arm.md (movsi): Use can_create_pseudo_p instead of no_new_pseudos.
[official-gcc.git] / gcc / alias.c
bloba47e2916a469e850c327c3e1793a5d3085db6bf0
1 /* Alias analysis for GNU C
2 Copyright (C) 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006,
3 2007 Free Software Foundation, Inc.
4 Contributed by John Carr (jfc@mit.edu).
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 2, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING. If not, write to the Free
20 Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
21 02110-1301, USA. */
23 #include "config.h"
24 #include "system.h"
25 #include "coretypes.h"
26 #include "tm.h"
27 #include "rtl.h"
28 #include "tree.h"
29 #include "tm_p.h"
30 #include "function.h"
31 #include "alias.h"
32 #include "emit-rtl.h"
33 #include "regs.h"
34 #include "hard-reg-set.h"
35 #include "basic-block.h"
36 #include "flags.h"
37 #include "output.h"
38 #include "toplev.h"
39 #include "cselib.h"
40 #include "splay-tree.h"
41 #include "ggc.h"
42 #include "langhooks.h"
43 #include "timevar.h"
44 #include "target.h"
45 #include "cgraph.h"
46 #include "varray.h"
47 #include "tree-pass.h"
48 #include "ipa-type-escape.h"
49 #include "df.h"
51 /* The aliasing API provided here solves related but different problems:
53 Say there exists (in c)
55 struct X {
56 struct Y y1;
57 struct Z z2;
58 } x1, *px1, *px2;
60 struct Y y2, *py;
61 struct Z z2, *pz;
64 py = &px1.y1;
65 px2 = &x1;
67 Consider the four questions:
69 Can a store to x1 interfere with px2->y1?
70 Can a store to x1 interfere with px2->z2?
71 (*px2).z2
72 Can a store to x1 change the value pointed to by with py?
73 Can a store to x1 change the value pointed to by with pz?
75 The answer to these questions can be yes, yes, yes, and maybe.
77 The first two questions can be answered with a simple examination
78 of the type system. If structure X contains a field of type Y then
79 a store thru a pointer to an X can overwrite any field that is
80 contained (recursively) in an X (unless we know that px1 != px2).
82 The last two of the questions can be solved in the same way as the
83 first two questions but this is too conservative. The observation
84 is that in some cases analysis we can know if which (if any) fields
85 are addressed and if those addresses are used in bad ways. This
86 analysis may be language specific. In C, arbitrary operations may
87 be applied to pointers. However, there is some indication that
88 this may be too conservative for some C++ types.
90 The pass ipa-type-escape does this analysis for the types whose
91 instances do not escape across the compilation boundary.
93 Historically in GCC, these two problems were combined and a single
94 data structure was used to represent the solution to these
95 problems. We now have two similar but different data structures,
96 The data structure to solve the last two question is similar to the
97 first, but does not contain have the fields in it whose address are
98 never taken. For types that do escape the compilation unit, the
99 data structures will have identical information.
102 /* The alias sets assigned to MEMs assist the back-end in determining
103 which MEMs can alias which other MEMs. In general, two MEMs in
104 different alias sets cannot alias each other, with one important
105 exception. Consider something like:
107 struct S { int i; double d; };
109 a store to an `S' can alias something of either type `int' or type
110 `double'. (However, a store to an `int' cannot alias a `double'
111 and vice versa.) We indicate this via a tree structure that looks
112 like:
113 struct S
116 |/_ _\|
117 int double
119 (The arrows are directed and point downwards.)
120 In this situation we say the alias set for `struct S' is the
121 `superset' and that those for `int' and `double' are `subsets'.
123 To see whether two alias sets can point to the same memory, we must
124 see if either alias set is a subset of the other. We need not trace
125 past immediate descendants, however, since we propagate all
126 grandchildren up one level.
128 Alias set zero is implicitly a superset of all other alias sets.
129 However, this is no actual entry for alias set zero. It is an
130 error to attempt to explicitly construct a subset of zero. */
132 struct alias_set_entry GTY(())
134 /* The alias set number, as stored in MEM_ALIAS_SET. */
135 HOST_WIDE_INT alias_set;
137 /* The children of the alias set. These are not just the immediate
138 children, but, in fact, all descendants. So, if we have:
140 struct T { struct S s; float f; }
142 continuing our example above, the children here will be all of
143 `int', `double', `float', and `struct S'. */
144 splay_tree GTY((param1_is (int), param2_is (int))) children;
146 /* Nonzero if would have a child of zero: this effectively makes this
147 alias set the same as alias set zero. */
148 int has_zero_child;
150 typedef struct alias_set_entry *alias_set_entry;
152 static int rtx_equal_for_memref_p (rtx, rtx);
153 static int memrefs_conflict_p (int, rtx, int, rtx, HOST_WIDE_INT);
154 static void record_set (rtx, rtx, void *);
155 static int base_alias_check (rtx, rtx, enum machine_mode,
156 enum machine_mode);
157 static rtx find_base_value (rtx);
158 static int mems_in_disjoint_alias_sets_p (rtx, rtx);
159 static int insert_subset_children (splay_tree_node, void*);
160 static tree find_base_decl (tree);
161 static alias_set_entry get_alias_set_entry (HOST_WIDE_INT);
162 static rtx fixed_scalar_and_varying_struct_p (rtx, rtx, rtx, rtx,
163 int (*) (rtx, int));
164 static int aliases_everything_p (rtx);
165 static bool nonoverlapping_component_refs_p (tree, tree);
166 static tree decl_for_component_ref (tree);
167 static rtx adjust_offset_for_component_ref (tree, rtx);
168 static int nonoverlapping_memrefs_p (rtx, rtx);
169 static int write_dependence_p (rtx, rtx, int);
171 static void memory_modified_1 (rtx, rtx, void *);
172 static void record_alias_subset (HOST_WIDE_INT, HOST_WIDE_INT);
174 /* Set up all info needed to perform alias analysis on memory references. */
176 /* Returns the size in bytes of the mode of X. */
177 #define SIZE_FOR_MODE(X) (GET_MODE_SIZE (GET_MODE (X)))
179 /* Returns nonzero if MEM1 and MEM2 do not alias because they are in
180 different alias sets. We ignore alias sets in functions making use
181 of variable arguments because the va_arg macros on some systems are
182 not legal ANSI C. */
183 #define DIFFERENT_ALIAS_SETS_P(MEM1, MEM2) \
184 mems_in_disjoint_alias_sets_p (MEM1, MEM2)
186 /* Cap the number of passes we make over the insns propagating alias
187 information through set chains. 10 is a completely arbitrary choice. */
188 #define MAX_ALIAS_LOOP_PASSES 10
190 /* reg_base_value[N] gives an address to which register N is related.
191 If all sets after the first add or subtract to the current value
192 or otherwise modify it so it does not point to a different top level
193 object, reg_base_value[N] is equal to the address part of the source
194 of the first set.
196 A base address can be an ADDRESS, SYMBOL_REF, or LABEL_REF. ADDRESS
197 expressions represent certain special values: function arguments and
198 the stack, frame, and argument pointers.
200 The contents of an ADDRESS is not normally used, the mode of the
201 ADDRESS determines whether the ADDRESS is a function argument or some
202 other special value. Pointer equality, not rtx_equal_p, determines whether
203 two ADDRESS expressions refer to the same base address.
205 The only use of the contents of an ADDRESS is for determining if the
206 current function performs nonlocal memory memory references for the
207 purposes of marking the function as a constant function. */
209 static GTY(()) VEC(rtx,gc) *reg_base_value;
210 static rtx *new_reg_base_value;
212 /* We preserve the copy of old array around to avoid amount of garbage
213 produced. About 8% of garbage produced were attributed to this
214 array. */
215 static GTY((deletable)) VEC(rtx,gc) *old_reg_base_value;
217 /* Static hunks of RTL used by the aliasing code; these are initialized
218 once per function to avoid unnecessary RTL allocations. */
219 static GTY (()) rtx static_reg_base_value[FIRST_PSEUDO_REGISTER];
221 #define REG_BASE_VALUE(X) \
222 (REGNO (X) < VEC_length (rtx, reg_base_value) \
223 ? VEC_index (rtx, reg_base_value, REGNO (X)) : 0)
225 /* Vector indexed by N giving the initial (unchanging) value known for
226 pseudo-register N. This array is initialized in init_alias_analysis,
227 and does not change until end_alias_analysis is called. */
228 static GTY((length("reg_known_value_size"))) rtx *reg_known_value;
230 /* Indicates number of valid entries in reg_known_value. */
231 static GTY(()) unsigned int reg_known_value_size;
233 /* Vector recording for each reg_known_value whether it is due to a
234 REG_EQUIV note. Future passes (viz., reload) may replace the
235 pseudo with the equivalent expression and so we account for the
236 dependences that would be introduced if that happens.
238 The REG_EQUIV notes created in assign_parms may mention the arg
239 pointer, and there are explicit insns in the RTL that modify the
240 arg pointer. Thus we must ensure that such insns don't get
241 scheduled across each other because that would invalidate the
242 REG_EQUIV notes. One could argue that the REG_EQUIV notes are
243 wrong, but solving the problem in the scheduler will likely give
244 better code, so we do it here. */
245 static bool *reg_known_equiv_p;
247 /* True when scanning insns from the start of the rtl to the
248 NOTE_INSN_FUNCTION_BEG note. */
249 static bool copying_arguments;
251 DEF_VEC_P(alias_set_entry);
252 DEF_VEC_ALLOC_P(alias_set_entry,gc);
254 /* The splay-tree used to store the various alias set entries. */
255 static GTY (()) VEC(alias_set_entry,gc) *alias_sets;
257 /* Returns a pointer to the alias set entry for ALIAS_SET, if there is
258 such an entry, or NULL otherwise. */
260 static inline alias_set_entry
261 get_alias_set_entry (HOST_WIDE_INT alias_set)
263 return VEC_index (alias_set_entry, alias_sets, alias_set);
266 /* Returns nonzero if the alias sets for MEM1 and MEM2 are such that
267 the two MEMs cannot alias each other. */
269 static inline int
270 mems_in_disjoint_alias_sets_p (rtx mem1, rtx mem2)
272 /* Perform a basic sanity check. Namely, that there are no alias sets
273 if we're not using strict aliasing. This helps to catch bugs
274 whereby someone uses PUT_CODE, but doesn't clear MEM_ALIAS_SET, or
275 where a MEM is allocated in some way other than by the use of
276 gen_rtx_MEM, and the MEM_ALIAS_SET is not cleared. If we begin to
277 use alias sets to indicate that spilled registers cannot alias each
278 other, we might need to remove this check. */
279 gcc_assert (flag_strict_aliasing
280 || (!MEM_ALIAS_SET (mem1) && !MEM_ALIAS_SET (mem2)));
282 return ! alias_sets_conflict_p (MEM_ALIAS_SET (mem1), MEM_ALIAS_SET (mem2));
285 /* Insert the NODE into the splay tree given by DATA. Used by
286 record_alias_subset via splay_tree_foreach. */
288 static int
289 insert_subset_children (splay_tree_node node, void *data)
291 splay_tree_insert ((splay_tree) data, node->key, node->value);
293 return 0;
296 /* Return true if the first alias set is a subset of the second. */
298 bool
299 alias_set_subset_of (HOST_WIDE_INT set1, HOST_WIDE_INT set2)
301 alias_set_entry ase;
303 /* Everything is a subset of the "aliases everything" set. */
304 if (set2 == 0)
305 return true;
307 /* Otherwise, check if set1 is a subset of set2. */
308 ase = get_alias_set_entry (set2);
309 if (ase != 0
310 && (splay_tree_lookup (ase->children,
311 (splay_tree_key) set1)))
312 return true;
313 return false;
316 /* Return 1 if the two specified alias sets may conflict. */
319 alias_sets_conflict_p (HOST_WIDE_INT set1, HOST_WIDE_INT set2)
321 alias_set_entry ase;
323 /* The easy case. */
324 if (alias_sets_must_conflict_p (set1, set2))
325 return 1;
327 /* See if the first alias set is a subset of the second. */
328 ase = get_alias_set_entry (set1);
329 if (ase != 0
330 && (ase->has_zero_child
331 || splay_tree_lookup (ase->children,
332 (splay_tree_key) set2)))
333 return 1;
335 /* Now do the same, but with the alias sets reversed. */
336 ase = get_alias_set_entry (set2);
337 if (ase != 0
338 && (ase->has_zero_child
339 || splay_tree_lookup (ase->children,
340 (splay_tree_key) set1)))
341 return 1;
343 /* The two alias sets are distinct and neither one is the
344 child of the other. Therefore, they cannot conflict. */
345 return 0;
348 /* Return 1 if the two specified alias sets will always conflict. */
351 alias_sets_must_conflict_p (HOST_WIDE_INT set1, HOST_WIDE_INT set2)
353 if (set1 == 0 || set2 == 0 || set1 == set2)
354 return 1;
356 return 0;
359 /* Return 1 if any MEM object of type T1 will always conflict (using the
360 dependency routines in this file) with any MEM object of type T2.
