1 /* Scalar evolution detector.
2 Copyright (C) 2003, 2004, 2005, 2006, 2007 Free Software Foundation, Inc.
3 Contributed by Sebastian Pop <s.pop@laposte.net>
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
25 This pass analyzes the evolution of scalar variables in loop
26 structures. The algorithm is based on the SSA representation,
27 and on the loop hierarchy tree. This algorithm is not based on
28 the notion of versions of a variable, as it was the case for the
29 previous implementations of the scalar evolution algorithm, but
30 it assumes that each defined name is unique.
32 The notation used in this file is called "chains of recurrences",
33 and has been proposed by Eugene Zima, Robert Van Engelen, and
34 others for describing induction variables in programs. For example
35 "b -> {0, +, 2}_1" means that the scalar variable "b" is equal to 0
36 when entering in the loop_1 and has a step 2 in this loop, in other
37 words "for (b = 0; b < N; b+=2);". Note that the coefficients of
38 this chain of recurrence (or chrec [shrek]) can contain the name of
39 other variables, in which case they are called parametric chrecs.
40 For example, "b -> {a, +, 2}_1" means that the initial value of "b"
41 is the value of "a". In most of the cases these parametric chrecs
42 are fully instantiated before their use because symbolic names can
43 hide some difficult cases such as self-references described later
44 (see the Fibonacci example).
46 A short sketch of the algorithm is:
48 Given a scalar variable to be analyzed, follow the SSA edge to
51 - When the definition is a GIMPLE_MODIFY_STMT: if the right hand side
52 (RHS) of the definition cannot be statically analyzed, the answer
53 of the analyzer is: "don't know".
54 Otherwise, for all the variables that are not yet analyzed in the
55 RHS, try to determine their evolution, and finally try to
56 evaluate the operation of the RHS that gives the evolution
57 function of the analyzed variable.
59 - When the definition is a condition-phi-node: determine the
60 evolution function for all the branches of the phi node, and
61 finally merge these evolutions (see chrec_merge).
63 - When the definition is a loop-phi-node: determine its initial
64 condition, that is the SSA edge defined in an outer loop, and
65 keep it symbolic. Then determine the SSA edges that are defined
66 in the body of the loop. Follow the inner edges until ending on
67 another loop-phi-node of the same analyzed loop. If the reached
68 loop-phi-node is not the starting loop-phi-node, then we keep
69 this definition under a symbolic form. If the reached
70 loop-phi-node is the same as the starting one, then we compute a
71 symbolic stride on the return path. The result is then the
72 symbolic chrec {initial_condition, +, symbolic_stride}_loop.
76 Example 1: Illustration of the basic algorithm.
82 | if (c > 10) exit_loop
85 Suppose that we want to know the number of iterations of the
86 loop_1. The exit_loop is controlled by a COND_EXPR (c > 10). We
87 ask the scalar evolution analyzer two questions: what's the
88 scalar evolution (scev) of "c", and what's the scev of "10". For
89 "10" the answer is "10" since it is a scalar constant. For the
90 scalar variable "c", it follows the SSA edge to its definition,
91 "c = b + 1", and then asks again what's the scev of "b".
92 Following the SSA edge, we end on a loop-phi-node "b = phi (a,
93 c)", where the initial condition is "a", and the inner loop edge
94 is "c". The initial condition is kept under a symbolic form (it
95 may be the case that the copy constant propagation has done its
96 work and we end with the constant "3" as one of the edges of the
97 loop-phi-node). The update edge is followed to the end of the
98 loop, and until reaching again the starting loop-phi-node: b -> c
99 -> b. At this point we have drawn a path from "b" to "b" from
100 which we compute the stride in the loop: in this example it is
101 "+1". The resulting scev for "b" is "b -> {a, +, 1}_1". Now
102 that the scev for "b" is known, it is possible to compute the
103 scev for "c", that is "c -> {a + 1, +, 1}_1". In order to
104 determine the number of iterations in the loop_1, we have to
105 instantiate_parameters ({a + 1, +, 1}_1), that gives after some
106 more analysis the scev {4, +, 1}_1, or in other words, this is
107 the function "f (x) = x + 4", where x is the iteration count of
108 the loop_1. Now we have to solve the inequality "x + 4 > 10",
109 and take the smallest iteration number for which the loop is
110 exited: x = 7. This loop runs from x = 0 to x = 7, and in total
111 there are 8 iterations. In terms of loop normalization, we have
112 created a variable that is implicitly defined, "x" or just "_1",
113 and all the other analyzed scalars of the loop are defined in
114 function of this variable:
120 or in terms of a C program:
123 | for (x = 0; x <= 7; x++)
129 Example 2: Illustration of the algorithm on nested loops.
140 For analyzing the scalar evolution of "a", the algorithm follows
141 the SSA edge into the loop's body: "a -> b". "b" is an inner
142 loop-phi-node, and its analysis as in Example 1, gives:
147 Following the SSA edge for the initial condition, we end on "c = a
148 + 2", and then on the starting loop-phi-node "a". From this point,
149 the loop stride is computed: back on "c = a + 2" we get a "+2" in
150 the loop_1, then on the loop-phi-node "b" we compute the overall
151 effect of the inner loop that is "b = c + 30", and we get a "+30"
152 in the loop_1. That means that the overall stride in loop_1 is
153 equal to "+32", and the result is:
158 Example 3: Higher degree polynomials.
172 instantiate_parameters ({5, +, a}_1) -> {5, +, 2, +, 1}_1
173 instantiate_parameters ({5 + a, +, a}_1) -> {7, +, 3, +, 1}_1
175 Example 4: Lucas, Fibonacci, or mixers in general.
187 The syntax "(1, c)_1" stands for a PEELED_CHREC that has the
188 following semantics: during the first iteration of the loop_1, the
189 variable contains the value 1, and then it contains the value "c".
190 Note that this syntax is close to the syntax of the loop-phi-node:
191 "a -> (1, c)_1" vs. "a = phi (1, c)".
193 The symbolic chrec representation contains all the semantics of the
194 original code. What is more difficult is to use this information.
196 Example 5: Flip-flops, or exchangers.
208 Based on these symbolic chrecs, it is possible to refine this
209 information into the more precise PERIODIC_CHRECs:
214 This transformation is not yet implemented.
218 You can find a more detailed description of the algorithm in:
219 http://icps.u-strasbg.fr/~pop/DEA_03_Pop.pdf
220 http://icps.u-strasbg.fr/~pop/DEA_03_Pop.ps.gz. But note that
221 this is a preliminary report and some of the details of the
222 algorithm have changed. I'm working on a research report that
223 updates the description of the algorithms to reflect the design
224 choices used in this implementation.
226 A set of slides show a high level overview of the algorithm and run
227 an example through the scalar evolution analyzer:
228 http://cri.ensmp.fr/~pop/gcc/mar04/slides.pdf
230 The slides that I have presented at the GCC Summit'04 are available
231 at: http://cri.ensmp.fr/~pop/gcc/20040604/gccsummit-lno-spop.pdf
236 #include "coretypes.h"
242 /* These RTL headers are needed for basic-block.h. */
244 #include "basic-block.h"
245 #include "diagnostic.h"
246 #include "tree-flow.h"
247 #include "tree-dump.h"
250 #include "tree-chrec.h"
251 #include "tree-scalar-evolution.h"
252 #include "tree-pass.h"
256 static tree
analyze_scalar_evolution_1 (struct loop
*, tree
, tree
);
257 static tree
resolve_mixers (struct loop
*, tree
);
259 /* The cached information about a ssa name VAR, claiming that inside LOOP,
260 the value of VAR can be expressed as CHREC. */
268 /* Counters for the scev database. */
269 static unsigned nb_set_scev
= 0;
270 static unsigned nb_get_scev
= 0;
272 /* The following trees are unique elements. Thus the comparison of
273 another element to these elements should be done on the pointer to
274 these trees, and not on their value. */
276 /* The SSA_NAMEs that are not yet analyzed are qualified with NULL_TREE. */
277 tree chrec_not_analyzed_yet
;
279 /* Reserved to the cases where the analyzer has detected an
280 undecidable property at compile time. */
281 tree chrec_dont_know
;
283 /* When the analyzer has detected that a property will never
284 happen, then it qualifies it with chrec_known. */
287 static bitmap already_instantiated
;
289 static htab_t scalar_evolution_info
;
292 /* Constructs a new SCEV_INFO_STR structure. */
294 static inline struct scev_info_str
*
295 new_scev_info_str (tree var
)
297 struct scev_info_str
*res
;
299 res
= XNEW (struct scev_info_str
);
301 res
->chrec
= chrec_not_analyzed_yet
;
306 /* Computes a hash function for database element ELT. */
309 hash_scev_info (const void *elt
)
311 return SSA_NAME_VERSION (((struct scev_info_str
*) elt
)->var
);
314 /* Compares database elements E1 and E2. */
317 eq_scev_info (const void *e1
, const void *e2
)
319 const struct scev_info_str
*elt1
= (const struct scev_info_str
*) e1
;
320 const struct scev_info_str
*elt2
= (const struct scev_info_str
*) e2
;
322 return elt1
->var
== elt2
->var
;
325 /* Deletes database element E. */
328 del_scev_info (void *e
)
333 /* Get the index corresponding to VAR in the current LOOP. If
334 it's the first time we ask for this VAR, then we return
335 chrec_not_analyzed_yet for this VAR and return its index. */
338 find_var_scev_info (tree var
)
340 struct scev_info_str
*res
;
341 struct scev_info_str tmp
;
345 slot
= htab_find_slot (scalar_evolution_info
, &tmp
, INSERT
);
348 *slot
= new_scev_info_str (var
);
349 res
= (struct scev_info_str
*) *slot
;
354 /* Return true when CHREC contains symbolic names defined in
358 chrec_contains_symbols_defined_in_loop (tree chrec
, unsigned loop_nb
)
360 if (chrec
== NULL_TREE
)
363 if (TREE_INVARIANT (chrec
))
366 if (TREE_CODE (chrec
) == VAR_DECL
367 || TREE_CODE (chrec
) == PARM_DECL
368 || TREE_CODE (chrec
) == FUNCTION_DECL
369 || TREE_CODE (chrec
) == LABEL_DECL
370 || TREE_CODE (chrec
) == RESULT_DECL
371 || TREE_CODE (chrec
) == FIELD_DECL
)
374 if (TREE_CODE (chrec
) == SSA_NAME
)
376 tree def
= SSA_NAME_DEF_STMT (chrec
);
377 struct loop
*def_loop
= loop_containing_stmt (def
);
378 struct loop
*loop
= get_loop (loop_nb
);
380 if (def_loop
== NULL
)
383 if (loop
== def_loop
|| flow_loop_nested_p (loop
, def_loop
))
389 switch (TREE_CODE_LENGTH (TREE_CODE (chrec
)))
392 if (chrec_contains_symbols_defined_in_loop (TREE_OPERAND (chrec
, 2),
397 if (chrec_contains_symbols_defined_in_loop (TREE_OPERAND (chrec
, 1),
402 if (chrec_contains_symbols_defined_in_loop (TREE_OPERAND (chrec
, 0),
411 /* Return true when PHI is a loop-phi-node. */
414 loop_phi_node_p (tree phi
)
416 /* The implementation of this function is based on the following
417 property: "all the loop-phi-nodes of a loop are contained in the
418 loop's header basic block". */
420 return loop_containing_stmt (phi
)->header
== bb_for_stmt (phi
);
423 /* Compute the scalar evolution for EVOLUTION_FN after crossing LOOP.
