aix: Fix _STDC_FORMAT_MACROS in inttypes.h [PR97044]
[official-gcc.git] / gcc / tree-vectorizer.h
blobb7fa6bc8d2ff775653cdbff168700789b5822ac9
1 /* Vectorizer
2 Copyright (C) 2003-2020 Free Software Foundation, Inc.
3 Contributed by Dorit Naishlos <dorit@il.ibm.com>
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
21 #ifndef GCC_TREE_VECTORIZER_H
22 #define GCC_TREE_VECTORIZER_H
24 typedef class _stmt_vec_info *stmt_vec_info;
26 #include "tree-data-ref.h"
27 #include "tree-hash-traits.h"
28 #include "target.h"
31 /* Used for naming of new temporaries. */
32 enum vect_var_kind {
33 vect_simple_var,
34 vect_pointer_var,
35 vect_scalar_var,
36 vect_mask_var
39 /* Defines type of operation. */
40 enum operation_type {
41 unary_op = 1,
42 binary_op,
43 ternary_op
46 /* Define type of available alignment support. */
47 enum dr_alignment_support {
48 dr_unaligned_unsupported,
49 dr_unaligned_supported,
50 dr_explicit_realign,
51 dr_explicit_realign_optimized,
52 dr_aligned
55 /* Define type of def-use cross-iteration cycle. */
56 enum vect_def_type {
57 vect_uninitialized_def = 0,
58 vect_constant_def = 1,
59 vect_external_def,
60 vect_internal_def,
61 vect_induction_def,
62 vect_reduction_def,
63 vect_double_reduction_def,
64 vect_nested_cycle,
65 vect_unknown_def_type
68 /* Define type of reduction. */
69 enum vect_reduction_type {
70 TREE_CODE_REDUCTION,
71 COND_REDUCTION,
72 INTEGER_INDUC_COND_REDUCTION,
73 CONST_COND_REDUCTION,
75 /* Retain a scalar phi and use a FOLD_EXTRACT_LAST within the loop
76 to implement:
78 for (int i = 0; i < VF; ++i)
79 res = cond[i] ? val[i] : res; */
80 EXTRACT_LAST_REDUCTION,
82 /* Use a folding reduction within the loop to implement:
84 for (int i = 0; i < VF; ++i)
85 res = res OP val[i];
87 (with no reassocation). */
88 FOLD_LEFT_REDUCTION
91 #define VECTORIZABLE_CYCLE_DEF(D) (((D) == vect_reduction_def) \
92 || ((D) == vect_double_reduction_def) \
93 || ((D) == vect_nested_cycle))
95 /* Structure to encapsulate information about a group of like
96 instructions to be presented to the target cost model. */
97 struct stmt_info_for_cost {
98 int count;
99 enum vect_cost_for_stmt kind;
100 enum vect_cost_model_location where;
101 stmt_vec_info stmt_info;
102 tree vectype;
103 int misalign;
106 typedef vec<stmt_info_for_cost> stmt_vector_for_cost;
108 /* Maps base addresses to an innermost_loop_behavior that gives the maximum
109 known alignment for that base. */
110 typedef hash_map<tree_operand_hash,
111 innermost_loop_behavior *> vec_base_alignments;
113 /************************************************************************
115 ************************************************************************/
116 typedef struct _slp_tree *slp_tree;
118 /* A computation tree of an SLP instance. Each node corresponds to a group of
119 stmts to be packed in a SIMD stmt. */
120 struct _slp_tree {
121 _slp_tree ();
122 ~_slp_tree ();
124 /* Nodes that contain def-stmts of this node statements operands. */
125 vec<slp_tree> children;
127 /* A group of scalar stmts to be vectorized together. */
128 vec<stmt_vec_info> stmts;
129 /* A group of scalar operands to be vectorized together. */
130 vec<tree> ops;
131 /* The representative that should be used for analysis and
132 code generation. */
133 stmt_vec_info representative;
135 /* Load permutation relative to the stores, NULL if there is no
136 permutation. */
137 vec<unsigned> load_permutation;
138 /* Lane permutation of the operands scalar lanes encoded as pairs
139 of { operand number, lane number }. The number of elements
140 denotes the number of output lanes. */
141 vec<std::pair<unsigned, unsigned> > lane_permutation;
143 tree vectype;
144 /* Vectorized stmt/s. */
145 vec<gimple *> vec_stmts;
146 vec<tree> vec_defs;
147 /* Number of vector stmts that are created to replace the group of scalar
148 stmts. It is calculated during the transformation phase as the number of
149 scalar elements in one scalar iteration (GROUP_SIZE) multiplied by VF
150 divided by vector size. */
151 unsigned int vec_stmts_size;
153 /* Reference count in the SLP graph. */
154 unsigned int refcnt;
155 /* The maximum number of vector elements for the subtree rooted
156 at this node. */
157 poly_uint64 max_nunits;
158 /* The DEF type of this node. */
159 enum vect_def_type def_type;
160 /* The number of scalar lanes produced by this node. */
161 unsigned int lanes;
162 /* The operation of this node. */
163 enum tree_code code;
167 /* SLP instance is a sequence of stmts in a loop that can be packed into
168 SIMD stmts. */
169 typedef class _slp_instance {
170 public:
171 /* The root of SLP tree. */
172 slp_tree root;
174 /* For vector constructors, the constructor stmt that the SLP tree is built
175 from, NULL otherwise. */
176 stmt_vec_info root_stmt;
178 /* The unrolling factor required to vectorized this SLP instance. */
179 poly_uint64 unrolling_factor;
181 /* The group of nodes that contain loads of this SLP instance. */
182 vec<slp_tree> loads;
184 /* The SLP node containing the reduction PHIs. */
185 slp_tree reduc_phis;
187 /* Vector cost of this entry to the SLP graph. */
188 stmt_vector_for_cost cost_vec;
190 /* If this instance is the main entry of a subgraph the set of
191 entries into the same subgraph, including itself. */
192 vec<_slp_instance *> subgraph_entries;
194 dump_user_location_t location () const;
195 } *slp_instance;
198 /* Access Functions. */
199 #define SLP_INSTANCE_TREE(S) (S)->root
200 #define SLP_INSTANCE_UNROLLING_FACTOR(S) (S)->unrolling_factor
201 #define SLP_INSTANCE_LOADS(S) (S)->loads
202 #define SLP_INSTANCE_ROOT_STMT(S) (S)->root_stmt
204 #define SLP_TREE_CHILDREN(S) (S)->children
205 #define SLP_TREE_SCALAR_STMTS(S) (S)->stmts
206 #define SLP_TREE_SCALAR_OPS(S) (S)->ops
207 #define SLP_TREE_VEC_STMTS(S) (S)->vec_stmts
208 #define SLP_TREE_VEC_DEFS(S) (S)->vec_defs
209 #define SLP_TREE_NUMBER_OF_VEC_STMTS(S) (S)->vec_stmts_size
210 #define SLP_TREE_LOAD_PERMUTATION(S) (S)->load_permutation
211 #define SLP_TREE_LANE_PERMUTATION(S) (S)->lane_permutation
212 #define SLP_TREE_DEF_TYPE(S) (S)->def_type
213 #define SLP_TREE_VECTYPE(S) (S)->vectype
214 #define SLP_TREE_REPRESENTATIVE(S) (S)->representative
215 #define SLP_TREE_LANES(S) (S)->lanes
216 #define SLP_TREE_CODE(S) (S)->code
218 /* Key for map that records association between
219 scalar conditions and corresponding loop mask, and
220 is populated by vect_record_loop_mask. */
222 struct scalar_cond_masked_key
224 scalar_cond_masked_key (tree t, unsigned ncopies_)
225 : ncopies (ncopies_)
227 get_cond_ops_from_tree (t);
230 void get_cond_ops_from_tree (tree);
232 unsigned ncopies;
233 tree_code code;
234 tree op0;
235 tree op1;
238 template<>
239 struct default_hash_traits<scalar_cond_masked_key>
241 typedef scalar_cond_masked_key compare_type;
242 typedef scalar_cond_masked_key value_type;
244 static inline hashval_t
245 hash (value_type v)
247 inchash::hash h;
248 h.add_int (v.code);
249 inchash::add_expr (v.op0, h, 0);
250 inchash::add_expr (v.op1, h, 0);
251 h.add_int (v.ncopies);
252 return h.end ();
255 static inline bool
256 equal (value_type existing, value_type candidate)
258 return (existing.ncopies == candidate.ncopies
259 && existing.code == candidate.code
260 && operand_equal_p (existing.op0, candidate.op0, 0)
261 && operand_equal_p (existing.op1, candidate.op1, 0));
264 static const bool empty_zero_p = true;
266 static inline void
267 mark_empty (value_type &v)
269 v.ncopies = 0;
272 static inline bool
273 is_empty (value_type v)
275 return v.ncopies == 0;
278 static inline void mark_deleted (value_type &) {}
280 static inline bool is_deleted (const value_type &)
282 return false;
285 static inline void remove (value_type &) {}
288 typedef hash_set<scalar_cond_masked_key> scalar_cond_masked_set_type;
290 /* Describes two objects whose addresses must be unequal for the vectorized
291 loop to be valid. */
292 typedef std::pair<tree, tree> vec_object_pair;
294 /* Records that vectorization is only possible if abs (EXPR) >= MIN_VALUE.