361 This is used when allocating temporary storage. If T1 and/or T2 are
362 NULL_TREE, it means we know nothing about the storage. */
365 objects_must_conflict_p (tree t1, tree t2)
367 HOST_WIDE_INT set1, set2;
369 /* If neither has a type specified, we don't know if they'll conflict
370 because we may be using them to store objects of various types, for
371 example the argument and local variables areas of inlined functions. */
372 if (t1 == 0 && t2 == 0)
373 return 0;
375 /* If they are the same type, they must conflict. */
376 if (t1 == t2
377 /* Likewise if both are volatile. */
378 || (t1 != 0 && TYPE_VOLATILE (t1) && t2 != 0 && TYPE_VOLATILE (t2)))
379 return 1;
381 set1 = t1 ? get_alias_set (t1) : 0;
382 set2 = t2 ? get_alias_set (t2) : 0;
384 /* We can't use alias_sets_conflict_p because we must make sure
385 that every subtype of t1 will conflict with every subtype of
386 t2 for which a pair of subobjects of these respective subtypes
387 overlaps on the stack. */
388 return alias_sets_must_conflict_p (set1, set2);
391 /* T is an expression with pointer type. Find the DECL on which this
392 expression is based. (For example, in `a[i]' this would be `a'.)
393 If there is no such DECL, or a unique decl cannot be determined,
394 NULL_TREE is returned. */
396 static tree
397 find_base_decl (tree t)
399 tree d0, d1;
401 if (t == 0 || t == error_mark_node || ! POINTER_TYPE_P (TREE_TYPE (t)))
402 return 0;
404 /* If this is a declaration, return it. If T is based on a restrict
405 qualified decl, return that decl. */
406 if (DECL_P (t))
408 if (TREE_CODE (t) == VAR_DECL && DECL_BASED_ON_RESTRICT_P (t))
409 t = DECL_GET_RESTRICT_BASE (t);
410 return t;
413 /* Handle general expressions. It would be nice to deal with
414 COMPONENT_REFs here. If we could tell that `a' and `b' were the
415 same, then `a->f' and `b->f' are also the same. */
416 switch (TREE_CODE_CLASS (TREE_CODE (t)))
418 case tcc_unary:
419 return find_base_decl (TREE_OPERAND (t, 0));
421 case tcc_binary:
422 /* Return 0 if found in neither or both are the same. */
423 d0 = find_base_decl (TREE_OPERAND (t, 0));
424 d1 = find_base_decl (TREE_OPERAND (t, 1));
425 if (d0 == d1)
426 return d0;
427 else if (d0 == 0)
428 return d1;
429 else if (d1 == 0)
430 return d0;
431 else
432 return 0;
434 default:
435 return 0;
439 /* Return true if all nested component references handled by
440 get_inner_reference in T are such that we should use the alias set
441 provided by the object at the heart of T.
443 This is true for non-addressable components (which don't have their
444 own alias set), as well as components of objects in alias set zero.
445 This later point is a special case wherein we wish to override the
446 alias set used by the component, but we don't have per-FIELD_DECL
447 assignable alias sets. */
449 bool
450 component_uses_parent_alias_set (tree t)
452 while (1)
454 /* If we're at the end, it vacuously uses its own alias set. */
455 if (!handled_component_p (t))
456 return false;
458 switch (TREE_CODE (t))
460 case COMPONENT_REF:
461 if (DECL_NONADDRESSABLE_P (TREE_OPERAND (t, 1)))
462 return true;
463 break;
465 case ARRAY_REF:
466 case ARRAY_RANGE_REF:
467 if (TYPE_NONALIASED_COMPONENT (TREE_TYPE (TREE_OPERAND (t, 0))))
468 return true;
469 break;
471 case REALPART_EXPR:
472 case IMAGPART_EXPR:
473 break;
475 default:
476 /* Bitfields and casts are never addressable. */
477 return true;
480 t = TREE_OPERAND (t, 0);
481 if (get_alias_set (TREE_TYPE (t)) == 0)
482 return true;
486 /* Return the alias set for T, which may be either a type or an
487 expression. Call language-specific routine for help, if needed. */
489 HOST_WIDE_INT
490 get_alias_set (tree t)
492 HOST_WIDE_INT set;
494 /* If we're not doing any alias analysis, just assume everything
495 aliases everything else. Also return 0 if this or its type is
496 an error. */
497 if (! flag_strict_aliasing || t == error_mark_node
498 || (! TYPE_P (t)
499 && (TREE_TYPE (t) == 0 || TREE_TYPE (t) == error_mark_node)))
500 return 0;
502 /* We can be passed either an expression or a type. This and the
503 language-specific routine may make mutually-recursive calls to each other
504 to figure out what to do. At each juncture, we see if this is a tree
505 that the language may need to handle specially. First handle things that
506 aren't types. */
507 if (! TYPE_P (t))
509 tree inner = t;
511 /* Remove any nops, then give the language a chance to do
512 something with this tree before we look at it. */
513 STRIP_NOPS (t);
514 set = lang_hooks.get_alias_set (t);
515 if (set != -1)
516 return set;
518 /* First see if the actual object referenced is an INDIRECT_REF from a
519 restrict-qualified pointer or a "void *". */
520 while (handled_component_p (inner))
522 inner = TREE_OPERAND (inner, 0);
523 STRIP_NOPS (inner);
526 /* Check for accesses through restrict-qualified pointers. */
527 if (INDIRECT_REF_P (inner))
529 tree decl = find_base_decl (TREE_OPERAND (inner, 0));
531 if (decl && DECL_POINTER_ALIAS_SET_KNOWN_P (decl))
533 /* If we haven't computed the actual alias set, do it now. */
534 if (DECL_POINTER_ALIAS_SET (decl) == -2)
536 tree pointed_to_type = TREE_TYPE (TREE_TYPE (decl));
538 /* No two restricted pointers can point at the same thing.
539 However, a restricted pointer can point at the same thing
540 as an unrestricted pointer, if that unrestricted pointer
541 is based on the restricted pointer. So, we make the
542 alias set for the restricted pointer a subset of the
543 alias set for the type pointed to by the type of the
544 decl. */
545 HOST_WIDE_INT pointed_to_alias_set
546 = get_alias_set (pointed_to_type);
548 if (pointed_to_alias_set == 0)
549 /* It's not legal to make a subset of alias set zero. */
550 DECL_POINTER_ALIAS_SET (decl) = 0;
551 else if (AGGREGATE_TYPE_P (pointed_to_type))
552 /* For an aggregate, we must treat the restricted
553 pointer the same as an ordinary pointer. If we
554 were to make the type pointed to by the
555 restricted pointer a subset of the pointed-to
556 type, then we would believe that other subsets
557 of the pointed-to type (such as fields of that
558 type) do not conflict with the type pointed to
559 by the restricted pointer. */
560 DECL_POINTER_ALIAS_SET (decl)
561 = pointed_to_alias_set;
562 else
564 DECL_POINTER_ALIAS_SET (decl) = new_alias_set ();
565 record_alias_subset (pointed_to_alias_set,
566 DECL_POINTER_ALIAS_SET (decl));
570 /* We use the alias set indicated in the declaration. */
571 return DECL_POINTER_ALIAS_SET (decl);
574 /* If we have an INDIRECT_REF via a void pointer, we don't
575 know anything about what that might alias. Likewise if the
576 pointer is marked that way. */
577 else if (TREE_CODE (TREE_TYPE (inner)) == VOID_TYPE
578 || (TYPE_REF_CAN_ALIAS_ALL
579 (TREE_TYPE (TREE_OPERAND (inner, 0)))))
580 return 0;
583 /* For non-addressable fields we return the alias set of the
584 outermost object that could have its address taken. If this
585 is an SFT use the precomputed value. */
586 if (TREE_CODE (t) == STRUCT_FIELD_TAG
587 && SFT_NONADDRESSABLE_P (t))
588 return SFT_ALIAS_SET (t);
590 /* Otherwise, pick up the outermost object that we could have a pointer
591 to, processing conversions as above. */
592 while (component_uses_parent_alias_set (t))
594 t = TREE_OPERAND (t, 0);
595 STRIP_NOPS (t);
598 /* If we've already determined the alias set for a decl, just return
599 it. This is necessary for C++ anonymous unions, whose component
600 variables don't look like union members (boo!). */
601 if (TREE_CODE (t) == VAR_DECL
602 && DECL_RTL_SET_P (t) && MEM_P (DECL_RTL (t)))
603 return MEM_ALIAS_SET (DECL_RTL (t));
605 /* Now all we care about is the type. */
606 t = TREE_TYPE (t);
609 /* Variant qualifiers don't affect the alias set, so get the main
610 variant. If this is a type with a known alias set, return it. */
611 t = TYPE_MAIN_VARIANT (t);
612 if (TYPE_ALIAS_SET_KNOWN_P (t))
613 return TYPE_ALIAS_SET (t);
615 /* See if the language has special handling for this type. */
616 set = lang_hooks.get_alias_set (t);
617 if (set != -1)
618 return set;
620 /* There are no objects of FUNCTION_TYPE, so there's no point in
621 using up an alias set for them. (There are, of course, pointers
622 and references to functions, but that's different.) */
623 else if (TREE_CODE (t) == FUNCTION_TYPE
624 || TREE_CODE (t) == METHOD_TYPE)
625 set = 0;
627 /* Unless the language specifies otherwise, let vector types alias
628 their components. This avoids some nasty type punning issues in
629 normal usage. And indeed lets vectors be treated more like an
630 array slice. */
631 else if (TREE_CODE (t) == VECTOR_TYPE)
632 set = get_alias_set (TREE_TYPE (t));
634 else
635 /* Otherwise make a new alias set for this type. */
636 set = new_alias_set ();
638 TYPE_ALIAS_SET (t) = set;
640 /* If this is an aggregate type, we must record any component aliasing
641 information. */
642 if (AGGREGATE_TYPE_P (t) || TREE_CODE (t) == COMPLEX_TYPE)
643 record_component_aliases (t);
645 return set;
648 /* Return a brand-new alias set. */
650 HOST_WIDE_INT
651 new_alias_set (void)
653 if (flag_strict_aliasing)
655 if (alias_sets == 0)
656 VEC_safe_push (alias_set_entry, gc, alias_sets, 0);
657 VEC_safe_push (alias_set_entry, gc, alias_sets, 0);
658 return VEC_length (alias_set_entry, alias_sets) - 1;
660 else
661 return 0;
664 /* Indicate that things in SUBSET can alias things in SUPERSET, but that
665 not everything that aliases SUPERSET also aliases SUBSET. For example,
666 in C, a store to an `int' can alias a load of a structure containing an
667 `int', and vice versa. But it can't alias a load of a 'double' member
668 of the same structure. Here, the structure would be the SUPERSET and
669 `int' the SUBSET. This relationship is also described in the comment at
670 the beginning of this file.