424 In general, in the case of multivariate evolutions we want to get
425 the evolution in different loops. LOOP specifies the level for
426 which to get the evolution.
430 | for (j = 0; j < 100; j++)
432 | for (k = 0; k < 100; k++)
434 | i = k + j; - Here the value of i is a function of j, k.
436 | ... = i - Here the value of i is a function of j.
438 | ... = i - Here the value of i is a scalar.
444 | i_1 = phi (i_0, i_2)
448 This loop has the same effect as:
449 LOOP_1 has the same effect as:
453 The overall effect of the loop, "i_0 + 20" in the previous example,
454 is obtained by passing in the parameters: LOOP = 1,
455 EVOLUTION_FN = {i_0, +, 2}_1.
459 compute_overall_effect_of_inner_loop (struct loop
*loop
, tree evolution_fn
)
463 if (evolution_fn
== chrec_dont_know
)
464 return chrec_dont_know
;
466 else if (TREE_CODE (evolution_fn
) == POLYNOMIAL_CHREC
)
468 struct loop
*inner_loop
= get_chrec_loop (evolution_fn
);
470 if (inner_loop
== loop
471 || flow_loop_nested_p (loop
, inner_loop
))
473 tree nb_iter
= number_of_latch_executions (inner_loop
);
475 if (nb_iter
== chrec_dont_know
)
476 return chrec_dont_know
;
481 /* evolution_fn is the evolution function in LOOP. Get
482 its value in the nb_iter-th iteration. */
483 res
= chrec_apply (inner_loop
->num
, evolution_fn
, nb_iter
);
485 /* Continue the computation until ending on a parent of LOOP. */
486 return compute_overall_effect_of_inner_loop (loop
, res
);
493 /* If the evolution function is an invariant, there is nothing to do. */
494 else if (no_evolution_in_loop_p (evolution_fn
, loop
->num
, &val
) && val
)
498 return chrec_dont_know
;
501 /* Determine whether the CHREC is always positive/negative. If the expression
502 cannot be statically analyzed, return false, otherwise set the answer into
506 chrec_is_positive (tree chrec
, bool *value
)
508 bool value0
, value1
, value2
;
509 tree end_value
, nb_iter
;
511 switch (TREE_CODE (chrec
))
513 case POLYNOMIAL_CHREC
:
514 if (!chrec_is_positive (CHREC_LEFT (chrec
), &value0
)
515 || !chrec_is_positive (CHREC_RIGHT (chrec
), &value1
))
518 /* FIXME -- overflows. */
519 if (value0
== value1
)
525 /* Otherwise the chrec is under the form: "{-197, +, 2}_1",
526 and the proof consists in showing that the sign never
527 changes during the execution of the loop, from 0 to
528 loop->nb_iterations. */
529 if (!evolution_function_is_affine_p (chrec
))
532 nb_iter
= number_of_latch_executions (get_chrec_loop (chrec
));
533 if (chrec_contains_undetermined (nb_iter
))
537 /* TODO -- If the test is after the exit, we may decrease the number of
538 iterations by one. */
540 nb_iter
= chrec_fold_minus (type
, nb_iter
, build_int_cst (type
, 1));
543 end_value
= chrec_apply (CHREC_VARIABLE (chrec
), chrec
, nb_iter
);
545 if (!chrec_is_positive (end_value
, &value2
))
549 return value0
== value1
;
552 *value
= (tree_int_cst_sgn (chrec
) == 1);
560 /* Associate CHREC to SCALAR. */
563 set_scalar_evolution (tree scalar
, tree chrec
)
567 if (TREE_CODE (scalar
) != SSA_NAME
)
570 scalar_info
= find_var_scev_info (scalar
);
574 if (dump_flags
& TDF_DETAILS
)
576 fprintf (dump_file
, "(set_scalar_evolution \n");
577 fprintf (dump_file
, " (scalar = ");
578 print_generic_expr (dump_file
, scalar
, 0);
579 fprintf (dump_file
, ")\n (scalar_evolution = ");
580 print_generic_expr (dump_file
, chrec
, 0);
581 fprintf (dump_file
, "))\n");
583 if (dump_flags
& TDF_STATS
)
587 *scalar_info
= chrec
;
590 /* Retrieve the chrec associated to SCALAR in the LOOP. */
593 get_scalar_evolution (tree scalar
)
599 if (dump_flags
& TDF_DETAILS
)
601 fprintf (dump_file
, "(get_scalar_evolution \n");
602 fprintf (dump_file
, " (scalar = ");
603 print_generic_expr (dump_file
, scalar
, 0);
604 fprintf (dump_file
, ")\n");
606 if (dump_flags
& TDF_STATS
)
610 switch (TREE_CODE (scalar
))
613 res
= *find_var_scev_info (scalar
);
622 res
= chrec_not_analyzed_yet
;
626 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
628 fprintf (dump_file
, " (scalar_evolution = ");
629 print_generic_expr (dump_file
, res
, 0);
630 fprintf (dump_file
, "))\n");
636 /* Helper function for add_to_evolution. Returns the evolution
637 function for an assignment of the form "a = b + c", where "a" and
638 "b" are on the strongly connected component. CHREC_BEFORE is the
639 information that we already have collected up to this point.
640 TO_ADD is the evolution of "c".
642 When CHREC_BEFORE has an evolution part in LOOP_NB, add to this
643 evolution the expression TO_ADD, otherwise construct an evolution
644 part for this loop. */
647 add_to_evolution_1 (unsigned loop_nb
, tree chrec_before
, tree to_add
,
650 tree type
, left
, right
;
651 struct loop
*loop
= get_loop (loop_nb
), *chloop
;
653 switch (TREE_CODE (chrec_before
))
655 case POLYNOMIAL_CHREC
:
656 chloop
= get_chrec_loop (chrec_before
);
658 || flow_loop_nested_p (chloop
, loop
))
662 type
= chrec_type (chrec_before
);
664 /* When there is no evolution part in this loop, build it. */
669 right
= SCALAR_FLOAT_TYPE_P (type
)
670 ? build_real (type
, dconst0
)
671 : build_int_cst (type
, 0);
675 var
= CHREC_VARIABLE (chrec_before
);
676 left
= CHREC_LEFT (chrec_before
);
677 right
= CHREC_RIGHT (chrec_before
);
680 to_add
= chrec_convert (type
, to_add
, at_stmt
);
681 right
= chrec_convert (type
, right
, at_stmt
);
682 right
= chrec_fold_plus (type
, right
, to_add
);
683 return build_polynomial_chrec (var
, left
, right
);
687 gcc_assert (flow_loop_nested_p (loop
, chloop
));
689 /* Search the evolution in LOOP_NB. */
690 left
= add_to_evolution_1 (loop_nb
, CHREC_LEFT (chrec_before
),
692 right
= CHREC_RIGHT (chrec_before
);
693 right
= chrec_convert (chrec_type (left
), right
, at_stmt
);
694 return build_polynomial_chrec (CHREC_VARIABLE (chrec_before
),
699 /* These nodes do not depend on a loop. */
700 if (chrec_before
== chrec_dont_know
)
701 return chrec_dont_know
;
704 right
= chrec_convert (chrec_type (left
), to_add
, at_stmt
);
705 return build_polynomial_chrec (loop_nb
, left
, right
);
709 /* Add TO_ADD to the evolution part of CHREC_BEFORE in the dimension
712 Description (provided for completeness, for those who read code in
713 a plane, and for my poor 62 bytes brain that would have forgotten
714 all this in the next two or three months):
716 The algorithm of translation of programs from the SSA representation
717 into the chrecs syntax is based on a pattern matching. After having
718 reconstructed the overall tree expression for a loop, there are only
719 two cases that can arise:
721 1. a = loop-phi (init, a + expr)
722 2. a = loop-phi (init, expr)
724 where EXPR is either a scalar constant with respect to the analyzed
725 loop (this is a degree 0 polynomial), or an expression containing
726 other loop-phi definitions (these are higher degree polynomials).
733 | a = phi (init, a + 5)
740 | a = phi (inita, 2 * b + 3)
741 | b = phi (initb, b + 1)
744 For the first case, the semantics of the SSA representation is:
746 | a (x) = init + \sum_{j = 0}^{x - 1} expr (j)
748 that is, there is a loop index "x" that determines the scalar value
749 of the variable during the loop execution. During the first
750 iteration, the value is that of the initial condition INIT, while
751 during the subsequent iterations, it is the sum of the initial
752 condition with the sum of all the values of EXPR from the initial
753 iteration to the before last considered iteration.
755 For the second case, the semantics of the SSA program is:
757 | a (x) = init, if x = 0;
758 | expr (x - 1), otherwise.
760 The second case corresponds to the PEELED_CHREC, whose syntax is
761 close to the syntax of a loop-phi-node:
763 | phi (init, expr) vs. (init, expr)_x
765 The proof of the translation algorithm for the first case is a
766 proof by structural induction based on the degree of EXPR.
769 When EXPR is a constant with respect to the analyzed loop, or in
770 other words when EXPR is a polynomial of degree 0, the evolution of
771 the variable A in the loop is an affine function with an initial
772 condition INIT, and a step EXPR. In order to show this, we start
773 from the semantics of the SSA representation:
775 f (x) = init + \sum_{j = 0}^{x - 1} expr (j)
777 and since "expr (j)" is a constant with respect to "j",
779 f (x) = init + x * expr
781 Finally, based on the semantics of the pure sum chrecs, by
782 identification we get the corresponding chrecs syntax:
784 f (x) = init * \binom{x}{0} + expr * \binom{x}{1}
785 f (x) -> {init, +, expr}_x
788 Suppose that EXPR is a polynomial of degree N with respect to the
789 analyzed loop_x for which we have already determined that it is
790 written under the chrecs syntax:
792 | expr (x) -> {b_0, +, b_1, +, ..., +, b_{n-1}} (x)
794 We start from the semantics of the SSA program:
796 | f (x) = init + \sum_{j = 0}^{x - 1} expr (j)
798 | f (x) = init + \sum_{j = 0}^{x - 1}
799 | (b_0 * \binom{j}{0} + ... + b_{n-1} * \binom{j}{n-1})
801 | f (x) = init + \sum_{j = 0}^{x - 1}
802 | \sum_{k = 0}^{n - 1} (b_k * \binom{j}{k})
804 | f (x) = init + \sum_{k = 0}^{n - 1}
805 | (b_k * \sum_{j = 0}^{x - 1} \binom{j}{k})
807 | f (x) = init + \sum_{k = 0}^{n - 1}
808 | (b_k * \binom{x}{k + 1})
810 | f (x) = init + b_0 * \binom{x}{1} + ...
811 | + b_{n-1} * \binom{x}{n}
813 | f (x) = init * \binom{x}{0} + b_0 * \binom{x}{1} + ...
814 | + b_{n-1} * \binom{x}{n}
817 And finally from the definition of the chrecs syntax, we identify:
818 | f (x) -> {init, +, b_0, +, ..., +, b_{n-1}}_x
820 This shows the mechanism that stands behind the add_to_evolution
821 function. An important point is that the use of symbolic
822 parameters avoids the need of an analysis schedule.
