1 /* Post reload partially redundant load elimination
2 Copyright (C) 2004, 2005
3 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
24 #include "coretypes.h"
32 #include "hard-reg-set.h"
35 #include "insn-config.h"
37 #include "basic-block.h"
48 #include "tree-pass.h"
50 /* The following code implements gcse after reload, the purpose of this
51 pass is to cleanup redundant loads generated by reload and other
52 optimizations that come after gcse. It searches for simple inter-block
53 redundancies and tries to eliminate them by adding moves and loads
56 Perform partially redundant load elimination, try to eliminate redundant
57 loads created by the reload pass. We try to look for full or partial
58 redundant loads fed by one or more loads/stores in predecessor BBs,
59 and try adding loads to make them fully redundant. We also check if
60 it's worth adding loads to be able to delete the redundant load.
63 1. Build available expressions hash table:
64 For each load/store instruction, if the loaded/stored memory didn't
65 change until the end of the basic block add this memory expression to
67 2. Perform Redundancy elimination:
68 For each load instruction do the following:
69 perform partial redundancy elimination, check if it's worth adding
70 loads to make the load fully redundant. If so add loads and
71 register copies and delete the load.
72 3. Delete instructions made redundant in step 2.
75 If the loaded register is used/defined between load and some store,
76 look for some other free register between load and all its stores,
77 and replace the load with a copy from this register to the loaded
82 /* Keep statistics of this pass. */
90 /* We need to keep a hash table of expressions. The table entries are of
91 type 'struct expr', and for each expression there is a single linked
92 list of occurrences. */
94 /* The table itself. */
95 static htab_t expr_table
;
97 /* Expression elements in the hash table. */
100 /* The expression (SET_SRC for expressions, PATTERN for assignments). */
103 /* The same hash for this entry. */
106 /* List of available occurrence in basic blocks in the function. */
107 struct occr
*avail_occr
;
110 static struct obstack expr_obstack
;
112 /* Occurrence of an expression.
113 There is at most one occurrence per basic block. If a pattern appears
114 more than once, the last appearance is used. */
118 /* Next occurrence of this expression. */
120 /* The insn that computes the expression. */
122 /* Nonzero if this [anticipatable] occurrence has been deleted. */
126 static struct obstack occr_obstack
;
128 /* The following structure holds the information about the occurrences of
129 the redundant instructions. */
137 static struct obstack unoccr_obstack
;
139 /* Array where each element is the CUID if the insn that last set the hard
140 register with the number of the element, since the start of the current
143 This array is used during the building of the hash table (step 1) to
144 determine if a reg is killed before the end of a basic block.
146 It is also used when eliminating partial redundancies (step 2) to see
147 if a reg was modified since the start of a basic block. */
148 static int *reg_avail_info
;
150 /* A list of insns that may modify memory within the current basic block. */
154 struct modifies_mem
*next
;
156 static struct modifies_mem
*modifies_mem_list
;
158 /* The modifies_mem structs also go on an obstack, only this obstack is
159 freed each time after completing the analysis or transformations on
160 a basic block. So we allocate a dummy modifies_mem_obstack_bottom
161 object on the obstack to keep track of the bottom of the obstack. */
162 static struct obstack modifies_mem_obstack
;
163 static struct modifies_mem
*modifies_mem_obstack_bottom
;
165 /* Mapping of insn UIDs to CUIDs.
166 CUIDs are like UIDs except they increase monotonically in each basic
167 block, have no gaps, and only apply to real insns. */
168 static int *uid_cuid
;
169 #define INSN_CUID(INSN) (uid_cuid[INSN_UID (INSN)])
172 /* Helpers for memory allocation/freeing. */
173 static void alloc_mem (void);
174 static void free_mem (void);
176 /* Support for hash table construction and transformations. */
177 static bool oprs_unchanged_p (rtx
, rtx
, bool);
178 static void record_last_reg_set_info (rtx
, int);
179 static void record_last_mem_set_info (rtx
);
180 static void record_last_set_info (rtx
, rtx
, void *);
181 static void record_opr_changes (rtx
);
183 static void find_mem_conflicts (rtx
, rtx
, void *);
184 static int load_killed_in_block_p (int, rtx
, bool);
185 static void reset_opr_set_tables (void);
187 /* Hash table support. */
188 static hashval_t
hash_expr (rtx
, int *);
189 static hashval_t
hash_expr_for_htab (const void *);
190 static int expr_equiv_p (const void *, const void *);
191 static void insert_expr_in_table (rtx
, rtx
);
192 static struct expr
*lookup_expr_in_table (rtx
);
193 static int dump_hash_table_entry (void **, void *);
194 static void dump_hash_table (FILE *);