672 This function should be called only once per SUPERSET/SUBSET pair.
674 It is illegal for SUPERSET to be zero; everything is implicitly a
675 subset of alias set zero. */
677 static void
678 record_alias_subset (HOST_WIDE_INT superset, HOST_WIDE_INT subset)
680 alias_set_entry superset_entry;
681 alias_set_entry subset_entry;
683 /* It is possible in complex type situations for both sets to be the same,
684 in which case we can ignore this operation. */
685 if (superset == subset)
686 return;
688 gcc_assert (superset);
690 superset_entry = get_alias_set_entry (superset);
691 if (superset_entry == 0)
693 /* Create an entry for the SUPERSET, so that we have a place to
694 attach the SUBSET. */
695 superset_entry = ggc_alloc (sizeof (struct alias_set_entry));
696 superset_entry->alias_set = superset;
697 superset_entry->children
698 = splay_tree_new_ggc (splay_tree_compare_ints);
699 superset_entry->has_zero_child = 0;
700 VEC_replace (alias_set_entry, alias_sets, superset, superset_entry);
703 if (subset == 0)
704 superset_entry->has_zero_child = 1;
705 else
707 subset_entry = get_alias_set_entry (subset);
708 /* If there is an entry for the subset, enter all of its children
709 (if they are not already present) as children of the SUPERSET. */
710 if (subset_entry)
712 if (subset_entry->has_zero_child)
713 superset_entry->has_zero_child = 1;
715 splay_tree_foreach (subset_entry->children, insert_subset_children,
716 superset_entry->children);
719 /* Enter the SUBSET itself as a child of the SUPERSET. */
720 splay_tree_insert (superset_entry->children,
721 (splay_tree_key) subset, 0);
725 /* Record that component types of TYPE, if any, are part of that type for
726 aliasing purposes. For record types, we only record component types
727 for fields that are marked addressable. For array types, we always
728 record the component types, so the front end should not call this
729 function if the individual component aren't addressable. */
731 void
732 record_component_aliases (tree type)
734 HOST_WIDE_INT superset = get_alias_set (type);
735 tree field;
737 if (superset == 0)
738 return;
740 switch (TREE_CODE (type))
742 case ARRAY_TYPE:
743 if (! TYPE_NONALIASED_COMPONENT (type))
744 record_alias_subset (superset, get_alias_set (TREE_TYPE (type)));
745 break;
747 case RECORD_TYPE:
748 case UNION_TYPE:
749 case QUAL_UNION_TYPE:
750 /* Recursively record aliases for the base classes, if there are any. */
751 if (TYPE_BINFO (type))
753 int i;
754 tree binfo, base_binfo;
756 for (binfo = TYPE_BINFO (type), i = 0;
757 BINFO_BASE_ITERATE (binfo, i, base_binfo); i++)
758 record_alias_subset (superset,
759 get_alias_set (BINFO_TYPE (base_binfo)));
761 for (field = TYPE_FIELDS (type); field != 0; field = TREE_CHAIN (field))
762 if (TREE_CODE (field) == FIELD_DECL && ! DECL_NONADDRESSABLE_P (field))
763 record_alias_subset (superset, get_alias_set (TREE_TYPE (field)));
764 break;
766 case COMPLEX_TYPE:
767 record_alias_subset (superset, get_alias_set (TREE_TYPE (type)));
768 break;
770 default:
771 break;
775 /* Allocate an alias set for use in storing and reading from the varargs
776 spill area. */
778 static GTY(()) HOST_WIDE_INT varargs_set = -1;
780 HOST_WIDE_INT
781 get_varargs_alias_set (void)
783 #if 1
784 /* We now lower VA_ARG_EXPR, and there's currently no way to attach the
785 varargs alias set to an INDIRECT_REF (FIXME!), so we can't
786 consistently use the varargs alias set for loads from the varargs
787 area. So don't use it anywhere. */
788 return 0;
789 #else
790 if (varargs_set == -1)
791 varargs_set = new_alias_set ();
793 return varargs_set;
794 #endif
797 /* Likewise, but used for the fixed portions of the frame, e.g., register
798 save areas. */
800 static GTY(()) HOST_WIDE_INT frame_set = -1;
802 HOST_WIDE_INT
803 get_frame_alias_set (void)
805 if (frame_set == -1)
806 frame_set = new_alias_set ();
808 return frame_set;
811 /* Inside SRC, the source of a SET, find a base address. */
813 static rtx
814 find_base_value (rtx src)
816 unsigned int regno;
818 switch (GET_CODE (src))
820 case SYMBOL_REF:
821 case LABEL_REF:
822 return src;
824 case REG:
825 regno = REGNO (src);
826 /* At the start of a function, argument registers have known base
827 values which may be lost later. Returning an ADDRESS
828 expression here allows optimization based on argument values
829 even when the argument registers are used for other purposes. */
830 if (regno < FIRST_PSEUDO_REGISTER && copying_arguments)
831 return new_reg_base_value[regno];
833 /* If a pseudo has a known base value, return it. Do not do this
834 for non-fixed hard regs since it can result in a circular
835 dependency chain for registers which have values at function entry.
837 The test above is not sufficient because the scheduler may move
838 a copy out of an arg reg past the NOTE_INSN_FUNCTION_BEGIN. */
839 if ((regno >= FIRST_PSEUDO_REGISTER || fixed_regs[regno])
840 && regno < VEC_length (rtx, reg_base_value))
842 /* If we're inside init_alias_analysis, use new_reg_base_value
843 to reduce the number of relaxation iterations. */
844 if (new_reg_base_value && new_reg_base_value[regno]
845 && DF_REG_DEF_COUNT (regno) == 1)
846 return new_reg_base_value[regno];
848 if (VEC_index (rtx, reg_base_value, regno))
849 return VEC_index (rtx, reg_base_value, regno);
852 return 0;
854 case MEM:
855 /* Check for an argument passed in memory. Only record in the
856 copying-arguments block; it is too hard to track changes
857 otherwise. */
858 if (copying_arguments
859 && (XEXP (src, 0) == arg_pointer_rtx
860 || (GET_CODE (XEXP (src, 0)) == PLUS
861 && XEXP (XEXP (src, 0), 0) == arg_pointer_rtx)))
862 return gen_rtx_ADDRESS (VOIDmode, src);
863 return 0;
865 case CONST:
866 src = XEXP (src, 0);
867 if (GET_CODE (src) != PLUS && GET_CODE (src) != MINUS)
868 break;
870 /* ... fall through ... */
872 case PLUS:
873 case MINUS:
875 rtx temp, src_0 = XEXP (src, 0), src_1 = XEXP (src, 1);
877 /* If either operand is a REG that is a known pointer, then it
878 is the base. */
879 if (REG_P (src_0) && REG_POINTER (src_0))
880 return find_base_value (src_0);
881 if (REG_P (src_1) && REG_POINTER (src_1))
882 return find_base_value (src_1);
884 /* If either operand is a REG, then see if we already have
885 a known value for it. */
886 if (REG_P (src_0))
888 temp = find_base_value (src_0);
889 if (temp != 0)
890 src_0 = temp;
893 if (REG_P (src_1))
895 temp = find_base_value (src_1);
896 if (temp!= 0)
897 src_1 = temp;
900 /* If either base is named object or a special address
901 (like an argument or stack reference), then use it for the
902 base term. */
903 if (src_0 != 0
904 && (GET_CODE (src_0) == SYMBOL_REF
905 || GET_CODE (src_0) == LABEL_REF
906 || (GET_CODE (src_0) == ADDRESS
907 && GET_MODE (src_0) != VOIDmode)))
908 return src_0;
910 if (src_1 != 0
911 && (GET_CODE (src_1) == SYMBOL_REF
912 || GET_CODE (src_1) == LABEL_REF
913 || (GET_CODE (src_1) == ADDRESS
914 && GET_MODE (src_1) != VOIDmode)))
915 return src_1;
917 /* Guess which operand is the base address:
918 If either operand is a symbol, then it is the base. If
919 either operand is a CONST_INT, then the other is the base. */
920 if (GET_CODE (src_1) == CONST_INT || CONSTANT_P (src_0))
921 return find_base_value (src_0);
922 else if (GET_CODE (src_0) == CONST_INT || CONSTANT_P (src_1))
923 return find_base_value (src_1);
925 return 0;
928 case LO_SUM:
929 /* The standard form is (lo_sum reg sym) so look only at the
930 second operand. */
931 return find_base_value (XEXP (src, 1));
933 case AND:
934 /* If the second operand is constant set the base
935 address to the first operand. */
936 if (GET_CODE (XEXP (src, 1)) == CONST_INT && INTVAL (XEXP (src, 1)) != 0)
937 return find_base_value (XEXP (src, 0));
938 return 0;
940 case TRUNCATE:
941 if (GET_MODE_SIZE (GET_MODE (src)) < GET_MODE_SIZE (Pmode))
942 break;
943 /* Fall through. */
944 case HIGH:
945 case PRE_INC:
946 case PRE_DEC:
947 case POST_INC:
948 case POST_DEC:
949 case PRE_MODIFY:
950 case POST_MODIFY:
951 return find_base_value (XEXP (src, 0));
953 case ZERO_EXTEND:
954 case SIGN_EXTEND: /* used for NT/Alpha pointers */
956 rtx temp = find_base_value (XEXP (src, 0));
958 if (temp != 0 && CONSTANT_P (temp))
959 temp = convert_memory_address (Pmode, temp);
961 return temp;
964 default:
965 break;
968 return 0;
971 /* Called from init_alias_analysis indirectly through note_stores. */
973 /* While scanning insns to find base values, reg_seen[N] is nonzero if
974 register N has been set in this function. */
975 static char *reg_seen;
977 /* Addresses which are known not to alias anything else are identified
978 by a unique integer. */
979 static int unique_id;
981 static void
982 record_set (rtx dest, rtx set, void *data ATTRIBUTE_UNUSED)
984 unsigned regno;
985 rtx src;
986 int n;
988 if (!REG_P (dest))
989 return;
991 regno = REGNO (dest);
993 gcc_assert (regno < VEC_length (rtx, reg_base_value));
995 /* If this spans multiple hard registers, then we must indicate that every
996 register has an unusable value. */
997 if (regno < FIRST_PSEUDO_REGISTER)
998 n = hard_regno_nregs[regno][GET_MODE (dest)];
999 else
1000 n = 1;
1001 if (n != 1)
1003 while (--n >= 0)
1005 reg_seen[regno + n] = 1;
1006 new_reg_base_value[regno + n] = 0;
1008 return;
1011 if (set)
1013 /* A CLOBBER wipes out any old value but does not prevent a previously
1014 unset register from acquiring a base address (i.e. reg_seen is not
1015 set). */
1016 if (GET_CODE (set) == CLOBBER)
1018 new_reg_base_value[regno] = 0;
1019 return;
1021 src = SET_SRC (set);
1023 else
1025 if (reg_seen[regno])
1027 new_reg_base_value[regno] = 0;
1028 return;
1030 reg_seen[regno] = 1;
1031 new_reg_base_value[regno] = gen_rtx_ADDRESS (Pmode,
1032 GEN_INT (unique_id++));
1033 return;
1036 /* If this is not the first set of REGNO, see whether the new value
1037 is related to the old one. There are two cases of interest:
1039 (1) The register might be assigned an entirely new value
1040 that has the same base term as the original set.