829 | a = phi (inita, a + 2 + b)
830 | b = phi (initb, b + 1)
833 When analyzing "a", the algorithm keeps "b" symbolically:
835 | a -> {inita, +, 2 + b}_1
837 Then, after instantiation, the analyzer ends on the evolution:
839 | a -> {inita, +, 2 + initb, +, 1}_1
844 add_to_evolution (unsigned loop_nb
, tree chrec_before
, enum tree_code code
,
845 tree to_add
, tree at_stmt
)
847 tree type
= chrec_type (to_add
);
848 tree res
= NULL_TREE
;
850 if (to_add
== NULL_TREE
)
853 /* TO_ADD is either a scalar, or a parameter. TO_ADD is not
854 instantiated at this point. */
855 if (TREE_CODE (to_add
) == POLYNOMIAL_CHREC
)
856 /* This should not happen. */
857 return chrec_dont_know
;
859 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
861 fprintf (dump_file
, "(add_to_evolution \n");
862 fprintf (dump_file
, " (loop_nb = %d)\n", loop_nb
);
863 fprintf (dump_file
, " (chrec_before = ");
864 print_generic_expr (dump_file
, chrec_before
, 0);
865 fprintf (dump_file
, ")\n (to_add = ");
866 print_generic_expr (dump_file
, to_add
, 0);
867 fprintf (dump_file
, ")\n");
870 if (code
== MINUS_EXPR
)
871 to_add
= chrec_fold_multiply (type
, to_add
, SCALAR_FLOAT_TYPE_P (type
)
872 ? build_real (type
, dconstm1
)
873 : build_int_cst_type (type
, -1));
875 res
= add_to_evolution_1 (loop_nb
, chrec_before
, to_add
, at_stmt
);
877 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
879 fprintf (dump_file
, " (res = ");
880 print_generic_expr (dump_file
, res
, 0);
881 fprintf (dump_file
, "))\n");
887 /* Helper function. */
890 set_nb_iterations_in_loop (struct loop
*loop
,
893 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
895 fprintf (dump_file
, " (set_nb_iterations_in_loop = ");
896 print_generic_expr (dump_file
, res
, 0);
897 fprintf (dump_file
, "))\n");
900 loop
->nb_iterations
= res
;
906 /* This section selects the loops that will be good candidates for the
907 scalar evolution analysis. For the moment, greedily select all the
908 loop nests we could analyze. */
910 /* Return true when it is possible to analyze the condition expression
914 analyzable_condition (tree expr
)
918 if (TREE_CODE (expr
) != COND_EXPR
)
921 condition
= TREE_OPERAND (expr
, 0);
923 switch (TREE_CODE (condition
))
943 /* For a loop with a single exit edge, return the COND_EXPR that
944 guards the exit edge. If the expression is too difficult to
945 analyze, then give up. */
948 get_loop_exit_condition (struct loop
*loop
)
950 tree res
= NULL_TREE
;
951 edge exit_edge
= single_exit (loop
);
953 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
954 fprintf (dump_file
, "(get_loop_exit_condition \n ");
960 expr
= last_stmt (exit_edge
->src
);
961 if (analyzable_condition (expr
))
965 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
967 print_generic_expr (dump_file
, res
, 0);
968 fprintf (dump_file
, ")\n");
974 /* Recursively determine and enqueue the exit conditions for a loop. */
977 get_exit_conditions_rec (struct loop
*loop
,
978 VEC(tree
,heap
) **exit_conditions
)
983 /* Recurse on the inner loops, then on the next (sibling) loops. */
984 get_exit_conditions_rec (loop
->inner
, exit_conditions
);
985 get_exit_conditions_rec (loop
->next
, exit_conditions
);
987 if (single_exit (loop
))
989 tree loop_condition
= get_loop_exit_condition (loop
);
992 VEC_safe_push (tree
, heap
, *exit_conditions
, loop_condition
);
996 /* Select the candidate loop nests for the analysis. This function
997 initializes the EXIT_CONDITIONS array. */
1000 select_loops_exit_conditions (VEC(tree
,heap
) **exit_conditions
)
1002 struct loop
*function_body
= current_loops
->tree_root
;
1004 get_exit_conditions_rec (function_body
->inner
, exit_conditions
);
1008 /* Depth first search algorithm. */
1010 typedef enum t_bool
{
1017 static t_bool
follow_ssa_edge (struct loop
*loop
, tree
, tree
, tree
*, int);
1019 /* Follow the ssa edge into the right hand side RHS of an assignment.
1020 Return true if the strongly connected component has been found. */
1023 follow_ssa_edge_in_rhs (struct loop
*loop
, tree at_stmt
, tree rhs
,
1024 tree halting_phi
, tree
*evolution_of_loop
, int limit
)
1026 t_bool res
= t_false
;
1028 tree type_rhs
= TREE_TYPE (rhs
);
1031 /* The RHS is one of the following cases:
1037 - other cases are not yet handled. */
1038 switch (TREE_CODE (rhs
))
1041 /* This assignment is under the form "a_1 = (cast) rhs. */
1042 res
= follow_ssa_edge_in_rhs (loop
, at_stmt
, TREE_OPERAND (rhs
, 0),
1043 halting_phi
, evolution_of_loop
, limit
);
1044 *evolution_of_loop
= chrec_convert (TREE_TYPE (rhs
),
1045 *evolution_of_loop
, at_stmt
);
1049 /* This assignment is under the form "a_1 = 7". */
1054 /* This assignment is under the form: "a_1 = b_2". */
1055 res
= follow_ssa_edge
1056 (loop
, SSA_NAME_DEF_STMT (rhs
), halting_phi
, evolution_of_loop
, limit
);
1060 /* This case is under the form "rhs0 + rhs1". */
1061 rhs0
= TREE_OPERAND (rhs
, 0);
1062 rhs1
= TREE_OPERAND (rhs
, 1);
1063 STRIP_TYPE_NOPS (rhs0
);
1064 STRIP_TYPE_NOPS (rhs1
);
1066 if (TREE_CODE (rhs0
) == SSA_NAME
)
1068 if (TREE_CODE (rhs1
) == SSA_NAME
)
1070 /* Match an assignment under the form:
1072 evol
= *evolution_of_loop
;
1073 res
= follow_ssa_edge
1074 (loop
, SSA_NAME_DEF_STMT (rhs0
), halting_phi
,
1078 *evolution_of_loop
= add_to_evolution
1080 chrec_convert (type_rhs
, evol
, at_stmt
),
1081 PLUS_EXPR
, rhs1
, at_stmt
);
1083 else if (res
== t_false
)
1085 res
= follow_ssa_edge
1086 (loop
, SSA_NAME_DEF_STMT (rhs1
), halting_phi
,
1087 evolution_of_loop
, limit
);
1090 *evolution_of_loop
= add_to_evolution
1092 chrec_convert (type_rhs
, *evolution_of_loop
, at_stmt
),
1093 PLUS_EXPR
, rhs0
, at_stmt
);
1095 else if (res
== t_dont_know
)
1096 *evolution_of_loop
= chrec_dont_know
;
1099 else if (res
== t_dont_know
)
1100 *evolution_of_loop
= chrec_dont_know
;
1105 /* Match an assignment under the form:
1107 res
= follow_ssa_edge
1108 (loop
, SSA_NAME_DEF_STMT (rhs0
), halting_phi
,
1109 evolution_of_loop
, limit
);
1111 *evolution_of_loop
= add_to_evolution
1112 (loop
->num
, chrec_convert (type_rhs
, *evolution_of_loop
,
1114 PLUS_EXPR
, rhs1
, at_stmt
);
1116 else if (res
== t_dont_know
)
1117 *evolution_of_loop
= chrec_dont_know
;
1121 else if (TREE_CODE (rhs1
) == SSA_NAME
)
1123 /* Match an assignment under the form:
1125 res
= follow_ssa_edge
1126 (loop
, SSA_NAME_DEF_STMT (rhs1
), halting_phi
,
1127 evolution_of_loop
, limit
);
1129 *evolution_of_loop
= add_to_evolution
1130 (loop
->num
, chrec_convert (type_rhs
, *evolution_of_loop
,
1132 PLUS_EXPR
, rhs0
, at_stmt
);
1134 else if (res
== t_dont_know
)
1135 *evolution_of_loop
= chrec_dont_know
;
1139 /* Otherwise, match an assignment under the form:
1141 /* And there is nothing to do. */
1147 /* This case is under the form "opnd0 = rhs0 - rhs1". */
1148 rhs0
= TREE_OPERAND (rhs
, 0);
1149 rhs1
= TREE_OPERAND (rhs
, 1);
1150 STRIP_TYPE_NOPS (rhs0
);
1151 STRIP_TYPE_NOPS (rhs1
);
1153 if (TREE_CODE (rhs0
) == SSA_NAME
)
1155 /* Match an assignment under the form:
1157 res
= follow_ssa_edge (loop
, SSA_NAME_DEF_STMT (rhs0
), halting_phi
,
1158 evolution_of_loop
, limit
);
1160 *evolution_of_loop
= add_to_evolution
1161 (loop
->num
, chrec_convert (type_rhs
, *evolution_of_loop
, at_stmt
),
1162 MINUS_EXPR
, rhs1
, at_stmt
);
1164 else if (res
== t_dont_know
)
1165 *evolution_of_loop
= chrec_dont_know
;
1168 /* Otherwise, match an assignment under the form:
1170 /* And there is nothing to do. */
1177 /* This assignment is of the form: "a_1 = ASSERT_EXPR <a_2, ...>"
1178 It must be handled as a copy assignment of the form a_1 = a_2. */
1179 tree op0
= ASSERT_EXPR_VAR (rhs
);
1180 if (TREE_CODE (op0
) == SSA_NAME
)
1181 res
= follow_ssa_edge (loop
, SSA_NAME_DEF_STMT (op0
),
1182 halting_phi
, evolution_of_loop
, limit
);
1197 /* Checks whether the I-th argument of a PHI comes from a backedge. */
1200 backedge_phi_arg_p (tree phi
, int i
)
1202 edge e
= PHI_ARG_EDGE (phi
, i
);
1204 /* We would in fact like to test EDGE_DFS_BACK here, but we do not care
1205 about updating it anywhere, and this should work as well most of the
1207 if (e
->flags
& EDGE_IRREDUCIBLE_LOOP
)
1213 /* Helper function for one branch of the condition-phi-node. Return
1214 true if the strongly connected component has been found following
1217 static inline t_bool
1218 follow_ssa_edge_in_condition_phi_branch (int i
,
1222 tree
*evolution_of_branch
,
1223 tree init_cond
, int limit
)
1225 tree branch
= PHI_ARG_DEF (condition_phi
, i
);
1226 *evolution_of_branch
= chrec_dont_know
;
1228 /* Do not follow back edges (they must belong to an irreducible loop, which
1229 we really do not want to worry about). */
1230 if (backedge_phi_arg_p (condition_phi
, i
))
1233 if (TREE_CODE (branch
) == SSA_NAME
)
1235 *evolution_of_branch
= init_cond
;
1236 return follow_ssa_edge (loop
, SSA_NAME_DEF_STMT (branch
), halting_phi
,
1237 evolution_of_branch
, limit
);
1240 /* This case occurs when one of the condition branches sets
1241 the variable to a constant: i.e. a phi-node like
1242 "a_2 = PHI <a_7(5), 2(6)>;".