196 /* Helpers for eliminate_partially_redundant_load. */
197 static bool reg_killed_on_edge (rtx
, edge
);
198 static bool reg_used_on_edge (rtx
, edge
);
200 static rtx
reg_set_between_after_reload_p (rtx
, rtx
, rtx
);
201 static rtx
reg_used_between_after_reload_p (rtx
, rtx
, rtx
);
202 static rtx
get_avail_load_store_reg (rtx
);
204 static bool bb_has_well_behaved_predecessors (basic_block
);
205 static struct occr
* get_bb_avail_insn (basic_block
, struct occr
*);
206 static void hash_scan_set (rtx
);
207 static void compute_hash_table (void);
209 /* The work horses of this pass. */
210 static void eliminate_partially_redundant_load (basic_block
,
213 static void eliminate_partially_redundant_loads (void);
216 /* Allocate memory for the CUID mapping array and register/memory
226 /* Find the largest UID and create a mapping from UIDs to CUIDs. */
227 uid_cuid
= XCNEWVEC (int, get_max_uid () + 1);
230 FOR_BB_INSNS (bb
, insn
)
233 uid_cuid
[INSN_UID (insn
)] = i
++;
235 uid_cuid
[INSN_UID (insn
)] = i
;
238 /* Allocate the available expressions hash table. We don't want to
239 make the hash table too small, but unnecessarily making it too large
240 also doesn't help. The i/4 is a gcse.c relic, and seems like a
241 reasonable choice. */
242 expr_table
= htab_create (MAX (i
/ 4, 13),
243 hash_expr_for_htab
, expr_equiv_p
, NULL
);
245 /* We allocate everything on obstacks because we often can roll back
246 the whole obstack to some point. Freeing obstacks is very fast. */
247 gcc_obstack_init (&expr_obstack
);
248 gcc_obstack_init (&occr_obstack
);
249 gcc_obstack_init (&unoccr_obstack
);
250 gcc_obstack_init (&modifies_mem_obstack
);
252 /* Working array used to track the last set for each register
253 in the current block. */
254 reg_avail_info
= (int *) xmalloc (FIRST_PSEUDO_REGISTER
* sizeof (int));
256 /* Put a dummy modifies_mem object on the modifies_mem_obstack, so we
257 can roll it back in reset_opr_set_tables. */
258 modifies_mem_obstack_bottom
=
259 (struct modifies_mem
*) obstack_alloc (&modifies_mem_obstack
,
260 sizeof (struct modifies_mem
));
263 /* Free memory allocated by alloc_mem. */
270 htab_delete (expr_table
);
272 obstack_free (&expr_obstack
, NULL
);
273 obstack_free (&occr_obstack
, NULL
);
274 obstack_free (&unoccr_obstack
, NULL
);
275 obstack_free (&modifies_mem_obstack
, NULL
);
277 free (reg_avail_info
);
281 /* Hash expression X.
282 DO_NOT_RECORD_P is a boolean indicating if a volatile operand is found
283 or if the expression contains something we don't want to insert in the
287 hash_expr (rtx x
, int *do_not_record_p
)
289 *do_not_record_p
= 0;
290 return hash_rtx (x
, GET_MODE (x
), do_not_record_p
,
291 NULL
, /*have_reg_qty=*/false);
294 /* Callback for hashtab.
295 Return the hash value for expression EXP. We don't actually hash
296 here, we just return the cached hash value. */
299 hash_expr_for_htab (const void *expp
)
301 struct expr
*exp
= (struct expr
*) expp
;
305 /* Callback for hashtab.
306 Return nonzero if exp1 is equivalent to exp2. */
309 expr_equiv_p (const void *exp1p
, const void *exp2p
)
311 struct expr
*exp1
= (struct expr
*) exp1p
;
312 struct expr
*exp2
= (struct expr
*) exp2p
;
313 int equiv_p
= exp_equiv_p (exp1
->expr
, exp2
->expr
, 0, true);
315 gcc_assert (!equiv_p
|| exp1
->hash
== exp2
->hash
);
320 /* Insert expression X in INSN in the hash TABLE.
321 If it is already present, record it as the last occurrence in INSN's
325 insert_expr_in_table (rtx x
, rtx insn
)
329 struct expr
*cur_expr
, **slot
;
330 struct occr
*avail_occr
, *last_occr
= NULL
;
332 hash
= hash_expr (x
, &do_not_record_p
);
334 /* Do not insert expression in the table if it contains volatile operands,
335 or if hash_expr determines the expression is something we don't want
336 to or can't handle. */
340 /* We anticipate that redundant expressions are rare, so for convenience
341 allocate a new hash table element here already and set its fields.
342 If we don't do this, we need a hack with a static struct expr. Anyway,
343 obstack_free is really fast and one more obstack_alloc doesn't hurt if
344 we're going to see more expressions later on. */
345 cur_expr
= (struct expr
*) obstack_alloc (&expr_obstack
,
346 sizeof (struct expr
));
348 cur_expr
->hash
= hash
;
349 cur_expr
->avail_occr
= NULL
;
351 slot
= (struct expr
**) htab_find_slot_with_hash (expr_table
, cur_expr
,
355 /* The expression isn't found, so insert it. */
359 /* The expression is already in the table, so roll back the
360 obstack and use the existing table entry. */
361 obstack_free (&expr_obstack
, cur_expr
);
365 /* Search for another occurrence in the same basic block. */
366 avail_occr
= cur_expr
->avail_occr
;
367 while (avail_occr
&& BLOCK_NUM (avail_occr
->insn
) != BLOCK_NUM (insn
))
369 /* If an occurrence isn't found, save a pointer to the end of
371 last_occr
= avail_occr
;
372 avail_occr
= avail_occr
->next
;
376 /* Found another instance of the expression in the same basic block.