1042 (2) The set might be a simple self-modification that
1043 cannot change REGNO's base value.
1045 If neither case holds, reject the original base value as invalid.
1046 Note that the following situation is not detected:
1048 extern int x, y; int *p = &x; p += (&y-&x);
1050 ANSI C does not allow computing the difference of addresses
1051 of distinct top level objects. */
1052 if (new_reg_base_value[regno] != 0
1053 && find_base_value (src) != new_reg_base_value[regno])
1054 switch (GET_CODE (src))
1056 case LO_SUM:
1057 case MINUS:
1058 if (XEXP (src, 0) != dest && XEXP (src, 1) != dest)
1059 new_reg_base_value[regno] = 0;
1060 break;
1061 case PLUS:
1062 /* If the value we add in the PLUS is also a valid base value,
1063 this might be the actual base value, and the original value
1064 an index. */
1066 rtx other = NULL_RTX;
1068 if (XEXP (src, 0) == dest)
1069 other = XEXP (src, 1);
1070 else if (XEXP (src, 1) == dest)
1071 other = XEXP (src, 0);
1073 if (! other || find_base_value (other))
1074 new_reg_base_value[regno] = 0;
1075 break;
1077 case AND:
1078 if (XEXP (src, 0) != dest || GET_CODE (XEXP (src, 1)) != CONST_INT)
1079 new_reg_base_value[regno] = 0;
1080 break;
1081 default:
1082 new_reg_base_value[regno] = 0;
1083 break;
1085 /* If this is the first set of a register, record the value. */
1086 else if ((regno >= FIRST_PSEUDO_REGISTER || ! fixed_regs[regno])
1087 && ! reg_seen[regno] && new_reg_base_value[regno] == 0)
1088 new_reg_base_value[regno] = find_base_value (src);
1090 reg_seen[regno] = 1;
1093 /* If a value is known for REGNO, return it. */
1096 get_reg_known_value (unsigned int regno)
1098 if (regno >= FIRST_PSEUDO_REGISTER)
1100 regno -= FIRST_PSEUDO_REGISTER;
1101 if (regno < reg_known_value_size)
1102 return reg_known_value[regno];
1104 return NULL;
1107 /* Set it. */
1109 static void
1110 set_reg_known_value (unsigned int regno, rtx val)
1112 if (regno >= FIRST_PSEUDO_REGISTER)
1114 regno -= FIRST_PSEUDO_REGISTER;
1115 if (regno < reg_known_value_size)
1116 reg_known_value[regno] = val;
1120 /* Similarly for reg_known_equiv_p. */
1122 bool
1123 get_reg_known_equiv_p (unsigned int regno)
1125 if (regno >= FIRST_PSEUDO_REGISTER)
1127 regno -= FIRST_PSEUDO_REGISTER;
1128 if (regno < reg_known_value_size)
1129 return reg_known_equiv_p[regno];
1131 return false;
1134 static void
1135 set_reg_known_equiv_p (unsigned int regno, bool val)
1137 if (regno >= FIRST_PSEUDO_REGISTER)
1139 regno -= FIRST_PSEUDO_REGISTER;
1140 if (regno < reg_known_value_size)
1141 reg_known_equiv_p[regno] = val;
1146 /* Returns a canonical version of X, from the point of view alias
1147 analysis. (For example, if X is a MEM whose address is a register,
1148 and the register has a known value (say a SYMBOL_REF), then a MEM
1149 whose address is the SYMBOL_REF is returned.) */
1152 canon_rtx (rtx x)
1154 /* Recursively look for equivalences. */
1155 if (REG_P (x) && REGNO (x) >= FIRST_PSEUDO_REGISTER)
1157 rtx t = get_reg_known_value (REGNO (x));
1158 if (t == x)
1159 return x;
1160 if (t)
1161 return canon_rtx (t);
1164 if (GET_CODE (x) == PLUS)
1166 rtx x0 = canon_rtx (XEXP (x, 0));
1167 rtx x1 = canon_rtx (XEXP (x, 1));
1169 if (x0 != XEXP (x, 0) || x1 != XEXP (x, 1))
1171 if (GET_CODE (x0) == CONST_INT)
1172 return plus_constant (x1, INTVAL (x0));
1173 else if (GET_CODE (x1) == CONST_INT)
1174 return plus_constant (x0, INTVAL (x1));
1175 return gen_rtx_PLUS (GET_MODE (x), x0, x1);
1179 /* This gives us much better alias analysis when called from
1180 the loop optimizer. Note we want to leave the original
1181 MEM alone, but need to return the canonicalized MEM with
1182 all the flags with their original values. */
1183 else if (MEM_P (x))
1184 x = replace_equiv_address_nv (x, canon_rtx (XEXP (x, 0)));
1186 return x;
1189 /* Return 1 if X and Y are identical-looking rtx's.
1190 Expect that X and Y has been already canonicalized.
1192 We use the data in reg_known_value above to see if two registers with
1193 different numbers are, in fact, equivalent. */
1195 static int
1196 rtx_equal_for_memref_p (rtx x, rtx y)
1198 int i;
1199 int j;
1200 enum rtx_code code;
1201 const char *fmt;
1203 if (x == 0 && y == 0)
1204 return 1;
1205 if (x == 0 || y == 0)
1206 return 0;
1208 if (x == y)
1209 return 1;
1211 code = GET_CODE (x);
1212 /* Rtx's of different codes cannot be equal. */
1213 if (code != GET_CODE (y))
1214 return 0;
1216 /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent.
1217 (REG:SI x) and (REG:HI x) are NOT equivalent. */
1219 if (GET_MODE (x) != GET_MODE (y))
1220 return 0;
1222 /* Some RTL can be compared without a recursive examination. */
1223 switch (code)
1225 case REG:
1226 return REGNO (x) == REGNO (y);
1228 case LABEL_REF:
1229 return XEXP (x, 0) == XEXP (y, 0);
1231 case SYMBOL_REF:
1232 return XSTR (x, 0) == XSTR (y, 0);
1234 case VALUE:
1235 case CONST_INT:
1236 case CONST_DOUBLE:
1237 /* There's no need to compare the contents of CONST_DOUBLEs or
1238 CONST_INTs because pointer equality is a good enough
1239 comparison for these nodes. */
1240 return 0;
1242 default:
1243 break;
1246 /* canon_rtx knows how to handle plus. No need to canonicalize. */
1247 if (code == PLUS)
1248 return ((rtx_equal_for_memref_p (XEXP (x, 0), XEXP (y, 0))
1249 && rtx_equal_for_memref_p (XEXP (x, 1), XEXP (y, 1)))
1250 || (rtx_equal_for_memref_p (XEXP (x, 0), XEXP (y, 1))
1251 && rtx_equal_for_memref_p (XEXP (x, 1), XEXP (y, 0))));
1252 /* For commutative operations, the RTX match if the operand match in any
1253 order. Also handle the simple binary and unary cases without a loop. */
1254 if (COMMUTATIVE_P (x))
1256 rtx xop0 = canon_rtx (XEXP (x, 0));
1257 rtx yop0 = canon_rtx (XEXP (y, 0));
1258 rtx yop1 = canon_rtx (XEXP (y, 1));
1260 return ((rtx_equal_for_memref_p (xop0, yop0)
1261 && rtx_equal_for_memref_p (canon_rtx (XEXP (x, 1)), yop1))
1262 || (rtx_equal_for_memref_p (xop0, yop1)
1263 && rtx_equal_for_memref_p (canon_rtx (XEXP (x, 1)), yop0)));
1265 else if (NON_COMMUTATIVE_P (x))
1267 return (rtx_equal_for_memref_p (canon_rtx (XEXP (x, 0)),
1268 canon_rtx (XEXP (y, 0)))
1269 && rtx_equal_for_memref_p (canon_rtx (XEXP (x, 1)),
1270 canon_rtx (XEXP (y, 1))));
1272 else if (UNARY_P (x))
1273 return rtx_equal_for_memref_p (canon_rtx (XEXP (x, 0)),
1274 canon_rtx (XEXP (y, 0)));
1276 /* Compare the elements. If any pair of corresponding elements
1277 fail to match, return 0 for the whole things.
1279 Limit cases to types which actually appear in addresses. */
1281 fmt = GET_RTX_FORMAT (code);
1282 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1284 switch (fmt[i])
1286 case 'i':
1287 if (XINT (x, i) != XINT (y, i))
1288 return 0;
1289 break;
1291 case 'E':
1292 /* Two vectors must have the same length. */
1293 if (XVECLEN (x, i) != XVECLEN (y, i))
1294 return 0;
1296 /* And the corresponding elements must match. */
1297 for (j = 0; j < XVECLEN (x, i); j++)
1298 if (rtx_equal_for_memref_p (canon_rtx (XVECEXP (x, i, j)),
1299 canon_rtx (XVECEXP (y, i, j))) == 0)
1300 return 0;
1301 break;
1303 case 'e':
1304 if (rtx_equal_for_memref_p (canon_rtx (XEXP (x, i)),
1305 canon_rtx (XEXP (y, i))) == 0)
1306 return 0;
1307 break;
1309 /* This can happen for asm operands. */
1310 case 's':
1311 if (strcmp (XSTR (x, i), XSTR (y, i)))
1312 return 0;
1313 break;
1315 /* This can happen for an asm which clobbers memory. */
1316 case '0':
1317 break;
1319 /* It is believed that rtx's at this level will never
1320 contain anything but integers and other rtx's,
1321 except for within LABEL_REFs and SYMBOL_REFs. */
1322 default:
1323 gcc_unreachable ();
1326 return 1;
1330 find_base_term (rtx x)
1332 cselib_val *val;
1333 struct elt_loc_list *l;
1335 #if defined (FIND_BASE_TERM)
1336 /* Try machine-dependent ways to find the base term. */
1337 x = FIND_BASE_TERM (x);
1338 #endif
1340 switch (GET_CODE (x))
1342 case REG:
1343 return REG_BASE_VALUE (x);
1345 case TRUNCATE:
1346 if (GET_MODE_SIZE (GET_MODE (x)) < GET_MODE_SIZE (Pmode))
1347 return 0;
1348 /* Fall through. */
1349 case HIGH:
1350 case PRE_INC:
1351 case PRE_DEC:
1352 case POST_INC:
1353 case POST_DEC:
1354 case PRE_MODIFY:
1355 case POST_MODIFY:
1356 return find_base_term (XEXP (x, 0));
1358 case ZERO_EXTEND:
1359 case SIGN_EXTEND: /* Used for Alpha/NT pointers */
1361 rtx temp = find_base_term (XEXP (x, 0));
1363 if (temp != 0 && CONSTANT_P (temp))
1364 temp = convert_memory_address (Pmode, temp);
1366 return temp;
1369 case VALUE:
1370 val = CSELIB_VAL_PTR (x);
1371 if (!val)
1372 return 0;
1373 for (l = val->locs; l; l = l->next)
1374 if ((x = find_base_term (l->loc)) != 0)
1375 return x;
1376 return 0;
1378 case CONST:
1379 x = XEXP (x, 0);
1380 if (GET_CODE (x) != PLUS && GET_CODE (x) != MINUS)
1381 return 0;
1382 /* Fall through. */
1383 case LO_SUM:
1384 case PLUS:
1385 case MINUS:
1387 rtx tmp1 = XEXP (x, 0);
1388 rtx tmp2 = XEXP (x, 1);
1390 /* This is a little bit tricky since we have to determine which of
1391 the two operands represents the real base address. Otherwise this
1392 routine may return the index register instead of the base register.