1244 FIXME: This case have to be refined correctly:
1245 in some cases it is possible to say something better than
1246 chrec_dont_know, for example using a wrap-around notation. */
1250 /* This function merges the branches of a condition-phi-node in a
1254 follow_ssa_edge_in_condition_phi (struct loop
*loop
,
1257 tree
*evolution_of_loop
, int limit
)
1260 tree init
= *evolution_of_loop
;
1261 tree evolution_of_branch
;
1262 t_bool res
= follow_ssa_edge_in_condition_phi_branch (0, loop
, condition_phi
,
1264 &evolution_of_branch
,
1266 if (res
== t_false
|| res
== t_dont_know
)
1269 *evolution_of_loop
= evolution_of_branch
;
1271 for (i
= 1; i
< PHI_NUM_ARGS (condition_phi
); i
++)
1273 /* Quickly give up when the evolution of one of the branches is
1275 if (*evolution_of_loop
== chrec_dont_know
)
1278 res
= follow_ssa_edge_in_condition_phi_branch (i
, loop
, condition_phi
,
1280 &evolution_of_branch
,
1282 if (res
== t_false
|| res
== t_dont_know
)
1285 *evolution_of_loop
= chrec_merge (*evolution_of_loop
,
1286 evolution_of_branch
);
1292 /* Follow an SSA edge in an inner loop. It computes the overall
1293 effect of the loop, and following the symbolic initial conditions,
1294 it follows the edges in the parent loop. The inner loop is
1295 considered as a single statement. */
1298 follow_ssa_edge_inner_loop_phi (struct loop
*outer_loop
,
1301 tree
*evolution_of_loop
, int limit
)
1303 struct loop
*loop
= loop_containing_stmt (loop_phi_node
);
1304 tree ev
= analyze_scalar_evolution (loop
, PHI_RESULT (loop_phi_node
));
1306 /* Sometimes, the inner loop is too difficult to analyze, and the
1307 result of the analysis is a symbolic parameter. */
1308 if (ev
== PHI_RESULT (loop_phi_node
))
1310 t_bool res
= t_false
;
1313 for (i
= 0; i
< PHI_NUM_ARGS (loop_phi_node
); i
++)
1315 tree arg
= PHI_ARG_DEF (loop_phi_node
, i
);
1318 /* Follow the edges that exit the inner loop. */
1319 bb
= PHI_ARG_EDGE (loop_phi_node
, i
)->src
;
1320 if (!flow_bb_inside_loop_p (loop
, bb
))
1321 res
= follow_ssa_edge_in_rhs (outer_loop
, loop_phi_node
,
1323 evolution_of_loop
, limit
);
1328 /* If the path crosses this loop-phi, give up. */
1330 *evolution_of_loop
= chrec_dont_know
;
1335 /* Otherwise, compute the overall effect of the inner loop. */
1336 ev
= compute_overall_effect_of_inner_loop (loop
, ev
);
1337 return follow_ssa_edge_in_rhs (outer_loop
, loop_phi_node
, ev
, halting_phi
,
1338 evolution_of_loop
, limit
);
1341 /* Follow an SSA edge from a loop-phi-node to itself, constructing a
1342 path that is analyzed on the return walk. */
1345 follow_ssa_edge (struct loop
*loop
, tree def
, tree halting_phi
,
1346 tree
*evolution_of_loop
, int limit
)
1348 struct loop
*def_loop
;
1350 if (TREE_CODE (def
) == NOP_EXPR
)
1353 /* Give up if the path is longer than the MAX that we allow. */
1354 if (limit
++ > PARAM_VALUE (PARAM_SCEV_MAX_EXPR_SIZE
))
1357 def_loop
= loop_containing_stmt (def
);
1359 switch (TREE_CODE (def
))
1362 if (!loop_phi_node_p (def
))
1363 /* DEF is a condition-phi-node. Follow the branches, and
1364 record their evolutions. Finally, merge the collected
1365 information and set the approximation to the main
1367 return follow_ssa_edge_in_condition_phi
1368 (loop
, def
, halting_phi
, evolution_of_loop
, limit
);
1370 /* When the analyzed phi is the halting_phi, the
1371 depth-first search is over: we have found a path from
1372 the halting_phi to itself in the loop. */
1373 if (def
== halting_phi
)
1376 /* Otherwise, the evolution of the HALTING_PHI depends
1377 on the evolution of another loop-phi-node, i.e. the
1378 evolution function is a higher degree polynomial. */
1379 if (def_loop
== loop
)
1383 if (flow_loop_nested_p (loop
, def_loop
))
1384 return follow_ssa_edge_inner_loop_phi
1385 (loop
, def
, halting_phi
, evolution_of_loop
, limit
);
1390 case GIMPLE_MODIFY_STMT
:
1391 return follow_ssa_edge_in_rhs (loop
, def
,
1392 GIMPLE_STMT_OPERAND (def
, 1),
1394 evolution_of_loop
, limit
);
1397 /* At this level of abstraction, the program is just a set
1398 of GIMPLE_MODIFY_STMTs and PHI_NODEs. In principle there is no
1399 other node to be handled. */
1406 /* Given a LOOP_PHI_NODE, this function determines the evolution
1407 function from LOOP_PHI_NODE to LOOP_PHI_NODE in the loop. */
1410 analyze_evolution_in_loop (tree loop_phi_node
,
1414 tree evolution_function
= chrec_not_analyzed_yet
;
1415 struct loop
*loop
= loop_containing_stmt (loop_phi_node
);
1418 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
1420 fprintf (dump_file
, "(analyze_evolution_in_loop \n");
1421 fprintf (dump_file
, " (loop_phi_node = ");
1422 print_generic_expr (dump_file
, loop_phi_node
, 0);
1423 fprintf (dump_file
, ")\n");
1426 for (i
= 0; i
< PHI_NUM_ARGS (loop_phi_node
); i
++)
1428 tree arg
= PHI_ARG_DEF (loop_phi_node
, i
);
1429 tree ssa_chain
, ev_fn
;
1432 /* Select the edges that enter the loop body. */
1433 bb
= PHI_ARG_EDGE (loop_phi_node
, i
)->src
;
1434 if (!flow_bb_inside_loop_p (loop
, bb
))
1437 if (TREE_CODE (arg
) == SSA_NAME
)
1439 ssa_chain
= SSA_NAME_DEF_STMT (arg
);
1441 /* Pass in the initial condition to the follow edge function. */
1443 res
= follow_ssa_edge (loop
, ssa_chain
, loop_phi_node
, &ev_fn
, 0);
1448 /* When it is impossible to go back on the same
1449 loop_phi_node by following the ssa edges, the
1450 evolution is represented by a peeled chrec, i.e. the
1451 first iteration, EV_FN has the value INIT_COND, then
1452 all the other iterations it has the value of ARG.
1453 For the moment, PEELED_CHREC nodes are not built. */
1455 ev_fn
= chrec_dont_know
;
1457 /* When there are multiple back edges of the loop (which in fact never
1458 happens currently, but nevertheless), merge their evolutions. */
1459 evolution_function
= chrec_merge (evolution_function
, ev_fn
);
1462 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
1464 fprintf (dump_file
, " (evolution_function = ");
1465 print_generic_expr (dump_file
, evolution_function
, 0);
1466 fprintf (dump_file
, "))\n");
1469 return evolution_function
;
1472 /* Given a loop-phi-node, return the initial conditions of the
1473 variable on entry of the loop. When the CCP has propagated
1474 constants into the loop-phi-node, the initial condition is
1475 instantiated, otherwise the initial condition is kept symbolic.
1476 This analyzer does not analyze the evolution outside the current
1477 loop, and leaves this task to the on-demand tree reconstructor. */
1480 analyze_initial_condition (tree loop_phi_node
)
1483 tree init_cond
= chrec_not_analyzed_yet
;
1484 struct loop
*loop
= bb_for_stmt (loop_phi_node
)->loop_father
;
1486 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
1488 fprintf (dump_file
, "(analyze_initial_condition \n");
1489 fprintf (dump_file
, " (loop_phi_node = \n");
1490 print_generic_expr (dump_file
, loop_phi_node
, 0);
1491 fprintf (dump_file
, ")\n");
1494 for (i
= 0; i
< PHI_NUM_ARGS (loop_phi_node
); i
++)
1496 tree branch
= PHI_ARG_DEF (loop_phi_node
, i
);
1497 basic_block bb
= PHI_ARG_EDGE (loop_phi_node
, i
)->src
;
1499 /* When the branch is oriented to the loop's body, it does
1500 not contribute to the initial condition. */
1501 if (flow_bb_inside_loop_p (loop
, bb
))
1504 if (init_cond
== chrec_not_analyzed_yet
)
1510 if (TREE_CODE (branch
) == SSA_NAME
)
1512 init_cond
= chrec_dont_know
;
1516 init_cond
= chrec_merge (init_cond
, branch
);
1519 /* Ooops -- a loop without an entry??? */
1520 if (init_cond
== chrec_not_analyzed_yet
)
1521 init_cond
= chrec_dont_know
;
1523 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
1525 fprintf (dump_file
, " (init_cond = ");
1526 print_generic_expr (dump_file
, init_cond
, 0);
1527 fprintf (dump_file
, "))\n");
1533 /* Analyze the scalar evolution for LOOP_PHI_NODE. */
1536 interpret_loop_phi (struct loop
*loop
, tree loop_phi_node
)
1539 struct loop
*phi_loop
= loop_containing_stmt (loop_phi_node
);
1542 if (phi_loop
!= loop
)
1544 struct loop
*subloop
;
1545 tree evolution_fn
= analyze_scalar_evolution
1546 (phi_loop
, PHI_RESULT (loop_phi_node
));
1548 /* Dive one level deeper. */
1549 subloop
= superloop_at_depth (phi_loop
, loop
->depth
+ 1);
1551 /* Interpret the subloop. */
1552 res
= compute_overall_effect_of_inner_loop (subloop
, evolution_fn
);
1556 /* Otherwise really interpret the loop phi. */
1557 init_cond
= analyze_initial_condition (loop_phi_node
);
1558 res
= analyze_evolution_in_loop (loop_phi_node
, init_cond
);
1563 /* This function merges the branches of a condition-phi-node,
1564 contained in the outermost loop, and whose arguments are already
1568 interpret_condition_phi (struct loop
*loop
, tree condition_phi
)
1571 tree res
= chrec_not_analyzed_yet
;
1573 for (i
= 0; i
< PHI_NUM_ARGS (condition_phi
); i
++)
1577 if (backedge_phi_arg_p (condition_phi
, i
))
1579 res
= chrec_dont_know
;
1583 branch_chrec
= analyze_scalar_evolution
1584 (loop
, PHI_ARG_DEF (condition_phi
, i
));
1586 res
= chrec_merge (res
, branch_chrec
);
1592 /* Interpret the right hand side of a GIMPLE_MODIFY_STMT OPND1. If we didn't
1593 analyze this node before, follow the definitions until ending
1594 either on an analyzed GIMPLE_MODIFY_STMT, or on a loop-phi-node. On the
1595 return path, this function propagates evolutions (ala constant copy
1596 propagation). OPND1 is not a GIMPLE expression because we could
1597 analyze the effect of an inner loop: see interpret_loop_phi. */
1600 interpret_rhs_modify_stmt (struct loop
*loop
, tree at_stmt
,
1601 tree opnd1
, tree type
)
1603 tree res
, opnd10
, opnd11
, chrec10
, chrec11
;
1605 if (is_gimple_min_invariant (opnd1
))
1606 return chrec_convert (type
, opnd1
, at_stmt
);
1608 switch (TREE_CODE (opnd1
))
1611 opnd10
= TREE_OPERAND (opnd1
, 0);
1612 opnd11
= TREE_OPERAND (opnd1
, 1);
1613 chrec10
= analyze_scalar_evolution (loop
, opnd10
);
1614 chrec11
= analyze_scalar_evolution (loop
, opnd11
);
1615 chrec10
= chrec_convert (type
, chrec10
, at_stmt
);
1616 chrec11
= chrec_convert (type
, chrec11
, at_stmt
);
1617 res
= chrec_fold_plus (type
, chrec10
, chrec11
);
1621 opnd10
= TREE_OPERAND (opnd1
, 0);
1622 opnd11
= TREE_OPERAND (opnd1
, 1);
1623 chrec10
= analyze_scalar_evolution (loop
, opnd10
);
1624 chrec11
= analyze_scalar_evolution (loop
, opnd11
);
1625 chrec10
= chrec_convert (type
, chrec10
, at_stmt
);
1626 chrec11
= chrec_convert (type
, chrec11
, at_stmt
);
1627 res
= chrec_fold_minus (type
, chrec10
, chrec11
);
1631 opnd10
= TREE_OPERAND (opnd1
, 0);
1632 chrec10
= analyze_scalar_evolution (loop
, opnd10
);
1633 chrec10
= chrec_convert (type
, chrec10
, at_stmt
);
1634 /* TYPE may be integer, real or complex, so use fold_convert. */
1635 res
= chrec_fold_multiply (type
, chrec10
,
1636 fold_convert (type
, integer_minus_one_node
));
1640 opnd10
= TREE_OPERAND (opnd1
, 0);
1641 opnd11
= TREE_OPERAND (opnd1
, 1);
1642 chrec10
= analyze_scalar_evolution (loop
, opnd10
);
1643 chrec11
= analyze_scalar_evolution (loop
, opnd11
);
1644 chrec10
= chrec_convert (type
, chrec10
, at_stmt
);
1645 chrec11
= chrec_convert (type
, chrec11
, at_stmt
);
1646 res
= chrec_fold_multiply (type
, chrec10
, chrec11
);
1650 res
= chrec_convert (type
, analyze_scalar_evolution (loop
, opnd1
),
1655 opnd10
= ASSERT_EXPR_VAR (opnd1
);
1656 res
= chrec_convert (type
, analyze_scalar_evolution (loop
, opnd10
),
1662 opnd10
= TREE_OPERAND (opnd1
, 0);
1663 chrec10
= analyze_scalar_evolution (loop
, opnd10
);
1664 res
= chrec_convert (type
, chrec10
, at_stmt
);
1668 res
= chrec_dont_know
;
1677 /* This section contains all the entry points:
1678 - number_of_iterations_in_loop,
1679 - analyze_scalar_evolution,
1680 - instantiate_parameters.