377 Prefer this occurrence to the currently recorded one. We want
378 the last one in the block and the block is scanned from start
380 avail_occr
->insn
= insn
;
383 /* First occurrence of this expression in this basic block. */
384 avail_occr
= (struct occr
*) obstack_alloc (&occr_obstack
,
385 sizeof (struct occr
));
387 /* First occurrence of this expression in any block? */
388 if (cur_expr
->avail_occr
== NULL
)
389 cur_expr
->avail_occr
= avail_occr
;
391 last_occr
->next
= avail_occr
;
393 avail_occr
->insn
= insn
;
394 avail_occr
->next
= NULL
;
395 avail_occr
->deleted_p
= 0;
400 /* Lookup pattern PAT in the expression hash table.
401 The result is a pointer to the table entry, or NULL if not found. */
404 lookup_expr_in_table (rtx pat
)
407 struct expr
**slot
, *tmp_expr
;
408 hashval_t hash
= hash_expr (pat
, &do_not_record_p
);
413 tmp_expr
= (struct expr
*) obstack_alloc (&expr_obstack
,
414 sizeof (struct expr
));
415 tmp_expr
->expr
= pat
;
416 tmp_expr
->hash
= hash
;
417 tmp_expr
->avail_occr
= NULL
;
419 slot
= (struct expr
**) htab_find_slot_with_hash (expr_table
, tmp_expr
,
421 obstack_free (&expr_obstack
, tmp_expr
);
430 /* Dump all expressions and occurrences that are currently in the
431 expression hash table to FILE. */
433 /* This helper is called via htab_traverse. */
435 dump_hash_table_entry (void **slot
, void *filep
)
437 struct expr
*expr
= (struct expr
*) *slot
;
438 FILE *file
= (FILE *) filep
;
441 fprintf (file
, "expr: ");
442 print_rtl (file
, expr
->expr
);
443 fprintf (file
,"\nhashcode: %u\n", expr
->hash
);
444 fprintf (file
,"list of occurrences:\n");
445 occr
= expr
->avail_occr
;
448 rtx insn
= occr
->insn
;
449 print_rtl_single (file
, insn
);
450 fprintf (file
, "\n");
453 fprintf (file
, "\n");
458 dump_hash_table (FILE *file
)
460 fprintf (file
, "\n\nexpression hash table\n");
461 fprintf (file
, "size %ld, %ld elements, %f collision/search ratio\n",
462 (long) htab_size (expr_table
),
463 (long) htab_elements (expr_table
),
464 htab_collisions (expr_table
));
465 if (htab_elements (expr_table
) > 0)
467 fprintf (file
, "\n\ntable entries:\n");
468 htab_traverse (expr_table
, dump_hash_table_entry
, file
);
470 fprintf (file
, "\n");
474 /* Return nonzero if the operands of expression X are unchanged
475 1) from the start of INSN's basic block up to but not including INSN
476 if AFTER_INSN is false, or
477 2) from INSN to the end of INSN's basic block if AFTER_INSN is true. */
480 oprs_unchanged_p (rtx x
, rtx insn
, bool after_insn
)
493 /* We are called after register allocation. */
494 gcc_assert (REGNO (x
) < FIRST_PSEUDO_REGISTER
);
496 /* If the last CUID setting the insn is less than the CUID of
497 INSN, then reg X is not changed in or after INSN. */
498 return reg_avail_info
[REGNO (x
)] < INSN_CUID (insn
);
500 /* Reg X is not set before INSN in the current basic block if
501 we have not yet recorded the CUID of an insn that touches
503 return reg_avail_info
[REGNO (x
)] == 0;
506 if (load_killed_in_block_p (INSN_CUID (insn
), x
, after_insn
))
509 return oprs_unchanged_p (XEXP (x
, 0), insn
, after_insn
);
537 for (i
= GET_RTX_LENGTH (code
) - 1, fmt
= GET_RTX_FORMAT (code
); i
>= 0; i
--)
541 if (! oprs_unchanged_p (XEXP (x
, i
), insn
, after_insn
))
544 else if (fmt
[i
] == 'E')
545 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
546 if (! oprs_unchanged_p (XVECEXP (x
, i
, j
), insn
, after_insn
))
554 /* Used for communication between find_mem_conflicts and
555 load_killed_in_block_p. Nonzero if find_mem_conflicts finds a
556 conflict between two memory references.
