (dest->succs);
700 else
701 post_order[post_order_num++] = dest->index;
703 else
705 if (ei_one_before_end_p (ei) && src != ENTRY_BLOCK_PTR)
706 post_order[post_order_num++] = src->index;
708 if (!ei_one_before_end_p (ei))
709 ei_next (&stack[sp - 1]);
710 else
711 sp--;
715 if (include_entry_exit)
717 post_order[post_order_num++] = ENTRY_BLOCK;
718 count = post_order_num;
720 else
721 count = post_order_num + 2;
723 /* Delete the unreachable blocks if some were found and we are
724 supposed to do it. */
725 if (delete_unreachable && (count != n_basic_blocks))
727 basic_block b;
728 basic_block next_bb;
729 for (b = ENTRY_BLOCK_PTR->next_bb; b != EXIT_BLOCK_PTR; b = next_bb)
731 next_bb = b->next_bb;
733 if (!(TEST_BIT (visited, b->index)))
734 delete_basic_block (b);
737 tidy_fallthru_edges ();
740 free (stack);
741 sbitmap_free (visited);
742 return post_order_num;
746 /* Helper routine for inverted_post_order_compute.
747 BB has to belong to a region of CFG
748 unreachable by inverted traversal from the exit.
749 i.e. there's no control flow path from ENTRY to EXIT
750 that contains this BB.
751 This can happen in two cases - if there's an infinite loop
752 or if there's a block that has no successor
753 (call to a function with no return).
754 Some RTL passes deal with this condition by
755 calling connect_infinite_loops_to_exit () and/or
756 add_noreturn_fake_exit_edges ().
757 However, those methods involve modifying the CFG itself
758 which may not be desirable.
759 Hence, we deal with the infinite loop/no return cases
760 by identifying a unique basic block that can reach all blocks
761 in such a region by inverted traversal.
762 This function returns a basic block that guarantees
763 that all blocks in the region are reachable
764 by starting an inverted traversal from the returned block. */
766 static basic_block
767 dfs_find_deadend (basic_block bb)
769 sbitmap visited = sbitmap_alloc (last_basic_block);
770 sbitmap_zero (visited);
772 for (;;)
774 SET_BIT (visited, bb->index);
775 if (EDGE_COUNT (bb->succs) == 0
776 || TEST_BIT (visited, EDGE_SUCC (bb, 0)->dest->index))
778 sbitmap_free (visited);
779 return bb;
782 bb = EDGE_SUCC (bb, 0)->dest;
785 gcc_unreachable ();
789 /* Compute the reverse top sort order of the inverted CFG
790 i.e. starting from the exit block and following the edges backward
791 (from successors to predecessors).
792 This ordering can be used for forward dataflow problems among others.
794 This function assumes that all blocks in the CFG are reachable
795 from the ENTRY (but not necessarily from EXIT).
797 If there's an infinite loop,
798 a simple inverted traversal starting from the blocks
799 with no successors can't visit all blocks.
800 To solve this problem, we first do inverted traversal
801 starting from the blocks with no successor.
802 And if there's any block left that's not visited by the regular
803 inverted traversal from EXIT,
804 those blocks are in such problematic region.
805 Among those, we find one block that has
806 any visited predecessor (which is an entry into such a region),
807 and start looking for a "dead end" from that block
808 and do another inverted traversal from that block. */
811 inverted_post_order_compute (int *post_order)
813 basic_block bb;
814 edge_iterator *stack;
815 int sp;
816 int post_order_num = 0;
817 sbitmap visited;
819 /* Allocate stack for back-tracking up CFG. */
820 stack = XNEWVEC (edge_iterator, n_basic_blocks + 1);
821 sp = 0;
823 /* Allocate bitmap to track nodes that have been visited. */
824 visited = sbitmap_alloc (last_basic_block);
826 /* None of the nodes in the CFG have been visited yet. */
827 sbitmap_zero (visited);
829 /* Put all blocks that have no successor into the initial work list. */
830 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, NULL, next_bb)
831 if (EDGE_COUNT (bb->succs) == 0)
833 /* Push the initial edge on to the stack. */
834 if (EDGE_COUNT (bb->preds) > 0)
836 stack[sp++] = ei_start (bb->preds);
837 SET_BIT (visited, bb->index);
843 bool has_unvisited_bb = false;
845 /* The inverted traversal loop. */
846 while (sp)
848 edge_iterator ei;
849 basic_block pred;
851 /* Look at the edge on the top of the stack. */
852 ei = stack[sp - 1];
853 bb = ei_edge (ei)->dest;
854 pred = ei_edge (ei)->src;
856 /* Check if the predecessor has been visited yet. */
857 if (! TEST_BIT (visited, pred->index))
859 /* Mark that we have visited the destination. */
860 SET_BIT (visited, pred->index);
862 if (EDGE_COUNT (pred->preds) > 0)
863 /* Since the predecessor node has been visited for the first
864 time, check its predecessors. */
865 stack[sp++] = ei_start (pred->preds);
866 else
867 post_order[post_order_num++] = pred->index;
869 else
871 if (bb != EXIT_BLOCK_PTR && ei_one_before_end_p (ei))
872 post_order[post_order_num++] = bb->index;
874 if (!ei_one_before_end_p (ei))
875 ei_next (&stack[sp - 1]);
876 else
877 sp--;
881 /* Detect any infinite loop and activate the kludge.