1683 /* Compute and return the evolution function in WRTO_LOOP, the nearest
1684 common ancestor of DEF_LOOP and USE_LOOP. */
1687 compute_scalar_evolution_in_loop (struct loop
*wrto_loop
,
1688 struct loop
*def_loop
,
1692 if (def_loop
== wrto_loop
)
1695 def_loop
= superloop_at_depth (def_loop
, wrto_loop
->depth
+ 1);
1696 res
= compute_overall_effect_of_inner_loop (def_loop
, ev
);
1698 return analyze_scalar_evolution_1 (wrto_loop
, res
, chrec_not_analyzed_yet
);
1701 /* Folds EXPR, if it is a cast to pointer, assuming that the created
1702 polynomial_chrec does not wrap. */
1705 fold_used_pointer_cast (tree expr
)
1708 tree type
, inner_type
;
1710 if (TREE_CODE (expr
) != NOP_EXPR
&& TREE_CODE (expr
) != CONVERT_EXPR
)
1713 op
= TREE_OPERAND (expr
, 0);
1714 if (TREE_CODE (op
) != POLYNOMIAL_CHREC
)
1717 type
= TREE_TYPE (expr
);
1718 inner_type
= TREE_TYPE (op
);
1720 if (!INTEGRAL_TYPE_P (inner_type
)
1721 || TYPE_PRECISION (inner_type
) != TYPE_PRECISION (type
))
1724 return build_polynomial_chrec (CHREC_VARIABLE (op
),
1725 chrec_convert (type
, CHREC_LEFT (op
), NULL_TREE
),
1726 chrec_convert (type
, CHREC_RIGHT (op
), NULL_TREE
));
1729 /* Returns true if EXPR is an expression corresponding to offset of pointer
1733 pointer_offset_p (tree expr
)
1735 if (TREE_CODE (expr
) == INTEGER_CST
)
1738 if ((TREE_CODE (expr
) == NOP_EXPR
|| TREE_CODE (expr
) == CONVERT_EXPR
)
1739 && INTEGRAL_TYPE_P (TREE_TYPE (TREE_OPERAND (expr
, 0))))
1745 /* EXPR is a scalar evolution of a pointer that is dereferenced or used in
1746 comparison. This means that it must point to a part of some object in
1747 memory, which enables us to argue about overflows and possibly simplify
1748 the EXPR. AT_STMT is the statement in which this conversion has to be
1749 performed. Returns the simplified value.
1756 for (i = -n; i < n; i++)
1759 We generate the following code (assuming that size of int and size_t is
1762 for (i = -n; i < n; i++)
1767 tmp1 = (size_t) i; (1)
1768 tmp2 = 4 * tmp1; (2)
1769 tmp3 = (int *) tmp2; (3)
1770 tmp4 = p + tmp3; (4)
1775 We in general assume that pointer arithmetics does not overflow (since its
1776 behavior is undefined in that case). One of the problems is that our
1777 translation does not capture this property very well -- (int *) is
1778 considered unsigned, hence the computation in (4) does overflow if i is
1781 This impreciseness creates complications in scev analysis. The scalar
1782 evolution of i is [-n, +, 1]. Since int and size_t have the same precision
1783 (in this example), and size_t is unsigned (so we do not care about
1784 overflows), we succeed to derive that scev of tmp1 is [(size_t) -n, +, 1]
1785 and scev of tmp2 is [4 * (size_t) -n, +, 4]. With tmp3, we run into
1786 problem -- [(int *) (4 * (size_t) -n), +, 4] wraps, and since we on several
1787 places assume that this is not the case for scevs with pointer type, we
1788 cannot use this scev for tmp3; hence, its scev is
1789 (int *) [(4 * (size_t) -n), +, 4], and scev of tmp4 is
1790 p + (int *) [(4 * (size_t) -n), +, 4]. Most of the optimizers are unable to
1791 work with scevs of this shape.
1793 However, since tmp4 is dereferenced, all its values must belong to a single
1794 object, and taking into account that the precision of int * and size_t is
1795 the same, it is impossible for its scev to wrap. Hence, we can derive that
1796 its evolution is [p + (int *) (4 * (size_t) -n), +, 4], which the optimizers
1799 ??? Maybe we should use different representation for pointer arithmetics,
1800 however that is a long-term project with a lot of potential for creating
1804 fold_used_pointer (tree expr
, tree at_stmt
)
1806 tree op0
, op1
, new0
, new1
;
1807 enum tree_code code
= TREE_CODE (expr
);
1809 if (code
== PLUS_EXPR
1810 || code
== MINUS_EXPR
)
1812 op0
= TREE_OPERAND (expr
, 0);
1813 op1
= TREE_OPERAND (expr
, 1);
1815 if (pointer_offset_p (op1
))
1817 new0
= fold_used_pointer (op0
, at_stmt
);
1818 new1
= fold_used_pointer_cast (op1
);
1820 else if (code
== PLUS_EXPR
&& pointer_offset_p (op0
))
1822 new0
= fold_used_pointer_cast (op0
);
1823 new1
= fold_used_pointer (op1
, at_stmt
);
1828 if (new0
== op0
&& new1
== op1
)
1831 new0
= chrec_convert (TREE_TYPE (expr
), new0
, at_stmt
);
1832 new1
= chrec_convert (TREE_TYPE (expr
), new1
, at_stmt
);
1834 if (code
== PLUS_EXPR
)
1835 expr
= chrec_fold_plus (TREE_TYPE (expr
), new0
, new1
);
1837 expr
= chrec_fold_minus (TREE_TYPE (expr
), new0
, new1
);
1842 return fold_used_pointer_cast (expr
);
1845 /* Returns true if PTR is dereferenced, or used in comparison. */
1848 pointer_used_p (tree ptr
)
1850 use_operand_p use_p
;
1851 imm_use_iterator imm_iter
;
1853 struct ptr_info_def
*pi
= get_ptr_info (ptr
);
1855 /* Check whether the pointer has a memory tag; if it does, it is
1856 (or at least used to be) dereferenced. */
1857 if ((pi
!= NULL
&& pi
->name_mem_tag
!= NULL
)
1858 || symbol_mem_tag (SSA_NAME_VAR (ptr
)))
1861 FOR_EACH_IMM_USE_FAST (use_p
, imm_iter
, ptr
)
1863 stmt
= USE_STMT (use_p
);
1864 if (TREE_CODE (stmt
) == COND_EXPR
)
1867 if (TREE_CODE (stmt
) != GIMPLE_MODIFY_STMT
)
1870 rhs
= GIMPLE_STMT_OPERAND (stmt
, 1);
1871 if (!COMPARISON_CLASS_P (rhs
))
1874 if (GIMPLE_STMT_OPERAND (stmt
, 0) == ptr
1875 || GIMPLE_STMT_OPERAND (stmt
, 1) == ptr
)
1882 /* Helper recursive function. */
1885 analyze_scalar_evolution_1 (struct loop
*loop
, tree var
, tree res
)
1887 tree def
, type
= TREE_TYPE (var
);
1889 struct loop
*def_loop
;
1891 if (loop
== NULL
|| TREE_CODE (type
) == VECTOR_TYPE
)
1892 return chrec_dont_know
;
1894 if (TREE_CODE (var
) != SSA_NAME
)
1895 return interpret_rhs_modify_stmt (loop
, NULL_TREE
, var
, type
);
1897 def
= SSA_NAME_DEF_STMT (var
);
1898 bb
= bb_for_stmt (def
);
1899 def_loop
= bb
? bb
->loop_father
: NULL
;
1902 || !flow_bb_inside_loop_p (loop
, bb
))
1904 /* Keep the symbolic form. */
1909 if (res
!= chrec_not_analyzed_yet
)
1911 if (loop
!= bb
->loop_father
)
1912 res
= compute_scalar_evolution_in_loop
1913 (find_common_loop (loop
, bb
->loop_father
), bb
->loop_father
, res
);
1918 if (loop
!= def_loop
)
1920 res
= analyze_scalar_evolution_1 (def_loop
, var
, chrec_not_analyzed_yet
);
1921 res
= compute_scalar_evolution_in_loop (loop
, def_loop
, res
);
1926 switch (TREE_CODE (def
))
1928 case GIMPLE_MODIFY_STMT
:
1929 res
= interpret_rhs_modify_stmt (loop
, def
,
1930 GIMPLE_STMT_OPERAND (def
, 1), type
);
1932 if (POINTER_TYPE_P (type
)
1933 && !automatically_generated_chrec_p (res
)
1934 && pointer_used_p (var
))
1935 res
= fold_used_pointer (res
, def
);
1939 if (loop_phi_node_p (def
))
1940 res
= interpret_loop_phi (loop
, def
);
1942 res
= interpret_condition_phi (loop
, def
);
1946 res
= chrec_dont_know
;
1952 /* Keep the symbolic form. */
1953 if (res
== chrec_dont_know
)
1956 if (loop
== def_loop
)
1957 set_scalar_evolution (var
, res
);
1962 /* Entry point for the scalar evolution analyzer.
