Make std::vector<bool> meet C++11 allocator requirements.
[official-gcc.git] / gcc / ada / a-cborse.adb
blob979357ddc759ef22afa3b55a80687084cfcb3996
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT LIBRARY COMPONENTS --
4 -- --
5 -- A D A . C O N T A I N E R S . B O U N D E D _ O R D E R E D _ S E T S --
6 -- --
7 -- B o d y --
8 -- --
9 -- Copyright (C) 2004-2014, Free Software Foundation, Inc. --
10 -- --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. --
17 -- --
18 -- As a special exception under Section 7 of GPL version 3, you are granted --
19 -- additional permissions described in the GCC Runtime Library Exception, --
20 -- version 3.1, as published by the Free Software Foundation. --
21 -- --
22 -- You should have received a copy of the GNU General Public License and --
23 -- a copy of the GCC Runtime Library Exception along with this program; --
24 -- see the files COPYING3 and COPYING.RUNTIME respectively. If not, see --
25 -- <http://www.gnu.org/licenses/>. --
26 -- --
27 -- This unit was originally developed by Matthew J Heaney. --
28 ------------------------------------------------------------------------------
30 with Ada.Containers.Red_Black_Trees.Generic_Bounded_Operations;
31 pragma Elaborate_All
32 (Ada.Containers.Red_Black_Trees.Generic_Bounded_Operations);
34 with Ada.Containers.Red_Black_Trees.Generic_Bounded_Keys;
35 pragma Elaborate_All (Ada.Containers.Red_Black_Trees.Generic_Bounded_Keys);
37 with Ada.Containers.Red_Black_Trees.Generic_Bounded_Set_Operations;
38 pragma Elaborate_All
39 (Ada.Containers.Red_Black_Trees.Generic_Bounded_Set_Operations);
41 with System; use type System.Address;
43 package body Ada.Containers.Bounded_Ordered_Sets is
45 ------------------------------
46 -- Access to Fields of Node --
47 ------------------------------
49 -- These subprograms provide functional notation for access to fields
50 -- of a node, and procedural notation for modifying these fields.
52 function Color (Node : Node_Type) return Red_Black_Trees.Color_Type;
53 pragma Inline (Color);
55 function Left (Node : Node_Type) return Count_Type;
56 pragma Inline (Left);
58 function Parent (Node : Node_Type) return Count_Type;
59 pragma Inline (Parent);
61 function Right (Node : Node_Type) return Count_Type;
62 pragma Inline (Right);
64 procedure Set_Color
65 (Node : in out Node_Type;
66 Color : Red_Black_Trees.Color_Type);
67 pragma Inline (Set_Color);
69 procedure Set_Left (Node : in out Node_Type; Left : Count_Type);
70 pragma Inline (Set_Left);
72 procedure Set_Right (Node : in out Node_Type; Right : Count_Type);
73 pragma Inline (Set_Right);
75 procedure Set_Parent (Node : in out Node_Type; Parent : Count_Type);
76 pragma Inline (Set_Parent);
78 -----------------------
79 -- Local Subprograms --
80 -----------------------
82 procedure Insert_Sans_Hint
83 (Container : in out Set;
84 New_Item : Element_Type;
85 Node : out Count_Type;
86 Inserted : out Boolean);
88 procedure Insert_With_Hint
89 (Dst_Set : in out Set;
90 Dst_Hint : Count_Type;
91 Src_Node : Node_Type;
92 Dst_Node : out Count_Type);
94 function Is_Greater_Element_Node
95 (Left : Element_Type;
96 Right : Node_Type) return Boolean;
97 pragma Inline (Is_Greater_Element_Node);
99 function Is_Less_Element_Node
100 (Left : Element_Type;
101 Right : Node_Type) return Boolean;
102 pragma Inline (Is_Less_Element_Node);
104 function Is_Less_Node_Node (L, R : Node_Type) return Boolean;
105 pragma Inline (Is_Less_Node_Node);
107 procedure Replace_Element
108 (Container : in out Set;
109 Index : Count_Type;
110 Item : Element_Type);
112 --------------------------
113 -- Local Instantiations --
114 --------------------------
116 package Tree_Operations is
117 new Red_Black_Trees.Generic_Bounded_Operations (Tree_Types);
119 use Tree_Operations;
121 package Element_Keys is
122 new Red_Black_Trees.Generic_Bounded_Keys
123 (Tree_Operations => Tree_Operations,
124 Key_Type => Element_Type,
125 Is_Less_Key_Node => Is_Less_Element_Node,
126 Is_Greater_Key_Node => Is_Greater_Element_Node);
128 package Set_Ops is
129 new Red_Black_Trees.Generic_Bounded_Set_Operations
130 (Tree_Operations => Tree_Operations,
131 Set_Type => Set,
132 Assign => Assign,
133 Insert_With_Hint => Insert_With_Hint,
134 Is_Less => Is_Less_Node_Node);
136 ---------
137 -- "<" --
138 ---------
140 function "<" (Left, Right : Cursor) return Boolean is
141 begin
142 if Left.Node = 0 then
143 raise Constraint_Error with "Left cursor equals No_Element";
144 end if;
146 if Right.Node = 0 then
147 raise Constraint_Error with "Right cursor equals No_Element";
148 end if;
150 pragma Assert (Vet (Left.Container.all, Left.Node),
151 "bad Left cursor in ""<""");
153 pragma Assert (Vet (Right.Container.all, Right.Node),
154 "bad Right cursor in ""<""");
156 declare
157 LN : Nodes_Type renames Left.Container.Nodes;
158 RN : Nodes_Type renames Right.Container.Nodes;
159 begin
160 return LN (Left.Node).Element < RN (Right.Node).Element;
161 end;
162 end "<";
164 function "<" (Left : Cursor; Right : Element_Type) return Boolean is
165 begin
166 if Left.Node = 0 then
167 raise Constraint_Error with "Left cursor equals No_Element";
168 end if;
170 pragma Assert (Vet (Left.Container.all, Left.Node),
171 "bad Left cursor in ""<""");
173 return Left.Container.Nodes (Left.Node).Element < Right;
174 end "<";
176 function "<" (Left : Element_Type; Right : Cursor) return Boolean is
177 begin
178 if Right.Node = 0 then
179 raise Constraint_Error with "Right cursor equals No_Element";
180 end if;
182 pragma Assert (Vet (Right.Container.all, Right.Node),
183 "bad Right cursor in ""<""");
185 return Left < Right.Container.Nodes (Right.Node).Element;
186 end "<";
188 ---------
189 -- "=" --
190 ---------
192 function "=" (Left, Right : Set) return Boolean is
193 function Is_Equal_Node_Node (L, R : Node_Type) return Boolean;
194 pragma Inline (Is_Equal_Node_Node);
196 function Is_Equal is
197 new Tree_Operations.Generic_Equal (Is_Equal_Node_Node);
199 ------------------------
200 -- Is_Equal_Node_Node --
201 ------------------------
203 function Is_Equal_Node_Node (L, R : Node_Type) return Boolean is
204 begin
205 return L.Element = R.Element;
206 end Is_Equal_Node_Node;
208 -- Start of processing for Is_Equal
210 begin
211 return Is_Equal (Left, Right);
212 end "=";
214 ---------
215 -- ">" --
216 ---------
218 function ">" (Left, Right : Cursor) return Boolean is
219 begin
220 if Left.Node = 0 then
221 raise Constraint_Error with "Left cursor equals No_Element";
222 end if;
224 if Right.Node = 0 then
225 raise Constraint_Error with "Right cursor equals No_Element";
226 end if;
228 pragma Assert (Vet (Left.Container.all, Left.Node),
229 "bad Left cursor in "">""");
231 pragma Assert (Vet (Right.Container.all, Right.Node),
232 "bad Right cursor in "">""");
234 -- L > R same as R < L
236 declare
237 LN : Nodes_Type renames Left.Container.Nodes;
238 RN : Nodes_Type renames Right.Container.Nodes;
239 begin
240 return RN (Right.Node).Element < LN (Left.Node).Element;
241 end;
242 end ">";
244 function ">" (Left : Element_Type; Right : Cursor) return Boolean is