557 This is a bit of a hack to work around the limitations of note_stores. */
558 static int mems_conflict_p
;
560 /* DEST is the output of an instruction. If it is a memory reference, and
561 possibly conflicts with the load found in DATA, then set mems_conflict_p
562 to a nonzero value. */
565 find_mem_conflicts (rtx dest
, rtx setter ATTRIBUTE_UNUSED
,
568 rtx mem_op
= (rtx
) data
;
570 while (GET_CODE (dest
) == SUBREG
571 || GET_CODE (dest
) == ZERO_EXTRACT
572 || GET_CODE (dest
) == STRICT_LOW_PART
)
573 dest
= XEXP (dest
, 0);
575 /* If DEST is not a MEM, then it will not conflict with the load. Note
576 that function calls are assumed to clobber memory, but are handled
581 if (true_dependence (dest
, GET_MODE (dest
), mem_op
,
587 /* Return nonzero if the expression in X (a memory reference) is killed
588 in the current basic block before (if AFTER_INSN is false) or after
589 (if AFTER_INSN is true) the insn with the CUID in UID_LIMIT.
591 This function assumes that the modifies_mem table is flushed when
592 the hash table construction or redundancy elimination phases start
593 processing a new basic block. */
596 load_killed_in_block_p (int uid_limit
, rtx x
, bool after_insn
)
598 struct modifies_mem
*list_entry
= modifies_mem_list
;
602 rtx setter
= list_entry
->insn
;
604 /* Ignore entries in the list that do not apply. */
606 && INSN_CUID (setter
) < uid_limit
)
608 && INSN_CUID (setter
) > uid_limit
))
610 list_entry
= list_entry
->next
;
614 /* If SETTER is a call everything is clobbered. Note that calls
615 to pure functions are never put on the list, so we need not
620 /* SETTER must be an insn of some kind that sets memory. Call
621 note_stores to examine each hunk of memory that is modified.
622 It will set mems_conflict_p to nonzero if there may be a
623 conflict between X and SETTER. */
625 note_stores (PATTERN (setter
), find_mem_conflicts
, x
);
629 list_entry
= list_entry
->next
;
635 /* Record register first/last/block set information for REGNO in INSN. */
638 record_last_reg_set_info (rtx insn
, int regno
)
640 reg_avail_info
[regno
] = INSN_CUID (insn
);
644 /* Record memory modification information for INSN. We do not actually care
645 about the memory location(s) that are set, or even how they are set (consider
646 a CALL_INSN). We merely need to record which insns modify memory. */
649 record_last_mem_set_info (rtx insn
)
651 struct modifies_mem
*list_entry
;
653 list_entry
= (struct modifies_mem
*) obstack_alloc (&modifies_mem_obstack
,
654 sizeof (struct modifies_mem
));
655 list_entry
->insn
= insn
;
656 list_entry
->next
= modifies_mem_list
;
657 modifies_mem_list
= list_entry
;
660 /* Called from compute_hash_table via note_stores to handle one
661 SET or CLOBBER in an insn. DATA is really the instruction in which
662 the SET is taking place. */
665 record_last_set_info (rtx dest
, rtx setter ATTRIBUTE_UNUSED
, void *data
)
667 rtx last_set_insn
= (rtx
) data
;
669 if (GET_CODE (dest
) == SUBREG
)
670 dest
= SUBREG_REG (dest
);
673 record_last_reg_set_info (last_set_insn
, REGNO (dest
));
674 else if (MEM_P (dest
))
676 /* Ignore pushes, they don't clobber memory. They may still
677 clobber the stack pointer though. Some targets do argument
678 pushes without adding REG_INC notes. See e.g. PR25196,
679 where a pushsi2 on i386 doesn't have REG_INC notes. Note
680 such changes here too. */
681 if (! push_operand (dest
, GET_MODE (dest
)))
682 record_last_mem_set_info (last_set_insn
);
684 record_last_reg_set_info (last_set_insn
, STACK_POINTER_REGNUM
);
689 /* Reset tables used to keep track of what's still available since the
690 start of the block. */
693 reset_opr_set_tables (void)
695 memset (reg_avail_info
, 0, FIRST_PSEUDO_REGISTER
* sizeof (int));
696 obstack_free (&modifies_mem_obstack
, modifies_mem_obstack_bottom
);
697 modifies_mem_list
= NULL
;
701 /* Record things set by INSN.
702 This data is used by oprs_unchanged_p. */
705 record_opr_changes (rtx insn
)
709 /* Find all stores and record them. */
710 note_stores (PATTERN (insn
), record_last_set_info
, insn
);
712 /* Also record autoincremented REGs for this insn as changed. */
713 for (note
= REG_NOTES (insn
); note
; note
= XEXP (note
, 1))
714 if (REG_NOTE_KIND (note
) == REG_INC
)
715 record_last_reg_set_info (insn
, REGNO (XEXP (note
, 0)));
717 /* Finally, if this is a call, record all call clobbers. */
722 for (regno
= 0; regno
< FIRST_PSEUDO_REGISTER
; regno
++)
723 if (TEST_HARD_REG_BIT (regs_invalidated_by_call
, regno
))
724 record_last_reg_set_info (insn
, regno
);
726 if (! CONST_OR_PURE_CALL_P (insn
))
727 record_last_mem_set_info (insn
);
732 /* Scan the pattern of INSN and add an entry to the hash TABLE.