1963 Analyzes and returns the scalar evolution of the ssa_name VAR.
1964 LOOP_NB is the identifier number of the loop in which the variable
1967 Example of use: having a pointer VAR to a SSA_NAME node, STMT a
1968 pointer to the statement that uses this variable, in order to
1969 determine the evolution function of the variable, use the following
1972 unsigned loop_nb = loop_containing_stmt (stmt)->num;
1973 tree chrec_with_symbols = analyze_scalar_evolution (loop_nb, var);
1974 tree chrec_instantiated = instantiate_parameters
1975 (loop_nb, chrec_with_symbols);
1979 analyze_scalar_evolution (struct loop
*loop
, tree var
)
1983 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
1985 fprintf (dump_file
, "(analyze_scalar_evolution \n");
1986 fprintf (dump_file
, " (loop_nb = %d)\n", loop
->num
);
1987 fprintf (dump_file
, " (scalar = ");
1988 print_generic_expr (dump_file
, var
, 0);
1989 fprintf (dump_file
, ")\n");
1992 res
= analyze_scalar_evolution_1 (loop
, var
, get_scalar_evolution (var
));
1994 if (TREE_CODE (var
) == SSA_NAME
&& res
== chrec_dont_know
)
1997 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
1998 fprintf (dump_file
, ")\n");
2003 /* Analyze scalar evolution of use of VERSION in USE_LOOP with respect to
2004 WRTO_LOOP (which should be a superloop of both USE_LOOP and definition
2007 FOLDED_CASTS is set to true if resolve_mixers used
2008 chrec_convert_aggressive (TODO -- not really, we are way too conservative
2009 at the moment in order to keep things simple). */
2012 analyze_scalar_evolution_in_loop (struct loop
*wrto_loop
, struct loop
*use_loop
,
2013 tree version
, bool *folded_casts
)
2016 tree ev
= version
, tmp
;
2019 *folded_casts
= false;
2022 tmp
= analyze_scalar_evolution (use_loop
, ev
);
2023 ev
= resolve_mixers (use_loop
, tmp
);
2025 if (folded_casts
&& tmp
!= ev
)
2026 *folded_casts
= true;
2028 if (use_loop
== wrto_loop
)
2031 /* If the value of the use changes in the inner loop, we cannot express
2032 its value in the outer loop (we might try to return interval chrec,
2033 but we do not have a user for it anyway) */
2034 if (!no_evolution_in_loop_p (ev
, use_loop
->num
, &val
)
2036 return chrec_dont_know
;
2038 use_loop
= use_loop
->outer
;
2042 /* Returns instantiated value for VERSION in CACHE. */
2045 get_instantiated_value (htab_t cache
, tree version
)
2047 struct scev_info_str
*info
, pattern
;
2049 pattern
.var
= version
;
2050 info
= (struct scev_info_str
*) htab_find (cache
, &pattern
);
2058 /* Sets instantiated value for VERSION to VAL in CACHE. */
2061 set_instantiated_value (htab_t cache
, tree version
, tree val
)
2063 struct scev_info_str
*info
, pattern
;
2066 pattern
.var
= version
;
2067 slot
= htab_find_slot (cache
, &pattern
, INSERT
);
2070 *slot
= new_scev_info_str (version
);
2071 info
= (struct scev_info_str
*) *slot
;
2075 /* Return the closed_loop_phi node for VAR. If there is none, return
2079 loop_closed_phi_def (tree var
)
2085 if (var
== NULL_TREE
2086 || TREE_CODE (var
) != SSA_NAME
)
2089 loop
= loop_containing_stmt (SSA_NAME_DEF_STMT (var
));
2090 exit
= single_exit (loop
);
2094 for (phi
= phi_nodes (exit
->dest
); phi
; phi
= PHI_CHAIN (phi
))
2095 if (PHI_ARG_DEF_FROM_EDGE (phi
, exit
) == var
)
2096 return PHI_RESULT (phi
);
2101 /* Analyze all the parameters of the chrec that were left under a symbolic form,
2102 with respect to LOOP. CHREC is the chrec to instantiate. CACHE is the cache
2103 of already instantiated values. FLAGS modify the way chrecs are
2104 instantiated. SIZE_EXPR is used for computing the size of the expression to
2105 be instantiated, and to stop if it exceeds some limit. */
2107 /* Values for FLAGS. */
2110 INSERT_SUPERLOOP_CHRECS
= 1, /* Loop invariants are replaced with chrecs
2112 FOLD_CONVERSIONS
= 2 /* The conversions that may wrap in
2113 signed/pointer type are folded, as long as the
2114 value of the chrec is preserved. */
2118 instantiate_parameters_1 (struct loop
*loop
, tree chrec
, int flags
, htab_t cache
,
2121 tree res
, op0
, op1
, op2
;
2123 struct loop
*def_loop
;
2124 tree type
= chrec_type (chrec
);
2126 /* Give up if the expression is larger than the MAX that we allow. */
2127 if (size_expr
++ > PARAM_VALUE (PARAM_SCEV_MAX_EXPR_SIZE
))
2128 return chrec_dont_know
;
2130 if (automatically_generated_chrec_p (chrec
)
2131 || is_gimple_min_invariant (chrec
))
2134 switch (TREE_CODE (chrec
))
2137 def_bb
= bb_for_stmt (SSA_NAME_DEF_STMT (chrec
));
2139 /* A parameter (or loop invariant and we do not want to include
2140 evolutions in outer loops), nothing to do. */
2142 || (!(flags
& INSERT_SUPERLOOP_CHRECS
)
2143 && !flow_bb_inside_loop_p (loop
, def_bb
)))
2146 /* We cache the value of instantiated variable to avoid exponential
2147 time complexity due to reevaluations. We also store the convenient
2148 value in the cache in order to prevent infinite recursion -- we do
2149 not want to instantiate the SSA_NAME if it is in a mixer
2150 structure. This is used for avoiding the instantiation of
2151 recursively defined functions, such as:
2153 | a_2 -> {0, +, 1, +, a_2}_1 */
2155 res
= get_instantiated_value (cache
, chrec
);
2159 /* Store the convenient value for chrec in the structure. If it
2160 is defined outside of the loop, we may just leave it in symbolic
2161 form, otherwise we need to admit that we do not know its behavior
2163 res
= !flow_bb_inside_loop_p (loop
, def_bb
) ? chrec
: chrec_dont_know
;
2164 set_instantiated_value (cache
, chrec
, res
);
2166 /* To make things even more complicated, instantiate_parameters_1
2167 calls analyze_scalar_evolution that may call # of iterations
2168 analysis that may in turn call instantiate_parameters_1 again.
2169 To prevent the infinite recursion, keep also the bitmap of
2170 ssa names that are being instantiated globally. */
2171 if (bitmap_bit_p (already_instantiated
, SSA_NAME_VERSION (chrec
)))
2174 def_loop
= find_common_loop (loop
, def_bb
->loop_father
);
2176 /* If the analysis yields a parametric chrec, instantiate the
2178 bitmap_set_bit (already_instantiated
, SSA_NAME_VERSION (chrec
));
2179 res
= analyze_scalar_evolution (def_loop
, chrec
);
2181 /* Don't instantiate loop-closed-ssa phi nodes. */
2182 if (TREE_CODE (res
) == SSA_NAME
2183 && (loop_containing_stmt (SSA_NAME_DEF_STMT (res
)) == NULL
2184 || (loop_containing_stmt (SSA_NAME_DEF_STMT (res
))->depth
2185 > def_loop
->depth
)))
2188 res
= loop_closed_phi_def (chrec
);
2192 if (res
== NULL_TREE
)
2193 res
= chrec_dont_know
;
2196 else if (res
!= chrec_dont_know
)
2197 res
= instantiate_parameters_1 (loop
, res
, flags
, cache
, size_expr
);
2199 bitmap_clear_bit (already_instantiated
, SSA_NAME_VERSION (chrec
));
2201 /* Store the correct value to the cache. */
2202 set_instantiated_value (cache
, chrec
, res
);
2205 case POLYNOMIAL_CHREC
:
2206 op0
= instantiate_parameters_1 (loop
, CHREC_LEFT (chrec
),
2207 flags
, cache
, size_expr
);
2208 if (op0
== chrec_dont_know
)
2209 return chrec_dont_know
;
2211 op1
= instantiate_parameters_1 (loop
, CHREC_RIGHT (chrec
),
2212 flags
, cache
, size_expr
);
2213 if (op1
== chrec_dont_know
)
2214 return chrec_dont_know
;
2216 if (CHREC_LEFT (chrec
) != op0
2217 || CHREC_RIGHT (chrec
) != op1
)
2219 op1
= chrec_convert (chrec_type (op0
), op1
, NULL_TREE
);
2220 chrec
= build_polynomial_chrec (CHREC_VARIABLE (chrec
), op0
, op1
);
2225 op0
= instantiate_parameters_1 (loop
, TREE_OPERAND (chrec
, 0),
2226 flags
, cache
, size_expr
);
2227 if (op0
== chrec_dont_know
)
2228 return chrec_dont_know
;
2230 op1
= instantiate_parameters_1 (loop
, TREE_OPERAND (chrec
, 1),
2231 flags
, cache
, size_expr
);
2232 if (op1
== chrec_dont_know
)
2233 return chrec_dont_know
;
2235 if (TREE_OPERAND (chrec
, 0) != op0
2236 || TREE_OPERAND (chrec
, 1) != op1
)
2238 op0
= chrec_convert (type
, op0
, NULL_TREE
);
2239 op1
= chrec_convert (type
, op1
, NULL_TREE
);
2240 chrec
= chrec_fold_plus (type
, op0
, op1
);
2245 op0
= instantiate_parameters_1 (loop
, TREE_OPERAND (chrec
, 0),
2246 flags
, cache
, size_expr
);
2247 if (op0
== chrec_dont_know
)
2248 return chrec_dont_know
;
2250 op1
= instantiate_parameters_1 (loop
, TREE_OPERAND (chrec
, 1),
2251 flags
, cache
, size_expr
);
2252 if (op1
== chrec_dont_know
)
2253 return chrec_dont_know
;
2255 if (TREE_OPERAND (chrec
, 0) != op0
2256 || TREE_OPERAND (chrec
, 1) != op1
)
2258 op0
= chrec_convert (type
, op0
, NULL_TREE
);
2259 op1
= chrec_convert (type
, op1
, NULL_TREE
);
2260 chrec
= chrec_fold_minus (type
, op0
, op1
);
2265 op0
= instantiate_parameters_1 (loop
, TREE_OPERAND (chrec
, 0),
2266 flags
, cache
, size_expr
);
2267 if (op0
== chrec_dont_know
)
2268 return chrec_dont_know
;
2270 op1
= instantiate_parameters_1 (loop
, TREE_OPERAND (chrec
, 1),
2271 flags
, cache
, size_expr
);
2272 if (op1
== chrec_dont_know
)
2273 return chrec_dont_know
;
2275 if (TREE_OPERAND (chrec
, 0) != op0
2276 || TREE_OPERAND (chrec
, 1) != op1
)
2278 op0
= chrec_convert (type
, op0
, NULL_TREE
);
2279 op1
= chrec_convert (type
, op1
, NULL_TREE
);
2280 chrec
= chrec_fold_multiply (type
, op0
, op1
);
2286 case NON_LVALUE_EXPR
:
2287 op0
= instantiate_parameters_1 (loop
, TREE_OPERAND (chrec
, 0),
2288 flags
, cache
, size_expr
);
2289 if (op0
== chrec_dont_know
)
2290 return chrec_dont_know
;
2292 if (flags
& FOLD_CONVERSIONS
)
2294 tree tmp
= chrec_convert_aggressive (TREE_TYPE (chrec
), op0
);
2299 if (op0
== TREE_OPERAND (chrec
, 0))
2302 /* If we used chrec_convert_aggressive, we can no longer assume that
2303 signed chrecs do not overflow, as chrec_convert does, so avoid
2304 calling it in that case. */
2305 if (flags
& FOLD_CONVERSIONS
)