882 Note that this doesn't check EXIT_BLOCK itself
883 since EXIT_BLOCK is always added after the outer do-while loop. */
884 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, EXIT_BLOCK_PTR, next_bb)
885 if (!TEST_BIT (visited, bb->index))
887 has_unvisited_bb = true;
889 if (EDGE_COUNT (bb->preds) > 0)
891 edge_iterator ei;
892 edge e;
893 basic_block visited_pred = NULL;
895 /* Find an already visited predecessor. */
896 FOR_EACH_EDGE (e, ei, bb->preds)
898 if (TEST_BIT (visited, e->src->index))
899 visited_pred = e->src;
902 if (visited_pred)
904 basic_block be = dfs_find_deadend (bb);
905 gcc_assert (be != NULL);
906 SET_BIT (visited, be->index);
907 stack[sp++] = ei_start (be->preds);
908 break;
913 if (has_unvisited_bb && sp == 0)
915 /* No blocks are reachable from EXIT at all.
916 Find a dead-end from the ENTRY, and restart the iteration. */
917 basic_block be = dfs_find_deadend (ENTRY_BLOCK_PTR);
918 gcc_assert (be != NULL);
919 SET_BIT (visited, be->index);
920 stack[sp++] = ei_start (be->preds);
923 /* The only case the below while fires is
924 when there's an infinite loop. */
926 while (sp);
928 /* EXIT_BLOCK is always included. */
929 post_order[post_order_num++] = EXIT_BLOCK;
931 free (stack);
932 sbitmap_free (visited);
933 return post_order_num;
936 /* Compute the depth first search order and store in the array
937 PRE_ORDER if nonzero, marking the nodes visited in VISITED. If
938 REV_POST_ORDER is nonzero, return the reverse completion number for each
939 node. Returns the number of nodes visited. A depth first search
940 tries to get as far away from the starting point as quickly as
941 possible.
943 pre_order is a really a preorder numbering of the graph.
944 rev_post_order is really a reverse postorder numbering of the graph.
948 pre_and_rev_post_order_compute (int *pre_order, int *rev_post_order,
949 bool include_entry_exit)
951 edge_iterator *stack;
952 int sp;
953 int pre_order_num = 0;
954 int rev_post_order_num = n_basic_blocks - 1;
955 sbitmap visited;
957 /* Allocate stack for back-tracking up CFG. */
958 stack = XNEWVEC (edge_iterator, n_basic_blocks + 1);
959 sp = 0;
961 if (include_entry_exit)
963 if (pre_order)
964 pre_order[pre_order_num] = ENTRY_BLOCK;
965 pre_order_num++;
966 if (rev_post_order)
967 rev_post_order[rev_post_order_num--] = ENTRY_BLOCK;
969 else
970 rev_post_order_num -= NUM_FIXED_BLOCKS;
972 /* Allocate bitmap to track nodes that have been visited. */
973 visited = sbitmap_alloc (last_basic_block);
975 /* None of the nodes in the CFG have been visited yet. */
976 sbitmap_zero (visited);
978 /* Push the first edge on to the stack. */
979 stack[sp++] = ei_start (ENTRY_BLOCK_PTR->succs);
981 while (sp)
983 edge_iterator ei;
984 basic_block src;
985 basic_block dest;
987 /* Look at the edge on the top of the stack. */
988 ei = stack[sp - 1];
989 src = ei_edge (ei)->src;
990 dest = ei_edge (ei)->dest;
992 /* Check if the edge destination has been visited yet. */
993 if (dest != EXIT_BLOCK_PTR && ! TEST_BIT (visited, dest->index))
995 /* Mark that we have visited the destination. */
996 SET_BIT (visited, dest->index);
998 if (pre_order)
999 pre_order[pre_order_num] = dest->index;
1001 pre_order_num++;
1003 if (EDGE_COUNT (dest->succs) > 0)
1004 /* Since the DEST node has been visited for the first
1005 time, check its successors. */
1006 stack[sp++] = ei_start (dest->succs);
1007 else if (rev_post_order)
1008 /* There are no successors for the DEST node so assign
1009 its reverse completion number. */
1010 rev_post_order[rev_post_order_num--] = dest->index;
1012 else
1014 if (ei_one_before_end_p (ei) && src != ENTRY_BLOCK_PTR
1015 && rev_post_order)
1016 /* There are no more successors for the SRC node
1017 so assign its reverse completion number. */
1018 rev_post_order[rev_post_order_num--] = src->index;
1020 if (!ei_one_before_end_p (ei))
1021 ei_next (&stack[sp - 1]);
1022 else
1023 sp--;
1027 free (stack);
1028 sbitmap_free (visited);
1030 if (include_entry_exit)
1032 if (pre_order)
1033 pre_order[pre_order_num] = EXIT_BLOCK;
1034 pre_order_num++;
1035 if (rev_post_order)
1036 rev_post_order[rev_post_order_num--] = EXIT_BLOCK;
1037 /* The number of nodes visited should be the number of blocks. */
1038 gcc_assert (pre_order_num == n_basic_blocks);
1040 else
1041 /* The number of nodes visited should be the number of blocks minus
1042 the entry and exit blocks which are not visited here. */
1043 gcc_assert (pre_order_num == n_basic_blocks - NUM_FIXED_BLOCKS);
1045 return pre_order_num;
1048 /* Compute the depth first search order on the _reverse_ graph and
1049 store in the array DFS_ORDER, marking the nodes visited in VISITED.