1394 That may cause us to believe no aliasing was possible, when in
1395 fact aliasing is possible.
1397 We use a few simple tests to guess the base register. Additional
1398 tests can certainly be added. For example, if one of the operands
1399 is a shift or multiply, then it must be the index register and the
1400 other operand is the base register. */
1402 if (tmp1 == pic_offset_table_rtx && CONSTANT_P (tmp2))
1403 return find_base_term (tmp2);
1405 /* If either operand is known to be a pointer, then use it
1406 to determine the base term. */
1407 if (REG_P (tmp1) && REG_POINTER (tmp1))
1408 return find_base_term (tmp1);
1410 if (REG_P (tmp2) && REG_POINTER (tmp2))
1411 return find_base_term (tmp2);
1413 /* Neither operand was known to be a pointer. Go ahead and find the
1414 base term for both operands. */
1415 tmp1 = find_base_term (tmp1);
1416 tmp2 = find_base_term (tmp2);
1418 /* If either base term is named object or a special address
1419 (like an argument or stack reference), then use it for the
1420 base term. */
1421 if (tmp1 != 0
1422 && (GET_CODE (tmp1) == SYMBOL_REF
1423 || GET_CODE (tmp1) == LABEL_REF
1424 || (GET_CODE (tmp1) == ADDRESS
1425 && GET_MODE (tmp1) != VOIDmode)))
1426 return tmp1;
1428 if (tmp2 != 0
1429 && (GET_CODE (tmp2) == SYMBOL_REF
1430 || GET_CODE (tmp2) == LABEL_REF
1431 || (GET_CODE (tmp2) == ADDRESS
1432 && GET_MODE (tmp2) != VOIDmode)))
1433 return tmp2;
1435 /* We could not determine which of the two operands was the
1436 base register and which was the index. So we can determine
1437 nothing from the base alias check. */
1438 return 0;
1441 case AND:
1442 if (GET_CODE (XEXP (x, 1)) == CONST_INT && INTVAL (XEXP (x, 1)) != 0)
1443 return find_base_term (XEXP (x, 0));
1444 return 0;
1446 case SYMBOL_REF:
1447 case LABEL_REF:
1448 return x;
1450 default:
1451 return 0;
1455 /* Return 0 if the addresses X and Y are known to point to different
1456 objects, 1 if they might be pointers to the same object. */
1458 static int
1459 base_alias_check (rtx x, rtx y, enum machine_mode x_mode,
1460 enum machine_mode y_mode)
1462 rtx x_base = find_base_term (x);
1463 rtx y_base = find_base_term (y);
1465 /* If the address itself has no known base see if a known equivalent
1466 value has one. If either address still has no known base, nothing
1467 is known about aliasing. */
1468 if (x_base == 0)
1470 rtx x_c;
1472 if (! flag_expensive_optimizations || (x_c = canon_rtx (x)) == x)
1473 return 1;
1475 x_base = find_base_term (x_c);
1476 if (x_base == 0)
1477 return 1;
1480 if (y_base == 0)
1482 rtx y_c;
1483 if (! flag_expensive_optimizations || (y_c = canon_rtx (y)) == y)
1484 return 1;
1486 y_base = find_base_term (y_c);
1487 if (y_base == 0)
1488 return 1;
1491 /* If the base addresses are equal nothing is known about aliasing. */
1492 if (rtx_equal_p (x_base, y_base))
1493 return 1;
1495 /* The base addresses of the read and write are different expressions.
1496 If they are both symbols and they are not accessed via AND, there is
1497 no conflict. We can bring knowledge of object alignment into play
1498 here. For example, on alpha, "char a, b;" can alias one another,
1499 though "char a; long b;" cannot. */
1500 if (GET_CODE (x_base) != ADDRESS && GET_CODE (y_base) != ADDRESS)
1502 if (GET_CODE (x) == AND && GET_CODE (y) == AND)
1503 return 1;
1504 if (GET_CODE (x) == AND
1505 && (GET_CODE (XEXP (x, 1)) != CONST_INT
1506 || (int) GET_MODE_UNIT_SIZE (y_mode) < -INTVAL (XEXP (x, 1))))
1507 return 1;
1508 if (GET_CODE (y) == AND
1509 && (GET_CODE (XEXP (y, 1)) != CONST_INT
1510 || (int) GET_MODE_UNIT_SIZE (x_mode) < -INTVAL (XEXP (y, 1))))
1511 return 1;
1512 /* Differing symbols never alias. */
1513 return 0;
1516 /* If one address is a stack reference there can be no alias:
1517 stack references using different base registers do not alias,
1518 a stack reference can not alias a parameter, and a stack reference
1519 can not alias a global. */
1520 if ((GET_CODE (x_base) == ADDRESS && GET_MODE (x_base) == Pmode)
1521 || (GET_CODE (y_base) == ADDRESS && GET_MODE (y_base) == Pmode))
1522 return 0;
1524 if (! flag_argument_noalias)
1525 return 1;
1527 if (flag_argument_noalias > 1)
1528 return 0;
1530 /* Weak noalias assertion (arguments are distinct, but may match globals). */
1531 return ! (GET_MODE (x_base) == VOIDmode && GET_MODE (y_base) == VOIDmode);
1534 /* Convert the address X into something we can use. This is done by returning
1535 it unchanged unless it is a value; in the latter case we call cselib to get
1536 a more useful rtx. */
1539 get_addr (rtx x)
1541 cselib_val *v;
1542 struct elt_loc_list *l;
1544 if (GET_CODE (x) != VALUE)
1545 return x;
1546 v = CSELIB_VAL_PTR (x);
1547 if (v)
1549 for (l = v->locs; l; l = l->next)
1550 if (CONSTANT_P (l->loc))
1551 return l->loc;
1552 for (l = v->locs; l; l = l->next)
1553 if (!REG_P (l->loc) && !MEM_P (l->loc))
1554 return l->loc;
1555 if (v->locs)
1556 return v->locs->loc;
1558 return x;
1561 /* Return the address of the (N_REFS + 1)th memory reference to ADDR
1562 where SIZE is the size in bytes of the memory reference. If ADDR
1563 is not modified by the memory reference then ADDR is returned. */
1565 static rtx
1566 addr_side_effect_eval (rtx addr, int size, int n_refs)
1568 int offset = 0;
1570 switch (GET_CODE (addr))
1572 case PRE_INC:
1573 offset = (n_refs + 1) * size;
1574 break;
1575 case PRE_DEC:
1576 offset = -(n_refs + 1) * size;
1577 break;
1578 case POST_INC:
1579 offset = n_refs * size;
1580 break;
1581 case POST_DEC:
1582 offset = -n_refs * size;
1583 break;
1585 default:
1586 return addr;
1589 if (offset)
1590 addr = gen_rtx_PLUS (GET_MODE (addr), XEXP (addr, 0),
1591 GEN_INT (offset));
1592 else
1593 addr = XEXP (addr, 0);
1594 addr = canon_rtx (addr);
1596 return addr;
1599 /* Return nonzero if X and Y (memory addresses) could reference the
1600 same location in memory. C is an offset accumulator. When
1601 C is nonzero, we are testing aliases between X and Y + C.
1602 XSIZE is the size in bytes of the X reference,
1603 similarly YSIZE is the size in bytes for Y.
1604 Expect that canon_rtx has been already called for X and Y.
1606 If XSIZE or YSIZE is zero, we do not know the amount of memory being
1607 referenced (the reference was BLKmode), so make the most pessimistic
1608 assumptions.
1610 If XSIZE or YSIZE is negative, we may access memory outside the object
1611 being referenced as a side effect. This can happen when using AND to
1612 align memory references, as is done on the Alpha.