245 begin
246 if Right.Node = 0 then
247 raise Constraint_Error with "Right cursor equals No_Element";
248 end if;
250 pragma Assert (Vet (Right.Container.all, Right.Node),
251 "bad Right cursor in "">""");
253 return Right.Container.Nodes (Right.Node).Element < Left;
254 end ">";
256 function ">" (Left : Cursor; Right : Element_Type) return Boolean is
257 begin
258 if Left.Node = 0 then
259 raise Constraint_Error with "Left cursor equals No_Element";
260 end if;
262 pragma Assert (Vet (Left.Container.all, Left.Node),
263 "bad Left cursor in "">""");
265 return Right < Left.Container.Nodes (Left.Node).Element;
266 end ">";
268 ------------
269 -- Adjust --
270 ------------
272 procedure Adjust (Control : in out Reference_Control_Type) is
273 begin
274 if Control.Container /= null then
275 declare
276 C : Set renames Control.Container.all;
277 B : Natural renames C.Busy;
278 L : Natural renames C.Lock;
279 begin
280 B := B + 1;
281 L := L + 1;
282 end;
283 end if;
284 end Adjust;
286 ------------
287 -- Assign --
288 ------------
290 procedure Assign (Target : in out Set; Source : Set) is
291 procedure Append_Element (Source_Node : Count_Type);
293 procedure Append_Elements is
294 new Tree_Operations.Generic_Iteration (Append_Element);
296 --------------------
297 -- Append_Element --
298 --------------------
300 procedure Append_Element (Source_Node : Count_Type) is
301 SN : Node_Type renames Source.Nodes (Source_Node);
303 procedure Set_Element (Node : in out Node_Type);
304 pragma Inline (Set_Element);
306 function New_Node return Count_Type;
307 pragma Inline (New_Node);
309 procedure Insert_Post is
310 new Element_Keys.Generic_Insert_Post (New_Node);
312 procedure Unconditional_Insert_Sans_Hint is
313 new Element_Keys.Generic_Unconditional_Insert (Insert_Post);
315 procedure Unconditional_Insert_Avec_Hint is
316 new Element_Keys.Generic_Unconditional_Insert_With_Hint
317 (Insert_Post,
318 Unconditional_Insert_Sans_Hint);
320 procedure Allocate is
321 new Tree_Operations.Generic_Allocate (Set_Element);
323 --------------
324 -- New_Node --
325 --------------
327 function New_Node return Count_Type is
328 Result : Count_Type;
329 begin
330 Allocate (Target, Result);
331 return Result;
332 end New_Node;
334 -----------------
335 -- Set_Element --
336 -----------------
338 procedure Set_Element (Node : in out Node_Type) is
339 begin
340 Node.Element := SN.Element;
341 end Set_Element;
343 Target_Node : Count_Type;
345 -- Start of processing for Append_Element
347 begin
348 Unconditional_Insert_Avec_Hint
349 (Tree => Target,
350 Hint => 0,
351 Key => SN.Element,
352 Node => Target_Node);
353 end Append_Element;
355 -- Start of processing for Assign
357 begin
358 if Target'Address = Source'Address then
359 return;
360 end if;
362 if Target.Capacity < Source.Length then
363 raise Capacity_Error
364 with "Target capacity is less than Source length";
365 end if;
367 Target.Clear;
368 Append_Elements (Source);
369 end Assign;
371 -------------
372 -- Ceiling --
373 -------------
375 function Ceiling (Container : Set; Item : Element_Type) return Cursor is
376 Node : constant Count_Type :=
377 Element_Keys.Ceiling (Container, Item);
378 begin
379 return (if Node = 0 then No_Element
380 else Cursor'(Container'Unrestricted_Access, Node));
381 end Ceiling;
383 -----------
384 -- Clear --
385 -----------
387 procedure Clear (Container : in out Set) is
388 begin
389 Tree_Operations.Clear_Tree (Container);
390 end Clear;
392 -----------
393 -- Color --
394 -----------
396 function Color (Node : Node_Type) return Red_Black_Trees.Color_Type is
397 begin
398 return Node.Color;
399 end Color;
401 ------------------------
402 -- Constant_Reference --
403 ------------------------
405 function Constant_Reference
406 (Container : aliased Set;
407 Position : Cursor) return Constant_Reference_Type
409 begin
410 if Position.Container = null then
411 raise Constraint_Error with "Position cursor has no element";
412 end if;
414 if Position.Container /= Container'Unrestricted_Access then
415 raise Program_Error with
416 "Position cursor designates wrong container";
417 end if;
419 pragma Assert
420 (Vet (Container, Position.Node),
421 "bad cursor in Constant_Reference");
423 declare
424 N : Node_Type renames Container.Nodes (Position.Node);
425 B : Natural renames Position.Container.Busy;
426 L : Natural renames Position.Container.Lock;
427 begin
428 return R : constant Constant_Reference_Type :=
429 (Element => N.Element'Access,
430 Control => (Controlled with Container'Unrestricted_Access))
432 B := B + 1;
433 L := L + 1;
434 end return;
435 end;
436 end Constant_Reference;
438 --------------
439 -- Contains --
440 --------------
442 function Contains
443 (Container : Set;
444 Item : Element_Type) return Boolean
446 begin
447 return Find (Container, Item) /= No_Element;
448 end Contains;
450 ----------
451 -- Copy --
452 ----------
454 function Copy (Source : Set; Capacity : Count_Type := 0) return Set is
455 C : Count_Type;
457 begin
458 if Capacity = 0 then
459 C := Source.Length;
460 elsif Capacity >= Source.Length then
461 C := Capacity;
462 else
463 raise Capacity_Error with "Capacity value too small";
464 end if;
466 return Target : Set (Capacity => C) do
467 Assign (Target => Target, Source => Source);
468 end return;
469 end Copy;
471 ------------
472 -- Delete --
473 ------------
475 procedure Delete (Container : in out Set; Position : in out Cursor) is
476 begin
477 if Position.Node = 0 then
478 raise Constraint_Error with "Position cursor equals No_Element";
479 end if;
481 if Position.Container /= Container'Unrestricted_Access then
482 raise Program_Error with "Position cursor designates wrong set";
483 end if;
485 if Container.Busy > 0 then
486 raise Program_Error with
487 "attempt to tamper with cursors (set is busy)";
488 end if;
490 pragma Assert (Vet (Container, Position.Node),
491 "bad cursor in Delete");
493 Tree_Operations.Delete_Node_Sans_Free (Container, Position.Node);
494 Tree_Operations.Free (Container, Position.Node);
496 Position := No_Element;
497 end Delete;
499 procedure Delete (Container : in out Set; Item : Element_Type) is
500 X : constant Count_Type := Element_Keys.Find (Container, Item);
502 begin
503 Tree_Operations.Delete_Node_Sans_Free (Container, X);
505 if X = 0 then
506 raise Constraint_Error with "attempt to delete element not in set";
507 end if;
509 Tree_Operations.Free (Container, X);
510 end Delete;
512 ------------------
513 -- Delete_First --
514 ------------------
516 procedure Delete_First (Container : in out Set) is
517 X : constant Count_Type := Container.First;
518 begin
519 if X /= 0 then
520 Tree_Operations.Delete_Node_Sans_Free (Container, X);
521 Tree_Operations.Free (Container, X);
522 end if;
523 end Delete_First;
525 -----------------
526 -- Delete_Last --
527 -----------------
529 procedure Delete_Last (Container : in out Set) is
530 X : constant Count_Type := Container.Last;
531 begin
532 if X /= 0 then
533 Tree_Operations.Delete_Node_Sans_Free (Container, X);