1050 Returns the number of nodes visited.
1052 The computation is split into three pieces:
1054 flow_dfs_compute_reverse_init () creates the necessary data
1055 structures.
1057 flow_dfs_compute_reverse_add_bb () adds a basic block to the data
1058 structures. The block will start the search.
1060 flow_dfs_compute_reverse_execute () continues (or starts) the
1061 search using the block on the top of the stack, stopping when the
1062 stack is empty.
1064 flow_dfs_compute_reverse_finish () destroys the necessary data
1065 structures.
1067 Thus, the user will probably call ..._init(), call ..._add_bb() to
1068 add a beginning basic block to the stack, call ..._execute(),
1069 possibly add another bb to the stack and again call ..._execute(),
1070 ..., and finally call _finish(). */
1072 /* Initialize the data structures used for depth-first search on the
1073 reverse graph. If INITIALIZE_STACK is nonzero, the exit block is
1074 added to the basic block stack. DATA is the current depth-first
1075 search context. If INITIALIZE_STACK is nonzero, there is an
1076 element on the stack. */
1078 static void
1079 flow_dfs_compute_reverse_init (depth_first_search_ds data)
1081 /* Allocate stack for back-tracking up CFG. */
1082 data->stack = XNEWVEC (basic_block, n_basic_blocks);
1083 data->sp = 0;
1085 /* Allocate bitmap to track nodes that have been visited. */
1086 data->visited_blocks = sbitmap_alloc (last_basic_block);
1088 /* None of the nodes in the CFG have been visited yet. */
1089 sbitmap_zero (data->visited_blocks);
1091 return;
1094 /* Add the specified basic block to the top of the dfs data
1095 structures. When the search continues, it will start at the
1096 block. */
1098 static void
1099 flow_dfs_compute_reverse_add_bb (depth_first_search_ds data, basic_block bb)
1101 data->stack[data->sp++] = bb;
1102 SET_BIT (data->visited_blocks, bb->index);
1105 /* Continue the depth-first search through the reverse graph starting with the
1106 block at the stack's top and ending when the stack is empty. Visited nodes
1107 are marked. Returns an unvisited basic block, or NULL if there is none
1108 available. */
1110 static basic_block
1111 flow_dfs_compute_reverse_execute (depth_first_search_ds data,
1112 basic_block last_unvisited)
1114 basic_block bb;
1115 edge e;
1116 edge_iterator ei;
1118 while (data->sp > 0)
1120 bb = data->stack[--data->sp];
1122 /* Perform depth-first search on adjacent vertices. */
1123 FOR_EACH_EDGE (e, ei, bb->preds)
1124 if (!TEST_BIT (data->visited_blocks, e->src->index))
1125 flow_dfs_compute_reverse_add_bb (data, e->src);
1128 /* Determine if there are unvisited basic blocks. */
1129 FOR_BB_BETWEEN (bb, last_unvisited, NULL, prev_bb)
1130 if (!TEST_BIT (data->visited_blocks, bb->index))
1131 return bb;
1133 return NULL;
1136 /* Destroy the data structures needed for depth-first search on the
1137 reverse graph. */
1139 static void
1140 flow_dfs_compute_reverse_finish (depth_first_search_ds data)
1142 free (data->stack);
1143 sbitmap_free (data->visited_blocks);
1146 /* Performs dfs search from BB over vertices satisfying PREDICATE;
1147 if REVERSE, go against direction of edges. Returns number of blocks
1148 found and their list in RSLT. RSLT can contain at most RSLT_MAX items. */
1150 dfs_enumerate_from (basic_block bb, int reverse,
1151 bool (*predicate) (basic_block, void *),
1152 basic_block *rslt, int rslt_max, void *data)
1154 basic_block *st, lbb;
1155 int sp = 0, tv = 0;
1156 unsigned size;