733 After reload we are interested in loads/stores only. */
736 hash_scan_set (rtx insn
)
738 rtx pat
= PATTERN (insn
);
739 rtx src
= SET_SRC (pat
);
740 rtx dest
= SET_DEST (pat
);
742 /* We are only interested in loads and stores. */
743 if (! MEM_P (src
) && ! MEM_P (dest
))
746 /* Don't mess with jumps and nops. */
747 if (JUMP_P (insn
) || set_noop_p (pat
))
752 if (/* Don't CSE something if we can't do a reg/reg copy. */
753 can_copy_p (GET_MODE (dest
))
754 /* Is SET_SRC something we want to gcse? */
755 && general_operand (src
, GET_MODE (src
))
757 /* Never consider insns touching the register stack. It may
758 create situations that reg-stack cannot handle (e.g. a stack
759 register live across an abnormal edge). */
760 && (REGNO (dest
) < FIRST_STACK_REG
|| REGNO (dest
) > LAST_STACK_REG
)
762 /* An expression is not available if its operands are
763 subsequently modified, including this insn. */
764 && oprs_unchanged_p (src
, insn
, true))
766 insert_expr_in_table (src
, insn
);
769 else if (REG_P (src
))
771 /* Only record sets of pseudo-regs in the hash table. */
772 if (/* Don't CSE something if we can't do a reg/reg copy. */
773 can_copy_p (GET_MODE (src
))
774 /* Is SET_DEST something we want to gcse? */
775 && general_operand (dest
, GET_MODE (dest
))
777 /* As above for STACK_REGS. */
778 && (REGNO (src
) < FIRST_STACK_REG
|| REGNO (src
) > LAST_STACK_REG
)
780 && ! (flag_float_store
&& FLOAT_MODE_P (GET_MODE (dest
)))
781 /* Check if the memory expression is killed after insn. */
782 && ! load_killed_in_block_p (INSN_CUID (insn
) + 1, dest
, true)
783 && oprs_unchanged_p (XEXP (dest
, 0), insn
, true))
785 insert_expr_in_table (dest
, insn
);
791 /* Create hash table of memory expressions available at end of basic
792 blocks. Basically you should think of this hash table as the
793 representation of AVAIL_OUT. This is the set of expressions that
794 is generated in a basic block and not killed before the end of the
795 same basic block. Notice that this is really a local computation. */
798 compute_hash_table (void)
806 /* First pass over the instructions records information used to
807 determine when registers and memory are last set.
808 Since we compute a "local" AVAIL_OUT, reset the tables that
809 help us keep track of what has been modified since the start
811 reset_opr_set_tables ();
812 FOR_BB_INSNS (bb
, insn
)
815 record_opr_changes (insn
);
818 /* The next pass actually builds the hash table. */
819 FOR_BB_INSNS (bb
, insn
)
820 if (INSN_P (insn
) && GET_CODE (PATTERN (insn
)) == SET
)
821 hash_scan_set (insn
);
826 /* Check if register REG is killed in any insn waiting to be inserted on
827 edge E. This function is required to check that our data flow analysis
828 is still valid prior to commit_edge_insertions. */
831 reg_killed_on_edge (rtx reg
, edge e
)
835 for (insn
= e
->insns
.r
; insn
; insn
= NEXT_INSN (insn
))
836 if (INSN_P (insn
) && reg_set_p (reg
, insn
))
842 /* Similar to above - check if register REG is used in any insn waiting
843 to be inserted on edge E.
844 Assumes no such insn can be a CALL_INSN; if so call reg_used_between_p
845 with PREV(insn),NEXT(insn) instead of calling reg_overlap_mentioned_p. */
848 reg_used_on_edge (rtx reg
, edge e
)
852 for (insn
= e
->insns
.r
; insn
; insn
= NEXT_INSN (insn
))
853 if (INSN_P (insn
) && reg_overlap_mentioned_p (reg
, PATTERN (insn
)))