534 Tree_Operations.Free (Container, X);
535 end if;
536 end Delete_Last;
538 ----------------
539 -- Difference --
540 ----------------
542 procedure Difference (Target : in out Set; Source : Set)
543 renames Set_Ops.Set_Difference;
545 function Difference (Left, Right : Set) return Set
546 renames Set_Ops.Set_Difference;
548 -------------
549 -- Element --
550 -------------
552 function Element (Position : Cursor) return Element_Type is
553 begin
554 if Position.Node = 0 then
555 raise Constraint_Error with "Position cursor equals No_Element";
556 end if;
558 pragma Assert (Vet (Position.Container.all, Position.Node),
559 "bad cursor in Element");
561 return Position.Container.Nodes (Position.Node).Element;
562 end Element;
564 -------------------------
565 -- Equivalent_Elements --
566 -------------------------
568 function Equivalent_Elements (Left, Right : Element_Type) return Boolean is
569 begin
570 return (if Left < Right or else Right < Left then False else True);
571 end Equivalent_Elements;
573 ---------------------
574 -- Equivalent_Sets --
575 ---------------------
577 function Equivalent_Sets (Left, Right : Set) return Boolean is
578 function Is_Equivalent_Node_Node (L, R : Node_Type) return Boolean;
579 pragma Inline (Is_Equivalent_Node_Node);
581 function Is_Equivalent is
582 new Tree_Operations.Generic_Equal (Is_Equivalent_Node_Node);
584 -----------------------------
585 -- Is_Equivalent_Node_Node --
586 -----------------------------
588 function Is_Equivalent_Node_Node (L, R : Node_Type) return Boolean is
589 begin
590 return (if L.Element < R.Element then False
591 elsif R.Element < L.Element then False
592 else True);
593 end Is_Equivalent_Node_Node;
595 -- Start of processing for Equivalent_Sets
597 begin
598 return Is_Equivalent (Left, Right);
599 end Equivalent_Sets;
601 -------------
602 -- Exclude --
603 -------------
605 procedure Exclude (Container : in out Set; Item : Element_Type) is
606 X : constant Count_Type := Element_Keys.Find (Container, Item);
607 begin
608 if X /= 0 then
609 Tree_Operations.Delete_Node_Sans_Free (Container, X);
610 Tree_Operations.Free (Container, X);
611 end if;
612 end Exclude;
614 --------------
615 -- Finalize --
616 --------------
618 procedure Finalize (Object : in out Iterator) is
619 begin
620 if Object.Container /= null then
621 declare
622 B : Natural renames Object.Container.all.Busy;
623 begin
624 B := B - 1;
625 end;
626 end if;
627 end Finalize;
629 procedure Finalize (Control : in out Reference_Control_Type) is
630 begin
631 if Control.Container /= null then
632 declare
633 C : Set renames Control.Container.all;
634 B : Natural renames C.Busy;
635 L : Natural renames C.Lock;
636 begin
637 B := B - 1;
638 L := L - 1;
639 end;
641 Control.Container := null;
642 end if;
643 end Finalize;
645 ----------
646 -- Find --
647 ----------
649 function Find (Container : Set; Item : Element_Type) return Cursor is
650 Node : constant Count_Type := Element_Keys.Find (Container, Item);
651 begin
652 return (if Node = 0 then No_Element
653 else Cursor'(Container'Unrestricted_Access, Node));
654 end Find;
656 -----------
657 -- First --
658 -----------
660 function First (Container : Set) return Cursor is
661 begin
662 return (if Container.First = 0 then No_Element
663 else Cursor'(Container'Unrestricted_Access, Container.First));
664 end First;
666 function First (Object : Iterator) return Cursor is
667 begin
668 -- The value of the iterator object's Node component influences the
669 -- behavior of the First (and Last) selector function.
671 -- When the Node component is 0, this means the iterator object was
672 -- constructed without a start expression, in which case the (forward)
673 -- iteration starts from the (logical) beginning of the entire sequence
674 -- of items (corresponding to Container.First, for a forward iterator).
676 -- Otherwise, this is iteration over a partial sequence of items. When
677 -- the Node component is positive, the iterator object was constructed
678 -- with a start expression, that specifies the position from which the
679 -- (forward) partial iteration begins.
681 if Object.Node = 0 then
682 return Bounded_Ordered_Sets.First (Object.Container.all);
683 else
684 return Cursor'(Object.Container, Object.Node);
685 end if;
686 end First;
688 -------------------
689 -- First_Element --
690 -------------------
692 function First_Element (Container : Set) return Element_Type is
693 begin
694 if Container.First = 0 then
695 raise Constraint_Error with "set is empty";
696 end if;
698 return Container.Nodes (Container.First).Element;
699 end First_Element;
701 -----------
702 -- Floor --
703 -----------
705 function Floor (Container : Set; Item : Element_Type) return Cursor is
706 Node : constant Count_Type := Element_Keys.Floor (Container, Item);
707 begin
708 return (if Node = 0 then No_Element
709 else Cursor'(Container'Unrestricted_Access, Node));
710 end Floor;
712 ------------------
713 -- Generic_Keys --
714 ------------------
716 package body Generic_Keys is
718 -----------------------
719 -- Local Subprograms --
720 -----------------------
722 function Is_Greater_Key_Node
723 (Left : Key_Type;
724 Right : Node_Type) return Boolean;
725 pragma Inline (Is_Greater_Key_Node);
727 function Is_Less_Key_Node
728 (Left : Key_Type;
729 Right : Node_Type) return Boolean;
730 pragma Inline (Is_Less_Key_Node);
732 --------------------------
733 -- Local Instantiations --
734 --------------------------
736 package Key_Keys is
737 new Red_Black_Trees.Generic_Bounded_Keys
738 (Tree_Operations => Tree_Operations,
739 Key_Type => Key_Type,
740 Is_Less_Key_Node => Is_Less_Key_Node,
741 Is_Greater_Key_Node => Is_Greater_Key_Node);
743 ------------
744 -- Adjust --
745 ------------
747 procedure Adjust (Control : in out Reference_Control_Type) is
748 begin
749 if Control.Container /= null then
750 declare
751 B : Natural renames Control.Container.Busy;
752 L : Natural renames Control.Container.Lock;
753 begin
754 B := B + 1;
755 L := L + 1;
756 end;
757 end if;
758 end Adjust;
760 -------------
761 -- Ceiling --
762 -------------
764 function Ceiling (Container : Set; Key : Key_Type) return Cursor is
765 Node : constant Count_Type :=
766 Key_Keys.Ceiling (Container, Key);
767 begin
768 return (if Node = 0 then No_Element
769 else Cursor'(Container'Unrestricted_Access, Node));
770 end Ceiling;
772 ------------------------
773 -- Constant_Reference --
774 ------------------------
776 function Constant_Reference
777 (Container : aliased Set;
778 Key : Key_Type) return Constant_Reference_Type
780 Node : constant Count_Type := Key_Keys.Find (Container, Key);
782 begin
783 if Node = 0 then
784 raise Constraint_Error with "key not in set";
785 end if;
787 declare
788 Cur : Cursor := Find (Container, Key);
789 pragma Unmodified (Cur);
791 N : Node_Type renames Container.Nodes (Node);
792 B : Natural renames Cur.Container.Busy;
793 L : Natural renames Cur.Container.Lock;
795 begin
796 return R : constant Constant_Reference_Type :=
797 (Element => N.Element'Access,