295 UNSIGNED_P is true if we can assume that abs (EXPR) == EXPR. */
296 class vec_lower_bound {
297 public:
298 vec_lower_bound () {}
299 vec_lower_bound (tree e, bool u, poly_uint64 m)
300 : expr (e), unsigned_p (u), min_value (m) {}
302 tree expr;
303 bool unsigned_p;
304 poly_uint64 min_value;
307 /* Vectorizer state shared between different analyses like vector sizes
308 of the same CFG region. */
309 class vec_info_shared {
310 public:
311 vec_info_shared();
312 ~vec_info_shared();
314 void save_datarefs();
315 void check_datarefs();
317 /* All data references. Freed by free_data_refs, so not an auto_vec. */
318 vec<data_reference_p> datarefs;
319 vec<data_reference> datarefs_copy;
321 /* The loop nest in which the data dependences are computed. */
322 auto_vec<loop_p> loop_nest;
324 /* All data dependences. Freed by free_dependence_relations, so not
325 an auto_vec. */
326 vec<ddr_p> ddrs;
329 /* Vectorizer state common between loop and basic-block vectorization. */
330 class vec_info {
331 public:
332 typedef hash_set<int_hash<machine_mode, E_VOIDmode, E_BLKmode> > mode_set;
333 enum vec_kind { bb, loop };
335 vec_info (vec_kind, void *, vec_info_shared *);
336 ~vec_info ();
338 stmt_vec_info add_stmt (gimple *);
339 stmt_vec_info lookup_stmt (gimple *);
340 stmt_vec_info lookup_def (tree);
341 stmt_vec_info lookup_single_use (tree);
342 class dr_vec_info *lookup_dr (data_reference *);
343 void move_dr (stmt_vec_info, stmt_vec_info);
344 void remove_stmt (stmt_vec_info);
345 void replace_stmt (gimple_stmt_iterator *, stmt_vec_info, gimple *);
346 void insert_on_entry (stmt_vec_info, gimple *);
347 void insert_seq_on_entry (stmt_vec_info, gimple_seq);
349 /* The type of vectorization. */
350 vec_kind kind;
352 /* Shared vectorizer state. */
353 vec_info_shared *shared;
355 /* The mapping of GIMPLE UID to stmt_vec_info. */
356 vec<stmt_vec_info> stmt_vec_infos;
357 /* Whether the above mapping is complete. */
358 bool stmt_vec_info_ro;
360 /* The SLP graph. */
361 auto_vec<slp_instance> slp_instances;
362 auto_vec<slp_tree> slp_loads;
364 /* Maps base addresses to an innermost_loop_behavior that gives the maximum
365 known alignment for that base. */
366 vec_base_alignments base_alignments;
368 /* All interleaving chains of stores, represented by the first
369 stmt in the chain. */
370 auto_vec<stmt_vec_info> grouped_stores;
372 /* Cost data used by the target cost model. */
373 void *target_cost_data;
375 /* The set of vector modes used in the vectorized region. */
376 mode_set used_vector_modes;
378 /* The argument we should pass to related_vector_mode when looking up
379 the vector mode for a scalar mode, or VOIDmode if we haven't yet
380 made any decisions about which vector modes to use. */
381 machine_mode vector_mode;
383 private:
384 stmt_vec_info new_stmt_vec_info (gimple *stmt);
385 void set_vinfo_for_stmt (gimple *, stmt_vec_info);
386 void free_stmt_vec_infos ();
387 void free_stmt_vec_info (stmt_vec_info);
390 class _loop_vec_info;
391 class _bb_vec_info;
393 template<>
394 template<>
395 inline bool
396 is_a_helper <_loop_vec_info *>::test (vec_info *i)
398 return i->kind == vec_info::loop;
401 template<>
402 template<>
403 inline bool
404 is_a_helper <_bb_vec_info *>::test (vec_info *i)
406 return i->kind == vec_info::bb;
409 /* In general, we can divide the vector statements in a vectorized loop
410 into related groups ("rgroups") and say that for each rgroup there is
411 some nS such that the rgroup operates on nS values from one scalar
412 iteration followed by nS values from the next. That is, if VF is the
413 vectorization factor of the loop, the rgroup operates on a sequence:
415 (1,1) (1,2) ... (1,nS) (2,1) ... (2,nS) ... (VF,1) ... (VF,nS)
417 where (i,j) represents a scalar value with index j in a scalar
418 iteration with index i.
420 [ We use the term "rgroup" to emphasise that this grouping isn't
421 necessarily the same as the grouping of statements used elsewhere.
422 For example, if we implement a group of scalar loads using gather
423 loads, we'll use a separate gather load for each scalar load, and
424 thus each gather load will belong to its own rgroup. ]
426 In general this sequence will occupy nV vectors concatenated
427 together. If these vectors have nL lanes each, the total number
428 of scalar values N is given by:
430 N = nS * VF = nV * nL
432 None of nS, VF, nV and nL are required to be a power of 2. nS and nV
433 are compile-time constants but VF and nL can be variable (if the target
434 supports variable-length vectors).
436 In classical vectorization, each iteration of the vector loop would
437 handle exactly VF iterations of the original scalar loop. However,
438 in vector loops that are able to operate on partial vectors, a
439 particular iteration of the vector loop might handle fewer than VF
440 iterations of the scalar loop. The vector lanes that correspond to
441 iterations of the scalar loop are said to be "active" and the other
442 lanes are said to be "inactive".
444 In such vector loops, many rgroups need to be controlled to ensure
445 that they have no effect for the inactive lanes. Conceptually, each
446 such rgroup needs a sequence of booleans in the same order as above,
447 but with each (i,j) replaced by a boolean that indicates whether
448 iteration i is active. This sequence occupies nV vector controls
449 that again have nL lanes each. Thus the control sequence as a whole
450 consists of VF independent booleans that are each repeated nS times.
452 Taking mask-based approach as a partially-populated vectors example.
453 We make the simplifying assumption that if a sequence of nV masks is
454 suitable for one (nS,nL) pair, we can reuse it for (nS/2,nL/2) by
455 VIEW_CONVERTing it. This holds for all current targets that support
456 fully-masked loops. For example, suppose the scalar loop is:
458 float *f;
459 double *d;
460 for (int i = 0; i < n; ++i)
462 f[i * 2 + 0] += 1.0f;
463 f[i * 2 + 1] += 2.0f;
464 d[i] += 3.0;
467 and suppose that vectors have 256 bits. The vectorized f accesses
468 will belong to one rgroup and the vectorized d access to another:
470 f rgroup: nS = 2, nV = 1, nL = 8
471 d rgroup: nS = 1, nV = 1, nL = 4
472 VF = 4
474 [ In this simple example the rgroups do correspond to the normal
475 SLP grouping scheme. ]
477 If only the first three lanes are active, the masks we need are:
479 f rgroup: 1 1 | 1 1 | 1 1 | 0 0
480 d rgroup: 1 | 1 | 1 | 0
482 Here we can use a mask calculated for f's rgroup for d's, but not
483 vice versa.
485 Thus for each value of nV, it is enough to provide nV masks, with the
486 mask being calculated based on the highest nL (or, equivalently, based
487 on the highest nS) required by any rgroup with that nV. We therefore
488 represent the entire collection of masks as a two-level table, with the
489 first level being indexed by nV - 1 (since nV == 0 doesn't exist) and
490 the second being indexed by the mask index 0 <= i < nV. */
492 /* The controls (like masks or lengths) needed by rgroups with nV vectors,
493 according to the description above. */
494 struct rgroup_controls {
495 /* The largest nS for all rgroups that use these controls. */
496 unsigned int max_nscalars_per_iter;
498 /* For the largest nS recorded above, the loop controls divide each scalar
499 into FACTOR equal-sized pieces. This is useful if we need to split
500 element-based accesses into byte-based accesses. */
501 unsigned int factor;
503 /* This is a vector type with MAX_NSCALARS_PER_ITER * VF / nV elements.
504 For mask-based controls, it is the type of the masks in CONTROLS.
505 For length-based controls, it can be any vector type that has the
506 specified number of elements; the type of the elements doesn't matter. */
507 tree type;
509 /* A vector of nV controls, in iteration order. */
510 vec<tree> controls;
513 typedef auto_vec<rgroup_controls> vec_loop_masks;
515 typedef auto_vec<rgroup_controls> vec_loop_lens;
517 typedef auto_vec<std::pair<data_reference*, tree> > drs_init_vec;
519 /*-----------------------------------------------------------------*/
520 /* Info on vectorized loops. */
521 /*-----------------------------------------------------------------*/
522 typedef class _loop_vec_info : public vec_info {
523 public:
524 _loop_vec_info (class loop *, vec_info_shared *);
525 ~_loop_vec_info ();
527 /* The loop to which this info struct refers to. */
528 class loop *loop;
530 /* The loop basic blocks. */
531 basic_block *bbs;
533 /* Number of latch executions. */
534 tree num_itersm1;
535 /* Number of iterations. */
536 tree num_iters;
537 /* Number of iterations of the original loop. */
538 tree num_iters_unchanged;
539 /* Condition under which this loop is analyzed and versioned. */
540 tree num_iters_assumptions;
542 /* Threshold of number of iterations below which vectorization will not be
543 performed. It is calculated from MIN_PROFITABLE_ITERS and
544 param_min_vect_loop_bound. */
545 unsigned int th;
547 /* When applying loop versioning, the vector form should only be used
548 if the number of scalar iterations is >= this value, on top of all
549 the other requirements. Ignored when loop versioning is not being
550 used. */
551 poly_uint64 versioning_threshold;
553 /* Unrolling factor */
554 poly_uint64 vectorization_factor;
556 /* Maximum runtime vectorization factor, or MAX_VECTORIZATION_FACTOR
557 if there is no particular limit. */
558 unsigned HOST_WIDE_INT max_vectorization_factor;
560 /* The masks that a fully-masked loop should use to avoid operating
561 on inactive scalars. */
562 vec_loop_masks masks;
564 /* The lengths that a loop with length should use to avoid operating
565 on inactive scalars. */
566 vec_loop_lens lens;
568 /* Set of scalar conditions that have loop mask applied. */
569 scalar_cond_masked_set_type scalar_cond_masked_set;
571 /* If we are using a loop mask to align memory addresses, this variable
572 contains the number of vector elements that we should skip in the
573 first iteration of the vector loop (i.e. the number of leading
574 elements that should be false in the first mask). */
575 tree mask_skip_niters;
577 /* The type that the loop control IV should be converted to before
578 testing which of the VF scalars are active and inactive.
579 Only meaningful if LOOP_VINFO_USING_PARTIAL_VECTORS_P. */
580 tree rgroup_compare_type;
582 /* For #pragma omp simd if (x) loops the x expression. If constant 0,
583 the loop should not be vectorized, if constant non-zero, simd_if_cond
584 shouldn't be set and loop vectorized normally, if SSA_NAME, the loop
585 should be versioned on that condition, using scalar loop if the condition
586 is false and vectorized loop otherwise. */
587 tree simd_if_cond;
589 /* The type that the vector loop control IV should have when
590 LOOP_VINFO_USING_PARTIAL_VECTORS_P is true. */
591 tree rgroup_iv_type;
593 /* Unknown DRs according to which loop was peeled. */
594 class dr_vec_info *unaligned_dr;
596 /* peeling_for_alignment indicates whether peeling for alignment will take
597 place, and what the peeling factor should be:
598 peeling_for_alignment = X means:
599 If X=0: Peeling for alignment will not be applied.
600 If X>0: Peel first X iterations.
601 If X=-1: Generate a runtime test to calculate the number of iterations
602 to be peeled, using the dataref recorded in the field
603 unaligned_dr. */
604 int peeling_for_alignment;
606 /* The mask used to check the alignment of pointers or arrays. */
607 int ptr_mask;
609 /* Data Dependence Relations defining address ranges that are candidates
610 for a run-time aliasing check. */
611 auto_vec<ddr_p> may_alias_ddrs;
613 /* Data Dependence Relations defining address ranges together with segment
614 lengths from which the run-time aliasing check is built. */
615 auto_vec<dr_with_seg_len_pair_t> comp_alias_ddrs;
617 /* Check that the addresses of each pair of objects is unequal. */
618 auto_vec<vec_object_pair> check_unequal_addrs;
620 /* List of values that are required to be nonzero. This is used to check
621 whether things like "x[i * n] += 1;" are safe and eventually gets added
622 to the checks for lower bounds below. */
623 auto_vec<tree> check_nonzero;
625 /* List of values that need to be checked for a minimum value. */
626 auto_vec<vec_lower_bound> lower_bounds;
628 /* Statements in the loop that have data references that are candidates for a
629 runtime (loop versioning) misalignment check. */
630 auto_vec<stmt_vec_info> may_misalign_stmts;
632 /* Reduction cycles detected in the loop. Used in loop-aware SLP. */
633 auto_vec<stmt_vec_info> reductions;
635 /* All reduction chains in the loop, represented by the first
636 stmt in the chain. */
637 auto_vec<stmt_vec_info> reduction_chains;
639 /* Cost vector for a single scalar iteration. */
640 auto_vec<stmt_info_for_cost> scalar_cost_vec;
642 /* Map of IV base/step expressions to inserted name in the preheader. */
643 hash_map<tree_operand_hash, tree> *ivexpr_map;
645 /* Map of OpenMP "omp simd array" scan variables to corresponding
646 rhs of the store of the initializer. */
647 hash_map<tree, tree> *scan_map;
649 /* The unrolling factor needed to SLP the loop. In case of that pure SLP is
650 applied to the loop, i.e., no unrolling is needed, this is 1. */
651 poly_uint64 slp_unrolling_factor;
653 /* Cost of a single scalar iteration. */
654 int single_scalar_iteration_cost;
656 /* The cost of the vector prologue and epilogue, including peeled
657 iterations and set-up code. */
658 int vec_outside_cost;
660 /* The cost of the vector loop body. */
661 int vec_inside_cost;
663 /* Is the loop vectorizable? */
664 bool vectorizable;
666 /* Records whether we still have the option of vectorizing this loop
667 using partially-populated vectors; in other words, whether it is
668 still possible for one iteration of the vector loop to handle
669 fewer than VF scalars. */
670 bool can_use_partial_vectors_p;
672 /* True if we've decided to use partially-populated vectors, so that
673 the vector loop can handle fewer than VF scalars. */
674 bool using_partial_vectors_p;
676 /* True if we've decided to use partially-populated vectors for the
677 epilogue of loop. */
678 bool epil_using_partial_vectors_p;
680 /* When we have grouped data accesses with gaps, we may introduce invalid
681 memory accesses. We peel the last iteration of the loop to prevent
682 this. */
683 bool peeling_for_gaps;
685 /* When the number of iterations is not a multiple of the vector size
686 we need to peel off iterations at the end to form an epilogue loop. */
687 bool peeling_for_niter;
689 /* True if there are no loop carried data dependencies in the loop.
690 If loop->safelen <= 1, then this is always true, either the loop
691 didn't have any loop carried data dependencies, or the loop is being
692 vectorized guarded with some runtime alias checks, or couldn't
693 be vectorized at all, but then this field shouldn't be used.
694 For loop->safelen >= 2, the user has asserted that there are no
695 backward dependencies, but there still could be loop carried forward
696 dependencies in such loops. This flag will be false if normal
697 vectorizer data dependency analysis would fail or require versioning
698 for alias, but because of loop->safelen >= 2 it has been vectorized
699 even without versioning for alias. E.g. in:
700 #pragma omp simd
701 for (int i = 0; i < m; i++)
702 a[i] = a[i + k] * c;
703 (or #pragma simd or #pragma ivdep) we can vectorize this and it will
704 DTRT even for k > 0 && k < m, but without safelen we would not
705 vectorize this, so this field would be false. */
706 bool no_data_dependencies;
708 /* Mark loops having masked stores. */
709 bool has_mask_store;
711 /* Queued scaling factor for the scalar loop. */
712 profile_probability scalar_loop_scaling;
714 /* If if-conversion versioned this loop before conversion, this is the
715 loop version without if-conversion. */
716 class loop *scalar_loop;
718 /* For loops being epilogues of already vectorized loops
719 this points to the original vectorized loop. Otherwise NULL. */
720 _loop_vec_info *orig_loop_info;
722 /* Used to store loop_vec_infos of epilogues of this loop during
723 analysis. */
724 vec<_loop_vec_info *> epilogue_vinfos;
726 } *loop_vec_info;
728 /* Access Functions. */
729 #define LOOP_VINFO_LOOP(L) (L)->loop
730 #define LOOP_VINFO_BBS(L) (L)->bbs
731 #define LOOP_VINFO_NITERSM1(L) (L)->num_itersm1
732 #define LOOP_VINFO_NITERS(L) (L)->num_iters
733 /* Since LOOP_VINFO_NITERS and LOOP_VINFO_NITERSM1 can change after
734 prologue peeling retain total unchanged scalar loop iterations for
735 cost model. */
736 #define LOOP_VINFO_NITERS_UNCHANGED(L) (L)->num_iters_unchanged
737 #define LOOP_VINFO_NITERS_ASSUMPTIONS(L) (L)->num_iters_assumptions
738 #define LOOP_VINFO_COST_MODEL_THRESHOLD(L) (L)->th
739 #define LOOP_VINFO_VERSIONING_THRESHOLD(L) (L)->versioning_threshold
740 #define LOOP_VINFO_VECTORIZABLE_P(L) (L)->vectorizable
741 #define LOOP_VINFO_CAN_USE_PARTIAL_VECTORS_P(L) (L)->can_use_partial_vectors_p
742 #define LOOP_VINFO_USING_PARTIAL_VECTORS_P(L) (L)->using_partial_vectors_p
743 #define LOOP_VINFO_EPIL_USING_PARTIAL_VECTORS_P(L) \
744 (L)->epil_using_partial_vectors_p
745 #define LOOP_VINFO_VECT_FACTOR(L) (L)->vectorization_factor
746 #define LOOP_VINFO_MAX_VECT_FACTOR(L) (L)->max_vectorization_factor
747 #define LOOP_VINFO_MASKS(L) (L)->masks
748 #define LOOP_VINFO_LENS(L) (L)->lens
749 #define LOOP_VINFO_MASK_SKIP_NITERS(L) (L)->mask_skip_niters
750 #define LOOP_VINFO_RGROUP_COMPARE_TYPE(L) (L)->rgroup_compare_type
751 #define LOOP_VINFO_RGROUP_IV_TYPE(L) (L)->rgroup_iv_type
752 #define LOOP_VINFO_PTR_MASK(L) (L)->ptr_mask
753 #define LOOP_VINFO_LOOP_NEST(L) (L)->shared->loop_nest
754 #define LOOP_VINFO_DATAREFS(L) (L)->shared->datarefs
755 #define LOOP_VINFO_DDRS(L) (L)->shared->ddrs
756 #define LOOP_VINFO_INT_NITERS(L) (TREE_INT_CST_LOW ((L)->num_iters))
757 #define LOOP_VINFO_PEELING_FOR_ALIGNMENT(L) (L)->peeling_for_alignment
758 #define LOOP_VINFO_UNALIGNED_DR(L) (L)->unaligned_dr
759 #define LOOP_VINFO_MAY_MISALIGN_STMTS(L) (L)->may_misalign_stmts
760 #define LOOP_VINFO_MAY_ALIAS_DDRS(L) (L)->may_alias_ddrs
761 #define LOOP_VINFO_COMP_ALIAS_DDRS(L) (L)->comp_alias_ddrs
762 #define LOOP_VINFO_CHECK_UNEQUAL_ADDRS(L) (L)->check_unequal_addrs
763 #define LOOP_VINFO_CHECK_NONZERO(L) (L)->check_nonzero
764 #define LOOP_VINFO_LOWER_BOUNDS(L) (L)->lower_bounds
765 #define LOOP_VINFO_GROUPED_STORES(L) (L)->grouped_stores
766 #define LOOP_VINFO_SLP_INSTANCES(L) (L)->slp_instances
767 #define LOOP_VINFO_SLP_UNROLLING_FACTOR(L) (L)->slp_unrolling_factor
768 #define LOOP_VINFO_REDUCTIONS(L) (L)->reductions
769 #define LOOP_VINFO_REDUCTION_CHAINS(L) (L)->reduction_chains
770 #define LOOP_VINFO_TARGET_COST_DATA(L) (L)->target_cost_data
771 #define LOOP_VINFO_PEELING_FOR_GAPS(L) (L)->peeling_for_gaps
772 #define LOOP_VINFO_PEELING_FOR_NITER(L) (L)->peeling_for_niter
773 #define LOOP_VINFO_NO_DATA_DEPENDENCIES(L) (L)->no_data_dependencies
774 #define LOOP_VINFO_SCALAR_LOOP(L) (L)->scalar_loop
775 #define LOOP_VINFO_SCALAR_LOOP_SCALING(L) (L)->scalar_loop_scaling
776 #define LOOP_VINFO_HAS_MASK_STORE(L) (L)->has_mask_store
777 #define LOOP_VINFO_SCALAR_ITERATION_COST(L) (L)->scalar_cost_vec
778 #define LOOP_VINFO_SINGLE_SCALAR_ITERATION_COST(L) (L)->single_scalar_iteration_cost
779 #define LOOP_VINFO_ORIG_LOOP_INFO(L) (L)->orig_loop_info
780 #define LOOP_VINFO_SIMD_IF_COND(L) (L)->simd_if_cond
782 #define LOOP_VINFO_FULLY_MASKED_P(L) \
783 (LOOP_VINFO_USING_PARTIAL_VECTORS_P (L) \
784 && !LOOP_VINFO_MASKS (L).is_empty ())
786 #define LOOP_VINFO_FULLY_WITH_LENGTH_P(L) \
787 (LOOP_VINFO_USING_PARTIAL_VECTORS_P (L) \
788 && !LOOP_VINFO_LENS (L).is_empty ())
790 #define LOOP_REQUIRES_VERSIONING_FOR_ALIGNMENT(L) \
791 ((L)->may_misalign_stmts.length () > 0)
792 #define LOOP_REQUIRES_VERSIONING_FOR_ALIAS(L) \
793 ((L)->comp_alias_ddrs.length () > 0 \
794 || (L)->check_unequal_addrs.length () > 0 \
795 || (L)->lower_bounds.length () > 0)
796 #define LOOP_REQUIRES_VERSIONING_FOR_NITERS(L) \
797 (LOOP_VINFO_NITERS_ASSUMPTIONS (L))
798 #define LOOP_REQUIRES_VERSIONING_FOR_SIMD_IF_COND(L) \
799 (LOOP_VINFO_SIMD_IF_COND (L))
800 #define LOOP_REQUIRES_VERSIONING(L) \
801 (LOOP_REQUIRES_VERSIONING_FOR_ALIGNMENT (L) \
802 || LOOP_REQUIRES_VERSIONING_FOR_ALIAS (L) \
803 || LOOP_REQUIRES_VERSIONING_FOR_NITERS (L) \
804 || LOOP_REQUIRES_VERSIONING_FOR_SIMD_IF_COND (L))
806 #define LOOP_VINFO_NITERS_KNOWN_P(L) \
807 (tree_fits_shwi_p ((L)->num_iters) && tree_to_shwi ((L)->num_iters) > 0)
809 #define LOOP_VINFO_EPILOGUE_P(L) \
810 (LOOP_VINFO_ORIG_LOOP_INFO (L) != NULL)
812 #define LOOP_VINFO_ORIG_MAX_VECT_FACTOR(L) \
813 (LOOP_VINFO_MAX_VECT_FACTOR (LOOP_VINFO_ORIG_LOOP_INFO (L)))
815 /* Wrapper for loop_vec_info, for tracking success/failure, where a non-NULL
816 value signifies success, and a NULL value signifies failure, supporting
817 propagating an opt_problem * describing the failure back up the call
818 stack. */
819 typedef opt_pointer_wrapper <loop_vec_info> opt_loop_vec_info;
821 static inline loop_vec_info
822 loop_vec_info_for_loop (class loop *loop)
824 return (loop_vec_info) loop->aux;