1614 Nice to notice that varying addresses cannot conflict with fp if no
1615 local variables had their addresses taken, but that's too hard now. */
1617 static int
1618 memrefs_conflict_p (int xsize, rtx x, int ysize, rtx y, HOST_WIDE_INT c)
1620 if (GET_CODE (x) == VALUE)
1621 x = get_addr (x);
1622 if (GET_CODE (y) == VALUE)
1623 y = get_addr (y);
1624 if (GET_CODE (x) == HIGH)
1625 x = XEXP (x, 0);
1626 else if (GET_CODE (x) == LO_SUM)
1627 x = XEXP (x, 1);
1628 else
1629 x = addr_side_effect_eval (x, xsize, 0);
1630 if (GET_CODE (y) == HIGH)
1631 y = XEXP (y, 0);
1632 else if (GET_CODE (y) == LO_SUM)
1633 y = XEXP (y, 1);
1634 else
1635 y = addr_side_effect_eval (y, ysize, 0);
1637 if (rtx_equal_for_memref_p (x, y))
1639 if (xsize <= 0 || ysize <= 0)
1640 return 1;
1641 if (c >= 0 && xsize > c)
1642 return 1;
1643 if (c < 0 && ysize+c > 0)
1644 return 1;
1645 return 0;
1648 /* This code used to check for conflicts involving stack references and
1649 globals but the base address alias code now handles these cases. */
1651 if (GET_CODE (x) == PLUS)
1653 /* The fact that X is canonicalized means that this
1654 PLUS rtx is canonicalized. */
1655 rtx x0 = XEXP (x, 0);
1656 rtx x1 = XEXP (x, 1);
1658 if (GET_CODE (y) == PLUS)
1660 /* The fact that Y is canonicalized means that this
1661 PLUS rtx is canonicalized. */
1662 rtx y0 = XEXP (y, 0);
1663 rtx y1 = XEXP (y, 1);
1665 if (rtx_equal_for_memref_p (x1, y1))
1666 return memrefs_conflict_p (xsize, x0, ysize, y0, c);
1667 if (rtx_equal_for_memref_p (x0, y0))
1668 return memrefs_conflict_p (xsize, x1, ysize, y1, c);
1669 if (GET_CODE (x1) == CONST_INT)
1671 if (GET_CODE (y1) == CONST_INT)
1672 return memrefs_conflict_p (xsize, x0, ysize, y0,
1673 c - INTVAL (x1) + INTVAL (y1));
1674 else
1675 return memrefs_conflict_p (xsize, x0, ysize, y,
1676 c - INTVAL (x1));
1678 else if (GET_CODE (y1) == CONST_INT)
1679 return memrefs_conflict_p (xsize, x, ysize, y0, c + INTVAL (y1));
1681 return 1;
1683 else if (GET_CODE (x1) == CONST_INT)
1684 return memrefs_conflict_p (xsize, x0, ysize, y, c - INTVAL (x1));
1686 else if (GET_CODE (y) == PLUS)
1688 /* The fact that Y is canonicalized means that this
1689 PLUS rtx is canonicalized. */
1690 rtx y0 = XEXP (y, 0);
1691 rtx y1 = XEXP (y, 1);
1693 if (GET_CODE (y1) == CONST_INT)
1694 return memrefs_conflict_p (xsize, x, ysize, y0, c + INTVAL (y1));
1695 else
1696 return 1;
1699 if (GET_CODE (x) == GET_CODE (y))
1700 switch (GET_CODE (x))
1702 case MULT:
1704 /* Handle cases where we expect the second operands to be the
1705 same, and check only whether the first operand would conflict
1706 or not. */
1707 rtx x0, y0;
1708 rtx x1 = canon_rtx (XEXP (x, 1));
1709 rtx y1 = canon_rtx (XEXP (y, 1));
1710 if (! rtx_equal_for_memref_p (x1, y1))
1711 return 1;
1712 x0 = canon_rtx (XEXP (x, 0));
1713 y0 = canon_rtx (XEXP (y, 0));
1714 if (rtx_equal_for_memref_p (x0, y0))
1715 return (xsize == 0 || ysize == 0
1716 || (c >= 0 && xsize > c) || (c < 0 && ysize+c > 0));
1718 /* Can't properly adjust our sizes. */
1719 if (GET_CODE (x1) != CONST_INT)
1720 return 1;
1721 xsize /= INTVAL (x1);
1722 ysize /= INTVAL (x1);
1723 c /= INTVAL (x1);
1724 return memrefs_conflict_p (xsize, x0, ysize, y0, c);
1727 default:
1728 break;
1731 /* Treat an access through an AND (e.g. a subword access on an Alpha)
1732 as an access with indeterminate size. Assume that references
1733 besides AND are aligned, so if the size of the other reference is
1734 at least as large as the alignment, assume no other overlap. */
1735 if (GET_CODE (x) == AND && GET_CODE (XEXP (x, 1)) == CONST_INT)
1737 if (GET_CODE (y) == AND || ysize < -INTVAL (XEXP (x, 1)))
1738 xsize = -1;
1739 return memrefs_conflict_p (xsize, canon_rtx (XEXP (x, 0)), ysize, y, c);
1741 if (GET_CODE (y) == AND && GET_CODE (XEXP (y, 1)) == CONST_INT)
1743 /* ??? If we are indexing far enough into the array/structure, we
1744 may yet be able to determine that we can not overlap. But we
1745 also need to that we are far enough from the end not to overlap
1746 a following reference, so we do nothing with that for now. */
1747 if (GET_CODE (x) == AND || xsize < -INTVAL (XEXP (y, 1)))
1748 ysize = -1;
1749 return memrefs_conflict_p (xsize, x, ysize, canon_rtx (XEXP (y, 0)), c);
1752 if (CONSTANT_P (x))
1754 if (GET_CODE (x) == CONST_INT && GET_CODE (y) == CONST_INT)
1756 c += (INTVAL (y) - INTVAL (x));
1757 return (xsize <= 0 || ysize <= 0
1758 || (c >= 0 && xsize > c) || (c < 0 && ysize+c > 0));
1761 if (GET_CODE (x) == CONST)
1763 if (GET_CODE (y) == CONST)
1764 return memrefs_conflict_p (xsize, canon_rtx (XEXP (x, 0)),
1765 ysize, canon_rtx (XEXP (y, 0)), c);
1766 else
1767 return memrefs_conflict_p (xsize, canon_rtx (XEXP (x, 0)),
1768 ysize, y, c);
1770 if (GET_CODE (y) == CONST)
1771 return memrefs_conflict_p (xsize, x, ysize,
1772 canon_rtx (XEXP (y, 0)), c);
1774 if (CONSTANT_P (y))
1775 return (xsize <= 0 || ysize <= 0
1776 || (rtx_equal_for_memref_p (x, y)
1777 && ((c >= 0 && xsize > c) || (c < 0 && ysize+c > 0))));
1779 return 1;
1781 return 1;
1784 /* Functions to compute memory dependencies.
1786 Since we process the insns in execution order, we can build tables
1787 to keep track of what registers are fixed (and not aliased), what registers
1788 are varying in known ways, and what registers are varying in unknown
1789 ways.
1791 If both memory references are volatile, then there must always be a
1792 dependence between the two references, since their order can not be
1793 changed. A volatile and non-volatile reference can be interchanged
1794 though.
1796 A MEM_IN_STRUCT reference at a non-AND varying address can never
1797 conflict with a non-MEM_IN_STRUCT reference at a fixed address. We
1798 also must allow AND addresses, because they may generate accesses
1799 outside the object being referenced. This is used to generate
1800 aligned addresses from unaligned addresses, for instance, the alpha
1801 storeqi_unaligned pattern. */
1803 /* Read dependence: X is read after read in MEM takes place. There can
1804 only be a dependence here if both reads are volatile. */
1807 read_dependence (rtx mem, rtx x)
1809 return MEM_VOLATILE_P (x) && MEM_VOLATILE_P (mem);
1812 /* Returns MEM1 if and only if MEM1 is a scalar at a fixed address and
1813 MEM2 is a reference to a structure at a varying address, or returns
1814 MEM2 if vice versa. Otherwise, returns NULL_RTX. If a non-NULL
1815 value is returned MEM1 and MEM2 can never alias. VARIES_P is used
1816 to decide whether or not an address may vary; it should return
1817 nonzero whenever variation is possible.
1818 MEM1_ADDR and MEM2_ADDR are the addresses of MEM1 and MEM2. */
1820 static rtx
1821 fixed_scalar_and_varying_struct_p (rtx mem1, rtx mem2, rtx mem1_addr,
1822 rtx mem2_addr,
1823 int (*varies_p) (rtx, int))
1825 if (! flag_strict_aliasing)
1826 return NULL_RTX;
1828 if (MEM_ALIAS_SET (mem2)
1829 && MEM_SCALAR_P (mem1) && MEM_IN_STRUCT_P (mem2)
1830 && !varies_p (mem1_addr, 1) && varies_p (mem2_addr, 1))
1831 /* MEM1 is a scalar at a fixed address; MEM2 is a struct at a
1832 varying address. */
1833 return mem1;
1835 if (MEM_ALIAS_SET (mem1)
1836 && MEM_IN_STRUCT_P (mem1) && MEM_SCALAR_P (mem2)
1837 && varies_p (mem1_addr, 1) && !varies_p (mem2_addr, 1))
1838 /* MEM2 is a scalar at a fixed address; MEM1 is a struct at a
1839 varying address. */
1840 return mem2;
1842 return NULL_RTX;
1845 /* Returns nonzero if something about the mode or address format MEM1
1846 indicates that it might well alias *anything*. */
1848 static int
1849 aliases_everything_p (rtx mem)
1851 if (GET_CODE (XEXP (mem, 0)) == AND)
1852 /* If the address is an AND, it's very hard to know at what it is
1853 actually pointing. */
1854 return 1;
1856 return 0;
1859 /* Return true if we can determine that the fields referenced cannot
1860 overlap for any pair of objects. */
1862 static bool
1863 nonoverlapping_component_refs_p (tree x, tree y)
1865 tree fieldx, fieldy, typex, typey, orig_y;
1869 /* The comparison has to be done at a common type, since we don't
1870 know how the inheritance hierarchy works. */
1871 orig_y = y;
1874 fieldx = TREE_OPERAND (x, 1);
1875 typex = TYPE_MAIN_VARIANT (DECL_FIELD_CONTEXT (fieldx));
1877 y = orig_y;
1880 fieldy = TREE_OPERAND (y, 1);
1881 typey = TYPE_MAIN_VARIANT (DECL_FIELD_CONTEXT (fieldy));
1883 if (typex == typey)
1884 goto found;
1886 y = TREE_OPERAND (y, 0);
1888 while (y && TREE_CODE (y) == COMPONENT_REF);
1890 x = TREE_OPERAND (x, 0);
1892 while (x && TREE_CODE (x) == COMPONENT_REF);
1893 /* Never found a common type. */
1894 return false;
1896 found:
1897 /* If we're left with accessing different fields of a structure,
1898 then no overlap. */
1899 if (TREE_CODE (typex) == RECORD_TYPE
1900 && fieldx != fieldy)
1901 return true;
1903 /* The comparison on the current field failed. If we're accessing
1904 a very nested structure, look at the next outer level. */
1905 x = TREE_OPERAND (x, 0);
1906 y = TREE_OPERAND (y, 0);
1908 while (x && y
1909 && TREE_CODE (x) == COMPONENT_REF
1910 && TREE_CODE (y) == COMPONENT_REF);
1912 return false;
1915 /* Look at the bottom of the COMPONENT_REF list for a DECL, and return it. */
1917 static tree
1918 decl_for_component_ref (tree x)
1922 x = TREE_OPERAND (x, 0);
1924 while (x && TREE_CODE (x) == COMPONENT_REF);
1926 return x && DECL_P (x) ? x : NULL_TREE;
1929 /* Walk up the COMPONENT_REF list and adjust OFFSET to compensate for the
1930 offset of the field reference. */
1932 static rtx
1933 adjust_offset_for_component_ref (tree x, rtx offset)
1935 HOST_WIDE_INT ioffset;
1937 if (! offset)
1938 return NULL_RTX;
1940 ioffset = INTVAL (offset);
1943 tree offset = component_ref_field_offset (x);
1944 tree field = TREE_OPERAND (x, 1);
1946 if (! host_integerp (offset, 1))
1947 return NULL_RTX;
1948 ioffset += (tree_low_cst (offset, 1)
1949 + (tree_low_cst (DECL_FIELD_BIT_OFFSET (field), 1)
1950 / BITS_PER_UNIT));
1952 x = TREE_OPERAND (x, 0);