798 Control => (Controlled with Container'Unrestricted_Access))
800 B := B + 1;
801 L := L + 1;
802 end return;
803 end;
804 end Constant_Reference;
806 --------------
807 -- Contains --
808 --------------
810 function Contains (Container : Set; Key : Key_Type) return Boolean is
811 begin
812 return Find (Container, Key) /= No_Element;
813 end Contains;
815 ------------
816 -- Delete --
817 ------------
819 procedure Delete (Container : in out Set; Key : Key_Type) is
820 X : constant Count_Type := Key_Keys.Find (Container, Key);
822 begin
823 if X = 0 then
824 raise Constraint_Error with "attempt to delete key not in set";
825 end if;
827 Tree_Operations.Delete_Node_Sans_Free (Container, X);
828 Tree_Operations.Free (Container, X);
829 end Delete;
831 -------------
832 -- Element --
833 -------------
835 function Element (Container : Set; Key : Key_Type) return Element_Type is
836 Node : constant Count_Type := Key_Keys.Find (Container, Key);
838 begin
839 if Node = 0 then
840 raise Constraint_Error with "key not in set";
841 end if;
843 return Container.Nodes (Node).Element;
844 end Element;
846 ---------------------
847 -- Equivalent_Keys --
848 ---------------------
850 function Equivalent_Keys (Left, Right : Key_Type) return Boolean is
851 begin
852 return (if Left < Right or else Right < Left then False else True);
853 end Equivalent_Keys;
855 -------------
856 -- Exclude --
857 -------------
859 procedure Exclude (Container : in out Set; Key : Key_Type) is
860 X : constant Count_Type := Key_Keys.Find (Container, Key);
861 begin
862 if X /= 0 then
863 Tree_Operations.Delete_Node_Sans_Free (Container, X);
864 Tree_Operations.Free (Container, X);
865 end if;
866 end Exclude;
868 --------------
869 -- Finalize --
870 --------------
872 procedure Finalize (Control : in out Reference_Control_Type) is
873 begin
874 if Control.Container /= null then
875 declare
876 B : Natural renames Control.Container.Busy;
877 L : Natural renames Control.Container.Lock;
878 begin
879 B := B - 1;
880 L := L - 1;
881 end;
883 if not (Key (Control.Pos) = Control.Old_Key.all) then
884 Delete (Control.Container.all, Key (Control.Pos));
885 raise Program_Error;
886 end if;
888 Control.Container := null;
889 end if;
890 end Finalize;
892 ----------
893 -- Find --
894 ----------
896 function Find (Container : Set; Key : Key_Type) return Cursor is
897 Node : constant Count_Type := Key_Keys.Find (Container, Key);
898 begin
899 return (if Node = 0 then No_Element
900 else Cursor'(Container'Unrestricted_Access, Node));
901 end Find;
903 -----------
904 -- Floor --
905 -----------
907 function Floor (Container : Set; Key : Key_Type) return Cursor is
908 Node : constant Count_Type := Key_Keys.Floor (Container, Key);
909 begin
910 return (if Node = 0 then No_Element
911 else Cursor'(Container'Unrestricted_Access, Node));
912 end Floor;
914 -------------------------
915 -- Is_Greater_Key_Node --
916 -------------------------
918 function Is_Greater_Key_Node
919 (Left : Key_Type;
920 Right : Node_Type) return Boolean
922 begin
923 return Key (Right.Element) < Left;
924 end Is_Greater_Key_Node;
926 ----------------------
927 -- Is_Less_Key_Node --
928 ----------------------
930 function Is_Less_Key_Node
931 (Left : Key_Type;
932 Right : Node_Type) return Boolean
934 begin
935 return Left < Key (Right.Element);
936 end Is_Less_Key_Node;
938 ---------
939 -- Key --
940 ---------
942 function Key (Position : Cursor) return Key_Type is
943 begin
944 if Position.Node = 0 then
945 raise Constraint_Error with
946 "Position cursor equals No_Element";
947 end if;
949 pragma Assert (Vet (Position.Container.all, Position.Node),
950 "bad cursor in Key");
952 return Key (Position.Container.Nodes (Position.Node).Element);
953 end Key;
955 ----------
956 -- Read --
957 ----------
959 procedure Read
960 (Stream : not null access Root_Stream_Type'Class;
961 Item : out Reference_Type)
963 begin
964 raise Program_Error with "attempt to stream reference";
965 end Read;
967 ------------------------------
968 -- Reference_Preserving_Key --
969 ------------------------------
971 function Reference_Preserving_Key
972 (Container : aliased in out Set;
973 Position : Cursor) return Reference_Type
975 begin
976 if Position.Container = null then
977 raise Constraint_Error with "Position cursor has no element";
978 end if;
980 if Position.Container /= Container'Unrestricted_Access then
981 raise Program_Error with
982 "Position cursor designates wrong container";
983 end if;
985 pragma Assert
986 (Vet (Container, Position.Node),
987 "bad cursor in function Reference_Preserving_Key");
989 declare
990 N : Node_Type renames Container.Nodes (Position.Node);
991 B : Natural renames Container.Busy;
992 L : Natural renames Container.Lock;
993 begin
994 return R : constant Reference_Type :=
995 (Element => N.Element'Access,
996 Control =>
997 (Controlled with
998 Container => Container'Access,
999 Pos => Position,
1000 Old_Key => new Key_Type'(Key (Position))))
1002 B := B + 1;
1003 L := L + 1;
1004 end return;
1005 end;
1006 end Reference_Preserving_Key;
1008 function Reference_Preserving_Key
1009 (Container : aliased in out Set;
1010 Key : Key_Type) return Reference_Type
1012 Node : constant Count_Type := Key_Keys.Find (Container, Key);
1014 begin
1015 if Node = 0 then
1016 raise Constraint_Error with "key not in set";
1017 end if;
1019 declare
1020 N : Node_Type renames Container.Nodes (Node);
1021 B : Natural renames Container.Busy;
1022 L : Natural renames Container.Lock;
1023 begin
1024 return R : constant Reference_Type :=
1025 (Element => N.Element'Access,
1026 Control =>
1027 (Controlled with
1028 Container => Container'Access,
1029 Pos => Find (Container, Key),
1030 Old_Key => new Key_Type'(Key)))
1032 B := B + 1;
1033 L := L + 1;
1034 end return;
1035 end;
1036 end Reference_Preserving_Key;
1038 -------------
1039 -- Replace --
1040 -------------
1042 procedure Replace
1043 (Container : in out Set;
1044 Key : Key_Type;
1045 New_Item : Element_Type)
1047 Node : constant Count_Type := Key_Keys.Find (Container, Key);
1049 begin
1050 if Node = 0 then
1051 raise Constraint_Error with
1052 "attempt to replace key not in set";
1053 end if;
1055 Replace_Element (Container, Node, New_Item);
1056 end Replace;
1058 -----------------------------------
1059 -- Update_Element_Preserving_Key --
1060 -----------------------------------
1062 procedure Update_Element_Preserving_Key
1063 (Container : in out Set;
1064 Position : Cursor;
1065 Process : not null access procedure (Element : in out Element_Type))
1067 begin
1068 if Position.Node = 0 then
1069 raise Constraint_Error with
1070 "Position cursor equals No_Element";
1071 end if;
1073 if Position.Container /= Container'Unrestricted_Access then
1074 raise Program_Error with
1075 "Position cursor designates wrong set";
1076 end if;
1078 pragma Assert (Vet (Container, Position.Node),
1079 "bad cursor in Update_Element_Preserving_Key");
1081 -- Per AI05-0022, the container implementation is required to detect
1082 -- element tampering by a generic actual subprogram.