827 typedef class _bb_vec_info : public vec_info
829 public:
831 /* GIMPLE statement iterator going from region_begin to region_end. */
833 struct const_iterator
835 const_iterator (gimple_stmt_iterator _gsi) : gsi (_gsi) {}
837 const const_iterator &
838 operator++ ()
840 gsi_next (&gsi); return *this;
843 gimple *operator* () const { return gsi_stmt (gsi); }
845 bool
846 operator== (const const_iterator &other) const
848 return gsi_stmt (gsi) == gsi_stmt (other.gsi);
851 bool
852 operator!= (const const_iterator &other) const
854 return !(*this == other);
857 gimple_stmt_iterator gsi;
860 /* GIMPLE statement iterator going from region_end to region_begin. */
862 struct const_reverse_iterator
864 const_reverse_iterator (gimple_stmt_iterator _gsi) : gsi (_gsi) {}
866 const const_reverse_iterator &
867 operator++ ()
869 gsi_prev (&gsi); return *this;
872 gimple *operator* () const { return gsi_stmt (gsi); }
874 bool
875 operator== (const const_reverse_iterator &other) const
877 return gsi_stmt (gsi) == gsi_stmt (other.gsi);
880 bool
881 operator!= (const const_reverse_iterator &other) const
883 return !(*this == other);
886 gimple_stmt_iterator gsi;
889 _bb_vec_info (gimple_stmt_iterator, gimple_stmt_iterator, vec_info_shared *);
890 ~_bb_vec_info ();
892 /* Returns iterator_range for range-based loop. */
894 iterator_range<const_iterator>
895 region_stmts ()
897 return iterator_range<const_iterator> (region_begin, region_end);
900 /* Returns iterator_range for range-based loop in a reverse order. */
902 iterator_range<const_reverse_iterator>
903 reverse_region_stmts ()
905 const_reverse_iterator begin = region_end;
906 if (*begin == NULL)
907 begin = const_reverse_iterator (gsi_last_bb (gsi_bb (region_end)));
908 else
909 ++begin;
911 const_reverse_iterator end = region_begin;
912 return iterator_range<const_reverse_iterator> (begin, ++end);
915 basic_block bb;
916 gimple_stmt_iterator region_begin;
917 gimple_stmt_iterator region_end;
918 } *bb_vec_info;
920 #define BB_VINFO_BB(B) (B)->bb
921 #define BB_VINFO_GROUPED_STORES(B) (B)->grouped_stores
922 #define BB_VINFO_SLP_INSTANCES(B) (B)->slp_instances
923 #define BB_VINFO_DATAREFS(B) (B)->shared->datarefs
924 #define BB_VINFO_DDRS(B) (B)->shared->ddrs
926 static inline bb_vec_info
927 vec_info_for_bb (basic_block bb)
929 return (bb_vec_info) bb->aux;
932 /*-----------------------------------------------------------------*/
933 /* Info on vectorized defs. */
934 /*-----------------------------------------------------------------*/
935 enum stmt_vec_info_type {
936 undef_vec_info_type = 0,
937 load_vec_info_type,
938 store_vec_info_type,
939 shift_vec_info_type,
940 op_vec_info_type,
941 call_vec_info_type,
942 call_simd_clone_vec_info_type,
943 assignment_vec_info_type,
944 condition_vec_info_type,
945 comparison_vec_info_type,
946 reduc_vec_info_type,
947 induc_vec_info_type,
948 type_promotion_vec_info_type,
949 type_demotion_vec_info_type,
950 type_conversion_vec_info_type,
951 cycle_phi_info_type,
952 lc_phi_info_type,
953 loop_exit_ctrl_vec_info_type
956 /* Indicates whether/how a variable is used in the scope of loop/basic
957 block. */
958 enum vect_relevant {
959 vect_unused_in_scope = 0,
961 /* The def is only used outside the loop. */
962 vect_used_only_live,
963 /* The def is in the inner loop, and the use is in the outer loop, and the
964 use is a reduction stmt. */
965 vect_used_in_outer_by_reduction,
966 /* The def is in the inner loop, and the use is in the outer loop (and is
967 not part of reduction). */
968 vect_used_in_outer,
970 /* defs that feed computations that end up (only) in a reduction. These
971 defs may be used by non-reduction stmts, but eventually, any
972 computations/values that are affected by these defs are used to compute
973 a reduction (i.e. don't get stored to memory, for example). We use this
974 to identify computations that we can change the order in which they are
975 computed. */
976 vect_used_by_reduction,
978 vect_used_in_scope
981 /* The type of vectorization that can be applied to the stmt: regular loop-based
982 vectorization; pure SLP - the stmt is a part of SLP instances and does not
983 have uses outside SLP instances; or hybrid SLP and loop-based - the stmt is
984 a part of SLP instance and also must be loop-based vectorized, since it has
985 uses outside SLP sequences.
987 In the loop context the meanings of pure and hybrid SLP are slightly
988 different. By saying that pure SLP is applied to the loop, we mean that we
989 exploit only intra-iteration parallelism in the loop; i.e., the loop can be
990 vectorized without doing any conceptual unrolling, cause we don't pack
991 together stmts from different iterations, only within a single iteration.
992 Loop hybrid SLP means that we exploit both intra-iteration and
993 inter-iteration parallelism (e.g., number of elements in the vector is 4
994 and the slp-group-size is 2, in which case we don't have enough parallelism
995 within an iteration, so we obtain the rest of the parallelism from subsequent
996 iterations by unrolling the loop by 2). */
997 enum slp_vect_type {
998 loop_vect = 0,
999 pure_slp,
1000 hybrid
1003 /* Says whether a statement is a load, a store of a vectorized statement
1004 result, or a store of an invariant value. */
1005 enum vec_load_store_type {
1006 VLS_LOAD,
1007 VLS_STORE,
1008 VLS_STORE_INVARIANT
1011 /* Describes how we're going to vectorize an individual load or store,
1012 or a group of loads or stores. */
1013 enum vect_memory_access_type {
1014 /* An access to an invariant address. This is used only for loads. */
1015 VMAT_INVARIANT,
1017 /* A simple contiguous access. */
1018 VMAT_CONTIGUOUS,
1020 /* A contiguous access that goes down in memory rather than up,
1021 with no additional permutation. This is used only for stores
1022 of invariants. */
1023 VMAT_CONTIGUOUS_DOWN,
1025 /* A simple contiguous access in which the elements need to be permuted
1026 after loading or before storing. Only used for loop vectorization;
1027 SLP uses separate permutes. */
1028 VMAT_CONTIGUOUS_PERMUTE,
1030 /* A simple contiguous access in which the elements need to be reversed
1031 after loading or before storing. */
1032 VMAT_CONTIGUOUS_REVERSE,
1034 /* An access that uses IFN_LOAD_LANES or IFN_STORE_LANES. */
1035 VMAT_LOAD_STORE_LANES,
1037 /* An access in which each scalar element is loaded or stored
1038 individually. */
1039 VMAT_ELEMENTWISE,
1041 /* A hybrid of VMAT_CONTIGUOUS and VMAT_ELEMENTWISE, used for grouped
1042 SLP accesses. Each unrolled iteration uses a contiguous load
1043 or store for the whole group, but the groups from separate iterations
1044 are combined in the same way as for VMAT_ELEMENTWISE. */
1045 VMAT_STRIDED_SLP,
1047 /* The access uses gather loads or scatter stores. */
1048 VMAT_GATHER_SCATTER
1051 class dr_vec_info {
1052 public:
1053 /* The data reference itself. */
1054 data_reference *dr;
1055 /* The statement that contains the data reference. */
1056 stmt_vec_info stmt;
1057 /* The misalignment in bytes of the reference, or -1 if not known. */
1058 int misalignment;
1059 /* The byte alignment that we'd ideally like the reference to have,
1060 and the value that misalignment is measured against. */
1061 poly_uint64 target_alignment;
1062 /* If true the alignment of base_decl needs to be increased. */
1063 bool base_misaligned;
1064 tree base_decl;
1066 /* Stores current vectorized loop's offset. To be added to the DR's
1067 offset to calculate current offset of data reference. */
1068 tree offset;
1071 typedef struct data_reference *dr_p;
1073 class _stmt_vec_info {
1074 public:
1076 enum stmt_vec_info_type type;
1078 /* Indicates whether this stmts is part of a computation whose result is
1079 used outside the loop. */
1080 bool live;
1082 /* Stmt is part of some pattern (computation idiom) */
1083 bool in_pattern_p;
1085 /* True if the statement was created during pattern recognition as
1086 part of the replacement for RELATED_STMT. This implies that the
1087 statement isn't part of any basic block, although for convenience
1088 its gimple_bb is the same as for RELATED_STMT. */
1089 bool pattern_stmt_p;
1091 /* Is this statement vectorizable or should it be skipped in (partial)
1092 vectorization. */
1093 bool vectorizable;
1095 /* The stmt to which this info struct refers to. */
1096 gimple *stmt;
1098 /* The vector type to be used for the LHS of this statement. */
1099 tree vectype;
1101 /* The vectorized stmts. */
1102 vec<gimple *> vec_stmts;
1104 /* The following is relevant only for stmts that contain a non-scalar
1105 data-ref (array/pointer/struct access). A GIMPLE stmt is expected to have
1106 at most one such data-ref. */
1108 dr_vec_info dr_aux;
1110 /* Information about the data-ref relative to this loop
1111 nest (the loop that is being considered for vectorization). */
1112 innermost_loop_behavior dr_wrt_vec_loop;
1114 /* For loop PHI nodes, the base and evolution part of it. This makes sure
1115 this information is still available in vect_update_ivs_after_vectorizer
1116 where we may not be able to re-analyze the PHI nodes evolution as
1117 peeling for the prologue loop can make it unanalyzable. The evolution
1118 part is still correct after peeling, but the base may have changed from
1119 the version here. */
1120 tree loop_phi_evolution_base_unchanged;
1121 tree loop_phi_evolution_part;
1123 /* Used for various bookkeeping purposes, generally holding a pointer to
1124 some other stmt S that is in some way "related" to this stmt.
1125 Current use of this field is:
1126 If this stmt is part of a pattern (i.e. the field 'in_pattern_p' is
1127 true): S is the "pattern stmt" that represents (and replaces) the
1128 sequence of stmts that constitutes the pattern. Similarly, the
1129 related_stmt of the "pattern stmt" points back to this stmt (which is
1130 the last stmt in the original sequence of stmts that constitutes the
1131 pattern). */
1132 stmt_vec_info related_stmt;
1134 /* Used to keep a sequence of def stmts of a pattern stmt if such exists.