1954 while (x && TREE_CODE (x) == COMPONENT_REF);
1956 return GEN_INT (ioffset);
1959 /* Return nonzero if we can determine the exprs corresponding to memrefs
1960 X and Y and they do not overlap. */
1962 static int
1963 nonoverlapping_memrefs_p (rtx x, rtx y)
1965 tree exprx = MEM_EXPR (x), expry = MEM_EXPR (y);
1966 rtx rtlx, rtly;
1967 rtx basex, basey;
1968 rtx moffsetx, moffsety;
1969 HOST_WIDE_INT offsetx = 0, offsety = 0, sizex, sizey, tem;
1971 /* Unless both have exprs, we can't tell anything. */
1972 if (exprx == 0 || expry == 0)
1973 return 0;
1975 /* If both are field references, we may be able to determine something. */
1976 if (TREE_CODE (exprx) == COMPONENT_REF
1977 && TREE_CODE (expry) == COMPONENT_REF
1978 && nonoverlapping_component_refs_p (exprx, expry))
1979 return 1;
1982 /* If the field reference test failed, look at the DECLs involved. */
1983 moffsetx = MEM_OFFSET (x);
1984 if (TREE_CODE (exprx) == COMPONENT_REF)
1986 if (TREE_CODE (expry) == VAR_DECL
1987 && POINTER_TYPE_P (TREE_TYPE (expry)))
1989 tree field = TREE_OPERAND (exprx, 1);
1990 tree fieldcontext = DECL_FIELD_CONTEXT (field);
1991 if (ipa_type_escape_field_does_not_clobber_p (fieldcontext,
1992 TREE_TYPE (field)))
1993 return 1;
1996 tree t = decl_for_component_ref (exprx);
1997 if (! t)
1998 return 0;
1999 moffsetx = adjust_offset_for_component_ref (exprx, moffsetx);
2000 exprx = t;
2003 else if (INDIRECT_REF_P (exprx))
2005 exprx = TREE_OPERAND (exprx, 0);
2006 if (flag_argument_noalias < 2
2007 || TREE_CODE (exprx) != PARM_DECL)
2008 return 0;
2011 moffsety = MEM_OFFSET (y);
2012 if (TREE_CODE (expry) == COMPONENT_REF)
2014 if (TREE_CODE (exprx) == VAR_DECL
2015 && POINTER_TYPE_P (TREE_TYPE (exprx)))
2017 tree field = TREE_OPERAND (expry, 1);
2018 tree fieldcontext = DECL_FIELD_CONTEXT (field);
2019 if (ipa_type_escape_field_does_not_clobber_p (fieldcontext,
2020 TREE_TYPE (field)))
2021 return 1;
2024 tree t = decl_for_component_ref (expry);
2025 if (! t)
2026 return 0;
2027 moffsety = adjust_offset_for_component_ref (expry, moffsety);
2028 expry = t;
2031 else if (INDIRECT_REF_P (expry))
2033 expry = TREE_OPERAND (expry, 0);
2034 if (flag_argument_noalias < 2
2035 || TREE_CODE (expry) != PARM_DECL)
2036 return 0;
2039 if (! DECL_P (exprx) || ! DECL_P (expry))
2040 return 0;
2042 rtlx = DECL_RTL (exprx);
2043 rtly = DECL_RTL (expry);
2045 /* If either RTL is not a MEM, it must be a REG or CONCAT, meaning they
2046 can't overlap unless they are the same because we never reuse that part
2047 of the stack frame used for locals for spilled pseudos. */
2048 if ((!MEM_P (rtlx) || !MEM_P (rtly))
2049 && ! rtx_equal_p (rtlx, rtly))
2050 return 1;
2052 /* Get the base and offsets of both decls. If either is a register, we
2053 know both are and are the same, so use that as the base. The only
2054 we can avoid overlap is if we can deduce that they are nonoverlapping
2055 pieces of that decl, which is very rare. */
2056 basex = MEM_P (rtlx) ? XEXP (rtlx, 0) : rtlx;
2057 if (GET_CODE (basex) == PLUS && GET_CODE (XEXP (basex, 1)) == CONST_INT)
2058 offsetx = INTVAL (XEXP (basex, 1)), basex = XEXP (basex, 0);
2060 basey = MEM_P (rtly) ? XEXP (rtly, 0) : rtly;
2061 if (GET_CODE (basey) == PLUS && GET_CODE (XEXP (basey, 1)) == CONST_INT)
2062 offsety = INTVAL (XEXP (basey, 1)), basey = XEXP (basey, 0);
2064 /* If the bases are different, we know they do not overlap if both
2065 are constants or if one is a constant and the other a pointer into the
2066 stack frame. Otherwise a different base means we can't tell if they
2067 overlap or not. */
2068 if (! rtx_equal_p (basex, basey))
2069 return ((CONSTANT_P (basex) && CONSTANT_P (basey))
2070 || (CONSTANT_P (basex) && REG_P (basey)
2071 && REGNO_PTR_FRAME_P (REGNO (basey)))
2072 || (CONSTANT_P (basey) && REG_P (basex)
2073 && REGNO_PTR_FRAME_P (REGNO (basex))));
2075 sizex = (!MEM_P (rtlx) ? (int) GET_MODE_SIZE (GET_MODE (rtlx))
2076 : MEM_SIZE (rtlx) ? INTVAL (MEM_SIZE (rtlx))
2077 : -1);
2078 sizey = (!MEM_P (rtly) ? (int) GET_MODE_SIZE (GET_MODE (rtly))
2079 : MEM_SIZE (rtly) ? INTVAL (MEM_SIZE (rtly)) :
2080 -1);
2082 /* If we have an offset for either memref, it can update the values computed
2083 above. */
2084 if (moffsetx)
2085 offsetx += INTVAL (moffsetx), sizex -= INTVAL (moffsetx);
2086 if (moffsety)
2087 offsety += INTVAL (moffsety), sizey -= INTVAL (moffsety);
2089 /* If a memref has both a size and an offset, we can use the smaller size.
2090 We can't do this if the offset isn't known because we must view this
2091 memref as being anywhere inside the DECL's MEM. */
2092 if (MEM_SIZE (x) && moffsetx)
2093 sizex = INTVAL (MEM_SIZE (x));
2094 if (MEM_SIZE (y) && moffsety)
2095 sizey = INTVAL (MEM_SIZE (y));
2097 /* Put the values of the memref with the lower offset in X's values. */
2098 if (offsetx > offsety)
2100 tem = offsetx, offsetx = offsety, offsety = tem;
2101 tem = sizex, sizex = sizey, sizey = tem;
2104 /* If we don't know the size of the lower-offset value, we can't tell
2105 if they conflict. Otherwise, we do the test. */
2106 return sizex >= 0 && offsety >= offsetx + sizex;
2109 /* True dependence: X is read after store in MEM takes place. */
2112 true_dependence (rtx mem, enum machine_mode mem_mode, rtx x,
2113 int (*varies) (rtx, int))
2115 rtx x_addr, mem_addr;
2116 rtx base;
2118 if (MEM_VOLATILE_P (x) && MEM_VOLATILE_P (mem))
2119 return 1;
2121 /* (mem:BLK (scratch)) is a special mechanism to conflict with everything.
2122 This is used in epilogue deallocation functions, and in cselib. */
2123 if (GET_MODE (x) == BLKmode && GET_CODE (XEXP (x, 0)) == SCRATCH)
2124 return 1;
2125 if (GET_MODE (mem) == BLKmode && GET_CODE (XEXP (mem, 0)) == SCRATCH)
2126 return 1;
2127 if (MEM_ALIAS_SET (x) == ALIAS_SET_MEMORY_BARRIER
2128 || MEM_ALIAS_SET (mem) == ALIAS_SET_MEMORY_BARRIER)
2129 return 1;
2131 if (DIFFERENT_ALIAS_SETS_P (x, mem))
2132 return 0;
2134 /* Read-only memory is by definition never modified, and therefore can't
2135 conflict with anything. We don't expect to find read-only set on MEM,
2136 but stupid user tricks can produce them, so don't die. */
2137 if (MEM_READONLY_P (x))
2138 return 0;
2140 if (nonoverlapping_memrefs_p (mem, x))
2141 return 0;
2143 if (mem_mode == VOIDmode)
2144 mem_mode = GET_MODE (mem);
2146 x_addr = get_addr (XEXP (x, 0));
2147 mem_addr = get_addr (XEXP (mem, 0));
2149 base = find_base_term (x_addr);
2150 if (base && (GET_CODE (base) == LABEL_REF
2151 || (GET_CODE (base) == SYMBOL_REF
2152 && CONSTANT_POOL_ADDRESS_P (base))))
2153 return 0;
2155 if (! base_alias_check (x_addr, mem_addr, GET_MODE (x), mem_mode))
2156 return 0;
2158 x_addr = canon_rtx (x_addr);
2159 mem_addr = canon_rtx (mem_addr);
2161 if (! memrefs_conflict_p (GET_MODE_SIZE (mem_mode), mem_addr,
2162 SIZE_FOR_MODE (x), x_addr, 0))
2163 return 0;
2165 if (aliases_everything_p (x))
2166 return 1;
2168 /* We cannot use aliases_everything_p to test MEM, since we must look
2169 at MEM_MODE, rather than GET_MODE (MEM). */
2170 if (mem_mode == QImode || GET_CODE (mem_addr) == AND)
2171 return 1;
2173 /* In true_dependence we also allow BLKmode to alias anything. Why
2174 don't we do this in anti_dependence and output_dependence? */
2175 if (mem_mode == BLKmode || GET_MODE (x) == BLKmode)
2176 return 1;
2178 return ! fixed_scalar_and_varying_struct_p (mem, x, mem_addr, x_addr,
2179 varies);
2182 /* Canonical true dependence: X is read after store in MEM takes place.
2183 Variant of true_dependence which assumes MEM has already been
2184 canonicalized (hence we no longer do that here).
2185 The mem_addr argument has been added, since true_dependence computed
2186 this value prior to canonicalizing. */
2189 canon_true_dependence (rtx mem, enum machine_mode mem_mode, rtx mem_addr,
2190 rtx x, int (*varies) (rtx, int))
2192 rtx x_addr;
2194 if (MEM_VOLATILE_P (x) && MEM_VOLATILE_P (mem))
2195 return 1;
2197 /* (mem:BLK (scratch)) is a special mechanism to conflict with everything.
2198 This is used in epilogue deallocation functions. */
2199 if (GET_MODE (x) == BLKmode && GET_CODE (XEXP (x, 0)) == SCRATCH)
2200 return 1;
2201 if (GET_MODE (mem) == BLKmode && GET_CODE (XEXP (mem, 0)) == SCRATCH)
2202 return 1;
2203 if (MEM_ALIAS_SET (x) == ALIAS_SET_MEMORY_BARRIER
2204 || MEM_ALIAS_SET (mem) == ALIAS_SET_MEMORY_BARRIER)
2205 return 1;
2207 if (DIFFERENT_ALIAS_SETS_P (x, mem))
2208 return 0;
2210 /* Read-only memory is by definition never modified, and therefore can't
2211 conflict with anything. We don't expect to find read-only set on MEM,
2212 but stupid user tricks can produce them, so don't die. */
2213 if (MEM_READONLY_P (x))
2214 return 0;
2216 if (nonoverlapping_memrefs_p (x, mem))
2217 return 0;
2219 x_addr = get_addr (XEXP (x, 0));
2221 if (! base_alias_check (x_addr, mem_addr, GET_MODE (x), mem_mode))
2222 return 0;
2224 x_addr = canon_rtx (x_addr);
2225 if (! memrefs_conflict_p (GET_MODE_SIZE (mem_mode), mem_addr,
2226 SIZE_FOR_MODE (x), x_addr, 0))
2227 return 0;
2229 if (aliases_everything_p (x))
2230 return 1;
2232 /* We cannot use aliases_everything_p to test MEM, since we must look
2233 at MEM_MODE, rather than GET_MODE (MEM). */
2234 if (mem_mode == QImode || GET_CODE (mem_addr) == AND)
2235 return 1;
2237 /* In true_dependence we also allow BLKmode to alias anything. Why
2238 don't we do this in anti_dependence and output_dependence? */
2239 if (mem_mode == BLKmode || GET_MODE (x) == BLKmode)
2240 return 1;
2242 return ! fixed_scalar_and_varying_struct_p (mem, x, mem_addr, x_addr,
2243 varies);
2246 /* Returns nonzero if a write to X might alias a previous read from
2247 (or, if WRITEP is nonzero, a write to) MEM. */
2249 static int
2250 write_dependence_p (rtx mem, rtx x, int writep)
2252 rtx x_addr, mem_addr;
2253 rtx fixed_scalar;
2254 rtx base;
2256 if (MEM_VOLATILE_P (x) && MEM_VOLATILE_P (mem))
2257 return 1;
2259 /* (mem:BLK (scratch)) is a special mechanism to conflict with everything.