1084 declare
1085 N : Node_Type renames Container.Nodes (Position.Node);
1086 E : Element_Type renames N.Element;
1087 K : constant Key_Type := Key (E);
1089 B : Natural renames Container.Busy;
1090 L : Natural renames Container.Lock;
1092 Eq : Boolean;
1094 begin
1095 B := B + 1;
1096 L := L + 1;
1098 begin
1099 Process (E);
1100 Eq := Equivalent_Keys (K, Key (E));
1101 exception
1102 when others =>
1103 L := L - 1;
1104 B := B - 1;
1105 raise;
1106 end;
1108 L := L - 1;
1109 B := B - 1;
1111 if Eq then
1112 return;
1113 end if;
1114 end;
1116 Tree_Operations.Delete_Node_Sans_Free (Container, Position.Node);
1117 Tree_Operations.Free (Container, Position.Node);
1119 raise Program_Error with "key was modified";
1120 end Update_Element_Preserving_Key;
1122 -----------
1123 -- Write --
1124 -----------
1126 procedure Write
1127 (Stream : not null access Root_Stream_Type'Class;
1128 Item : Reference_Type)
1130 begin
1131 raise Program_Error with "attempt to stream reference";
1132 end Write;
1133 end Generic_Keys;
1135 -----------------
1136 -- Has_Element --
1137 -----------------
1139 function Has_Element (Position : Cursor) return Boolean is
1140 begin
1141 return Position /= No_Element;
1142 end Has_Element;
1144 -------------
1145 -- Include --
1146 -------------
1148 procedure Include (Container : in out Set; New_Item : Element_Type) is
1149 Position : Cursor;
1150 Inserted : Boolean;
1152 begin
1153 Insert (Container, New_Item, Position, Inserted);
1155 if not Inserted then
1156 if Container.Lock > 0 then
1157 raise Program_Error with
1158 "attempt to tamper with elements (set is locked)";
1159 end if;
1161 Container.Nodes (Position.Node).Element := New_Item;
1162 end if;
1163 end Include;
1165 ------------
1166 -- Insert --
1167 ------------
1169 procedure Insert
1170 (Container : in out Set;
1171 New_Item : Element_Type;
1172 Position : out Cursor;
1173 Inserted : out Boolean)
1175 begin
1176 Insert_Sans_Hint
1177 (Container,
1178 New_Item,
1179 Position.Node,
1180 Inserted);
1182 Position.Container := Container'Unrestricted_Access;
1183 end Insert;
1185 procedure Insert
1186 (Container : in out Set;
1187 New_Item : Element_Type)
1189 Position : Cursor;
1190 pragma Unreferenced (Position);
1192 Inserted : Boolean;
1194 begin
1195 Insert (Container, New_Item, Position, Inserted);
1197 if not Inserted then
1198 raise Constraint_Error with
1199 "attempt to insert element already in set";
1200 end if;
1201 end Insert;
1203 ----------------------
1204 -- Insert_Sans_Hint --
1205 ----------------------
1207 procedure Insert_Sans_Hint
1208 (Container : in out Set;
1209 New_Item : Element_Type;
1210 Node : out Count_Type;
1211 Inserted : out Boolean)
1213 procedure Set_Element (Node : in out Node_Type);
1214 pragma Inline (Set_Element);
1216 function New_Node return Count_Type;
1217 pragma Inline (New_Node);
1219 procedure Insert_Post is
1220 new Element_Keys.Generic_Insert_Post (New_Node);
1222 procedure Conditional_Insert_Sans_Hint is
1223 new Element_Keys.Generic_Conditional_Insert (Insert_Post);
1225 procedure Allocate is
1226 new Tree_Operations.Generic_Allocate (Set_Element);
1228 --------------
1229 -- New_Node --
1230 --------------
1232 function New_Node return Count_Type is
1233 Result : Count_Type;
1234 begin
1235 Allocate (Container, Result);
1236 return Result;
1237 end New_Node;
1239 -----------------
1240 -- Set_Element --
1241 -----------------
1243 procedure Set_Element (Node : in out Node_Type) is
1244 begin
1245 Node.Element := New_Item;
1246 end Set_Element;
1248 -- Start of processing for Insert_Sans_Hint
1250 begin
1251 if Container.Busy > 0 then
1252 raise Program_Error with
1253 "attemot to tamper with cursors (set is busy)";
1254 end if;
1256 Conditional_Insert_Sans_Hint
1257 (Container,
1258 New_Item,
1259 Node,
1260 Inserted);
1261 end Insert_Sans_Hint;
1263 ----------------------
1264 -- Insert_With_Hint --
1265 ----------------------
1267 procedure Insert_With_Hint
1268 (Dst_Set : in out Set;
1269 Dst_Hint : Count_Type;
1270 Src_Node : Node_Type;
1271 Dst_Node : out Count_Type)
1273 Success : Boolean;
1274 pragma Unreferenced (Success);
1276 procedure Set_Element (Node : in out Node_Type);
1277 pragma Inline (Set_Element);
1279 function New_Node return Count_Type;
1280 pragma Inline (New_Node);
1282 procedure Insert_Post is
1283 new Element_Keys.Generic_Insert_Post (New_Node);
1285 procedure Insert_Sans_Hint is
1286 new Element_Keys.Generic_Conditional_Insert (Insert_Post);
1288 procedure Local_Insert_With_Hint is
1289 new Element_Keys.Generic_Conditional_Insert_With_Hint
1290 (Insert_Post,
1291 Insert_Sans_Hint);
1293 procedure Allocate is
1294 new Tree_Operations.Generic_Allocate (Set_Element);
1296 --------------
1297 -- New_Node --
1298 --------------
1300 function New_Node return Count_Type is
1301 Result : Count_Type;
1302 begin
1303 Allocate (Dst_Set, Result);
1304 return Result;
1305 end New_Node;
1307 -----------------
1308 -- Set_Element --
1309 -----------------
1311 procedure Set_Element (Node : in out Node_Type) is
1312 begin
1313 Node.Element := Src_Node.Element;
1314 end Set_Element;
1316 -- Start of processing for Insert_With_Hint
1318 begin
1319 Local_Insert_With_Hint
1320 (Dst_Set,
1321 Dst_Hint,
1322 Src_Node.Element,
1323 Dst_Node,
1324 Success);
1325 end Insert_With_Hint;
1327 ------------------
1328 -- Intersection --
1329 ------------------
1331 procedure Intersection (Target : in out Set; Source : Set)
1332 renames Set_Ops.Set_Intersection;
1334 function Intersection (Left, Right : Set) return Set
1335 renames Set_Ops.Set_Intersection;
1337 --------------
1338 -- Is_Empty --
1339 --------------
1341 function Is_Empty (Container : Set) return Boolean is
1342 begin
1343 return Container.Length = 0;
1344 end Is_Empty;
1346 -----------------------------
1347 -- Is_Greater_Element_Node --
1348 -----------------------------
1350 function Is_Greater_Element_Node
1351 (Left : Element_Type;
1352 Right : Node_Type) return Boolean
1354 begin
1355 -- Compute e > node same as node < e
1357 return Right.Element < Left;
1358 end Is_Greater_Element_Node;
1360 --------------------------
1361 -- Is_Less_Element_Node --
1362 --------------------------
1364 function Is_Less_Element_Node
1365 (Left : Element_Type;
1366 Right : Node_Type) return Boolean
1368 begin
1369 return Left < Right.Element;
1370 end Is_Less_Element_Node;
1372 -----------------------
1373 -- Is_Less_Node_Node --
1374 -----------------------
1376 function Is_Less_Node_Node (L, R : Node_Type) return Boolean is
1377 begin
1378 return L.Element < R.Element;
1379 end Is_Less_Node_Node;
1381 ---------------
1382 -- Is_Subset --
1383 ---------------
1385 function Is_Subset (Subset : Set; Of_Set : Set) return Boolean
1386 renames Set_Ops.Set_Subset;
1388 -------------
1389 -- Iterate --
1390 -------------
1392 procedure Iterate
1393 (Container : Set;
1394 Process : not null access procedure (Position : Cursor))
1396 procedure Process_Node (Node : Count_Type);
1397 pragma Inline (Process_Node);
1399 procedure Local_Iterate is
1400 new Tree_Operations.Generic_Iteration (Process_Node);
1402 ------------------
1403 -- Process_Node --
1404 ------------------
1406 procedure Process_Node (Node : Count_Type) is
1407 begin
1408 Process (Cursor'(Container'Unrestricted_Access, Node));
1409 end Process_Node;
1411 S : Set renames Container'Unrestricted_Access.all;
1412 B : Natural renames S.Busy;
1414 -- Start of processing for Iterate
1416 begin
1417 B := B + 1;
1419 begin
1420 Local_Iterate (S);
1421 exception
1422 when others =>
1423 B := B - 1;
1424 raise;
1425 end;
1427 B := B - 1;
1428 end Iterate;
1430 function Iterate (Container : Set)
1431 return Set_Iterator_Interfaces.Reversible_Iterator'class
1433 B : Natural renames Container'Unrestricted_Access.all.Busy;
1435 begin
1436 -- The value of the Node component influences the behavior of the First
1437 -- and Last selector functions of the iterator object. When the Node
1438 -- component is 0 (as is the case here), this means the iterator object
1439 -- was constructed without a start expression. This is a complete
1440 -- iterator, meaning that the iteration starts from the (logical)
1441 -- beginning of the sequence of items.