1135 The sequence is attached to the original statement rather than the
1136 pattern statement. */
1137 gimple_seq pattern_def_seq;
1139 /* List of datarefs that are known to have the same alignment as the dataref
1140 of this stmt. */
1141 vec<dr_p> same_align_refs;
1143 /* Selected SIMD clone's function info. First vector element
1144 is SIMD clone's function decl, followed by a pair of trees (base + step)
1145 for linear arguments (pair of NULLs for other arguments). */
1146 vec<tree> simd_clone_info;
1148 /* Classify the def of this stmt. */
1149 enum vect_def_type def_type;
1151 /* Whether the stmt is SLPed, loop-based vectorized, or both. */
1152 enum slp_vect_type slp_type;
1154 /* Interleaving and reduction chains info. */
1155 /* First element in the group. */
1156 stmt_vec_info first_element;
1157 /* Pointer to the next element in the group. */
1158 stmt_vec_info next_element;
1159 /* The size of the group. */
1160 unsigned int size;
1161 /* For stores, number of stores from this group seen. We vectorize the last
1162 one. */
1163 unsigned int store_count;
1164 /* For loads only, the gap from the previous load. For consecutive loads, GAP
1165 is 1. */
1166 unsigned int gap;
1168 /* The minimum negative dependence distance this stmt participates in
1169 or zero if none. */
1170 unsigned int min_neg_dist;
1172 /* Not all stmts in the loop need to be vectorized. e.g, the increment
1173 of the loop induction variable and computation of array indexes. relevant
1174 indicates whether the stmt needs to be vectorized. */
1175 enum vect_relevant relevant;
1177 /* For loads if this is a gather, for stores if this is a scatter. */
1178 bool gather_scatter_p;
1180 /* True if this is an access with loop-invariant stride. */
1181 bool strided_p;
1183 /* For both loads and stores. */
1184 unsigned simd_lane_access_p : 3;
1186 /* Classifies how the load or store is going to be implemented
1187 for loop vectorization. */
1188 vect_memory_access_type memory_access_type;
1190 /* For INTEGER_INDUC_COND_REDUCTION, the initial value to be used. */
1191 tree induc_cond_initial_val;
1193 /* If not NULL the value to be added to compute final reduction value. */
1194 tree reduc_epilogue_adjustment;
1196 /* On a reduction PHI the reduction type as detected by
1197 vect_is_simple_reduction and vectorizable_reduction. */
1198 enum vect_reduction_type reduc_type;
1200 /* The original reduction code, to be used in the epilogue. */
1201 enum tree_code reduc_code;
1202 /* An internal function we should use in the epilogue. */
1203 internal_fn reduc_fn;
1205 /* On a stmt participating in the reduction the index of the operand
1206 on the reduction SSA cycle. */
1207 int reduc_idx;
1209 /* On a reduction PHI the def returned by vect_force_simple_reduction.
1210 On the def returned by vect_force_simple_reduction the
1211 corresponding PHI. */
1212 stmt_vec_info reduc_def;
1214 /* The vector input type relevant for reduction vectorization. */
1215 tree reduc_vectype_in;
1217 /* The vector type for performing the actual reduction. */
1218 tree reduc_vectype;
1220 /* Whether we force a single cycle PHI during reduction vectorization. */
1221 bool force_single_cycle;
1223 /* Whether on this stmt reduction meta is recorded. */
1224 bool is_reduc_info;
1226 /* If nonzero, the lhs of the statement could be truncated to this
1227 many bits without affecting any users of the result. */
1228 unsigned int min_output_precision;
1230 /* If nonzero, all non-boolean input operands have the same precision,
1231 and they could each be truncated to this many bits without changing
1232 the result. */
1233 unsigned int min_input_precision;
1235 /* If OPERATION_BITS is nonzero, the statement could be performed on
1236 an integer with the sign and number of bits given by OPERATION_SIGN
1237 and OPERATION_BITS without changing the result. */
1238 unsigned int operation_precision;
1239 signop operation_sign;
1241 /* If the statement produces a boolean result, this value describes
1242 how we should choose the associated vector type. The possible
1243 values are:
1245 - an integer precision N if we should use the vector mask type
1246 associated with N-bit integers. This is only used if all relevant
1247 input booleans also want the vector mask type for N-bit integers,
1248 or if we can convert them into that form by pattern-matching.
1250 - ~0U if we considered choosing a vector mask type but decided
1251 to treat the boolean as a normal integer type instead.
1253 - 0 otherwise. This means either that the operation isn't one that
1254 could have a vector mask type (and so should have a normal vector
1255 type instead) or that we simply haven't made a choice either way. */
1256 unsigned int mask_precision;
1258 /* True if this is only suitable for SLP vectorization. */
1259 bool slp_vect_only_p;
1262 /* Information about a gather/scatter call. */
1263 struct gather_scatter_info {
1264 /* The internal function to use for the gather/scatter operation,
1265 or IFN_LAST if a built-in function should be used instead. */
1266 internal_fn ifn;
1268 /* The FUNCTION_DECL for the built-in gather/scatter function,
1269 or null if an internal function should be used instead. */
1270 tree decl;
1272 /* The loop-invariant base value. */
1273 tree base;
1275 /* The original scalar offset, which is a non-loop-invariant SSA_NAME. */
1276 tree offset;
1278 /* Each offset element should be multiplied by this amount before
1279 being added to the base. */
1280 int scale;
1282 /* The definition type for the vectorized offset. */
1283 enum vect_def_type offset_dt;
1285 /* The type of the vectorized offset. */
1286 tree offset_vectype;
1288 /* The type of the scalar elements after loading or before storing. */
1289 tree element_type;
1291 /* The type of the scalar elements being loaded or stored. */
1292 tree memory_type;
1295 /* Access Functions. */
1296 #define STMT_VINFO_TYPE(S) (S)->type
1297 #define STMT_VINFO_STMT(S) (S)->stmt
1298 #define STMT_VINFO_RELEVANT(S) (S)->relevant
1299 #define STMT_VINFO_LIVE_P(S) (S)->live
1300 #define STMT_VINFO_VECTYPE(S) (S)->vectype
1301 #define STMT_VINFO_VEC_STMTS(S) (S)->vec_stmts
1302 #define STMT_VINFO_VECTORIZABLE(S) (S)->vectorizable
1303 #define STMT_VINFO_DATA_REF(S) ((S)->dr_aux.dr + 0)
1304 #define STMT_VINFO_GATHER_SCATTER_P(S) (S)->gather_scatter_p
1305 #define STMT_VINFO_STRIDED_P(S) (S)->strided_p
1306 #define STMT_VINFO_MEMORY_ACCESS_TYPE(S) (S)->memory_access_type
1307 #define STMT_VINFO_SIMD_LANE_ACCESS_P(S) (S)->simd_lane_access_p
1308 #define STMT_VINFO_VEC_INDUC_COND_INITIAL_VAL(S) (S)->induc_cond_initial_val
1309 #define STMT_VINFO_REDUC_EPILOGUE_ADJUSTMENT(S) (S)->reduc_epilogue_adjustment
1310 #define STMT_VINFO_REDUC_IDX(S) (S)->reduc_idx
1311 #define STMT_VINFO_FORCE_SINGLE_CYCLE(S) (S)->force_single_cycle
1313 #define STMT_VINFO_DR_WRT_VEC_LOOP(S) (S)->dr_wrt_vec_loop
1314 #define STMT_VINFO_DR_BASE_ADDRESS(S) (S)->dr_wrt_vec_loop.base_address
1315 #define STMT_VINFO_DR_INIT(S) (S)->dr_wrt_vec_loop.init
1316 #define STMT_VINFO_DR_OFFSET(S) (S)->dr_wrt_vec_loop.offset
1317 #define STMT_VINFO_DR_STEP(S) (S)->dr_wrt_vec_loop.step
1318 #define STMT_VINFO_DR_BASE_ALIGNMENT(S) (S)->dr_wrt_vec_loop.base_alignment
1319 #define STMT_VINFO_DR_BASE_MISALIGNMENT(S) \
1320 (S)->dr_wrt_vec_loop.base_misalignment
1321 #define STMT_VINFO_DR_OFFSET_ALIGNMENT(S) \
1322 (S)->dr_wrt_vec_loop.offset_alignment
1323 #define STMT_VINFO_DR_STEP_ALIGNMENT(S) \
1324 (S)->dr_wrt_vec_loop.step_alignment
1326 #define STMT_VINFO_DR_INFO(S) \
1327 (gcc_checking_assert ((S)->dr_aux.stmt == (S)), &(S)->dr_aux)
1329 #define STMT_VINFO_IN_PATTERN_P(S) (S)->in_pattern_p
1330 #define STMT_VINFO_RELATED_STMT(S) (S)->related_stmt
1331 #define STMT_VINFO_PATTERN_DEF_SEQ(S) (S)->pattern_def_seq
1332 #define STMT_VINFO_SAME_ALIGN_REFS(S) (S)->same_align_refs
1333 #define STMT_VINFO_SIMD_CLONE_INFO(S) (S)->simd_clone_info
1334 #define STMT_VINFO_DEF_TYPE(S) (S)->def_type
1335 #define STMT_VINFO_GROUPED_ACCESS(S) \
1336 ((S)->dr_aux.dr && DR_GROUP_FIRST_ELEMENT(S))
1337 #define STMT_VINFO_LOOP_PHI_EVOLUTION_BASE_UNCHANGED(S) (S)->loop_phi_evolution_base_unchanged
1338 #define STMT_VINFO_LOOP_PHI_EVOLUTION_PART(S) (S)->loop_phi_evolution_part
1339 #define STMT_VINFO_MIN_NEG_DIST(S) (S)->min_neg_dist
1340 #define STMT_VINFO_REDUC_TYPE(S) (S)->reduc_type
1341 #define STMT_VINFO_REDUC_CODE(S) (S)->reduc_code
1342 #define STMT_VINFO_REDUC_FN(S) (S)->reduc_fn
1343 #define STMT_VINFO_REDUC_DEF(S) (S)->reduc_def
1344 #define STMT_VINFO_REDUC_VECTYPE(S) (S)->reduc_vectype
1345 #define STMT_VINFO_REDUC_VECTYPE_IN(S) (S)->reduc_vectype_in
1346 #define STMT_VINFO_SLP_VECT_ONLY(S) (S)->slp_vect_only_p
1348 #define DR_GROUP_FIRST_ELEMENT(S) \
1349 (gcc_checking_assert ((S)->dr_aux.dr), (S)->first_element)
1350 #define DR_GROUP_NEXT_ELEMENT(S) \
1351 (gcc_checking_assert ((S)->dr_aux.dr), (S)->next_element)
1352 #define DR_GROUP_SIZE(S) \
1353 (gcc_checking_assert ((S)->dr_aux.dr), (S)->size)
1354 #define DR_GROUP_STORE_COUNT(S) \
1355 (gcc_checking_assert ((S)->dr_aux.dr), (S)->store_count)
1356 #define DR_GROUP_GAP(S) \
1357 (gcc_checking_assert ((S)->dr_aux.dr), (S)->gap)
1359 #define REDUC_GROUP_FIRST_ELEMENT(S) \
1360 (gcc_checking_assert (!(S)->dr_aux.dr), (S)->first_element)
1361 #define REDUC_GROUP_NEXT_ELEMENT(S) \
1362 (gcc_checking_assert (!(S)->dr_aux.dr), (S)->next_element)
1363 #define REDUC_GROUP_SIZE(S) \
1364 (gcc_checking_assert (!(S)->dr_aux.dr), (S)->size)
1366 #define STMT_VINFO_RELEVANT_P(S) ((S)->relevant != vect_unused_in_scope)
1368 #define HYBRID_SLP_STMT(S) ((S)->slp_type == hybrid)
1369 #define PURE_SLP_STMT(S) ((S)->slp_type == pure_slp)
1370 #define STMT_SLP_TYPE(S) (S)->slp_type
1372 #define VECT_MAX_COST 1000
1374 /* The maximum number of intermediate steps required in multi-step type
1375 conversion. */
1376 #define MAX_INTERM_CVT_STEPS 3