860 /* Return the insn that sets register REG or clobbers it in between
861 FROM_INSN and TO_INSN (exclusive of those two).
862 Just like reg_set_between but for hard registers and not pseudos. */
865 reg_set_between_after_reload_p (rtx reg
, rtx from_insn
, rtx to_insn
)
869 /* We are called after register allocation. */
870 gcc_assert (REG_P (reg
) && REGNO (reg
) < FIRST_PSEUDO_REGISTER
);
872 if (from_insn
== to_insn
)
875 for (insn
= NEXT_INSN (from_insn
);
877 insn
= NEXT_INSN (insn
))
880 if (set_of (reg
, insn
) != NULL_RTX
)
883 && call_used_regs
[REGNO (reg
)])
884 || find_reg_fusage (insn
, CLOBBER
, reg
))
887 if (FIND_REG_INC_NOTE (insn
, reg
))
894 /* Return the insn that uses register REG in between FROM_INSN and TO_INSN
895 (exclusive of those two). Similar to reg_used_between but for hard
896 registers and not pseudos. */
899 reg_used_between_after_reload_p (rtx reg
, rtx from_insn
, rtx to_insn
)
903 /* We are called after register allocation. */
904 gcc_assert (REG_P (reg
) && REGNO (reg
) < FIRST_PSEUDO_REGISTER
);
906 if (from_insn
== to_insn
)
909 for (insn
= NEXT_INSN (from_insn
);
911 insn
= NEXT_INSN (insn
))
914 if (reg_overlap_mentioned_p (reg
, PATTERN (insn
))
916 && call_used_regs
[REGNO (reg
)])
917 || find_reg_fusage (insn
, USE
, reg
)
918 || find_reg_fusage (insn
, CLOBBER
, reg
))
921 if (FIND_REG_INC_NOTE (insn
, reg
))
928 /* Return true if REG is used, set, or killed between the beginning of
929 basic block BB and UP_TO_INSN. Caches the result in reg_avail_info. */
932 reg_set_or_used_since_bb_start (rtx reg
, basic_block bb
, rtx up_to_insn
)
934 rtx insn
, start
= PREV_INSN (BB_HEAD (bb
));
936 if (reg_avail_info
[REGNO (reg
)] != 0)
939 insn
= reg_used_between_after_reload_p (reg
, start
, up_to_insn
);
941 insn
= reg_set_between_after_reload_p (reg
, start
, up_to_insn
);
944 reg_avail_info
[REGNO (reg
)] = INSN_CUID (insn
);
946 return insn
!= NULL_RTX
;
949 /* Return the loaded/stored register of a load/store instruction. */
952 get_avail_load_store_reg (rtx insn
)
954 if (REG_P (SET_DEST (PATTERN (insn
))))
956 return SET_DEST(PATTERN(insn
));
960 gcc_assert (REG_P (SET_SRC (PATTERN (insn
))));
961 return SET_SRC (PATTERN (insn
));
965 /* Return nonzero if the predecessors of BB are "well behaved". */
968 bb_has_well_behaved_predecessors (basic_block bb
)
973 if (EDGE_COUNT (bb
->preds
) == 0)
976 FOR_EACH_EDGE (pred
, ei
, bb
->preds
)
978 if ((pred
->flags
& EDGE_ABNORMAL
) && EDGE_CRITICAL_P (pred
))
981 if (JUMP_TABLE_DATA_P (BB_END (pred
->src
)))
988 /* Search for the occurrences of expression in BB. */
991 get_bb_avail_insn (basic_block bb
, struct occr
*occr
)
993 for (; occr
!= NULL
; occr
= occr
->next
)
994 if (BLOCK_FOR_INSN (occr
->insn
) == bb
)
1000 /* This handles the case where several stores feed a partially redundant
1001 load. It checks if the redundancy elimination is possible and if it's
1004 Redundancy elimination is possible if,
1005 1) None of the operands of an insn have been modified since the start
1006 of the current basic block.
1007 2) In any predecessor of the current basic block, the same expression
1010 See the function body for the heuristics that determine if eliminating
1011 a redundancy is also worth doing, assuming it is possible. */
1014 eliminate_partially_redundant_load (basic_block bb
, rtx insn
,
1018 rtx avail_insn
= NULL_RTX
;
1021 struct occr
*a_occr
;
1022 struct unoccr
*occr
, *avail_occrs
= NULL
;
1023 struct unoccr
*unoccr
, *unavail_occrs
= NULL
, *rollback_unoccr
= NULL
;
1025 gcov_type ok_count
= 0; /* Redundant load execution count. */
1026 gcov_type critical_count
= 0; /* Execution count of critical edges. */
1028 bool critical_edge_split
= false;
1030 /* The execution count of the loads to be added to make the
1031 load fully redundant. */
1032 gcov_type not_ok_count
= 0;
1033 basic_block pred_bb
;
1035 pat
= PATTERN (insn
);
1036 dest
= SET_DEST (pat
);
1038 /* Check that the loaded register is not used, set, or killed from the
1039 beginning of the block. */
1040 if (reg_set_or_used_since_bb_start (dest
, bb
, insn
))