1443 -- Note: For a forward iterator, Container.First is the beginning, and
1444 -- for a reverse iterator, Container.Last is the beginning.
1446 return It : constant Iterator :=
1447 Iterator'(Limited_Controlled with
1448 Container => Container'Unrestricted_Access,
1449 Node => 0)
1451 B := B + 1;
1452 end return;
1453 end Iterate;
1455 function Iterate (Container : Set; Start : Cursor)
1456 return Set_Iterator_Interfaces.Reversible_Iterator'class
1458 B : Natural renames Container'Unrestricted_Access.all.Busy;
1460 begin
1461 -- It was formerly the case that when Start = No_Element, the partial
1462 -- iterator was defined to behave the same as for a complete iterator,
1463 -- and iterate over the entire sequence of items. However, those
1464 -- semantics were unintuitive and arguably error-prone (it is too easy
1465 -- to accidentally create an endless loop), and so they were changed,
1466 -- per the ARG meeting in Denver on 2011/11. However, there was no
1467 -- consensus about what positive meaning this corner case should have,
1468 -- and so it was decided to simply raise an exception. This does imply,
1469 -- however, that it is not possible to use a partial iterator to specify
1470 -- an empty sequence of items.
1472 if Start = No_Element then
1473 raise Constraint_Error with
1474 "Start position for iterator equals No_Element";
1475 end if;
1477 if Start.Container /= Container'Unrestricted_Access then
1478 raise Program_Error with
1479 "Start cursor of Iterate designates wrong set";
1480 end if;
1482 pragma Assert (Vet (Container, Start.Node),
1483 "Start cursor of Iterate is bad");
1485 -- The value of the Node component influences the behavior of the First
1486 -- and Last selector functions of the iterator object. When the Node
1487 -- component is positive (as is the case here), it means that this
1488 -- is a partial iteration, over a subset of the complete sequence of
1489 -- items. The iterator object was constructed with a start expression,
1490 -- indicating the position from which the iteration begins. (Note that
1491 -- the start position has the same value irrespective of whether this
1492 -- is a forward or reverse iteration.)
1494 return It : constant Iterator :=
1495 Iterator'(Limited_Controlled with
1496 Container => Container'Unrestricted_Access,
1497 Node => Start.Node)
1499 B := B + 1;
1500 end return;
1501 end Iterate;
1503 ----------
1504 -- Last --
1505 ----------
1507 function Last (Container : Set) return Cursor is
1508 begin
1509 return (if Container.Last = 0 then No_Element
1510 else Cursor'(Container'Unrestricted_Access, Container.Last));
1511 end Last;
1513 function Last (Object : Iterator) return Cursor is
1514 begin
1515 -- The value of the iterator object's Node component influences the
1516 -- behavior of the Last (and First) selector function.
1518 -- When the Node component is 0, this means the iterator object was
1519 -- constructed without a start expression, in which case the (reverse)
1520 -- iteration starts from the (logical) beginning of the entire sequence
1521 -- (corresponding to Container.Last, for a reverse iterator).
1523 -- Otherwise, this is iteration over a partial sequence of items. When
1524 -- the Node component is positive, the iterator object was constructed
1525 -- with a start expression, that specifies the position from which the
1526 -- (reverse) partial iteration begins.
1528 if Object.Node = 0 then
1529 return Bounded_Ordered_Sets.Last (Object.Container.all);
1530 else
1531 return Cursor'(Object.Container, Object.Node);
1532 end if;
1533 end Last;
1535 ------------------
1536 -- Last_Element --
1537 ------------------
1539 function Last_Element (Container : Set) return Element_Type is
1540 begin
1541 if Container.Last = 0 then
1542 raise Constraint_Error with "set is empty";
1543 end if;
1545 return Container.Nodes (Container.Last).Element;
1546 end Last_Element;
1548 ----------
1549 -- Left --
1550 ----------
1552 function Left (Node : Node_Type) return Count_Type is
1553 begin
1554 return Node.Left;
1555 end Left;
1557 ------------
1558 -- Length --
1559 ------------
1561 function Length (Container : Set) return Count_Type is
1562 begin
1563 return Container.Length;
1564 end Length;
1566 ----------
1567 -- Move --
1568 ----------
1570 procedure Move (Target : in out Set; Source : in out Set) is
1571 begin
1572 if Target'Address = Source'Address then
1573 return;
1574 end if;
1576 if Source.Busy > 0 then
1577 raise Program_Error with
1578 "attempt to tamper with cursors (container is busy)";
1579 end if;
1581 Target.Assign (Source);
1582 Source.Clear;
1583 end Move;
1585 ----------
1586 -- Next --
1587 ----------
1589 function Next (Position : Cursor) return Cursor is
1590 begin
1591 if Position = No_Element then
1592 return No_Element;
1593 end if;
1595 pragma Assert (Vet (Position.Container.all, Position.Node),
1596 "bad cursor in Next");
1598 declare
1599 Node : constant Count_Type :=
1600 Tree_Operations.Next (Position.Container.all, Position.Node);
1602 begin
1603 if Node = 0 then
1604 return No_Element;
1605 end if;
1607 return Cursor'(Position.Container, Node);
1608 end;
1609 end Next;
1611 procedure Next (Position : in out Cursor) is
1612 begin
1613 Position := Next (Position);
1614 end Next;
1616 function Next (Object : Iterator; Position : Cursor) return Cursor is
1617 begin
1618 if Position.Container = null then
1619 return No_Element;
1620 end if;
1622 if Position.Container /= Object.Container then
1623 raise Program_Error with
1624 "Position cursor of Next designates wrong set";
1625 end if;
1627 return Next (Position);
1628 end Next;
1630 -------------
1631 -- Overlap --
1632 -------------
1634 function Overlap (Left, Right : Set) return Boolean
1635 renames Set_Ops.Set_Overlap;
1637 ------------
1638 -- Parent --
1639 ------------
1641 function Parent (Node : Node_Type) return Count_Type is
1642 begin
1643 return Node.Parent;
1644 end Parent;
1646 --------------
1647 -- Previous --
1648 --------------
1650 function Previous (Position : Cursor) return Cursor is
1651 begin
1652 if Position = No_Element then
1653 return No_Element;
1654 end if;
1656 pragma Assert (Vet (Position.Container.all, Position.Node),
1657 "bad cursor in Previous");
1659 declare
1660 Node : constant Count_Type :=