1378 #define MAX_VECTORIZATION_FACTOR INT_MAX
1380 /* Nonzero if TYPE represents a (scalar) boolean type or type
1381 in the middle-end compatible with it (unsigned precision 1 integral
1382 types). Used to determine which types should be vectorized as
1383 VECTOR_BOOLEAN_TYPE_P. */
1385 #define VECT_SCALAR_BOOLEAN_TYPE_P(TYPE) \
1386 (TREE_CODE (TYPE) == BOOLEAN_TYPE \
1387 || ((TREE_CODE (TYPE) == INTEGER_TYPE \
1388 || TREE_CODE (TYPE) == ENUMERAL_TYPE) \
1389 && TYPE_PRECISION (TYPE) == 1 \
1390 && TYPE_UNSIGNED (TYPE)))
1392 static inline bool
1393 nested_in_vect_loop_p (class loop *loop, stmt_vec_info stmt_info)
1395 return (loop->inner
1396 && (loop->inner == (gimple_bb (stmt_info->stmt))->loop_father));
1399 /* Return true if STMT_INFO should produce a vector mask type rather than
1400 a normal nonmask type. */
1402 static inline bool
1403 vect_use_mask_type_p (stmt_vec_info stmt_info)
1405 return stmt_info->mask_precision && stmt_info->mask_precision != ~0U;
1408 /* Return TRUE if a statement represented by STMT_INFO is a part of a
1409 pattern. */
1411 static inline bool
1412 is_pattern_stmt_p (stmt_vec_info stmt_info)
1414 return stmt_info->pattern_stmt_p;
1417 /* If STMT_INFO is a pattern statement, return the statement that it
1418 replaces, otherwise return STMT_INFO itself. */
1420 inline stmt_vec_info
1421 vect_orig_stmt (stmt_vec_info stmt_info)
1423 if (is_pattern_stmt_p (stmt_info))
1424 return STMT_VINFO_RELATED_STMT (stmt_info);
1425 return stmt_info;
1428 /* Return the later statement between STMT1_INFO and STMT2_INFO. */
1430 static inline stmt_vec_info
1431 get_later_stmt (stmt_vec_info stmt1_info, stmt_vec_info stmt2_info)
1433 if (gimple_uid (vect_orig_stmt (stmt1_info)->stmt)
1434 > gimple_uid (vect_orig_stmt (stmt2_info)->stmt))
1435 return stmt1_info;
1436 else
1437 return stmt2_info;
1440 /* If STMT_INFO has been replaced by a pattern statement, return the
1441 replacement statement, otherwise return STMT_INFO itself. */
1443 inline stmt_vec_info
1444 vect_stmt_to_vectorize (stmt_vec_info stmt_info)
1446 if (STMT_VINFO_IN_PATTERN_P (stmt_info))
1447 return STMT_VINFO_RELATED_STMT (stmt_info);
1448 return stmt_info;
1451 /* Return true if BB is a loop header. */
1453 static inline bool
1454 is_loop_header_bb_p (basic_block bb)
1456 if (bb == (bb->loop_father)->header)
1457 return true;
1458 gcc_checking_assert (EDGE_COUNT (bb->preds) == 1);
1459 return false;
1462 /* Return pow2 (X). */
1464 static inline int
1465 vect_pow2 (int x)
1467 int i, res = 1;
1469 for (i = 0; i < x; i++)
1470 res *= 2;
1472 return res;
1475 /* Alias targetm.vectorize.builtin_vectorization_cost. */
1477 static inline int
1478 builtin_vectorization_cost (enum vect_cost_for_stmt type_of_cost,
1479 tree vectype, int misalign)
1481 return targetm.vectorize.builtin_vectorization_cost (type_of_cost,
1482 vectype, misalign);
1485 /* Get cost by calling cost target builtin. */
1487 static inline
1488 int vect_get_stmt_cost (enum vect_cost_for_stmt type_of_cost)
1490 return builtin_vectorization_cost (type_of_cost, NULL, 0);
1493 /* Alias targetm.vectorize.init_cost. */
1495 static inline void *
1496 init_cost (class loop *loop_info)
1498 return targetm.vectorize.init_cost (loop_info);
1501 extern void dump_stmt_cost (FILE *, void *, int, enum vect_cost_for_stmt,
1502 stmt_vec_info, tree, int, unsigned,
1503 enum vect_cost_model_location);
1505 /* Alias targetm.vectorize.add_stmt_cost. */
1507 static inline unsigned
1508 add_stmt_cost (vec_info *vinfo, void *data, int count,
1509 enum vect_cost_for_stmt kind,
1510 stmt_vec_info stmt_info, tree vectype, int misalign,
1511 enum vect_cost_model_location where)
1513 unsigned cost = targetm.vectorize.add_stmt_cost (vinfo, data, count, kind,
1514 stmt_info, vectype,
1515 misalign, where);
1516 if (dump_file && (dump_flags & TDF_DETAILS))
1517 dump_stmt_cost (dump_file, data, count, kind, stmt_info, vectype, misalign,
1518 cost, where);
1519 return cost;
1522 /* Alias targetm.vectorize.finish_cost. */
1524 static inline void
1525 finish_cost (void *data, unsigned *prologue_cost,
1526 unsigned *body_cost, unsigned *epilogue_cost)
1528 targetm.vectorize.finish_cost (data, prologue_cost, body_cost, epilogue_cost);
1531 /* Alias targetm.vectorize.destroy_cost_data. */
1533 static inline void
1534 destroy_cost_data (void *data)
1536 targetm.vectorize.destroy_cost_data (data);
1539 inline void
1540 add_stmt_costs (vec_info *vinfo, void *data, stmt_vector_for_cost *cost_vec)
1542 stmt_info_for_cost *cost;
1543 unsigned i;
1544 FOR_EACH_VEC_ELT (*cost_vec, i, cost)
1545 add_stmt_cost (vinfo, data, cost->count, cost->kind, cost->stmt_info,
1546 cost->vectype, cost->misalign, cost->where);
1549 /*-----------------------------------------------------------------*/
1550 /* Info on data references alignment. */
1551 /*-----------------------------------------------------------------*/
1552 #define DR_MISALIGNMENT_UNKNOWN (-1)
1553 #define DR_MISALIGNMENT_UNINITIALIZED (-2)
1555 inline void
1556 set_dr_misalignment (dr_vec_info *dr_info, int val)
1558 dr_info->misalignment = val;
1561 inline int
1562 dr_misalignment (dr_vec_info *dr_info)
1564 int misalign = dr_info->misalignment;
1565 gcc_assert (misalign != DR_MISALIGNMENT_UNINITIALIZED);
1566 return misalign;
1569 /* Reflects actual alignment of first access in the vectorized loop,
1570 taking into account peeling/versioning if applied. */
1571 #define DR_MISALIGNMENT(DR) dr_misalignment (DR)
1572 #define SET_DR_MISALIGNMENT(DR, VAL) set_dr_misalignment (DR, VAL)
1574 /* Only defined once DR_MISALIGNMENT is defined. */
1575 #define DR_TARGET_ALIGNMENT(DR) ((DR)->target_alignment)
1577 /* Return true if data access DR_INFO is aligned to its target alignment
1578 (which may be less than a full vector). */
1580 static inline bool
1581 aligned_access_p (dr_vec_info *dr_info)
1583 return (DR_MISALIGNMENT (dr_info) == 0);
1586 /* Return TRUE if the alignment of the data access is known, and FALSE
1587 otherwise. */
1589 static inline bool
1590 known_alignment_for_access_p (dr_vec_info *dr_info)
1592 return (DR_MISALIGNMENT (dr_info) != DR_MISALIGNMENT_UNKNOWN);
1595 /* Return the minimum alignment in bytes that the vectorized version
1596 of DR_INFO is guaranteed to have. */
1598 static inline unsigned int
1599 vect_known_alignment_in_bytes (dr_vec_info *dr_info)
1601 if (DR_MISALIGNMENT (dr_info) == DR_MISALIGNMENT_UNKNOWN)
1602 return TYPE_ALIGN_UNIT (TREE_TYPE (DR_REF (dr_info->dr)));
1603 if (DR_MISALIGNMENT (dr_info) == 0)
1604 return known_alignment (DR_TARGET_ALIGNMENT (dr_info));
1605 return DR_MISALIGNMENT (dr_info) & -DR_MISALIGNMENT (dr_info);
1608 /* Return the behavior of DR_INFO with respect to the vectorization context
1609 (which for outer loop vectorization might not be the behavior recorded
1610 in DR_INFO itself). */
1612 static inline innermost_loop_behavior *
1613 vect_dr_behavior (vec_info *vinfo, dr_vec_info *dr_info)
1615 stmt_vec_info stmt_info = dr_info->stmt;
1616 loop_vec_info loop_vinfo = dyn_cast<loop_vec_info> (vinfo);
1617 if (loop_vinfo == NULL
1618 || !nested_in_vect_loop_p (LOOP_VINFO_LOOP (loop_vinfo), stmt_info))
1619 return &DR_INNERMOST (dr_info->dr);
1620 else
1621 return &STMT_VINFO_DR_WRT_VEC_LOOP (stmt_info);
1624 /* Return the offset calculated by adding the offset of this DR_INFO to the
1625 corresponding data_reference's offset. If CHECK_OUTER then use
1626 vect_dr_behavior to select the appropriate data_reference to use. */
1628 inline tree
1629 get_dr_vinfo_offset (vec_info *vinfo,
1630 dr_vec_info *dr_info, bool check_outer = false)
1632 innermost_loop_behavior *base;
1633 if (check_outer)
1634 base = vect_dr_behavior (vinfo, dr_info);
1635 else
1636 base = &dr_info->dr->innermost;
1638 tree offset = base->offset;
1640 if (!dr_info->offset)
1641 return offset;
1643 offset = fold_convert (sizetype, offset);
1644 return fold_build2 (PLUS_EXPR, TREE_TYPE (dr_info->offset), offset,
1645 dr_info->offset);
1649 /* Return true if the vect cost model is unlimited. */
1650 static inline bool
1651 unlimited_cost_model (loop_p loop)
1653 if (loop != NULL && loop->force_vectorize
1654 && flag_simd_cost_model != VECT_COST_MODEL_DEFAULT)
1655 return flag_simd_cost_model == VECT_COST_MODEL_UNLIMITED;
1656 return (flag_vect_cost_model == VECT_COST_MODEL_UNLIMITED);
1659 /* Return true if the loop described by LOOP_VINFO is fully-masked and
1660 if the first iteration should use a partial mask in order to achieve
1661 alignment. */
1663 static inline bool
1664 vect_use_loop_mask_for_alignment_p (loop_vec_info loop_vinfo)
1666 return (LOOP_VINFO_FULLY_MASKED_P (loop_vinfo)
1667 && LOOP_VINFO_PEELING_FOR_ALIGNMENT (loop_vinfo));
1670 /* Return the number of vectors of type VECTYPE that are needed to get
1671 NUNITS elements. NUNITS should be based on the vectorization factor,
1672 so it is always a known multiple of the number of elements in VECTYPE. */
1674 static inline unsigned int
1675 vect_get_num_vectors (poly_uint64 nunits, tree vectype)
1677 return exact_div (nunits, TYPE_VECTOR_SUBPARTS (vectype)).to_constant ();
1680 /* Return the number of copies needed for loop vectorization when
1681 a statement operates on vectors of type VECTYPE. This is the
1682 vectorization factor divided by the number of elements in
1683 VECTYPE and is always known at compile time. */
1685 static inline unsigned int
1686 vect_get_num_copies (loop_vec_info loop_vinfo, tree vectype)
1688 return vect_get_num_vectors (LOOP_VINFO_VECT_FACTOR (loop_vinfo), vectype);
1691 /* Update maximum unit count *MAX_NUNITS so that it accounts for
1692 NUNITS. *MAX_NUNITS can be 1 if we haven't yet recorded anything. */
1694 static inline void
1695 vect_update_max_nunits (poly_uint64 *max_nunits, poly_uint64 nunits)
1697 /* All unit counts have the form vec_info::vector_size * X for some
1698 rational X, so two unit sizes must have a common multiple.