1043 /* Check potential for replacing load with copy for predecessors. */
1044 FOR_EACH_EDGE (pred
, ei
, bb
->preds
)
1046 rtx next_pred_bb_end
;
1048 avail_insn
= NULL_RTX
;
1049 avail_reg
= NULL_RTX
;
1050 pred_bb
= pred
->src
;
1051 next_pred_bb_end
= NEXT_INSN (BB_END (pred_bb
));
1052 for (a_occr
= get_bb_avail_insn (pred_bb
, expr
->avail_occr
); a_occr
;
1053 a_occr
= get_bb_avail_insn (pred_bb
, a_occr
->next
))
1055 /* Check if the loaded register is not used. */
1056 avail_insn
= a_occr
->insn
;
1057 avail_reg
= get_avail_load_store_reg (avail_insn
);
1058 gcc_assert (avail_reg
);
1060 /* Make sure we can generate a move from register avail_reg to
1062 extract_insn (gen_move_insn (copy_rtx (dest
),
1063 copy_rtx (avail_reg
)));
1064 if (! constrain_operands (1)
1065 || reg_killed_on_edge (avail_reg
, pred
)
1066 || reg_used_on_edge (dest
, pred
))
1071 if (! reg_set_between_after_reload_p (avail_reg
, avail_insn
,
1073 /* AVAIL_INSN remains non-null. */
1079 if (EDGE_CRITICAL_P (pred
))
1080 critical_count
+= pred
->count
;
1082 if (avail_insn
!= NULL_RTX
)
1085 ok_count
+= pred
->count
;
1086 if (! set_noop_p (PATTERN (gen_move_insn (copy_rtx (dest
),
1087 copy_rtx (avail_reg
)))))
1089 /* Check if there is going to be a split. */
1090 if (EDGE_CRITICAL_P (pred
))
1091 critical_edge_split
= true;
1093 else /* Its a dead move no need to generate. */
1095 occr
= (struct unoccr
*) obstack_alloc (&unoccr_obstack
,
1096 sizeof (struct unoccr
));
1097 occr
->insn
= avail_insn
;
1099 occr
->next
= avail_occrs
;
1101 if (! rollback_unoccr
)
1102 rollback_unoccr
= occr
;
1106 /* Adding a load on a critical edge will cause a split. */
1107 if (EDGE_CRITICAL_P (pred
))
1108 critical_edge_split
= true;
1109 not_ok_count
+= pred
->count
;
1110 unoccr
= (struct unoccr
*) obstack_alloc (&unoccr_obstack
,
1111 sizeof (struct unoccr
));
1112 unoccr
->insn
= NULL_RTX
;
1113 unoccr
->pred
= pred
;
1114 unoccr
->next
= unavail_occrs
;
1115 unavail_occrs
= unoccr
;
1116 if (! rollback_unoccr
)
1117 rollback_unoccr
= unoccr
;
1121 if (/* No load can be replaced by copy. */
1123 /* Prevent exploding the code. */
1124 || (optimize_size
&& npred_ok
> 1)
1125 /* If we don't have profile information we cannot tell if splitting
1126 a critical edge is profitable or not so don't do it. */
1127 || ((! profile_info
|| ! flag_branch_probabilities
1128 || targetm
.cannot_modify_jumps_p ())
1129 && critical_edge_split
))
1132 /* Check if it's worth applying the partial redundancy elimination. */
1133 if (ok_count
< GCSE_AFTER_RELOAD_PARTIAL_FRACTION
* not_ok_count
)
1135 if (ok_count
< GCSE_AFTER_RELOAD_CRITICAL_FRACTION
* critical_count
)
1138 /* Generate moves to the loaded register from where
1139 the memory is available. */
1140 for (occr
= avail_occrs
; occr
; occr
= occr
->next
)
1142 avail_insn
= occr
->insn
;
1144 /* Set avail_reg to be the register having the value of the
1146 avail_reg
= get_avail_load_store_reg (avail_insn
);
1147 gcc_assert (avail_reg
);
1149 insert_insn_on_edge (gen_move_insn (copy_rtx (dest
),
1150 copy_rtx (avail_reg
)),
1152 stats
.moves_inserted
++;
1156 "generating move from %d to %d on edge from %d to %d\n",
1163 /* Regenerate loads where the memory is unavailable. */
1164 for (unoccr
= unavail_occrs
; unoccr
; unoccr
= unoccr
->next
)
1166 pred
= unoccr
->pred
;
1167 insert_insn_on_edge (copy_insn (PATTERN (insn
)), pred
);
1168 stats
.copies_inserted
++;
1173 "generating on edge from %d to %d a copy of load: ",
1176 print_rtl (dump_file
, PATTERN (insn
));
1177 fprintf (dump_file
, "\n");
1181 /* Delete the insn if it is not available in this block and mark it
1182 for deletion if it is available. If insn is available it may help
1183 discover additional redundancies, so mark it for later deletion. */
1184 for (a_occr
= get_bb_avail_insn (bb
, expr
->avail_occr
);
1185 a_occr
&& (a_occr
->insn
!= insn
);
1186 a_occr
= get_bb_avail_insn (bb
, a_occr
->next
));
1190 stats
.insns_deleted
++;
1194 fprintf (dump_file
, "deleting insn:\n");
1195 print_rtl_single (dump_file
, insn
);
1196 fprintf (dump_file
, "\n");
1201 a_occr
->deleted_p
= 1;