2306 return fold_convert (TREE_TYPE (chrec
), op0
);
2308 return chrec_convert (TREE_TYPE (chrec
), op0
, NULL_TREE
);
2310 case SCEV_NOT_KNOWN
:
2311 return chrec_dont_know
;
2320 switch (TREE_CODE_LENGTH (TREE_CODE (chrec
)))
2323 op0
= instantiate_parameters_1 (loop
, TREE_OPERAND (chrec
, 0),
2324 flags
, cache
, size_expr
);
2325 if (op0
== chrec_dont_know
)
2326 return chrec_dont_know
;
2328 op1
= instantiate_parameters_1 (loop
, TREE_OPERAND (chrec
, 1),
2329 flags
, cache
, size_expr
);
2330 if (op1
== chrec_dont_know
)
2331 return chrec_dont_know
;
2333 op2
= instantiate_parameters_1 (loop
, TREE_OPERAND (chrec
, 2),
2334 flags
, cache
, size_expr
);
2335 if (op2
== chrec_dont_know
)
2336 return chrec_dont_know
;
2338 if (op0
== TREE_OPERAND (chrec
, 0)
2339 && op1
== TREE_OPERAND (chrec
, 1)
2340 && op2
== TREE_OPERAND (chrec
, 2))
2343 return fold_build3 (TREE_CODE (chrec
),
2344 TREE_TYPE (chrec
), op0
, op1
, op2
);
2347 op0
= instantiate_parameters_1 (loop
, TREE_OPERAND (chrec
, 0),
2348 flags
, cache
, size_expr
);
2349 if (op0
== chrec_dont_know
)
2350 return chrec_dont_know
;
2352 op1
= instantiate_parameters_1 (loop
, TREE_OPERAND (chrec
, 1),
2353 flags
, cache
, size_expr
);
2354 if (op1
== chrec_dont_know
)
2355 return chrec_dont_know
;
2357 if (op0
== TREE_OPERAND (chrec
, 0)
2358 && op1
== TREE_OPERAND (chrec
, 1))
2360 return fold_build2 (TREE_CODE (chrec
), TREE_TYPE (chrec
), op0
, op1
);
2363 op0
= instantiate_parameters_1 (loop
, TREE_OPERAND (chrec
, 0),
2364 flags
, cache
, size_expr
);
2365 if (op0
== chrec_dont_know
)
2366 return chrec_dont_know
;
2367 if (op0
== TREE_OPERAND (chrec
, 0))
2369 return fold_build1 (TREE_CODE (chrec
), TREE_TYPE (chrec
), op0
);
2378 /* Too complicated to handle. */
2379 return chrec_dont_know
;
2382 /* Analyze all the parameters of the chrec that were left under a
2383 symbolic form. LOOP is the loop in which symbolic names have to
2384 be analyzed and instantiated. */
2387 instantiate_parameters (struct loop
*loop
,
2391 htab_t cache
= htab_create (10, hash_scev_info
, eq_scev_info
, del_scev_info
);
2393 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
2395 fprintf (dump_file
, "(instantiate_parameters \n");
2396 fprintf (dump_file
, " (loop_nb = %d)\n", loop
->num
);
2397 fprintf (dump_file
, " (chrec = ");
2398 print_generic_expr (dump_file
, chrec
, 0);
2399 fprintf (dump_file
, ")\n");
2402 res
= instantiate_parameters_1 (loop
, chrec
, INSERT_SUPERLOOP_CHRECS
, cache
,
2405 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
2407 fprintf (dump_file
, " (res = ");
2408 print_generic_expr (dump_file
, res
, 0);
2409 fprintf (dump_file
, "))\n");
2412 htab_delete (cache
);
2417 /* Similar to instantiate_parameters, but does not introduce the
2418 evolutions in outer loops for LOOP invariants in CHREC, and does not
2419 care about causing overflows, as long as they do not affect value
2420 of an expression. */
2423 resolve_mixers (struct loop
*loop
, tree chrec
)
2425 htab_t cache
= htab_create (10, hash_scev_info
, eq_scev_info
, del_scev_info
);
2426 tree ret
= instantiate_parameters_1 (loop
, chrec
, FOLD_CONVERSIONS
, cache
, 0);
2427 htab_delete (cache
);
2431 /* Entry point for the analysis of the number of iterations pass.
2432 This function tries to safely approximate the number of iterations
2433 the loop will run. When this property is not decidable at compile
2434 time, the result is chrec_dont_know. Otherwise the result is
2435 a scalar or a symbolic parameter.
2437 Example of analysis: suppose that the loop has an exit condition:
2439 "if (b > 49) goto end_loop;"
2441 and that in a previous analysis we have determined that the
2442 variable 'b' has an evolution function:
2444 "EF = {23, +, 5}_2".
2446 When we evaluate the function at the point 5, i.e. the value of the
2447 variable 'b' after 5 iterations in the loop, we have EF (5) = 48,
2448 and EF (6) = 53. In this case the value of 'b' on exit is '53' and
2449 the loop body has been executed 6 times. */
2452 number_of_latch_executions (struct loop
*loop
)
2456 struct tree_niter_desc niter_desc
;
2458 /* Determine whether the number_of_iterations_in_loop has already
2460 res
= loop
->nb_iterations
;
2463 res
= chrec_dont_know
;
2465 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
2466 fprintf (dump_file
, "(number_of_iterations_in_loop\n");
2468 exit
= single_exit (loop
);
2472 if (!number_of_iterations_exit (loop
, exit
, &niter_desc
, false))
2475 type
= TREE_TYPE (niter_desc
.niter
);
2476 if (integer_nonzerop (niter_desc
.may_be_zero
))
2477 res
= build_int_cst (type
, 0);
2478 else if (integer_zerop (niter_desc
.may_be_zero
))
2479 res
= niter_desc
.niter
;
2481 res
= chrec_dont_know
;
2484 return set_nb_iterations_in_loop (loop
, res
);
2487 /* Returns the number of executions of the exit condition of LOOP,
2488 i.e., the number by one higher than number_of_latch_executions.
2489 Note that unline number_of_latch_executions, this number does
2490 not necessarily fit in the unsigned variant of the type of
2491 the control variable -- if the number of iterations is a constant,
2492 we return chrec_dont_know if adding one to number_of_latch_executions
2493 overflows; however, in case the number of iterations is symbolic
2494 expression, the caller is responsible for dealing with this
2495 the possible overflow. */
2498 number_of_exit_cond_executions (struct loop
*loop
)
2500 tree ret
= number_of_latch_executions (loop
);
2501 tree type
= chrec_type (ret
);
2503 if (chrec_contains_undetermined (ret
))
2506 ret
= chrec_fold_plus (type
, ret
, build_int_cst (type
, 1));
2507 if (TREE_CODE (ret
) == INTEGER_CST
2508 && TREE_OVERFLOW (ret
))
2509 return chrec_dont_know
;
2514 /* One of the drivers for testing the scalar evolutions analysis.
2515 This function computes the number of iterations for all the loops
2516 from the EXIT_CONDITIONS array. */
2519 number_of_iterations_for_all_loops (VEC(tree
,heap
) **exit_conditions
)
2522 unsigned nb_chrec_dont_know_loops
= 0;
2523 unsigned nb_static_loops
= 0;
2526 for (i
= 0; VEC_iterate (tree
, *exit_conditions
, i
, cond
); i
++)
2528 tree res
= number_of_latch_executions (loop_containing_stmt (cond
));
2529 if (chrec_contains_undetermined (res
))
2530 nb_chrec_dont_know_loops
++;
2537 fprintf (dump_file
, "\n(\n");
2538 fprintf (dump_file
, "-----------------------------------------\n");
2539 fprintf (dump_file
, "%d\tnb_chrec_dont_know_loops\n", nb_chrec_dont_know_loops
);
2540 fprintf (dump_file
, "%d\tnb_static_loops\n", nb_static_loops
);
2541 fprintf (dump_file
, "%d\tnb_total_loops\n", number_of_loops ());
2542 fprintf (dump_file
, "-----------------------------------------\n");
2543 fprintf (dump_file
, ")\n\n");
2545 print_loop_ir (dump_file
);
2551 /* Counters for the stats. */
2557 unsigned nb_affine_multivar
;
2558 unsigned nb_higher_poly
;
2559 unsigned nb_chrec_dont_know
;
2560 unsigned nb_undetermined
;
2563 /* Reset the counters. */
2566 reset_chrecs_counters (struct chrec_stats
*stats
)
2568 stats
->nb_chrecs
= 0;
2569 stats
->nb_affine
= 0;
2570 stats
->nb_affine_multivar
= 0;
2571 stats
->nb_higher_poly
= 0;
2572 stats
->nb_chrec_dont_know
= 0;
2573 stats
->nb_undetermined
= 0;
2576 /* Dump the contents of a CHREC_STATS structure. */
2579 dump_chrecs_stats (FILE *file
, struct chrec_stats
*stats
)
2581 fprintf (file
, "\n(\n");
2582 fprintf (file
, "-----------------------------------------\n");
2583 fprintf (file
, "%d\taffine univariate chrecs\n", stats
->nb_affine
);
2584 fprintf (file
, "%d\taffine multivariate chrecs\n", stats
->nb_affine_multivar
);
2585 fprintf (file
, "%d\tdegree greater than 2 polynomials\n",
2586 stats
->nb_higher_poly
);
2587 fprintf (file
, "%d\tchrec_dont_know chrecs\n", stats
->nb_chrec_dont_know
);
2588 fprintf (file
, "-----------------------------------------\n");
2589 fprintf (file
, "%d\ttotal chrecs\n", stats
->nb_chrecs
);
2590 fprintf (file
, "%d\twith undetermined coefficients\n",
2591 stats
->nb_undetermined
);
2592 fprintf (file
, "-----------------------------------------\n");
2593 fprintf (file
, "%d\tchrecs in the scev database\n",
2594 (int) htab_elements (scalar_evolution_info
));
2595 fprintf (file
, "%d\tsets in the scev database\n", nb_set_scev
);
2596 fprintf (file
, "%d\tgets in the scev database\n", nb_get_scev
);
2597 fprintf (file
, "-----------------------------------------\n");
2598 fprintf (file
, ")\n\n");
2601 /* Gather statistics about CHREC. */
2604 gather_chrec_stats (tree chrec
, struct chrec_stats
*stats
)
2606 if (dump_file
&& (dump_flags
& TDF_STATS
))
2608 fprintf (dump_file
, "(classify_chrec ");
2609 print_generic_expr (dump_file
, chrec
, 0);
2610 fprintf (dump_file
, "\n");
2615 if (chrec
== NULL_TREE
)
2617 stats
->nb_undetermined
++;
2621 switch (TREE_CODE (chrec
))
2623 case POLYNOMIAL_CHREC
:
2624 if (evolution_function_is_affine_p (chrec
))
2626 if (dump_file
&& (dump_flags
& TDF_STATS
))
2627 fprintf (dump_file
, " affine_univariate\n");
2630 else if (evolution_function_is_affine_multivariate_p (chrec
))
2632 if (dump_file
&& (dump_flags
& TDF_STATS
))
2633 fprintf (dump_file
, " affine_multivariate\n");
2634 stats
->nb_affine_multivar
++;
2638 if (dump_file
&& (dump_flags
& TDF_STATS
))
2639 fprintf (dump_file
, " higher_degree_polynomial\n");
2640 stats
->nb_higher_poly
++;
2649 if (chrec_contains_undetermined (chrec
))
2651 if (dump_file
&& (dump_flags
& TDF_STATS
))
2652 fprintf (dump_file
, " undetermined\n");
2653 stats
->nb_undetermined
++;
2656 if (dump_file
&& (dump_flags
& TDF_STATS
))
2657 fprintf (dump_file
, ")\n");
2660 /* One of the drivers for testing the scalar evolutions analysis.