2260 This is used in epilogue deallocation functions. */
2261 if (GET_MODE (x) == BLKmode && GET_CODE (XEXP (x, 0)) == SCRATCH)
2262 return 1;
2263 if (GET_MODE (mem) == BLKmode && GET_CODE (XEXP (mem, 0)) == SCRATCH)
2264 return 1;
2265 if (MEM_ALIAS_SET (x) == ALIAS_SET_MEMORY_BARRIER
2266 || MEM_ALIAS_SET (mem) == ALIAS_SET_MEMORY_BARRIER)
2267 return 1;
2269 if (DIFFERENT_ALIAS_SETS_P (x, mem))
2270 return 0;
2272 /* A read from read-only memory can't conflict with read-write memory. */
2273 if (!writep && MEM_READONLY_P (mem))
2274 return 0;
2276 if (nonoverlapping_memrefs_p (x, mem))
2277 return 0;
2279 x_addr = get_addr (XEXP (x, 0));
2280 mem_addr = get_addr (XEXP (mem, 0));
2282 if (! writep)
2284 base = find_base_term (mem_addr);
2285 if (base && (GET_CODE (base) == LABEL_REF
2286 || (GET_CODE (base) == SYMBOL_REF
2287 && CONSTANT_POOL_ADDRESS_P (base))))
2288 return 0;
2291 if (! base_alias_check (x_addr, mem_addr, GET_MODE (x),
2292 GET_MODE (mem)))
2293 return 0;
2295 x_addr = canon_rtx (x_addr);
2296 mem_addr = canon_rtx (mem_addr);
2298 if (!memrefs_conflict_p (SIZE_FOR_MODE (mem), mem_addr,
2299 SIZE_FOR_MODE (x), x_addr, 0))
2300 return 0;
2302 fixed_scalar
2303 = fixed_scalar_and_varying_struct_p (mem, x, mem_addr, x_addr,
2304 rtx_addr_varies_p);
2306 return (!(fixed_scalar == mem && !aliases_everything_p (x))
2307 && !(fixed_scalar == x && !aliases_everything_p (mem)));
2310 /* Anti dependence: X is written after read in MEM takes place. */
2313 anti_dependence (rtx mem, rtx x)
2315 return write_dependence_p (mem, x, /*writep=*/0);
2318 /* Output dependence: X is written after store in MEM takes place. */
2321 output_dependence (rtx mem, rtx x)
2323 return write_dependence_p (mem, x, /*writep=*/1);
2327 void
2328 init_alias_once (void)
2330 int i;
2332 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
2333 /* Check whether this register can hold an incoming pointer
2334 argument. FUNCTION_ARG_REGNO_P tests outgoing register
2335 numbers, so translate if necessary due to register windows. */
2336 if (FUNCTION_ARG_REGNO_P (OUTGOING_REGNO (i))
2337 && HARD_REGNO_MODE_OK (i, Pmode))
2338 static_reg_base_value[i]
2339 = gen_rtx_ADDRESS (VOIDmode, gen_rtx_REG (Pmode, i));
2341 static_reg_base_value[STACK_POINTER_REGNUM]
2342 = gen_rtx_ADDRESS (Pmode, stack_pointer_rtx);
2343 static_reg_base_value[ARG_POINTER_REGNUM]
2344 = gen_rtx_ADDRESS (Pmode, arg_pointer_rtx);
2345 static_reg_base_value[FRAME_POINTER_REGNUM]
2346 = gen_rtx_ADDRESS (Pmode, frame_pointer_rtx);
2347 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
2348 static_reg_base_value[HARD_FRAME_POINTER_REGNUM]
2349 = gen_rtx_ADDRESS (Pmode, hard_frame_pointer_rtx);
2350 #endif
2353 /* Set MEMORY_MODIFIED when X modifies DATA (that is assumed
2354 to be memory reference. */
2355 static bool memory_modified;
2356 static void
2357 memory_modified_1 (rtx x, rtx pat ATTRIBUTE_UNUSED, void *data)
2359 if (MEM_P (x))
2361 if (anti_dependence (x, (rtx)data) || output_dependence (x, (rtx)data))
2362 memory_modified = true;
2367 /* Return true when INSN possibly modify memory contents of MEM
2368 (i.e. address can be modified). */
2369 bool
2370 memory_modified_in_insn_p (rtx mem, rtx insn)
2372 if (!INSN_P (insn))
2373 return false;
2374 memory_modified = false;
2375 note_stores (PATTERN (insn), memory_modified_1, mem);
2376 return memory_modified;
2379 /* Initialize the aliasing machinery. Initialize the REG_KNOWN_VALUE
2380 array. */
2382 void
2383 init_alias_analysis (void)
2385 unsigned int maxreg = max_reg_num ();
2386 int changed, pass;
2387 int i;
2388 unsigned int ui;
2389 rtx insn;
2391 timevar_push (TV_ALIAS_ANALYSIS);
2393 reg_known_value_size = maxreg - FIRST_PSEUDO_REGISTER;
2394 reg_known_value = ggc_calloc (reg_known_value_size, sizeof (rtx));
2395 reg_known_equiv_p = xcalloc (reg_known_value_size, sizeof (bool));
2397 /* If we have memory allocated from the previous run, use it. */
2398 if (old_reg_base_value)
2399 reg_base_value = old_reg_base_value;
2401 if (reg_base_value)
2402 VEC_truncate (rtx, reg_base_value, 0);
2404 VEC_safe_grow_cleared (rtx, gc, reg_base_value, maxreg);
2406 new_reg_base_value = XNEWVEC (rtx, maxreg);
2407 reg_seen = XNEWVEC (char, maxreg);
2409 /* The basic idea is that each pass through this loop will use the
2410 "constant" information from the previous pass to propagate alias
2411 information through another level of assignments.
2413 This could get expensive if the assignment chains are long. Maybe
2414 we should throttle the number of iterations, possibly based on
2415 the optimization level or flag_expensive_optimizations.
2417 We could propagate more information in the first pass by making use
2418 of DF_REG_DEF_COUNT to determine immediately that the alias information
2419 for a pseudo is "constant".
2421 A program with an uninitialized variable can cause an infinite loop
2422 here. Instead of doing a full dataflow analysis to detect such problems
2423 we just cap the number of iterations for the loop.
2425 The state of the arrays for the set chain in question does not matter
2426 since the program has undefined behavior. */
2428 pass = 0;
2431 /* Assume nothing will change this iteration of the loop. */
2432 changed = 0;
2434 /* We want to assign the same IDs each iteration of this loop, so
2435 start counting from zero each iteration of the loop. */
2436 unique_id = 0;
2438 /* We're at the start of the function each iteration through the
2439 loop, so we're copying arguments. */
2440 copying_arguments = true;
2442 /* Wipe the potential alias information clean for this pass. */
2443 memset (new_reg_base_value, 0, maxreg * sizeof (rtx));
2445 /* Wipe the reg_seen array clean. */
2446 memset (reg_seen, 0, maxreg);
2448 /* Mark all hard registers which may contain an address.
2449 The stack, frame and argument pointers may contain an address.
2450 An argument register which can hold a Pmode value may contain
2451 an address even if it is not in BASE_REGS.
2453 The address expression is VOIDmode for an argument and
2454 Pmode for other registers. */
2456 memcpy (new_reg_base_value, static_reg_base_value,
2457 FIRST_PSEUDO_REGISTER * sizeof (rtx));
2459 /* Walk the insns adding values to the new_reg_base_value array. */
2460 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
2462 if (INSN_P (insn))
2464 rtx note, set;
2466 #if defined (HAVE_prologue) || defined (HAVE_epilogue)
2467 /* The prologue/epilogue insns are not threaded onto the
2468 insn chain until after reload has completed. Thus,
2469 there is no sense wasting time checking if INSN is in
2470 the prologue/epilogue until after reload has completed. */
2471 if (reload_completed
2472 && prologue_epilogue_contains (insn))
2473 continue;
2474 #endif
2476 /* If this insn has a noalias note, process it, Otherwise,
2477 scan for sets. A simple set will have no side effects
2478 which could change the base value of any other register. */
2480 if (GET_CODE (PATTERN (insn)) == SET
2481 && REG_NOTES (insn) != 0
2482 && find_reg_note (insn, REG_NOALIAS, NULL_RTX))
2483 record_set (SET_DEST (PATTERN (insn)), NULL_RTX, NULL);
2484 else
2485 note_stores (PATTERN (insn), record_set, NULL);
2487 set = single_set (insn);
2489 if (set != 0
2490 && REG_P (SET_DEST (set))
2491 && REGNO (SET_DEST (set)) >= FIRST_PSEUDO_REGISTER)
2493 unsigned int regno = REGNO (SET_DEST (set));
2494 rtx src = SET_SRC (set);
2495 rtx t;
2497 note = find_reg_equal_equiv_note (insn);
2498 if (note && REG_NOTE_KIND (note) == REG_EQUAL
2499 && DF_REG_DEF_COUNT (regno) != 1)
2500 note = NULL_RTX;
2502 if (note != NULL_RTX
2503 && GET_CODE (XEXP (note, 0)) != EXPR_LIST
2504 && ! rtx_varies_p (XEXP (note, 0), 1)
2505 && ! reg_overlap_mentioned_p (SET_DEST (set),
2506 XEXP (note, 0)))
2508 set_reg_known_value (regno, XEXP (note, 0));
2509 set_reg_known_equiv_p (regno,
2510 REG_NOTE_KIND (note) == REG_EQUIV);
2512 else if (DF_REG_DEF_COUNT (regno) == 1
2513 && GET_CODE (src) == PLUS
2514 && REG_P (XEXP (src, 0))
2515 && (t = get_reg_known_value (REGNO (XEXP (src, 0))))
2516 && GET_CODE (XEXP (src, 1)) == CONST_INT)
2518 t = plus_constant (t, INTVAL (XEXP (src, 1)));
2519 set_reg_known_value (regno, t);
2520 set_reg_known_equiv_p (regno, 0);
2522 else if (DF_REG_DEF_COUNT (regno) == 1
2523 && ! rtx_varies_p (src, 1))
2525 set_reg_known_value (regno, src);
2526 set_reg_known_equiv_p (regno, 0);
2530 else if (NOTE_P (insn)
2531 && NOTE_KIND (insn) == NOTE_INSN_FUNCTION_BEG)
2532 copying_arguments = false;
2535 /* Now propagate values from new_reg_base_value to reg_base_value. */
2536 gcc_assert (maxreg == (unsigned int) max_reg_num ());
2538 for (ui = 0; ui < maxreg; ui++)
2540 if (new_reg_base_value[ui]
2541 && new_reg_base_value[ui] != VEC_index (rtx, reg_base_value, ui)
2542 && ! rtx_equal_p (new_reg_base_value[ui],
2543 VEC_index (rtx, reg_base_value, ui)))
2545 VEC_replace (rtx, reg_base_value, ui, new_reg_base_value[ui]);
2546 changed = 1;
2550 while (changed && ++pass < MAX_ALIAS_LOOP_PASSES);
2552 /* Fill in the remaining entries. */
2553 for (i = 0; i < (int)reg_known_value_size; i++)
2554 if (reg_known_value[i] == 0)
2555 reg_known_value[i] = regno_reg_rtx[i + FIRST_PSEUDO_REGISTER];
2557 /* Clean up. */
2558 free (new_reg_base_value);
2559 new_reg_base_value = 0;
2560 free (reg_seen);
2561 reg_seen = 0;
2562 timevar_pop (TV_ALIAS_ANALYSIS);
2565 void
2566 end_alias_analysis (void)
2568 old_reg_base_value = reg_base_value;
2569 ggc_free (reg_known_value);
2570 reg_known_value = 0;
2571 reg_known_value_size = 0;
2572 free (reg_known_equiv_p);
2573 reg_known_equiv_p = 0;
2576 #include "gt-alias.h"