1661 Tree_Operations.Previous (Position.Container.all, Position.Node);
1662 begin
1663 return (if Node = 0 then No_Element
1664 else Cursor'(Position.Container, Node));
1665 end;
1666 end Previous;
1668 procedure Previous (Position : in out Cursor) is
1669 begin
1670 Position := Previous (Position);
1671 end Previous;
1673 function Previous (Object : Iterator; Position : Cursor) return Cursor is
1674 begin
1675 if Position.Container = null then
1676 return No_Element;
1677 end if;
1679 if Position.Container /= Object.Container then
1680 raise Program_Error with
1681 "Position cursor of Previous designates wrong set";
1682 end if;
1684 return Previous (Position);
1685 end Previous;
1687 -------------------
1688 -- Query_Element --
1689 -------------------
1691 procedure Query_Element
1692 (Position : Cursor;
1693 Process : not null access procedure (Element : Element_Type))
1695 begin
1696 if Position.Node = 0 then
1697 raise Constraint_Error with "Position cursor equals No_Element";
1698 end if;
1700 pragma Assert (Vet (Position.Container.all, Position.Node),
1701 "bad cursor in Query_Element");
1703 declare
1704 S : Set renames Position.Container.all;
1705 B : Natural renames S.Busy;
1706 L : Natural renames S.Lock;
1708 begin
1709 B := B + 1;
1710 L := L + 1;
1712 begin
1713 Process (S.Nodes (Position.Node).Element);
1714 exception
1715 when others =>
1716 L := L - 1;
1717 B := B - 1;
1718 raise;
1719 end;
1721 L := L - 1;
1722 B := B - 1;
1723 end;
1724 end Query_Element;
1726 ----------
1727 -- Read --
1728 ----------
1730 procedure Read
1731 (Stream : not null access Root_Stream_Type'Class;
1732 Container : out Set)
1734 procedure Read_Element (Node : in out Node_Type);
1735 pragma Inline (Read_Element);
1737 procedure Allocate is
1738 new Tree_Operations.Generic_Allocate (Read_Element);
1740 procedure Read_Elements is
1741 new Tree_Operations.Generic_Read (Allocate);
1743 ------------------
1744 -- Read_Element --
1745 ------------------
1747 procedure Read_Element (Node : in out Node_Type) is
1748 begin
1749 Element_Type'Read (Stream, Node.Element);
1750 end Read_Element;
1752 -- Start of processing for Read
1754 begin
1755 Read_Elements (Stream, Container);
1756 end Read;
1758 procedure Read
1759 (Stream : not null access Root_Stream_Type'Class;
1760 Item : out Cursor)
1762 begin
1763 raise Program_Error with "attempt to stream set cursor";
1764 end Read;
1766 procedure Read
1767 (Stream : not null access Root_Stream_Type'Class;
1768 Item : out Constant_Reference_Type)
1770 begin
1771 raise Program_Error with "attempt to stream reference";
1772 end Read;
1774 -------------
1775 -- Replace --
1776 -------------
1778 procedure Replace (Container : in out Set; New_Item : Element_Type) is
1779 Node : constant Count_Type := Element_Keys.Find (Container, New_Item);
1781 begin
1782 if Node = 0 then
1783 raise Constraint_Error with
1784 "attempt to replace element not in set";
1785 end if;
1787 if Container.Lock > 0 then
1788 raise Program_Error with
1789 "attempt to tamper with elements (set is locked)";
1790 end if;
1792 Container.Nodes (Node).Element := New_Item;
1793 end Replace;
1795 ---------------------
1796 -- Replace_Element --
1797 ---------------------
1799 procedure Replace_Element
1800 (Container : in out Set;
1801 Index : Count_Type;
1802 Item : Element_Type)
1804 pragma Assert (Index /= 0);
1806 function New_Node return Count_Type;
1807 pragma Inline (New_Node);
1809 procedure Local_Insert_Post is
1810 new Element_Keys.Generic_Insert_Post (New_Node);
1812 procedure Local_Insert_Sans_Hint is
1813 new Element_Keys.Generic_Conditional_Insert (Local_Insert_Post);
1815 procedure Local_Insert_With_Hint is
1816 new Element_Keys.Generic_Conditional_Insert_With_Hint
1817 (Local_Insert_Post,
1818 Local_Insert_Sans_Hint);
1820 Nodes : Nodes_Type renames Container.Nodes;
1821 Node : Node_Type renames Nodes (Index);
1823 --------------
1824 -- New_Node --
1825 --------------
1827 function New_Node return Count_Type is
1828 begin
1829 Node.Element := Item;
1830 Node.Color := Red_Black_Trees.Red;
1831 Node.Parent := 0;
1832 Node.Right := 0;
1833 Node.Left := 0;
1834 return Index;
1835 end New_Node;
1837 Hint : Count_Type;
1838 Result : Count_Type;
1839 Inserted : Boolean;
1840 Compare : Boolean;
1842 -- Per AI05-0022, the container implementation is required to detect
1843 -- element tampering by a generic actual subprogram.
1845 B : Natural renames Container.Busy;
1846 L : Natural renames Container.Lock;
1848 -- Start of processing for Replace_Element
1850 begin
1851 -- Replace_Element assigns value Item to the element designated by Node,
1852 -- per certain semantic constraints, described as follows.
1854 -- If Item is equivalent to the element, then element is replaced and
1855 -- there's nothing else to do. This is the easy case.
1857 -- If Item is not equivalent, then the node will (possibly) have to move
1858 -- to some other place in the tree. This is slighly more complicated,
1859 -- because we must ensure that Item is not equivalent to some other
1860 -- element in the tree (in which case, the replacement is not allowed).
1862 -- Determine whether Item is equivalent to element on the specified
1863 -- node.
1865 begin
1866 B := B + 1;
1867 L := L + 1;
1869 Compare := (if Item < Node.Element then False
1870 elsif Node.Element < Item then False
1871 else True);
1873 L := L - 1;
1874 B := B - 1;
1876 exception
1877 when others =>
1878 L := L - 1;
1879 B := B - 1;
1880 raise;
1881 end;
1883 if Compare then
1885 -- Item is equivalent to the node's element, so we will not have to
1886 -- move the node.
1888 if Container.Lock > 0 then
1889 raise Program_Error with
1890 "attempt to tamper with elements (set is locked)";
1891 end if;
1893 Node.Element := Item;
1894 return;
1895 end if;
1897 -- The replacement Item is not equivalent to the element on the
1898 -- specified node, which means that it will need to be re-inserted in a
1899 -- different position in the tree. We must now determine whether Item is
1900 -- equivalent to some other element in the tree (which would prohibit
1901 -- the assignment and hence the move).
1903 -- Ceiling returns the smallest element equivalent or greater than the
1904 -- specified Item; if there is no such element, then it returns 0.