1204 if (rollback_unoccr
)
1205 obstack_free (&unoccr_obstack
, rollback_unoccr
);
1208 /* Performing the redundancy elimination as described before. */
1211 eliminate_partially_redundant_loads (void)
1216 /* Note we start at block 1. */
1218 if (ENTRY_BLOCK_PTR
->next_bb
== EXIT_BLOCK_PTR
)
1222 ENTRY_BLOCK_PTR
->next_bb
->next_bb
,
1226 /* Don't try anything on basic blocks with strange predecessors. */
1227 if (! bb_has_well_behaved_predecessors (bb
))
1230 /* Do not try anything on cold basic blocks. */
1231 if (probably_cold_bb_p (bb
))
1234 /* Reset the table of things changed since the start of the current
1236 reset_opr_set_tables ();
1238 /* Look at all insns in the current basic block and see if there are
1239 any loads in it that we can record. */
1240 FOR_BB_INSNS (bb
, insn
)
1242 /* Is it a load - of the form (set (reg) (mem))? */
1243 if (NONJUMP_INSN_P (insn
)
1244 && GET_CODE (PATTERN (insn
)) == SET
1245 && REG_P (SET_DEST (PATTERN (insn
)))
1246 && MEM_P (SET_SRC (PATTERN (insn
))))
1248 rtx pat
= PATTERN (insn
);
1249 rtx src
= SET_SRC (pat
);
1252 if (!MEM_VOLATILE_P (src
)
1253 && GET_MODE (src
) != BLKmode
1254 && general_operand (src
, GET_MODE (src
))
1255 /* Are the operands unchanged since the start of the
1257 && oprs_unchanged_p (src
, insn
, false)
1258 && !(flag_non_call_exceptions
&& may_trap_p (src
))
1259 && !side_effects_p (src
)
1260 /* Is the expression recorded? */
1261 && (expr
= lookup_expr_in_table (src
)) != NULL
)
1263 /* We now have a load (insn) and an available memory at
1264 its BB start (expr). Try to remove the loads if it is
1266 eliminate_partially_redundant_load (bb
, insn
, expr
);
1270 /* Keep track of everything modified by this insn, so that we
1271 know what has been modified since the start of the current
1274 record_opr_changes (insn
);
1278 commit_edge_insertions ();
1281 /* Go over the expression hash table and delete insns that were
1282 marked for later deletion. */
1284 /* This helper is called via htab_traverse. */
1286 delete_redundant_insns_1 (void **slot
, void *data ATTRIBUTE_UNUSED
)
1288 struct expr
*expr
= (struct expr
*) *slot
;
1291 for (occr
= expr
->avail_occr
; occr
!= NULL
; occr
= occr
->next
)
1293 if (occr
->deleted_p
)
1295 delete_insn (occr
->insn
);
1296 stats
.insns_deleted
++;
1300 fprintf (dump_file
, "deleting insn:\n");
1301 print_rtl_single (dump_file
, occr
->insn
);
1302 fprintf (dump_file
, "\n");
1311 delete_redundant_insns (void)
1313 htab_traverse (expr_table
, delete_redundant_insns_1
, NULL
);
1315 fprintf (dump_file
, "\n");
1318 /* Main entry point of the GCSE after reload - clean some redundant loads
1322 gcse_after_reload_main (rtx f ATTRIBUTE_UNUSED
)
1325 memset (&stats
, 0, sizeof (stats
));
1327 /* Allocate ememory for this pass.
1328 Also computes and initializes the insns' CUIDs. */
1331 /* We need alias analysis. */
1332 init_alias_analysis ();
1334 compute_hash_table ();
1337 dump_hash_table (dump_file
);
1339 if (htab_elements (expr_table
) > 0)
1341 eliminate_partially_redundant_loads ();
1342 delete_redundant_insns ();
1346 fprintf (dump_file
, "GCSE AFTER RELOAD stats:\n");
1347 fprintf (dump_file
, "copies inserted: %d\n", stats
.copies_inserted
);
1348 fprintf (dump_file
, "moves inserted: %d\n", stats
.moves_inserted
);
1349 fprintf (dump_file
, "insns deleted: %d\n", stats
.insns_deleted
);
1350 fprintf (dump_file
, "\n\n");
1354 /* We are finished with alias. */
1355 end_alias_analysis ();
1362 gate_handle_gcse2 (void)
1364 return (optimize
> 0 && flag_gcse_after_reload
);
1369 rest_of_handle_gcse2 (void)
1371 gcse_after_reload_main (get_insns ());
1372 rebuild_jump_labels (get_insns ());
1373 delete_trivially_dead_insns (get_insns (), max_reg_num ());
1377 struct tree_opt_pass pass_gcse2
=
1380 gate_handle_gcse2
, /* gate */
1381 rest_of_handle_gcse2
, /* execute */
1384 0, /* static_pass_number */
1385 TV_GCSE_AFTER_RELOAD
, /* tv_id */
1386 0, /* properties_required */
1387 0, /* properties_provided */
1388 0, /* properties_destroyed */
1389 0, /* todo_flags_start */
1391 TODO_verify_flow
| TODO_ggc_collect
, /* todo_flags_finish */