1699 Everything is a multiple of the initial value of 1. */
1700 *max_nunits = force_common_multiple (*max_nunits, nunits);
1703 /* Update maximum unit count *MAX_NUNITS so that it accounts for
1704 the number of units in vector type VECTYPE. *MAX_NUNITS can be 1
1705 if we haven't yet recorded any vector types. */
1707 static inline void
1708 vect_update_max_nunits (poly_uint64 *max_nunits, tree vectype)
1710 vect_update_max_nunits (max_nunits, TYPE_VECTOR_SUBPARTS (vectype));
1713 /* Return the vectorization factor that should be used for costing
1714 purposes while vectorizing the loop described by LOOP_VINFO.
1715 Pick a reasonable estimate if the vectorization factor isn't
1716 known at compile time. */
1718 static inline unsigned int
1719 vect_vf_for_cost (loop_vec_info loop_vinfo)
1721 return estimated_poly_value (LOOP_VINFO_VECT_FACTOR (loop_vinfo));
1724 /* Estimate the number of elements in VEC_TYPE for costing purposes.
1725 Pick a reasonable estimate if the exact number isn't known at
1726 compile time. */
1728 static inline unsigned int
1729 vect_nunits_for_cost (tree vec_type)
1731 return estimated_poly_value (TYPE_VECTOR_SUBPARTS (vec_type));
1734 /* Return the maximum possible vectorization factor for LOOP_VINFO. */
1736 static inline unsigned HOST_WIDE_INT
1737 vect_max_vf (loop_vec_info loop_vinfo)
1739 unsigned HOST_WIDE_INT vf;
1740 if (LOOP_VINFO_VECT_FACTOR (loop_vinfo).is_constant (&vf))
1741 return vf;
1742 return MAX_VECTORIZATION_FACTOR;
1745 /* Return the size of the value accessed by unvectorized data reference
1746 DR_INFO. This is only valid once STMT_VINFO_VECTYPE has been calculated
1747 for the associated gimple statement, since that guarantees that DR_INFO
1748 accesses either a scalar or a scalar equivalent. ("Scalar equivalent"
1749 here includes things like V1SI, which can be vectorized in the same way
1750 as a plain SI.) */
1752 inline unsigned int
1753 vect_get_scalar_dr_size (dr_vec_info *dr_info)
1755 return tree_to_uhwi (TYPE_SIZE_UNIT (TREE_TYPE (DR_REF (dr_info->dr))));
1758 /* Return true if LOOP_VINFO requires a runtime check for whether the
1759 vector loop is profitable. */
1761 inline bool
1762 vect_apply_runtime_profitability_check_p (loop_vec_info loop_vinfo)
1764 unsigned int th = LOOP_VINFO_COST_MODEL_THRESHOLD (loop_vinfo);
1765 return (!LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo)
1766 && th >= vect_vf_for_cost (loop_vinfo));
1769 /* Source location + hotness information. */
1770 extern dump_user_location_t vect_location;
1772 /* A macro for calling:
1773 dump_begin_scope (MSG, vect_location);
1774 via an RAII object, thus printing "=== MSG ===\n" to the dumpfile etc,
1775 and then calling
1776 dump_end_scope ();
1777 once the object goes out of scope, thus capturing the nesting of
1778 the scopes.
1780 These scopes affect dump messages within them: dump messages at the
1781 top level implicitly default to MSG_PRIORITY_USER_FACING, whereas those
1782 in a nested scope implicitly default to MSG_PRIORITY_INTERNALS. */
1784 #define DUMP_VECT_SCOPE(MSG) \
1785 AUTO_DUMP_SCOPE (MSG, vect_location)
1787 /* A sentinel class for ensuring that the "vect_location" global gets
1788 reset at the end of a scope.
1790 The "vect_location" global is used during dumping and contains a
1791 location_t, which could contain references to a tree block via the
1792 ad-hoc data. This data is used for tracking inlining information,
1793 but it's not a GC root; it's simply assumed that such locations never
1794 get accessed if the blocks are optimized away.
1796 Hence we need to ensure that such locations are purged at the end
1797 of any operations using them (e.g. via this class). */
1799 class auto_purge_vect_location
1801 public:
1802 ~auto_purge_vect_location ();
1805 /*-----------------------------------------------------------------*/
1806 /* Function prototypes. */
1807 /*-----------------------------------------------------------------*/
1809 /* Simple loop peeling and versioning utilities for vectorizer's purposes -
1810 in tree-vect-loop-manip.c. */
1811 extern void vect_set_loop_condition (class loop *, loop_vec_info,
1812 tree, tree, tree, bool);
1813 extern bool slpeel_can_duplicate_loop_p (const class loop *, const_edge);
1814 class loop *slpeel_tree_duplicate_loop_to_edge_cfg (class loop *,
1815 class loop *, edge);
1816 class loop *vect_loop_versioning (loop_vec_info, gimple *);
1817 extern class loop *vect_do_peeling (loop_vec_info, tree, tree,
1818 tree *, tree *, tree *, int, bool, bool,
1819 tree *);
1820 extern void vect_prepare_for_masked_peels (loop_vec_info);
1821 extern dump_user_location_t find_loop_location (class loop *);
1822 extern bool vect_can_advance_ivs_p (loop_vec_info);
1823 extern void vect_update_inits_of_drs (loop_vec_info, tree, tree_code);
1825 /* In tree-vect-stmts.c. */
1826 extern tree get_related_vectype_for_scalar_type (machine_mode, tree,
1827 poly_uint64 = 0);
1828 extern tree get_vectype_for_scalar_type (vec_info *, tree, unsigned int = 0);
1829 extern tree get_vectype_for_scalar_type (vec_info *, tree, slp_tree);
1830 extern tree get_mask_type_for_scalar_type (vec_info *, tree, unsigned int = 0);
1831 extern tree get_same_sized_vectype (tree, tree);
1832 extern bool vect_chooses_same_modes_p (vec_info *, machine_mode);
1833 extern bool vect_get_loop_mask_type (loop_vec_info);
1834 extern bool vect_is_simple_use (tree, vec_info *, enum vect_def_type *,
1835 stmt_vec_info * = NULL, gimple ** = NULL);
1836 extern bool vect_is_simple_use (tree, vec_info *, enum vect_def_type *,
1837 tree *, stmt_vec_info * = NULL,
1838 gimple ** = NULL);
1839 extern bool vect_is_simple_use (vec_info *, stmt_vec_info, slp_tree,
1840 unsigned, tree *, slp_tree *,
1841 enum vect_def_type *,
1842 tree *, stmt_vec_info * = NULL);
1843 extern bool vect_maybe_update_slp_op_vectype (slp_tree, tree);
1844 extern bool supportable_widening_operation (vec_info *,
1845 enum tree_code, stmt_vec_info,
1846 tree, tree, enum tree_code *,
1847 enum tree_code *, int *,
1848 vec<tree> *);
1849 extern bool supportable_narrowing_operation (enum tree_code, tree, tree,
1850 enum tree_code *, int *,
1851 vec<tree> *);
1853 extern unsigned record_stmt_cost (stmt_vector_for_cost *, int,
1854 enum vect_cost_for_stmt, stmt_vec_info,
1855 tree, int, enum vect_cost_model_location);
1857 /* Overload of record_stmt_cost with VECTYPE derived from STMT_INFO. */
1859 static inline unsigned
1860 record_stmt_cost (stmt_vector_for_cost *body_cost_vec, int count,
1861 enum vect_cost_for_stmt kind, stmt_vec_info stmt_info,
1862 int misalign, enum vect_cost_model_location where)
1864 return record_stmt_cost (body_cost_vec, count, kind, stmt_info,
1865 STMT_VINFO_VECTYPE (stmt_info), misalign, where);
1868 extern void vect_finish_replace_stmt (vec_info *, stmt_vec_info, gimple *);
1869 extern void vect_finish_stmt_generation (vec_info *, stmt_vec_info, gimple *,
1870 gimple_stmt_iterator *);
1871 extern opt_result vect_mark_stmts_to_be_vectorized (loop_vec_info, bool *);
1872 extern tree vect_get_store_rhs (stmt_vec_info);
1873 void vect_get_vec_defs_for_operand (vec_info *vinfo, stmt_vec_info, unsigned,
1874 tree op, vec<tree> *, tree = NULL);
1875 void vect_get_vec_defs (vec_info *, stmt_vec_info, slp_tree, unsigned,
1876 tree, vec<tree> *,
1877 tree = NULL, vec<tree> * = NULL,
1878 tree = NULL, vec<tree> * = NULL,
1879 tree = NULL, vec<tree> * = NULL);
1880 void vect_get_vec_defs (vec_info *, stmt_vec_info, slp_tree, unsigned,
1881 tree, vec<tree> *, tree,
1882 tree = NULL, vec<tree> * = NULL, tree = NULL,
1883 tree = NULL, vec<tree> * = NULL, tree = NULL,
1884 tree = NULL, vec<tree> * = NULL, tree = NULL);
1885 extern tree vect_init_vector (vec_info *, stmt_vec_info, tree, tree,
1886 gimple_stmt_iterator *);
1887 extern tree vect_get_slp_vect_def (slp_tree, unsigned);
1888 extern bool vect_transform_stmt (vec_info *, stmt_vec_info,
1889 gimple_stmt_iterator *,
1890 slp_tree, slp_instance);
1891 extern void vect_remove_stores (vec_info *, stmt_vec_info);
1892 extern bool vect_nop_conversion_p (stmt_vec_info);
1893 extern opt_result vect_analyze_stmt (vec_info *, stmt_vec_info, bool *,
1894 slp_tree,
1895 slp_instance, stmt_vector_for_cost *);
1896 extern void vect_get_load_cost (vec_info *, stmt_vec_info, int, bool,
1897 unsigned int *, unsigned int *,
1898 stmt_vector_for_cost *,
1899 stmt_vector_for_cost *, bool);