1158 /* A bitmap to keep track of visited blocks. Allocating it each time
1159 this function is called is not possible, since dfs_enumerate_from
1160 is often used on small (almost) disjoint parts of cfg (bodies of
1161 loops), and allocating a large sbitmap would lead to quadratic
1162 behavior. */
1163 static sbitmap visited;
1164 static unsigned v_size;
1166 #define MARK_VISITED(BB) (SET_BIT (visited, (BB)->index))
1167 #define UNMARK_VISITED(BB) (RESET_BIT (visited, (BB)->index))
1168 #define VISITED_P(BB) (TEST_BIT (visited, (BB)->index))
1170 /* Resize the VISITED sbitmap if necessary. */
1171 size = last_basic_block;
1172 if (size < 10)
1173 size = 10;
1175 if (!visited)
1178 visited = sbitmap_alloc (size);
1179 sbitmap_zero (visited);
1180 v_size = size;
1182 else if (v_size < size)
1184 /* Ensure that we increase the size of the sbitmap exponentially. */
1185 if (2 * v_size > size)
1186 size = 2 * v_size;
1188 visited = sbitmap_resize (visited, size, 0);
1189 v_size = size;
1192 st = XCNEWVEC (basic_block, rslt_max);
1193 rslt[tv++] = st[sp++] = bb;
1194 MARK_VISITED (bb);
1195 while (sp)
1197 edge e;
1198 edge_iterator ei;
1199 lbb = st[--sp];
1200 if (reverse)
1202 FOR_EACH_EDGE (e, ei, lbb->preds)
1203 if (!VISITED_P (e->src) && predicate (e->src, data))
1205 gcc_assert (tv != rslt_max);
1206 rslt[tv++] = st[sp++] = e->src;
1207 MARK_VISITED (e->src);
1210 else
1212 FOR_EACH_EDGE (e, ei, lbb->succs)
1213 if (!VISITED_P (e->dest) && predicate (e->dest, data))
1215 gcc_assert (tv != rslt_max);
1216 rslt[tv++] = st[sp++] = e->dest;
1217 MARK_VISITED (e->dest);
1221 free (st);
1222 for (sp = 0; sp < tv; sp++)
1223 UNMARK_VISITED (rslt[sp]);
1224 return tv;
1225 #undef MARK_VISITED
1226 #undef UNMARK_VISITED
1227 #undef VISITED_P
1231 /* Compute dominance frontiers, ala Harvey, Ferrante, et al.
1233 This algorithm can be found in Timothy Harvey's PhD thesis, at
1234 http://www.cs.rice.edu/~harv/dissertation.pdf in the section on iterative
1235 dominance algorithms.
1237 First, we identify each join point, j (any node with more than one
1238 incoming edge is a join point).
1240 We then examine each predecessor, p, of j and walk up the dominator tree
1241 starting at p.
1243 We stop the walk when we reach j's immediate dominator - j is in the
1244 dominance frontier of each of the nodes in the walk, except for j's
1245 immediate dominator. Intuitively, all of the rest of j's dominators are
1246 shared by j's predecessors as well.
1247 Since they dominate j, they will not have j in their dominance frontiers.
1249 The number of nodes touched by this algorithm is equal to the size
1250 of the dominance frontiers, no more, no less.
1254 static void
1255 compute_dominance_frontiers_1 (bitmap *frontiers)
1257 edge p;
1258 edge_iterator ei;
1259 basic_block b;
1260 FOR_EACH_BB (b)
1262 if (EDGE_COUNT (b->preds) >= 2)
1264 FOR_EACH_EDGE (p, ei, b->preds)
1266 basic_block runner = p->src;
1267 basic_block domsb;
1268 if (runner == ENTRY_BLOCK_PTR)
1269 continue;
1271 domsb = get_immediate_dominator (CDI_DOMINATORS, b);
1272 while (runner != domsb)
1274 if (bitmap_bit_p (frontiers[runner->index], b->index))
1275 break;
1276 bitmap_set_bit (frontiers[runner->index],
1277 b->index);
1278 runner = get_immediate_dominator (CDI_DOMINATORS,
1279 runner);
1287 void
1288 compute_dominance_frontiers (bitmap *frontiers)
1290 timevar_push (TV_DOM_FRONTIERS);
1292 compute_dominance_frontiers_1 (frontiers);
1294 timevar_pop (TV_DOM_FRONTIERS);