1906 Hint := Element_Keys.Ceiling (Container, Item);
1908 if Hint /= 0 then -- Item <= Nodes (Hint).Element
1909 begin
1910 B := B + 1;
1911 L := L + 1;
1913 Compare := Item < Nodes (Hint).Element;
1915 L := L - 1;
1916 B := B - 1;
1918 exception
1919 when others =>
1920 L := L - 1;
1921 B := B - 1;
1922 raise;
1923 end;
1925 -- Item is equivalent to Nodes (Hint).Element
1927 if not Compare then
1929 -- Ceiling returns an element that is equivalent or greater than
1930 -- Item. If Item is "not less than" the element, then by
1931 -- elimination we know that Item is equivalent to the element.
1933 -- But this means that it is not possible to assign the value of
1934 -- Item to the specified element (on Node), because a different
1935 -- element (on Hint) equivalent to Item already exsits. (Were we
1936 -- to change Node's element value, we would have to move Node, but
1937 -- we would be unable to move the Node, because its new position
1938 -- in the tree is already occupied by an equivalent element.)
1940 raise Program_Error with "attempt to replace existing element";
1941 end if;
1943 -- Item is not equivalent to any other element in the tree
1944 -- (specifically, it is less than Nodes (Hint).Element), so it is
1945 -- safe to assign the value of Item to Node.Element. This means that
1946 -- the node will have to move to a different position in the tree
1947 -- (because its element will have a different value).
1949 -- The nearest (greater) neighbor of Item is Hint. This will be the
1950 -- insertion position of Node (because its element will have Item as
1951 -- its new value).
1953 -- If Node equals Hint, the relative position of Node does not
1954 -- change. This allows us to perform an optimization: we need not
1955 -- remove Node from the tree and then reinsert it with its new value,
1956 -- because it would only be placed in the exact same position.
1958 if Hint = Index then
1959 if Container.Lock > 0 then
1960 raise Program_Error with
1961 "attempt to tamper with elements (set is locked)";
1962 end if;
1964 Node.Element := Item;
1965 return;
1966 end if;
1967 end if;
1969 -- If we get here, it is because Item was greater than all elements in
1970 -- the tree (Hint = 0), or because Item was less than some element at a
1971 -- different place in the tree (Item < Nodes (Hint).Element and Hint /=
1972 -- Index). In either case, we remove Node from the tree and then insert
1973 -- Item into the tree, onto the same Node.
1975 Tree_Operations.Delete_Node_Sans_Free (Container, Index);
1977 Local_Insert_With_Hint
1978 (Tree => Container,
1979 Position => Hint,
1980 Key => Item,
1981 Node => Result,
1982 Inserted => Inserted);
1984 pragma Assert (Inserted);
1985 pragma Assert (Result = Index);
1986 end Replace_Element;
1988 procedure Replace_Element
1989 (Container : in out Set;
1990 Position : Cursor;
1991 New_Item : Element_Type)
1993 begin
1994 if Position.Node = 0 then
1995 raise Constraint_Error with
1996 "Position cursor equals No_Element";
1997 end if;
1999 if Position.Container /= Container'Unrestricted_Access then
2000 raise Program_Error with
2001 "Position cursor designates wrong set";
2002 end if;
2004 pragma Assert (Vet (Container, Position.Node),
2005 "bad cursor in Replace_Element");
2007 Replace_Element (Container, Position.Node, New_Item);
2008 end Replace_Element;
2010 ---------------------
2011 -- Reverse_Iterate --
2012 ---------------------
2014 procedure Reverse_Iterate
2015 (Container : Set;
2016 Process : not null access procedure (Position : Cursor))
2018 procedure Process_Node (Node : Count_Type);
2019 pragma Inline (Process_Node);
2021 procedure Local_Reverse_Iterate is
2022 new Tree_Operations.Generic_Reverse_Iteration (Process_Node);
2024 ------------------
2025 -- Process_Node --
2026 ------------------
2028 procedure Process_Node (Node : Count_Type) is
2029 begin
2030 Process (Cursor'(Container'Unrestricted_Access, Node));
2031 end Process_Node;
2033 S : Set renames Container'Unrestricted_Access.all;
2034 B : Natural renames S.Busy;
2036 -- Start of processing for Reverse_Iterate
2038 begin
2039 B := B + 1;
2041 begin
2042 Local_Reverse_Iterate (S);
2043 exception
2044 when others =>
2045 B := B - 1;
2046 raise;
2047 end;
2049 B := B - 1;
2050 end Reverse_Iterate;
2052 -----------
2053 -- Right --
2054 -----------
2056 function Right (Node : Node_Type) return Count_Type is
2057 begin
2058 return Node.Right;
2059 end Right;
2061 ---------------
2062 -- Set_Color --
2063 ---------------
2065 procedure Set_Color
2066 (Node : in out Node_Type;
2067 Color : Red_Black_Trees.Color_Type)
2069 begin
2070 Node.Color := Color;
2071 end Set_Color;
2073 --------------
2074 -- Set_Left --
2075 --------------
2077 procedure Set_Left (Node : in out Node_Type; Left : Count_Type) is
2078 begin
2079 Node.Left := Left;
2080 end Set_Left;
2082 ----------------
2083 -- Set_Parent --
2084 ----------------
2086 procedure Set_Parent (Node : in out Node_Type; Parent : Count_Type) is
2087 begin
2088 Node.Parent := Parent;
2089 end Set_Parent;
2091 ---------------
2092 -- Set_Right --
2093 ---------------
2095 procedure Set_Right (Node : in out Node_Type; Right : Count_Type) is
2096 begin
2097 Node.Right := Right;
2098 end Set_Right;
2100 --------------------------
2101 -- Symmetric_Difference --
2102 --------------------------
2104 procedure Symmetric_Difference (Target : in out Set; Source : Set)
2105 renames Set_Ops.Set_Symmetric_Difference;
2107 function Symmetric_Difference (Left, Right : Set) return Set
2108 renames Set_Ops.Set_Symmetric_Difference;
2110 ------------
2111 -- To_Set --
2112 ------------
2114 function To_Set (New_Item : Element_Type) return Set is
2115 Node : Count_Type;
2116 Inserted : Boolean;
2117 begin
2118 return S : Set (1) do
2119 Insert_Sans_Hint (S, New_Item, Node, Inserted);
2120 pragma Assert (Inserted);
2121 end return;
2122 end To_Set;
2124 -----------
2125 -- Union --
2126 -----------
2128 procedure Union (Target : in out Set; Source : Set)
2129 renames Set_Ops.Set_Union;
2131 function Union (Left, Right : Set) return Set
2132 renames Set_Ops.Set_Union;
2134 -----------
2135 -- Write --
2136 -----------
2138 procedure Write
2139 (Stream : not null access Root_Stream_Type'Class;
2140 Container : Set)
2142 procedure Write_Element
2143 (Stream : not null access Root_Stream_Type'Class;
2144 Node : Node_Type);
2145 pragma Inline (Write_Element);
2147 procedure Write_Elements is
2148 new Tree_Operations.Generic_Write (Write_Element);
2150 -------------------
2151 -- Write_Element --
2152 -------------------
2154 procedure Write_Element
2155 (Stream : not null access Root_Stream_Type'Class;
2156 Node : Node_Type)
2158 begin
2159 Element_Type'Write (Stream, Node.Element);
2160 end Write_Element;
2162 -- Start of processing for Write
2164 begin
2165 Write_Elements (Stream, Container);
2166 end Write;
2168 procedure Write
2169 (Stream : not null access Root_Stream_Type'Class;
2170 Item : Cursor)
2172 begin
2173 raise Program_Error with "attempt to stream set cursor";
2174 end Write;
2176 procedure Write
2177 (Stream : not null access Root_Stream_Type'Class;
2178 Item : Constant_Reference_Type)
2180 begin
2181 raise Program_Error with "attempt to stream reference";
2182 end Write;
2184 end Ada.Containers.Bounded_Ordered_Sets;