1900 extern void vect_get_store_cost (vec_info *, stmt_vec_info, int,
1901 unsigned int *, stmt_vector_for_cost *);
1902 extern bool vect_supportable_shift (vec_info *, enum tree_code, tree);
1903 extern tree vect_gen_perm_mask_any (tree, const vec_perm_indices &);
1904 extern tree vect_gen_perm_mask_checked (tree, const vec_perm_indices &);
1905 extern void optimize_mask_stores (class loop*);
1906 extern gcall *vect_gen_while (tree, tree, tree);
1907 extern tree vect_gen_while_not (gimple_seq *, tree, tree, tree);
1908 extern opt_result vect_get_vector_types_for_stmt (vec_info *,
1909 stmt_vec_info, tree *,
1910 tree *, unsigned int = 0);
1911 extern opt_tree vect_get_mask_type_for_stmt (stmt_vec_info, unsigned int = 0);
1913 /* In tree-vect-data-refs.c. */
1914 extern bool vect_can_force_dr_alignment_p (const_tree, poly_uint64);
1915 extern enum dr_alignment_support vect_supportable_dr_alignment
1916 (vec_info *, dr_vec_info *, bool);
1917 extern tree vect_get_smallest_scalar_type (stmt_vec_info, HOST_WIDE_INT *,
1918 HOST_WIDE_INT *);
1919 extern opt_result vect_analyze_data_ref_dependences (loop_vec_info, unsigned int *);
1920 extern bool vect_slp_analyze_instance_dependence (vec_info *, slp_instance);
1921 extern opt_result vect_enhance_data_refs_alignment (loop_vec_info);
1922 extern opt_result vect_analyze_data_refs_alignment (loop_vec_info);
1923 extern bool vect_slp_analyze_instance_alignment (vec_info *, slp_instance);
1924 extern opt_result vect_analyze_data_ref_accesses (vec_info *, vec<int> *);
1925 extern opt_result vect_prune_runtime_alias_test_list (loop_vec_info);
1926 extern bool vect_gather_scatter_fn_p (vec_info *, bool, bool, tree, tree,
1927 tree, int, internal_fn *, tree *);
1928 extern bool vect_check_gather_scatter (stmt_vec_info, loop_vec_info,
1929 gather_scatter_info *);
1930 extern opt_result vect_find_stmt_data_reference (loop_p, gimple *,
1931 vec<data_reference_p> *,
1932 vec<int> *, int);
1933 extern opt_result vect_analyze_data_refs (vec_info *, poly_uint64 *, bool *);
1934 extern void vect_record_base_alignments (vec_info *);
1935 extern tree vect_create_data_ref_ptr (vec_info *,
1936 stmt_vec_info, tree, class loop *, tree,
1937 tree *, gimple_stmt_iterator *,
1938 gimple **, bool,
1939 tree = NULL_TREE, tree = NULL_TREE);
1940 extern tree bump_vector_ptr (vec_info *, tree, gimple *, gimple_stmt_iterator *,
1941 stmt_vec_info, tree);
1942 extern void vect_copy_ref_info (tree, tree);
1943 extern tree vect_create_destination_var (tree, tree);
1944 extern bool vect_grouped_store_supported (tree, unsigned HOST_WIDE_INT);
1945 extern bool vect_store_lanes_supported (tree, unsigned HOST_WIDE_INT, bool);
1946 extern bool vect_grouped_load_supported (tree, bool, unsigned HOST_WIDE_INT);
1947 extern bool vect_load_lanes_supported (tree, unsigned HOST_WIDE_INT, bool);
1948 extern void vect_permute_store_chain (vec_info *,
1949 vec<tree> ,unsigned int, stmt_vec_info,
1950 gimple_stmt_iterator *, vec<tree> *);
1951 extern tree vect_setup_realignment (vec_info *,
1952 stmt_vec_info, gimple_stmt_iterator *,
1953 tree *, enum dr_alignment_support, tree,
1954 class loop **);
1955 extern void vect_transform_grouped_load (vec_info *, stmt_vec_info, vec<tree>,
1956 int, gimple_stmt_iterator *);
1957 extern void vect_record_grouped_load_vectors (vec_info *,
1958 stmt_vec_info, vec<tree>);
1959 extern tree vect_get_new_vect_var (tree, enum vect_var_kind, const char *);
1960 extern tree vect_get_new_ssa_name (tree, enum vect_var_kind,
1961 const char * = NULL);
1962 extern tree vect_create_addr_base_for_vector_ref (vec_info *,
1963 stmt_vec_info, gimple_seq *,
1964 tree, tree = NULL_TREE);
1966 /* In tree-vect-loop.c. */
1967 extern widest_int vect_iv_limit_for_partial_vectors (loop_vec_info loop_vinfo);
1968 bool vect_rgroup_iv_might_wrap_p (loop_vec_info, rgroup_controls *);
1969 /* Used in tree-vect-loop-manip.c */
1970 extern opt_result vect_determine_partial_vectors_and_peeling (loop_vec_info,
1971 bool);
1972 /* Used in gimple-loop-interchange.c and tree-parloops.c. */
1973 extern bool check_reduction_path (dump_user_location_t, loop_p, gphi *, tree,
1974 enum tree_code);
1975 extern bool needs_fold_left_reduction_p (tree, tree_code);
1976 /* Drive for loop analysis stage. */
1977 extern opt_loop_vec_info vect_analyze_loop (class loop *, vec_info_shared *);
1978 extern tree vect_build_loop_niters (loop_vec_info, bool * = NULL);
1979 extern void vect_gen_vector_loop_niters (loop_vec_info, tree, tree *,
1980 tree *, bool);
1981 extern tree vect_halve_mask_nunits (tree, machine_mode);
1982 extern tree vect_double_mask_nunits (tree, machine_mode);
1983 extern void vect_record_loop_mask (loop_vec_info, vec_loop_masks *,
1984 unsigned int, tree, tree);
1985 extern tree vect_get_loop_mask (gimple_stmt_iterator *, vec_loop_masks *,
1986 unsigned int, tree, unsigned int);
1987 extern void vect_record_loop_len (loop_vec_info, vec_loop_lens *, unsigned int,
1988 tree, unsigned int);
1989 extern tree vect_get_loop_len (loop_vec_info, vec_loop_lens *, unsigned int,
1990 unsigned int);
1991 extern gimple_seq vect_gen_len (tree, tree, tree, tree);
1992 extern stmt_vec_info info_for_reduction (vec_info *, stmt_vec_info);
1994 /* Drive for loop transformation stage. */
1995 extern class loop *vect_transform_loop (loop_vec_info, gimple *);
1996 extern opt_loop_vec_info vect_analyze_loop_form (class loop *,
1997 vec_info_shared *);
1998 extern bool vectorizable_live_operation (vec_info *,
1999 stmt_vec_info, gimple_stmt_iterator *,
2000 slp_tree, slp_instance, int,
2001 bool, stmt_vector_for_cost *);
2002 extern bool vectorizable_reduction (loop_vec_info, stmt_vec_info,
2003 slp_tree, slp_instance,
2004 stmt_vector_for_cost *);
2005 extern bool vectorizable_induction (loop_vec_info, stmt_vec_info,
2006 gimple **, slp_tree,
2007 stmt_vector_for_cost *);
2008 extern bool vect_transform_reduction (loop_vec_info, stmt_vec_info,
2009 gimple_stmt_iterator *,
2010 gimple **, slp_tree);
2011 extern bool vect_transform_cycle_phi (loop_vec_info, stmt_vec_info,
2012 gimple **,
2013 slp_tree, slp_instance);
2014 extern bool vectorizable_lc_phi (loop_vec_info, stmt_vec_info,
2015 gimple **, slp_tree);
2016 extern bool vect_worthwhile_without_simd_p (vec_info *, tree_code);
2017 extern int vect_get_known_peeling_cost (loop_vec_info, int, int *,
2018 stmt_vector_for_cost *,
2019 stmt_vector_for_cost *,
2020 stmt_vector_for_cost *);
2021 extern tree cse_and_gimplify_to_preheader (loop_vec_info, tree);
2023 /* In tree-vect-slp.c. */
2024 extern void vect_free_slp_instance (slp_instance);
2025 extern bool vect_transform_slp_perm_load (vec_info *, slp_tree, vec<tree>,
2026 gimple_stmt_iterator *, poly_uint64,
2027 bool, unsigned *);
2028 extern bool vect_slp_analyze_operations (vec_info *);
2029 extern void vect_schedule_slp (vec_info *, vec<slp_instance>);
2030 extern opt_result vect_analyze_slp (vec_info *, unsigned);
2031 extern bool vect_make_slp_decision (loop_vec_info);
2032 extern void vect_detect_hybrid_slp (loop_vec_info);
2033 extern void vect_optimize_slp (vec_info *);
2034 extern void vect_get_slp_defs (slp_tree, vec<tree> *);
2035 extern void vect_get_slp_defs (vec_info *, slp_tree, vec<vec<tree> > *,
2036 unsigned n = -1U);
2037 extern bool vect_slp_bb (basic_block);
2038 extern stmt_vec_info vect_find_last_scalar_stmt_in_slp (slp_tree);
2039 extern stmt_vec_info vect_find_first_scalar_stmt_in_slp (slp_tree);
2040 extern bool is_simple_and_all_uses_invariant (stmt_vec_info, loop_vec_info);
2041 extern bool can_duplicate_and_interleave_p (vec_info *, unsigned int, tree,
2042 unsigned int * = NULL,
2043 tree * = NULL, tree * = NULL);
2044 extern void duplicate_and_interleave (vec_info *, gimple_seq *, tree,
2045 vec<tree>, unsigned int, vec<tree> &);
2046 extern int vect_get_place_in_interleaving_chain (stmt_vec_info, stmt_vec_info);
2047 extern bool vect_update_shared_vectype (stmt_vec_info, tree);
2049 /* In tree-vect-patterns.c. */
2050 /* Pattern recognition functions.
2051 Additional pattern recognition functions can (and will) be added
2052 in the future. */
2053 void vect_pattern_recog (vec_info *);
2055 /* In tree-vectorizer.c. */
2056 unsigned vectorize_loops (void);
2057 void vect_free_loop_info_assumptions (class loop *);
2058 gimple *vect_loop_vectorized_call (class loop *, gcond **cond = NULL);
2059 bool vect_stmt_dominates_stmt_p (gimple *, gimple *);
2061 #endif /* GCC_TREE_VECTORIZER_H */