2661 This function analyzes the scalar evolution of all the scalars
2662 defined as loop phi nodes in one of the loops from the
2663 EXIT_CONDITIONS array.
2665 TODO Optimization: A loop is in canonical form if it contains only
2666 a single scalar loop phi node. All the other scalars that have an
2667 evolution in the loop are rewritten in function of this single
2668 index. This allows the parallelization of the loop. */
2671 analyze_scalar_evolution_for_all_loop_phi_nodes (VEC(tree
,heap
) **exit_conditions
)
2674 struct chrec_stats stats
;
2677 reset_chrecs_counters (&stats
);
2679 for (i
= 0; VEC_iterate (tree
, *exit_conditions
, i
, cond
); i
++)
2685 loop
= loop_containing_stmt (cond
);
2688 for (phi
= phi_nodes (bb
); phi
; phi
= PHI_CHAIN (phi
))
2689 if (is_gimple_reg (PHI_RESULT (phi
)))
2691 chrec
= instantiate_parameters
2693 analyze_scalar_evolution (loop
, PHI_RESULT (phi
)));
2695 if (dump_file
&& (dump_flags
& TDF_STATS
))
2696 gather_chrec_stats (chrec
, &stats
);
2700 if (dump_file
&& (dump_flags
& TDF_STATS
))
2701 dump_chrecs_stats (dump_file
, &stats
);
2704 /* Callback for htab_traverse, gathers information on chrecs in the
2708 gather_stats_on_scev_database_1 (void **slot
, void *stats
)
2710 struct scev_info_str
*entry
= (struct scev_info_str
*) *slot
;
2712 gather_chrec_stats (entry
->chrec
, (struct chrec_stats
*) stats
);
2717 /* Classify the chrecs of the whole database. */
2720 gather_stats_on_scev_database (void)
2722 struct chrec_stats stats
;
2727 reset_chrecs_counters (&stats
);
2729 htab_traverse (scalar_evolution_info
, gather_stats_on_scev_database_1
,
2732 dump_chrecs_stats (dump_file
, &stats
);
2740 initialize_scalar_evolutions_analyzer (void)
2742 /* The elements below are unique. */
2743 if (chrec_dont_know
== NULL_TREE
)
2745 chrec_not_analyzed_yet
= NULL_TREE
;
2746 chrec_dont_know
= make_node (SCEV_NOT_KNOWN
);
2747 chrec_known
= make_node (SCEV_KNOWN
);
2748 TREE_TYPE (chrec_dont_know
) = void_type_node
;
2749 TREE_TYPE (chrec_known
) = void_type_node
;
2753 /* Initialize the analysis of scalar evolutions for LOOPS. */
2756 scev_initialize (void)
2761 scalar_evolution_info
= htab_create (100, hash_scev_info
,
2762 eq_scev_info
, del_scev_info
);
2763 already_instantiated
= BITMAP_ALLOC (NULL
);
2765 initialize_scalar_evolutions_analyzer ();
2767 FOR_EACH_LOOP (li
, loop
, 0)
2769 loop
->nb_iterations
= NULL_TREE
;
2773 /* Cleans up the information cached by the scalar evolutions analysis. */
2781 if (!scalar_evolution_info
|| !current_loops
)
2784 htab_empty (scalar_evolution_info
);
2785 FOR_EACH_LOOP (li
, loop
, 0)
2787 loop
->nb_iterations
= NULL_TREE
;
2791 /* Checks whether OP behaves as a simple affine iv of LOOP in STMT and returns
2792 its base and step in IV if possible. If ALLOW_NONCONSTANT_STEP is true, we
2793 want step to be invariant in LOOP. Otherwise we require it to be an
2794 integer constant. IV->no_overflow is set to true if we are sure the iv cannot
2795 overflow (e.g. because it is computed in signed arithmetics). */
2798 simple_iv (struct loop
*loop
, tree stmt
, tree op
, affine_iv
*iv
,
2799 bool allow_nonconstant_step
)
2801 basic_block bb
= bb_for_stmt (stmt
);
2805 iv
->base
= NULL_TREE
;
2806 iv
->step
= NULL_TREE
;
2807 iv
->no_overflow
= false;
2809 type
= TREE_TYPE (op
);
2810 if (TREE_CODE (type
) != INTEGER_TYPE
2811 && TREE_CODE (type
) != POINTER_TYPE
)
2814 ev
= analyze_scalar_evolution_in_loop (loop
, bb
->loop_father
, op
,
2816 if (chrec_contains_undetermined (ev
))
2819 if (tree_does_not_contain_chrecs (ev
)
2820 && !chrec_contains_symbols_defined_in_loop (ev
, loop
->num
))
2823 iv
->step
= build_int_cst (TREE_TYPE (ev
), 0);
2824 iv
->no_overflow
= true;
2828 if (TREE_CODE (ev
) != POLYNOMIAL_CHREC
2829 || CHREC_VARIABLE (ev
) != (unsigned) loop
->num
)
2832 iv
->step
= CHREC_RIGHT (ev
);
2833 if (allow_nonconstant_step
)
2835 if (tree_contains_chrecs (iv
->step
, NULL
)
2836 || chrec_contains_symbols_defined_in_loop (iv
->step
, loop
->num
))
2839 else if (TREE_CODE (iv
->step
) != INTEGER_CST
)
2842 iv
->base
= CHREC_LEFT (ev
);
2843 if (tree_contains_chrecs (iv
->base
, NULL
)
2844 || chrec_contains_symbols_defined_in_loop (iv
->base
, loop
->num
))
2847 iv
->no_overflow
= !folded_casts
&& TYPE_OVERFLOW_UNDEFINED (type
);
2852 /* Runs the analysis of scalar evolutions. */
2855 scev_analysis (void)
2857 VEC(tree
,heap
) *exit_conditions
;
2859 exit_conditions
= VEC_alloc (tree
, heap
, 37);
2860 select_loops_exit_conditions (&exit_conditions
);
2862 if (dump_file
&& (dump_flags
& TDF_STATS
))
2863 analyze_scalar_evolution_for_all_loop_phi_nodes (&exit_conditions
);
2865 number_of_iterations_for_all_loops (&exit_conditions
);
2866 VEC_free (tree
, heap
, exit_conditions
);
2869 /* Finalize the scalar evolution analysis. */
2872 scev_finalize (void)
2874 htab_delete (scalar_evolution_info
);
2875 BITMAP_FREE (already_instantiated
);
2878 /* Returns true if EXPR looks expensive. */
2881 expression_expensive_p (tree expr
)
2883 return force_expr_to_var_cost (expr
) >= target_spill_cost
;
2886 /* Replace ssa names for that scev can prove they are constant by the
2887 appropriate constants. Also perform final value replacement in loops,
2888 in case the replacement expressions are cheap.
2890 We only consider SSA names defined by phi nodes; rest is left to the
2891 ordinary constant propagation pass. */
2894 scev_const_prop (void)
2897 tree name
, phi
, next_phi
, type
, ev
;
2898 struct loop
*loop
, *ex_loop
;
2899 bitmap ssa_names_to_remove
= NULL
;
2908 loop
= bb
->loop_father
;
2910 for (phi
= phi_nodes (bb
); phi
; phi
= PHI_CHAIN (phi
))
2912 name
= PHI_RESULT (phi
);
2914 if (!is_gimple_reg (name
))
2917 type
= TREE_TYPE (name
);
2919 if (!POINTER_TYPE_P (type
)
2920 && !INTEGRAL_TYPE_P (type
))
2923 ev
= resolve_mixers (loop
, analyze_scalar_evolution (loop
, name
));
2924 if (!is_gimple_min_invariant (ev
)
2925 || !may_propagate_copy (name
, ev
))
2928 /* Replace the uses of the name. */
2930 replace_uses_by (name
, ev
);
2932 if (!ssa_names_to_remove
)
2933 ssa_names_to_remove
= BITMAP_ALLOC (NULL
);
2934 bitmap_set_bit (ssa_names_to_remove
, SSA_NAME_VERSION (name
));
2938 /* Remove the ssa names that were replaced by constants. We do not
2939 remove them directly in the previous cycle, since this
2940 invalidates scev cache. */
2941 if (ssa_names_to_remove
)
2945 EXECUTE_IF_SET_IN_BITMAP (ssa_names_to_remove
, 0, i
, bi
)
2947 name
= ssa_name (i
);
2948 phi
= SSA_NAME_DEF_STMT (name
);
2950 gcc_assert (TREE_CODE (phi
) == PHI_NODE
);
2951 remove_phi_node (phi
, NULL
, true);
2954 BITMAP_FREE (ssa_names_to_remove
);
2958 /* Now the regular final value replacement. */
2959 FOR_EACH_LOOP (li
, loop
, LI_FROM_INNERMOST
)
2962 tree def
, rslt
, ass
, niter
;
2963 block_stmt_iterator bsi
;
2965 /* If we do not know exact number of iterations of the loop, we cannot
2966 replace the final value. */
2967 exit
= single_exit (loop
);
2971 niter
= number_of_latch_executions (loop
);
2972 if (niter
== chrec_dont_know
2973 /* If computing the number of iterations is expensive, it may be
2974 better not to introduce computations involving it. */
2975 || expression_expensive_p (niter
))
2978 /* Ensure that it is possible to insert new statements somewhere. */
2979 if (!single_pred_p (exit
->dest
))
2980 split_loop_exit_edge (exit
);
2981 tree_block_label (exit
->dest
);
2982 bsi
= bsi_after_labels (exit
->dest
);
2984 ex_loop
= superloop_at_depth (loop
, exit
->dest
->loop_father
->depth
+ 1);
2986 for (phi
= phi_nodes (exit
->dest
); phi
; phi
= next_phi
)
2988 next_phi
= PHI_CHAIN (phi
);
2989 rslt
= PHI_RESULT (phi
);
2990 def
= PHI_ARG_DEF_FROM_EDGE (phi
, exit
);
2991 if (!is_gimple_reg (def
))
2994 if (!POINTER_TYPE_P (TREE_TYPE (def
))
2995 && !INTEGRAL_TYPE_P (TREE_TYPE (def
)))
2998 def
= analyze_scalar_evolution_in_loop (ex_loop
, loop
, def
, NULL
);
2999 def
= compute_overall_effect_of_inner_loop (ex_loop
, def
);
3000 if (!tree_does_not_contain_chrecs (def
)
3001 || chrec_contains_symbols_defined_in_loop (def
, ex_loop
->num
)
3002 /* Moving the computation from the loop may prolong life range
3003 of some ssa names, which may cause problems if they appear
3004 on abnormal edges. */
3005 || contains_abnormal_ssa_name_p (def
))
3008 /* Eliminate the PHI node and replace it by a computation outside
3010 def
= unshare_expr (def
);
3011 remove_phi_node (phi
, NULL_TREE
, false);
3013 ass
= build2 (GIMPLE_MODIFY_STMT
, void_type_node
, rslt
, NULL_TREE
);
3014 SSA_NAME_DEF_STMT (rslt
) = ass
;
3016 block_stmt_iterator dest
= bsi
;
3017 bsi_insert_before (&dest
, ass
, BSI_NEW_STMT
);
3018 def
= force_gimple_operand_bsi (&dest
, def
, false, NULL_TREE
);
3020 GIMPLE_STMT_OPERAND (ass
, 1) = def
;